new usr/src/cnd/file/elf_read.c

R R R R

16037 Sun Feb 24 19:19: 04 2019
new usr/src/cnd/file/elf_read.c
file: support DT_SUNW KMOD usefully

Kk kk kR Kk kR kAR A IR A KRR A KRR A A AR KA AR Kk kA hh Ak hhkkh kA kk kA k Kk k k&

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License")

6 * You may not use this file except in conpliance with the License

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing

10 * See the License for the specific |anguage governi ng perm ssions

11 * and limtations under the License

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE

15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 *

19 * CDDL HEADER END

20 */

21 /* Copyrlght (c) 1984, 1986, 1987, 1988, 1989 AT&T */

22 |* Al Rights Reser ved

25 /| * Copyright (c) 1987, 1988 Mcrosoft Corporation */

26 /* Al Rights Reserved

28 [*

29 * Copyright 2007 Sun Mcrosystens, Inc. Al rights reserved

30 * Use is subject to license termns.

31 */

33 /*

34 * ELF files can exceed 2GB in size. A standard 32-bit program

35 * like 'file’ cannot read past 2GB, and will be unable to see

36 * the ELF section headers that typically are at the end of the

37 * object. The sinplest solution to this problemwould be to naeke

38 * the 'file’ command a 64-bit application. However, as a matter of

39 * policy, we do not want to require this. A sinple command |ike

40 * 'file’ should not carry such a requirenent, especially as we

41 * support 32-bit only hardware

42~

43 * An alternative solution is to build this code as 32-bit

44 * large file aware. The usual way to do this is to define a pair

45 * of preprocessor definitions:

46 *

47 * _LARGEFI LE64_SOURCE

48 * Map standard I/Oroutines to their largefile aware versions
49 *

50 * _FI LE_OFFSET_BI TS=64

51 * Map of f_t to off64_t

52 *

53 * The problemw th this solution is that libelf is not large file capable
54 * and the libelf header file will prevent conpilation if

55 * FILE OFFSET BITS is set to 64.

56 *

57 * So, the solution used in this code is to define _LARGEFI LE64_SOURCE
58 * to get access to the 64-bit APls, not to define _FILE_OFFSET_BITS, and to
59 * use our own types in place of of f t, and size_t. We read all the file
60 * data directly using pread64(), and avoid the use of Iibelf for anyt hi ng
61 * other than the xlate functionallty

new usr/src/cnd/file/elf_read.c

108

112

114
115

117
118
119
120

122
123

125
126

*
/
#defi ne
#define FILE_ ELF_OFF_T off64_t
#define FILE_ELF_SIZE T uint64_t

#
#
#
#
#
#
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i

#endi f /*

#
#
#

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

ncl ude
ncl ude
ncl ude

extern c

stati
stati
stati
stati
stati
stati
stati
stati
stati

stati
stati
stati
stati
stati
stati

OO0OO0O0O0O0O000

OO0O0000

static i
get _cl ass(voi d)
{

}

int file_xlateton(E
int xlatetonlnhdr(
int get_phdr(Elf_
int get_shdr(Elf_

LARGEFI LE64_SOURCE

<ctype. h>
<uni std. h>
<fcntl. h>
<stdio. h>
<libel f.h>
<stdlib. h>
<limts. h>

<l ocal e. h>
<string. h>
<errno. h>
<procfs. h>
<sys/ param h>
<sys/types. h>
<sys/stat.h>
<sys/elf.h>
<sys/|ink. h>
coder evi ew */
<el f cap. h>
"file.h"

"el f_read. h"

onst char *File

int get_class(void);
int get ver5|on(v0|d)
int get fornat(v0|d
int process_shdr(E

nt process_| phdr(E

S2mm-— &

El f _Ehdr El _Ehdr;
El f _Word El _Ehdr_shnum
El f _Word El _Ehdr _phnum
El f_Word El _Ehdr_shstrn
El f _Shdr El _Shdr;
El f _Phdr EI _Phdr

nt

return (El _Ehdr.e_iden

static int
get _versi on(voi d)
116 {

}

/* do as what |ibelf:
return (El_Ehdr.e_iden
El _Ehdr.e_ident[El _

static int
get _format (voi d)
124 {

return (El_Ehdr.e_iden

dx;

har *);

El f_Ehdr to be stored */

I ndex of section hdr string table */

recent Elf_Shdr to be stored
recent Elf_Phdr to be stored

t[El _CLASS]);

_elf_config()

does */

t[ET_VERSI ON] ?

VERSI ON]

t[El_DATA]);

1);

*/
*/

new usr/src/cnd/file/elf_read.c

128 /
129
130
131

*

* file_xlatetom transl ate different headers fromfile
* representation to menory representaion.
*/

132 #define HDRSZ 512
133 static int

134 fi
135 {
136
137
138

140
141

143
144
145
146

82
147

149
150
151

153
154

156
157
158
159

161
162
163 }

ile_xlatetom(El f_Type type, char *hdr)

El f _Data src, dst;
char *hbuf [HDRSZ] ;
int version, format;

version = get_version();
format = get_format();

/* will convert only these types */
if (type != ELF_T_EHDR && type != ELF_T_PHDR &&

type != ELF_T SHDR && type != ELF_T_WORD &&
type != ELF_ T _CAP && type != ELF_T_DYN)
type != ELF_T_CAP)

return (ELF_READ FAIL);

src.d_buf = (EIf_Void *)hdr;
src.d_type = type;
src.d_version = version;

dst.d_buf = (El f_Void *)&hbuf;
dst.d_version = EV_CURRENT;

src.d_size = elf_fsize(type, 1, version);

dst.d_size = elf_fsize(type, 1, EV CURRENT)

if (elf_xlateton(&dst, &src, forrmt) == NULL)
return (ELF_READ_FAI L);

(void) mencpy(hdr, &hbuf, dst.d_size);
return (ELF_READ OKAY);

__unchanged_portion_omtted_

409 /
410
411
412
413
414
415
416

*

* process_shdr:

* capabilities by |ooking at the SUNWcap
* section and set string in Elf_Info.

* Al'so | ook for symbol tables and debu

*

g
informati on sections. Set the "stripped" field

* in Elf _Info with corresponding flags.
*/

417 static int
418 process_shdr(El f_Info *El)
419 {

420
356
421
358
359
422
423
362
424

366
426

428
429

int nec;
int capn, mac;
i nt i, j, idx;

FILE_ELF_OFF_T cap_off;
FI LE_ELF_SI ZE_T csi ze;

char *strtab;

size_t strtab_sz;

El f _Cap Chdr ;

El f _Shdr *shdr = &El _Shdr;

csize = sizeof (Elf_Cap);
mac = El _Ehdr. e_nmchi ne;

/* if there are no sections, return success anyway */
if (El_Ehdr.e_shoff == 0 && El _Ehdr_shnum == 0)

Read Section Headers to attenpt to get HW SW

new usr/src/cnd/file/elf_read.c

430 return (ELF_READ_OKAY);

432 /* read section nanmes from String Section */

433 if (get_shdr(El, El_Ehdr_shstrndx) == ELF_READ FAIL)

434 return (ELF_READ FAIL);

436 if ((strtab = nmalloc(shdr->sh_size)) == NULL)

437 return (ELF_READ FAIL);

439 if (pread64(El->elffd, strtab, shdr->sh_size, shdr->sh_offset)

440 I'= shdr->sh_size)

441 return (ELF_READ FAIL);

443 strtab_sz = shdr->sh_si ze;

445 /* read aII t he sectlons and process them */

446 r (id« =1, i =0; i < ElI_Ehdr_shnum idx++, i++) {

447 char *shnam

449 if (get_shdr(El, i) == ELF_READ_FAIL)

450 return (ELF_READ _FAIL);

452 if (shdr->sh_type == SHT_NULL) {

453 idx--;

454 conti nue;

455 }

398 cap_of f = shdr->sh_of fset;

457 if (shdr->sh_type == SHT_SUNW cap) {

458 char capstr[128];

459 El f _Cap Chdr;

460 FI LE_ELF_OFF_T ap_of f;

461 FILE_ ELF_SIZE T c5| ze;

462 int capn;

464 cap_ off = shdr->sh_of f set;

465 csize = sizeof (ElIf_Cap);

466 #endif /* | codereview */

468 if (shdr->sh_size == 0 || shdr->sh_entsize == 0)
469 (void) fprintf(stderr, ELF_ERR ELFCAP1,

470 File, El->file);

471 return (ELF_READ FAIL);

472 }

473 capn = (shdr->sh_size / shdr->sh_entsize);

474 for (j =0; j < capn; j++) {

475 I*

476 * read cap and x|l ate the val ues

477 *

478 if ((pread64(El->elffd, &Chdr, csize, cap_off)
479 1= csize) ||

401 if (pread64(El->elffd, &Chdr, csize, cap_off)
402 1= csize

480 file_xlatetom(ELF_T_CAP, (char *)&Chdr)
481 == 0) {

482 (void) fprintf(stderr, ELF_ERR ELFCAP2,
483 File, El->file);

484 return (ELF_READ_FAI L);

485 }

487 cap_of f += csi ze;

489 /*

490 * Each capatibility group is termnated with
491 * CA_SUNWNULL. G oups other than the fi rst
492 * represent synbol capabilities, and aren't

new usr/src/crmd/filelelf

493
494
495
496

498
499
500
501

503
504
505

507
508
509
510
511
512
513
514

516
517

519
520
521
522
523

525
526
527
528
529
530
531
532
533
534

536

538
539
540
541
542
543
544

546
547
548
549
550
55118
552
553
554
555
556
557
558

_read.c 5

* interesting here.
*/

if (Chdr.c_tag == CA_SUNW NULL)
br eak;

(void) elfcap_tag_to_str(ELFCAP_STYLE_UC,
Chdr.c_tag, Chdr.c_un.c_val, capstr,
si zeof (capstr), ELFCAP_FMI_SNGSPACE,
nmac) ;

if ((*El->cap_str !="\0") && (* capstr 1="\0))
(void) strlcat(El->cap_str, " ",
si zeof (El->cap_str));

(void) strlcat(El->cap_str, capstr,
si zeof (El->cap_str));

}
} else if (shdr->sh_type == SHT_DYNAM C) {

El f _Dyn dyn;

FILE ELF SIZE T dsi ze;
FI LE_ELF_OFF_T doff;
int dynn;

dof f = shdr->sh_of fset;
dsi ze = sizeof (Elf_Dyn);

if (shdr->sh_size == 0 || shdr->sh_entsize == 0)
(voi d) fprl ntf(st derr, ELF_ERR DYNAM CI,
File, El->file);
return (ELF_READ FAI L);
}

dynn = (shdr->sh_size / shdr->sh_entsize);
for (j =0; j <dynn j++ {
if (pread64(El->elffd, &dIyn, dsize, doff)
1= dsize ||
file_xlateton(ELF_T_DYN, (char *)&dyn)
==0) {
(voi d) fprl ntf(st derr, ELF_ERR DYNAM C2,
File, ->file);
return (ELF_READ_FAI L);

}

doff += dsize;

if ((dyn.d_tag == DT_SUNWKMOD) &&
(dyn.d_un.d_val == 1)) {
El ->knpd = B_TRUE;

#endif /* | codereview */

}
/

* ok kR % ok Ok ok % ok F ok ¥

Definition tine:
- "not stripped" neans that an executable file
contains a Synbol Table (.syntab)
- "stripped" nmeans that an executable file
does not contain a Synbol Table.

When strip -1 or strip -x is run, it strips the
debuggi ng information (.line section nane (strip -1),
.line, .debug*, .stabs*, .dwarf* section names

and SHT SUNW | DEBUGSTR and SHT_SUNW _DEBUG
section types (strip -x), however the Synbol
Table will still be present.

Therefore, if

new usr/src/cnd/file/elf_read.c

559
560
561
562
563
564
565
566
567
568
569
570
571
572
5173
574

576
577
578
579
580

582
583
584
585

587
588
589
590
591
592
593
594

596
597 }

- No Synbol Table present, then report
"stripped"
- Synbol Table present with debugging
information (line nunber or debug section nanes,
or SHT_SUNW DEBUGSTR or SHT_SUNW DEBUG secti on
types) then report:
"not stripped"
- Synbol Table present with no debugging
information (line nunber or debug section nanes,
or SHT_SUNW DEBUGSTR or SHT_SUNW DEBUG secti on
types) then report:
"not stripped, no debuggi ng i nformation
* avai | abl e"
*/
if ((El->stripped & E_ NOSTRIP) == E_NOSTRI P)
conti nue;

* ok %k ok % ok Ok ok kb F o

if (!'(El->stripped & E_SYMIAB) &&
(shdr->sh_type == SHT_SYMIAB)) {
El ->stripped | = E_SYMIAB;

conti nue;

}

if (shdr->sh_name >= strtab_sz)
shnam = NULL;

el se

shnam = &strtab[shdr->sh_nane];

if (!(El->stripped & E_DBG NF) &&
((shdr->sh_type == SHT_SUNW DEBUG)
(shdr->sh_type == SHT_SUNW DEBUGSTR) | |
(shnam != NULL && is_in Ilst(shnarr)))) {
El->stripped | = E DBG NF;
}

}
free(strtab);

return (ELF_READ_OKAY);

new usr/src/cnd/filelelf_read. h
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
3256 Sun Feb 24 19:19:05 2019
new usr/src/cnd/file/elf_read. h
file: support DT_SUNW KMOD usefully
LEEE R R R EE SRR EEEEEEEEEE SRR EE SRR SRR EEEEEREEEEEEEEEESE]
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Mcrosystens, Inc. Al rights reserved.
23 * Use is subject to license terns.
24 */
26 #ifndef _ELF READ H
27 #define _ELF_READ H
29 #pragma ident " %Y U % %Y SM "
29 #define BUFSZ 128
30 typedef struct Elf_Info {
31 bool ean_t dynami c; /* dymanically |inked? */
32 unsi gned core_type; /* core? what type of core? */
33 unsi gned stripped; /* syntab, debug info */
34 unsi gned flags; /* e_flags */
35 unsi gned nmachi ne; /* e_machine */
36 unsi gned type; /* e_type */
37 int el ffd; /* fd of file being processed */
38 char f name[PRFNSZ] ; /* name of process that dunped core */
39 char cap_str[BUFSZ]; /* hw sw capabilities */
40 char *file; /* file being processed */
41 bool ean_t knod;
42 #endif /* | codereview */
43 } Elf_Info;
45 /* values for Elf_Info.stripped */
46 #define E_DBG NF 0x01
47 #define E_SYMIAB 0x02
48 #define E_NOSTRI P 0x03
50 /* values for Elf_Info.core_type; */
51 #define EC_NOTCORE 0x0
52 #define EC_OLDCORE 0x1
53 #defi ne EC_NEWCORE 0x2
55 /* elf file processing errors */
56 #define ELF_ERR ELFCAP1 gettext("%: % zero size or zero entry ELF " \
57 "section - ELF capabilities ignored\n")
58 #define ELF_ERR ELFCAP2 gettext("%: %: can't read ELF capabilities "

59 "data - ELF capabilities ignored\n")

\

new usr/src/cnd/filelelf_read. h

113

#def i ne ELF_ERR_DYNAM C1 gettext("%: % zero size or zero entry ELF "
"section - ELF dynamic tags ignored\n")

#def i ne ELF_ERR_DYNAM C2 gettext("%: %: can’t read ELF dynamic " \
"data - ELF dynanmic tags ignored\n")

#endif /* | codereview */

extern int is_in_list(char *str);

/* return status for elf_read and its hel per functions */
#define ELF_READ OKAY 1
#define ELF_READ FAIL 0

#if defined(_ELF64)

#define El f_Ehdr El f 64_Ehdr
#define Elf_Shdr El f 64_Shdr
#defi ne El f_Phdr El f 64_Phdr
#define Elf_Cap El f 64_Cap
#define Elf_Nhdr El f 64_Nhdr
#define Elf_Word El f 64_Word
#define Elf_Dyn El f 64_Dyn
#endif /* | codereview */

#define el f_read el f _read64
#define el f_xl atetom el f 64_x| at et om
#define el f_fsize el f64_fsize
#defi ne get _cl ass get _cl ass64
#define get_version get _versi on64
#defi ne get_format get _format 64
#el se

#define Elf_Ehdr El f 32_Ehdr
#define Elf_Shdr El f 32_Shdr
#define Elf_Phdr El f 32_Phdr
#define El f_Cap El f 32_Cap
#define Elf_Nhdr El f 32_Nhdr
#define EI f_Word El f32_Word
#define El f_Dyn El f 32_Dyn
#endif /* | codereview */

#define el f_read el f _read32
#define el f_xl| atetom el f32_xl at et om
#define el f_fsize el f32_fsize
#define get_cl ass get _cl ass32
#defi ne get_version get _versi on32
#def i ne get _format get _f or mat 32
#endi f

/* so lint can understand el f_read64 is defined */
#ifdef |int

#define el f_read64 el f_read
#endif /* lint */

#endi f /* _ELF _READ H */

new usr/src/cnd/file/file.c

R R R R

44683 Sun Feb 24 19:19:05 2019
new usr/src/cnmd/file/file.c
file: support DT_SUNW KMOD usefully

Kk kk kR Kk kR kAR A IR A KRR A KRR A A AR KA AR Kk kA hh Ak hhkkh kA kk kA k Kk k k&

__unchanged_portion_onitted_

1270 static int
1271 el f _check(char *file)
{

1272

1273 Elf _Info Elnfo;

1274 int class, version, format;

1275 unsi gned char ident[El _NI DENT];

1277 (void) menset (&ElInfo, 0, sizeof (Elf_Info));

1278 Elnfo.file = file;

1280 /*

1281 * Verify information in file indentifier.

1282 * Return quietly if not elf; Different type of file.
1283 */

1284 if (check_ident(ident, elffd) == ELF_READ FAIL)

1285 return (1);

1287 /*

1288 * Read the elf headers for processing and get the

1289 * get the needed information in EIf_Info struct.

1290 */

1291 class = ident[El _CLASS];

1292 if (class == ELFCLASS32) {

1293 if (elf_read32(elffd, &EInfo) == ELF_READ FAIL) {
1294 (void) fprintf(stderr, gettext("%: %: can't
1295 "read ELF header\n"), File, file);
1296 return (1);

1297 }

1298 } else if (class == ELFCLASS64) {

1299 if (elf_read64(elffd, &EInfo) == ELF_READ FAIL) {
1300 (void) fpri ntf(stderr gettext("%: %: can't "
1301 "read ELF header\n"), File, file);
1302 return (1);

1303 }

1304 } else {

1305 /* sonet hing wong */

1306 return (1);

1307 }

1309 /* version not in ident then 1 */

1310 version = ident[El _VERSION] ? ident[ElI_VERSION] : 1;

1312 format = ident[El _DATA];

1313 (void) printf("9%", gettext("ELF"));

1314 print_elf_class(class);

1315 print_el f_datatype(fornat);

1316 print_el f_type(Elnfo);

1318 if (Elnfo.core_type != EC_NOTCORE) ({

1319 /* Print what kind of corelsth|s*/

1320 if (Elnfo.core_type == EC O_DOG?E)

1321 (void) printf(" %", gettext("pre-2.6 core file"));
1322 el se

1323 (void) printf(" %", gettext("core file"));
1324 }

1326 /* Print machine info */

1327 print_el f_machi ne(El nf o. machi ne);

new usr/src/cnd/file/file.c

1329 /* Print VerS|on */

1330 if (version == 1)

1331 (void) printf(" % %", gettext("Version"), version);
1333 if (Elnfo.knod) {

1334 (void) printf(", %", gettext("kernel nodule"));
1335 }

1337 #endif /* | codereview */

1338 /* Print Flags */

1339 print_elf_flags(Elnfo);

1341 /* Last bit, if it is a core */

1342 if (Elnfo.core_type != EC_NOTCORE)

1343 /* Print the program nane that dunped this core */
1344 (void) printf(gettext(", from’% "), Elnfo.fnane);
1345 return (0);

1346 }

1348 /* Print Capabilities */

1349 if (Elnfo.cap_str[0] I—’\O’)

1350 (void) printf(" [%]", EInfo.cap_str);

1352 if ((Elnfo.type != ET_EXEC) && (ElInfo.type != ET_DYN))
1353 return (0);

1355 /* Print if it is dynamcally |inked */

1356 if (Elnfo.dynam c)

1357 (void) printf(gettext(", dynamcally |inked"));
1358 el se

1359 (void) printf(gettext(", statically Iinked"));

1361 /* Printf it it is stripped */

1362 if (Elnfo.stripped & E_SYMIAB) {

1363 (void) printf(gettext(", not stripped"));

1364 if (!(Elnfo.stripped & E_DBA NF)) {

1365 (void) printf(gettext(

1366 ", no debuggi ng i nformation avail able"));
1367 }

1368 } else {

1369 (void) printf(gettext(", stripped"));

1370 }

1372 return (0);

1373 }

1375 /*

1376 * is_rtld_config - If file is a runtine linker config file, prints
1377 * the description and returns True (1). O herwi se, silently returns
1378 * False (0).

1379 */

1380 int

1381 is_rtld_config(void)

1382 {

1383 Rtc_id *id,

1385 if ((fbsz >= sizeof (*id)) & RTC_ ID TEST(fbuf)) {

1386 (void) printf(gettext("Runtime Linking Configuration"));
1387 id = (Rtc_id *) fbuf;

1388 print_elf_class(id->id_class);

1389 print_el f_datatype(id->id_data);

1390 print_elf_machi ne(i d->i d_machi ne);

1391 (void) printf("\n");

1392 return (1);

1393 1

new usr/src/cnd/file/file.c

1395
1396

1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408

1410
1411

1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428

1430
1431
1432
1433
1434
1435
1436

1438
1439

1441
1442

1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460

* Ok Ok ok % b F %

return (0);

| ookup -

Attenpts to natch one of the strings froma list, 'tab’,

with what is in the file, starting at the current index position "i’.
Looks past any initial whitespace and expects whitespace or other
delimting characters to follow the matched string.

A match identifies the file as being "assenbler’, 'fortran’, 'c', etc.
Returns 1 for a successful match, 0 otherw se.

*/

st

atic in

Iookup(char **t ab)
1409 {

* ok Gk ko k%

st

register char r;
regi ster int k, j, I;

while (fbuf[i] ==" " |
r(j =0

fbuf[i] == '\t || fbuf[i] == '\n")

[+ {

r =tab[j][l++) == fbuf[k] & r = '\0'); k++)

|

fbuf[k] == "\n' |
fout[k] =="{" ||

}
return (0);

ccom -

Increments the current index 'i’ into the file buffer ’fbuf’ past any
whi tespace lines and C-style comments found, starting at the current
position of "i’'. Returns 1 as long as we don’'t increnent i past the
/5| ze of fbuf (fbsz). GOherw se, returns 0.

atic int

ccomvoi d)
1440 {

register char cc;
int |l en;

while ((cc = fbuf[i]) ==" " ||
if (i++ >= fbsz)
return (0);
if (fbuf[|] ——’/’ &&fbuf[|+1] == "*") {
i

while (fbuf[l] 1= e fbuf[i+1] 1= /") {
if (fbuf[i] == "\\")

i ++
if ((Ien nblen(&fbuf[1.
Ien =1,

cc ==’"\t’ || cc =="\n")

MB_CUR _MAX)) <= 0)

i +=le
if (i >_ f bsz)
return (0);
i}f ((i +=2) >= fbsz)
return (0);

new usr/src/cnd/file/file.c

1461
1462
1463
1464
1465 }
/

1467
1468
1469
1470
1471
1472
1473
1474

if (fbuf[i] =="\n")
i1f (ccom() ==
return (0);
return (1);

ascom -
Increments the current index 'i’ into the file buffer 'fbuf’ past
consecutive assenbl er program comment |ines starting with ASCOMCHAR,
starting at the current position of "i’.
Returns 1 as long as we don’t increnent i
size of fbuf (fbsz). GOherw se returns 0.
/

past the

* ok kb ok k%

1476 static int
1477 ascon(voi d)

1478 {
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489 }

1491 /

1492 #endif /* !

whi | e (fbuf[i]
Wnlle (fbuf[|++]

= ASCOMCHAR) {

I="\n")

f bsz)
return (0);
while (fbuf[l] =="\n")

(|++ >= fbsz)
return (0);

}
return (1);

* | ook for "1lhddddd" where d is a digit */

coderevi ew */

1493 static int
1494 sccs(void)

1495 {
1333 {
1496

1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509 }

/* look for "1lhddddd" where d is a digit

register int j;

if (fbuf[0] --l&&fbuf[l] == "h") {
for (j = 2 <= 6;) {
if (|sd|g|t(fbuf[J]))
continue;
el se
return (0);

} else {
return (0);

}
return (1);

__unchanged_portion_omtted_

*/

new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢

R R R R

53641 Sun Feb 24 19:19: 06 2019
new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢
I'd: inplenent -ztype and rework option parsing

R R

__unchanged_portion_onitted_

1064 /*

1065 * Print dynamic linking infornation. Input is an ELF

1066 * file descriptor, the SCNTAB structure, the nunber of

1067 * sections, and the filenane.

1068 */

1069 static void

1070 dunp_dynam c(Elf *elf_file, SCNTAB *p_scns, int numscns, char *filenane)
1071 {

1072 #define pdyn_Fntptr "B | x"

1074 Elf_Data *dyn_dat a;

1075 GEl f _Dyn p_dyn;

1076 GEl f _Phdr p_phdr;

1077 CEl f _Ehdr p_ehdr;

1078 int i ndex = 1;

1079 int l'ib_ scns = num.scns;

1080 SCNTAB *| _scns = p_scns;

1081 int header _num = 0;

1082 const char *str;

1084 (void) gelf_getehdr(elf_file, &_ehdr);

1086 if (!p_flag)

1087 (void) printf("\n **** DYNAM C SECTI ON | NFORVATI ON ****\n");
1089 for (; numscns > 0; numscns--, p_scns++) {

1090 GEl f _Word I'i nk;

1091 int ii;

1094 if (p_scns->p_shdr.sh_type != SHT_DYNAM C)

1095 cont i nue;

1097 if (!p_flag) {

1098 (void) printf("%:\n", p_scns->scn_nane);
1099 (void) printf("[INDEX]\tTag Val ue\ n");
1100 }

1102 if ((dyn_data = el f_getdata(p_scns->p_sd, NULL)) == 0) {
1103 (void) fprintf(stderr, "%: %: no data in "
1104 "o section\n", prog_nane, filenane,

1105 p_scns->scn_nane) ;

1106 return;

1107 }

1109 link = p_scns->p_shdr.sh_link;

1110 ii =0;

1112 (void) gel f_getdyn(dyn_data, ii++, &p_dyn);

1113 Wnle(pdyndtag‘:DTNUL){

1114 uni on {

1115 Conv_i nv_buf _t nv;

1116 Conv_dyn_fl ag_buf _t dyn flag;
1117 Conv_dyn_flagl_buf t dyn_fl agl;
1118 Conv_dyn_featurel_buf _t dyn_featurel;
1119 Conv_dyn_posfl agl_buf_t dyn_posflagl;
1120 } conv_buf;

new usr/ src/ cnd/ sgs/ dunp/ comon/ dunp. ¢

1122 (void) pri ntf("[%]\t% 15 15s ", index++,
1123 conv_dyn_tag(p_dyn.d_tag,
1124 p_ehdr.e_ident[El _OSABI], p_ehdr.e_machine,
1125 DUMP_CONVFMT, &conv_buf . |nv));
1127 /*

1128 * |t would be nice to use a table driven | oop
1129 * here, but the address space is too sparse
1130 * and |rregu| ar. Aswitch is sinple and robust.
1131 */

1132 switch (p_dyn.d_tag) {

1133 /*

1134 * Itens with an address val ue
1135 */

1136 case DT_PLTGOT:

1137 case DT_HASH:

1138 case DT_STRTAB:

1139 case DT_RELA:

1140 case DT_SYMIAB:

1141 case DT_INT:

1142 case DT_FI N :

1143 case DT_REL:

1144 case DT_DEBUG

1145 case DT_TEXTREL:

1146 case DT_JMPREL:

1147 case DT_I NIl T_ARRAY:

1148 case DT_FI NI _ARRAY:

1149 case DT_I NIl T_ARRAYSZ:

1150 case DT_FI NI _ARRAYSZ:

1151 case DT_PREI NI T_ARRAY:

1152 case DT_PREI NI T_ARRAYSZ:

1153 case DT_SUNW RTLDI NF:

1154 case DT_SUNW CAP:

1155 case DT_SUNW CAPI NFG

1156 case DT_SUNW CAPCHAI N:

1157 case DT_SUNW SYMIAB:

1158 case DT_SUNW SYMSORT:

1159 case DT_SUNW TLSSORT:

1160 case DT_PLTPAD:

1161 case DT_MOVETAB:

1162 case DT_SYM NFO

1163 case DT_RELACOUNT:

1164 case DT_RELCOUNT:

1165 case DT_VERSYM

1166 case DT_VERDEF:

1167 case DT_VERDEFNUM

1168 case DT_VERNEED:

1169 “(voi d) printf(pdyn_Fntptr,
1170 > ADDR(p_dyn. d_un. d ptr))
1171 break

1173 /*

1174 * |tenms wWith a string val ue

1175 */

1176 case DT_NEEDED:

1177 case DT_SONAME:

1178 case DT_RPATH:

1179 case DT_RUNPATH:

1180 case DT_SUNW AUXI LI ARY:

1181 case DT_SUNW FILTER

1182 case DT_CONFI G

1183 case DT_DEPAUDI T:

1184 case DT_AUDI T:

1185 case DT_AUXI LI ARY:

1186 case DT_USED:

1187 case DT_FILTER

new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢

1188 if (v_flag) { /* Look up the string */
1189 str = (char *)elf_strptr(elf_file,
1190 p_dyn.d_un.d_ptr)

1191 if (I(str && *str

1192 str = (char *) UNKNOMN,
1193 (void) printf("%", str);

1194 } else { /* Show the address */
1195 (v0|d) prlntf(pdyn Fntptr,

1196 DDR(p_dyn. d_un. d ptr))
1197

1198 break;

1200 /*

1201 * Itenms with a literal value

1202 */

1203 case DT_PLTRELSZ

1204 case DT_RELASZ:

1205 case DT_RELAENT:

1206 case DT_STRSZ:

1207 case DT_SYMENT:

1208 case DT_RELSZ:

1209 case DT_RELENT:

1210 case DT_PLTREL:

1211 case DT_BI ND_NOW

1212 case DT_CHECKSUM

1213 case DT_PLTPADSZ:

1214 case DT_MOVEENT:

1215 case DT_MOVESZ

1216 case DT_SYM NSZ:

1217 case DT_SYM NENT:

1218 case DT_VERNEEDNUM

1219 case DT_SPARC_REG STER:

1220 case DT_SUNW SYMSZ:

1221 case DT_SUNW SORTENT:

1222 case DT_SUNW SYMSORTSZ:

1223 case DT_SUNW TLSSORTSZ:

1224 case DT_SUNW STRPAD:

1225 case DT_SUNW CAPCHAI NENT:

1226 case DT_SUNW CAPCHAI NSZ:

1227 case DT_SUNWASLR

1228 case DT_SUNW KMOD:

1229 #endif /* ! codereview */

1230 (voi d) printf(pdyn_Fntptr,

1231 C_XWORD(p_dyn. d_un.d_val));

1232 break

1234 /*

1235 * Integer itens that are bitmasks, or which
1236 * can be otherwi se formatted in synbolic form
1237 */

1238 case DT_FLAGCS:

1239 case DT_FEATURE 1:

1240 case DT_POSFLAG 1:

1241 case DT_FLAGS 1:

1242 case DT_SUNW LDVACH:

1243 str = NULL;

1244 if (v_fl ag) {

1245 swtch (p_ dyn d_tag) {

1246 case DT_FLA

1247 str = conv_dyn_fl ag(
1248 p_dyn.d_un. d_val,
1249 DUMP_CONVFMT!

1250 &conv_buf . dyn_fl ag);
1251 break;

1252 case DT_FEATURE 1:

1253 str = conv_dyn_featurel(

li nk,

new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277

}
if (str) {

p dyn d_un.d_val,
IMP_ CONVFMT

&conv buf . dyn featurel);
br eak;
case DT_P@FLAG_l:
str = conv_dyn_posfl agl(
p_dyn.d_un. d_val,
DUMP_CONVFMT
&conv_buf . dyn posflagl);
br eak;
case DT_FLAGS 1:
str = conv_dyn_flagl(
p_dyn.d_un.d_val, O,
&conv_buf . dyn_fl agl);
break;
case DT_SUNV\LLDMACH:
str = conv_ehdr_nmach(
p_dyn.d_un.d_val, 0,
&conv_buf.inv);
br eak;

}

/* Show as string */

1278
1279
1280
1281
1282

1284
1285
1286
1287
1288
1289
1290

} else {

(void) printf("9s",
/* Nunmeric form?*/

str);

(voi d) pri ntf(pdyn Fntptr,

) C_ADDR(p_dyn. d
br eak;

/*

* Depreciated items with a literal

case DT_DEPRECATED SPARC REG STER:
“(voi d) printf(pdyn_Fntptr
(deprecated val ue)"

_un.d ptr))

val ue

1291

1293
1294

1295

1296

1297

1298

1299

1300 }
1301 }

1303 /*
1304
1305
1306
1307
1308
1309
1310
1311
1312 }
1313 |
1314 }

1315

1316

1317

1318 #undef
1319 }

header _numt+;

}
pdyn_Fnt ptr

EC_XWORD(p_dyn. d_un. d val));

br eak;

/* lgnored itens */

case DT_SYMBOLI C
(void) printf("(ignored)");
br eak;

}
(void) printf("\n");
(void) gel f_get dyn(dyn dat a,

ii++,

&p_dyn)

* Check for existence of static shared library information.
*

whi l e (header _num < p_ehdr. e_phnum {
(void) gelf_getphdr(elf_file,
if (p_phdr.p_type == PT_SHLIB) {
while (--lib_scns > 0)
if (stremp(l

header _num &p_phdr);

" lib") == 0)
filenane);

_scns->scn_nane,
print_static(l_scns,

_SCns++;

new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢

1321 /*

1322 * Print the ELF header. Input is an ELF file descriptor

1323 * and the filenane. |If f_flag is set, the ELF header is

1324 * printed to stdout, otherw se the function returns after

1325 * setting the pointer to the ELF header. Any val ues which
1326 * are not known are printed in decinal. Fields nust be updated
1327 * as new val ues are added.

1328 */

1329 static GElf_Ehdr *
1330 dunp_el f_header (EIf *elf_file, char *filenane, GElf_Ehdr * el f_head_p)

1331 {

1332 int class;

1333 int field;

1335 if (gelf_getehdr(elf_file, elf_head_p) == NULL)

1336 (void) fprintf(stderr, "%: %: %\n", prog_nane, filename,
1337 elf_errmsg(-1));

1338 return (NULL);

1339 }

1341 class = (int)el f_head_p->e_ident[4];

1343 if (class == ELFCLASS64)

1344 field = 21;

1345 el se

1346 field = 13;

1348 if (1f_flag)

1349 return (el f_head_p);

1351 if (!p_flag)

1352 (voi d) printf("\n **k%% E|F HEADER ****\n");
1353 (void) printf("%*s % 115%*5Machi ne Ver si on\ n",

1354 field, C1 ass", "Data", field, "Type");

1355 (voi d) printf("%* $% 115% * sFl ags Ehsi ze\ n",

1356 field, "Entry", "Phoff", field, "Shoff");

1357 (void) printf("%*s% 11s% * sShnum Shstrndx\ n\n",
1358 field, "Phentsize", "Phnunt, field, "Shentsz");

1359 }

1361 if (lv_flag) {

1362 (void) printf("%*d% 11d% *d% 12d%\ n"

1363 field, elf_head_p->e_ident[4], el f head _p->e_ident[5],
1364 field, (int)elf_head p->e type (int)el f_head_p->e_| machi ne,
1365 el f head _p->e_version);

1366 } else {

1367 Conv_i nv_buf _t inv_buf;

1369 (void) printf("%=*s", field,

1370 conv_ehdr _cl ass(cl ass, DUMP_CONVFMT, & nv_buf));
1371 (void) printf("% 11s",

1372 conv_ehdr _data(el f _head_p->e_ident[5], DUMP_CONVFM,
1373 & nv_buf));

1374 (void) printf("%=*s", field,

1375 conv_ehdr _type(el f _head_p->e_i dent [El _OSABI],

1376 el f _head_p->e_type, DUMP_CONVFMI, & nv_buf));

1377 (void) printf("9%12s",

1378 conv_ehdr mach(elf _head_p->e_machi ne, DUMP_CONVFM,
1379 & nv_buf));

1380 (void) printf("%\n"

1381 conv_ehdr vers(el f _head_p->e_versi on, DUMP_CONVFM,
1382 & nv_buf));

1383 }

1384 (void) printf("%#* |1 x% #1111 x% #*| | X% #12x%#x\ n"

1385 field, EC _ADDR(el f_head_p->e_entry), EC _OFF(elf_head_p->e_phoff),

new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢

1386 field, EC OFF(elf_head_p->e_shoff), EC WORD(elf_head_p->e_fl ags),
1387 EC VmD(eIf head_p->e_ehsi ze));

1388 if (lv_flag || (elf _head_p->e_ shstrndx'—SHNXINDEX)) {
1389 (voi d) printf ("% #*x% 11u% #*x% 12u%\ n",

1390 field, EC WORD(el f_head_p->e_phentsi ze)

1391 EC WORD(el f _head_p->e_phnum)

1392 field, EC WORD(el f_head_p->e_shent si ze),

1393 EC WJ?D(eIf head_p->e_shnum)

1394 EC_WORD(el f _head_p- >e shstrndx))

1395 } else {

1396 (void) printf("%#* x% 11u% #*x% 12uXl NDEX\ n"

1397 field, EC WORD(el f_head_p->e_phentsi ze),

1398 EC V‘CRD(eIf head_p- >e_phnum,

1399 field, EC WORD(elf_head_p- >e_shent si ze),

1400 EC WRD(eIf head_p->e_shnum);

1401 }

1402 if ((elf_ head p >e shnum = 0) && (elf_head_p->e_shoff > 0)) {
1403 *scn;

1404 GEI f_Shdr shdrO

1405 int fiel d;

1407 if (gelf_getclass(elf_file) == ELFCLASS64)

1408 field = 21;

1409 el se

1410 field =

1411 if (!p_flag) {

1412 (vol d) printf("\n **xx SECTI ON HEADER] 0]
1413 "{Elf Extensions} ****\n");

1414 (voi d) printf

1415 [No]\tType\tFI ags\t% *s % *s% *sY%sNane\n",
1416 fleld, "Addr", field, "Ofset", field,
1417 "Si ze(shnum "

1418 /* conpatlblllty tabfor elf32 */
1419 (field == 13) ? U\ttt

1420 (void) printf("\tLn(strndx) Infolt%*s Entsi ze\n",
1421 field, "Adralgn");

1422 }

1423 if ((scn = elf_getscn(elf_file, 0)) == NULL) {
1424 (void) fprintf(stderr,

1425 "Os: Y%: elf_getscn failed: %\n",
1426 prog_nane, filename, elf_errnsg(-1));
1427 return (NULL);

1428 }

1429 1f (gelf_getshdr(scn, &hdr0) == 0) {

1430 (void) fprintf(stderr,

1431 "Us: %: gelf_getshdr: %\n",

1432 prog_nane, filename, elf_errnsg(-1));
1433 return (NULL);

1434

1435 (v0| d) printf("[O]\t%\t%Ilu\t", EC WORD(shdrO.sh_type),
1436 C_XWORD(shdr 0. sh_fl ags));

1438 (voi d) printf("%#*11x %#*11x%*|1u¥%% *u\n",
1439 field, EC ADDR(shdr0.sh_addr),

1440 field, EC OFF(shdrO.sh offset)

1441 field, EC XWORD(shdrO.sh_size),

1442 /* conpatibility: tab for elf32 */

1443 ((field ==13) 2 "\t" : " "),

1444 field, EC WORD(shdrO.sh nane))

1446 (void) printf("\to%\t%\t%#*11x %#I1x\n",

1447 EC_WORD(shdr0. sh_link),

1448 EC_WORD(shdr 0. sh_i nfo),

1449 field, EC XWORD(shdrO.sh_addralign),

1450 field, EC XWORD(shdrO.sh_entsize));

1451 }

new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢

1452 (void) printf("\n");

1454 return (el f_head_p);

1455 }

1457 | *

1458 * Print section contents. Input is an ELF file descriptor,
1459 * the ELF header, the SCNTAB structure,

1460 * the nunber of synbol s, and the fil enane.

1461 * The nunber of sections,

1462 * and the offset into the SCNTAB structure will be

1463 * set in dunp_section if d_flag or n_flag are set.

1464 * If v_flag is set, sections which can be interpreted will
1465 * be interpreted, otherwise raw data will be output in hexidecimal.
1466 */

1467 static void
1468 print_section(Ef *elf_file,

1469 CEl f _Ehdr *p_ehdr, SCNTAB *p, int numscns, char *filenamne)
1470 {

1471 unsi gned char *p_sec;

1472 int i;

1473 size_t SI ze;

1475 for (i = 0; i < numscns; i++, p++) {

1476 GEI f_Shdr shdr;

1478 size = 0;

1479 if (s_flag && !'v_fl ag)

1480 p_sec = (unsigned char *)get_rawscn(p->p_sd, &size);
1481 el se

1482 p_sec = (unsigned char *)get_scndata(p->p_sd, &size);
1484 if ((gelf_getshdr(p->p_sd, &shdr) != NULL) &&
1485 (shdr.sh_type == SHT_NOBITS)) {

1486 cont i nue;

1487 }

1488 if (s_flag && !v_flag)

1489 (void) pri ntf("\ n%:\n", p->scn_nane);
1490 print_rawdata(p_sec, si ze) ;

1491 cont i nue;

1492 }

1493 if (shdr.sh_type == SHT_SYMIAB) {

1494 dunp_synbol _table(elf_file, p, filenane);
1495 cont i nue;

1496 }

1497 if (shdr.sh_type == SHT_DYNSYM {

1498 dunp_synbol _table(elf_file, p, filenane);
1499 cont i nue;

1500 }

1501 if (shdr.sh_type == SHT_STRTAB) {

1502 dunp_string_table(p, 1);

1503 cont i nue;

1504 }

1505 i1f (shdr.sh_type == SHT_RELA) {

1506 dunp_reloc_table(elf_file, p_ehdr, p, 1, filenane);
1507 cont i nue;

1508 }

1509 if (shdr.sh_type == SHT_REL) {

1510 dunp_rel oc_table(elf_file, p_ehdr, p, 1, filenane);
1511 conti nue;

1512 }

1513 if (shdr.sh_type == SHT_DYNAM C)

1514 dunp_dynanmic(el f_file, p, 1, filenane);
1515 cont i nue;

1516 }

new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢

1518 (void) printf("\n%:\n",
1519 print_rawdata(p_sec, s
1520 }

1521 (void) printf("\n");

1522 }

1524 | *

1525 * Print section contents. This functi
1526 * of the sections but sets up the par
1527 * print_section to print the contents.
1528 * the contents allows both -d and -n
1529 * sinultaneously. Input is an ELF fil
1530 * the SCNTAB structure, the nunber of
1531 * Set the range of sections if d_flag
1532 * n_flag.

1533 */

1534 static void
1535 dunp_section(E f *elf_file,

p->scn_nane) ;
ize);

on does not print the contents
aneters and then calls

Cal ling another function to print
to work correctly

e descriptor, the ELF header,
sections, and the filenane.

, and set section nane if

1536 GEl f _Ehdr *p_ehdr, SCNTAB *s, int numscns, char *filenane)

1537 {

1538 SCNTAB *n_range, *d_range; /* for use with -n and -d nodifiers */
1539 int i;

1540 int found_it = 0; /* for use with -n section_nane */

1542 if (n_flag) {

1543 n_range = s;

1545 for (i = 0; i < numscns; i++, n_range++) {

1546 if ((strcnp(nane, n_range->scn_nane)) != 0)
1547 continue;

1548 el se {

1549 found_it = 1,

1550 print_secti on(e f I p_ehdr,

1551 n_range, 1, fi ne);

1552 }

1553 }

AI555] if (Mfound_it) {

1556 (void) fprintf(stderr, "%: %: % not found\n",
1557 prog_nane, filenanme, nane);

1558 }

1559 } /* end n_flag */

1561 if (d_flag) {

1562 d_range = s;

1563 d_num = check _range(d_low, d_hi, numscns, filenane);
1564 if (d_num< 0)

1565 return;

1566 d_range += d_low - 1;

1568 print_section(elf_file, p_ehdr, d_range, d_num filenane);
1569 } /* end d_flag */

1571 if (!n_flag & !d_flag)

1572 print_section(elf_file, p_ehdr, s, numscns, filenane);
1573 }

1575 /*

1576 * Print the section header table. This function does not print the contents
1577 * of the section headers but sets up the paraneters and then calls
1578 * print_shdr to print the contents. Calling another function to print
1579 * the contents allows both -d and -n to work correctly

1580 * sinultaneously. |Input is the SCNTAB structure,

1581 * the nunber of sections fromthe ELF header, and the fil enane.

1582 * Set the range of section headers to print if d_flag, and set

1583 * name of section header to print if n_flag.

new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢ 9 new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢ 10
1584 */ 1650 * and the line nunber information are global. Al of the
1585 static void 1651 * rest are |ocal.
1586 dunp_shdr(Elf *elf_file, SCNTAB *s, int numscns, char *fil enane) 1652 */
1587 { 1653 static void
1654 dunp_section_table(Ef *elf_file, GEIf_Ehdr *elf_head_p, char *fil enane)
1589 SCNTAB *n_range, *d_range; /* for use with -n and -d nodifiers */ 1655 {
1590 int field;
1591 int i; 1657 static SCNTAB *buffer, *p_scns;
1592 int found_it = 0; /* for use with -n section_nane */ 1658 El f _Scn *scn = 0;
1659 char *s_name = NULL;
1594 if (gelf_getclass(elf_file) == ELFCLASS64) 1660 int found = 0;
1595 field = 21; 1661 unsi gned i nt num scns;
1596 el se 1662 size_t shst rndx;
1597 field = 13; 1663 size_t shnum
1599 if (!'p_flag)
1600 (voi d) pri ntf("\ **%% SECTI ON HEADER TABLE ****\n"); 1666 if (elf_getshdrnum(elf_file, &shnun’) == -1) {
1601 (void) printf("[]\tType\tFI ags\t%*s % *s % *s%Nane\ n", 1667 (void) fprintf(stder
1602 field, "Addr", field, "Ofset", field, "Size", 1668 "% U%: elf getshdrnum failed: %\n",
1603 /* conpati i bili ty tab for eI £32 */ 1669 prog_nane, filenane, elf_errnsg(-1));
1604 (field == 13) 2?2 "\t 1670 return;
1605 (void) pri ntf(\tLi nk\t Infolt%*s Entsize\n\ n", 1671 }
1606 field, "Adralgn"); 1672 if (elf_getshdrstrndx(elf_file, &hstrndx) == -1) {
1607 } 1673 (void) fprintf(stderr,
1674 "%: %: elf_getshdrstrndx failed: %\n",
1609 if (n_flag) { 1675 prog_nane, filenanme, elf_errnsg(-1));
1610 n_range = s; 1676 return;
1677 }
1612 for (i =1; i <= numscns; i++, n_range++) {
1613 if ((strcnp(nanme, n_range->scn_nane)) != 0) 1679 if ((buffer = calloc(shnum sizeof (SCNTAB))) == NULL) {
1614 conti nue; 1680 (void) fprintf(stderr, "%: %: cannot calloc space\n",
1615 el se { 1681 prog_nane, filenane);
1616 found_it = 1682 return;
1617 print shdr(el f_file, n_range, 1, i); 1683 }
1618 } 1684 /* LINTED */
1619 } 1685 numscns = (int)shnum- 1;
1621 if (!found_it) { 1687 p_syntab = (SCNTAB *)O0;
1622 (void) fprintf(stderr, "%: %: % not found\n", 1688 p_dynsym = (SCNTAB *) 0;
1623 prog_nane, filenanme, nane); 1689 p_scns = buffer;
1624 } 1690 p_head_scns = buffer;
1625 } /* end n_flag */
1692 while ((scn = elf_nextscn(elf_file, scn)) !=0) {
1627 if (d_flag) { 1693 if ((gelf_getshdr(scn, &buffer->p_shdr)) == 0) {
1628 d_range = s; 1694 (void) fprintf(stderr,
1629 d_num = check _range(d_low, d_hi, numscns, filenane); 1695 "Us: %: 9%\n", prog_nane, filenane,
1630 if (d_num< 0) 1696 elf_errmsg(-1));
1631 return; 1697 return;
1632 d_range += d_low - 1; 1698
1699 s_nane = (char *)
1634 print_shdr(elf_file, d_range, d_num d_low); 1700 elf_strptr(elf_file, shstrndx, buffer->p_shdr.sh_nane);
1635 } /* end d_flag */ 1701 buffer->scn_name = s_nanme ? s_nane : (char *) UNKNOW,
1702 buf f er->p_sd = scn;
1637 if (!n_flag & !d_flag)
1638 print_shdr(elf_file, s, numscns, 1); 1704 if (buffer->p_shdr.sh_type == SHT_SYMIAB) {
1639 } 1705 found += 1;
1706 p_syntab = buffer;
1641 /* 1707 }
1642 * Process all of the command |ine options (except 1708 if (buffer->p_shdr.sh_type == SHT_DYNSYM
1643 * for -a, -g, -f, and -0). Al of the options processed 1709 p_dynsym = buffer;
1644 * by this function require the presence of the section 1710 buf f er ++;
1645 * header table and will not be processed if it is not present. 1711 }
1646 * Set up a buffer containing section name, section header,
1647 * and section descriptor for each section in the file. This 1713 /*
1648 * structure is used to avoid duplicate calls to libelf functions. 1714 * These functions depend upon the presence of the section header table
1649 * Structure nmenbers for the synbol table, the debugging i nformation, 1715 * and will not be invoked in its absence

new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢ 11

1716 */

1717 if (h_flag) {

1718) dunp_shdr (el f_file, p_scns, numscns, filenane);
1719

1720 if (p_ symab&&(t _flag || T_flag)) {

1721 dunp_synbol _table(elf_file, p_syntab, filenane);
1722 1

1723 if (c_flag) {

1724 dunp_string_tabl e(p_scns, numscns);

1725

1726 if (r_flag) {

1727 dunp_reloc_table(elf_file, elf_head_p,

1728 p_scns, numscns, filenane);

1729 }

1730 if (L_flag) {

1731 dunp_dynamic(el f _file, p_scns, numscns, filenane);
1732 }

1733 if (s_flag) {

1734 dunmp_section(elf_file, elf_head_p, p_scns,

1735 num scns, filenane);

1736 }

1737 }

1739 /*

1740 * Load the archive string tabl e(s) (for extended-length strings)
1741 * into an in-core table/li
=Y

1742

1743 static struct stab_list_s *

1744 load_arstring_table(struct stab_list_s *STablList,

1745 int fd, EIf *elf _file, Ef Arhdr “*p_ar, char *filename)
1746 {

1747 of f _t here;

1748 struct stab_list_s *STL_entry, *STL_next;

1750 if (p_ar) {

1751 STL_entry = malloc(smeof (struct stab_list_s));
1752 STL_ent ry- >next = 0;

1753 STL_entry->strings = 0;

1754 STL_entry- >si ze = 0;

1756 if (!STabList)

1757 STabList = STL_entry;

1758 el se {

1759 STL_next = STabli st;

1760 while (STL_next->next != (void *)O0)
1761 STL_next = STL_next->next;

1762 STL_next->next = STL_entry;

1763 }

1765 STL_entry->si ze = p_ar->ar_si ze;

1766 STL entry—>str| ngs = nall oc(p_ar->ar_size);
1767 here = el f_getbase(elf_file);

1768 if ((lseek(fd, here, 0)) != here) {

1769 (voi d) fprintf(stderr,

1770 "Us: %: could not |seek\n", prog_nane, filenane);
1771 }

1773 if ((read(fd, STL_entry->strings, p_ar->ar_size)) == -1) {
1774 (voi d) fprintf(stderr,

1775 %: %: could not read\n", prog_nane, filenane);
1776 }

1777 }

1778 return (STabList);

1779 }

1781 /*

new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢

1782
1783
1784
1785

Print the archive header for each nenber of an archive.
Al'so call ar_symread to print the synbols in the

archive synbol table if g_flag. |Input is a file descr
an ELF file descriptor, and the filename. Putting the

1787
1788
1789
1790 */
1791 static void

1792 dunp_ar_hdr(int fd, EIf *elf_file, char *fil enane)
1793 {

1794 extern int v_flag, g_flag, a_flag, p_flag;
1795 Elf _Arhdr *p_ar;

1796 Elf *arf;

1797 Elf_Cmd cnd

1798 int title = 0;

1799 int err = 0;

efficient since it is necessary to exam ne the archive
nanme in the archive header to determ ne which nenber i
synbol table.

1801 char buf [DATESI ZF] ;

1803 cnd = ELF_C READ;

1804 while ((arf = elf_begin(fd, cnd, elf_file)) !=0)
1805 p_ar = elf_getarhdr(arf);

1806 1f (p_ar == NULL)

1807 (void) fprintf(stderr,

1808 "Os: Y%: %\n", prog_nane, fi
1809 elf_errmsg(-1));

1810 conti nue;

1811 }

1812 1f ((strcnp(p_ar->ar_nane, "/") == 0) ||

1813 (strcnp(p_ar->ar_nane, "/SYM4/") ==
1814 if (g_flag)

1815 ar_symread(el f_file, fil
1816 } else if (strcnp(p_ar->ar_nane, "//") =
1817 StringTabl eLi st = load_arstring_t
1818 StringTabl eList, fd, arf, p_a
1819 cmd = el f_next(arf);

1820 (void) elf_end(arf);

1821 cont i nue;

1822 } else {

1823 if (a_flag) {

1824 (voi d) printf("%[%]:\n",

1825 ar - >ar _na

*
*
*
*
1786 * to dunp the archive synbol table in this function is nore
*
*
*

i ptor,
cal |

menber
s the

{

| enane,

0)) {

enane) ;

==0) {

abl e(

12

r, filenane);

filenane,

DE
1826 if (lpflag&& itl = 0) {

1827 if (!v_fl ag)

1828 (void) pr
1829 "\n\n\t\t\t***ARCH VE HEADER***"

1830 "\n Dat e Ui d Gd Mode Si ze

1831 el se

1832 (void) pr
1833 "\n\n\t\t\t***ARCH VE HEADER***"
1834 "\n Dat e Ui d Gd
1835 ti
1836 }

1837 if ('v_flag) {

1838 (void) printf(
1839 "\t0x% 8l x %%d 9%d 0% 6ho 0x%8lx %s\n\n",

Mode Si ze
e =

1840 p_ar->ar _date,
_gid,

_node,
1843 p_ar->ar_si ze,

1841 (int)p_ar->ar
1842 (int)p_ar->ar

1844 } else {

1845 if ((strftlne(buf
1846 "% %d % oMt
1847 | ocal ti me(

intf(

Menber Nanme\n\n");

intf(
Menber

(int)p_ar

p_ar - >ar

DATESI ZE,
s o,

Nane\ n\ n");

->ar_uid,

_nane)

new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢

1848 &(p_ar->ar_date)))) == 0) {
1849 (void) fprintf(stderr,
1850 "%: %: don’t have enough space to store the date\n", prog_nane, filenane);
1851 exit(1);

1852

1853 (void) printf(

1854 "\t% %%d %%d 0% 6ho 0x% 8l x % s\n\n",

1855 buf, (int)p_ar->ar_uid,

1856 (int)p_ar->ar_gid,

1857 (int)p_ar->ar_node,

1858 p_ar->ar_size, p_ar->ar_nane);
1859 }

1860 }

1861

1862 cmd = el f_next(arf);

1863 (void) elf_end(arf);

1864 } /* end while */

1866 err = elf_errno();

1867 if (err 1=0)

1868 (voi d) fprl ntf(stderr,

1869 %: %\n", prog_nane, filenane, elf_errnmsg(err));
1870 }

1871 }

1873 /*

1874 * Process nmenber files of an archive. This function provides
1875 * a loop through an archive equival ent the processing of
1876 * each_file for individual object files.

1877 */

1878 static void

1879 dunp_ar_files(int fd, EIf *elf_file, char *fil enane)

1880 {

1881 El f _Arhdr *p_ar;

1882 Elf *arf;

1883 Elf_Cmd cnd;

1884 El f K|ndf||etype

1885 GEl _Ehdr el f _head,

1886 char "*ful | nane;

1888 cnd = ELF_C READ;
1889 while ((arf = elf_begin(fd, cmd, elf_file)) !'=0) {
1890 size_t len;

1892 p_ar = elf_getarhdr(arf);
1893 1f (p_ar == NULL) {

1894 (void) fprintf(stderr, "%: %: %\n",
1895 prog_nane, filenanme, elf_errmsg(-1));
1896 return;

1897 }

1898 if (p_ar->ar name[O] ="/") {

1899 cmd = el f_next(arf);

1900 (void) el f_end(arf);

1901 conti nue;

1902 }

1904 len = strlen(filename) + strlen(p_ar->ar_nane) + 3;

1905 if ((fullname = malloc(len)) == NULL)

1906 return;

1907 (void) snprintf(fullnanme, len, "%[%]", filenane,

1908 p_ar->ar_nane) ;

1909 (void) pri ntf("\ n%: \n", fullnane);

1910 file_type = el f_ki nd(arf)

1911 if (file_type == ELF_K ELF) {

1912 if (dunp_el f _header(arf, fullnane, &elf_head) == NULL)
1913 return;

13

new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢ 14
1914 if (o_flag)

1915 dunp_exec_header (arf,

1916 (unsi gned) el f _head. e_phnum full nane);
1917 if (x_flag)

1918 dunp_section_tabl e(arf, &elf_head, fullnane);
1919 } else {

1920 (void) fprintf(stderr, "%: %: invalid file type\n",
1921 prog_nane, full nama)

1922 cmd = el f_next(arf);

1923 (voi d) el f_end(arf);

1924 conti nue;

1925 }

1927 cmd = el f_next(arf);

1928 (void) elf_end(arf);

1929 } /* end while */

1930 }

1932 /*

1933 * Takes a filenanme as input. Test first for a valid version

1934 * of libelf.a and exit on error. Process each valid file

1935 * or archive given as input on the conmand |ine. Check

1936 * for file type. |If it Is an archive, process the archive-

1937 * specific options first, then files Wi thin t he archive.

1938 * If it is an ELF object file, process it; otherw se

1939 * warn that it is anlnvalldflletype

1940 * Al options except the archive-specific and program

1941 */executi on header are processed in the function, dunp_section_table.

1942 *

1943 static void
1944 each_file(char *fil enane)

1945 {

1946 Elf *elf _file;

1947 GEl f _Ehdr el f _head;

1948 int fd;

1949 El f _Ki nd file_type;

1951 struct stat buf;

1953 Elf_Cnd cnd

1954 errno = O;

1956 if (stat(filenane &buf) == -1) {

1957 nt err = errno;

1958 (v0| d) fprintf(st derr "Os: Y%: %", prog_nane, filenane,
1959 strerror(err));

1960 return;

1961 1

1963 if ((fd = open((filenane), ORDCNLY)) == -1)

1964 (void) fprintf(stderr, "%: %: cannot read\n", prog_nane,
1965 filenane);

1966 return;

1967 }

1968 cnd = ELF_C _READ;

1969 if ((elf_file = elf_begin(fd, cmd, (EIf *)0)) == NULL) {

1970 (void) fprintf(stderr, "%: %: %\n", prog_nane, filenane,
1971 elf_errmsg(-1));

1972 return;

1973 }

1975 file_type = elf_kind(elf_file);

1976 if (file_type == ELF_K_AR) {

1977 if (a_flag || g_flag) {

1978 dunp_ar_hdr(fd, elf_file, filenane);

1979 elf_file = elf_begin(fd, cmd, (EIf *)0);

new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢ 15

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002

2004
2005
2006
2007
2008
2009

2011
2012

2014
2015
2016
2017

2019

2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045

}

/*
* Sets up flags for cormand |ine options given and then
* calls each_file() to process each file.

int

}
1f (z_flag)
dunp_ar_files(fd, elf_file, filenanme);
} else {
if (file_type == ELF_K ELF) {
(void) printf("\n%:\n", filenane);
if (dunp_elf_header(elf_file, filename, &elf_head)) {
if (o_flag)
dunp_exec_header (el f_file,
(unsi gned) el f _head. e_phnum
fil enane);
if (x_flag)
dunp_section_table(elf_file,
&el f _head, fil enane);
} else {
(void) fprintf(stderr, "%: %: invalid file type\n",
prog_nane, filenane);
}

%voi d) elf_end(elf_file);
(void) close(fd);

mai n(int argc, char *argv[], char *envp[])
2010 {

char *optstr = OPTSTR;, /* option string used by getopt() */
int optchar;

/*
* Check for a binary that better fits this architecture.
*

(void) conv_check_native(argv, envp);
prog_nanme = argv[O0];

(void) setlocal e(LC_ALL, "");

while ((optchar = getopt(argc, argv, optstr)) !=-1) {

switch (optchar) {
case 'a’:

a_flag = 1;

x_flag = 1;

break;
case 'g’:

g_flag = 1;

x_flag = 1;

break;
case 'V’

v_flag = 1;

br eak;
case 'p':

p_flag 1;

br eak;
case 'f’:

f_flag = 1;

z_flag = 1;

break;
case '0':

o_flag = 1;

z flag = 1

break;

new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢

2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111

% %s\n",

case 'h':
h_flag = 1;
x_flag = 1;
z_flag = 1;
br eak;

case 's’:
s_flag = 1;
x_flag = 1
z_flag = 1;
break;

case 'd:
d_flag = 1
x_flag = 1;
z_flag = 1;
set _range(optarg, & _low, &d_hi);
br eak;

case 'n’:
n_fl ag++;
x_flag = 1;
z_flag = 1,
name = optarg
break;

case 'r':
r_flag = 1;
x_flag = 1;
z_flag = 1;
break;

case 't’:
t_flag = 1;
x_flag = 1;
z_flag = 1;
break;

case 'C:
Cflag = 1;
t_flag = 1;
x_flag = 1;
z_flag = 1;
br eak;

case 'T:
T flag = 1;
x_flag = 1
z_flag = 1;
set _range(optarg, &T_low, &T_hi);
break;

case 'c’:
c_flag = 1;
x_flag = 1;
z_flag = 1;
break;

case 'L’:
L_flag = 1;
x_flag = 1;
z_flag = 1,
br eak;

case 'V :
V_flag = 1;
(void) fprintf(stderr, "dunp:

(const char *)SGU_PKG
(const char *)SGU_REL);

break;

case '?:
errflag += 1;
br eak;

defaul t:
break;

}

new usr/ src/ cnd/ sgs/ dunp/ comron/ dunp. ¢ 17

2112

2114
2115
2116
2117
2118
2119

2121
2122
2123
2124
2125

2127
2128
2129
2130
2131
2132 }

}

if (errflag || (optind >= argc) || (!z_flag & !'x_flag)) {
if (I(V_flag & (argc == 2))) {
usage();

age() ;
exit(269);
}
if (elf_version(EV_CURRENT) == EV_NONE) {
(void) fprintf(stderr, "%: libelf is out of date\n",
prog_nane) ;
exit(101);
}
while (optind < argc) {
each_file(argv[optind]);
opti nd++;

}
return (0);

new usr/src/cnmd/ sgs/include/ _libelf.h

R R R R

1735 Sun Feb 24 19:19: 06 2019
new usr/src/cmd/ sgs/include/ _libelf.h
I'd should reject kernel nodules as input

R R R R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 =

*

CDDL HEADER END
/

26 #ifndef _ LIBELF_H
27 #define __LIBELF H

29 /*
30 * Version of libelf.h that supplies definitions for APIs that
31 * are private to the linker package. Includes the standard libelf.h
32 * and then supplenents it with the private additions.
*/

35 #include <libelf.h>
36 #include <gel f.h>

38 #ifdef __cplusplus
39 extern "C' {

40 #endi f

42 typedef void _elf_execfill _func_t(void *, off_t, size_t);

44 extern void _elf_execfill (_elf_execfill_func_t *);
45 extern size_t _elf_getnextof f(EIf *);

46 extern of f _t _el f_getarhdrbase(El f *);

47 extern size_t _el f_getarsymaordsi ze(El f *);

48 extern EIf64_O f _elf_getxoff(Elf_Data *);

49 extern GElf_Xword _gel f _getdyndtflags_1(Ef *);

50 extern GEl f_Xword _gel f_getdynval (EI f *, GElf_Sxword);
51 #endif /* | codereview */

52 extern int _elf_swap_wrimage(Ef *);

53 extern uint_t _el f_sys_encodi ng(voi d);

55 #ifdef __cplusplus

56

57 #endif

59 #endif /* __LIBELF_H */

23 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. Al rights reserved.
*
/

new usr/src/cnd/ sgs/include/libld. h 1

R R R R

66899 Sun Feb 24 19:19: 07 2019
new usr/src/cnd/ sgs/include/libld. h
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)
Id: inplenment -ztype and rework option parsing

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkkk kR ok kkkkk ok k ok k k%

__unchanged_portion_om tted_

412 #define FLG OF_DYNAM C 0x00000001 generate dynanmic output nodule */
413 #define FLG OF_STATIC 0x00000002 generate static output nodule */
414 #define FLG OF _EXEC 0x00000004 generate an executable */

415 #define FLG OF_RELOBJ 0x00000008 generate a rel ocatabl e object */
416 #define FLG OF_SHAROBJ 0x00000010 generate a shared object */

417 #define FLG OF_BFLAG 0x00000020 do no special plt building: -b */
418 #define FLG OF_| GNENV ~ 0x00000040 ignore LD_LIBRARY_PATH -i */

419 #define FLG OF_STRIP 0x00000080 strip output: -s */

420 #define FLG_OF_NOMRN 0x00000100 di sabl e synbol warnings: -t */

421 #define FLG_OF_NOUNDEF 0x00000200 al |l ow no undefined synbols: -zdefs */
422 #define FLG_OF_PURETXT 0x00000400 all ow no text relocations: -ztext */
423 #define FLG OF_GENVAP 0x00000800 generate a nenory nap: -m*/

424 #define FLG_OF_DYNLIBS 0x00001000 dynam c input allowed: -Bdynanmic */
425 #define FLG_OF_SYMBOLI C 0x00002000 bi nd gl obal synbols: -Bsynbolic */
426 #define FLG_OF_ADDVERS 0x00004000 add version stanp: -Q */

427 #define FLG_OF_NOLDYNSYM 0x00008000
428 #define FLG OF_ | S_ORDER 0x00010000
429

430 #define FLG OF_EC_FI LES 0x00020000

-znol dynsym set */

input section ordering within a */
segment is required */

Ent _desc exist w non-NULL ec_files */

431 #define FLG OF_TEXTREL 0x00040000 text relocations have been found */
432 #define FLG_OF_MJLDEFS 0x00080000 multiple synbols are all owed */

433 #define FLG_OF_TLSPHDR 0x00100000 a TLS program header is required */
434 #define FLG_OF_BLDGOT 0x00200000 build GOT table */

435 #define FLG OF_VERDEF 0x00400000 record version definitions */

436 #define FLG OF_VERNEED 0x00800000 record version dependencies */

437 #define FLG OF_NOVERSEC 0x01000000 don’t record version sections */

* ook ok ok ok 3k ok ok ok b 3k b 3k b ok b ok % ok % bk ok % ok ok ok k% o %

e e e e e e e —

438 #define FLG OF_KEY 0x02000000 file requires sort keys */

439 #define FLG OF_PROCRED 0x04000000 process any synbol reductions by */
440 effecting the synbol table */
441 out put and rel ocations */

442 #define FLG OF_SYM NFO 0x08000000 create a sym nfo section */

443 #define FLG OF_AUX 0x10000000 of| _filter is an auxiliary filter */
444 #define FLG OF_FATAL 0x20000000 fatal error during input */

445 #define FLG_OF_WARN 0x40000000 war ni ng during input processing. */
446 #define FLG OF_VERBOSE 0x80000000 -z verbose flag set */

448 #define FLG OF_MAPSYMB 0x000100000000 synbol i c scope definition seen */
449 #define FLG_OF_MAPGLOB 0x000200000000 gl obal scope definition seen */

450 #define FLG_OF_COVREL 0x000400000000 -z conbrel oc set, which enables */

451
452 #define FLG_OF_NOCOVREL 0x000800000000

DT_RELACNT tracking, */
-z noconbrel oc set */

453 #define FLG OF_AUTOLCL 0x001000000000 automatical ly reduce unspecified */
454 gl obal synbols to locals */
455 #define FLG OF_AUTCELM 0x002000000000 autonatically elimnate */

456 unspeci fi ed gl obal synbols */
457 #define FLG OF_REDLSYM 0x004000000000 reduce | ocal synbols */

458 #define FLG OF_OS_ORDER 0x008000000000
459 #define FLG OF_OSABI 0x010000000000

out put section ordering required */
tag object as ELFCSABI _SOLARI'S */

P A A N N N N N N

* Ok ok ok % ok ok 3k ok 3k b ok b ok % ok % ok ¥

460 #define FLG_OF _ADJOSCNT 0x020000000000 adj ust of | _shdrcnt to accommmodate */
461 di scarded sections */

462 #define FLG OF_OTOSCAP 0x040000000000 convert object capabilities to */
463 synbol capabilities */

464 #define FLG OF_PTCAP 0x080000000000 PT_SUNWCAP required */

465 #define FLG OF_CAPSTRS 0x100000000000 capability strings are required */
466 #define FLG_OF_EHFRAME 0x200000000000 out put contains .eh_frane section */
467 #define FLG OF_FATWARN 0x400000000000 make warnings fatal */

new usr/src/cnd/ sgs/include/libld. h

468 #define FLG OF_ADEFLIB 0x800000000000 /* no libraries in default path */

470 #define FLG OF_KMOD 0x1000000000000 /* output is a kernel nodule */

472 #endif /* | codereview */

473 | *

474 * In the flagsl arena, establish any options that are applicable to archive
475 * extraction first, and associate a mask. These values are recorded with any
476 * archive descriptor so that they may be reset should the archive require a
477 * rescan to try and resol ve undefined synbol s.

478 */

479 #define FLG OF1_ALLEXRT 0x0000000001 /* extract all menbers froman */

480 [* archive file */

481 #define FLG OF1_WEAKEXT 0x0000000002 /* allow archive extraction to */

482 I resol ve weak references */

483 #defi ne MSK_OF1_ARCH VE 0x0000000003 /* archive flags mask */

485 #define FLG OF1_NO NTRP 0x0000000008 /* -z nointerp flag set */

486 #define FLG OF1_zDlI RECT 0x0000000010 /* -z direct flag set */

487 #define FLG_OF1_NDI RECT 0x0000000020 /* no-direct bindings specified */

488 #define FLG OF1_DEFERRED 0x0000000040 /* deferred dependency recording */
490 #define FLG OF1_RELDYN 0x0000000100 /* process .dynamic in rel obj */

491 #define FLG OF1_NRLXREL 0x0000000200 /* -z norelaxreloc flag set */

492 #define FLG OF1_RLXREL 0x0000000400 /* -z relaxreloc flag set */

493 #define FLG OF1_|I GNORE 0x0000000800 /* ignore unused dependencies */

494 #define FLG_OF1_NOSGHND 0x0000001000 /* -z nosighandl er flag set */

495 #define FLG OF1_TEXTOFF 0x0000002000 /[* text relocations are ok */

496 #define FLG OF1_ABSEXEC 0x0000004000 [* -zabsexec set */

497 #define FLG OF1_LAZYLD 0x0000008000 /* lazy | oading of objects enabled */
498 #define FLG OF1_GRPPRM 0x0000010000 /* dependencies are to have */

499 /* GROUPPERM enabl ed */

501 #define FLG OF1_NOPARTI 0x0000040000 /* -znopartial set */

502 #define FLG OF1_BSSOREL 0x0000080000 /* output relocation against bss */

503 /* section */

504 #define FLG OF1_TLSOREL 0x0000100000 /* output relocation against .tlsbhss */
505 [* section */

506 #define FLG OF1_MEMORY 0x0000200000 /* produce a nenory nodel */

507 #define FLG OF1_NGLBDI R 0x0000400000 /* no DT_1_DI RECT flag allowed */

508 #define FLG OF1_ENCDI FF 0x0000800000 /* host running linker has different */
509 /* byte order than output object */
510 #define FLG OF1_VADDR 0x0001000000 /* a segnent defines explicit vaddr */
511 #define FLG OF1_EXTRACT 0x0002000000 /* archive nenber has been extracted */
512 #define FLG OF1_RESCAN 0x0004000000 /* any archives shoul d be rescanned */
513 #define FLG OF1_| GNPRC 0x0008000000 /* ignore processing required */

514 #define FLG OF1_NCSTTAB 0x0010000000 /* -znoconpstrtab set */

515 #define FLG OF1_DONE 0x0020000000 /* link-editor processing conplete */
516 #define FLG OF1_NONREG 0x0040000000 /* non-regular file specified as */
517 /* the output file */

518 #define FLG OF1_ALNODI R 0x0080000000 /* establish NODI RECT for all */

519 /* exported interfaces. */

520 #define FLG OF1_OVHWCAP1 0x0100000000 /* override CA SUNWHW1 capabilities */
521 #define FLG OF1_OVSFCAP1 0x0200000000 /* override CA_SUNWSF_1 capabilities */
522 #define FLG OF1_OVHWCAP2 0x0400000000 /* override CA_SUNWHW?2 capabilities */
523 #define FLG OF1_OVMACHCAP 0x0800000000 /* override CA_SUNW MACH capability */
524 #define FLG OF1_OVPLATCAP 0x1000000000 /* override CA_SUNW PLAT capability */
525 #define FLG_OF1_OVI DCAP 0x2000000000 /* override CA_SUNWID capability */
527 | *

528 * Quidance flags. The flags with the FLG OFG NO_ prefix are used to suppress
529 * nmessages for a given category, and use the | ower 28 bits of the word,

530 * The upper nibble is reserved for other guidance status.

531 */

532 #define FLG OFG ENABLE 0x10000000 /* -z guidance option active */
533 #define FLG _OFG_|I SSUED 0x20000000 /* -z guidance nessage issued */

new usr/src/cnd/ sgs/include/libld. h

535
536
537
538
539
540
541
542
543

545
546
547
548
549
550
551

553
554
555]
556
557
558

560
561
562
563
564
565
566
567
568

570
571
572
573
574
5175,
576

578
579
580
581
582

584
585
586
587
588
589
590

592
593
594
595
596
597
598
599

#define FLG_ OFG_NO ALL OxOf ffffff /* disable all guidance */

#defi ne FLG_OFG_NO _DEFS 0x00000001 /* specify all dependencies */
#define FLG_OFG_NO DB 0x00000002 /* use direct bindings */

#defi ne FLG_OFG_NO_LAZY 0x00000004 /* be explicit about |azyload */
#defi ne FLG_OFG_NO_MF 0x00000008 /* use v2 mapfile syntax */
#defi ne FLG_OFG_NO _TEXT 0x00000010 /* verify pure text segment */
#defi ne FLG_OFG_NO_UNUSED 0x00000020 /* renpve unused dependency */
#def i ne FLG_OFG_NO_KMOD 0x00000040 /* use -z type=knmod */

#endif /* 1 codereview */

/*

* Test to see if a guidance should be given for a given category

* or not. _no_flag is one of the FLG OFG NO xxx flags. Returns TRUE
* if the guidance should be issued, and FALSE to remain silent.

*

no_flag) (((_ofl)->ofl _guideflags &\

#def i ne OFL_GUI DANCE(_of |, _no_
(_no_flag))) == FLG OFG _ENABLE)

(FLG_OFG_ENABLE |

/*

* Test to see if the output file would allow the presence of
* a .dynsym section.

*/

#define OFL_ALLOWDYNSYM of|) (((_ofl)->ofl flags &\
(FLG OF DYNAM C | FLG OF RELOBJ)) == FLG OF DYNAM C)

*
* Test to see if the output file would allow the presence of

* a . SUNWIdynsym section. The requirenents are that a .dynsym

* is allowed, and -znoldynsym has not been specified. Note that

* even if the answer is True (1), we will only generate one if there
*

are local synbols that require it.

#define OFL_ALLOW LDYNSYM _of) (((_ofl)->ofl _flags &\
(FLG_ OF_ DYNAM C | FLG OF_RELOBJ | FLG_OF_NOLDYNSYM)

/*

* Test to see if relocation processing should be done.
* true, but can be disabled via the '-z noreloc’ option. Note that
* rel ocatabl e objects are still relocated even if '-z norel oc’
*

#define OFL_DO RELOC(_of) (((_ofl)->ofl flags & FLG OF RELOBJ)
1((ZofT)->of | dtflags .1 & DF_1_NORELOC))

(A

/*
* Determ ne whether a static executable is being built.
*
/
#define OFL_I S_STATI C EXEC(_ofl) (((ofl) >of | _flags &\
(FLG_OF_STATIC | FLG OF_EXEC)) == (FLG_OF_STATIC |
/*
*

Det erm ne whether a static object is being built.

* to select the appropriate string table, and synbol table that other
* sections need to reference.

*/

#define OFL_I S_STATI C_OBJ(_t _flags &\

(_ofl) ((_ofl)->ofl
(FLG_ OF_RELOBJ | FLG OF_STATICO))

/*

* Macros for counting synbol table entries.
* tables and associ ated sections (.sym nfo, SUNW capi nfo,
* set required sh_info entries (the offset to the first gl obal
*/

. hash, etc.)

/* local .syntab entries */
/* NULL and STT_FILE */
/* section synbol */

#defi ne SYMIAB_LOC CNT(_ofl)
2 +

(_ofl)->of | _shdrcnt +

This is nornmally

FLG OF_EXEC))

This macro is used

synbol).

== FLG OF_DYNAM Q)

is present.

These are used to size synbol

and

new usr/src/cnd/ sgs/include/libld. h

600 (_ofl)->of | _capl ocl cnt + /* | ocal capabilities */ \
601 (_ofl)->of | _scopecnt + /* scoped synbols */ \
602 (_ofl)->of | _l ocscnt) /* standard | ocals */

603 #define SYMIAB_ALL_CNT(_ofl) /* all .syntab entries */ \
604 (S MTAB_LG: CNT(_of) + /* .syntab locals */

605 (_ofl)->of | _gl obcnt) /* standard gl obals */

607 #define DYNSYM LOC_CNT(_ofl) [* local .dynsymentries */ \
608 (1 + [NULL */ \
609 (_ofl)->of | _dynshdrcnt + /* section synbols */ \
610 (_ofl)->of | _capl ocl cnt + /* | ocal capabilities */ \
611 (_ofl)->of | _I regsynctnt) /* | ocal register synbols */

612 #define D NSYM_ALL CNT(_ofI /* all .dynsymentries */

613 (DYNSYM OC_CNT(_ofl) + /* .dynsym | ocal s */ \
614 (_ofl)- “gl obent) /* standard gl obals */

616 /*

617 * Define a nove descriptor used within relocation structures.

618 */

619 typedef struct {

620 Move *nr_nove;

621 Sym desc *nr_sym

622 } M/_rel oc;

624 [*

625 * Relocation (active & output) processing structure - transparent to conmon
626 * code. There can be nmillions of these structures in a large link, so it
627 * is inportant to keep it small. You should only add new itenms to Rel _desc
628 * if they are critical, apply to nost relocations, and cannot be easily
629 * conputed fromthe other information.

630 *

631 * Itens that can be derived should be inplemented as a function that accepts
632 * a Rel _desc argument, and returns the desired data. ld_reloc_symname() Is
633 * an exanple of this.

634 *

635 * Lesser used relocation data is kept in an auxiliary block, Rel_aux,

636 * that is only allocated as necessary. In exchange for adding one pointer
637 * of overhead to Rel _desc (rel _aux), nost relocations are reduced In size
638 * by the size of Rel _aux. This strategy relies on the data in Rel _aux

639 * being rarely needed --- otherwise it will backfire badly.

640 *

641 * Note that rel_raddend is primarily only of interest to RELA relocations,
642 * and is set to O for REL. However, there is an exception: |f FLG REL_NADDEND
643 * is set, then rel _raddend contains a replacenent value for the inplicit
644 * addend found in the relocation target.

645 *

646 * Fields should be ordered fromlargest to smallest, to mnimze packing
647 * holes in the struct |ayout.

648 *

649 struct rel _desc {

650 I's_desc *rel _i sdesc; /* input section reloc is against */
651 Sym desc *rel _sym /* symrelocation is against */

652 Rel _aux *rel _aux; /* NULL, or auxiliary data */

653 Xwor d rel _roffset; /* relocation of fset */

654 Sxwor d rel _raddend; /* addend frominput relocation */
655 Word rel _flags; /* misc. flags for relocations */
656 Wor d rel _rtype; /* relocation type */

657 };

659 /*

660 * Data that would be kept in Rel _desc if the size of that structure was
661 * not an issue. This auxiliary block is only allocated as needed,

662 * and nust only contain rarely needed itenms. The goal is for the vast

663 * mpjority of Rel_desc structs to not have an auxiliary block.

664 *

665 * When a Rel _desc does not have an auxiliary block, a default value

new usr/src/cnd/ sgs/include/libld. h

666 * is assunmed for each auxiliary item

667 *

668 * - ra_osdesc:

669 * Qut put section to which relocation applies. The default

670 * value for this is the output section associated with the

671 * input section (rel_isdesc->is_osdesc), or NULL if there

672 * is no associated input section.

673 *

674 * - ra_usym

675 * If the synbol associated with a relocation is part of a weak/strong
676 * pair, then ra_usym contains the strong synbol and rel _symthe weak.
677 * O herwi se, the default value is the sane value as rel _sym

678 *

679 * - ra_nove:

680 * Mve table data. The default value is NULL.

681 *

682 * - ra_typedata:

683 * ELF_R TYPE DATA(info). This value applies only to a snall

684 * subset of 64-bit sparc relocations, and is otherwi se 0. The

685 * default value is 0.

686 *

687 * If any value in Rel _aux is non-default, then an auxiliary block is

688 * necessary, and each field contains its actual value. If all the auxiliary
689 * values are default, no Rel _aux is needed, and the RELAUX_GET_xxx()

690 * macros below are able to supply the proper default.

691 *

692 * To set a Rel _aux value, use the Id_reloc_set_aux_XXX() functions.

693 * These functions are witten to avoid unnecessary auxiliary allocations,
694 * and know the rules for each item

695 */

696 struct rel _aux {

697 Gs_desc *ra_osdesc; /* output section reloc is against */
698 Sym desc *ra_usym /* strong symif this is a weak pair */
699 M/_rel oc *ra_nove; /* nove table information */

700 Wor d ra_typedata; /* ELF_R TYPE_DATA(i nfo) */

701 };

703 [*

704 * Test a given auxiliary value to determine if it has the default val ue
705 * for that item as described above. If all the auxiliary items have

706 * their default values, no auxiliary place is necessary to represent them
707 * |f any one of themis non-default, the auxiliary block is needed.

708 */

709 #define RELAUX | SDEFAULT MOVE(rdesc, _mv) (_nmv == NULL)

710 #define RELAUX_| SDEFAULT_USYM _rdesc, _usym) ((rdesc)->r el _sym == _usym
711 #define RELAUX_| SDEFAULT_OSDESC(_ rdesc _osdesc) \

712 ((((_rdesc)->rel _i sdesc == I\ULL) && (_osdesc == NULL)) || \

713 ((_rdesc)->rel _isdesc && ((_rdesc)->rel _isdesc->i s_osdesc == _osdesc)))
714 #define RELAUX_| SDEFAULT_TYPEDATA(_rdesc, _typedata) (_typedata == 0)

716 | *

717 * Retrieve the value of an auxiliary relocation item preserving the illusion
718 * that every relocation descriptor has an auxiliary block attached. The
719 * real inplenmentation is that an auxiliary block is only present if one or
720 * nore auxiliary items have non-default values. These macros return the true
721 * value if an auxiliary block is present, and the default value for the
722 * item otherw se.

723 */

724 #define RELAUX_GET_MOVE(_rdesc) \

725 ((_rdesc)->rel _aux ? (rdesc) >rel _aux->ra_nove : NULL)

726 #define RELAUX_GET_USYM _rdesc) \

727 ((_rdesc)->rel _aux ? (_rdesc)->rel _aux->ra_usym: (_rdesc)->rel_sym
728 #define RELAUX_GET_OSDESC(_rdesc) \

729 ((_rdesc)->rel _aux ? (_rdesc)->rel _aux->ra_osdesc : \

730 ((_rdesc)->rel _i sdesc ? (_rdesc)->rel _isdesc->i s_osdesc : NULL))
731 #define RELAUX_GET_TYPEDATA(_rdesc) \

new usr/src/cnd/ sgs/include/libld. h

732

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776

778
779
780
781
782
783
784
785

787
788
789
790
791
792
793
794

796
797

#def i ne FLG_REL_MOVETAB 0x00000100

#def i ne FLG_REL_NADDEND 0x00400000

((_rdesc)->rel _aux ? (_rdesc)->rel _aux->ra_typedata : 0)

/*

* common flags used on the Rel _desc structure (defined in machrel.h).

*/

#defi ne FLG REL_GOT 0x00000001 rel ocati on agai nst GOT */

#define FLG REL_PLT 0x00000002 rel ocation agai nst PLT */

#defi ne FLG REL_BSS 0x00000004 rel ocation agai nst BSS */

#defi ne FLG REL_LOAD 0x00000008 section | oadable */

#defi ne FLG REL_SCNNDX 0x00000010 use section index for symbol ndx */

#define FLG REL_CLVAL 0x00000020 clear VALUE for active relocation */

#define FLG REL_ADVAL 0x00000040 add VALUE for output relocation, */
only relevant to SPARC and */
R_SPARC_RELATI VE */

#defi ne FLG REL_GOTCL 0x00000080 clear the GOT entry. This is */

rel evant to RELA relocations, */

not REL (i386) relocations */

Rel ocati on agai nst . SUNW nove */
adj ustments required before */

actual relocation */
#defi ne FLG_REL_NO NFO 0x00000200 Rel ocation cones froma section */

with a null sh_info field */
#defi ne FLG REL_REG 0x00000400 Rel ocation target is reg sym*/
#defi ne FLG REL_FPTR 0x00000800 rel ocation against func. desc. */
#defi ne FLG_REL_RFPTRL Rel ative rel ocation against */
#define FLG REL_RFPTR2 0x00002000 Rel ative rel ocati on agai nst */

2nd part of FD */

#defi ne FLG REL_DI SP 0x00004000 *di sp* relocation */
#define FLG REL_STLS 0x00008000 IE TLS reference to */

static TLS GOT index */
#define FLG REL_DTLS 0x00010000 GD TLS reference relative to */

dynanmi ¢ TLS GOT index */
#define FLG REL_MILS 0x00020000 LD TLS reference agai nst GOT */
#define FLG REL_STTLS 0x00040000 LE TLS reference directly */

to static tls index */
#define FLG_REL_TLSFI X 0x00080000 rel ocation points to TLS instr. */

whi ch needs updating */
#defi ne FLG REL_RELA 0x00100000 descriptor captures a Rela */
#defi ne FLG REL_GOTFI X 0x00200000 rel ocation points to GOTOP instr. */

whi ch needs updating */

Repl ace inplicit addend in dest */
with value in rel _raddend */
Rel evant to REL (i386) */

not to RELA. */

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* 1st part of FD */
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
0x00001000 ;
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

rel ocations,

*

* W often need the nane of the synmbol contained in a relocation descriptor
* for diagnostic or error output. This is usually the synbol nane, but

* we substitute a constructed name in sone cases. Hence, the nane is

* generated on the fly by a private function within libld. This is the

* prototype for that function.

*

typedef const char *(* rel _desc_sname_func_t)(Rel _desc *);
/*
* Header for a relocation descriptor cache buffer.
*/
struct rel _cachebuf {
_desc *rc_end,

Rel _desc *rc_free;

Rel _desc rc_arr[1];
/*
* Header for a relocation auxiliary descriptor cache buffer.

new usr/src/cnd/ sgs/include/libld. h 7
798 */

799 struct rel _aux_cachebuf {

800 Rel _aux *rac_end;

801 Rel _aux *rac_free;

802 Rel _aux rac_arr[1];

803 };

805 /*

806 * Convenience macro for traversing every relocation descriptor found within
807 * a given relocation cache, transparently handling the cache buffers and
808 * skipping any unall ocated descriptors within the buffers.

809 *

810 * entry:

811 * _rel _cache - Relocate descriptor cache (Rel _cache) to traverse

812 * _idx - Aliste index variable for use by the macro

813 * _rcbp - Cache buffer pointer, for use by the nacro

814 * _orsp - Rel _desc pointer, which will take on the value of a different
815 * rel ocation descriptor in the cache in each iteration.

816 *

817 * The caller nust not assign new values to _idx, _rcbp, or _orsp within

818 * the scope of REL_CACHE_TRAVERSE.

819 */

820 #defl ne REL_CACHE TRAVERSE(_rel _cache, _idx, _rcbp, _orsp) \

821 for (APLIST TRAVERSE((rel cache)->rc_|ist, “idx, _rcbp)) \

822 for (_orsp = _rcbp->rc_arr; _orsp < _rcbp >rc_free; _orsp++)
824 | *

825 * Synbol val ue descriptor. For relocatable objects, each synbols value is
826 * its offset within its associated section. Therefore, to uniquely define
827 * each synbol within a relocatable object, record and sort the sh_offset and
828 * synbol value. This information is used to search for displacenent

829 * relocations as part of copy relocation validation.

830 *

831 typedef struct {

832 Addr ssv_val ue;

833 Sym desc *ssv_sdp;

834 } Ssv_desc;

836 /*

837 * Input file processing structures.

838 *

839 struct ifl_desc { /* input file descriptor */

840 const char *ifl _nane; /* full file name */

841 const char *jfl _sonane; /* shared object nane */

842 dev_t i fl_stdev; /* device id and i node nunber for .so */
843 ino_t ifl_stino; /* nmul tiple inclusion checks */
844 Ehdr *ifl _ehdr; /* elf header describing this file */
845 El f *Ifl_elf; /* elf descriptor for this file */
846 Sym desc **jfl _ol dndx; /* original synbol table indices */
847 Sym desc *ifl_locs; /* synbol desc version of |ocals */
848 Ssv_desc *ifl_sortsyns /* sorted list of symbols by value */
849 Word ifl_locscnt; /* no. of local synbols to process */
850 Word ifl_symscnt; /* total no. of synbols to process */
851 Wor d ifl_sortcnt; /* no. of sorted synbols to process */
852 Wor d i f1 _shnum /* nunber of sections in file */

853 Wor d i f1 _shstrndx; /* index to .shstrtab */

854 Wor d ifl_vercnt; /* nunber of versions in file */

855 Hal f i fl _neededndx; /* index to NEEDED in .dyn section */
856 Word ifl_flags; /* explicit/inplicit reference */
857 I's_desc **jfl_isdesc; /* isdesc[scn ndx] = |Is_desc ptr */
858 Sdf _desc *j | _sdf desc; /* control definition */

859 Ver sym *ifl _versym /* version synbol table array */

860 Ver _i ndex *ifl_verndx; /* verndx[ver ndx] = Ver_index */
861 APl i st *ifl verdesc; /* version descriptor list */

862 APl i st *ifl_rel sect; /* relocation section list */

863 Ali st *ifl _groups; /* SHT_GROUP section list */

new usr/src/cnd/ sgs/include/libld. h

864 Cap_desc *ifl_caps;
865 };

867 #define FLG |F_CVDLINE 0x00000001
868

869 #define FLG | F_NEEDED 0x00000002
870 #define FLG_ | F_DI RECT 0x00000004
871

872 #define FLG | F_EXTRACT 0x00000008
873 #define FLG | F_VERNEED 0x00000010
874

875 #define FLG | F_DEPREQD 0x00000020
876

877 #define FLG | F_NEEDSTR 0x00000040
878

879 #define FLG | F_| GNORE 0x00000080
880 #define FLG | F_NODI RECT 0x00000100
881

882 #define FLG | F_LAZYLD 0x00000200
883 #define FLG | F_GRPPRM 0x00000400

884 #define FLG_ | F_DI SPPEND 0x00000800

885

886 #define FLG | F_DI SPDONE 0x00001000
887

888 #define FLG | F_MAPFI LE 0x00002000
889 #define FLG | F_HSTRTAB 0x00004000
890 #define FLG | F_FILEREF 0x00008000
891

892

893 #define FLG | F_GNUVER 0x00010000
894 #define FLG | F_ORDERED 0x00020000
895

896 #define FLG | F_OTOSCAP 0x00040000
897

898 #define FLG | F_DEFERRED 0x00080000
899 #define FLG | F_RTLDINF 0x00100000
900 #define FLG | F_GROUPS 0x00200000
902 /*

903 * Synbol states that

904 */

905 #define MSK_| F_POSFLAGL (FLG_ | F_LAZYLD |
907 /*

908 * Synbol states that

909 */

910 #define MSK_IF_SYM NFO (FLG |F_LAZYLD |

913 struct is_desc {

914 const char *i s_nane;

915 const char *i s_sym nane;
916

917 Shdr *is_shdr;

918 I fl_desc *is_file;

919 Gs_desc *i s_osdesc;
920

921 El f _Data *i s_i ndat a;
922 I's_desc *i s_synmshndx;
923 | s_desc *i s_condat keep;
924

925 Wor d i s_scnndx;
926 Word i s_ordndx;
927

928

929 Wor d i s_keyi dent;

® ok ok ok % ok ok 3k ok ok b 3k b 3k b ok b ok Ok ok % b % ok % ok o 3k ok k% ok

e e e e e e e e e e e —

FLG | F_DI RECT |

capabilities descriptor */

full filenanme speC|f|ed fron1the */
conmand line (no -
shared object shoul d be recorded */
establish direct bindings to this */
obj ect */
file extracted froman archive */
versi on dependency information is */
required */
dependency is required to satisfy */
synbol references */
dependency specified by -Nn */
flag */
i gnore unused dependenci es */
obj ect contains synbols that */
cannot be directly bound to */
dependency shoul d be | azy | oaded */
dependency establishes a group */
di spl acenent rel ocati on done */
inthe Idtim. */
di spl acenent rel ocation done */
at the run time */
fileis a mapfile */
file has a string section */
file contains a section which */
is included in the output */
al | ocat abl e i mage */
file used GNU-styl e versioning */
ordered section processing */
required */
convert object capabilities to */
synbol capabilities */
dependency is deferred */
dependency has DT_SUNW RTLTI NF set */
input file has groups to process */

require the generation of a DI_POSFLAG 1 .dynanmic entry.
FLG_ | F_GRPPRM |

FLG | F_DEFERRED)

requi re an associ ated Symi nfo entry.

FLG | F_DEFERRED)

i nput section descriptor */
original section name */
NULL, or nanme string to use for */
rel ated STT_SECTI ON synbols */
the el f section header */
infile desc for this section */
new out put section for this */
i nput section */
put sections raw data */
| at ed SHT_SYM SHNDX section */
COVDAT section is discarded, */
this is section that was kept */
original section index in file */
index for section. Used to decide */
where to insert section when */
reordering sections */
key for SHF_{ ORDERED| LI NK_ORDER}

in
re
I f

new usr/src/cnd/ sgs/include/libld. h

930

931

932 Wor d is_flags;
933 };

935 #define FLG | S _ORDERED 0x0001
936 #define FLG |IS_KEY 0x0002
937 #define FLG | S_DI SCARD 0x0004
938 #define FLG | S_RELUPD 0x0008
939 #define FLG | S_SECTREF 0x0010

940 #define FLG | S_GDATADEF 0x0020
941 #define FLG | S_EXTERNAL 0x0040
942 #define FLG | S_| NSTRVRG 0x0080
943 #define FLG | S_GNSTRVMRG 0x0100

processing and ident
pl aci ng/ orderi ng sections */
Various flags */

—~——
* ok *

this is a SHF_ORDERED section */
section requires sort keys */
section is to be discarded */
synbol
section has been referenced */
section contains global data sym */
isp froma user file */

Usabl e SHF_MERCE| SHF_STRI NGS sec */

—~——— e — — — —
* ok % ok ok kb 3k

945 #define FLG | S_PLACE 0x0400 /* section requires to be placed */
946 #define FLG IS COWDAT 0x0800 /* section is \T */
947 #define FLG |S_EHFRAME 0x1000 /* section is .eh_frame */
949 [*
950 * CQutput sections contain |ists of input sections that are assigned to them
951 * These itens fall into 4 categories:
952 * BEFORE - Ordered sections that specify SHN BEFORE, in input order.
953 * ORDERED - Ordered sections that are sorted using unsorted sections
954 * as the sort key.
955 * DEFAULT - Sections that are placed into the output section
956 * in input order.
957 * AFTER - Ordered sections that specify SHN AFTER in input order.
958 */
959 #define OS_| SD BEFORE 0
960 #define OS_| SD ORDERED 1
961 #define OS_| SD DEFAULT 2
962 #define OS_| SD_AFTER 3
963 #define OS_| SD_NUM 4
i

964 typedef APl

966 /*

967 * Convenience macro for traversing every input section associated

968 * with a given output section. The primary benefit of this macro

969 * is that it preserves a precious |evel of code indentation in the

970 * code that uses it.

971 */

972 #define OS_| SDESCS_TRAVERSE(_| i st _osp, _idx, _isp) \

973 for (_list_idx = 0; I|st|dx<OSISDNUM Ilstidx++)\

974 for (APLI ST _TRAVERSE(osp->os_isdescs[_list_idx], _idx, _isp))
977 | *

978 */l\/ap file and output file processing structures

979 *

980 struct os_desc { /* Qutput section descriptor */

981 const char *0s_nane; /* the section nane */

982 El f_Scn *0s_scn; /* the elf section descriptor */

983 Shdr *0s_shdr; /* the elf section header */

984 Os_desc *os_rel osdesc; /* the output relocation section */

985 APl i st *os_relisdescs; /* reloc input section descriptors */
986 /* for this output section */

987 os_i sdecs_arr os_i sdescs; /* lists of input sections in output */
988 APl i st *os_nstrisdescs; /* FLG |S_INSTRVRG i nput sections */
989 Sg_desc *0s_sgdesc; /* segnent os_desc is placed on */

990 El f_Data *0s_out dat a; /* output sections raw data */

991 avl _tree_t *0s_condat s; /* AVL tree of COVDAT input sections */
992 /* associ ated to output section */
993 Word os_i dent ndx; /* section identifier for input */

994 /* section processing, followed */
995 /* by section synbol index */

9

used for */

defined here may have noved */

Gener ated nergeabl e string section */

new usr/src/cnd/ sgs/include/libld. h

996 Wor d os_or dndx; B

997 /*

998 [*

999 Xwor d os_szoutrels; /*

1000 ui nt _t os_nanehash; /*

1001 uchar _t os_fl ags; /*

1002 };

1004 #define FLG OS_KEY 0x01 /*

1005 #define FLG OS_OUTREL 0x02 [*

1006 #define FLG OS_SECTREF 0x04 /*

1007 #define FLG OS_EHFRAME 0x08 /*

1009 /*

1010 *

1011 * order for program headers and segnents in the output object.
1012 *

1013 * their attributes. The initial set of built

1014 * and new mapfile defined segnents are inserted into these groups.
1015 * given SA D group,

1016 * version of the mapfile that

1017 *

1018 * order). The newer syntax places themat the end,
1019 * (creation order).

1020 *

1021 *

1022 * PT_INTERP (refer Generic ABI,
1023 */

1024 #define SG D_PHDR

1025 #define SG D_| NTERP
1026 #define SG D_SUNWCAP
1027 #define SG D_TEXT

1028 #define SA D_DATA

1029 #define SG D_BSS

1030 #if defi ned(_ELF64)
1031 #define SG D_LRODATA
1032 #define SA D_LDATA

1033 #endi f

1034 #define SG D _TEXT_EMPTY
1035 #define SG D_NULL_EMPTY
1036 #define SA D_DYN

1037 #define SG D_DTRACE 11
1038 #define SG D TLS
1039 #define SG D_UNW ND
1040 #define SA D_SUNWSTACK 14

©o N GORWNRFO

=
o

e
W

| *
/*
/*
/*
| *
/*

PT_LOAD,
PT_NULL,

10

Used to decide */
section when */

index for section.
where to insert
reordering sections */

size of output relocation section */

hash on section nanme */

various flags */

section requires sort keys */

output rel against this section */
isps are not affected by -zignore */
section is .eh_frane */

The sg_id field of the segnent descriptor is used to establish the default

Segnments are

ordered according to the followi ng SG D values that classify them based on

in segments are in this order,
Wthin a

the position of new segnents depends on the syntax
creates them Version 1 (original
mapfiles place the new segnent at the head of their group (reverse creation

Sysv)

followi ng the others

Not e that any new segnments nust always be added after PT_PHDR and
Page 5-4).

PT_PHDR */
PT_I NTERP */
PT_SUNWCAP */
PT_LOAD */
PT_LOAD */
PT_LOAD */

* PT_LOAD (anmd64-only) */
* PT_LQOAD (and64-only) */

reserved (?E in version 1 syntax) */
reserved (?E in version 1 syntax) */

PT_ DYNAM C */
PT_SUNWDTRACE */
PT_TLS */

PT_SUNWSTACK */
PT_NOTE */

PT_NULL,
for use by
PT_NULL (fi nal

h;

scs;

rder;

rder;

1041 #define SG D_NOTE 15

1042 #define SA D_NULL 16

1043

1044 #define SA D_EXTRA 17

1046 typedef Half sg_flags_t;

1047 struct sg_desc {

1048 Wor d sg_i d;
1049 Phdr sg_phdr;
1050 const char *sg_nane;
1051

1052 Xwor d sg_round;
1053 Xwor d sg_| engt
1054

1055 APl i st *sg_osde
1056 APl i st *sg_is_o
1057

1058 Ali st *sSg_0S_0
1059

1060 sg_flags_t sg_f1l ags;
1061 APl i st *sg_size

sym

/*
/*
| *
| *
/*
/* PT_SUNW UNW ND */
*
;*
/*
/*
| *

* ok % ok ok ok 3k ok 3k ok b 3k

~_—— e e — — — ————

mapfil e defined enpty phdr slots */
post processors */
catchall) */

out put segnent descriptor */

segnent identifier (for sorting) */

segnent header for output file */

segnent nane for PT_LOAD, PT_NOTE, */
and PT_NULL, otherwi se NULL */

data rounding required (napfile) */

maxi mum segnment length; if 0 */

segnent is not specified */
list of output section descriptors */
list of entry criteria */

giving I nput section order */
l'i st specifying output section */
ordering for the segnment */

size synbols for this segment */

new usr/src/cnd/ sgs/include/libld. h

1062 Xwor d sg_align;

1063 El f_Scn *sg_fscn;

1064 avl _node_t sg_avl node;
1065 };

1067 #define FLG SG P_VADDR 0x0001
1068 #define FLG SG P_PADDR 0x0002
1069 #define FLG SG LENGTH 0x0004
1070 #define FLG SG P_ALI GN 0x0008
1071 #define FLG SG ROUND 0x0010
1072 #define FLG SG P_FLAGS 0x0020
1073 #define FLG SG P_TYPE 0x0040
1074 #define FLG SG | S_ORDER 0x0080
1075

1076 #define FLG SG NOHDR 0x0100
1077

1078 #define FLG SG EMPTY 0x0200
1079

1080

1081 #define FLG SG KEY 0x0400
1082 #define FLG_SG _NODI SABLE 0x0800
1083

1084 #define FLG SG DI SABLED 0x1000
1085 #define FLG SG PHREQ 0x2000
1086

1087 #define FLG SG ORDERED 0x4000

1089 struct sec_order {

1090 const char *sco_secnane;
1091 Hal f sco_f | ags;
1092 };

1094 #define FLG SGO USED 0x0001

1096 typedef Half ec_flags_t;

1097 struct ent_desc {

1098 const char *ec_nane;
1099 Ali st *ec_files;
1100

1101 const char *ec_i s_nane;
1102

1103 Wor d ec_type;
1104 Wor d ec_at t rmask;
1105 Wor d ec_attrbits;
1106 Sg_desc *ec_segnent ;
1107 Wor d ec_or dndx;
1108

1109

1110

1111 ec_flags_t ec_fl ags;
1112 avl _node_t ec_avl node;
1113 };

1115 #define FLG EC BUI LTIN 0x0001

1116 #define FLG EC _USED 0x0002

1117 #define FLG EC_CATCHALL 0x0004

1119 /*

1120 * Ent_desc_file is the type of el enent
1121 * of an entrance criteria descriptor.
1122 * path,

1123 * and other information about i

1124 * the bottom byte of the flags.

1125 */

1126 #define TYP_ECF_MASK
1127 #define TYP_ECF_PATH

— e~ — ~——

-

® ok ok ok ok b 3k b 3k b ok Ok ok % ok % Ok kb ok * ok *

*

11

LCM of sh_addralign */
the SCN of the first section. */
AVL book- keepi ng */

p_vaddr segnent attribute set */

p_paddr segnent attribute set */

length segnent attribute set */

p_align segnment attribute set */

round segnent attribute set */

p_flags segnment attribute set */

p_type segnent attribute set */

I nput section ordering is required */

for this segnent. */

map ELF or phdrs into */

this segnent */

an enpty segnment specification */
no input sections wll be */
assoclated to this section */

segnment requires sort keys */

FLG SG DI SABLED is not allowed on */
this segnent */

this segnent is disabled */

this segnent requires a program */

header */

SEGMVENT_ORDER segnent */

don’ t

section nane to be ordered */

was ordering used? */

input section entrance criteria */

entrace criteria name, or NULL */

files fromwhich to accept */
sections */

i nput section name to match */
(NULL if none) */

section type */

section attribute mask (AWK) */

sections attribute bits */

out put segnment to enter if nmatched */

index to determ ne where section */
neeting this criteria should */
inserted. Used for reordering */
of sections. */

AVL book- keepi ng */
built in descriptor */

entrance criteria net? */
Cat ches any section */

maintained in the ec_files Alist

Each item maintains one file
and a set of flags that specify the type of conparison it

inplies,

t. The conparison type is maintained in

0x00f f
0

/* Conparison type mask */
/* Conpare to file path */

new usr/src/cnd/ sgs/include/libld. h 12
1128 #define TYP_ECF_BASENAMVE 1 /* Conpare to file basenane */

1129 #define TYP_ECF_OBJNAME 2 /* Conpare to regular file basenane, */
1130 /* or to archive nenber nane */
1131 #define TYP_ECF_NUM 3

1133 #defi ne FLG_ECF_ARMEMBER 0x0100 /* nane includes archive nmenber */

1135 typedef struct {

1136 Word edf _fl ags; /* Type of conparison */

1137 const char *edf _nane; /* String to conpare to */

1138 size_t edf _nane_| en; /* strlen(edf _nane) */

1139 } Ent_desc_file;

1141 /*

1142 * One structure is allocated for a nove entry, and associated to the synbol
1143 * agai nst which a nove is targeted.

1144 *

1145 typedef struct {

1146 Move *nd_nove; /* original Mve entry */

1147 Xwor d nd_start; /* start position */

1148 Xwor d nd_| en; /* length of initialization */

1149 Wor d md_oi dx; /* output Mve entry index */

1150 } M/_desc;

1152 /*

1153 * Synbol descriptor.

1154 */

1155 typedef Lword sd_flag_t;

1156 struct symdesc {

1157 Ali st *sd_GOTndxs; /* list of associated GOT entries */
1158 Sym *sd_sym /* pointer to synbol table entry */
1159 Sym *sd_osym /* copy of the original synbol entry */
1160 /* used only for local partial */
1161 Ali st *sd_nove; /* nmove information associated with a */
1162 /* partially initialized symbol */
1163 const char *sd_nane; /* synbol s nane */

1164 I fl_desc *sd_file; /* file where synbol is taken */

1165 I's_desc *sd_i sc; /* input section of synbol definition */
1166 Sym aux *sd_aux; /* auxiliary global synbol info. */
1167 Wor d sd_symadx; /* index in output synbol table */
1168 Wor d sd_shndx; /* sect. index symis associated w */
1169 sd_flag_t sd_fl ags; /* state flags */

1170 Hal f sd_ref; /* reference definition of symbol */
1171 };

1173 /*

1174 * The auxiliary synbol descriptor contains the additional information (beyond
1175 * the synbol descriptor) required to process global synmbols. These synbols are
1176 * accessed via an internal synbol hash table where locality of reference is
1177 * inportant for perfornance.

1178 */

1179 struct sym aux {

1180 APl i st *sa_dfiles; [* files where synbol is defined */
1181 Sym sa_sym /* copy of syntab entry */

1182 const char *sa_vfile; /* first unavailable definition */

1183 const char *sa_rfile; /* file with first synbol referenced */
1184 Wor d sa_hash; /* the pure hash val ue of synbol */
1185 Wor d sa_PLTndx; /* index into PLT for synbol */

1186 Wor d sa_PLTGOTndx; /* GOT entry indx for PLT indirection */
1187 Word sa_l i nkndx; /* index of associated synbol from*/
1188 /* ET_DYN file */

1189 Hal f sa_synspec; /* special synbol ids */

1190 Hal f sa_over ndx; /* output file versioning index */

1191 Hal f sa_dver ndx; /* dependency versioning index */

1192 Gs_desc *sa_boundsec; /* output section of SECBOUND_ syms */
1193 #endif /* ! codereview */

new usr/src/cnd/ sgs/include/libld. h

1194

1196
1197
1198
1199
1200
1201
1202
1203
1204

1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259

}s
/*

13

* Nodes used to track synbols in the global AVL synbol dictionary.

*/

struct

s
/*

* These are the ids for processing of
* to set the sym >sd_aux->sa_synspec fi
*/

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#endi

/*
* Fl
*/
#def i

#def i
#def i
#def i

#def i

#def i

#def i
#def i

#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne

sym avl node {

avl _node_t sav_node;
Wor d sav_hash;
const char *sav_nane;
Sym desc *sav_sdp;

SDAUX_| D_ETEXT
SDAUX_| D_EDATA
SDAUX_| D_END
SDAUX_| D_DYN
SDAUX_| D_PLT
SDAUX_| D_GOT
SDAUX_| D_START
SDAUX_| D_SECBOUND_START 8
SDAUX_| D_SECBOUND_STCP 9

~NOoO R WNE

f /* 1 codereview */

ags for symdesc.sd_flags

ne

ne
ne
ne

ne

ne

ne
ne

ne
ne

ne

ne

ne

ne

ne

ne

ne

FLG_SY_MTOCOWM 0x00000001

FLG SY_GLOBREF
FLG_SY_WEAKDEF
FLG_SY_CLEAN

FLG SY_UPREQD

0x00000002
0x00000004
0x00000008

0x00000010

FLG_SY_NOTAVAI L 0x00000020

FLG SY_REDUCED 0x00000040
FLG_SY_VERSPROM 0x00000080

FLG SY_PROT 0x00000100
FLG_SY_MAPREF 0x00000200
FLG SY_REFRSD 0x00000400
FLG SY_I NTPOSE 0x00000800
FLG_SY_INVALI D 0x00001000
FLG SY_SMZOT 0x00002000
FLG SY_PARENT 0x00004000
FLG SY_LAZYLD 0x00008000
FLG SY_ISDISC 0x00010000

—~———

* ok k ok

‘ Speci al
d.

* ok kR % ok % k%

B I

e e e e e e e e —

AVL node */

synbol hash val ue */
synbol nane */
synbol descriptor */

synbol s’. They are used

etext && _etext synbol */

edata && _edata synbol */

end, _end, & _END_ synbol */

DYNAM C & DYNAM C symbol */
_PROCEDURE_LI NKAGE_TABLE_ synmbol */
“GLOBAL_OFFSET_TABLE_ symbol */

START_ &8 _START_ synbol */
__start_<section> synbols */
—_stop_<section> synbols */

assign synbol to common (.bss) */
this is a result of a */
copy reloc agai nst sym*/

a gl obal reference has been seen */

a weak definition has been used */

‘Syml entry points to original */
input file (read-only). */

synbol val ue update is required, */
either it’s used as an entry */
point or for relocation, but */
it must be updated even if */
the -s flag is in effect */

synbol is not available to the */
application either because it */
originates froman inplicitly */
ref erenced shared object, or */
because it is not part of a */
speci fied version. */

a global is reduced to |ocal */

version definition has been */
promoted to output file */

stv_protected visibility seen */

synbol reference generated by user */
fromnmapfile *

synbol s sd_ref has been raised */
due to a copy-relocs */
weak-strong pairing */

synbol defines an interposer */

unwant ed/ err oneous synbol */

smal | got index assigned to synbol */
sparc only *

synbol to be found in parent */

only used with direct bindings */

synbol to cause |azyl oading of */
parent object */

synbol is a nenber of a DI SCARDED */

new usr/src/cnd/ sgs/include/libld. h

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283

1285
1286
1287
1288

1290
1291
1292
1293
1294
1295
1296

1298
1299
1300

1302
1303
1304
1305

1307
1308

1310
1311
1312
1313

1315
1316
1317
1318
1319
1320
1321
1322
1323

1325

#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

#def i

#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i

#def i
#def i
#def i

#def i

#def i

#def i

#def i

#def i
#def i
#def i
#def i

#def i

ne
ne
ne
ne
ne
ne

ne

ne

ne

ne
ne
ne
ne
ne
ne

ne
ne
ne
ne

ne

ne
ne
ne

ne

ne

ne

ne

ne
ne
ne
ne

ne

FLG_SY_PAREXPN
FLG SY_PLTPAD
FLG SY_REGSYM
FLG_SY_SOFQUND
FLG_SY_EXTERN
FLG_SY_MAPUSED
FLG_SY_COMVEXP

FLG SY_CVDREF

FLG SY_SPECSEC

FLG_SY_TENTSYM
FLG SY_VI SI BLE
FLG_SY_STDFLTR
FLG_SY_AUXFLTR
FLG_SY_DYNSORT

FLG_SY_NODYNSORT 0x80000000

FLG SY_DEFAULT
FLG SY_SINGLE
FLG_SY_PROTECT
FLG_SY_EXPORT

MBK_SY_GLOBAL \
(FLG_SY_DEFAULT

FLG SY_HI DDEN
FLG SY ELIM
FLG_SY_| GNORE

MBK_SY_LOCAL

FLG SY_EXPDEF

MBK_SY_NOAUTO

FLG SY_MAPFI LE

FLG SY DIR
FLG SY_NDI R
FLG SY_OVERLAP
FLG SY_CAP

FLG_SY_DEFERRED 0x0200000000000

0x00020000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000
0x00800000

0x01000000

0x02000000

0x04000000
0x08000000
0x10000000
0x20000000
0x40000000

0x0000100000000
0x0000200000000
0x0000400000000
0x0000800000000

| FLG SY_SINGLE

0x0001000000000 /* gl obal
0x0002000000000 /* gl obal
0x0004000000000 /* gl obal

(FLG_SY_Hi DDEN |

FLG_SY_PROTECT |
t

* ok ok k%

—~—————

/* this mask allows all

14

section (COVDAT) */
partially init. synmbol to be */
expanded */
pl t paddi ng has been allocated for */
this synmbol */
REG STER synbol (sparc only) */
conpar ed agai nst an SO definition */
synbol is external, allows -zdefs */
error suppression */
mapfile synmbol used (occurred */
within a rel ocat abl e object) */
COMWDON synbol whi ch has been */
al | ocated */
synbol was referenced fromthe */
command line. (ld -u <> */
Id -zrtldinfo=<> ...) x|
section index is reserved val ue */
b , .o
tentative synbol]
synbols visibility determ ned */
synbol is a standard filter */
synmbol is an auxiliary filter */
reqg. in dyn[synjtls]sort section */
excluded fromdyn[symtls]sort sec */

gl obal synbol, default */

gl obal synbol, singleton defined */
gl obal synbol, protected defined */
gl obal synbol, exported defined */

FLG_SY_EXPORT)

hi's mask indicates that the */
synbol has been explicitly */
defined within a mapfile */
definition, and is a candidate */
for versioning */

synbol , reduce to local */
synbol, elimnate */
synbol , ignored */

FLG SY_ELIM | FLG SY_| GNORE)

local state */
flags to be renmoved when the */
synbol is copy relocated */

0x0008000000000 /* synbol visibility defined */
/* /

(FLG_SY_SI NGLE |

0x0010000000000

0x0020000000000
0x0040000000000
0x0080000000000
0x0100000000000

explicitly *

LG SY_EXPORT | FLG SY_EXPDEF)

i s mask indicates that the */
synbol is not a candidate for */
aut o-reduction/elimnation */

ﬁ
=1

synbol attribute defined in a */
mapfile */

gl obal synbol, direct bindings */

gl obal synbol, nondirect bindings */

nmove entry overlap detected */
synbol is associated with */
capabilities */
synbol shoul d not be bound to */
during BIND_NOWTrel ocations */

new usr/src/cnd/ sgs/include/libld. h

1326
1327
1328
1329

1331
1332
1333
1334
1335

1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360

1362
1363
1364
1365

1367
1368
1369
1370
1371
1372
1373
1374

1376

1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390

* A synbol
&/

can only be truly hidden if it is

#define SYM |S_H DDEN(_sdp) \

/*
*
*
*

#defi ne MSK_SYM VI SI BI LI TY

/*
* Structure to manage the shared object definition lists.
* that use this structure:
*
* - of | _soneed; maintain the list of inpli
* (ie. shared objects needed by other sh
* may include RPATH s required to | ocate
* version requirenents.
*
* - of | _socntl; maintains the shared object control
* provi ded by the user (via a mapfile) a
* version control requirenents.
*/
struct sdf _desc {
const char *sdf _nane; /* the
char *sdf _rpat h; /* lib
const char *sdf _rfile; [* ref
I fl _desc *sdf _file; /* the
Ali st *sdf _vers; /*
/*
Ali st *sdf _ver need; e
/*
Wor d sdf _f | ags;
b
#defi ne FLG SDF_SELECT 0x01 /* ver
#define FLG_SDF_VERIFY 0x02 [* ver
/*
#defi ne FLG_SDF_ADDVER 0x04 /* add
/*
* Structure to nanage shared object version u
*/
struct sdv_desc {
const char *sdv_nane; /* ver
const char *sdv_ref; /* ver
Wor d sdv_f 1l ags; I* fla
e
#def i ne FLG_SDV_MATCHED 0x01 /*
/*
* Structures to manage versioning information.
* defined:
*
* - a version descriptor naintains a |linke
* associ at ed dependencies. This is used
* for an inmage being created (see map_sy
* ver si on dependency graph for any input
*
L - aversion index array contains each ve
* bei ng processed. It
* binding, and is used to generate any v
*/

Cr
def

1391 struct

eate a mask for

(((_sdp)->sd_flags & (FLG SY_HI DDEN |

(sym st

ine a ELF*_ST_OTHER nmcro

0x7

ver _desc {

_other & visibility) since the

15

not a capabilities synbol.

FLG SY_CAP)) == FLG SY_HI DDEN)

gABl does not yet

There are two lists

citly required dependencies
ared objects). These definitions
t he dependenci es, and any

definitions. These are
nd are used to indicate any

shared objects file name */
rary search path DT_RPATH */
erencing file for diagnostics */
final input file descriptor */

list of versions that are required */

fromthis object */

list of VERNEEDS to create for */

obj ect via mapfile ADDVERS */

sion control selection required */

sion definition verification */
required */

VERNEED r ef erences */

sage requirements.

sion name */
sions reference */
gs */

VERDEF found and matched */

Two versioning structures are

d list of versions and their

to build the version definitions
nbol), and to determ ne the
files that are versioned.

rsion of an input file that is

informs us which versions are available for

ersi on dependency i nfornation.

new usr/src/cnd/ sgs/include/libld. h

1392
1393
1394
1395
1396
1397
1398
1399

1401
1402
1403
1404
1405
1406
1407

1409
1410
1411
1412
1413

1415
1416
1417

1419
1420
1421
1422
1423
1424
1425
1426

1428
1429
1430
1431
1432
1433

1435
1436
1437
1438
1439
1440
1441
1442
1443
1444

1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

const char *vd_nane; /* version name */
I fI _desc *vd_file; /* file that defined version */
Vord vd_hash; /* hash val ue of name */
Hal f vd_ndx; /* coordinates with synmbol index */
Hal f vd_f1 ags; /* version information */
APl i st *vd_deps; /* version dependencies */
Ver _desc *vd_ref; /* dependency’s first reference */
b5
struct ver_index {
const char *vi _naneg; /* dependency version nane */
Hal f vi_fl ags; /* communi cates availability */
Hal f vi _over ndx; /* index assigned to this version in */
/* out put obj ect Verneed section */
Ver _desc *vi _desc; /* cross reference to descriptor */
e
/*
* Define any internal version descriptor flags ([vd|/vi]_flags). Note that the
* first byte is reserved for user visible flags (refer VER FLG s in link.h).
*
#def i ne MSK_VER USER 0oxOf /* mask for user visible flags */
#define FLG VER AVAIL 0x10 /* version is available for binding */
#defi ne FLG_ VER REFER 0x20 /* version has been referenced */
#defi ne FLG_VER _CYCLIC 0x40 /* a menber of cyclic dependency */
/*
* isalist(l) descriptor - used to break an isalist string into its conponent
* options.
*/
struct isa_opt {
char *i sa_name; /* individual isa option name */
size_t i sa_nanesz; * and associ ated size */
b
struct isa_desc {
char *isa_list; [* sysinfo(SI_ISALIST) list */
size_t isa_listsz; /* and associ ated size */
| sa_opt *isa_opt; /* table of individual isa options */
size_t i sa_opt no; /* and associ ated nunber */
b5
/*
* unane(2) descriptor - used to break a utsname structure into its conponent
* options (at |least those that we're interested in).
*/
struct uts_desc {
char *ut s_osnane; /* operating system name */
size_t ut s_osnanesz; and associ ated size */
char *uts_osrel; /* operating systemrel ease */
size_t uts_osrel sz; /* and associ ated size */
e
/*
* SHT_CGROUP descriptor - used to track group sections at the gl obal
* level to resolve conflicts and determ ne which to keep.
*/
struct group desc {
| s_desc *gd_i sc; /* input section descriptor */
I's_desc *gd_oi sc; /* overriding input section */
/* descri ptor when discarded */
const char *gd_nane; /* group nane (signature synbol) */
Word *gd_dat a; /* data for group section */
size_t gd_cnt; /* nunber of entries in group data */
bo

16

new usr/src/cnd/ sgs/include/libld. h 17
1459 /*

1460 * Indexes into the Id_support_funcs[] table.

1461 *

1462 typedef enum {

1463 LDS VERSION = 0, /* Must be first and have value 0 */

1464 LDS_| NPUT_DONE,

1465 LDS_START,

1466 LDS_ATEXI T,

1467 LDS_OPEN,

1468 LDS_FI LE,

1469 LDS_I NSEC,

1470 LDS_SEC,

1471 LDS_NUM

1472 } Support_ndx;

1474 |*

1475 * Structure to manage archive nenber caching. Each archive has an archive
1476 * descriptor (Ar_desc) associated with it. This contains pointers to the
1477 * archive synbol table (obtained by el f_getarsyns(3e)) and an auxiliary
1478 * structure (Ar_uax[]) that parallels this symbol table. The nenber el enment
1479 * of this auxiliary table indicates whether the archive nenber associated with
1480 * the synbol offset has already been extracted (AREXTRACTED) or partially
1481 * processed (refer process_nenber()).

1482 */

1483 typedef struct ar_mem {

1484 | f *amel f; /* elf descriptor for this menber */
1485 const char *am nane; /* menbers nane */

1486 const char *am pat h; /* path (ie. lib(foo.0)) */

1487 Sym *am syns; /* start of global symbols */

1488 char *am strs; /* associated string table start */
1489 Xwor d am sym; /* no. of global synbols */

1490 } Ar_mem

1492 typedef struct ar_aux {

1493 Sym desc *au_syns; /* internal synbol descriptor */
1494 Ar _nmem *au_nem /* associ ated nenber */

1495 } Ar_aux;

1497 #define FLG ARVEM PROC (Ar_nem *)-1

1499 typedef struct ar_desc {

1500 const char *ad_naneg; /* archive file nane */

1501 El f *ad_el f; /* elf descriptor for the archive */
1502 El f _Arsym *ad_start; /* archive synbol table start */
1503 Ar _aux *ad_aux; /* auxiliary synmbol information */
1504 dev_t ad_st dev; /* device id and i node nunber for */
1505 ino_t ad_stino; /* mul tiple inclusion checks */
1506 of | _flag_t ad_fl ags; /* archive specific cnmd line flags */
1507 } Ar_desc;

1509 /*

1510 * Define any archive descriptor flags. NOTE, nake sure they do not clash with
1511 * any output file descriptor archive extraction flags, as these are saved in
1512 * the sane entry (see MSK_OF1_ARCHI VE).

1513 *

1514 #defi ne FLG_ARD_EXTRACT 0x00010000 /* archive nenber has been extracted */
1516 /* Mapfile versions supported by libld */

1517 #define MFV_NONE 0 /* Not a valid version */

1518 #defi ne MFV_SYSV 1 /* Original SystemV syntax */

1519 #define MFV_SOLARI S 2 /* Solaris mapfile syntax */

1520 #define MFV_NUM 3 /* # of mapfile versions */

1523

| *

new usr/src/cnd/ sgs/include/libld. h

e

e

e

ld_

I d
I d

I d
I d_
I d_
I d_
I d_l
I d_o
*1

I d
I d_
I d_
I d

1524 * Function Decl arations.
1525 */

1526 #if def i ned(_ELF64)
1528 #define | d_create_outfil
1529 #define |d_ent_setup
1530 #define I d_init_strings
1531 #define Id_init target
1532 #define | d_make_secti ons
1533 #define | d_main

1534 #define | d_ofl _cleanup
1535 #define | d_process_nem
1536 #define I d_reloc_init
1537 #define |d_rel oc_process
1538 #define | d_symvalidate
1539 #define |d_update_outfil
1541 #el se

1543 #define Ild_create_outfil
1544 #define |d_ent_setup
1545 #define | d_init_strings
1546 #define |d_init_target
1547 #define | d_make_sections
1548 #define | d_main

1549 #define |d_ofl _cl eanup
1550 #define |d_process_nmem
1551 #define I d_reloc_init
1552 #define |d_rel oc _process
1553 #define | d_symvalidate
1554 #define | d_update_outfil
1556 #endi f

1558 extern int

1560 extern int

1561 extern int

1563 extern uintptr_t

1564 extern uintptr_t

1565 extern uintptr_t

1566 extern int

1567 extern uintptr_t

1568 extern void

1569 extern |fl_desc

1570

1571 extern uintptr_t

1572 extern uintptr_t

1573 extern uintptr_t

1574 extern uintptr_t

1576 #ifdef __ cplusplus

1577 }

1578 #endi f

1580 #endif /* _LIBLD H */

| d64_create_outfile
| d64_ent _setup

1 d64_init_strings

| d64_i nit _target

| d64_make_secti ons

| d64_mai n

1 d64_of | _cl eanup

| d64_process_nem

1 d64_reloc_init

| d64_rel oc _process
| d64_sym val i dat e

1 d64_update_outfile

1d32_create_outfile
| d32_ent _setup

| d32”init_strings
1d32 i nit target

| d32_nmake_sect i ons
1 d32_mai n

1 d32_of | _cl eanup

| d32_ process mem

| d32_rel oc_init

| d32_rel oc_process
| d32_sym val i dat e

1 d32_update_outfile

getopt(Lmlist *, int, int, char

32_nmmin(int,
64_main(int,

char **,
char **,

Hal f);
Hal f);

create_outfile(Ofl _desc *);
ent _setup(Ofl _desc *, Xword);
init_strings(Ofl _desc *)
init_target(Lmlist *,
ke sections(COfl _desc *);
“of | _cl eanup(Cf | _desc *);
d process men(const char *, const
size_t, Ol _desc *, Rej_desc *);
rel oc |n|t(CXI desc *);
rel oc process(| _desc *);
_symval i date(Of | _desc *);
_update_outfile(Of | _desc *);

)8

Hal f mach);

char

*
,

char *,

new usr/src/cnd/ sgs/incl ude/ sgs. h 1 new usr/src/cnmd/ sgs/incl ude/ sgs. h
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 235 typedef StrUCt rel cache Rel CaChe,
8404 Sun Feb 24 19:19:07 2019 236 typedef struct rel _cachebuf Rel _cachebuf ;

new usr/src/cnmd/ sgs/incl ude/ sgs. h 237 typedef struct rel _aux_cachebuf Rel _aux_cachebuf;

I'd should reject kernel nodules as input 238 typedef struct rel _aux Rel _aux;

LEEE R R R R EE SRR EEEEEEEEEE R REEEEEEEEEEEEEEEEEEEREREEEEEEEEESE] 239 typedef SIrUC'[rel_desc Rel_desc:

__unchanged_portion_onitted_ 240 typedef struct sdf_desc Sdf _desc;

241 typedef struct sdv_desc Sdv_desc;

177 #define SGS_REJ_NONE 0 242 typedef struct sec_order Sec_order;

178 #define SGS_REJ_MACH 1 /* wrong ELF machine type */ 243 typedef struct sg_desc Sg_desc;

179 #define SGS_REJ_CLASS 2 /* wong ELF class (32-bit/64-bit) */ 244 typedef struct sort_desc Sort _desc;

180 #define SGS_REJ_DATA 3 /* wong ELF data format (MSG LSB) */ 245 typedef struct sym avl node Sym avl node;

181 #define SGS_REJ_TYPE 4 /* bad ELF type */ 246 typedef struct sym aux Sym aux;

182 #define SGS_REJ_BADFLAG 5 /* bad ELF flags value */ 247 typedef struct symdesc Sym desc

183 #define SGS_REJ_M SFLAG 6 /* msmatched ELF flags val ue */ 248 typedef struct uts_desc Ut s_desc;

184 #define SGS_REJ_VERSI ON 7 /* msmatched ELF/lib version */ 249 typedef struct ver_desc Ver _desc;

185 #define SGS_REJ_HAL 8 /* HAL Rl extensions required */ 250 typedef struct ver_index Ver _i ndex;

186 #define SGS_REJ_US3 9 /* Sun U traSPARC |11 extensions */

187 /* required */ 252 | *

188 #define SGS_REJ_STR 10 /* generic error - infois a string */ 253 * Data structures defined in rtld.h.

189 #define SGS_REJ_UNKFI LE 11 /* unknown file type */ 254 */

190 #define SGS_REJ_UNKCAP 12 /* unknown capabilities */ 255 typedef struct Imlist Lmlist;

191 #define SGS_REJ_HWCAP_1 13 /* hardware capabilities msmatch */ 256 #ifdef _SYSCALL32

192 #define SGS_REJ_SFCAP_1 14 /* software capabilities msmatch */ 257 typedef struct Imlist32 Lmlist32;

193 #define SGS_REJ_MACHCAP 15 /* machi ne capability m smatch */ 258 #endif [/* _SYSCALL32 */

194 #define SGS_REJ_PLATCAP 16 /* platformcapability m smatch */

195 #define SGS_REJ_HWCAP_2 17 /* hardware capabilities msmtch */ 260 /*

196 #define SGS_REJ_ARCH VE 18 /* archive used in invalid context */ 261 * For the various utilities that include sgs.h

197 #define SGS_REJ_KMID 19 /* object is a kernel nodule */ 262 */

198 #define SGS_REJ_NUM 20 263 extern int assfail (const char *, const char *,

197 #define SGS_REJ_NUM 19 264 extern void eprintf(Lmlist *, Error, const char *,
265 extern void vepri ntf(mlist *, Error, const

200 #define FLG REJ_ALTER 0x01 /* object nane is an alternative */ 266 extern uint_t sgs_str h(const char *)
267 extern uint_t findpri ma(int

202 /*

203 * For those source files used both inside and outside of the 269 #endif /* _ASM */

204 * libld source base (tools/comopn/string_table.c) we can

205 * automatically switch between the allocation nodels 271 #ifdef __cplusplus

206 * based off of the 'cc -DUSE LIBLD MALLOC fl ag. 272 }

207 */ __unchanged_portion_onitted_

208 #ifdef USE_LIBLD MALLOC

209 #define calloc(x, a) libld_malloc(((size_t)x) * ((size_t)a))

210 #define free libld free

211 #define malloc Iibld_malloc

212 #define realloc libld_realloc

214 #define libld_calloc(x, a) libld malloc(((5|zet)x) * ((size_t)a))

215 extern void libld_free(void *);

216 extern void *libld rmlloc(3|zet)

217 extern void *libld_realloc(void *, size_t);

218 #endif

220 /*

221 * Data structures (defined in libld. h).

222 */

223 typedef struct audit_desc Audi t _desc;

224 typedef struct audit_info Audi t _i nfo;

225 typedef struct audit_list Audit _Iist;

226 typedef struct cap_desc Cap_desc;

227 typedef struct ent_desc Ent _desc;

228 typedef struct group_desc G oup_desc;

229 typedef struct ifl_desc 1 f1 _desc;

230 typedef struct is_desc | s_desc;

231 typedef struct isa_desc | sa_desc;

232 typedef struct isa_opt | sa_opt;

233 typedef struct os_desc Gs_desc;

234 typedef struct ofl_desc O | _desc;

new usr/src/cnd/ sgs/ i bconv/ common/ dynamic. c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
34970 Sun Feb 24 19:19: 08 2019

new usr/src/cnmd/ sgs/1i bconv/ comon/ dynami c. ¢

I'd: inplenent -ztype and rework option parsing

R R

__unchanged_portion_onitted_

419 const conv_ds_t **

420 conv_dyn_tag_strings(conv_iter_osabi _t osabi, Half mach,
421 Conv_fnt_flags_t fm_flags)
422 {
423 /*
424 * Maxi mum # of itenms that can be in the returned array. Size this
425 * by counting the maxi numdepth in the switch statement that fills
426 * retarr at the end of this function.
427 */
428 #define MAX_RET 12
430 I*
431 * Ceneric dynamc tags:
432 * - Not e hol e between DT_FLAGS and DT_| PREI NI T_ARRAY (tag 32).
433 * W use a 0, which is the signal for "not defined"
434 * - This range has alternative nanmes for dunp, requi ri ng an
435 * addi ti onal array.
436 */
437 static const Msg tags_null _cf[] = {
438 MBG DT_NULL_CF, MSG_DT_NEEDED CF,
439 MSG_DT_PLTRELSZ_CF, MBG_DT_PLTGOT_CF,
440 MSG_DT_HASH_CF, MSG_DT_STRTAB_CF,
441 MSG_DT_SYMTAB_CF, MSG_DT_RELA_CF,
442 MBG_DT_RELASZ_CF, MSG_DT_RELAENT _CF,
443 MSG_DT_STRSZ_CF, MSG_DT_SYMENT_CF,
444 MSG_DT_I NI T_CF, MSG_DT_FI NI _CF,
445 MSG_DT_SONAVE_CF, MSG_DT_RPATH_CF,
446 MSG_DT_SYMBOLT C_CF, MSG_DT_REL_CF,
447 MSG_DT_RELSZ_CF, MSG_DT_RELENT_CF,
448 MSG_DT_PLTREL_CF, MSG_DT_DEBUG CF,
449 MSG_DT_TEXTREL_CF, MSG_DT_JMPREL_CF,
450 MSG_DT_BI ND_NOW CF, MSG DT_| NI T_ARRAY_CF,
451 MSG_DT_FI NI _ARRAY_CF, MBG_DT_| NI T_ARRAYSZ_CF,
452 MSG_DT_FI NI _ARRAYSZ OF MSG_DT_RUNPATH_CF,
453 MSG_DT_FLAGS_CF, 0,
454 MSG_DT_PREI NI T_ARRAY_CF, MSG_DT_PREI NI T_ARRAYSZ_CF
455 };
456 static const Mg tags_null _cfnp[] = {
457 MSG_DT_NULL_CFNP, MSG_DT_NEEDED_CFNP,
458 MSG_DT_PLTRELSZ_CFNP, MBG_DT_PLTGOT_CFNP,
459 MSG_DT_HASH CFNP, MBG_DT_STRTAB_CFNP,
460 MBG_DT_SYMIAB_CFNP, MSG_DT_RELA CFNP,
461 MSG_DT_RELASZ_CFNP, MSG_DT_RELAENT_CFNP,
462 MSG_DT_STRSZ_CFNP, MSG_DT_SYMENT_CFNP,
463 MBG DT_I NI T_CFNP, MSG_DT_FI NI _CENP,
464 MBG_DT_SONAME_CFNP, MBG_DT_RPATH_CFNP,
465 MSG_DT_SYMBOLI C_CFNP, MSG_DT_REL_CFNP,
466 MSG_DT_RELSZ_CFNP, MSG_DT_RELENT_CFNP,
467 MSG_DT_PLTREL_CFNP, MBG_DT_DEBUG CFNP,
468 MSG_DT_TEXTREL_CFNP, MSG_DT_JMPREL_CFNP,
469 MSG_DT_BI ND_NOW CFNP, MSG_DT_I NI T_ARRAY_CFNP,
470 MSG_DT_FI NI _ARRAY_CFNP, MSG_DT_| NI T_ARRAYSZ_CFNP,
471 MBG_DT_FI NI _ARRAYSZ_CFNP, MBG_DT_RUNPATH_CFNP,
472 MBG_DT_FLAGS_CFNP, 0,
473 MSG_DT_PREI NI T_ARRAY_CFNP, MSG_DT_PREI NI T_ARRAYSZ_CFNP
474 I
475 static const Mg tags_null _nf[] = {
476 MS5G_DT_NULL_NF, MSG_DT_NEEDED_NF,

477 MSG_DT_PLTRELSZ_NF, MBG_DT_PLTGOT_NF,

new usr/src/cnd/ sgs/1i bconv/ comon/ dynami c. ¢

478 MBG_DT_HASH_NF, MSG_DT_STRTAB_NF,

479 M5G_DT_SYMTIAB_NF, MSG_DT_RELA_NF,

480 MSG_DT_RELASZ_NF, MSG_DT_RELAENT_NF,

481 MSG_DT_STRSZ_NF, MSG_DT_SYMENT_NF,

482 MSG_DT_I NI T_NF, MSG_DT_FI NI _NF,

483 MSG_DT_SONAVE_NF, MBG_DT_RPATH_NF,

484 MBG_DT_SYMBOLT C_ NF MSG_DT_REL_NF,

485 MSG_DT_RELSZ_NF, MSG_DT_RELENT_NF,

486 MSG_DT_PLTREL_NF, MSG_DT_DEBUG_NF,

487 MSG_DT_TEXTREL_NF, MSG_DT_JMPREL_NF,

488 MSG_DT_BI ND_NOW NF, MSG_DT_I NI T_ARRAY_NF,

489 MSG_DT_FI NI _ARRAY_| NF MSG_DT_I NI T_ARRAYSZ_NF,
490 MSG_DT_FI NI _ARRAYSZ_NF, MSG_DT_RUNPATH_NF,

491 MBG_DT_FLAGS_NF, 0,

492 VBG_DT_PREI NI T_ARRAY_NF, MBG DT_PREI NI T_ARRAYSZ_NF
493 }s

494 static const Msg tags_nul |l _dnp[] = {

495 MSG_DT_NULL_CFNP, MSG_DT_NEEDED_CFNP,

496 MSG_DT_PLTRELSZ_DWVP, MSG_DT_PLTGOT_CFNP,

497 MSG_DT_HASH CFNP, MBG_DT_STRTAB_CFNP,

498 MSG_DT_SYMIAB_CFNP, MSG_DT_RELA_CFNP,

499 MSG_DT_RELASZ_CFNP, MBG_DT_RELAENT_CFNP,

500 MSG_DT_STRSZ_CFNP, MBG_DT_SYMENT_CFNP,

501 MBG_DT_I NI T_CFNP, MSG_DT_FI NI _CFNP,

502 MSG_DT_SONAME_CFNP, MSG_DT_RPATH_CFNP,

503 MSG_DT_SYMBOLI C_DWP, MSG_DT_REL_CFNP,

504 MBG_DT_RELSZ_CFNP, MSG_DT_RELENT_CFNP,

505 MSG_DT_PLTREL_CFNP, MSG_DT_DEBUG_CFNP,

506 MSG_DT_TEXTREL_CFNP, MSG_DT_JMPREL_CFNP,

507 MSG_DT_BI ND_NON CFNP, MSG_DT_I NI T_ARRAY_CFNP,
508 MBG_DT_FI NI _ARRAY_CFNP, MG _DT_| NI T_ARRAYSZ_CFNP,
509 MSG_DT_FI NI _ARRAYSZ_CFNP, MSG_DT_RUNPATH_CFNP,

510 MSG_DT_FLAGS_CFNP, 0,

511 MSG_DT_PREI NI T_ARRAY_CFNP, MSG_DT_PREI NI T_ARRAYSZ_CFNP
512

513 static const conv_ds _nmeg_t ds_null_cf ={

514 CONV_DS_MSG | NI T(DT_NULL, tags_nul |l _cf) };

515 static const conv_ds_nsg_t ds nul'l _cfnp = {

516 CONV_DS_MSG | NI T(DT_NULL, tags_nul | _cfnp) };

517 static const conv_ds_mnsg_t ds null _nf ={

518 CONV_DS_MSG | NI T(DT_NULL, tags_nul |l _nf) };

519 static const conv_ds_nsg_t ds null _dmp = {

520 CONV_DS_MSG | NI T(DT_NULL, "tags_nul | _dnp) };

522 /*

523 * DT_SPARC_REG STER was originally assigned 0x7000001. It is processor
524 * specific, and shoul d have been in the range DT_LOPROC DT_H PRCC
525 * instead of here. Wien the error was fixed,

526 * DT_DEPRECATED_SPARC_REQ STER was created to maintain backward
527 * conpatability.

528 */

529 static const Mg tags_sdreg_cf[] = {

530 MSG_DT_DEP_SPARC _REG CF };

531 static const Mg tags_ sdreg cfnp[] = {

532 MSG_DT_DEP_SPARC_REG CFNP };

533 static const Msg tags sdreg_nf[] = {

534 MSG_DT_DEP_SPARC REG NF };

536 static const conv_ds_nsg_t ds_sdreg_cf {

537 CONV_DS_MSG_| NI T(DT_DEPRECATED_SPARC_REQ STER, tags_sdreg_cf) };
538 static const conv_ds_msg t ds_sdreg_cfnp =

539 CONV_DS_MSG | NI T(DT_DEPRECATED SPARC REG STER, tags_sdreg_cfnp) };
540 static const conv_ds_nsg_t ds_sdreg_nf = {

541 CONV_DS_MSG | NI T(DT_DEPRECATED SPARC REG STER, tags_sdreg nf) };

new usr/src/cnmd/ sgs/|i bconv/ comon/ dynami c. ¢

544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
561
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
515,
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
589
596
597
598
599
600
601
602

604
605
606

/*

* SUNW DT_LOOS -> DT_HICS range. Note hol es between DT_SUNW TLSSORTSZ,

* DT_SUNW STRPAD, and DT_SUNWLDMACH. W handle the outliers

* separately bel ow as single val ues.
*/

static const Mg _
MBG_DT_SUNW AUXI LI ARY_CF,
MSG_DT_SUNW FI LTER CF,
MSG_DT_SUNW SYMTAB_CF,
MBG_DT_SUNW SORTENT_CF,
MBG_DT_SUNW SYMSORTSZ_CF,
MSG_DT_SUNW TLSSORTSZ_CF,
MSG_DT_SUNW STRPAD CF,
MSG_DT_SUNW LDVACH_CF,
MSG_DT_SUNW CAPCHAI NENT_CF,
MSG_DT_SUNW CAPCHAI NSZ_CF,

0,
MSG_DT_SUNW ASLR_CF,

IVSG DT_SUNW KMOD_CF
MSG_DT_SUNW ASLR_CF

1

static const Mg tags_sunw_auxi
MBG_DT_SUNW AUXI LI ARY_CFNP,
MSG_DT_SUNW FI LTER_CFNP,
MSG_DT_SUNW SYMTAB_CFNP,
MBG_DT_SUNW SORTENT _ CFNP
MBG_DT_SUNW SYMSORTSZ_CFNP,
MSG_DT_SUNW TLSSORTSZ_CFNP,
MSG_DT_SUNW STRPAD_CFNP,
MBG_DT_SUNW LDMACH_CFNP,
MBG_DT_SUNW CAPCHAT NENT_CFNP,
MSG_DT_SUNW CAPCHAI NSZ_CFNP,

0,
MBG_DT_SUNW ASLR_CFNP,

0,
M5G_DT_SUNW KMOD_CFNP
M5G_DT_SUNW ASLR_CFNP

s

static const Mg t ags_sunw_auxi
MBG_DT_SUNW AUXI LI ARY_NF,
MSG_DT_SUNW FI LTER _NF,
MSG_DT_SUNW SYMTAB_NF,
MBG_DT_SUNW SORTENT_NF,
MBG_DT_SUNW SYMSORTSZ_NF,
MSG_DT_SUNW TLSSORTSZ_NF,
MSG_DT_SUNW STRPAD_NF,
MBG_DT_SUNW L DMACH_NF,
MBG_DT_SUNW CAPCHAT NENT_NF,
MSG_DT_SUNW CAPCHAI NSZ_NF,

0,
MSG_DT_SUNW ASLR_NF,

0,
MSG_DT_SUNW KMOD_NF
MSG_DT_SUNW ASLR_NF

tags_sunw_auxiliary_cf[] =

{
MSG_DT_SUNW RTLDI NF_CF,
MBG_DT_SUNW CAP_CF,
MBG_DT_SUNW SYNSZ_CF,
MBG_DT_SUNW SYMSORT_CF,
MBG_DT_SUNW TLSSORT_CF,
MBG_DT_SUNW CAPI NFO_CF,
MBG_DT_SUNW CAPCHAI N_CF,

cocoooo

ary_cfnp[] = {
MSG_DT_SUNW RTLDI NF_CFNP,
MSG_DT_SUNW CAP_CFNB,
MSG_DT_SUNW SYMSZ_CFNP,
MBG_DT_SUNW SYMSORT_CFNP,
MBG_DT_SUNW TLSSORT_CFNP,
MBG_DT_SUNW CAPI NFG_CFNP,
MSG_DT_SUNW CAPCHAI N_CFNP,

cocoooo

ary_nf[] = {
MSG_DT_SUNW RTLDI NF_NF,
MBG_DT_SUNW CAP_NF,
MBG_DT_SUNW SYNBZ_NF,
MBG_DT_SUNW SYMSORT _NF,
MSG_DT_SUNW TLSSORT_NF,
MSG_DT_SUNW CAPI NFO_NF,
MBG_DT_SUNW CAPCHAI N_NF,

cooooo

static const conv_ds _meg_t ds_sunw_ auxiliary_cf = {

CONV_DS_MSG_| NI T(DT_SUNW AUXI LT ARY,

tags_sunw_ auxiliary_cf) };

static const conv_ds_msg_t ds_sunw auxiliary cfnp =

CONV_DS_MSG | NI T(DT_SUNW AUXI LT ARY,

{
tags_sunw auxiliary_cfnp) };

static const conv_ds_msg_ t ds_sunw auxiliary nf = {

CONV_DS_MSG_| NI T(DT_SUNW AUXI LT ARY,

/*

tags_sunw_auxiliary_nf) };

* GNU: (I'n DT_VALRNGLO section) DT_GNU PRELINKED - DT_GNU LI BLI STSZ

*/

new usr/src/cnd/ sgs/|i bconv/ comon/ dynami c. ¢

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

static const Msg tags_gnu_preli nked cf[]
M5G_DT_GNU_PRELI NKED_CF, G_DT_
MBG_DT_GNU_LI BLI STSZ_CF

static const Msg
MSG_DT_GNU_PREL| NKED_CFNP, > DT_
MBG_DT_GNU_LI BLI STSZ_CFNP

h

static const Msg tags_gnu_preli nked nf[]
MSG_DT_GNU_PREL| NKED_NF,
MBG_DT_GNU_LI BLI STSZ_NF

static const conv_ds_nsg_t ds_gnu_prelinked_cf
CONV_|

GNU_CONFLI CTSZ_CF,

tags_gnu_preli nked cfnp[] =

{
GNU_CONFLI CTSZ_CFNP,

T_GNU_CONFLI CTSZ_NF,

DS_MSG_| NI T(DT_GNU_PRELI NKED, tags_gnu_ preI inked_cf) };
static const conv_ds_nsg_t ds_gnu_prelinked_cfnp =
CONV_DS_MSG | NI T(DT_GNU_PRELI NKED, tags_gnu_prelinked_cfnp) };

static const conv_ds_msg_t ds_gnu_prelinked_nf
CONV.

/ DS_MSG_| NI T(DT_GNU_PRELI NKED, tags_gnu_prelinked_nf) };

/*

* SUNW DT_VALRNGLO - DT_VALRNGHI range.
*

/

static const Mg tags_checksumcf[] = {

MSG_DT_CHECKSUM CF, MBG DT
MSG_DT_MOVEENT_CF, MSG_DT_
MSG_DT_FEATURE_1_CF, MSG_DT_
MSG_DT_SYM NSZ_CF, MSG_DT_

%

static const Msg tags_checksum cfnp[] =
MSG_DT_CHECKSUM _CFNP, MSG_DT_|
MSG_DT_MOVEENT_CFNP, MBG_DT_
MSG_DT_FEATURE_1_CFNP, MSG_DT_
MSG_DT_SYM NSZ_CFNP, MSG_DT_

I

static const Mg tags_checksumnf[] = {

MSG_DT_CHECKSUM NF, MG DT
MSG_DT_MOVEENT NF, MSG DT_|
MSG_DT_FEATURE_1_NF, MSG_DT_
MSG_DT_SYM NSZ_NF, MSG_DT_

static const conv_ds _nmsg_t ds_checksumcf = {
CONV_|

PLTPADSZ_CF,
MOVESZ_CF,

POSFLAG 1_CF,
SYM NENT_CF

{
PLTPADSZ_CFNP,
MOVESZ_CFNP,
POSFLAG 1_CFNP,
SYM NENT_CFNP

PLTPADSZ_NF,
MOVESZ_NF,

POSFLAG 1_NF,
SYM NENT_NF

DS_MSG | NI T(DT_CHECKSUM tags_checksum cf) };

static const conv_ds_nsg_t ds_checksumcfnp = {

CONV_DS_MSG | NI T(DT_CHECKSUM t ags_ checksum 1cfnp) };

static const conv_ds_msg_t ds_checksumnf = {
CONV_|

DS_MSG | NI T(DT_CHECKSUM tags_checksum nf) };

*

* GNU: (I'n DT_ADDRRNGLO section) DT_GNU HASH -
*
/

static const Msg tags_gnu_hash_cf[] = {
MSG_DT_GNU_HASH_CF, MSG _DT_
MBG_DT_TLSDESC GOT_CF,
MSG_DT_GNU_LI BLI ST_CF

MBG_DT_

DT_GNU_LI BLI ST

TLSDESC_PLT_CF,

GNU_CONFLI CT_ CF

b
static const Mg

tags_gnu_hash_cfnp[] = {
MSG_DT_GNU_HASH_CFNP, MSG_DT_TLSDESC PLT_CFNP,
MSG_DT_TLSDESC _GOT_CFNP, MSG_DT_GNU_CONFLI CT_CFNP,

MSG_DT_GNU_LI BLI ST_CFNP

static const Msg

MSG_DT_GNU_HASH_NF,
MSG_DT_TLSDESC_GOT_NF,

tags_gnu_hash_nf[] = {
MSG _DT_TLSDESC _PLT_NF,
MSG_DT_GNU_CONFLI CT_NF,

MBG_DT_GNU_LI BLI ST_NF

b

static const conv_ds_nsg_t ds_gnu_hash_cf = {

new usr/src/cnd/ sgs/ i bconv/ common/ dynamic. c

673
674
675
676
677

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

704
705
706
707
708
709
710
711
712
713
714
715

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

CONV_DS_MSG_| NI T(DT_GNU_HASH, tags_ gnu hash_cf) }s

static const conv_ds_msg_t ds_gnu_hash_cfnp = {
CONV_DS_MSG | NI T(DT_GNU_HASH, "t ags_gnu_hash_cfnp) };

static const conv_ds_msg_t ds_gnu_hash_nf = {
CONV_DS_MSG | NI T(DT_GNU_HASH, "t ags_gnu_hash_nf) };

/ *
* SUNW DT_ADDRRNGLO - DT_ADDRRNCHI range.
*/

static const Mg

MSG_DT_CONFI G_CF,
MSG_DT_AUDI T_CF,
MSG_DT_MOVETAB_CF,

tags_config_cf[] = {

MSG_DT_DEPAUDI T_CF,

MSG_DT_PLTPAD_CF,

MSG_DT_SYM NFO_CF

1

static const Mg
M5G_DT_CONFI G_CFNP,
MSG_DT_AUDI T_ CFNP
MSG_DT_MOVETAB_CFNP,

tags_confi g_cfnp[] ={

MSG_DT_DEPAUDI T_CFNP,
MSG_DT_PLTPAD_CFNP,
MSG_DT_SYM NFO_CFNP

s

static const Msg tags_config_nf[] = {
MSG_DT_CONFI G_NF, MSG_DT_DEPAUDI T_NF,
MBG_DT_AUDI T_NF, MSG_DT_PLTPAD_NF,
M5G_DT_MOVETAB_NF, MSG_DT_SYM NFO_NF

static const conv_ds_nmsg_t ds_config_cf = {
CONV_DS_MSG_ | NI T(DT_CONFI G tags_config_cf) };

static const conv_ds_msg_t ds_config_cfnp = {
CONV_DS_MSG | NI T(DT_CONFI G, tags_ conflg cfnp) };

static const conv_ds_msg_t ds_config_nf
CONV_DS_MSG | NI T(DT_CONFI G, tags_ conflg nf) };

/*

* SUNW generic range. Note hol e between DT_VERSYM and DT_RELACOUNT.
*/

static const Mg tags_versymcf[] = { MSG DT_VERSYM CF };
static const Mg tags_versymcfnp[] = { MSG DT_VERSYM CFNP };
static const Msg tags_versymnf[] = { MSG DT_VERSYM NF };
static const conv_ds_nsg_t ds_versymcf = {

CONV_DS_MSG | NI T(DT_VERSYM tags_versymcf) };
static const conv_ds_msg_t ds_versymcfnp = {

CONV_DS_MSG | NI T(DT_VERSYM tags_versym cfnp) };
static const conv_ds_nmsg_t ds_versymnf = {

CONV_DS_MSG | NI T(DT_VERSYM tags_versymnf) };

static const Mg tags_relacount_cf[] = {
MSG_DT_RELACOUNT_CF, MSG_DT_RELCOUNT_CF,
IVSG DT FLAGS_ 1 CF, NBG DT VERDEF_| CF,
MSG_DT_VERDEFNUM CF, MSG_DT_VERNEED_CF,
MSG_DT_VERNEEDNUM CF

)

static const Msg tags_relacount _cfnp[] = {
MBG_DT_RELACOUNT _CFNP, MBG_DT_RELCOUNT _CFNP,
MSG_DT_FLAGS_1_CFNP, MSG_DT_VERDEF_CFNP,
MSG_DT_VERDEFNUM CFNP, MSG_DT_VERNEED_CFNP,
MSG_DT_VERNEEDNUM CFNP

1
static const Mg tags_relacount_nf[] = {
MSG_DT_RELACOUNT_NF, MSG_DT_REL COUNT_NF,
MSG_DT_FLAGS_1_NF, MSG_DT_VERDEF_NF,
MSG_DT_VERDEFNUM NF, MSG_DT_VERNEED_NF,
MSG_DT_VERNEEDNUM NF
¥
static const conv_ds_nsg_t ds_relacount_cf = {
CONV_DS_MSG | NI T(DT_RELACOUNT, tags_rel acount_cf) }s
static const conv_ds_msg_t ds_rel acount_cfnp = {
CONV_DS_MSG_| NI T(DT_RELACOUNT, tags_rel acount_cfnp) };

new usr/src/cnd/ sgs/ i bconv/ common/ dynamic. c

739
740

742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778

783
784
785

789
790
791
792
793

795
796
797
798
799
800
801
802
803
804

static const conv_ds_nsg_t ds_relacount_nf = {
CONV_DS_MSG | NI T(DT_RELACOUNT, tags_rel acount_nf) };
/*
* DT_LOPROC - DT_HI PROC range: sol aris/sparc-only
*
/
static const Msg tags_sparc_reg_cf[] =
static const Msg tags_sparc_reg_cfnp[] = { MSG DT_SPARC REG STER | CFNP };
static const Msg tags_sparc_reg_nf[] =
static const Msg tags_sparc_reg_dnp[] = { MSG DT_SPARC REG STER DVP' };
static const conv_ds_nsg_t ds_sparc_ reg cf =7
CONV_DS_MSG | NI T(DT_SPARC_REG STER, tags_: sparc_reg_ cf) };
static const conv_ds_nsg_t ds_sparc_reg_cfnp =
CONV_DS_MSG | NI T(DT_SPARC_REG STER, tags_sparc_reg_cfnp) };
static const conv_ds_msg_ t ds_sparc_reg_nf = {
CONV_DS_MSG | NI T(DT_SPARC_REG STER, tags_sparc_reg_nf) };
static const conv_ds_nsg_t ds_sparc_reg_dnp =
CONV_DS_MSG | NI T(DT_SPARC_REG STER, tags_sparc_reg_dnp) };
/*
* DT_LOPROC - DT_HI PROC range: Solaris osabi, all hardware
*
/
static const Mg tags_auxiliary_cf[] ={
MSG_DT_AUXI LI ARY_CF, MBG_DT_USED_CF,
MSG_DT_FI LTER_CF
1
static const Msg tags_auxiliary_cfnp[] = {
MBG_DT_AUXI LI ARY_CFNP, MSG_DT_USED_CFNP,
MSG_DT_FI LTER_CFNP

static const Msg tags_auxiliary_nf[] ={
MSG_DT_AUXI LI ARY_NF, MSG_DT_USED_NF,
MSG_DT_FI LTER_NF

static const conv_ds _meg_t ds_auxiliary_cf = {
CONV_DS_MSG | NI T(DT_AUXI LTARY, tags_ auxiliary_cf) };

static const conv_ds_msg_t ds auleary cfnp = {
CONV_DS_MSG | NI T(DT_AUXI LTARY, tags_auxiliary_cfnp) };

static const conv_ds_nsg_t ds_auxiliary_nf = {
CONV_DS_MSG | NI T(DT_AUXI LTARY, tags auxiliary nf) };

static const conv_ds_t *retarr[MAX_RET];

int ndx = 0;
int ft_osabi = CONV_TYPE_FMI_ALT(fnt_flags);
int mach_sparc, osabi_solaris, osabi_linux;
osabi _solaris = (osabi == ELFOSABI _NONE) ||
(osabi == ELFOSABI _SOLARI'S) || (osabi == CONV_ CISABI _ALL);
osabi _linux = (osabi == ELFOSABI _LINUX) || (osabi == CONV_OSABI _ALL);

mach_sparc = (mach == EM SPARC) || (mach == EM SPARCV9) ||
(mach == EM SPARC32PLUS) || (mach == CON_MACH ALL);

Fill inretarr with the descriptors for the messages that

apply to the current osabi. Note that we order these itens such
that the nore common are placed at the beginning, and the |ess
likely at the end. This should speed the comon case.

Note that the CFNP and DWVP styles are very simlar, so they
are conbined in 'default’, and fnt_osabi is consulted when there
are differences.

* ok ok ok % ok Kk ok ko

new usr/src/cnd/ sgs/ i bconv/ common/ dynamic. c

805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851

853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

switch (fnt_osabi) {
case CONV_FMI_ALT_CF:
retarr[ndx++] = CONV_DS_ADDR(ds_nul | _cf);
if (osabi_solaris)
retarr| ndx++] = CONV_DS_ADDR(ds_sunw_auxiliary_cf);
retarr[ndx++] = - _AD[ZR(ds_checksum cf);
retarr[ndx++] OO\N_DS_ADDR(ds_confi g_cf);
retarr[ndx++] CONV_DS_ADDR(ds_versym cf);
retarr[ndx++] CONV_DS_ADDR(ds_r el acount cf)
if (osabi_solaris) {
retarr[ndx++] = CONV_DS_ADDR(ds_auxiliary cf);
if (mach_sparc)
retarr[ndx++]
retarr[ndx++]

CONV_DS_ADDR(ds_sdreg_cf);
}

}

if (osabi_linux) {
retarr[ndx++]
retarr[ndx++]

CONV_DS_ADDR(ds_gnu_prel i nked_cf);
CONV_DS_ADDR(ds_gnu_hash_cf);

}
br eak;

case CONV_FMTI_ALT NF:
retarr[ndx++] = CONV_DS_ADDR(ds_nul | _nf);
if (osabi_solaris)
retarr| ndx++] = CONV_DS_ADDR(ds_sunw_auxiliary_nf);
retarr[ndx++] ;
retarr[ndx++]
retarr[ndx++]
retarr[ndx++] CONV_DS_ADDR(ds_r el acount nf);
if (osabi_solaris) {
retarr[ndx++] = CONV_DS_ADDR(ds_auxiliary_nf);
if (mach_sparc)

i
8
E
2]
<
o
"
<
Ek
3

retarr[ndx++] = CONV_DS_ADDR(ds_sparc_reg_nf);

retarr[ndx++] = CONV_DS_ADDR(ds_sdreg nf);
}

if (osabi_linux) {
retarr[ndx++]
retarr[ndx++]

CONV_DS_ADDR(ds_gnu_prel i nked_nf);
CONV_DS_ADDR(ds_gnu_hash_nf);

}
br eak;
defaul t:

/*
* The default style for the generic range is CFNP,
* while dunp has a couple of different strings.
*

/

retarr[ndx++] = (fnt_osabi == CONV_FMI_ALT_DUWP) ?
CONV_DS_ADDR(ds_nul | _drp) : CONV_DS_ADDR(ds_nul | _cfnp);

if (osabi_solaris)

ret arr[ndx++] = CONV_DS_ADDR(ds_sunw_auxi liary_cfnp);
ndx++] = CONV_| DS > ADDR(ds_checksum cf np) ;
CONV_DS_ADDR(ds_conf i g_cfnp);
CONV_DS_ADDR(ds_ver sym cf np) ;
CONV_DS_ADDR(ds_r el acount cfnp)

retarr[

retarr[ndx++]
retarr[ndx++]
retarr[ndx++]

Sunn

if (osabi_solari) {
retarr[ndx++] = CONV_DS_ADDR(ds_auxiliary_cfnp);
if (mach_sp arc) {
/*
* The default style for DT_SPARC REG STER
* is the dunp style, which onits the ' SPARC’
* CFNP keeps the prefix.
*/

retarr[ndx++] =
(fnt_osabi == CONV_FMI_ALT_CFNP) ?

CONV_DS_ADDR(ds_sparc_reg_cf);

new usr/src/cnd/ sgs/ i bconv/ common/ dynamic. c

871
872
873
874
875
876
877
878
879
880
881

883
884
885

886 }
__unchanged_portion_omtted_

CONV_DS_ADDR(ds_spar c_r eg_cf np)
CONV_DS_ADDR(ds_: sparc reg_dnp);
retarr[ndx++] = CONV_DS_ADDR(ds_: sdreg cfnp);
}

1f (osabi_linux) {
retarr[ndx++]

CONV_DS_ADDR(ds_gnu_pr el i nked_cf np);
retarr[ndx++] CONV_DS

, ADDR(ds_gnu_hash_cf np);

br eak;

}

retarr[ndx++] = NULL;
assert (ndx <= MAX_RET);
return (retarr);

new usr/src/cnmd/ sgs/|i bconv/ comon/ dynam c. msg

R R R R

16695 Sun Feb 24 19:19:08 2019

new usr/src/cmd/ sgs/|i bconv/ comon/ dynam c. msg
Id: inplenent -ztype and rework option parsing

R R

You can obtain a copy of the license at
or http://ww. opensol aris.org/os/licensing.
See the License for the specific |anguage governi ng perm ssions

" DT_NULL"
" NULL"
"nul "
" DT_NEEDED"
" NEEDED'
"needed"”
"DT_PLTRELSZ"
" PLTRELSZ"
"pltrel sz"
" PLTSZ"
"DT_PLTGOT"
" PLTGOT"
"pltgot”
" DT_HASH'
" HASH'
"hash"
" DT_STRTAB"
" STRTAB"
"strtab"
" DT_SYMIAB"
" SYMTAB"
"synt ab”
" DT_RELA"
" RELA"
"rela"
" DT_RELASZ"
" RELASZ"
"rel asz"
" DT_RELAENT"
" RELAENT"
"rel aent"
" DT_STRSZ"
" STRSZ"
"strsz"
" DT_SYMENT"
" SYMENT"

1#

2 # CDDL HEADER START

3 #

4 #

5 #

6 # You may not use this file except
7 #

8 #

9 #

10 #

11 # and limtations under the License.
12 #

13 # Wen distributing Covered Code,
14 #

15 #

16 #

17 #

18 #

19 # CDDL HEADER END

20 #

22 #

23 #

24 #

26 @MSG DT_NULL_CF

27 @ MSG_DT_NULL_CFNP
28 @ MSG_DT_NULL_NF

29 @ MBG_DT_NEEDED CF

30 @ MSG_DT_NEEDED_CFNP
31 @ MSG_DT_NEEDED_NF

32 @MSG DT_PLTRELSZ CF
33 @ MSG_DT_PLTRELSZ_CFNP
34 @ MBG_ DT PLTRELSZ NF
35 @ MSG_DT_PLTRELSZ_DWP
36 @MSG DT_PLTGOT_CF

37 @MSG_DT_PLTGOT_CFNP
38 @ MSG_DT_PLTGOT_NF

39 @ MSG_DT_HASH CF

40 @ MSG_DT_HASH_CFNP

41 @ MSG_DT_HASH NF

42 @ MBG DT STRTAB CF

43 @ MSG_DT_STRTAB_CFNP
44 @ MSG_DT_STRTAB_NF

45 @ MSG_DT_SYMIAB_CF

46 @ MSG_ DT SYMIAB_CFNP
47 @ MSG_DT_SYMIAB_NF

48 @ MSG DT_RELA CF

49 @ MSG_DT_RELA_CFNP

50 @ MSG_DT_RELA_NF

51 @ MSG _DT_RELASZ CF

52 @ MSG_DT_RELASZ_CFNP
53 @ MSG_DT_RELASZ_NF

54 @ MSG_DT_RELAENT_CF
55 @ MSG_DT_RELAENT_CFNP
56 @ MSG_DT_RELAENT_NF
57 @ MBSG_DT_STRSZ_CF

58 @ MSG_DT_STRSZ_CFNP
59 @ MBG DT STRSZ NF

60 @ MSG_DT_SYMENT CF

61 @ MSG_DT_SYMENT_CFNP

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License (the
in conpliance with the License.

"Li cense").

include this CDDL HEADER in each

file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
I f applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with
information: Portions Copyright [yyyy] [name of

#

usr/ src/ OPENSOLARI S. LI CENSE

your own identifying
copyri ght owner]

Copyright (c) 1995, 2010, Oracle and/or its affiliates. Al rights reserved.

10

11

new usr/src/cnd/ sgs/|i bconv/ comon/ dynam c. msg

@ MSG_DT_SYMENT_NF
@MSG DT_INIT_CF

(@)
9
2
q
9
e
v

g
z
—
=
4

00000,
=K
u
z
Q

5 DT_SYMBOLI C_CF

5 DT_SYMBOLI C_CFNP
5 DT_SYMBOLI C_NF

5 DT_SYMBOLI C_DWP

_|UUUU
3
,_
Q

5 DT_REL_CFNP

UQUU
3
l—

Z
T

> DT_RELSZ_CF

5 DT_RELSZ_CFNP
5 DT_RELSZ NF

5 DT_RELENT_CF
RELENT_CFNP
5 DT_RELENT_NF

5 DT_PLTREL_CF

5 DT_PLTREL_CFNP
5 DT_PLTREL_NF

5 DT_DEBUG CF

5 DT_DEBUG_CFNP
5 DT_DEBUG_NF

> DT_TEXTREL_CF
5 DT_TEXTREL_CFNP
5 DT_TEXTREL_NF
5 DT_JMPREL_CF

5 DT_JMPREL_CFNP
5 DT_JMPREL_NF
~BI ND_NOW CF

UQUUU

UUUU

©,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,0,0,0,0,6,0,0,0,0,0,0,0,0,60,0,0,6)
_'

SSE=SS

UUQUUUUUUQUUUUUUUUU

SERE
ﬂ'ﬂ_'_'_'ﬂ11T1_'__'UJG

@,0,0,6,0,0,6,6,6)

|

| T_ARRAYSZ_CFNP

| T_ARRAYSZ_NF

NI _ARRAYSZ_CF

" FI Nl _ARRAYSZ_CFNP
FI NI _ARRAYSZ_NF

> DT_RUNPATH_CF

5 DT_RUNPATH_CFNP

5 DT_RUNPATH_NF

5 DT_FLAGS_CF

> DT_FLAGS_CFNP

5 DT_FLAGS_NF

5 DT_PREI NI T_ARRAY_CF

5 DT_PREI NI T_ARRAY_CFNP

5 DT_PREI NI T_ARRAY_NF

5 DT_PREI NI T_ARRAYSZ_CF

0,00,
EEEES

|
UUUUUU

UUUU

5 DT_PREI Nl T_ARRAYSZ_NF
5 DT_DEP_SPARC_REG CF

55555555555%5555555%555555555555%555%555%555%555555%555555555555

1©,0,0,6,6,0,0,6),0,0,6,0,0,6)

SISO SISO SIS SIS IS SISO SISO SIS SIS SISO SIS SIRISI SRS SISISISISIGISISIGISISISISLS)
UUO

5 DT_PREI NI T_ARRAYSZ_CFNP

"DT_FIN"
"F

"fini"
" DT_SONAME"

"rel"
" DT_RELSZ"
" RELSZ"
"rel sz"
" DT_RELENT"
" RELENT"
"relent"

"debug"
" DT_TEXTREL"
" TEXTREL"
"textrel "
" DT_JMPREL"
" IMPREL"
jmprel "
" DT_BI ND_NOW
" Bl ND_NOW
"bi nd_now"
"DT_I NI T_ARRAY"
"1 NI T_ARRAY"
"init_array"”
" DT_FI NI _ARRAY"
"FI NI _ARRAY"
"fini_array"”
"DT_I NI T_ARRAYSZ"
"1 NI T_ARRAYSZ"
"init_arraysz"
" DT_FI NI _ARRAYSZ"
"FI NI _ARRAYSZ"
"fini_arraysz"
" DT_RUNPATH'
" RUNPATH"
"runpat h"
" DT_FLAGS"
" FLAGS"
"flags"”
" DT_PREI NI T_ARRAY"
" PREI NI T_ARRAY"
reinit_array"
" DT_PREI Nl T_ARRAYSZ"

"PREI Nl T_ARRAYSZ"
"preinit_arraysz"
" DT_DEPRECATED_SPARC_REQ STER'

#

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

32

33

0x07000001

new usr/src/cnmd/ sgs/|i bconv/ comon/ dynam c. msg 3 new usr/src/cmd/ sgs/|i bconv/ comon/ dynam c. msg

128 @ MSG_DT_DEP_SPARC_REG CFNP " DEPRECATED_SPARC_REG STER' 193 @ MSG_DT_GNU_CONFLI CTSZ_CFNP " GNU_CONFLI CTSZ"
129 @ MSG_DT_DEP_SPARC_REG NF "deprecated_sparc_register” 194 @ MSG_DT_GNU_CONFLI CTSZ_NF "gnu_conflictsz"
130 @ MSG_DT_SUNW AUXI LI ARY_CF " DT_SUNW AUXI LI ARY" # 0x6000000d 195 @ MG DT_GNU_LI BLI STSZ_CF "DT_GNU_LI BLI STSZ" # Ox6ffffdf7
131 @ MSG_DT_SUNW AUXI LI ARY_CFNP " SUNW AUXI LI ARY" 196 @ MSG DT_GNU_LI BLI STSZ_CFNP "GNU_LI BLI STSZ"
132 @ MSG_DT_SUNW AUXI LI ARY_NF "sunw_auxi |l iary" 197 @ MSG DT_GNU_LI BLI STSZ_NF "gnu_liblistsz"
133 @ MG _DT_SUNW RTLDI NF_CF " DT_SUNW RTLDI NF" # 0x6000000e 198 @ MSG_DT_CHECKSUM CF " DT_CHECKSUM' # Ox6ffffdf8
134 @ MSG_DT_SUNW RTLDI NF_CFNP " SUNW RTLDI NF" 199 @ MSG_DT_CHECKSUM CFNP " CHECKSUM'
135 @ MSG_DT_SUNW RTLDI NF_NF "sunw_rtldinf" 200 @ MSG_DT_CHECKSUM NF "checksunt
136 @ MG _DT_SUNWFI LTER CF " DT_SUNW FI LTER' # 0x6000000f 201 @ MSG_DT_PLTPADSZ_CF " DT_PLTPADSZ" # Ox6ffffdf9
137 @ MSG_DT_SUNW FI LTER_CFNP "SUNW FI LTER' 202 @ MBG_DT_PLTPADSZ_CFNP " PLTPADSZ"
138 @ MSG_DT_SUNW FI LTER_NF "sunw filter" 203 @ MSG_DT_PLTPADSZ_NF "pl t padsz”
139 @ MSG _DT_SUNW CAP_CF " DT_SUNW _CAP" # 0x60000010 204 @ MSG_DT_MOVEENT_CF " DT_MOVEENT" # Ox6ffffdfa
140 @ MSG_DT_SUNW CAP_CFNP " SUNW | OL\P“ 205 @ MSG_DT_MOVEENT_CFNP " MOVEENT"
141 @ MsG_ DT SUNW CAP NF "sunw_cap" 206 @ MSG | DT NL'NEENT NF "noveent "
142 @ MSG_DT_SUNW SYMTAB_CF " DT_SUNW _SYMTAB" # 0x60000011 207 @ MSG_DT_MOVESZ_CF " DT_MOVESZ" # Ox6ffffdfb
143 @ MSG_DT_SUNW SYMIAB_CFNP TSUNW SYMTAB" 208 @ MSG_DT_MOVESZ_CFNP " MOVESZ"
144 @ MSG_DT_SUNW SYMIAB_NF "sunw_synt ab" 209 @ MSG_DT_MOVESZ_NF "novesz"
145 @ MSG_DT_SUNW SYMSZ_CF " DT_SUNW SYMSZ" # 0x60000012 210 @ MSG_DT_FEATURE_1_CF " DT_FEATURE_1" # Ox6ffffdfc
146 @ MSG_DT_SUNW SYMSZ_CFNP " SUNW _SYMsZ" 211 @ MSG_DT_FEATURE_1_CFNP " FEATURE_1"
147 @ MSG_DT_SUNW SYMSZ_NF "sunw_synmsz" 212 @ MSG_DT_FEATURE_1_NF "feature_1"
148 @ MSG_DT_SUNW SORTENT_CF " DT_SUNW SORTENT" # 0x60000013 213 @ MSG_DT_POSFLAG 1_CF " DT_POSFLAG_1" # Ox6ffffdfd
149 @ MSG_DT_SUNW SORTENT_CFNP " SUNW SORTENT" 214 @ MSG_DT_POSFLAG 1_CFNP " POSFLAG 1"
150 @ MSG_DT_SUNW SORTENT_NF "sunw_sortent" 215 @ MBG_DT_POSFLAG 1_NF "posflag_1"
151 @ MSG_DT_SUNW SYMSORT_CF " DT_SUNW_SYMSORT" # 0x60000014 216 @ MSG_DT_SYM NSZ_CF " DT_SYM NSz" # Ox6ffffdfe
152 @ MSG_DT_SUNW SYMSORT_CFNP " SUNW _SYMSORT" 217 @ MSG_DT_SYM NSZ_CFNP " SYM NSzZ"
153 @ MSG_DT_SUNW SYMSORT_NF "sunw_synsort" 218 @ MBG_DT_SYM NSZ_NF "sym nsz"
154 @ MSG_DT_SUNW SYMSORTSZ_CF " DT_SUN\N_SYNBCRTSZ" # 0x60000015 219 @ MBG_DT_SYM NENT_CF " DT_SYM NENT" # Ox6ffffdff
155 @ MSG_DT_SUNW SYMSORTSZ_CFNP " SUNW. SYNBCRTSZ 220 @ MBG_DT_SYM NENT_CFNP " SYM NENT"
156 @ MSG_DT_SUNW SYMSORTSZ_NF "sunw /_SYMmsor t sz" 221 @ MSG_DT_SYM NENT_NF "sym nent"
157 @ MSG_DT_SUNW TLSSORT_CF "DT_ SUN\N TLSSORT" # 0x60000016 222 @ MSG_DT_GNU_HASH CF " DT_GNU_HASH" # Ox6ffffefb
158 @ MSG_DT_SUNW TLSSORT_CFNP "SUNW TLSSORT" 223 @ MBG_DT_GNU_HASH_CFNP " GNU_HASH'
159 @ MSG_DT_SUNW TLSSORT_NF "sunw_tlssort" 224 @ MSG_DT_GNU_HASH_NF "gnu_hash"
160 @ MSG_DT_SUNW TLSSORTSZ_CF " DT_SUNW TLSSORTSZ" # 0x60000017 225 @ MSG_DT_TLSDESC PLT_CF " DT_TLSDESC PLT" # Ox6ffffef6
161 @ MSG_DT_SUNW TLSSORTSZ_CFNP " SUNW TLSSORTSZ" 226 @ MSG_DT_TLSDESC PLT_CFNP " TLSDESC PLT"
162 @ MSG_DT_SUNW TLSSORTSZ_NF "sunw_t| ssortsz" 227 @ MBG DT_TLSDESC PLT_NF "t|sdesc_plt"
163 @ MSG_DT_SUNW CAPI NFO_CF " DT_SUNW _CAPI NFO' # 0x60000018 228 @ MSG _DT_TLSDESC GOT_CF " DT_TLSDESC_GOT" # Ox6ffffef7
164 @ MSG_DT_SUNW CAPI NFO_CFNP " SUNW _CAPI NFO' 229 @ MSG_DT_TLSDESC GOT_CFNP " TLSDESC_GOT"
165 @ MSG_DT_SUNW CAPI NFO_NF "sunw_capi nf 0" 230 @ MSG_DT_TLSDESC_GOT_NF "t| sdesc_got"
166 @ MSG_DT_SUNW STRPAD CF " DT_SUNW STRPAD" # 0x60000019 231 @ MSG_DT_GNU_CONFLI CT_CF " DT_GNU_CONFLI CT" # Ox6ffffef8
167 @ MSG_DT_SUNW STRPAD_CFNP " SUNW _STRPAD" 232 @ MSG_DT_GNU_CONFLI CT_CFNP " GNU_CONFLI CT"
168 @ MSG_DT_SUNW STRPAD_NF "sunw_st r pad" 233 @ MSG_DT_GNU_CONFLI CT_NF "gnu_conflict"
169 @ MSG_DT_SUNW CAPCHAI N _CF " DT_SUNW CAPCHAI N* # 0x6000001a 234 @ MSG_DT_GNU_LI BLI ST_CF "DT_GNU_LI BLI ST" # Ox6ffffef9
170 @ MSG_DT_SUNW CAPCHAI N_CFNP " SUNW _CAPCHAI N' 235 @ MSG_DT_GNU_LI BLI ST_CFNP "GNU_LI BLI ST"
171 @ MSG_DT_SUNW CAPCHAI N_NF "sunw_capchai n" 236 @ MBG _DT_GNU_LI BLI ST_NF "gnu_liblist"
172 @ MSG_DT_SUNW LDVACH CF " DT_SUNW LDVACH' # 0x6000001b 237 @ MSG_DT_CONFI G CF " DT_CONFI G' # Ox6ffffefa
173 @ MSG_DT_SUNW LDMACH_CFNP " SUNW L DVACH" 238 @ MSG_DT_CONFI G_CFNP " CONFI G'
174 @ MsG_ DT SUNW LDIVACH NF "sunw_| dmach" 239 @ MSG | DT CONFI G NF “config"
175 @ MSG_DT_SUNW CAPCHAI NENT_CF " DT_SUNW _CAPCHAI NENT" # 0x6000001d 240 @ MBG_DT_DEPAUDI T_CF " DT_DEPAUDI T" # Ox6ffffefb
176 @ MSG_DT_SUNW CAPCHAI NENT_CFNP " SUNW _CAPCHAI NENT" 241 @ MSG_DT_DEPAUDI T_CFNP " DEPAUDI T"
177 @ MBG_DT_SUNW CAPCHAI NENT_NF "sunw_capchai nent" 242 @ MSG_DT_DEPAUDI T_NF "depaudi t"
178 @ MSG_DT_SUNW CAPCHAI NSZ_CF " DT_SUNW CAPCHAI NSzZ" # 0x6000001f 243 @MSG DT_AUDI T_CF "DT_AUDI T" # Ox6ffffefc
178 @ MSG_DT_SUNW CAPCHAI NSZ_CF " DT_SUNW CAPCHAI NSZ" # 0x6000001d 244 @ MBG_DT_AUDI T_CFNP "AUDI T"
179 @ MSG_DT_SUNW CAPCHAI NSZ_CFNP " SUNW_CAPCHAI NSZ" 245 @ MSG_DT_AUDI T_NF "audit"
180 @ MSG_DT_SUNW CAPCHAI NSZ_NF "sunw_capchai nsz" 246 @ MSG_DT_PLTPAD CF " DT_PLTPAD" # Ox6ffffefd
181 @ MSG _DT_SUNWASLR CF " DT_SUNW ASLR' # 0x60000023 247 @ MSG_DT_PLTPAD_CFNP " PLTPAD"
182 @ MSG_DT_SUNW ASLR_CFNP " SUNW ASLR' 248 @ MBG_DT_PLTPAD NF "pl t pad”
183 @ MSG_DT_SUNW ASLR_NF "sunw_aslr" 249 @ MSG_DT_MOVETAB_CF " DT_MOVETAB" # Ox6ffffefe
184 @ MSG_DT_SUNW KMOD_CF " DT_SUNW_KMOD" # 0x60000027 250 @ MSG_DT_MOVETAB_CFNP " MOVETAB"
185 @ MSG_DT_SUNW KMOD_CFNP " SUNW_KMOD! 251 @ MSG_DT_MOVETAB_NF "novet ab"
186 @NSG_DT SUNW KMOD_NF "sunw_knod" 252 @ MBG_DT_SYM NFO_CF " DT_SYM NFO' # Ox6ffffeff
187 #endif /* | codereview */ 253 @ MSG_DT_SYM NFO_CFNP " SYM NFO'

254 @ MSG_DT_SYM NFO_NF "sym nf 0"
189 @ MSG_DT_GNU_PRELI NKED_CF " DT_GNU_PRELI NKED" # Ox6ffffdf5 255 @ MSG_DT_VERSYM CF " DT_VERSYM' # Ox6ffffffo
190 @ MSG_DT_GNU_PRELI NKED_CFNP " GNU_PREL| NKED" 256 @ MSG_DT_VERSYM CFNP " VERSYM'
191 @ MSG_DT_GNU_PRELI NKED_NF "gnu_prel i nked" 257 @ MBG_DT_VERSYM NF "versyn
192 @ MG _DT_GNU_CONFLI CTSZ_CF " DT_GNU_CONFLI CTSZ" # Ox6ffffdfé 258 @ MSG_DT_RELACOUNT_CF " DT_RELACOUNT" # Ox6ffffffo

new usr/src/cnmd/ sgs/|i bconv/ comon/ dynam c. msg new usr/src/cmd/ sgs/|i bconv/ comon/ dynam c. msg
259 @ MSG_DT_RELACOUNT_CFNP " RELACOUNT" 325 @ MSG DF_1_LQOADFLTR _NF "loadfltr"
260 @ MSG_DT_RELACOUNT_NF "rel acount" 326 @MBSG DF_1_| NI TFI RST_CF "DF_1_I NI TFI RST" # 0x00000020
261 @ MBG_DT_RELCOUNT_CF " DT_RELCOUNT" # Ox6ffffffa 327 @MSG DF_1_| NI TFI RST_CFNP "I NI TRl RST"
262 @ MSG_DT_RELCOUNT_CFNP " RELCOUNT" 328 @MSG DF_1_| NI TFI RST_NF "initfirst"
263 @ MSG_DT_RELCOUNT_NF "rel count" 329 @ MSG_DF_1_NOOPEN_CF " DF_1_NOOPEN' # 0x00000040
264 @ MG DT_FLAGS_ 1_CF " DT_FLAGS 1" # ox6ffffffb 330 @ MBG_DF_1_NOOPEN_CFNP " NOOPEN'
265 @ MSG_DT_FLAGS_1_CFNP "FLAGS_1" 331 @ MSG_DF_1_NOCPEN_NF "noopen”
266 @ MSG DT_FLAGS_1_NF "flags_1" 332 @MsG DF_1_ORI G N_CF "DF_1_ORIG N # 0x00000080
267 @ MSG_DT_VERDEF_CF " DT_VERDEF" # oxeffffffc 333 @MSG DF_1_ORI G N_CFNP "ORI G N
268 @ MSG_DT_VERDEF_CFNP " VERDEF" 334 @MSG DF_1_ORI G N_NF origin
269 @ MSG_DT_VERDEF_NF "verdef" 335 @ MSG DF_1_DI RECT_CF "DF_1_DI RECT" # 0x00000100
270 @ MSG_DT_VERDEFNUM CF " DT_VERDEFNUM' # Ox6ffffffd 336 @ MSG _DF_1_DI RECT_CFNP " DI RECT"
271 @ MSG_DT_VERDEFNUM_CFNP " VERDEFNUM' 337 @ MSG DF_1_DI RECT_NF "direct"
272 @ MSG_DT_VERDEFNUM_NF "ver def nunt 338 @MSG DF_1_TRANS_CF "DF_1_TRANS" # 0x00000200
273 @ MBG_DT_VERNEED CF " DT_VERNEED" # Ox6ffffffe 339 @ MSG _DF_1_TRANS_CFNP " TRANS"
274 @ MSG_DT_VERNEED CFNP " VERNEED" 340 @ MSG_DF_1_TRANS_NF "trans"
275 @ MSG_DT_VERNEED NF "ver need" 341 @ MSG_DF_1_| NTERPCOSE_CF " DF_1_| NTERPCSE" # 0x00000400
276 @ MSG_DT_VERNEEDNUM CF " DT_VERNEEDNUM' # Ox6fffffff 342 @ MBG_DF_1_| NTERPOSE_CFNP " | NTERPCSE"
277 @ MBG_DT_VERNEEDNUM CFNP " VERNEEDNUM' 343 @ MBG_DF_1_| NTERPOSE_NF "interpose"”
278 @ MBG_DT_VERNEEDNUM_NF "ver neednunt 344 @ MSG_DF_1_| NTERPOSE_DEF " OBJECT- | NTERPCSE"
279 @ MSG_DT_SPARC_REG STER CF " DT_SPARC_REG STER' # 0x70000001 345 @ MSG_DF_1_NODEFLI B_CF " DF_1_NODEFLI B # 0x00000800
280 @ MSG_DT_SPARC_REG STER_CFNP " SPARC_REG STER' 346 @ MSG_DF_1_NODEFLI B_CFNP ' NODEFLI B*
281 @ MSG_DT_SPARC REGQ STER NF "sparc_register" 347 @ MSG _DF_1_NODEFLI B_NF "nodeflib"
282 @ MBG_DT_SPARC_REG STER_DWP "REG STER' 348 @ MSG_DF_1_NODUMP_CF " DF_1_ NODUMP" # 0x00001000
283 @ MSG_DT_AUXI LT ARY_CF " DT_AUXI LI ARY" # Ox7ffffffd 349 @ MSG_DF_1_NODUMP_CFNP " NODUMP"
284 @ MBG_DT_AUXI LI ARY_CFNP " AUXI LI ARY" 350 @ MSG_DF_1_NODUMP_NF " nodunp
285 @ MBG_DT_AUXI LI ARY_NF "auxiliary" 351 @ MBSG DF_1_CONFALT CF "DF_1_CONFALT" # 0x00002000
286 @ MSG_DT_USED _CF " DT_USED" # Ox7ffffffe 352 @ MBG_DF_1_CONFALT_CFNP " CONFALT'
287 @ MSG_DT_USED_CFNP " USED" 353 @ MSG DF_1_CONFALT_NF confal t"
288 @ MSG_DT_USED_NF "used" 354 @ MSG DF_1_ENDFI LTEE CF "DF_1_ENDFI LTEE" # 0x00004000
289 @ MBG DT _FI LTER CF "DT_FI LTER' # OX7fffffff 355 @ MSG_DF_1_ENDFI LTEE_CFNP " ENDFI LTEE"
290 @ MSG _DT_FI LTER_CFNP "FI LTER' 356 @ MSG _DF_1_ENDFI LTEE_NF "endfiltee"
291 @ MSG DT_FI LTER_NF "filter" 357 @ MSG_DF_1_DI SPRELDNE_CF " DF_1_DI SPRELDNE" # 0x00008000
358 @ MSG_DF_1_DI SPRELDNE_CFNP " DI SPRELDNE"
359 @ MSG_DF_1_DI SPRELDNE_NF "di sprel dne"
294 @ MSG DF_ORI G N_CF "DF_ORIG N' # 0x00000001 360 @ MSG_DF_1_DI SPRELDNE_DEF " DI SPLACE- RELOCS- DONE"
295 @ MSG_DF_ORI G N_CFNP "ORIG N 361 @ MSG_DF_1_DI SPRELPND _CF " DF_1_DI SPRELPND" # 0x00010000
296 @ MSG DF_ORI G N_NF "origin" 362 @ MSG_DF_1_DI SPRELPND_CFNP " DI SPRELPND"
297 @ MSG_DF_SYMBOLI C_CF " DF_SYMBOLI C' # 0x00000002 363 @ MSG_DF_1_DI SPRELPND_NF "di sprel pnd"
298 @ MSG_DF_SYMBCLI C_CFNP " SYMBOLI C' 364 @ MBG_DF_1_DI SPRELPND_DEF " DI SPLACE- RELOCS- PEND"
299 @ MSG_DF_SYMBOLI C_NF "symbol i c" 365 @ MSG_DF_1_NODI RECT_CF " DF_1_NODI RECT" # 0x00020000
300 @ MSG_DF_TEXTREL_CF " DF_TEXTREL" # 0x00000004 366 @ MSG_DF_1_NODI RECT_CFNP " NODI RECT"
301 @ MSG_DF_TEXTREL_CFNP " TEXTREL" 367 @ MSG_DF_1_NODI RECT_NF "nodi rect"
302 @ MSG _DF_TEXTREL_NF "textrel" 368 @ MBG DF_1_| GNMULDEF_CF "DF_1_1 GNMULDEF" # 0x00040000
303 @ MSG_DF_BI ND_NOW CF " DF_BI ND_NOW # 0x00000008 369 @ MSG_DF_1_| GNMULDEF_CFNP " | GNMUL DEF"
304 @ MSG_DF_BI ND_NOW CFNP Bl ND_NOW 370 @ MSG_DF_1_| GNMULDEF_NF "i gnnul def "
305 @ MSG_DF_BI ND_NOW NF " bi nd_now’ 371 @ MSG_DF_1_| GNMULDEF_DEF " | GNORE- MULDEFS"
306 @ MBG DF_STATIC TLS CF " DF_STATI C_TLS" # 0x00000010 372 @ MSG DF_1_NOKSYMS_CF " DF_1_NOKSYMs" # 0x00080000
307 @ MSG_DF_STATI C_TLS_CFNP "STATIC TLS" 373 @ MSG_DF_1_NOKSYMS_CFNP " NOKSYMS
308 @ MSG_DF_STATI C_TLS_NF "static_tls" 374 @ MSG_DF_1_NOKSYMS_NF noksyns
375 @ MSG DF_1_NOHDR CF " DF_1_NOHDR' # 0x00100000
376 @ MSG_DF_1_NOHDR_CFNP " NOHDR"
311 @ MSG _DF_1_NOW. CF "DF_1_NOW # 0x00000001 377 @ MBG_DF_1_NOHDR_NF " nohdr
312 @ MSG_DF_1_NOW CFNP " NOW 378 @MSG DF_1_EDI TED CF "DF_1_EDI TED' # 0x00200000
313 @ MSG_DF_1_NOW NF "now' 379 @ MSG DF_1_EDI TED_CFNP " EDI TED"
314 @MSG DF_1_GLOBAL_CF "DF_1_GLOBAL" # 0x00000002 380 @ MSG DF_1_EDI TED_NF "edi t ed"
315 @ MSG DF_1_GLOBAL_CFNP " GLOBAL" 381 @ MSG DF_1_NORELOC CF "DF_1_NORELCC' # 0x00400000
316 @ MSG DF_1_GLOBAL_NF "gl obal " 382 @ MSG_DF_1_NORELOC CFNP " NORELCOC"
317 @MSG DF_1_GROUP_CF " DF_1_GROUP" # 0x00000004 383 @ MSG DF_1_NORELOC _NF "nor el oc"
318 @ MBG_DF_1_GROUP_CFNP " GROUP" 384 @ MSG DF_1_SYM NTPOSE_CF "DF_1_SYM NTPCSE" # 0x00800000
319 @ MSG DF_1_GROUP_NF "group” 385 @ MSG _DF_1_SYM NTPOSE_CFNP " SYM NTPCSE"
320 @ MSG _DF_1_NODELETE_CF " DF_1_NODELETE" # 0x00000008 386 @ MSG_DF_1_SYM NTPOSE_NF "sym nt pose"
321 @ MSG_DF_1_NODELETE_CFNP " NODELETE" 387 @ MSG_DF_1_SYM NTPOSE_DEF " SYMBOL- | NTERPOSE"
322 @ MSG_DF_1_NODELETE_NF "nodel et e" 388 @ MSG_DF_1_GLOBAUDI T_CF "DF_1_GLOBAUDI T" # 0x01000000
323 @MSG DF_1_LQOADFLTR CF "DF_1_LOADFLTR' # 0x00000010 389 @ MSG DF_1_GLOBAUDI T_CFNP " GLOBAUDI T"
324 @ MSG DF_1_LQOADFLTR_CFNP "LOADFLTR' 390 @ MSG_DF_1_GLOBAUDI T_NF "gl obaudi t"

new usr/src/cnmd/ sgs/|i bconv/ comon/ dynam c. msg

391
392
393
394
395

398
399
400
401
402
403
404
405
406
407
408
409

412
413
414
415
416
417

420
421
422

425
426
427
428
429

431
433

@ MBG DF_1_GLOBAUDI T_DEF
@ MBG_DF_1_SI NGLETON CF

@ MSG_DF_1_SI NGLETON_CFNP "SI NGLETON'
@ MSG_DF_1_SI NGLETON_NF "singl eton"
@ MSG_DF_1_SI NGLETON_DEF
@ MSG _DF_P1_LAZYLOAD CF "DF_P1_LAZYLQOAD'
@ MSG_DF_P1_LAZYLOAD _CFNP " LAZYLOAD"
@ MSG_DF_P1_LAZYLOAD NF "l azyl oad"
@ MSG_DF_P1_LAZYLOAD DEF " LAZY"
@ MSG_DF_P1_GROUPPERM CF " DF_P1_GROUPPERM'
@ MSG_DF_P1_GROUPPERM CFNP " GROUPPERM'
@ MSG_DF_P1_GROUPPERM NF "groupper nt'
@ MSG_DF_P1_GROUPPERM DEF " GROUP"
@ MSG_DF_P1_DEFERRED CF " DF_P1_DEFERRED"
@ MSG_DF_P1_DEFERRED _CFNP " DEFERRED"
@ MSG_DF_P1_DEFERRED NF "deferred”
@ MSG_DF_P1_DEFERRED_DEF " DEFERRED"
@MSG DTF_1_PARI NI T_CF "DIF_1_PARINI T"
@ MSG_DTF_1_PARI NI T_CFNP "PARI NI T"
@ MSG_DTF_1_PARI NI T_NF "parinit"
@ MSG_DTF_1_CONFEXP_CF " DTF_1_CONFEXP"
@ MSG_DTF_1_CONFEXP_CFNP " CONFEXP"
@ MSG_DTF_1_CONFEXP_NF "conf exp"
@ M5G_BND_NEEDED " NEEDED"
@ MSG_BND_REFER " REFERENCED"
@ MSG_BND_FI LTER "FI LTER'

MSG_BND_ADDED " OBJECTS- ADDED"

@

@ MBG_BND_REEVAL
@ MBG_BND_DELETED
@ MBG_BND_ATEXI T
@ MBG BND_REVI SI T

@ MBG_STR_EMPTY 0T

@ MSG_GBL_ZERO 08

" GLOBAL- AUDI TI NG'

"DF_1_SI NGLETON'

0x02000000

" SI NGLETON- EXI STS"

" OBJECTS- REEVALUATED"
" OBJECTS- DELETED"

" ATEXI T- PROCESSI NG'
"(revisiting)"

0x00000001

0x00000002

0x00000004

0x00000001

0x00000002

new usr/src/cnd/ sgs/libconv/common/el f.c

R R R R

38228 Sun Feb 24 19:19: 09 2019
new usr/src/cnd/ sgs/libconv/common/el f.c
I'd should reject kernel nodules as input

R R R R R R R

__unchanged_portion_onitted_

1182 /*

1183 * A generic neans of returning additional information for a rejected file in
1184 * terms of a string. ELFOSABI _SOLARI S is assunmed.

1185 */

1186 const char *

1187 conv re] ect desc(Rej desc * rej, Conv_reject_desc_buf_t *reject_desc_buf,
1188 Hal f ch)

1189 {

1190 ushort _t type = rej ->re]_ ype;

1191 ui nt _t info = rej->rej_info;

1193 switch (type) {

1194 case SGS_REJ_MACH:

1195 return (conv_ehdr _mach((Hal f)info, O,
1196 & ej ect _desc_buf->i nv_buf));

1197 case SGS_REJ_CLASS:

1198 return (conv_ehdr_cl ass((uchar_t)info, O,
1199 &rej ect _desc_buf->i nv_buf));

1200 case SGS_REJ_DATA:

1201 return (conv_ehdr_data((uchar_t)info, O,
1202 & ej ect _desc_buf->i nv_buf));

1203 case SGS_REJ_TYPE:

1204 return (conv_ehdr_type(ELFOSABI _SOLARI'S, (Half)info, O,
1205 & ej ect _desc_buf ->i nv_buf));

1206 case SGS_REJ_BADFLAG

1207 case SGS_REJ_M SFLAG

1208 case SGS_REJ_HAL:

1209 case SGS_REJ_US3:

1210 return (conv_ehdr_flags(mach, (Wrd)info, 0,
1211 & ej ect _desc_buf->fl ags_buf));

1212 case SGS_REJ_UNKFI LE:

1213 case SGS_REJ_ARCHI VE:

1214 case SGS_REJ_KMD:

1215 #endif /* ! codereview */

1216 return (NULL);

1217 case SGS_REJ_STR

1218 case SGS_REJ_HWCAP_1:

1219 case SGS_REJ_SFCAP 1:

1220 case SGS_REJ_HWCAP 2:

1221 case SGS_REJ_MACHCAP:

1222 case SGS_REJ_PLATCAP:

1223 if (rej->rej_str)

1224 return ((const char *)rej->rej_str);
1225 el se

1226 return (MSG_ORl G(MSG_STR_EMPTY)) ;
1227 defaul t:

1228 return (conv_invalid_val (& eject_desc_buf->inv_buf, info,
1229 CONV_FMT_DECI MAL)) ;

1230 }

1231 }

new usr/src/cnd/ sgs/ i bel f/comon/gel f.c

R R R R

23848 Sun Feb 24 19:19:09 2019
new usr/src/cnd/ sgs/ i bel f/comon/ gel f.c
I'd should reject kernel nodules as input

R R R R R R R

__unchanged_portion_onitted_

1088 /*

1089 * If the specified object has a dynam c section, and that section
1090 * contains a DT_FLAGS_1 entry, then return the value of that entry.
1091 * Otherwi se, return O.

1092 */

1093 GHI f _Xword

1094 _gel f_getdynval (EIf *elf, CElf_Sxword tag)

1094 _gel f_getdyndtflags_1(Ef *elf)

1095 {

1096 Elf _Scn *scn = NULL;

1097 El f_Data *data;

1098 CEl f _Shdr shdr;

1099 GEl f _Dyn dyn;

1100 int i, n;

1102 while (scn = el f_nextscn(elf, scn)) {

1103 if (gelf_getshdr(scn, &shdr) == NULL)

1104 br eak;

1105 if (shdr.sh_type != SHT_DYNAM Q)

1106 cont i nue;

1107 if (data = elf_getdata(scn, NULL))

1108 n = shdr.sh_size / shdr.sh_entsize;

1109 for (i =0; i <n; i++) {

1110 (void) gelf_getdyn(data, i, &dyn);
1111 if (dyn.d_tag == tag)

1111 if (dyn.d_tag == DT_FLAGS 1) {
1112 return (dyn.d_un.d_val);
1113 }

1114 }

1115 }

1116 br eak;

1117 1

1118 return (0);

1119 }

1121 GEl f _Xword

1122 _gel f_getdyndtflags_1(Ef *elf)

1123 |

1124 return (_gel f_getdynval (el f, DT_FLAGS_ 1));
1125 #endif /* | codereview */

1126 }

new usr/src/cnd/ sgs/ i bel f/ comon/ mapfile-vers

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
3258 Sun Feb 24 19:19:10 2019

new usr/src/cnd/ sgs/ i bel f/ common/ mapfile-vers

I'd should reject kernel nodules as input

R R R R R R R

__unchanged_portion_onitted_

162 SYMBOL_VERSI ON SUNWrivate_1.1 {

163 gl obal :

164 _elf_execfill;

165 _el f_get ar hdr base;

166 _el f_getarsymwrdsi ze;
167 _el f_getnextoff;

168 _el f _get xoff;

169 _el f _out sync;

170 _el f_sys_encodi ng;

171 _el f_swap_wri nage;

172 _gel f_getdyndtflags_1;
173 gel f _getdynval ;

174 #endif /¥ | codereview */

176 $if _ELF32

177 el f _demangl e;
178 $endi f

179 };

new usr/src/cnd/ sgs/1i bl d/ common/ args. ¢

R R R R

67390 Sun Feb 24 19:19:10 2019
new usr/src/cnd/ sgs/1i bl d/ common/ args. ¢

I'd: inplenent -ztype and rework option parsing
IR R SR SR E SRR SRR SRR R R R R SRR R R R R RS EEREEEEREEREEEEEEEERSE]
__unchanged_portion_onitted_
98 static Setstate dflag = SET_UNKNOW;
99 static Setstate zdflag = SET_UNKNOM;
100 static Setstate (¥l ag = SET_UNKNOW;
101 static Setstate Bdflag = SET_UNKNOW;
102 static Setstate zfwflag = SET_UNKNOW;
104 static Bool ean aflag = FALSE;
105 static Bool ean bflag = FALSE;
106 static Boolean rflag = FALSE;
106 static Bool ean sflag = FALSE;
107 static Bool ean zinflag = FALSE;
108 static Boolean zlflag = FALSE;
109 static Boolean Bgflag = FALSE;
110 static Boolean BlIflag = FALSE;
111 static Boolean Beflag = FALSE;
112 static Boolean Bsflag = FALSE;
113 static Bool ean Dflag = FALSE;
115 static Boolean Gl ag = FALSE;
114 static Boolean Vflag = FALSE;
116 enum out put _type {
117 OTl_RELCC, /* rel ocatabl e object */
118 OT_SHARED, /* shared object */
119 OT_EXEC, /* dynam c executable */
120 QOT_KMOD, /* kernel nodule */
121 };
123 static enum out put _type otype = OT_EXEC,
125 #endif /* ! codereview */
126 /*
127 * ztflag' s state is set by pointing it to the matching string:
128 * text | textoff | textwarn
129 */
130 static const char *ztflag = NULL;
132 /*
133 * Renenber the guidance flags that result fromthe initial -z guidance
134 * option, so that they can be conpared to any that follow. W only want
135 * to issue a warning when they differ.
136 *
137 static ofl _guideflag_t initial_guidance_flags = O;
139 static uintptr_t process_files_con(O | _desc *, int, char **);
140 static uintptr_t process_flags_com(Ofl _desc *, int, char ** int *);
142 | *
143 * Print usage nessage to stderr - 2 nodes, summary nessage only,
144 * and full usage nessage.
145 */
146 static void
147 usage_nesg(Bool ean detail)
148 {
149 (void) fprintf(stderr, MSG |NTL(MSG ARG USAGE),
150 MSG_ORI G MSG_STR_COPTI ONS)) ;
152 if (detail == FALSE)
153 return;

new usr/src/cnd/ sgs/1i bl d/ conmon/ args. ¢

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

(voi d)
(voi d)

(voi d)
(voi d)

(voi d)
(voi d)
(voi d)
(voi d)
(voi d)
(voi d)
(voi d)
(voi d)
(voi d)
(voi d)

fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri
fpri

ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,
ntf(stderr,

MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG_DETAI L
MSG_| NTL(MSG_ARG_DETAI L
MSG_| NTL(MSG_ARG _DETAI L
MBSG_| NTL(MSG_ARG _DETAI L
MSG_| NTL(MSG_ARG_DETAI L
MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG_DETAI
MSG_I NTL(MSG_ARG_DETAI

|

|

|
e

17170
1711
(e
| Il_ll_ll_ (el ot
3

CRIERRRFEE2C

\8v
~-

=8>

MSG_| NTL(MSG_ARG DETAI L_E));
MSG_| NTL(MSG_ARG DETAI L_F));
MSG_| NTL(MSG_ARG DETAI L_CF));
MSG_| NTL(MSG_ARG DETAI L_CQ)) :
MSG_| NTL(MSG_ARG DETAI L_H))
MSG_| NTL(MSG_ARG DETAI L_I));
MSG_| NTL(MSG_ARG DETAIL_CI));
MSG_| NTL(MSG_ARG DETAI L_L));
MSG_| NTL(MSG_ARG DETAI L_CL)};
MSG_| NTL(MSG_ARG DETAI L_M) ;

MSG_| NTL(MSG_ARG DETAI
MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG DETAI
MSG_| NTL(MSG_ARG DETAI
MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG DETAI
MSG_| NTL(MSG_ARG DETAI
MSG_| NTL(MSG_ARG DETAI
MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG DETAI

MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG DETAI
MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG DETAI
MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG_DETAI
MSG_| NTL(MSG_ARG DETAI L_.
MSG_| NTL(MSG_ARG DETAI L_.
MSG_| NTL(MSG_ARG DETAI L_Z :
MSG_| NTL(MSG_ARG DETAI L_ZDFS)) ;

NN N

~-

~

NY9ocopgegagguogy

RN

N

P

i

NPAUNS N

rrmrerrrrrrrrrrrbbrrrrrererer

vv..«..
)
=

1771
N

|

|
S
prlit

)
.)
MBG_| NTL(MSG_ARG DETAI L_ZDRS)) ;
MBG_| NTL(MSG_ARG DETAI L_ZE)):
MBG_| NTL(MSG_ARG _DETAI L_ZFATW) ;
MSG_| NTL(MSG_ARG_DETAI L_ZFA)) ;
MBG_| NTL(MSG_ARG_DETAI L_ZGP)) ;
MBG_| NTL(MBG_ARG_DETAI L_ZGUl DE)) ;

MBG_| NTL(MSG_ARG DETAI L_ZH)) :
MSG_| NTL(MSG_ARG DETAI L_ZI G)) ;
MSG_| NTL(MSG_ARG DETAI L_ZI NA)) ;
MSG_| NTL(MSG_ARG DETAIL_ZINI)):
MSG_| NTL(MSG_ARG DETAI L_ZI NT))
MSG_| NTL(MSG_ARG _DETAI L_ZLAZY));
MSG_| NTL(MSG_ARG DETAI L_ZLD32)) ;
MSG_| NTL(MSG_ARG DETAI L_ZLD64)) ;
MSG_| NTL(MSG_ARG DETAI L _ZLO));
MBG_| NTL(MSG_ARG DETAI L_ZM)):
MSG_| NTL(MSG_ARG DETAI L_ZNC)) ;
MSG_| NTL(MSG_ARG_DETAI L_ZNDFS)

MSG_| NTL(MSG_ARG_DETAI L_ZNDEF

)8
MSG_I NTL(MSG_ARG_DETAI L:ZNDEL; 3 :

new usr/src/cnd/ sgs/1i bl d/ common/ args. ¢

221 (void) fprintf(stderr, MSG_|NTL(MSG ARG DETAIL_ZNDLO));

222 (void) fprintf(stderr, MSG_|NTL(MSG ARG DETAI L_ZNDU));

223 (void) fprintf(stderr, MSG_INTL(MSG ARG DETAIL_ZNLD));

224 (void) fprintf(stderr, MG | NTL(MSG ARG DETAI L_ZNOW);

225 (void) fprintf(stderr, MSG_ | NTL(MSG ARG DETAI L_ZNPA));

226 (void) fprintf(stderr, MSG_|NTL(MSG ARG DETAIL_ZNV));

227 (void) fprintf(stderr, MSG_|NTL(MSG ARG DETAIL_ZO));

228 (void) fprintf(stderr, MSG_ | NTL(MSG ARG DETAIL_ZPIA));

229 (void) fprintf(stderr, MSG_|NTL(MSG ARG DETAIL_ZRL));

230 (void) fprintf(stderr, MSG_|NTL(MSG ARG DETAIL_ZRREL));

231 (void) fprintf(stderr, MSG_|INTL(MSG ARG DETAIL_ZRS));

232 (void) fprintf(stderr, MSG_|NTL(MSG ARG DETAI L_ZRSN));

233 (void) fprintf(stderr, MSG_ | NTL(MSG ARG DETAI L_ZRSGRP));
234 (void) fprintf(stderr, MSG_|NTL(MSG ARG DETAI L_ZSCAP));

235 (void) fprintf(stderr, MSG_|INTL(MSG ARG DETAIL_ZTARG));

236 (void) fprintf(stderr, MSG_|NTL(MSG ARG DETAIL_ZT));

237 (void) fprintf(stderr, MSG_|NTL(MSG ARG DETAIL_ZTO));

238 (void) fprintf(stderr, MSG_|NTL(MSG ARG DETAIL_ZTW);

239 (void) fprintf(stderr, MSG_|NTL(MSG ARG DETAIL_ZTY));

240 #endif /* | codereview */

241 (void) fprintf(stderr, MSG_|NTL(MG ARG DETAI L_ZWRAP));

242 (void) fprintf(stderr, MSG_|NTL(MSG ARG DETAI L_ZVER));

243 }

245 [*

246 * Rescan the archives seen on the command line in order

247 * to handle circularly dependent archives, stopping when

248 * no further menber extraction occurs.

249 *

250 * entry:

251 * of | - Qutput file descriptor

252 * isgrp - True if this is a an archive group search, False
253 * to search starting with argv[1] through end_arg_ndx
254 * end_arg_ndx - Index of final argv el enent to consider.

255 */

256 static uintptr_t

257 I{d_r escan_archives(Of | _desc *ofl, int isgrp, int end_arg_ndx)

258

259 of | ->of | _flagsl | = FLG_OF1_EXTRACT;

261 while (ofl->ofl _flagsl & FLG OF1_EXTRACT) {

262 Aliste i dx;

263 Ar _desc *adp;

264 Wor d start_ndx = isgrp ? ofl->ofl _ars_gsndx : O;
265 Word ndx = 0;

267 of | ->of | _flagsl & ~FLG OF1_EXTRACT;

269 DBG _CALL(Dbg_file_ar_rescan(ofl->of | _Im,

270 isgrp ? ofl->ofl _ars_gsandx : 1, end_arg_ndx));
272 for (APLI ST_TRAVERSE(ofl|->ofl _ars, idx, adp)) {

273 /* If not to starting index yet, skip it */
274 if (ndx++ < start_ndx)

275 conti nue;

277 /*

278 * |f this archive was processed with -z allextract,
279 * then all nenbers have already been extracted.
280 */

281 if (adp->ad_elf == NULL)

282 conti nue;

284 /*

285 * Reestablish any archive specific command |ine flags.
286 */

new usr/src/cnd/ sgs/1i bl d/ conmon/ args. ¢

287 of | ->of | _flagsl & ~MSK_OF1_ARCHI VE;

288 of | ->of | _flagsl | = (adp->ad_flags & MSK_OF1_ARCHI VE);
290 /*

291 * Re-process the archive. Note that a file descriptor
292 * is unnecessary, as the file is already available in
293 * menory.

294 *

295 if (!ld_process_archive(adp->ad_nanme, -1, adp, ofl))
296 return (S_ERROR);

297 if (ofl->ofl_flags & FLG OF_FATAL)

298 return (1);

299 }

300 }

302 return (1);

303 }

305 /*

306 */Checks the command |ine option flags for consistency.

307 *

308 static uintptr_t

309 check_flags(Ofl _desc * ofl, int argc)

310 {

311 /*

312 * |f the user specified -zguidance=noall, then we can safely disable
313 * the entire feature. The purpose of -zguidance=noall is to allow
314 * the user to override guidance specified froma makefile via

315 * the LD _OPTIONS environnent variable, and so, we want to behave
316 * in exactly the sanme manner we would have if no option were present.
317 *

318 if ((ofl->ofl guideflags & (FLG OFG ENABLE | FLG OFG NO ALL)) ==
319 (FLG_OFG ENABLE | FLG OFG NO ALL))

320 of | - >of | _gui defl ags &= ~FLG_OFG_ENABLE;

322 if (Plibpath & (Llibdir || Uibdir))

323 I'd_eprintf(ofl, ERR FATAL, NSG | NTL(MSG ARG YP),

324 Llibdir 2 'L : "U);

326 if ((otype == OT_RELOC) || (otype == OT_KMOD)) {

327 1f (otype == OT_RELOC) ({

118 if (rflag) {

328 if (dflag == SET_UNKNOWN)

329 dflag = SET_FALSE;

330 if ((dflag == SET_TRUE) &&

331 OFL_GUI DANCE(of I, FLG_OFG_NO _KMID)) {

332 Id_eprintf(ofl, ERR GU DANCE,

333 MBG_| NTL(MSG_GUI DE_KMD)) ;

334 }

335 } else if (otype == OT_KMD) {

336 if (dflag != SET_UNKNOWN) {

337 I'd_eprintf(ofl, ERR FATAL,

338 MSG_| NTL(MSG_MARG | NCOWP) ,

339 MSG_| NTL(MSG_MARG_TYPE_KMD) ,

340 MSG_ORI G(MSG_ARG D)) ;

341 }

343 dflag = SET_TRUE;

344 }

346 #endif /* | codereview */

347 *

348 * Conbi ning rel ocations when building a relocatable

349 * object isn't allowed. Warn the user, but proceed.

350 */

351 if (ofl->ofl _flags & FLG_ OF_COWREL) {

new usr/src/cnd/ sgs/1i bl d/ common/ args. ¢

352

354
355
356
357
358
121
359
360
123
361
362
363
364

366
367
368
369
370
371
372
373
374
375
376
377

379
380
381
382
383
384
385

387
388

390
391

393
394

396
397

399
400

402
403

405
406
407

409
410
411

413
414
415

const char *msg;

if (otype == OT_RELOC) {
msg = MSG_| NTL(MSG_MARG REL) ;
} else {
msg = MSG_| NTL(MSG_MARG TYPE_KMOD) ;

}
if (ofl->of| _flags & FLG OF COVREL)
I d_eprintf(ofl, ERRWARNING NSG_| NTL(MSG_MARG | NCOWP)

nsg,
MSG | NTL(MSG_MARG REL)
MG ORI G MSG_ARG ZCOVBRELCC)) ;

}
#endi f /* | codereview */

of | ->of | _flags | = FLG OF_RELOBJ;

if (otype == OT_KMOD)
of | ->of I _flags | = FLG_OF_KMOD,

#endi f /* | codereview */
} else {
/*

* Transl ati ng object capabilities to synmbol capabilities is
* only meani ngful when creating a rel ocatabl e object.
*

if (ofl->ofl _flags & FLG OF_ OTOSCAP)
I d_eprintf(ofl, ERR FATAL, MSG | NTL(MSG_MARG ONLY),
MSG_ ORI NBG ARG ZSYNBC]_CAP)
MBG_| NTL(MSG_MARG REL)) ;

/*
* |f the user hasn't explicitly requested that rel ocations
* not be conbi ned, conbine them by default.

|f ((of I ->of I _flags & FLG OF_NOCOVREL) == 0)
of | ->of | _flags | = FLG OF _COVREL;

}
if (zdflag == SET_TRUE)
of | ->of | _flags | = FLG_OF_NOUNDEF;
if (zinflag)
ofI ->of | _dtflags_1 | = DF_1_| NTERPOSE;
if (sflag)

of | ->of | _flags |= FLG OF_STRIP;

if (Xlag == SET_TRUE)

if (BIfl

if (Befl

if (BIfl

if (ofl-

if ((ofl

of | ->of | _flags | = FLG_OF_ADDVERS;

ag)
of | ->of | _flags | = FLG OF_AUTOLCL;

ag)
of | ->of | _flags |= FLG OF AUTOELM

ag && Befl ag)
Id_eprintf(ofl, ERR FATAL, MSG_ | NTL(MSG ARG | NCOWP),
MSG_ORI ¢ IVSG ARG BELI M NATE), MSG ORI G(MSG_ARG BLOCAL))

>of | _interp & (ofl->of | _flagsl & FLG OF1_NO NTRP))
Id_eprintf(ofl, ERR FATAL, MSG_ | NTL(MSG ARG | NCOWP),
MSG_ORI G(MSG_ARG Cl), IVSGG?IG(IVSGARGZNC]NTERP))

->of | _flagsl & (FLG OF1_NRLXREL | FLG OF1_RLXREL)) ==

(FLG OF1_NRLXREL | FLG OF1_RLXREL))

I'd_eprintf(ofl, ERR FATAL, MSG_| NTL(MSG ARG | NCOWP),

new usr/src/cnd/ sgs/1i bl d/ common/ args. ¢ 6
416 MBG_ORI G MSG_ARG_ZRELAXRELCC) ,

417 MBG_ORI G{ M5G_ARG_ZNORELAXRELQOC)) ;

419 |->of | _filtees & (otype != OT_SHARED))

125 |->of| filtees & ! Gl ag)

420 Id_eprintf(ofl, ERR FATAL, MSG | NTL(MSG MARG ST _ONLYAVL),

421 ((ofl ->of| fIags&FLGCFAUX) ?

422 MSG_| NTL(MSG_MARG_FI LTER_AUX) : MSG_|I NTL(MSG_MARG FI LTER)));
424 if (dflag != SET_FALSE) {

425 /*

426 * Set -Bdynamic on by default, setting is rechecked as input
427 * files are processed.

428 */

429 ofl ->of | _flags | =

430 (FLG_OF_DYNAM C | FLG OF_DYNLIBS | FLG OF_PROCRED);

432 if (aflag)

433 I'd_eprintf(ofl, ERR FATAL, MBG | NTL(MSG ARG | NCOWP),

434 MSG_ORI G{ MSG_ARG DY), MG ORI G(MSG ARG A));

436 if (bflag)

437 of | ->of | _flags | = FLG OF BFLAG

439 if (Bgflag == TRUE) {

440 if (zdflag == SET_FALSE)

441 Id_eprintf(ofl, ERR _FATAL,

442 MSG_| NTL(MSG_ARG | NCOWP) ,

443 MSG_ORI G{ MSG_ARG_BGROUP) ,

444 MSG_ORI G{ MSG_ARG ZNODEF))

445 of | ->of | _dtflags_1 | = DF_1_GROUP,

446 of | ->of | _fl ags | = FLG_OF_NOUNDEF;

447 }

449 /*

450 * |f the use of default library searching has been suppressed
451 * but no runpaths have been provided we're going to have a hard
452 * job running this object.

453 */

454 if ((ofl->ofl _dtflags_1 & DF_1_NODEFLIB) && !ofl->ofl _rpath)
455 I'd_eprintf(ofT, ERR WARNING MSG | NTL(MSG_ARG_NCDEFLI B),
456 MSG_I NTL(NBG MARG_RPATH)) ;

458 *

459 * By default, text relocation warnings are given when building
460 * an executable unless the -b flag is specified. This option
461 * inplies that unclean text can be created, so no warnings are
462 * generated unless specifically asked for.

463 *

464 if ((ztflag == MSG_ORI G(MSG_ARG _ZTEXTCFF)) ||

465 ((ztflag == NULL) && bflag)) {

466 of | ->of | _flagsl | = FLG OF1_TEXTOFF,

467 of | ->of | _gui deflags | = FLG_OFG NO_ TEXT

468 } else if (ztflag == MSG ORI G(MSG_ARG ZTEXT)) {

469 of | ->of | _flags | = FLG_OF_PURETXT;

470 of | ->of | _gui defl ags | = FLG_OFG_NO _TEXT;

471 }

473 if ((otype == OT_SHARED) || (otype == OT_EXEQ)) {

179 if (Glag || !rflag) {

474 /*

475 * Create a dynamic object. -Bdirect indicates that all
476 * references should be bound directly. This also

477 * enabl es | azyl oadi ng. Individual synbols can be

478 * bound directly (or not) using mapfiles and the

479 * DI RECT (NODIRECT) qualifier. Wth this capability,

new usr/src/cnd/ sgs/1i bl d/ common/ args. ¢ 7 new usr/src/cnd/ sgs/1i bl d/ common/ args. ¢
480 * each symnfo entry is tagged SYM NFO_FLG DI RECTBI ND. 544 * By default, print text relocation warnings for
481 * Prior to this per-synbol direct binding, runtimne 545 * execut abl es but *not* for shared objects. However,
482 * direct binding was controlled via the DF_1_DI RECT 546 * if -z guidance is on, issue warnings for shared
483 * flag. This flag affected all references fromthe 547 * objects as well.
484 * object. -Bdirect continues to set this flag, and 548 *
485 * thus provides a neans of taking a newy built 549 * If -z textwarn is explicitly specified, also issue
486 * direct binding object back to ol der systens. 550 * gui dance nessages if -z guidance is on, but not
487 * 551 * for -z text or -z textoff.
488 * NOTE, any use of per-synbol NODI RECT bi ndi ngs, or 552 *
489 * -znodirect, will disable the creation of the 553 f (ztflag == NULL) {
490 * DF_1_DIRECT flag. dder runtine |inkers do not 554 if (!OFL_GUI DANCE(of |, FLG OFG NO TEXT))
491 * have the capability to do per-synbol direct bindings. 555 of | ->of | _fl agsl | = FLG_OF1_TEXTOFF;
492 * 556 } else if ((ofl->ofl_flags & FLG OF PURETXT) ||
493 f (Bdflag == SET_TRUE) { 557 (of 1 ->of | _flagsl & FLG OF1_TEXTOFF)) {
494 0f|->of| _dtflags_1 | = DF_1_DI RECT; 558 of | - >of | _gui defl ags | = FLG_OFG_NO _TEXT;
495 of | ->of | _flagsl | = FLG_OF1_LAZYLD, 559 }
496 of | ->of | _gui defl ags | = FLG_OFG_NO _LAZY;
497 of | ->of | _flags | = FLG_OF_SYM NFQ, 561 if (Bsflag) {
498 } 562 I*
563 * -Bsynbolic, and -Bnodirect nmake no sense.
500 /* 564 *
501 * -Bnodirect disables directly binding to any synbol s 565 if (Bdfl ag == SET_FALSE)
502 * exported fromthe object being created. |ndividual 566 Id_eprintf(ofl, ERR FATAL,
503 * references to external objects can still be affected 567 MSG_I NTL(IVSG ARG | NOG\/P)
504 * by -zdirect or nmapfile DI RECT directives. 568 MSG_ORI G{ MSG_ARG | BSYMBOLI O,
505 */ 569 MSG_ORI G MSG_ARG_BNCDI RECT))
506 if (Bdflag == SET_FALSE) { 570 of | ->of | _flags [= FLG OF_SYMBOLI C,
507 of I ->of | _flagsl | = (FLG OF1_NDI RECT | 571 of | ->of | _dtflags | = DF_SYMBOLI C;
508 FLG OF1_NGLBDIR | FLG OF1_ALNODI R); 572 }
509 of | ->of T_flags | = FLG_OF_SYM NFO, 573 } else {
510 } 574 /*
511 } 575 * Dynami c rel ocatabl e object.
576 *
513 if (otype == OT_EXEC) { 577 if (ztflag == NULL)
219 if (!Glag Irflag) { 578 of | ->of | _flagsl | = FLG_OF1_TEXTOFF;
514 /¥ 579 of | ->of | _gui deflags [= FLG OFG_NO TEXT;
515 * Dynamically linked executable.
516 */ 581 if (ofl->ofl_interp)
517 of | ->of | _flags | = FLG_OF_EXEC, 582 Id_eprintf (of ERR_FATAL,
583 MSG_| NTL(NSG MARG INOOVP)
519 if (zdflag ! = SET_FALSE) 584 MBG_| NTL(MBG_MARG REL),
520 of | ->of | _flags |= FLG_OF_NOUNDEF; 585 MSG_ORI G MSG_ARG Cl));
586 }
522 /*
523 * -z textwarn is the default for executables, and 588 assert((ofl->of | _flags & (FLG OF_SHAROBJ| FLG OF_EXEC)) !=
524 * only an explicit -z text* option can change that, 589 (FLG_OF_SHAROBJ| FLG OF_EXEQ));
525 * so there's no need to provide additional guidance. 590 #endif /* ! codereview */
526 */ 591 } else {
527 of | ->of | _gui defl ags | = FLG_OFG_NO_TEXT; 592 of | ->of | _flags | = FLG_OF_STATIC;
529 if (Bsflag) 594 if (bflag)
530 Id_eprintf(ofl, ERR FATAL, 595 I'd_eprintf(ofl, ERR FATAL, MSG_ | NTL(MSG ARG ST_I| NCOWP),
531 MBG_| NTL(MSG_ARG _DY_I NCOWP) , 596 MSG_ORI G(MSG_ARG B)) ;
532 MBG_ORI G{ MSG_ARG_BSYMBOLI C)) 597 if (ofl->ofl _sonane)
533 if (ofl->ofl sonane) 598 Id_eprintf(ofl, ERR FATAL, MSG_ | NTL(MSG_MARG ST_| NCOWP),
534 Id_eprintf(ofl, ERR FATAL, 599 MSG_| NTL(NSG MARG_SONAME)) ;
535 MSG_| NTL(MSG_MARG DY_| NCOMVP) , 600 if (ofl->ofl_depaudit)
536 MBG_| NTL(MSG_MARG_SCNAME)) ; 601 Id_eprintf(ofl, ERR FATAL, MSG_ | NTL(MSG_ARG ST_I NCOWP),
537 } else if (otype == OT_SHARED) { 602 MSG_ORI G{ MSG_ARG CP)) ;
243 } elseif (!'rflag) { 603 if (ofl->ofl audlt)
538 /* 604 I d eprl ntf(ofl, ERR FATAL, MSG | NTL(MSG ARG ST I NCOWP),
539 * Shared library. 605 ORI G(MSG_ARG P));
540 */ 606 if (ofl->ofl conf ig)
541 of | ->of | _flags | = FLG_OF_SHAROBJ; 607 Id_eprintf(ofl, ERR FATAL, MSG_| NTL(MSG_ARG_ST_I NCOWP) ,
608 MBG_ ORI G(MSG_Al)
543 /* 609 if (ztflag)

new usr/src/cnd/ sgs/1i bl d/ common/ args. ¢

610
611
612
293
613
614
615
296
616
617

619
300
620
621
622
623
624
625
626
627
628

630
631
632

634
635
636
637
638
639
640
641
642
643

645
646
647
648

650
651
652
653
654

656
657
658
659
660
661
662

664
665
666
667
668
669
670
671

Id_eprintf(ofl, ERR FATAL, MSG_ | NTL(MSG_ARG _ST_| NCOW),
_MSG ORI G MBG_ARG ZTEXTALL));
= OT_SHARED)

_eprintf(ofl, ERR FATAL, MSG | NTL(NS MARGINOCNP),
MG ORl G{ MSG_ARG A), MSG | NTL(MBG MARG REL))

== OT_RELOO) {

{

We can only strip the synbol table and string table
if no output relocations will refer to them

if (sflag)
I'd_eprintf(ofl, ERR_WARNI NG
|

if (ztflag == NULL)
of | ->of | _flagsl | = FLG OF1_TEXTOFF;
of | ->of | _gui defl ags | = FLG_OFG_NO_TEXT;

if (ofl->ofl _ir
| d_epr

} else {
/*
* Static executable.
*
of | ->of | _flags | = FLG OF_EXEC | FLG_OF_PROCRED;

if (zdflag != SET_FALSE)
of | ->of | _flags |= FLG_OF NOUNDEF;

}

*

* If the user didn't supply an output file name supply a default.
*
/

if (ofl->ofl_name == NULL)
of | - >of | _name = MSG_ORI G{ MSG_STR_AQUT) ;

/*
* W set the entrance criteria after all input argument processing as
* it is only at this point we're sure what the output image will be
* (static or dynamc).
*/
if (ld_ent_setup(ofl, Id_targ.t_mmsegmalign) == S ERROR)
return (S_| ERRO?)
/'k
* Does the host currently running the |inker have the sane
* byte order as the target for which the object is being produced?
*

If not, set FLG OF1_ENCDI FF so rel ocation code will know
* to check.

*/

if (_elf sys encodi ng() !
I->of | _flagsl |

d_targ.t_m m.data)
L

[
F (‘3 OF1_ENCDI FF;

new usr/src/cnd/ sgs/1i bl d/ common/ args. ¢

673
674
675
676
677
678

680
681
682
683
684
685

687
688
689
690
691
692
693
694

696
697
698

700
701
702

704
705
706
707
708
709
710
711
712
713
714
715
716

718
719
720
721
722
723
724
725
726
727
728

730
731
732
733
734
735
736
737
738

*
*
*

i f

| *
*
*

If the target has special executable section filling requirenents,
register the fill function with libelf
(ld_targ.t_ff.ff_execfill !'= NULL

)
_elf_execfilTl(ld_targ.t_ff.ff_execfill);

Initialize string tables. Synbol definitions within nmapfiles can
result in the creation of input sections.

*/

if

/*

*

(ld_init_strings(ofl) == S_ERROR)
return (S_ERROR);

Process mapfiles. Mapfile can redefine or add sections/segnents,

10

* so this nust cone after the default entrance criteria are established

*

if

(above).
*/
(of I ->of | _maps) {
const char *nane;
Aliste idx;

for (APLI ST_TRAVERSE(of | - >of | _maps, idx, nane))
if (!1d_map_parse(nane, ofI))
return (S_ERROR);

if (!'ld_map_post_process(ofl))
return (S_ERROR);

}
/*
* |f a mapfile has been used to define a single synbolic scope of
* interfaces, -Bsynbolic is established. This global setting goes
* beyond i ndividual synbol protection, and ensures all relocations
* (even those that reference section synbols) are processed within
* the object being built.
*/
if (((ofl->ofl _flags &
(FLG_OF_MAPSYMB | FLG OF_MAPGLOB)) == FLG OF_NMAPSYMB) &&
(of I ->of | _flags & (FLG OF_AUTOLCL | FLGCF - AUTCELM))) {
of | ->of | _flags | = FLG_OF_SYMBOLI C,
of | ->of | _dtflags |= DF_SYMBOLIC;
}
/*
* |f -zloadfltr is set, verify that filtering is in effect. Filters
* are either established fromthe comand |ine, and affect the whole
* object, or are set on a per-synbol basis froma mapfile.
*
/
if (zlflag) {
if ((ofl->ofl _fi I tees == NULL) && (ofl->ofl _dtsfltrs == NULL))
d_eprintf(o of I, ERR FATAL, MBG_| NTL(MSG_ARG NCFLTR)
NSGO? G MSG_ARG ZLOADFLTR))
of | ->of | _dtflags_1 |= DF_1_LOADFLTR,
}
/'k
* Check that we have sonething to work with. This check is carried out
* after mapfile processing as its possible a mapfile is being used to
*

*
*

if

define synbols, in which case it would be sufficient to build the
output file purely fromthe nmapfile.
/
((ofl —>Of|_0bj scnt == 0) && (ofl->ofl _soscnt == 0)) {
itV |I
(Dfl &% (dbg_desc->d_extra & DBG E HELP_EXIT))) &&

new usr/src/cnd/ sgs/1i bl d/ common/ args. ¢ 11 new usr/src/cnd/ sgs/1i bl d/ comon/ args. ¢ 12
739 (argc == 2)) { 1066 case 'b’:
740 of | ->of | _flagsl | = FLG_OF1_DONE; 1067 DBG CALL(Dbg_args_option(ofl->ofl _I M, ndx, c, NULL));
741 } else { 1068 bflag = TRUE;
742 I d_eprintf(ofl, ERR FATAL, MSG_|I NTL(MSG_ARG _NOCFI LES));
743 return (S_ERROR); 1070 /*
744 } 1071 * This is a hack, and may be undone |ater.
745 } 1072 * The -b option is only used to build the Unix
746 return (1); 1073 * kernel and its related kernel -node nodul es.
747 } 1074 * W& do not want those files to get a . SUNWIdynsym
__unchanged_portion_onitted_ 1075 * section. At least for now, the kernel makes no
1076 * use of .SUNWIdynsym and we do not want to use
1011 static int optitle = O; 1077 * the space to hold it. Therefore, we overload
1012 /* 1078 * the use of -b to also inply -znol dynsym
1013 * Parsing options passl for process_flags(). 1079 */
1014 */ 1080 ofl->of | _flags | = FLG OF_NOLDYNSYM
1015 static uintptr_t 1081 br eak;
1016 parseopt _pass1(COfl _desc *ofl, int argc, char **argv, int *usage)
1017 { 1083 case 'c’':
1018 int c, ndx = optind; 1084 DBG CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg));
1085 if (ofl->ofl_config)
1020 /* 1086 I d_epri ntf(ofl ERR_WARNI NG_NF,
1021 * The -32, -64 and -ztarget options are special, in that we validate 1087 MSG_| NTL(I\/SG ARG_MIONCE) ,
1022 * them but otherw se ignore them libld.so (this code) is called 1088 MBG_ CRI G(MSG_ARG O));
1023 * fromthe Id front end program |d has already exam ned the 1089 el se
1024 * argunents to determne the output class and machine type of the 1090 of | ->of | _config = optarg;
1025 * output object, as reflected in the version (32/64) of |d_main() 1091 br eak;
1026 * that was called and the value of the 'mach’ argunment passed.
1027 * By time execution reaches this point, these options have already 1093 case 'C:
1028 * been seen and acted on. 1094 DBG_CALL(Dbg_ args option(ofl->ofl _Im, ndx, c, NULL));
1029 */ 1095 demangl e_flag =
1030 while ((c = 1d_getopt(ofl->ofl_Im, ndx, argc, argv)) !=-1) { 1096 br eak;
1032 switch (c) { 1098 case 'd:
1033 case '3 1099 DBG CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg));
1034 DBG CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg)); 1100 if ((optarg[0] =="'n") & (optarg[1l] == "\0")) {
1101 if (dflag !'= SET_UNKNOWN)
1036 /* 1102 I'd_eprintf(ofl, ERR WARNI NG NF,
1037 * -32 is processed by Id to determ ne the output class. 1103 MSG_I NTL(NSG ARG_MTONCE) ,
1038 * Here we sanity check the option incase sonme other 1104 MSG_ORI G(MSG_ARG D)) ;
1039 * -3* option is mistakenly passed to us. 1105 el se
1040 */ 1106 dflag = SEF FALSE;
1041 if (optarg[0] I=’2) 1107 } else if ((optarg[O] y) && (optarg[1l] == "'\0")) {
1042 Id_eprintf(ofl, ERR _FATAL, 1108 if (dflag !'= ET
1043 IVS I NTL(MBG_ARG | LLEGAL), 1109 I'd_eprin (ofl ERR_WARNI NG _NF,
1044 G_ORlI G MSG_ARG 3), optarg); 1110 MSG_| NTL(I\/SG ARG_MTONCE) ,
1045 conti nue; 1111 MSG_ORI G(MSG_ARG D)) ;
1112 el se
1047 case '6: 1113 dfl ag = SET_TRUE;
1048 DBG CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg)); 1114 } else {
1115 Id_eprintf(ofl, ERR FATAL,
1050 /* 1116 MSG_| NTL(IVSG ARG | LLEGAL)
1051 * -64 is processed by Id to determ ne the output class. 1117 MSG_ORlI G MSG_ARG D), optarg);
1052 * Here we sanity check the option incase sone other 1118 }
1053 * -6* option is mstakenly passed to us. 1119 br eak;
1054 */
1055 if (opt arg[O] 1="4") 1121 case 'e’:
1056 Id_eprintf(ofl, ERR FATAL, 1122 DBG CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg));
1057 rvse NTL(MSG_ARG | LLEGAL) , 1123 if (ofl->of [_entry)
1058 MSG_ORI G MSG_ARG 6), optarg); 1124 Id_eprintf(ofl, ERR WARNI NG _NF,
1059 continue; 1125 MSG_| NTL(IVSG MARG_MTONCE) ,
1126 MBG_| NTL(M5G_MARG_ENTRY)) ;
1061 case 'a’: 1127 el se
1062 DBG CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, NULL)); 1128 of | ->of | _entry = (void *)optarg;
1063 afl ag = TRUE; 1129 break;
1064 br eak;
1131 case 'f’:

new usr/src/cnd/ sgs/libl d/ conmon/ args. c 13

1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162

1164
1165
1166
1167
1168
1169
1170
1171
1172

1174
1175
1176
1177

1179
1180
1181
1182
1183
1184
1185
1186
1187

1189
1190
1191
1192
1193
1194
1195
1196
1197

case

case

case

case

case

DBG CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg));
if (ofl->of | _filtees &&
(! (of I->0f | _flags & FLG OF_AUX))) {
Id_eprintf(ofl, ERR FATAL,
MSG INTL(NBG MARG IMJJW%
MBG_| NTL(MSG_MARG_FI LTER AUX) ,
MBG_| NTL(MSG_MARG FI LTER)) ;
} else {
if ((ofl->ofl _filtees =
add_string(ofl->ofl _filtees, optarg)) ==
(const char *)S_ERROR)
return (S_ERROR);
of | ->of | _flags | = FLG_OF_AUX;

break;

R

h

DBG CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg));
if (ofl->of | _filtees &&
(of1->of T_flags & FLG OF_AUX)) {
Id_eprintf(ofl, ERR FATAL,
MSG INTL(IVSGNARGINCO\/P)
MSG_I NTL(MSG_MARG FI LTER),
MBG_| NTL(MSG_MARG FI LTER AUX))

} else {
if ((ofl->ofl _filtees =
add_string(ofl->of| _filtees, optarg)) ==
(const char *)S_ERROR)
return (S_ERROR);
br eak;

DBG CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg));
if (ofl->ofl _sonane)
Id_eprintf(ofl, ERR WARNI NG_NF,
MSG INTL(NBG MARG_MIONCE) ,
MSG_I NTL(MSG_MARG SO\IAI\/E))
el se
of | ->of | _sonane = (const char *)optarg;
br eak;

DBG 5 CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, NULL));
of | ->of | _flags [= FLG_OF_I GNENV;
br eak;

DBG _CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg));
if (ofl->ofl_interp)
Id_eprintf(ofl, ERR WARNI NG _NF,
MSG_| NTL(MSG_ARG_MTIONCE) ,
MSG_ORI G M5G_ARG Cl));
el se
of | ->of | _interp = (const char *)optarg;
break;

$67%L(Dbg_args_option(ofl->of | _Im, ndx, c, optarg));
/*

* For now, count any library as a shared object. This
* is used to size the internal synmbol cache. This

* value is recalculated later on actual file processing
* to get an accurate shared object count.

*/

of | - >of | _soscnt ++;

new usr/src/cnd/ sgs/1i bl d/ common/ args. ¢

1198

1200
1201
1202
1203

1205
1206
1207
1208
1209
1210
1211
1212
1213

1215
1216

1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229

1231
1232

1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245

1247
1248
1249

930
1250

1252
1253

1255
1256
1257
1258
1259
1260
1261
1262

case

case

case

case

case

case

o

br eak;

m:

(o]

DBG _CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, NULL));
of | ->of | _flags | = FLG_OF_GENVAP;
br eak;

DBG 5 CALL(Dbg_args_option(ofl->ofl _Inl, ndx, c, optarg));
if (ofl->ofl_nane)
Id_eprintf(ofl, ERR WARNI NG NF,
MSG INTL(NBG MARG_MIONCE) ,
MSG_| NTL(MSG_ MARG(IJTFILE))
el se
of | ->of | _nane = (const char *)optarg;
br eak;

DBG_CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg));

/*

* Multiple instances of this option may occur. Each
* additional instance is effectively concatenated to
* the previous separated by a col on.

*

if (*optarg !'="\0") {
if ((ofl->ofl _audit =
add str|ng(ofl->ofl audi t,
optarg)) == (const char *)S ERROR)
return (S_ERROR);

break;

P

r

DBG CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg));

/*

* Multiple instances of this option may occur. Each
* additional instance is effectively concatenated to
* the previous separated by a col on.

*

if (*optarg !'="\0")
if ((ofl->ofl_depaudit =
add_stri ng(ofl ->of | _depaudi t,
optarg)) == (const char *)S | ERRCR)
return (S_ERROR);

break;

DBG CALL(Dbg args_option(ofl->of | _Im, ndx, c, NULL));
otype = OI_RELCC;

rflag = TRUE,

br eak;

"R

DBG_CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg));

/*
* Multiple instances of this option may occur. Each
* additional instance is effectively concatenated to
*/the previ ous separated by a col on.
*
if (*optarg !'="\0") {
if ((ofl->ofl _rpath =
add_string(ofl->ofl _rpath

14

new usr/src/cnd/ sgs/libl d/ conmon/ args. c 15

1263
1264
1265
1266

1268
1269
1270
1271

1273
1274
1275
1276

1278
1279
1280

1282
1283

1285
1286
1287
1288
1289
1290
1291

1293
1294
1295
1296
1297
1298
1299
1300
1301

1303
1304
1305
1306
1307
1308
1309
1310
1311
1312

1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

case

case

case

case

optarg)) == (const char *)S_ERROR)
return (S_ERROR);

br eak;

DBG CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, NULL));
sflag = TRUE;
br eak;

DBG G _CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, NULL));
of | ->of | _flags | = FLG_OF_NOMRN
br eak;

DBG_CALL(Dbg_args_option(ofl->of | _Im, ndx, c, optarg));
break;

DBG_CALL(Dbg_args_option(ofl->of | _Im, ndx, c, optarg));

/*

* Skip comma that mght be present between -z and its
* argurment (e.g. if -W,-z,assert-deflib was passed).
*/

if (strncnp(optarg, MSG ORI G{ MSG_STR_COWMMA) ,
MSG_STR_COWMA_SI ZE) == 0)
opt ar g++;

/*
* For specific help, print our usage nessage and exit
*/im'redi ately to ensure a O return code.
*
if (strncrmp(optarg, MSG ORI G{ MSG_ARG HELP),
MSG_ARG HELP_SI ZE) == 0)
usage_nesg(TRUE) ;
exit(0);

}

/*
* For sonme options set a flag - further consistancy
* checks will be carried out in check_flags().
*
/
if ((strncnp(optarg, MSG ORI G(MSG ARG LD32),
MSG_ARG LD32_SI ZE) == 0) ||
(strncnp(optarg, MSG ORI G{ MSG ARG LD64),
MSG_ ARG LD64 SIZE) == 0)) {
if (createargv(ofl, usage) == S_ERROR)
RROR) ;

return (SE
} else if (
strcnp(opt g, NSG_O?IG(NBG ARG DEFS)) == 0) {
if (zdflag != SET INKNOWN)
Id_eprintf(ofl, ERR WARNI NG NF,

MS NTL(IVSG ARG_MTONCE) ,
MBG_ORI G MSG_ARG ZDEFN(DEF))
el se
zdfl ag = SET_TRUE;
of | - >of | _gui defl ags [= FLG_OFG_NO DEFS;
} else if (strcnp(optarg,
MSG_ORI G{ MSG_ARG_NODEFS)) == 0) {
if (zdflag != SET_UNKNOWN)
ld_eprintf(ofl, ERR WARNI NG_NF,
MSG_| NTL(I\/SG ARG_MTONCE) ,
MBG_ORI G{ MSG_ARG ZDEFNCDEF))

new usr/src/cnd/ sgs/libl d/ conmon/ args. c 16
1329 el se

1330 zdflag = SET_FALSE;

1331 of | - >of | _gui defl ags | = FLG_OFG_NO_DEFS;
1332 } else if (strcnp(optarg

1333 MSG_ORI ¢ NBG_ARG TEXT)) =0) {

1334 if (ztflag &&

1335 (ztflag!:NSGCRIG(NSGARGZTEXT)))
1336 I d_eprintf(ofl, ERR _FATAL,

1337 NSG_ NTL(MBG ARG | NOG\/P)
1338 MSG_ORI G(MBG_ARG_ZTEXT),
1339 ztflag

1340 ztflag = MSG ORI NSG ARG _ZTEXT) ;

1341 } else if (strcnp(optarg,

1342 G_ORl G(M5SG_ARG _TEXTOFF)) == 0) {

1343 if (ztflag &&

1344 (ztflag !'= MSG ORI G(MSG_ARG ZTEXTOFF)))
1345 Id_eprintf(ofl, ERR _FATAL,

1346 MSG_| NTL(IVSG ARG _| NCOWP) ,
1347 MBG_ORI G{ MSG_ARG_ZTEXTCFF) ,
1348 ztflag);

1349 ztflag = MSG_ORI M5G 5 ARG_ZTEXTCOFF) ;
1350 } else if (strcnp(optarg,

1351 G _ORl G(MSG ARG TEXTWARN)) == 0) {

1352 if (ztflag &&

1353 (ztflag !'= NBG_CRI G(M5G_ARG _ZTEXTWARN)))
1354 Id_eprintf(ofl, ERR FATAL,

1355 MSG_| NTL(IVBG ARG | NCDVP)
1356 MEG_ORI G{ MSG_ARG_ZTEXTVARN) ,
1357 ztflag);

1358 ztflag = MSG_ ORI G(NBG_ARG_ZTEXTV\ARN) ;
1360 /*

1361 * For other options sinply set the ofl flags directly.
1362 */

1363 } else if (strcnp(optarg,

1364 MBG_ ORI G{ MSG ARG RESCAN)) == 0) {

1365 of | ->of | _flagsl | = FLG CFl RESCAN;

1366 } else if (strcnp(optarg,

1367 MSG_ORI NSG_ARG ABSEXEC)) == 0) {

1368 of | ->of | _fl agsl | = FLG OF1_ABSEXEC;
1369 } else if (strcnp(optarg,

1370 MSG_ORI G(M5G_ ARG 5 LOADFLTR)) == 0) {

1371 zIflag = TRU E

1372 } else if (strcnp(optarg,

1373 MSG_ORI G MSG_ARG NORELCC)) == 0) {

1374 “of | ->of | _dtfTags_1 | = DF_1_NORELCC,
1375 } else if (strcnp(optarg,

1376 MBG_ORI G{ MSG_ARG NOVERSI ON)) == 0) {

1377 of | ->of | _flags | = FLG_ OF_ NOJERSEC

1378 } else if (strcnp(optarg,

1379 MSG_ORI G MSG_ARG _MULDEFS)) == 0) {

1380 of | ->of | _flags | = FLG_OF_MJLDEFS;

1381 } else if (strcnp(optarg,

1382 MSG_ORI G M5SG_ARG_REDLOCSYM) == 0) {

1383 of | ->of | _flags | = FLG_OF_REDLSYM

1384 } else if (strcnp(optarg,

1385 MBG_ORI G{MSG ARG | NI TFI RST)) == 0) {

1386 of | ->of | _dtflags_1 |= DF_1_I NI TFI RST;
1387 } else if (strcnp(optarg,

1388 MSG_ORI G(MSG_ARG_NODELETE)) == 0) {

1389 0f|->0f|_tf|agsl|—DF1NCDELETE
1390 } else if (strcnp(optarg,

1391 MSG_ORI G{ MSG_ARG_NOPARTI AL)) == 0) {

1392 of | ->of | _flagsl | = FLG 031 _NOPARTI ;
1393 } else if (strcnp(optarg,

1394 MSG_ORI G MSG_ARG_NOOPEN)) == 0) {

new usr/src/cnd/ sgs/libl d/ conmon/ args. c 17

1395 of | ->of | _dtflags_1 | = DF_1_NOOPEN;
1396 } else if (strcnp(optarg,

1397 MSG_ORI G(M5G_ARG NOW) == 0) {

1398 of | ->of | _dtflags_1 |= DF_1_NOW
1399 of | ->of | _dtflags | = DF_BI ND_NOW
1400 } else if (strcnp(optarg,

1401 MSG_ORI G(MSG_ ARG ORIA N)) == 0) {

1402 of | - >of | dtflagsl|= 1. ORIGN,
1403 of | ->of | _dtflags |= DF_ ORIG N,
1404 } else if (strcnp(optarg,

1405 MSG_ ORI G{ MSG_ARG NCDEFAULTLI B)) == 0)
1406 of | ->of | _dtflags_1 | = DF_1_NODEFLI B;
1407 } else if (strcnp(optarg,

1408 MSG_ORI G(MSG_ARG_NODUMP)) == 0) {

1409 “ofl->of | _dtfTags_1 | = DF_1_NODUMP;
1410 } else if (strcnp(optarg,

1411 MSG_ORI G MSG_ARG_ENDFI LTEE)) == 0) {
1412 of | ->of | _dtflags_1 | = DF_1_ENDFI LTEE;
1413 } else if (strcnp(optarg,

1414 MSG_ORI G{ MSG_ARG VERBCSE)) == 0) {

1415 “of | ->of | _flags | = FLG_OF VERBOSE;
1416 } else if (strcnp(optarg,

1417 MBG_ ORI G{ MSG_ARG COVBRELOC)) == 0) {
1418 of | ->of | _flags | = FLG OF_COVREL;
1419 } else if (strcnp(optarg,

1420 MSG_ORI G(NBG_A 5 NOCOVBRELCOC)) == 0) {
1421 of | ->of | _f1I ags|—FLGCFNC£OVRE'
1422 } else if (strcnp(optarg,

1423 MSG_ORI G{ M5SG_ARG_NOCOMPSTRTAB)) == 0) {
1424 of | ->of | _flagsl | = FLG OF1_ NCSTTAB
1425 } else if (strcnp(optarg,

1426 MBG_ ORI G{ MSG_ARG NO NTERP)) == {
1427 of | ->of | _flagsl | = FLG_OF1_NO NTRP
1428 } else if (strcnp(optarg,

1429 MSG_ORI G(MSG_ARG | NTERPOSE)) == 0) {
1430 zinflag = TRUE;

1431 } else if (strcnp(optarg,

1432 MSG_ORI G(MSG_ARG |) == 0) {

1433 of | ->of | _flagsl | = FLG_OF1_I GNPRC,
1434 } else if (strcnp(optarg

1435 MSG_ORI G(MSG_ARG_ RELAXRELOC)) == 0) {
1436 of | ->of | _flagsl | = FLG_OF1_RLXREL;
1437 } else if (strcnp(optarg

1438 MBG_ ORI G MG ARG NORELAXRELOC)) == 0)
1439 of | ->of | _flagsl | = FLG OF1_NRLXREL;
1440 } else if (strcnp(optarg

1441 MSG_ORI G MSG_ARG NO_DYNSYM) == 0) {
1442 of | ->of | _flags |= FLG OF NO_DYNSYM
1443 } else if (strcnp(optarg

1444 MSG_ORI G(MSG_ARG _ GL(BAUDI T)) {
1445 of | ->of | _dtflags_1 |= DF_1_| GLCBAUDI T,
1446 } else if (strcnp(optarg

1447 MSG_ ORI G{ MSG_ARG NOSl GHANDLER)) == 0)
1448 of | ->of | _flagsl | = FLG_OF1_NOSGHND;
1449 } else if (strcnp(optarg,

1450 MSG_ORI G(MSG_ARG_SYMBOLCAP)) == 0) {
1451 of | ->of | _fl ags |—FLGO: OTCSCAP

1453 /*

1454 * Check archive group usage

1455 -z rescan-start ... -z rescan-end
1456 * to ensure they don't overlap and are well forned.
1457 */

1458 } else if (strcnp(optarg

1459 MBG_ ORI G MSG ARG RESCAN | START)) == 0) {
1460 if (ofl->ofl _ars_gsandx ==) {

new usr/src/cnd/ sgs/libl d/ conmon/ args. c 18
1461 of | ->of | _ars_gsandx = ndx;

1462 } else if (ofl->ofl _ars_gsandx > 0) {

1463 /* Another group is still open */
1464 Id_eprintf(ofl, ERR _FATAL,

1465 MSG_| NTL(MSG_ARG_AR_GRP_QOLAP) ,
1466 MSG_| NTL(MSG_MARG AR _GRPS)) ;
1467 /* Don’t report cascading errors */
1468 of | ->of | _ars_gsandx = -1;

1469 }

1470 } else if (strcnp(optarg,

1471 MSG_ORI G MSG_ARG RESCAN_END)) == 0) {

1472 if (ofl->ofl_ars_gsandx > 0) {

1473 of | ->of | _ars_gsandx = 0;

1474 } else if (ofl->ofl _ars_gsandx == 0)

1475 /* There was no natching begin */
1476 Id_eprintf(ofl, ERR FATAL,

1477 MSG_| NTL(I\/SG ARG _AR | GRP _BAD) ,

1478 MSG_| NTL(MSG_MARG AR _GRP_END) ,
1479 MSG_| NTL(MSG_MARG_AR_GRP_START)) ;
1480 /* Don’'t report cascading errors */
1481 of | ->of | _ars_gsandx = -1;

1482 }

1484 /*

1485 * |f -z wap is seen, enter the synbol to be w apped
1486 * into the wap AVL tree.

1487 */

1488 } else if (strncnp(optarg, MSG ORI G{ MSG_ARG WRAP),
1489 MSG_ARG WRAP_SI ZE) == 0) {

1490 if (1d_wap_enter(ofl,

1491 optarg * MSG ARG WRAP_SI ZE) == NULL)

1492 return (S_ERROR);

1493 } else if (strncnp(optarg, MSG_ R G(M5G_ARG _ASLR),
1494 MSG_ARG _ASLR_SI ZE) == 0)

1495 “char *p = optarg + MSG_ARG ASLR Sl ZE;

1496 if (*p =='\0")

1497 of | ->of | _aslr = 1;

1498 } elseif (*p=="=) {

1499 pt++;

1501 if ((strcnp(p

1502 ORI G(MSG_ARG_ENABLED)) == 0) ||
1503 (st renp(p

1504 MBG ORI G(IVSG ARG ENABLE)) == 0)) {
1505 “ofl->of | _aslT = 1;

1506 } else if ((strcnp(p,

1507 MBG_ORI G MSG_ARG DI SABLED)) == 0) ||
1508 (stremp(p

1509 MSG_ORI G(IVSG ARG DI SABLE)) == 0)) {
1510 “of I ->of | _aslt = -1;

1511 } else {

1512 Id eprl ntf(ofl, ERR FATAL,
1513 G_| NTL(MSG ARG | LLEGAL)
1514 G_ORI G M5G_ARG_ZASLR), p);
1515 return(SERCR)

1516 }

1517 } else {

1518 Id_eprintf(ofl, ERR _FATAL,

1519 MSG_I NTL(NSG ARG | LLEGAL)

1520 MSG_ ORI G(MSG_ARG Z), optarg);
1521 return (S_ERROR);

1522 }

1523 } else if ((strncnp(optarg, MSG ORI G{ MSG_ARG GUI DE)
1524 MSG_ARG GUI DE_SI ZE) ==

1525 ((optarg[MSG ARG GUIDE SI ZE] == '=") ||

1526 (optarg[MSG_ ARG GUI DE_SI ZE] == "\0"))) {

new usr/src/cnd/ sgs/libl d/ conmon/ args. c 19

1527 if (!guidance_parse(ofl, optarg))

1528 return (S_ERROR);

1529 } else if (strcnp(optarg,

1530 MSG_ORI G{ MSG_ARG_FATWARN)) == 0) {

1531 if (zfwflag == SET_FALSE) {

1532 I d_eprintf(ofl, ERR WARNI NG _NF,
1533 MSG_| NTL(I\/SG ARG _MIONCE) ,

1534 MBG_ORl G{ MSG_ARG_ZFATWNOFATW) ;
1535 } else {

1536 zfwflag = SET_TRUE;

1537 of | ->of | _flags | = FLG_OF_FATWARN;
1538 }

1539 } else if (strcnp(optarg,

1540 MSG_ORI G(MSG_ARG_NOFATWARN)) == 0) {

1541 Tif (zfwfTag == SET_TRUE)

1542 Id_eprintf(ofl, ERR WARNI NG NF,
1543 MSG_I NTL(I\/SG ARG _MTONCE) ,

1544 MSG_ORI G{ MSG_ARG_ZFATWNOFATW) :
1545 el se

1546 zfwilag = SET_FALSE;

1548 /*

1549 * Process everything related to -z assert-deflib. This
1550 * nust be done in pass 1 because it gets used in pass
1551 * 2.

1552 */

1553 } else if (strncnp(optarg, MSG ORI G{ MSG_ARG ASSDEFLI B),
1554 MBG_ARG _ASSDEFLI B_SI ZE) == 0) {

1555 if (assdeflib_parse(ofl, optarg) != TRUE)
1556 return (S_ RRO?

1557 } else if (strncnp(opt arg, MSG_ R G(MSG_ARG _TYPE) ,
1558 MSG_ARG TYPE_SI ZE) ==

1559 “char *p = opt arg + MSG_ARG TYPE_SI ZE;

1560 if (*pl!="'=")

1561 | d_epri ntf(ofl, ERR _FATAL,

1562 MBG_| NTL(MSG_ARG | LLEGAL),
1563 MSG_ORlI G MBG_ARG Z), optarg);
1564 return (S_ERROR);

1565 }

1567 pt++;

1568 1f (strenp(p,

1569 MSG_ORI G(MSG_ARG TYPE_RELOC)) == 0) {
1570 otype = OT_RELCC;

1571 } else if (strcnp(p,

1572 MSG_ORI G MSG_ARG TYPE_EXEC)) == 0) {
1573 otype = OT_EXEC,

1574 } else if (strcnp(p,

1575 MSG_ ORI G MSG_ARG TYPE_SHARED)) == 0) {
1576 otype = OT_SHARED;

1577 } else if (strcnp(p,

1578 MSG_ORI G(MSG_ARG TYPE_KMOD)) == 0) {
1579 otype = OT_KMOD;

1580 } else {

1581 Id_eprintf(ofl, ERR FATAL,

1582 MBG | NTL(MSG_ARG | LLEGAL) ,

1583 MBG_ORI G{ MSG_ARG 7), optarg);
1584 return (S_ERROR);

1585 }

1586 #endif /* ! codereview */

1587 /*

1588 * The following options just need validation as they
1589 * are interpreted on the second pass through the
1590 * command |ine argunents.

1591 */

1592 } else if (

new usr/src/cnd/ sgs/libl d/ conmon/ args. c 20
1593 strncnp(optarg, MSG ORI G MSG_ARG | NI TARRAY) ,

1594 MSG_ARG | Nl TARRAY_SI ZE) &&

1595 strncnp(optarg, MSG ORI G{ MSG_ARG FI NI ARRAY) ,

1596 MSG_ARG FI NI ARRAY_ST ZE) &&

1597 strncnp(optarg, MSG ORI G MSG_ARG PREI Nl TARRAY) ,
1598 MSG_ARG PREI NI TARRAY_SI ZE) &&

1599 strncnp(optarg, MSG ORI G MSG_ARG RTLDI NFO),

1600 MSG_ARG RTLDI NFO S| ZE) &&

1601 strncnp(optarg, MSG ORI G MSG_ARG DTRACE),

1602 MBG_ARG DTRACE Sl ZE) &&

1603 strcnp(optarg, MSG ORI G MSG ARG ALLEXTRT)) &&
1604 strcnp(optarg, MSG ORI G MSG_ARG DFLEXTRT)) &&
1605 strcnp(optarg, MSG ORI G{ MSG_ARG DI RECT)) &

1606 strcnp(optarg, MSG_ORI G{ MSG_ARG_NODI RECT)) &&
1607 strcnp(optarg, MSG ORI G MSG ARG GROUPPERM)) &&
1608 strcnp(optarg, MSG ORI G MSG ARG LAZYLQAD)) &&
1609 strcnp(optarg, MSG OR G MSG_ARG NOGROUPPERM)) &&
1610 strcnp(optarg, MSG ORI G MSG ARG NOLAZYLOAD)) &&
1611 strcnp(optarg, MSG ORI G MSG_ARG NODEFERRED)) &&
1612 strcnp(optarg, MSG ORI G MSG_ARG RECORD)) &&

1613 strcnp(optarg, MSG ORI G MSG_ARG . ALTEXE064)) &&
1614 strcnp(optarg, MSG ORI G MSG_ARG WEAKEXT))

1615 strncnp(optarg, MSG ORI G MSG_ARG TARGET),

1616 MBG_ARG TARGET_SI ZE) &&

1617 strcnp(optarg, MSG ORI G{ MSG_ARG RESCAN |

1618 strcnp(optarg, MSG ORI G{ MSG_ARG DEFERRED))) {
1619 Id_eprintf(ofl, ERR FATAL,

1620 MSG_| NTL(NSG ARG | LLEGAL)

1621 MSG_ORI G MSG_ARG Z), optarg);

1622 }

1624 break;

1626 case 'D:

1627 /*

1628 * |f we have not yet read any input files go ahead
1629 * and process any debuggi ng options (this allows any
1630 * argument processing, entrance criteria and library
1631 * initialization to be displayed). GOherw se, if an
1632 * input file has been seen, skip interpretation until
1633 * process_files (this allows debugging to be turned
1634 * on and off around individual groups of files).
1635 *

1636 Dflag = 1;

1637 if (ofl->ofl_objscnt == 0) {

1638 if (dbg_setup(ofl, optarg, 2) == 0)

1639 return (S ERROR) ;

1640 }

1642 /*

1643 * A diagnostic can only be provided after dbg_setup().
1644 * As this is the first diagnostic that can be produced
1645 * by 1d(1l), issue atitle for timng and basic output.
1646 */

1647 if ((optitle == 0) &% DBG ENABLED) {

1648 optitlet++;

1649 DBG_CALL(Dbg_basi c_options(ofl->of | _Im));

1650 }

1651 DBG _CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg));
1652 break;

1654 case 'B':

1655 DBG CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg));
1656 if (strcnp(optarg, NBGO?IG(NBGARGDIRECT)) == 0) {
1657 if (Bdflag == SET_FALSE) {

1658 I d_eprintf(ofl, ERR FATAL,

new usr/src/cnd/ sgs/libl d/ conmon/ args. c 21

1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701

1703
1704
1705
1238
1706

1708
1709
1710

1712
1713
1714
1715
1716
1717

1719
1720
1721

1723

case

case

case

case

case

"G

MSG_| NTL(MSG_ARG_| NCOWP) ,
MSG_ORI G MSG_ARG_BNCDI RECT)
MSG_ORI G{ MSG_ARG_BDI RECT)) ;
} else {
Bdf | ag = SET_TRUE;
of | - >of | gm defl ags | = FLG_OFG_NO DB;

_eprintf(ofl, ERR FATAL,
MSG_| NTL(IVSG ARG | N(IJVP)
MSG_ORI G{ MSG_ARG _BDI RECT)
MSG_ORI G{ MSG_ARG_ BNCDIRECT));
} else {
Bdfl ag = SET_F.
ofI—>ofI guldeflags | = FLG_OFG_NO DB;

}
} else if (strcnp(optarg,
MSG_ORI G(MSG_STR_SYMBOLI C)) == 0)
“Bsflag = TRUE;
else if (strcnmp(optarg, MSG ORI G(MSG ARG REDUCE)) == 0)
of | ->of | _flags | = FLG_OF_PROCRED;
else if (strcnp(optarg, MSG ORI G(MSG STR LOCAL)) == 0)
Bl flag = TRUE;
else if (strcnp(opt arg, MSG_ORI G(MSG_ARG GROUP)) == 0)
Bgfl ag = TRUE
else if (strcnp(opta
MSG_ORI G(M5G_ STR ELI M NATE)) == 0)
Befl ag = TRUE;
else if (strcnp(optarg,
MBG_ORI G(MSG_ARG_TRANSLATOR)) == 0) {
f(ofl, ERR WARNI NG,
NTL(M5G_ARG_UNSUPPORTED) ,

MSG
IVSG_CRI G M5G_ARG_ BTRANSLATCR))
} else if (strcnp(optarg,
MSG_ ORI G(MSG_STR LD DYNAM CO)) &&
strcnp(optarg, MSG ORI G MSG ARG STATIQ))) {
Id_eprintf(ofl, ERR FATAL,
MSG_| NTL(M5G_ARG | LLEGAL) ,
MSG_ORI G(MSG_ARG_CB), optarg);
break;
DBG CALL(Dbg args_option(ofl->of | _Im, ndx, c, NULL));
otype = HARED;
Glag = TRUE
br eak;

DBG_CALL(Dbg_args_option(ofl->ofl _I M, ndx, c, optarg));
br eak;

"M

DBG CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg));
if (aplist_append(& ofl->ofl _maps), optarg,
AL_CNT_OFL_MAPFI LES) == NULL)
return (S_ERROR);
break;

"N

DBG _CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg));
break;

Q-

new usr/src/cnd/ sgs/libl d/ conmon/ args. c 22
1724 DBG_CALL(Dbg_ar gs_ optl on(ofl ->of | _I M, ndx, c, optarg));
1725 if ((optarg[0] =="n") & (optarg[1] == '\0")) {

1726 if (Qflag !'= SET_UNKNOW)

1727 I'd_eprintf(ofl, ERR WARNI NG NF,

1728 MSG_I NTL(NSG_ARG_MTO\ICE),

1729 MBG_ORI G{ MSG_ARG CQ)) ;

1730 el se

1731 Olag = SET FALSE;

1732 } else if ((optarg[O] "y7) && (optarg[1] == "'\0")) {
1733 if (Q‘Iag!=SET UNKNOWN)

1734 I'd_eprintf(ofl, ERR WARNI NG _NF,

1735 MSG_| NTL(IVBG ARG_MTONCE) ,

1736 MSG_ORI G{ MSG_ARG CQ)) ;

1737 el se

1738 Qflag = SET_TRUE;

1739 } else {

1740 Id eprl ntf(ofl ERR_FATAL,

1741 NTL(MSG_ARG | LLEGAL)

1742 IVSG CRI G{MSG_ARG CQ), optarg);

1743 }

1744 br eak;

1746 case 'S :

1747 DBG_CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, optarg));
1748 if (aplist_append(& ib_support, optarg,

1749 AL_CNT_SUPPORT) == NULL)

1750 return (S_ERROR);

1751 br eak;

1753 case 'V :

1754 DBG CALL(Dbg_args_option(ofl->ofl _I M, ndx, c, NULL));
1755 if (!Vilag)

1756 (void) fprintf(stderr, MSG ORI G(MSG_STR _STRNL),
1757 of | ->of | _sgsi d);

1758 Vflag = TRUE;

1759 break;

1761 case 'Y :

1762 DBG CALL(Dbg_args_option(ofl->ofl _Iml, ndx, c, optarg));
1763 if (strncnp(optarg, MSG ORI G(MSG ARG LCOM), 2) == 0) {
1764 if (Llibdir)

1765 Id eprlnf(of |, ERR_WARNI NG_NF,

1766 MSG_| NTL (I\/SG ARG_MTONCE) ,

1767 MBG_ORI G{ MSG_ARG CYL));

1768 el se

1769 Llibdir = optarg + 2;

1770 } else if (strncnp(optarg

1771 MBG ORI G{MSG ARG UCOM), 2) == 0) {

1772 if (Uibdir)

1773 Id_eprintf(ofl, ERR WARNI NG NF,

1774 MSG_I NTL(MBG_ARG 5 MTONCE) ,

1775 MBG_ORI G{ MSG_ARG CYU)) ;

1776 el se

1777 Uibdir = optarg + 2;

1778 } else if (strncnp(optarg,

1779 MSG_ORI G(MSG_ARG PCOM), 2) == 0) {

1780 if (Plibpath)

1781 Id_eprintf(ofl, ERR WARNI NG_NF,

1782 MSG_I NTL(MBG_ARG 5 MTONCE) ,

1783 MBG_ORI G MSG_ARG CYP)) ;

1784 el se

1785 Plibpath = optarg + 2;

1786 } else {

1787 Id_eprintf(ofl, ERR _FATAL,

1788 MSG_| NTL(MSG_ARG ILLECﬁL)

1789 MSG_ORI G MSG_ARG CY), optarg);

new usr/src/cnd/ sgs/libl d/ conmon/ args. c 23

1790 }
1791 break;

1793 case ' ?:

1794 DBG _CALL(Dbg_args_option(ofl->ofl _Im, ndx, c, NULL));
1795 /*

1796 * |f the option character is '-', we're |looking at a

1797 * long option which couldn’t be translated, display a
1798 * nore useful error.

1799 */

1800 if (optopt =="-")

1801 eprintf(ofl->ofl _Im, ERR FATAL,

1802 MSG_| NTL(MSG_ARG_LONG_UNKNOWN) ,

1803 argv[optind-1]);

1804 } else {

1805 eprintf(ofl->ofl _Im, ERR FATAL

1806 MSG_I NTL(MSG_ARG_UNKNOWN) , optopt);

1807 }

1808 (*usage) ++;

1809 br eak;

1811 defaul t:
1812 break;
1813 }

1815 1=
1816 * Update the argunent index for the next getopt() iteration.
1817 */
1818 ndx = optind;
1819 }
1820 return (1);
1821 }
__unchanged_portion_omtted_

new usr/src/cnd/ sgs/libld/ common/files.c

R R R R

107936 Sun Feb 24 19:19:11 2019
new usr/src/cnd/ sgs/libld/ common/files.c

I'd should reject kernel

nodul es as i nput

R R R R R R R

3023 /*

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072

3074
3075
3076
3077
3078
3079
3080
3081

-~

- C

CL_ B I T O S N

/
in

Process the current

t hat

Any shared object specified via the above two conventions nust

__unchanged_portion_onitted_

input file.
conme through here:

There are basically three types of files

files explicitly defined on the command line (ie.
inthis case only the ‘name’ field is valid.

foo.o or bar.so),

ibraries determ ned fromthe -1
in this case the ‘sonane’
ile.

| comrand |ine option (ie. -Ilbar),
i
f

field contains the basenane of the |ocated

be recorded

as a needed dependency.

libraries specified as dependencies of those libraries already obtained
via the conmand Iine (ie. bar.so has a DT_NEEDED entry of fred.so.1),
in this case the ‘sonane’ field contains either a full pathname (if the
needed entry contained a ‘/’'), or the basenane of the located file.
These libraries are processed to verify synbol binding but are not
recorded as dependencies of the output file being generated.

entry:

exit:

name - File name

sonanme - SONAME for needed sharable library,

fd - Open file descriptor

el f - Open ELF handl e

flags - FLG IF_ flags applicable to file

of | - Qutput file descriptor

rej - Rejection descriptor used to record rejection reason

ifl _ret - NULL, or address of pointer to receive reference to
resulting input descriptor for file. If ifl_ret is non-NULL,
the file cannot be an archive or it will be rejected.

as described above

If a error occurs in examning the file, S ERROR is returned.

If the file can be exam ned, but is not suitable, *rej is updated,
and O is returned. If the file is acceptable, 1 is returned, and if
ifl_ret is non-NULL, *ifl_ret is set to contain the pointer to the
resul ting input descri ptor.

tptr_t
_process_ifl (const char *name, const char *sonane, int fd, EIf *elf,

Word flags, Ol _desc *ofl, Rej _desc *rej, Ifl_desc **ifl_ret)
I fI_desc *ifl;
Ehdr *ehdr;
uintptr_t error = 0;
struct stat st at us;
Ar _desc *adp;
Rej _desc _rej;

/*

* If this file was not extracted froman archive obtain its device

* information. This will be used to determine if the file has already
* been processed (rather than sinply conparing fil enanmes, the device

* information provides a quicker conparison and detects |inked files).
*
f

(fd & ((flags & FLG | F_EXTRACT) == 0))
(void) fstat(fd, &tatus);

new usr/src/cnd/ sgs/libld/ common/files.c

3082
3083
3084
3085

3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105

3107
3108
3109
3110
3111

3113
3114
3115
3116

3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132

3134
3135
3136
3137
3138
3139
3140
3141
3142

3144

3146
3147

el se {

status.st_dev = 0;

status.st_ino = 0;
}
switch (el f_| k| nd(elf)) {
case ELF_K_Al

I+

If the caller has supplied a non-NULL ifl _ret, then
process archives, for there will be no
|

*

* we cannot
* input file descriptor for us to return.
* reject the attenpt.

*

n this case,

if (ifl_ret !'= NULL) {
_rej.rej_type = GSREJ _ARCHI VE;
_rej.rej_name = na
DBG CALL(Dbg file reJected(ofI—>ofI Im, &rej,
Id_targ.t_m m.mach));
if (reJ—>reJ _type == 0) {
*rej = _rej;
rej->rej _name = strdup(_rej.rej_nane);
return (0);
}
/*

* Determine if we've already cone across this archive file.

*/
if ('(flags &FLGIF _EXTRACT)) {
Aliste idx

for (APLI ST_TRAVERSE(ofl->ofl _ars, idx, adp)) {
if ((adp->ad_stdev !=" stat us. st dev) |
(adp->ad_stino != status.st_ino))
conti nue;

*

* We've seen this file before so reuse the

* original archive descriptor and discard the

* new el f descriptor. Note that a file

* descriptor is unnecessary, as the file is

* already available in nmenory.

*

/

DBG CALL(Dbg_file_reuse(ofl->ofl _Im,

adp- >ad_nane));

id) elf_end(el f)

('l d_process_ar chi ve(nanme, -1,
return (S_ERROR);

return (1);

nane,

(voi
if

adp, ofl))

*
* As we haven't processed this file before establish a new
* archive descriptor.
*

/
adp = I d_ar_setup(nane, elf, ofl);
if ((adp == NULL) || (adp == (Ar_desc *)S_ERROR))

return ((uintptr_t)adp);

adp- >ad_stdev = status.st_dev;
adp- >ad_stino = status.st_ino;
Id_sup_file(ofl, name, ELF_K AR, flags, elf);
/*

* Indicate that the ELF descriptor no longer requires a file

new usr/src/cnd/ sgs/libld/ common/files.c

3148 * descriptor by reading the entire file. The file is already
3149 * read via the initial mmap(2) behind el f_begin(3elf),

3150 * this operation is effectively a no-op. However, a side-
3151 * effect is that the internal file descriptor, maintained in
3152 * the ELF descriptor, is set to -1. This setting will
3153 * be conpared with any file descriptor that is passed to
3154 * el f_begin(), should this archive, or one of the archive
3155 * menbers, be processed again fromthe command |ine or
3156 * because of a -z rescan.

3157 */

3158 f (elf_cntl(elf, ELF_C FDREAD) == -1) {

3159 I'd_eprintf(ofT, ERR ELF, MSG | NTL(NMSG ELF_CNTL)
3160 nane) ;

3161 return (0)

3162 }

3164 if (!ld_process archl ve(nane, -1, adp, ofl))

3165 return (S_ERROR);

3166 return (1);

3168 case ELF_K ELF:

3169 /*

3170 * (btain the elf header so that we can determ ne what type of
3171 * elf ELF_K_ELF file this is

3172 *

3173 if ((ehdr = elf_getehdr(elf)) == NULL) {

3174 int _class = gel f_getclass(elf);

3176 /*

3177 * This can fail for a nunber of reasons. Typically
3178 * the object class is incorrect (ie. user 1s building
3179 * 64-bit but nanaged to point at 32-bit libraries).
3180 * CQther ELF errors can include a truncated or corrupt
3181 * file. Try to get the best error nessage possible.
3182 */

3183 if (ld_targ.t_mmclass != _class) {

3184 _rej.rej _type = SGS_REJ_CLASS;

3185 “rej.rej_info = (uint_t)_class;

3186 } else {

3187 _rej.rej _type = SGS_REJ_STR;

3188 “rej.rej _str = elf_errmsg(-1);

3189 }

3190 _rej.rej_name = name

3191 DBGCALL(DbgflIe reJected(of|»>ofI Im, &rej,
3192 Id_targ.t_m mnach));

3193 if (rej—>rej _type == 0) {

3194 *rej = _rej;

3195 rej->rej_nanme = strdup(_rej.rej_nane);

3196

3197 return (0);

3198 }

3200 if (_gelf_getdynval (elf DT_ SUI\NV VKMID) == 1) {

3201 _rej.rej_name = name

3202 DBG CALL(Dbg_file_ reJected(ofI—>ofI Im, &rej,
3203 Id_targ.t mmnach))

3204 _rej.rej_type = SGS_REJ KM]D

3205 “rej.rej _str = elf_errmsg(-1);

3207 #endif /* | codereview */

3208 if (I’ej->FEJ _type == 0) {

3209 *rej = _rej;

3210 rej->rej _name = strdup(_rej.rej_nane);

3211 }

3212 return (0);

3213 }

new usr/src/cnd/ sgs/libld/ comon/files.c 4
3215 /*

3216 * Determine if we’'ve already conme across this file.

3217 */

3218 if (!(flags & FLG | F_EXTRACT)) {

3219 APlist *apl;

3220 Aliste idx;

3222 if (ehdr->e type == ET_REL)

3223 apl = ofl ->of| _objs;

3224 el se

3225 apl = ofl->ofl _sos;

3227 /*

3228 * Traverse the appropriate file list and determne if
3229 * a dev/inode match is found.

3230 */

3231 for (APLIST_TRAVERSE(apl, idx, ifl)) {

3232 /*

3233 * |fl _desc generated via -Nneed, therefore no
3234 * actual file behind it.

3235 */

3236 if (ifl->ifl _flags & FLG | F_NEEDSTR)

3237 conti nue;

3239 if ((ifl->ifl_stino !'= status.st_ino) ||

3240 (ifl->ifl_stdev != status.st_dev))

3241 cont i nue;

3243 /*

3244 * Disregard (skip) this imge.

3245 */

3246 DBG_CALL(Dbg_fil e_skip(ofl->ofl _Ini,

3247 ifl->ifl_name, nane));

3248 (void) elf_end(elf);

3250 /*

3251 * |f the file was explicitly defined on the
3252 * command line (this is always the case for
3253 * rel ocatabl e objects, and is true for shared
3254 * objects when they weren't specified via -1 or
3255 * were dragged in as an inplicit dependency),
3256 * then warn the user.

3257 */

3258 fo((f gs & FLG | F_CMDLINE) ||

3259 (->ifl _flags & FLG | F_CMDLINE)) {

3260 const char *errmsg;

3262 /*

3263 * Determine whether this is the sane
3264 * file nane as originally encountered
3265 * so as to provide the nost

3266 * descriptive diagnostic.

3267 &

3268 errmsg =

3269 (strcmp(nane, ifl->ifl_nane) == 0) ?
3270 MSG_| NTL(MSG_FI L_MJLI NC 1) :

3271 MSG_| NTL(MSG_FI L_MULI NC 2);

3272 I d_eprintf(ofl, ERR WARNI NG

3273 errmsg, nane ifl->ifl_nane);

3274 }

3275 if (ifl_ret)

3276 *ifl _ret =ifl;

3277 return (1);

3278 }

3279 }

new usr/src/cnd/ sgs/libld/ common/files.c 5

3281
3282
3283
3284
3285
3286
3287
3288
3289

3291
3292
3293
3294
3295
3296
3297

3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310

3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323

3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338

3340

3342
3343
3344
3345

/*
* At this point, we know we need the file.
* file descriptor and continue processing.

Establ i sh an input

i fl _setup(name, ehdr, elf, flags, ofl, rej);
I == NULL) || (ifl == (Ifl_desc *)S ERROR))
return ((uintptr_t)ifl);
fl_stdev = status.st_dev;
fl_stino = status.st_ino;

*

* |f -zignore is in effect, mark this file as a potential

* candidate (the files use isn't actually determned until

* synbol resolution and rel ocation processing are conpl eted).
*

if (ofl->of| _flagsl & FLG OF1_| GNORE)
ifl-Sifl flags |= FLG.|F_| G\NORE;

switch (ehdr >e_type) {

case ET_REL:
(*Id_targ t_nr.nr ma | ags) (ehdr, ofl);
error = process_el f(if elf, ofl);
br eak;

case ET_DYN:

if ((ofI->ofI _flags & FLG OF_STATIO) ||
I'(ofl ->of T_flags & FLG OF DYNLIBS)) {
Id_eprintf(ofl, ERR FATAL,
MSG_| NTL(NBG FIL_SaO NSTAT) nane) ;
return (0);
}
/*
* Record any additional shared object infornation.
* If no sonane is specified (eg. this file was
* derived froma explicit filename declaration on the
* command line, ie. bar.so) use the pathnane.
* This entry may be overridden if the files dynamc
* section specifies an DI_SONAME val ue.
*
if

(sonanme == NULL)
ifl->fl_soname = ifl->ifl_naneg;
el se
ifl->fl_soname = sonane;

*

* |f direct bindings, |azy |oading, group perm ssions,
* or deferred dependencies need to be established, mark
* this object.

*/

if (ofl->ofl_flagsl & FLG OF1_ZzDl RECT)
ifl->ifl_flags |= FLG | F_DI RECT;

if (ofl->ofl _flagsl & FLG OF1_LAZYLD)
ifl->ifl_flags |= FLG | F_LAZYLD;

if (ofl->ofl_flagsl & FLG OF1_GRPPRM
ifl->ifl flags | = FLG_| F_GRPPRM

if (ofl->ofl _flagsl & FLG OF1_DEFERRED)
ifl->ifl_flags | =

(FLG_I F_LAZYLD | FLG_| F_DEFERRED);

error = process_elf(ifl, elf, ofl);

/*
* Determi ne whether this dependency requires a sym nfo.
*/

if (ifl->ifl_flags & MSK_I F_SYM NFO

new usr/src/cnd/ sgs/libld/ common/files.c

3346

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358

3360
3361
3362
3363
3364
3365
3366
3367
3368

3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397

3399
3400
3401
3402

3404
3405
3406
3407
3408
3409

*
*
*
*
*

*/

defaul t:

of | ->of | _flags | = FLG_OF_SYM NFQ,

Gui dance: Use -z | azyl oad/ nol azyl oad.

bc is exenpt fromthis advice, because it cannot
e lazy | oaded, and requests to do so are ignored.
/

— ok Ok k F *

AU—

OFL_GUI DANCE(of | , FLG_OFG_NO_LAZY) &&
(Cifl->ifl fIags&FLGIF RTLDI NF) == 0)) {
Id_eprintf(ofl, ERR _GU DANCE,
MSG_| NTL(MSG_GUI DE LAZYLOL\D))
) of | ->of T _gui defl ags | = FLG OFG | NO LAZY;

/*
* Qui dance: Use -B direct/nodirect or
* -z direct/nodirect.
*
/
i f (OFL_GU DANCE(ofl, FLG OFG NO DB)) {
Id eprlntf(ofl ERR_GUI DANCE,
NSGINTL(NBG GUIDE_DI RECT)) ;
of | - >of | _gui defl ags | = FLG_OFG NO_DB;
}

br eak;
defaul t:
(voi d) elf_errno();
_rej. rej _type = SGS REJ_UNKFI LE;
_rej.rej_name =
DBG CALL(Dbg flle reJected(ofI—>ofI Im, &rej,
Id_targ.t_m mmach));
if (rej->rej _type == 0) {
*rej = _rej;
rej->rej _name = strdup(_rej.rej_nane);

}

return (0);
}
br eak;

(void) elf errno()

_rej.rej_type = S(S REJ_UNKFI LE;

_rej.rej_name = nane;
DBG CALL(Dbg file re]ected(ofl—>of| Im, &rej,
ld_targ.t_m mmach));
if (reJ->re] _type == 0) {
*rej = _rej;
rej->rej _name = strdup(_rej.rej_nane);

}
return (0);

i}f ((error == 0) || (e.rror == S ERROR))

return (error)

if (ifl_ret)
*ifl_ret =ifl;
return (1);

Havi ng successfully opened a file, set up the necessary elf structures to

process it further.

fromthe el f

This snmal|l section of processing is slightly different
initialization required to process a relocatable object froman

archive (see libs.c: Id_process_archive()).

3410 uintptr_t
3411 | d_process_open(const char *opath, const char *ofile, int *fd, Ol _desc *ofl,

new usr/src/cnd/ sgs/1ibld/ comon/files.c 7 new usr/src/cnd/ sgs/1ibld/ comon/files.c
3412 Word flags, Rej_desc *rej, Ifl_desc **ifl_ret) 3478 {
3413 { 3479 size_t dl en, plen;
3414 El f *el f; 3480 int fd;
3415 const char *npath = opath; 3481 char pat h[PATH_MAX] ;
3416 const char *nfile = ofile; 3482 const char * dir =dir;
3418 if ((elf = elf_begin(*fd, ELF_C READ, NULL)) == NULL) { 3484 /*
3419 Id_eprintf(ofl, ERR ELF, MSG_I NTL(MSG ELF_BEG N), npath); 3485 * Determine the sizes of the directory and filename to insure we don’t
3420 return (0); 3486 * exceed our buffer.
3421 } 3487 */
3488 if ((dlen = strlen(dir)) == 0) {
3423 /* 3489 _dir = MSG_ORI G(M5G_STR_DQT) ;
3424 * Determ ne whether the support library wi shes to process this open. 3490 dlen = 1;
3425 * The support library may return: 3491 }
3426 * a different ELF descriptor (in which case they should have 3492 dl en++;
3427 i cl osed the original) 3493 plen = dlen + strlen(file) + 1;
3428 * a different file descriptor (in which case they should have 3494 I1f (plen > PATH |
3429 * cl osed the original) 3495 ld_eprintf(ofl, ERR FATAL, MSG_| NTL(MSG FI L_PTHTOLONG),
3430 * a different path and file nanme (presunably associated with 3496 dir, fil e)
3431 * a different file descriptor) 3497 return (0);
3432 * 3498 }
3433 * Afile descriptor of -1, or and ELF descriptor of zero indicates
3434 * the file should be ignored. 3500 I*
3435 */ 3501 * Build the entire pathname and try and open the file.
3436 I d_sup_open(ofl, &npath, &nfile, fd, flags, &elf, NULL, O, 3502 */
3437 el f_kind(elf)); 3503 (void) strcpy(path, _dir);
3504 (voi d) strcat(path, MSG ORI G(MSG_STR_SLASH)) ;
3439 if ((*fd ——-1) || (elf == NULL)) 3505 (void) strcat(path, file);
3440 return (0); 3506 DBG CALL(Dbg_l i bs_req(ofl = >of | _Im, sdf->sdf _nane,
3507 sdf ->sdf _rfile, path));
3442 return (ld_process_ifl(npath, nfile, *fd, elf, flags, ofl, rej,
3443 ifl_ret)); 3509 if ((fd = open(path, O RDONLY)) == -1)
3444 } 3510 return (0);
3511 el se {
3446 | * 3512 uintptr_t open_ret;
3447 * Having successfully napped a file, set up the necessary elf structures to 3513 1fl _desc *1fl;
3448 * process it further. This routine is patterned after |d_process_open() and 3514 char * _path;
3449 * is only called by Id.so.1(1) to process a rel ocatabl e object.
3450 */ 3516 if ((_path = 1libld_malloc(strlen(path) + 1)) == NULL)
3451 |fl _desc * 3517 return ((1fl _desc *)S_ERROR);
3452 | d_process_nen(const char *path, const char *file, char *addr, size_t size, 3518 (void) strcpy(_path, path);
3453 Cf | _desc *ofl, Rej_desc *rej) 3519 open_ret = ld_pr ocess_open(_pat h, & path[dlen], &fd, ofl,
3454 { 3520 0, rej, &fl);
3455 El f *el f; 3521 if (fd 1= -1)
3456 uintptr_t open_ret; 3522 (void) close(fd);
3457 I fl_desc *1fl; 3523 if (open_ret !=1)
3524 return ((Ifl_desc *)open_ret);
3459 if ((elf = elf_nmenory(addr, size)) == LL) { 3525 return (ifl);
3460 Id_eprintf(ofl, ERRELF, NBG 5 | NTL(MSG_ELF_MEMORY), pat h) ; 3526 }
3461 return (0); 3527 }
3462 }
3529 /*
3464 open_ret = I d_process_ifl(path, file, 0, elf, 0, ofl, rej, &fl); 3530 * Finish any library processing. Walk the list of so’s that have been l|isted
3465 if (open_ret != 1) 3531 * as "included" by shared objects we have previously processed. Exam ne them
3466 return ((1fl_desc *) open_ret); 3532 * without adding themas explicit dependents of this program in order to
3467 return (ifl); 3533 * conplete our synbol definition process. The search path rules are:
3468 } 3534 *
3535 * - use any user supplied paths, i.e. LD LIBRARY_PATH and -L, then
3470 /* 3536 *
3471 * Process a required library (i.e. the dependency of a shared object). 3537 * - use any RPATH defined within the parent shared object, then
3472 * Conbine the directory and filenane, check the resultant path size, and try 3538 *
3473 * opening the pathnane. 3539 * - use the default directories, i.e. LIBPATH or -YP.
3474 */ 3540 */
3475 static Ifl_desc * 3541 uintptr_|
3476 process_req_l i b(Sdf _desc *sdf, const char *dir, const char *file, 3542 | d_fini sh libs(Ofl _desc *ofl)
3477 O | _desc *of |, Rej_desc *rej) 3543 {

new usr/src/cnd/ sgs/1ibld/ comon/files.c 9 new usr/src/cnd/ sgs/1ibld/ comon/files.c 10
3544 Aliste i dx1; 3610 Id_eprintf(ofl, ERR WARNI NG,
3545 Sdf _desc *sdf ; 3611 MG _| NTL(reject[_rej.rej_type]),
3546 Rej _desc rej ={ 0}; 3612 _rej.rej_name ? rej.rej_nane :
3613 MSG_| NTL(MBG_STR_UNKNOWN) ,
3548 /* 3614 conv_reject_desc(&rej, &rej_buf,
3549 * Make sure we are back in dynam c node. 3615 Id_targ.t_m m mach));
3550 */ 3616 } else
3551 of | ->of | _flags | = FLG OF_DYNLI BS; 3617 sdf ->sdf _file = ifl;
3618 }
3553 for (APLI ST_TRAVERSE(of | - >of | _soneed, idx1, sdf)) { 3619 conti nue;
3554 Aliste i dx2; 3620 }
3555 char *path, *slash = NULL;
3556 int fd; 3622 [
3557 1 fl _desc *ifl; 3623 * Now search for this file in any user defined directories.
3558 char *file = (char *)sdf->sdf _nane; 3624 */
3625 for (APLI ST_TRAVERSE(of | ->of | _ulibdirs, idx2, path)) {
3560 /* 3626 Rej _desc _rej ={ 0};
3561 * See if this file has already been processed. At the tine
3562 * this inplicit dependency was determned there may still have 3628 ifl = process_req_lib(sdf, path, file, ofl, &rej);
3563 * been nore explicit dependencies to process. Note, if we ever 3629 if (ifl == (1fl_desc *)S ERROR) {
3564 * do parse the command line three tines we would be able to 3630 return (S_ERROR);
3565 * do all this checking when processing the dynanic section. 3631 }
3566 */ 3632 if (_rej.rej_type) {
3567 if (sdf->sdf _file) 3633 if (rej.rej_type == 0) {
3568 conti nue; 3634 rej = _rej;
3635 rej.rej_name = strdup(_rej.rej_nane);
3570 for (APLIST_TRAVERSE(of | ->of | _sos, idx2, ifl)) { 3636 }
3571 if (M(ifl->ifl_flags & FLG | F_NEEDSTR) && 3637 }
3572 (strenp(file, ifl->ifl “sonane) == 0)) { 3638 if (ifl) {
3573 sdf ->sdf _file = ifl; 3639 sdf ->sdf _file = ifl;
3574 br eak; 3640 br eak;
3575 } 3641 }
3576 } 3642 }
3577 if (sdf->sdf _file) 3643 if (sdf->sdf _file)
3578 cont i nue; 3644 cont i nue;
3580 /* 3646 /*
3581 * |f the current path nane el enent enbeds a "/", then it’'s to 3647 * Next use the local rules defined within the parent shared
3582 * be taken "as is", with no searching involved. Process all 3648 * obj ect.
3583 * "[" occurrences, so that we can deduce the base file nane. 3649 &
3584 */ 3650 if (sdf->sdf _rpath !'= NULL) {
3585 for (path = file; pat h pat h++) { 3651 char *rpath, *next;
3586 if (*path ==
3587 sl ash = path; 3653 rpath = libld_malloc(strlen(sdf->sdf _rpath) + 1);
3588 } 3654 if (rpath == NULL)
3589 if (slash) { 3655 return (S_ERROR);
3590 DBG CALL(Dbg_libs_req(ofl->ofl _I M, sdf->sdf_nane, 3656 (void) strcpy(rpath, sdf->sdf_rpath);
3591 sdf ->sdf _rfile, file)); 3657 DBG CALL(Dbg_l i bs path(ofl—>of| Im, rpath,
3592 if ((fd = open(file, O RDONLY)) == -1) { 3658 LA_SER RUNPATH, sdf->sdf _rfil e));
3593 I d_epri ntf(ofl , ERR_ V\ARNI NG 3659 if ((path = strtok_r(rpath,
3594 MSG_| NTL(MSG_FI L_NOTFOUND), file, 3660 MSG_ORI G(MSG_STR_COLON), &next)) !'= NULL) {
3595 sdf - >sdf _rfile); 3661 do {
3596 } else { 3662 Rej _desc _rej ={ 0},
3597 uintptr_t open_ret;
3598 Rej _desc _rej ={ 0}; 3664 path = expand(sdf->sdf _rfile, path,
3665 &next) ;
3600 open_ret = I d_process_open(file, ++slash,
3601 &d, ofl, 0, &rej, &fl); 3667 ifl = process_req_|ib(sdf, path,
3602 if (fd!=-1) 3668 file, ofl, &rej);
3603 (voi d) cI ose(fd); 3669 if (ifl == (Ifl_desc *)S ERROR) {
3604 if (open_ret == S_ERROR) 3670 return (S_ERRDR) ;
3605 return (S_ERROR); 3671 }
3672 if ((_rej.rej_type) &&
3607 if (_l .rej_type) { 3673 (rej.rej type == 0)) {
3608 Oonv _reject_desc_buf_t rej_buf; 3674 rej = ;
3675 rej.rej _ nama =

new usr/src/cnd/ sgs/libld/ common/files.c 11

3676 strdup(_rej.rej_nane);
3677 }

3678 if (ifl) {

3679 sdf ->sdf _file = ifl;

3680 br eak;

3681 }

3682 } while ((path = strtok_r(NULL,

3683 MSG_ORI G(MSG_STR_COLON), &next)) != NULL);
3684 }

3685

3686 if (sdf->sdf _file)

3687 conti nue;

3689 /*

3690 * Finally try the default library search directories.

3691 */

3692 for (APLIST_TRAVERSE(of|->of | _dlibdirs, idx2, path)) {

3693 Rej _desc _rej ={ 01},

3695 ifl = process_req_lib(sdf, path, file, ofl, &ej);
3696 if (ifl == (1fl_desc *)S _ERROR) ({

3697 return (S_ERROR);

3698 }

3699 if (_rej.rej_type) {

3700 if (rej.rej_type == 0) {

3701 rej] = _rej;

3702 rej.rej_name = strdup(_rej.rej_nane);
3703 }

3704 }

3705 if (ifl) {

3706 sdf ->sdf _file = ifl;

3707 br eak;

3708 }

3709

3710 if (sdf->sdf _file)

3711 cont i nue;

3713 /*

3714 * |f we’ve got this far we haven't found the shared object.
3715 * |f an object was found, but was rejected for sone reason,
3716 * print a diagnostic to that effect, otherw se generate a
3717 * generic "not found" diagnostic.

3718 */

3719 if (rej.rej_type) {

3720 Conv_rej ect _desc_buf _t rej_buf;

3722 Id_eprintf(ofl, ERR WARNI NG

3723 MSG | NTL(reject[rej.rej_type]),

3724 rej.rej_name ? rej.rej_nanme :

3725 MSG_| NTL(MSG_STR_UNKNOWN) ,

3726 conv_reject_desc(&ej, &rej_buf,

3727 Id_targ.t_m mmach));

3728 } else {

3729 I d_eprintf(ofl, ERR WARNI NG

3730 MSG_| NTL(MSG_FI L_NOTFOUND), file, sdf->sdf_rfile);
3731 }

3732 1

3734 /*

3735 * Finally, now that all objects have been input, make sure any version
3736 * requirenents have been net.

3737 */

3738 return (Id_vers_verify(ofl));

3739 }

new usr/src/cnd/ sgs/ i bl d/ conmon/ gl obal s. c

R R R R

4129 Sun Feb 24 19:19:11 2019

new usr/src/cnd/ sgs/1i bl d/ conmon/ gl obal s. ¢

I'd should reject kernel

nodul es as i nput

R R R R R R R

1

/ *
CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

B A T
-~

Copyri ght (c) 1988 AT&T
Al Rights Reserved

Copyright (c) 1989, 2010, Oracle and/or
/

its affiliates. Al rights reserved.

* Ok Ok ok % %

/*
* d obal variables
*/
#i ncl ude <sys/elf.h>
#i ncl ude "nsg. h"
#i ncl ude _libld. h"

list of allocated blocks for */
link-edit dynam c allocations */
of support libraries specified */
(-S option) */

synbol demangling required */

Ld_heap *| d_heap;

/*

/*

APl i st *|i b_support; 1*
*

;*

int demangl e_f | ag;

/*

* Paths and directories for library searches. These are used to set up
* linked lists of directories which are maintained in the ofl structure.
*/
char
char
char

*Pl i bpat h; [*
Llibdir; /
Ulibdir; /

User specified -YP or defaults to LIBPATH */
User specified -YL */
User specified -YU */

/*

* A default library search path is used if one was not supplied on the command
* line. Note: these strings can not use MSG ORI G() since they are nodified as
* part of the path processing.

*/

“/1ibl64:/us

r/
"lusr/ccs/lib:

char
char

def 64_Pl i bpat h[]
def 32_Pl i bpat h[]

l'i b/ 64"
/Iib/usr/llb
/*

* Rejected file error nessages (indexed to match SGS_REJ_ val ues).
*/

const Msg

new usr/src/cnd/ sgs/1i bl d/ conmon/ gl obal s. c

62

reject[SGS_REJ_NUM = {
M5G_STR_EMPTY,
MBG_REJ_MACH,
MSG_REJ_CLASS,
MSG_REJ_DATA,
MSG_REJ_TYPE,
MSG_REJ_BADFLAG,
MSG_REJ_M SFLAG,
MSG_REJ_VERSI ON,
MSG_REJ_HAL,
MSG_REJ_US3,
MSG_REJ_STR,
MSG_REJ_UNKFI LE,
MSG_REJ_UNKCAP,
MBG_REJ_HWCAP_1,
MBG_REJ_SFCAP_1,
MSG_REJ_MACHCAP,
MSG_REJ_PLATCAP,
MBG_REJ_HWCAP_2,
MSG_REJ_ARCHI VE,
MSG_REJ_KMOD
MSG_REJ_ARCHI VE

1
#if SGS_REJ_NUM!= (SGS_REJ_KMOD + 1)
#if SGS_REJ_NUM ! = (SGS_REJ_ARCHI VE + 1)
#error SGS_REJ_NUM has changed
#endi f

/*
* Synbol types that we include in
* (1 ndexed by STT_ val ues).
*
/

const int

| dynsym syntype[] = {

]

0
0
1
0
1
0
0
0
0
0
0
0
0
0
0

0,

110 }

__unchanged_portion_onitted_

P A N N N .

® ok 3k ok ok b 3k b ok b ok Ok ok % ok % ok Xk b ¥

— e e e e e~ —

R I T

MBG_| NTL(MSG_REJ_MACH) */
MSG_REJ_CLASS) */
MSG_REJ_DATA) */
MSG_REJ_TYPE) */
MSG_| NTL(MSG_REJ_BADFLAG)
MBG_I NTL(MSG_REJ_M SFLAG)
MSG_| NTL(MSG_REJ_VERSI ON)
MSG_| NTL(MSG_REJ_HAL) */

MBG_| NTL(MBG_REJ_US3) */

MBG_| NTL(MBG_REJ_STR) */

MSG_| NTL(MSG_REJ_UNKFI LE)
MBG_| NTL(MSG_REJ_UNKCAP) ~ *

MSG_| NTL(MSG_REJ_HWCAP_1)
MBG_| NTL(MSG_REJ_SFCAP_1)
MSG_| NTL(MSG_REJ_NMACHCAP)
MSG_| NTL(MSG_REJ_PLATCAP)
MSG_| NTL(MSG_REJ_HWCAP_2)
MSG_| NTL(MSG_REJ_ARCHI VE)
MSG_| NTL(MSG_REJ_KMXD) */
MSG_| NTL(MSG_REJ_ARCHI VE)

|
~——~—

. SUNW | dynsym secti ons

STT_NOTYPE (not counting 1st slot)

STT_OBJECT */
STT_FUNC */
STT_SECTI ON */
STT_FILE */
STT_COMMON */
STT_TLS */

7 *7

8 */

9 */

10 */

11 */

12 */
STT_SPARC_REG STER */
14 ¥/

15 */

*/

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

R R R R

60944 Sun Feb 24 19:19:11 2019
new usr/src/cnd/ sgs/1i bl d/ comon/1i bl d. nsg
I'd should reject kernel nodules as input
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)
Id: inplenment -ztype and rework option parsing

R R R R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing permn ssions

11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each

14 # file and include the License file at usr/src/ OPENSOCLARI S. LI CENSE.
15 # |If applicable, add the followi ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]

18 #

19 # CDDL HEADER END

20 #

22 #

23 # Copyright (c) 1995, 2010, Oracle and/or its affiliates. Al rights reserved.
24 #

26 #

27 # Copyright (c) 2012, Joyent, Inc. Al rights reserved.

28 # Copyright 2017 RackTop Systens.

29 #

31 @ START_
33 # Message file for cnd/sgs/libld.
35 @MSG | D LI BLD

37 #
38 # TRANSLATI ON_NOTE -- Begi nni ng of USAGE nmessage
39 # The fol | owi ng nessages are the usage nessages for the Id command.
40 # Tab characters (\t) are used to align the nessages.
41 #
42 # Each usage nmessage starts with \t, and if the nessage has nore than one
43 # line, the follow ng messages are aligned by 3 tab characters.
44 # When you see \n\t\t\t, the first \n is used to change the line,
45 # and following 3 tab characters are used to align the line.
46 #
a7 # Each usage nessage option is surrounded by [and]. Then the
48 # description of the option follows. The descriptions should be aligned,
49 # so tab characters are padded as needed after the closing bracket].
50 #
51 # How to align the messages are up to the translators and the
52 # | ocal i zati on engi neers.
53 #
54 # In Clocale, the first 3 nessages would | ook |like the follow ng:
55 #
#
#

usage: Id [-6:abc:.....] file(s)
[-a] create an absolute file

@ MSG_ARG _DETAI L_CM
@ MBG_ARG DETAI L_CN
@ MSG_ARG DETAIL_O
@ MBG_ARG DETAIL_P
@ MBG_ARG DETAI L_CP

@ MBG_ARG DETAI L_CQ
@ MSG_ARG DETAI L_R
@ MBG_ARG DETAI L_CR

@ MBG_ARG DETAIL_S

m
M mapfi | e]\tuse processing directives contained \
!
N

new usr/src/cnd/ sgs/libld/ comon/libld. nsg 2
58 # [- do not do special PIC relocations in a.out
59 # [-c file] record configuration "file’

60 #
61 @ MSG_ARG USAGE "usage: Id [-%] file(s)\n"
62 @ MSG_ARG DETAIL_3 "\t[-32]\t\tenforce a 32-bit |ink-edit\n"
63 @ MSG_ARG DETAIL_6 "\t[—64]\ t\tenforce a 64-bit link-edit\n"
64 @ MSG_ARG DETAIL_A "\t[-a]\t\tcreate an absolute file\n"
65 @ MSG_ARG DETAIL_B "\t[-b]\t\tdo not do special PIC relocations in a.out\n"
66 @MSG ARG DETAIL_CBDR "\t[-B direct | nodirect]\n\
67 \t\t\testablish direct bindings, or inhibit direct \
68 bi ndi ng\ n\
69 \t\t\tto, the object being created\n"
70 @ MSG_ARG DETAIL_CBDY "\t[-B dynamic | static]\n\
71 \t\t\tsearch for shared |libraries|archives\n"
72 @ MSG_ARG DETAI L_CBE "\t[-B elimnate]\telimnate unqualified global \
73 synbols fromthe\n\t\t\tsynbol table\n"
74 @ MSG_ARG DETAI L_CBG "\t[B group]\trel ocate object fromw thin group\n"
75 @ MSG_ARG_DETAI L_CBL "\t[-B Iocal]\treduce unqual i fied gl obal synmbols to \
76 local \ n"
77 @ MSG_ARG DETAI L_CBR "\t[-B reduce]\tprocess synbol reductions\n"
78 @ MSG_ARG_DETAI L_CBS "\t[-B synbolic]\thind external references to \
79 definitions when creating\n\
80 \t\t\tshared objects\n"
81 @ MSG ARG DETAIL_C "\t[-c nane]\trecord configuration file 'nane’\n"
82 @ MSG_ARG DETAI L_CC "\t[-C]\t\tdemangl e C++ synbol nane di agnostics\n"
83 @ MSG_ARG DETAI L_D "\t[-d vy | n]\toperate in dynam c|static node\n"
84 @ MSG_ARG DETAIL_CD "\t[-D token,...]\tprint diagnostic nmessages\n"
85 @ MSG_ARG DETAIL_E "\t[-eesynj [--entry epsyni\n\
86 \t\t\tuse epsym as entry point address\n"
87 @ MSG_ARG DETAIL_F "\t[-f name] [--auxiliary nane]\n\
88 \t\t\tspemfyllbraryfor which this file is an\
89 auxiliary\n\t\t\tfilter\n"
90 @ MSG_ARG DETAI L_CF "\t[-F nane], [--filter name]\n\
91 \t\t\tspe0|fy library for which this fileis a filter\n
92 @ MSG_ARG _DETAI L_CG "\t[-G, [-shared]\n\
93 \t\t\tcreate a shared object\n"
94 @ MSG_ARG DETAIL_H "\t[-h nar're] [--sonama nane] \ n\
95 \t\t\tuse "name’ as internal shared object identifier\n
96 @ MSG_ARG DETAIL_I "\t[-i]\t\tignore LD LI BRARY_PATH setting\n"
97 @ MSG_ARG DETAIL_CI "\t[-1 name]\tuse ’name’ as path of interpreter\n"
98 @ MSG_ARG DETAIL_L "\t[-l x [--library x]\n\
99 \t\t\tsearch for |ibx.so or Iibx.a\n"
100 @ MSG_ARG DETAIL_CL “\t[-L path], [--library-path path]\n\
101 \t\t\tsearch for libraries in directory 'path’\n"
102 @ MSG_ARG DETAIL_M Qt{ \t\tprint menory map\n"
t

in

"\t

' st

V[

\t

"\ t[-

t hi

\t[-

pro

Ve

"\t

out

\t]

Ve

"\t

Vit

ti

"\t

\t

\t

@ MBG_ARG DETAI L_CS

pfile \n"
-N string]\tcreate a dynanic dependency for \
ring’\n"
" -0 outfile], [--output outflle]\n\
t\tnane the output file "outfile \n"
p audltllb]\tldentlfy audlt l'ibrary to acconpany \
s object\n"
" P auditlib]\tidentify audit library for \
cessing the dependenci es\n\
t\tof this object\n"
-Qy | n]\tdo|do not place version information in \
put file\n"
" -r], [--relocatable]\n\
t\tcreate a rel ocatabl e object\n"
-R path], [-rpath path]\n\
tttspecify a library search path to be used at run \
me\ n"
[-s], [--strip-all]\n\
\t\tstrip any synbol and debuggi ng infornation\n"
"\t[-S supportlib]\n\

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

@ MSG_ARG DETAIL_T
@ MBG_ARG DETAIL_U
@ MBG_ARG DETAI L_CV
@ MBG_ARG DETAI L_CY

@ MBG_ARG DETAI L_ZA

@ MBG_ARG DETAI L_ZAE

@ MBG_ARG DETAI L_ZAL
@ MBG_ARG DETAI L_ZADLI B *

@ M5G_ARG DETAI L_ZC

@ MBG_ARG DETAI L_ZNC
@ MBG_ARG DETAI L_ZDEF

@ MBG_ARG DETAI L_ZDFS
@ MBG_ARG DETAI L_ZDRS

@ MBG_ARG DETAI L_ZE
@ MBG_ARG DETAI L_ZFATW

@ MBG_ARG DETAI L_ZFA

@ MBG_ARG DETAI L_ZGP

@ M5G_ARG DETAI L_ZGUI DE

@ MBG_ARG DETAI L_ZH
@ MBG_ARG DETAIL_ZI G
@ MBG_ARG DETAI L_ZI NA

@ MBG_ARG DETAI L_ZI NI

3

\t\t\tspecify a link-edit support library\n"
“\t[-t]\t\tdo not warn of nultiply-defined synbols \
that have\n\t\t\tdifferent sizes or alignnments\n"
"\t[-u symmane], [--undefined symane]\n\
\t\t\tcreate an undefined synmbol 'symmane’ \n"
“\t[-V], [--version]\n\
\t\t\tpr|nt versi on |nforn'at|on\n
"\t[-Y P,dirlist]\tuse "dirlist’ as a default path \
when searching for\n\

\t\tlibraries\n"

[-

z absexec]\twhen buil ding an execut abl e absol ute \

link-editor\n"
assert-deflib]\n\

nmbol s\ n \

\t\treferenced in dynanmc objects are pronpted to\n \
\t\tthe executabl e\n"

[-z allextract | defaultextract | weakextract],\n\
[--whol e-archive | --no-whol e-archive]\n\

\t\textract all nenber files, only nmenbers that \

sol ve\ n\

\t\tundefined or tentative synbols, or \

I ow extraction of\n\

\t\tarchive nenbers to resol ve weak references from\
\t\t\t\archive files\n"

[_

[

t

\
\
z al texec64]\texecute the 64-bit
z
t
n

\tenabl es warnings for linking with libraries in\
\n\t\t\tdefault search path\n\

-z assert-deflib=libnane]\n\

\tenabl es warnings for linking with libraries in\
\n\t\t\tdefault search path, but 'libnane’ is exenpt
-z conbreloc | noconbrel oc]\n\

t\tconbi ne| do not conbine multiple relocation\
tions\n"

"\t[-z noconpstrtab]\n\t\t\tdi sabl e conpression of \
string tabl es\n"

"\t[-z deferred | nodeferred]\n\

\t\t\tenabl e| di sabl e deferred identification of \
shared object\n\t\t\tdependenci es\n"

"\t[-z defs], [--no-undefined]\n\

\t\t\tdisallow undefined synmbol references\n"

"\t[-z direct | nodirect]\n\

\t\t\tenabl e| di sabl e direct binding to shared object\n\
\t\t\tdependenci es\n"

"\t[-z endfiltee]\tmarks a filtee such that it will \
termnate a filters\n\t\t\tsearch\n"
"\t[-z fatal -warnings | nofatal-warnings],\n\
\t[--fatal -warnings | --no-fatal-warnings]\n\
\t\tenabl e| di sabl e treatment of warnings as fatal\n"
"\t[-z finiarray=function]\n\

\t\t\tname of function to be appended to the \

.fini _array\n"

\t[—z groupper m | nogroupperni\n\

\t\t\tenabl e| di sabl e setting of group per m ssi ons\ n\
\t\t\ton dynam c dependenci es\n"
"\t[-z guidance | -z guidance=itentl,iten2,...]\n\
\t\t\tenabl e guidance warnings. itenms: \

noal | , nodefs,\n\

\t\t\tnodirect, nol azyl oad, nomapfile, notext, \

nounused\ n"
"\t[-z help], [--help]\n\
\t\t\tprint this usage nmessage\n"

"\t[-z ignore | record]\n\

\t\t\tignore|record unused dynam c dependenci es\n"

"\t[-z initarray=function]\n\

\t\t\tname of function to be appended to the \
init_array\n"

"\t[-z initfirst]\tmark object to indicate that its \

new usr/src/cnd/ sgs/1ibl d/ common/libld. nsg

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

@ MBG_ARG _DETAI L_ZI NT
@ MBG_ARG DETAI L_ZLAZY
@ MSG_ARG DETAI L_ZLD32
@ MBG_ARG DETAI L_ZLD64
@ MBG_ARG DETAI L_ZLO

@ MBG_ARG DETAI L_ZM
@ MBG_ARG DETAI L_ZNDFS
@ MBG_ARG_DETAI L_ZNDEF

@ MSG_ARG DETAI L_ZNDEL
@ MSG_ARG _DETAI L_ZNDLO
@ MSG_ARG_DETAI L_ZNDU
@ MSG_ARG_DETAI L_ZNLD
@ MSG_ARG_DETAI L_ZNPA
@

MSG_ARG DETAI L_ZNV
@ MSG_ARG_DETAI L_ZNOW

@ MSG_ARG DETAI L_ZO
@ MBG_ARG DETAI L_ZPI A

@ MBG_ARG DETAI L_ZRL
@ MBG_ARG DETAI L_ZRREL
@ MBG_ARG DETAI L_ZRS

@ MSG_ARG _DETAI L_ZRSN

@ MBG_ARG DETAI L_ZRSGRP

@ MSG_ARG DETAI L_ZSCAP
@ MBG_ARG DETAI L_ZTARG
@ MSG_ARG DETAI L_ZT

@ MBG_ARG DETAI L_ZTO
@ MBG_ARG DETAI L_ZTW
@ MBG_ARG DETAI L_ZTY

.init section shoul d\n\

\t\t\tbe executed before the .init section of any \
other\n\t\t\tobjects\n"

"\t[-z interpose]\

\tdynam c object is to be an 'interposer’ on direct\n\
\t\t\tbindings\n"

\t[-z lazyload | nol azyl oad]\ n\

\t\t\tenabl e| di sabl e del ayed | oadi ng of shared \
object\n\t\t\tdependenci es\n"

\t[-z Id32=argl,arg2,...]\n\

\t\t\tdefine argurrents appllcable to the \

32-bit class of Id(1)\n"

"\t[-z ld64=argl,arg2,...]\n\

\t\t\tdefine argunments applicable to the \

64-bit class of 1d(1)\n"

"\t[-z loadfltr]\tmark filter as requiring i nmedi ate \
| oadi ng of its\n\

\t\t\tfiltees at runtime\n"

"\t[-z muldefs], [--allownultiple- definition]\n\
\t\t\tall ow mJItlpIy defined synbol s\ n"

"\t[z nodefs]\tall ow undefined synbol references\n"
"\t[-z nodefaul tlib]\n\

\t\t\tmark object to ignore any default library \
search path\n"

"\t[z nodel ete]\tmark object as non-del etabl e\ n"
“\t[-z nodl open]\tmark object as non-dl open()’ abl e\ n"
"\t[-z nodunp]\tnmark object as non-dl dunp()’ abl e\n"
"\t[-z noldynsyni\tdo not add a .SUNWI dynsym secti on\n"

"\t[-z nopartial]\texpand any partially initialized \
synbol s\ n"

"\t[-z noversion]\tdo not record any version sections\n"
"\t[-z noM\tnark obj ect as requiring non-lazy \

bi ndi ng\ n"

"\t[-z origi n]\tnark object as requiring $ORIG N\
processi ng\ n"

"\t[-z preinitarray=function]\n\

\t\t\tnane of function to be appended to the \
.preinit_array\n"

\t[z redl ocsynj\treduce local syms in .syntab to \
a mni mum n"

"\t[-z relaxreloc]\trel ax rules used for relocations \
agai nst COMDAT sections\n"

"\t[-z rescan]\tafter processing all argunents, rescan \
archive list\n\

\t\t\tuntil no further menber extraction occurs\n"

"\t[-z rescan-nowj\ti medi ately rescan archive list \
until\n\

\t\t\tno further menber extraction occurs\n"

"\t[-z rescan-start archives. -z rescan-end],\n\
\t[--start-group archives. ——end—group],

[-(archives.)1\ n\

\t\t\trescan specified archi ve group upon reachi ng\ n\
\t\t\tthe end of the group, until no further\n\
\t\t\tnenber extraction occurs\n"

"\t[-z synbol cap]\tconvert object capabilities to \
synbol capabilities\n"

"\t[-z target=platforni\n\

\t\t\ttarget machine for cross linking\n"

"\t[-z text]\tdisallow out put relocations against \
text\n"

"\t[-z textoff]\tallow out put rel ocations against \
text\n"

"\t[-z textV\arn]\tvvarn if there are relocations \

agai nst text\n"

"\t[-z type=type]\tspecify the type of object \

(exec, knod, reloc, shared)\n"

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

256
257
258
259
260

262
263
264
265
266

268
269
270

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

#endif /* ! codereview */

@ MSG_ARG _DETAI L_ZW\RAP
@ MBG_ARG _DETAI L_ZVER
#

TRANSLATI ON_NOTE - -
#

@ MBG_GRP_| NVALNDX

"\t[-z wap=synbol], [-wap=synbol],
\t\t\twap synbol references\n"
"\t[-z verbose]\t\
generate warnings for suspicious processings\n"

[--wrap=synbol]\ n\

End of USAGE nessage

"file %: group section [%]%: entry %d: \
invalid section index: %l"

Rel ocation processing nessages (sone of these are required to satisfy
do_reloc(), which is conmon code used by cnd/sgs/rtld - nake sure both
nessage files remain consistent).

@ MSG_REL_NOFI T

@ MSG_REL_NONALI GN
@ MBG_REL_NULL

@ MSG_REL_NOTSUP

@ MBG_REL_PI CREDLOC
@ MSG _REL_TLSLE

@ MSG_REL_TLSBND

@ MBG_REL_TLSSTAT
@ MSG_REL_TLSBADSYM
@ MSG_REL_BADTLS

@ MSG_REL_BADGOTBASED
@ MBG_REL_UNKNWSYM

@ MBG_REL_UNSUPSZ

@ MSG_REL_| NVALOFFSET
@ MBG_REL_| NVALRELT
@ MSG_REL_EMPTYSEC

@ MBG_REL_EXTERNSYM

@ MBG_REL_UNEXPREL
@ MBG_REL_UNEXPSYM
@ MSG_REL_SYMDI SC

@ MSG_REL_NOSYMBOL
@ MBG_REL_DI SPREL1

"relocation error: %: file %: synbol %: \

val ue Ox% | x does not fit"

"relocation error: %: file %: synbol ¥%: \

of fset Ox% I x is non-aligned"

"relocation error: file %: section [%]%: \

ski pping null relocation record"

"relocation error: %: file %: section [%]%: \
rel ocation not currently supported"

"relocation error: %: file % synmbol %: \

-z redl ocsym may not be used for pic code"
"relocation error: %: file %: synbol ¥%: \
relocation illegal when building a shared object"
"relocation error: %: file %: synbol %:

bound to: %: relocation illegal when not bound \
to object being created"

"relocation error: %: file %: synbol ¥%: \
relocation illegal when building a static object"
"relocation error: %: file %: synbol %:

bad synmbol type %: synbol type nust be TLS"
"relocation error: %: file %: synbol ¥%: \
relocation illegal for TLS synbol"

"relocation error: %: file %: synbol %: a GOT \
relative relocation nust reference a | ocal synbol"
"relocation error: %: file %: section [%]%: \
attenpt to relocate with respect to unknown \
synmbol %: offset O0x% | x, synmbol index %"
"relocation error: %: file %: synbol %: \

of fset size (% bytes) is not supported"
"relocation error: %: file % section [%] %: \
invalid offset synmbol '%’: offset Ox%I|x"
“relocation error: file %: section [%]%: \
invalid relocation type: Ox%"

"relocation error: %: file %: synbol ¥%: \
attenpted agai nst enpty section [%] %"
“relocation error: %: file %: synbol %: \
external synbolic relocation against non-allocatable \
section %; cannot be processed at runtine:

rel ocation ignored"

"relocation error: %: file %: synbol %: \
unexpected rel ocati on; generic processing perforned"
"relocation error: %: file %: synbol ¥%: \
unexpect ed synbol referenced fromfile %"
"relocation error: %: file %: section [%]%: \
synbol %: synbol has been di scarded with discarded \

section: [%] %"
"relocation error: %: file %: section: [%]%: \
of fset: Ox%I|x: relocation requires reference synbol"

"relocation error: %: file %: synbol ¥%: \
di spl acenent relocation applied to the synbol \
% at Ox% | x: synbol % is a copy rel ocated synbol "

new usr/src/cnmd/ sgs/1ibl d/ common/l1ibld. nmsg

322 @ MSG_REL_UNSUPSI ZE "relocation error: %: file %: section [%]%: \

323 rel ocati on agai nst section synbol unsupported"

325 @ MSG_REL_DI SPREL2 "relocation warning: %: file %: synbol %: \

326 may contain displacenent relocation”

327 @ MSG_REL_DI SPREL3 "rel ocation warning: %: file %: synbol %: \

328 di spl acement relocation applied to the synmbol \

329 %: at Ox% I x: displacenent relocation wll not be \
330 visible in output Inmge"

331 @ MSG_REL_DI SPREL4 "rel ocation warning: %: file %: synbol %: \

332 di spl acenent relocation to be applied to the synbol \
333 %: at Ox% I x: displacenent relocation will be \

334 visible in output Inmge"

335 @ MSG_REL_COPY "rel ocation warning: %: file %: synbol %: \

336 rel ocation bound to a synbol with STV_PROTECTED \

337 visibility"

338 @ MSG_RELI NVSEC "relocation warning: %: file %: section: [%]%: \
339 agai nst suspi ci ous section [%] %; relocation ignored"
340 @ MSG REL_TLSIE "relocation warning: %: file %: synbol %: \

341 rel ocation has restricted use when building a shared \
342 obj ect”

344 @ MSG_REL_SLOPCDATNONAM "rel ocation warning: %: file %: section [%]%: \
345 rel ocation agai nst di scarded COVDAT section [%] %: \
346 redirected to file %"

347 @MSG_REL_SLOPCDATNAM “rel ocation warning: %: file %: section [%] %: \
348 synbol %: relocation against di scarded COVDAT \

349 section [%] %: redirected to file %"

350 @ MSG_REL_SLOPCDATNOSYM "“rel ocation warning: %: file %: section [%]%: \
351 synmbol %: rel ocation against di scarded COVDAT \

352 section [%] %: synbol not found, relocation ignored"
354 @ MSG_REL_NOREG "relocation error: REG STER rel ocation not supported \
355 on target architecture"

357 #

358 # TRANSLATI ON_NOTE

359 # The following 7 nessages are the nmessage to print the

360 # foll owi ng exanpl e nessages.

361 #

362 #Text rel ocation renains ref erenced

363 # agai nst synbol of f set infile

364 #str 0x14 nain. o

365 #printf Ox1lc mai n. o

366 #

367 # The first two lines are the header, and the next nsgid

368 # is the format string for the header.

369 # Tabs and spaces are used for alignnent.

370 # The first and third % are for: "Text relocation remains against synbol"
371 # The second % and fourth % are for: "referenced in file"

372 # The third % is for: "offset"

373 #

374 @MSG REL_REMAIN_FMI_1 "% 40s\t%\n s\ t\t s\t s

375 #

376 # TRANSLATI ON_NOTE

377 # The next two nmsdid make a sentence. So translate:

378 # "Text relocation remin against synbol"

379 # And separate theminto two nsgstr considering the proper

380 # al i gnnment .

381 @MSG REL_RWN | TM 11 "Text rel ocation renains"

382 @MSG REL_RWN | TM 12 "agai nst synbol "

383 @MSG_REL_RWN_I TM 13 "war ni ng: Text relocation renains"”

385 @MSG REL_RWN | T™M 2 "of fset"

387 #

new usr/src/cnd/ sgs/libld/ comon/libld. nsg 7

388
389
390
391
392
393
394
395
396
397

399

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

433
434

436

438
439
440
441
442

444
446
447

448
449

452

TRANSLATI ON_NOTE
The next two nsdid nake a sentence.

B3

So translate:
"referenced in file"
And separate theminto two nsgstr considering the proper
al i gnment .
MSG_REL_RWN | TM 31

#

#

#

@ 5 REL_RWN_| TM "referenced"
@ MSG _REL_RWN_ | TM 32

@

@

"in file"

"% 35s 0x% 8l | x\'t ¥%s"

"rel ocations renmin against allocatable but \
non-witable sections"

MSG_REL_REMAI N_2
MSG_REL_REMAI N_3

Files processing nmessages

@ MSG_FI L_MJLI NC_1 file %: attenpted nultiple inclusion of file"

@ MSG_FI L_MULI NC 2 file %: linked to %: attenpted nmultiple inclusion\
of file"

@ MSG_FI L_SO NSTAT "input of shared object '%’ in static node"

@ MSG_FI L_| NVALSEC file %: section [Y] % has invalid type %"

@ MSG_FI L_NOTFOUND file %: required by %, not found"

@ MSG_FI L_MALSTR "file %: section [%]%: nalforned string table, \
initial or final byte"

@ MSG_FI L_PTHTOLONG "' %/ %’ pathnanme too |ong"

@ MSG_FI L_EXCLUDE "file %: section [%] % contains both SHF_EXCLUDE and \
SHF_ALLOC flags: SHF_EXCLUDE ignored"

@ MSG_FI L_| NTERRUPT "file U%: creation interrupted: %"

@ MSG_FI L_I NVRELOC1 "file %: section [%] %: relocations can not be \
appl i ed agai nst section [%] %"

@ MSG_FI L_I NVSHI NFO "file %: section [%] %: has invalid sh_info: %Id"

@ MSG_FI L_I NVSHLI NK "file %: section [%] %: has invalid sh_link: %1Id"

@MSG_FIL_I NVSHENTSI ZE "file %: section [%] %: has invalid sh_entsize: %Id"

@ MBG_FI L_NOSTRTABLE "file %: section [%]%: synbol[%]: specifies string \
table of fset Ox%I|x: no string table is avail able"

@ MSG_FI L_EXCSTRTABLE "file %: section [%] %: synbol [%] :

specifies string \
table offset Ox% | x: exceeds string table %: \

size Ox% I x"

@ MSG_FI L_NONAMESYM "file %: section [%]%: synbol [%l]: gl obal synbol has
no namne"

@ MSG_FI L_UNKCAP "file %: section [%]%: unknown capability tag: %"

@ MSG_FI L_BADSF1 "file %: section [%]%: unknown software \
capabilities: Ox%Ix; ignored"

@ MSG_FI L_I NADDR32SF1 "file %: section [%] ¥%: software capability ADDR32: is

ineffective when building 32-bit object; ignored"
"file %: section [%]%: software capability ADDR32: \
requires executable be built with ADDR32 capability"

@ MBG_FI L_EXADDR32SF1

@ MSG_FI L_BADORDREF "file %: section [%] %: contains illegal reference \

to discarded section: [%]%"
Recording nane conflicts
@ MSG_REC_OPTCNFLT "recording nanme conflict: file '%' and % provide \
identical dependency nanes: %"
"recording name conflict: file "% and file % \
provi de identical dependency names: % %"
"(possible multiple inclusion of the same file)"

@ MSG_REC_OBJCNFLT

@ MSG_REC_CNFLTHI NT

System call nessages
@ MSG_SYS_OPEN

@ MSG_SYS_UNLI NK

@ MBG_SYS_MVAPANON
@ MBG_SYS_MALLCC

"file %: open failed: %"
"file %: unlink failed: %"
"mrap anon failed: %"

"mal loc failed: %"

Messages rel ated to platform support

new usr/src/cnd/ sgs/1i bl d/ common/l1ibld. nsg

454

457
459

461
462

464

466
467

469
470

472

474
475

477
478

480
481
482

484

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

510
511
512
513
514
515
516
517
518
519

@ MSG_TARG_UNSUPPORTED "unsupported ELF machine type: %"

ELF processing nessages

@ MSG_ELF_LI BELF "libelf: version not supported: %"
@ MSG_ELF_ARVEM "file %: unable to | ocate archive nenber;\n\t\
of f set =0, synbol =%"

@ MBG_ELF_ARSYM
@ MBG_ELF_VERSYM

"file % ignored: unable to | ocate archive synmbol table"
"file %: version synbol section entry msmatch:\n\t\
(section [%] % entries=%l; section [%] % entries=%l)"
@ MSG_ELF_NOGROUPSECT "file %: section [%]%: SHF_GROUP flag set,
correspondi ng SHT_GROUP section found"

but no \

Section processing errors

@ MSG_SCN_NONALLOC " : non-allocatable section '%’' directed to a \
| oadabl e segnment: %"

@ MSG_SCN_MULTI COWDAT "file %: section [%]%: cannot be susceptible to nmulti
COVDAT nechani sns: %"

@ MSG_SCN_DWFOVRFLW "Os: section %: encoded DWARF data exceeds \
section size"

@ MSG_SCN_DWFBADENC "U: section %: invalid DWARF encodi ng: 9%#x"

Synbol processing errors

@ MSG_SYM_NOSECDEF "synbol "%’ in file % has no section definition"
n fi

@ MSG_SYM | NVSEC "symbol %’ in file % associated with invalid \
section[%|d]"
@ MSG_SYM TLS "symbol "%’ in file % (STT TLS), is defined \

in a non-SHF_TLS section"
"synbol "%’ in file Y%:

synbol (address %# | x,

of containing section"
@ MSG_SYM BADADDR_ROTXT "synbol "%’ in file Y%:

@ MSG_SYM_BADADDR section [%] %: size % Ix: \

size %t |1 x) lies outside \

readonly text section \

[%] %: size % |x: synbol (address %l 1x, \
size %l 1 x) lies outside of containing section”
@ MSG_SYM MULDEF "symbol %’ is nultiply-defined:"
@ MSG_SYM CONFVI S "synmbol "%’ has conflicting visibilities:"
@ MSG_SYM DI FFTYPE "synbol ' %’ has differing types:"
@ MSG_SYM DI FFATTR "synbol ' %’ has differing %:\n\
\t(file % value=0x%1x; file % val ue=0x%1x);"
@ MSG_SYM FI LETYPES "\t(file % type=%; file % type=%);"
@ MSG_SYM VI STYPES "\t(file % visibility=%; file % visibility=%);"
@ MSG_SYM DEFTAKEN "\t% definition taken"
@ MBG_SYM DEFUPDATE "\t% definition taken and updated with | arger size"
@ MBG_SYM _LARGER "\tlargest val ue applied"
@ MSG_SYM TENTERR "\ttentative synbol cannot override defined symbol \
of snaller size"

@ MBG_SYM | NVSHNDX
@ MBG_SYM NONGLOB

@ MBG_SYM RESERVE
@ MBG_SYM_NOTNULL

"synbol % has invalid section index; \
ignored:\n\t(file % value=%);"

"gl obal synbol % has non—gl obal binding:\n\
\t(file % val ue=%);
"reserved synbol ' %’
"undefi ned synbol ' %’
fromfile %"
"section %: synbol '%’ and synbol ’'%’ have the \
sane address: %l | x: renove duplicate with \
NOSORTSYM napfile directive"

already defined in file %"
wi th non-zero val ue encountered \

@ MBG_SYM_DUPSORTADDR

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

521 @ MSG_PSYM | NVM NFOL "file %: section [%]%: entry[%] has invalid m.info:
522 0x% | x for synbol index"

523 @ MSG_PSYM_| NVM NFQ2 "file %: section [%] %: entry[%] has invalid m.info:
524 0x% | x for size"

525 @ MSG_PSYM | NVMREPEAT “"file ¥%: section [%] %: entry[%l] has invalid mrepeat
526 0x% | x"

527 @ MSG_PSYM CANNOTEXPND "file %: section [%]%: entry[%l] can not be expanded:
528 associ ated synbol size is unknown %"

529 @ MSG_PSYM NOSTATI C "and partial initialization cannot be deferred to \
530 a static object”

531 @ MSG_MOVE_OVERLAP "file %: section [%]%: synbol ' %’ overlappi ng nove \
532 initialization: start=0x%1x, |ength=0x%1Ix: \

533 start=0x% I x, |ength=0x% | x"

534 @ MSG_PSYM EXPREASONL "output file is static object"

535 @ MSG_PSYM EXPREASON2 "-z nopartial option in effect”

536 @ MSG_PSYM EXPREASON3 "move Infrastructure size is greater than nove data"
538 #

539 # Support library failures

540 #

541 @ MSG_SUP_NOLQAD "dl open() of support library (%) failed with \

542 error: %"

543 @ MSG_SUP_BADVERSI ON "initialization of support library (%) failed with\
544 bad version. supported: %l returned: %"

547 #

548 # TRANSLATI ON_NOTE

549 # The fol l owing 7 nmessages are the nmessage to print the

550 # foll owi ng exanpl e nessages.

551 #

552 #Undefi ned first referenced

553 # synbol infile

554 #inquire hal t _hol d. o

555 #

556 @ MSG_SYM FMTI_UNDEF "os\t\t\t Us\

55174 \n % \t\t\t %s"

559 #

560 # TRANSLATI ON_NOTE

561 # The next two nmsdid make a sentence. So translate:

562 # "Undefi ned symbol "

563 # And separate theminto two nmsgstr considering the proper

564 # al i gnnment .

565 @ MSG_SYM UNDEF_I TM 11 " Undef i ned"

566 @ MSG . SYM UNDEF | TM 12 "synbol "

567 #

568 # TRANSLATI ON_NOTE

569 # The next two nmedid make a sentence. So translate:

570 # "first referenced in file"

571 # And separate theminto two nmsgstr considering the proper

572 # al i gnment .

573 @MSG_SYM UNDEF_ITM 21 “"first referenced"

574 @MSG_SYM UNDEF_| TM 22 "in file"

575 #

577 @ MSG_SYM_UND_UNDEF "% 35s %"

578 @ MSG_SYM_UND_NOVER "% 35s % (synmbol has no version assigned)"

579 @ MSG_SYM UND_| MPL "% 35s % (synbol belongs to inplicit dependency %)"
580 @ MSG_SYM UND_NOTA "% 35s % (synbol belongs to unavail able version % \
581 (%))"

582 @ MSG_SYM UND _BNDLOCAL "% 35s % (synbol scope specifies |ocal binding)"
584 @ MBG_SYM ENTRY "entry point"

585 @ MSG_SYM UNDEF "% synmbol '%’' is undefined"

new usr/src/cnd/ sgs/libld/ comon/libld. nsg 10
586 @ MSG_SYM EXTERN "% synbol '%’ is undefined (synbol belongs to \
587 dependency %)"
588 @ MSG_SYM NOCRT "synmbol '%’ not found, but % section exists - \
589 possible link-edit wthout using the conpiler driver"

591

593
594
595

597
598
599
600
601

603
604
605
606
607

610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

628

630
631
632
633
634
635
636

638
639
640
641

643

645
646
647
648
649
650
651

Qutput file update nmessages

@ M5G_UPD_NOREADSEG
@ MBG_UPD_NORDWRSEG
@ MSG_UPD_NOSEG

to 0"
to 0"

etext’

"No read-only segnents found. _
' _edata’

"No read-wite segrments found.
"Setting 'end’ and ' _end’ to 0"

Setting ’
Setting

@ MSG_UPD_SEGOVERLAP "os: segnment address overlap;\n\
\tprevious segnent ending at address 0x% | x overl aps\n\
\tuser defined segnment %’ starting at address Ox%I| x"
@ MSG_UPD_LARGSI ZE "s: segment % cal cul ated size Ox% I x\ n\
\tis larger than user-defined size Ox%]I x"
MSG_UPD_NOBI TS "NOBI TS section found before end of initialized data"

"First segnent has type %, PT_LOAD required: %"
"file %; section [%] % and file %; section [%] % \
have inconpatibile attributes and cannot

be nmerged into a single output section”

@ > UPD |
@ MSG_SEG_FI RNOTLOAD
@ MBG_UPD_MULEHFRAVE

Version processing nmessages

@ MSG_VER_H GHER "file %: version revision % is higher than \
expected %d"
@ MSG_VER_NCEXI ST "file %: version '%’ does not exist:\n\

\trequired by file %"
"version ' %’ undefined,
\trequired by file %"
"file %: version '%’
\trequired by file %"
"version synbol '%’' already defined in file %"
@ MSG_VER_| NVALNDX "version synbol '%’' fromfile % has an invalid \
version index (%)"
@ MSG_VER_ADDVERS "unused $ADDVERS specification fromfile "%’ \
for object '%’\nversion(s):"
@ MSG_VER_ADDVER "\tos"
@ MSG_VER_CYCLI C "foll owi ng versions generate cyclic dependency:"

@ MSG_VER_UNDEF referenced by version ' %’ :\n\

@ MSG_VER_UNAVAI L i s unavail abl e:\ n\

@ MSG_VER_DEFI NED

Capabilities nessages

@ MBG_CAP_MULDEF
@ MBG_CAP_MULDEFSYMB
@ MBG_CAP_REDUNDANT

"capabilities synbol %’
"\t(file % synmbol "%’ ; file % synbol "9%’');"
"file %: section [%] ¥%: synbol capabilities \
redundant, as object capabilities are nore restrictive"
"no gl obal synmbols have been found that are associated \
with capabilities identified relocatable objects: \
-z synbol cap has no effect”

has multiply-defined menbers:"

@ MBG_CAP_NOSYMSFOUND

@ MSG_CAPI NFO_I NVALSYM "file %: capabilities info section [%]%: index %l: \
fam |y menber synbol "%’ : invalid"
@ MSG_CAPI NFO_| NVALLEAD “"file %: capabilities info section [%]%: index %: \

famly lead synbol '%’: invalid synbol index %"

Basic strings

@ NMBG_STR_ALI GNVENTS
@ M5G_STR_COVVAND

@ M5G_STR_TLSREL

@ MSG_STR_SI ZES

@ MBG_STR_UNKNOWN

@

@

"al i gnment s"

"(comrand |ine)"

"(internal TLS relocation requirenent)"
"sizes"

" <unknown>"

"% (section)"

"% (merged string section)"

MBG_STR_SECTI ON
MSG_STR_SECTI ON_MSTR

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

703
704
705
706
707
708
709
710
711
712
713
714
715

717

TRANSLATI ON_NOTE

G ELF_BEG N
G_ELF_CNTL
G_ELF_GETARHDR
G_ELF_GETARSYM
G_ELF_GETDATA
G_ELF_GETEHDR
G_ELF_GETPHDR
G_ELF_GETSCN
G_ELF_GETSHDR
G_ELF_NEMORY
G_ELF_NDXSCN
G_ELF_NEWDATA
G_ELF_NEWEHDR
G_ELF_NEWSCN
G_ELF_NEWPHDR
G_ELF_STRPTR
G_ELF_UPDATE

5%55555555%5555555

5 REJ_MACH
 REJ_CLASS
 REJ_DATA

S REJ_TYPE

S REJ_BADFLAG
S REJ_M SFLAG
" REJ_VERSI ON
S REJ_HAL

S REJ_US3
G_REJ_STR
MBG_REJ_UNKFI LE
@ MBG_REJ_UNKCAP
@ MBG_REJ_HWCAP_1

@ MBG_REJ_SFCAP_1
@ MBG_REJ_NMACHCAP
@ MSG_REJ_PLATCAP
@ MBG_REJ_HWCAP_2

@ MSG_REJ_ARCHI VE
@ MBG_REJ_KMOD

\©,6,0,0,0,6,6,0,60

00000000000 0000000000 * ¥ * ¥*
RRRRRDRD R D

G_ELF_SWAP_W\RI NAGE

The el f_ function name represents a nan page reference and shoul d not
be transl ated.

%: el f_begin"

%: elf_cntl"

%: elf_getarhdr”

%: el f_getarsynt

%: el f_getdata"

%: el f_getehdr”

%: el f_getphdr"”

%: el f_getscn: scnndx: %"
%: elf_getshdr"”

%: el f_menory"

%: el f_ndxscn"

%: el f_newdata"

%: el f_newehdr"

%: el f_newscn"

%: el f_newphdr"

%: elf_strptr”

%: el f_update"”

%: _elf_swap_winage"

OCODDDDDDDD®DDD®DDMDMDD

%: wong ELF machine type: %"

%: wong ELF class: %"

%: wong ELF data format: %"

%: bad ELF type: %"

%: bad ELF flags val ue: %"

%: msmatched ELF flags val ue: %"

%: msmatched ELF/lib version: %"

%: HAL Rl extensions required"

%: Sun U traSPARC I || extensions required"
% ¥s"

%: unknown file type"

e=%; unknown capability: %"

"file %: hardware capability (CA _SUNWHW1) \
unsupported: %"

"file %: software capability (CA_SUNWSF 1) \
unsupported: %"

"file %: machine capability (CA_SUNW MACH) \
unsupported: %"

"file %s: platformcapab|llty(C‘A SUNW PLAT) \
unsupported: %"

"file %: hardware capability (CA _SUNWHW2) \
unsupported: %"

"file %: invalid archive use"

"file %: kernel nodules can't be link-edit input"

OODOD®D®D®D®DDMDD

#endi T /*7! codereview */

Qui dance nessages
@ M5G_GUI DE_SUMVARY
@ MSG_GUI DE_DEFS

@ MSG_GUI DE_DI RECT

@ MBG_GUI DE_LAZYLOAD

@ MBG_GUI DE_MAPFI LE
@ MBG_GUI DE_TEXT

@ MBG_GUI DE_UNUSED
@ MSG_GUI DE_KMOD

#endi T /* | codereview

@_END_

"see 1 d(1) -z guidance for nore information"

"-z defs option reconmended for shared objects"
-B direct or -z direct option reconmended before \
first dependency"

"-z lazyl oad option recommended before \
first dependency"

"version 2 mapfile syntax recommended: %"
"position independent (PIC) code recommended for \
shared obj ects”

"removal of unused dependency recommended: %"
"use -z type=knmpd, not -r -dy"

*

/

11

new usr/src/cnd/ sgs/1i bl d/ common/1i bl d. nsg

720
721

723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

757
758
759
760
761
762
763
764

766
767

769

780

782
783

The followi ng strings represent reserved nanes.
#is via the MSG ORI Q) nacro, and thus translations are not
@ MSG_STR_EOF " <eof >"

@ MSG_STR_ERROR "<error>"
@ MSG_STR_EMPTY "

@ M5G_QSTR_BANG e

@ MSG_STR_COLON v

@ MSG_QSTR_COLON

@ MSG_QSTR_SEM COLON

@ M5G_QSTR_EQUAL =

@ MSG_QSTR_PLUSEQ R

@ MSG_QSTR_M NUSEQ o=t

@ MSG_QSTR_ATSI GN mar

@ M5G_QSTR_DASH ot

@ MSG_QSTR_LEFTBKT R

@ MSG_QSTR_RI GHTBKT Ty

@ MSG_QSTR_PI PE e

@ M5G_QSTR_STAR vxr

@ M5G_STR_DOT v

@ MSG_STR_SLASH

@ MSG_STR_COWA .

@ MSG_STR_DYNAM C "(. dynam c)"
@MG_STR ORIG N "$ORI G

@ MBG_STR_MACHI NE " SMACHI NE
@ MSG_STR_PLATFORM " $PLATFORM'
@ MSG_STR_| SALI ST "$1 SALI ST"
@ MSG_STR_OSNAVE " $OSNAVE

@ MBG_STR_OSREL " $OSREL"

@ MSG_STR_UU REAL_U "__real _

@ MSG_STR_UU WRAP_U "__wap_"
@ MSG_STR_UELF32 " _ELF32"

@ MSG_STR_UELF64 " “ELF64"

@ MSG_STR_USPARC "“sparc"

@ MSG_STR_UX86 " _x86"

@ MSG_STR_TRUE "true"

@ MSG_STR _CDI R_ADD " $add"

@ MSG_STR _CDI R_CLEAR "$cl ear”

@ MSG_STR_CDI R_ERROR "$error"

@ MSG_STR_CDI R_MFVER $rrapf| | e_version"
@MG STR CDIR I F "SI

@ MSG_STR CDI R ELIF "$e||f"

@ MSG_STR_CDI R_ELSE "$el se”

@ NBG STR CDl R ENDI F "$endi "

@ MSG_STR_GROUP " GROUP"

@ MSG_STR_SUNW COVDAT " SUNW CONVDAT"
@ MSG_FMT_ARVEM "Ys(Ys) "

@ MSG_FMI_COLPATH "Us: U8

@ MSG_FMI_SYMNAM 2

@ MSG_FMT_NULLSYMNAM " s ve] "

@ MSG_FMT_STRCAT "YsYs"

@ MSG_PTH_RTLD "/usr/lib/ld.so.1"

@ MSG_SUNW OST_SGS " SUNW OST_SGS"
Section strings

@ MSG_SCN_BSS " bss"

@ MSG_SCN_DATA ". data"

Reference to these

12

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

838
839
840

842
843
844
845
846
847
848
849

G_SCN_DEBUG_| NFO
SCN_DYNSYMSORT
SCN_DYNTLSSORT
SCN_DYNSTR
SCN_DYNSYM
SCN_DYNSYM_SHNDX

S
g
2

2
-
;
<
<
(2]
a5
&
X

2
Q
[7)]
b
i
w)

g

GNU_LI NKONCE

z>
ks

NIT
NI TARRAY
| NTERP

IQI%I%I%IQIQIQIQIQIQIQI

2
-
o)
[)]
]

CN_LDATA
CN_LI NE

g
:

2
0
=
—

CN_PREI NI TARRAY
CN_REL

CN_RELA

2
:
>

CN_SBSS
CN_SBSS2
CN_SDATA
CN_SDATA2
CN_SHSTRTAB
CN_STAB
CN_STABEXCL
CN_STRTAB

2

CN_SUNWRELCC
CN_SUNWEYM NFO
CN_SUNWERSI ON
CN_SUNVWERSYM
CN_SUNWCAP
CN_SUNWCAPI NFO
CN_SUNWCAPCHAI N

2
2
3
.1

CN_SYMI'AB_SHNDX
CN_TBSS

5 SCN_TDATA

5 SCN_TEXT

NNVNNVNNVNNVNNDNNVNNUNNNNUNNWNWUNWNWUNWNWUNWNNUNNNNNY

SYM _FI NI ARRAY
5 SYM_| NI TARRAY
5 SYM_PREI NI TARRAY

@%éﬁ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%%%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ

", comrent "

". debug"”

. debug_i nfo"

. dynam c"

" . SUNW dynsynsort "
". SUNW dynt | ssort"
".dynstr"

". dynsynf

. dynsym shndx"

". SUNW I dynsyni

" . SUNW | dynsym shndx"

. ex_shared"

.exceptlon ranges”

" excl

"ofini "

fini_array”

.got"

".gnu.linkonce."

". hash"

.index"

Linit"

“.init_array"”

".interp"

". 1 bss"

".ldata"

" line"

".lrodata"
.plt"

".prelnlt _array"

“orel”

".rela"

.rodat a"

".sdat a2"
".shstrtab"
".stab"
".stab.exclstr"
".strtab"

" . SUNW nove"

". SUNW el oc"

" . SUNW symi nf 0"
". SUNW ver si on"
". SUNW ver synt
" . SUNW cap"

" . SUNW capi nf 0"
". SUNW capchai n"
".syntab"
".syntab_shndx"
".tbss"
".tdata"
".text"

“finiarray"
"initarray"
"preinitarray"”

.ctors"

.dtors"
".eh_frame"
".eh_frame_hdr"
".gcc_except _table"

13

new usr/src/cnd/ sgs/1i bl d/ common/1i bl d. nsg

850 @ MSG_SCN_JCR

852 # Segment nanes for segnents referenced by entrance criteria

“jer”

854 @ MSG_ENT_BSS "bss"

855 @ MSG_ENT_DATA "dat a"

856 @ MSG_ENT_EXTRA "extra"

857 @ MSG_ENT_LDATA "| dat a"

858 @ MSG_ENT_LRODATA "I rodat a"

859 @ MSG_ENT_NOTE "not e"

860 @ MSG_ENT_TEXT "text"

862 # Synbol nanes

864 @ MSG_SYM START "_start

865 @ MSG_SYM MAI N "mai n"

867 @ MG _SYM FINI _U ' fini"

868 @MSG SYM INIT_U _init"

869 @ MSG_SYM DYNAM C "DYNAM C'

870 @ MSG_SYM DYNAM C_U "_DYNAM C'

871 @ MSG_SYM EDATA "edat a"

872 @ MSG_SYM EDATA U '_edata”

873 @ MSG_SYM END "end"

874 @ MSG_SYM END U " _end"

875 @ MSG_SYM ETEXT "etext"

876 @ MSG_SYM ETEXT_U " _etext”

877 @ MBG_SYM GOFTBL " GLOBAL_OFFSET_TABLE '
878 @ MSG_SYM GOFTBL_U " _GLOBAL_OFFSET_TABLE "
879 @ MSG_SYM PLKTBL™ " PROCEDURE_L| NKAGE_TABLE_"
880 @ MBG_SYM PLKTBL_U " _PROCEDURE_LI| NKAGE_TABLE "
881 @ MBG_SYM TLSGETADDR U tls_get_addr"
882 @ MSG_SYM TLSGETADDR UU " tls_get _addr"
884 @ MSG_SYM L_END "END '

885 @MSG_SYM L_END U END "

886 @ MSG_SYM L_START " START '

887 @ MSG_SYM L_START_U " _START_"

889 @ MSG_SYM SECBOUND_START " __start

890 @ MSG_SYM SECBOUND_STOP " __stop_"

892 #endif /* | codereview */

893 # Support functions

895 @ MSG_SUP_VERSI ON "I d_version"

896 @ MSG_SUP_| NPUT_DONE "1 d_i nput _done"
898 @ MSG_SUP_START_64 "l d_start 64"

899 @ MSG_SUP_ATEXI T_64 "1 d_atexi t 64"

900 @ MSG_SUP_CPEN 64 "1 d_open64"

901 @ MBG_SUP_FI LE_64 "ld_fil e64"

902 @ MSG_SUP_I NSEC 64 "1 d_i nput _section64"
903 @ MSG_SUP_SEC 64 "1 d_section64"
905 @ MSG_SUP_START "l d_start

906 @ MBG_SUP_ATEXI T "1 d_atexit

907 @ MSG_SUP_OPEN "1 d_open"

908 @ MSG_SUP_FI LE “ld_file"

909 @ MSG_SUP_I NSEC "1 d_i nput _ sectl on"
910 @ MSG_SUP_SEC "l d_section"

912 #

913 # Message previously in 'Id

914 #

915 #

14

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

916
918

920
921
922

924

926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

955
956
957
958
959
960

963
964

966
967
968
969
970
971
972
973
974
975
976
977
254
978
979
256

@ _START_

Syst emerror nessages
@ MSG_SYS_STAT “fil :
@ MSG_SYS_READ “file 9%:
@ MBG_SYS_NOTREG fil

stat failed: %"

read failed: %"

is not aregular file"
Argunent processing nessages

@ MSG_ARG_DY_| NCOWP
@ MSG_MARG_DY_I NCOWP
@ MSG_ARG_ST_| NCOWP
@ MSG_MARG_ST_ | NCOWP

@ MSG_MARG_ST_ONLYAVL
@ MSG_ARG_I NCOVP

"% option is inconpatible with building a dynamc \
execut abl e"

"% is inconpatible with building a dynamc \

execut abl e”

"% option is inconpatible with building a static \
object (-dn, -r, --relocatable)"

"% is inconpatible with building a static \

object (-dn, -r, --relocatable)"

"% is only avail abl e when building a shared object"
"option % and % are inconpatible"

Messages used to refer to options where there is nore than
one nane accepted.
@ MSG_MARG_AR_GRPS "archive rescan groups \

-z rescan-start, -(, --start-group)"
"archive rescan group end option \

(-z rescan-end, -), --end-group)"
"archive rescan group start option \
(-z rescan-start, -(, --start-group)”
"entry point option (-e, --entry)"

@ MSG_MARG AR GRP_END
@ MSG_MARG_AR_GRP_START

@ MSG_MARG FI LTER AUX "auxiliary filter option (-f, --auxiliary)"
@ MSG_MARG _FI LTER "fiIter option (-F, --filter)"
@ MSG_MARG_QUTFI LE "out put object option (-0, --output)"
@ MSG_MARG_REL "rel ocatabl e Obj ect option (-r, --relocatable, \
-z type=reloc)"
@ MSG_MARG_REL "rel ocatabl e object option (-r, --relocatable)”
@ M5G_MARG_RPATH "runpath option (-R -rpath)”
@ MBSG_MARG_SO "shared object option (-G -shared, -z type=shared)"
@ MSG_MARG_SO "shared object option (-G -shared)"

15

\

@ MSG_MARG_| NCOWP "% and % are inconpatible"
@ MS5G_ARG_MI'ONCE "option % appears nore than once, first setting taken"
@ MSG_MARG_MTONCE "o appears nore than once, first setti ng taken"
@ MSG_ARG T LLEGAL "option % has illegal argunent ’'%’
@ MSG_ARG_YP "option -YP and -Y% may not be specified concurrently
@ MSG_ARG _STRI P "% specified with %; only debugging \
information stripped”
@ MSG_ARG_NOFI LES "no files on input command |ine"
@ MSG_ARG_NOFLTR "option % is only neaningful when building a filter"
@ MSG_ARG_NODEFLI B "the default library search path has been suppressed,
but no runpaths have been specified via %"
@ MSG_ARG_NCENTRY "entry point synbol '%’ is undefined"
@ MSG_ARG _UNSUPPORTED "option % is no |onger supported; ignored"
@ MSG_MARG _ONLY "option % can only be used with a %"
@ MBG_ARG_UNKNOWN "unrecogni zed option '-%’"
@ MSG_ARG _LONG UNKNOMWN "unr ecogni zed option "%’ "
@ MSG_ARG_USEHELP "use the -z help option for usage information"
@ MSG_ARG_FLAGS "flags processing errors”
@ MSG_ARG FI LES "file processing errors. No output witten to %"
@ MSG_ARG_SYM WARN "synbol referencing errors”
@ MS5G_ARG_SYM FATAL "symbol referencing errors. No output witten to %"
@ MSG_ARG_AR GRP_OLAP "% cannot be nested"
@ MSG_ARG_AR_GRP_BAD "% used w thout corresponding %"

new usr/src/cnd/ sgs/libld/ comon/libld. nsg 16
980 @ MSG_MARG_SONAME “soname option (-h, --sonane)"
981 @ MBG_MARG_STRI P strlp optlon(s, --strip-all)"

982
983

985

987
988

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

1013
1014

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

1031
1032

@ MSG_MARG _TYI
#endif /* ! c

Entrance cr

@ MSG_ENT_VAP_
@ MBG_ENT_MAP_

The next ne

and (new di

HEHHFEHEE QO QOO HHFH U I FH W IR H

3k
<
3
e

#vari abl el

I+

@ MBG_ENT_MJL_
@ MBG_ENT_MUL_

#

TRANSLATI ON_

1033 #

1034
1035 #
1036
1037
1038
1039

#synbol

@ MSG_ENT_MUL_
@ MSG_ENT_MUL_
@ MBG_ENT_MUL_
@

MSG_ENT_MUL_

1041 #

1042

TRANSLATI ON_

1043 #

1044

@ MBG_ENT_MUL_

TRANSLATI ON_

In Clocale,

PE_KMOD
oder evi ew */

"-z type=knod"

iteria messages

FMI_TIL_1 "\t\t%\n\n"
TITCE_1~ "LINK EDI TOR MEMORY MAP"

NOTE -- Entry nmap header

ssage is a format string for a title. The title is conposed of

two lines. In Clocale, it would | ook like:
out put i nput new
section section di spl acenent si ze
The \t characters are used for alignment. (output section), (input section),

spl acenent) have to be aligned.

MSG ENT_MAP_FMI_TIL_ 2 "\n%\t\t%\t\t%\n%\t\t %\ t\t %\t %S\ n\ n"
MSG ENT_MAP_FMI_TIL 3 "\n%\t\t%\t\t %\ nd%s\t\t%\t\t %\ t\t %\ n\n"
MSG_ENT_| TM_OUTPUT "out put "

MBG_ENT_| TM_I| NPUT i nput "

MSG_ENT_| TM_NEW "new'

MBG_ENT_| TM_SECTI ON "section"

MSG_ENT_| TM_DI SPMNT "d| spI acenent "

MSG_ENT_| TM_SI ZE "size"

MSG_ENT_| TM VI RTUAL "virtual "

MSG_ENT_| TM_ADDRESS "addr ess"

MSG ENT_MAP_ENTRY_1 "% 8.8s\t\t\t%08. 2l | x\t %98. 2| | x\ n"
MBG_ENT_MAP_ENTRY_2 "\t\t%8.8s\t%08. 21 | x\t %08. 2| | x %\ n"
TRANSLATI ON_NOTE -- nul tiple defined synbol table header

an exanpl e output is:

MULTI PLY DEFI NED SYMBOLS

definition used al so defined in

nai n. o
./libfred. so
FMI_TIL_O "\n\n\t\t%\n\n\n"
TIL_O "MULTI PLY DEFI NED SYMBOLS"

NOTE -- This is the format string for:

definition used al so defined in
FMI_TIL_1 "9%\t\t\t\t %

I TM.SYM "synbol "

| TM_DEF_0 "definition used"
| TM DEF_1 "al so defined in"

%\ n\ n"

NOTE -- This is the format string for the second item

ENTRY_1 "% 35s ¥%s\n"

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

1046
1047
1048
1049

1051
1052
1053
1054

1056

1058
1059
1060

1063

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096

1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111

#

TRANSLATI ON_NOTE -- This is the format string for the third item

#
@ MSG_ENT_MUL_ENTRY_2

@ MSG_ENT_NOSEC 1
@ MSG_ENT_NOSEC 2

Library nessages

@DNBG LI B_NOTFOUND
@ MBG_LI B_MALFORM
@ MSG_LI B_BADYP

AN AN AR AR AR A7 AN

"mapfile:

% segnent: section '%’ does not ap

in mapfile specified input file(s)"

"mapfile:

% segment: section '%’ does not ap

in any input file"

"library

-1%: not found"

"LD_LI BRARY_PATH nul f or ned"
"-YP library path nal forned"

pear \

pear \

Mapfile processing nmessages

@ MSG_MAP_BADAUTORED "Os: %Ilu: auto-reduction ('*’) can only be used in \
hi dden/l ocal, or elimnate scope”

@ MSG_MAP_BADFLAG "U%: %I|u: badly forned section flags "% "

@ MSG_MAP_BADBNANVE "U: %I u: basenane cannot contain path \
separator ('/'): %"

@ MSG_MAP_BADONAME "%: %] u: object name cannot contain path \
separator ('/'): 9"

@ MSG_MAP_REDEFATT "Us: %Wlu: redefining % attribute for "% "

@ MSG_MAP_PREMEOF "Os: %Ilu: premature EOF"

@ MSG_MAP_| LLCHAR "%: %lu: illegal character '\\%30 "

@ MSG_MAP_MALFORM "%: %Ilu: malforned entry”

@ MBG_MAP_NONLOAD "Us: %lu: % not allowed on non-LOAD segnents"

@ MBG_MAP_NOSTACK1 "Us: %Wlu: % not allowed on STACK segnent"

@ MSG_MAP_MOREONCE "Us: %Wlu: % set nore than once on sane |ine"

@ MSG_MAP_NOTERM "o: % Ilu: unterminated quoted string: %"

@ MSG_MAP_SECI NSEG "Us: %Ilu: section within segment ordering done on \
a non-exi stent segnment ' %’

@ MSG_MAP_UNEXINHERI T "%: % | u: unnaned version cannot inherit from other \
versions: %"

@ MSG_MAP_UNEXTOK "O: % | u: unexpected occurrence of 9%’ token"

@ MSG_MAP_SEGEMPLOAD "Os: %Ilu: enpty segnent nust be of type LOAD or NULL"

@ MSG_NMAP_SEGEMPEXE "%: %Ilu: a LOAD enpty segnent definition is only \
al | oned when creating a dynani c executabl e"

@ MSG_MAP_SEGEMPATT "U%: %Ilu: a LOAD enpty segnent nust have an address \
and size"

@ MSG_MAP_SEGEMPNOATT "% : %Il u: a NULL enpty segnment nust not have an \
address or size"

@ MSG_MAP_SEGEMPSEC "Os: %Ilu: enpty segnent can not have sections \
assigned to it"

@ MSG_MAP_SEGEMNOPERM "%s: %1 u: enpty segnent nust not have \
p_flags set: Ox%"

@ MSG_MAP_CNTADDRORDER " %: %1 u: segment cannot have an explicit address \
and al so be in the SEGVENT_ORDER |ist: %"

@ MSG_MAP_CNTDI SSEG "U%: %Il u: segment cannot be disabled: %"

@ MSG_MAP_DUPNANMENT "U: %Il u: cannot redefine entrance criteria: %"

@ MSG_MAP_DUPORDSEG "Os: %Wlu: segnent is already in % list: %"

@ MSG_MAP_DUP_OS_ORD "9%: %Ilu: section is already in OS_ORDER list: %"

@ MSG_MAP_DUP_| S ORD "U%: %Ilu: entrance criteriais already in\
IS ORDER |ist: %"

@ MSG_MAP_UNKENT "9%: %1l u: unknown entrance criteria \
(ASSI GN_SECTION) : %"

@ MSG_MAP_UNKSEG "9: % | u: unknown segnent: %"

@ MG _ NAP UNKSYNMDEF "U: % | u: unknown synbol definition: %"

@ MSG_MAP_UNKSEGTYP "U%: % | u: unknown internal segnent type %"

@ MSG_MAP_UNKSOTYP "9%: %1 u: unknown shared object type: %"

17

new usr/src/cnd/ sgs/1i bl d/ common/1i bl d. nsg

1112
1113
1114

1116
1117
1118
1119
1120
1121

1123
1124
1125

1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151

1153
1154
1155
1156

1158
1159
1160
1161
1162
1163
1164

1166
1167
1168

1170
1171

1173
1174
1175
1176
1177

@ MSG_MAP_UNKSEGATT
@ MBG_MAP_UNKSEGFLG
@ MBG_MAP_UNKSECTYP
@ MSG_MAP_SEGS| ZE

@ MBG_MAP_SEGADDR

@ MBG_MAP_BADCAPVAL
@ MSG_MAP_UNKCAPATTR
@ MSG_MAP_EMPTYCAP
@ MBG_MAP_SYMDEF1

@ MSG_MAP_SYNDEF2

@ MBG_MAP_EXPSCOL

@ MSG_MAP_EXPEQU

@ MSG_MAP_EXPSEGATT
@ MBG_MAP_EXPSEGNAM
@ MSG_MAP_EXPSEGTYPE
@ MBG_MAP_EXPSYM 1

@ MSG_MAP_EXPSYM 2
@ MSG_MAP_EXPSEC |

@ MBG_MAP_EXPSO

@ MSG_MAP_MULTFI LTEE
@ MSG_MAP_NOFI LTER
@ MSG_MAP_BADSF1

@ MBG_MAP_| NADDR32SF1
@ MSG_MAP_NOI NTPOSE
@ MBG_MAP_NOEXVLSZ

@ MBG_MAP_FLTR_ONLYAVL

@ MSG_MAP_SEGSANE

@ MBG MAP_EXCLIM T
@ MBG_MAP_NOBADFRM

G_MAP_SEGTYP
5 MAP_SEGVADDR
5 MAP_SEGPHYS

00000,
(/)
m
@
m
P4

00 o
|%|
(2]
m
9
-<
T

5 MAP_DI FF_SYMVAL

PORDE B RD ARRRIRD

OOOO O 6

5 VAP_
5 VAP_
5 VAP
5 MAP_

QRO 90 PR ©RAORBO

"% : % | u: unknown segnent attribute: %"

"U: % | u: unknown segnent flag: ?%"

"9%: %1 u: unknown section type: %"

"U: 9% 1d: existing segnent size synbols cannot \

be reset: %"

"s: %Ilu: segnment address or length "% %"

": %Il u: bad capability value: %"

"o: % | u: unknown capability attribute '9%’"

"U: %Ilu: enpty capability definition; ignored"

"Us: %Wlu: synmbol % is already defined in file: \
Y%: 98"

"U%: %Ilu: synbol '%’: %"

"Os: %Ilu: expected a ';'"

"%: %Ilu: expected a’'=, ':', '|', or T@"

"O: % | u: expected one or nor e segnment attributes \
after an ' ="

"%: %Ilu: expected a segment name at the beginning \
of a |ine"

"Us: %Ilu: % segnent cannot be used with % \
directive: 9"

"Us: %Ilu: expected a synbol nane after ' @"

": %Ilu: expected a synbol name after '{"

"o: %Il u: expected a section name after '|'"

%: % | u: expected a shared object definition \
after '-'"

"U%: %Wlu: nultiple filtee definitions are unsupported"”
"9: %lu: filtee definition required"

%: % | u: unknown software capabilities: O0x%Ix; \

i gnor ed"

"U: %Ilu: software capability ADDR32: is ineffective \

when buil ding 32-bit object: ignored"

"U%: %Ilu: interposition synbols can only be defined \
when buil di ng a dynam ¢ execut abl e"

"Os: %Ilu: value and size attributes are inconpatible \
with extern or parent synbols"

"U%: %Ilu: synbol filtering is only avail able when \
bui l ding a shared object”

"segnents '%’ and ' %’ have the sane assigned \
virtual address"
"exceeds internal limt"

"nunber is badly forned"
"segnent type"

"segment virtual
"segnment physi cal
"segnment | ength"
"segnment flags"

"segment alignment”
"segnent roundi ng"

addr ess”
addr ess"

"section
"section
"section

"synbol
"symbol

"synbol
"synmbol
"synbol
"synbol
"synbol

type"
flags"
nane"

val ue"
si ze"

val ues differ"

sizes differ”

types differ"

i ndexes differ"

scope conflict against

| ocal and non-1local"

18

new usr/src/cnd/ sgs/libld/ comon/libld. nsg 19

1178
1179
1180
1181
1182
1183
1184
1185

1188
1189

1192

1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243

@ MSG_MAP_DI FF_SYMGLOB
MSG_MAP_DI FF_SYNPROT
MSG_MAP_DI FF_SYMVER
MSG_MAP_DI FF_SYMVLL
MSG_MAP_DI FF_SNGLDI R

® Q00O

MBG_MAP_DI FF_PROTNDI R

@ MBG_MAP_SECORDER

Mapfile Directives
@ MSG_VAP_EXP_ATTR
@ MSG_NMAP_EXP_CAPNMASK

@ MSG_MAP_EXP_CAPNANE
@ MSG_MAP_EXP_CAPI D
@ MSG_MAP_EXP_CAPHW

@ MSG_MAP_EXP_CAPSF

G_MAP_EXP_ EQ_PEQ
S MAP_EXP DI

S MAP_SFLG_ EXBANG
S MAP_EXP_FI LNAM

S VAP_EXP_FI LPATH

S MAP_EXP_| NT

S MAP_EXP_LBKT

S MAP_EXP_OBJNAM

S MAP_SFLG_ONEBANG
S MAP_EXP_SECFLAG

0 ©6,60,0,0,60,0,0,6,

MAP_EXP_SECNAM
G_MAP_EXP_SEGFLAG

55 5555555555

2

G_MAP_EXP_ECNAM

G MAP_EXP_SEGNAM
S MAP_EXP_SEM
S MAP_EXP_SEM.BKT
S MAP_EXP_SENRBKT
S MAP_EXP_SHTYPE
G_MAP_EXP_SYM

3EREE

2

G_MAP_EXP_SYMEND

G_MAP_EXP_SYMDELI M
5 MAP_EXP_SYMFLAG

5 MAP_EXP_SYMNAM
S MAP_EXP_SYMBCOPE
S MAP_EXP_SYMI'YPE
S MAP_EXP_VERSI ON
S MAP_BADEXTRA

S MAP_VALUELIM T

S MAP_MAL VAL UE
G_MAP_BADVAL UETAI L

006000606 6

® 90000000 00 ©® 900000 ® 00 90000000
RRRNRRRD DD

2
]
5
5
O

"synbol
"symbol

scope conflict against singleton/exported”

scope conflict against protected"

"synbol version conflict”

"synbol multiple definition"

"singl eton scope and direct declaration are \
inconpati bl e"

"protected scope and no-direct declaration \
are inconpati bl e"

"section ordering requested, but no matching section \

found: segnent: % section: %"

"Us: %Il expect ed attrl bute name (%), or \

term nator (’ 1) %"

"Us: %Il u: expect ed capabl lity name, integer value, or \
term nator (’ ’ %"

" %Il u: expected nar're or termnator (’; 1) st
"%;: % | u: expected nane, or '{' follow ng %: %"

"Us: %WIlu: expect ed hardvxere capability, or \

term nator (’ 1) %"

"Us: %Ilu: expect ed software capability, or \

term nator (’ 1) st

"Us: %Wl u: expect ed "= fol low ng %: %"

"%: %Ilu: expected "=, '+=', or '-=" following %: %"
"os: %Ilu: expected ' = "fol | owi ng %: %"

"Us: %Ilu: expected mapfile directive (%): %"

"Os: %Ilu: '!’ appears without corresponding flag"

"Os: %Ilu: expected file nane follow ng %: %"

"U: % Ilu: expected file path following %: %"

"o: %Il u: expected integer value follow ng %: %"
"Us: %Ilu: expected '{’ following %: %"

"Us: %Il u: expected object nane follow ng %: %"

"Os: %Ilu: !’ can only be specified once per flag"
"Us: %I expected section flag (%), '!', or \

term nator (’ 1) %"

%: %Il u: expect ed section nane followi ng %: %"

"Us: %Wl u: expect ed segnent flag (%), or \

term nator (’ %"

"Us: %Il u: expected entrance criteria (ASSI GN_SECTION) \
nanme, or termnator (';’, '}'): %"

"os: % | u: expect ed segnent nane follow ng %: %"

"os: %Ilu: expected ;' to termnate ¥%: %"

": %Ilu: expected ;' or '{' following %: %"

"Os: %Ilu: expected ';’ or '}’ to termnate %: %"
"Os: %Il u: expected section type: %"

"Us: Wl expected synbol nane, synbol scope, \

or '*': "

"Us: %I u: expect ed inherited version nanme, or \

termnator (';'): %"

"Us: %Il u: expected one of ":’, ';’, or "{': %"
"Us: %I u: expect ed synbol flag (%), or \

term nator (’

%: %Il u: expect ed syrrbol nanme follow ng %: %"
"9: %Il u: expected synbol scope (%): %"

"o: %Il u: expected synbol type (%): %"

%: % | u: expected version name follow ng %: %"
%: % | u: unexpected text found follow ng % directive"
"9: %Il u: numeric value exceeds word size: %"

"%: % Ilu: nalforned nuneric value: %"

%: % | u: unexpected characters follow ng nurmeric \
constant: %"

"Us: % | u: whitespace needed before token: %"

new usr/src/cnd/ sgs/1i bl d/ common/1i bl d. nsg

1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

1255

1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269

1272

1274
1275
1276
1277
1278
1279
1280
1281

1283
1285
1287
1288
1289
1291
1293
1294
1295
1297
1300
1301
1302

1304
1305

1307
1308
1309

@ MBG_MAP_BADCHAR

@ MSG_MAP_SYMATTR
Mapfile Control Directi
@ MSG_MAP_CDI R_BADVDI R

@ MSG_ MAP_CDI R BADVER "
@ MBG_MAP_CDI R REPVER "

Mapfile Conditional Exp

@ MBG_MAP_CEXP_TOKERR
@ MBG_MAP_CEXP_SEMERR
@ MBG_MAP_CEXP_BADOPUSE "
@ MBG_MAP_CEXP_UNBALPAR

@ MSG_NMAP_BADCESC "

Ceneric error diagnosti
@ MSG_STR_NULL "
@ MSG_DBG _DFLT_FMI
@ M5G_DBG_AQUT_FMr "
@ MSG_DBG_NAME_FMI "

-z assert-deflib string

@ MBG_ARG ASSDEFLI B_NMALFORVED
@ MBG_ARG_ASSDEFLI| B_FOUND

@ _END_

Software identification.

little relevance. It
string to identify the

@MSG_SGS_|I D
The follow ng strings r

Reference to this strin
translation is required.

"Us: %I u:

"o: % | u: unexpected text: %"

"U%: %Ilu: mapfile keywords should not be quoted: %"
"U: %Ilu: mapfile control directive not at start of \
line: %"

%: %lu: % specified no attributes (enpty {H"

"Us: %lu U speC| fied without val ues

"<internal error>"

%: %lu: version O mapfile ?0 flag and version 1 \
segnent |S _ORDER attribute are nutually exclusive: %"
"synbol attributes";

ves

"Us: % Ilu: $mapfile_version directive nmust specify \

version 2 or higher: %"

%: % | u: unknown nepfile version: %"
Y%s: %Iu $mapfile_version nust be first directive \
infile"
"Us: %Wlu: % directive requires an argunent"
%: %lu: % directive does not accept argunents”
%: % | u: unrecognized napfile control directive"
"Us: %Wlu: % directive used without opening $if"
"% %Wlu: % directive preceded by $else on line %"
"9%: %Il u: EOF encountered without closing $endif \
for $if on line %"
"Us: %lu: error: %"
ressions
"Os: %Ilu: syntax error in conditional expression at: %
"U%: %Ilu: malforned conditional expression"
%: %Ilu: invalid operator use in conditional \

expressi on" o o
u: unbal anced parenthesis in conditional \
expr essi on"

%: % | u: unrecogni zed escape i n double quoted \
token: \\%\n"

c labels

(null)"

"debug:

debug: a.out:
debug: %: "

S

"library nane mal formed: %"
“dynam c library found on default search path \
(%): |ib%.so"

Note, the SGU strings is historic, and has
s preserved as applications have used this
Sol aris link-editor.

"l d: Software Generation Utilities - \

Solaris Link Editors: "

epresent reserved words, files,
gs is via the MG CRIG() macr o,

pat hnames and synbol s.
and thus no nessage

20

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

1311

1313
1314

1316
1317

1319
1320
1321
1322
1323
1324

1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342

1344
1345

1347

1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375

@ MBG_DBG_FOPEN_MODE

@ MSG_DBG_CLS32_FMr
@ MBG_DBG_CLS64_FMT

@ MBG_STR_PATHTCK
MBG_STR_AQUT

G STR LIB_A
G STR LI B_SO
G_STR_PATH
G_STR_STRNL

222277
44
;

G_STR_CAPGROUPI D

G STR LD _DYNAM C
G_STR_SYMBOLI C
G_STR_ELI M NATE
G STR_LOCAL
G_STR_PROGBI TS
G_STR_SYMTAB
G_STR_DYNSYM

G STR_REL
G_STR_RELA
G_STR_STRTAB
G_STR_HASH

G STR LI B
G_STR_NOTE
G_STR_NOBI TS

CIOIRIINRISINRISIGISISINORGISISISISIONNE)

555555555%55555

(@)
9
p)
§
N

@ MBG_STR_SFCAP_1
@ MBG_STR_SCEXT

@ MSG_STR_CPTI ONS

"W

wgp.
"G4

"a.out"

"U%s/1ib%.a"
"U%/1ib%.so"
"Usl U8

"o\ n"

"\ n

" CAP_GROUP_%d"

"dynam c"
"symbol i c"
"elimnate"
"l ocal "
"progbi ts"
"synt ab”
"dynsynt
"rel”
"rela"
"strtab"
"hash"
"1ib"

"not e"
"nobi ts"
"hwcap_1"
"sfcap_1"
".so0"

"3:6:abc:d:e:f:hiil:

S VW Y: ?"

Argunent processing strings

@ MSG_ARG 3

%8222
8@)03

5 BDI RECT
5 ARG_BDYNAM C
5 ARG _BELI M NATE

222
&

5 ARG BSYMBOLI C
5 BTRANSLATOR

&%
5
g

555775773733 R3 AR RE AR RATT
S>>l >>>>>P>
999897gago0g

1©,0,0,6,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,

>>
Ialal
2

CISISICISISICIGSISINRISISISISIGISISISISIGISISISIC)
>

3

NN

o

T

:

-3"
"G

"o g

"

=
"-Bdirect"

- Bdynani c"
"-Belimnate"
" - Bgr oup”
"-Blocal "
"-Bnodi rect"
"-Bsynbol i c"
"-Btransl ator”
non
g

"-z[def s| nodef s] "

21

m:p:rstu:z:BCDOFG:LLMNP: QR

new usr/src/cnd/ sgs/1i bl d/ common/1i bl d. nsg

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389

1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441

@ MG _ARG ZASLR
@ MBG_ARG ZGUI DE

> ARG_ZRELAXRELOC
5 ARG_ZNORELAXRELOC

38
5

5 ARG_ZTEXTOFF

88,

RG_ZLOADFLTR
5 ARG_ZCOVBRELOC
5 ARG_ZSYMBOLCAP
5 ARG_ZFATWNOFATW

5 ARG_ABSEXEC

5 ARG ALTEXEC64

5 ARG_ASLR
RG_NOCOVPSTRTAB
5 ARG_GROUPPERM

5 ARG_NOGROUPPERM
5 ARG_LAZYLOAD
RG_NOLAZYLQAD

5 ARG _| NTERPOSE

5 ARG DI RECT

22
g2
7
g

=

:
:

5 | NI TFI RST

5 | NI TARRAY
5_FI NI ARRAY
RG_PREI NI TARRAY
5 ARG_RTLDI NFO

8388,

888,
i3
!

5 ARG_TRANSLATOR
RG_NOOPEN

5 ARG_NOW

5 ARG ORI G N

5 ARG_DEFS
RG_NODEFS

@,0,0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,00,6 | 6,6,60,000,60,00,6,0,
DD >>>>> >R >>>>>> >

(@)
>->
33888
bl

9

5 ARG_TEXTOFF
5 ARG_TEXTWARN
5 ARG_MULDEFS
5 ARG_NODELETE

288
283
3
3

5 ARG_NOPARTI AL
5> ARG_NORELCC
5 ARG_REDLOCSYM
5 ARG_VERBOSE

5 ARG LOADFLTR
5 ARG_ALLEXTRT
5 ARG _DFLEXTRT
RG_COVBRELCC
5 ARG_NOCOVBRELCC
5 ARG_NODEFAULTLI B
5 ARG_ENDFI LTEE
5 ARG_LD32
5 ARG _LD64
5 ARG_RESCAN
5 ARG_RESCAN_NOW
5 ARG_RESCAN_START
5 ARG_RESCAN_END

PR RN R DR DR DR DR DR DR DR DR DR DR DR DR DR D RN RN RN DRNRDRNE ARARARDA DDA D
>)>>)>>J>>C>>J>>
883,
Etae
3

SISO SIS SIS SIS SIS SIS SIS SIS SIS SIS IS OSSO ISIRISI SIS O REGISISIOISISIGISISISISIS)
1©9,0,0,0,6),0,6),0,6),6,6),0),,6),0,6),6,6),6,63,63,0,6), &,

"-zaslr'

"-zgui dance"

"-znodef s"

"-znointerp

"-zrel axrel oc"
'-znor el axrel oc"

"-ztext"

"-ztextoff"

"-zt extwarn"
"-z[text|textwarn|textoff]"
"-zloadfl tr"

"-zconbrel oc”

"-zsynbol cap”

"-z[fatal -war ni ngs| nof at al war ni ngs] "

"absexec"

"al t exec64"
"aslr"
"noconpstrtab”
" groupper nt'
"nogr oupper ni
"l azyl oad"
"nol azyl oad"
"interpose"
"direct"
“nodirect"
"ignore"
"record"
“initfirst"
“initarray="
"finiarray="
"preinitarray="
"rtldinfo="
"dtrace="
"transl ator"
"nodl open”
"now'
"origin"
"defs"
"nodef s"
"nodunp”
"noversi on"
"text"
"textof f"

"t extwarn"
"mul def s"
"nodel et e"
"noi nterp"
"nopartial"
"nor el oc"
"redl ocsynt
"verbose”
"weakextract"
"loadfltr"
"all extract"
"def aul textract"
"conbr el oc"
"noconbr el oc"
"nodefaul tlib"
"endfiltee'

" d32="

"1 de4="
"rescan”
"rescan- now'
"rescan-start"
"rescan-end"

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461

1463
1464
1465

1467
1468
1469
1470

1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494

1496
1497
1498
1499

1501
1502
1503
1504
1505
1506
1507

@ MSG_ARG_GUI DE
@ MSG_ARG_NOLDYNSYM

"gui dance"
"nol dynsynt

@ MBG_ARG_RELAXRELOC "rel axrel oc"

@ MSG_ARG_NORELAXRELOC " nor el axr el oc"

@ MSG_ARG_NOSI GHANDLER " nosi ghandl er "

@ MSG_ARG_GLOBAUDI T "gl obal audi t"

@ MSG_ARG_TARGET "target="

@ MSG_ARG_V\RAP "wr ap="

@ MSG_ARG_FATWARN "fatal - war ni ngs"
@ MBG_ARG_NOFATWARN "nof at al - war ni ngs"
@ MSG_ARG _HELP "hel p"

@ MSG_ARG_GROUP "group"”

@ MSG_ARG_REDUCE "reduce"

@ MSG_ARG _STATI C "static"

@ MSG_ARG_SYMBOLCAP "synbol cap”

@ MSG_ARG_DEFERRED "def erred”

@ MSG_ARG_NODEFERRED "nodef err ed"

@ NSG ARG ASSDEFLI B "assert-deflib"

@ MSG_ARG _TYPE "type"

#endif /* | codereview */

@ MSG_ARG_LCOM "Lt

@ MSG_ARG_PCOM "p, "

@ MSG_ARG_UCOM "y,

@ MSG_ARG _T_RPATH rpath

@ MSG_ARG_T_SHARED shar ed

@ MSG_ARG_T_SONAVE sonane

@ MSG_ARG T_W. ",

@ MSG_ARG T_AUXFLTR "-auxiliary

@ MSG_ARG T_MJLDEFS "-allow nmul tiple-definition"
@ MSG_ARG T_| NTERP "-dynam c-|inker"
@ MSG_ARG_T_ENDGROUP "-end- gr oup”

@ MSG_ARG _T_ENTRY "-entry"

@ MSG_ARG T_STDFLTR "filter”

@ MSG_ARG _T_FATWARN "-fatal - warni ngs"
@ MSG_ARG T_NOFATWARN "-no-f at al - war ni ngs"
@ MSG_ARG T_HELP " - hel p"

@ MSG_ARG T_LI BRARY "-library

@ MSG_ARG T_LI BPATH "-library-path"

@ MSG_ARG_T_NOUNDEF "-no-undefi ned"

@ M5G_ARG _ T NOWHOLEARC "—no—\/\hol e-ar chi ve"
@ MSG_ARG T_OUTPUT -out put "

@ MSG_ARG_T_RELOCATABLE "-rel ocat abl e"

@ MSG_ARG_T_STARTGROUP —start—group"

@ MSG_ARG T_STRI P “-strip-all”

@ MSG_ARG_T_UNDEF "-undefi ned"

@ MSG_ARG_T_VERSI ON "-version"

@ MSG_ARG_T_WHOLEARC "-whol e- ar chi ve"
@ MSG_ARG_T_WRAP "-wrap”

@ MSG_ARG T_OPAR G

@ MSG_ARG_T_CPAR ")

@ MSG_ARG_ENABLED "enabl ed"

@ MSG_ARG DI SABLED "di sabl ed"

@ MSG_ARG_ENABLE "enabl e"

@ MSG_ARG DI SABLE "di sabl e"

-z gui dance=item strings

@ MSG_ARG GUI DE_DELI M Y

@ MSG_ARG_GUI DE_NO ALL "noal | "

@ MSG_ARG_GUI DE_NO_DEFS "nodef s"

@ MS5G_ARG_GUI DE_NO DI RECT "nodirect"
@ MSG_ARG_GUI DE_NO_LAZYLOAD "nol azyl oad"
@ MSG_ARG_GUI DE_NO_MAPFI LE "nomapfile"

23

new usr/src/cnd/ sgs/1i bl d/ common/1i bl d. nsg

1508
1509

1511
1512
1513
1514
1515
1516

1518

1520
1521
1522
1523

1525
1526
1527

1529
1530
1531

1534
1536

1539

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558

1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573

@ MSG_ARG _GUI DE_NO_TEXT "not ext "

@ MSG_ARG_GUI DE_NO_UNUSED "nounused"
-z type= strings

@ MSG_ARG _TYPE_RELCC "rel oc"

@ MSG_ARG_TYPE_EXEC "exec"

@ MSG_ARG_TYPE_SHARED "shar ed"

@ MSG_ARG_TYPE_KMOD " knmod"

#endi T /*7! codereview */

Environnent variable strings

@ MSG_LD_RUN_PATH "LD_RUN_PATH'

@ MSG_LD_LI BPATH_ 32 "LD_LI BRARY_PATH_ 32"
@ MSG_LD LI BPATH 64 "LD_LI BRARY_PATH_ 64"
@ MSG_LD LI BPATH "LD_LI BRARY_PATH"
@ MSG_LD_NOVERSI ON_32 "LD_NOVERSI ON_32"

@ MSG_LD_NOVERSI ON_64 "LD_NOVERSI ON_64"

@ MSG_LD_NOVERS| ON "LD_NOVERSI ON'

@ MSG_SGS_SUPPORT_32 " SGS_SUPPORT_32"

@ MSG_SGS_SUPPORT_64 " SGS_SUPPORT_64"

@ MSG_SGS_SUPPORT " SGS_SUPPORT"

Synbol nanes

@ MSG_SYM LI BVER_U "_lib_version"

Mapfile tokens

@ MSG_MAP_LOAD "| oad"

@ MSG_MAP_NOTE "not e"

@ MSG_MAP_NULL "nul "

@ MSG_MAP_STACK "stack"

@ MSG_MAP_ADDVERS "addvers"

@ MG _ NAP FUNCTI ON “function"

@ MSG_MAP_DATA "dat a"

@ MSG_MAP_COMVON common'

@ MSG_MAP_PARENT par ent

@ MSG_MAP_EXTERN extern

@ MSG_MAP_DI RECT di rect

@ MSG_MAP_NODI RECT "nodirect"

@ MSG_MAP_FI LTER "filter"

@ MSG_MAP_AUXI LI ARY “auxiliary"

@ MSG_MAP_OVERRI DE "override"

@ MSG_MAP_| NTERPOSE "interpose"

@ MSG_MAP_DYNSORT "dynsort"

@ MSG_MAP_NODYNSORT “nodynsort"

@ MSG_MAPKW ALI GN "ALI GN'

@ MSG_MAPKW ALLOC "ALLOC'

@ MSG_MAPKW ALLOW "ALLOW

@ MBG_MAPKW AMD64_LARGE " AVMD64_LARGE"
@ MSG_MAPKW ASSI GN_SECTI ON " ASSI GN_SECTI ON'
@ MSG_MAPKW AUX " AUXI LI ARY"
@ MSG_MAPKW CAPABI LI TY " CAPABI LI TY"
@ MBG_MAPKW COVIVON " COMMON"

@ MBG_MAPKW DATA " DATA"

@ MSG_MAPKW DEFAULT " DEFAULT"

@ MSG_MAPKW DEPEND_VERSI ONS " DEPEND_VERSI ONS"
@ NSG NAPKW DI RECT " DI RECT"

@ MSG_MAPKW DI SABLE "Dl SABLE"

@ MSG_MAPKW DYNSORT " DYNSORT"

new usr/src/cnd/ sgs/libld/ comon/libld. nsg 25

1574
(1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624

1627

@ MBG_MAPKW ELI M NATE

G_MAPKW EXPORTED
MAPKW EXTERN
MAPKW FI LTER
MAPKW F| LE_BASENAVE
MAPKW F| LE_PATH
MAPKW FI LE_OBJNANE
MAPKW FUNCTI ON
MAPKW FLAGS

MAPKW GLOBAL
MAPKW | NTERPOSE
MAPKW HI DDEN
MAPKW HDR_NOALLOC

3
2
z

MAPKW HW 1

2
:
;

MAPKW | S_NAVE
MAPKW | S_ORDER
MAPKW LCAD_SEGVENT
MAPKW L OCAL

MAPKW MACHI NE
MAPKW MAX_SI ZE
MAPKW NOHDR

MAPKW NODI RECT
MAPKW NODYNSORT
MAPKW NOTE_SEGVENT
MAPKW NUL L _SEGVENT

2
2
8
;

MAPKW PADDR

MAPKW PARENT

MAPKW PHDR_ADD_NULL
MAPKW PLATFORM
MAPKW PROTECTED

2
2
g

MAPKW ROUND
MAPKW REQUI RE
MAPKW SEGVENT _ORDER

:
-

MAPKW SF_1

MAPKW S| NGLETON
MAPKW S| ZE

MAPKW S| ZE_SYMBOL
MAPKW STACK

MAPKW SYMBOL_SCOPE
MAPKW SYMBOL _VERSI ON
MAPKW SYMBOLT C
MAPKW TYPE

MAPKW VADDR

MAPKW VAL UE
G_MAPKW R TE

% Gasasassssssssssssssssssssssssssssssssssssszszas
IOI

MSG_STR DTRACE

"ELI M NATE"

" EXECUTE"

" EXPORTED'

" EXTERN'

"FI LTER'

" FI LE_BASENAME"
" FI LE_PATH'

" FI LE_OBJNAME"
" FUNCTI ON'

" FLAGS"

" GLOBAL"

" | NTERPOSE"

" H DDEN'
"HDR_NOALLCC!
" HW

"Hw 1"

"W 2"
“| S_NANE"

"| S_ORDER'

" LOAD_SEGVENT"
" LOCAL"

“ MACHI NE"

" MAX_S| ZE"

“ NOHDR'

* NODI RECT"

* NODYNSORT"

“ NOTE_SEGVENT"
" NULL_SEGVENT"
" 08_CRDER'

* PADDR’

* PARENT"

" PHDR_ADD_NULL"
" PLATFORM

* PROTECTED"

" READ'

" ROUND"

" REQUI RE"

* SEGVENT_ORDER'
oo

vF2 a°

" S| NGLETON'

" S| ZE"

“ S| ZE_SYMBOL"

" STACK"

* SYMBOL_SCOPE"
“ SYMBOL_VERS| ON'
“ SYMBOLT C'

" TYPE"

" VADDR'

“ VALUE"

“VRI TE"

" PT_SUNWDTRACE"

new usr/src/cnd/ sgs/libld/ conmon/rel ocate. c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
94536 Sun Feb 24 19:19:12 2019

new usr/src/cnd/ sgs/libl d/ common/rel ocate. c

I'd: inplenent -ztype and rework option parsing

R R

__unchanged_portion_onitted_

1473 uintptr_t

1474 1 d_process_symrel oc(Ofl _desc *ofl, Rel_desc *reld, Rel *reloc, Is_desc *isp,

1475 const char *isnane, Wrd isscnndx)
1476 {
1477 Wor d rtype = reld->rel _rtype;
1478 of | _flag_t flags = ofl->of | _flags;
1479 Sym desc *sdp = reld->rel _sym
1480 Sym aux *sap
1481 Bool ean |l ocal ;
1482 Conv_inv_buf _t inv_buf;
1484 DBG CALL(Dbg_reloc_in(ofl->ofl _I M, ELF_DBG LD, Id_targ.t_m m nmach,
1485 Id_targ.t_mmrel _sht_type, (void *)reloc, isnane, isscnndx,
1486 I d_rel oc_sym name(reld)));
1488 I*
1489 * Indicate this synbol is being used for relocation and therefore nust
1490 */have its output address updated accordingly (refer to update_osyn()).
1491 *
1492 sdp->sd_flags | = FLG_SY_UPREQD;
1494 I
1495 * |Indicate the section this synbol is defined in has been referenced,
1496 * therefor it *is not* a candidate for elimnation.
1497 *
1498 f (sdp->sd_isc)
1499 sdp->sd_i sc->is_flags | = FLG IS SECTREF;
1500 sdp->sd_isc->is_file->fl_flags | = FLG | F_FI LEREF,
1501 1
1503 if (!ld_reloc_set_aux_usyn(ofl, reld, sdp))
1504 return (S_ERROR);
1506 /*
1507 * Determine if this synmbol is actually an alias to another synbol.
1508 * so, and the alias is not REF_DYN SEEN, set ra_usymto point to the
1509 * weak synbols strong counter-part. The one exception is if the
1510 * FLG_SY_MWTOCOW flag is set on the weak synbol. |If this is the case,
1511 * the strong is only here because of its pronotion, and the weak synbol
1512 * should still be used for the relocation reference (see reloc_exec()).
1513 */
1514 sap = sdp->sd_aux;
1515 if (sap & sap->sa_linkndx &&
1516 ((ELF_ST_BI ND(sdp- >sd_sym >st _i nfo) == STB_WEAK) ||
1517 (sdp->sd_flags & FLG SY WEAKDEF)) &&
1518 (! (sdp->sd_flags & FLG SY_WTOCOW))) {
1519 Sym desc *_sdp;
1521 _sdp = sdp->sd_file->ifl_oldndx[sap->sa_linkndx];
1522 if ((_sdp->sd_ref != REF_DYN SEEN) &&
1523 ITd_rel oc_set _aux_usyn(ofl, reld, _sdp))
1524 return (S_ERROR);
1525 }
1527 /*
1528 * Determ ne whether this synbol should be bound locally or not.
1529 * Synbols are bound locally if one of the following is true:
1530 *
*

1531 - the synbol is of type STB_LOCAL.

new usr/src/cnd/ sgs/libld/ common/rel ocate. c

1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586

1588
1589
1590
1591
1592
1593
1594
1595
1596

- the output inage is not a relocatable object and the rel ocation
is relative to the .got.

- the section being relocated is of type SHT_SUNWdof. These
sections nust be bound to the functions in the containing
obj ect and can not be interposed upon.

- the synbol has been reduced (scoped to a |local or synbolic) and
reductions are being processed.

- the -Bsynmbolic flag is in use when building a shared object,
and the synbol hasn’t explicitly been defined as nodirect.

- an executable (fixed address))is being created, and the synbol
- an executable (fixed address) is being created, and the synbol
is defined in the executable.

- the relocation is against a segnment which will not be | oaded

® ok kb sk ok ok ok ok R % ok % bk ok % ok % ok

into memory. In this case, the relocation nust be resol ved
now, as |d.so.1 can not process relocations agai nst unnapped
segnent s.

*/
| ocal = FALSE;
if (ELF_ST_BI ND(sdp->sd_sym >st_info) == STB_LOCAL) {

| ocal = TRUE;
} elseif (!(rel d->rel _flags & FLG REL_LQAD)) {
| ocal TRUE;

} elseif (sdp >sd sym>st shndx !'= SHN_UNDEF) {
if (reld->rel _isdesc &
rel d->rel _i sdesc->i s_shdr->sh_type == SHT_SUNW dof) {

|l ocal = TRUE;
} elseif (!(flags & FLG OF _RELOBJ) &&
(1S OCALBND(rtype) || I'S_SEG RELATI VE(rtype))) {
| ocal = TRUE;

} elseif ((sdp >sd_| ref == REF_REL _NEED) &&
((sdp->sd_flags & FLG SY CAP) == 0)) {
/*

* d obal synbols nay have been individually reduced in
* scope. If the whole object is to be self contained,
* such as when generating an executable or a synbolic
* shared object, nake sure all relocation synbol
* references (sections too) are treated locally. Note,
* explicit no-direct synbols should not be bound to
* locally.
*

/

if ((sdp->sd_flags &

(FLG_SY_HI DDEN | FLG_SY_PROTECT)))
local = TRUE;
((flags & FLG_OF_EXEQ) ||

else if
((flags & FLG OF_SYMBOLIC) &&
((sdp->sd_flags & FLG SY_NDIR) == 0))) {
local = TRUE;
}
}
}
/'k
* If this is a PC_RELATIVE rel ocation, the relocation could be
* conpronmised if the relocated address is |later used as a copy
* rel ocated synbol (PSARC 1999/636, bugid 4187211). Scan the input
* files synbol table to cross reference this relocation offset.
*

if ((ofl->ofl flags & FLG OF SHAROB]) &&
|s PC_RELATI VE(rtype) 88
(1'S_GOT_PC(rtype) == 0)

new usr/src/cnd/ sgs/libld/ conmon/rel ocate. c

1597
1598
1599
1600

1602
1603
1604
1605
1606
1607
1608
1609

1611
1612
1613
1614
1615

1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627

1629
1630
1631
1632
1633
1634
1635

1637
1638
1639
1640
1641
1642
1643
1644
1645
1646

1648
1649

1651
1652

1654
1655
1656
1657
1658
1659
1660

1662

(1s_ PLT(rtype) == 0)) {
if (disp_inspect(ofl, reld, local) == S_ERROR)
return (S_ ERRCR);
}
/
GOT based rel ocations nust bind to the object being built - since

*
*
* they are relevant to the current GOT. |f not building a relocatable
* object - give a appropriate error nessage.
*/
if

(!'local && !(flags & FLG OF_RELOBJ) &&
I'S GOT_BASED(rtype)) {
1 fT_desc *Ifl =reld->rel _isdesc->is_file;

Id_eprintf(ofl, ERR FATAL, MSG | NTL(MSG REL_BADGOTBASED),
conv_rel oc type(lfl->|f| ehdr->e_machine, rtype
0, & nv_buf), ifl->ifl_nane, denangle(sdp >sd nama))
return (S_ERROR);
}

*

* TLS synbols can only have TLS rel ocations.
*/

if ((ELF_ST_TYPE(sdp->sd_sym>st_info) == STT_TLS) &&
(1 S_;I'LS_I NS(rtype) == 0)) {

* The above test is relaxed if the target section is
* non-all ocabl e.
*

if (RELAUX_GET_OSDESC(rel d)->o0s_shdr->sh_flags & SHF_ALLOC) {
| f1 _desc *ifl = reld->rel _isdesc->is_file;

Id_eprintf(ofl, ERR FATAL, MSG_ | NTL(MSG REL_BADTLS),
conv_rel oc_type(ifl->ifl_ehdr->e_machi ne,
rtype, 0, & nv_buf), ifl->ifl_name,
demangl e(sdp->sd_nang));

return (S_ERROR);

}

*

* Select the relocation to perform
*/

if (1S REGSTER(rtype)) {
if (ld_targ.t_m.nm_reloc_register == NULL) {
Id_eprintf(ofl, ERR FATAL, MSG_ | NTL(MSG REL_NOREG));
return (S_ ERRO?)

}
return ((*ld_targ.t_nr.nr_reloc_register)(reld, isp, ofl));

}

if (flags & FLG OF_RELOBJ)
return (reloc_relobj(local, reld, ofl));

if (IS TLS_INS(rtype))
return (reloc_TLS(local, reld, ofl));

if (IS GOT_OPINS(rtype)) {
if (ld_targ.t_nr.nr_rel oc_GOTOP == NULL) {
assert(0);
return (S_ERROR);

}
return ((*ld_targ.t_nr.nr_rel oc_GOTOP)(local, reld, ofl));
}

if (1S_GOT_RELATI VE(rtype))

new usr/src/cnd/ sgs/libld/ conmon/rel ocate. c

1663

1665
1666

1668
1669
1670
1671

1673
1674
1675
1676

1678
1679

1681
1682
1683
1684

1685 }
__unchanged_portion_onitted_

return (ld_reloc_GOT_relative(local, reld, ofl));

if (local)
return ((*Id_targ.t_nr.nr_reloc_local)(reld, ofl));
if ((1S_PLT(rtype) || ((sdp->sd_flags & FLG SY_CAP) &&
(ELF_ST_TYPE(sdp->sd_sym >st__info) == STT_FUNC))) &&
((flags & FLG OF_BFLAG == 0))
return (Id_reloc_plt(reld, ofl));

if ((sdp->sd_ref == REF_REL_NEED) ||
(flags & FLG OF BFLAG [| (flags & FLGO: _SHARCBJ) ||
(ELF_ST_TYPE(sdp- >sd sym >st _info) == STT_NOTYPE))
return ((*ld_targ.t_nr.nr_add_outrel)(NULL, reld, ofl));

if (sdp->sd_ref == REF_DYN_NEED)
return (reI oc_exec(reld, ofl));

/*

* | S_NOT_REL(rtype)
*

/

return (reloc_generic(reld, ofl));

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c 1

R R R R

96493 Sun Feb 24 19:19:13 2019
new usr/src/cnd/ sgs/libl d/ conmon/ sections. c
I'd: inplenent -ztype and rework option parsing

R R

__unchanged_portion_onitted_

927 | *

928 * Make the dynamic section. Calculate the size of any strings referenced
929 * within this structure, they will be added to the global string table
930 * (.dynstr). This routine should be called before make_dynstr().

931 *

932 * This routine nmust be naintained in parallel wth update_odynam c()

933 * in update.c

934 */

935 static ui ntptr

936 make_dynami c(COfl _desc *ofl)

937 {

938 Shdr *shdr;

939 Gs_desc *osp;

940 Elf _Data *dat a;

941 I s_desc *isec;

942 size_t cnt = 0;

943 Aliste i dx;

944 I fI _desc *ifl;

945 Sym desc *sdp;

946 size_t si ze;

947 Str_thl *strtbl;

948 of | _flag_t flags = ofl->0f| _flags;

949 int not _relobj = !(flags & FLG OF_RELOBJ);

950 int unused = 0;

952 /*

953 * Select the required string table.

954 */

955 if (OFL_I'S_STATIC OBJ(ofl))

956 strtbl = ofl->of | _strtab;

957 el se

958 strtbl = ofl->ofl _dynstrtab;

960 /*

961 * Only a limted subset of DT_ entries apply to relocatable

962 * objects. See the cooment at the head of update_odynamc() in
963 * update.c for details.

964 */

965 if (new_section(ofl, SHT_DYNAM C, MSG ORI G MSG_SCN_DYNAM C), O,
966 & sec, &shdr, &data) == S_ERROR)

967 return (S_ERROR);

969 /*

970 * new_section() does not set SHF_ALLOC. If we’'re building anything
971 * besides a rel ocatable object, then the .dynam ¢ section should
972 * reside in allocatable nenory.

973 */

974 if (not_relobj)

975 shdr->sh_flags | = SHF_ALLCC,

977 /*

978 * new_section() does not set SHF WRITE. |f we’'re building an object
979 * that specifies an interpretor, “then a DT_DEBUG entry is created,
980 * which is initialized to the appllcatlons link-map list at runtine.
981 */

982 if (ofl->ofl_osinterp)

983 shdr->sh_flags | = SHF_WRI TE;

985 osp = of | ->of | _osdynamic =

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

986

988
989
990
991
992
993

995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022

1024
1025
1026
1027
1028

1030
1031
1032
1033
1034

1036
1037
1038

1040
1041
1042
1043
1044
1045
1046
1047
1048

1050
1051

| *

I d_pl ace_section(ofl, isec, NULL, Id_targ.t_id.id_dynamic, NULL);

* Reserve entries for any needed dependenci es.

*
for

}

(APLI ST_TRAVERSE(of | - >of | _sos, idx, ifl)) {
if (1(ifl->ifl_flags & (FLG_|F_NEEDED | FLG_ | F_NEEDSTR)))
conti nue;

-

—h ook ko ok %k % k¥
-

If this dependency didn't satisfy any synbol references,
generate a debuggi ng di agnostic (1d(1) -Dunused can be used
to display these). If this is a standard needed dependency,
and -z ignore is in effect drop the dependency. Explicitly
defined dependencies (i. e., -N dep) don’t get dropped, and
are flagged as being required to sinplify update_odynam c()
processi ng.

(i
(

ifl->ifl_flags & FLG | F_NEEDSTR) ||
(i I ->ifl_flags & FLG_I F_DEPREQD) == 0)) {
if (unused++ == 0
DBG CALL(Dbg_util _nl (ofl->ofl I, DBG NL_STD));
DBG CALL(Dbg unused_file(ofl->ofl Im, ifl->ifl_sonane,
(ifl->ifT_flags & FLG | F_NEEDSTR), 0));

Gui dance: Renove unused dependency.

*
*
*
* |f -z ignore is in effect, this warning is not
* needed because we will quietly rempve the unused
* dependency.
*
if (OFL_GUI DANCE(of |, FLG OFG NO UNUSED) &&
((ifl->fl_flags & FLG_IF_I GNORE) == 0))
Id_eprintf(ofl, ERR GU DANCE,
MSG_| NTL(NSG GUIDE LNUSED)
ifl->ifl_sonane);

if (ifl->fl_flags & FLG | F_NEEDSTR)
ifl->ifl flags | = FLG | F_DEPREQD,
else if (ifI->ifI_fIags & FLG | F_I GNORE)

continue;
}
*
* |f this object requires a DI_POSFLAG 1 entry, reserve it.
*
/
if ((ifl->fl_flags & MSK_|I F_POSFLAGL) && not _rel obj)
cnt ++;
if (st_insert(strtbl, ifl->ifl_sonane) == -1)
return (S_ERROR);
cnt ++;

/*
* |f the needed entry contains the $ORI G N token neke sure
* the associated DT_1_FLAGS entry is created.
*
/
if (strstr(ifl->ifl_soname, MSG ORIG MSG STR ORIGAN))) {
of | ->of | _dtflags_1 |= DF_1_ORIG N,
of | ->of | _dtflags |= DF_ORIG@ N,

if (unused)

DBG CALL(Dbg util _nl (ofl->of| Imi, DBG NL_STD));

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

1053
1054
1055
1056
1057

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1103
1104
1105
1106

1108
1109
1110
1111
1112
1113
1114
1115
1116

if (not_relobj) {
/*

* Reserve entries for any per-synbol auxiliary/filter strings.
*/

cnt += alist_nitems(ofl->of | _dtsfltrs);

/*
* Reserve entries for _init() and _fini() section addresses.
*/

if (((sdp = ld_symfind(MSG ORI G MSG SYMINT_U),
SYM_NOHASH, NULL ofl)) !'= NULL) &&
(sdp->sd_ref == REF_REL_NEED) &&
(sdp->sd_sym >st_shndx T= SHN_UNDEF)) {
sdp->sd_flags | = FLG SY_UPREQD;
cnt ++;

}
if (((sdp = Id_sym find(MSG ORI G(MSG_SYM FINI _U),
SYM NOHASH, NULL, ofl)) = NULL) &&
(sdp->sd_| ref == REF REL _NEED) &&
(sdp->sd_sym >st _shndx = SHN_UNDEF)) {
sdp->sd_flags | = FLG SY_UPREQD,
cnt ++;

}

/*
* Reserve entries for any sonane, filter name (shared |ibs

* only), run-path pointers, cache nanes and audit requirenents.
*

if (ofl->of | _sonanme) {
cnt ++;
if (st_insert(strtbl, ofl->ofl_sonanme) == -1)
return (S_ERROR);

i}f (of I ->of | _filtees) {

cnt ++;

if (st_insert(strtbl, ofl->ofl _filtees) == -1)
return (S_ERROR);

/*

* |f the filtees entry contains the $ORI G N t oken

* make sure the associated DT_1_FLAGS entry is created.

*
/
if (strstr(ofl->ofl_filtees,

MSG_ORI G(MSG_STR ORIGA N))) {
of | ->of | _dtflags_1 |= DF_1_ORIG N,
of | ->of | _dtflags |= DF_ORIG N,
}
}
}
if (ofl->0f| _rpath) {
cnt += 2; /* DT_RPATH & DT RUNPATH */
if (st_insert(strtbl, ofl->ofl _rpath) == -1)
return (S_ERRO?)
/*
* |f the rpath entry contains the $ORIG N token make sure
* the associated DT_1_FLAGS entry is created.
*
/
if (strstr(ofl->ofl _rpath, MSG ORIG MSG STR ORIG N))) {
of | ->of | _dtflags_1 |= DF_1_ORIG N,
of | ->of | _dtflags |= DF_ORIG N,
}
}

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

1118
1119
1120

1122
1123
1124
1125

1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145

1147
1148
1149
1150
1151

1153
1154
1155
1156
1157
1158
1159

1161
1162
1163

1165
1166

1168
1169

1171
1172
1173

1175
1176
1177

1179
1180

1182
1183

if (not_

4

relobj) {
“Aliste idx;
Sg_desc *sgp;
if (ofl->ofl _config) {

cnt ++

i f (st_insert(strtbl, of | ->of | _config) == -1)

return (S_ERROR);
/*

* |f the config entry contains the $ORI G N t oken
* make sure the associated DT_1_FLAGS entry is created.
*
if (strstr(ofl->ofl_config, MSG ORI MSG STR ORRAN))) {
of | ->of | _dtflags_1 |= DF_1_ORIG N,
of | ->of | _dtflags | = DF_ ORIG N,

}
1f (ofl->ofl _depaudit) {
cnt ++;
if (st_insert(strtbl, ofl->ofl _depaudit) == -1)
return (S| ERRO?)
}
if (ofl->ofl _audit) {
cnt ++;
if (st_insert(strtbl, ofl->ofl_audit) == -1)
return (S_ERROR);
}
/*

* Reserve entries for the DI_HASH, DI_STRTAB, DT_STRSZ,
* DT_SYMIAB, DT_SYMENT, and DT_CHECKSUM

*/

cnt += 6;

/*

* |f we are including local functions at the head of

* the dynsym then also reserve entries for DT_SUNW SYMIAB
* and DT_SUNW SYMSZ.

*

/
if (OFL_ALLOW LDYNSYM ofl))

cnt += 2;

if ((ofl->ofl _dynsymsortcnt > 0) ||
(of I ->of | _dyntl ssortcnt > 0))
cnt ++; /* DT_SUNW SORTENT */

if (ofl->ofl _dynsymsortcnt > 0
cnt += 2; /* DT_SUNW [SYMSORT| SYMSORTSZ] */

if (ofl->ofl _dyntlssortcnt > 0
cnt += 2; /* DT_SUNW [TLSSORT| TLSSORTSZ] */

if ((flags & (FLG OF VERDEF | FLG OF NOVERSEC)) ==
FLG OF VERDEF)
cnt += 2 /* DT_VERDEF & DT_VERDEFNUM */

if ((flags & (FLG OF VERNEED | FLG OF_NOVERSEC))
FLG OF_VERNEED)

cnt += 2; /* DT_VERNEED & DT_VERNEEDNUM */
if ((flags & FLG OF_COWREL) && ofl->ofl _rel ocrelcnt)

cnt ++; /* DT_RELACOUNT */
if (flags & FLG OF TEXTREL) /* DT_TEXTREL */

cnt ++;

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

1185
1186

1188
1189

1191
1192

1194
1195
1196
1197
1198
1199

1201
1202
1203
1204
1205

1207
1208
1209
1210
1211
1212

1214
1215
1216
1217
1218
1219

1221
1222
1223
1224
1225
1226

1228
1229
1230
1231

1233
1234
1235
1236
1237
1238

1240
1241
1242
1243
1244
1245
1246

1248
1249

if (ofl->ofl_osfiniarray) /* DT_FI NIl _ARRAY */

cnt += 2; /* DT_FI NI _ARRAYSZ */
if (ofl->ofl _osinitarray) /* DT_I NI T_ARRAY */

cnt = 2; /* DT_I NI T_ARRAYSZ */

if (ofl->ofl osprelnltarray) /* DT_PREINI T_ARRAY & */
cnt += 2; /* DT_PREI NI T_ARRAYSZ */

/*
* |f we have plt’s reserve a DI_PLTRELSZ, DT_PLTREL and
* DT_JMPREL.
*/
if (ofl->ofl _pltcnt)
cnt += 3;

/*

* |f plt padding is needed (Sparcv9).
*

/

if (ofl->ofl _pltpad)
cnt += 2; /* DT_PLTPAD & DT_PLTPADSZ */

/*
* |f we have any relocations reserve a DT_REL, DT_RELSZ and
* DT_RELENT entry.
*
/
if (ofl->of | _rel ocsz)
cnt += 3;

/*
* If a symnfo section is required create DT_SYM NFO,
* DI_SYM NSZ, and DT_SYM NENT entries.
*/
if (flags & FLG_OF_SYM NFO)
+= 3;
/*
* If there are any partially initialized sections allocate
* DI_MOVETAB, DT_MOVESZ and DT_MOVEENT
*

if (ofl->ofl _osnove)
cnt += 3;

*

* Allocate one DI_REG STER entry for every register synbol.
*

/
cnt += ofl->of | _regsyntnt;

/*

* Reserve a entry for each '-zrtldinfo=..." specified
* on the command Iine.

*

for (APLI ST_TRAVERSE(of|->ofl _rtldinfo, idx, sdp))
cnt ++;

/*
* The followi ng entry should only be placed in a segnent that
* is witable.
*/
if (((sgp = osp->0s_sgdesc) != NULL) &&
(sgp->sg_phdr.p_flags & PF. W && of | ->of | _osi nterp)
cnt ++; /* DT_DEBUG */

/*
* Capabilities require a .dynamc entry for the . SUNWcap

new usr/src/cnd/ sgs/libl d/ conmon/ sections. c

1250
1251
1252
1253

1255
1256
1257
1258
1259
1260

1262
1263
1264
1265
1266
1267
1268

1270
1271

1273
1274
1275

1277
1278

1280
1281
1282
1283
1284

1286
1287
1288
1289
1290
1291

1293
1294
1295
1296
1297
1298
1299
1300
1301

1303
1304
1305
1306

1308
1309

1311
1312
1313
1314
1315

* section.
*/

if (ofl->of | _oscap)
cnt ++; /* DT_SUNW CAP */

/*
* Synbol capabilities require a .dynanmic entry for the
* . SUNW capi nfo section.
*
if (ofl->ofl_oscapinfo)
cnt ++; /* DT_SUNW CAPI NFO */

*

* Capabilities chain information requires a . SUNW capchain

* entry (DT_SUNW CAPCHAIN), entry size (DT_SUNW CAPCHAI NENT),
* and total size (DT_SUNW CAPCHAI NSZ) .

*/

if (ofl->ofl _oscapchain)

cnt += 3;
if (flags & FLG OF_SYMBCLI C)
cnt ++; /* DT_SYMBOLIC */
if (ofl->ofl_aslr = 0) /* DT_SUNW ASLR */
cnt ++;
}
if (ofl->ofl _flags & FLG_OF_KMOD)

cnt ++;

#endi f /* | codereview */
/*

* Account for Architecture dependent .dynamic entries, and defaults.
*/

(*ld_targ.t_nr.nr_mach_make_dynanic) (ofl, &cnt);

*
* DT_FLAGS, DT_FLAGS_1, DT_SUNW STRPAD, and DT_NULL. Also,
* allow room for the unused extra DT_NULLs. These are included
* to allow an ELF editor roomto add items |later.
*/
cnt += 4 + DYNAM C_EXTRA_ELTS
/
DT_SUNW LDVACH. Used to hol d the ELF machi ne code of the
linker that produced the out put obj ect. This information
allows us to determ ne whether a given object was |inked
natively, or by a linker running on a different type of
system This information can be valuable if one suspects

* that a problem nmight be due to alignnent or byte order issues.
*/

cnt ++;

* kK ok ko

/*

* Determne the size of the section fromthe nunber of entries.
*/

size = cnt * (size_t)shdr->sh_entsize;

shdr->sh_size = (Xword)size;
dat a- >d_si ze = si ze;

/
There are several tags that are specific to the Solaris osabi
range whi ch we unconditionally put into any dynami c section
we create (e.g. DT_SUNW STRPAD or DT_SUNW LDMACH). As such,
any Solaris object with a dynami c section should be tagged as

* Ok k ok ¥

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

1316 * ELFOSABI _SOLARI S.

1317 */

1318 of | ->of | _flags | = FLG OF_OSABI ;

1320 return ((uintptr_t)ofl->ofl_osdynamc);

1321 }

1323 /*

1324 * Build the GOT section and its associated relocation entries.

1325 */

1326 uintptr_t

1327 1 d_nmake_got (Ofl _desc *ofl)

1328 {

1329 El f _Data *dat a;

1330 Shdr *shdr;

1331 I s_desc *isec;

1332 size_t size = (size_t)ofl->ofl _gotcnt * Id_targ.t_m mgot_entsize;
1333 size_t rsize = (size_t)ofl->ofl _rel ocgotsz;

1335 if (new_section(ofl, SHT_PROGBITS, MSG ORI G(MSG_SCN _GOT), O,

1336 & sec, &shdr, &data) == S_ERROR)

1337 return (S_ERROR);

1339 dat a- >d_si ze = si ze;

1341 shdr->sh_flags | = SHF_WRI TE;

1342 shdr->sh_size = (Xword)si ze;

1343 shdr->sh_entsize = | d_targ.t_m mgot_entsize;

1345 of | ->of | _osgot = | d_place_section(ofl, isec, NULL,

1346 ld_targ.t_id.id_got, NULL);

1347 if (ofl->ofl_osgot == (Gs_desc *)S_ERROR)

1348 return (S_ERROR);

1350 of | - >of | _osgot - >0s_szoutrel s = (Xword)rsi ze;

1352 return (1);

1353 }

1355 /*

1356 * Build an interpreter section.

1357 */

1358 static uintptr_t

1359 make_interp(Ofl _desc *ofl)

1360 {

1361 Shdr *shdr;

1362 El f _Data *dat a;

1363 I s_desc *j sec;

1364 const char *iname = ofl->of | _interp;

1365 size_t si ze;

1367 /*

1368 * |f -z nointerp is in effect, don’t create an interpreter section.
1369 */

1370 if (ofl->ofl _flagsl & FLG OF1_NO NTRP)

1371 return (1);

1373 /*

1374 * An .interp section is always created for a dynam c executabl e.
1375 * A user can define the interpreter to use. This definition overrides
1376 * the default that would be recorded in an executable, and triggers
1377 * the creation of an .interp section in any other object. Presunmably
1378 * the user knows what they are doing. Refer to the generic ELF ABI
1379 * section 5-4, and the 1d(1l) -1 option.

1380 */

1381 if (((ofl->ofl_flags & (FLG_ OF_DYNAM C | FLG OF_EXEC |

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c 8
1382 FLG OF_RELOBJ)) != (FLG OF_DYNAM C | FLG OF EXEC)) && !iname)
1383 return (1);

1385 /*

1386 * |In the case of a dynam c executable, supply a default interpreter
1387 * if the user has not specified their own.

1388 */

1389 if (iname == NULL)

1390 iname = ofl->of| _interp = Id_targ.t_m mdef_interp;

1392 size = strlen(inane) + 1,

1394 if (new_section(ofl, SHT_PROGBITS, MG ORI G(MSG_SCN_| NTERP), O,

1395 & sec, &shdr, &data) == S_ERROR)

1396 return (S_ERROR);

1398 dat a- >d_si ze = si ze;

1399 shdr->sh_size = (Xword)si ze;

1400 data->d_align = shdr->sh_addralign = 1;

1402 of | ->of | _osinterp =

1403 I d_pl ace_section(ofl, isec, NULL, Id_targ.t_id.id_interp, NULL);
1404 return ((uintptr_t)ofl->ofl _osinterp);

1405 }

1407 [/ *

1408 * Common function used to build the SHT_SUNWversym section, SHT_SUNW sym nfo
1409 * section, and SHT_SUNW capi nfo section. Each of these sections provide
1410 * additional synbol information, and their size parallels the associated
1411 * synbol table.

1412 */

1413 static Os_desc *
1414 make_sym sec(Of | _desc *ofl, const char *sectname, Wrd stype, int ident)

1415 {
1416
1417
1418

1420
1421
1422
1423
1424
1425
1426

1428
1429 }

1431 /*

Shdr *shdr;
El f_Data *dat a;
I's_desc *j sec;
/*

* W don’t know the size of this section yet, so set it to 0. The
* size gets filled in after the associated synbol table is sized.
*/

if (new_section(ofl, stype, sectnane, 0, & sec, &shdr, &data) ==
S ERROR
return ((Gs_desc *)S ERROR);

return (Id_place_section(ofl, isec, NULL, ident, NULL));

1432 * Determ ne whether a synmbol capability is redundant because the object
1433 * capabilities are nore restrictive.
*/

1434

1435 inline static int
1436 i s_cap_redundant (Cbj capset *ocapset, Objcapset *scapset)

1437 {
1438
1439

1441
1442
1443
1444
1445
1446
1447

Ali st *oal p, *salp;
el fcap_mask_t onmsk, snek;

/
I nspect any platformcapabilities. |If the object defines platform
capabilities, then the object will only be |oaded for those
platfornms. A synbol capability set that doesn't define the same
platforms is redundant, and a synbol capability that does not provide
at | east one platformnane that matches a platformnanme in the object
capabilities will never execute (as the object wouldn’'t have been

* ok ok ok ok ok F

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c 9

1448
1449
1450
1451
1452
1453

1455
1456
1457
1458
1459
1460

1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474

1476
1477
1478
1479
1480
1481

1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500

1502
1503
1504
1505
1506
1507
1508

1510
1511 }

1513 /*

* | oaded) .

*/

oal p = ocapset->oc_plat.cl _val;

sal p = scapset - >oc pI at.cl _val;

if (oaI p & ((salp == NULL) || cap_nanes_match(oal p, salp)))
return (1);

*

* |f the synbol capability set defines platforns,
* doesn’t, then the synbol set is nore restrictive.
*/
if (salp & (oalp == NULL))
return (0);

and t he object

/*
* Next, inspect any machine nane capabilities. |f the object defines
* machi ne nane capabilities, then the object will only be |oaded for
* those nmachines. A synmbol capability set that doesn’t define the sane
* machi ne nanes is redundant, and a synbol capability that does not
* provide at |east one machine name that matches a nachine name in the
* object capabilities will never execute (as the object wouldn’'t have
* been | oaded) .
*
al p = ocapset->oc_plat.cl_val;
al p = scapset->oc_plat.cl_val;
f (oalp & ((salp == NULL) || cap_nanes_match(oal p, salp)))

return (1);

=

(0]
S
1

*
* |f the synbol capability set defines machi ne nanes, and the object
* doesn’t, then the synbol set is nore restrictive.
*
f (salp && (oalp == NULL))
return (0);

*
* Next, inspect any hardware capabilities. |f the objects hardware
* capabilities are greater than or equal to that of the synbols

* capabilities, then the synmbol capability set is redundant. |If the

* synbol s hardware capabilities are greater that the objects, then the
*

*

*

*

*

synbol set is nore restrictive.

Note that this is a somewhat arbitrary definition, as each capability
bit is independent of the others, and sone of the higher order bits
coul d be considered to be I ess inportant than | ower ones. However,

* this is the only reasonabl e non-subjective definition.

onsk = ocapset->oc_hw 2.cmval;

smsk = scapset->oc_hw 2.cmval ;

if ((omsk > snsk) [| (omsk && (omsk == snsk)))
return (1);

if (omsk < snsk)
return (0);

/*

* Finally, inspect the remaining hardware capabilities.
*/

onsk = ocapset->oc_hw 1.cmval;

smek = scapset->oc_hw 1.cmval;

if ((omsk > snsk) [| (onsk && (omsk == snsk)))
return (1);

return (0);

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

1514
1515
1516
1517
1518
1519

1521
1522
1523
1524
1525

1527

1529
1530
1531
1532

1534

1536
1537
1538

1540
1541

1543
1544
1545
1546

1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558

1560
1561

1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579

*
*
*

*/

Capabi lities values m ght have been assigned excluded val ues. These
excl uded val ues shoul d be renpved before cal cul ating any capabilities
sections size.

static void
capmask_val ue(Lmlist *Inl, Wrd type, Capmask *capmask, int *title)
1520 {

}

/*
* First determ ne whether any bits should be excl uded.
*
/
if ((capmask->cmval & capmask->cm exc) == 0)
return;

DBG CALL(Dbg_cap_post_title(lm, title));

DBG _CALL(Dbg_cap_val _entry(Inl, DBG. STATE = CURRENT, type
capmask->cmyval, | d_targ.t_m mmach)

DBG_CALL(Dbg_cap_val entry(lm, DBG STATE. = EXCLUDE, type,
capmask->cm exc, |d_targ. t_m m mach));

capnask- >cm val &= ~capnask->cm exc;

DBG CALL(Dbg_cap_val _entry(l m, DBG STATE RESOLVED, type,
capmask->cmval, Id_targ.t_m mmach));

static void
capstr_value(Lmlist *Inl, Wrd type, Caplist *caplist, int *title)
1542 {

Aliste idx1, idx2;
char *estr;

Capstr *capstr;

Bool ean found = FALSE;

/*
* First determ ne whether any strings should be excluded.
*

(APLI ST_TRAVERSE(capl i st->cl _exc, idx1, estr)) {
for (ALI ST_TRAVERSE(caplist->cl_val, idx2, capstr)) {
if (strcnp(estr, capstr->cs_str) == 0) {
found = TRUE;

br eak;
}
}
}
if (found == FALSE)
return;
/*

* Traverse the current strings, then delete the excluded strings,
* and finally display the resolved strings.
*

i f (DBG_ENABLED) {
Dbg_cap_post _title(In, title);
for (ALIST_TRAVERSE(caplist->cl_val, idx2, capstr)) {
Dbg_cap_ptr_entry(l m, DBG STATE_CURRENT, type,
capstr->cs_str);

}

for (APLI ST_TRAVERSE(caplist->cl_exc, idxl, estr)) {
for™ (ALl ST_TRAVERSE(capl i st - Sl _val, idx2, capstr)) {
if (strcnp(estr, capstr->cs_str) == 0) {
DBG _CALL(Dbg_cap_ptr_entry(lm,

DBG_STATE_EXCLUDE, type, capstr->cs_str));

al i st_del ete(capli st - Scl _val, & dx2);

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

1580 br eak;

1581 }

1582 }

1583 }

1584 i f (DBG_ENABLED)

1585 for (ALIST_TRAVERSE(caplist->cl_val, idx2, capstr)) {

1586 Dbg_cap_ptr_entry(l m, DBG STATE RESOLVED, type,
1587 capstr->cs_str);

1588 }

1589 }

1590 }

1592 /*

1593 * Build a capabilities section.

1594 */

1595 #defi ne CAP_UPDATE(cap, capndx, tag, val) \

1596 cap->c_tag = tag; \

1597 cap->c_un.c_val = val; \

1598 cap++, capndx++;

1600 static uintptr_t

1601 make_cap(Ofl _desc *ofl, Wrd shtype, const char *shnane, int ident)

1602 {

1603 Shdr *shdr;

1604 El f _Data *dat a;

1605 I's_desc *i sec;

1606 Cap *cap;

1607 size_t size = 0;

1608 Word capndx = 0;

1609 Str_thl *strtbl;

1610 bj capset *ocapset = &ofl->of| _ocapset;

1611 Aliste i dx1;

1612 Capstr *capstr;

1613 int title = 0;

1615 I*

1616 * Determ ne which string table to use for any CA SUNW MACH,

1617 * CA_SUNW PLAT, or CA SUNWID strings.

1618 */

1619 if (OFL_IS STATIC OBJ(ofl))

1620 strtbl = of | ->of | _strtab;

1621 el se

1622 strtbl = ofl->ofl _dynstrtab;

1624 *

1625 * |f synbol capabilities have been requested, but none have been
1626 * created, warn the user. This scenario can occur if none of the
1627 * input relocatable objects defined any object capabilities.

1628 *

1629 if ((ofl->ofl _flags & FLG OF_OTGCSCAP) && (ofl->ofl _capsyncnt == 0))
1630 Id_eprintf(ofl, ERR WARNI NG MSG_| NTL(MSG_CAP_NOSYMSFCUND)) ;
1632 /*

1633 * |f synbol capabilities have been collected, but no synmbols are left
1634 * referencing these capabilities, pronpte the capability groups back
1635 * to an object capability definition.

1636 */

1637 if ((ofl->of | _flags & FLG OF_OTGCSCAP) && of | ->of | _capsyntnt &&
1638 (of I ->of | _capfamilies == NULL))

1639 Id_eprintf(ofl, ERR WARNING MSG_| NTL(MSG_CAP_NOSYMSFOUND)) ;
1640 | d_cap_nove_synt oobj (of I);

1641 of | - >of | _capsyntnt = 0;

1642 of | ->of | _capgroups = NULL;

1643 of | ->of | _fl ags & ~FLG _OF_OTOSCAP;

1644 1

new usr/src/cnd/ sgs/libl d/ conmon/ sections. c 12
1646 /*

1647 * Renpve any excluded capabilities.

1648 */

1649 capstr_val ue(ofl->of | _Im, CA SUNWPLAT, &ocapset->oc_plat, &itle);
1650 capstr_val ue(ofl->of | _Iml, CA SUNWMACH, &ocapset->oc_mach, &itle);
1651 caprmask_val ue(of I ->of | _I m, CA SUNWHW 2, &ocapset->oc_hw 2, &itle);
1652 capnask_val ue(ofl ->of | _Iml, CA SUNWHW 1, &ocapset->oc_hw 1, &title);
1653 capnask_val ue(of I ->of | _I ml, CA SUNWSF_1, &ocapset->oc_sf_1, &title);
1655 I*

1656 * Determ ne how many entries are required for any object capabilities.
1657 */

1658 size += alist_nitens(ocapset->oc_plat.cl_val);

1659 size += alist_nitens(ocapset->oc_mach.cl _val);

1660 if (ocapset->oc_hw 2.cmval)

1661 Si ze++;

1662 if (ocapset->oc_hw 1.cmval)

1663 Si ze++;

1664 if (ocapset->oc_sf_1.cmuval)

1665 Si ze++;

1667 /*

1668 * Only identify a capabilities group if the group has content. |If a
1669 * capabilities identifier exists, and no other capabilities have been
1670 * supplied, remove the identifier. This scenario could exist if a
1671 * user mstakenly defined a lone identifier, or if an identified group
1672 * was overridden so as to clear the existing capabilities and the
1673 * jidentifier was not also cleared.

1674 */

1675 if (ocapset->oc_id.cs_str) {

1676 if (size)

1677 Si ze++;

1678 el se

1679 ocapset->oc_i d.cs_str = NULL;

1680 }

1681 if (size)

1682 Si ze++; /* Add CA_SUNW NULL */

1684 /*

1685 * Determ ne how many entries are required for any synbol capabilities.
1686 *

1687 if (ofl->ofl_capsyncnt) {

1688 /*

1689 * |f there are no object capabilities, a CA SUNWNULL entry
1690 * is required before any synbol capabilities.

1691 */

1692 if (size == 0)

1693 Si ze++;

1694 size += of | ->of | _capsyntnt;

1695 }

1697 if (size == 0)

1698 return (NULL);

1700 if (new_section(ofl, shtype, shnane, size, & sec,

1701 &shdr, &data) == S ERROR)

1702 return (S_ERROR);

1704 if ((data->d_buf = 1ibld_malloc(shdr->sh_size)) == NULL)

1705 return (S_ERROR);

1707 cap = (Cap *)data->d_buf;

1709 /*

1710 Fill in any object capabilities. |If there is an identifier, then the
1711 * identifier cones first. The remaining items follow in precedence

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722

1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737

1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763

1765
1766
1767
1768
1769

1771
1772
1773
1774

1776

13

* order, although the order isn't inportant for runtinme verification.
S

if (ocapset->oc_id.cs_str) {
of | ->of | _flags | = FLG OF_CAPSTRS;
if (st_insert(strthl, ocapset->oc_id.cs_str) =
return (S_ ERRCR)
ocapset->oc_i d.cs_ndx = capndx;
CAP_UPDATE(cap, capndx, CA SUNWID, 0);

if (ocapset->oc_plat.cl_val)

= -1)

{
of | ->0f T_flags [= (FLG OF_PTCAP | FLG OF_CAPSTRS);

/

table. The capability value can’t be filled in yet, as the

final offset of the strings isn’'t known unt
*

*
* Insert any platformnane strings in the appropriate string
*
*

I later.

for (ALl ST_TRAVERSE(ocapset->oc_plat.cl_val, idx1l, capstr)) {
1)

if (st_insert(strthl, capstr->cs_str) ==

return (S_ERROR);
capstr->cs_ndx = capndx;

CAP_UPDATE(cap, capndx, CA_SUNW PLAT, 0);

}

}
if (ocapset->oc_mach.cl _val

) |
of | ->of I _flags [= (FLG_OF_PTCAP | FLG OF _CAPSTRS);

/

Insert the machi ne name strings |n the appropriate string

final offset of the strings isn't known unti
*/

* table. The capability value can't be filled in yet, as the

| later.

for (ALI ST_TRAVERSE(ocapset->oc_mach.cl _val, idx1l, capstr)) {
if (st_insert(strtbhl, capstr->cs_str) == -1)

return (S_ERROR);
capstr->cs_ndx = capndx;

CAP_UPDATE(cap, capndx, CA SUNW MACH, 0);

}

}
if (ocapset->oc_hw 2.cmval) {
of | ->of I_fTags |= FLG OF_PTCAP;

CAP_UPDATE(cap, capndx, CA SUNWHW 2, ocapset->oc_hw 2.cmval);

}
if (ocapset->oc_hw 1.cmval) {
of | ->of I_fTags |= FLG OF_PTCAP;

CAP_UPDATE(cap, capndx, CA SUNWHW 1, ocapset->oc_hw 1.cmval);

}
if (ocapset->oc_sf_1.cmuval) {
of | ->of I_fTags [= FLG OF_PTCAP,

CAP_UPDATE(cap, capndx, CA SUNWSF 1, ocapset->oc_sf_1.cmval);

}
CAP_UPDATE(cap, capndx, CA_SUNW NULL, O0);

cgp)) {

/*
* Fill in any synbol capabilities.
*
if (ofl->ofl_capgroups) {
Cap_group *cgp;
for (APLI ST_TRAVERSE(of | - >of | _capgroups, idx1,
Obj capset *scapset = &cgp->cg_set;
Aliste idx2;
|'s_desc *isp;

cgp- >cg_ndx = capndx;

new usr/src/cnd/ sgs/libl d/ conmon/ sections. c

1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791

1793
1794

1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843

if (scapset->oc_id.cs r) {
of | - >of | flags |— FLG_OF_CAPSTRS;
/*
* Insert the identifier string in the
* approprlate string table. The capability
* value can't be filled in yet, as the final
* offset of the string isn't known until later.
*
if (st_insert(strthbl,
scapset->oc_id.cs_str) == -1)
return (S_ERROR);
scapset->oc_i d. cs_ndx = capndx;
CAP_UPDATE(cap, capndx, CA_SUNWID, 0);
}
if (scapset->oc_plat.cl_val) {
of | ->of | _flags | = FLG OF_CAPSTRS;
/*
* Insert the platformnane string in the
* appropriate string table. The capability
* value can't be filled in yet, as the final
* offset of the string isn't known until later.
*/
for (ALI ST_TRAVERSE(scapset->oc_pl at.cl _val,
i dx2, capstr))
if (st_insert(strthl,
capstr->cs_str) == -
return (S_ERROR);
capstr->cs_ndx = capndx;
CAP_UPDATE(cap, capndx,
CA_SUNW PLAT, 0);
}
i f (scapset->oc_mach.cl _val) {
of | ->of | _flags | = FLG_OF_CAPSTRS;
/*
* Insert the machine name string in the
* appropriate string table. The capability
* value can't be filled in yet, as the final
* offset of the string isn’t known until later.
*/

for (ALI ST_TRAVERSE(scapset->oc_nach. cl _val,
idx2, capstr))
if (st_insert(strthl,
capstr->cs_str) == -1)
return (S_ERROR);
capstr->cs_ndx = capndx;
CAP_UPDATE(cap, capndx,
CA_SUNW MACH, 0);
}

if (scapset->oc_hw 2.cmval) {
CAP_UPDATE(cap, capndx, CA_SUNW HW 2,
scapset->oc_hw 2.cmval);

if (scapset->oc_hw 1.cmval) {
CAP_UPDATE(cap, capndx, CA SUNWHW 1,
scapset->oc_hw_1.cmval);

if (scapset->oc_sf_1.cmuval) {
CAP_UPDATE(cap, capndx, CA SUNW SF 1,
scapset->oc_sf_1.cmval);

}
CAP_UPDATE(cap, capndx, CA_ SUNWNULL, 0);

14

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c 15 new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c 16
1910 }
1845 /* 1911 return (1);
1846 * |f any object capabilities are available, determ ne 1912 }
1847 * whet her these synbol capabilities are |ess 1913 #undef CAP_UPDATE
1848 * restrictive, and hence redundant.
1849 */ 1915 /*
1850 if (((ofl->ofl_flags & FLG OF_PTCAP) == 0) || 1916 * Build the PLT section and its associated relocation entries.
1851 (i s_cap_redundant (ocapset, scapset) == 0)) 1917 */
1852 conti nue; 1918 static uintptr
1919 make_plt (Ol _ desc *of l)
1854 /* 1920 {
1855 * Indicate any files that provide redundant synbol 1921 Shdr *shdr;
1856 * capabilities. 1922 El f _Data *dat a;
1857 */ 1923 I s_desc *ij sec;
1858 for (APLI ST_TRAVERSE(cgp- >cg_secs, idx2, isp)) { 1924 size_t size = ld_targ.t_mmplt_reservsz +
1859 Id_eprintf(ofl, ERR WARNI NG, 1925 (((size_t)ofl->ofl _pltcnt + (size_t)ofl->of | _pltpad) *
1860 MBG_| NTL(NBG CAP_REDUNDANT) , 1926 ld_targ.t_mmplt_entsize);
1861 isp->is_file->ifl_nane, 1927 size_t rsize = (size_t)ofl—>of|_re| ocpl tsz;
1862 EC WORD(i sp->i s_scnndx), isp->is_nane);
1863 } 1929 /*
1864 } 1930 * On sparc, account for the NOP at the end of the plt.
1865 } 1931 */
1932 if (Id targ.t_mmnmach == LD TARG BYCLASS(EM SPARC, EM SPARCV9))
1867 l* 1933 size += sizeof (Wrd);
1868 * |f capabilities strings are required, the sh_info field of the
1869 * section header will be set to the associated string table. 1935 if (new_section(ofl, SHT_PROGBITS, MSG ORI G(MSG SCN PLT), O,
1870 */ 1936 & sec, &shdr, &data) == S_ERROR)
1871 if (ofl->ofl _flags & FLG OF_CAPSTRS) 1937 return (S_ERROR);
1872 shdr->sh_flags | = SHF_I NFO_LI NK;
1939 dat a->d_si ze = size
1874 /* 1940 data->d_align = Id targ t_mmplt_align;
1875 * Place these capabilities in the output file.
1876 */ 1942 shdr->sh_flags = Id_targ.t_mmplt_shf_flags;
1877 if ((ofl->ofl _oscap = Id pI ace_section(ofl, isec, 1943 shdr->sh_si ze = (Xword)si ze;
1878 NULL, ident, NULL)) == (Os_desc *)S_ ERRCR) 1944 shdr->sh_addralign = Id_targ.t_mmplt_align;
1879 return (S_ERRCR) 1945 shdr->sh_entsize = Id_targ.t_mmplt_entsize,;
1881 /* 1947 of | ->of | _osplt = I d_place_section(ofl, isec, NULL,
1882 * | f synbol capabilities are required, then a . SUNWcapi nfo section is 1948 ld_targ.t | d.id_plt, NULL);
1883 * also created. This table will eventually be sized to match the 1949 if (ofl->ofl _osplt == (Os desc *)S _ERROR)
1884 */ associ ated synbol table. 1950 return (S_| ERR(P)
1885 *
1886 if (ofl->ofl_capfamlies) { 1952 of | ->of | _ospl t->0s_szoutrels = (Xword)rsi ze;
1887 if ((ofl->ofl_oscapinfo = make_sym sec(ofl,
1888 MSG_ORI G(M5SG_SCN_SUNWCAPI NFO) SHT_ SUNW V capi nf o, 1954 return (1);
1889 Id_targ.t_id.id_capinfo)) = (Cs desc *)S | ERR(R) 1955 }
1890 return (S_ERROR);
1957 /*
1892 * 1958 * Make the hash table. Only built for dynam c executabl es and shared
1893 * |f we’'re generating a dynamc object, capabilities famly 1959 * libraries, and provides hashed | ookup into the global synmbol table
1894 * menbers are maintained in a .SUNWcapchai n section. 1960 * (. dynsym) for the run-tinme linker to resolve synbol | ookups.
1895 * 1961
1896 f (ofl->ofl _capchai ncnt && 1962 st at| c uintptr_t
1897 ((of Il ->of | _flags & FLG OF_RELOBJ) == 0)) { 1963 nake_hash(Of | _desc *ofl)
1898 if (new_section(ofl, SHT_SUNW capchai n, 1964 {
1899 MSG_ORI G(MSG_SCN_SUNWCAPCHAI N) , 1965 Shdr *shdr;
1900 of | - >of | _capchai ncnt, & sec, &shdr, 1966 El f_Data *dat a;
1901 &data) == S_ERROR) 1967 I's_desc *i sec;
1902 return (S_ERROR); 1968 size_t si ze;
1969 Wor d nsynms = ofl->of| _gl obcnt;
1904 of | - >of | _oscapchain = | d_pl ace_section(ofl, isec, 1970 size_t cnt;
1905 NULL, ld_targ.t_id.id_capchain, NULL);
1906 if (ofl->ofl_oscapchain == (Os_desc *)S ERROR) 1972 /*
1907 return (S_ERROR); 1973 * Al ocate section header structures. We set entcnt to O
1974 * because it’'s going to change after we place this section.
1909 } 1975 */

new usr/src/cnd/ sgs/1i bl d/ conmon/ sections. c 17 new usr/src/cnd/ sgs/1i bl d/ conmon/ sections. c
1976 if (new_section(ofl, SHT_HASH, MSG ORI G(MSG_SCN_HASH), O, 2042 if ((ofl->ofl _ossyntab = |d_place_section(ofl, isec, NULL,
1977 & sec, &shdr, &data) == S_ERROR) 2043 ld_targ.t_id.1d_synmtab, NULL)) == (Os_desc *)S_ERROR)
1978 return (S_ERROR); 2044 return (S_ERROR);
1980 /* 2046 /*
1981 * Place the section first since it will affect the |ocal synbol 2047 * At this point we've created all but the 'shstrtab’ section.
1982 * count. 2048 * Determine if we have to use 'Extended Sections’. If so - then
1983 */ 2049 * also create a SHT_SYMIAB_SHNDX secti on.
1984 of | ->of | _oshash = 2050 */
1985 I d_pl ace_section(ofl, isec, NULL, Id_targ.t_id.id_hash, NULL); 2051 if ((ofl->ofl_shdrcnt + 1) >= SHN _LORESERVE) {
1986 if (ofl->ofl _oshash == (Os_desc *)S_ERROR) 2052 Shdr *xshdr;
1987 return (S_ERROR); 2053 El f _Data *xdat a;
1989 I* 2055 if (new_section(ofl, SHT_SYMIAB_SHNDX,
1990 * Cal cul ate the nunber of output hash buckets. 2056 MSG_ORI G{ MSG_SCN_SYMIAB_SHNDX), 0, &xi sec,
1991 */ 2057 &shdr, é&xdata) == S ERROR)
1992 of | ->of | _hashbkts = findpri me(nsymns); 2058 return (S_ERROR);
1994 /* 2060 if ((ofl->ofl _ossymshndx = | d_place_section(ofl, xisec, NULL,
1995 * The size of the hash table is deternined by 2061 Id_targ.t_id.i1d_syntab_ndx, NULL)) == (Gs_desc *)S_ERROR)
1996 * 2062 return (S_ERROR);
1997 * i the initial nbucket and nchain entries (2) 2063 }
1998 * il t he nunber of buckets (cal cul ated above)
1999 * iii. the nunber of chains (this is based on the nunber of 2065 /*
2000 * synbols in the .dynsymarray). 2066 * Cal cul ated nunmber of synbols, which need to be augnented by
2001 */ 2067 * the (yet to be created) .shstrtab entry.
2002 cnt = 2 + ofl->of | _hashbkts + DYNSYM ALL_CNT(ofl); 2068 */
2003 size = cnt * shdr->sh_entsi ze; 2069 synmcnt = (size_t)(1 + SYMIAB_ALL_CNT(ofl));
2070 size = syntnt * shdr->sh_entsi ze;
2005 /*
2006 * Finalize the section header and data buffer initialization. 2072 /*
2007 */ 2073 * Finalize the section header and data buffer initialization.
2008 if ((data->d_buf = libld_calloc(size, 1)) == NULL) 2074 */
2009 return (S_ERROR); 2075 dat a->d_si ze = si ze;
2010 dat a- >d_si ze = si ze; 2076 shdr->sh_size = (Xword)si ze;
2011 shdr->sh_size = (Xword)si ze;
2078 /*
2013 return (1); 2079 * |f we created a SHT_SYMIAB_SHNDX - then set it’'s sizes too.
2014 } 2080 */
2081 if (xisec) {
2016 /* 2082 size_t xsize = syncnt * sizeof (Wrd);
2017 * Generate the standard synbol table. Contains all |ocals and globals,
2018 * and resides in a non-allocatable section (ie. it can be stripped). 2084 Xi sec->i s_i ndat a- >d_si ze = xsi ze;
2019 */ 2085 Xi sec->i s_shdr->sh_size = (Xword)xsi ze;
2020 static uintptr_t 2086 }
2021 make_syntab(Of | _desc *ofl)
2022 { 2088 return (1);
2023 Shdr *shdr; 2089 }
2024 El f _Data *dat a;
2025 I's_desc *i sec; 2091 /*
2026 I's_desc *xi sec = 0; 2092 * Build a dynam c synbol table. These tables reside in the text
2027 size_t si ze; 2093 * segnent of a dynamic executable or shared library.
2028 Wor d synent ; 2094 *
2095 * . SUNW | dynsym cont ai ns | ocal function synbols
2030 /* 2096 * .dynsym contains only globals synbol s
2031 * Create the section headers. Note that we supply an ent_cnt 2097 *
2032 * of 0. W won’t know the count until the section has been pl aced. 2098 * The two tables are created adjacent to each other, with . SUNWI dynsym
2033 */ 2099 * coming first.
2034 if (new_section(ofl, SHT_SYMIAB, MSG ORI G(MSG_SCN_SYMIAB), O, 2100 *
2035 & sec, &shdr, &data) == S_ERROR) 2101 static uintptr_t
2036 return (S_ERROR); 2102 meke_dynsynm(Of I _desc *ofl)
2103 {
2038 /* 2104 Shdr *shdr, *Ishdr;
2039 * Place the section first since it will affect the |ocal symnbol 2105 El f _Data *data, *I|data;
2040 * count. 2106 I s_desc *isec, *lisec;
2041 */ 2107 size_t si ze;

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

2108
2109

2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125

2127
2128
2129
2130
2131
2132
2133

2135
2136
2137

2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150

2152
2153

2155
2156
2157
2158
2159

2161
2162
2163
2164
2165
2166
2167
2168
2169

2171
2172
2173

Xwor d cnt;
int al | ow_| dynsym

/*
* Unless explicitly disabled, always produce a . SUNWIdynsym section
* when it is allowed by the file type, even if t he resul ting
* table only ends up wth a single STT_FILE in it. There are
* two reasons: (1) It causes the generation of the DI_SUNW SYMIAB
* entry in the .dynam c section, which is sonething we woul d
* like to encourage, and (2) Wthout it, we cannot generate
* the associated . SUNWdyn[synjtls]sort sections, which are of
* value to DIrace.

*

*

*

*

*

|

In practice, it is extremely rare for an object not to have
| ocal synmbols for .SUNWIdynsym so 99%of the tine, we’'d be
doing it anyway.

al | ow_| dynsym = OFL_ALLOW LDYNSYM of I) ;

/*

* Create the section headers. Note that we supply an ent_cnt

* of 0. W won’t know the count until the section has been pl aced.

*

/
if (allow_|dynsym & new_section(ofl, SHT_SUNW LDYNSYM

MSG_ORI G{ MSG_SCN_LDYNSYM), 0, &l isec, & shdr, & data) == S_ERROR)
return (S_ERROR);

if (new_section(ofl, SHT_| DYNSYM MSG_ORI G(MSG_SCN_DYNSYM, O,
& sec, &shdr, &dat a) == S_ERROR)
return (S ERROR) ;

/*
* Place the section(s) first since it will affect the | ocal symbol
* count.
*/
if (allow_|dynsym &&
((of I ->of | _osl dynsym = | d_pl ace_ secti on(ofl, lisec, NULL,
Id_targ.t_id.id_|Idynsym NULL)) == (Os_desc *)S_ERROR))
return (S_ERROR);
of | - >of | _osdynsym =
I d_place_section(ofl, isec, NULL, Id_targ.t_id.id dynsym NULL);
if (ofl->ofl _osdynsym == (Os_desc *)S_ERROR)
return (S_ERROR);

cnt = DYNSYM ALL_CNT(ofl);
size = (size_t)cnt * shdr->sh_entsi ze;

/*

* Finalize the section header and data buffer initialization.
*/

dat a->d_si ze = size;

shdr->sh_size = (Xword)si ze;

/
An | dynsym contains |ocal function synbols. It is not
used for linking, but if present, serves to allow better
stack traces to be generated in contexts where the syntab

* ok kb k%

if (all ow I dynsyrr) {
= 1 + ofl->of | _dynl ocscnt + of|->of | _dynscopecnt;
S|ze = (size_t)cnt * shdr->sh_entsize;

| dat a- >d_si ze = si ze;
| shdr->sh_si ze = (Xword)si ze;

is not available. (dladdr(), or stripped executable/library files).

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c 20
2175 return (1);

2176 }

2178 [*

2179 * Build .SUNWdynsynsort and/or .SUNWdyntlssort sections. These are

2180 * index sections for the .SUNWIdynsym .dynsym pair that present data

2181 * and function synbols sorted by address.

2182 */

2183 static uint ptr

2184 make_dynsort (Of I _desc *ofl)

2185 {

2186 Shdr *shdr;

2187 El f _Data *dat a;

2188 I s_desc *isec;

2190 /* Only do it if the .SUNWIdynsym section is present */

2191 if (!OFL_ALLOW LDYNSYI\/[ofl))

2192 return (1);

2194 /* . SUNW dynsynmsort */

2195 if (ofl->ofl_dynsynmsortcnt > 0)

2196 if (new_section(ofl, SHT_SUNWsynsort,

2197 MSG_ORI G{ MSG_SCN_DYNSYMSORT), ofl->of _dynsynsortcnt,
2198 & sec, &shdr, &data) == S_ERROR)

2199 return (S_ERROR);

2201 if ((ofl->ofl _osdynsynsort = |d_place sectlon(ofl isec, NULL,
2202 ld_targ.t_id.id_dynsort, NULL)) == (Os_desc *)S_ERRO?)
2203 return (S_ERROR);

2204 }

2206 /* . SUNWdyntl| ssort */

2207 if (ofl->ofl_dyntlssortcnt > 0)

2208 if (new_section(ofl, SHT_SUNWtI ssort,

2209 MSG_ORI G(M5SG SCN | DYNTLSSORT) ,

2210 of | =>of | _dyntlssortcnt, & sec, &hdr, &ata) == S _ERROR)
2211 return (S_ERROR);

2213 if ((ofl->ofl _osdyntlssort = Id_pl ace_ sectl on(ofl, isec, NULL,
2214 ld_targ.t_id.id _dynsort, NULL)) == (GOs_desc *)S ERROR)
2215 return (S_ERROR);

2216 }

2218 return (1);

2219 }

2221 | *

2222 * Hel per routine for nmake_dynsym shndx. Builds a

2223 * a SHT_SYMIAB_SHNDX for .dynsym or .SUNWIdynsym wi thout know ng

2224 * which one it is.

2225 */

2226 static uintptr_t

2227 make_dyn_shndx(Cfl _desc *ofl, const char *shname, Os_desc *syntab,

2228 Cs_desc **ret_os)

2229 {

2230 I s_desc *isec;

2231 I's_desc *dynsym sp;

2232 Shdr *shdr, *dynshdr;

2233 El f _Data *dat a;

2235 dynsym sp = | d_os_first_isdesc(syntab);

2236 dynshdr = dynsym sp->i s_shdr;

2238 if (new_section(ofl, SHT_SYMIAB_SHNDX, shnane,

2239 (dynshdr->sh_si ze / dynshdr->sh_entsize),

new usr/src/cnd/ sgs/1i bl d/ conmon/ sections. c 21 new usr/src/cnd/ sgs/1i bl d/ conmon/ sections. c
2240 & sec, &shdr, &data) == S_ERROR)
2241 return (S_ERROR); 2307 return (1);
2308 }
2243 if ((*ret_os = Id_place_section(ofl, isec, NULL
2244 Id_targ.t_id.id_dynsym ndx, NULL)) == (Gs_ desc *)S_ERROR) 2310 /*
2245 return (S_ERROR); 2311 * Build a string section for the standard synbol table.
2312 */
2247 assert(*ret_os); 2313 static uintptr_t
2314 make_strtab(Of | _desc *ofl)
2249 return (1); 2315 {
2250 } 2316 Shdr *shdr;
2317 El f _Data *dat a;
2252 | * 2318 I's_desc *i sec;
2253 * Build a SHT_SYMIAB_SHNDX for the .dynsym and . SUNWI dynsym 2319 size_t si ze;
2254 */
2255 static uintptr 2321 /*
2256 make_dynsym shndx(O‘I desc *ofl) 2322 * This string table consists of all the global and | ocal synbols.
2257 { 2323 * Account for null bytes at end of the file name and the begi nning
2258 /* 2324 * of section.
2259 * If there is a .SUNWI|dynsym generate a section for its extended 2325 */
2260 * index section as well. 2326 if (st_insert(ofl->ofl _strtab, ofl->ofl_nane) == -1)
2261 */ 2327 return (S_ERROR);
2262 f (OFL_ALLOW LDYNSYM of |))
2263 if (make_dyn_shndx(ofl, MSG ORI G MSG_SCN_LDYNSYM SHNDX) 2329 size = st_getstrtab_sz(ofl->ofl _strtab);
2264 of | ->of | _osl dynsym &of T->of | _osl'dynshndx) == S ERR(R) 2330 assert(size > 0);
2265 return (S_ERROR);
2266 } 2332 if (new_section(ofl, SHT_STRTAB, MSG ORI G(MSG SCN_STRTAB),
2333 0, & sec, &shdr, &data) == S_ERROR)
2268 /* The Cenerate a section for the dynsym*/ 2334 return (S_ERROR);
2269 if (make_dyn_shndx(ofl, MSG ORI G(MSG_SCN_DYNSYM SHNDX) ,
2270 of | ->of | _osdynsym &of | =>of | _osdynshndx) =="S ERRCR) 2336 /* Set the size of the data area */
2271 return (S_ERROR); 2337 dat a- >d_si ze = si ze;
2338 shdr->sh_size = (Xword)si ze;
2273 return (1);
2274 } 2340 of | ->of | _osstrtab =
2341 I d_pl ace_section (isec, NULL, ld_targ.t_id.id_strtab, NULL);
2342 return ((uintptr_t)ofl >of | _osstrtab);
2277 I|* 2343 }
2278 * Build a string table for the section headers.
2279 */ 2345 [*
2280 static uintptr_t 2346 * Build a string table for the dynam c synbol table.
2281 make_shstrtab(O | _desc *ofl) 2347 */
2282 { 2348 static uintptr_t
2283 Shdr *shdr; 2349 nake_dynstr (O T _desc *ofl)
2284 El f _Data *dat a; 2350 {
2285 I's_desc *i sec; 2351 Shdr *shdr;
2286 size_t si ze; 2352 El f _Data *dat a;
2353 I s_desc *j sec;
2288 if (new section(ofl, SHT_STRTAB, MSG ORI G{ MSG_SCN_SHSTRTAB), 2354 size t si ze;
2289 0, & sec, &shdr, &data) == S _ERROR)
2290 return (S_ERROR); 2356 /*
2357 * |f producing a .SUNWIdynsym account for the initial STT_FILE
2292 l* 2358 * synbol that precedes “the scope reduced gl obal symbol s.
2293 * Place the section first, as it may effect the nunber of section 2359 */
2294 * headers to account for. 2360 if (OFL_ALLOW LDYNSYMofl)) {
2295 */ 2361 if (st_insert(ofl->ofl _dynstrtab, ofl->ofl_nane) == -1)
2296 of | ->of | _osshstrtab = 2362 return (S_ERROR);
2297 I d_place_section(ofl, isec, NULL, Id_targ.t_id.id_note, NULL); 2363 of | - >of | _dynscopecnt ++;
2298 if (ofl->of| _osshstrtab == (Os_desc *)S_ERROR) 2364 }
2299 return (S_ERROR);
2366 /*
2301 size = st_getstrtab_sz(ofl->ofl _shdrsttab); 2367 * Account for any local, named regi ster synbols. These locals are
2302 assert(size > 0); 2368 * required for reference from DI_REG STER . dynam c entries.
2369 */
2304 dat a- >d_si ze = si ze; 2370 if (ofl->ofl_regsyms) {
2305 shdr->sh_size = (Xword)si ze; 2371 int ndx;

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

2373 for (ndx = 0; ndx < ofl->ofl_regsynmsno; ndx++) {

2374 Sym desc *sdp;

2376 if ((sdp = ofl->of _regsynms[ndx]) == NULL)

2377 conti nue;

2379 if (!SYMIS_H DDEN(sdp) &&

2380 (ELF_ST_BI ND(sdp- >sd_sym >st _info) != STB_LOCAL)
2381 conti nue;

2383 if (sdp->sd_sym >st_nanme == NULL)

2384 continue;

2386 if (st_insert(ofl->ofl_dynstrtab, sdp->sd_nane) == -
2387 return (S_ERROR);

2388 }

2389 }

2391 /*

2392 * Reserve entries for any per-synbol auxiliary/filter strings.
2393 */

2394 if (ofl->ofl_dtsfltrs !'= NULL) {

2395 Df | tr_desc *df t p;

2396 Aliste i dx;

2398 for (ALIST_TRAVERSE(ofl->ofl _dtsfltrs, idx, dftp))

2399 if (st_insert(ofl->ofl _dynstrtab, dftp->dft_str) ==
2400 return (S_ERROR);

2401 }

2403 size = st_getstrtab_sz(ofl->of | _dynstrtab);

2404 assert(size > 0);

2406 if (new_section(ofl, SHT_STRTAB, MSG ORI G MSG_SCN _DYNSTR),

2407 0, & sec, &shdr, &data) == S_ERROR)

2408 return (S_ERROR);

2410 /* Make it allocable if necessary */

2411 if (!(ofl->ofl_flags & FLG OF_RELOBJ))

2412 shdr->sh_flags | = SHF_ALLCC;

2414 /* Set the size of the data area */

2415 dat a- >d_si ze = size + DYNSTR_EXTRA_PAD,

2417 shdr->sh_size = (Xword)size;

2419 of | ->of | _osdynstr =

2420 I d_pl ace_section(ofl, isec, NULL, Id_targ.t_id.id_dynstr, NULL);
2421 return ((uintptr_t)ofl->ofl_osdynstr);

2422 }

2424 | *

2425 * Cenerate an output relocation section which will contain the relocation
2426 * information to be applied to the ‘osp’ section.

2427 *

2428 * If (osp == NULL) then we are creating the coal esced rel ocati on section
2429 * for an executable and/or a shared object.

2430 *

2431 static uintptr_t

2432 meke_rel oc(Of I _desc *ofl, Os_desc *osp)

2433 {

2434 Shdr *shdr;

2435 El f _Data *dat a;

2436 I s_desc *isec;

2437 size_t si ze;

23

)

1)

-1)

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c 24
2438 Xwor d sh_fl ags;

2439 char *sect nane;

2440 Gs_desc *rosp;

2441 Wor d rel size;

2442 const char *rel _prefix;

2444 /* LINTED */

2445 if (Id_targ.t_mmrel _sht_type == SHT_REL) {

2446 /* REL */

2447 rel size = sizeof (Rel);

2448 rel_prefix = MSG OR G{ MSG_SCN_REL):

2449 } else {

2450 /* RELA */

2451 rel size = sizeof (Rela);

2452 rel_prefix = MSG_OR G{MSG_SCN_RELA);

2453 }

2455 if (osp) {

2456 size = osp->0s_szoutrels;

2457 sh_flags = osp->o0s_shdr- Ssh_fl ags;

2458 if ((sectname = libld_malloc(strl en(rel _prefix) +

2459 strlen(osp->0s_name) + 1)) ==

2460 return (S_ERROR);

2461 (voi d) strcpy(sectnane, rel _prefix);

2462 (voi d) strcat(sectnanme, osp->0s_nane);

2463 } else if (ofl->ofl fIags&FLGO:wVREL) {

2464 size = (ofI ->of | _rel occnt - ofl->of | _rel occntsub) * relsize;
2465 sh_flags = SHF_ALLCC;

2466 sectname = (char *)MSG ORI G MSG_SCN_SUNWRELCC) ;

2467 } else {

2468 size = of | ->of | _rel ocrel sz;

2469 sh_flags = SHF_ALLCC;

2470 sectname = (char *)rel _prefix;

2471 }

2473 /*

2474 * Keep track of total size of 'output relocations’ (to be stored
2475 * in .dynamc)

2476 */

2477 /* LINTED */

2478 of | ->of | _rel ocsz += (Xword)si ze;

2480 if (new_ secti on(ofl , ld_targ.t_mmrel _sht_type, sectnanme, 0, & sec,
2481 &shdr, &data) == S ERROR)

2482 return (S| ERR(P)

2484 dat a- >d_si ze = size;

2486 shdr->sh_size = (Xword)si ze;

2487 if (OFL_ALLOW DYNSYMofl) && (sh_flags & SHF_ALLOQ))

2488 shdr->sh_flags = SHF_ALLCC;

2490 if (osp) {

2491 /*

2492 * The sh_info field of the SHT_REL* sections points to the
2493 * section the relocations are to be applied to.

2494 */

2495 shdr->sh_flags | = SHF_I NFO_LI NK;

2496 }

2498 rosp = |l d_place_section(ofl, isec, NULL, Id_targ.t_id.id_rel, NULL);
2499 if (rosp == (Os_desc *)S ERROR)

2500 return (S_ERROR);

2502 /*

2503 * Associate this relocation section to the section its going to

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c 25

2504
2505
2506
2507
2508

2510
2511
2512
2513
2514
2515
2516

2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530

2532
2533
2534
2535
2536
2537

2539
2540 }

2542 [*

* rel ocate.
=

if (osp) {
Aliste idx;
I's_desc *risp;

/*
* This is used primarily so that we can update
* SHT_GROUP[sect_no] entries to point to the
* created output relocation sections.
*/
for (APLIST TRAVERSE(osp >o0s_relisdescs, idx, risp)) {
ri sp->i s_osdesc = rosp;

/
If the input relocation section had the SHF_GROUP
flag set - propagate it to the output relocation
section.

* ok Ok Ok

if (risp->is_shdr->sh_flags & SHF_GROUP) {
rosp- >0s_shdr->sh_fl ags |= SHF_GROUP;
br eak;

}
}
osp->os_rel osdesc = rosp;

} else
of | ->of | _osrel = rosp;

*

* |f this is the first relocation section we’'ve encountered save it
* so that the .dynamc entry can be initialized accordingly.
*
f

(of I ->of | _osrel head == (05 desc *)0)
of | ->of | _osrel head = rosp;

return (1);

2543 * Cenerate version needed section.
*/

2544

2545 static uint ptr

2546 make_ver need(Of

2547 {
2548
2549
2550

2552
2553
2554
2555
2556
2557
2558

2560
2561
2562

2564
2565
2566
2567 }

2569 /*

_desc *ofl)
Shdr *shdr;
Elf_Data *dat a;
I's_desc *i sec;

/*

* verneed sections do not have a constant el enent size, so the

* value of ent_cnt specified here (0) is neaningless.

*

/
if (new_section(ofl, SHT_SUNWverneed, MSG ORI G{ MSG_SCN_SUNWERSI ON),

0, & sec, &shdr, &data) == S _ERROR)
return (S_ERROR);

/* During version processing we cal cul ated the total size. */
dat a- >d_si ze = of | ->of | _ver needsz;
shdr->sh_si ze = (Xword)of | - >of | _ver needsz;

of | - >of | _osverneed =
I d_pl ace_section(ofl, isec, NULL, Id_targ.t_id.id_version, NULL);
return ((uintptr_t)ofl->ofl_osverneed);

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c 26
2570 * Generate a version definition section.

2571 *

2572 * the SHT_SUNW verdef section defines the versions that exist within this
2573 * i mge.

2574 */

2575 static uintptr_

2576 make_verdef (Of | desc *of 1)

2577 {

2578 Shdr *shdr;

2579 El f _Data *dat a;

2580 I s_desc *isec;

2581 Ver _desc *vdp;

2582 Str_tbhl *strtab;

2584 I*

2585 * Reserve a string table entry for the base versi on dependency (other
2586 * dependenci es have synmbol representations, which will already be
2587 * accounted for during synmbol processing).

2588 */

2589 vdp = (Ver_desc *)ofl->of| _verdesc->apl _data[O0];

2591 if (OFL_IS_STATIC OBJ(ofl))

2592 strtab = of | ->of | _strtab;

2593 el se

2594 strtab = ofl->of | _dynstrtab;

2596 if (st_insert(strtab, vdp->vd_nane) == -1)

2597 return (S_ERROR);

2599 /*

2600 * verdef sections do not have a constant el enent size, so the
2601 * value of ent_cnt specified here (0) is neaningless.

2602 *

2603 if (new_section(ofl, SHT_SUNWverdef, MSG ORI G(M5SG_SCN_SUNWERSI ON),
2604 0, & sec, &shdr, &data) == S_ERROR)

2605 return (S_ERROR);

2607 /* During version processing we cal culated the total size. */

2608 dat a- >d_si ze = of | ->of | _verdefsz;

2609 shdr->sh_size = (Xword)ofl->ofl _verdefsz;

2611 of | ->of | _osverdef =

2612 | d_pl ace_secti on (isec, NULL, ld_targ.t_id.id_version, NULL);
2613 return ((uintptr_t)ofl >of | _osverdef);

2614 }

2616 /*

2617 * This routine is called when -z nopartial is in effect.

2618 */

2619 uintptr_t

2620 | d_make_parexpn_data(Of | _desc *of |, size_t size, Xword align)

2621

2622 Shdr *shdr;

2623 El f _Data *dat a;

2624 I's_desc *i sec;

2625 Gs_desc *osp;

2627 if (new_section(ofl, SHT_PROGBITS, MSG ORI G(MSG_SCN _DATA), O,

2628 & sec, &shdr, &data) == S_ERROR)

2629 return (S_ERROR);

2631 shdr->sh_flags | = SHF_WRI TE;

2632 dat a- >d_si ze = si ze;

2633 shdr->sh_size = (Xword)si ze;

2634 if (align != 0)

2635 data->d_align = align;

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

2636 shdr->sh_addralign = align;

2637

2639 if ((data->d_buf = libld_calloc(size, 1)) == NULL)

2640 return (S ERROR) ;

2642 /*

2643 * Retain handle to this .data input section. Variables using nove
2644 * sections (partial initialization) will be redirected here when
2645 * such gl obal references are added and '-z nopartial’ is in effect.
2646 *

2647 of | - >of | _i sparexpn = i sec;

2648 osp = | d_pl ace_section(ofl, isec, NULL, Id_targ.t_id.id_data, NULL);
2649 if (osp == (Gs_desc *)S_ERROR)

2650 return (S_ERROR);

2652 if ('(osp >0s_flags & FLG OS_QUTREL)) {

2653 of | - >of | _dynshdr cnt ++;

2654 osp->o0s_flags | = FLG_OS_CUTREL

2655 }

2656 return (1);

2657 }

2659 /*

2660 * Make .sunwnpve section

2661 */

2662 uintptr_t

2663 | d_make_sunwnove(Of I _desc *ofl, int nv_nuns)

2664 {

2665 Shdr *shdr;

2666 El f _Data *dat a;

2667 I's_desc *isec;

2668 Aliste i dx;

2669 Sym desc *sdp;

2670 int cnt = 1;

2673 if (new_section(ofl, SHT_SUNW nove, MSG ORI G(MSG_SCN_SUNWMOVE) ,
2674 m/_nums, & sec, &shdr, &data) == S_ERROR)

2675 return (S_ERROR);

2677 if ((data->d_buf = 1ibld_calloc(data->d_size, 1)) == NULL)

2678 return (S_ERROR);

2680 /*

2681 * Copy nove entries

2682 */

2683 for (APLI ST TRAVERSE(ofI->ofI _parsyms, idx, sdp)) {

2684 Aliste i dx2;

2685 M/_desc *ndp,

2687 if (sdp->sd_flags & FLG SY_PAREXPN)

2688 conti nue;

2690 for (ALI ST_TRAVERSE(sdp->sd_nove, idx2, ndp))

2691 mdp- >md_oi dx = cnt ++;

2692 1

2694 if ((ofl->ofl _osnove = | d_place_section(ofl, isec, NULL, O, NULL)) ==
2695 (Cs_desc *)S_ERROR)

2696 return (S_ERROR);

2698 return (1);

2699 }

2701 /*

27

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

2702
2703
2704
2705
2706
2707

2709
2710

2712
2713
2714
2715
2716

2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733

2735
2736
2737

2739
2740

2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767

*
*
*

*/

G ven a relocation descriptor that references a string table
input section, locate the string referenced and return a pointer
toit.

static const char *
strmerge_get _reloc_str(Ofl _desc *ofl, Rel_desc *rsp)
2708 {

® Ok ok ok F Rk Ok Sk Ok R b Sk b 3k R R Ok Rk ok % b ¥ b ¥

Sym desc *sdp = rsp->rel _sym

Xwor d str_of f

/*

* In the case of an STT_SECTI ON synbol, the addend of the
* relocation gives the offset into the string section. For
* other synbol types, the synbol value is the offset.

*

/

if (ELF_ST_TYPE(sdp->sd_sym >st_info) != STT_SECTION) {
str_off = sdp->sd_sym >st_val ue;

} else if ((rsp- >re| _flags & FLG_REL_RELA) == FLG_REL_RELA) {
/*

* For SHT_RELA, the addend value is found in the
* rel _raddend field of the relocation.

*/
str_off = rsp->rel _raddend;
} else { /* REL and STT_ SECTI ON */
/*
* For SHT_REL, the "addend" is not part of the relocation
* record. Instead, it is found at the relocation target
* address.
*

uchar _t *addr = (uchar_t *)((uintptr_t)rsp->rel_roffset +
(uintptr_t)rsp->rel _isdesc->i s_i ndat a- >d_buf);

if (Id_reloc_targval _get(ofl, rsp, addr, &str_off) == 0)
return (0);
}

return (str_off + (char *)sdp->sd_isc->is_indata->d_buf);

First pass over the relocation records for string table nerging.
Build lists of relocations and synbols that will need nodification,
and insert the strings they reference into the nstrtab string table.

entry:

ofl, osp - As passed to | d_make_strnerge().

mstrtab - String table to receive input strings. This table
must be inits first (initialization) pass and not
yet cooked (st_getstrtab_sz() not yet called).

rel _alpp - APlist to receive pointer to any relocation
descriptors with STT_SECTI ON synbol s that reference
one of the input sections being merged.

symalpp - APlist to receive pointer to any synbols that reference
one of the input sections being nerged.

rcp - Pointer to cache of relocation descriptors to exam ne.
Ei ther &ofl->ofl _actrels (active relocations)
or &ofl->of | _outrels (output relocations).

exit:
On success, rel_alpp and sym al pp are updated, and
any strings in the nmergeabl e i nput sections referenced by
a relocation has been entered into nstrtab. True (1) is returned.

On failure, False (0) is returned.

new usr/src/cnd/ sgs/1i bl d/ conmon/ sections. c 29 new usr/src/cnd/ sgs/1i bl d/ conmon/ sections. c 30
2768 static int 2834 * encountered, True (1) is returned. On error, S_ERROR
2769 strnerge_passl(Ofl _desc *ofl, Os_desc *osp, Str_tbl *mstrtab, 2835 *
2770 APl'i st **rel _al pp, APlist **sym al pp, Rel _cache *rcp) 2836 * The contents of rel _alpp and symal pp on exit are
2771 { 2837 * undefined. The caller can free them or pass themback to a subsequent
2772 Aliste i dx; 2838 * call to this routine, but should not exanmine their contents.
2773 Rel _cachebuf *rcbp; 2839 */
2774 Sym desc *sdp; 2840 static uintptr_t
2775 Sym desc *last _sdp = NULL; 2841 | d_nake_strmerge(Ofl _desc *ofl, Os_desc *osp, APlist **rel _alpp,
2776 Rel _desc *rsp; 2842 APl ist **sym al pp)
2777 const char *nane; 2843 {
2844 Str_tbl *nstrtab; /* string table for string nmerge secs */
2779 REL_CACHE_ TRAVERSE(rcp, idx, rcbp, rsp) { 2845 I's_desc *met rsec; /* Generated string nerge section */
2780 sdp = rsp->rel _sym 2846 I's_desc *isp;
2781 if ((sdp >sd_isc == NULL) || ((sdp->sd_isc->is_flags & 2847 Shdr *nstr_shdr;
2782 (FLG IS DISCARD | FLG IS INSTRVRG)) != FLG IS INSTRVRG) || 2848 Elf _Data *netr_data;
2783 (sdp->sd_i sc->i s_osdesc != osp)) 2849 Sym desc *sdp;
2784 conti nue; 2850 Rel _desc *rsp;
2851 Aliste idx;
2786 /* 2852 size_t dat a_si ze;
2787 * Remenber synbol for use in the third pass. There is no 2853 int st _setstring_status;
2788 * reason to save a given synbol nore than once, so we take 2854 size_t stoff;
2789 * advantage of the fact that relocations to a given synbol
2790 * tend to cluster in the list. If this is the same synbol 2856 /* 1f string table conpression is disabled, there’s nothing to do */
2791 * we saved last tine, don’t bother. 2857 if ((ofl->ofl_flagsl & FLG OF1_NCSTTAB) != 0)
2792 */ 2858 return (1);
2793 if (last_sdp !'= sdp) {
2794 if (aplist_append(sym al pp, sdp, AL_CNT_STRVRGSYM == 2860 /*
2795 NULL) 2861 * Pass over the nmergeable input sections, and if they haven't
2796 return (0); 2862 * all been discarded, create a string table.
2797 | ast _sdp = sdp; 2863 */
2798 } 2864 nstrtab = NULL;
2865 for (APLI ST TRAVERSE(osp->o0s_nstrisdescs, idx, isp)) {
2800 /* Enter the string into our new string table */ 2866 if (isdesc_discarded(isp))
2801 nanme = strnerge_get_reloc_str(ofl, rsp); 2867 conti nue;
2802 if (st_insert(nmstrtab, nane) == -1)
2803 return (0); 2869 /*
2870 * | nput sections of O size are dubiously valid since they do
2805 /* 2871 * not even contain the NUL string. Ignore them
2806 * If this is an STT_SECTI ON synbol, then the second pass 2872 */
2807 * will need to nodify this rel ocati on, so hang on to it. 2873 if (isp->is_shdr->sh_size == 0)
2808 */ 2874 conti nue;
2809 if ((ELF_ST_TYPE(sdp->sd_sym >st_info) == STT_SECTI ON) &&
2810 (aplist_append(rel _al pp, rsp, AL_CNT_STRVRGREL) == NULL)) 2876 /*
2811 return (0); 2877 * W have at |east one non-discarded section.
2812 } 2878 * Create a string table descriptor.
2879 */
2814 return (1); 2880 if ((metrtab = st_new(FLG_STNEW COMPRESS)) == NULL)
2815 } 2881 return (S_ERROR);
2882 br eak;
2817 [* 2883 }
2818 * |f the output section has any SHF_MERGE| SHF_STRI NGS i nput secti ons,
2819 * replace themw th a single nerged/ conpressed input section. 2885 /* 1f no string table was created, we have no nergeabl e sections */
2820 * 2886 if (mstrtab == NULL)
2821 * entry: 2887 return (1);
2822 * of| - Qutput file descriptor
2823 * osp - Qutput section descriptor 2889 /*
2824 * rel _al pp, symalpp, - Address of 2 APlists, to be used 2890 * This routine has to nake 3 passes:
2825 * for internal processing. On the initial call to 2891 *
2826 * | d_meke_strmerge, these |ist pointers nmust be NULL. 2892 * 1) Exanmine all relocations, insert strings fromrelocations
2827 * The caller is encouraged to pass the sanme |ists back for 2893 * to the nergeabl e input sections into the string table.
2828 * successive calls to this function without freeing 2894 * 2) Mdify the relocation values to be correct for the
2829 * themin between calls. This causes a single pair of 2895 kd new nerged section.
2830 * menory allocations to be reused multiple tines. 2896 * 3) Mdify the synbols used by the relocations to reference
2831 * 2897 * the new section.
2832 * exit: 2898 *
2833 * If section nmerging is possible, it is done. If no errors are 2899 * These passes cannot be conbi ned:

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917

2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936

2938
2939
2940
2941
2942

2944
2945
2946
2947
2948

2950
2951
2952
2953
2954
2955
2956
2957

2959
2960
2961
2962

2964
2965

- The string table code works in two passes, and all
strings have to be |oaded in pass one before the
of fset of any strings can be determ ned.

- Miultiple relocations reference a single synbol, so the
synbol cannot be nodified until all relocations are
f1xed.

The nunber of relocations related to section nmerging is usually

a nere fraction of the overall active and output relocation |lists,
and the nunber of synbols is usually a fraction of the nunber

of related relocations. W therefore build APlists for the

rel ocations and synmbols in the first pass, and then use those
lists to accelerate the operation of pass 2 and 3.

* Ok k ok kb k ok kb k% ok ok

Reinitialize the lists to a conpletely enpty state.
*/

aplist_reset(*rel _al pp);

apl i st _reset (*sym al pp);

/
Pass 1:

Every relocation related to this output section (and the input
sections that make it up) is found in either the active, or the
output relocation |ist, depending on whether the relocation is to
be processed by this invocation of the linker, or inserted into the
out put obj ect.

* % ok ko k k ok Kk ok

Build lists of relocations and synbols that will need nodification,
* and insert the strings they reference into the nstrtab string table.
*

/
if (strmerge_passi(ofl, osp, nstrtab, rel_al pp, symal pp,
&of | ->of | _actrels) == 0)
goto return_s_error;
if (strmerge_passi(ofl, osp, mstrtab, rel_al pp, symal pp,
&of | ->of | _outrels) ==
goto return_s_error;

/*

* CGet the size of the new input section. Requesting the

* string table size "cooks" the table, and finalizes its contents.
*/

data_size = st_getstrtab_sz(nstrtab);

/* Create a new i nput section to hold the nerged strings */
if (new_section_fromtenplate(ofl, isp, data_size,
&rstrsec, &mstr_shdr, &nstr_data) == S_ERROR)
goto return_s_error;
mstrsec->is_flags | = FLG | S_GNSTRVRG

/*

* Allocate a data buffer for the new i nput section.

* Then, associate the buffer with the string table descriptor.
*/

if ((mstr_data->d_buf = |ibld_malloc(data_size)) == NULL)
goto return_s_error;
if (st_setstrbuf(mstrtab, mstr_data->d_buf, data_size) == -1)

goto return_s_error,

/* Add the new section to the output image */
if (ld_place_section(ofl, mstrsec, NULL, osp->os_identndx, NULL) ==
(Cs_desc *)S ERROR)
goto return_s_error;

/*
* Pass 2:

31

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

2966
2967
2968
2969
2970
2971
2972
2973

2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985

2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007

3009
3010
3011
3012
3013
3014
3015
3016
3017

3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031

Revisit the relocation descriptors with STT_SECTI ON synbol s
that were saved by the first pass. Update each rel ocation
record so that the offset it contains is for the new section
i nstead of the original.

* ok kb F ok

for (APLIST_TRAVERSE(*rel _alpp, idx, rsp)) {
const char *nane;

/* Put the string into the nerged string table */

name = strnmerge_get_reloc_str(ofl, rsp);
st_setstring_status = st_setstring(nmstrtab, nanme, &stoff);
if (st_setstring_status == -1) {

/*

* Afailure to insert at this point neans that

* sonmething is corrupt. This isn't a resource issue.

*/
assert(st_setstring_status != -1);
goto return_s_error;

—~

I

Alter the relocation to access the string at the
new of fset in our new string table.

For SHT_RELA platforns, it suffices to sinply
update the rel _raddend field of the relocation.

For SHT_REL platfornms, the new "addend" val ue
needs to be witten at the address being rel ocated.
However, we can’t alter the input sections which
are mapped readonly, and the output inage has not
been created yet. So, we defer this operation,
using the rel _raddend field of the relocation
which is normally 0 on a REL platform to pass the
new "addend" value to | d_performoutreloc() or
I d_do_activerelocs(). The FLG REL_NADDEND f | ag

* tells themthat this is the case.

*

/
if ((rsp->rel_flags & FLG REL_RELA) == 0) /* REL */

rsp->rel _flags | = FLG_REL_NADDEND,

rsp->rel _raddend = (Sxword)stoff;

/*

* CGenerate a synbol nane string for STT_SECTI ON synbol s
* that might reference our nmerged section. This shows up
* in debug output and hel ps show how the rel ocation has
*

changed fromits original input section to our nerged one.
*

if (ld_stt_section_symname(nstrsec) == NULL)
goto return_s_error;

Pass 3:

Modi fy the synbols referenced by the relocation descriptors
so that they reference the new input section containing the
nerged strings instead of the original input sections.

O * * % *F ¥ ok ¥
—~

for (APLIST TRAVERSE(*sym al pp, idx, sdp)) {
/*
* |f we’ve already processed this synbol, don't do it
* twice. strnerge_passl() uses a heuristic (relocations to
* the sanme synbol clunp together) to avoid inserting a
* given synbol nore than once, but repeat synbols in

32

new usr/src/cnd/ sgs/1i bl d/ conmon/ sections. c 33 new usr/src/cnd/ sgs/1i bl d/ conmon/ sections. c 34
3032 * the |list can occur. 3098 * the sections header contributes to the size of the eventual section. Thus,
3033 */ 3099 * a section nay be created, and once all associated sections have been created,
3034 if ((sdp->sd_isc->is_flags & FLG I S_I NSTRVRG == 0) 3100 * we return to establish the required section size.
3035 conti nue; 3101 */
3102 inline static void
3037 if (ELF_ST_TYPE(sdp->sd_sym >st_info) != STT_SECTION) { 3103 updat e_dat a_si ze(Os_desc *osp, ulong_t cnt)
3038 /* 3104 {
3039 * This is not an STT_SECTION synbol, so its 3105 I's_desc *isec = | d_os_first_isdesc(osp);
3040 * value is the offset of the string within the 3106 El f _Data *data = isec->i s_indata;
3041 * input section. Update the address to reflect 3107 Shdr *shdr = osp->o0s_shdr;
3042 * the address in our new nerged section. 3108 size_t size = cnt * shdr->sh_entsi ze;
3043 */
3044 const char *name = sdp->sd_sym >st_val ue + 3110 shdr->sh_size = (Xword)si ze;
3045 (char *)sdp->sd_i sc->i s_I ndat a- >d_buf ; 3111 dat a- >d_si ze = si ze;
3112 }
3047 st_setstring_status =
3048 st_setstring(nstrtab, nane, &stoff); 3114 /*
3049 if (st_setstring_status == -1) { 3115 * The following sections are built after all input file processing and synbol
3050 /* 3116 * validation has been carried out. The order is inportant (because the
3051 * Afailure to insert at this point nmeans 3117 * addition of a section adds a new synbol there is a chicken and egg probl em
3052 * sonething is corrupt. This isn't a 3118 * of nmmintaining the appropriate counts). By maintaining a known order the
3053 * resource issue. 3119 * individual routines can conpensate for |ater, known, additions.
3054 */ 3120 */
3055 assert(st_setstring_status != -1); 3121 uintptr_t
3056 goto return_s_error; 3122 | d_make_sections(Ofl _desc *ofl)
3057 } 3123 {
3124 of | _flag_t flags = ofl->of | _fl ags;
3059 if (1d_symcopy(sdp) == S_ERROR) 3125 Sg_desc *sgp;
3060 goto return_s_error;
3061 sdp->sd_sym >st_val ue = (W)rd) stoff; 3127 /*
3062 } 3128 * Cenerate any special sections.
3129
3064 /* Redirect the synbol to our new nerged section */ 3130 |f (flags & FLG OF_ADDVERS)
3065 sdp->sd_i sc = nstrsec; 3131 if (make_coment (of) == S _ERROR)
3066 } 3132 return (S_ERROR);
3068 /* 3134 if (make_interp(ofl) == S ERROR)
3069 * There are no references left to the original input string sections. 3135 return (S_ ERR(R)
3070 * Mark them as discarded so they don’t go into the output image.
3071 * At the sane tine, add up the sizes of the replaced sections. 3137 /*
3072 */ 3138 * Create a capabilities section if required.
3073 data_size = 0; 3139 *
3074 for (APLIST _TRAVERSE(osp- >0s_nstrisdescs, idx, isp)) { 3140 if (make_cap(ofl, SHT_SUNWcap, MSG ORI G MSG_SCN_SUNWCAP) ,
3075 if (isp->is flags & (FLG IS DI SCARD | FLG IS GNSTRVRG)) 3141 Id_targ.t_id.id_cap) == S_ERROR)
3076 conti nue; 3142 return (S_ERROR);
3078 data_size += isp->i s_i ndata->d_si ze; 3144 /*
3145 * Create any init/fini array sections.
3080 isp->is_flags | = FLG | S_DI SCARD; 3146 *
3081 DBG CALL(Dbg_sec_di scarded(ofl->of | _Iml, isp, mstrsec)); 3147 if (make_array(ofl, SHT_I NI T_ARRAY, MSG ORI G(MSG_SCN_| NI TARRAY),
3082 } 3148 of | ->of | _initarray) == S_ERROR)
3149 return (S_ERROR);
3084 /* Report how nmuch space we saved in the output section */
3085 DBG CALL(Dbg_sec_genstr_conpress(ofl->ofl _Im, osp->os_nanme, data_size, 3151 if (make_array(ofl, SHT_FI N _ARRAY, MSG ORI G(MSG_SCN_FI NI ARRAY),
3086 netr_dat a- >d_si ze)); 3152 of | ->of | _finiarray) == S_ERROR)
3153 return (S_ERROR);
3088 st _destroy(nstrtab);
3089 return (1); 3155 if (make_array(ofl, SHT_PREI NI T_ARRAY, MSG ORI G{ MSG_SCN_PREI NI TARRAY),
3156 of | ->of | _preiarray) == S_ERROR)
3091 return_s_error: 3157 return (S_ERROR);
3092 st _destroy(nstrtab);
3093 return (S_ERROR); 3159 7%
3094 } 3160 * Make the .plt section. This occurs after any other relocation
3161 * sections are generated (see reloc_init()) to ensure that the
3096 /* 3162 * associated relocation section is after all the other relocation
3097 * Update a data buffers size. A nunber of sections have to be created, and 3163 * sections.

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

3164
3165
3166
3167

3169
3170
3171
3172
3173
3174
3175
3176
3177

3179
3180
3181
3182
3183
3184
3185

3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203

3205
3206
3207

3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224

3226
3227
3228
3229

*

if

Do B8R a

}
/*

*

if

R
—~

—h ok ok ok ok ok F K kK ok
-~

((ofl ->of | _pltcnt) |
if (make_plt(o

| (ofl->ofl _pltpad))
fl S_ERROR)
return (S_ERROR);

Det ermi ne whet her any sections or files are not referenced. Under
-Dunused a di agnostic for any unused conponents is generated, under
-zignore the conponent is renpved fromthe final output.

(DBG_ENABLED || (ofl->of | _flagsl & FLG OF1_| GNPRQO)) {
if (ignore_section_processing(ofl) == S ERROR)
return (S_ERROR);

If we have detected a situation in which previously placed
out put sections may have been discarded, performthe necessary
readj ust ment .

(ofI->ofI _flags & FLG OF_ADJOSCNT)
adj ust _os_count (of I);

Do any of the output sections contain input sections that
are candidates for string table nmerging? For each such case,
we create a replacenent section, insert it, and discard the
original s.

rel _al pp and sym al pp are used by |d_make_strnerge()
for its internal processing. We are responsible for the

35

initialization and cl eanup, and | d_nmake_strnerge() handles the rest.

This allows us to reuse a single pair of menory buffers, allocated
for this processing, for all the output sections.

((of I ->of | _flagsl & FLG OF1_NCSTTAB) == 0) {
int error_seen = O;
APlist *rel _al pp NULL;
APl ist *sym al pp NULL;
Aliste idx1;

for (APLI ST_TRAVERSE(of | ->of | _segs, idx1l, sgp)) {
Os_desc *osp;
Aliste idx2;

(APLI ST_TRAVERSE(sgp- >sg_osdescs, idx2, osp))
if ((osp->os_nstrisdescs != NULL) &&
(1 d_make_strmerge(ofl, osp,
& el _al pp, &ym al pp) ==
S ERROR)) {
error_seen = 1;
br eak;

}

}
if (rel_alpp !'= NULL)
l'ibld_free(rel _al pp);
if (symalpp !'= NULL)
libld free(symal pp);
if (error_seen !=
return (S_ERRCR)

Add any necessary versioning information.
*/

(1 (flags & FLG OF_NOVERSEQ)) {

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c 36
3230 if ((flags & FLG OF_VERNEED) &&

3231 (make_verneed(ofl) == S _ERROR))

3232 return (S_ERROR);

3233 if ((flags & FLG OF VERDEF) &&

3234 (make_verdef (of) == S _ERROR))

3235 return (S_ ERRCR

3236 if ((flags & (FLG OF VERNEED | FLG OF VERDEF)) &&

3237 ((of I ->of | _osversym = nake_sym sec(of |,

3238 NSG_O?I G(MSG_SCN_SUNWERSYM) , SHT SUNW Vversym

3239 1 d_ t arg.t_id.id_version)) == (GOs_desc*)S _ERROR))

3240 eturn (S_ERROR);

3241 }

3243 /*

3244 * Create a synminfo section if necessary.

3245 */

3246 if (fl ags & FLG_OF_SYM NFO

3247 ((of T->of | _ossyminfo = make_sym sec(of |,

3248 MSG_ORI G{ M5SG_SCN_SUNVWSYM NFO) SHT_ SUNW. Vsyni nf o,

3249 ld targ.t_id.id _syminfo)) == (Os_desc *)S_ERRO?)

3250 return (S_ERROR);

3251 }

3253 if (flags & FLG OF_COWREL) {

3254 /*

3255 * |f -zconbreloc is enabled then all relocations (except for
3256 * the PLT's) are coal esced into a single relocation section.
3257 *

3258 f (ofl->ofl _reloccnt) {

3259 if (make_reloc(ofl, NULL) == S_ERROR)

3260 return (S_ERROR);

3261

3262 } else {

3263 Aliste idxl;

3265 /*

3266 * Create the required output relocation sections. Note, new
3267 * sections may be added to the section list that is being
3268 * traversed. These insertions can nove the el ements of the
3269 * Alist such that a section descriptor is re-read. Recursion
3270 * is prevented by maintaining a prew ous section pointer and
3271 * insuring that this pointer isn't re-exam ned.

3272 */

3273 for (APLIST TRAVERSE(ofI->ofI segs idxl, sgp)) {

3274 Gs_desc *osp, *posp =

3275 Aliste idx2

3277 for (APLI ST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {
3278 if ((osp != posp) && osp->0s szoutrel s

3279 (osp !'= ofl->of | _osplt)) {

3280 if (make_reloc(ofl, osp) == S_ERROR)
3281 return (S_ERROR);

3282

3283 posp = osp;

3284 }

3285 }

3287 /*

3288 * |f we’'re not building a conbined relocation section, then
3289 * build a .rel[a] section as required.

3290 */

3291 if (ofl->of | _relocrelsz) {

3292 if (make_reloc(ofl, NULL) == S_ERROR)

3293 return (S_ERROR);

3294 }

3295 }

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c 37

3297 /*

3298 * The PLT relocations are always in their own section, and we try to
3299 * keep themat the end of the PLT table. W do this to keep the hot
3300 * "data" PLT's at the head of the table nearer the .dynsym & . hash.
3301 */

3302 if (ofl->ofl _osplt && ofl->ofl _relocpltsz)

3303 if (make_rel oc(ofl, ofl->ofl _ospl t) = S_ERROR)
3304 return (S_ERROR);

3305 }

3307 /*

3308 * Finally build the symbol and section header sections.
3309 */

3310 if (flags & FLG OF_DYNAM O) {

3311 if (make_dynamic(ofl) == S_ERROR)

3312 return (S_ ERRCR)

3314 /*

3315 * A nunber of sections aren’t necessary within a relocatable
3316 * object, even if -dy has been used.

3317 */

3318 if (I1(flags & FLG OF RELOBJ)) {

3319 if (make_hash(ofl) == S _ERROR)

3320 return (S_ERROR);

3321 if (make_dynstr(ofl) == S ERROR)

3322 return (S_ERROR);

3323 i f (make_dynsyn(ofl) == S_ERROR)

3324 return (S_ERROR);

3325 if (1d_unwi nd_neke hdr(ofl) = S_ERROR)
3326 return (S_ ERRCR)

3327 if (make_dynsort(ofl) == S ERROR)

3328 return (S_ERROR);

3329 }

3330 }

3332 if (!(flags & FLG OF_STRIP) || (flags & FLG OF_RELOBJ) ||
3333 ((flags & FLG OF_STATIC) && of | ->of | _osversym) {
3334 /*

3335 * Do we need to nake a SHT_SYMIAB_SHNDX secti on
3336 * for the dynsym If so - do it now

3337 */

3338 if (ofl->ofl_osdynsym &&

3339 ((ofl ->of | _shdrcnt + 3) >= SHN LORESERVE)) {
3340 i f (make_dynsym shndx(ofl) == S_ERROR)
3341 return (S_ERROR);

3342 }

3344 if (make_strtab(ofl) == S_ERROR)

3345 return (S_ERRO?

3346 if (make_syntab(ofl) = s > ERROR)

3347 return (S_ ERROR)

3348 } else {

3349 /*

3350 * Do we need to nake a SHT_SYMIAB_SHNDX secti on
3351 * for the dynsym If so - do it now.

3352 */

3353 f (ofl->of | _osdynsym &&

3354 ((of I ->of | _shdrcnt + 1) >= SHN_LORESERVE)) ({
3355 i f (make_dynsym shndx(ofl) == S_ERROR)
3356 return (S_ERROR);

3357 }

3358 }

3360 if (make_shstrtab(ofl) == S _ERROR)

3361 return (S_ERROR);

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c 38
3363 /*

3364 * Now that we’ve created all output sections, adjust the size of the
3365 * SHT_SUNW.ver sym and SHT_SUNW syni nfo section, which are dependent on
3366 * the associated synbol table sizes.

3367 */

3368 f (ofl->ofl _osversym || ofl->ofl_ossynminfo) {

3369 ul ong_t cnt;

3370 I's_desc *isp;

3371 Os_desc *osp;

3373 if (OFL_IS_STATIC OBJ(ofl))

3374 osp = of | ->of | _ossynt ab;

3375 el se

3376 osp = ofl ->of | _osdynsym

3378 isp = ld_os_first_isdesc(osp);

3379 cnt = (isp->is_shdr->sh_size / isp->is_shdr->sh_entsize);
3381 if (ofl->of | _osversyn)

3382 updat e_dat a_si ze(of | ->of | _osversym cnt);

3384 if (ofl->ofl_ossym nfo)

3385 updat e_dat a_si ze(of | - >of | _ossymi nfo, cnt);

3386 }

3388 /*

3389 * Now that we’ve created all output sections, adjust the size of the
3390 * SHT_SUNW capi nfo, which is dependent on the associ at ed synbol table
3391 * size.

3392 */

3393 if (ofl->ofl_oscapinfo) {

3394 ulong_t cnt;

3396 /*

3397 * Synbol capabilities synbols are placed directly after the
3398 * STT_FI LE synbol, section synbols, and any register synbols.
3399 * Effectively these are the first of any series of denoted
3400 * (scoped) synbols.

3401 *

3402 if (OFL_IS_STATIC OBJ(ofl))

3403 cnt = SYMIAB_ALL_CNT(ofl);

3404 el se

3405 cnt = DYNSYM ALL_CNT(ofl);

3407 updat e_dat a_si ze(of | - >of | _oscapi nfo, cnt);

3408 }

3409 return (1);

3410 }

3412 [*

3413 * Build an addltlonal data section - used to back OBJT synbol definitions
3414 * added with a mapfil

3415 */

3416 |s_desc *

3417 | d_meke_data(Of | _desc *of |, size_t size)

3418 {

3419 Shdr *shdr;

3420 Elf _Data *dat a;

3421 | s_desc *isec;

3423 if (new_section(ofl, SHT_PROGBITS, MG ORI G(MSG_SCN _DATA), O,
3424 & sec, &shdr, &data) == S_ERROR)

3425 return ((ls_desc *)S _ERROR);

3427 dat a- >d_si ze = si ze;

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c 39

3428
3429

3431
3432

3434
3435

3437
3438
3439
3440
3441
3442

}

/*

* Build an additional text section - used to back FUNC synbol definitions
* added with a mapfile.

/

shdr->sh_si ze = (Xword)si ze;
shdr->sh_flags | = SHF_WRI TE;

if (aplist_append(&ofl->ofl_napdata, isec, AL_CNT_OFL_MAPSECS) == NULL)
return ((Is_desc *)S ERROR);

return (isec);

| s_desc *

3443 {

3444
3445
3446

3448
3449
3450
3451
3452
3453

3455
3456
3457

3459
3460
3461

3463
3464
3465
3466
3467
3468
3469
3470
3471

3473
3474
3475
3476
3477
3478
3479
3480

3482
3483

3485
3486

3488
3489

3491
3493

| d_make_text (Ofl _desc *ofl, size_t size)

Shdr *shdr;

El f _Data *dat a;

I s_desc *isec;

/*

* Insure the size is sufficient to contain the mnimumreturn
* instruction.

*/

if (size < ld_targ.t_nf.nf_size)

}

voi d

size = |d_targ.t_nf.nf_size;

if (new_section(ofl, SHT_PROGBITS, MSG ORI G(MSG_SCN_TEXT), O,
& sec, &shdr, &dat a) == S_ERROR)
return ((I s_desc *)S_ERROR);

dat a- >d_si ze = si ze;
shdr->sh_size = (Xword)size;
shdr->sh_flags | = SHF_EXECI NSTR;

/*
* Fill the buffer with the appropriate return instruction.
* Note that there is no need to swap bytes on a non-native,
* link, as the data being copied is given in bytes.
*
if ((data->d_buf = libld_calloc(size, 1)) == NULL)

return ((Is_desc *)S ERROR);

(void) mencpy(data->d_buf, |d_targ.t_nf.nf_tenplate,
Id_targ.t_nf.nf_size);

ize was |arger than required, and the target supplies
Il function, use it to fill the balance. If there is no
function, we accept the O-fill supplied by libld_calloc().

((ld_targ.t_ff.f
Id targtf
si ze -

R

f_execfill !'= NULL) && (size > Id_targ.t_nf.nf_size))

f. ff_execfill(data->d_buf, ld_targ.t_nf.nf_size,

ld_targ.t_nf.nf_size);

if (aplist_append(&ofl->ofl_maptext, isec, AL_CNT_OFL_MAPSECS) == NULL)
return ((lIs_desc *)S ERROR);

return (isec);

| d_condat _val i date(Ofl _desc *ofl, Ifl_desc *ifl)
3490 {

int i;

for (i =0; i <ifl->fl_shnum i++) {

new usr/src/cnd/ sgs/ i bl d/ conmon/ sections. c

3494
3495
3496
3497

3499
3500

3502
3503
3504
3505
3506

3508
3509
3510
3511
3512
3513
3514
3515

3517
3518
3519
3520
3521
3522
3523
3524
3525

3527
3528
3529
3530
3531
3532 }

Is_desc *isp = ifl->ifl_isdesc[i];
int types = 0;
char buf[1024]

Group_desc *gr NUi_L;

if ((isp == NULL) || (isp->is_flags & FLG |S_COVDAT) == 0)
conti nue;

if (isp->is_shdr->sh_type == SHT_SUNW COVDAT) {

types++;

(void) strlcpy(buf, MSG ORI G{ MBG STR SUNW COVDAT),
) si zeof (buf));

if (strncnp(MSG ORI G{ MSG_SCN_GNU_LI NKONCE), i sp->i s_nane,
MSG_SCN_GNU_LI NKONCE_SI ZE) == 0) {
types++;
if (types > 1)
(void) strlcat(buf, ", ", sizeof (buf));
(void) strlcat(buf, MSG ORI G{ MSG_SCN_GNU_LI NKONCE) ,
si zeof (buf));

}

if ((isp- >|s shdr->sh_flags & SHF_GROUP) &&
gr = ld_get group(ofl isp)) !'= NULL) &&
(gr->gd_data[0] & GR CGVDA)) {
types++;
if (types > 1)
(v0|d) strlcat(buf, ", ", sizeof (buf));
(void) strlcat(buf, NSGO?IG(NSGSTRGROJ)
si zeof (buf));

}

if (types > 1)
Id_eprintf(ofl, ERR _FATAL,
MSG_| NTL(MSG SCN_MULTI COVDAT), ifl->ifl _nane,
EC WORD(i sp->i s_scnndx), isp->is_nanme, buf);

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 1

R R R R

97619 Sun Feb 24 19:19:13 2019
new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢
fill out synbol-bound synbols in knods
i nker _set sections shouldn't need leading ’
code revi ew
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

LR

__unchanged_portion_onitted_

630
631
632
633
634 static uintptr_t

635 sym add_spec(const char *name, const char *unanme, Word sdaux_id,

we don't create symnfo sections for all objects we create, as this mght add
unnecessary bloat to users who haven't explicitly requested extra synbol
information.

*/

610 /*
611 * Add a special synbol to the synbol table. Takes special synbol name with
612 * and wi thout underscores. This routine is called, after all other synbol
613 * resolution has conpleted, to generate a reserved absol ute synbol (the
614 * underscore version). Special synbols are updated with the appropriate
615 * values in update_osyn(). |If the user has already defined this symbol
616 * issue a warning and | eave the synbol as is. |f the non-underscore synbol
617 * is referenced then turn it into a weak alias of the underscored synbol.
618 *
619 * The bits in sdflags_u are ORd into the flags field of the synbol for the
620 * underscored synbol .
621 *
622 * |f this is a global synbol, and it hasn't explicitly been defined as being
623 * directly bound to, indicate that it can't be directly bound to.
624 * Historically, nost special synbols only have neaning to the object in which
625 * they exist, however, they’ ve always been global. To ensure conpatibility
626 * with any unexpect ed use presently in effect, ensure these synbols don’t get
627 * directly bound to. Note, that establishing this state here isn't sufficient
628 * to create a synminfo table, only if a syninfo table is being created by sone
629 * other synbol directives will the nodirect binding be recorded. This ensures
*
*
*

636 sd_flag_t sdflags_u, sd_flag_t sdflags, O _desc *ofl)
637 {

638 Sym desc *sdp;

639 Sym desc *usdp;

640 Sym *sym

641 Word hash;

642 avl _i ndex_t wher e;

644 /* LINTED */

645 hash = (Wrd)el f_hash(unane);

646 if (usdp = Id_symfind(unane, hash, &where, ofl)) {
647 /*

648 If the underscore synbol exists and is undefined, or was

*
649 * defined in a shared library, convert it to a local synbol.
*

650 /Qherwi se leave it as is and warn the user.

651 *

652 if ((usdp->sd_shndx == SHN_UNDEF) ||

653 (usdp->sd_ref != REF REL_NEED)) {

654 usdp->sd_ref = REF_REL_NEED,

655 usdp- >sd_shndx = usdp->sd_sym >st_shndx = SHN_ABS;
656 usdp->sd_flags | = FLG SY_SPECSEC | sdfl agsfu;
657 usdp->sd_sym >st_info =

658 ELF_ST I NFO{STB_GLOBAL, STT_OBJECT);

659 usdp->sd_i sc = NULL;

660 usdp- >sd_sym >st_si ze = 0;

661 usdp- >sd_sym >st_val ue = 0;

662 /* LINTED */

663 usdp- >sd_aux- >sa_synspec = (Hal f)sdaux_id;

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 2
665 /*

666 * |f a user hasn't specifically indicated that the

667 * scope of this synbol be made local, then leave it

668 * as global (ie. prevent automatic scoping). The GOT
669 * shoul d be defined protected, whereas all other

670 * special synbols are tagged as no-direct.

671 */

672 if (!SYM.I|S_H DDEN(usdp) &&

673 (sdflags & FLG SY_DEFAULT)) {

674 usdp- >sd_aux- >sa overndx = VER_NDX_GLOBAL;
675 if (sdaux_id == SDAUX_| D_GOT)

676 usdp- >sd_flags & ~FLG SY_NDI R;

677 usdp->sd_flags | = FLG SY_PROTECT;
678 usdp- >sd_sym >st _ot her = STV_PROTECTED;
679 } elseif (

680 ((usdp->sd_flags & FLG SY_ DIR) == 0) &&
681 ((of I ->of | _flags & FLG_ OF_SYMBOLI) == 0)) {
682 usdp->sd_flags |= FLG SY NDIR,

683 }

684 }

685 usdp->sd_flags | = sdfl ags;

687 /*

688 * |f the reference originated froma napfile ensure
689 * we mark the synbol as used.

690 */

691 if (usdp->sd_flags & FLG SY_MAPREF)

692 usdp->sd_flags | = FLG_SY_MAPUSED;

694 DBG CALL(Dbg_syns_updat ed(of |, usdp, unane));

695 } else {

695 } else

696 Id_eprintf(ofl, ERR_WARNING MSG_| NTL(MSG_SYM RESERVE),
697 unane, usdp >sd_file->ifl_nane);

698 }

699 #endif /* ! codereview */

700 } else {

701

702 * |f the synbol does not exist create it.

703 *

704 if ((sym=1libld_calloc(sizeof (Sym, 1)) == NULL)

705 return (S_ERROR);

706 sym >st _shndx = SHN_ABS;

707 sym >st_info = ELF_ST_I NFO{ STB_GLOBAL, STT_OBJECT);

708 sym >st_size = O;

709 sym >st _val ue = 0;

710 DBG_CALL(Dbg syns_created(ofl ->of | _Iml, unane));

711 if ((usdp = Id_symenter(unane, sym hash, (Ifl_desc *)NULL,
712 ofl, 0, SHN_ABS, (FLG SY_SPECSEC | sdflags u), &where)) =
713 (&/m_desc *)S_ERROR)

714 return (S_ERROR);

715 usdp- >sd_ref = REF_REL_NEED,

716 /* LINTED */

717 usdp- >sd_aux- >sa_synspec = (Hal f)sdaux_i d;

719 usdp- >sd_aux- >sa_overndx = VER NDX_GLOBAL;

721 if (sdaux_id == SDAUX_ | D _GOT) {

722 usdp->sd_flags | = FLG SY PROTECT,;

723 usdp->sd_sym >st _ot her = STV_PROTECTED,

724 } else if ((sdflags & FLG SY_DEFAULT) &&

725 ((of I ->0f | _flags & FLG OF_SYMBOLI Q) == 0)) {

726 usdp->sd_flags | = FLG_ SY_NDI R;

727 }

728 usdp->sd_flags | = sdfl ags;

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢

729

731
732
733

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775

777
778
779
780
781
782

784
785
786
787

790
791
792
793
794

* Ok Ok ok %

}

if (name & (sdp = I d_symfind(nane, SYM NOHASH, NULL, ofl)) &&
(sdp->sd_sym >st _shndx == SHN_UNDEF)) {
uchar _t bi nd;

/*
* |f the non-underscore synbol exists and is undefined
* convert it to be a local. |f the underscore has
* sa_symspec set (ie. it was created above) then sinulate this
* as a weak alias.
*
/

sdp->sd_ref = REF_REL_NEED;
sdp- >sd_shndx = sdp->sd_sym >st_shndx = SHN_ABS;
sdp->sd_flags | = FLG_SY_SPECSEC,
sdp->sd_isc = NULL;
sdp- >sd_sym >st_si ze = 0;
sdp->sd_sym >st _val ue = 0;
/* LI NTED */
sdp->sd_aux->sa_synspec = (Hal f)sdaux_id;
if (usdp->sd_aux->sa_synspec)
usdp- >sd_aux->sa_| i nkndx = 0;
sdp- >sd_aux- >sa_l i nkndx = O;
bi nd = STB_WEAK;
} else
bi nd = STB_GLOBAL;
sdp->sd_sym >st _info = ELF_ST_I NFQ(bi nd, STT_OBJECT);

/
If a user hasn't specifically indicated the scope of this
synbol be nmade local then leave it as global (ie. prevent
automatic scoping). The GOT shoul d be defined protected,
whereas all other special synbols are tagged as no-direct.

* ok kb k%

if (!ISYMIS H DDEN(sdp) &&
(sdfTags & FLG SY_DEFAULT)) {

sdp- >sd_aux- >sa overndx = VER_NDX_GLOBAL;

i f (sdaux_id == SDAUX_I D GOT) {
sdp->sd_fl ags & ~FLG SY_NDI R;
sdp->sd_flags | = FLG SY PROTECT;
sdp->sd_sym >st_other = STV_ PROTECTED

} else if (((sdp- >sdf|ags&FLGSYDIR) = 0) &&

((of I ->of | _flags & FLG OF_SYMBOLI Q) == O)) {

sdp->sd_flags | = FLG_SY_ND R

}

}
sdp->sd_fl ags | = sdfl ags;

* |f the reference originated froma napfile ensure
* we mark the synbol as used.

|f (sdp->sd_flags & FLG SY_NAPREF)
sdp->sd_fl ags | = FLG_SY_MAPUSED,

DBG_CALL(Dbg_syns_updat ed(of |, sdp, nane));

}
return (1);

Undef i ned synbols can fall into one of four types:

the synbol is really undefined (SHN_UNDEF).

new usr/src/cnd/ sgs/1i bl d/ common/ syns. ¢

795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

814
815
816
817
818
819
820

822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852

854
855
856
857
858
859

t

}

- ver si oni ng has been enabl ed, however this synbol has not been assigned
to one of the defined versions.

- the synbol has been defined by an inplicitly supplied library, ie. one
whi ch was encounted because it was NEEDED by another library, rather
than froma conmand |ine supplied |library which woul d becone the only
dependency of the output file being produced.

- the synbol has been defined by a version of a shared object that is
not permtted for this link-edit.

In all cases the file who nade the first reference to this synbol will have
been recorded via the ‘sa_rfile’ pointer.

I T T

ypedef enum {
UNDEF, NOVERSI ON, IMPLICIT, NOTAVAI L,
BNDLOCAL

Type;

static const Msg format[] = {

MSG_SYM UND_UNDEF,
MSG_SYM UND_NOVER,
MSG_SYM UND_I MPL,
MSG_SYM_UND_NOTA,
MSG_SYM_UND_BNDLOCAL

MSG_| NTL(MSG_SYM UND_UNDEF) */
MSG_| NTL(MSG_SYM UND_NOVER) */
MSG_| NTL(MBG_SYM UND_| NPL) ~ */
MBG_| NTL(MSG_SYM_UND_NOTA) */
MSG_| NTL(MSG_SYM UND_BNDLOCAL) *

—~————
* ok ok k%

I ssue an undefined synbol nessage for the given synbol.

entry:
of | - Qutput descriptor
sdp - Undefined synbol to report
type - Type of undefined synbol
of| _flag - One of 0, FLG OF _FATAL, or FLG OF WARN.
undef _state - Address of variable to be initialized to O
before the first call to symundef_entry, and passed

* Ok ok ok F Ok O S OF ok Ok R Ok Sk ok % b % b ¥

to each subsequent call. A non-zero value for *undef_state
indicates that this is not the first call in the series.
exit:
If *undef_state is 0, atitle is issued.
A nessage for the undefined synbol is issued.
If ofl _flag is non-zero, its value is ORd into *undef_state. O herw se,
all bits other than FLG OF FATAL and FLG OF WARN are set, in order to
provide *undef_state with a non-zero val ue. These ot her bits have
no meani ng beyond that, and serve to ensure that *undef_state is
* non-zero I f symundef_entry() has been called.
*/

static void
sym undef _entry(Ofl _desc *ofl, Symdesc *sdp, Type type, ofl_flag_t ofl_flag,

{

of | _flag_t *undef_state)

const char *nanmel, *nane2, *nane3;
I fl_desc *ifl = sdp->sd_file;
Sym aux *sap = sdp->sd_aux;

if (*undef_state == 0)
Id_eprintf(ofl, ERR NONE, MSG | NTL(MSG_SYM FMI_UNDEF),
MSG_| NTL(I\/SG SYM UNDEF_| TM 11),
MSG_| NTL(MSG_SYM_UNDEF_| TM 21) ,
MSG_| NTL(MSG_SYM UNDEF_I TM 12) ,
MBG_| NTL(MSG_SYM_UNDEF_| TM 22))

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢

861
862

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

885
886
887

889
890
891
892
893
894
895
896

898
899
900

902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

919
920
921
922
923
924
925

}
| *

of | ->of | _flags | = ofl _flag;
*undef _state |= ofl _flag ? ofl _flag : ~(FLG OF_FATAL | FLG OF_WARN);
switch (type) {
case UNDEF:
case BNDLOCAL:
nanmel = sap->sa_rfile;
br eak;
case NOVERSI ON:
namel = ifl->ifl
br eak;
case |MPLICIT:
namel
nanme2
br eak;
case NOTAVAI L:
namel
name2
nane3
br eak;
defaul t:
return;
}

Id_eprintf(ofl, ERR_NONE, MSG INTL(format[type]),
demangl e(sdp- >sd_nane), nanmel, nanme2, nane3);

_nane;

sap->sa_rfile;
ifl->ifl_name;

sap->sa_rfile;
sap->sa_vfile;
ifl->ifl_verndx[sap->sa_dverndx].vi_nane;

* |f an undef synbol exists naming a bound for the output section,
* turn it into a defined synbol with the correct val ue.
*

* W& set an arbitrary 1KB limt on the resulting synbol
*

nanes.

static void
sym add_bounds(Cf | _desc *of |, Os_desc *osp, Word bound)
{

Sym desc *bsdp;
char sym[1024];
size_t nsz;

switch (bound) {
case SDAUX_| D_SECBOUND_START:
nsz = snprintf(sym, sizeof (sym), "%%",
MSG_ORI G(M5SG_SYM SECBOUND_START), o0sp->0s_nane);
if (nsz >= sizeof (sym))
return;
br eak;
case SDAUX | D_SECBCIJND_ST(P:
nsz = snprintf(sym, sizeof (sym),
MSG_ORI G(MSG_SYM_SECBOUND STOD)
if (nsz >= sizeof (sym))
return;

"o Ys"
osp->0s_nane) ;

br eak;
def aul t:
assert(0);
}

if ((bsdp = ld_symfind(sym, SYM NOHASH, NULL,
1 f ((bsdp->sd shndx 1= SHN_UNDEF) &&
(bsdp->sd_ref == REF_REL_NEED)) {
I d_eprintf(ofI ERR_WARNI NG, MSG_| NTL(MSG_SYM RESERVE) ,
sym, bsdp >sd_file->ifl _nane);
return;

ofI)) = NULL) {

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢

927 DBG_CALL(Dbg_syns_updat ed(of |, bsdp, symn));

929 bsdp- >sd_aux- >sa_synmspec = bound;

930 bsdp- >sd_aux- >sa_boundsec = osp;

931 bsdp- >sd_fl ags | = FLG SY_SPECSEC;

932 bsdp- >sd_ref = REF_REL_NEED,

933 bsdp->sd_sym >st_info = ELF_ST_| NFQ(STB_GLOBAL, STT_NOTYPE);
934 bsdp- >sd_sym >st —other = STV_PROTECTED;

935 bsdp->sd_i sc = NULL;

936 bsdp- >sd_sym >st_si ze = O

937 bsdp- >sd_sym >st _val ue = 0;

938) bsdp- >sd_shndx = bsdp->sd_sym >st _shndx = SHN_ABS;

939

940 }

942 static Bool ean

943 i s_cnane(const char *nane)

944 {

945 if (strlen(nanme) == strspn(naneg,

946 "abcdef ghi j kl mopqr st uvwxyz"

947 " ABCDEFGHI J KL MNOPQRSTUWWKYZ"

948 "0123456789"

949 "))

950 return (TRUE);

951 el se

952 return (FALSE);

953 }

955 /*

956 #endif /* | codereview */

957 * At this point all synbol input processing has been conpleted, therefore
958 * conplete the synbol table entries by generating any necessary internal
959 * synbol s.

960 */

961 uintptr_t

962 | d_sym spec(Cfl _desc *ofl)

963 {

964 Sym desc *sdp;

965 Sg_desc *sgp;

966 Aliste i dx1;

968 DBG _CALL(Dbg_syns_spec_title(ofl->ofl _Im));

970 /*

971 * For each section in the output file, look for synbols naned for the
972 * __start/__stop patterns. |If references exist, flesh the synbols to
973 * be defined.

974 *

975 * The synbols are given values at the same tine as the other special
976 * synbol s.

977 */

978 f (!(ofl->ofl _flags & FLG OF RELOBJ) ||

979 (of I ->of | _flags & FLG OF_KMD)) {

980 for (APLI ST_TRAVERSE(of | ->of | _segs, idx1l, sgp)) {

981 Os_desc *osp;

982 Aliste idx2;

984 (APLI ST_TRAVERSE(sgp- >sg_osdescs, idx2, osp)) {
985 if (is_cname(osp->o0s_nane))

986 sym add_bounds(ofl, osp,

987 SDAUX_I D SECBQJND START) ;

988 sym add_bounds(ofl, osp,

989 SDAUX_I D SECB(lJND_ST(P);

990 }

991 }

992 }

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢

993

996
997

698

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

1018
1019
1020
1021
1022
1023
1024
1025

1027
1028
1029
1030
1031
1032

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

1046
1047 }

}
994 #endif /* | codereview */

if (ofl->ofl _flags & FLG OF_RELOBJ)
return (1);

DBG _CALL(Dbg_syns_spec_title(ofl->ofl _Im));

if (sym add spec(MSG_ORI G(MSG_SYM ETEXT), MSG ORI G(M5G_SYM ETEXT_U),
D ETEXT, 0, (FLG SY DEFAULT | FLG_SY_EXPDEF),
ofl) == S_ERROR)
return (S_ERROR);
if (sym add_spec(MSG_CRI G(MSG_SYM EDATA), MSG_ORI G{ MSG_SYM EDATA U),
SDAUX_| D EDATA, 0, (FLG SY_DEFAULT | FLG SY_EXPDEF)
of|) == S_ERROR)
return (S_ERROR);
if (sym add_spec(MSG_ORI G(MSG_SYM END), MSG ORI G{ MSG_SYM END_U),
SDAUX_| D END, FLG SY_DYNSCRT, (FLG SY DEFAULT | FLG SY_EXPDEF)
ofl) == S_ERROR)
return (S_ERROR);
if (sym add_spec(MSG_CRI G(G_SYM L_END), MSG | CRI G(NSG SYM L_END_U),
SDAUX_| D END, 0, FLG SY_ HI'DDEN, ofl) == S
return (S_ ERRCR),
if (symadd_spec(MSG ORI G{ MSG_SYM L_START), MSG ORI G(MSG_SYM L_START_U),
SDAUX_| D_START, 0, FLG SY_HIDDEN, ofl) == S_ERROR)
return (S_ERROR);

/*
* Historically we' ve al ways produced a _DYNAM C synbol, even for
* static executables (in which case its value will be 0).
*/
if (symadd_spec(MSG ORI G(MBG_SYM DYNAM C), MSG ORI G{ MSG_SYM DYNAM C U),
SDAUX_I D_DYN, FLG SY_DYNSORT, (FLG SY_ DEFAULT | FLG_SY_EXPDEF),
of) == S_ERROR)
return (S_ERROR);

if (OFL_ALLOW DYNSYMofl))
if (symadd_spec(MSG ORI G(MSG_SYM PLKTBL),
MSG_ORI G(MSG_SYM PLKTBL_U), SDAUX_I D PLT,
FLG_SY_DYNSCRT, (FLG SY_| DEFAULT | "FLG_SY_EXPDEF) ,
of) == S ERROQ)
return (S_ERROR);

/*
* A GOT reference will be acconpani ed by the associ ated GOT synbol .
* Make sure it gets assigned the appropriate special attributes.
*
/
if (((sdp = ld_symfind(MSG ORI G MSG_SYM GOFTBL_U),
SYM NOHASH, NULL, ofl)) '= NULL) &% (sdp->sd ref != REF_DYN SEEN)) {
if (symadd spec(MSG_ORI G(MSG_SYM GOFTBL),
MSG_ORI G MSG_ SYM_GOFTBL U) SDAUX_I D, GOT FLG_SY_DYNSORT,
(FLG SY _DEFAULT | FLG SY EXPDEF), ofl) == S_ERROR)
return (S_ERROR);
}

return (1);

__unchanged_portion_omtted_

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c

R R R R

118868 Sun Feb 24 19:19:13 2019
new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)
Id: inplenment -ztype and rework option parsing

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkkk kR ok kkkkk ok k ok k k%

__unchanged_portion_omtted_

132 /*
133 * Build and update any output synbol tables. Here we work on all the synbol

134 * tables at once to reduce the duplication of synbol and string manipul ation.
135 * Synmbols and their associated strings are copied fromthe read-only input
136 * file images to the output image and their values and index’s updated in the
137 * output inmage.

138 */
139 static Addr
140 update_osym(OFl _desc *ofl)

141 {

142 /*

143 * There are several places in this function where we w sh

144 * to insert a synbol index to the conbined . SUNWI dynsyni . dynsym
145 * synbol table into one of the two sort sections (.SUNWdynsynsort
146 * or .SUNWdyntlssort), if that symbol has the right attributes.
147 * This macro is used to generate the necessary code froma single
148 * specification.

149 *

150 * entry:

151 * _sdp, _sym _type - As per DYNSORT_COUNT. See _libld.h
152 * _symndx - Index that _symw Il have in the conbi ned

153 * . SUNW | dynsyni . dynsym synbol table.

154 */

155 #define ADD_TO DYNSORT(_sdp, _sym _type, _symndx) \

156 \

157 Word *_dynsort_arr, *_dynsort_ndx; \

158

159 if (dynsynsort_syntype[_type]) { \

160 _dynsort_arr = dynsynsort; \

161 _dynsort_ndx = &Jynsynmsort_ndx; \

162 } elseif (_type == STT_TLS) { \

163 _dynsort_arr = dyntlssort; \

164 _dynsort_ndx = &dJyntlssort_ndx; \

165 } else {\

166 _dynsort_arr = NULL; \

167 1\

168 1f ((_dynsort_arr !'= NULL) && DYNSORT_TEST_ATTR(_sdp, _sym) \
169 _dynsort_arr[(*_dynsort_ndx)++] = _sym ndx; \

170 }

172 Sym desc *sdp;

173 Sym avl node *sav;

174 Sg_desc *sgp, *tsgp = NULL, *dsgp = NULL, *esgp = NULL;
175 Cs_desc *osp, *iosp = NULL, *fosp = NULL;

176 I's_desc *isc;

177 I fI _desc *ifl;

178 Wor d bssndx, etext_ndx, edata_ndx = 0, end_ndx, start_ndx;
179 Word end_abs = 0, etext_abs = 0, edata_abs;

180 Word tlsbssndx = 0, parexpnndx;

181 #if defi ned(_ELF64)

182 Wor d | bssndx = 0;

183 Addr | bssaddr = 0;

184 #endi f

185 Addr bssaddr, etext = 0, edata = 0, end = 0, start = O;
186 Addr tlsbssaddr = 0;

187 Addr par expnbase, parexpnaddr;

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

188 int start_set = 0;

189 Sym _sym= {0}, *sym *syntab = NULL;

190 Sym *dynsym = NULL, *Idynsym = NULL;

191 Wor d syntab_ndx = 0; /* index into .syntab */

192 Wor d synt ab_gbl _bndx; /* .syntab ndx 1st gl obal */
193 Word I dynsym ndx = 0; /* index into .SUNWI dynsym */
194 Word dynsym ndx = 0; /* index into .dynsym*/

195 Wor d scopesym ndx = 0; /* index into scoped synbols */
196 Wor d scopesym bndx = 0; /* .syntab ndx 1st scoped sym */
197 Word | dynscopesym ndx = 0; /* index to | dynsym scoped */
198 I * synbol s */

199 Wor d *dynsynsort = NULL; /* SUNW. dynsynsort index */
200 /* vector */

201 Word *dyntl ssort = NULL; /* SUNWdyntl ssort index */
202 /* vector */

203 Word dynsynsort _ndx; /* index dynsynsort array */
204 Word dynt | ssort_ndx; /* index dyntlssort array */
205 Word *symdx; /* synbol index (for */

206 I * rel ocation use) */
207 Wor d *symshndx = NULL; /* .syntab_shndx table */
208 Wor d *dynshndx = NULL; /* .dynsym shndx table */
209 Word *| dynshndx = NULL; /* . SUNWI dynsym shndx table */
210 Word I dynsym cnt = NULL; /* nunber of itens in */
211 /* . SUNW.| dynsym */

212 Str_tbl *shstrtab;

213 Str_thl *strtab;

214 Str_thbl *dynstr;

215 Word *hasht ab; /* hash table pointer */

216 Wor d *hashbkt ; /* hash tabl e bucket pointer */

217 Wor d *hashchai n; /* hash table chain pointer */

218 Wk_desc *wkp;

219 Ali st *weak = NULL;

220 of | _flag_t flags = ofl->of | _fl ags;

221 Ver sym *versym

222 Cottabl e *gott abl e; /* used for display got debugging */
223 /* information */

224 Symi nf o *sym nf o;

225 Syms_list *sorted_syns; /* table to hold sorted synbols */
226 Word ssndx; /* global index into sorted_syns */
227 Word scndx; /* scoped index into sorted_syns */
228 size_t stoff; /* string offset */

229 Aliste i dx1;

231 I*

232 * Initialize pointers to the synbol table entries and the synbol
233 * table strings. Skip the first symbol entry and the first string
234 * table byte. Note that if we are not generating any output symbol
235 * tables we nust still generate and update internal copies so

236 * that the relocation phase has the correct information.

237 */

238 if (!(flags & FLG.OF_STRIP) || (flags & FLG OF_RELOBJ) ||

239 ((flags & FLG OF_STATIC) && of I ->of | _osversym)) {

240 syntab = (Sym *)of | - >of | _ossynt ab- >0s_out dat a- >d_buf ;

241 synt ab[synt ab_ndx++] = _sym

242 if (ofl->ofl _ossynmshndx)

243 symshndx =

244 (Word *)ofl ->of | _ossynshndx- >o0s_out dat a- >d_buf ;
245 1

246 if (OFL_ALLOW DYNSYMofl))

247 dynsym = (Sym *) of | - >of | _osdynsym >o0s_out dat a- >d_buf ;

248 dynsyni dynsym ndx++] = _sym

249 /*

250 * |f we are al so constructing a . SUNW I dynsym section

251 * to contain local function synbols, then set it up too.
252 */

253 if (ofl->ofl _osldynsym {

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 3

254
255
256
257

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

293
294
295
296
297
298
299
300

302
303
304
305
306
307
308
309
310
311
312

314
315
316
317
318
319

| dynsym = (Sym *) of | - >of | _osl dynsym >os_out dat a- >d_buf;
I dynsynf | dynsym ndx++] = _sym
Idynsymecnt = 1 + ofl->ofl _dynl ocscnt +

of | ->of | _dynscopecnt ;

/*

* |f there is a SUNWIdynsym then there may al so

* be a . SUNWdynsynsort and/or .SUNWdyntlssort

* sections, used to collect indices of function

* and data synbols sorted by address order.

*

/

if (ofl->ofl osdynsymsort) { /* . SUNW dynsynsort */

dynsyn’sort = (Word *
of | - >of | _osdynsynsort - >0s_out dat a- >d_buf ;

dynsynmsort _ndx = O;

}
if (ofl->ofl_osdyntlssort) { /* . SUNWdyntlssort */
dyntlssort = (Wrd *)
of | - >of | _osdynt | ssort ->o0s_out dat a- >d_buf ;
dyntl ssort_ndx = O;

}

/*
* |nitialize the hash table.
*/

hashtab = (Wrd *)(ofl->of | _oshash->o0s_out dat a->d_buf);
hashbkt = &hasht ab[2] ;
hashchai n = &hasht ab[2 + ofl->of| _hashbkt s] ;
hashtab[0] = ofl->of | _hashbkts;
hasht ab[1] = DYNSYM ALL_CNT(of I);
if (ofl->ofl _osdynshndx)

dynshndx =

(Word *)of | ->of | _osdynshndx- >o0s_out dat a- >d_buf ;

if (ofl->ofl_osl dynshndx)

I dynshndx =

) (Word *)ofl ->ofl _osl dynshndx- >o0s_out dat a- >d_buf;

/*
* symmdx is the synbol index to be used for relocation processing. It
* points to the relevant syntab’s (.dynsymor .syntab) synbol ndx.
*
/
if (dynsym
symdx = &Jynsym ndx;

el se
symdx = &synt ab_ndx;
/*
* |f we have version definitions initialize the version synbol index
* table. There is one entry for each symbol which contains the synbols
* version index.
*

if (!(flags & FLG OF_NOVERSEC) &&
(flags & (FLG_OF_VERNEED | FLG OF_VERDEF)))
versym = (Versym *)of | ->of I _osver sym >0s_out dat a- >d_buf ;
versyni 0] = NULL;
} else
versym = NULL;

/*

* |f symnfo section exists be prepared to fill it in.
*/

if (ofl->ofl ossymnfo)

{
syminfo = ofl->of| ossym nf 0- >0s_out dat a- >d_buf ;
symi nfo[0].si_flags SYM NFO_CURRENT;

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

320
321

323
324
325
326
327
328

330

332
333
334
335
336
337
338
339
340
341
342
343
344

346
347
348
349
350
351
352
353
354
355
356
357
358

360
361
362
363

365
366
367
368
369
370
371
372
373

375
376
377
378
379
380
381
382
383

385

} else
sym nfo = NULL;

/*

* Setup our string tables.

*/

shstrtab = of | ->of | _shdrsttab;

strtab = of | ->of | _strtab;
dynstr of | ->of | _dynstrtab;

DBG CALL(Dbg_synms_sec_title(ofl->ofl _Inm));

/*
* Put output file nane to the first .syntab and . SUNWI dynsym synbol .
*/

if (syntab) {

(void) st_setstring(strtab, ofl->ofl_name, &stoff);
sym = &synt ab[synt ab_ndx++] ;

/* LINTED */

sym >st _nane = stoff;

sym >st _val ue = 0;

sym >st_si ze =

sym>st_info =
sym >st _ot her
sym >st _shndx

0;
ELF ST_I NFQ(STB_LOCAL, STT_FILE);

0;
SHN_ABS;

if (versym&& !dynsym
versyn{ 1] = 0;

}

if (ldynsym {
(void) st_setstring(dynstr, ofl->ofl_nane, &stoff);
sym = & dynsyrr[l dynsym ndx]

/* LI NTED

sym >st_name = st of f;

sym >st _val ue = 0;

sym >st_size = 0;

sym>st_info = ELF ST_I NFOQ(STB_LOCAL, STT_FILE);
0;

sym >st _ot her
sym >st _shndx

SHN_ABS;

/* Scoped synbols get filled in global |oop below */
| dynscopesym ndx = | dynsym ndx + 1;
I dynsym ndx += of | ->of | _dynscopecnt;

}

/*

* |f we are to display GOT summary information, then allocate

* the buffer to 'cache’ the GOT synbols into now

*

/
i f (DBG_ENABLED)

if ((ofl->ofl _gottable = gottable =
libld_calloc(ofl->ofl _gotcnt, sizeof (Gottable))) == NULL)

) return ((Addr)S ERROR);

/*
* Traverse the program headers. Determ ne the |ast executable segnent
* and the last data segnent so that we can update etext and edata. If
* we have enpty segnents (reservations) record themfor setting _end.
*

for (APLI ST_TRAVERSE(of | - >of | _segs, idx1l, sgp)) {
Phdr *phd = &(sgp->sg_phdr);
GCs_desc *osp;
Aliste idx2;

if (phd->p_type == PT_LQAD) {

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c

386
387

389
390
391
392
393
394
395

397
398
399
400
401

403
404
405
406
407

409
410
411
412
413
414
415
416
417
418

420
421

423
424
425
426
427
428
429
430

432
433
434
435
436

438
439
440
441
442
443
444
445
446
447
448
449

451

if (sgp- >sg osdescs ! = NULL

) 1
_flags = phd->p_flags & (PF_W| PF_R);

if (_flags == PF_R)

. tsgp sgp;
else if (_flags == (PF_W| PF_R))

dsgp = sgp;
} else if (sgp >sg_flags & FLG SG EMPTY)
esgp = sgp;

}

/*
* Generate a section synbol for each output section.
*/

for (APLI ST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {
Wor d sect ndx;

sym = & sym

sym >st _val ue = osp->o0s_shdr->sh_addr;

sym >st_info = ELF_ST_I NFQ(STB_LOCAL, STT_SECTION);
/* LINTED */

sectndx = el f _ndxscn(osp->0s_scn);

if (syntab)
if (sect ndx >= SHN_LORESERVE) {
symshndx[synt ab_ndx] = sect ndx;
sym >st _shndx = SHN_XI NDEX;
} else {
/* LINTED */
sym >st _shndx = (Hal f)sectndx;

}
synt ab[synt ab_ndx++] = *sym
}

if (dynsym && (osp->os_flags & FLG OS_QOUTREL))
dynsyn{ dynsym ndx++] = *sym

if ((dynsym == NULL) ||
(osp->0s flags & FLG_ OS_QUTREL)) {
if (versym
versynf *symmdx - 1] = 0;
osp->os_i dentndx = *symdx - 1;
DBG CALL(Dbg_syms_sec_entry(ofl->of | _Im,
osp->o0s_i dent ndx, sgp, osp));

}

/*
* Cenerate the .shstrtab for this section.
*/

(void) st_setstring(shstrtab, osp->os_nane, &stoff);
osp->0s_shdr->sh_nanme = (Word)stoff;
*/ Find the section index for our special synbols.
*
if (sgp == tsgp) {
/* LINTED */
et ext_ndx = el f_ndxscn(osp->0s_scn);
} else if (dsgp == sgp) {
if (osp->o0s_shdr->sh_type = SHT_NOBITS) {
/* LI NTED */
edata_ndx = el f_ndxscn(osp->0s_scn);

}
if (start_set == 0) {

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

452
453
454
455
456

458
459
460
461
462
463
464
465
466
467
468
469

471
472
473
474
475
476

478
479

481
482

484
485
486

488
489

491
492
493
494
495
496
497
498

500
501
502
503
504
505
506
507

509
510
511
512
513
514
515
516
517

start = sgp->sg_phdr. p_vaddr;
/* LINTED */
start_ndx = el f _ndxscn(osp->0s_scn);
start_set ++;

}

/*

* Wiile we're here, determne whether a .init or .fini
* section exist.

*/

if ((iosp == NULL) && (strcnp(osp->0s_nane,
NBGCRIG(NSGSCNIN T)) == 0))
iosp = osp
if ((fosp == NULL) && (strcnp(osp->0s_nane,
MSG_ ORI G(MSG_SCN_FINI')) == 0))
fosp = osp;

}

/*
* Add | ocal register synbols to the .dynsym These are required as
* DT_REG STER .dynamic entries nust have a synbol to reference.
*
/
if (ofl->ofl _regsyms && dynsym {
int ndx;

for (ndx = 0; ndx < ofl->ofl _regsynmsno; ndx++) {
Sym desc *rsdp;

if ((rsdp = ofl->of | _regsyns[ndx]) == NULL)
conti nue;

if (ISYM|S_ HI DDEN(rsdp) &&
(ELF_ST_BI ND(r sdp- >sd _sym >st_info) != STB_LOCAL))
conti nue;

dynsyni dynsym ndx] = *(rsdp->sd_synm);
rsdp->sd_symdx = *symmdx;

i f (dynsynidynsym ndx].st_nane)
(void) st_setstring(dynstr, rsdp->sd_name,
&stoff);
dynsyni dynsym_ndx] .st_nane = stoff;

}
dynsym ndx++;

}
}
/*
* Having traversed all the output segnents, warn the user if the
* traditional text or data segnents don't exist. Otherw se fromthese
* segnents establish the values for ‘etext’, ‘edata’, ‘end, ‘END,
* and ‘ START .
*/
if (!(flags & FLG_ OF_RELOBJ)) {
Sg_desc *sgp;
if (tsgp)

etext = tsgp->sg_phdr.p_vaddr + tsgp->sg_phdr.p_filesz;
el se {
etext = (Addr)O;
et ext _ndx = SHN_ABS;
etext _abs = 1;
if (fTags & FLG OF VERBOSE)
Id_eprintf(ofl, ERR WARNI NG,
MSG_| NTL(MSG_UPD_NOREADSEG)) :

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 7

518
519
520
521
522
523
524
525
526
527
528

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

551
552

554
555

557
558
559
560
561
562
563
564
565
566
567
568
569
570

572
573
574
575
576
577
578
579
580
581
582

}
if (dsgp) { _
el {edata = dsgp- >sg_phdr. p_vaddr + dsgp->sg_phdr.p_filesz;
el se

edata = (Addr)O0;

edat a_ndx = SHN_ABS;

edata_abs = 1;

if (fTags & FLG OF VERBCSE)

Id_eprintf(ofl, ERR WARNI NG
MSG_| NTL(I\/SG UPD_NORDWRSEG)) ;

}

if (dsgp == NULL) {
if (tsgp)

sgp = tsgp;
el se
sgp = O;
} elseif (tsgp == NULL)
. sgp = dsgp;
else if (dsgp >sg_phdr. p_vaddr > tsgp->sg_phdr.p_vaddr)

p = asgp;
else if (dsgp >sg_phdr. p_vaddr < tsgp->sg_phdr.p_vaddr)

sgp = tsgp;
el se {
* One of the segnents nust be of zero size.
*/
if (tsgp->sg_phdr.p_nensz)
sgp = tsgp;
el se
sgp = dsgp;
}
if (esgp & (esgp->sg_phdr.p_vaddr > sgp->sg_phdr.p_vaddr))
Sgp = esgp;
if (sgp) {

end = sgp->sg_phdr. p_vaddr + sgp->sg_phdr.p_nensz;

/*
* If the last |oadable segnent is a read-only segnent,
* then the application which uses the synbol _end to
* find the beginning of witable heap area may cause
* segnentation violation. W adjust the value of the
* _end to skip to the next page boundary.

*

*

*

*

6401812 Systeminterface which returs beginning
heap woul d be nice.
When the above RFE is inplenmented, the changes bel ow
* coul d be changed in a better way.

*/
if ((Sgp >Sg _phdr.p _flags & PF W == 0)

= (Addr)'S_ROUND(end, sysconf(_SC PAGESI ZE)) ;
/*

* If we're dealing with a nenory reservation there are
* no sections to establish an index for _end, so assign
* it as an absol ute.
*/
if (sgp->sg_osdescs != NULL) {
/*
* Determne the last section for this segment.
*/
OGs_desc *osp = sgp->sg_osdescs->apl _data
[sgp- >sg_osdescs->apl _nitens - 1];

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

584
585
586
587
588
589
590
591
592
593
594
595
596

598
599
600
601
602
603
604
605
606
607
608

610
611
612
613
614
615
616
617
618
619
620
621

623
624
625
626
627
628
629

631
632
633
634
635
636

638
639

641
642
643
644
645
646

648
649

}
/

}

/

f

/* LI NTED */

end_ndx = el f _ndxscn(osp->0s_scn);
} else {

end_ndx = SHN_ABS;

end_abs = 1;

} else {
end = (Addr) 0;
end_ndx = SHN_ABS;
end_abs = 1;
I'd_eprintf(ofl, ERR WARNING MSG | NTL(MSG UPD NOSEG));

}
*
* Initialize the scoped synbol table entry point. This is for all
* the gl obal synmbols that have been scoped to |ocals and will be
* filled in during global symbol processing so that we don’t have
* to traverse the globals synbol hash array nore than once.
*/
if (syntab) {

scopesym bndx = synt ab_ndx;

scopesym ndx = scopesym bndx;

syntab_ndx += of|->ofl _scopecnt;

*

* | f expanding partially expanded synbols under '-z nopartial’,
* prepare to do that.
*/

f (of I ->of | _i sparexpn) {
osp = of | ->of | _i sparexpn->i s_osdesc;
par expnbase = parexpnaddr = (Addr) (osp->o0s_shdr->sh_addr +
of | ->of | _i sparexpn->i s_i ndata->d_off);
/* LI NTED */
parexpnndx = el f ndxscn(osp >0s_scn);
of | ->of | _parexpnndx = osp->os_i dent ndx

*

* |f we are generating a .syntab collect all the local synbols,
* assigning a new virtual address or displacenent (value).
*/

or (APLI ST_TRAVERSE(of | ->of | _obj s, idx1, ifl))
Xwor d | i

ndx, local = ifl->ifl_locscnt;

Cap_desc *cdp = ifl->ifl_caps;
for (Indx = 1; Indx < local; Indx++) {

Got ndx *gnp;

uchar _t type;

Wor d *_synshndx;

i nt enter_in_syntab, enter_in_ldynsym

int updat e_done;

sdp = ifl->ifl_ol dndx[| ndx];

sym = sdp->sd_sym

/*

* Assign a got offset if necessary.
*

if ((ld_targ.t_nr.nr_assign_got != NULL) &&
(*ld_targ.t_nr.nr_assign_got)(ofl, sdp) == S_ERROR)
return ((Addr)S_ERROR);

i f (DBG_ENABLED) {
Aliste idx2;

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 9

651
652
653
654
655
656
657
658
659
660

662
663

665
666
667
668
669
670
671
672

674
675
676
677
678
679
680

682
683
684
685
686
687
688
689
690
691
692
693
694

696
697
698
699
700
701
702
703
704
705
706
707
708

710
711
712
713

for (ALl ST_TRAVERSE(sdp- >sd_GOTndxs,
idx2, gnp)) {
gott abl e->gt _sym = sdp;
got t abl e- >gt _gndx. gn_got ndx
gnp- >gn_got ndx;
got t abl e- >gt _gndx. gn_addend =
gnp->gn_addend;
gott abl e++;

}

}

if ((type = ELF_ST_TYPE(sym >st_info)) == STT_SECTI ON)
conti nue;

/*

* | gnore any synbols that have been narked as invalid

* during input processing. Providing these aren’t used

* for relocation they Il just be dropped fromthe

* output inage.

*

/

if (sdp->sd_flags & FLG SY_I NVALI D)
conti nue;

/*

* |f the section that this synbol was associ ated

* with has been discarded - then we discard

* the local synmbol along with it.

*

/
if (sdp->sd_flags & FLG SY_| SDI SC)

conti nue;

If this symbol is froma different file

than the input descriptor we are processing,
treat it as if it has FLG SY_| SDI SC set.

Thi s happens when sl oppy_condat _rel oc()
replaces a synbol to a discarded condat section
with an equival ent synbol froma different

file. W only want to enter such a synbol

once --- as part of the file that actually
supplies it.

R EEEEEE R
-~

(ifl !'= sdp->sd_file)
conti nue;

*
* Cenerate an output synbol to represent this input
* synbol. Even if the synbol table is to be stripped
* we still need to update any |ocal synbols that are
* used during relocation.
*
/
enter_in_syntab = syntab &&
(T (ofl->of | _flags & FLG_OF_REDLSYM ||
sdp->sd_nove);
enter_in_l dynsym = | dynsym && sdp->sd_nane &&
I dynsym syntype[type] &&
I'(ofl ->of | _flags & FLG OF_REDLSYM;
_symshndx = NULL;

if (enter_in_syntab) {
if (ldynsym
sdp- >sd_symmdx = *symdx;
syntab[syntab_ndx] = *sym

| *

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 10
716 * Provided this isn't an unnaned register
717 * synbol, update its nane.

718 */

719 if (((sdp->sd_flags & FLG_SY_REGSYM == 0) ||
720 synt ab[synt ab_ndx] . st _nane)

721 (void) st_setstring(strtab,

722 sdp->sd_nane, &stoff);

723 synt ab[synt ab_ndx] . st _nane = stoff;
724

725 sdp->sd_flags & ~FLG SY_CLEAN,

726 if (symshndx)

727 _symshndx = &synmshndx[synt ab_ndx] ;
728 sdp->sd_sym = sym = &synt ab[synt ab_ndx++] ;
730 if ((sdp->sd flags & FLG SY SPECSEC) &&
731 (sym >st_shndx == SHN_ABS) &&

732 lenter_in_ldynsym

733 conti nue;

734 } else if (enter_in_|ldynsyn {

735 /*

736 * Not using syntab, but we do have | dynsym
737 * avail abl e.

738 */

739 I dynsynf | dynsym ndx] = *sym

740 (void) st_setstring(dynstr, sdp->sd_nane,
741 to ;

742 I dynsyni | dynsym ndx] . st_name = stoff;

744 sdp->sd_fl ags & ~FLG SY_CLEAN,

745 if (ldynshndx)

746 _synmshndx = & dynshndx[| dynsym ndx];
747 sdp->sd_sym = sym = & dynsyn{ | dynsym ndx] ;
748 /* Add it to sort section if it qualifies */
749 ADD_TO DYNSORT(sdp, sym type, |dynsym ndx);
750 I dynsym ndx++;

751 } else { /* Not using syntab or |dynsym */
752 /*

753 * |f this synbol requires nodifying to provide
754 * for a relocation or nove table update, make
755 * a copy of it.

756 *

757 if (!(sdp->sd_flags & FLG SY_UPREQD) &&

758 ! (sdp->sd_nove))

759 conti nue;

760 if ((sdp->sd_flags & FLG SY_SPECSEC) &&

761 (sym >st_shndx == SHN_ABS))

762 conti nue;

764 if (ld_symcopy(sdp) == S_ERROR)

765 return ((Addr)S_ERROR);

766 sym = sdp->sd_sym

767 }

769 /*

770 * Update the synmbols contents if necessary.

771 */

772 updat e_done = 0;

773 if (type == STT_FILE) {

774 sdp->sd_shndx = sym >st_shndx = SHN_ABS;
775 sdp->sd_flags | = FLG_SY_SPECSEC,

776 updat e_done = 1;

777 }

779 /*

780 * If we are expanding the locally bound partially
781 * initialized synbols, then update the address here.

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 11

782
783
784
785
786
787
788
789
790
791

793
794
795
796
797
798

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

829
830
831
832
833
834
835
836
837
838
839
840

842
843

845
846

*
if (ofl->ofl_isparexpn &&
(sdp->sd_flags & FLG SY_PAREXPN) && !update_done) {
sym >st _shndx = par expnndx;
sdp->sd_i sc = of | ->of | _i spar expn;
sym >st _val ue = parexpnaddr;
par expnaddr += sym >st_si ze;
if ((flags & FLG OF_RELOBJ) ==
sym >st _val ue - = parexpnbase;

}

/*
* |f this isn’t an UNDEF synbol (ie. an input section
* is associated), update the synbols val ue and index.
*
/
if (((isc = sdp->sd_isc) != NULL) && !update_done) {
Word

sect ndx;
osp = isc->i s_osdesc;
/* LINTED */

sym >st _val ue +=
(Of)_elf_getxoff(isc->is_indata);
if ((flags & FLG OF RELOBJ) ==
/sym >st _val ue += osp->o0s_shdr->sh_addr;
*

* TLS synbols are relative to
* the TLS segnent.
*

/
if ((type == STT_TLS) &&
(of I ->of | _tlsphdr)) {
sym >st _val ue -=
of | ->of | _t| sphdr->p_vaddr;
}

/* LINTED */
if ((sdp->sd_shndx = sectndx =
el f _ndxscn(osp->0s_scn)) >= SHN_LORESERVE) {
if (_symshndx) {
*_synshndx = sect ndx;

}

sym >st _shndx = SHN_XI NDEX;
} else {

/* LINTED */

sym >st _shndx = sect ndx;

-

*
* |f entering the synmbol in both the syntab and the
* |dynsym then the one in syntab needs to be
* copied to Idynsym If it is only in the |Idynsym
* then the code above already set it up and we have
* nothing nore to do here.
*

/

if (enter_in_syntab & enter_in_|ldynsyn) {
I dynsyni | dynsym ndx] = *sym
(void) st_setstring(dynstr, sdp->sd_nane,
&stoff);
I dynsyni | dynsym ndx] . st_nanme = stoff;

if (_symshndx && | dynshndx)
I dynshndx[| dynsym ndx] = *_synshndx;

/* Add it to sort section if it qualifies */
ADD_TO DYNSORT(sdp, sym type, |dynsym ndx);

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 12
848 I dynsym ndx++;
849
850 }
852 I*
853 * If this input file has undergone object to synbol
854 * capabilities conversion, supply any new capabilities synbols.
855 * These synbols are copies of the original global symbols, and
856 * follow the existing |local synbols that are supplied fromthis
857 * input file (which are identified with a preceding STT_FILE).
858 */
859 if (synmtab && cdp && cdp->ca_syns) {
860 Aliste idx2;
861 Cap_sym *csp;
863 for (APLI ST_TRAVERSE(cdp->ca_syns, idx2, csp)) {
864 I's_desc *isp;
866 sdp = csp->cs_sdp;
867 sym = sdp->sd_sym
869 if ((isp = sdp->sd_isc) !'= NULL) {
870 Os_desc *osp = isp->is_osdesc;
872 /*
873 * Update the synbols val ue.
874 */
875 /* LINTED */
876 sym >st _val ue +=
877 (O f)_elf_getxoff(isp->is_indata);
878 if ((flags & FLG OF_RELOBJ) == 0)
879 sym >st _val ue +=
880 osp->0s_shdr->sh_addr;
882 /*
883 * Update the synbols section index.
884 *
885 sdp- >sd_shndx = sym >st_shndx =
886 el f _ndxscn(osp->0s_scn);
887 }
889 synt ab[syntab_ndx] = *sym
890 (void) st_setstring(strtab, sdp->sd_nane,
891 &stoff);
892 synt ab[synt ab_ndx] . st _nane = stoff;
893 sdp->sd_symmdx = synt ab_ndx++;
894 }
895 }
896 }
898 syntab_gbl _bndx = syntab_ndx; /* .synmtab index of 1st global entry */
900 /*
901 * Two special synmbols are ‘_init’ and ‘_fini’. |If these are supplied
902 * by crti.o then they are used to represent the total concatenation of
903 * the ‘.init’ and ‘.fini’ sections.
904 *
905 * Determ ne whether any .init or .fini sections exist. |If these
906 * sections exist and a dynam c object is being built, but no ‘_init’
907 * or ‘_fini’ synbols are found, then the user is probably building
908 * this object directly fromld(1l) rather than using a conpiler driver
909 * that provides the synbols via crt’s.
910 *
911 * If the .init or .fini section exist, and their associated synbols,
912 * determ ne the size of the sections and updated the synbols val ue
913 * accordingly.

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 13
914 */

915 if (((sdp = 1d_symfind(MG ORI G(MSG_SYMIN T U, SYMNCHASH 0,
916 ofl)) != NULL) && (sdp- >sd ref == REF_REL_NEED) && sdp->sd_isc &&
917 (sdp->sd_i sc->i s_osdesc == |os p)) {

918 if (Td_symcopy(sdp) == S ERRO?)

919 return ((Addr)S ERROR) ;

920 sdp->sd_sym >st _si ze = sdp->sd_i sc->i s_osdesc->0s_shdr->sh_si ze;
922 } elself (|osp&&l(flags&FLGO: RELOBJ)) {

923 d_eprintf(ofl, ERR WARNING MSG_| NTL(M5G_SYM NOCRT),

924 MSG_ ORI G(MSG_SYM I NI T_U), MSG ORI G(MSG SCN INIT));

925 }

927 if (((sdp =1d symflnd(NSGO?IG(NSGSYMFINI _U), SYM NOHASH, O,
928 ofI)) !'= NULL) && (sdp->sd_ref == REF_REL_NEED) && sdp->sd_isc &&
929 (sdp->sd_i sc->i s_osdesc == fos p)) {

930 if (Td_sym copy(sdp) == S ERR(R)

931 return ((Addr)S ERROR) ;

932 sdp->sd_sym >st _si ze = sdp->sd_i sc->i s_osdesc->0s_shdr->sh_si ze;
934 } elself (fosp&&l(flags&FLGO: RELOBJ)) {

935 d_eprintf(ofl, ERR WARNING MSG_ | NTL(MSG_SYM NOCRT),

936 MSG_ ORI G(MSG_SYM FINI _U), MSG ORI G(MSG SCN FINI));

937 }

939 /*

940 * Assign .bss information for use with updati ng COWON synbol s.
941 */

942 if (ofl->ofl_isbss) {

943 isc = ofI—>ofI i sbss;

944 osp = isc->i s_osdesc;

946 bssaddr = osp->os_shdr->sh_addr +

947 (OFf)_el f_getxoff(isc->is_indata);

948 /* LINTED */

949 bssndx = el f_ndxscn(osp->0s_scn);

950 }

952 #if defi ned(_ELF64)

953 I*

954 * For and64 target, assign .lbss information for use

955 * with updating LCOWON synbol s.

956 */

957 if ((Id_targ.t m m mach == EM AMD64) && of | ->of | _i sl bss) {

958 osp = ofl->of| _i sI bss->i s_osdesc;

960 | bssaddr = osp->os_shdr->sh_addr +

961 (Off)_el f_getxof f(ofl->ofl _islbss->s_indata);

962 /* LINTED */

963 | bssndx = el f_ndxscn(osp->0s_scn);

964

965 #endi f

966 *

967 */Assi gn .tlsbss information for use with updati ng COWON synbol s.
968 *

969 if (ofl->ofl_istlsbss)

970 osp = ofl->of | _i stl shss->i s_osdesc;

971 tl sbssaddr = osp->os_shdr->sh_addr +

972 (Of)_elf_getxoff(ofl->ofl_istlsbss->is_indata);

973 /* LI NTED */

974 tlsbssndx = el f_ndxscn(osp->0s_scn);

975 }

977 if ((sorted_syms = libld_calloc(ofl->ofl_globcnt +

978 of | ->of | _eliment + ofl ->of | _scopecnt,

979 sizeof (*sorted_syns))) == NULL)

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

980

982
983

987
988
989
990
991
992
993
994
995

999
1000
1001
1002
1003
1004
1005
1006
1007
1008

1010
1011
1012
1013
1014

1016
1017
1018
1019

1021
1022
1023
1024
1025
1026
1027
1028

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

return ((Addr)S_ERROR);

scndx = 0;
ssndx = of|->of | _scopecnt + ofl->ofl_elincnt;

DBG CALL(Dbg_syms_up_title(ofl->ofl _In));
/'k

14

* Traverse the internal synbol table updating gl obal synmbol information

* and al | ocating common.
*
/
for (sav = avl _first(&ofl->ofl_symavl); sav;
sav = AVL_NEXT(&ofl->of | _symavl, sav)) {
Sym *synptr;
int | ocal ;
int restore;

sdp = sav->sav_sdp;

/
I gnore any synbol s that have been marked as inval | d during
input processing. Providing these aren’t used fo
relocation, they will be dropped fromthe out put |rmge.

* ok ok ok %

if (sdp->sd_fl ags & FLG_SY_INVALID) {

DBG_CALL(Dbg_syms_ol d(of I, sdp));
DBG > CALL(Dbg_syms_ |gnore(of| sdp));
conti nue;

}

/*

* Only needed synbols are copied to the output synbol table.
*

if (sdp->sd_ref == REF_DYN_SEEN)
conti nue;

if (SYMIS H DDEN(sdp) && (flags & FLG OF_PROCRED))

| ocal =
el se
local = 0;
if (local || (ofl->ofl_hashbkts == 0)) {
sorted_syms[scndx++] . sl _sdp = sdp;
} else {
sorted_syms[ssndx].sl _hval = sdp->sd_aux->sa_hash %
of | - >of | _hashbkts;
sorted_syms[ssndx].sl _sdp = sdp;
ssndx++;
}
/*
* Note - expand the COMMON synbol s here because an address
* nmust be assigned to themin the sane order that space was
* calculated in symvalidate(). |If this ordering isn't
* followed differing alignment requirenments can throw us all
* out of whack.
*
* The expanded .bss gl obal synbol is handled here as well.
*
*

* bel ow i n hashbucket order.
*
/
synmptr = sdp->sd_sym
restore = 0;
if ((sdp- >sd_f1 ags & FLG _SY_PAREXPN) ||
((sdp->sd_flags & FLG SY_SPECSEC) &&

The actual adding entries into the synbol table still occurs

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 15 new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 16
1046 (sdp->sd_shndx = synptr->st_shndx) == SHN_COMMON)) { 1112 * Make sure this COMMON synbol is returned to the same
1113 * binding as was defined in the original relocatable
1048 /* 1114 * obj ect reference.
1049 * An expanded synbol goes to a special .data section 1115 */
1050 * prepared for that purpose (ofl->ofl _isparexpn). 1116 type = ELF_ST_TYPE(synptr->st_info);
1051 * Assign COMMON al | ocations to .bss. 1117 if (sdp->sd_flags & FLG SY_GLOBREF)
1052 * therwise leave it as is. 1118 bind = STB_GLOBAL;
1053 */ 1119 el se
1054 if (sdp->sd_flags & FLG SY_PAREXPN) { 1120 bi nd = STB_WEAK;
1055 restore = 1;
1056 sdp- >sd_shndx = par expnndx; 1122 synptr->st_info = ELF_ST_I NFQ(bi nd, type);
1057 sdp->sd_fl ags & ~FLG_SY_SPECSEC; 1123 }
1058 synptr->st_val ue = (Xword) S_ROUND(1124 }
1059 par expnaddr, synptr->st_val ue);
1060 parexpnaddr = synptr->st_val ue + 1126 /*
1061 synptr->st_si ze; 1127 * If this is a dynam c object then add any local capabilities synbols.
1062 sdp->sd_i sc = of | ->of | _i spar expn; 1128 */
1063 sdp->sd_flags | = FLG SY_COWVEXP; 1129 if (dynsym && of | ->of | _capfamlies) {
1130 Cap_avl node *cav;
1065 } else if (ELF_ST _TYPE(symptr->st_info) != STT_TLS &&
1066 (local || T(fTags & FLG OF RELOBJ))) { 1132 for (cav = avl _first(ofl->ofl_capfanilies); cav;
1067 restore = 1; 1133 cav = AVL_NEXT(of | ->of | _capfanmilies, cav)) {
1068 sdp- >sd_shndx = bssndx; 1134 Cap_sym *csp;
1069 sdp->sd_fl ags & ~FLG_SY_SPECSEC; 1135 Aliste idx;
1070 synptr->st_val ue = (Xword)S_ROUND(bssaddr,
1071 synptr—>st_va| ue); 1137 for (APLI ST_TRAVERSE(cav->cn_nenbers, idx, csp)) {
1072 bssaddr = synptr->st_val ue + synptr->st_size; 1138 sdp = csp->cs_sdp;
1073 sdp->sd_i sc” = of | ->of | _i sbss;
1074 sdp->sd_flags | = FLG SY_ CO\/NEXP 1140 DBG _CALL(Dbg_syns_created(ofl->of | _Inm,
1141 sdp- >sd_nane)) ;
1076 } else if (ELF_ST_TYPE(symptr->st_info) == STT_TLS && 1142 DBG CALL(Dbg_syms_entered(ofl, sdp->sd_sym
1077 (local || !'(flags & FLG OF_RELOBJ))) { 1143 sdp));
1078 restore = 1;
1079 sdp->sd_shndx = tl| sbssndx; 1145 dynsyn{ dynsym ndx] = *sdp->sd_sym
1080 sdp->sd_fl ags & ~FLG_SY_SPECSEC,
1081 synptr->st_val ue = (Xword) S_ROUND(t| sbssaddr, 1147 (void) st_setstring(dynstr, sdp->sd_nane,
1082 synptr- >st _val ue); 1148 &stoff);
1083 tlsbssaddr = synptr->st_value + synptr->st_size; 1149 dynsyn{ dynsym ndx] . st_nane = stoff;
1084 sdp->sd_i sc = of [->of | _istlsbss;
1085 sdp >sd_flags | = FLG_SY_COMVEXP, 1151 sdp->sd_sym = &Jynsyn{ dynsym ndx] ;
1086 I* 1152 sdp->sd_symdx = dynsym ndx;
1087 * TLS synbols are relative to the TLS segnent.
1088 */ 1154 /*
1089 synptr->st_value -= ofl->ofl _tlsphdr->p_vaddr; 1155 * Indicate that this is a capabilities synbol.
1090 } 1156 * Note, that this identification only provides
1091 #if defi ned(_ELF64) 1157 * information regarding the synbol that is
1092 } elseif ((ld_targ.t_m mnmach == EM AMD64) && 1158 * visible fromel fdunp(1l) -y. The association
1093 (sdp->sd_fl ags & FLG SY SPECSEC) && 1159 * of a symbol to its capabilities is derived
1094 ((sdp->sd_shndx = syn'ptr->st _shndx) == 1160 * froma . SUNWcapinfo entry.
1095 SHN_X86_64_LCOMVON) ~ && 1161 */
1096 ((local || !(flags & FLG OF_RELOBJ)))) { 1162 f (syminfo) {
1097 restore = 1; 1163 sym nf o[dynsym ndx] .si _flags | =
1098 sdp- >sd_shndx = | bssndx; 1164 SYM NFO_FLG_CAP;
1099 sdp->sd_fl ags & ~FLG_ SY SPECSEC; 1165 }
1100 synptr->st_val ue = (Xword) S_ROUND(| bssaddr,
1101 synptr->st_val ue); 1167 dynsym ndx++;
1102 | bssaddr = synptr->st_val ue + synptr->st_size; 1168 }
1103 sdp->sd_i sc = of | ->of | _i sl bss; 1169 }
1104 sdp->sd_flags | = FLG_SY_COWEXP; 1170 }
1105 #endi f
1106 } 1172 if (ofl->ofl_hashbkts) {
1173 gsort(sorted_syms + ofl->of | _scopecnt + ofl->ofl _elintnt,
1108 if (restore !'=0) { 1174 of | ->of | _gl obcnt, sizeof (Syms_list),
1109 uchar _t type, bind; 1175 (int (*)(const void *, const void *))sym hash_conpare);
1176 1
1111 /*

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 17
1178 for (ssndx = 0; ssndx < (ofl->ofl _elincnt + ofl->ofl_scopecnt +
1179 of | ->of | _gl obcnt); ssndx++)

1180 const char *nane;

1181 Sym *sym

1182 Sym aux *sap;

1183 Hal f spec;

1184 int local = 0, dynlocal = 0, enter_in_syntab;
1185 Got ndx *gnp;

1186 Word sect ndx;

1188 sdp = sorted_syns[ssndx]. sl _sdp;

1189 sectndx = 0;

1191 if (syntab)

1192 enter_in_syntab = 1;

1193 el se

1194 enter_in_syntab = O;

1196 /*

1197 * Assign a got offset if necessary.

1198 *

1199 if ((ld_targ.t_nr.nv_assign_got != NULL) &&

1200 (*Id_targ.t_nr. m_a33| gn_got) (ofl, sdp) == S_ERROR)
1201 return ((Addr)S_ERRCR);

1203 if (DBG_ENABLED) {

1204 Aliste idx2;

1206 for (ALI ST_TRAVERSE(sdp->sd_GOTndxs, idx2, gnp)) {
1207 gottabl e->gt _sym = sdp;

1208 got t abl e- >gt _gndx. gn_got ndx gnp- >gn_got ndx;

1209 got t abl e- >gt _gndx. gn_addend gnp- >gn_addend;
1210 got t abl e++;

1211 }

1213 if (sdp->sd_aux && sdp->sd_aux->sa_PLTGOTndx) {
1214 gottabl e->gt _sym = sdp;

1215 got t abl e- >gt _gndx. gn_got ndx =

1216 sdp- >sd_aux->sa_PLTGOTndx;

1217 gott abl e++;

1218 }

1219 }

1221 /

*
1222 * |f this synbol has been narked as being reduced to |ocal
1223 * scope then it will have to be placed in the scoped portion
1224 * of the .syntab. Retain the appropriate index for use in

*

1225 version synbol indexing and relocation.

1226 *

1227 if (SYM.|S_H DDEN(sdp) && (flags & FLG OF_PROCRED)) {
1228 | ocal = 1;

1229 if (!(sdp->sd_flags & FLG SY_ELIM && !dynsym
1230 sdp->sd_symdx = scopesym ndx;

1231 el se

1232 sdp->sd_symmdx = O;

1234 if (sdp->sd_flags & FLG SY ELIM {

1235 enter_in_syntab = O;

1236 } else if (Idynsym && sdp->sd_sym >st_nanme &&
1237 I dynsym synt ype[

1238 ELF_ST_TYPE(sdp->sd_sym >st_info)]) {
1239 “dynlocal = 1;

1240

1241 } else {

1242 sdp- >sd_symdx = *symdx;

1243

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 18

1245 /*

1246 * Copy basic synbol and string infornmation.

1247 */

1248 nane = sdp->sd_nane;

1249 sap = sdp->sd_aux;

1251 /*

1252 * |f we require to record version synbol indexes, update the
1253 * associ ated version synbol information for all defined
1254 * synbols. If a version definition is required any zero val ue
1255 * synbol indexes woul d have been flagged as undefined synbol
1256 * errors, however if we're just scoping these need to fall into
1257 * the base of global synbols.

1258 */

1259 if (sdp->sd_symdx && versym {

1260 Hal f vndx = 0;

1262 if (sdp->sd_flags & FLG SY_WTOCOW) {

1263 vndx = VER_NDX_ G_CB

1264 } else if (sdp >sd_ref == REF REL_NEED) {

1265 vndx = sap- >sa_over ndx;

1267 if ((vndx == 0) &&

1268 (sdp->sd_sym >st _shndx ! = SHN_UNDEF)) {
1269 if (SYM.IS_HI DDEN(sdp))

1270 vndx = VER NDX_LOCAL;

1271 el se

1272 vndx = VER_NDX_GLOBAL;

1273 }

1274 } else if ((sdp->sd_ref == REF_DYN _NEED) &&

1275 (sap->sa_dverndx > 0) &&

1276 (sap->sa_dverndx <= sdp->sd_file->ifl_vercnt) &&
1277 (sdp->sd_file->ifl_verndx !'= NULL))

1278 /* Use index of verneed record */

1279 vndx = sdp->sd_file->ifl_verndx

1280 [sap- >sa_dver ndx] . vi _over ndx;

1281 }

1282 ver synf sdp- >sd_symdx] = vndx;

1283 }

1285 /*

1286 * If we are creating the .sym nfo section then set per symnbol
1287 * flags here.

1288 */

1289 if (sdp->sd_symdx && syminfo &&

1290 ! (sdp->sd_flags & FLG SY_NOTAVAI L)) {

1291 I nt ndx = sdp >sd_symadx;

1292 APlist **alpp = & ofl->ofl _syndtent);

1294 if (sdp->sd_flags & FLG_SY_WTOCOMV)

1295 /*

1296 * |dentify a copy relocation synbol.

1297 */

1298 sym nfo[ndx].si_flags | = SYM NFO_FLG_CCPY;
1300 if (sdp->sd_ref == REF_DYN NEED) {

1301 /*

1302 * Areference is bound to a needed dependency.
1303 * Save the synminfo entry, so that when the
1304 * .dynam c section has been updated, a

1305 * DT_NEEDED entry can be associ at ed

1306 * (see update_osynminfo()).

1307

1308 i f (apl i st _append(al pp,

sdp
1309 L_CNT_OFL_SYM NFOSYI\/B) == NULL)

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 19

1310

1312
1313
1314
1315
1316
1317

1319
1320
1321
1322
1323
1324
1325
1326
1327

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344

1346
1347
1348
1349
1350
1351
1352
1353

1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

1369
1370
1371
1372
1373
1374
1375

| *
*
*

*

return (0);

Fl ag that the synbol has a direct association
with the external reference (this is an old

taggi ng, that has no real effect by itself).
*
/

sym nfo[ndx].si _flags | = SYM NFO_FLG_DI RECT;

/*

*

/
if

f

R EEEE R
-

Flag any lazy or deferred reference.

(sdp->sd_flags & FLG SY_LAZYLD)
sym nfo[ndx].si_flags |=
SYM NFO_FLG_LAZYLQAD;
(sdp->sd_fl ags & FLG SY_DEFERRED)
symnfo[ndx].si _flags | =
SYM NFO_FLG_DEFERRED,

Enabl e direct synbol bindings if:

- Synbol was identified with the DI RECT
keyword in a mapfile.

- Synbol reference has been bound to a
dependency which was specified as
requiring direct bindings with -zdirect.

- Al synbol references are required to
use direct bindings via -Bdirect.

(sdp->sd_flags & FLG SY_DI R
symnfo[ndx].si _flags |=
SYM NFO_FLG DI RECTBI ND;

} else if ((sdp->sd_flags & FLG SY_EXTERN) &&
(sdp->sd_sym >st_shndx == SHN_UNDEF)) {
/*

*
*
*

*/

If this synbol has been explicitly defined
as external, and remains unresol ved, mark
it as external.

sym nf o[ndx] . si _boundt o = SYM NFO_BT_EXTERN;

} else if ((sdp->sd_flags & FLG SY_PARENT) &&
(sdp— >sd_sym >st _shndx == SHN_UNDEF)) {

*
*
*
*

*/

sym
sym
if

If this synbol has been explicitly defined
to be a reference to a parent object,

i ndi cate whether a direct binding shoul d be
est abl i shed.

m nfo[ndx].si_flags | = SYM NFO_FLG DI RECT;
i nf o[ndx] . si _boundto = SYM NFO_BT_PARENT;
(sdp->sd_flags & FLG SY_DIR)
sym nfo[ndx].si_flags | =
SYM NFO_FLG_DI RECTBI ND;

} else if (sdp->sd_flags & FLG SY_STDFLTR) {
/*

*
*
*

A filter definition. Although this synbol
can only be a stub, it might be necessary to

prevent external direct bindings.
*/

sym nfo[ndx].si_flags | = SYM NFO_FLG FI LTER,

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 20
1376 if (sdp->sd_flags & FLG SY_NDI R)

1377 sym nfo[ndx].si_flags |=

1378 SYM NFO_FLG_NOEXTDI RECT;

1380 } else if (sdp->sd_flags & FLG SY_AUXFLTR) {

1381 /*

1382 * An auxiliary filter definition. By nature,
1383 * this definition is direct, in that should the
1384 * filtee lookup fail, we'll fall back to this
1385 * object. It may still be necessary to

1386 * prevent external direct bindings.

1387 */

1388 sym nfo[ndx].si_flags | = SYM NFO_FLG_AUXI LI ARY;
1389 if (sdp->sd_flags & FLG SY_NDI R)

1390 sym nfo[ndx].si_flags |=

1391 SYM NFO_FLG_NCEXTDI RECT;

1393 } else if ((sdp->sd_ref == REF_REL_NEED) &&

1394 (sdp->sd_sym >st_shndx ! = SHN_UNDEF)) {

1395 /*

1396 * This definition exists within the object
1397 * being created. Provide a default boundto
1398 * definition, which may be overridden later.
1399 /

1400 sym nf o[ndx] . si _boundto = SYM NFO_BT_NONE;
1402 /*

1403 * Indicate whether it is necessary to prevent
1404 * external direct bindings.

1405 */

1406 if (sdp->sd_flags & FLG SY_NDIR) {

1407 sym nfo[ndx].si_flags |=

1408 SYM NFO_FLG_NOEXTDI RECT;

1409 }

1411 I*

1412 * Indicate that this synbol is acting as an
1413 * individual interposer.

1414 *

1415 if (sdp->sd flags & FLG SY_I NTPCSE) {

1416 sym nfo[ndx].si_flags | =

1417 SYM NFO_FLG_| NTERPOSE;

1418 }

1420 /*

1421 * Indicate that this synbol is deferred, and
1422 * hence shoul d not be bound to during Bl ND_NOW
1423 * rel ocations.

1424

1425 if (sdp->sd_flags & FLG SY_DEFERRED) {

1426 sym nfo[ndx].si_flags | =

1427 SYM NFO_FLG_DEFERRED;

1428 }

1430 I

1431 * |f external bindings are allowed, indicate
1432 * the binding, and a direct binding if

1433 * necessary.

1434 */

1435 if ((sdp->sd flags & FLG SY_NDIR) == 0) {

1436 symnfo[ndx].si_flags |=

1437 SYM NFO_FLG DI RECT;

1439 if (sdp->sd_flags & FLG SY_DIR)

1440 sym nfo[ndx].si_flags | =

1441 SYM NFO_FLG_DI RECTBI ND;

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 21
1443 /*

1444 * Provide a default boundto definition,
1445 * which may be overridden |ater.
1446 */

1447 sym nf o[ndx] . si _boundto =

1448 SYM NFO _BT_SELF;

1449 }

1451 I*

1452 * Indicate that this is a capabilities synbol.
1453 * Note, that this identification only provides
1454 * i nformation regarding the synbol that is
1455 * visible fromel fdunp(l) -y. The association
1456 * of a synbol to its capabilities is derived
1457 * froma . SUNWcapinfo entry.

1458 *

1459 if ((sdp->sd_flags & FLG SY_CAP) &&

1460 of | - >of | _oscapi nfo) {

1461 sym nfo[ndx].si_flags | =

1462 SYM NFO_FLG_CAP;

1463 }

1464 }

1465 }

1467 1=

1468 * Note that the ‘symi value is reset to be one of the new
1469 * synbol table entries. This synbol will be updated further
1470 * depending on the type of the symbol. Process the .syntab
1471 * first, followed by the .dynsym thus the ‘sym value will
1472 * remain as the .dynsym val ue when the .dynsymis present.
1473 * This ensures that any versi oni ng syrrbol s st_nane value will
1474 * be appropriate for the string table used by version

1475 * entries.

1476 */

1477 if (enter_in_syntab) {

1478 or d _symdx;

1480 if (local)

1481 _symdx = scopesym ndx;

1482 el se

1483 _symdx = synt ab_ndx;

1485 synmt ab[_symdx] = *sdp->sd_sym

1486 sdp->sd_sym = sym = &synt ab[_symdx] ;

1487 (void) st_setstring(strtab, name, &stoff);

1488 sym >st _name = stoff;

1489 }

1490 i1f (dynlocal) {

1491 I dynsyn{ | dynscopesym ndx] = *sdp->sd_sym

1492 sdp->sd_sym = sym = & dynsyni| dynscopesym ndx] ;

1493 (void) st_setstring(dynstr, nanme, &stoff);

1494 | dynsyni | dynscopesym ndx] . st_narre = st off;

1495 /* Add it to sort section if it qualifies */

1496 ADD_TO _DYNSORT(sdp, sym ELF_ST_TYPE(sym >st_info),
1497 | dynscopesym ndx) ;

1498 }

1500 if (dynsym && !local) {

1501 dynsyni dynsym ndx] = *sdp->sd_sym

1503 /*

1504 * Provided this isn't an unnaned regi ster synbol,
1505 * update the synbols nane and hash val ue.

1506 */

1507 if (((sdp->sd_flags & FLG SY_REGSYM == 0) ||

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 22

1508 dynsyn{dynsym ndx] . st _nane)

1509 (void) st_setstring(dynstr, _nane, &stoff);

1510 dynsyni dynsym ndx] . st _nane = stoff;

1512 if (stoff) {

1513 Wor d hashval , _hashndx;

1515 hashval =

1516 sap->sa_hash % of | - >of | _hashbkts;
1518 /* LINTED */

1519 if (_ hashndx = hashbkt [hashval])
1520 le (hashchal n[hashndx]) {
1521 _hashndx =

1522 hashchai n[_hashndx] ;
1523 }

1524 hashchai n[_hashndx] =

1525 sdp- >sd_symadx;

1526 } else {

1527 hashbkt [hashval] =

1528 sdp- >sd_symdx;

1529 }

1530 }

1531 }

1532 sdp->sd_sym = sym = &Jynsyni dynsym ndx] ;

1534 /*

1535 * Add it to sort section if it qualifies.

1536 * The indexes in that section are relative to the
1537 * the adjacent SUNW.I| dynsym dynsym pair, so we

1538 * add the nunber of itens in SUNWI|dynsymto the
1539 * dynsym i ndex.

1540 */

1541 ADD_TO _DYNSORT(sdp, sym ELF_ST_TYPE(sym >st_info),
1542 “ldynsym cnt + dynsym ndx);

1543 }

1545 if (!enter_in_syntab & (!dynsym || (local && !dynlocal))) {
1546 if (! (sdp->sd_flags & FLG SY_UPREQD))

1547 conti nue;

1548 sym = sdp->sd_sym

1549 } else

1550 sdp->sd_fl ags & ~FLG_SY_CLEAN,

1552 /*

1553 * |f we have a weak data synmbol for which we need the real
1554 * synbol al so, save this processing until later.

1555 *

1556 * The exception to this is if the weak/strong have PLT s
1557 * assigned to them |In that case we don’t do the post-weak
1558 * processing because the PLT's nust be maintained so that we
1559 * can do 'interpositioning’ on both of the synbols.

1560 */

1561 if ((sap->sa_linkndx) &&

1562 (ELF_ST_BIND(sym >st _i nfo) == STB_WEAK) &&

1563 (!'sap->sa_PLTndx)) {

1564 Sym desc *_sdp;

1566 _sdp = sdp->sd_file->ifl_ol dndx[sap->sa_| i nkndx];
1568 if (_sdp->sd_ref != REF_DYN SEEN) {

1569 Wk_desc wk;

1571 if (enter_in_syntab) {

1572 if (Tocal) {

1573 wk. wk_syntab =

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 23

1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598

1600
1601
1602

1604
1605
1606

1608

1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621

1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639

&synt ab[scopesym ndx] ;
scopesym ndx++;
} else {
wk. wk_syntab =
&synt ab[synt ab_ndx] ;
synt ab_ndx++;

} else {
wk. wk_syntab = NULL;

}
if (dynsym {
if (I'local) {
wk. wk_dynsym =
&dynsyni dynsym ndx] ;
dynsym ndx++;
} else if (dynlocal) {
wk. wk_dynsym =
& dynsyni | dynscopesym ndx] ;
| dynscopesym ndx++;

} else {
WK. wk_dynsym = NULL;

}
wk. wk_weak = sdp;
wk. wk_al ias = _sdp;

if (alist_append(&weak, &wk,
si zeof (Wk_desc), AL CNT _WEAK) == NULL)
return ((Addr)S ERROR) ;

conti nue;

}
DBG_CALL(Dbg_syns_ol d(ofl, sdp));
spec = NULL;
/*
* assign new synbol val ue.
*

sect ndx = sdp->sd_shndx;
if (sectndx == SHN_UNDEF) {
if (((sdp->sd_flags & FLG SY_REGSYM == 0) &&
(sym>st_value = 0)) {
Id_eprintf(ofl, ERR WARNI NG,
MSG_I NTL(NBG SYM _NOTNULL) ,
dermangl e(nane), sdp->sd_ file->ifl _nane);

}
/*
* Undefined weak global, if we are generating a static
* executabl e, output as an absolute zero. Oherw se
* leave it as is, ld.so.1 will skip synbols of this
* type (this t echni que all ows applications and
* |libraries to test for the existence of a synbol as an
* indication of the presence or absence of certain
* functionality).
*

if (OFL_I'S_STATIC EXEC(ofl) &&
(ELF_ST_BI ND(sym >st _i nfo) == STB WEAK)) {
sdp->sd_flags | = FLG SY SPECSEC
sdp- >sd_shndx = sectndx = SHN_ABS;

}

} elseif ((sdp >sd flags & FLG SY_SPECSEC) &&
(sect ndx == SHN_COVMON)

/* COMMONs have al ready been processed */

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 24
1640 /* EMPTY */

1641

1642 } else {

1643 if ((sdp->sd_flags & FLG SY_SPECSEC) &&

1644 (sectndx == SHN_ABS))

1645 spec = sdp->sd_aux->sa_synspec;

1647 /* LINTED */

1648 if (sdp->sd_flags & FLG_SY_COWEXP) {

1649 /*

1650 * This is (or was) a COVWON synbol which was
1651 * processed above - no processing

1652 * required here.

1653 */

1654 i

1655 } else if (sdp->sd_ref == REF_DYN_NEED) {

1656 uchar_t type, bind;

1658 sect ndx = SHN_UNDEF

1659 sym >st _val ue = 0;

1660 sym >st_size = 0;

1662 I*

1663 * Make sure this undefined synbol is returned
1664 * to the sane binding as was defined in the
1665 * original relocatable object reference.

1666 */

1667 type = ELF_ST_TYPE(sym > st_info);

1668 if (sdp->sd_flags & FLG SY_G.OBREF)

1669 bind = STB_GLOBAL;

1670 el se

1671 bi nd = STB_WEAK;

1673 sym >st_info = ELF_ST_I NFQ(bi nd, type);

1675 } else if (((sdp >sd _flags & FLG SY_SPECSEC) == 0) &&
1676 (sdp->sd_ref == REF_REL_NEED)) {

1677 osp = sdp->sd_i sc->i s_osdesc;

1678 /* LINTED */

1679 sectndx = el f _ndxscn(osp->0s_scn);

1681 /*

1682 * In an executabl e, the new symbol value is the
1683 * old value (offset into defining section) plus
1684 * virtual address of defining section. In a
1685 * relocatable, the new value is the old val ue
1686 * plus the displacement of the section within
1687 * the file.

1688 *

1689 /* LINTED */

1690 sym >st _val ue +=

1691 (O f)_elf_getxof f(sdp->sd_isc->is_indata);
1693 if (!(flags & FLG OF_RELOBJ)) {

1694 sym >st _val ue += osp->o0s_shdr->sh_addr;
1695 /*

1696 * TLS synbols are relative to

1697 * the TLS segment.

1698 */

1699 if ((ELF_ST_TYPE(sym >st_info) ==
1700 STT_TLS) && (of | ->of T _tlsphdr))
1701 sym >st _val ue -=

1702 of | =>of | _t | sphdr->p_vaddr;
1703 }

1704 }

1705 }

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c

1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771

if (spec) {

switch (spec) {

case

case

case

case

case

case

case

case

SDAUX_| D_ETEXT:
sym >st vaI ue = etext;
sectndx = etext_ndx;
if (etext_abs)
| sdp->sd_flags | = FLG_SY_SPECSEC,
el se
sdp->sd_fl ags & ~FLG_SY_SPECSEC,
break;
SDAUX_| D_EDATA:
sym >st _val ue = edata;
sect ndx = edat a_ndx;
if (edata_abs)
| sdp->sd_flags | = FLG_SY_SPECSEC,
el se
sdp->sd_fl ags & ~FLG_SY_SPECSEC,
break;
SDAUX_| D_END:
sym >st _val ue = end;
sect ndx = end_ndx;
if (end_abs)
| sdp- >sd_fl ags | = FLG_SY_SPECSEC,
el se
sdp->sd_f | ags & ~FLG_SY_SPECSEC;
br eak;
SDAUX_| D_START.
sym >st_value = start;
sectndx = start_ndx;
sdp->sd_fl ags & ~FLG_SY_SPECSEC,
break;
SDAUX_| D_DYN:
if (flags & FLG_ OF_DYNAM C) {
sym >st _value = ofl->
of | _osdynami c->0s_shdr->sh_addr;
/* LINTED */
sectndx = el f _ndxscn(
of | - >of | _osdynani c- >0s_scn) ;
sdp->sd_fl ags & ~FLG SY_ SPECSEC

br eak;
SDAUX_| D_PLT:
if (ofl->ofl _osplt) {
sym >st _val ue = of | ->
of | _ospl t->0s_shdr->sh_addr;
/* LINTED */
sectndx = el f _ndxscn(
of | ->of | _ospl t->0s_scn);
sdp->sd_flags & ~FLG SY_ SPECSEC
break;
SDAUX_| D_GOT:
/*

* Synbol bias for negative growing tables is
* stored in synbol’s value during
* allocate_got().
*
/

sym >st _val ue += of|->

of | _osgot - >0s_shdr - >sh_addr;
/* LINTED */
sectndx = el f_ndxscn(ofl->

of | _osgot - >0s_scn) ;
sdp->sd_flags & ~FLG_ SY SPECSEC;
br eak;

SDAUX_| ID SECBOUND_START:

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789

1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803

1805
1806
1807

1809
1810
1811
1812
1813
1814

1816
1817
1818
1819
1820
1821
1822
1823
1824

1826
1827
1828
1829
1830

1832
1833

1835
1836
1837

#endi f /*

sym >st _val ue = sap- >sa_boundsec- >
os_shdr->sh_addr;

sectndx = el f _ndxscn(sap->sa_boundsec->0s_scn);

sdp->sd_fl ags & ~FLG_SY_SPECSEC;

br eak;

case SDAUX_ID SECBQJND STOP:

sym >st _val ue = sap->sa_boundsec->
os_shdr->sh_addr +
sap- >sa_boundsec- >0s_shdr - >sh_si ze;

sectndx = el f_ndxscn(sap->sa_boundsec->0s_scn);

sdp->sd_fl ags” & ~FLG_SY_SPECSEC,

br eak;
coderevi ew */
defaul t:
/* NOTHI NG */
}

}

*

* |f a plt index has been assigned to an undefined function,
* update the synbols value to the appropriate .plt address.
*/

if ((flags & FLG_ OF_DYNAM C) && (flags & FLG OF_EXEC) &&

(sdp->sd_file) &

(sdp->sd_file->ifl_ehdr->e_type == ET_DYN) &&

(ELF_ST_TYPE(sym >st _info) == STT_FUNC) &&

I (flags & FLG OF_BFLAG)) {

if (sap->sa_PLTndx)
sym >st _val ue =
(*ld_targ.t_nr.nr_cal c_plt_addr)(sdp, ofl);

}

/*

* Finish updating the synbols.
*

/

/*
* Sym Update: if scoped |ocal - set |ocal binding
*

if (local)
sym >st_info = ELF_ST_| NFQ{ STB_LOCAL,
ELF_ST_TYPE(sym >st_info));

Sym Updated: |If both the .syntab and .dynsym

are present then we’ve actually updated the information in
the .dynsym therefore copy this same information to the
.syntab entry.

* ok ok kX %
-

sdp- >sd_shndx = sect ndx;
if (enter_in_synmab &% dynsym && (!local || dynlocal)) {
Word _symdx = dynl ocal ? scopesym ndx : syntab_ndx;

synt ab[_symndx] . st _val ue = sym >st_val ue;
synt ab[_symdx] . st _si ze sym >st _si ze;
synt ab[_symdx] . st _i nfo sym >st _i nf o;
synt ab[_symmdx] . st _other = sym >st_ot her;

}

if (enter_in_syntab) {
Vor d _symdx;

if (local)
_symdx = scopesym ndx++;
el se

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 27

1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848

1850
1851
1852
1853
1854
1855
1856
1857
1858

1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878

1880
1881

1883
1884
1885
1886
1887
1888
1889
1890
1891
1892

1894
1895
1896

1898

1900
1901
1902
1903

symmdx = syntab_ndx++;
if (((sdp->sd_flags & FLG SY SPECSEC) == 0) &&
(sectndx >= SHN_LORESERVE)) {
assert (synmshndx != NULL);
synmshndx[_symdx] = sect ndx;
synt ab[_symdx] . st _shndx = SHN_XI NDEX;

} else {
/* LINTED */
synt ab[_symmdx] . st _shndx = (Hal f)sectndx;
}
}
if (dynsym & (!local || dynlocal)) {
/*
* dynsym and | dynsym are distinct tables, so
* we use indirection to access the right one
* and the rel ated extended section index array.
*/
Wor d _symdx;
Sym *_dynsym
Wor d * dynshndx
if (!local) {
_symdx = dynsym ndx++;
_dynsym = dynsym
_dynshndx = dynshndx;
} else {
_symdx = | dynscopesym ndx++;
_dynsym = | dynsym
_dynshndx = I dynshndx;
}
if (((sdp->sd_flags & FLG SY_SPECSEC) == 0) &&
(sect ndx >= SHN_LORESEI
assert (_dynshndx != NULL);
_dynshndx[_symmdx] = sectndx;
_dynsyn{ _symdx] . st _shndx = SHN_XI NDEX;
} else {
/* LINTED */
_dynsyn{ _symdx] . st _shndx = (Hal f)sect ndx;
}
}
DBG_CALL(Dbg_syms_new of |, sym sdp));
}
/*
* Now that all the synbols have been processed update any weak synbol s
* information (ie. copy all information except ‘st_nane’'). As both

synbols will be represented in the output, return the weak symbol to
* its correct type.

*/
for (ALIST TRAVERSE(Weak |dx1 wkp)) {
Sym desc *sdp, *_sdp;
Sym *sym *_sym *__sym
uchar _t bi nd;

sdp = wkp- >wk_weak;
_sdp = wkp->wk_ali as;
_sym= __sym= _sdp->sd_sym

sdp- >sd_fl ags | = FLG_SY_WEAKDEF;

/
If the synbol definition has been scoped then assign it to
be local, otherwise if it's froma shared object then we need
to maintain the binding of the original reference.

* ok ok ok

new usr/src/cnd/ sgs/ i bl d/ conmon/ updat e. c

1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914

1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936

1938
1939
1940
1941
1942

1944
1945
1946
1947
1948
1949
1950
1951
1952

1954
1955
1956
1957
1958
1959

1961
1962
1963
1964
1965
1966
1967
1968
1969

*
/
if (SYM.IS H DDEN(sdp)) {
if (flags & FLG OF PROCRED)
bind = STB_LOCAL;
el se
bi nd = STB_WEAK;
} else if ((sdp->sd ref == REF_DYN_NEED) &&
(sdp->sd_flags & FLG SY_GLOBREF))
bi nd = STB_GLOBAL;
el se
bi nd = STB_WEAK;

DBG_CALL(Dbg_syns_ol d(of |, sdp));

if ((sym= wkp->wk_syntab) != I\ULL) {
sym >st_value = _sym >st_val ue;
sym >st_size = _sym >st_si ze;
sym >st _ot her _sym >st _ot her;
sym >st _shndx “sym >st_shndx;
sym>st_info = ELF_ST_| NFQ(bi nd

ELF_ST_TYPE(sym >st _info));

__Sym = sym

}

1f ((sym= wkp->wk_dynsym) != NULL) {
sym >st _val ue = _sym >st_val ue;
sym >st_size = _sym >st_si ze;
sym >st_other = _sym >st_other;

sym >st _shndx _sym >st _shndx;
sym >st_info = ELF_ST INFq bi nd
ELF_ST_TYPE(sym >st _info));
__Sym = sym
}
DBG CALL(Dbg_syms_new(ofl, _ sym sdp));
}

/*

* Now di spl ay GOT debugging information if required.
*
/

DBG_CALL(Dbg_got _di splay(ofl, 0, O,
ld_targ.t_m mgot_xnunber, |d_targ.t_m mgot_entsize));

/*
* Update the section headers information. sh_info is

* supposed to contain the offset at which the first

* gl obal synbol resides in the synbol table, while

* sh_link contains the section index of the associated
* string table.

*/

f

(symtab) {
Shdr *shdr = of | ->of | _ossynt ab- >0s_shdr;

shdr->sh_i nfo = syntab_gbl _bndx;
/* LINTED */
shdr->sh_link = (Wrd)el f_ndxscn(ofl->of| _osstrtab->0s_scn);
if (symshndx)
of | ->of | _ossynmshndx- >0s_shdr->sh_link =
(Word) el f_ndxscn(ofT->of | _ossynt ab->o0s_scn) ;

Ensure that the expected nunber of synbols
were entered into the right spots:
- Scoped synbols in the right range
- Gobals start at the right spot
(correct nunmber of |ocals entered)
- The table is exactly filled
(correct nunber of gl obals entered)

* ok kR F ok Ok ok X

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 29
1970 assert ((scopesym bndx + ofI ->of | scopecnt) == scopesym ndx);
1971 assert (shdr->sh_info == SYMIAB_LOC CNT(ofl));

1972) assert ((shdr->sh_info + ofl->ofl _globcnt) == sym ab_ndx) ;
1973

1974 if (dynsym {

1975 Shdr *shdr = of | ->of| _osdynsym >o0s_shdr;

1977 shdr->sh_info = DYNSYM LOC_CNT(of |);

1978 /* LINTED */

1979 shdr->sh_link = (Wrd)el f_ndxscn(ofl->ofl_osdynstr->o0s_scn);
1981 of | ->of | _oshash->o0s_shdr->sh_link =

1982 [* LINTED */

1983 (Word) el f _ndxscn(of | ->of | _osdynsym >o0s_scn) ;

1984 if (dynshndx) {

1985 shdr = of | ->of | _osdynshndx- >o0s_shdr;

1986 shdr->sh_link =

1987 (Word) el f_ndxscn(ofl ->of | _osdynsym >0s_scn) ;
1988 }

1989 }

1990 if (ldynsym {

1991 Shdr *shdr = ofl->of| _osl dynsym >o0s_shdr;

1993 /* 1dynsym has no globals, so give index one past the end */
1994 shdr->sh_info = | dynsym_ ndx

1996 /*

1997 * The | dynsym and dynsym nust be adjacent. The

1998 * idea is that rtld should be able to start with

1999 * the | dynsym and march straight through the end

2000 * of dynsym seeing themas a single synbol table,

2001 * despite the fact that they are in distinct sections.
2002 * Ensure that this happened correctly.

2003 *

2004 * Note that | use | dynsymndx here instead of the

2005 * conputation | used to set the section size

2006 * (found in Idynsymcnt). The two will agree, unless
2007 * we sonehow m scounted synbols or failed to insert them
2008 * all. Using | dynsym ndx here catches that error in

2009 * addition to checking for adjacency.

2010 *

2011 assert (dynsym == (|l dynsym + | dynsym ndx));

2014 /* LINTED */

2015 shdr->sh_link = (Wrd)el f_ndxscn(ofl->of | _osdynstr->0s_scn);
2017 if (1 dynshndx) {

2018 hdr = of|->of| _osl dynshndx- >os_shdr;

2019 shdr >sh_link =

2020 (Word) el f _ndxscn(of | ->of | _osl dynsym >0s_scn);
2021 }

2023 /*

2024 * The presence of .SUNWI|dynsym neans that there nay be
2025 * associated sort sections, one for regular synbols

2026 * and the other for TLS. Each sort section needs the
2027 * foll owi ng done:

2028 * - Section header link references . SUNWIdynsym
2029 * - Shoul d have received the expected # of itens
2030 * - Sorted by increasing address

2031 */

2032 if (ofl->of | _osdynsynsort) { /* SUN\Ndynsymsort */
2033 of | - >of | _osdynsynsort - >0s shdr->sh_|ink =

2034 (wWord) el f_ndxscn(ofl ->of | _osl dynsym >os _scn);
2035 assert (of | ->of | _dynsymsortcnt == dynsynsort_ndx);

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 30

2037 if (dynsymsort_ndx > 1) {

2038 dynsort _conpare_syns = | dynsym

2039 gsort (dynsynsort, dynsynsort_ndx,

2040 si zeof (*dynsynsort), dynsort_conpare);
2041 dynsort _dupwarn(of |, |dynsym

2042 st_getstrbuf (dynstr),

2043 dynsynsort, dynsynsort_ndx,

2044 M5G_ORI G(MSG_SCN_DYNSYMSORT)) ;

2045 }

2046 }

2047 if (ofl->ofl _osdyntlssort) { /* . SUNWdyntl| ssort */

2048 of | ->of | _osdynt| ssort->o0s_shdr->sh_|ink =

2049 (Word) el f_ndxscn(ofl ->of | _osl dynsym >0s_scn);
2050 assert (of | ->of | _dyntIssortcnt == dyntissort_ndx);
2052 if (dyntlssort ndx > 1) {

2053 dynsort _conpare_syns = | dynsym

2054 gsort (dyntlssort, dyntlssort_ndx,

2055 si zeof (* dyntl ssort), dynsort_conpare);
2056 dynsort_dupwarn(ofl, |dynsym

2057 st _getstrbuf (dynstr),

2058 dyntlssort, dyntlssort_ndx,

2059 M5G_ORI NSG SCN DYNTLSSCRT))

2060 }

2061 }

2062 }

2064 *

2065 * Used by Id.so.1 only.

2066 */

2067 return (etext);

2069 #undef ADD_TO DYNSORT

2070 }

2072 | *

2073 * Build the dynamc section.

2074 *

2075 * This routine nust be maintained in parallel wth make_dynani c()

2076 * in sections.c

2077 *

2078 static int

2079 updat e_odynami c(COf | _desc *ofl)

2080 {

2081 Aiste i dx;

2082 1fl _desc *|f|;

2083 Sym desc *sdp;

2084 Shdr *shdr;

2085 Dyn *_dyn = (Dyn *)ofl->of | _osdynam c- >0s_out dat a- >d_buf;
2086 Dyn dyn;

2087 Gs_desc *sym)sp, *strosp;

2088 Str_tbl *strtbl;

2089 size_t stof f;

2090 of | _flag_t flags = ofl->of | _flags;

2091 int not _relobj = !(flags & FLG OF_RELOBJ);

2092 Wor d cnt ;

2094 /*

2095 * Rel ocat abl e objects can be built with -r and -dy to trigger the
2096 * creation of a .dynamic section. This npodel is used to create kernel
2097 * device drivers. The .dynanic section provides a subset of userland
2098 * .dynam c entries, typi cally entries such as DT_NEEDED and DT_RUNPATH.
2099 *

2100 * Wthin a dynam c object, any .dynam c string references are to the
2101 * .dynstr table. Wthin a relocatable object, these strings can reside

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 31

2102 * within the .strtab.

2103 */

2104 if (CFL_IS_STATIC OBJ(ofl)) {

2105 synmosp = of | ->of | _ossynt ab;

2106 strosp = of | ->of | _osstrtab;

2107 strtbl = ofl->ofl _strtab;

2108 } else {

2109 synmosp = of | ->of | _osdynsym

2110 strosp = of | ->of | _osdynstr;

2111 strtbl = ofl->ofl _dynstrtab;

2112 1

2114 /* LINTED */

2115 of | - >of | _osdynani c->0s_shdr->sh_|ink = (Wrd)el f_ndxscn(strosp->0s_scn);
2117 dyn = _dyn;

2119 for (APLIST_TRAVERSE(of | ->of | _sos, idx, ifl)) {

2120 if ((ifl->ifl_flags &

2121 (FLG_I F_I GNORE | FLG_ | F_DEPREQD)) == FLG_| F_I GNORE)
2122 conti nue;

2124 /*

2125 * Create and set up the DT_POSFLAG 1 entry here if required.
2126 *

2127 if ((ifl->fl_flags & MSK_| F_POSFLAGL) &&

2128 (ifl->ifl fIags&FLGIF NEEDED) && not _rel obj) {
2129 dyn->d_tag = DT_POSFLAG 1;

2130 if (ifl->ifl fIags&FLG_IF LAZYLD)

2131 dyn->d_un. d vaI = DF_P1_LAZYLOAD,

2132 if (ifl->fl_flags & FLG | F_GRPPRM)

2133 dyn->d_un.d vaI | = DF_P1_GROUPPERM

2134 if (ifl->fl _flags & FLG I F DEFERRED)

2135 dyn->d_un. d_val [= DF_P1_DEFERRED,

2136 dyn++;

2137

2139 if (ifl->ifl_flags & (FLG | F_NEEDED | FLG_| F_NEEDSTR))
2140 dyn->d_tag = DT_NEEDED,

2141 el se

2142 conti nue;

2144 (void) st_setstring(strtbl, ifl->ifl_sonane, &stoff);
2145 dyn->d_un.d_val = stoff;

2146 /* LINTED */

2147 ifl->ifl_neededndx = (Half)(((uintptr_t)dyn - (uintptr_t)_dyn) /
2148 sizeof (Dyn));

2149 dyn++;

2150 }

2152 if (not_relobj) {

2153 if (ofl->of | _dtsfltrs !'= NULL) {

2154 Df I tr_desc *df tp;

2156 for (ALI ST_TRAVERSE(of | ->of | _dtsfltrs, idx, dftp)) {
2157 if (dftp->dft _flag == FLG SY_AUXFLTR)
2158 dyn->d_tag = DT_SUNW AUXI LI ARY;
2159 el se

2160 dyn->d_tag = DT_SUNWFI LTER;
2162 (void) st _set string(strthbl, dftp->dft_str,
2163 &st of f

2164 dyn->d_un. d _val = stoff;

2165 dftp->dft_ndx = (Hal f)(((umtpt t)dyn -
2166 (uintptr_t)_dyn) / sizeof (Dyn));

2167 dyn++;

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 32
2168 }

2169

2170 i f (((sdp I d_sym find(MSG_ORI G(MSG_ SYM INIT_U),
2171 M NOHASH, 0, ofl)) != NULL) &&

2172 (sdp >sd_ref == REF_REL_NEED) &&

2173 (sdp->sd_sym >st_shndx T= SHN_UNDEF)) {

2174 dyn->d_tag = DT_INT;

2175 dyn->d_un.d_ptr = sdp- >sd_sym >st _val ue;
2176 dyn++;

2177 }

2178 if (((sdp = Id_symfind(MSG ORI G(MBG SYM FINI _U),
2179 SYM NOHASH, 0, ofl)) != NULL) &%

2180 (sdp->sd_ref == REF_REL_NEED) &&

2181 (sdp->sd_sym >st_shndx T= SHN_UNDEF)) {

2182 dyn->d tag = DT_FIN ;

2183 dyn->d_un. d_ptr = sdp->sd_sym >st_val ue;
2184 dyn++;

2185 }

2186 1f (ofl->ofl _sonanme) {

2187 dyn->d_tag = DT_SONAME;

2188 (void) st_setstring(strtbl, ofl->ofl_sonane, &stoff);
2189 dyn->d_un.d_val = stoff;

2190 dyn++;

2191 }

2192 if (ofl->of | _filtees) {

2193 if (flags & FLG OF_AUX) {

2194 dyn->d_tag = DT_AUXI LI ARY;

2195 } else {

2196 dyn->d_tag = DT_FILTER

2197

2198 (void) st_setstring(strtbl, ofl->ofl _filtees, &stoff);
2199 dyn->d_un.d_val = stoff;

2200 dyn++;

2201

2202 }

2204 if (ofl->of | _rpath) {

2205 (void) st_setstring(strtbl, ofl->ofl _rpath, &stoff);
2206 dyn->d_tag = DT_RUNPATH;

2207 dyn->d_un.d_val = stoff;

2208 dyn++;

2209 dyn->d_tag = DT_RPATH,

2210 dyn->d_un. d_val = stoff;

2211 dyn++;

2212

2214 if (not_relobj) {

2215 “Aliste idx;

2216 Sg_desc *sgp;

2218 if (ofl->ofl _config) {

2219 dyn->d_tag = DT_CONFI G

2220 (void) st_setstring(strtbl, ofl->ofl _config, &stoff);
2221 dyn->d_un.d_val = stoff;

2222 dyn++;

2223 }

2224 if (ofl->ofl _depaudit) {

2225 dyn->d_tag = DT_DEPAUDI T;

2226 (void) st_setstring(strtbl, ofl->ofl_depaudit, &stoff);
2227 dyn->d_un.d_val = stoff;

2228 dyn++;

2229 }

2230 if (ofl->of | _audit) {

2231 dyn->d_tag = DT_AUDIT;

2232 (void) st_setstri ng(strtbl of | ->of | _audit, &stoff);
2233 dyn->d_un.d_val = stoff;

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 33

2234
2235

2237
2238
2239

2241
2242
2243
2244

2246
2247
2248

2250
2251
2252
2253
2254
2255
2256
2257

2259
2260
2261

2263
2264

2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277

2279
2280
2281
2282

2284
2285
2286
2287
2288

2290
2291

2293
2294
2295

2297
2298
2299

dyn++;

}

dyn->d_tag = DT_HASH,
dyn->d_un.d ptr = of | - >of | _oshash->o0s_shdr->sh_addr;
dyn++;

shdr = strosp->o0s_shdr;
dyn->d_tag = DT_STRTAB;
dyn->d_un. d_ptr = shdr->sh_addr;
dyn++;

dyn->d_tag = DT_STRSZ;
dyn->d_un. d_ptr = shdr->sh_si ze;
dyn++,

/*

* Note, the shdr is set and used in the ofl->ofl_osldynsym case
* that follows.

*/

shdr = synpsp->o0s_shdr;

dyn->d_tag = DT_ SYMTAB

dyn->d_un.d_ptr = shdr—>sh_addr;

dyn++;

dyn->d_tag = DT_SYMENT;
dyn->d_un.d_ptr = shdr—>sh_entsize;
dyn++;

if (ofl->ofl _osldynsym
Shdr *| shdr = of | - >of | _osl dynsym >o0s_shdr;

We have arranged for the .SUNWIdynsym data to be
imrediately in front of the .dynsym data.

This neans that you could start at the top

of . SUNWIdynsym and see the data for both tables
without a break. This is the view we want to
provi de for DT_SUNW SYMIAB, which is why we

add the |engths together.

* Ok Ok ok % Ok F o

*

/

dyn->d_tag = DT_SUNW SYMIAB;
dyn->d_un. d_ptr = | shdr->sh_addr;

dyn++,
dyn->d_tag = DT_SUNW SYMSZ;
dyn->d_un.d_val = |shdr->sh_size + shdr->sh_si ze;
dyn++,
if (ofl->ofl osdynsymsort || ofl->ofl _osdyntlssort) {

dyn->d_tag = DT SUN\N_SO?TENT;
dyn->d_un. d_val = sizeof (Wrd);
dyn++;

}

if (ofl->ofl _osdynsynsort) {
shdr = of | ->of | _osdynsynsort->os_shdr;

dyn->d_tag = DT_SUNW SYMSORT;
dyn->d_un. d_ptr = shdr->sh_ addr
dyn++;

dyn->d_tag = DT_SUNW SYMSORTSZ;
dyn->d_un. d_val = shdr->sh_si ze;
dyn++;

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 34
2300 }

2302 if (ofl->of | _osdyntlssort) {

2303 shdr = of | ->of | _osdynt| ssort->o0s_shdr;

2305 dyn->d_tag = DT_SUNW TLSSORT;

2306 dyn->d_un. d_ptr = shdr->sh_i addr

2307 dyn++;

2309 dyn->d_tag = DT_SUNW TLSSORTSZ;

2310 dyn->d_un. d_val = shdr->sh_si ze;

2311 dyn++;

2312 }

2314 /*

2315 * Reserve the DT_CHECKSUM entry. |Its value will be filled in
2316 * after the conplete image is built.

2317 */

2318 dyn->d_tag = DT_CHECKSUM

2319 of | - >of | _checksum = &dyn->d_un. d_val ;

2320 dyn++;

2322 /*

2323 * Versioning sections: DI_VERDEF and DT_VERNEED.

2324 *

2325 * The Solaris |d does not produce DT_VERSYM but the G\U I d
2326 * does, in order to support their style of versioning, which
2327 * differs fromours:

2328 *

2329 * - The top bit of the 16-bit Versymindex is

2330 * not part of the version, but is interpreted
2331 * as a "hidden bit".

2332 *

2333 * - External (SHN_UNDEF) synbols can have non-zero

2334 * Ver sym val ues, which specify versions in

2335 & referenced objects, via the Verneed section.
2336 *

2337 i - The vna_other field of the Vernaux structures

2338 * found in the Verneed section are not zero as
2339 & with Solaris, but instead contain the version
2340 * index to be used by Versymindices to reference
2341 * the given external version.

2342 *

2343 * The Solaris Id, rtld, and el fdunp prograns all interpret the
2344 * presence of DT_VERSYM as neaning that GNU versioning rules
2345 * apply to the given file. If DI_VERSYMis not present,

2346 * then Solaris versioning rules apply. If we should ever need
2347 * to change our Id so that it does issue DI_VERSYM then
2348 * this rule for detecting GNU versioning will no | onger work.
2349 * In that case, we will have to invent a way to explicitly
2350 * specify the style of versioning in use, perhaps via a

2351 * new dynam c entry named sonething |ike DT_SUNW VERS| ONSTYLE,
2352 * where the d_un.d_val value specifies which style is to be
2353 * used.

2354 */

2355 if ((flags & (FLG OF_VERDEF | FLG OF NOVERSEC)) ==

2356 FLG_OF_VERDEF)

2357 “shdr = ofl->of| _osverdef->o0s_shdr;

2359 dyn->d_tag = DT_VERDEF;

2360 dyn->d_un.d_ptr = shdr->sh addr ;

2361 dyn++;

2362 dyn->d_tag = DT_VERDEFNUM

2363 dyn->d_un. d_ptr = shdr->sh_info;

2364 dyn++;

2365 }

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 35

2366 if ((flags & (FLG OF VERNEED | FLG OF_NOVERSEC)) ==
2367 FLG OF VERNEED) {

2368 shdr = of | ->of | _osver need- >o0s_shdr;

2370 dyn->d_tag = DT_VERNEED,

2371 dyn->d_un. d_ptr = shdr->sh_addr;

2372 dyn++;

2373 dyn->d_tag = DT_VERNEEDNUM

2374 dyn->d_un.d_ptr = shdr->sh_info;

2375 dyn++;

2376 }

2378 if ((flags & FLG OF_COWREL) && ofl->of| _relocrelcnt) {
2379 dyn->d_tag = |d_targ.t_m mrel _dt_count;
2380 dyn->d_un.d_val = ofl->ofl _relocrelcnt;
2381 dyn++;

2382 }

2383 if (flags & FLG OF_TEXTREL) {

2384 /*

2385 * Only the presence of this entry is used in this
2386 * inplementation, not the val ue stored.
2387 */

2388 dyn->d_tag = DT_TEXTREL;

2389 dyn->d_un.d_val = 0;

2390 dyn++;

2391 }

2393 if (ofl->ofl_osfiniarray)

2394 shdr = of | ->of | _osfi ni array->os_shdr;
2396 dyn->d_tag = DT_FI NI _ARRAY;

2397 dyn->d_un.d_ptr = shdr->sh_addr;

2398 dyn++;

2400 dyn->d_tag = DT_FI NI _ARRAYSZ;

2401 dyn->d_un.d_val = shdr->sh_size;

2402 dyn++;

2403 }

2405 if (ofl->ofl_osinitarray)

2406 shdr = of | ->of | _osi nitarray->o0s_shdr;
2408 dyn->d_tag = DT_I NI T_ARRAY;

2409 dyn->d_un.d_ptr = shdr->sh_addr;

2410 dyn++;

2412 dyn->d_tag = DT_I NI T_ARRAYSZ;

2413 dyn->d_un. d_val = shdr->sh_si ze;

2414 dyn++;

2415 }

2417 if (ofl->ofl _ospreinitarray)

2418 shdr = of | ->of | _ospreinitarray->0s_shdr;
2420 dyn->d_tag = DT_PRElI NI T_ARRAY;

2421 dyn->d_un. d_ptr = shdr->sh_addr;

2422 dyn++;

2424 dyn->d_tag = DT_PREI NI T_ARRAYSZ;

2425 dyn->d_un. d_val = shdr->sh_si ze;

2426 dyn++;

2427 }

2429 if (ofl->ofl _pltent) {

2430 shdr = of | ->of | _ospl t->o0s_rel osdesc->0s_shdr;

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

2432 dyn->d_tag = DT_PLTRELSZ;

2433 dyn->d_un. d_ptr = shdr->sh_si ze;

2434 dyn++;

2435 dyn->d_tag = DT_PLTREL;

2436 dyn->d_un.d_ptr = ld_targ.t_mmrel _dt_type;
2437 dyn++;

2438 dyn->d_tag = DT_JMPREL;

2439 dyn->d_un.d_ptr = shdr->sh_addr;

2440 dyn++;

2441 }

2442 i1f (ofl->ofl_pltpad) {

2443 shdr = of | ->of | _ospl t->o0s_shdr;

2445 dyn->d_tag = DT_PLTPAD,

2446 if (ofl->ofl_pltcent) {

2447 dyn->d_un.d_ptr = shdr->sh_addr +
2448 ld_targ.t_mmplt_reservsz +
2449 of | ->of | _pltcnt * Id_targ.t_mmplt_entsize;
2450 } else

2451 dyn->d_un.d_ptr = shdr->sh_addr;
2452 dyn++;

2453 dyn->d_tag = DT_PLTPADSZ;

2454 dyn->d_un.d_val = ofl->ofl _pltpad *
2455 Id_targ.t_m mplt_entsize;

2456 dyn++;

2457 }

2458 1f (ofl->ofl_rel ocsz)

2459 shdr = of | ->of | _osrel head->o0s_shdr;
2461 dyn->d_tag = ld_targ.t_mmrel _dt_type;
2462 dyn->d_un. d_ptr = shdr->sh_addr;

2463 dyn++;

2464 dyn->d_tag = ld_targ.t_mmrel _dt_size;
2465 dyn->d_un.d_ptr = ofl->ofl _rel ocsz;
2466 dyn++;

2467 dyn->d_tag = |d_targ.t_mmrel _dt_ent;
2468 if (shdr->sh_type == SHT_REL)

2469 dyn->d_un.d_ptr = sizeof (Rel);
2470 el se

2471 dyn->d_un.d_ptr = sizeof (Rela);
2472 dyn++;

2473 }

2474 1f (ofl->ofl _ossymi nfo)

2475 shdr = of | ->of | _ossymi nf o- >0s_shdr;
2477 dyn->d_tag = DT_SYM NFO

2478 dyn->d_un.d_ptr = shdr->sh_addr;

2479 dyn++;

2480 dyn->d_tag = DT_SYM NSZ;

2481 dyn->d_un.d_val = shdr->sh_size;

2482 dyn++;

2483 dyn->d_tag = DT_SYM NENT;

2484 dyn->d_un.d_val = sizeof (Sym nfo);
2485 dyn++;

2486 }

2487 1f (ofl->ofl _osnmove) {

2488 shdr = of | ->of | _osnove->o0s_shdr;

2490 dyn->d_tag = DT_MOVETAB;

2491 dyn->d_un. d_val = shdr->sh_addr;

2492 dyn++;

2493 dyn->d_tag = DT_MOVESZ;

2494 dyn->d_un.d_val = shdr->sh_size;

2495 dyn++;

2496 dyn->d_tag = DT_MOVEENT;

2497 dyn->d_un.d_val = shdr->sh_entsize;

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 37

2498 dyn++;

2499

2500 i1f (ofl->ofl _regsyncnt) {

2501 i nt ndx;

2503 for (ndx = 0; ndx < ofl->ofl_regsynsno; ndx++)
2504 if ((sdp = ofl->ofl _regsyms[ndx]) == NULL)
2505 conti nue;

2507 dyn->d_tag = ld_targ.t_m mdt_register;
2508 dyn->d_un. d_val = sdp->sd_symdx;

2509 dyn++;

2510

2511 }

2513 for (APLI ST_TRAVERSE(of | ->of | _rtldinfo, idx, sdp)) {
2514 dyn->d_tag = DT_SUNW RTLDI NF;

2515 dyn->d_un. d_ptr = sdp->sd_sym >st_val ue;

2516 dyn++;

2517 }

2519 if (((sgp = ofl->of | _osdynami c->0s_sgdesc) != NULL) &&
2520 (sgp->sg_phdr.p_flags & PF. W && ofl->of _osinterp) {
2521 dyn->d_tag = DT_DEBUG

2522 dyn->d_un.d_ptr = O;

2523 dyn++;

2524 }

2526 if (ofl->ofl _oscap) {

2527 dyn->d_tag = DT_SUNW CAP;

2528 dyn->d_un. d_val = ofl->of | _oscap->0s_shdr->sh_addr;
2529 dyn++;

2530 }

2531 if (ofl->of | _oscapinfo) {

2532 dyn->d_tag = DT_SUNW CAPI NFO,

2533 dyn->d_un. d_val = ofl->of | _oscapi nfo->0s_shdr->sh_addr;
2534 dyn++;

2535 }

2536 1f (ofl->ofl _oscapchain) {

2537 shdr = of | ->of | _oscapchai n->o0s_shdr;

2539 dyn->d_tag = DT_SUNW CAPCHAI N;

2540 dyn->d_un. d_val = shdr->sh_addr;

2541 dyn++;

2542 dyn->d_tag = DT_SUNW CAPCHAI NSZ;

2543 dyn->d_un.d_val = shdr->sh_size;

2544 dyn++;

2545 dyn->d_tag = DT_SUNW CAPCHAI NENT;

2546 dyn->d_un.d_val = shdr->sh_entsize;

2547 dyn++;

2548 }

2550 if (ofl->ofl _aslr = 0) {

2551 dyn->d_tag = DT_SUNW ASLR;

2552 dyn->d_un.d_val = (ofl->ofl_aslr == 1);

2553 dyn++;

2554

2556 if (flags & FLG OF_SYMBOLI Q) {

2557 dyn->d_tag = DT_SYMBOLI C,

2558 dyn->d_un.d_val = 0;

2559 dyn++;

2560 }

2561 }

2563 dyn->d_tag = DT_FLAGS;

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 38
2564 dyn->d_un.d_val = ofl->ofl _dtfl ags;

2565 dyn++;

2567 /*

2568 * |f -Bdirect was specified, but some NODI RECT synbols were specified
2569 * via a mapfile, or -znodirect was used on the command |ine, then
2570 * clear the DF_1_DIRECT flag. The resultant object will use per-synbol
2571 * direct bindings rather than be enabled for global direct bindings.
2572 *

2573 * |f any no-direct bindings exist within this object, set the
2574 * DF_1_NODI RECT flag. 1d(1) recognizes this flag when processing
2575 * dependencies, and performs extra work to ensure that no direct
2576 * bindings are established to the no-direct synbols that exist
2577 * within these dependenci es.

2578 */

2579 if (ofl->ofl _flagsl & FLG OF1_NG.BDI R)

2580 of | ->of | _dtflags_1 & ~DF_1_DI RECT;

2581 if (ofl->ofl _flagsl & FLG OF1_NDI RECT)

2582 of | ->of | _dtflags_1 | = DF_1_NODI RECT;

2584 dyn->d_tag = DT_FLAGS 1;

2585 dyn->d_un.d_val = ofl->ofl _dtflags_1;

2586 dyn++;

2588 dyn->d_tag = DT_SUNW STRPAD,

2589 dyn->d_un. d_val = DYNSTR_EXTRA_PAD;

2590 dyn++;

2592 dyn->d_tag = DT_SUNW LDVACH,

2593 dyn->d_un.d_val = I d_sunw_| dmach();

2594 dyn++;

2596 if (ofl->ofl _flags & FLG OF_KMD) {

2597 dyn->d_tag = DT_SUNW KMOD;

2598 dyn->d_un.d_val = 1;

2599 dyn++;

2600

2602 #endif /* ! codereview */

2603 (*ld_targ.t_nr.nr_mach_updat e_odynam c) (of |, &dyn);

2605 for (cnt = 1 + DYNAM C_EXTRA_ELTS; cnt--; dyn++) {

2606 dyn->d_tag = DT_NULL;

2607 dyn->d_un.d_val = 0;

2608

2610 /*

2611 * Ensure that we wote the right nunber of entries. If not, we either
2612 * mscounted in make_dynamic(), or we did sonething wong in this
2613 * function.

2614 */

2615 assert ((ofl->of | _osdynani c->0s_shdr->sh_size /

2616 of | - >of | _osdynami c- >0s_shdr - >sh_ent si ze) ==

2617 ((uintptr_t)dyn - (uintptr_t)_dyn) / sizeof (*dyn));

2619 return (1);

2620 }

2622 [*

2623 * Build the version definition section

2624 */

2625 static int
2626 update_overdef (Ol _desc *of |)

2627 {
2628 Aliste i dx1;
2629 Ver _desc *vdp, *_vdp;

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 39 new usr/src/cnd/ sgs/ i bl d/ conmon/ updat e. c 40
2630 Ver def *vdf, *_vdf; 2696 _vdap->vda_next = (Word) ((uintptr_t)vdap - (uintptr_t)_vdap);
2631 int num = O;
2632 Gs_desc *strosp; 2698 /*
2633 Str_tbl *strtbl; 2699 * Traverse this versions dependency |list generating the
2700 * approprl ate version dependency entries.
2635 /* 2701
2636 * Determ ne which string table to use. 2702 for (APLI ST_TRAVERSE(vdp- >vd_deps, idx2, _vdp)) {
2637 */ 2703 /* LINTED */
2638 if (OFL_I S_STATIC G&J(ofl)) { 2704 vdap- >vda_nanme = (uintptr_t)_vdp->vd_nane;
2639 strtbl = ofl->of | _strtab; 2705 _vdap = vdap;
2640 strosp = ofl ->of|_osstrtab; 2706 vdap++, cnt++;
2641 } else { 2707 /* LINTED */
2642 strtbl = ofl->of | _dynstrtab; 2708 _vdap->vda_next = (Word) ((uintptr_t)vdap -
2643 strosp = of | ->of | _osdynstr; 2709 (uintptr_t)_vdap);
2644 } 2710 }
2711 _vdap->vda_next = 0;
2646 /*
2647 * Traverse the version descriptors and update the version structures 2713 /*
2648 * to point to the dynstr name in preparation for building the version 2714 * Record the versions auxiliary array offset and the associ ated
2649 * section structure. 2715 * dependency count.
2650 */ 2716 *
2651 for (APLI ST_TRAVERSE(of | - >of | _verdesc, idx1l, vdp)) { 2717 /* LINTED */
2652 Sym desc *sdp; 2718 vdf ->vd_aux = (Word) ((uintptr_t)(vdf + 1) - (uintptr_t)vdf);
2719 vdf->vd_cnt = cnt;
2654 if (vdp->vd_flags & VER FLG BASE) {
2655 const char *nanme = vdp->vd_naneg; 2721 1=
2656 size_t stoff; 2722 * Record the next versions offset and update the version
2723 * pointer. Renenber the previous version offset as the very
2658 /* 2724 * |ast structures next pointer should be null
2659 * Create a new string table entry to represent the base 2725 */
2660 * version nane (there is no correspondi ng synbol for 2726 _vdf = vdf;
2661 * this). 2727 vdf = (Verdef *)vdap, numt+;
2662 */ 2728 /* LINTED */
2663 (void) st_setstring(strtbl, name, &stoff); 2729 _vdf->vd_next = (Word) ((uintptr_t)vdf - (uintptr_t)_vdf);
2664 /* LINTED */ 2730 }
2665 vdp->vd_nane = (const char *)stoff; 2731 _vdf->vd_next = 0;
2666 } else {
2667 sdp = Id symfl nd(vdp- >vd_nane, vdp->vd_hash, 0, ofl); 2733 /*
2668 /* LI NTED */ 2734 * Record the string table association with the version definition
2669 vdp->vd_nane = (const char *) 2735 * section, and the synmbol table associated with the version synbol
2670 (ui ntptr_t)sdp->sd_sym >st_nane; 2736 * table (the actual contents of the version synbol table are filled
2671 } 2737 * in during synbol update).
2672 } 2738 */
2739 /* LINTED */
2674 _vdf = vdf = (Verdef *)ofl->ofl_osverdef->0s_outdata->d_buf; 2740 of | - >of | _osverdef->o0s_shdr->sh_link = (Wrd)el f_ndxscn(strosp->0s_scn);
2676 /* 2742 /*
2677 * Traverse the version descriptors and update the version section to 2743 * The version definition sections ‘info’ field is used to indicate the
2678 * reflect each version and its associ ated dependenci es. 2744 * nunber of entries in this section.
2679 */ 2745 */
2680 r (APLI ST_TRAVERSE(of | - >of | _verdesc, idx1, vdp)) { 2746 of | ->of | _osver def ->0s_shdr->sh_info = num
2681 Aliste idx2;
2682 Hal f cnt = 1; 2748 return (1);
2683 Ver daux *vdap, *_vdap; 2749 }
2685 _vdap = vdap = (Verdaux *)(vdf + 1); 2751 | *
2752 * Finish the version synbol index section
2687 vdf - >vd_versi on = VER _DEF_CURRENT; 2753 */
2688 vdf ->vd_f | ags = vdp->vd_fl ags & MSK_VER USER 2754 static void
2689 vdf - >vd_ndx = vdp- >vd_ndx; 2755 updat e_oversym(Of | _desc *of|)
2690 vdf - >vd_hash = vdp->vd_hash; 2756 {
2757 Gs_desc *osp;
2692 /* LINTED */
2693 vdap- >vda_nane = (uintptr_t)vdp->vd_nane; 2759 /*
2694 vdap++; 2760 * Record the synbol table associated with the version synbol table.
2695 /* LINTED */ 2761 * The contents of the version synbol table are filled in during

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 41

2762
2763
2764
2765
2766
2767

2769
2770
2771 }

2773 | *

2774 *
*/

2775

* synbol update.
S

if (OFL_IS_STATIC OBJ(ofl))

osp = of | ->of | _ossynt ab;
el se

osp = ofl->of | _osdynsym

/* LINTED */
of | ->of | _osver sym >0s_shdr->sh_l i nk = (Wrd)el f_ndxscn(osp->0s_scn);

Buil d the version needed section

2776 static int
2777 update_overneed(Of | _desc *ofl)

2778 {
2779
2780
2781
2782
2783
2784

2786

2788
2789
2790
2791
2792
2793
2794
2795
2796
2797

2799
2800
2801
2802
2803
2804
2805
2806
2807

2809
2810

2812

2814
2815

2817

2819
2820
2821
2822
2823
2824

2826
2827

Aliste i dx1;

I fI_desc *ifl;

Ver need *vnd, *_vnd;
Os_desc *strosp;
Str_tbl *strtbl;

Wor d num = O;

_vnd = vnd = (Verneed *)ofl->of| _osverneed->o0s_out dat a- >d_buf ;

/*
* Determ ne which string table is appropriate.
*
if (OFL_IS_STATIC OBJ(ofl)) {
strosp = of | ->of | _osstrtab;

strtbl = ofl->of | _strtab;
} else {
strosp = of | ->of | _osdynstr;
strtbl = ofl->of | _dynstrtab;
}
/*

* Traverse the shared object |ist |ooking for dependenci es that have
* versions defined within them
*

for (APLIST_TRAVERSE(of | ->of | _sos, idx1, ifl)) {
Hal f

_cnt;
Wor d cnt = 0;
Ver naux *_vnap, *vnap
size_t stof f;

if (1(ifl->fl_flags & FLG | F_VERNEED))
conti nue;

vnd- >vn_versi on = VER _NEED_CURRENT;

(void) st_setstring(strtbl, ifl->ifl_sonane, &stoff);
vnd->vn_file = stoff;

_vnap = vnap = (Vernaux *)(vnd + 1);

/*

* Traverse the version index list recording
* each version as a needed dependency.

*/

for (_cnt = 0; _cnt <= ifl->ifl_vercnt; _cnt++)
Ver _i ndex *vip = & fl->ifl_verndx[_cnt];

if (vip->vi_flags & FLG VER REFER) {
(void) st_setstring(strtbl, vip->vi_naneg,

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

2828
2829

2831
2832
2833
2834
2835
2836
2837
2838
2839

2841
2842
2843
2844
2845
2846
2847
2848
2849
2850

2852
2853
2854
2855
2856
2857
2858

2860

2862
2863
2864
2865
2866
2867
2868
2869

2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881

2883
2884
2885
2886
2887
2888
2889

2891
2892 }

42

&stoff);
vnap->vna_nane = stoff;

if (vip->vi_desc)
vnap->vna_hash = vi p->vi _desc->vd_hash;
vnap->vna_fl ags =
vi p->vi _desc->vd_fl ags;
} else {
vnap->vna_hash = 0;
vnap->vna_flags = O;

vnap- >vna_ot her = vi p->vi _over ndx;

/*

* |f version Ainherits version B, then

* Bis inplicit in A It suffices for Id.so.1
* to verify A at runtime and skip B. The

* version nornmalization process sets the | NFO
* flag for the versions we want I1d.so.1 to

* skip.

*

if

(vip->vi_flags & VER FLG | NFO
vnap->vna_flags | = VER FLG | NFG

_vnap = vnap;
vnap++, cnt++;
_vnap->vna_next =

/* LINTED */

(Word) ((uintptr_t)vnap - (uintptr_t)_vnap);

}
_vnap->vna_next = 0;

/*

* Record the versions auxiliary array offset and
* the associ ated dependency count.

*/

/* LINTED */

vnd->vn_aux = (Word) ((uintptr_t)(vnd + 1) - (uintptr_t)vnd);
[* LINTED */

vnd->vn_cnt = (Hal f)cnt;

/*
* Record the next versions offset and update the version
* pointer. Remenber the previous version offset as the very
*]ast structures next pointer should be null.
*
/
_vnd = vnd;
vnd = (Verneed *)vnap, numt+;
/* LINTED */
_vnd->vn_next = (Word) ((uintptr_t)vnd - (uintptr_t)_vnd);

_vnd->vn_next = 0;

/*
* Use sh_link to record the associated string table section, and

* sh_info to indicate the number of entries contained in the section.
*/

/* LINTED */

of | - >of | _osver need- >o0s_shdr->sh_I i nk

L (Word) el f _ndxscn(strosp->0s_scn);
of | ->of | _osver need- >0s_shdr->sh_i nfo

num

return (1);

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c

2894 /| *

2895 * Update syminfo section.

2896 */
2897 static uintptr

2898 updat e_osym nfo(O‘I desc *ofl)

2899 {

2900 GOs_desc *synosp, *infosp = ofl->ofl_ossym nfo;

2901 Symi nf o *sip = infosp->o0s_outdata->d_buf;

2902 Shdr *shdr = infosp->o0s_shdr;

2903 char *strtab;

2904 Aliste idx;

2905 Sym desc *sdp;

2906 Sfltr_desc *sftp;

2908 if (ofl->ofl_flags & FLG OF_RELOBJ) {

2909 synosp = of | ->of [_ossynt ab;

2910 strtab = of|->of | _osstrtab->o0s_outdata->d_buf;

2911 } else {

2912 synmosp = of | - >of | _osdynsym

2913 strtab = of | ->of | _osdynstr->0s_out dat a- >d_buf ;

2914 }

2916 /* LINTED */

2917 i nfosp->o0s_shdr->sh_link = (Wrd)el f_ndxscn(synpsp->0s_scn);
2918 if (ofl->ofl_osdynami c)

2919 i nfosp->o0s_shdr->sh_info =

2920 /* LINTED */

2921 (Word) el f _ndxscn(of | ->of | _osdynami c->0s_scn) ;

2923 /*

2924 * Update any references with the index into the dynanmic table.
2925 *

2926 for (APLIST_TRAVERSE(of|->of | _syndtent, idx, sdp))

2927 si p[sdp- >sd_symdx] . si _boundto = sdp->sd_fil e->i fl_neededndx;
2929 I*

2930 * Update any filtee references with the index into the dynam c table.
2931 *

2932 for (ALI ST_TRAVERSE(of|->of | _synfltrs, idx, sftp)) {

2933 Dfltr_desc *df t p;

2935 dftp = alist_iten(ofl->of | _dtsfltrs, sftp->sft_idx);
2936 sip[sftp->sft_sdp->sd_symmdx] . si _boundto = dftp->dft_ndx;
2937

2939 /*

2940 * Di splay debuggi ng information about section.

2941 */

2942 DBG _CALL(Dbg_syminfo_title(ofl->ofl _Im));

2943 i f (DBG_ENABLED) {

2944 Word _cnt, cnt = shdr->sh_size / shdr->sh_entsize;
2945 Sym *syntab = symosp->os_out dat a- >d_buf ;

2946 Dyn *dyn;

2948 if (ofl->ofl _osdynanic)

2949 dyn = of | - >of | _osdynani c- >o0s_out dat a- >d_buf ;
2950 el se

2951 dyn = NULL

2953 for (_cnt = 1; _cnt < cnt; _cnt++) {

2954 if (sip[_cnt].si fl ags || sip[_cnt].si_boundto)
2955 7* LINTED */

2956 DBG _CALL(Dbg_symi nfo_entry(ofl->ofl _Im, _cnt,
2957 &sip[_cnt], &yntab[_cnt], strtab, dyn));
2958 }

2959 }

43

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 44
2960 return (1);

2961 }

2963 /*

2964 * Build the output elf header.
=Y

2965

2966 static uint ptr

2967 updat e_oehdr (O

2968 {
2969

2971
2972
2973
2974
2975
2976
2977
2978
2979
2980

2982
2983

2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005

3007
3008
3009
3010
3011
3012
3013

3015
3016
3017
3018
3019
3020

3022
3023 }

3025 /*

_desc * ofl)
Ehdr *ehdr = of | ->of | _nehdr;

/
If an entry point synbol has al ready been established (refer
symvalidate()) sinply update the el f header entry point with the
synbols value. If no entry point is defined it wll have been filled
with the start address of the first section within the text segnent
(refer update_outfile()).

/

EE T

if (ofl->ofl_entry)
ehdr->e_entry =
((Sym._ desc *) (ofl->of | _entry))->sd_sym >st _val ue;

ehdr->e_ident[El _DATA] = Id_targ.t_m mdata;
ehdr->e_version = ofl->of | _dehdr->e_version;

/*

* When generating a rel ocatabl e object under -z synbol cap, set the

* e_machine to be generic, and renpve any e_flags. Input relocatable
* objects may identify alternative e_nachine (m machplus) and e_fl ags
* values. However, the functions within the created output object

* are selected at runtime using the capabilities mechanism which

* supersedes the e-machine and e_flags information. Therefore,

* e_machine and e_flag values are not propagated to the output object,
* as these values might prevent the kernel from | oading the object

* before the runtine |inker gets control.

*

f

(of I ->of | _flags & FLG OF_OTOSCAP) {
ehdr->e_nachine = Id_targ.t_m m mach;
= 0;

ehdr->e_fl ags
} else {
*
* Note. it may be necessary to update the e_flags field in the

* machi ne dependent secti on.
*
/
ehdr->e_nachi ne = of | ->of | _dehdr->e_nachi ne;
ehdr->e_flags = ofl->of | _dehdr->e_fl ags;

if (ehdr->e_machine !=Ild_targ.t_m mnach) {
if (ehdr->e_machine != Id_targ.t_m m machpl us)
return (S_ERROR);
if ((ehdr->e_flags & Id_targ.t_m m fl agspl us) == 0)
return (S_ERROR);

}

if (ofl->ofl_flags & FLG OF_SHAROBJ)
ehdr->e_type = ET_DYN

else if (ofl->ofl flags & FLG OF_RELOBJ)
ehdr->e_type = ET_REL;

el se
ehdr - >e_type = ET_EXEC;

return (1);

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 45

3026 * Perform nove table expansion.

3027 */

3028 static void

3029 t{sxpand_rmve(dl_desc *of |, Symdesc *sdp, Myve *nvp)

3030

3031 Gs_desc *osp;

3032 uchar _t *taddr, *taddrO;

3033 Sxwor d of f set;

3034 Hal f cnt;

3035 uint_t stride;

3037 sp = ofl ->of | _i sparexpn->i s_osdesc;

3038 ff set = sdp->sd_sym >st_val ue - osp->os_shdr->sh_addr;
3040 taddrO0 = taddr = osp->o0s_out dat a- >d_buf;

3041 taddr += offset;

3042 taddr = taddr + mvp->m poffset;

3044 for (cnt = 0; cnt < nm/p->mrepeat; cnt++) {

3045 /* LINTED */

3046 DBG_CALL(Dbg_nove_expand(ofl->of | _Im, nvp,
3047 (Addr) (taddr - taddr0)));

3048 stride = (uint_t)nvp->mstride + 1;

3050 /*

3051 * Update the target address based upon the nove entry size.
3052 * This size was validated in | d_process_nove().
3053 */

3054 /* LINTED */

3055 switch (ELF_M S| ZE(nvp->m.info)) {

3056 case 1:

3057 /* LI NTED */

3058 *taddr = (uchar_t)nvp->mval ue;

3059 taddr += stride;

3060 break;

3061 case 2:

3062 /* LINTED */

3063 *((Half *)taddr) = (Half)nvp->mval ue;
3064 taddr += 2 * stride;

3065 break;

3066 case 4:

3067 /* LINTED */

3068 *((Word *)taddr) = (Word) mvp->m val ue;
3069 taddr += 4 * strlde

3070 br eak;

3071 case 8:

3072 /* LI NTED */

3073 *((u_longlong_t *)taddr) = mvp->mval ue;
3074 taddr += 8 * stride;

3075 br eak;

3076 }

3077 }

3078 }

3080 /*

3081 * Update Move sections.

3082 */

3083 static void

3084 update_nove(Of | _desc *ofl)

3085 {

3086 Wor d ndx = 0;

3087 of | _flag_t flags = ofl->of | _flags

3088 Move *onvp;

3089 Aliste i dx1;

3090 Sym desc *sdp;

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

3092
3093
3094
3095
3096
3097
3098
3099
3100
3101

3103
3104
3105
3106
3107
3108
3109

3111
3112
3113
3114
3115
3116

3118
3119
3120
3121
3122

3124
3125
3126
3127
3128
3129

3131
3132

3134
3135
3136
3137
3138
3139
3140

3142
3143
3144
3145

3147
3148
3149
3150

3152
3153

3155
3157

/*
* Determine the index of the synmbol table that will be referenced by
* the Move section.
*
/
if (OFL_ ALLONDYNSYN[ofI))
/* LI ED */
ndx (Word) el f_ndxscn(ofl->ofl _osdynsym >o0s_scn);
else if (! (fI ags & FLG OF_STRIP) || (flags & FLG OF_RELOBJ))
[* LINTED */
ndx = (Word) el f_ndxscn(ofl->of | _ossynt ab->0s_scn);

/*

* Update sh_link of the Move section, and point to the new Muve data.
*

/

if (ofl->ofl_osnove) {
of | - >of | _osnmove- >0s_shdr->sh_| i nk = ndx;
onvp = (Move *)ofl->of | _osmove- >o0s_out dat a- >d_buf ;

}

*

* Update synbol entry index
*/

for (APLIST_TRAVERSE(of | ->of | _parsyms, idx1, sdp)) {
Aliste idx2;
M/_desc *np;

/*
* Expand nove table
*

if (sdp->sd_flags & FLG SY_PAREXPN) {
const char *str;

MSG_T NTL(MSG_PSYM EXPREASONL) ;
>of | _flagsl & FLG OF1_NOPARTI)
MBG_| NTL(MSG_PSYM EXPREASON2) ;

MSG_| NTL(MSG_PSYM EXPREASONS) ;

DBG_CALL(Dbg_nove_parexpn(ofl->ofl _Im,
sdp- >sd_nane, str));

if (flags & FLG OF_STATI Q)
str =

else if (ofl
str
el se

str

for (ALIST_TRAVERSE(sdp->sd_nove, idx2, mdp)) {
DBG _CALL(Dbg_nove_entryl(ofl->ofl _Im, O,
mdp- >nd_nove, sdp));

expand_nove(ofl, sdp, nﬂp— >nd_nove) ;

cont i nue;

}

/*
* Process nove table
*
DBG_CALL(Dbg_nove_out nove(of | ->of | _I M, sdp->sd_nane));

for (ALl ST_TRAVERSE(sdp->sd_nove, idx2, ndp)) {

Move] m/p,
int idx = 1;
Sym *sym

i mvp = mdp- >nd_nove;
sym = sdp->sd_sym

DBG CALL(Dbg_nove_entryl(ofl->of | _Im, 1, invp, sdp));

*omvp = *invp;

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 47

3158 if ((flags & FLG OF_RELOBJ) == 0) {

3159 if (ELF_ST_BIND(sym >st_info) == STB LOCAL) {
3160 Os_desc *osp = sdp->sd_i sc->i s_osdesc;
3161 wrd ndx = osp->o0s_i dent ndx;

3163 onvp->minfo =

3164 /* LINTED */

3165 ELF_M | NFQ(ndx, imvp->m.info);
3167 if (ELF_ST_TYPE(sym >st_info) !=
3168 STT_SECTION) {

3169 onmvp->m pof f set =

3170 sym >st _val ue -

3171 osp- >0s_shdr->sh_addr +
3172 i mvp->m pof f set ;

3173 }

3174 } else {

3175 onvp->minfo =

3176 /* LINTED */

3177 ELF_M | NFQ(sdp- >sd_symdx,

3178 i mvp->m.i nfo);

3179 }

3180 } else {

3181 Bool ean i sredl oc = FALSE;

3183 if ((ELF_ST_BIND(sym >st_info) == STB_LOCAL) &&
3184 (of I =>of I _fl ags & FLG OF REDLSYM)

3185 i sredloc = TRUE

3187 if (isredloc &&'! (sdp— >sd_nove)) {

3188 Os_desc *osp = sdp->sd_I sc->i s_osdesc;
3189 Word ndx = osp->o0s_i dent ndx;

3191 onvp->m.info =

3192 /* LINTED */

3193 ELF_M I NFQ(ndx, imp->m.info);
3195 onvp- >m pof f set += sym >st_val ue;
3196 } else {

3197 if (isredloc)

3198 DBG _CALL(Dbg_syns_reduce(ofl,
3199 DBG_SYM REDUCE_RETAI N,
3200 sdp, idx,

3201 of | - >of | _osnove->0s_nane)) ;
3203 onvp->m.info =

3204 /* LINTED */

3205 ELF_M | NFQ(sdp- >sd_symdx,

3206 i mvp->m_i nfo);

3207 }

3208 }

3210 DBG _CALL(Dbg_nove_entryl(ofl->ofl _Im, 0, onmvp, sdp));
3211 onvp++;

3212 i dx++;

3213 }

3214

3215 }

3217 [*

3218 * Scan through the SHT_GROUP output sections. Update their sh_link/sh_info
3219 * fields as well as the section contents.

3220 */

3221 static uintptr_t

3222 updat e_ogroup(Of | _desc *ofl)

3223 {

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

3224 Aliste i dx;

3225 Gs_desc *osp;

3226 uintptr_t error = 0;

3228 (APLI ST _ TRAVERSE(of | —>of| _osgroups, idx, osp)) {

3229 desc *isp;

3230 I fI _desc *ifl;

3231 Shdr *shdr = osp->0s_shdr;

3232 Sym desc *sdp;

3233 Xwor d i, grpent;

3234 Wor d *gdat a;

3236 /*

3237 * Since input GROUP sections always create unique
3238 * output GROUP sections - we know there is only one
3239 * itemon the list.

3240 *

3241 isp = ld_os_first_isdesc(osp);

3243 ifl =isp->is_file;

3244 sdp = ifl->ifl_ol dndx[isp->is_shdr->sh_info];

3245 shdr->sh_|ink = (Wrd)el f_ndxscn(ofl->of | _ossynt ab->0s_scn);
3246 shdr->sh_info = sdp->sd_symdx;

3248 /*

3249 * Scan through the group data section and update
3250 * all of the links to new val ues.

3251 */

3252 grpcnt = shdr->sh_size / shdr->sh_entsi ze;

3253 gdata = (Word *)osp->os_out dat a- >d_buf ;

3255 for (i =1; i < grpent; i++) {

3256 Gs_desc *_osp;

3257 Is_desc *_isp = ifl->ifl_isdesc[gdata[i]];
3259 /*

3260 * |f the referenced section didn't make it to the
3261 * output file - just zero out the entry.
3262 */

3263 if ((osp i sp->i s_osdesc) == NULL)

3264 a[i] = 0;

3265 el se

3266 gdatal[i] = (Wrd)el f_ndxscn(_osp->0s_scn);
3267 }

3268

3269 return (error);

3270 }

3272 static void
3273 update_ostrtab(Os_desc *osp, Str_tbl *stp, uint_t extra)

3274 {

3275 El f _Data *dat a;

3277 if (osp == NULL)

3278 return;

3280 data = osp->os_outdata;

3281 assert(data->d_size == (st_getstrtab_sz(stp) + extra));

3282 (void) st_setstrbuf(stp, data->d_buf, data->d_size - extra);
3283 /* 1f leaving an extra hole at the end, zero it */

3284 if (extra > 0)

3285 (void) nmenset((char *)data->d_buf + data->d_size - extra,
3286 0x0, extra);

3287 }

3289 /*

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 49
3290 * Update capabilities information.

3291 *

3292 * |f string table capabilities exist, then the associated string nust be
3293 * translated into an offset into the string table.

3294 */

3295 static void

3296 update_oscap(COfl _desc *ofl)

3297 {

3298 Cs_desc *strosp, *cosp;

3299 p *cap;

3300 Str_tbl *strtbl;

3301 Capstr *capstr;

3302 size_t st of f

3303 Aliste i dx1;

3305 /*

3306 * Determ ne which synbol table or string table is appropriate.
3307 */

3308 if (OFL_IS STATIC OBJ(ofl)) {

3309 strosp = of | ->of | _osstrtab;

3310 strtbl = of | ->of | _strtab;

3311 } else {

3312 strosp = of | ->of | _osdynstr;

3313 strtbl = ofl->of | _dynstrtab;

3314 }

3316 /*

3317 * | f synbol capabilities exist, set the sh_link field of the .SUNWcap
3318 * section to the . SUNW capi nfo section.

3319 */

3320 if (ofl->ofl_oscapinfo) {

3321 cosp = ofl->of | _oscap;

3322 cosp->0s_shdr->sh_link =

3323 (Word)el f ndxscn(ofl - >of | _oscapi nf o- >0s_scn);

3324 }

3326 /*

3327 * |f there are capability strings to process, set the sh_info
3328 * field of the . SUNWcap section to the associated string table, and
3329 * proceed to process any CA SUNW PLAT entries.

3330 *

3331 if ((ofl->ofl_flags & FLG OF_CAPSTRS) == 0)

3332 return;

3334 cosp = of | ->of | _oscap;

3335 cosp->0s_shdr->sh_info = (Wrd)el f_ndxscn(strosp->0s_scn);

3337 cap = of | ->of | _oscap->o0s_out dat a- >d_buf ;

3339 /*

3340 * Determ ne whether an object capability identifier, or object
3341 * machi ne/ pl at form capabilities exists.

3342 *

3343 capstr = &ofl->of | _ocapset.oc_id;

3344 if (capstr->cs_str)

3345 (void) st_setstring(strthbl, capst r->cs_str, &stoff);
3346 cap[capstr->cs_ndx].c_un.c_ptr = stoff;

3347

3348 (ALI ST_TRAVERSE(of | - >of | _ocapset.oc_pl at.cl _val, idx1, capstr)) {
3349 (void) st_setstring(strtbhl, capstr->cs_str, &st off)
3350 cap[capstr->cs_ndx].c_un.c_ptr = stoff;

3351

3352 (ALl ST_TRAVERSE(of | - >of | _ocapset.oc_mach. cl _val, idx1, capstr)) {
3353 (void) st_setstring(strtbhl, capstr->cs_str, &st off)
3354 cap[capstr->cs_ndx].c_un.c_ptr = stoff;

3355

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

3357
3358
3359
3360
3361
3362

3364
3365
3366

3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388

3390
3391
3392
3393
3394

3396
3397
3398
3399
3400

3402
3403
3404
3405
3406
3407
3408

3410
3411
3412
3413
3414
3415
3416
3417

3419
3420
3421

* Update the
*/

/*

* Determ ne any synbol capability identifiers, or machine/platform
* capabilities.

*

if (ofl->ofl_capgroups) {
Cap_group *cgp;

for (APLI ST_TRAVERSE(of | - >of | _capgroups, idx1, cgp)) {
bj capset *ocapset = &cgp->cg_set;
Aliste idx2;

capstr = &ocapset->oc_id;
if (capstr->cs_str)
(void) st setstnng(strtbl
&st of f
cap[capstr- >cs_ndx] .c_un.c_ptr = stoff;

capstr->cs_str,

for (ALIST_TRAVERSE(ocapset->oc_plat.cl_val, idx2,
capstr)) {

(void) st_setstring(strtbl, capstr->cs_str,
&stoff);

cap[capstr->cs_ndx].c_un.c_ptr = stoff;

(ALI ST_TRAVERSE(ocapset - >oc_nach. cl _val , idx2,
capstr)) {
(void) st_setstring(strthbl,
&stoff);
cap[capstr->cs_ndx].c_un.c_ptr = stoff;

capstr->cs_str,

. SUNW capi nfo, and possibly the . SUNW capchai n sections.

static void
updat e_oscapi nfo(Of | _desc *ofl)
3395 {

Cs_desc *synosp, *ciosp, *ccosp = NULL;
Capi nf o *ocapi nf o;

Capchai n *ocapchai n;

Cap_avl node *cav;

Wor d chai nndx = 0;

/*

* Determ ne which synbol table is appropriate.
*
if (OFL_IS_STATIC OBJ(ofl))
synmosp = of | ->of | _ossynt ab;
el se
synmosp = of | ->of | _osdynsym

/*

* Update the . SUNWcapinfo sh_link to point to the approprlate synbol
* table section. If we're creatlngadynamc obj ect, the

* . SUNW capinfo sh_info is updated to point to the SUN\N_capchal n

* secti on.

*/

ciosp = ofl ->of | _oscapi nf o;

ci osp->0s_shdr->sh_link = (Wrd)el f_ndxscn(synobsp->0s_scn);

if (OFL_IS_STATIC OBJ(ofl) == 0) {
ccosp = ofl ->of | _oscapchai n;
ci osp->o0s_shdr->sh_info = (Wrd)el f_ndxscn(ccosp->0s_scn);

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 51

3422

3424
3425
3426
3427
3428
3429
3430
3431
3432
3433

3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487

}
| *

*
*
*

oc
oc
if

-

O % *F % kK ok 3k ok % ok ok sk ok Sk ok ok ok ok % ok % bk bk ok ok sk ok Sk ok ok ok ok % ok kb F ok k ok ok ok ok ok F
-~

f

Establish the data for each section. The first element of each

section defines the section’s version nunber.
/

api nfo = ci osp->o0s_out dat a- >d_buf ;
api nfo[0] = CAPI NFO_CURRENT;
(ccosp) {
ocapchai n = ccosp->0s_out dat a- >d_buf ;
ocapchai n[chai nndx++] = CAPCHAI N_CURRENT;

Traverse all capabilities famlies. Each nmenber has a . SUNW capi nfo
assignment. The . SUNWcapinfo entry differs for rel ocatabl e objects
and dynam c obj ects.

Rel ocat abl e obj ect s:

ELF_C_GROUP ELF_C_SYM
Fam |y | ead: CAPI NFO_SUNW GLOB
Fam |y |l ead alias: CAPI NFO_SUNW GLOB
Fam |y nenber: . SUNW cap i ndex

| ead synbol index
| ead synbol index
| ead synbol index

Dynami ¢ obj ects:

ELF_C GROUP ELF_C SYM
Fami |y | ead: CAPI NFO_SUNW GLOB
Famly |l ead alias: CAPI NFO_SUNW GLOB
Fam |y menber: . SUNW cap i ndex

. SUNW capchai n i ndex
. SUNW capchai n i ndex
| ead synbol index

The ELF_C GROUP field identifies a capabilities synbol. Lead
capability synmbols, and | ead capability aliases are identified by
a CAPI NFO_SUNW GLOB group identifier. For famly menbers, the
ELF_C GROUP provides an index to the associate capabilities group
(i.e, an index into the SUNWcap section that defines a group).

For rel ocatabl e objects, the ELF_C SYMfield identifies the |ead
capability synbol. For the |ead synbol itself, the . SUNW capi nfo
index is the same as the ELF_C SYMvalue. For lead alias synbols,
the . SUNW capinfo index differs fromthe ELF_C SYMvalue. This
differentiation of CAPI NFO_ SUNW GLOB synbols allows 1d(1) to
identify, and propagate |lead alias synbols. For exanple, the |ead
capability symbol nenctpy() would have the ELF_C SYM for nmencpy(),
and the lead alias _mentpy() woul d al so have the ELF_C SYM for
mencpy() .

For dynami c objects, both a | ead capability synbol, and alias synbol
woul d have a ELF_C SYM val ue that represents the sane capability
chain index. The capability chain allows Id.so.1 to traverse a
family chain for a given |lead synbol, and sel ect the nost appropriate
fam |y nenber. The .SUNWcapchain array contains a series of synbol

i ndexes for each fam |y menber:

chai ncap[n] chaincap[n + 1] chaincap[n + 2] chaincap[n + x]
foo() ndx foo% () ndx foo% () ndx 0

For fam |y nmenbers, the ELF_C _SYM val ue associates the capability
menbers wth their famly | ead synmbol. This association, although
unused within a dynam c object, allows Id(1) to identify, and
propagate fam |y menbers when processing rel ocatabl e objects.

r (cav = avl _first(ofl->of | _capfanilies); cav;
cav = AVL_NEXT(of | ->of | _capfam lies, cav)) {
Cap_sym *csp;

new usr/src/cnd/ sgs/ i bl d/ conmon/ updat e. c 52
3488 Aliste idx;

3489 Sym desc *asdp, *lsdp = cav->cn_synmavl node. sav_sdp;

3491 if (ccosp) {

3492 /*

3493 * For a dynamic object, identify this |ead synbol, and
3494 * point it to the head of a capability chain. Set the
3495 * head of the capability chain to the same |ead synbol .
3496 */

3497 ocapi nf o[| sdp->sd_symdx] =

3498 ELF_C | NFQ(chai nndx, CAPI NFO_SUNW GLOB) ;

3499 ocapchai n[chai nndx] = | sdp->sd_symdx;

3500 } else {

3501 /*

3502 * For a relocatable object, identify this |ead synbol,
3503 * and set the lead synbol index to itself.

3504 */

3505 ocapi nf o[| sdp->sd_symmdx] =

3506 ELF_C I NFQ(| sdp->sd_symadx, CAPI NFO SUNW GLOB) ;
3507 }

3509 /*

3510 * Gather any |ead synbol aliases.

3511 *

3512 for (APLI ST_TRAVERSE(cav->cn_aliases, idx, asdp)) {

3513 if (ccosp) {

3514 I*

3515 * For a dynam c object, identify this |ead
3516 * alias synbol, and point it to the sane

3517 * capability chain index as the | ead synbol.
3518 */

3519 ocapi nf o[asdp->sd_symdx] =

3520 ELF_C_I NFQ({chai nndx, CAPI NFO_SUNW GLOB) ;
3521 } else {

3522 /*

3523 * For a relocatable object, identify this |ead
3524 * alias synbol, and set the |ead synbol index
3525 * to the lead synbol.

3526 */

3527 ocapi nf o[asdp- >sd_symdx] =

3528 ELF_C_|I NFQ(| sdp- >sd_symdx,

3529 CAPI NFO_SUNW GLOB) ;

3530 }

3531 }

3533 chai nndx++;

3535 /*

3536 * Gather the fam |y menbers.

3537 */

3538 for (APLI ST_TRAVERSE(cav->cn_nenbers, idx, csp)) {

3539 Sym desc *msdp = csp->cs_sdp;

3541 /*

3542 * |dentify the menbers capability group, and the |ead
3543 * synbol of the famly this synbol is a menber of.
3544 */

3545 ocapi nf o[nedp- >sd_symdx] =

3546 ELF_C | NFQ(| sdp->sd_symdx, csp->cs_group->cg_ndx);
3547 if (ccosp) {

3548 /*

3549 * For a dynam c object, set the next capability
3550 * chain to point to this fam |y nenber.

3551 *

3552 ocapchai n[chai nndx++] = nmsdp->sd_symdx;

3553 }

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c

3554

3556
3557
3558
3559
3560
3561
3562

3564
3565
3566
3567
3568
3569

}
| *

* Any chain of family nenbers is terminated with a O el enent.
*

if (ccosp)
ocapchai n[chai nndx++] = O;

}

/*

* Translate the shdr->sh_{link, info} fromits input section value to that
* of the corresponding shdr->sh_{link, info} output section val ue.

=

static Wrd

translate_link(Ofl _desc *ofl, Os_desc *osp, Word link, const char *nsg)

3570 {

3571
3572

3574
3575
3576
3577
3578

3580
3581
3582
3583
3584
3585
3586
3587

3589
3590
3591
3592
3593
3594
3595
3596
3597

3599
3600
3601
3602
3603
3604
3605

3607
3608
3609

3611
3612
3613
3614
3615
3616
3617
3618
3619

I s_desc isp;

I fI_desc ifl;

/*

* Don't translate the special section nunbers.
*/

if (link >= SHN_LORESERVE)

return (link);

s this output section translate back to an input file. [If not
n there is no translation to do.
s

_link has a value, it's the right val ue.

h

d _os _first isdesc(osp)
I = isp->is_file) == NULL)
return (link);

* Sanity check to nake sure that the sh_{link,
* is within range for the input file.
*
/
if (link >=ifl->fl_shnun) {
Id_eprintf(ofl, ERR WARNING, nsg, ifl->ifl_nanme,
EC_WORD(i sp->i s_scnndx), isp->is_name, EC XWORD(!ink));
return (link);

info} val ue

}

/*
* Follow the link to the input section.
*

if ((isp =ifl->fl_isdesc[link]) == NULL)
return (0);

if ((osp = isp->is_osdesc) == NULL)
return (0);

/* LINTED */
return ((Wrd)el f_ndxscn(osp->0s_scn));

Having created all of the necessary sections, segnents, and associ ated
headers, fill in the program headers and update any other data in the
output inmage. Sonme general rules:

- If an interpreter is required always generate a PT_PHDR entry as
well. It is this entry that triggers the kernel into passing the
interpreter an aux vector instead of just a file descriptor.

* Ok kR H Rk Ok %

In this case we will assunme that

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 54
3620 * - When generating an inmage that will be interpreted (ie. a dynamc

3621 * executabl e, a shared object, or a static executable that has been
3622 * provided with an interpreter - weird, but possible), nmake the initial
3623 * | oadabl e segnment include both the ehdr and phdr[]. Both of these
3624 * tables are used by the interpreter therefore it seens nore intuitive
3625 * to explicitly defined themas part of the mapped image rather than
3626 * relying on page rounding by the interpreter to allow their access.
3627 *

3628 * - When generating a static inmage that does not require an interpreter
3629 * have the first | oadabl e segnment indicate the address of the first
3630 * .section as the start address (things |ike /kernel/unix and ufsboot
3631 * expect this behavior).

3632 */

3633 uintptr_t

3634 | d_update_outfile(Ofl _desc *ofl)

3635 {

3636 Addr si ze, etext, vaddr;

3637 Sg_desc *sgp;

3638 Sg_desc *dtracesgp = NULL, *capsgp = NULL, *intpsgp = NULL;
3639 Gs_desc *osp

3640 int phdr ndx = 0, segndx = -1, secndx, intppndx, intpsndx;
3641 int dtracepndx, dtracesndx, cappndx, capsndx;

3642 Ehdr *ehdr = ofl->of | _nehdr;

3643 Shdr *hshdr;

3644 Phdr *_phdr = NULL;

3645 Wor d phdrsz = (ehdr->e_phnum * ehdr->e_phentsize), shscnndx;
3646 of | _flag_t flags = ofl->of | _fl ags;

3647 Word ehdrsz = ehdr->e_ehsi ze;

3648 Bool ean nobi ts;

3649 f of f set;

3650 Aliste i dx1;

3652 /*

3653 * Initialize the starting address for the first segnment. Executables
3654 * have different starting addresses dependi ng upon the target ABI,
3655 * where as shared objects have a starting address of 0. |If this is
3656 * a 64-bit executable that is being constructed to run in a restricted
3657 * address space, use an alternative origin that will provide nore free
3658 * address space for the the eventual process.

3659 */

3660 if (ofl->ofl _flags & FLG OF_EXEC) {

3661 #if defi ned(_ELF64)

3662 if (ofl->ofl _ocapset.oc_sf_1.cmval & SF1_SUNW ADDR32)

3663 vaddr = Id_targ.t_m m segm aorigin;

3664 el se

3665 #endi f

3666 vaddr = | d_targ.t_m msegmorigin;

3667 } else

3668 vaddr = 0;

3670 /*

3671 * Loop through the segnent descriptors and pick out what we need.
3672 */

3673 DBG _CALL(Dbg_seg_title(ofl->ofl _Inl));

3674 for (APLIST TRAVERSE(ofI->ofI _segs, 1dx1, sgp)) {

3675 Phdr *phdr = &(sgp->sg_phdr);

3676 Xwor d p_align;

3677 Aliste 1 dx2;

3678 Sym desc *sdp;

3680 segndx++;

3682 /*

3683 * If an interpreter is required generate a PT_| NTERP and
3684 * PT_PHDR program header entry. The PT_PHDR entry descri bes
3685 * the program header table itself. This information will be

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 55

3686
3687
3688
3689
3690
3691
3692
3693
3694
3695

3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709

3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741

3743
3744
3745
3746
3747
3748
3749
3750
3751

*
*
*
*
*
*
if

f

——

—h ok k% ok ok k

}
| *

*
*
*
*
*

if

* Ok ok k% ok

if

passed via the aux vector to the interpreter (ld.so.1).

The program header array is actually part of the first

| oadabl e segment (and the PT_PHDR entry is the first entry),
therefore its virtual address isn’t known until the first

| oadabl e segnment is processed.
/

(phdr->p_type == PT_PHDR) {
if (ofl->ofl_osinterp)
phdr->p_of f set = ehdr->e_phoff;
phdr->p_filesz = phdr->p_nensz = phdrsz;

DBG CALL(Dbg_seg_entry(ofl, segndx, sgp));
of | ->of | _phdr [phdr ndx++] = *phdr;

cont i nue;

(phdr->p_type == PT_I NTERP) {
if (ofl->ofl_osinterp) {

intpsgp = sgp;
i ntpsndx = segndx;
i nt ppndx = phdr ndx++;

cont i nue;

If we are creating a PT_SUNDTRACE segnent, renmenber where
the program header is. The header values are assigned after
updat e_osym() has conpleted and the synbol table addresses
have been updat ed.

(phdr->p_type == PT_SUNWDTRACE) {
if (ofl->ofl_dtracesym &&
((flags & FLG OF_RELOBJ) == 0)) {
dtracesgp = sgp;
dtracesndx = segndx;
dtracepndx = phdrndx++;

conti nue;

I f a hardware/software capabilities section is required,
generate the PT_SUNWCAP header. Note, as this conmes before
the first |oadabl e segnent, we don’t yet know its real
virtual address. This is updated |ater.

(phdr->p_type == PT_SUNWCAP) {
if (ofl->ofl _oscap & (ofl->of | _flags & FLG OF_PTCAP) &&
((flags & FLG OF_RELOBJ) == 0)) {

capsgp = sgp;

capsndx = segndx;

cappndx = phdrndx++;
conti nue;

As the dynam c program header occurs after the |oadable
headers 1 n the segment descriptor table, all the address
information for the .dynam c output section will have been
figured out by now.

(phdr->p_type == PT_DYNAM C) {
if (OFL_ALLOW DYNSYMofl))
of

{
Shdr *shdr = | ->of | _osdynani c->0s_shdr;

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 56
3753 phdr->p_vaddr = shdr->sh_addr;

3754 phdr->p_of fset = shdr->sh_of fset;

3755 phdr->p_filesz = shdr->sh_si ze;

3756 phdr->p_flags = I d_targ.t_m m dataseg_perm
3758 DBG CALL(Dbg_seg_entry(ofl, segndx, sgp));
3759 of | - >of | _phdr [phdr ndx++] = *phdr

3760

3761 conti nue;

3762 }

3764 /*

3765 * As the unwind (.eh_frane_hdr) program header occurs after
3766 * the | oadabl e headers in the segnent descriptor table, all
3767 * the address information for the .eh_frame output section
3768 * will have been figured out by now.

3769 */

3770 if (phdr->p_type == PT_SUNW UNW ND) {

3771 Shdr *shdr;

3773 if (ofl->ofl _unwi ndhdr == NULL)

3774 cont i nue;

3776 shdr = of | - >of | _unwi ndhdr - >os_shdr;

3778 phdr->p_flags = PF_R

3779 phdr - >p_vaddr = shdr->sh_addr;

3780 phdr->p_nensz = shdr->sh_si ze;

3781 phdr->p_fil esz = shdr->sh_si ze;

3782 phdr->p_of f set = shdr->sh_of fset;

3783 phdr->p_align = shdr->sh_addralign;

3784 phdr - >p_paddr = O;

3785 of | ->of | _phdr [phdr ndx++] = *phdr;

3786 cont i nue;

3787 }

3789 /*

3790 * The sunwstack programis used to convey non-default

3791 * flags for the process stack. Only emt it if it would
3792 * change the defaul t.

3793 */

3794 if (phdr->p_type == PT_SUNWSTACK) {

3795 if (((flags & FLG OF RELOBJ) == 0) &&

3796 ((sgp->sg_flags & FLG SG DI SABLED) == 0))

3797 of | ->of | _phdr [phdr ndx++] = *phdr;

3798 conti nue;

3799 }

3801 /*

3802 * As the TLS program header occurs after the | oadable
3803 * headers in the segnent descriptor table, all the address
3804 * information for the .tls output section will have been
3805 * figured out by now

3806 */

3807 if (phdr->p_type == PT_TLS) {

3808 Gs_desc *tl sosp;

3809 Shdr *|astfileshdr = NULL

3810 Shdr *firstshdr = NULL, *|astshdr;

3811 Aliste i dx;

3813 if (ofl->ofl_ostlsseg == NULL)

3814 conti nue;

3816 /*

3817 * Scan the output sections that have contributed TLS.

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 57

3818 * Renenber the first and last so as to determine the
3819 * TLS nenory size requirenent. Renenber the |ast
3820 * progbits section to determne the TLS data

3821 * contribution, which determnes the TLS program
3822 * header filesz.

3823 */

3824 for (APLI ST_TRAVERSE(of | ->of | _ostl sseg, idx, tlsosp)) {
3825 Shdr *tlsshdr = tlsosp->o0s_shdr;

3827 if (firstshdr == NULL)

3828 firstshdr tlsshdr;

3829 if (tlsshdr->sh type I= SHT NOBI TS)

3830 | astfileshdr = tlsshdr;

3831 lastshdr = tlsshdr;

3832 }

3834 phdr->p_flags = PF_.R | PF_W

3835 phdr - >p_vaddr = f| rstshdr->sh_addr;

3836 phdr->p_of fset = firstshdr->sh offset;

3837 phdr->p_align = fi r st shdr->sh_addral i gn;

3839 /*

3840 * Determine the initialized TLS data size. This
3841 * address range is fromthe start of the TLS segnent
3842 * to the end of the last piece of initialized data.
3843 */

3844 if (lastfileshdr)

3845 phdr->p_filesz = lastfileshdr->sh_offset +
3846 lastfil eshdr->sh_size - phdr->p_offset;
3847 el se

3848 phdr->p_filesz = 0;

3850 /*

3851 * Determne the total TLS menory size. This includes
3852 * all TLS data and TLS uninitialized data. This
3853 * address range is fromthe start of the TLS segnent
3854 * to the nenory address of the |ast piece of

3855 * uninitialized data.

3856 */

3857 phdr->p_nemsz = | astshdr->sh_addr +

3858 | ast shdr - >sh_si ze - phdr->p_vaddr;

3860 DBG CALL(Dbg_seg_entry(ofl, segndx, sgp));

3861 of | - >of | _phdr [phdrndx] = *phdr;

3862 of I ->of | _tI sphdr = &of | ->of | _phdr [phdr ndx++] ;

3863 conti nue;

3864 }

3866 /*

3867 * |f this is an enpty segrment declaration, it will occur after
3868 * all other |oadable segnents. As enpty segnents can be
3869 * defined with fixed addresses, nake sure that no | oadabl e
3870 * segments overlap. This mght occur as the object evolves
3871 * and the | oadabl e segnents grow, thus encroaching upon an
3872 * existing segnment reservation.

3873 *

3874 * Segrments are only created for dynamic objects, thus this
3875 */ checking can be ski pped when buil ding a rel ocatabl e object.
3876 *

3877 if (!(flags & FLG OF_RELOBJ) &&

3878 (sgp->sg_flags & FLG_SG EMPTY)) {

3879 int i;

3880 Addr v_e;

3882 vaddr = phdr->p_vaddr;

3883 phdr->p_nmenmsz = sgp->sg_| ength;

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

3884 DBG CALL(Dbg_seg_entry(ofl, segndx, sgp));

3885 of | - >of | _phdr [phdr ndx++] = *phdr;

3887 if (phdr->p_type != PT_LOAD)

3888 conti nue;

3890 v_e = vaddr + phdr->p_nensz;

3892 /*

3893 * Check overl aps

3894 */

3895 for (i =0; i < phdrndx -1 i) {

3896 Addr p_s = (ofl —>of| _phdr[i]).p_vaddr;
3897 Addr p_e;

3899 if ((ofl->of| _phdr[i]).p_type != PT_LOAD)
3900 conti nue;

3902 p_e = p_s + (ofl->of | _phdr[i]).p_nensz;
3903 if (((p_s <= vaddr) && (p_e > vaddr)) ||
3904 ((vaddr <= p_s) && (v_e > p_s)))
3905 Id_eprintf(ofl, ERR WARNI NG

3906 MSG_| NTL(I\/SG UPD_SEGOVERLAP) ,
3907 of | =>of | _name, EC_ADDR(p_e),
3908 sgp->sg_nane, EC ADDR(vaddr))
3909

3910 conti nue;

3911

3913 *

3914 * Havi ng processed any of the special program headers any
3915 * remai ning headers will be built to express individual
3916 * segments. Segnents are only built if they have out put
3917 * section descriptors associated with them (ie. sone form of
3918 * jnput section has been matched to this segment).

3919 *

3920 if (sgp->sg_osdescs == NULL)

3921 conti nue;

3923 /*

3924 * Determ ne the segnents offset and size fromthe section
3925 * information provided fromelf_update().

3926 * Allow for nultiple NOBITS sections.

3927 */

3928 osp = sgp- >sg_osdescs->apl _data[0] ;

3929 hshdr = osp->o0s_shdr;

3931 phdr->p_filesz = 0;

3932 phdr->p_nensz = 0;

3933 phdr->p_offset = offset = hshdr->sh_offset;

3935 nobits = ((hshdr->sh type == SHT_NOBI TS) &&

3936 ((sgp >sg_flags & FLG . SG 5 PHREQ == 0));

3938 for (APLI ST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {

3939 Shdr *shdr = osp->o0s_shdr;

3941 p ali = 0;

3942 i f (r >sh7addr align > p_align)

3943 p_align = shdr->sh_addralign;

3945 of fset = (OFf)S_ROUND(of f set, shdr->sh_addralign);
3946 of fset += shdr->sh_si ze;

3948 if (shdr->sh type !'= SHT _NOBITS) {

3949 if (nobits) {

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 59

3950
3951
3952
3953
3954
3955
3956
3957
3958

3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977

3979
3980
3981
3982
3983
3984

3986
3987
3988
3989
3990
3991
3992

3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014

Id_eprintf(ofl, ERR FATAL,
MSG_| NTL(MSG_UPD_NOBI TS)) ;
return (S_ERROR);

}

phdr->p_filesz = offset - phdr->p_offset;
} else if ((sgp->sg_flags & FLG SG PHREQ == 0)

nobits = TRUE,

}
phdr->p_nensz = offset - hshdr->sh_of fset;

-

—h ook ok ok 3k Ok % ok F
-

If this is the first |oadable segnent of a dynamic object,

or an interpreter has been specified (a static object built
with an interpreter will still be given a PT_HDR entry), then
conpensate for the elf header and program header array. Both
of these are actually part of the |oadable segnent as they
may be inspected by the interpreter. Adjust the segnents
size and of fset accordingly.

((_phdr == NULL) && (phdr->p_type == PT_LOAD) &&
((ofl->of | _osinterp) || (flags & FLG OF_ DYNAM Q)) &&
('(ofl->of| dtflags 1 & DF_1_NOHDR))) {

si ze (Addr) S RClJND((phdrsz + ehdrsz),
hshdr- >sh_addral i gn);

phdr->p_of fset -= size;

phdr->p_fil esz += size;

phdr->p_menmsz += si ze;

}

/*

* | f segnment size synbols are required (specified via a
* mapfile) update their val ue.

*

for (APLI ST_TRAVERSE(sgp->sg_si zesym idx2, sdp))
sdp- >sd_sym >st _val ue = phdr->p_nensz;

*

* |f no file content has been assigned to this segnent (it

* only contains no-bits sections), then reset the offset for
* consi stency.

*

if (phdr->p_filesz == 0)
phdr->p_offset = 0;

/*

* |f a virtual address has been specified for this segnment
* froma mapfile use it and make sure the previ ous segnent
* does not run into this segnent.

*

if (phdr->p_type == PT_LOAD)
if ((sgp->sg_flags & FLG SG P_VADDR)) {
if (_phdr && (vaddr > phdr->p_vaddr) &&
(phdr->p_type == PT_LQAD))
Id epr|ntf(of| ERR_WARNI NG,
MSG_| NTL(NSG UPD_SEGOVERLAP) ,
of | =>of | _nanme, EC ADm(vaddr)
sgp- >sg_nane,
EC_ADDR(phdr - >p_vaddr));
vaddr = phdr->p_vaddr;
phdr->p_align = 0;
} else {
vaddr = phdr->p_vaddr =
(Addr) S _ROUND(vaddr, phdr->p_align);

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 60
4016 /*

4017 * Adj ust the address offset and p_align if needed.

4018 */

4019 if (((sgp >sg_flags & FLG SG P_VADDR) = 0) &&

4020 ((of I ->of T_dtflags_1 & DF_1I_NOHDR) == 0)) {

4021 if (phdr->p_align != 0)

4022 vaddr += phdr->p_offset % phdr->p_align;

4023 el se

4024 vaddr += phdr->p_offset;

4025 phdr->p_vaddr = vaddr;

4026 }

4028 /*

4029 * If an interpreter is required set the virtual address of the
4030 * PT_PHDR program header now that we know the virtual address
4031 * of the | oadabl e segment that contains it. Update the

4032 * PT_SUNWCAP header sinmlarly.

4033 */

4034 if ((_phdr == NULL) && (phdr->p_type == PT_LOAD)) {

4035 _phdr = phdr

4037 if ((ofl->ofl _dtflags_1 & DF_1_NOHDR) == 0) {

4038 if (ofl->ofl_osinterp)

4039 of | ->of | _phdr[0] . p_vaddr =

4040 vaddr + ehdrsz;

4042 /*

4043 * Finally, if we're creating a dynami c object
4044 * (or a static object in which an interpreter
4045 * is specified) update the vaddr to reflect
4046 * the address of the first section within this
4047 * segnment.

4048 *

4049 f ((ofl->ofl _osinterp) ||

4050 (flags & FLG OF_DYNAM C))

4051 vaddr += si ze;

4052 } else {

4053

4054 * If the DF_1_NOHDR flag was set, and an

4055 * interpreter is being generated, the PT_PHDR
4056 * will not be part of any I oadabl e segnent .
4057 */

4058 if (ofl->ofl_osinterp) {

4059 of | ->of | _phdr[0] . p_vaddr = O;

4060 of | ->of | _phdr[0] . p_nmensz = O;

4061 of | ->of | _phdr[0].p_flags = 0;

4062 }

4063 }

4064 }

4066 /*

4067 * Ensure the ELF entry point defaults to zero. Typically, this
4068 * value is overridden in update_oehdr() to one of the standard
4069 * entry points. Historically, this default was set to the
4070 * address of first executable section, but this has since been
4071 * found to be nore confusing than it is hel pful.

4072 */

4073 ehdr->e_entry = O;

4075 DBG CALL(Dbg_seg_entry(ofl, segndx, sgp));

4077 /*

4078 * Traverse the output section descriptors for this segnent so
4079 * that we can update the section headers addresses. W’ ve
4080 * calculated the virtual address of the initial section within
4081 * this segnent, so each successive section can be cal cul ated

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 61 new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 62
4082 * based on their offsets from each other. 4148 *
4083 */ 4149 * Copy the interpreter nane into the .interp section.
4084 secndx = 0; 4150 */
4085 hshdr = 0; 4151 if (ofl->ofl_interp)
4086 for (APLI ST TRAVERSE(sgp >sg_osdescs, idx2, osp)) { 4152 (voi d) strcpy((char *)ofl->of | _osinterp->o0s_outdat a->d_buf,
4087 Shdr *shdr = osp->o0s_shdr; 4153 fl->ofl _interp);
4089 i f (shdr->sh_link) 4155 /*
4090 shdr->sh_link = translate_|ink(ofl, osp, 4156 * Update the .shstrtab, .strtab and .dynstr sections.
4091 shdr=>sh_link, NMSG | NTL(MSG FIL_I NVSHLI NK)); 4157 2
4158 updat e_ostrtab(ofl ->of | _osshstrtab, ofl->ofl_shdrsttab, 0);
4093 if (shdr->sh_info & (shdr >sh_flags & SHF_ INFO LI NK)) 4159 updat e_ostrtab(of | ->of | _osstrtab, ofl->ofl _strtab, 0);
4094 shdr->sh_info = translate_iink(ofl, osp, 4160 updat e_ostrtab(of| ->of | _osdynstr, ofl->ofl dynstrtab DYNSTR_EXTRA_PAD) ;
4095 shdr=>sh_info, MSG | NTL(MSG FI L_I NVSHI NFO)) ;
4162 I*
4097 if (!'(flags & FLG OF_RELOBJ) && 4163 * Build any output synbol tables, the synbols information is copied
4098 (phdr->p_type == PT_LOAD)) { 4164 * and updated into the new output image.
4099 if (hshdr) 4165 */
4100 vaddr += (shdr->sh_of fset - 4166 if ((etext = update_osym(ofl)) == (Addr)S_ERROR)
4101 hshdr->sh_of f set); 4167 return (S_ERROR);
4103 shdr->sh_addr = vaddr; 4169 s
4104 hshdr = shdr; 4170 * |If we have an PT_I NTERP phdr, update it now fromthe associ ated
4105 } 4171 * section information.
4172 *
4107 DBG CALL(Dbg_seg_os(ofl, osp, secndx)); 4173 if (intpsgp) {
4108 secndx++; 4174 Phdr *phdr = &(i nt psgp->sg_phdr);
4109 } 4175 Shdr *shdr = of | ->of | _osi nterp->0s_shdr;
4111 1= 4177 phdr->p_vaddr = shdr->sh_addr;
4112 * Establish the virtual address of the end of the |last section 4178 phdr->p_of f set = shdr->sh_of fset;
4113 * in this segnent so that the next segnents offset can be 4179 phdr->p_nmensz = phdr->p_filesz = shdr->sh_si ze;
4114 * calculated fromthis. 4180 phdr->p_flags = PF_R
4115 */
4116 if (hshdr) 4182 DBG CALL(Dbg_seg_entry(ofl, intpsndx, intpsgp));
4117 vaddr += hshdr->sh_si ze; 4183 of | - >of | _phdr[i nt ppndx] = *phdr;
4184 }
4119 /*
4120 * Qutput sections for this segnent conplete. Adjust the 4186 /*
4121 * virtual offset for the | ast sections size, and nmake sure we 4187 * |If we have a PT_SUNWDTRACE phdr, update it now with the address of
4122 * haven’'t exceeded any maxi num segnent |ength specification. 4188 * the synbol. 1t’s only now been updated via update_sym)
4123 */ 4189 */
4124 if ((sgp->sg_length = 0) && (sgp->sg_length < phdr->p_nmemsz)) { 4190 if (dtracesgp) {
4125 Id_eprintf(ofl, ERR FATAL, MSG_ | NTL(MSG UPD_LARGSI ZE), 4191 Phdr *aphdr, phdr = &(dtracesgp->sg_phdr);
4126 of | - >of | _nane, sgp->sg_nane, 4192 Sym desc *sdp = of | ->of | _dtracesym
4127 EC_XWORD(phdr - >p_nensz), EC XWORD(sgp->sg_| ength));
4128 return (S_ERROR); 4194 phdr->p_vaddr = sdp->sd_sym >st_val ue;
4129 } 4195 phdr->p_nmenmsz = sdp->sd_sym >st_si ze;
4131 if (phdr->p_type == PT_NOTE) { 4197 /*
4132 phdr - >p_vaddr = 4198 * Take permissions fromthe segnent that the synbol is
4133 phdr - >p_paddr = O; 4199 * assoclated wth.
4134 phdr->p_align = O; 4200 */
4135 phdr->p_nenmsz = O; 4201 aphdr = &sdp->sd_i sc->i s_osdesc- >0s_sgdesc->sg_phdr;
4136 } 4202 assert (aphdr);
4203 phdr->p_flags = aphdr->p_fl ags;
4138 if ((phdr->p_type != PT_NULL) && !(flags & FLG OF RELGB))
4139 of | ->of | _phdr [phdr ndx++] = *phdr; 4205 DBG CALL(Dbg_seg_entry(ofl, dtracesndx, dtracesgp));
4140 } 4206 of | ->of | _phdr[dtracepndx] = *phdr;
4207 }
4142 I*
4143 * Updat e any new output sections. Wen building the initial output 4209 7%
4144 * image, a nunber of sections were created but left uninitialized (eg. 4210 * |f we have a PT_SUNWCAP phdr, update it now fromthe associ at ed
4145 * .dynsym .dynstr, .syntab, .syntab, etc.). Here we update these 4211 * section information.
4146 * sections with the appropriate data. Oher sections may still be 4212 */
4147 * nodified via rel oc_process(). 4213 if (capsgp) {

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 63
4214 Phdr *phdr = &(capsgp >sg_phdr);

4215 Shdr *shdr = ofl->of| _oscap->o0s_shdr;

4217 phdr->p_vaddr = shdr->sh_addr;

4218 phdr->p_of fset = shdr->sh_of fset;

4219 phdr->p_nmenmsz = phdr->p_filesz = shdr->sh_si ze;
4220 phdr->p_flags = PF_R

4222 DBG_CALL(Dbg_seg_: entry(ofl capsndx, capsgp));
4223 of | - >of | _phdr [cappndx] = *phdr;

4224 1

4226 /*

4227 * Update the GROUP sections.

4228 */

4229 if (update_ogroup(ofl) == S _ERROR)

4230 return (S_ERR(R) ;

4232 /*

4233 * Update Move Tabl e.

4234 */

4235 if (ofl->ofl_osnmove || ofl->ofl _isparexpn)

4236 updat e_nove(ofl);

4238 I

4239 * Build any output headers, version information, dynam c structure and
4240 * syminfo structure.

4241

4242 |f (updat e_oehdr (ofl) == S_ERROR)

4243 return (S_ERROR);

4244 if (!(flags & FLG OF NOJERSEC)) {

4245 if ((flags & FLG OF _VERDEF) &&

4246 (updat e_overdef (of|) == S_ERROR))

4247 return (S_ERROR);

4248 if ((flags & FLG OF VERNEED) &&

4249 (updat e_overneed(ofl) == S_ERROR))

4250 return (S_ERROR);

4251 if (flags & (FLG OF_ VERNEED | FLG_OF_VERDEF))
4252 updat e_oversyn(ofl);

4253 1

4254 if (flags & FLG OF_DYNAM C) {

4255 if (update_odynamic(ofl) == S_ERROR)

4256 return (S_ERROR);

4257 1

4258 if (ofl->ofl _ossym nfo) {

4259 if (update_osym nfo(ofl) == S_ERROR)

4260 return (S_ERROR);

4261 1

4263 /*

4264 * Update capabilities information if required.

4265 *

4266 if (ofl->ofl_oscap)

4267 updat e_oscap(ofl);

4268 if (ofl->ofl_oscapinfo)

4269 updat e_oscapi nfo(ofl);

4271 /*

4272 * Sanity test: the first and last data byte of a string table
4273 * must be NULL.

4274 */

4275 assert((ofl->of | _osshstrtab == NULL) ||

4276 (*((char *)ofl->of | _osshstrtab->0s_outdata->d_buf) == "'\0"));
4277 assert((of | ->of | _osshstrtab == NULL) ||

4278 (*(((char *)ofl->ofl_osshstrtab->o0s_outdata->d_buf) +
4279 of | - >of | _osshstrtab->o0s_outdata->d_size - 1) == '\0"));

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

f

4281 assert((of | ->of | _osstrtab == NULL) ||

4282 (*((char *)ofl->ofl _osst rtab->0s_outdata->d_buf) == "\0"));
4283 assert((ofl->of | _osstrtab == NULL)

4284 (*(((char *)ofl->ofl_osstrtab->0s_outdata->d buf) +

4285 of | ->of | _osstrtab->0s_out data->d_size - 1) == 0));

4287 assert((ofl->of | _osdynstr == NULL) ||

4288 (*((char *)ofl->of | _osdynstr->0s_outdata->d_buf) == "\0"));
4289 assert ((of | ->of | _osdynstr == NULL) ||

4290 (*(((char *)ofl->of _osdynstr->o0s_outdata->d_buf) +

4291 of | - >of | _osdynstr->o0s_out dat a- >d_si ze - DYNSTR_EXTRA PAD - 1)
4292 "\N0"));

4294 I*

4295 * Emt Strtab diagnostics.

4296 */

4297 DBG CALL(Dbg_sec_strtab(ofl->of | _Iml, ofl->ofl_osshstrtab,

4298 of | ->of | _shdrsttab));

4299 DBG CALL(Dbg_sec_strtab(ofl->of | _Iml, ofl->ofl _osstrtab,

4300 of | ->of | _strtab));

4301 DBG CALL(Dbg_sec_strt ab(ofl ->of | _I M, ofl->ofl_osdynstr,

4302 of | ->of [_dynstrtab));

4304 I

4305 * Initialize the section headers string table index within the el
4306 * header.

4307 */

4308 /* LINTED */

4309 if ((shscnndx = el f_ndxscn(ofl->ofl _osshstrtab->0s_scn)) <
4310 SHN_LORESERVE)

4311 of | - >of | _nehdr->e_shstrndx =

4312 /* LTNTED */

4313 (Hal f)shscnndx;

4314 } else {

4315 *

4316 * |f the STRTAB section index doesn't fit into

4317 * e_shstrndx, then we store it in 'shdr[0].st_link’.
4318 */

4319 El f_Scn *scn;

4320 Shdr *shdr 0;

4322 if ((scn = elf_getscn(ofl->ofl _elf, 0)) == NULL) {
4323 Id_eprintf(ofl, ERR ELF, MSG | NTL(NMBSG ELF GETSCN),
4324 of | ->of | _nane) ;

4325 return (S_ERROR);

4326 }

4327 1f ((shdr0 = el f_getshdr(scn)) == NULL) {

4328 I d_eprintf(ofl, ERR ELF, MSG_| NTL(NMSG ELF_GETSHDR),
4329 of | ->of | _nane) ;

4330 return (S_ERROR);

4331 }

4332 of | - >of | _nehdr->e_shstrndx = SHN_XI NDEX;

4333 shdr0->sh_I| i nk = shscnndx;

4334 }

4336 return ((uintptr_t)etext);

4337 }

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 1

R R R R

88750 Sun Feb 24 19:19: 14 2019
new usr/ src/ cnd/ sgs/ packages/ conrmon/ SUNWONI d- READVE
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)
Id: inplenment -ztype and rework option parsing

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkkk kR ok kkkkk ok k ok k k%

1#

2 # Copyright (c) 1996, 2010, Oracle and/or its affiliates. Al rights reserved.
3 #

4 # CDDL HEADER START

5 #

6 # The contents of this file are subject to the terms of the

7 # Common Devel opnent and Distribution License (the "License").

8 # You may not use this file except in conpliance with the License.

9 #

10 # You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
11 # or http://ww. opensol aris.org/os/licensing.

12 # See the License for the specific |anguage governing perni ssions

13 # and limtations under the License.

14 #

15 # Wen distributing Covered Code, include this CDDL HEADER in each

16 # file and include the License file at usr/src/ OPENSOCLARI S. LI CENSE.

17 # |f applicable, add the follow ng below this CDDL HEADER, with the

18 # fields enclosed by brackets "[]" replaced with your own identifying
19 # information: Portions Copyright [yyyy]l [nane of copyright owner]

20 #

21 # CDDL HEADER END

22 #

23 # Note: The contents of this file are used to determ ne the versioning
24 # information for the SGS tool set. The nunber of CRs listed in
25 # this file must grow nonotonically, or the SGS version wll

26 # nove backwards, causing a great deal of confusion. As such,

27 # CRs nmust never be renpved fromthis file. See

28 # i bconv/ common/ bl d_vernot e. ksh, and bug#4519569 for nore

29 # details on SGS versioning.

30 #

R
32 SUNWNId - link-editors devel opnent package.

X e e

35 The SUNWonI d package is an internal devel opment package containing the
36 link-editors and sonme related tools. Al conponents live in the OSNET
37 source base, but not all conponents are delivered as part of the nornal
38 OSNET consolidation. The intent of this package is to provide access
39 to new features/bugfixes before they becone generally avail abl e.

41 Ceneral link-editor information can be found:
43 http://1inkers.central/
44 http://1inkers. sfbay/ (al so known as |inkers. eng)

46 Comment s and Questi ons:
48 Cont act Rod Evans, Ali Bahram, and/or Seizo Sakurai.
50 Warnings:

52 The postrenove script for this package enpl oys /usr/sbin/static/nv,
53 and thus, besides the commpn core dependencies, this package al so
54 has a dependency on the SUNWsutl package.

56 Pat ches:

58 If the patch has been made official, you'll find it in:

new usr/ src/ cnd/ sgs/ packages/ conmon/ SUNWONI d- READVE

60

http://sunsol ve. east/ cgi / show. pl ?t ar get =pat ches/ os- pat ches
If it hasn’t been released, the patch will be in:

/ net/ sunsoft pat ch/ pat ches/tenporary
Not e, any patches |ogged here refer to the tenporary ("T") nane, as we
never know when they' re made official, and although we try to keep all
patch information up-to-date the real status of any patch can be
determ ned from

http://sunsoftpatch. eng
If it has been obsol eted, the patch will be in:

/ net / on${ RELEASE} - pat ch/ on${ RELEASE} / pat ches/ ${ MACH} / obsol et e

Hi story:

Note, starting after Solaris 10, letter codes in parenthesis may
be found follow ng the bug synopsis. Their neanings are as follows:

(D) A docurentation change acconpani es the inplenentation change.
(P) A packagi ng change acconpani es the inplenentati on change.

In all cases, see the inplenmentation bug report for details.

The fol l owi ng bug fixes exist in the OSNET consolidation workspace
from which this package is created:

Bugi d Ri sk Synopsi s

4225937 1386 linker emts sparc specific warning nmessages
4215164 shf _order flag handling broken by fix for 4194028.
4215587 using Id and the -r option on solaris 7 with conpiler option -xarch=v9

causes link errors.

4234657 103627-08 breaks purify 4.2 (plt padding shoul d not be enabled for

32-bit)

4235241 dbx no | onger gets dlclose notification.

the above changes are incorporated in the follow ng patches:

Sol ari s/ SunGS 5. 7_sparc patch 106950-05 (never rel eased)
Sol ari s/ SunCS 5. 7_x86 patch 106951-05 (never rel eased)
Sol ari s/ SunCS 5. 6_sparc patch 107733-02 (never rel eased)
Sol ari s/ SunCS 5. 6_x86 patch 107734-02

4248290 inetd dunps core upon bootup - failure in dlclose() |ogic.
4238071 dl open() |eaks while descriptors under |ow nmenory conditions

the above changes are incorporated in the follow ng patches:

Sol ari s/ SunCS 5. 7_sparc pat ch 106950- 06
Sol ari s/ SunCS 5. 7_x86 patch 106951- 06
Sol ari s/ SunGCS 5. 6_sparc patch 107733-03 (never rel eased)
Sol ari s/ SunCS 5. 6_x86 patch 107734-03

the above changes pl us:

4238973 fix for 4121152 affects linking of Ada objects

4158744 patch 103627-02 causes core when RPATH has bl ank entry and
dl open/dl cl ose is used

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

are incorporated in the follow ng patches:
Sol ari s/ SunCS 5.5.1_sparc patch 103627-12
Sol ari s/ SunGCs 5.5.1_x86 patch 103628-11
4256518 m scal cul ated cal loc() during dlclose/tsorting can result in segv
4254171 DT_SPARC _REQ STER has invalid value associated with it.

(never rel eased)

Al'l the above changes are incorporated in the follow ng patches:
Sol ari s/ SunGS 5. 7_sparc patch 106950- 07
Sol ari s/ SunCS 5. 7_x86 patch 106951- 07
Sol ari s/ SunCS 5. 6_sparc patch 107733-04
Sol ari s/ SunCS 5. 6_x86 patch 107734-04

(never rel eased)

4293159 | d needs to conbine sections with and w thout SHF_ORDERED f | ag(condat)
4292238 linking a library which has a static char ptr invokes nprotect() call
Al the above changes except for:
4256518 miscal cul ated calloc() during dlclose/tsorting can result in segv
4254171 DT_SPARC_REQ STER has invalid value associated with it.
pl us:
4238973 fix for 4121152 affects |inking of Ada objects
4158744 patch 103627-02 causes core when RPATH has bl ank entry and
dl open/dl cl ose is used
are incorporated in the follow ng patches:
Sol ari s/ SunGCS 5.5.1_sparc patch 103627-13
Sol ari s/ SunCS 5.5.1_x86 patch 103628-12

Al'l the above changes are incorporated in the follow ng patches:
Sol ari s/ SunGCS 5. 7_sparc patch 106950- 08
Sol ari s/ SunCS 5. 7_x86 patch 106951- 08
Sol ari s/ SunCS 5. 6_sparc patch 107733-05
Sol ari s/ SunCS 5. 6_x86 patch 107734-05

Al'l the above changes pl us:
4238973 fix for 4121152 affects linking of Ada objects
4158744 patch 103627-02 causes core when RPATH has bl ank entry and
dl open/dl cl ose is used
are incorporated in the follow ng patches:
Sol ari s/ SunCS 5.5.1_sparc patch 103627-14
Sol ari s/ SunGCS 5.5.1_x86 patch 103628-13
Al'l the above changes pl us:
4351197 nfs performance problem by 103627-13
are incorporated in the follow ng patches:
Sol ari s/ SunGS 5.5.1_sparc patch 103627- 15
Sol ari s/ SunCS 5.5.1_x86 patch 103628- 14
Al'l the above changes are incorporated in the follow ng patches:
Sol ari s/ SunGS 5. 7_sparc patch 106950- 09
Sol ari s/ SunCS 5. 7_x86 patch 106951- 09
Sol ari s/ SunCS 5. 6_sparc patch 107733-06
Sol ari s/ SunCS 5. 6_x86 patch 107734- 06
4158971 increase the default segment alignment for i386 to 64k
4064994 Add an $I SALI ST token to those understood by the dynamc |inker
XXXXXXX i a64 common code putback
4239308 LD DEBUG busted for sparc machi nes
4239008 Support MAP_ANON
4238494 |ink-auditing extensions required
4232239 R _SPARC LOX10 truncates field
4231722 R _SPARC UA* rel ocations are busted
4235514 R _SPARC _OLOL10 relocation fails
4244025 sgsnsg update
4239281 need to support SECREL relocations for ia64

new usr/ src/ cnd/ sgs/ packages/ comrmon/ SUNWONI d- READVE

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

4253751 ia64 |inker nust support PT_IA 64_UNWND tables

4259254 dl nopen mistakenly closes fd 0 (stdin) under certain error conditions
4260872 |ibel f hangs when |ibthread present

4224569 |inker core dunping when profiling specified

4270937 need nmechanismto suppress ld.so.1's use of a default search path.
1050476 1d.so to permt configuration of search path

4273654 filtee processing using $I SALI ST coul d be optinized

4271860 get MERCED cruft out of elf.h

4248991 Dynamic | oader (via PLT) corrupts register 4

4275754 cannot mmap file: Resource tenporarily unavail able

4277689 The |inker can not handl e rel ocati on agai nst MOVE tabl

4270766 atexit processing required on dlclose().

4279229 Add a "rel ease" token to those understood by the dynam c |inker
4215433 I d can bus error when insufficient disc space exists for output file
4285571 Pssst, want sone free di sk space? 1d s mscalculating.

4286236 ar gives confusing "bad format" error with a null .stab section
4286838 | d.so.1 can't handle a no-bits segnment

4287364 1d.so.1 runtime configuration cleanup

4289573 disable linking of ia64 binaries for Solaris8

4293966 crle(1l)’s default directories should be supplied

Solaris 8 600 (1st Q update - s28ul)

Ri sk Synopsi s

4309212 dlsymcan't find synbol
4311226 rejection of preloading in secure apps is inconsistent
4312449 dl cl ose: invalid deletion of dependency can occur using RTLD GLOBAL
Al'l the above changes are incorporated in the foll ow ng patches:
Sol ari s/ SunGS 5. 8_sparc patch 109147-01
Sol ari s/ SunCS 5. 8_x86 patch 109148-01
Sol ari s/ SunCS 5. 7_sparc pat ch 106950- 10
Sol ari s/ SunCS 5. 7_x86 patch 106951- 10
Sol ari s/ SunCS 5. 6_sparc patch 107733-07
Sol ari s/ SunCS 5. 6_x86 patch 107734-07

Ri sk Synopsi s

4324775 non-PI C code & -zconbreloc don't mx very well...

4327653 run-tinme |inker should preload tables it will process (nadvise)
4324324 shared object code can be referenced before .init has fired
4321634 .init firing of nultiple I NI TFIRST objects can fail

Al'l the above changes are incorporated in the follow ng patches:
Sol ari s/ SunCS 5. 8_sparc patch 109147-03
Sol ari s/ SunCS 5. 8_x86 pat ch 109148-03
Sol ari s/ SunGS 5. 7_sparc patch 106950-11
Sol ari s/ SunCS 5. 7_x86 patch 106951-11
Sol ari s/ SunCs 5 patch 107733-08
Sol ari s/ SunCS 5 patch 107734-08
4338812 crle(1l) onmts entries in the directory cache
4341496 RFE: provide a static version of /usr/bin/crle
4340878 rtld should treat $ORIG N |ike LD LI BRARY_PATH in security issues
Al'l the above changes are incorporated in the follow ng patches:
Sol ari s/ SunCS 5. 8_sparc patch 109147- 04
Sol ari s/ SunCS 5. 8_x86 patch 109148- 04
Sol ari s/ SunGS 5. 7_sparc pat ch 106950- 12

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 5 new usr/ src/ cnd/ sgs/ packages/ comrmon/ SUNWONI d- READVE 6
257 Sol ari s/ SunCS 5. 7_x86 patch 106951-12 323 4358862 |ink editors should reference "64" synlinks instead of sparcv9 (ia64).
AL R e 324 4356879 PLTs coul d use faster code sequences in sonme cases
259 4349563 auxiliary filter error handling regression introduced in 4165487 325 4367118 new fast baplt’s fail when traversed tw ce in threaded application
260 4355795 |1 dd -r now gives "displacenment rel ocated" warnings 326 4366905 Need a way to determine path to a shared library
A R e e 327 4351197 nfs performance probl em by 103627-13
262 Al the above changes are incorporated in the follow ng patches: 328 4367405 LD_LI BRARY_PATH 64 not being used
263 Sol ari s/ SunGsS 5. 7_sparc patch 106950- 13 329 4354500 SHF_ORDERED ordered scections does not properly sort sections
264 Sol ari s/ SunGS 5. 7_x86 patch 106951-13 330 4369068 1d(1)’'s weak synbol processing is inefficient (slow and doesn’'t scale).
265 Sol ari s/ SunGS 5. 6_sparc patch 107733-09 R e e T
266 Sol ari s/ SunCS 5. 6_x86 patch 107734-09 332 Al the above changes are incorporated in the follow ng patches:

P A 333 Sol ari s/ SunCS 5. 8_sparc patch 109147-07
268 4210412 versioning a static executable causes Id to core dunp 334 Sol ari s/ SunCS 5. 8_x86 patch 109148-07
269 4219652 Linker gives m sleading error about not finding main (xarch=v9) 335 Sol ari s/ SunGCS 5. 7_sparc patch 106950- 14
270 4103449 | d comand needs a conmand line flag to force 64-bits 336 Sol ari s/ SunCS 5. 7_x86 patch 106951- 14
271 4187211 problemwith RDI SP32 linking in copy-rel ocated objects R A
272 4287274 dl addr, dlinfo do not provide the full path name of a shared object
273 4297563 dl cl ose still does not renove all objects. 339 s
274 4250694 rtld_db needs a new auxvec entry 340 Solaris 8 701 (5th Qupdate - s28ub)
275 4235315 new features for rtld_db (DT_CHECKSUM dynanic linked .o files 341 -
276 4303609 64bit libelf.so.1 does not properly inplenment elf_hash() 342 Bugid Ri sk Synopsi s
277 4310901 su.static fails when OSNet build wth |azy-Ioading 343
278 4310324 el f_errno() causes Bus Error(coredunp) in 64-bit multithreaded prograns 344 4368846 1d(1) fails to version sone interfaces given in a mapfile
279 4306415 | d core dunp 345 4077245 dunp core dunp on null pointer.
280 4316531 BCP: possible failure with dlclose/_preexec_exit_handlers 346 4372554 el fdunp shoul d denangl e synbols (like nm dunp)
281 4313765 LD BREADTH shoul d be shot 347 4371114 dl cl ose may unmap a promi scuous object while it’s still in use.
282 4318162 crle uses automatic strings in putenv. 348 4204447 el fdunp shoul d understand SHN _AFTER/ SHN_BEGA N macr o
283 4255943 Description of -t option inconplete. 349 4377941 initialization of interposers may not occur
284 4322528 sgs nessage test infrastucture needs inprovenent 350 4381116 | dd/Id.so.1 could aid in detecting unused dependenci es
285 4239213 Want an APl to obtain linker’'s search path 351 4381783 dl open/dlclose of a |ibCrun+libthread can dunp core
286 4324134 use of extern mapfile directives can contribute unused synbol s 352 4385402 |inker & run-tinme |inker nust support gABl ELF updates
287 4322581 ELF data structures could be |ayed out nore efficiently... 353 4394698 | d.so.1 does not process DF_SYMBOLIC - not gABI conform ng
288 4040628 Unnecessary section header synbols should be renmpbved from.dynsym 354 4394212 the link editor quietly ignores mssing support libraries
289 4300018 rtld: bindlock should be freed before calling call _fini() 355 4390308 |d.so.1 should provide nore flexibility LD PRELOAD ing 32-bit/64-bit
290 4336102 dl cl ose with non-del etabl e objects can m shandl e dependenci es 356 obj ects
291 4329785 mi xi ng of SHT_SUNW COVDAT & SHF_ORDERED causes |d to seg fault 357 4401232 crle(1l) could provide better flexibility for alternatives
292 4334617 COPY rel ocations should be produces for references to .bss synbols 358 4401815 fix msc nits in debuggi ng output...
293 4248250 rel coation of local ABS symbols incorrect 359 4402861 cleanup /usr/demo/link_audit & /usr/tnp/librtld_db denmo source code...
294 4335801 For conplinentary alignnents elimnate |d: warning: synmbol ‘I’ 360 4393044 el fdunp shoul d all ow raw dunpi ng of sections
295 has differing a 361 4413168 SHF_ORDERED bit causes linker to generate a separate section
296 4336980 |l d.so.1 relative path processing revisited K] e R e
297 4243097 dlerror(3DL) is not affected by setlocal e(3C). 363 Al the above changes are incorporated in the follow ng patches:
298 4344528 dunp should rempbve -D and -1 usage nessage 364 Sol ari s/ SunGS 5. 8_sparc patch 109147-08
299 xxxxxxx enable LD ALTEXEC to access alternate |ink-editor 365 Sol ari s/ SunGS 5. 8_x86 patch 109148-08
] e I e R] I e
301 Al the above changes are incorporated in the follow ng patches: 367 4452202 Typos in <sys/link.h>
302 Sol ari s/ SunGS 5. 8_sparc patch 109147- 06 368 4452220 dunp doesn’t support RUNPATH
303 Sol ari s/ SunGS 5. 8_x86 patch 109148- 06 K1 e e
10 e 370 Al the above changes are incorporated in the follow ng patches:
371 Sol ari s/ SunCS 5. 8_sparc patch 109147-09
B06 - - e 372 Sol ari s/ SunCS 5. 8_x86 patch 109148- 09
307 Solaris 8 101 (3rd Qupdate - s28u3) A I e R
308 ---m e
309 Bugid Ri sk Synopsi s BT m s
310 376 Solaris 8 1001 (6th Q update - s28ub)
311 4346144 link-auditing: plt_tracing fails if LA SYMB_NOPLTENTER given after BT - oo
312 bei ng bound 378 Bugi d Ri sk Synopsi s
313 4346001 The | d should support nmapfile syntax to generate PT_SUNWSTACK segnent 379
314 4349137 rtld_db: A third fallback method for locating the Iinkmap 380 4421842 fixups in SHT_GROUP processing required...
315 4343417 dl addr interface information i nadequate 381 4450433 problemwi th |iblddbg output on -Dsection,detail when
316 4343801 RFE: crle(1l): provide option for updating configuration files 382 processi ng SHF_LI NK_ORDER
317 4346615 |1 d.so.1 attenpting to open a directory gives: No such device K] R e
318 4352233 crle should not honor unask 384 Al the above changes are incorporated in the follow ng patches:
319 4352330 LD PRELOAD cannot use absolute path for privil eged program 385 Sol ari s/ SunGS 5. 8_sparc patch 109147-10
320 4357805 RFE: man page for 1d(1l) does not document all -z or -B options in 386 Sol ari s/ SunCS 5. 8_x86 patch 109148-10
321 Sol aris 8 9/00 387 Sol ari s/ SunGS 5. 7_sparc pat ch 106950- 15
322 4358751 1d.so.1: LD XXX environ variables and LD_FLAGS shoul d be synchroni zed. 388 Sol ari s/ SunGS 5. 7_x86 patch 106951- 15

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE

390
391
392
393
394
395

397
398
399
400
401
402
403
404
405
406
407
408

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

above changes are incorporated in the follow ng patches:
Sol ari s/ SunGS 5. 8_sparc patch 109147-11
Sol ari s/ SunCS 5. 8_x86 patch 109148-11

8 202 (7th Qupdate - s28u7)

Ri sk Synopsi s

Id.so.1 reuses same buffer to send unmappi ng range to
_preexec_exit_handl ers()

above changes are incorporated in the follow ng patches:

Sol ari s/ SunGS 5. 8_sparc patch 109147-12
Sol ari s/ SunCS 5. 8_x86 patch 109148-12

Ri sk Synopsi s

4505289
4506164
4447560
4513842

4291384
4413322
4429371
4418274
4432224
4433643
4446564
4446115
4450225
4448531
4453241
4453398
4460230
4462245
4455802
4467068
4468779
4465871
4461890
4469400
4469566
4470493
4469684
4475174
4475514
4481851
4482035

4377735

incorrect handling of _START_ and _END

mcs does not recogni ze #linkbefore or #linkafter qualifiers
strip is creating unexecutable files.

library names not in Id.so string pool cause corefile bugs

above changes are incorporated in the follow ng patches:
Sol ari s/ SunGS 5. 8_sparc patch 109147-13
Sol ari s/ SunCS 5. 8_x86 patch 109148-13
Sol ari s/ SunCS 5. 7_sparc patch 106950- 16
Sol ari s/ SunCS 5. 7_x86 patch 106951- 16

Id -Mwith a mapfile does not properly align Fortran REAL*8 data
SunCS 5.9 librtld_db doesn’t show dl opened ".0" files anynore?
librtld_db busted on ia32 with SC6.x conpilers...

el fdunp dunps core on invalid input

libelf xlate routines are out of date

Menory | eak using dlopen()/dlclose() in Solaris 8

1 dd/ 1 ddstub - core dunmp conditions

transl ati ng SUNW nove sections is broken

The rdb conmand can fall into an infinite | oop

Li nker Causes Segmentation Faul t

Regression in 4291384 can result in enpty synbol table.

invalid runpath token can cause |d to spin.

Id (for OS5 5.8 and 5.9) |oses error nessage

Id.so.1 core dunps when executed directly...

need nore flexibility in establishing a support I i brary for Id
dyn_plt_entsize not properly initialized inld.s

el f_plt_trace_wite() broken on i386 (link- audltl ng)

-z1d32 and -zl d64 does not work the way it should

bad shared object created with -zredl ocsym

Id.so.1: is_so_loaded isn't as efficient as we thought...

lazy | oading fallback can reference un-relocated objects

libelf incorectly translates NOTE sections accross architectures...
rtld | eaks dl _handl es and pernits on dl open/dl cl ose

Id.so.1 prematurly reports the failure to load a object...
Id.so.1 can core dunmp in nmenory allocation fails (no swap)
Setting Id.so.1 environment variables globally woul d be useful
setting LD _PROFILE & LD AUDI T causes ping command to issue warni ngs
on 5.8

segnent reservations cause shrk() to fail

new usr/ src/ cnd/ sgs/ packages/ comrmon/ SUNWONI d- READVE 8

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

4491434 1d.so.1 can |leak file-descriptors when | oadi ng sane naned objects
4289232 sone of warning/error/debuggi ng nessages fromlibld.so can be revised
4462748 Linker Portion of TLS Support

b erface

| tialized |ocal

4496718 run-time |inkers nutex_|l ocks not working with Id_libc

4497270 The -zredl ocsym option should not eliminate partially
synbol s

4496963 dunpi ng an object with crle(l) that uses $ORIG N can | oose its
dependenci es

4499413 Sun |inker orders of magnitude sl ower than gnu |inker

4461760 | azy loading IibXmand |ibXt can fail.

4469031 The partial initialized (local) synbols for intel platformis not

int
ini

wor ki ng
4492883 Add i nk editor option to nulti-pass archives to resolve unsatisfied
synbol s
4503731 linker-rel ated conmands mi sspell "argunent”

4503768 whocal I s(1) shoul d output nessages to stderr, not stdout

4503748 whocal | s(1) usage nessage and manpage could be inproved

4503625 nm shoul d be taught about TLS synmbols - that they aren’t allowed that is

4300120 segnent address validation is too sinplistic to handl e segnent
reservations

4404547 krtld/reloc.h coul d have better error nessage, has typos

4270931 R SPARC HI X22 rel ocation is not handl ed properly

4485320 |d needs to support nore the 32768 PLTs

4516434 sotruss can not watch libc_psr.so.1

4213100 sotruss could use nore flexible pattern matching

4503457 | d seg fault with condat

4510264 sections with SHF_TLS can conme in different orders...

4518079 |ink-editor support library unable to nodify section header flags

4515913 | d.so.1 can incorrectly decrenent external reference counts on dlclose()

4519569 | d -V does not return a interesting value...

4524512 1d.so.1 should allow alternate term nation signals

4524767 el fdunp di es on bogus sh_nane fields...

4524735 | d getopt processing of '-' changed

4521931 subroutine in a shared object as LOCL instead of GLOB

Al'l the above changes are incorporated in the foll ow ng patches:

Sol ari s/ SunCS 5. 8_sparc patch 109147-14
Sol ari s/ SunCS 5. 8_x86 patch 109148- 14
Sol ari s/ SunCS 5. 7_sparc patch 106950- 17
Sol ari s/ SunCS 5. 7_x86 patch 106951-17

4532729 tentative definition of TLS variable causes linker to dunp core

4526745 fixup Id error message about duplicate dependenci es/ needed nanes
4522999 Sol aris |linker one order of magnitude slower than GNU | i nker

4518966 dl dunp undoes existing relocations with no thought of alignment or size.
4587441 Certain libraries have race conditions when setting error codes

4523798 |inker option to align bss to |arge pagesize ali gnnents

4524008 | d can inproperly set st_size of synbols named "_init" or "_fini"
4619282 | d cannot link a programwi th the option -sb

4620846 Per| Configure probing broken by |d changes

4621122 multiple Id '-zinitarray=" on a commandline fails

Sol ari s/ SunCS 5. 8_sparc patch 109147-15
Sol ari s/ SunGS 5. 8_x86 patch 109148-15
Sol ari s/ SunGS 5. 7_sparc patch 106950- 18
Sol ari s/ SunCS 5. 7_x86 patch 106951-18
Sol ari s/ SunCS 5. 6_sparc patch 107733-10
Sol ari s/ SunGS 5. 6_x86 patch 107734-10

Al'l the above changes pl us:

4616944 ar seg faults when order of object file is reversed.
are incorporated in the follow ng patches:

Sol ari s/ SunGS 5. 8_sparc patch 109147-16

Sol ari s/ SunCS 5. 8_x86 patch 109148- 16

Al'l the above changes pl us:

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 9

521
522
523
524
525

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

4872634 Large LD_PRELOAD val ues can cause SEGV of process

are incorporated in the fol | owi ng patches:

Sol ari s/ SunCS 5. 6_sparc patch T107733-11
Sol ari s/ SunCS 5. 6_x86 patch T107734-11

Ri sk Synopsi s

4546416
4526752
4624658
4622472
4638070

4633860

4642829
4621479
4529912
4651709
4655066
4654406

4651493
4662575

4533195

4630224
4664855

4669582
4671493
4668517

4701749
4707808

4696204

4706503
4716929
4710814

add hel p nessages to |d.so ndbnodul e

we shoul d build and ship Id.so’s ndb nodul e

update 386 TLS rel ocati on val ues

LA SYMB_DLSYM not set for |a_synbind() invocations

ldd/1d.so.1 could aid in detecting unreferenced dependenci es

PSARC/ 2002/ 096 Detecting unreferenced dependencies with |dd(1)
Optimzation for unused static global variables

PSARC/ 2002/ 113 1d -zignore - section elimination

ld.so.1 nprotect()’s text segnment for weak relocations (it shouldn’'t)
"make’ in $SRC/ cnd/sgs/tools tries to install things in the proto area
purge ia64 source from sgs

dl open(RTLD_NOLQAD) can di sabl e | azy | oadi ng

crle: -u with nonexistent config file doesn't work

string tables created by the link-editor could be smaller...

PSARC/ 2002/ 160 | d -znoconpstrtab - disable string-table conpression
RTLD NOWcan result in binding to an object prior to its init being run.
I'i nker displacenent rel ocation checking introduces significant

I'i nker over head

Id interposes on malloc()/free() preventing support
nenory

crle get’'s confused about nenory | ayout of objects...

crle on application failed with Id.so.1 encountering mmap()
ENOMEM er r

latest dynanic linker causes libthread _init to get skipped
Id.so.1 inconsistantly assigns PATHNAVE() on prinary objects
conpile with nmap. bssalign doesn’'t copy _iob to bss

library from freeing

returning

above changes are incorporated in the follow ng patches:

Sol ari s/ SunCS 5. 9_sparc patch T112963-01

Sol ari s/ SunGS 5. 8_sparc patch T109147-17

Sol ari s/ SunCS 5. 8_x86 patch T109148-17

On Solaris 8 + 109147-16 |d crashes when building a dynamc library.
The | dd command is broken in the latest 2.8 linker patch.

above changes are incorporated in the follow ng patches:

Sol ari s/ SunCS 5. 9_sparc patch T112963- 02

Sol ari s/ SunCS 5. 8_sparc patch T109147-18

Sol ari s/ SunCS 5. 8_x86 patch T109148-18

enabl e extended section indexes in relocatable objects

PSARC/ 2001/ 332 ELF gABI updates - round 1|1

PSARC/ 2002/ 369 libelf interfaces to support ELF Extended Sections
l'inkers need to cope with EF_SPARCV9_PSQ EF_SPARCV9_RMO
updating of |ocal register synbol sin dynam c syntab busted.
add "official" support for the "synmbolic" keyword in |inker
PSARC/ 2002/ 439 |inker mapfile visibility declarations
above changes are incorporated in the follow ng patches:

Sol ari s/ SunGCS 5. 9_sparc patch T112963-03

Sol ari s/ SunCS 5. 8_sparc patch T109147-19

Sol ari s/ SunCS 5. 8_x86 patch T109148- 19

Sol ari s/ SunCS 5. 7_sparc patch T106950- 19

Sol ari s/ SunCS 5. 7_x86 patch T106951-19

map-file

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 10
588 -------i e

589 Solaris 9 403 (3nd Qupdate - s9u3)

590 ----mieie e

591 Bugid Ri sk Synopsi s

592

593 4731174 strip(1l) does not fixup SHT_GROUP data

594 4733697 -zignore with gcc may exclude C++ exception sections

595 4733317 R_SPARC *_HI X22 cal cul ations are wong with 32bit LD building

596 ELF64 binaries

597 4735165 fatal |inker error when conpiling C++ prograns with -xlinkopt

598 4736951 The nts broken when the target file is an archive file

[I e LR TR
600 Al the above changes are incorporated in the follow ng patches:

601 Sol ari s/ SunCS 5. 8_sparc patch T109147-20

602 Sol ari s/ SunCS 5. 8_x86 patch T109148- 20

603 Sol ari s/ SunGS 5. 7_sparc patch T106950- 20

604 Sol ari s/ SunGS 5. 7_x86 patch T106951- 20

(o]0 R e I e
606 4739660 Threads deadl ock in schedl ock and dynam ¢ |inker |ock.

607 4653148 | d.so.1/1ibc should unregister its dlclose() exit handler via a fini.
608 4743413 |1 d.so.1 doesn’'t terminate argv with NULL pointer when invoked directly
609 4746231 |inker core-dunps when SECTION rel ocations are nmade agai nst di scarded
610 sections

611 4730433 1d.so.1 wastes time repeatedly opening dependencies

612 4744337 m ssing RD_CONSI STENT event with dl nopen(LD | D_NEWM ...)

613 4670835 rd_|l oad_objiter can ignore callback’s return val ue

614 4745932 strip utility doesn’t strip out Dwarf2 debug section

615 4754751 "strip" command doesn’'t renpve condat stab sections.

616 4755674 Patch 109147-18 results in coredunp.

[A e e
618 Al the above changes are incorporated in the follow ng patches:

619 Sol ari s/ SunGS 5. 9_sparc patch T112963- 04

620 Sol ari s/ SunGS 5. 7_sparc patch T106950- 21

621 Sol ari s/ SunCS 5. 7_x86 patch T106951-21

[A e I R]
623 4772927 strip core dunps on an archive library

624 4774727 direct-bindings can fail against copy-reloc synbols

[R e R T
626 Al the above changes are incorporated in the follow ng patches:

627 Sol ari s/ SunGS 5. 9_sparc patch T112963- 05

628 Sol ari s/ SunGCS 5. 9_x86 patch T113986-01

629 Sol ari s/ SunGS 5. 8_sparc patch T109147-21

630 Sol ari s/ SunCS 5. 8_x86 patch T109148-21

631 Sol ari s/ SunGS 5. 7_sparc pat ch T106950- 22

632 Sol ari s/ SunCS 5. 7_x86 patch T106951- 22

(SR e e LT T
[R

636 Solaris 9 803 (4th Qupdate - s9u4)

637 - -- e

638 Bugi d Ri sk Synopsi s

639

640 4730110 I d.so.1 list inplenentation could scale better

641 4728822 restrict the objects dl sym() searches.

642 PSARC/ 2002/ 478 New dl open(3dl) flag - RTLD_FI RST

643 4714146 crle: 64-bit secure pathnane is incorrect.

644 4504895 dl cl ose() does not renpve all objects

645 4698800 Wong comments in /usr/lib/ld/sparcv9 map. *

646 4745129 dldunp is inconsistent with .dynanic processing errors.

647 4753066 LD _SIGNAL isn't very useful in a threaded environnent

648 PSARC/ 2002/ 569 New dlinfo(3dl) flag - RTLD DI _SI GNAL

649 4765536 crle: synbolic |inks can confuse alternative object configuration info
650 4766815 |d -r of object the TLS data fails

651 4770484 el fdunp can not handle stripped archive file

652 4770494 The | d command gi ves inproper error nessage handling broken archive

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 11

653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718

4775738
4778247
4779976
4787579
4783869
4778418
4792461

4461340
4790194
4804328
4806476

4731183
4816378
4817314
4811951
4802194
4715815
4793721

overwiting output relocation table when is used
el fdunp -e of core files fails
el fdunp dies on bad relocation entries

invalid SHT_GROUP entries can cause linker to seg fault

"Id -zignore’

diclose: fiTter closure exhibits hang/failure - introduced with 4504895
Id.so.1: there be nits out there
Thread- Local Storage - x86 instruction sequence updates

PSARC/ 2002/ 746 Thread-Local Storage - x86 instruction sequence updates
sgs: ugl y bui I d output while suppressing ia64 (64-bit) build on Intel
dl open(..., RTLD GROUP) has an odd interaction with interposition

audi ti ng of threaded applications results in deadl ock

bui I di ng rel ocatabl e obj ects with SHF_EXCLUDE | oses rel ocation
information

above changes are incorporated in the follow ng patches:

Sol ari s/ SunGS 5. 9_sparc patch T112963- 06

Sol ari s/ SunGCS 5. 9_x86 patch T113986- 02

Sol ari s/ SunCS 5.8 _sparc patch T109147-22

Sol ari s/ SunCS 5. 8_x86 patch T109148- 22

conpil er creates .tlshss section instead of .tbss as docunented

TLS: a tls test case dunps core with C and Cr+ conpil ers

TLS_CD rel ocations against |ocal synbols do not reference symbol...
non-defaul t symbol visibility overriden by definition in shared object
relocation error of nozilla built by K2 conpiler

I'd should allow linking with no output file (or /dev/null)

Need a way to null all code in ISV objects enabling Id performance

tuning
above changes pl us:
4796237 RFE: |ink-editor becane extrenmely slow with patch 109147-20 and

static libraries

are incorporated in the follow ng patches:

Sol ari s/ SunGS 5. 9_sparc
Sol ari s/ SunOS 5. 9_x86

Sol ari s/ SunCS 5.8 sparc patch T109147-23
Sol ari s/ SunGsS 5. 8_x86 patch T109148- 23

patch T112963- 07
patch T113986- 03

9 1203 (5th Qupdate - s9ub)

Ri sk Synopsi s

4830584
4831650
4831544
4834784
4824026
4825296

4470917

4744411
4811969
4825065
4838226
4830889
4845764
4811093

mmap for the padding region doesn't get freed after dlclose
Id.so.1 can wal k off the end of it's call_init() array...

I'dd using .so nodul es conpiled with FD7 conpiler caused a core dunp
Accessing nenbers in a TLS structure causes a core dunp in Oracle
segv when -z conbreloc is used with -xlinkopt

typo in el fdunp

above changes are incorporated in the follow ng patches:

Sol ari s/ SunGS 5. 9_sparc patch T112963- 08

Sol ari s/ SunGCS 5. 9_x86 patch T113986- 04

Sol ari s/ SunGS 5. 8_sparc patch T109147- 24

Sol ari s/ SunCS 5. 8_x86 patch T109148- 24

Sol ari s Process Mbdel Unification (link-editor conponents only)
PSARC/ 2002/ 117 Sol ari s Process Mddel Unification

Bl oonberg wants a faster |inker.

64-bit links can be much slower than 32-bit.

1d(1) should ignore consecutive enpty sections.

unr el ocat ed shared objects nay be erroneously collected for init firing
TLS: testcase coredunps with -xarch=v9 and -g

filter renoval can |eave dangling filtee pointer

apptrace -F libc date core dunps

new usr/ src/ cnd/ sgs/ packages/ comrmon/ SUNWONI d- READVE 12
719 4826315 Link editors need to be pre- and post- Unified Process Mdel aware

720 4868300 i nterposing on direct bindings can fail

721 4872634 Large LD PRELOAD val ues can cause SEGV of process

[A e e
723 Al the above changes are incorporated in the follow ng patches:

724 Sol ari s/ SunCS 5. 9_sparc patch T112963- 09

725 Sol ari s/ SunCS 5. 9_x86 pat ch T113986- 05

726 Sol ari s/ SunCS 5. 8_sparc patch T109147-25

727 Sol ari s/ SunCS 5. 8_x86 patch T109148- 25

F2 2 I e e LR LR R
T30 - -

731 Solaris 9 404 (6th Qupdate - s9u6)

782 mmmm e

733 Bugi d Ri sk Synopsi s

734

735 4870260 The el fdunp command shoul d produce nore warning nessage on invalid nove
736 entries.

737 4865418 enpty PT_TLS program headers cause problems in TLS enabl ed applications
738 4825151 conpiler core dunped with a -nt -xF=%al| test

739 4845829 The runtine linker fails to dl open() Iong path nane.

740 4900684 shared libraries with nore then 32768 plt's fail for sparc ELF64

741 4906062 Makefil es under usr/src/cnd/sgs needs to be updated

L Y A e e e
743 Al the above changes are incorporated in the follow ng patches:

744 Sol ari s/ SunGS 5. 9_sparc patch T112963- 10

745 Sol ari s/ SunCS 5. 9_x86 patch T113986- 06

746 Sol ari s/ SunCS 5. 8_sparc patch T109147-26

747 Sol ari s/ SunCS 5. 8_x86 patch T109148- 26

748 Sol ari s/ SunGS 5. 7_sparc patch T106950- 24

749 Sol ari s/ SunCS 5. 7_x86 patch T106951- 24

L R e e e T
751 4900320 rtld library mapping could be faster

752 4911775 i npl ement GOTDATA proposal in Id

753 PSARC/ 2003/ 477 SPARC GOTDATA instruction sequences

754 4904565 Functionality to ignore relocations against external synbols

755 4764817 add section types SHT_DEBUG and SHT_DEBUGSTR

756 PSARC/ 2003/ 510 New ELF DEBUG and ANNOTATE secti ons

757 4850703 enabl e per-synbol direct bindings

758 4716275 Help required in the link analysis of runtime interfaces

759 PSARC/ 2003/ 519 Link-editors: Direct Binding Updates

760 4904573 el fdunp may hang when processing archive files

761 4918310 direct binding froman executable can’t be interposed on

762 4918938 | d.so.1 has becone SPARC32PLUS - breaks 4.x binary conpatibility

763 4911796 S1S8 Ct++: |d dunp core when conpiled and |inked with xlinkopt=1.

764 4889914 |d crashes with SEGY using -M nepfile under certain conditions

765 4911936 exception are not catch fromshared library with -zignore

L R i e
767 Al the above changes are incorporated in the follow ng patches:

768 Sol ari s/ SunGCS 5. 9_sparc patch T112963-11

769 Sol ari s/ SunGCS 5. 9_x86 patch T113986- 07

770 Sol ari s/ SunCS 5. 8_sparc patch T109147-27

771 Sol ari s/ SunCS 5. 8_x86 patch T109148- 27

772 Sol ari s/ SunGCS 5. 7_sparc patch T106950- 25

773 Sol ari s/ SunCS 5. 7_x86 patch T106951- 25

R e T T
775 4946992 | d crashes due to huge nunber of sections (>65, 000)

776 4951840 nts -c goes into a | oop on executable program

777 4939869 Need additional relocation types for abs34 code nodel

778 PSARC/ 2003/ 684 abs34 ELF rel ocations

R e e T
780 Al the above changes are incorporated in the follow ng patches:

781 Sol ari s/ SunGCS 5. 9_sparc patch T112963-12

782 Sol ari s/ SunCS 5. 9_x86 patch T113986- 08

783 Sol ari s/ SunCS 5.8 sparc patch T109147-28

784 Sol ari s/ SunCS 5. 8_x86 patch T109148-28

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE

837

839
840
841
842
843
844
845
846
847
848
849
850

Ri sk Synopsi s

4912214
4526878
4930997
4796286
4930985
4933300
4936305
4939626
4939565
4948119
4948427
4940894
4955373
4878827
4955802
4964415
4966465
4973865

4975598
4974828

Having nultiple of libc.so.1 in a link map causes malloc() to fail
Id.so.1 should pass MAP_ALIGN flag to give kernel nore flexibility
sgs bl d_vernote. ksh script needs to be hardend...

Id.so.1: scenario for trouble?

clean up cruft under usr/src/cnd/ sgs/tools

renove references to Utra-1 in librtld_db denp

string table conpression is nuch too slow. ..

SUNWONI d i nternal package nust be updated...

per-synbol filtering required

Id(l) -z loadfltr fails with per-synbol filtering

Id.so.1 gives fatal error when nultiple RTLDI NFO objects are |oaded
I'd core dunps using "-xldscope=synbolic

per-synbol filtering refinenents

crle(1M - display post-UPM search paths, and conpensate for pre-UPM
/usr/ccs/bin/ld dunps core in process_rel d()

el fdunp i ssues wong relocation error nmessage

LD NOAUXFLTR fails when object is both a standard and auxiliary filter
the link-editor does not scale properly when |inking objects with
lots of syms

SHT_SUNW ANNOTATE section rel ocati on not resolved

nss_files nss_conpat r_nt tests randomy segfaul ting

above changes are incorporated in the follow ng patches:
Sol ari s/ SunCS 5. 9_sparc patch T112963-13
Sol ari s/ SunCS 5. 9_x86 patch T113986- 09

4860508
5002160
4967869
5006657
4915901
5021773

l'ink-editors shoul d create/pronmote/verify hardware capabilities

crle: reservation for dunped objects gets confused by mraped obj ect
linking stripped library causes segv in linker

link-editor doesn’t always handl e nodirect binding sym nfo information
no way to see ELF information

Id.so.1 has trouble with objects having nore than 2 segnents.

above changes are incorporated in the follow ng patches:
Sol ari s/ SunGS 5. 9_sparc patch T112963- 14
Sol ari s/ SunGCS 5. 9_x86 patch T113986- 10
Sol ari s/ SunCS 5. 8_sparc patch T109147-29
Sol ari s/ SunGsS 5. 8_x86 patch T109148- 29

above changes pl us:
6850124 dl open reports "No such file or directory" in spite of ENOVEM
when mrap fails in anon_nap()

are incorporated in the follow ng patches:

Sol ari s/ SunGS 5. 9_sparc
Sol ari s/ SunCS 5. 9_x86

pat ch TXXXXXX- XX
pat ch TXXXXXX- XX

Ri sk Synopsi s

5044797

4963676
5021541
5031495
5012172

Id.so.1: secure directory testing is being skipped during filtee
processi ng

Renove renmining static libraries

unnecessary PT_SUNWBSS segnent may be created

el fdunp conpl ai ns about bad synbol entries in core files

Need error when creating shared object with .o conpiled
-xarch=v9 -xcode=abs44

new usr/ src/ cnd/ sgs/ packages/ comrmon/ SUNWONI d- READVE

851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916

4994738
5023493

rd_plt_resolution() resolves ebx-relative PLT entries incorrectly

Id -moutput with patch 109147-25 ni ssing

.0 information

14

above changes are incorporated in the

Sol ari s/ SunGS 5. 9_sparc
Sol ari s/ SunCS 5. 9_x86
Sol ari s/ SunGsS 5. 8_sparc
Sol ari s/ SunCS 5. 8_x86

patch
pat ch
pat ch
patch

fol | owi ng patches:

T112963- 15
T113986- 11
T109147- 30
T109148- 30

109147-29 & -30 break the build of on28-patch on Solaris 8 2/04

5071614
5029830
5034652
5036561
5042713
5047082
5047612
5047235
4798376
5041446
5032364
4707030
4968618
5062313
5056867
4918303
5058415
5067518

crle: provide for optional
Id.so.1 should save, and print,

al ternati ve dependenci es.
nore error nessages

Id.so.1 outputs non-fatal fatal message about auxiliary filter libraries

4866170 broke Id.so’s ::

Id can core dunp on bad

set env
gcc objects

Id.so.1: secure pathnane verification is flawed with filter use
el fdunp can core dunp printing PT_I NTERP section

nits in deno code

gel f _update_*() functions inconsistently return NULL or O
M I D_TLSBSS and M. |D UNKNOMW have t he sane val ue
Enpty LD PRELOAD 64 doesn’'t override LD _PRELOAD

synbol i c |inkage causes

core dunp

dl addr () can cause deadl ock in Ml ap

ps.
$I SALI ST/ $HWCAP expansi on shoul d be nore flexible.

0@. so.1 shoul d not use conpiler-supplied crt*.o files
whocal I s cannot take nore than 10 argunents
The fix for 4918303 breaks the build if a new work space is used.

fol | owi ng patches:

above changes are i

Sol ari s/ SunGS 5. 9_sparc
Sol ari s/ SunCS 5. 9_x86
Sol ari s/ SunCS 5. 8_sparc

Sol ari s/ Sunos 5. 8_x86

ncorporated in the

patch
pat ch
pat ch

T112963- 16
T113986-12
T109147-31
T109148-31

file should report hardware/software capabilities (link-editor

5013759
5063580

5076838
5080344
5079061

5064973
5085792
5096272
5094135
5086352
5098205
5092414

5080256
5097347

conponents only

libldstab: file /tnp/posto..: .stab[.

mat ching stri

i ndex| . sbfocus] found with no

el fdunp(1l) is built with a CTF section (the wong one)
Har dware capabilities are not enforce
RTLD DEFAULT can be expensive

PSARC/ 2004/ 747 New dI sym(3c) Handle -
al I ow normal relocs against TLS synbols for some sections
LD XXXX_64 shoul d override LD XXXX
every executable or library has a . SUN\W dof section
Bl oonberg wants a faster |dd.
libld.so.3 should be built with a .SUNWctf ELF section, ready for CR

el fdunp gives wong section nane for the gl obal

d for a.out

RTLD_PROBE

of fset table

Li nker patch 109147-29 nmakes Broadvi son One- To-One server v4.1

installation fail

dunp(1) doesn’t list ELF hardware capabilities
recursive read lock in gelf_getsyn()

above changes are incorporated in the follow ng patches:

Sol ari s/ SunGCS 5. 9_sparc
Sol ari s/ SunCS 5. 9_x86
Sol ari s/ SunCS 5. 8_sparc
Sol ari s/ SunCS 5. 8_x86

patch
pat ch
pat ch
patch

T112963- 17
T113986-13
T109147-32
T109148-32

ld.so.1 fail to run a Solaris9 programthat has libc linked with

5106206
5102601

6173852
6174599

-z lazyl oad

ON shoul d deliver a 64-bit operating systemfor

(l'i nk-edi tor conponents

only)

enabl e link_auditing technol ogy for and64

linker does not create
with SHF_LI NK_ORDER

.eh_franme_hdr

sections for

Opt eron systens

eh_frane sections

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 15

917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941

943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982

6175609
6175843
6182293
6183645
6178667
6181928
6182884
6173559
5105601
6189384
6177838
6190863
6191488
6192490

6192164

6195030
6195521
6198358
6204123
6207495

6217285

amd64 run-tinme |inker has a corrupted note section

amd64 rdb_deno files not installed

Id.so.1 can repeatedly relocate object .plts (RTLD_NOW.

Id core dunps when autorounter fails

Idd list unexpected (file not found) in x86 environnent.

Need new rel oc types R _AMD64_GOTOFF64 and R_AMD64_GOTPC32

AVD64: | d coredunps when building a shared library

The Id may set incorrect value for sh_addralign under sone conditions.
ld.so.1 gets a little too enthusiastic with interposition

Id.so.1 should accommodate a files dev/inode change (Iibc |oopback mmt)
AVD64: |inker cannot resolve PLT for 32-bit a.out(s) on and64-S2 kernel
sparc di sassenbly code shoul d be renpved from rdb_deno
unwi nd eh_franme_hdr needs corrected encodi ng val ue
moe(1) returns /lib/libc.so.1 for optinal expansion of
libraries

AVD64: i ntroduce dl and64getunwi nd interface

PSARC/ 2004/ 747 i bc: : dl and64get unwi nd()

I'i bdl has bad version name

64-bit noe(1l) mssed the train

AVD64: bad eh_frame_hdr data when C and C++ mixed in a.out
Id.so.1: synbol |ookup fails even after |azy |oading fallback

UNI X98/ UNI X03 vsx nanmespace viol ation DYNL. hdr/m sc/dlfcn/T.dlfcn
14 Failed

ctfnerge crashed during full onnv build

i bc HWCAP

10 106 (1st Qupdate - s10ul)

Ri sk Synopsi s

6209350
6212797

6257177
6219651

Do not include signature section fromdynam c dependency library into
rel ocat abl e obj ect

The binary conpiled on SunCS4. x doesn’t
109147- 31

above changes are incorporated in the follow ng patches:

Sol ari s/ SunGCS 5. 9_sparc patch T112963- 18

Sol ari s/ SunCS 5. 9_x86 patch T113986- 14

Sol ari s/ SunCS 5. 8_sparc patch T109147- 33

Sol ari s/ SunCS 5. 8_x86 patch T109148- 33

112963-17: linker patch causes binary to dunp core

above changes are incorporated in the follow ng patches:

Sol ari s/ SunGCS 5. 10_sparc patch T117461-01

Sol ari s/ SunGCS 5. 10_x86 patch T118345-01

Sol ari s/ SunCS 5. 9_sparc patch T112963-19

Sol ari s/ SunGCS 5. 9_x86 patch T113986- 15

Sol ari s/ SunCS 5. 8_sparc patch T109147- 34

Sol ari s/ SunCS 5. 8_x86 patch T109148- 34

incremental builds of usr/src/cnd/sgs can fail...

AMD64: Linker does not issue error for out of range R AMD64_PC32

run on Solaris8 with Patch

above changes are incorporated in the follow ng patches:
Sol ari s/ SunCS 5. 10_sparc patch T117461- 02
Sol ari s/ SunGS 5. 10_x86 patch T118345-02
Sol ari s/ SunGS 5. 9_sparc patch T112963- 20
Sol ari s/ SunCS 5. 9_x86 patch T113986- 16
Sol ari s/ SunCS 5. 8_sparc patch T109147-35
Sol ari s/ SunCS 5. 8_x86 patch T109148- 35

NOTE: The fix for 6219651 is only applicable for 5.10_x86 platform

5080443
6226206

lazy loading failure doesn't clean up after itself (D)
Id.so.1 failure when processing single segnent hwcap filtee

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 16
983 6228472 |1 d.so.1: link-map control |ist stacking can | oose objects
984 6235000 random packages not getting installed in snv_09 and snv_10 -
985 rt1d/ conmon/ mal | oc. ¢ Assertion
986 6219317 Large page support is needed for mapping executables, |ibraries and
987 files (link-editor components only)
988 6244897 |d.so.1 can't run apps from conmandline
989 6251798 npe(1l) returns an internal assertion failure nmessage in sone
990 ci rcunst ances
991 6251722 |d fails silently with exit 1 status when -z ignore passed
992 6254364 |d won't build |ibgenunix.so with absolute relocations
993 6215444 |1 d.so.1 caches "not there" lazy libraries, foils svc.startd(1M’'s |ogic
994 6222525 dl sym(3C) trusts caller(), which may return wong results with tail call
995 optim zation
996 6241995 warnings in sgs should be fixed (link-editor conponents only)
997 6258834 direct binding availability should be verified at runtine
998 6260361 | ari shouldn’t count a.out non-zero undefined entries as interesting
999 6260780 | dd doesn’'t recognize LD NOAUXFLTR
1000 6266261 Add |d(1) -Bnodirect support (D)
1001 6261990 invalid e_flags error could be a little nore friendly
1002 6261803 lari (1) should find nore events uninteresting (D)
1003 6267352 |ibld_malloc provides inadequate alignment
1004 6268693 SHN _SUNW. | GNORE synbol s should be allowed to be mulitiply defined
1005 6262789 Infosys wants a faster |inker
o e R R R LT
1007 Al the above changes are incorporated in the follow ng patches:
1008 Sol ari s/ SunGCS 5. 10_sparc patch T117461- 03
1009 Sol ari s/ SunCS 5. 10_x86 patch T118345-03
1010 Sol ari s/ SunGCS 5. 9_sparc patch T112963-21
1011 Sol ari s/ SunGCS 5. 9_x86 patch T113986- 17
1012 Sol ari s/ SunGS 5. 8_sparc patch T109147- 36
1013 Sol ari s/ SunCS 5. 8_x86 patch T109148- 36
N e b e T R
1015 6283601 The usr/src/cnmd/ sgs/ packages/ common/ copyri ght contains old information
1016 legal |y problenatic
1017 6276905 dlinfo gives inconsistent results (relative vs absolute |inknanme) (D)
1018 PSARC/ 2005/ 357 dl i nfo(3c) RTLD_DI _ARGSI NFO
1019 6284941 excessive link tinmes with many groups/sections
1020 6280467 dl cl ose() unmaps shared library before library's _fini() has finished
1021 6291547 1d.so m shandl es LD_AUDI T causing security problens.
I R e R
1023 All the above changes are incorporated in the follow ng patches:
1024 Sol ari s/ SunGCS 5. 10_sparc patch T117461- 04
1025 Sol ari s/ SunGCS 5. 10_x86 patch T118345-04
1026 Sol ari s/ SunGCS 5. 9_sparc patch T112963- 22
1027 Sol ari s/ SunCS 5. 9_x86 patch T113986-18
1028 Sol ari s/ SunGS 5. 8_sparc patch T109147- 37
1029 Sol ari s/ SunGS 5. 8_x86 patch T109148- 37
O I
1031 6295971 UNI X98/ UNI X03 *vsx* DYNL. hdr/m sc/dlfcn/T.dlfcn 14 fails, auxv.h syntax
1032 error
1033 6299525 .init order failure when processing cycles
1034 6273855 gcc and sgs/crle don't get along
1035 6273864 gcc and sgs/libld don't get al ong
1036 6273875 gcc and sgs/rtld don't get al ong
1037 6272563 gcc and and64/krtl d/dorel oc.c don't get al ong
1038 6290157 gcc and sgs/librtld_db/rdb_deno don't get al ong
1039 6301218 Matl ab dunps core on startup when running on 112963-22 (D)
O O e e e
1041 Al the above changes are incorporated in the follow ng patches:
1042 Sol ari s/ SunCS 5. 10_sparc patch T117461- 06
1043 Sol ari s/ SunCS 5. 10_x86 patch T118345-08
1044 Sol ari s/ SunGS 5. 9_sparc patch T112963-23
1045 Sol ari s/ SunGCS 5. 9_x86 patch T113986- 19
1046 Sol ari s/ SunCS 5. 8_sparc patch T109147-38
1047 Sol ari s/ SunCS 5. 8_x86 patch T109148- 38
T

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 17

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

6314115

Al the

6318306
6318401
6324019
6324589
6236594

6314743
6311865

6309061
6310736
6329796
6332983

Checkp0| nt refuses to start, crashes on start, after application of
Iinker patch 112963-22

above changes are incorporated in the follow ng patches:

Sol ari s/ SunGS 5. 9_sparc patch T112963- 24
Sol ari s/ SunCS 5. 9_x86 patch T113986- 20
Sol ari s/ SunGsS 5. 8_sparc patch T109147- 39
Sol ari s/ SunCsS 5. 8_x86 patch T109148- 39

a dlsym() froma filter should be redirected to an associated filtee
m s-aligned TLS variable

Id.so.1: nmalloc alignnent is insufficient for new conpilers

psh coredunps on x86 nmachi nes on snv_23

AMD64: Linker needs to handle the new .| bss section (D)

PSARC 2005/ 514 AMD64 - | arge section support

Li nker: incorrect resolution for R AVMD64_GOTPC32

Li nker: x86 medi um model ; invalid ELF program header
above changes are incorporated in the follow ng patches:
Sol ari s/ SunCS 5. 10_sparc patch T117461-07

Sol ari s/ SunCS 5. 10_x86 patch T118345-12

link_audit should use asm _ with gcc

gcc and sgs/libld don't get al ong on SPARC

Menory | eak with iconv_open/iconv_close with patch 109147-33

s9 linker patches 112963-24/113986-20 causing cl uster machi nes not
to boot

above changes are incorporated in the follow ng patches:

Sol ari s/ SunGS 5. 10_sparc patch T117461- 08

Sol ari s/ SunCS 5. 10_x86 patch T121208- 02
Sol ari s/ SunGS 5. 9_sparc patch T112963- 25
Sol ari s/ SunGS 5. 9_x86 patch T113986-21
Sol ari s/ SunGS 5. 8_sparc patch T109147- 40
Sol ari s/ SunCS 5. 8_x86 patch T109148- 40

The sparc S8/ S9/S10 |inker patches which include the fix for the
CR6222525 are hit by the CR6439613

above changes are incorporated in the follow ng patches:

Sol ari s/ SunGS 5. 9_sparc patch T112963- 26

Sol ari s/ SunCS 5. 8_sparc patch T109147-41

Sol aris 10 807 (4th Qupdate - s10u4)
Bugi d Ri sk Synopsi s
6487273 1d.so.1 nay open arbitrary locale files when relative path is built
fromlocal e environnent vars
6487284 1 d.so.1: buffer overflow in doprf() function
Al'l the above changes are incorporated in the follow ng patches:
Sol ari s/ SunGS 5. 10_sparc patch T124922-01
Sol ari s/ SunCS 5. 10_x86 patch T124923-01
Sol ari s/ SunCS 5. 9_sparc patch T112963- 27
Sol ari s/ SunGS 5. 9_x86 patch T113986- 22
Sol ari s/ SunGS 5. 8_sparc patch T109147- 42
Sol ari s/ SunCS 5. 8_x86 patch T109148- 41
6477132 1 d.so.1: nenory | eak when running set*id application
Al'l the above changes are incorporated in the foll ow ng patches:

Sol ari s/ SunCS 5. 10_sparc pat ch T124922-02
Sol ari s/ SunGs 5. 10_x86 patch T124923- 02

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 18
1115 Sol ari s/ SunGS 5. 9_sparc patch T112963- 30

1116 Sol ari s/ SunCS 5. 9_x86 patch T113986- 24

T T
1118 6340814 Id.so.1 core dunp with HWACAP rel ocat abl e obj ect + updated statistics
1119 6307274 crle bug with LD LI BRARY_PATH

1120 6317969 el fheader linmited to 65535 segnents (link-editor conponents only)

1121 6350027 Id.so.1 aborts with assertion failed on and64

1122 6362044 1d(1) inconsistencies with LD DEBUG=-Dunused and -zignore

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168

1170
1171
1172

1174
1175
1176
1177

1179
1180

6362047 1d.so.1 dunps core when conbi ni ng HACAP and LD PROFI LE

6304206 runtinme |linker nay respect LANG and LC MESSAGE nore than LC_ALL

6363495 Catchup required with Intel relocations

6326497 1d.so not properly processing LD LI BRARY_PATH ending in

6307146 nts dunps core when appending null string to conment section

6371877 LD_PROFILE_64 with gprof does not produce correct results on and64

6372082 |d -r erroneously creates .got section on i386

6201866 anmd64: |inker synbol elim nation is broken

6372620 printstack() segfaults when called fromstatic function (D)

6380470 32-bit 1d(1l) incorrectly builds 64-bit relocatable objects

6391407 Insufficient alignnent of 32-bit object in archive makes |Id segfault
(l'ibel f conmponent only) (D)

6316708 LD DEBUG shoul d provide a nmeans of identifying/isolating individual
link-map lists (P)

6280209 el fdunp cores on nenory nodel 0x3

6197234 el fdunmp and dunp don’t handl e 64-bit synbols correctly

6398893 Ext ended section processing needs some work

6397256 | dd dunps core in elf_fix_nanme

6327926 | d does not set etext synbol correctly for AVMD64 nedi um nodel (D)

6390410 64-bit LD PROFILE can fail: relocation error when binding profile plt

6382945 AMD64- GCC. dbx: internal error: dwarf reference attribute out of bounds

6262333 init section of .so dlopened fromaudit interface not being called

6409613 el f _outsync() should fsync()

6426048 C++ exceptions broken in Nevada for and64

6429418 1d.so.1: need work-around for Nvidia drivers use of static TLS

6429504 crle(1l) shows wong defaults for non-existent 64-bit config file

6431835 data corruption on x64 in 64-bit node while LD PROFILE is in effect

6423051 static TLS support within the link-editors needs a major face lift (D)

6388946 attenpting to dlopen a .o file mslabeled as .so fails

6446740 al |l ow mapfil e synbol definitions to create backing storage (D)

4986360 |inker crash on exec of .so (as opposed to a.out) -- error preferred
i nst ead
6229145 1d: initarray/finiarray processing occurs after got size is determ ned

6324924 the linker should warn if there's a .init section but not _init
6424132 el fdunp inserts extra whitespace in bitmap val ue display
6449485 |1 d(1) creates misaligned TLS in binary conpiled with -xpg
6424550 Wite to unallocated (wia) errors when libraries are built with
-z lazyl oad
6464235 executing the 64-bit 1d(1) should be easy (D)
6465623 need a way of building unix without an interpreter
6467925 1d: section deletion (-z ignore) requires inprovenent
6357230 specfiles should be nuked (link-editor conponents only)
Al'l the above changes are incorporated in the foll ow ng patches:
Sol ari s/ SunCS 5. 10_sparc patch T124922-03
Sol ari s/ SunGCS 5. 10_x86 patch T124923- 03

These patches al so include the framework changes for the foll ow ng bug fixes.
However, the associated feature has not been enabled in Solaris 10 or earlier
rel eases:

6174390 crle configuration files are inconsistent across platforms (D, P)
6432984 1d(1) output file renoval - change default behavior (D)
PSARC/ 2006/ 353 1d(1) output file renoval - change default behavior

Solaris 10 508 (5th Qupdate - s10ub)

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 19 new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 20
1181 -ommmm e 1247 6685125 | d/ el fdunp do not handle ZERO term nator .eh_frame anmd64 unwi nd entry
1182 Bugi d Ri sk Synopsi s 1248 - - oo
1183 1249 Al the above changes are incorporated in the follow ng patches:
1184 6561987 data vac_conflict faults on lipthread libthread libs in s10. 1250 Sol ari s/ SunGCS 5. 10_sparc patch T139574- 03
R e e 1251 Sol ari s/ SunGCS 5. 10_x86 patch T139575- 03
1186 All the above changes are incorporated in the follow ng patches: Iy R e e L
1187 Sol ari s/ SunGsS 5. 10_sparc patch T127111-01
1188 Sol ari s/ SunCS 5. 10_x86 patch T127112-01 1254 -
R I e 1255 Sol aris 10 1009 (8th Qupdate - s10u8)
1190 6501793 GOTOP rel ocation transition (optimzation) fails with offsets > 2732 I R e
1191 6532924 AMD64: Solaris 5.11 55b: SEGV after whocatches 1257 Bugi d Ri sk Synopsi s
1192 6551627 OGL: SI GSEGV when trying to use OpenGL pipeline with splash screen, 1258
1193 Sol ari s/ Nvidia only 1259 6782597 32-bit Id.so.1 needs to accept objects with |arge i node nunber
IR e 1260 6805502 The addition of "inline" keywords to sgs code broke the |int
1195 All the above changes are incorporated in the follow ng patches: 1261 verification in S10
1196 Sol ari s/ SunCS 5. 10_sparc patch T127111-04 1262 6807864 1d.so.1 is susceptible to a fatal dlsyn()/setlocale() race
1197 Sol ari s/ SunGCS 5. 10_x86 patch T127112- 04 R e e T
IR R e 1264 Al the above changes are incorporated in the follow ng patches:
1199 6479848 Enhancenents to the linker support interface needed. (D) 1265 Sol ari s/ SunCS 5. 10_sparc patch T141692-01
1200 PSARC/ 2006/ 595 |ink-editor support library interface - |d_open() 1266 Sol ari s/ SunCS 5. 10_x86 patch T141693-01
1201 6521608 assertion failure in runtime |inker related to auditing 1267 NOTE: The fix for 6805502 is only applicable to s10.
1202 6494228 pcl ose() error when an audit library calls popen() and the main target I R e i
1203 I's being run under |Idd (D) 1269 6826410 | d needs to sort sections using 32-bit sort keys
1204 6568745 segfault when using LD DEBUG with bit_audit |ibrary when instrunmenting I e R
1205 nozilla (D) 1271 Al the above changes are incorporated in the follow ng patches:
1206 PSARC/ 2007/ 413 Add - zgl obal audit option to |d 1272 Sol ari s/ SunGCS 5. 10_sparc patch T141771-01
1207 6602294 ps_pbrandnane breaks apps linked directly against librtld_db 1273 Sol ari s/ SunOS 5. 10_x86 patch T141772-01
208 - oo 1274 NOTE: The fix for 6826410 is also available for s9 in the follow ng patches:
1209 Al the above changes are incorporated in the follow ng patches: 1275 Sol ari s/ SunGCS 5. 9_sparc patch T112963- 33
1210 Sol ari s/ SunGS 5. 10_sparc patch T127111- 07 1276 Sol ari s/ SunCS 5. 9_x86 patch T113986- 27
1211 Sol ari s/ SunCS 5. 10_x86 patch T127112-07 I A e
L R e e] 1278 6568447 bcp is broken by 6551627

1279 6599700 |ibrtld_db needs better plugin support
1204 e 1280 6713830 ndb dunped core reading a gcore
1215 Sol aris 10 908 (6th Q update - s10u6) 1281 6756048 rd_| oadobj _iter() should always invoke brand plugin callback
A e 1282 6786744 32-bit dbx failed with unknown rtld_db.so error on snv_104
1217 Bugi d Ri sk Synopsi s I K R e R
1218 1284 Al the above changes are incorporated in the follow ng patches:
1219 6672544 el f_rtbndr nmust support non-ABI aligned stacks on and64 1285 Sol ari s/ SunOS 5. 10_sparc patch T141444-06
1220 6668050 First trip through PLT does not preserve args in xmmregisters 1286 Sol ari s/ SunCS 5. 10_x86 pat ch T141445-06
[R e e T A A e R e e T
1222 Al the above changes are incorporated in the follow ng patch:
1223 Sol ari s/ SunCS 5. 10_x86 patch T137138-01 1289 -
1224 - m e m e e 1290 Solaris 10 1005 (9th Qupdate - s10u9)

e R e
1226 - - - - m e 1292 Bugi d Ri sk Synopsi s
1227 Solaris 10 409 (7th Qupdate - s10u7) 1293
1228 - oo 1294 6850124 dl open reports "No such file or directory" in spite of ENOVEM
1229 Bugi d Ri sk Synopsi s 1295 when mmap fails in anon_map()
1230 1296 6826513 |dd gets confused by a crl e(l) LD PRELOAD setting
1231 6629404 Id with -z ignore doesn't scale 1297 6684577 |d shoul d propagate SHF_LINK_ORDER flag to ET_REL objects
1232 6606203 link editor ought to allow creation of >2gb sized objects (P) 1298 6524709 executables using /usr/lib/libc.so.1 as the ELF interpreter dunp core
I R e e T 1299 (1'i nk-editor conponents only)
1234 Al the above changes are incorporated in the follow ng patches: [e R
1235 Sol ari s/ SunGS 5. 10_sparc patch T139574-01 1301 Al the above changes are incorporated in the follow ng patches:
1236 Sol ari s/ SunCS 5. 10_x86 patch T139575-01 1302 Sol ari s/ SunOS 5. 10_sparc patch T143895-01
L A e e b] 1303 Sol ari s/ SunCS 5. 10_x86 patch T143896-01
1238 6746674 setuid applications do not find libraries any nore because trusted [0 R R e TR
1239 directories behavior changed (D)
I L e e T 1306 ------- - mm oo
1241 Al the above changes are incorporated in the follow ng patches: 1307 Solaris 10 XXXX (10th Q update - s10ul0)
1242 Sol ari s/ SunGS 5. 10_sparc patch T139574-02 0 R e
1243 Sol ari s/ SunGCS 5. 10_x86 patch T139575- 02 1309 Bugi d Ri sk Synopsi s
I e e 1310
1245 6703683 Can’t build Virtual Box on Build 88 or 89 1311 6478684 isainfo/cpuid reports pause instruction not supported on and64
1246 6737579 process_req_lib() in libld consumes file descriptors 1312 PSARC/ 2010/ 089 Renopval of AV_386_PAUSE and AV_386_MON

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE

above changes are incorporated in the follow ng patches:
Sol ari s/ SunCS 5. 10_sparc pat ch TXXXXXX- XX
Sol ari s/ SunCS 5. 10_x86 pat ch TXXXXXX- XX

Sol ari s Nevada (OpenSol ari s 2008. 05, snv_86)

Bugi d Ri sk Synopsi s

6409350 BrandZ project integration into Solaris (link-editor conponents only)

6459189 UNI X03: *VSC* c99 conpiler overwites non-witable file

6423746 add an option to relax the resolution of COVDAT rel ocs (D)

4934427 runtine |inker should |load up static synbol names visible to
dl addr() (D
PSARC 2006/ 526 SHT_SUNW LDYNSYM - default |ocal synbol addition

6448719 sys/elf.h could be updated with additional machine and ABI types

6336605 |ink-editors need to support R *_SIZE rel ocations
PSARC/ 2006/ 558 R_*_SI ZE rel ocati on support

6475375 synbol search optimzation to reduce rescans

6475497 el fdunp(1l) is msreporting sh_link

6482058 lari (1) could be faster, and handl e per-synbol filters better

6482974 defining virtual address of text segment can result in an invalid data
segment

6476734 crle(1nm "-1" as described fails system crle cores trying to fix
/alvar/ld/ld.config in failsafe

6487499 |ink_audit "nmake clobber" creates and popul ates proto area

6488141 1d(1) should detect attenpt to reference O-length .bss section

6496718 restricted visibility symbol references should trigger archive
extraction

6515970 HWCAP processing doesn’t clean up frmap structure - browser fails to
run java appl et

6494214 Refinenments to synbolic binding, synbol declarations and
interposition (D)
PSARC/ 2006/ 714 1d(1) mapfile: synbol interpose definition

6475344 DTrace needs ELF function and data synmbols sorted by address (D)
PSARC/ 2007/ 026 ELF synbol sort sections

6518480 | d -nel f_i 386 doesn’t conpl ain (D)

6519951 bfu is just another word for exit today (RPATH -> RUNPATH conversi on
bites us) (D)

6521504 | d: hardware capabilities processing fromrel ocatabl es objects needs
har deni ng.

6518322 Sonme ELF utilities need updating for .SUNWIdynsym section (D)
PSARC/ 2007/ 074 -L option for nnm(1l) to display SHT_SUNW LDYNSYM synbol s

6523787 dl open() handl e gets mistakenly orphaned - results in access to freed
nenory

6531189 SEGV in dl addr ()

6527318 dl open(nane, RTLD NOLOAD) returns handl e for unloaded library

6518359 extern napfiles references to _init/_fini can create INT/FIN
addresses of 0

6533587 | d.so.1: init/fini processing needs to conpensate for interposer
expectations

6516118 Reserved space needed in ELF dynamic section and string table (D)
PSARC/ 2007/ 127 Reserved space for editing ELF dynam c sections

6535688 el fdunp could be nore robust in the face of Purify (D)

6516665 The |ink-editors should be nore resilient against gcc’'s synbol
ver si oni ng

6541004 hwcap filter processing can | eak nenory

5108874 el fdunp SEGVs on bad object file

6547441 Uninitialized variable causes I1d.so.1 to crash on object cleanup

6341667 el fdunp shoul d check alignnents of ELF header el enents

6387860 el fdunp cores, when processing linux built ELF file

6198202 nts -d dunps core

6246083 el fdunp shoul d all ow section index specification

(nureric -N equivalent) (D)

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 22
1379 PSARC/ 2007/ 247 Add -1 option to el fdunmp

1380 6556563 el fdunp section overlap checking is too slow for large files

1381 5006034 need ?E napfile feature extension (D)

1382 6565476 rtld synbol version check prevents GNU I d binary fromrunning

1383 6567670 1d(1) synbol sizel/section size verification uncovers Haskell

1384 conpl | er inconsistency

1385 6530249 el fdunmp should handle ELF files with no section header table (D)
1386 PSARC/ 2007/ 395 Add -P option to el fdunp

1387 6573641 1d.so.1 does not mmintain parent relationship to a dlopen() caller.
1388 6577462 Additional inprovenents needed to handling of gcc's symbol versioning
1389 6583742 ELF string conversion library needs to |lose static witable buffers
1390 6589819 I d generated reference to _ tls_get_addr() fails when resolving to a
1391 shared object reference

1392 6595139 various applications should export yy* global variables for |ibl

1393 PSARC/ 2007/ 474 new | dd(1) -w option

1394 6597841 gel f _getdyn() reads one too many dynamic entries

1395 6603313 dlclose() can fail to unload objects after fix for 6573641

1396 6234471 need a way to edit ELF objects (D)

1397 PSARC/ 2007/ 509 el fedit

1398 5035454 mi xing -Kpic and -KPIC may cause SIGSEGV with -xarch=v9

1399 6473571 strip and nts get confused and corrupt files when passed

1400 non- ELF ar gunment s

1401 6253589 nts has probl enms handling nultiple SHT_NOTE sections

1402 6610591 do_rel oc() should not require unused argunents

1403 6602451 new synbol visibilities required: EXPORTED, SINGLETON and ELI M NATE (D)
1404 PSARC/ 2007/ 559 new synbol visibilities - EXPORTED, SINGLETON, and
1405 ELI M NATE

1406 6570616 el fdunp shoul d display incorrectly aligned note section

1407 6614968 el fedit needs string table nodule (D

1408 6620533 HWCAP filtering can | eave uninitialized data behind - results in
1409 "rejected: Invalid argunent”

1410 6617855 nodirect tag can be ignored when other syminfo tags are available
1411 |'i nk-editor components only)

1412 6621066 Reduce need for new el fdunp options with every section type (D

1413 PSARC/ 2007/ 620 el fdunp -T, and sinplified natching

1414 6627765 soffice failure after integration of 6603313 - dangling GROUP pointer.
1415 6319025 SUNWbt ool packagi ng issues in Nevada and S10ul.

1416 6626135 el fedit capabilities str->value mapping should conme from

1417 usr/src/ common/ el f cap

1418 6642769 1d(1) -z conbrel oc shoul d becone default behavior (D)

1419 PSARC/ 2008/ 006 make |1d(1) -z conbrel oc becone default behavior

1420 6634436 XFFLAG shoul d be updated. (link-editor conponents only)

1421 6492726 Merge SHF_MERGE| SHF_STRI NGS i nput sections (D)

1422 4947191 OSNet shoul d use direct bindings (link-editor conponents only)

1423 6654381 | azy | oading fall-back needs optim zing

1424 6658385 |d core dunps when buil ding Xorg on nv_82

1425 6516808 1d.so.1's token expansion provides no escape for platforms that don’'t
1426 report HWCAP

1427 6668534 Direct bindings can conpromi se function address conparisons from
1428 execut abl es

1429 6667661 Direct bindings can conprom se executables with insufficient copy
1430 rel ocation information

1431 6357282 |1dd shoul d recogni ze PARENT and EXTERN synbol s (D)

1432 PSARC/ 2008/ 148 new | dd(1) -p option

1433 6672394 |1dd(1) unused dependency processing is tricked by relocations errors
Y e
1436 ---- - m - e oo

1437 Sol ari s Nevada (OpenSol ari s 2008.11, snv_101)

1438 - - oo

1439 Bugi d Ri sk Synopsi s

1440

1441 6671255 |ink-editor should support cross |inking (D

1442 PSARC/ 2008/ 179 cross |ink-editor

1443 6674666 el fedit dyn:posflagl needs option to locate el enent via NEEDED item
1444 6675591 el fwap - wap data in an ELF file (D, P)

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 23

1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

1486
1487
1488
1489
1490

1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510

6678244
6679212
6681761
6509323

6686889
6695681
6516212
6678310

6699594
6699131
6702260
6703919
6701798
6706401

6705846

6686343
6712292
6716350
6720509
6617475

6724311
6724774
6728555
6734598
6735939
6354160

6744003
6749055

6752728
6756472

PSARC/ 2008/ 198 el fwap - wap data in an ELF file

el fdunp dynamic section sanity checki ng needs refinenment
sgs use of SCCS id for versioning is obstacle to nercurial
lies, darn lies, and |inker README files

Need to disable the Miltiple Files |oading - sane nane, different
directories (or its stat() use)

Id.so.1 regression - bad pointer created with 6509323 integration

1 dd(1) crashes when run froma chrooted environnent

usr/src/cnd/ sgs/libelf warlock targets should be fixed or abandoned
using LD AUDIT, Id.so.1 calls shared library’'s .init before library is
fully relocated (link-editor conponents only)

The I d command has a probl em handling 'protected” mapfil e keyword.

el fdunp shoul d display core file notes (D)

single threading .init/.fini sections breaks staroffice

boot hangs intermttently on x86 with onnv daily.0430 and on

Id can enter infinite | oop processing bad mapfile

direct binding copy relocation fallback is insufficient for ild
generated objects

mul tithreaded C++ application seens to get
I'i nker code

Idd(1) - unused search path diagnosis shoul d be enabl ed

I'd.so.1 should fall back to an interposer for failed direct bindings
usr/src/cmd/ sgs should be linted by nightly builds
usr/src/ cmd/ sgs/ sgsdemangl er shoul d be renoved

gas creates erroneous FILE synbols [was: 1d.so.1 is reported as

fal se positive by wsdiff

dl dunp() mi shandl es R_AMD64_JUWMP_SLOT rel ocations

el fdunp -n doesn’t print siginfo structure

Fix for and64 aw (6617475) breaks pure gcc builds

1 d(1) archive processing failure due to mi smatched file descriptors (D)
1d(1) discarded synbol relocations errors (Studio and GNU).

Sol aris linker includes nore than one copy of code in binary when

i nki ng gnu obj ect code

1d(1) could provide better argunment processing diagnostics (D)

PSARC 2008/ 583 add gl d options to |d(1)

I'd shoul d generate GNU styl e VERSYM i ndexes for VERNEED records (D)
PSARC/ 2008/ 603 ELF objects to adopt GNU-style Versym indexes
l'ink-editor can enter UNDEF synbols in synbol sort sections

AQUT search path pruning (D)

mgration

deadl ocked in the dynamc

Ri sk Synopsi s

6754965

6756953
6765299
6748160

6763342
6736890

6772661

6765931
6775062
6782977
6773695
6778453
6789925

introduce the SF1_SUNW ADDR32 bit
(1'i nk-editor conponents only)
PSARC/ 2008/ 622 32-bit Address Restriction Software Capabilities Flag
custoner requests that DT_CONFI G strings be honored for secure apps (D)
d --version-script option not conpatible with GNU Id (D)

problemwi th -zrescan (D)

PSARC/ 2008/ 651 New | d archive rescan options

sl oppy rel ocations need to get sl oppier

PT_SUNWBSS shoul d be di sabl ed (D)

PSARC/ 2008/ 715 PT_SUNWBSS r enpval

I dd/ | ddst ub/1d.so.1 dunp core in current nightly while processing

l'i bsof tcrypt o_hwcap. so. 1

ncs generates unlink(NULL) systemcalls

renmove /usr/lib/libldstab.so (D

Id segfaults after support lib version error sends bad args to vprintf()
Id -z nopartial can break non-pic objects

RTLD_GROUP prevents use of application defined malloc

64-bit applications with SF1_SUNW ADDR32 require non-default starting
addr ess

in software capabilities (D)

new usr/ src/ cnd/ sgs/ packages/ cormon/ SUNWONI d- READVE

1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525

1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576

24

6792906 Id -z nopartial fix breaks TLS

6686372 | d.so.1 shoul d use mapobj (2)

6726108 dl open() perfornmance could be inproved.

6792836 |d i's sl ow when processing G\NU | i nkonce sections

6797468 |d.so.1: orphaned handles aren’t processed correctly

6798676 |1 d.so.1: enters infinite |oop with realloc/defragnmentation |ogic

6237063 request extension to dl* famly to provide segnent bounds
information (D)
PSARC/ 2009/ 054 dlinfo(3c) - segment mapping retrieval

6800388 shstrtab can be sized incorrectly when -z ignore is used

6805009 I d.so.1: link map control list tear down |eaves dangling pointer -
pfinstall does it again.

6807050 GNU |inkonce sections can create duplicate and i nconpatible
eh_frame FDE entries

Sol ari s Nevada

Bugi d Ri sk Synopsi s

6813909 generalize eh_frane support to non-and64 platfornmns

6801536 | d: mapfile processing oddities unveiled through nmapobj (2) observations

6802452 |ibel f shouldn’t use MS_SYNC

6818012 nmtries to nodify readonly segment and dunps core

6821646 xVM donD doesn’'t boot on daily. 0324 and beyond

6822828 librtld_db can return RD_ERR before RD NOVAPS, which conprom ses dbx
expect ati ons.

6821619 Sol aris |linkers need systematic approach to ELF OSABI (D)
PSARC/ 2009/ 196 ELF objects to set OSABI / el fdunp -O option

6827468 6801536 breaks 'Id -s’ if there are weak/strong synbol pairs

6715578 AQUT (BCP) synbol | ookup can be conpronised with |azy | oading.

6752883 1d.so.1 error nessage should be buffered (not sent to stderr).

6577982 1d.so.1 calls getpid() before it should when any LD * are set

6831285 | i nker LD DEBUG support needs inprovenents (D)

6806791 filter builds could be optinized (link-editor conponents only)

6823371 cal l oc() uses suboptinmal nenset () causing 15% regressi on i n SpecCPU2006
gcc code (link-editor conponents only)

6831308 | d.so.1: synbol rescanning does a little too nmuch work

6837777 1 d ordered section code uses too much nmenory and works too hard

6841199 Undo 10 year old workaround and use 64-bit Id on 32-bit objects

6784790 | d shoul d exam ne archives to determ ne output object class/nachine (D)
PSARC/ 2009/ 305 | d -32 option

6849998 renopve undocunented mapfil e $SPECVERS and $NEED opti ons

6851224 el f _getshnun() and el f_getshstrndx() inconpatible with 2002 ELF gABI
agreenent (D)
PSARC/ 2009/ 363 repl ace el f_get phnum el f_getshnum and el f_get shstrndx

6853809 | d.so.1: rescan fallback optimzation is invalid

6854158 | d.so.1: interposition can be skipped because of incorrect
cal l er/destination validation

6862967 rd_| oadobj _iter() failing for core files

6856173 streans core dunps when conpiled in 64bit with a very large static
array size

6834197 | d pukes when given an enpty plate

6516644 per-synbol filtering shouldn't be allowed in executables

6878605 | d should accept ’'% syntax when matchi ng i nput SHT_PROGBI TS secti ons

6850768 | d option to autogenerate w appers/interposers simlar to G\U Id
--wrap (D)
PSARC/ 2009/ 493 Id -z wap option

6888489 Nul | environnent variables are not overriding crle(1l) replaceable
envi ronment vari abl es.

6885456 Need to inplenent GNU-Id behavior in construction of .init/.fini
sections

6900241 | d should track SHT_GROUP sections by synbol name, not section nanme

6901773 Special handling of “STT_SECTI ON group signature synbol for GNU objects

6901895 Failing asserts in | d update_osym() trying to build gcc 4.5 devel pnent

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 25

1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625

1627
1628
1629
1630
1631

1633
1634
1635
1636
1637
1638
1639
1640
1641
1642

6909523
6903688

6923449
6914728

6916788

6929607
6924224
6918143

6910387
6934123
6931044
6931056
6938628
6938111
6941727
6932220
6943772

6943432
6668759
6954032
6949596

6961755

6748925
6916796
6964517
6948720
6962343
6965723

6952219
6956152

6971440
6972234
6935867
6975290
6972860

head

core dunp when run "LD DEBUG=hel p Is" in non-English |ocale

mdb(1) can’t resolve certain synbols in solarisl0-branded processes
fromthe gl obal zone

el fdunp msinterprets _init/_fini synb ols in

Add dl _iterate_phdr() function to Id.so.1 (D)

PSARC/ 2010/ 015 dl _i t er at e_phdr

Id version 2 mapfile syntax (D)

PSARC/ 2009/ 688 Human readabl e and extensible Id mapfile syntax
Id generates incorrect VERDEF entries for ET_REL output objects
I'i nker shoul d i gnore SUNW dof when calculating the el f checksum
synbol capabilities (D)

PSARC/ 2010/ 022 Li nker-editors: Synbol Capabilities

.tdata and .tbss separation invalidates TLS program header
el fdunp -d coredunps on PA-RISC el f

I'd should not allow SHT_PROGBI TS .eh_frane sections on and64 (D)

pvs -r output can include enpty versions in output

Id.so.1 shoul d produce diagnostics for all *() entry points

nm ‘ No synbol table data’ nessage goes to stdout

Id relocation cache nenory use i s excessive

I'd -z allextract skips objects that |ack global synbols

Testing for a synbols existence with RTLD PROBE i s conprom sed by
RTLD_BI'ND_NOW

PSARC/ 2010/ XXX Def erred synbol references

dl syn({ RTLD_PROBE) should only bind to synmbol definitions

an external method for determ ning whether an ELF dependency is optional
Support library with Id_open and -z allextract in snv_139 do not m x
wrong section alignment generated in joint conpilation with shared
l'ibrary

ld.so.1's -e argunments shoul d take precedence over environnment

vari abl es. (D)

noe returns wong hwecap library in sone circunstances

OSnet mapfiles should use version 2 |link-editor syntax

OSnet mapfiles should use version 2 link-editor syntax (2nd pass)

SHT_I NI T_ARRAY etc. section nanes don't follow ELF gABI (D)

sgsnmsg shoul d use nkstenp() for tenporary file creation

I bsoftcrypto synbol capabilities rely on conpiler generated
capabilities - gcc failure (link-editor conponents only)

I'd support for archives larger than 2 GB (D, P)

PSARC/ 2010/ 224 Support for archives larger than 2 GB

dlclose() froman auditor can be fatal. Preinit/activity events should
be nore flexible. (D)

nmoe can core dunp while processing libc.

sgs denp’s coul d use sone cl eanup

.dynam c could be readonly in sharabl e objects

I'd mi shandl es GOT rel ocation against |ocal ABS synbol

I'd shoul d provi de user guidance to inprove objects (D)

PSARC/ 2010/ 312 Li nk-edi tor gui dance

dynam c section test

information

Ri sk Synopsi s

Id may m salign sections only preceded by enpty sections
I'd crashes with '-z ignore’ due to a null data descriptor
libld may accidentally return success while failing

% mt need to be preserved on way through PLT

I'd should tolerate SHT_PROGBI TS for .eh_frane sections on and64
Want -zassert-deflib for Id

Id.so.1 should check default paths for DT_DEPAUDI T

linker is insufficiently careful with strtok

I'i nker shoul d ignore unknown hardware capabilities

l'ink-editor builds bogus .eh_frame_hdr on ia32

new usr/ src/ cnd/ sgs/ packages/ comrmon/ SUNWONI d- READVE 26
1643 3453 G\U condat redirection does exactly the wong thing

1644 3439 di scarded sections shouldn’t end up on output lists

1645 3436 rel ocat abl e objects al so need sl oppy rel ocation

1646 3451 archive libraries with no synbols shouldn’t require a string table

1647 3616 SHF_GROUP sections shoul d not be discarded via other COVDAT nechani sns
1648 3709 need sl oppy relocation for GNU . debug_nacro

1649 3722 link-editor is over restrictive of R AVMD64_32 addends

1650 3926 nultiple extern map file definitions corrupt symbol table entry

1651 3999 l'i bl d extended section handling is broken

1652 4003 dl dunp() can't deal with extended sections

1653 4227 Id --library-path is translated to -l-path, not -L

1654 4270 1d(1) argunent error reporting is still pretty bad

1655 4383 libelf can’t wite extended sections when ELF_F_LAYOUT

1656 4959 conpl etely discarded nerged string sections wll corrupt output objects
1657 4996 rtld _init race leads to incorrect synbol val ues

1658 5688 ELF tools need to be nore careful with dwarf data

1659 6098 1'd(1) should not require synbols which identify group sections be gI obal
1660 6252 I'd shoul d nmerge function/data-sections in the sane nanner as U id

1661 7323 1d(1) -zignore can erroneously discard init and fini arrays as unreferen
1662 7594 Id -zaslr should accept Sol aris-conpatible val ues

1663 8616 I'd has trouble parsing -z options specified with -W

1664 10267 I'd and GCC di sagree about i386 |ocal dynamic TLS

1665 XXXXX support -ztype

1666 10366 1d(1) should support GNU-style linker sets

1667 #endif /* | codereview */

new usr/src/cnd/ sgs/ rtld/ common/ gl obal s. c

R R R R

11088 Sun Feb 24 19:19:15 2019
new usr/src/cnd/ sgs/rtl d/ common/ gl obal s. ¢
I'd should reject kernel nodules as input

R R R R R R R

200
201

203
204
205
206
207
208

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
234
236
237
236
238
239

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

__unchanged_portion_onitted_

Dl _argsinfo argsinfo = { 0 }; /* process argunent, environment and */
/*

auxv information. */

/*
* Frequently used nessages are cached here to reduce _dgettext() overhead and
* also provide for resetting should the |ocale change (see _ld_libc()).
*
/

const char *err_strs[ERR_.NUM = { NULL };
const char *nosymstr = NULL;

/*

* Rejection error nessage tables.
*/

const Msg

Idd_reject[SGS_ REJ_NUM = {
MSG_STR_EMPTY,

MSG_LDD_REJ_MACH, /* MBG_| NTL(MSG LDD_REJ_MACH) */
MSG_LDD_REJ_CLASS, /* MBG_I NTL(MSG_LDD_REJ_CLASS) */
MSG_LDD_REJ_DATA, /* MBG_I NTL(MBG_LDD_REJ_DATA) */
MBG_LDD_REJ_TYPE, /* MBG_I NTL(MSG_LDD_REJ_TYPE) */
MSG_LDD_REJ_BADFLAG, /* MBG_I NTL(MSG_LDD_REJ_BADFLAG) */
MSG_LDD_REJ_M SFLAG, /* MBG_I NTL(MSG_LDD_REJ_M SFLAG) */
MSG_LDD_REJ_VERSI ON, /* MBG_I NTL(MSG_LDD_REJ_VERSI ON) */
MSG_LDD_REJ_HAL, /* MBG_I NTL(MSG LDD REJ_HAL) */
MSG_LDD_REJ_US3, /* MBG_I NTL(MSG_LDD_REJ_US3) */
MSG_LDD_REJ_STR, /* MBG_| NTL(MSG LDD_REJ_STR) */
MSG_LDD_REJ_UNKFI LE, /* MBG_I NTL(MSG_LDD_REJ_UNKFI LE) */
MSG_LDD_REJ_UNKCAP, /* MBG_I NTL(MSG_LDD_REJ_UNKCAP) */
MSG_LDD_REJ_HWCAP 1, /* MBG_I NTL(MSG_LDD_REJ_HWCAP 1) */
MSG_LDD_REJ_SFCAP 1, /* MBG_I NTL(MSG_LDD_REJ_SFCAP_1) */
MSG_LDD_REJ_MACHCAP, /* MBG_I NTL(MSG_LDD_REJ_MACHCAP) */
MSG_LDD_REJ_PLATCAP, /* MBG_I NTL(MSG_LDD_REJ_PLATCAP) */
MSG_LDD_REJ_HWCAP 2, /* MBG_I NTL(MSG_LDD_REJ_HWCAP 2) */
MSG_LDD_REJ_ARCHI VE, /* MBG_I NTL(MSG_LDD_REJ_ARCHI VE) */
MSG_LDD_REJ_KMOD /* MBG_I NTL(MSG_LDD_REJ_KMOD) */
MSG_LDD_REJ_ARCH VE /* MBG_I NTL(MSG_LDD_REJ_ARCHI VE) */

}s
#if SGS_REJ_NUM!= (SGS_REJ_KMOD + 1)
#if SGS_REJ_NUM ! = (SGS_REJ_ARCHI VE + 1)
#error SGS_REJ_NUM has changed
#endi f

const Msg

err_reject[SGS_REJ_NUM = {
MSG_STR_EMPTY,
MSG_ERR_REJ_MACH,
MSG_ERR_REJ_CLASS,
MBG_ERR_REJ_DATA,
MBG_ERR_REJ_TYPE,
MSG_ERR_REJ_BADFLAG,
MSG_ERR_REJ_M SFLAG,
MBG_ERR_REJ_VERSI ON,
MBG_ERR_REJ_HAL,
MSG_ERR_REJ_US3,
MSG_ERR_REJ_STR,
MSG_ERR_REJ_UNKFI LE,
MBG_ERR_REJ_UNKCAP,
MBG_ERR_REJ_HWCAP_1,

MBG_| NTL(MSG_ERR _REJ_MACH) */
MSG_| NTL(MSG_ERR_REJ_CLASS) */
MBG_| NTL(MSG_ERR_REJ_DATA) */
MBG_| NTL(MBG_ERR_REJ_TYPE) */
MG _| NTL(MSG_ERR_REJ_BADFLAG) */
MBG_| NTL(MSG_ERR_REJ_M SFLAG) */
MSG_| NTL(MSG_ERR_REJ_VERSI ON) */
MBG_| NTL(MBG_ERR _REJ_HAL) */
MBG_| NTL(MBG_ERR_REJ_US3) */
MSG_| NTL(MSG_ERR_REJ_STR) */
MBG_| NTL(MSG_ERR_REJ_UNKFI LE) */
MBG_| NTL(MSG_ERR_REJ_UNKCAP) */
MBG_| NTL(MBG_ERR_REJ_HWCAP_1) */

~_—— e e e — —— ———
I T T R

257
258
259
260
261
262

263 #endif /*

264

new usr/src/cnd/ sgs/rtld/ conmon/ gl obal s. c

MBG_ERR_REJ_SFCAP_1,
MBG_ERR_REJ_MACHCAP,
MSG_ERR_REJ_PLATCAP,
MBG_ERR_REJ_HWCAP 2,
MBG_ERR_REJ_ARCHI VE,
MBG_ERR_REJ_KNMOD,

coder evi ew */

}s
265 #if SGS_REJ_NUM != (SGS_REJ_KMOD + 1)
261 #if SGS_REJ_NUM ! = (SGS_REJ_ARCHI VE + 1)

266 #error SGS_REJ_NUM has changed

267 #endif

269 const Mg

270 | dd_warn[SGS_REJ_NUM = {

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
285
291

VBG_STR_EMPTY,
MSG_STR_EMPTY,
MSG_STR_EMPTY,
MSG_STR_EMPTY,
MSG_STR_EMPTY,
MSG_STR_EMPTY,
MSG_STR_EMPTY,
MSG_STR_EMPTY,
MBG_STR_EMPTY,
MSG_STR_EMPTY,
MSG_STR_EMPTY,
MSG_STR_EMPTY,
VBG_LDD_WARN_UNKCAP,
MSG_LDD_WARN_HWCAP_1,
MSG_LDD_WARN_SFCAP 1,
MSG_LDD_WARN_MACHCAP,
MSG_LDD_WARN_PLATCAP,
MSG_LDD_WARN_HWCAP 2,
MSG_STR_EMPTY,
MSG_STR_EMPTY,
MSG_STR_EMPTY

1
292 #if SGS_REJ_NUM!= (SGS_REJ_KMOD + 1)
287 #if SGS_REJ_NUM ! = (SGS_REJ_ARCHI VE + 1)

293 #error SGS_REJ_NUM has changed

294 #endi f

MSG_| NTL(MSG_ERR _REJ_SFCAP_1)
MSG_| NTL(MBG_ERR_REJ_MACHCAP)
MSG_| NTL(MSG_ERR_REJ_PLATCAP)
MBG_| NTL(MSG_ERR_REJ_HWCAP_2)
MSG_| NTL(MSG_ERR_REJ_ARCHI VE)
MBG_| NTL(MBG_ERR_REJ_KMOD) */

—~—————

* ok kb F %

DD_WARN_UNKCAP)
S LDD_WARN_HWCAP_1) */
S LDD_WARN_SFCAP_1)
DD_WARN_MACHCAP)
DD_WARN_PLATCAP)
DD_WARN_HWCAP_2)

—~—————

* ok ok k% ok

*/

*/
*/
*/
*/

new usr/src/cnd/ sgs/rtld/ common/rtld. msg

R R R R

15010 Sun Feb 24 19:19:15 2019
new usr/src/cnd/ sgs/rtld/ common/rtld. msg
I'd should reject kernel nodules as input

R R R R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE

9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions

11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each

14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.

15 # |f applicable, add the follow ng below this CDDL HEADER, with the

16 # fields enclosed by brackets "[]" replaced with your own identifying

17 # information: Portions Copyright [yyyy]l [nane of copyright owner]

18 #

19 # CDDL HEADER END

20 #

22 #

23 # Copyright (c) 1995, 2010, Oracle and/or its affiliates. Al rights reserved.
#

26 @ _START_

28 # Message file for cnd/sgs/rtld (ld.so.1)

30 @MSG_I D_RTLD

32 # Usage error

33 @ MSG_USG _BADOPT "usage: ld.so.1 [-e option,...] \
34 dynani c- obj ect [object args,...]"

36 # Message formatting error.
37 @ MSG_EMG_BUFOVRFLW "ld.so.1: internal: message buffer overflow

39 # Argument processing errors

41 @ MSG_ARG | LLMODE_1

ill
42 required"
43 @ MSG_ARG | LLMODE_2 illegal node: RTLD_NOW cannot be conbined with \
44 RTLD_LAZY"
45 @ MSG_ARG | LLMODE_3 "illegal node: LMD _NEWM requires non-zero path"
46 @ MBG_ARG | LLMODE_4 "illegal node: LMD _NEWM cannot be conbined with \
47 RTLD PARENT"
48 @ MSG_ARG | LLMODE_5 il egal node: potential multiple path expansion \
49 equi res RTLD_FI RST"
51 @ MSG_ARG | LLPATH illegal pathnanme"
52 @ MSG_ARG | LLSYM illegal synbol nane"
53 @ MSG_ARG | LLNAME "illegal nanme"
54 @ MSG_ARG | NVADDR "address 0x% | x does not fall within any nmapped object"
55 @ MSG_ARG | NVHNDL invalid handle: 0x%] x"
56 @ MSG_ARG | LLVAL "illegal request val ue"
57 @ MSG_ARG_NOCONFI G "no configuration file in use"
58 @ MSG_ARG_NOPROFNANMVE "no profile target specified"
59 @ MSG_ARG ATEXI T "purge of atexit() registrations failed: %"
60 @ MSG_ARG_SERCNT "information path count (%) insufficient”
61 @ MSG_ARG_SERSI ZE "information buffer size (%1d) insufficient”

egal node: RTLD NOWor RTLD LAZY or RTLD_NOLOAD \

new usr/src/cnd/ sgs/rtld/ common/rtld. msg

62
63
64
66

68

75
77
80

81
82

94

106

108
109
110
111
112
113
114

116
118
119
122
124

127

@ MSG_ARG | LLFLAGS "illegal flags value: %"
@ MSG_ARG | LLI NFO "non-null info field required for flags value: %"
@ MSG_ARG_I NVSI G "invalid signal supplied: %"

General error diagnostics

@ MSG_GEN_NOOPEN "DF_1_NOOPEN t agged object may not be dl open()’ ed"

@ MSG_GEN_NOFI LE "U: can't find file"

@ MBG_GEN_ALTER "%: alternate file in use"

@ MSG_GEN_NOSYM "%: can’t find synbol"

@ MSG_GEN_NODUWP "os: DF_1_NODUMP tagged object may not be dl dunp()’ ed"
Move rel ated nessages

@ MSG_MOVE_ERR1 "move entry with illegal size; ignored”

Rel ocation processing nessages (sonme of these are required to satisfy
do_reloc(), which is common code used by cnd/sgs/libld - make sure both
message files remain consistent).

@ MSG_REL_NOSYM

@ MSG_REL_PLTREF

"relocation error: file %: synbol ¥%: \

referenced synbol not found"

"relocation error: %: unidentifiable procedure \
reference: |ink-map Ox% | x, offset Ox%Ix, \

called from Ox% I x"

"relocation error: %: file %: synbol ¥%: \

offset size (%l bytes) is not supported"
"relocation error: %: file %: synbol %: \

file contains insufficient TLS support information"

@ MSG_REL_UNSUPSZ
@ MSG_REL_BADTLS

System cal |l messages.

@ M5G_SYS_BRK "U%: brk failed: %"

@ MBG_SYS_OPEN "%: open failed: %"

@ MSG_SYS_MVAP "Y%: mmap failed: %"

@ M5G_SYS_MPROT "%: nprotect failed: %"

@ MSG_SYS_MVAPANON "mrap anon failed: %"

@ MSG_SEC_OPEN ": open failed: No such file in secure directories"
@ MSG_SEC_| LLEGAL "%: open failed: illegal insecure pathnane"

Configuration failures

@ MSG_CONF_APP
@ MSG_CONF_DSTAT

@ MSG_CONF_FSTAT
@ MSG_CONF_FCMVP

"configuration
"configuration
failed: %"
"configuration file: %: original file %: stat \
failed: %"

“configuration file: %: original file %: nodified \
since configuration file creation"

%: is specific to application: %"
%: original directory %: stat \

Link Audit diagnostic nessage formats

@ MSG_AUD_BADVERS "version msmatch: current %: required %"
@ MSG_AUD_DI SABLED "%: audit initialization failure: disabled"

Versioni ng di agnosti cs.

@ MSG_VER_NFOUND "%: version ‘%’ not found (required by file %)"

Di agnostics generated under the control of 1dd(1).

new usr/src/cnd/ sgs/rtld/ common/rtld. msg

129
130

132

134
135
136
137
138
139
140
141
142

144

165

167
168
169
170

172
173
174

176
177

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

@ MBG_LDD_VER FI ND
@ MBG_LDD_VER_NFOUND

@ MSG_LDD_SYM NFOUND
@ NBG LDD PTH TRYI NG

@ M5G_LDD_PTH LI BPATH
G_LDD_PTH_LI BPATHC

5

5 LDD_PTH_RUNPATH
S LDD_PTH_BGNDFL
S LDD_PTH_ENDDFL
S LDD_PTH_ENDDFLC
DD_PTH_| GNORE

DD_FI L_FI ND
DD_FI L_NFOUND
G LDD_FI L_| LLEGAL
@ MBG_LDD_FI L_ALTER
@ MBG_LDD_CAP_NFOUND
@ MBG_LDD_SEC_NFOUND
@ MBG_LDD_REL_ERRL

@ MBG_LDD_REL_ERR?

@ NM5G_LDD_MOVE_ERR

OO0 6,060,006

L
5 LDD_FI L_FI LTER
L
L

0000 00 ®
20NN PRDRD

@ MBG_LDD_CPY_SI ZDI F

@ MSG_LDD_CPY_| NSDATA
@ M5G_LDD_CPY_DATRUNC
@ M5G_LDD_CPY_PROT

FMT_01
“FMI_02
FMI_03

858
22

G_LDD_UNUSED_FMT
G_LDD_UNCYC_FMT
G_LDD_UNREF_FMT

® 000 000
%55

2

G LDD_REL_CPYDI SP

) REJ_MACH

) REJ_CLASS

) REJ_DATA

) REJ_TYPE

) REJ_BADFLAG
) REJ_M SFLAG
) REJ_VERSI ON
) REJ_HAL

) REJ_US3

) REJ_STR

) REJ_UNKFI LE
) REJ_UNKCAP

) REJ_HWCAP_1
) REJ_SFCAP_1
)_REJ_MACHCAP

2000000000000 0®
333333333333333
ISISISASASISISISASASASASISISAS

) find version=%\n"
"\t% (%) =>\t (version not found)\n"
"\tsynbol not found: %s\t\t(%)\n"

trying path=%%\n"

search path=% (LD_LI BRARY_PATH)\ n"

search pat h=% (confl guration \
LD LI BRARY_PATH - %)\ n"

search path=% (RUNPATH RPATH fromfile %)\ n"

search pat h="
" (default)\n"
" (configuration default - 9%)\n"

ignore path=% (insecure directory nane)\n"

"\'n object=%; filter for %\n"

"\'n find object=%; required by %\n"
"\t% =>\t (file not found)\n"

"\t% =>\t (illegal insecure pathnane)\n"
" (alternate)"

"\t% =>\t (no capability objects found)\n"
"\t% =>\t (file not found in secure directories)\n"
"\trelocation % offset invalid: %: offset=0x%1x \

lies outside menory inmage; relocation discarded\n”
"\tloading after relocation has started:

request (DF_1_| NTERPCSE) ignored: %\n"
"\trmove % 1d offset invalid: %: offset=0x%Ix \
lies outside menory inmage; nove discarded\n"

trelocation % sizes differ: %\n\

\t(file % size=0x%I|x; file % size=0x%I|x)\n"

interposition \

\t% size used; possible insufficient data copied\n"

"\trelocation % synbol: %: file Y%:

\
\'t
\t
"\t\t% size used; possible data truncation\n"
\t
t wi th STV_PROTECTED vi sibility\n"

o a synbol

"\'n cyclic dependenci es detected, group [%d]:\n
init object=%\n"
init object=% - cyclic group [%],
by:\n"

referenced \

unused obj ect =%\ n"
unused obj ect=%; menber of cyclic group [%]\n"
unr ef erenced obj ect =%s; unused dependency of %\

"\tsynbol %: file %:
have been di spl acenment

copy relocation synbol
rel ocated\ n"

may \

- wong ELF machine type: %"

- wong ELF class: %"

- wong ELF data format: %"

" - bad ELF type: %"

- bad ELF flags value: %"

- msmatched ELF fl ags val ue: %"

- mismatched ELF/lib version: %"

- HAL Rl extensions required"

- Sun UtraSPARC I Il extensions required"

- "

- unknown file type"

- unknown capability: %"

- hardware capability (CA_SUNWHW 1) unsupport ed:
" - software capability (CA_SUNWSF 1) unsupported:
" - machine capability (CA_SUNW MACH) unsupport ed:

rel ocation bound \

n"

%"
%"

os"

new usr/src/cnd/ sgs/rtld/ comon/rtld. nsg 4

194
195
196
197
198

200
201
202
203
204
205
206
207
208
209
210

212

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

235

237
238
239
240
241
242
243
244
245

247

249
250

254
255
256

258

@ MSG_LDD_REJ_PLATCAP
@ MSG_LDD _REJ_HWCAP_2
@ MSG_ LDD REJ ARCHI VE
@ MSG_LDD_REJ_KMD

#endi f /* !

@ MBG_LDD_WARN_UNKCAP
@ MBG_LDD_WARN_HWCAP_1

@ MSG_LDD_WARN_SFCAP_1
@ MBG_LDD_WARN_MACHCAP
@ MSG_LDD_WARN_PLATCAP
@ MBG_LDD_WARN_HWCAP_2

Error

®
2
3
Pl
&
5
i

- platformcapability (CA_SUNWPLAT) unsupported: %"
- hardware capability (CA_SUNWHW 2) unsupported: %"
- invalid archive use"

- invalid kernel nodule use"

coder evi ew */

"%: unknown capability: %"

"%: warning: hardware capability (CA_SUNWHW1) \
unsupported: %\n"

": warning: software capability (CA _SUNWSF 1) \
unsupported: %\n"

"os: warning: machine capability (CA_SUNW MACH) \
unsupported: %\n"

"%: warning: platformcapability (CA_SUNW PLAT) \
unsupported: %\n"

"os: warning: hardware capability (CA_SUNWHW?2) \
unsupported: %\n"

rej ecti on nmessages.

"%: wong ELF nachine type %"

@ MS5G_ERR_REJ_CLASS "%: wong ELF class: %"

@ MSG_ERR _REJ_DATA "%: wong ELF data format: %"

@ MSG_ERR _REJ_TYPE "%: bad ELF type: %"

@ MSG_ERR_REJ_BADFLAG "%: bad ELF flags val ue: 9%"

@ MSG_ ERR_REJ_M SFLAG "%: nismatched ELF flags val ue: %"

@ MBG_ERR_REJ_VERSI ON "%: msmatched ELF/lib version: %"

@ MSG_ERR_REJ_HAL "o: HAL Rl extensions required"

@ MSG_ERR_REJ_US3 "o: Sun U traSPARC Il extensions required"

@ MSG_ERR_REJ_STR "Us: Us"

@MSG ERR_REJ_UNKFILE "9%: unknown file type"

@ MSG_ERR_REJ_UNKCAP "%: unknown capability: %"

@MSG ERR REJ_HWCAP 1 "%: hardware capability (CA_SUNWHW 1) unsupported: %"
@MSG ERR_ REJ_SFCAP 1 "% software capability (CA_SUNWSF 1) unsupported: %"
@ MSG_ERR_REJ_MACHCAP "%: machi ne capability (CA SUNW MACH) unsupported: %"
@ MSG_ERR_REJ_PLATCAP "%: platformcapability (CA SUNWPLAT) unsupported: %"
@ MSG_ERR_REJ_HWCAP_2 "%: hardware capability (CA_SUNWHW 2) unsupported: %"
@ MSG_ERR_REJ_ARCHI VE "%: invalid archive use"

@NSG_ERR REJ KMOD "% : invalid kernel nodul e use"

#endi T /* | codereview */

Error TLS failures

@ MSG_TLS_NOSUPPORT ": TLS requirenent failure : TLS support is \

@ MSG TLS_STATBASE
@ MSG_TLS_STATSI ZE

@ MSG TLS STATINIT
Error expand()

@ MBG_ERR_EXPANDL
@ MBG_ERR_EXPAND2

unavai | abl e"

"Us: static TLS failure: object is not part of primary \
link-map list"
"Os: static TLS failure: object |oaded after process \

initialization: size (%fl|x) exceeds avail abl e backup \

reservation (9% [x)"
"U%: static TLS failure:

initialization: can not

obj ect | oaded after process \
accommodate initialized data"

"Us: Us:
"Us: Us:

path nanme too |ong"
token % coul d not be expanded"

Specific dlinfo() nmessages.

@ MBG_DEF_NODEPFOUND
@ MSG_DEF_NOSYMFOUND
@ VBG_DEF_DEPLOADED

"%: no deferred dependency found"
"%: no deferred synbol found"
"%: deferred dependency is already |oaded"

Error diagnostic standard prefixes.

new usr/src/cnd/ sgs/rtld/ common/rtld. msg 5 new usr/src/cnd/ sgs/rtld/ common/rtld. msg

260 @ MSG_ERR_WARNI NG “war ni ng: " 326 @ MSG_FMI_MSGFI LE “lusr/libl/local el %/ LC _MESSAGES/ %s.
261 @ MSG_ERR_GUI DANCE " gui dance:
262 @ MSG_ERR_FATAL "fatal: " 328 @MSG FI L_RTLD "ld.so.1"
263 @ MSG_ERR _ELF "elf error: " 329 @MsSG FIL_LIBC "l'ibc.so. 1"
265 @ MSG_STR_UNKNOMN "(unknown) " 331 @ MSG_SYM ELFERRVMSG "el f_errmsg"
266 @ MSG_STR_NULL "(null)" 332 @ MBG_SYM ELFERRNO "el f_errno"
333 @ MSG_SYM ELFPLTTRACE "elf_plt_trace"
268 # Unused errors - used by |dd. 334 @ MBG_SYM ENVI RON "_environ"
270 @ MSG USD_LDLI BPATH " unused search path=% (LD_LI BRARY_PATH)\n" 336 @ MSG_SYM LAPREI NI T "la_preinit”
271 @ MSG_DUP_LDLI BPATH " unused (duplicate) search path=% \ 337 @ MSG_SYM LAVERSI ON "l a_version"
272 (LD_LI BRARY_PATH) \ n" 338 @ MSG_SYM LAACTI VI TY "la_activity"
273 @ MSG_USD_LDLI BPATHC " unused search path=% (configuration \ 339 @ MSG_SYM LAOBISEARCH "l a_obj search"
274 LD LI BRARY PATH - %)\n" 340 @ MBG_SYM LAOBJOPEN "1 a_obj open”
275 @ MSG_DUP_LDLI BPATHC " unused (duplicate) search path=% (configuration \ 341 @MSG_SYM LAOBJFILTER "la objfilter"
276 LD _LI BRARY_PATH - %)\ n" 342 @ MSG_SYM LAOBJCLCSE "l a_obj cl ose"
277 @ MSG_USD_RUNPATH " unused search path=% (RUNPATH RPATH from\ 343 @ MSG_SYM_LADYNDATA "l a_dyndat a"
278 file %)\n"
345 @ MSG_SYM START " _START_"
280 @ MSG_CAP_| GN_UNKCAP "ignoring unknown capability: %"
347 @ MSG_SPECFI L_DYNPLT "dyn_plt(ld.so.1)"
282 @ END_
349 @ MSG_PTH_LDPROF "/fusr/1ib/link_audit/Idprof.so.1"
284 # The followi ng strings represent reserved words, files, pathnanes and synbols. 350 @ MSG_PTH_LDPROFSE "lusr/libl/securel/ldprof.so.1"
285 # Reference to this strings is via the MSG ORI Q) nacro, and thus no nessage 351 @ MSG_PTH_LI BSYS “/lusr/libl/libsys.so.1"
286 # translation is required. 352 @ MSG_PTH_RTLD "/usr/lib/ld.so.1"
353 @MSG PTH LI B "/1ib"
288 @ MSG_LDD_FI L_PATH "\t %% ¥\ n" 354 @ MSG_PTH_USRLI B “[usr/lib"
289 @ MSG_LDD_FI L_EQUI V "\t% =>\t %%%s\n" 355 @ MSG_PTH_LI BSE "/liblsecure”
290 @ MBG_LDD_FMI_PATHL " %;" 356 @ MSG_PTH_USRLI BSE "/usr/libl/secure"
291 @ MSG_LDD_FMI_PATHN Y 357 @ MSG_PTH_DEVNULL "/dev/nul "
292 @MSG _LDD_INIT_FMI_FI LE "\t°/®\ n" 358 @ MSG_PTH_CONFI G "/var/1d/ld.config"
293 @ MSG_LDD_VER_FOUND "\t% (%) =>\t %\n" 359 @ MSG_PTH_VARTMP "/ var/tnp"
295 @ MSG_STR_EMPTY " 361 @ MSG_ORG_CONFI G "$ORIG N 1d.config. %"
296 @ MSG_STR_NEGATE "
297 @ MsG_STR_ZERO "o" 363 @MSG _LD_AUDI T "AUDI T"
298 @ MBG_STR_HEX " Ox" 364 @ MSG LD _AUDI T_ARGS " AUDI T_ARGS"
299 @ MSG_STR _ELF "ELF" 365 @ MSG LD BI ND LAZY "Bl ND_LAZY"
300 @ MSG_STR_EMSGFORL "Us: Y5 U8 366 @ MSG LD _BI ND_NOW " Bl ND_NOW
301 @ M5G_STR_EMSGFOR2 "Us: Us" 367 @ MsG_LD_BI ND_NOT " Bl ND_NOT"
302 @ MSG_STR_HEXNUM "0123456789abcdef " 368 @ MSG_LD_BI NDI NGS " Bl NDI NGS"
303 @ MSG_STR_NL "\ n" 369 @ MSG _LD_CONFGEN " CONFGEN'
304 @ MSG_STR_SLASH e 370 @ MSG_LD_CAP_FI LES " CAP_FI LES"
305 @MSG STR DELIM T v 371 @MSG_LD_CONFI G " CONFI G'
306 @ MSG_STR_ONE "1t 372 @ MSG_LD_DEBUG " DEBUG'
373 @ MSG_LD_DEBUG OUTPUT " DEBUG_OUTPUT"
308 @MSG CAP_DELIM T " 374 @ MSG_LD_DEMANGLE " DEMANGLE"
375 @ MSG_LD_FLAGS " FLAGS"
310 @ MSG_SUNW OST_SGS " SUNW OST_SGS" 376 @ MSG_LD_HWCAP " H\CAP"
311 @ MSG_SUNW OST_OSLI B " SUNW OST_OSLI B" 377 @MSG LD INT "INT
378 @MSG_LD_LI BPATH " LI BRARY_PATH"
313 @ MSG_TKN_CAPABI LI TY " CAPABI LI TY" 379 @ MSG LD _LQADAVAI L " LOADAVAI L"
314 @ MSG_TKN_MACHI NE " MACHI NE" 380 @MSG LD _LOADFLTR " LOADFLTR'
315 @ MSG_TKN_PLATFORM " PLATFORM' 381 @ MSG_LD_MACHCAP " MACHCAP"
316 @ MSG TKN ORI G N "ORI G N' 382 @MSG LD _NOAUDI T " NOAUDI T"
317 @MSG TKN_ | SALI ST "1 SALI ST" 383 @ MSG_LD_NOAUXFLTR " NOAUXFLTR"
318 @ MSG_TKN_OSNAVE " OSNAME" 384 @ MSG_LD_NOBAPLT " NOBAPLT"
319 @ MSG_TKN OSREL " OSREL" 385 @ MBG_LD_NOCONFI G " NOCONFI G
320 @ MSG_TKN_HWCAP " HWCAP" 386 @ MSG_LD_NODI RCONFI G " NODI RCONFI G
321 @ MSG_TKN_BI NDI NGS "bi ndi ngs" 387 @ MSG_LD_NODI RECT " NODI RECT"
322 @ MSG_TKN_PCSI X " PCS| X" 388 @ MSG_LD_NCENVCONFI G " NOENVCONFI G'
323 @ MSG_TKN_DOTDOT o 389 @ MSG_LD_NCENVI RON " NOENVI RON'
390 @ MSG_LD_NOFLTCONFI G " NOFLTCONFI G'
325 @ MSG_FMI_CWD o 391 @ MSG_LD_NOLAZY " NOLAZYLOAD'

new usr/src/cnd/ sgs/rtld/ common/rtld. msg

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

412

414
415

417

419
420
421
422
423
424

426
427
428

430
431

@ M5G_LD_NOOBJALTER
@ M5
G_LD_NOUNRESWEAK
LD_NOVERSI ON
LD_PLATCAP

LD PRELOAD

LD _PROFI LE

LD _PROFI LE_QUTPUT
LD _SFCAP

:

e}
%}
2

D TRACE_OBJS

D TRACE_OBJS E

D_TRACE_OBJS

D _TRACE_PTHS

O
S
2

rrrrrr—

D_UNUSED
LD_VERBOSE
G_LD_DEFERRED

@ MBG_LD_WARN
@ MBG_LD_BRAND_PREFI X

@ MBG LC ALL
@ MBG_LC_MESSAGES

@ M5G_EMG_ENOVEM

IOIOIOIOIOIOIOIOIOIOIOIOIOIOI

90000R0E0R0EOEOO
RARRRARRRRRRRR R R

@ MBG_DBG Pl D

G)
8
pyj
i
u

DBG_UNDEF
DBG LM D
DBG_THREAD
DBG FI LE

O

) BASE
) LDSO
) ALT

O

O

) FMT
MAXED

90 QR 9RPA®
- -
= L

O

O

“ NOOBJALTER"
* NOPAREXT"

" NOUNRESVEAK"

“ NOVERS| ON'

“ PLATCAP"

* PRELQAD"

" PROFI LE"

* PROFI LE_OUTPUT"

“ SFCAP"

" Sl GNAL"

" TRACE_LOADED OBJECTS"

" TRACE_LOADED_OBJECTS E'
“ TRACE_LOADED_OBJECTS_A"
“ TRACE_SEARCH_PATHS"

" UNREF"

* UNUSED"

* VERBOSE"

" DEFERRED"

R

" BRAND_"

"ALL="
" MESSAGES="

“internal: Not enough space"

"9s. 9. 5d"

" BASE"
" LDSO'
" ALT"

" % %d”
" ALTMAXEDQUT"

new usr/src/ man/ manl/ld. 1 1

R R R R

59984 Sun Feb 24 19:19:16 2019
new usr/src/ man/ manl/ld. 1

I d:

i npl ement -ztype and rework option parsing

R R

O©CONOUITAWNE

"\ te

.\" Copyright 1989 AT&T

.\" Copyright (c) 2009, Sun Mcrosystens, Inc. Al Rights Reserved

.\" Copyright (c) 2012, Joyent, Inc. Al R ghts Reserved

.\" The contents of this file are subject to the terns of the Conmon Devel opnment
.\" See the License for the specific |anguage governing perm ssions and |intat
.\" the fields enclosed by brackets "[]" replaced with your own identifying info
.TH LD 1 "May 13, 2017"

. SH NAME

Id \- link-editor for object files

. SH SYNCPSI S

.LP

. nf

\fBIA\fR [\fB-32\fR | \fB-64\fR] [\fB-a\fR| \fB-r\fR] [\fB-b\fR] [\fB-B\fRdirec
\fB-B\fR dynamic | static] [\fB-B\fR elimnate] [\fB-B\fR group] [\fB-B\fR | oca
\fB-B\fR reduce] [\fB-B\fR synmbolic] [\fB-c\fR \flname\fR] [\fB-QfR [\fB-d\fR
\fB-DIfR \fltoken\fR ...] [\fB-e\fR\flepsymfR] [\fB-f\fR\flnane\fR | \fB-F\f
\EB-i\fR] [\fB-I\fR\flnane\fR] [\fB-I\fR\fIX\fR] [\fB-L\fR \flpath\fR] [\fB-m
\VfB-MfR \fIstring\fR] [\fB-o\fR \floutfile\fR] [\fB-p\fR \flauditlib\fR [\fB-
\fB-QfRy | n] [\fB-RfR \flpath\fR] [\fB-s\fR] [\fB-S\fR \flsupportlib\fR [\
\fB-u\fR \flsymmame\fR] [\fB-WfR [\fB-Y PA\fRfl,dirlist\fR] [\fB-z\fR absexec
\fB-z\fR al lextract | defaultextract | weakextract] [\fB-z\fR altexec64]
\fB-zZ\fR aslr[=\flstate\fR]] [\fB-z\fR assert-deflib] [\fB-z\fR assert-deflib=
\fB-z\fR conbrel oc | noconbreloc] [\fB-z\fR defs | nodefs]

\fB-zZ\fR direct | nodirect] [\fB-z\fR endfiltee]

\fB-z\fR fatal -warnings | nofatal-warnings] [\fB-z\fR finiarray=\flfunction\fR
\fB-z\fR gl obal audit] [\fB-z\fR groupperm | nogrouppern

\fB-z\fR guidance[=\flidI\fR \flid2\fR ..] [\fB-z\fR help

\fB-z\fRignore | record] [\fB-z\fR initarray=\flfunction\fR] [\fB-zZ\fR initfir
\fB-z\fR interpose] [\fB-z\fR | azyl oad | nol azyl oad]

\fB-z\fR Id32=\flargl\fR \flarg2\fR,...] [\fB-z\fR Id64=\flargl\fR \flarg2\fR, .
\fB-zZ\fR loadfltr] [\fB-z\fR nmul defs] [\fB-z\fR noconpstrtab] [\fB-z\fR nodefau
\fB-z\fR nodel ete] [\fB-z\fR nodl open] [\fB-z\fR nodunp] [\fB-z\fR noldynsyni
\fB-z\fR nopartial] [\fB-z\fR noversion] [\fB-zZ\fR now [\fB-z\fR origin]
\fB-z\fR preinitarray=\flfunction\fR] [\fB-z\fR redlocsyn] [\fB-z\fR rel axrel oc
\fB-z\fR rescan-now] [\fB-z\fR recan] [\fB-z\fR rescan-start \fl\& ..\fR\fB-z\
\fB-z\fR target =sparc| x86] [\fB-z\fR text | textwarn | textoff]

\fB-z\fR type=\flexec\fR \flkmod\f R \flrel oc\fR \flshared\fR]

#endif /* | codereview */

[\fB-z\fR verbose] [\fB-z\fR wap=\flsynbol\fR] \flfilename\fR. ..

fi

. SH DESCRI PTI ON

.LP

The link-editor, \fBId\fR conbines relocatable object files by resolving
synbol references to synbol definitions, together with performng relocations.
\fBld\fR operates in tw npdes, static or dynam c, as governed by the \fB-d\fR
option. In all cases, the output of \fBId\fRis left inthe file \fBa.out\fR by
default. See NOTES.

.sp

. LP

In dynanmic node, \fB-dy\fR, the default, relocatable object files that are
provi ded as arguments are conbined to produce an executable object file. This
file is linked at execution with any shared object files that are provided as
argurments. If the \fB-GfR option is specified, relocatable object files are
conbi ned to produce a shared object. Wthout the \fB-GfR option, a dynanmic
executabl e is created.

.sp

. LP

In static node, \fB-dn\fR, relocatable object files that are provided as
argunments are conbined to produce a static executable file. If the \fB-r\fR

new usr/src/ man/ manl/ld. 1

option is specified, relocatable object files are conbined to produce one

rel ocatabl e object file. See \fBStatic Executables\fR

.sp

.LP

Dynamic linking is the npost comon nodel for conbining rel ocatable objects, and
the eventual creation of processes within Solaris. This environnent tightly
couples the work of the link-editor and the runtine linker, \fBld.so. 1\fR(1).
Both of these utilities, together with their related technol ogi es and
utilities, are extensively documented in the \flLinker and Libraries Guide\fR
.sp

.LP

If any argunment is a library, \fBId\fR by default searches the library exactly
once at the point the library is encountered on the argunent list. The library
can be either a shared object or relocatable archive. See \fBar.h\fR(3HEAD)).
.sp

.LP

A shared object consists of an indivisible, whole unit that has been generated
by a previous link-edit of one or nore input files. Wien the |ink-editor
processes a shared object, the entire contents of the shared object becone a

| ogi cal part of the resulting output file inmage. The shared object is not
physically copied during the link-edit as its actual inclusion is deferred
until process execution. This |ogical inclusion neans that all symbol entries
defined in the shared object are nade available to the |ink-editing process.
See Chapter 4, \flShared Objects,\fRin \flLinker and Libraries Guide\fR

.sp

.LP

For an archive library, \fBId\fR | oads only those routines that define an
unresol ved external reference. \fBId\fR searches the synbol table of the
archive library sequentially to resolve external references that can be
satisfied by library nmenbers. This search is repeated until no external
references can be resolved by the archive. Thus, the order of nenbers in the
library is functionally uninportant, unless nultiple library nenbers exist that
define the sane external synbol. Archive libraries that have interdependencies
can require multiple command |line definitions, or the use of one of the
\fB-z\fR \fBrescan\fR options. See \flArchive Processing\fR in \flLinker and
Libraries Guide\fR

.sp

.LP

\fBId\fRis a cross link-editor, able to link 32-bit objects or 64-bit objects,
for Sparc or x86 targets. \fBId\fR uses the \fBELF\fR cl ass and nachi ne type of
the first rel ocatabl e object on the command line to govern the node in which to
operate. The mixing of 32-bit objects and 64-bit objects is not permtted.
Simlarly, only objects of a single machine type are allowed. See the
\fB-32\fR, \fB-64\fR and \fB-z target\fR options, and the \fBLD NCEXEC 64\fR
environment vari abl e.

.SS "Static Executabl es"

.LP

The creation of static executables has been di scouraged for nany rel eases. In
fact, 64-bit systemarchive libraries have never been provided. Because a
static executable is built against systemarchive libraries, the executable
contains systeminplenentation details. This self-contai nment has a nunber of
dr awbacks.

.RS +4

.el o

The executable is imune to the benefits of system updates delivered as shared
obj ects. The executable therefore, nust be rebuilt to take advantage of many
system i nprovenents.

RE

RS +4

. o
The ability of the executable to run on future rel eases can be conproni sed.
.RE

new usr/src/ man/ manl/ld. 1

128 . RS +4

129 . TP

130 .ie t \(bu

131 .el o

132 The duplication of systeminplenmentation details negatively affects system
133 performance.

134 .RE

135 .sp

136 . LP

137 Wth Solaris 10, 32-bit systemarchive libraries are no | onger provided.
138 Wthout these libraries, specifically \fBlibc.a\fR the creation of static
139 executables is no | onger achievabl e without specialized system know edge.
140 However, the capability of \fBId\fR to process static |inking options, and the
141 processing of archive libraries, remins unchanged.

142 . SH OPTI ONS

143 . LP

144 The fol |l owi ng options are supported.

145 . sp

146 .ne 2

147 .na

148 \fB\fB-32\fR | \fB-64\fRfR

149 . ad

150 .sp .6

151 . RS 4n

152 Creates a 32-bit, or 64-bit object.

153 .sp

154 By default, the class of the object being generated is determined fromthe
155 first \fBELF\fR object processed fromthe comrand line. If no objects are
156 specified, the class is determined by the first object encountered within the
157 first archive processed fromthe conmand line. |If there are no objects or
158 archives, the link-editor creates a 32-bit object.

159 .sp

160 The \fB-64\fR option is required to create a 64-bit object solely froma
161 mapfile.

162 .sp

163 This \fB-32\fR or \fB-64\fR options can also be used in the rare case of
164 linking entirely froman archive that contains a mxture of 32 and 64-bit
165 objects. If the first object in the archive is not the class of the object that
166 is required to be created, then the \fB-32\fR or \fB-64\fR option can be used
167 to direct the link-editor. See \flThe 32-bit |ink-editor and 64-bit

168 link-editor\fR in \flLinker and Libraries CGuide\fR

169 . RE

171 .sp

172 .ne 2

173 .na

174 \fB\fB-a\fRfR

175 . ad

176 .sp .6

177 . RS 4n

178 In static node only, produces an executable object file. Undefined references
179 are not pernmitted. This option is the default behavior for static node. The
180 \fB-a\fR option can not be used with the \fB-r\fR option. See \fBStatic

181 Execut abl es\f R under DESCRI PTI ON.

182 . RE

184 .sp

185 .ne 2

186 . na

187 \fB\fB-b\fR fR

188 . ad

189 .sp .6

190 . RS 4n

191 In dynanic node only, provides no special processing for dynam c executabl e
192 rel ocations that reference synbols in shared objects. Wthout the \fB-b\fR
193 option, the link-editor applies techniques within a dynam c executabl e so that

new usr/src/ man/ manl/ld. 1

194
195
196
197
198

the text segment can remain read-only. One technique is the creation of special
posi tion-independent rel ocations for references to functions that are defined
in shared objects. Another technique arranges for data objects that are defined
in shared objects to be copied into the nemory inmage of an executabl e at
runtine.

199 .s

200
201
202

p
The \fB-b\fR option is intended for specialized dynanic objects and is not
recommended for general use. Its use suppresses all specialized processing
required to ensure an object’s shareability, and can even prevent the

203 rel ocation of 64-bit executables.

204 . RE

206 .sp

207 .ne 2

208 . na

209 \fB\fB-B\fR \fBdirect\fR | \fBnodirect\fRfR

210 . ad

211 .sp .6

212 . RS 4n

213 These options govern direct binding. \fB-B\fR \fBdirect\fR establishes direct
214 binding information by recording the relationship between each synbol reference
215 together with the dependency that provides the definition. In addition, direct
216 binding information is established between each synbol reference and an

217 associ ated definition within the object being created. The runtinme |inker uses

218
219

this information to search directly for a synbol in the associated object
rather than to carry out a default synmbol search.

220 .sp

221 Direct binding information can only be established to dependencies specified
222 with the link-edit. Thus, you should use the \fB-z\fR \fBdefs\fR option.

223 hjects that wish to interpose on synbols in a direct binding environnment
224 shoul d identify thenselves as interposers with the \fB-z\fR \fBinterpose\fR
225 option. The use of \fB-B\fR \fBdirect\fR enables \fB-z\fR \fBl azyl oad\fR for

226

al | dependenci es.

227 .sp

228 The \fB-B\f R \fBnodirect\fR option prevents any direct binding to the

229 interfaces offered by the object being created. The object being created can
230 continue to directly bind to external interfaces by specifying the \fB-z\fR
231 \fBdirect\fR option. See Appendix D, \flD rect Bindings,\fRin \flLinker and
232 Libraries Guide\fR

233 . RE

235 .sp

236 .ne 2

237 .na

238 \fB\fB-B\fR \fBdynamic\fR | \fBstatic\fRfR

239 . ad

240 .sp .6

241 . RS 4n

242 Options governing library inclusion. \fB-B\fR \fBdynam c\fR is valid in dynamc

243 node only. These options can be specified any nunber of tines on the conmand
244 line as toggles: if the \fB-B\fR \fBstatic\fR option is given, no shared
245 obj ects are accepted until \fB-B\fR \fBdynami c\fR is seen. See the \fB-I\fR
246 opt| on.

247 . RE

249 .sp

250 .ne 2

251 .na

252 \fB\fB-B\fR \fBelimnate\f R fR

253 . ad

254 .sp .6

255 . RS 4n

256 Causes any gl obal synbols, not assigned to a version definition, to be

257
258
259

elimnated fromthe synbol table. Version definitions can be suppl ied by means
of a \fBmapfile\fR to indicate the global synmbols that should remain visible in
the generated object. This option achieves the same synbol elimnation as the

new usr/src/ man/ manl/ld. 1

260 \flauto-elimnation\fR directive that is available as part of a \fBmapfile\fR
261 version definition. This option can be useful when conbining versioned and

262 non-versioned rel ocatabl e objects. See also the \fB-B\f R\fBl ocal\fR option and
263 the \fB-B\f R \fBreduce\fR option. See \flDefining Additional Synbols wth a
264 mapfile\fR in \flLinker and Libraries Cuide\fR

265 . RE

267 .sp

268 .ne 2

269 .na

270 \fB\fB-B\f R \ f Bgroup\ f R f R

271 . ad

272 .sp .6

273 . RS 4n

274 Establishes a shared object and its dependencies as a group. Objects within the
275 group are bound to other nenbers of the group at runtinme. This node is simlar
276 to adding the object to the process by using \fBdlopen\fR(3C) with the

277 \f BRTLD_CGROUP\f R node. An object that has an explicit dependency on a object
278 identified as a group, becones a nenber of the group.

279 .sp

280 As the group nust be self contained, use of the \fB-B\fR \fBgroup\fR option
281 al so asserts the \fB-z\fR \fBdefs\fR option.

282 . RE

284 .sp

285 .ne 2

286 .na

287 \fB\fB-B\fR \fBlocal \fR fR

288 . ad

289 .sp .6

290 . RS 4n

291 Causes any gl obal synbols, not assigned to a version definition, to be reduced
292 to local. Version definitions can be supplied by neans of a \fBmapfile\fR to
293 indicate the global symbols that should remain visible in the generated object.
294 This option achieves the sane synbol reduction as the \flauto-reduction\fR
295 directive that is available as part of a \fBmapfile\fR version definition. This
296 option can be useful when conbining versioned and non-versioned rel ocatabl e
297 objects. See also the \fB-B\fR\fBelinmnate\fR option and the \fB-B\fR

298 \fBreduce\fR option. See \flDefining Additional Synmbols with a mapfile\fR in
299 \flLinker and Libraries Guide\fR

300 . RE

302 .sp

303 .ne 2

304 .na

305 \fB\fB-B\fR \ fBreduce\fR fR

306 . ad

307 .sp .6

308 . RS 4n

309 When generating a rel ocatabl e object, causes the reduction of synbolic

310 informati on defined by any version definitions. Version definitions can be

311 supplied by nmeans of a \fBnapfile\fR to indicate the gl obal synbols that should
312 remain visible in the generated object. By default, when a rel ocatabl e object
313 is generated, version definitions are only recorded in the output inmage. The
314 actual reduction of synmbolic information is carried out when the object is used
315 in the construction of a dynam c executable or shared object. The \fB-B\fR
316 \fBreduce\fR option is applied automatically when a dynam c executable or

317 shared object Is created.

318 . RE

320 .sp

321 .ne 2

322 .na

323 \fB\fB-B\fR \ fBsynbol i c\f R fR

324 .ad

325 .sp .6

new usr/src/ man/ manl/ld. 1

326
327
328
329
330
331
332
333
334
335
336
337
338
339

341
342
343
344
345
346
347
348
349
350
351

353
354
355
356
357
358
359
360
361

363
364
365
366
367
368
369
370
371
372
373
374

376
377
378
379
380
381
382
383
384
385
386

388
389
390
391

.RS 4n

In dynani ¢ node only. Wen buil ding a shared object, binds references to gl obal
synbols to their definitions, if available, within the object. Normally,
references to global synmbols within shared objects are not bound until runtine,
even if definitions are available. This nodel allows definitions of the same
synmbol in an executable or other shared object to override the object’s own
definition. \fBId\fR i ssues warnings for undefined synbols unless \fB-z\fR

\ fBdefs\fR overri des.

.sp
The \fB-B\fR \fBsynbolic\fR option is intended for specialized dynanic objects
and is not recommended for general use. To reduce the runtinme relocation
processing that is required an object, the creation of a version definition is
recommended.

. RE

.sp
.ne 2

.na
\fB\fB-c\fR \flnane\f R f R

.ad

.sp .6

. RS 4n

Records the configuration file \flnane\fR for use at runtine. Configuration
files can be enployed to alter default search paths, provide a directory cache,
together with providing alternative object dependencies. See \fBcrle\fR(1).

. RE

.sp
.ne 2

.na
\fB\fB-QAfRfR

.ad

.sp .6

.RS 4n

Demangl es C++ synbol nanes di spl ayed in diagnostic nessages.
.RE

.sp
.ne 2

.na
\fB\fB-d\fR\fBy\fR | \fBn\fRfR
.ad

.sp .6

. RS 4n

Wien \fB-d\fR \fBy\fR, the default, is specified, \fBl d\fR uses dynamc
l'inking. When \fB-d\fR\fBn\fR is specified, \fBld\fR uses static |linking. See
\fBStatic Executabl es\fR under DESCRI PTION, and \fB-B\fR

\fBdynami c\fR/\fBstatic\fR

. RE

.sp
.ne 2

.na

\fB\fB-D\fR \fltoken\fR ...\fR

.ad

.sp .6

. RS 4n

Prints debugging information as specifi
error. The special token \fBhelp\fR ind
avai |l abl e. See \fl Debugging Aids\fR in
. RE

ed by each \fltoken\fR to the standard
cates the full list of tokens
f

i
\flLinker and Libraries Guide\fR

.sp
.ne 2

.na
\fB\fB-e\fR \flepsym fRfR

new usr/src/ man/ manl/ld. 1

392
393
394
395
396
397
398
399

. ad

. br

.na

\fg\fB--entry\fR\erpsyr’r\fR\fR

.a

.sp .6

. RS 4n

Sets the entry point address for the output file to be the synbol \flepsymfR

400 . RE

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

.sp
.ne 2

. na
\fB\fB-f\fR \flnane\fRfR
.ad
. br

.na
\fB\fB--auxiliary\fR \flname\f R fR

.ad

.Sp .6

.RS 4n

Useful only when building a shared object. Specifies that the synbol table of
the shared object is used as an auxiliary filter on the synbol table of the
shared obj ect specified by \flnane\fR Miltiple instances of this option are
al |l owed. This option can not be conbined with the \fB-F\fR option. See
\flGenerating Auxiliary Filters\fR in \flLinker and Libraries Guide\fR

418 . RE

420
421
422
423
424
425
426
427

428 .

429
430
431
432
433
434
435
436

438
439
440
441
442
443
444
445
446
447
448
449
450
451

453
454
455
456
457

.sp
.ne 2

.na
\fB\fB-F\fR \flnane\f R fR
.ad
. br

. na
\fB\fB--filter\fR \flname\fR fR
ad

.sp .6

. RS 4n

Useful only when building a shared object. Specifies that the synbol table of
the shared object is used as a filter on the synbol table of the shared object
specified by \flname\fR Miltiple instances of this option are allowed. This
option can not be conbined with the \fB-f\fR option. See \fl Generating Standard
Filters\fRin \flLinker and Libraries Guide\fR

. RE

.sp
.ne 2

. na
\fB\fB-GfRfR
.ad
. br

.na

\fB\fB-shared\fRfR

.ad

.sp .6

. RS 4n

I'n dynami c node only, produces a shared object. Undefined synbols are allowed.
See Chapter 4, \flShared bjects,\fR in \flLinker and Libraries CGuide\fR

. RE

.sp
.ne 2

. na
\fB\fB-h\fR \flnane\f R fR
.ad

new usr/src/ man/ manl/ld. 1

458

459 .

460
461
462
463
464
465
466
467
468
469
470

472
473
474
475
476
477
478
479
480
481
482

484
485
486
487
488
489
490
491

492 .

493
494
495
496
497
498
499
500

. br

na
\fB\fB--sonane\fR \flname\fR fR

.ad

.sp .6

.RS 4n

I'n dynamic node only, when building a shared object, records \flnane\fR in the
obj ect’s dynam c section. \flname\fR is recorded in any dynam c objects that
are linked with this object rather than the object’s file system nane.
Accordingly, \flnane\fR is used by the runtime |linker as the nane of the shared
object to search for at runtine. See \flRecording a Shared Object Name\fR in
\flLinker and Libraries GQuide\fR

.RE

.sp
.ne 2

.na
\fB\fB-i\fRfR

.ad

.Sp .6

.RS 4n

I gnores \fBLD LI BRARY_PATH\fR. This option is useful when an

\fBLD LI BRARY_PATH\fR setting is in effect to influence the runtine library
search, which would interfere with the link-editing being perforned.

.RE

.sp
.ne 2

. na
\fB\fB-I\fR \flnane\fRfR
.ad
. br

.na
\fB\fB--dynamic-linker\fR \flnane\fRfR
ad

.sp .6

. RS 4n

When buil ding an executable, uses \flnane\fR as the path nanme of the
interpreter to be witten into the program header. The default in static node
is no interpreter. In dynam c node, the default is the nane of the runtine
l'inker, \fBld.so.1\fR(1). Either case can be overridden by \fB-I\fR \flnane\fR
\fBexec\fR(2) loads this interpreter when the \fBa.out\fR is | oaded, and passes
control to the interpreter rather than to the \fBa.out\fR directly.

501 . RE

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

.sp
.ne 2

.na
\fB\fB-I\fR\fIX\fRfR
.ad
. br

. na
\fB\fB--library\fR\fIX\fRfR
.ad

.sp .6
.RS 4n
Searches a library \fBIib\fRfIX\fRfB\ & so\fR or \fBIib\fRfIXx\fRfB\& a\fR
the conventional nanes for shared object and archive |ibraries, respectively.
I'n dynami c node, unless the \fB-B\fR \fBstatic\fR option is in effect, \fBId\fR
sear ches each directory specified in the library search path for a
\fBIib\fRfIX\fRfB\ & so\fR or \fBIib\fRfIX\fRfB\& a\fR file. The directory
search stops at the first directory containing either. \fBl d\fR chooses the
file ending in \fB\& so\fRif \fB-I\fRfIx\fR expands to two files wth nanes

i

of the form\fBIib\fRfIX\fRfB\ & so\fR and \fBIib\fRfIX\fRfB\ & a\fR If no
\fBIib\fRfIX\fRfB\& so\fR is found, then \fBl d\fR accepts
\fBIib\fRfIX\fRfB\& a\fR In static node, or when the \fB-B\IfR \fBstatic\fR

new usr/src/ man/ manl/ld. 1

524
525
526
527
528

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

553
554
555
556
551
558
559
560
561

option is in effect, \fBId\fR selects only the file ending in \fB\& a\fR
\fBld\fR searches a |ibrary when the library is encountered, so the placenent
of \fB-I\fRis significant. See \flLinking Wth Additional Libraries\fRin
\flLinker and Libraries Cuide\fR

.RE

. Sp
.ne 2

. na
\fB\fB-L\fR \fIpath\fRfR
.ad
. br

.na
\fB\fB--library-path\fR \flpath\fRfR

.ad

.sSp .6

.RS 4n

Adds \flpath\fR to the |ibrary search directories. \fBl d\fR searches for
libraries first in any directories specified by the \fB-L\fR options and then
in the standard directories. This option is useful only if the option precedes
the \fB-I1\fR options to which the \fB-L\fR option applies. See \fID rectories
Searched by the Link-Editor\fR in \flLinker and Libraries Guide\fR

.sp
The environnent variable \fBLD LI BRARY_PATH\ fR can be used to suppl ement the
l'ibrary search path, however the \fB-L\fR option is recomended, as the
environment variable is also interpreted by the runtime environnent. See

\ f BLD_LI BRARY_PATH\ f R under ENVI RONVENT VARI ABLES.

. RE

.sp
.ne 2

. na
\fB\fB-mMfRfR
.ad

.sp .6

. RS 4n

Produces a nenory map or listing of the input/output sections, together with
any non-fatal multiply-defined synmbols, on the standard out put.

562 . RE

564
565
566
567
568
569
570
571
572
573
574
5145]
576

578
579
580
581
582
583
584
585
586
587
588
589

.sp
.ne 2

. ha
\fB\fB-MfR \flmapfile\fRfR
.ad

.sp .6

. RS 4n

Reads \flmapfile\fR as a text file of directives to \fBId\fR This option can
be specified nultiple times. If \flmapfile\fRis a directory, then all regul ar
files, as defined by \fBstat\fR(2), wthin the directory are processed. See
Chapter 9, \flMapfile Option,\fR in \flLinker and Libraries Guide\fR Exanple
mapfiles are provided in \fB/usr/lib/Id\fR See FILES.

. RE

.sp
.ne 2

.na
\fB\fB-MfR \flstring\fRfR

.ad

.sp .6

. RS 4n

This option causes a \fBDT_NEEDED\fR entry to be added to the \fB\ & dynam c\fR
section of the object being built. The value of the \fBDI_NEEDED\fR string is
the \flstring\fR that is specified on the comrmand |line. This option is position
dependent, and the \fBDT_NEEDED\fR \fB\ & dynam c\fR entry is relative to the

ot her dynam c dependenci es di scovered on the link-edit line. This option is

new usr/src/ man/ manl/ld. 1 10

590
591
592

594
595
596
597
598
599

600 .

601
602
603
604
605
606
607

609
610
611
612
613
614
615
616
617
618
619
620
621
622

624
625
626
627
628
629
630
631
632
633
634
635
636
637

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

655

useful for specifying dependencies wi thin device driver relocatable objects
when conbined with the \fB-dy\fR and \fB-r\fR opti ons.
. RE

.sp
.ne 2

. na

\fB\fB-o\fR \floutfile\fRfR

.ad

. br

na

\fg:\fB--output\fR \floutfile\fRfR
.a

.sp .6

. RS 4n

Produces an output object file that is naned \floutfile\fR The name of the
default object file is \fBa.out\fR

. RE

.sp
.ne 2

. ha
\fB\fB-p\fR \flauditlib\fRfR
ad

.sp .6

. RS 4n

ldentifies an audit library, \flauditlib\fR This audit library is used to
audit the object being created at runtine. A shared object identified as
requiring auditing with the \fB-p\fR option, has this requirenent inherited by
any object that specifies the shared object as a dependency. See the \fB-P\fR
option. See \flRuntine Linker Auditing Interface\fR in \flLinker and Libraries
GQui de\ fR.

. RE

.sp
.ne 2

.na
\fB\fB-P\fR \flauditlib\fRfR

.ad

.sp .6

. RS 4n

Identifies an audit library, \flauditlib\fR This audit library is used to
audit the dependencies of the object being created at runtime. Dependency
auditing can al so be inherited from dependencies that are identified as
requiring auditing. See the \fB-p\fR option, and the \fB-z\fR \fBgl obal audi t\fR
option. See \flRuntime Linker Auditing Interface\fR in \flLinker and Libraries
CGui de\fR

. RE

.sp
.ne 2

.nha
\fB\fB-QfR\fBy\fR | \fBn\fRfR
.ad

.sp .6

.RS 4n

Under \fB-QfR\fBy\fR, an \fBident\fR string is added to the \fB\& conment\
section of the output file. This string identifies the version of the \fBld\
used to create the file. This results in nultiple \fBld\fR \fBi dents\fR when
there have been multiple Iinking steps, such as when using \fBId\fR\fB-r\fR
This identification is identical with the default action of the \fBcc\fR
command. \fB-Q fR \fBn\fR suppresses version identification. \fB\& coment\fR
sections can be mani pul ated by the \fBncs\fR(1) utility.

. RE

fR
fR

.sp

new usr/src/ man/ manl/ld. 1 11

656
657
658
659
660

661 .

662
663
664
665
666
667
668
669

671
672
673
674
675
676

677 .

678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721

.ne 2

.na
\fB\fB-r\fRfR
.ad
. br

na
\fB\fB--relocatable\fRfR

.ad

.sp .6

. RS 4n

Conbi nes rel ocatabl e object files to produce one rel ocatable object file.

\fBl d\fR does not conplain about unresolved references. This option cannot be
used with the \fB-a\fR option.

. RE

.sp
.ne 2

.na
\fB\fB-RfR \flpath\fRfR
.ad
. br

na
\fB\fB-rpath\fR \flpath\fRfR
ad

.sp .6

. RS 4n

A col on-separated |ist of directories used to specify library search
directories to the runtinme linker. If present and not NULL, the path is
recorded in the output object file and passed to the runtinme linker. Miltiple
i nstances of this option are concatenated together with each \flpath\fR
separated by a colon. See \flDirectories Searched by the Runtime Linker\fR in
\flLinker and Libraries Guide\fR

.sp
The use of a runpath within an associated object is preferable to setting

gl obal search paths such as through the \fBLD LI BRARY_PATH f R envi r onnent
variable. Only the runpaths that are necessary to find the objects dependencies
shoul d be recorded. \fBIdd\fR(1) can al so be used to di scover unused runpaths
in dynam c objects, when used wth the \fB-UWfR option.

.sSp

Various tokens can al so be supplied with a runpath that provide a flexible
neans of identifying systemcapabilities or an objects |ocation. See Appendi x
C, \flEstablishing Dependencies with Dynam c String Tokens,\fR in \flLinker and
Libraries Guide\fR The \fBSORIG N\fR token is especially useful in allow ng
dynam c objects to be relocated to different locations in the file system

. RE

.sp
.ne 2

. na
\fB\fB-s\fRfR
.ad
. br

.na

\fB\fB--strip-al I\fRfR

.ad

.sp .6

. RS 4n

Strips symbolic information fromthe output file. Any debugging information,
that is, \fB\&line\fR \fB\ & debug*\fR and \fB\ & stab*\fR sections, and their
associ ated rel ocation entries are renoved. Except for relocatable files, a
synbol table \fBSHT_SYMIAB\fR and its associated string table section are not
created in the output object file. The elimnation of a \fBSHT_SYMIAB\fR synbol
tabl e can reduce the \fB\& stab*\fR debugging infornmation that is generated
using the conpiler drivers \fB-g\fR option. See the \fB-z\fR \fBredl ocsym fR
and \fB-z\fR \fBnol dynsym f R opti ons.

. RE

new usr/src/ man/ manl/ld. 1 12

723
724
725
726
727
728
729
730
731
732
733
734
735

737
738
739
740
741
742
743
744
745

.sp
.ne 2

.na
\fB\fB-S\fR \fIsupportlib\fRfR
.ad

.Sp .6

. RS 4n

The shared object \flsupportlib\fRis |oaded with \fBl d\fR and gi ven
information regarding the |inking process. Shared objects that are defined by
using the \fB-S\fR option can al so be supplied using the \fBSGS_SUPPORT\ f R
environment variable. See \flLink-Editor Support Interface\fR in \flLinker and
Li braries Cuide\fR

. RE

.sp
.ne 2

.na
\fB\fB-t\fRfR

.ad

.sp .6

. RS 4n

Turns off the warning for multiply-defined synbols that have different sizes or
different alignnents.

746 . RE

748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

767
768
769
770
771
772
773
774
775
776
777
778

.sp
.ne 2

.na
\fB\fB-u\fR \flIsymane\f R fR
.ad
. br

.na
\fB\fB--undefined\fR \flsymanme\fR fR

.ad

.sp .6

. RS 4n

Enters \flsymane\fR as an undefined synbol in the synbol table. This option is
useful for loading entirely froman archive library. In this instance, an
unresol ved reference is needed to force the | oading of the first routine. The
pl acement of this option on the command line is significant. This option nust
be placed before the library that defines the synbol. See \flDefining

Addi tional Synbols with the u option\fR in \flLinker and Libraries Cuide\fR

. RE

.sp
.ne 2

.na
\fB\fB-WfR fR
.ad
. br

.nha
\fB\fB--version\fRfR

.ad

.sp .6

. RS 4n

Qut puts a nessage giving infornmation about the version of \fBld\fR being used.

779 .RE

781
782
783
784
785
786
787

.sp
.ne 2

.na
\fB\fB-NFfR\fBP,\fRfldirlist\fRfR
.ad

.sp .6

. RS 4n

new usr/src/ man/ manl/ld. 1 13

788
789

Changes the default directories used for finding libraries. \fldirlist\fRis a
col on-separated path list.

790 . RE

792
793
794
795
796
797
798
799
800
801
802
803
804

806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

829
830
831
832
833
834
835
836
837
838
839
840
841
842

844
845
846
847
848
849
850
851
852
853

.sp
.ne 2

. na
\fB\fB-z\fR \ f Babsexec\f R fR
.ad

.sp .6

. RS 4n

Useful only when building a dynam c executable. Specifies that references to
external absolute synmbols should be resolved i mediately instead of being left
for resolution at runtime. In very specialized circunstances, this option
renoves text relocations that can result in excessive swap space demands by an
execut abl e.

.RE

.sp
.ne 2

.na
\fB\fB-z\fR \fBal l extract\fR | \fBdefaultextract\fR | \fBweakextract\fRfR
.ad
. br

.na
\ f B\ f B--whol e-archive\fR | \fB--no-whol e-archive\fRfR

.ad

.Sp .6

.RS 4n

Alters the extraction criteria of objects fromany archives that follow By
defaul t, archive nenbers are extracted to satisfy undefined references and to
pronbte tentative definitions with data definitions. Wak synbol references do
not trigger extraction. Under the \fB-z\fR \fBallextract\fR or

\fB--whol e-archive\fR options, all archive nenbers are extracted fromthe
archive. Under \fB-z\fR \fBweakextract\fR, weak references trigger archive
extraction. The \fB-z\fR \fBdefaul textract\fR or \fB--no-whole-archive\fR
options provide a neans of returning to the default follow ng use of the forner
extract options. See \flArchive Processing\fR in \flLinker and Libraries

CGui de\ f R

. RE

.sp
.ne 2

.na
\fB\fB-z\fR \ fBal t exec64\f R fR
.ad

.sp .6

. RS 4n

Execute the 64-bit \fBId\fR The creation of very large 32-bit objects can
exhaust the virtual nmenory that is available to the 32-bit \fBId\fR The
\fB-z\fR \fBal texec64\fR opti on can be used to force the use of the associated
64-bit \fBId\fR The 64-bit \fBId\fR provides a | arger virtual address space
for building 32-bit objects. See \flThe 32-bit |ink-editor and 64-bit
link-editor\fR in \flLinker and Libraries CGuide\fR

.RE

.sp
.ne 2

.na
\fB-z\fR \fBaslr[=\flstate\fR]\fR
.ad

.sSp .6

.RS 4n

Speci fy whether the executabl e’ s address space shoul d be random zed on
execution. If \flstate\fR is "enabl ed" random zation will always occur when
this executable is run (regardless of inherited settings). |If \flstate\fRis

new usr/src/ man/ manl/ld. 1 14
854 "di sabl ed" randomi zation will never occur when this executable is run. |If
855 \flstate\fRis omtted, ASLR is enabl ed.

857 An executabl e that should sinply use the settings inherited fromits
858 environment should not use this flag at all.

859 . RE

861 .sp

862 .ne 2

863 .na

864 \fB\fB-z\fR \fBconbrel oc\fR | \fBnoconbrel oc\fR fR

865 . ad

866 .sp .6

867 . RS 4

868 By default, \fBlId\fR conbines nultiple relocation sections when buil di ng

869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886

execut abl es or shared objects. This section conbination differs from

rel ocatabl e objects, in which relocation sections are naintained in a
one-to-one relationship with the sections to which the relocations nust be
applied. The \fB-z\fR \fBnoconbrel oc\fR option disables this merging of

rel ocation sections, and preserves the one-to-one relationship found in the
original relocatable objects.

.sSp
\fBId\fR sorts the entries of data relocation sections by their synbol
reference. This sorting reduces runtime synbol |ookup. When nultiple relocation
sections are conbined, this sorting produces the |east possible relocation

over head when objects are | oaded into menory, and speeds the runtinme |oading of
dynami ¢ obj ects.

.sp

Historically, the individual relocation sections were carried over to any
execut abl e or shared object, and the \fB-z\fR \fBconbrel oc\fR opti on was
required to enable the relocation section nmerging previously descri bed.

Rel ocation section nerging is now the default. The \fB-z\fR \fBconbrel oc\fR
option is still accepted for the benefit of old build environnents, but the

887 option is unnecessary, and has no effect.

888 . RE

890 . sp

891 .ne 2

892 .na

893 \fB\fB-z\fR \fBassert-deflib\fRfR

894 . ad

895 . br

896 .na

897 \fB\fB-z\fR \fBassert-deflib=\fR fllibname\fR fR
898 . ad

899 .sp .6

900 . RS 4n

901 Enabl es warni ngs that check the Il ocation of where libraries passed in with

902
903
904
905
906
907
908
909
910
911

913
914
915
916
917
918
919

\fB-I\fR are found. If the link-editor finds a library on its default search
path it will emit a warning. This warning can be made fatal in conjunction with
the option \fB-z fatal -warnings\fR Passing \fllibnane\fR white lists a library
fromthis check. The library nmust be the full name of the library, e.g.
\fllibc.so\fR To white Ilist multiple libraries, the \fB-z
assert-deflib=\fRfllibname\fR option can be repeated nmultiple tines. This
option is useful when trying to build self-contai ned objects where a referenced
Iibrary mght exist in the default systemlibrary path and in alternate paths
specified by \fB-L\fR, but you only want the alternate paths to be used.

. RE

.sp
.ne 2

. na
\fB\fB-z\fR \fBdefs\fR | \fBnodefs\fRfR
.ad
. br
. na

new usr/src/ man/ manl/ld. 1 15

920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

954
955
956
957
958
959
960
961
962
963
964

966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981

\fB\fB--no-undefined\fRfR
.ad
.Sp .6

.RS 4n

The \fB-z\fR \fBdefs\fR option and the \fB--no-undefined\fR option force a
fatal error if any undefined synbols remain at the end of the link. This node
is the default when an executable is built. For historic reasons, this node is
\fBnot\fR the default when building a shared object. Use of the \fB-z\fR
\fBdefs\fR option is recommended, as this npbde assures the object being built
is self-contained. A self-contained object has all synbolic references resol ved
internally, or to the object’s inmmedi ate dependenci es.

.sp
The \fB-z\fR \fBnodefs\fR option all ows undefined synbols. For historic
reasons, this node is the default when a shared object is built. Wen used with
execut abl es, the behavior of references to such undefined synbols is

unspeci fied. Use of the \fB-z\fR \fBnodefs\fR option is not recommended.

. RE

.sp
.ne 2

.na
\fB\fB-z\fR \fBdirect\fR | \fBnodirect\fRfR

.ad

.Sp .6

.RS 4n

Enabl es or disables direct binding to any dependencies that foll ow on the
command |ine. These options allow finer control over direct binding than the

gl obal counterpart \fB-B\fR \fBdirect\fR The \fB-z\fR \fBdirect\fR option al so
differs fromthe \fB-B\fR \fBdirect\fR option in the follow ng areas. Direct

bi nding information is not established between a synbol reference and an

associ ated definition within the object being created. Lazy |oading is not
enabl ed.

. RE

.sp
.ne 2

. na
\fB\fB-zZ\fR \fBendfiltee\fRfR

.ad

.sp .6

. RS 4n

Marks a filtee so that when processed by a f
further filtee searches by the filter. See \
\flLinker and Libraries Guide\fR

. RE

Iter, the filtee term nates any
|

i
f1 Reducing Filtee Searches\fR in

.sp
.ne 2

.na
\fB\fB-z\fR \fBfatal -warnings\fR | \fBnofatal -warni ngs\fR fR
.ad
. br

.na

\fB\fB--fatal -warnings\fR | \fB--no-fatal-warnings\fR

.ad

.sp .6

. RS 4n

Control s the behavior of warnings emtted fromthe |ink-editor. Setting \fB-z
fatal -warnings\fR promptes warnings enmtted by the link-editor to fatal errors
that will cause the |ink-editor to fail before linking. \fB-z

nof at al -war ni ngs\fR i nstead denotes these warnings such that they will not cause
the link-editor to exit prematurely.

982 . RE

.sp

new usr/src/ man/ manl/ld. 1 16
986 .ne 2

987 .na

988 \fB\fB-z\fR \fBfiniarray=\fR flfunction\fRfR

989 . ad

990 .sp .6

991 . RS 4n

992 Appends an entry to the \fB\& fini_array\fR section of the object being built.
993 If no \fB\& fini_array\fR section is present, a section is created. The new

994 entry is initialized to point to \flfunction\fR See \fllnitialization and

995

Term nation Sections\fR in \flLinker and Libraries Cuide\fR

996 . RE

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1045
1046
1047
1048
1049
1050
1051

.sp
.ne 2

. na
\fB\fB-z\fR \fBgl obal audi t\fRfR
.ad

.sp .6

. RS 4n

This option supplenents an audit library definition that has been recorded wth
the \fB-P\fR option. This option is only neani ngful when building a dynam c
executable. Audit libraries that are defined within an object with the \fB-P\fR
option typically allow for the auditing of the i nmedi ate dependenci es of the
obj ect. The \fB-z\fR \fBgl obal audi t\fR pronptes the auditor to a gl obal

auditor, thus allow ng the auditing of all dependencies. See \fllnvoking the
Auditing Interface\fR in \flLinker and Libraries Guide\fR

.sp
An auditor established with the \fB-P\fR option and the \fB-z\fR

\ f Bgl obal audi t\fR option, is equivalent to the auditor being established with
the \fBLD _AUDI T\f R environnment variable. See \fBld.so.1\fR(1).

. RE

.sp
.ne 2

.ha
\fB\fB-z\fR \ fBgrouppermif R | \fBnogrouppermfRfR
.ad

.sp .6

. RS 4n

Assigns, or deassigns each dependency that follows to a unique group. The

assi gnment of a dependency to a group has the sane effect as if the dependency
had been built using the \fB-B\fR \fBgroup\fR option.

. RE

.sp
.ne 2

. ha
\fB-z\fR \fBgui dance\fR[=\flidI\fR \flid2\fR ..]
.ad

.sp .6

. RS 4n

G ve nmessages suggesting link-editor features that could inprove the resulting
dynam ¢ obj ect.

.LP

Speci fic classes of suggestion can be silenced by specifying an optional conma s
I1st of guidance identifiers.

.LP

The current classes of suggestion provided are:

.sp
.ne 2

.na
Enabl e use of direct binding
.ad

.sp .6

. RS 4n

new usr/src/ man/ manl/ld. 1 17 new usr/src/ man/ manl/ld. 1 18

1052 Suggests that \fB-z direct\fR or \fB-B direct\fR be present prior to any 1118 . RS 4n

1053 specified dependency. This allows predictable synbol binding at runtine. 1119 Suggests that any dependency not referenced by the resulting dynam c object be

1120 renpved fromthe link-editor command |ine.

1055 Can be disabled with \fB-z gui dance=nodirect\fR
.RE

1056 1122 Can be disabled with \fB-z gui dance=nounused\fR.
1123 . RE
1058 . sp 1124 .RE
1059 .ne 2
1060 . na 1126 .sp
1061 Enabl e | azy dependency | oadi ng 1127 .ne 2
1062 . ad 1128 . na
1063 .sp .6 1129 \fB\fB-z\fR \ fBhel p\f R fR
1064 . RS 4n 1130 . ad
1065 Suggests that \fB-z | azyl oad\fR be present prior to any specified dependency. 1131 . br
1066 This allows the dynam c object to be | oaded nore quickly. 1132 .na
1133 \fB\fB--hel p\fRfR
1068 Can be disabled with \fB-z gui dance=nol azyl oad\f R 1134 . ad
1069 . RE 1135 .sp .6
1136 . RS 4n
1071 .sp 1137 Print a summary of the command |ine options on the standard output and exit.
1072 .ne 2 1138 . RE
1073 .na
1074 Shared objects should define all their dependencies. 1140 . sp
1075 . ad 1141 .ne 2
1076 .sp .6 1142 .na
1077 . RS 4n 1143 \fB\fB-zZ\fR \fBignore\fR | \fBrecord\fRfR
1078 Suggests that \fB-z defs\fR be specified on the |ink-editor conmand |ine. 1144 . ad
1079 Shared objects that explicitly state all their dependenci es behave nore 1145 .sp .6
1080 predictably when used. 1146 . RS 4n
1147 lgnores, or records, dynam c dependenci es that are not referenced as part of
1082 Can be be disabled with \fB-z gui dance=nodefs\fR 1148 the link-edit. Ignores, or records, unreferenced \fBELF\fR sections fromthe
1083 . RE 1149 rel ocatabl e objects that are read as part of the link-edit. By default,
1150 \fB-z\fR \fBrecord\fR is in effect.
1085 . sp 1151 .sp
1086 .ne 2 1152 If an \fBELF\fR section is ignored, the section is elimnated fromthe output
1087 .na 1153 file being generated. A section is ignored when three conditions are true. The
1088 Version 2 napfile syntax 1154 elimnated section nust contribute to an allocatable segnent. The elim nated
1089 . ad 1155 section nust provide no gl obal symbols. No other section fromany object that
1090 .sp .6 1156 contributes to the link-edit, nmust reference an elimnated section.
1091 . RS 4n 1157 . RE
1092 Suggests that any specified mapfiles use the nore readabl e version 2 syntax.
1159 .sp
1094 Can be disabled with \fB-z gui dance=nonmapfile\fR 1160 .ne 2
1095 . RE 1161 . na
1162 \fB\fB-zZ\fR \fBinitarray=\f R flfunction\fRfR
1097 .sp 1163 . ad
1098 .ne 2 1164 .sp .6
1099 . na 1165 . RS 4n
1100 Read-only text segment 1166 Appends an entry to the \fB\& init_array\fR section of the object being built.
1101 . ad 1167 If no \fB\& init_array\fR section is present, a section is created. The new
1102 .sp .6 1168 entry is initialized to point to \flfunction\fR See \fllnitialization and
1103 . RS 4n 1169 Term nation Sections\fR in \flLinker and Libraries Guide\fR
1104 Shoul d any runtine relocations within the text segnent exist, suggests that 1170 . RE
1105 the object be conpiled with position i ndependent code (PIC). Keeping |arge
1106 al | ocatabl e sections read-only allows themto be shared between processes 1172 . sp
1107 using a given shared object. 1173 .ne 2
1174 . na
1109 Can be disabled with \fB-z gui dance=notext\fR 1175 \fB\fB-z\fR \fBinitfirst\fRfR
1110 . RE 1176 . ad
1177 .sp .6
1112 . sp 1178 . RS 4n
1113 .ne 2 1179 Marks the object so that its runtine initialization occurs before the runtine
1114 .na 1180 initialization of any other objects brought into the process at the sane tine.
1115 No unused dependenci es 1181 In addition, the object runtinme finalization occurs after the runtime
1116 . ad 1182 finalization of any other objects renpved fromthe process at the sane tine.

1117 :sp .6 1183 This option is only meani ngful when building a shared object.

new usr/src/ man/ manl/ld. 1 19

1184

1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202

1203

1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240

1241 .
1242

1243

1244 . f
1245 .i
1246

1248
1249

. RE

.sp
.ne 2

.na
\fB\fB-z\fR \ fBi nterpose\fR fR

.ad

.Sp .6

.RS 4n

Marks the object as an interposer. At runtine, an object is identified as an
explicit interposer if the object has been tagged using the \fB-z interpose\fR
option. An explicit interposer is also established when an object is |oaded
using the \fBLD PRELOAD\fR environnent variable. Inplicit interposition can
occur because of the |oad order of objects, however, this inplicit
interposition is unknown to the runtinme linker. Explicit interposition can
ensure that interposition takes place regardl ess of the order in which objects
are | oaded. Explicit interposition also ensures that the runtine |inker
searches for synbols in any explicit interposers when direct bindings are in
effect.

RE

.sp
.ne 2

. na
\fg\fB—z\fR \fBlazyload\fR | \fBnol azyl oad\fR fR
. al

.sp .6

. RS 4n

Enabl es or disables the marking of dynam c dependencies to be |azily | oaded.
Dynam ¢ dependenci es which are marked \fBl azyl oad\fR are not |oaded at initial
process start-up. These dependencies are delayed until the first binding to the
object is made. \fBNote:\fR Lazy | oading requires the correct declaration of
dependenci es, together with associated runpaths for each dynanmi c object used
within a process. See \fllLazy Loadi ng of Dynam c Dependencies\fR in \flLinker
and Libraries Guide\fR

. RE

.sp
.ne 2

. ha
\fB\fB-zZ\fR \fBld32\fR=\flargl\fR \flarg2\fR ...\fR
.ad
. br

. na
\fB\fB-zZ\fR \fBld64\fR=\flargl\fR \flarg2\fR,...\fR
.ad

.sp .6

. RS 4n

The class of the link-editor is affected by the class of the output file being
created and by the capabilities of the underlying operating system The
\fB-z\fR\fBId\fR[\fB32\f R/ \fB64\f R] options provide a neans of defining any
l'i nk-editor argunment. The defined argument is only interpreted, respectively,
by the 32-bit class or 64-bit class of the link-editor.

.sp

For exanple, support libraries are class specific, so the correct class of
support library can be ensured using:

-z 1d32=-Saudit32.s0.1 -z |d64=-Saudit64.s0.1 ...\fR

The class of link-editor that is invoked is determ ned fromthe \fBELF\fR cl ass
of the first relocatable file that is seen on the command line. This

new usr/src/ man/ manl/ld. 1 20

1250
1251
1252

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266

1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282

determnation is carried out \fBprior\fRto any \fB-z\fR
\fBld\fR[\fB32\f R\ f B64\fR] processing.
. RE

.sp
.ne 2

.na
\fB\fB-z\fR \fBloadf I tr\fRfR
.ad

.sp .6

. RS 4n

Marks a filter to indicate that filtees nust be processed i mediately at
runtime. Normally, filter processing is delayed until a synbol reference is
bound to the filter. The runtime processing of an object that contains this
flag m mcs that which occurs if the \fBLD LOADFLTR\fR environnent variable is
ineffect. See the \fBld.so.1\fR(1).

.RE

.sp
.ne 2

. na
\fB\fB-z\fR \ f Bmul def sS\f Rf R
.ad
. br

.na
\fB\fB--al lowmultiple-definition\fRfR

.ad

.Sp .6

.RS 4n

Allows multiple synbol definitions. By default, multiple synbol definitions
that occur between rel ocatable objects result in a fatal error condition. This
option, suppresses the error condition, allowing the first synbol definition to
be taken.

1283 . RE

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296

1298
1299
1300
1301
1302
1303
1304
1305
1306
1307

.sp
.ne 2

.na
\fB\fB-z\fR \ fBnoconpstrtab\fR f R

.ad

.sp .6

.RS 4n

Di sabl es the conpression of \fBELF\fR string tables. By default, string
conpression is applied to \fBSHT_STRTAB\fR sections, and to \fBSHT_PROGBI TS\ f R
sections that have their \fBSHF_MERGE\fR and \fBSHF_STRINGS\fR section fl ags
set.

.RE

.sp
.ne 2

. ha
\fB\fB-z\fR \fBnodefaul tlib\fRfR
.ad

.sp .6

.RS 4n

Marks the object so that the runtime default library search path, used after
any \fBLD_LI BRARY_PATH\ fR or runpaths, is ignored. This option inplies that all
dependenci es of the object can be satisfied fromits runpath.

1308 . RE

1310
1311
1312
1313
1314
1315

.sp
.ne 2

. na
\fB\fB-z\fR \fBnodel ete\fR fR
.ad

.sp .6

new usr/src/ man/ manl/ld. 1 21

1316
1317
1318
1319
1320

1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332

. RS 4n

Marks the object as non-del etable at runtine. This node is simlar to adding
the object to the process by using \fBdlopen\fR(3C) with the

\ f BRTLD_NCDELETE\ f R node.

.RE

. Sp
.ne 2

.na
\fB\fB-z\fR \fBnodl open\fR fR

.ad

.sp .6

.RS 4n

Marks the object as not available to \fBdl open\fR(3C), either as the object
specified by the \fBdlopen()\fR, or as any form of dependency required by the
obj ect specified by the \fBdlopen()\fR This option is only neani ngful when
bui | ding a shared object.

1333 . RE

1335
1336

.sp
.ne 2

1337 .na

1338
1339
1340
1341
1342

\fB\fB-z\fR \ f Bhodunp\f R f R
.ad

RS 4n
Marks t he obj ect as not available to \fBdl dunp\fR(3C).

1343 . RE

1345
1346
1347
1348

.sp
.ne 2

.na
\fB\fB-z\fR \fBnol dynsym f R fR
d

1349 .a

1350
1351
1352
1353
1354
1355
1356
1357

.sp .6

. RS 4n

Prevents the inclusion of a \fB\& SUNWI dynsym fR section in dynamc

execut abl es or sharable libraries. The \fB\& SUNW I dynsym fR secti on augnents
the \fB\ & dynsyml f R section by providing synbols for |ocal functions. Local
function synbol s all ow debuggers to display |local function nanes in stack
traces fromstripped programs. Simlarly, \fBdladdr\fR(3C) is able to supply
nore accurate results.

1358 .s

1359
1360
1361
1362
1363

p
The \fB-z\fR \fBnol dynsym fR option al so prevents the inclusion of the two
synbol sort sections that are related to the \fB\& SUNWI|dynsym fR section. The
\ f B\ & SUNW dynsynsort\fR section provides sorted access to regular function and
variabl e synbols. The \fB\ & SUNWdyntlssort\fR section provides sorted access
to thread | ocal storage (\fBTLS\fR) variabl e synbols.

1364 .s

1365
1366
1367
1368
1369
1370

1372
1373

p
The \fB\ & SUNW I dynsym f R \fB\ & SUNWdynsynsort\fR, and
\fB\' & SUNW dynt | ssort\fR sections, which beconmes part of the allocable text
segrment of the resulting file, cannot be renmpbved by \fBstrip\fR(1). Therefore,
the \fB-z\fR \fBnol dynsym fR option is the only way to prevent their inclusion.
See the \fB-s\fR and \fB-z\fR \fBredl ocsym fR options.
.RE

.sp
.ne 2

1374 .na

1375

\fB\fB-z\fR \ fBnopartial\fRfR
d

1376 . al

1377
1378
1379
1380

.sSp .6

.RS 4n

Partially initialized synmbols, that are defined within rel ocatabl e object
files, are expanded in the output file being generated.

1381 . RE

new usr/src/ man/ manl/ld. 1 22

1383
1384
1385
1386

.sp
.ne 2

.na
\fB\fB-z\fR \fBnoversi on\fR fR
d

1387 . al

1388
1389
1390
1391

.Sp .6

. RS 4n

Does not record any versioning sections. Any version sections or associated
\fB\ & dynami c\fR section entries are not generated in the output inmage.

1392 . RE

1394
1395

.sp
.ne 2

1396 . na

1397

\fB\fB-z\fR \ f BnowA f R f R
d

1398 . a

1399
1400
1401
1402
1403
1404

.sp .6

RS 4n

Mar ks the object as requiring non-lazy runtime binding. This node is simlar to
addi ng the object to the process by using \fBdl open\fR(3C) with the

\ f BRTLD_NOW fR npde. This node is also simlar to having the \fBLD Bl ND_NOWNfR
environment variable in effect. See \fBld.so. 1\fR(1).

1405 . RE

1407
1408
1409
1410

.sp
.ne 2

. na
\fg\fB-z\fR \fBorigin\fRfR

1411 .a

1412
1413
1414
1415
1416

.sp .6

RS 4n

Mar ks the obj ect as requiring immediate \fB$ORI G N\fR processing at runtime.
This option is only maintained for historic conpatibility, as the runtime
anal ysis of objects to provide for \fBSORIG N\fR processing is now defaul t.

1417 . RE

1419
1420
1421
1422

.sp
.ne 2

.na
\fB\fB-z\fR \fBpreinitarray=\fR flfunction\fRfR
d

1423 .a

1424
1425
1426
1427
1428
1429

.sp .6

. RS 4n

Appends an entry to the \fB\& preinitarray\fR section of the object being
buirlt. If no \fB\& preinitarray\fR section is present, a section is created.
The new entry is initialized to point to \flfunction\fR See \fllnitialization
and Term nation Sections\fR in \flLinker and Libraries Guide\fR

1430 . RE

1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445

.sp
.ne 2

.na

\fB\fB-z\fR \fBredl ocsym fRfR

.ad

.sp .6

. RS 4n

Elimnates all local synbols except for the \fISECT\fR synbols fromthe synbol
table \fBSHT_SYMIAB\fR. Al|l relocations that refer to | ocal synbols are updated
to refer to the corresponding \flSECT\fR synbol. This option allows specialized
objects to greatly reduce their synbol table sizes. Elinminated |ocal synbols
can reduce the \fB\ & stab*\fR debugging i nformati on that is generated using the
conpiler drivers \fB-g\fR option. See the \fB-s\fR and \fB-z\fR \fBnol dynsym f R
opt1 ons.

1446 . RE

new usr/src/ man/ manl/ld. 1 23

1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460

.sp
ne 2

\fg\fB-z\fR \fBrelaxrel oc\fRfR

.sp .6

RS 4n

\fBl d\fR normal | y issues a fatal error upon encountering a relocation using a
synbol that references an elimnated COVDAT section. If \fB-z\fR
\fBrelaxreloc\fR is enabled, \fBId\fR instead redirects such relocations to the
equi val ent synbol in the COMVDAT section that was kept. \fB-z\fR
\fBrelaxreloc\fR is a specialized option, mainly of interest to conpiler
authors, and is not intended for general use.

1461 . RE

1463
1464

.sp
.ne 2

1465 . na

1466
1467
1468

\fB\fB-z\fR \f Brescan-now f R f R
.ad
. br

1469 . na

1470
1471
1472
1473
1474
1475
1476
1477
1478
1479

\fB\fB-z\fR \fBrescan\fR fR

.ad

.sp .6

. RS 4n

These options rescan the archive files that are provided to the link-edit. By
defaul t, archives are processed once as the archives appear on the command
line. Archives are traditionally specified at the end of the command |ine so
that their synbol definitions resolve any preceding references. However,

speci fying archives nultiple tines to satisfy their own interdependencies can
be necessary.

1480 .s

1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495

p
\fB-z\fR \fBrescan-nowmfR is a positional option, and is processed by the
i nk-editor inmediately when encountered on the conmand |ine. All archives seen
on the command line up to that point are i nmedi ately reprocessed in an attenpt
to locate additional archive nmenbers that resolve synbol references. This
archive rescanning is repeated until a pass over the archives occurs in which
no new nenbers are extracted.

.Sp
\fB-z\fR \fBrescan\fR is a position independent option. The link-editor defers
the rescan operation until after it has processed the entire conmand |ine, and
then initiates a final rescan operation over all archives seen on the conmand
line. The \fB-z\fR \fBrescan\fR operation can interact incorrectly

with objects that contain initialization (.init) or finalization (.fini)
sections, preventing the code in those sections fromrunning. For this reason,
\fB-z\fR \fBrescan\fR i s deprecated, and use of \fB-z\fR \fBrescan-now\fR is
advi sed.

1496 . RE

1498
1499
1500
1501
1502
1503

.sp
.ne 2

. na
\fB\fB-z\fR \fBrescan-start\fR ...
.ad
. br

\fB-z\fR \fBrescan-end\f R fR

1504 . na

1505
1506
1507

\fB\fB--start-group\fR ...
. ad
. br

\fB--end-group\fR fR

1508 . na

1509

\fB\fB-(\fR ... \fB-)\fRfR
d

1510 . a

1511
1512
1513

.sp .6
.RS 4n

Defines an archive rescan group. This is a positional construct, and is

new usr/src/ man/ manl/ld. 1 24

1514
1515
1516
1517

processed by the link-editor inmediately upon encountering the closing
delimter option. Archives found within the group delinmter options are
reprocessed as a group in an attenpt to |ocate additional archive nenbers that
resol ve synbol references. This archive rescanning is repeated until a pass

1518 over the archives occurs in which no new nenbers are extracted.
1519 Archive rescan groups cannot be nested.

1520 . RE

1522 .sp

1523 .ne 2

1524 . na

1525 \fB\fB-z\fR \ f Bt arget =sparc| x86\fR \fI\f R fR

1526 . ad

1527 .sp .6

1528 . RS 4n

1529 Specifies the machine type for the output object. Supported targets are Sparc

1530
1531

and x86. The 32-bit machine type for the specified target is used unless the
\fB-64\fR option is also present, in which case the correspondi ng 64-bit

1532 machine type is used. By def ault, the machi ne type of the object being

1533 generated is determned fromthe first \fBELF\fR object processed fromthe
1534 conmend line. |If no objects are specified, the machine type is determined by
1535 the first object encountered within the first archive processed fromthe
1536 command line. If there are no objects or archives, the |link-editor assunmes the
1537 native machine. This option is useful when creating an object directly with
1538 \fBl d\fR whose input is solely froma \fBmapfile\fR See the \fB-MfR option.
1539 It can also be useful in the rare case of linking entirely froman archive that
1540 contains objects of different nachine types for which the first object is not
1541 of the desired machine type. See \flThe 32-bit |ink-editor and 64-bit

1542 link-editor\fR in \flLinker and Libraries Guide\fR

1543 . RE

1545 . sp

1546 .ne 2

1547 .na

1548 \fB\fB-z\fR \fBtext\fRfR

1549 . ad

1550 .sp .6

1551 . RS 4n

1552 In dynam c node only, forces a fatal error if any relocations against

1553 non-writable, allocatable sections remain. For historic reasons, this node is
1554 not the default when buil ding an executable or shared object. However, its use
1555 is recormended to ensure that the text segnent of the dynam c object being
1556 built is shareabl e between nultiple running processes. A shared text segment
1557 incurs the |least relocation overhead when | oaded into nenory. See

1558 \fl Position-Independent Code\fR in \flLinker and Libraries Guide\fR

1559 . RE

1561 .sp

1562 .ne 2

1563 . na

1564 \fB\fB-z\fR \fBtextof f\fRfR

1565 . ad

1566 .sp .6

1567 . RS 4n

1568 I n dynanic node only, allows relocations against all allocatable sections,
1569 including non-witable ones. This node is the default when building a shared
1570 obj ect.

1571 . RE

1573 .sp

1574 .ne 2

1575 . na

1576 \fB\fB-z\fR \fBtextwarn\f R f R

1577 . ad

1578 .sp .6

1579 . RS 4n

new usr/src/ man/ manl/ld. 1

1580
1581
1582

I'n dynamic node only, lists a warning if any rel ocati ons agai nst non-witab
al | ocat abl e sections renain. This node is the default when building an
execut abl e.

1583 . RE

1585
1586
1587
1588

.sp
.ne 2

.na
\fB-z\f R \ f Bt ype=exec| knod| r el oc| shared\ fR
d

1589 . al

1590
1591
1592

1594
1595
1596

1597

1598
1599
1600

1601

.sp .6
. RS 4n
Specifies the type of object to create.

Dynami ¢ execut abl e

1602 . RE

1604
1605
1606
1607
1608
1609
1610
1611

.sp
.ne 2

.ha

rel oc

.ad

.sp .6

. RS 4n

Rel ocat abl e obj ect

1612 . RE

1614 .
1615 .
1616 .

1617

1618 .
1619 .

1620
1621
1622

1624
1625
1626

1627

1628
1629
1630

1631
1632
1633

illumos kernel nodul e

. RE
#endif /* | codereview */

1634 . RE

1636
1637

.sp
.ne 2

1638 . na

1639

\fB\fB-z\fR \ f Bverbose\f R fR
d

1640 . al

1641
1642
1643
1644
1645

.sSp .6

.RS 4n
Thi s option provides additional warning diagnostics during a link-edit.
Presently, this option conveys suspicious use of displacenent relocations.
option also conveys the restricted use of static \fBTLS\fR rel ocati ons when

25

| e,

Thi s

new usr/src/ man/ manl/ld. 1 26

1646
1647

bui | di ng shared objects. In future, this option m ght be enhanced to provide
addi ti onal diagnostics that are deened too noisy to be generated by defaul t.

1648 . RE

1650
1651

.sp
.ne 2

1652 . na

1653
1654
1655
1656
1657
1658
1659
1660
1661

\fB\fB-zZ\fRfBwmap=\fR flsynbol \fRfR
.ad
br
\fB\fB-Wrap \fR\flsynmbol \fRfR
ad
br

\fB\fB--wrap:\fR \flsynbol\fRfR
d

1662 . a

1663
1664
1665
1666
1667

.sp .6

. RS 4n

Renane undefined references to \flsynbol\fR in order to allow w apper code to
be linked into the output object without having to nodify source code. \WWen
\fB-z wap\fR is specified, all undefined references to \flsynbol\fR are

1668 nodified to reference \fB__wap \fR flsynbol\fR and all references to

1669 \fB__real _\fR flsynbol\fR are nodified to reference \flsynbol\fR The user is
1670 expected to provide an object containing the \fB_wap_ \fRflsynbol\fR

1671 function. This wapper function can call \fB__real \fRflsynmbol\fR in order to
1672 reference the actual function being w apped.

1673 .sp

1674 The following is an exanple of a wapper for the \fBmalloc\fR(3C function:
1675 . sp

1676 .in +2

1677 . nf

1678 void *

1679 __wap_mal | oc(size_t c)

1680 {

1681 (void) printf("malloc called with %u\en", c);

1682 return (__real _malloc(c));

1683 }

1684 . fi

1685 .in -2

1687 If you link other code with this file using \fB-z\fR \fBwap=nalloc\fR to
1688 conpile all the obj ects, then all calls to \fBmalloc\fRwi Il call the function
1689 \fB__wr p_ Iloc\fR instead. The call to \fB__real _nalloc\fRwill call the real
1690 \fBmal | oc\fR function.

1691 .sp

1692 The real and wr apped functions should be maintained in separate source files.
1693 Otherw se, the conpiler or assenbler nay resolve the call instead of |eaving
1694 that operation for the link-editor to carry out, and prevent the wap from
1695 occurring.

1696 . RE

1698 . SH ENVI RONVENT VARI ABLES

1699 .ne 2

1700 .na

1701 \fB\f BLD_ALTEXECQ\f R f R

1702 . ad

1703 .sp .6

1704 . RS 4n

1705 An alternative |link-editor path nane. \fBId\fR executes, and passes control to
1706 this alternative link-editor. This environment variable provides a generic
1707 means of overriding the default link-editor that is called fromthe various

1708

conpil er drivers. See the \fB-z altexec64\fR option.

1709 . RE

1711

.sp

new usr/src/ man/ manl/ld. 1

1712

.ne 2

1713 .na

1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725

1726 . f

1727
1728

1730
1731
1732

1733

1734

1735
1736
1737

1739
1740
1741

\fB\f BLD_LI BRARY_PATH f R f R

.ad

.sp .6

.RS 4n

Alist of directories in which to search for the libraries specified using the
\fB-1\fR option. Miltiple directories are separated by a colon. In the nost
general case, this environnment variable contains two directory |ists separated
by a senicol on:

.sp

.in +2

. nf
\fldirlistI\fRfB\fRfIdirlist2\fR
i

.in -2

.sp

If \fBId\fR is called with any nunber of occurrences of \fB-L\fR as in:
.sp
Lin +2

-L\flpathl\fR ... -L\flpathn\fR ...\fR

then the search path ordering is:
.sp
Lin +2

1742 . nf

1743

\fB\fldirlistl pathl\fR ... \flpathn dirlist2\fR LI BPATH fR

1744 . fi

1745
1746

1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758

1760
1761

.in -2
.sp

When the list of directories does not contain a semcolon,
interpreted as \fldirlist2\fR

the list is

Sp
The \fBLD_LI BRARY_PATH\ f R envi ronnment variable also affects the runtine linkers
search for dynanic dependenci es.

-Sp
Thi's environnent variable can be specified with a _32 or _64 suffix. This nakes
the environnent variable specific, respectively, to 32-bit or 64-bit processes
and overrides any non-suffixed version of the environnment variable that is in
effect.
. RE

.sp
.ne 2

1762 .na

1763

\f B\ f BLD_NOEXEC 64\ f R\ f R
d

1764 . a

1765
1766
1767
1768
1769
1770
1771
1772

1774
1775

.sp .6

.RS 4n

Suppresses the autonatic execution of the 64-bit link-editor. By default, the
l'ink-editor executes the 64-bit version when the \fBELF\fR class of the first
relocatable file identifies a 64-bit object. The 64-bit image that a 32-bit
l'ink-editor can create, has sonme limtations. However, sone |ink-edits m ght
find the use of the 32-bit |ink-editor faster.

. RE

.sp
.ne 2

1776 .na

1777

\fB\f BLD_ CPTIONS\f R f R

27

new usr/src/ man/ manl/ld. 1 28

1778
1779
1780
1781
1782
1783
1784
1785
1786
1787

1788 . f
1789

1790
1792

1794
1795

.ad

.sp .6

. RS 4n

A default set of options to \fBId\fR \fBLD OPTIONS\fR is interpreted by
\fBId\fR just as though its value had been placed on the command |ine,

i medi ately follow ng the name used to invoke \fBId\fR as in:

- Sp

Cin 2

. nf

\fBld $LD_OPTIONS ..
i

in-2

.sp

. RE

\flother-argunents\fR ...\fR

.sp
.ne 2

1796 .na

1797

\f B\ f BLD_RUN_PATH\f R\f R
d

1798 .a

1799
1800
1801
1802
1803

.sp .6

. RS 4n

An alternative mechani smfor specifying a runpath to the |link-editor.
\fB-RfR option. If both \fBLD RUN PATH\fR and the \fB-RfR option are
speci fied, \fB-RfR supersedes.

See the

1804 . RE

1806
1807

.sp
.ne 2

1808 . na

1809

\ f B\ f BSGS_SUPPORT\ f R\ f R
d

1810 . a

1811
1812
1813
1814
1815
1816
1817
1818

.sp .6

RS 4n

Provi des a col on- separated |ist of shared objects that are |oaded with the

I'i nk-editor and given information regarding the linking process. This
environment variable can be specified with a _32 or _64 suffix. This nakes the
envi ronment variabl e specific, respectively, to the 32-bit or 64-bit class of
\fBld\fR and overrides any non-suffixed version of the environnent variable
that is in effect. See the \fB-S\fR option.

1819 . RE

1821
1822
1823
1824
1825
1826
1827

.sp
.LP

Noti ce that environnent variabl e-names that begin with the

characters '\fBLD \fR are reserved for possible future enhancenents to \fBld\fR
\fBld so. 1\fR(1).

. SH FI LES

.ne 2

1828 .na

1829

\fB\fBlib\fIx\fR so\fRfR

1830 . a

1831
1832

. RS 15n
shared object libraries.

1833 . RE

1835
1836
1837
1838
1839
1840
1841

.sp
.ne 2

. na
\fB\fBlib\fIX\fR a\fRfR
.ad

. RS 15n

archive libraries.

1842 . RE

new usr/src/ man/ manl/ld. 1

1844
1845
1846
1847
1848
1849
1850

.sp
.ne 2

.na
\fB\fBa.out\fRfR
.ad

. RS 15n

default output file.

1851 . RE

1853
1854
1855
1856
1857
1858
1859
1860
1861
1862

1864
1865
1866
1867
1868
1869
1870
1871
1872
1873

1875
1876
1877
1878

1880
1881
1882
1883
1884
1885
1886
1887

.sp
.ne 2

.na
\fB\fILIBPATH f R f R

.ad

. RS 15n

For 32-bit libraries, the default search path is \fB/usr/ccs/lib\fR followed
by \fB/lib\fR and finally \fB/usr/lib\fR For 64-bit libraries, the default
search path is \fB/lib/64\fR, followed by \fB/usr/lib/64\fR

. RE

.sp
.ne 2

.ha
\fB\fB/usr/lib/Id\fRfR

.ad

. RS 15n

A directory containing several \fBmapfiles\fR that can be used during
l'ink-editing. These \fBmapfiles\fR provide various capabilities, such as
defining nenory |ayouts, aligning bss, and defining non-executabl e stacks.
.RE

. SH ATTRI BUTES

.LP

See \fBattributes\fR(5) for descriptions of the follow ng attributes:
.sp

.sp
. TS
box;
c| c

| 1
ATTRI BUTE TYPE ATTRI BUTE VALUE

Tnterface Stability Conmi tt ed

1888 . TE

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909

. SH SEE ALSO

. LP

\fBas\fR(1), \fBcrle\fR(1), \fBgprof\fR(1), \fBld.so.1\fR(1), \fBldd\fR(1),
\fBnmcs\fR(1), \fBpvs\fR(1), \fBexec\fR(2), \fBstat\fR(2), \fBdlopen\fR(3C),
\f Bdl dump\ f R(3C), \fBel f\fR(3ELF), \fBar.h\fR(3HEAD), \fBa.out\fR(4),
\fBattributes\fR(5)

— =

.sp

.LP

\flLinker and Libraries Quide\fR

. SH NOTES

.LP

Default options applied by \fBld\fR are naintained for historic reasons. In
today’ s progranmm ng environment, where dynam c objects dominate, alternative
defaults woul d often make nore sense. However, historic defaults nust be

mai ntai ned to ensure conpatibility with existing program devel opnent
environments. Historic defaults are called out wherever possible in this
manual . For a description of the current recormended options, see Appendix A
\flLink-Editor Quick Reference,\fR in \flLinker and Libraries Quide\fR

.sp

.LP

new usr/src/ man/ manl/ld. 1

1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929

30

If the file being created by \fBld\fR already exists, the file is unlinked
after all input files have been processed. A new file with the specified nane
is then created. This allows \fBId\fR to create a new version of the file,

whi |l e sinmultaneously allowi ng existing processes that are accessing the old
file contents to continue running. If the old file has no other links, the disk
space of the renoved file is freed when the | ast process referencing the file
term nates.

.sp

.LP

The behavior of \fBId\fR when the file being created already exists was changed
with \fBSXCE\fR build \fB43\fR In older versions, the existing file was
rewitten in place, an approach with the potential to corrupt any running
processes that is using the file. This change has an inplication for output
files that have nultiple hard links in the file system Previously, all Iinks
would renmain intact, with all |inks accessing the new file contents. The new
\fBI d\ f R behavi or \fBbreaks\fR such links, with the result that only the
specified output file name references the new file. Al the other |inks
continue to reference the old file. To ensure consistent behavior, applications
that rely on nultiple hard links to linker output files should explicitly
renove and relink the other file nanes.

new usr/ src/ pkg/ mani f ests/ systemtest-el ftest.nf

R R R R

2618 Sun Feb 24 19:19:16 2019
new usr/ src/ pkg/ mani f ests/systemtest-el ftest.nf
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2018, Richard Lowe.

14 #

16 set name=pkg.fnri val ue=pkg:/systentest/elftest @(PKGVERS)
17 set nane=pkg.description value="ELF Unit Tests"

18 set nane=pkg.summary val ue="ELF Test Suite"

19 set nane=info.classification \

20 val ue=or g. opensol ari s. cat egory. 2008: Devel opnent / Syst em
21 set nane=variant.arch val ue=$(ARCH)

22 dir path=opt/elf-tests

23 dir path=opt/elf-tests/bin

24 dir path=opt/elf-tests/runfiles

25 dir path=opt/elf-tests/tests

26 dir path=opt/elf-tests/tests/assert-deflib

27 dir path=opt/elf-tests/tests/l|inker-sets

28 dir path=opt/elf-tests/tests/tls

29 dir path=opt/elf-tests/tests/tls/x64

30 dir path=opt/elf-tests/tests/tls/x64/ie

31 dir path=opt/elf-tests/tests/tls/x86

32 dir path=opt/elf-tests/tests/tls/x86/Id

33 file path=opt/el f-tests/bin/elftest nde=0555

34 file path=opt/elf-tests/runfil es/default.run node=0444

35 file path=opt/elf-tests/tests/assert-deflib/link.c nbde=0444

36 file path=opt/elf-tests/tests/assert-deflib/test-deflib node=0555

37 file path=opt/el f-tests/tests/l|inker-sets/in-use-check node=0555

38 file path=opt/el f-tests/tests/l|inker-sets/sinple nbde=0555

39 file path=opt/elf-tests/tests/|inker-sets/sinple-src.c node=0444

40 file path=opt/elf-tests/tests/|inker-sets/sinple.out node=0444

41 file path=opt/elf-tests/tests/tls/x64/iel Makefile.test node=0444

42 file path=opt/elf-tests/tests/tls/x64/ielstylel-func-with-rl1l2.s npbde=0444
43 file path=opt/elf-tests/tests/tls/x64/ielstylel-func-with-r13.s npbde=0444
44 file path=opt/elf-tests/tests/tls/x64/ielstylel-func.s node=0444

45 file path=opt/elf-tests/tests/tls/x64/ielstylel-min.s node=0444

46 file path=opt/elf-tests/tests/tls/x64/ielstyle2-wth-badness.s npde=0444
47 file path=opt/elf-tests/tests/tls/x64/ielstyle2-with-rl12.s node=0444
48 file path=opt/elf-tests/tests/tls/x64/ielstyle2-with-r13.s npde=0444
49 file path=opt/elf-tests/tests/tls/x64/ielstyle2. s node=0444

50 file path=opt/elf-tests/tests/tls/x64/ielx64-ie-test node=0555

51 file path=opt/elf-tests/tests/tls/x86/|d/ Makefile.test nmbde=0444

52 file path=opt/elf-tests/tests/tls/x86/1d/half-1dms npde=0444

53 file path=opt/elf-tests/tests/tls/x86/1d/x86-1d-test nmpbde=0555

54 license lic_CDDL |icense=lic_CDDL

55 depend fnri=devel oper/linker type=require

56 depend fnri=devel oper/object-file type=require
57 depend fnri=systemtest/testrunner type=require
58 #endif /* | codereview */

new usr/src/test/ Makefile

R R R R

687 Sun Feb 24 19:19:17 2019
new usr/src/test/Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You nay only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL should have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012 by Del phix. Al rights reserved.

14 # Copyright 2014 Garrett D Anore <garrett @anore. org>

15 #

17 . PARALLEL: $(SUBDI RS)
19 SUBDI RS =\

20 crypto-tests \

21 elf-tests \

22 libc-tests \

23 os-tests \

24 smbelient-tests \

25 test-runner \

26 util-tests \

27 zfs-tests

19 SUBDIRS = |libc-tests crypto-tests os-tests test-runner util-tests zfs-tests \
20 snbclient-tests

29 include Makefile.com

new usr/src/test/elf-tests/ Makefile

R R R R

559 Sun Feb 24 19:19:17 2019
new usr/src/test/el f-tests/Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2015 Nexenta Systens, Inc. Al rights reserved.

14 #

16 . PARALLEL: $(SUBDI RS)
18 SUBDIRS = cnd doc runfiles tests

20 include $(SRC)/test/Mkefile.com
21 #endif /* | codereview */

new usr/src/test/elf-tests/cnd/ Makefile

R R R R

544 Sun Feb 24 19:19:17 2019
new usr/src/test/el f-tests/cnd/ Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2015 Nexenta Systens, Inc. Al rights reserved.

14 #

16 . PARALLEL: $(SUBDI RS)
18 SUBDI RS = scripts

20 include $(SRC)/test/Mkefile.com
21 #endif /* | codereview */

new usr/src/test/elf-tests/cnd/ scripts/ Makefile

R R R R

852 Sun Feb 24 19:19:17 2019
new usr/src/test/elf-tests/cnd/ scripts/ Makefile
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012 by Del phix. Al rights reserved.

14 # Copyright 2015 Nexenta Systens, Inc. Al rights reserved.

15 #

17 include $(SRC)/ Makefil e. master
18 include $(SRC)/test/ Makefile.com

20 ROOTOPTPKG = $(ROOT)/opt/el f-tests
21 ROOTBIN = $(ROOTOPTPKG) / bi n

23 PROGS = el ftest

25 CVDS = $(PROGS: %=$(ROOTBI N) / %)
26 $(CVDS) := FI LEMODE = 0555

28 all lint clean clobber:
30 install: $(CMVDS)
32 $(CVDS): $(ROOTBI N)

34 $(ROOTBI N) :
$(INS. dir)

37 $(ROOTBIN)/ % % ksh
38 $(I NS. r enane)
39 #endif /* | codereview */

new usr/src/test/elf-tests/cnd/scripts/elftest.ksh

R R R R

990 Sun Feb 24 19:19:18 2019
new usr/src/test/elf-tests/cnd/scripts/elftest.ksh
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #!/usr/bin/ksh

3 #

4 # This file and its contents are supplied under the terms of the

5 # Common Devel oprment and Distribution License ("CDDL"), version 1.0.

6 # You may only use this file in accordance with the ternms of version

7 # 1.0 of the CDDL.

8 #

9 # A full copy of the text of the CDDL shoul d have acconpanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://ww.illunos.org/license/ CDDL.

12 #
14 #
15 # Copyright 2015 Nexenta Systens, Inc. All rights reserved.
16 #

18 export ELF _TESTS="/opt/elf-tests"
19 runner="/opt/test-runner/bin/run"

21 function fail

22

23 echo $1

24 exit ${2:-1}

25 }

27 function find_runfile

28 {

29 typeset distro=default

31 [[-n $distro]] &% echo $ELF_TESTS/runfiles/$distro.run
32}

34 while getopts c: c; do

35 case $c in

36 'c')

37 runfil e=$OPTARG

38 [[-f $runfile]] || fail "Cannot read file: $runfile"
39 55

40 esac

41 do

42 shi ft $((OPTIND - 1))

44 [[-z S$runfi
45 [[-z $runfi

mm

1] && runfile=$(find_runfile)
1] && fail "Couldn't determne distro"
47 $runner -c $runfile

49 exit $?
50 #endif /* 1 codereview */

new usr/src/test/elf-tests/doc/ READVE 1 new usr/src/test/elf-tests/doc/ READVE

R R R R 60 #endif /* ! codereview */

2003 Sun Feb 24 19:19:18 2019
new usr/src/test/el f-tests/doc/ READVE
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012 by Del phix. Al rights reserved.

14 # Copyright 2015 Nexenta Systens, Inc. Al rights reserved.

15 #

17 ELF Software Generation Uilities Unit Test Suite READVE

19 1. Building and installing the ELF/ SGS Unit Test Suite
20 2. Running the ELF/ SGS Unit Test Suite
21 3. Test results

25 1. Building and installing the ELF/SGS Unit Test Suite

27 The ELF/ SGS Unit Test Suite runs under the testrunner framework (which can be
28 installed as pkg:/systemtest/testrunner). To build both the ELF/SGS Unit Test S
29 and the testrunner without running a full nightly:

31 bui | d_machi ne$ bl denv [-d] <your_env_file>
32 bui | d_machi ne$ cd $SRC/ t est

33 bui | d_machi ne$ dneke install

34 bui | d_machi ne$ cd $SRC/ pkg

35 bui | d_machi ne$ dmeke install

37 Then set the publisher on the test machine to point to your repository and
38 install the ELF/SGS Unit Test Suite.

40 test_machi ne# pkg install pkg:/systenmtest/elftest

42 Note, the franmework will be installed automatically, as the ELF/ SGS Unit Test Su
43 depends on it.

45 2. Running the ELF/ SGS Unit Test Suite

47 The pre-requisites for running the ELF/SGS Unit Test Suite are:
48 None

50 Once the pre-requisites are satisfied, sinply run the elftest script:

52 test _machine$ /opt/elf-tests/bin/elftest

54 3. Test results

56 Wiile the ELF/ SGS Unit Test Suite is running, one informational line is printed
57 the end of each test, and a results summary is printed at the end of the run.

58 The results sumary includes the |ocation of the conplete |logs, which is of the
59 form/var/tnp/test_results/<l SO 8601 date>.

new usr/src/test/elf-tests/runfiles/Makefile

R R R R

908 Sun Feb 24 19:19:18 2019
new usr/src/test/elf-tests/runfiles/ Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this

8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012 by Del phix. Al rights reserved.

14 # Copyright 2014, Omi Tl Conputer Consulting, Inc. Al rights reserved.
15 # Copyright 2014 Garrett D Anore <garrett @anore. or g>

16 #

18 include $(SRC)/ Makefil e. master
20 SRCS = default.run

22 ROOTOPTPKG = $(ROOT)/opt/elf-tests
23 RUNFI LES = $(ROOTOPTPKG) / runfil es

25 CMDS = $(SRCS: %=$(RUNFI LES)/ %
26 $(CMVMDS) : = FI LEMODE = 0444

28 all: $(SRCS)

30 install: $(CVDS)

32 clean lint clobber:

34 $(CMDS): $(RUNFI LES) $(SRCS)
36 $(RUNFI LES) :

37 $(INS. dir)
39 $(RUNFILES)/ % %
40 $(INS.file)

41 #endif /* 1 codereview */

new usr/src/test/elf-tests/runfiles/default.run 1

R R R R

815 Sun Feb 24 19:19:18 2019
new usr/src/test/elf-tests/runfiles/default.run
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

2 #

3 # This file and its contents are supplied under the terms of the

4 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the ternms of version
6 # 1.0 of the CDDL.

7 #

8 # A full copy of the text of the CDDL shoul d have acconpanied this
9 # source. A copy of the CDDL is also available via the Internet at
10 # http://ww.illunps.org/license/ CDDL.

11 #

13 # Copyright 2018, Richard Lowe.

15 [DEFAULT]

16 pre =

17 verbose = Fal se

18 qui et = Fal se

19 tinmeout = 60

20 post =

21 outputdir = /var/tnp/test_results

23 [/opt/elf-tests/tests/|inker-sets]
24 tests = ['sinple’, 'in-use-check’]

26 [/opt/elf-tests/tests/assert-deflib]
27 tests = ["test-deflib’]

30 [/opt/elf-tests/tests/tls/x64/ie]
31 arch = i86pc
32 tests = ['x64-ie-test’]

34 [/opt/elf-tests/tests/tls/x86/1d]
35 arch = i86pc

36 tests = ['x86-1d-test’]

37 #endif /* 1 codereview */

new usr/src/test/elf-tests/tests/ Makefile

R R R R

582 Sun Feb 24 19:19:19 2019
new usr/src/test/elf-tests/tests/ Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012, 2016 by Del phix. Al rights reserved.

14 # Copyright 2018 Joyent, Inc.

15 #

17 SUBDI RS = \

18 assert-deflib \

19 l'i nker-sets \

20 tls

22 include $(SRC)/test/Mkefile.com
23 #endif /* ! codereview */

new usr/src/test/elf-tests/tests/assert-deflib/ Makefile

R R R R

940 Sun Feb 24 19:19:19 2019
new usr/src/test/elf-tests/tests/assert-deflib/Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

This file and its contents are supplied under the ternms of the
Common Devel opnent and Di stribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunps.org/license/ CDDL.

QCQOO~NOUIAWNEF

e
H O OHHHHHHHHHH

=
N

Copyright 2018, Richard Lowe.

i ncl ude $(SRC)/cnd/ Makefile.cnd
i nclude $(SRC)/test/Makefile.com

e
(6

=
~

PROG = test-deflib

[
©

DATAFI LES = link.c

N
[y

ROOTOPTPKG = $(ROOT)/opt/el f-tests
TESTDI R = $(ROOTOPTPKG / t ests/ assert-deflib

VDS = $(PROG %$(TESTDI R)/%
$(CMDS) : = FI LEMODE = 055

N
N

NN
g s

28 DATA = $(DATAFI LES: %$(TESTDI R /%
29 $(DATA) := FI LEMODE = 0444

31 all: $(PROG
33 install: all $(CVDS) $(DATA)

35 lint:

37 cl obber: clean

38 -$(RM $(PROO

40 cl ean:

41 -$(RV) $(CLEANFI LES)

43 $(CMVDS): $(TESTDIR) $(PROG)
45 $(TESTDI R)

46 $(INS. dir)
48 $(TESTDIR) /% %
49 $(INS.file)

50 #endif /* 1 codereview */

new usr/src/test/elf-tests/tests/assert-deflib/test-deflib.sh

R R R R

3870 Sun Feb 24 19:19:19 2019
new usr/src/test/elf-tests/tests/assert-deflib/test-deflib.sh
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #!'/bin/ bash

2

3 # This file and its contents are supplied under the terms of the

4 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.

5 # You may only use this file in accordance with the terns of version

6 # 1.0 of the CDDL.

7 #

8 # A full copy of the text of the CDDL shoul d have acconpanied this

9 # source. A copy of the CDDL is also available via the Internet at

10 # http://ww.illunps.org/license/ CDDL.

11 #

13 #

14 # Copyright (c) 2012, Joyent, Inc.

15 #

17 #

18 # This test validates that the -zassert-deflib option of 1d(1) works correctly.
19 # It requires that some cc is in your path and that you have passed in the path
20 # to the proto area with the new version of libld.so.4. One thing that we have
21 # to do is be careful with using LD LI BRARY_PATH. Setting LD LI BRARY_PATH does
22 # not change the default search path so we want to make sure that we use a

23 # different 1SA (e.g. 32-bit vs 64-bit) fromthe binary we’'re generating.

24 #

25 unalias -a

27 if [[-z $ELF_TESTS]]; then

28 print -u2 "Don’t know where the test data is rooted";

29 exit 1;

30 fi

32 #endif /* | codereview */

33 sh_pat h=

34 sh_lib="lib"

35 sh_l i b64="$sh_li b/ 64"

36 sh_sonanme="li bl d. so. 4"

37 sh_cc="gcc"

27 sh_cc="cc"

38 sh_cfl ags— - nB2"

39 sh_file="${ELF TESTS}/tests/ assert-deflib/link.c"
29 sh_file="link.c"

40 sh_arg0=$(basenane $0)

42 function fatal

43

44 | ocal nsg="%*"

45 [[-z "$m8g"]] &&% nsg="failed"
46 echo "$sh_arg0: $nsg" >&2

47 exit 1

48

__unchanged_portion_omtted_

82 sh_path=${1:-/}

72 sh_pat h=$1

73 [[-z "$1"]] && fatal "<proto root>"
83 validate

85 run "-W, -zassert-deflib" 0\
86 "Testing basic conpilation succeeds with warnings..." \

new usr/src/test/elf-tests/tests/assert-deflib/test-deflib.sh

87 "failed to conpile wth warnings"

89 run "-W,-zassert-deflib -W,-zfatal -warnings" 1\

90 "Testing basic conpilation fails if warning are fatal..." \
91 "1inking succeeeded, expected failure"

93 run "-W, -zassert-deflib=libc.so -W, -zfatal -warnings" 0\
94 "Testing basic exception with fatal warnings..." \

95 "linking failed despite exception”

97 run "-W, -zassert-deflib=libc.so -W, -zfatal -warnings" 0\
98 "Testing basic exception with fatal warnings..." \

99 "linking failed despite exception”

102 run "-W, -zassert-deflib=lib.so -W, -zfatal-warni ngs" 1\
103 "Testing invalid library nane.

104 "ld should not allowinvalid Ilbrary name"

106 run "-W, -zassert-deflib=libf -W,-zfatal-warnings" 1\

107 "Testing invalid library nanme..."

108 "ld should not allow invalid library name"

110 run "-W, -zassert-deflib=libf.s -W,-zfatal -warnings" 1\
111 "Testing invalid library name..." \

112 "ld should not allow invalid |library name"

114 run "-W, -zassert-deflib=libc.so -W,-zfatal-warnings -lelf" 1\
115 "Errors even if one library is under exception path..." \
116 "one exception shouldn't stop another"

118 args="-W, -zassert-deflib=libc.so -W, -zassert-deflib=libelf.so"
119 args="$args -W,-zfatal -warnings -lelf"

121 run "$args" 0\
122 "Mul tiple exceptions work..." \
123 "mul tiple exceptions don't work"

125 args="-W, -zassert-deflib=libc.so -W, -zassert-deflib=libelfe.so"
126 args="$args -W,-zfatal-warnings -lelf"

128 run "$args" 1\
129 "Exceptions only catch the specific library" \
130 "exceptions caught the wong library"

132 args="-W, -zassert-deflib=libc.so -W, -zassert-deflib=libel.so
133 args="$args -W,-zfatal-warnings -lelf"

135 run "$args" 1\
136 "Exceptions only catch the specific library" \
137 "exceptions caught the wong library"

139 echo "Tests passed.”
140 exit

new usr/src/test/elf-tests/tests/linker-sets/ Makefile

R R R R

967 Sun Feb 24 19:19:20 2019
new usr/src/test/elf-tests/tests/linker-sets/Mukefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 # Copyright 2018, Richard Lowe.

14 include $(SRC)/cnd/ Makefile.cnd

15 include $(SRC)/test/ Makefile.com

17 PROG = sinple in-use-check

19 DATAFILES = simple-src.c \

20 si npl e. out

22 ROOTOPTPKG = $(ROOT)/opt/el f-tests

23 TESTDIR = $(ROOTOPTPKG /tests/|inker-sets

25 CVDS = $(PROG %$(TESTDI R)/ %

26 $(CVMDS) := FILEMODE = 0555

29 DATA = $(DATAFI LES: °/r¥$(TESTDI R /%
30 $(DATA) := FI LEMODE = 0444

32 all: $(PROG
34 install: all $(CVDS) $(DATA)

36 lint:

38 cl obber: clean

39 -$(RVM $(PROG

41 cl ean:

42 -$(RM $(CLEANFI LES)

44 $(CVDS): $(TESTDIR) $(PROG)
46 $(TESTDIR):

47 $(INS. dir)
49 $(TESTDI R)/% %
50 $(INS. file)

51 #endif /* | codereview */

new usr/src/test/elf-tests/tests/linker-sets/in-use-check.sh

R R R R

1250 Sun Feb 24 19:19:20 2019
new usr/src/test/elf-tests/tests/linker-sets/in-use-check.sh
l'i nker _set sections shouldn't need leading '.’
code revi ew
10366 1d(1) should support GNU-style linker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

R R R R

1 #!'/usr/bin/ksh

2 #

3 # This file and its contents are supplied under the terns of the

4 # Conmon Devel opnent and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terms of version
6 # 1.0 of the CDDL.

7 #

8 # A full copy of the text of the CDDL shoul d have acconpanied this
9 # source. A copy of the CDDL is also available via the Internet at
10 # http://ww.illunos.org/license/ CDDL.

11 #

13 #

14 # Copyright 2018, Richard Lowe.

15 #

17 # Test that existing definitions of the start/stop synbols are reported
18 # as conflicting with internal synbols.

20 tnpdir=/tnmp/test.$$

21 nkdir $tnpdir

22 cd $tnpdir

24 cl eanup() {

25 cd /

26 rm-fr $tnpdir

27 }

29 trap 'cleanup’ EXIT

31 cat > broken.c <<ECOF
32 char foo[1024] _ attribute__((section("set_fo00")));
33 void *__start_set_foo;

35 int

36 main()

37 {

38 return (0);

39 }

40 EOF

42 # W\ expect any alternate linker to be in LD ALTEXEC for us already

43 gcc -0 broken broken.c -Vall -Wextra -W, -zfatal -warnings > in-use. $$. out 2>&1
44 if (($? == 0)); then

45 print -u2 "use of a reserved synmbol didn't fail"

46 exit 1;

47 fi

49 grep -q "7l d: warning: reserved synbol '__start_set_foo' already defined in file
50 if (($?2 !=0)); then

51 print -u2 "use of a reserved synbol failed for the wong reason"

52 exit 1;

53 fi

54 #endif /* ! codereview */

new usr/src/test/elf-tests/tests/linker-sets/sinple-src.c

R R R R

3414 Sun Feb 24 19:19:20 2019
new usr/src/test/elf- tests/tests/llnker-sets/5| npl e-src.c
l'i nker _set sections shouldn't need leading ’
10366 Td(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)
IR R R R R R R R SRR R S RS R SRR RS R R RS E R R R ERREREREEREEEEEEE]
1 /* The neat of this file is a copy of the FreeBSD sys/link_set.h */
2 /*
SPDX- Li cense-ldentifier: BSD 2-C ause- FreeBSD

Copyright (c) 1999 John D. Polstra
Copyright (c) 1999, 2001 Peter Wenm <pet er @r eeBSD. or g>
Al rights reserved.

Redi stribution and use in source and binary fornms, with or without

nodi fication, are permitted provided that the follow ng conditions

are met:

1. Redistributions of source code nust retain the above copyright
notice, this list of conditions and the follow ng disclainer.

2. Redistributions in binary form nust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainmer in the
docunentation and/or other materials provided with the distribution.

TH S SOFTWARE | S PROVI DED BY THE AUTHOR AND CONTRI BUTORS ‘“AS | S'" AND
ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE
I MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE

NRERRRERRRER R
COO~NOUITAWNROW©O~NOUDW

21 ARE DI SCLAI MED. | N NO EVENT SHALL THE AUTHOR OR CONTRI BUTORS BE LI ABLE

22 FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL
23 DAMAGES (I NCLUDI NG, BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOODS
24 OR SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON)

25 HOWEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER | N CONTRACT, STRICT
26 LI ABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SING | N ANY WAY
27 QUT OF THE USE OF TH S SOFTWARE, EVEN | F ADVI SED OF THE PCSSI BI LI TY OF

28 SUCH DANMAGE.

29

30 $Fr eeBSD$

T I

/
33 #include <stdio.h>

35 #define MAKE_SET(set, sym \

36 _asm_(".globl __start_set_" #set); \

37 __asm_(".globl _ stop_set_" #set); \

38 static __attribute_ ((section("set_" #set), used)) \

39 voi d const *__set_##set##_sym ##sym = &(sym

41 | *

42 */Initialize before referring to a given linker set.

43 *

44 #define SET_DECLARE(set, ptype) \
45 extern __attri but e_ ((weak)) ptype *__start_set_ ## set; \
46 extern __attribute__((weak)) ptype * _stop_set_ ## set

48 #define SET_BEGQ N(set) (& start_set_ ## set)
49 #define SET_LIMT(set) (& stop_set_ ## set)

51 /*

52 * Iterate over all the elenents of a set.

53 *

54 * Sets always contain addresses of things, and "pvar" points to words

55 * containing those addresses. Thus is nust be declared as "type **pvar”,
56 * and the address of each set itemis obtained inside the | oop by "*pvar"
57 *

58 #define SET_FOREACH(pvar, set) \

new usr/src/test/elf-tests/tests/linker-sets/sinple-src.c

59 for (pvar = SET_BEGQ N(set); pvar < SET_LIM T(set); pvar++)

61 #define SET_| TEM set, i) \
62 ((SET_BEG N(set))[i])

64 /*

65 * Provide a count of the items in a set.

66 */

67 #define SET_COUNT(set) \
68 (SET_LIM T(set) - SET_BEG N(set))

70 struct foo {

71 char buf[128];

72 1}

74 SET_DECLARE(foo, struct foo);

76 struct foo a = { "foo" };
77 struct foo b = "bar" };
78 struct foo ¢ = { "baz" };

80 MAKE_SET(foo, a);
81 MAKE_SET(foo, b);
82 MAKE_SET(foo, c);

84 int
85 main(int __attribute__((unused)) argc, char __attribute__((unused)) **argv)

87 struct foo **c;
88 int i =0;
90 printf("Set count: %\ n", SET_COUNT(fo00));
93 printf("a: %\n", ((struct foo *)__set_foo_sym a)->buf);
94 printf("b: %\n", ((struct foo *)__set_foo_symb)->buf);
95 printf("c: %\n", ((struct foo *)__set_foo_symc)->buf);
97 printf("item(foo, 0): %\n", SET_|ITEMfoo, O0)->buf);
98 printf("item(foo, 1): %\n", SET_ITEMfoo, 1)->buf);
99 printf("itemfoo, 2): %\n", SET_ITEMfoo, 2)->buf);

101 SET_FOREACH(c, foo) {

102 printf("foo[%l]: %\n", i, (*c)->buf);

103 i ++;

104 }

105

}
106 #endif /* | codereview */

new usr/src/test/elf-tests/tests/linker-sets/sinple.out

R R R R

124 Sun Feb 24 19:19:20 2019
new usr/src/test/elf-tests/tests/linker-sets/sinple.out
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 Set count: 3

2 a: foo

3 b: bar

4 c: baz

5 itemfoo, 0): foo
6 itemfoo, 1): bar
7 item(foo, 2): baz
8 foo[0]: foo

9 foo[1]: bar

10 foo[2]: baz

11 #endif /* ! codereview */

new usr/src/test/elf-tests/tests/linker-sets/sinple.sh 1

R R R R

1398 Sun Feb 24 19:19:20 2019
new usr/src/test/elf-tests/tests/linker-sets/sinple.sh
code revi ew
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkk ok k k%

1 #!'/usr/bin/ksh

2 #

3 # This file and its contents are supplied under the ternms of the

4 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the ternms of version
6 # 1.0 of the CDDL.

7 #

8 # A full copy of the text of the CDDL shoul d have acconpanied this

9 # source. A copy of the CDDL is also available via the Internet at
10 # http://ww.illunos.org/license/ CDDL.

11 #

13 #

14 # Copyright 2018, Richard Lowe.

15 #

17 # Test that a sinple use of linker-sets, that is, automatically generated start
18 # and end synbols for sections can be generated and used.

20 if [[-z $ELF_TESTS]]; then

21 print -u2 "Don't know where the test data is rooted";
22 exit 1;
23 fi

25 tnpdir=/tnp/test.$$
26 nkdir $tnpdir

27 cd $tnpdir

29 cl eanup() {

30 cd /

31 rm-fr $tnpdir
32}

34 trap 'cleanup’ EXIT

36 # W expect any alternate linker to be in LD ALTEXEC for us already
37 gcc -0 sinple ${ELF_TESTS}/tests/linker-sets/sinple-src.c -Wall -Wextra
38 if (($?2 !=0)); then

39 print -u2 "conpilation of ${ELF_TESTS}/tests/l|inker-sets/sinple-src.c failed
40 exit 1;
41 fi

43 ./sinple > sinple. $$. out 2>&1
45 if (($? !'=0)); then

46 print -u2 "execution of ${ELF _TESTS}/tests/l|inker-sets/sinple-src.c failed";
47 exit 1;
48 fi

50 diff -u ${ELF_TESTS}/tests/|inker-sets/sinple.out sinple.$$.out
51 if (($?2!=0))' t hen

52 print -u2 "${ELF_TESTS}/tests/|inker-sets/sinple-src.c output msmatch"
53 exit 1;
54 fi

55 #endif /* ! codereview */

new usr/src/test/elf-tests/tests/tls/Makefile

R R R R

550 Sun Feb 24 19:19:21 2019
new usr/src/test/elf-tests/tests/tls/Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012, 2016 by Del phix. Al rights reserved.

14 # Copyright 2018 Joyent, Inc.

15 #

17 SUBDI RS = x64 x86

19 include $(SRC)/test/ Makefile.com
20 #endif /* 1 codereview */

new usr/src/test/elf-tests/tests/tls/x64/ Makefile

R R R R

545 Sun Feb 24 19:19:21 2019
new usr/src/test/elf-tests/tests/tls/x64/ Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012, 2016 by Del phix. Al rights reserved.

14 # Copyright 2018 Joyent, Inc.

15 #

17 SUBDIRS = ie

19 include $(SRC)/test/ Makefile.com
20 #endif /* 1 codereview */

new usr/src/test/elf-tests/tests/tls/x64/iel Makefile

R R R R

1117 Sun Feb 24 19:19:21 2019
new usr/src/test/elf-tests/tests/tls/x64/ielMukefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

This file and its contents are supplied under the ternms of the
Common Devel opnent and Di stribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunps.org/license/ CDDL.

QCQOWONOUTAWNE
H O OHHHHHHHHHH

Copyright 2018, Richard Lowe.

14 include $(SRC)/cnd/ Makefile.cnd
15 include $(SRC)/test/ Makefile.com

17 PROG = x64-ie-test

19 DATAFI LES = \
20 Makefile. test \
21 stylel-func-with-r12.s \
22 stylel-func-with-r13.s \
23 styl el-func.s \
24 stylel-nain.s \
25 styl e2-wi t h- badness. s \
26 style2-with-ri2.s \
27 style2-with-r13.s \
28 style2.s

30 ROOTOPTPKG = $(ROOT)/opt/elf-tests
31 TESTDIR = $(ROOTOPTPKG) /tests/tl s/ x64/ie

33 CMDS = $(PROG %$(TESTDI R)/ %

34 $(CVDS) := FI LEMODE = 0555

37 DATA = $(DATAFI LES: %=$(TESTDI R/ %
38 $(DATA) := FI LEMODE = 0444

40 all: $(PROG
42 install: all $(CVDS) $(DATA)

44 lint:

46 cl obber: clean

47 -$(RVM $(PROG

49 cl ean:

50 -$(RM) $(CLEANFI LES)

52 $(CMVDS): $(TESTDIR) $(PROG)
54 $(TESTDIR):

55 $(INS. dir)
57 $(TESTDI R)/% %
58 $(INS. file)

59 #endif /* | codereview */

new usr/src/test/elf-tests/tests/tls/x64/iel Makefile.test 1

R R R R

2363 Sun Feb 24 19:19:21 2019

new usr/src/test/elf-tests/tests/tls/x64/ielMakefile.test

10366 1d(1) shoul d support GNU-style |inker sets

10367 1d(1) tests should be a real test suite

10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

CQOWO~NOUTAWNE
H O OHHHHFHHHHH

This file and its contents are supplied under the ternms of the
Common Devel opnent and Distribution License (" "), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this

source. A copy of the CDDL is also available via the Internet at
http://ww.illunps.org/license/ CDDL.

Copyright 2012, Richard Lowe.

gcc
ude $(SRC)/ Makefil e. master

W have to use GCC, and only GCC. The best way is to ask cw(1l) which GCC to u

CC_CWD = $(ONBLD TOO_S)/bl n/ $(MACH) / cw - _gcc -_conpil er

cC = $(CC_CMVD: sh)

CFLAGS = -0l -nb4

LINK.c = $(CC) $(CFLAGS) -0 $@3%"

LINK. ¢ = env LD _ALTEXEC=$(PROTO)/usr/bin/and64/1d $(CC) $(CFLAGS) -0 $@ $"

COWPI LE. ¢ = $(CC) $(CFLAGS) -c -0 $@$"
COWPI LE. s = $(CC) $(CFLAGS) -c -0 $@$"

. KEEP_STATE:
install default: all

% 0: $(ELF_TESTS)/tests/tls/x64/iel %c
.c.0:

$(COVPI LE. ¢)
% 0: $(ELF_TESTS)/tests/tls/x64/iel%s

S. 0!
$(COWPI LE. s)

A basic use of TLS that uses the movg mir --> novq i/r variant
PROGS += style2
STYLE2OBJS = style2.0
styl e2: $(STYLE20OBJS)
$(LINK c)

A copy of style2 that uses %13 in the TLS sequence, and thus excercises the
REX transitions of the novg memreg -> novq immreg variant.
PROGS += style2-with-r13
STYLE2R130BJS = style2-with-r13.0
style2-with-ri13: $(STYLE2R130BJS)
$(LINK.)

A copy of style2 that uses %12 in the TLS sequence,
it is _not_ special to this variant
PROGS += style2-with-r12
STYLE2R120BJS = style2-with-r12.0
style2-with-r12: $(STYLE2R120BJS)
$(LINK. c)

so we can verify that

A copy of style2 that has a R AMD64_GOTTPOFF rel ocation with a bad insn sequen

new usr/src/test/elf-tests/tests/tls/x64/ielMakefile.test 2
51 STYLE2BADNESSOBJS = styl e2-wi t h- badness. o
52 styl e2-with-badness: $(STYLE2BADNESSOBJS)
53 -$(LINK. ¢)
55 # A basic use of TLS that uses the addg nemreg --> |l eaq nemreg vari ant

PROGS += stylel
STYLE1OBJS = stylel-main.o stylel-func.o
stylel: $(STYLE1OBIS)
$(LINK.)
A copy of stylel-func that uses %13 in the TLS sequence and thus excercises

the REX transitions.
PROGS += stylel-with-r13
STYLE1IR13OBJS = stylel-nain.o stylel-func-with-r13.0
stylel-with-r13: $(STYLEIR130BJS)

$(LINK. c)

of the addq nemreg --> |l eag nemreg vari ant

A copy of stylel-func that uses %12 to test the addq memreg --> addq inmreg
PROGS += stylel-with-r12
STYLE1R120BJS = stylel-nain.o stylel-func-with-rl12.0
stylel-with-r12: $(STYLEIR120BJS)
$(LINK.)

all: $(PROGS)
cl obber cl ean:
rm-f $(PROGS) $(STYLELOBJS) $(STYLELR130BJS) $(STYLE1IR120BJS) \
$(STYLE20BJIS) $(STYLE2R130BJS) $(STYLE2R120BJS) $(STYLE2BADNESSOBJS)
fail: style2-w th-badness FRC

FRC:

new usr/src/test/elf-tests/tests/tls/x64/ielstylel-func-with-rl2.s 1

R R R R

842 Sun Feb 24 19:19:22 2019
new usr/src/test/elf-tests/tests/tls/x64/ielstylel-func-with-rl12.s
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

__unchanged_portion_omtted_

new usr/src/test/elf-tests/tests/tls/x64/ielstyle2-wth-badness.s 1

R R R R

925 Sun Feb 24 19:19:23 2019
new usr/src/test/elf-tests/tests/tls/x64/ielstyle2-wth-badness.s
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

__unchanged_portion_omtted_

new usr/

kokokokok ok kk

953
new usr/
10366 |1 d
10367 Id
10368 wal

kkokkokkokk

1/*

[
QOO NOUITAWN
* ok Gk kR % ok F

src/test/elf-tests/tests/tls/x64/ielstyle2-with-rl2.s

EE R

Sun Feb 24 19:19:24 2019
src/test/elf-tests/tests/tls/x64/ielstyle2-with-rl2.s

(1) should support GNU-style linker sets

(1) tests should be a real test suite

nt an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkhkkkhkkhkhk Rk khkhkhkkhkhkhkhhhkkkkkkkkkkkkkkkk k%

This file and its contents are supplied under the ternms of the
Conmmon Devel opment and Distribution License ("CDDL"), version 1.0.
You nmay only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL should have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://wwv.illunps.org/license/ CODL.

12 /*

13 * Copyright 2012, Richard Lowe.

14 */

16 .section .rodata.str1.1,"aMs", @rogbits,1
17 .LCO

18 .string "foo: %\n"

19 .text

20 .globl main

21 .type mai n, @unction

22 nmin:

23 . LFBO:

24 pushq % bp

25 .LCFIO

26 novq % sp, % bp

27 .LCFI1

28 nmovq f 00@OTTPOFF(% i p), % 12
29 addq %s:0, w12

30 nmovq % 12, % si

31 nov| $.LC0, %di

32 novl $0, %ax

33 cal | printf

34 nov| $0, Y%eax

35 | eave

36 ret

37 . LFEO:

38 . si main, .-main

39 .globl foo

40 .section .rodata.str1.1
41 . LCIL:

42 .string "foo"

44 #endif /* ! codereview */

45 .section .tdata, "awT", @rogbits
46 .align 8

47 .type foo, @bject

48 . sl ze foo, 8

49 foo:

50 . quad .LC1L

new usr/src/test/elf-tests/tests/tls/x64/ielstyle2-with-r13.s 1

R R R R

952 Sun Feb 24 19:19:24 2019
new usr/src/test/elf-tests/tests/tls/x64/ielstyle2-with-ri3.s
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

__unchanged_portion_omtted_

new usr/src/test/elf-tests/tests/tls/x64/ielstyle2. s

R R R R

925 Sun Feb 24 19:19: 25 2019
new usr/src/test/elf-tests/tests/tls/x64/ielstyle2. s
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

__unchanged_portion_omtted_

new usr/src/test/elf-tests/tests/tls/x64/ielx64-ie-test.sh

R R R R

2251 Sun Feb 24 19:19:25 2019
new usr/src/test/elf-tests/tests/tls/x64/ielx64-ie-test.sh
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #!'/bin/ksh

2 #

3 # This file and its contents are supplied under the terms of the
4 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terns of version
6 # 1.0 of the CDDL.

7 #

8 # A full copy of the text of the CDDL shoul d have acconpanied this
9 # source. A copy of the CDDL is also available via the Internet at
10 # http://ww.illunps.org/license/ CDDL.

11 #

13 # Copyright 2012, Richard Lowe.

15 function grep_test {

16 name=$1

17 pattern=$2

19 if /usr/bin/fgrep -q "${pattern}"; then

20 print -u2 "pass: $nane"

21 el se

22 print -u2 "FAIL: $nane"

23 exit

24 #endif /* | codereview */

25 fi

26 }

28 function dis_test {

29 name=${ 1}

30 func=${2}

31 file=${3}

32 patt er n=${ 4}

34) dis -F${func} ${file} | grep_test "${name}" "${pattern}"

35

37 if [[-z $ELF_TESTS]]; then

38 print -u2 "Don't know where the test data is rooted";

39 exit 1;

40 fi

42 make -f ${ELF _TESTS}/tests/tls/x64/iel Makefile.test
23 make PROTO="${1}"

44 dis_test "addg-->leaq 1" func stylel \

45 "func+0x10: 48 8d 92 f8 ff ff Ileaq - 0x8(% dx), % dx’
46 dis_test "addg-->leaq 2" func stylel \

47 "func+0x17: 48 8d b6 fO ff ff |leaq -0x10(% si), % si’
49 dis_test "addqg-->leaq w REX 1" func stylel-with-r13 \

50 "func+0x10: 48 8d 92 f8 ff ff leaq -0x8(% dx), % dx’
51 dis_test "addg-->leaq w REX 2" func stylel-with-r13 \

52 "func+0x17: 4d 8d ad fO ff ff |eaq -0x10(% 13), % 13’

54 dis_test "addg-->addq for SIB 1" func stylel-with-r12 \
55 "func+0x10: 48 8d 92 f8 ff ff leaq - 0x8(% dx) , % dx’
56 dis_test "addqg-->addq for SIB 2" func stylel-with-r12 \

57 "func+0x17: 49 81 c4 fO ff ff addq $- 0x10, % 12 <Oxfffffffffffffffo>’

new usr/src/test/elf-tests/tests/tls/x64/ielx64-ie-test.sh 2

59 dis_test "novg-->novqg" main style2\
60 "mai n+0x4: 48 ¢7 c6 fO ff ff novq $- 0x10, % si <Oxfffffffffffffffo>’

62 dis_test "novg-->npbvg W REX" main style2-with-r13 \
63 "mai n+0x4: 49 c7 ¢5 fO ff ff nmovg $-0x10, % 13 <Oxfffffffffffffffo>

65 dis_test "novg-->novq incase of SIB" nain style2-with-r12 \
66 "mai n+0x4: 49 c7 c4 fo ff ff wmovg $-0x10, %12 <Oxfffffffffffffffo>’

68 make -f ${ELF_TESTS}/tests/tls/x64/iel Makefile.test fail 2>&1 | grep_test "bad i
49 nmake PROTO="${1}" fail 2>&1 | grep_test "bad insn sequence" \
69 "1d: fatal: relocation error: R AVD64_TPOFF32: file style2-w th-badness.o: sy

new usr/src/test/elf-tests/tests/tls/x86/ Makefile

R R R R

545 Sun Feb 24 19:19:26 2019
new usr/src/test/elf-tests/tests/tls/x86/ Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012, 2016 by Del phix. Al rights reserved.

14 # Copyright 2018 Joyent, Inc.

15 #

17 SUBDIRS = | d

19 include $(SRC)/test/ Makefile.com
20 #endif /* 1 codereview */

new usr/src/test/elf-tests/tests/tls/x86/1d/ Makefile

R R R R

964 Sun Feb 24 19:19:26 2019
new usr/src/test/elf-tests/tests/tls/x86/1d/ Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 # Copyright 2018, Richard Lowe.

14 include $(SRC)/cnd/ Makefile.cnd

15 include $(SRC)/test/ Makefile.com

17 PROG = x86-1d-test

19 DATAFI LES = \

20 Makefile. test \

21 hal f-1dm s \

23 ROOTOPTPKG = $(ROOT)/opt/el f-tests

24 TESTDIR = $(ROOTOPTPKG) /tests/tl s/ x86/1d

26 CMDS = $(PROG %:$(TESTDI R)/%

27 $(CVMDS) := FILEMODE = 055

30 DATA = $(DATAFI LES: 0/<:$(TESTDI R) / %
31 $(DATA) := FI LEMODE = 0444

33 all: $(PROO

35 install: all $(CVDS) $(DATA)
37 lint:

39 cl obber: clean

40 -$(RVM $(PROG

42 cl ean:

43 -$(RM $(CLEANFI LES)

45 $(CVDS): $(TESTDIR) $(PROG)
47 $(TESTDIR):

48 $(INS. dir)
50 $(TESTDIR) /% %
51 $(INS.file)

52 #endif /* ! codereview */

new usr/src/test/elf-tests/tests/tls/x86/1d/ Makefile.test 1

R R R R

1053 Sun Feb 24 19:19:26 2019
new usr/src/test/elf-tests/tests/tls/x86/1d/ Makefile.test
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 # Copyright 2012, Richard Lowe.

14 CC = gce

15 CFLAGS = -0l -nB2

17 LINK. c = $(CC) $(CFLAGS) -0 s@$"

18 COWILE.c = $ $(CFLAGS) -c -0 $@3$"

19 COWPILE. s = $(CC) $(CFLAGS) -c -0 $@ %"

21 . KEEP_STATE:
23 install default: all

25 % o0: $(ELF_TESTS)/tests/tls/x86/1d/ %c

26 $(COWPI LE. c)
27 % o: $(ELF_TESTS)/tests/tls/x86/1d/ %s
28 $(COWPI LE. s)

30 # an R 386_TLS LDMwith a regular R 386_PLT32 not a R 386_TLS LDM PLT
31 PROGS += hal f -1 dm

33 half-ldm half-Idmo

34 $(LINK. ¢)

36 all: $(PROGS)

38 cl obber cl ean:

39 rm-f $(PROGS) $(STYLELOBJS) $(STYLELR130BJS) $(STYLELR120BJS) \

40 $(STYLE20BJS) $(STYLE2R130BJS) $(STYLE2R120BJS) $(STYLE2BADNESSOBJS)

42 fail: style2-with-badness FRC

44 FRC
45 #endif /* 1 codereview */

new usr/src/test/elf-tests/tests/tls/x86/1d/ half-ldms

R R R R

1355 Sun Feb 24 19:19:26 2019
new usr/src/test/elf-tests/tests/tls/x86/1d/half-lIdms
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)
LR EEEEEEEEE SRS RS RS RS S SRR SRS R E R R R EREEEEEEEEEEESEESEE]

1/*
* This file and its contents are supplied under the terns of the
Common Devel opment and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL should have acconpani ed this
source. A copy of the CDDL is also available via the Internet at

[N
QOO ~NOUIAWN
* Ok Gk ok R % ok F

/http://vwm/. illunmos.org/license/ CDDL. u
12 /*
13 * Copyright 2019, Richard Lowe.
14 =/
16 .section .rodata.str1.1,"aMs", @rogbits,1
17 . LCO:
18 .string "foo: % (%)\n"
19 .section .tdata, "awl", @rogbits
20 .align 4
21 .type foo, @bject
22 .size foo, 4
23 .local foo
24 foo:
25 .string "foo"
26 . text
27 .globl nmain
28 .type main, @unction
29 main:
30 pushl %ebp
31 nmovl %esp, %ebp
32 /*
33 * an R 386_TLS LDM rel ocation without a follow ng
34 * followed by an R 386_PLT32 relocation, rather than an
35 * R 386_TLS LDM PLT the call should be renoved, and _not_
36 * |eft alone unrelocated as it was prior to:
37 * 10267 |Id and GCC di sagree about i386 |ocal dynam c TLS
38 /
39 leal foo@LSLDM %ebx), %eax
40 call __ tls_get_addr@.LT
41 | eal foo@TPOFF(%ax), %edx
42 pushl %edx
43 pushl %edx
44 pushl $.LCO
45 call printf@LT
46 movl $0x0, Y%eax
a7 | eave
48 ret
49 .Size main, .-main

50 #endif /* 1 codereview */

new usr/src/test/elf-tests/tests/tls/x86/1d/x86-1d-test.sh

R R R R

1107 Sun Feb 24 19:19:26 2019
new usr/src/test/elf-tests/tests/tls/x86/1d/x86-1d-test.sh
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #!'/bin/ksh

2 #

3 # This file and its contents are supplied under the terms of the
4 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the ternms of version
6 # 1.0 of the CDDL.

7 #

8 # A full copy of the text of the CDDL shoul d have acconpanied this
9 # source. A copy of the CDDL is also available via the Internet at
10 # http://ww.illunps.org/license/ CDDL.

11 #

13 # Copyright 2012, Richard Lowe.

15 function grep_test {

16 name=$1

17 pattern=$2

19 if /usr/bin/grep -q "${pattern}"; then

20 print -u2 "pass: $nane"

21 el se

22 print -u2 "FAIL: $nane"

23 exit 1

24 fi

25 }

27 function dis_test {

28 name=${ 1}

29 func=${ 2}

30 file=${3}

31 patt er n=${ 4}

33 dis -F${func} ${file} | grep_test "${nane}" "${pattern}”

34}

36 if [[-z $ELF_TESTS]]; then

37 print -u2 "Don’t know where the test data is rooted";

38 exit 1;

39 fi

41 make -f ${ELF_TESTS}/tests/tls/x86/Id/ Makefile.test

43 dis_test "call-->nop" main half-1dm\
44 "mai n\ +0x9: Of 1f 44 00 00 nopl 0x0(Yeax, ¥%eax)’

46 ./half-1dm| grep_test 'half-ldm execution’ \
47 "AMoo: foo ([a-f0-9]*)%
48 #endif /* | codereview */

new usr/src/uts/comon/sys/link.h

R R R R

23445 Sun Feb 24 19:19:27 2019
new usr/src/uts/comon/sys/link.h
I'd: inplenent -ztype and rework option parsing
LEEE R R R EE SRR EEEEEEEEEEE R REEEE SRR SRR EEEEEREREEEEEEEEESEE]
______unchanged_portion_omtted
69 #endif /* defined(_LP64) [| defined(_LONGLONG TYPE) */
70 #endif /* _ASM */

72 | *

73 * Tag val ues

74 */

75 #define DT_NULL 0 /* last entry in list */

76 #define DT_NEEDED 1 /* a needed object */

77 #define DT_PLTRELSZ 2 /* size of relocations for the PLT */

78 #define DT_PLTGOT 3 /* addresses used by procedure |inkage table */
79 #define DT_HASH 4 /* hash table */

80 #define DI_STRTAB 5 /* string table */

81 #define DI_SYMIAB 6 /* synbol table */

82 #define DI_RELA 7 /* addr of relocation entries */

83 #define DI_RELASZ 8 /* size of relocation table */

84 #define DT_RELAENT 9 /* base size of relocation entry */

85 #define DI_STRSZ 10 /* size of string table */

86 #define DT_SYMENT 11 /* size of synmbol table entry */

87 #define DT_INT 12 /* _init addr */

88 #define DT_FINI 13 [* _fini addr */

89 #define DT_SONAME 14 /* nane of this shared object */

90 #define DT_RPATH 15 /* run-time search path */

91 #define DT_SYMBCLIC 16 /* shared object |inked -Bsynbolic */

92 #define DT_REL 17 /* addr of relocation entries */

93 #define DI_RELSZ 18 /* size of relocation table */

94 #define DT_RELENT 19 /* base size of relocation entry */

95 #define DT_PLTREL 20 /* relocation type for PLT entry */

96 #define DT_DEBUG 21 /* pointer to r_debug structure */

97 #define DT_TEXTREL 22 /* text relocations remain for this object */
98 #define DT_JMPREL 23 /* pointer to the PLT relocation entries */
99 #define DT_BI ND_NOW 24 /* performall relocations at |oad of object */
100 #define DT_INIT_ARRAY 25 /* pointer to .init_array */

101 #define DT_FIN _ARRAY 26 /* pointer to .fini_array */

102 #define DT_I NI T_ARRAYSZ 27 /* size of .init_array */

103 #define DT_FI Nl _ARRAYSZ 28 /* size of .fini_array */

104 #define DT_RUNPATH 29 /* run-time search path */

105 #define DT_FLAGS 30 /* state flags - see DF_* */

107 /*

108 * DT_* encoding rul es: The value of each dynanmic tag determ nes the

109 * interpretation of the d_un union. This convention provides for sinpler
110 * interpretation of dynamc tags by external tools. A tag whose val ue
111 * is an even nunber indicates a dynam c section entry that uses d_ptr.
112 * A tag whose value is an odd nunber indicates a dynam c section entry
113 * that uses d_val, or that uses neither d_ptr nor d_val.

114 *

115 * There are exceptions to the above rule:

116 * - Tags with values that are |ess than DT_ENCCDI NG

117 = - Tags with values that fall between DT_LOOS and DT_SUNW ENCODI NG
118 * - Tags with values that fall between DT_H OS and DT_LOPROC

119 *

120 * Third party tools nust handl e these exception ranges explicitly

121 * on an itemby item basis.

122 *

123 #defi ne DT_ENCODI NG 32 /* positive tag DT_* encoding rules */
124 /* start after this */

125 #define DT_PRElI NI T_ARRAY 32 /* pointer to .preinit_array */
126 #define DT_PREI Nl T_ARRAYSZ 33 /* size of .pr ei ni t_array */

128 #defi ne DT_MAXPOSTAGS 34 /* nunber of positive tags */

new usr/src/uts/comon/sys/link.h 2
130 /*

131 */DT_* encoding rules do not apply between DT_LOCS and DT_SUNW ENCODI NG
132~

133 #define DT_LOCS 0x6000000d /* OS specific range */

134 #define DT_SUNW AUXI LI ARY 0x6000000d /* synbol auxiliary nane */

135 #define DT_SUNW RTLDI NF 0x6000000e /* Id.so.1 info (private) */
136 #define DT_SUNWFILTER 0x6000000f /* synbol filter nane */

137 #define DT_SUNW CAP 0x60000010 /* hardwar e/ sof tware */

138 I * capabilities */

139 #define DT_SUNW SYMIAB 0x60000011 /* syntab with local fcn */

140 I * synbol s i mmedi ately */
141 /* precedi ng DT_SYMIAB */
142 #define DT_SUNW SYMSZ 0x60000012 /* Size of SUNW SYMIAB table */
144 | *

145 * DT_* encoding rul es apply between DT_SUNW ENCODI NG and DT_HI OS

146 */

147 #define DT_SUNW ENCODI NG 0x60000013 /* DT_* encoding rules resunme */
148 /* after this */

149 #define DT_SUNW SORTENT 0x60000013 /* sizeof [SYM TLS] SORT entry */
150 #define DT_SUNW SYMSORT 0x60000014 /* symindices sorted by addr */
151 #define DT_SUNW SYMSORTSZ 0x60000015 /* size of SUNW SYMSORT */

152 #define DT_SUNW TLSSORT 0x60000016 /* tls symndx sort by offset */
153 #define DT_SUNW TLSSORTSZ 0x60000017 /* size of SUNW TLSSORT */

154 #define DT_SUNW CAPI NFO 0x60000018 /* capabilities synbols */

155 #define DT_SUNW STRPAD 0x60000019 /* # of unused bytes at the */
156 I * end of dynstr */

157 #define DT_SUNW CAPCHAI N 0x6000001a /* capabilities chain info */
158 #define DT_SUNW LDVACH 0x6000001b /* A machi ne code of |inker */
159 /* that produced object */
160 #define DT_SUNW CAPCHAI NENT 0x6000001d /* capabilities chain entry */
161 #define DT_SUNW CAPCHAI NSZ 0x6000001f /* capabilities chain size */
162 /* 0x60000021 woul d be DT_SUNW PARENT */

163 #define DI_SUNWASLR 0x60000023 /* executabl e ASLR desire */
164 #defi ne DT_SUNW KMOD 0x60000027 /* object is a kernel nodule */
165 #endif /* T codereview */

167 /*

168 * DT_* encoding rules do not apply between DT_H OS and DT_LOPROC

169 *

170 #define DI_H OGS 0x6f f f f 000

172 /| *

173 * The follow ng val ues have been deprecated and remain here to allow

174 * conpatibility with ol der binaries.

175 */

176 #define DT_DEPRECATED SPARC REG STER 0x7000001

178 /*

179 * DT_* entries which fall between DI_VALRNGH & DT_VALRNGLO use the

180 * Dyn.d_un.d_val field of the Elf*_Dyn structure.

181 *

182 #define DT_VALRNGLO 0x6f f f f dOO

184 #define DT_GNU_PRELI NKED Ox6ffffdf5 /* prelinking timestanp (unused) */

185 #define DT_GNU _CONFLI CTSZ Ox6ffffdf6 /* size of conflict section (unused) *
186 #define DI_GNU LI BLI STSZ Ox6ffffdf7 /* size of library list (unused) */

187 #defi ne DT_CHECKSUM oxeffffdf8 /* elf checksum */

188 #defi ne DT_PLTPADSZ oxe6ffffdf9 /* pltpadding size */

189 #defi ne DT_MOVEENT ox6ffffdfa /* nove table entry size */

190 #define DI_MOVESZ ox6ffffdfb /* nove table size */

191 #define DT_FEATURE 1 ox6ffffdfc /* feature hol der (unused) */

192 #define DT_POSFLAG 1 oxeffffdfd /* flags for DT_* entries, effecting */
193 /* the folTowing DT_* entry. */
194 /* See DF_P1_* definitions */

new usr/src/uts/comon/sys/link.h 3 new usr/src/uts/comon/sys/link.h 4

195 #define DT_SYM NSZ ox6ffffdfe /* symnfo table size (in bytes) */ 261 * These values only affect the followi ng DT_* entry.
196 #define DT_SYM NENT ox6ffffdff /* syminfo entry size (in bytes) */ 262 */
197 #define DT_VALRNGHI ox6f f f fdf f 263 #define DF_P1_LAZYLOAD 0x00000001 /* following object is to be */
264 /* | azy | oaded */
199 /* 265 #define DF_P1_GROUPPERM 0x00000002 /* follow ng object’s synbols are */
200 * DT_* entries which fall between DT_ADDRRNGH & DT_ADDRRNGLO use the 266 /* not avail able for general */
201 * Dyn.d_un.d_ptr field of the Elf*_Dyn structure. 267 /* synbol bindings. */
202 * 268 #define DF_P1_DEFERRED 0x00000004 /* followmng object is deferred */
203 * |f any adjustment is nade to the ELF object after it has been
204 * built, these entries will need to be adjusted. 270 /| *
205 */ 271 * Values for the DI_FLAGS_ 1 .dynamic entry.
206 #define DT_ADDRRNGLO 0x6ffffe00 272 */
273 #define DF_1_NOW 0x00000001 /* set RTLD NOWfor this object */
208 #define DT_GNU_HASH oxe6ffffefb /* GNU-style hash table (unused) */ 274 #define DF_1_GLOBAL 0x00000002 /* set RTLD GLOBAL for this object */
209 #define DT_TLSDESC PLT Ox6ffffef6 /* GNU (unused) */ 275 #define DF_1_GROUP 0x00000004 /* set RTLD GROUP for this object */
210 #define DT_TLSDESC GOT Ox6ffffef7 /* GN\U (unused) */ 276 #define DF_1_NODELETE 0x00000008 /* set RTLD_NODELETE for this object */
211 #define DT_GNU_CONFLICT Ox6ffffef8 /* start of conflict section (unused) */ 277 #define DF_1_LOADFLTR 0x00000010 /* trigger filtee loading at runtine */
212 #define DT_GNU_LIBLIST Ox6ffffef9 /* Library list (unused) */ 278 #define DF_1_I NI TFI RST 0x00000020 /* set RTLD_INI TFIRST for this object */
279 #define DF_1_NOOPEN 0x00000040 /* set RTLD_NOOPEN for this object */
214 #define DT_CONFI G ox6ffffefa /* configuration information */ 280 #define DF_1_ORIG N 0x00000080 /* ORIA N processing required */
215 #define DT_DEPAUDI T ox6ffffefb /* dependency auditing */ 281 #define DF_1_DI RECT 0x00000100 /* direct binding enabled */
216 #define DT_AUDI T oxe6ffffefc /* object auditing */ 282 #define DF_1_TRANS 0x00000200 /* unused obsol ete nane */
217 #define DT_PLTPAD oxe6ffffefd /* pltpadding (sparcv9) */ 283 #define DF_1_| NTERPOSE 0x00000400 /* object is an interposer */
218 #defi ne DT_MOVETAB oxe6ffffefe /* nove table */ 284 #define DF_1_NODEFLIB 0x00000800 /* ignore default library search path */
219 #define DT_SYM NFO Ox6ffffeff /* syminfo table */ 285 #define DF_1_NODUWP 0x00001000 /* object can’t be dl dunp(3x)’ed */
220 #define DT_ADDRRNGHI Ox6ffffeff 286 #define DF_1_CONFALT 0x00002000 /* configuration alternative created */
287 #define DF_1_ENDFILTEE 0x00004000 /* filtee termnates filters search */
222 | * 288 #define DF_1_DI SPRELDNE 0x00008000 /* disp reloc applied at build time */
223 * The following DT_* entries should have been assigned within one of the 289 #define DF_1_DI SPRELPND 0x00010000 /* disp reloc applied at run-tine */
224 * DT_* ranges, but existed before such ranges had been established. 290 #define DF_1_NODI RECT 0x00020000 /* object contains synmbols that */
225 */ 291 /* cannot be directly bound to */
226 #define DT_VERSYM oxe6ffffffo /* version synmbol table - unused by */ 292 #define DF_1_| GNMULDEF 0x00040000 /* internal: krtld ignore nuldefs */
227 /* Sol aris (see |ibld/update.c) */ 293 #define DF_1_NOKSYMS 0x00080000 /* internal: don't export object’s */
294 /* synbol s via /dev/ksyms */
229 #define DT_RELACOUNT oxeffffff9 /* nunber of RELATIVE relocations */ 295 #define DF_1_NOHDR 0x00100000 /* mapfile: 1st segmant mappi ng */
230 #define DT_RELCOUNT oxeffffffa /* nunber of RELATIVE rel ocations */ 296 /* omts ELF & program headers */
231 #define DT_FLAGS 1 oxeffffffb /* state flags - see DF_1_* defs */ 297 #define DF_1_EDI TED 0x00200000 /* object has been nodified since */
232 #define DT_VERDEF ox6ffffffc /* version definition table and */ 298 /* being built by "Id */
233 #define DT_VERDEFNUM oxeffffffd /* associ ated no. of entries */ 299 #define DF_1_NORELCC 0x00400000 /* internal: unrel ocated object */
234 #define DT_VERNEED oxeffffffe /* version needed table and */ 300 #define DF_1_SYM NTPCSE 0x00800000 /* individual synbol interposers */
235 #define DT_VERNEEDNUM Ox6fffffff /* associ ated no. of entries */ 301 I exist */
302 #define DF_1_GLOBAUDI T 0x01000000 /* establish global auditing */
237 |* 303 #define DF_1_SINGLETON 0x02000000 /* singleton synbols exist */
238 * DT_* entries between DI_H PROC and DT_LOPRCC are reserved for processor
239 * specific senmantics. 305 /*
240 306 * Values set to DI_FEATURE_1 tag’s d_val (unused obsol ete tag)
241 * DT_* encoding rules apply to all tag val ues |arger than DT_LOPRCC. 307 */
242 */ 308 #define DTF_1_PARINIT 0x00000001 /* partially initialization feature */
243 #define DT_LOPROC 0x70000000 /* processor specific range */ 309 #define DTF_1_CONFEXP 0x00000002 /* configuration file expected */
244 #define DT_AUXI LI ARY ox7ffffffd /* shared library auxiliary nane */
245 #define DT_USED ox7ffffffe /* ignored - same as needed */
246 #define DT_FILTER Ox7fffffff /* shared library filter name */ 312 /*
247 #define DT_H PROC Ox7fffffff 313 * Version structures. There are three types of version structure:
314 *
315 * o Adefinition of the versions within the image itself.
250 /* 316 * Each version definition is assigned a unique index (starting from
251 * Values for DT_FLAGS 317 * VER_NDX_BGNDEF) which is used to cross-reference synbols associated to
252 */ 318 * the version. Each version can have one or nore dependenci es on ot her
253 #define DF_ORIG N 0x00000001 /* ORIG N processing required */ 319 * version definitions within the image. The version nane, and any
254 #define DF_SYMBOLIC 0x00000002 /* synbolic bindings in effect */ 320 * dependency nanes, are specified in the version definition auxiliary
255 #defi ne DF_TEXTREL 0x00000004 /* text relocations remain */ 321 * array. Version definition entries require a version synbol index table.
256 #defi ne DF_BI ND_NOW 0x00000008 /* process all relocations */ 322 *
257 #define DF_STATIC TLS 0x00000010 /* obj. contains static TLS refs */ 323 * o A version requirenent on a needed dependency. Each needed entry
324 * speci fies the shared object dependency (as specified in DT_NEEDED).
259 /* 325 * One or nore versions required fromthis dependency are specified in the
*

260 * Values for the DI_POSFLAG 1 .dynamic entry. 326 version needed auxiliary array.

new usr/src/uts/comon/sys/link.h

327
328
329
330
331
332
333

335
336
337
338
339
340
341
342
343
344

346
347
348
349
350
351

354
355
356
357
358
359
360
361

363
364
365
366
367
368
369

371

373
374
375
376

379
380
381
382
383
384
385
386
387
388
389

391
392

*
* 0 A version synbol index table.
* to determine its version index.
*
* (the size of a synbol
*
/
#i f ndef _ASM
typedef struct {
El f 32_Hal f vd_ver si on;
El f 32_Hal f vd_f I ags;
El f 32_Hal f vd_ndx;
El f 32_Hal f vd_cnt;
El f32_Word vd_hash;
El f32_Word vd_aux;
El f32_Word vd_next ;
} Elf32_Verdef;
typedef struct {
El f32_Word vda_nane;
El f 32_Word vda_next ;

} Elf32_Verdaux;

typedef struct {
El f 32_Hal f
El f 32_Hal f
El f32_Word
El 32 Word

El f32_Word
} El f32_Verneed;

typedef struct {
El f32_Word
El f 32_Hal f
El f 32_Hal f
El f32_Word
El f 32_Word
} Elf32_Ver naux;

typedef Elf32_Hal f

typedef struct {
El f 32_Hal f
El f 32_Hal f
} Elf32_Syninfo;

#if defined(_LP64)

typedef struct {
El f 64_Hal f
El f 64_Hal f
El f 64_Hal f
El f 64_Hal f
El f 64_Word
El f 64_Word

El f64_Word
} Elf64_Verdef;

typedef struct {
El f 64_Word

vn_ver si on;
vn_cnt;
vn_file;
vn_aux;

vn_next;

vna_hash;
vna_fl ags;
vna_ot her;
vna_nane;
vna_next ;

El f 32_Versym

si _boundt o;
si_fl ags;

Each synbol

indexes into this array

I ndex val ues of VER NDX_BGNDEF or

greater indicate the version definition to which a synbol
index entry is recorded in the sh_info field).

—— i — e — —
* ok ok ok Ok ok % k%

* ok ok k% ok

——— i — — — ~——— — ——
* ok kb ok k%

—_~——
O

—_~——
* ok %

/| *

——

is associ ated.

Version Definition Structure. */

this structures version revision */

version information */

version index */

no. of associated aux entries */

ver si on nane hash val ue */

no. of bytes fromstart of this */
verdef to verdaux array */

no. of bytes fromstart of this */
verdef to next verdef entry */

Verdef Auxiliary Structure. */

first el ement defines the version */
name. Additional entries */
define dependency nanes. */

no. of bytes fromstart of this */
verdaux to next verdaux entry */

Versi on Requirement Structure. */

this structures version revision */

no. of associated aux entries */

name of needed dependency (file) */

no. of bytes fromstart of this */
verneed to vernaux array */

no. of bytes fromstart of this */
verneed to next verneed entry */

Verneed Auxiliary Structure. */
version name hash val ue */
version information */

version name */
no. of bytes fromstart of this */
vernaux to next vernaux entry */

Version synbol index array */

direct bindings - synbol bound to */

per synbol flags */

|| defined(_LONGLONG TYPE)

vd_versi on;
vd_f Il ags;
vd_ndx;
vd_cnt;
vd_hash;
vd_aux;

vd_next ;

vda_nane;

~—_————————
* Ok ok R % R % ok %

this structures version revision */

version information */

version index */

no. of associated aux entries */

versi on name hash val ue */

no. of bytes fromstart of this */
verdef to verdaux array */

no. of bytes fromstart of this */
verdef to next verdef entry */

first el enent defines the version */

new usr/src/uts/comon/sys/link.h

* ok ok ok

—~—————— \\\\
* Ok ok k% k%

—~—
* %k

—_~——
I

-

—~———
* ok % k%

* direct bindings - synbol
* per synbol

def i ned(_LONGLONG TYPE)

nanme. Additional entries */
define dependency nanes. */

no. of bytes fromstart of this */
verdaux to next verdaux entry */

this structures version revision */

no. of associated aux entries */

name of needed dependency (file)

no. of bytes fromstart of this */
verneed to vernaux array */

no. of bytes fromstart of this */
verneed to next verneed entry */

version name hash val ue */
version information */

version nane */
no. of bytes fromstart of this */
vernaux to next vernaux entry */

bound to */
flags */

Val ues greater than VER _NDX_GLOBAL

synbol is |ocal */

synbol is global and assigned to */
the base version */

begi nni ng of RESERVED entries */

synbol is to be elimnated */

ags) flags val ues.

~_——————
* ok ok ok % ok ok ok

/*

version definition of file itself */
(Verdef only) */

weak version identifier */

version is recorded in object for */
i nf ormati onal purposes */
(Versymreference) only. No */
runtime verificationis */

required. (Vernaux only) */

Ver _def version */

393

394

395 El f 64_Word vda_next ;
396 } Elf64_Verdaux;

398 typedef struct {

399 El f 64_Hal f vn_versi on;
400 El f 64_Hal f vn_cnt;

401 El f 64_Word vn_file;
402 El f 64_Word vn_aux;

403

404 El f 64_Word vn_next ;
405 } Elf 64_Verneed;

407 typedef struct {

408 El f 64_Word vna_hash;
409 El f 64_Hal f vna_fl ags;
410 El f 64_Hal f vna_ot her;
411 El f 64_Word vna_nane;
412 El f 64_Word vna_next ;
413 } El f 64_Ver naux;

415 typedef Elf64_Hal f El f 64_Ver sym
417 typedef struct {

418 El f 64_Hal f si _boundt o;
419 EIf64 Half si_fl ags;
420 } EIf64_Sym n

421 #endif /> defl ned(_LP64) ||

423 #endif /* _ASM */

425 | *

426 * Versym synbol index val ues.

427 * and less then VER NDX_LORESERVE associ ate symbols with user
428 * specified version descriptors.
429 */

430 #define VER NDX_LOCAL 0
431 #define VER_NDX_GLOBAL 1
432

433 #define VER _NDX_LORESERVE 0oxff00
434 #define VER _NDX_ELI M NATE oxffol
436 | *

437 * Verdef (vd_flags) and Vernaux (vna_fl
438 */

439 #define VER FLG BASE 0x1
440

441 #define VER FLG WEAK 0x2
442 #define VER _FLG_| NFO 0x4
443

444

445

446

448 | *

449 * Verdef version val ues.

450 */

451 #define VER DEF_NONE 0
452 #define VER_DEF_CURRENT 1
453 #define VER_DEF_NUM 2
455 [*

456 * Verneed version val ues.

457 */

458 #define VER _NEED NONE 0

Ver _need version */

new usr/src/uts/comon/sys/link.h

459 #define VER NEED CURRENT
460 #define VER_NEED_NUM

463 [*
464 * Syminfo flag val ues

465 */

466 #define SYM NFO_FLG DI RECT

467

468 #define SYM NFO_FLG FI LTER

469

470 #define SYM NFO FLG PASSTHRU
471 #define SYM NFO_FLG COPY

472 #define SYM NFO_FLG LAZYLOAD
473

474 #define SYM NFO_FLG DI RECTBI ND
475

476 #define SYM NFO_FLG_NOEXTDI RECT
477

478 #define SYM NFO_FLG _AUXI LI ARY
479

480 #define SYM NFO _FLG | NTERPOSE
481 #define SYM NFO _FLG CAP

482 #define SYM NFO_FLG _DEFERRED
483

485 [*
486 * Sym nfo.si_boundto val ues.
487 */

488 #define SYM NFO _BT_SELF

489 #define SYM NFO_BT_PARENT

490 #define SYM NFO_BT_NONE

491 #define SYM NFO_BT_EXTERN

492 #define SYM NFO_BT_LOWRESERVE

494 | *
495 * Symi nfo version val ues.
496 */

497 #define SYM NFO_NONE

498 #define SYM NFO_CURRENT
499 #define SYM NFO_NUM

502 /*
503 *
504 */
505 #ifndef _ASM

507 typedef struct

N

0x0001
0x0002

/* synbol ref has direct association */
/* to object containing defn. */
/* synbol ref is associated to a */

/* standard filter */

SYM NFO FLG FI LTER /* unused obsol ete nane */

0x0004
0x0008

0x0010
0x0020
0x0040
0x008

0
0x0100
0x0200

N~ O

I'i nk_map Li nk_nap;

509 struct |ink_map {

510 unsi gned | ong | _addr;
511 char *| _nane;
512 #ifdef _LP64

513 El f 64_Dyn *|_ld;
514 #el se

515 El f 32_Dyn *|_ld;
516 #endi f

517 Li nk_map *| _next;
518 Li nk_map *| _prev;
519 char *| _ref nang;
520 };

522 #ifdef _SYSCALL32

523 typedef struct |ink_map32 Link_map32;

/* synbol
/* object containing defn.
| azily-1 oaded */
ref should be bound directly to */
obj ect containing defn. */
don’t let an external reference */
directly bind to this synbol */
synbol ref is associated to a */
auxiliary filter */
synbol defines an interposer */
synbol is capabilities specific */
synbol should not be included in */
BI ND_NOW r el ocations */

is a copy-reloc */
shoul d be */

EE I

—~_——— e — ————

/* synbol bound to self */

/* synbol bound to parent */

/* no special synbol binding */

/* synbol defined as external */

/* beginning of reserved entries */

/* Syminfo version */

Public structure defined and maintained within the runtine |inker

* address at which object is nmapped */
* full nanme of |oaded object */

/* dynam ¢ structure of object */
/* dynami c structure of object */
next |ink object */

/*
/* previous link object */
/* filters reference nane */

new usr/src/uts/comon/sys/link.h

525 struct |ink_map32 {

526 El f32_Word | _addr;
527 El f 32_Addr | _nane;
528 El f 32_Addr | _Id;
529 El f 32_Addr | _next;
530 El f 32_Addr | _prev;
531 El f 32_Addr | _refnang;
532 };

533 #endi f

535 typedef enum {

536 RT_CONSI STENT,

537 RT_ADD,

538 RT_DELETE

539 } r_state_e;

541 typedef enum {

542 RD_FL_NONE = 0,

543 RD_FL_ODBG = (1<<0),
544 RD_FL_DBG = (1<<1)

545 } rd_flags_e;

549 [*
550

/* no flags */
/* old style debugger
/* debuggi ng enabl ed */

present */

* Debuggi ng events enabl ed inside of the runtime linker. To

no event */
the Initial rendezvous before .init */
the Second rendezvous after .init */

a dl open or dlcl ose has happened */

debuggi ng i nfo version
address of link_map */
address of update routi

base addr of Id.so */
address of Id.so.1's |i
debug event */

msc flags. */

debuggi ng i nfo version
address of link_map */
address of update routi

base addr of Id.so */
address of Id.so.1's |i
debug event */

msc flags. */

551 * access these events see the librtld_db interface.
552 *

553 typedef enum {

554 RD_NONE = O, /*
555 RD_PREINIT, l*
556 RD_POSTINIT, I*
557 RD_DLACTI VI TY g
558 } rd_event_e;

560 struct r_debug {

561 int r_version;
562 Li nk_map *r_map;
563 unsi gned | ong r_brk;

564 r_state_e r_state;
565 unsi gned | ong r_| dbase;
566 Li nk_map *r_|l dsomap;
567 rd_event _e r_rdevent;
568 rd_flags_e r_flags;
569 };

571 #ifdef _SYSCALL32

572 struct r_debug32 {

573 El f 32_Word r_version;
574 El f 32_Addr r_map;

575 El f32_Word r_brk;

576 r_state_e r_state;
577 El f32_Word r_| dbase;
578 El f 32_Addr r_| dsomap;
579 rd_event _e r_rdevent;
580 rd_flags_e r_flags;
581 };

582 #endi f

585 #defi ne R_DEBUG VERSI ON 2
586 #endif /* _ASM */

588 /*
589
590

| *

current

no.

ne

nk

no.

ne

nk

r_debug version */

*/
*/

map */

*/
*/

map */

* Attribute/value structures used to bootstrap ELF-based dynam c |inker.
*/

new usr/src/uts/comon/sys/link.h

591 #ifndef _ASM
592 typedef struct {

593 El f32_Sword eb_t ag;

594 uni on {

595 El f32_Word eb_val ;
596 El f 32_Addr eb_ptr;
597 Elf32_Off eb_off;
598 un;

} eb_|
599 } Elf32_Boot;

601 #if defined(_LP64) ||
602 typedef struct {
603 El f 64_Xword eb_t ag;

604 uni on {

605 El f 64_Xword eb_val ;
606 El f 64_Addr eb_ptr;
607 Elf64_Of eb_off;
608 } eb_un;

609 } Elf64_Boot;

/* what this one is */
/* possible val ues */

def i ned(_LONGLONG TYPE)

[* what this one is */
/* possible values */

610 #endif /* defined(_LP64) || defined(LONGLONG TYPE) */
x)

611 #endif /* _ASM

613 /*
614 * Attributes
615 */

616 #define
617 #define
618 #defi ne
619 #define
620 #define
621 #define
622 #define
623 #define
624 #define
625 #define
626 #define

EB_NULL
EB_DYNAM C
EB_LDSO BASE

EB_PAGESI ZE
EB_MAX
EB_MAX_S| ZE32
EB_MAX_SI ZE64

m

vs)

2

T
ONOUAWNRFRO

(=)
A~

128

629 #ifndef _ASM

631 /*
632
633
634 extern void _ld_libc(void *);

636 #pragma unknown_control _flow_Id_Iibc)
637 #endif /* _ASM */

639 #ifdef
640 }
641 #endi f

__cpl uspl us

643 #endif /* _SYS LINK H */

* Concurrency communication structure for
&/

(void) last entry */

(*) dynam c structure of subject */
(caddr_t) base address of ld.so */
(caddr_t) argunent vector */
(char **) environment strings */
(auxv_t *) auxiliary vector */
(int) fd for /dev/zero */

(int) page size */

nunmber of "EBs" */

size in bytes, _ILP32 */

size in bytes, _LP64 */

I N U

— e~

i bc cal | backs.

