
new/usr/src/cmd/file/elf_read.c 1

**
 16037 Sun Feb 24 19:19:04 2019
new/usr/src/cmd/file/elf_read.c
file: support DT_SUNW_KMOD usefully
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
22 /* All Rights Reserved */

25 /* Copyright (c) 1987, 1988 Microsoft Corporation */
26 /* All Rights Reserved */

28 /*
29 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
30 * Use is subject to license terms.
31 */

33 /*
34 * ELF files can exceed 2GB in size. A standard 32-bit program
35 * like ’file’ cannot read past 2GB, and will be unable to see
36 * the ELF section headers that typically are at the end of the
37 * object. The simplest solution to this problem would be to make
38 * the ’file’ command a 64-bit application. However, as a matter of
39 * policy, we do not want to require this. A simple command like
40 * ’file’ should not carry such a requirement, especially as we
41 * support 32-bit only hardware.
42 *
43 * An alternative solution is to build this code as 32-bit
44 * large file aware. The usual way to do this is to define a pair
45 * of preprocessor definitions:
46 *
47 * _LARGEFILE64_SOURCE
48 * Map standard I/O routines to their largefile aware versions.
49 *
50 * _FILE_OFFSET_BITS=64
51 * Map off_t to off64_t
52 *
53 * The problem with this solution is that libelf is not large file capable,
54 * and the libelf header file will prevent compilation if
55 * _FILE_OFFSET_BITS is set to 64.
56 *
57 * So, the solution used in this code is to define _LARGEFILE64_SOURCE
58 * to get access to the 64-bit APIs, not to define _FILE_OFFSET_BITS, and to
59 * use our own types in place of off_t, and size_t. We read all the file
60 * data directly using pread64(), and avoid the use of libelf for anything
61 * other than the xlate functionality.

new/usr/src/cmd/file/elf_read.c 2

62 */
63 #define _LARGEFILE64_SOURCE
64 #define FILE_ELF_OFF_T off64_t
65 #define FILE_ELF_SIZE_T uint64_t

67 #include <ctype.h>
68 #include <unistd.h>
69 #include <fcntl.h>
70 #include <stdio.h>
71 #include <libelf.h>
72 #include <stdlib.h>
73 #include <limits.h>
74 #include <locale.h>
75 #include <string.h>
76 #include <errno.h>
77 #include <procfs.h>
78 #include <sys/param.h>
79 #include <sys/types.h>
80 #include <sys/stat.h>
81 #include <sys/elf.h>
82 #include <sys/link.h>
83 #endif /* ! codereview */
84 #include <elfcap.h>
85 #include "file.h"
86 #include "elf_read.h"

88 extern const char *File;

90 static int get_class(void);
91 static int get_version(void);
92 static int get_format(void);
93 static int process_shdr(Elf_Info *);
94 static int process_phdr(Elf_Info *);
95 static int file_xlatetom(Elf_Type, char *);
96 static int xlatetom_nhdr(Elf_Nhdr *);
97 static int get_phdr(Elf_Info *, int);
98 static int get_shdr(Elf_Info *, int);

100 static Elf_Ehdr EI_Ehdr; /* Elf_Ehdr to be stored */
101 static Elf_Word EI_Ehdr_shnum; /* # section headers */
102 static Elf_Word EI_Ehdr_phnum; /* # program headers */
103 static Elf_Word EI_Ehdr_shstrndx; /* Index of section hdr string table */
104 static Elf_Shdr EI_Shdr; /* recent Elf_Shdr to be stored */
105 static Elf_Phdr EI_Phdr; /* recent Elf_Phdr to be stored */

108 static int
109 get_class(void)
110 {
111 return (EI_Ehdr.e_ident[EI_CLASS]);
112 }

114 static int
115 get_version(void)
116 {
117 /* do as what libelf:_elf_config() does */
118 return (EI_Ehdr.e_ident[EI_VERSION] ?
119 EI_Ehdr.e_ident[EI_VERSION] : 1);
120 }

122 static int
123 get_format(void)
124 {
125 return (EI_Ehdr.e_ident[EI_DATA]);
126 }

new/usr/src/cmd/file/elf_read.c 3

128 /*
129 * file_xlatetom: translate different headers from file
130 * representation to memory representaion.
131 */
132 #define HDRSZ 512
133 static int
134 file_xlatetom(Elf_Type type, char *hdr)
135 {
136 Elf_Data src, dst;
137 char *hbuf[HDRSZ];
138 int version, format;

140 version = get_version();
141 format = get_format();

143 /* will convert only these types */
144 if (type != ELF_T_EHDR && type != ELF_T_PHDR &&
145 type != ELF_T_SHDR && type != ELF_T_WORD &&
146 type != ELF_T_CAP && type != ELF_T_DYN)
82 type != ELF_T_CAP)
147 return (ELF_READ_FAIL);

149 src.d_buf = (Elf_Void *)hdr;
150 src.d_type = type;
151 src.d_version = version;

153 dst.d_buf = (Elf_Void *)&hbuf;
154 dst.d_version = EV_CURRENT;

156 src.d_size = elf_fsize(type, 1, version);
157 dst.d_size = elf_fsize(type, 1, EV_CURRENT);
158 if (elf_xlatetom(&dst, &src, format) == NULL)
159 return (ELF_READ_FAIL);

161 (void) memcpy(hdr, &hbuf, dst.d_size);
162 return (ELF_READ_OKAY);
163 }

______unchanged_portion_omitted_

409 /*
410 * process_shdr: Read Section Headers to attempt to get HW/SW
411 * capabilities by looking at the SUNW_cap
412 * section and set string in Elf_Info.
413 * Also look for symbol tables and debug
414 * information sections. Set the "stripped" field
415 * in Elf_Info with corresponding flags.
416 */
417 static int
418 process_shdr(Elf_Info *EI)
419 {
420 int mac;
356 int capn, mac;
421 int i, j, idx;
358 FILE_ELF_OFF_T cap_off;
359 FILE_ELF_SIZE_T csize;
422 char *strtab;
423 size_t strtab_sz;
362 Elf_Cap Chdr;
424 Elf_Shdr *shdr = &EI_Shdr;

366 csize = sizeof (Elf_Cap);
426 mac = EI_Ehdr.e_machine;

428 /* if there are no sections, return success anyway */
429 if (EI_Ehdr.e_shoff == 0 && EI_Ehdr_shnum == 0)

new/usr/src/cmd/file/elf_read.c 4

430 return (ELF_READ_OKAY);

432 /* read section names from String Section */
433 if (get_shdr(EI, EI_Ehdr_shstrndx) == ELF_READ_FAIL)
434 return (ELF_READ_FAIL);

436 if ((strtab = malloc(shdr->sh_size)) == NULL)
437 return (ELF_READ_FAIL);

439 if (pread64(EI->elffd, strtab, shdr->sh_size, shdr->sh_offset)
440 != shdr->sh_size)
441 return (ELF_READ_FAIL);

443 strtab_sz = shdr->sh_size;

445 /* read all the sections and process them */
446 for (idx = 1, i = 0; i < EI_Ehdr_shnum; idx++, i++) {
447 char *shnam;

449 if (get_shdr(EI, i) == ELF_READ_FAIL)
450 return (ELF_READ_FAIL);

452 if (shdr->sh_type == SHT_NULL) {
453 idx--;
454 continue;
455 }

398 cap_off = shdr->sh_offset;
457 if (shdr->sh_type == SHT_SUNW_cap) {
458 char capstr[128];
459 Elf_Cap Chdr;
460 FILE_ELF_OFF_T cap_off;
461 FILE_ELF_SIZE_T csize;
462 int capn;

464 cap_off = shdr->sh_offset;
465 csize = sizeof (Elf_Cap);
466 #endif /* ! codereview */

468 if (shdr->sh_size == 0 || shdr->sh_entsize == 0) {
469 (void) fprintf(stderr, ELF_ERR_ELFCAP1,
470 File, EI->file);
471 return (ELF_READ_FAIL);
472 }
473 capn = (shdr->sh_size / shdr->sh_entsize);
474 for (j = 0; j < capn; j++) {
475 /*
476 * read cap and xlate the values
477 */
478 if ((pread64(EI->elffd, &Chdr, csize, cap_off)
479 != csize) ||
401 if (pread64(EI->elffd, &Chdr, csize, cap_off)
402 != csize ||
480 file_xlatetom(ELF_T_CAP, (char *)&Chdr)
481 == 0) {
482 (void) fprintf(stderr, ELF_ERR_ELFCAP2,
483 File, EI->file);
484 return (ELF_READ_FAIL);
485 }

487 cap_off += csize;

489 /*
490 * Each capatibility group is terminated with
491 * CA_SUNW_NULL. Groups other than the first
492 * represent symbol capabilities, and aren’t

new/usr/src/cmd/file/elf_read.c 5

493 * interesting here.
494 */
495 if (Chdr.c_tag == CA_SUNW_NULL)
496 break;

498 (void) elfcap_tag_to_str(ELFCAP_STYLE_UC,
499 Chdr.c_tag, Chdr.c_un.c_val, capstr,
500 sizeof (capstr), ELFCAP_FMT_SNGSPACE,
501 mac);

503 if ((*EI->cap_str != ’\0’) && (*capstr != ’\0’))
504 (void) strlcat(EI->cap_str, " ",
505 sizeof (EI->cap_str));

507 (void) strlcat(EI->cap_str, capstr,
508 sizeof (EI->cap_str));
509 }
510 } else if (shdr->sh_type == SHT_DYNAMIC) {
511 Elf_Dyn dyn;
512 FILE_ELF_SIZE_T dsize;
513 FILE_ELF_OFF_T doff;
514 int dynn;

516 doff = shdr->sh_offset;
517 dsize = sizeof (Elf_Dyn);

519 if (shdr->sh_size == 0 || shdr->sh_entsize == 0) {
520 (void) fprintf(stderr, ELF_ERR_DYNAMIC1,
521 File, EI->file);
522 return (ELF_READ_FAIL);
523 }

525 dynn = (shdr->sh_size / shdr->sh_entsize);
526 for (j = 0; j < dynn; j++) {
527 if (pread64(EI->elffd, &dyn, dsize, doff)
528 != dsize ||
529 file_xlatetom(ELF_T_DYN, (char *)&dyn)
530 == 0) {
531 (void) fprintf(stderr, ELF_ERR_DYNAMIC2,
532 File, EI->file);
533 return (ELF_READ_FAIL);
534 }

536 doff += dsize;

538 if ((dyn.d_tag == DT_SUNW_KMOD) &&
539 (dyn.d_un.d_val == 1)) {
540 EI->kmod = B_TRUE;
541 }
542 #endif /* ! codereview */
543 }
544 }

546 /*
547 * Definition time:
548 * - "not stripped" means that an executable file
549 * contains a Symbol Table (.symtab)
550 * - "stripped" means that an executable file
551 * does not contain a Symbol Table.
552 * When strip -l or strip -x is run, it strips the
553 * debugging information (.line section name (strip -l),
554 * .line, .debug*, .stabs*, .dwarf* section names
555 * and SHT_SUNW_DEBUGSTR and SHT_SUNW_DEBUG
556 * section types (strip -x), however the Symbol
557 * Table will still be present.
558 * Therefore, if

new/usr/src/cmd/file/elf_read.c 6

559 * - No Symbol Table present, then report
560 * "stripped"
561 * - Symbol Table present with debugging
562 * information (line number or debug section names,
563 * or SHT_SUNW_DEBUGSTR or SHT_SUNW_DEBUG section
564 * types) then report:
565 * "not stripped"
566 * - Symbol Table present with no debugging
567 * information (line number or debug section names,
568 * or SHT_SUNW_DEBUGSTR or SHT_SUNW_DEBUG section
569 * types) then report:
570 * "not stripped, no debugging information
571 * available"
572 */
573 if ((EI->stripped & E_NOSTRIP) == E_NOSTRIP)
574 continue;

576 if (!(EI->stripped & E_SYMTAB) &&
577 (shdr->sh_type == SHT_SYMTAB)) {
578 EI->stripped |= E_SYMTAB;
579 continue;
580 }

582 if (shdr->sh_name >= strtab_sz)
583 shnam = NULL;
584 else
585 shnam = &strtab[shdr->sh_name];

587 if (!(EI->stripped & E_DBGINF) &&
588 ((shdr->sh_type == SHT_SUNW_DEBUG) ||
589 (shdr->sh_type == SHT_SUNW_DEBUGSTR) ||
590 (shnam != NULL && is_in_list(shnam)))) {
591 EI->stripped |= E_DBGINF;
592 }
593 }
594 free(strtab);

596 return (ELF_READ_OKAY);
597 }

new/usr/src/cmd/file/elf_read.h 1

**
 3256 Sun Feb 24 19:19:05 2019
new/usr/src/cmd/file/elf_read.h
file: support DT_SUNW_KMOD usefully
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _ELF_READ_H
27 #define _ELF_READ_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

29 #define BUFSZ 128
30 typedef struct Elf_Info {
31 boolean_t dynamic; /* dymanically linked? */
32 unsigned core_type; /* core? what type of core? */
33 unsigned stripped; /* symtab, debug info */
34 unsigned flags; /* e_flags */
35 unsigned machine; /* e_machine */
36 unsigned type; /* e_type */
37 int elffd; /* fd of file being processed */
38 char fname[PRFNSZ]; /* name of process that dumped core */
39 char cap_str[BUFSZ]; /* hw/sw capabilities */
40 char *file; /* file being processed */
41 boolean_t kmod;
42 #endif /* ! codereview */
43 } Elf_Info;

45 /* values for Elf_Info.stripped */
46 #define E_DBGINF 0x01
47 #define E_SYMTAB 0x02
48 #define E_NOSTRIP 0x03

50 /* values for Elf_Info.core_type; */
51 #define EC_NOTCORE 0x0
52 #define EC_OLDCORE 0x1
53 #define EC_NEWCORE 0x2

55 /* elf file processing errors */
56 #define ELF_ERR_ELFCAP1 gettext("%s: %s zero size or zero entry ELF " \
57 "section - ELF capabilities ignored\n")
58 #define ELF_ERR_ELFCAP2 gettext("%s: %s: can’t read ELF capabilities " \
59 "data - ELF capabilities ignored\n")

new/usr/src/cmd/file/elf_read.h 2

60 #define ELF_ERR_DYNAMIC1 gettext("%s: %s zero size or zero entry ELF " \
61 "section - ELF dynamic tags ignored\n")
62 #define ELF_ERR_DYNAMIC2 gettext("%s: %s: can’t read ELF dynamic " \
63 "data - ELF dynamic tags ignored\n")
64 #endif /* ! codereview */

66 extern int is_in_list(char *str);

68 /* return status for elf_read and its helper functions */
69 #define ELF_READ_OKAY 1
70 #define ELF_READ_FAIL 0

72 #if defined(_ELF64)

74 #define Elf_Ehdr Elf64_Ehdr
75 #define Elf_Shdr Elf64_Shdr
76 #define Elf_Phdr Elf64_Phdr
77 #define Elf_Cap Elf64_Cap
78 #define Elf_Nhdr Elf64_Nhdr
79 #define Elf_Word Elf64_Word
80 #define Elf_Dyn Elf64_Dyn
81 #endif /* ! codereview */

83 #define elf_read elf_read64
84 #define elf_xlatetom elf64_xlatetom
85 #define elf_fsize elf64_fsize
86 #define get_class get_class64
87 #define get_version get_version64
88 #define get_format get_format64

90 #else

92 #define Elf_Ehdr Elf32_Ehdr
93 #define Elf_Shdr Elf32_Shdr
94 #define Elf_Phdr Elf32_Phdr
95 #define Elf_Cap Elf32_Cap
96 #define Elf_Nhdr Elf32_Nhdr
97 #define Elf_Word Elf32_Word
98 #define Elf_Dyn Elf32_Dyn
99 #endif /* ! codereview */

101 #define elf_read elf_read32
102 #define elf_xlatetom elf32_xlatetom
103 #define elf_fsize elf32_fsize
104 #define get_class get_class32
105 #define get_version get_version32
106 #define get_format get_format32

108 #endif

110 /* so lint can understand elf_read64 is defined */
111 #ifdef lint
112 #define elf_read64 elf_read
113 #endif /* lint */

115 #endif /* _ELF_READ_H */

new/usr/src/cmd/file/file.c 1

**
 44683 Sun Feb 24 19:19:05 2019
new/usr/src/cmd/file/file.c
file: support DT_SUNW_KMOD usefully
**
______unchanged_portion_omitted_

1270 static int
1271 elf_check(char *file)
1272 {
1273 Elf_Info EInfo;
1274 int class, version, format;
1275 unsigned char ident[EI_NIDENT];

1277 (void) memset(&EInfo, 0, sizeof (Elf_Info));
1278 EInfo.file = file;

1280 /*
1281 * Verify information in file indentifier.
1282 * Return quietly if not elf; Different type of file.
1283 */
1284 if (check_ident(ident, elffd) == ELF_READ_FAIL)
1285 return (1);

1287 /*
1288 * Read the elf headers for processing and get the
1289 * get the needed information in Elf_Info struct.
1290 */
1291 class = ident[EI_CLASS];
1292 if (class == ELFCLASS32) {
1293 if (elf_read32(elffd, &EInfo) == ELF_READ_FAIL) {
1294 (void) fprintf(stderr, gettext("%s: %s: can’t "
1295 "read ELF header\n"), File, file);
1296 return (1);
1297 }
1298 } else if (class == ELFCLASS64) {
1299 if (elf_read64(elffd, &EInfo) == ELF_READ_FAIL) {
1300 (void) fprintf(stderr, gettext("%s: %s: can’t "
1301 "read ELF header\n"), File, file);
1302 return (1);
1303 }
1304 } else {
1305 /* something wrong */
1306 return (1);
1307 }

1309 /* version not in ident then 1 */
1310 version = ident[EI_VERSION] ? ident[EI_VERSION] : 1;

1312 format = ident[EI_DATA];
1313 (void) printf("%s", gettext("ELF"));
1314 print_elf_class(class);
1315 print_elf_datatype(format);
1316 print_elf_type(EInfo);

1318 if (EInfo.core_type != EC_NOTCORE) {
1319 /* Print what kind of core is this */
1320 if (EInfo.core_type == EC_OLDCORE)
1321 (void) printf(" %s", gettext("pre-2.6 core file"));
1322 else
1323 (void) printf(" %s", gettext("core file"));
1324 }

1326 /* Print machine info */
1327 print_elf_machine(EInfo.machine);

new/usr/src/cmd/file/file.c 2

1329 /* Print Version */
1330 if (version == 1)
1331 (void) printf(" %s %d", gettext("Version"), version);

1333 if (EInfo.kmod) {
1334 (void) printf(", %s", gettext("kernel module"));
1335 }

1337 #endif /* ! codereview */
1338 /* Print Flags */
1339 print_elf_flags(EInfo);

1341 /* Last bit, if it is a core */
1342 if (EInfo.core_type != EC_NOTCORE) {
1343 /* Print the program name that dumped this core */
1344 (void) printf(gettext(", from ’%s’"), EInfo.fname);
1345 return (0);
1346 }

1348 /* Print Capabilities */
1349 if (EInfo.cap_str[0] != ’\0’)
1350 (void) printf(" [%s]", EInfo.cap_str);

1352 if ((EInfo.type != ET_EXEC) && (EInfo.type != ET_DYN))
1353 return (0);

1355 /* Print if it is dynamically linked */
1356 if (EInfo.dynamic)
1357 (void) printf(gettext(", dynamically linked"));
1358 else
1359 (void) printf(gettext(", statically linked"));

1361 /* Printf it it is stripped */
1362 if (EInfo.stripped & E_SYMTAB) {
1363 (void) printf(gettext(", not stripped"));
1364 if (!(EInfo.stripped & E_DBGINF)) {
1365 (void) printf(gettext(
1366 ", no debugging information available"));
1367 }
1368 } else {
1369 (void) printf(gettext(", stripped"));
1370 }

1372 return (0);
1373 }

1375 /*
1376 * is_rtld_config - If file is a runtime linker config file, prints
1377 * the description and returns True (1). Otherwise, silently returns
1378 * False (0).
1379 */
1380 int
1381 is_rtld_config(void)
1382 {
1383 Rtc_id *id;

1385 if ((fbsz >= sizeof (*id)) && RTC_ID_TEST(fbuf)) {
1386 (void) printf(gettext("Runtime Linking Configuration"));
1387 id = (Rtc_id *) fbuf;
1388 print_elf_class(id->id_class);
1389 print_elf_datatype(id->id_data);
1390 print_elf_machine(id->id_machine);
1391 (void) printf("\n");
1392 return (1);
1393 }

new/usr/src/cmd/file/file.c 3

1395 return (0);
1396 }

1398 /*
1399 * lookup -
1400 * Attempts to match one of the strings from a list, ’tab’,
1401 * with what is in the file, starting at the current index position ’i’.
1402 * Looks past any initial whitespace and expects whitespace or other
1403 * delimiting characters to follow the matched string.
1404 * A match identifies the file as being ’assembler’, ’fortran’, ’c’, etc.
1405 * Returns 1 for a successful match, 0 otherwise.
1406 */
1407 static int
1408 lookup(char **tab)
1409 {
1410 register char r;
1411 register int k, j, l;

1413 while (fbuf[i] == ’ ’ || fbuf[i] == ’\t’ || fbuf[i] == ’\n’)
1414 i++;
1415 for (j = 0; tab[j] != 0; j++) {
1416 l = 0;
1417 for (k = i; ((r = tab[j][l++]) == fbuf[k] && r != ’\0’); k++)
1418 ;
1419 if (r == ’\0’)
1420 if (fbuf[k] == ’ ’ || fbuf[k] == ’\n’ ||
1421 fbuf[k] == ’\t’ || fbuf[k] == ’{’ ||
1422 fbuf[k] == ’/’) {
1423 i = k;
1424 return (1);
1425 }
1426 }
1427 return (0);
1428 }

1430 /*
1431 * ccom -
1432 * Increments the current index ’i’ into the file buffer ’fbuf’ past any
1433 * whitespace lines and C-style comments found, starting at the current
1434 * position of ’i’. Returns 1 as long as we don’t increment i past the
1435 * size of fbuf (fbsz). Otherwise, returns 0.
1436 */

1438 static int
1439 ccom(void)
1440 {
1441 register char cc;
1442 int len;

1444 while ((cc = fbuf[i]) == ’ ’ || cc == ’\t’ || cc == ’\n’)
1445 if (i++ >= fbsz)
1446 return (0);
1447 if (fbuf[i] == ’/’ && fbuf[i+1] == ’*’) {
1448 i += 2;
1449 while (fbuf[i] != ’*’ || fbuf[i+1] != ’/’) {
1450 if (fbuf[i] == ’\\’)
1451 i++;
1452 if ((len = mblen(&fbuf[i], MB_CUR_MAX)) <= 0)
1453 len = 1;
1454 i += len;
1455 if (i >= fbsz)
1456 return (0);
1457 }
1458 if ((i += 2) >= fbsz)
1459 return (0);
1460 }

new/usr/src/cmd/file/file.c 4

1461 if (fbuf[i] == ’\n’)
1462 if (ccom() == 0)
1463 return (0);
1464 return (1);
1465 }

1467 /*
1468 * ascom -
1469 * Increments the current index ’i’ into the file buffer ’fbuf’ past
1470 * consecutive assembler program comment lines starting with ASCOMCHAR,
1471 * starting at the current position of ’i’.
1472 * Returns 1 as long as we don’t increment i past the
1473 * size of fbuf (fbsz). Otherwise returns 0.
1474 */

1476 static int
1477 ascom(void)
1478 {
1479 while (fbuf[i] == ASCOMCHAR) {
1480 i++;
1481 while (fbuf[i++] != ’\n’)
1482 if (i >= fbsz)
1483 return (0);
1484 while (fbuf[i] == ’\n’)
1485 if (i++ >= fbsz)
1486 return (0);
1487 }
1488 return (1);
1489 }

1491 /* look for "1hddddd" where d is a digit */
1492 #endif /* ! codereview */
1493 static int
1494 sccs(void)
1495 {
1333 { /* look for "1hddddd" where d is a digit */
1496 register int j;

1498 if (fbuf[0] == 1 && fbuf[1] == ’h’) {
1499 for (j = 2; j <= 6; j++) {
1500 if (isdigit(fbuf[j]))
1501 continue;
1502 else
1503 return (0);
1504 }
1505 } else {
1506 return (0);
1507 }
1508 return (1);
1509 }
______unchanged_portion_omitted_

new/usr/src/cmd/sgs/dump/common/dump.c 1

**
 53641 Sun Feb 24 19:19:06 2019
new/usr/src/cmd/sgs/dump/common/dump.c
ld: implement -ztype and rework option parsing
**
______unchanged_portion_omitted_

1064 /*
1065 * Print dynamic linking information. Input is an ELF
1066 * file descriptor, the SCNTAB structure, the number of
1067 * sections, and the filename.
1068 */
1069 static void
1070 dump_dynamic(Elf *elf_file, SCNTAB *p_scns, int num_scns, char *filename)
1071 {
1072 #define pdyn_Fmtptr "%#llx"

1074 Elf_Data *dyn_data;
1075 GElf_Dyn p_dyn;
1076 GElf_Phdr p_phdr;
1077 GElf_Ehdr p_ehdr;
1078 int index = 1;
1079 int lib_scns = num_scns;
1080 SCNTAB *l_scns = p_scns;
1081 int header_num = 0;
1082 const char *str;

1084 (void) gelf_getehdr(elf_file, &p_ehdr);

1086 if (!p_flag)
1087 (void) printf("\n **** DYNAMIC SECTION INFORMATION ****\n");

1089 for (; num_scns > 0; num_scns--, p_scns++) {
1090 GElf_Word link;
1091 int ii;

1094 if (p_scns->p_shdr.sh_type != SHT_DYNAMIC)
1095 continue;

1097 if (!p_flag) {
1098 (void) printf("%s:\n", p_scns->scn_name);
1099 (void) printf("[INDEX]\tTag Value\n");
1100 }

1102 if ((dyn_data = elf_getdata(p_scns->p_sd, NULL)) == 0) {
1103 (void) fprintf(stderr, "%s: %s: no data in "
1104 "%s section\n", prog_name, filename,
1105 p_scns->scn_name);
1106 return;
1107 }

1109 link = p_scns->p_shdr.sh_link;
1110 ii = 0;

1112 (void) gelf_getdyn(dyn_data, ii++, &p_dyn);
1113 while (p_dyn.d_tag != DT_NULL) {
1114 union {
1115 Conv_inv_buf_t inv;
1116 Conv_dyn_flag_buf_t dyn_flag;
1117 Conv_dyn_flag1_buf_t dyn_flag1;
1118 Conv_dyn_feature1_buf_t dyn_feature1;
1119 Conv_dyn_posflag1_buf_t dyn_posflag1;
1120 } conv_buf;

new/usr/src/cmd/sgs/dump/common/dump.c 2

1122 (void) printf("[%d]\t%-15.15s ", index++,
1123 conv_dyn_tag(p_dyn.d_tag,
1124 p_ehdr.e_ident[EI_OSABI], p_ehdr.e_machine,
1125 DUMP_CONVFMT, &conv_buf.inv));

1127 /*
1128 * It would be nice to use a table driven loop
1129 * here, but the address space is too sparse
1130 * and irregular. A switch is simple and robust.
1131 */
1132 switch (p_dyn.d_tag) {
1133 /*
1134 * Items with an address value
1135 */
1136 case DT_PLTGOT:
1137 case DT_HASH:
1138 case DT_STRTAB:
1139 case DT_RELA:
1140 case DT_SYMTAB:
1141 case DT_INIT:
1142 case DT_FINI:
1143 case DT_REL:
1144 case DT_DEBUG:
1145 case DT_TEXTREL:
1146 case DT_JMPREL:
1147 case DT_INIT_ARRAY:
1148 case DT_FINI_ARRAY:
1149 case DT_INIT_ARRAYSZ:
1150 case DT_FINI_ARRAYSZ:
1151 case DT_PREINIT_ARRAY:
1152 case DT_PREINIT_ARRAYSZ:
1153 case DT_SUNW_RTLDINF:
1154 case DT_SUNW_CAP:
1155 case DT_SUNW_CAPINFO:
1156 case DT_SUNW_CAPCHAIN:
1157 case DT_SUNW_SYMTAB:
1158 case DT_SUNW_SYMSORT:
1159 case DT_SUNW_TLSSORT:
1160 case DT_PLTPAD:
1161 case DT_MOVETAB:
1162 case DT_SYMINFO:
1163 case DT_RELACOUNT:
1164 case DT_RELCOUNT:
1165 case DT_VERSYM:
1166 case DT_VERDEF:
1167 case DT_VERDEFNUM:
1168 case DT_VERNEED:
1169 (void) printf(pdyn_Fmtptr,
1170 EC_ADDR(p_dyn.d_un.d_ptr));
1171 break;

1173 /*
1174 * Items with a string value
1175 */
1176 case DT_NEEDED:
1177 case DT_SONAME:
1178 case DT_RPATH:
1179 case DT_RUNPATH:
1180 case DT_SUNW_AUXILIARY:
1181 case DT_SUNW_FILTER:
1182 case DT_CONFIG:
1183 case DT_DEPAUDIT:
1184 case DT_AUDIT:
1185 case DT_AUXILIARY:
1186 case DT_USED:
1187 case DT_FILTER:

new/usr/src/cmd/sgs/dump/common/dump.c 3

1188 if (v_flag) { /* Look up the string */
1189 str = (char *)elf_strptr(elf_file, link,
1190 p_dyn.d_un.d_ptr);
1191 if (!(str && *str))
1192 str = (char *)UNKNOWN;
1193 (void) printf("%s", str);
1194 } else { /* Show the address */
1195 (void) printf(pdyn_Fmtptr,
1196 EC_ADDR(p_dyn.d_un.d_ptr));
1197 }
1198 break;

1200 /*
1201 * Items with a literal value
1202 */
1203 case DT_PLTRELSZ:
1204 case DT_RELASZ:
1205 case DT_RELAENT:
1206 case DT_STRSZ:
1207 case DT_SYMENT:
1208 case DT_RELSZ:
1209 case DT_RELENT:
1210 case DT_PLTREL:
1211 case DT_BIND_NOW:
1212 case DT_CHECKSUM:
1213 case DT_PLTPADSZ:
1214 case DT_MOVEENT:
1215 case DT_MOVESZ:
1216 case DT_SYMINSZ:
1217 case DT_SYMINENT:
1218 case DT_VERNEEDNUM:
1219 case DT_SPARC_REGISTER:
1220 case DT_SUNW_SYMSZ:
1221 case DT_SUNW_SORTENT:
1222 case DT_SUNW_SYMSORTSZ:
1223 case DT_SUNW_TLSSORTSZ:
1224 case DT_SUNW_STRPAD:
1225 case DT_SUNW_CAPCHAINENT:
1226 case DT_SUNW_CAPCHAINSZ:
1227 case DT_SUNW_ASLR:
1228 case DT_SUNW_KMOD:
1229 #endif /* ! codereview */
1230 (void) printf(pdyn_Fmtptr,
1231 EC_XWORD(p_dyn.d_un.d_val));
1232 break;

1234 /*
1235 * Integer items that are bitmasks, or which
1236 * can be otherwise formatted in symbolic form.
1237 */
1238 case DT_FLAGS:
1239 case DT_FEATURE_1:
1240 case DT_POSFLAG_1:
1241 case DT_FLAGS_1:
1242 case DT_SUNW_LDMACH:
1243 str = NULL;
1244 if (v_flag) {
1245 switch (p_dyn.d_tag) {
1246 case DT_FLAGS:
1247 str = conv_dyn_flag(
1248 p_dyn.d_un.d_val,
1249 DUMP_CONVFMT,
1250 &conv_buf.dyn_flag);
1251 break;
1252 case DT_FEATURE_1:
1253 str = conv_dyn_feature1(

new/usr/src/cmd/sgs/dump/common/dump.c 4

1254 p_dyn.d_un.d_val,
1255 DUMP_CONVFMT,
1256 &conv_buf.dyn_feature1);
1257 break;
1258 case DT_POSFLAG_1:
1259 str = conv_dyn_posflag1(
1260 p_dyn.d_un.d_val,
1261 DUMP_CONVFMT,
1262 &conv_buf.dyn_posflag1);
1263 break;
1264 case DT_FLAGS_1:
1265 str = conv_dyn_flag1(
1266 p_dyn.d_un.d_val, 0,
1267 &conv_buf.dyn_flag1);
1268 break;
1269 case DT_SUNW_LDMACH:
1270 str = conv_ehdr_mach(
1271 p_dyn.d_un.d_val, 0,
1272 &conv_buf.inv);
1273 break;
1274 }
1275 }
1276 if (str) { /* Show as string */
1277 (void) printf("%s", str);
1278 } else { /* Numeric form */
1279 (void) printf(pdyn_Fmtptr,
1280 EC_ADDR(p_dyn.d_un.d_ptr));
1281 }
1282 break;

1284 /*
1285 * Depreciated items with a literal value
1286 */
1287 case DT_DEPRECATED_SPARC_REGISTER:
1288 (void) printf(pdyn_Fmtptr
1289 " (deprecated value)",
1290 EC_XWORD(p_dyn.d_un.d_val));
1291 break;

1293 /* Ignored items */
1294 case DT_SYMBOLIC:
1295 (void) printf("(ignored)");
1296 break;
1297 }
1298 (void) printf("\n");
1299 (void) gelf_getdyn(dyn_data, ii++, &p_dyn);
1300 }
1301 }

1303 /*
1304 * Check for existence of static shared library information.
1305 */
1306 while (header_num < p_ehdr.e_phnum) {
1307 (void) gelf_getphdr(elf_file, header_num, &p_phdr);
1308 if (p_phdr.p_type == PT_SHLIB) {
1309 while (--lib_scns > 0) {
1310 if (strcmp(l_scns->scn_name, ".lib") == 0) {
1311 print_static(l_scns, filename);
1312 }
1313 l_scns++;
1314 }
1315 }
1316 header_num++;
1317 }
1318 #undef pdyn_Fmtptr
1319 }

new/usr/src/cmd/sgs/dump/common/dump.c 5

1321 /*
1322 * Print the ELF header. Input is an ELF file descriptor
1323 * and the filename. If f_flag is set, the ELF header is
1324 * printed to stdout, otherwise the function returns after
1325 * setting the pointer to the ELF header. Any values which
1326 * are not known are printed in decimal. Fields must be updated
1327 * as new values are added.
1328 */
1329 static GElf_Ehdr *
1330 dump_elf_header(Elf *elf_file, char *filename, GElf_Ehdr * elf_head_p)
1331 {
1332 int class;
1333 int field;

1335 if (gelf_getehdr(elf_file, elf_head_p) == NULL) {
1336 (void) fprintf(stderr, "%s: %s: %s\n", prog_name, filename,
1337 elf_errmsg(-1));
1338 return (NULL);
1339 }

1341 class = (int)elf_head_p->e_ident[4];

1343 if (class == ELFCLASS64)
1344 field = 21;
1345 else
1346 field = 13;

1348 if (!f_flag)
1349 return (elf_head_p);

1351 if (!p_flag) {
1352 (void) printf("\n **** ELF HEADER ****\n");
1353 (void) printf("%-*s%-11s%-*sMachine Version\n",
1354 field, "Class", "Data", field, "Type");
1355 (void) printf("%-*s%-11s%-*sFlags Ehsize\n",
1356 field, "Entry", "Phoff", field, "Shoff");
1357 (void) printf("%-*s%-11s%-*sShnum Shstrndx\n\n",
1358 field, "Phentsize", "Phnum", field, "Shentsz");
1359 }

1361 if (!v_flag) {
1362 (void) printf("%-*d%-11d%-*d%-12d%d\n",
1363 field, elf_head_p->e_ident[4], elf_head_p->e_ident[5],
1364 field, (int)elf_head_p->e_type, (int)elf_head_p->e_machine,
1365 elf_head_p->e_version);
1366 } else {
1367 Conv_inv_buf_t inv_buf;

1369 (void) printf("%-*s", field,
1370 conv_ehdr_class(class, DUMP_CONVFMT, &inv_buf));
1371 (void) printf("%-11s",
1372 conv_ehdr_data(elf_head_p->e_ident[5], DUMP_CONVFMT,
1373 &inv_buf));
1374 (void) printf("%-*s", field,
1375 conv_ehdr_type(elf_head_p->e_ident[EI_OSABI],
1376 elf_head_p->e_type, DUMP_CONVFMT, &inv_buf));
1377 (void) printf("%-12s",
1378 conv_ehdr_mach(elf_head_p->e_machine, DUMP_CONVFMT,
1379 &inv_buf));
1380 (void) printf("%s\n",
1381 conv_ehdr_vers(elf_head_p->e_version, DUMP_CONVFMT,
1382 &inv_buf));
1383 }
1384 (void) printf("%-#*llx%-#11llx%-#*llx%-#12x%#x\n",
1385 field, EC_ADDR(elf_head_p->e_entry), EC_OFF(elf_head_p->e_phoff),

new/usr/src/cmd/sgs/dump/common/dump.c 6

1386 field, EC_OFF(elf_head_p->e_shoff), EC_WORD(elf_head_p->e_flags),
1387 EC_WORD(elf_head_p->e_ehsize));
1388 if (!v_flag || (elf_head_p->e_shstrndx != SHN_XINDEX)) {
1389 (void) printf("%-#*x%-11u%-#*x%-12u%u\n",
1390 field, EC_WORD(elf_head_p->e_phentsize),
1391 EC_WORD(elf_head_p->e_phnum),
1392 field, EC_WORD(elf_head_p->e_shentsize),
1393 EC_WORD(elf_head_p->e_shnum),
1394 EC_WORD(elf_head_p->e_shstrndx));
1395 } else {
1396 (void) printf("%-#*x%-11u%-#*x%-12uXINDEX\n",
1397 field, EC_WORD(elf_head_p->e_phentsize),
1398 EC_WORD(elf_head_p->e_phnum),
1399 field, EC_WORD(elf_head_p->e_shentsize),
1400 EC_WORD(elf_head_p->e_shnum));
1401 }
1402 if ((elf_head_p->e_shnum == 0) && (elf_head_p->e_shoff > 0)) {
1403 Elf_Scn *scn;
1404 GElf_Shdr shdr0;
1405 int field;

1407 if (gelf_getclass(elf_file) == ELFCLASS64)
1408 field = 21;
1409 else
1410 field = 13;
1411 if (!p_flag) {
1412 (void) printf("\n **** SECTION HEADER[0] "
1413 "{Elf Extensions} ****\n");
1414 (void) printf(
1415 "[No]\tType\tFlags\t%-*s %-*s%-*s%sName\n",
1416 field, "Addr", field, "Offset", field,
1417 "Size(shnum)",
1418 /* compatibility: tab for elf32 */
1419 (field == 13) ? "\t" : " ");
1420 (void) printf("\tLn(strndx) Info\t%-*s Entsize\n",
1421 field, "Adralgn");
1422 }
1423 if ((scn = elf_getscn(elf_file, 0)) == NULL) {
1424 (void) fprintf(stderr,
1425 "%s: %s: elf_getscn failed: %s\n",
1426 prog_name, filename, elf_errmsg(-1));
1427 return (NULL);
1428 }
1429 if (gelf_getshdr(scn, &shdr0) == 0) {
1430 (void) fprintf(stderr,
1431 "%s: %s: gelf_getshdr: %s\n",
1432 prog_name, filename, elf_errmsg(-1));
1433 return (NULL);
1434 }
1435 (void) printf("[0]\t%u\t%llu\t", EC_WORD(shdr0.sh_type),
1436 EC_XWORD(shdr0.sh_flags));

1438 (void) printf("%-#*llx %-#*llx%-*llu%s%-*u\n",
1439 field, EC_ADDR(shdr0.sh_addr),
1440 field, EC_OFF(shdr0.sh_offset),
1441 field, EC_XWORD(shdr0.sh_size),
1442 /* compatibility: tab for elf32 */
1443 ((field == 13) ? "\t" : " "),
1444 field, EC_WORD(shdr0.sh_name));

1446 (void) printf("\t%u\t%u\t%-#*llx %-#*llx\n",
1447 EC_WORD(shdr0.sh_link),
1448 EC_WORD(shdr0.sh_info),
1449 field, EC_XWORD(shdr0.sh_addralign),
1450 field, EC_XWORD(shdr0.sh_entsize));
1451 }

new/usr/src/cmd/sgs/dump/common/dump.c 7

1452 (void) printf("\n");

1454 return (elf_head_p);
1455 }

1457 /*
1458 * Print section contents. Input is an ELF file descriptor,
1459 * the ELF header, the SCNTAB structure,
1460 * the number of symbols, and the filename.
1461 * The number of sections,
1462 * and the offset into the SCNTAB structure will be
1463 * set in dump_section if d_flag or n_flag are set.
1464 * If v_flag is set, sections which can be interpreted will
1465 * be interpreted, otherwise raw data will be output in hexidecimal.
1466 */
1467 static void
1468 print_section(Elf *elf_file,
1469 GElf_Ehdr *p_ehdr, SCNTAB *p, int num_scns, char *filename)
1470 {
1471 unsigned char *p_sec;
1472 int i;
1473 size_t size;

1475 for (i = 0; i < num_scns; i++, p++) {
1476 GElf_Shdr shdr;

1478 size = 0;
1479 if (s_flag && !v_flag)
1480 p_sec = (unsigned char *)get_rawscn(p->p_sd, &size);
1481 else
1482 p_sec = (unsigned char *)get_scndata(p->p_sd, &size);

1484 if ((gelf_getshdr(p->p_sd, &shdr) != NULL) &&
1485 (shdr.sh_type == SHT_NOBITS)) {
1486 continue;
1487 }
1488 if (s_flag && !v_flag) {
1489 (void) printf("\n%s:\n", p->scn_name);
1490 print_rawdata(p_sec, size);
1491 continue;
1492 }
1493 if (shdr.sh_type == SHT_SYMTAB) {
1494 dump_symbol_table(elf_file, p, filename);
1495 continue;
1496 }
1497 if (shdr.sh_type == SHT_DYNSYM) {
1498 dump_symbol_table(elf_file, p, filename);
1499 continue;
1500 }
1501 if (shdr.sh_type == SHT_STRTAB) {
1502 dump_string_table(p, 1);
1503 continue;
1504 }
1505 if (shdr.sh_type == SHT_RELA) {
1506 dump_reloc_table(elf_file, p_ehdr, p, 1, filename);
1507 continue;
1508 }
1509 if (shdr.sh_type == SHT_REL) {
1510 dump_reloc_table(elf_file, p_ehdr, p, 1, filename);
1511 continue;
1512 }
1513 if (shdr.sh_type == SHT_DYNAMIC) {
1514 dump_dynamic(elf_file, p, 1, filename);
1515 continue;
1516 }

new/usr/src/cmd/sgs/dump/common/dump.c 8

1518 (void) printf("\n%s:\n", p->scn_name);
1519 print_rawdata(p_sec, size);
1520 }
1521 (void) printf("\n");
1522 }

1524 /*
1525 * Print section contents. This function does not print the contents
1526 * of the sections but sets up the parameters and then calls
1527 * print_section to print the contents. Calling another function to print
1528 * the contents allows both -d and -n to work correctly
1529 * simultaneously. Input is an ELF file descriptor, the ELF header,
1530 * the SCNTAB structure, the number of sections, and the filename.
1531 * Set the range of sections if d_flag, and set section name if
1532 * n_flag.
1533 */
1534 static void
1535 dump_section(Elf *elf_file,
1536 GElf_Ehdr *p_ehdr, SCNTAB *s, int num_scns, char *filename)
1537 {
1538 SCNTAB *n_range, *d_range; /* for use with -n and -d modifiers */
1539 int i;
1540 int found_it = 0; /* for use with -n section_name */

1542 if (n_flag) {
1543 n_range = s;

1545 for (i = 0; i < num_scns; i++, n_range++) {
1546 if ((strcmp(name, n_range->scn_name)) != 0)
1547 continue;
1548 else {
1549 found_it = 1;
1550 print_section(elf_file, p_ehdr,
1551 n_range, 1, filename);
1552 }
1553 }

1555 if (!found_it) {
1556 (void) fprintf(stderr, "%s: %s: %s not found\n",
1557 prog_name, filename, name);
1558 }
1559 } /* end n_flag */

1561 if (d_flag) {
1562 d_range = s;
1563 d_num = check_range(d_low, d_hi, num_scns, filename);
1564 if (d_num < 0)
1565 return;
1566 d_range += d_low - 1;

1568 print_section(elf_file, p_ehdr, d_range, d_num, filename);
1569 } /* end d_flag */

1571 if (!n_flag && !d_flag)
1572 print_section(elf_file, p_ehdr, s, num_scns, filename);
1573 }

1575 /*
1576 * Print the section header table. This function does not print the contents
1577 * of the section headers but sets up the parameters and then calls
1578 * print_shdr to print the contents. Calling another function to print
1579 * the contents allows both -d and -n to work correctly
1580 * simultaneously. Input is the SCNTAB structure,
1581 * the number of sections from the ELF header, and the filename.
1582 * Set the range of section headers to print if d_flag, and set
1583 * name of section header to print if n_flag.

new/usr/src/cmd/sgs/dump/common/dump.c 9

1584 */
1585 static void
1586 dump_shdr(Elf *elf_file, SCNTAB *s, int num_scns, char *filename)
1587 {

1589 SCNTAB *n_range, *d_range; /* for use with -n and -d modifiers */
1590 int field;
1591 int i;
1592 int found_it = 0; /* for use with -n section_name */

1594 if (gelf_getclass(elf_file) == ELFCLASS64)
1595 field = 21;
1596 else
1597 field = 13;

1599 if (!p_flag) {
1600 (void) printf("\n **** SECTION HEADER TABLE ****\n");
1601 (void) printf("[No]\tType\tFlags\t%-*s %-*s %-*s%sName\n",
1602 field, "Addr", field, "Offset", field, "Size",
1603 /* compatibility: tab for elf32 */
1604 (field == 13) ? "\t" : " ");
1605 (void) printf("\tLink\tInfo\t%-*s Entsize\n\n",
1606 field, "Adralgn");
1607 }

1609 if (n_flag) {
1610 n_range = s;

1612 for (i = 1; i <= num_scns; i++, n_range++) {
1613 if ((strcmp(name, n_range->scn_name)) != 0)
1614 continue;
1615 else {
1616 found_it = 1;
1617 print_shdr(elf_file, n_range, 1, i);
1618 }
1619 }

1621 if (!found_it) {
1622 (void) fprintf(stderr, "%s: %s: %s not found\n",
1623 prog_name, filename, name);
1624 }
1625 } /* end n_flag */

1627 if (d_flag) {
1628 d_range = s;
1629 d_num = check_range(d_low, d_hi, num_scns, filename);
1630 if (d_num < 0)
1631 return;
1632 d_range += d_low - 1;

1634 print_shdr(elf_file, d_range, d_num, d_low);
1635 } /* end d_flag */

1637 if (!n_flag && !d_flag)
1638 print_shdr(elf_file, s, num_scns, 1);
1639 }

1641 /*
1642 * Process all of the command line options (except
1643 * for -a, -g, -f, and -o). All of the options processed
1644 * by this function require the presence of the section
1645 * header table and will not be processed if it is not present.
1646 * Set up a buffer containing section name, section header,
1647 * and section descriptor for each section in the file. This
1648 * structure is used to avoid duplicate calls to libelf functions.
1649 * Structure members for the symbol table, the debugging information,

new/usr/src/cmd/sgs/dump/common/dump.c 10

1650 * and the line number information are global. All of the
1651 * rest are local.
1652 */
1653 static void
1654 dump_section_table(Elf *elf_file, GElf_Ehdr *elf_head_p, char *filename)
1655 {

1657 static SCNTAB *buffer, *p_scns;
1658 Elf_Scn *scn = 0;
1659 char *s_name = NULL;
1660 int found = 0;
1661 unsigned int num_scns;
1662 size_t shstrndx;
1663 size_t shnum;

1666 if (elf_getshdrnum(elf_file, &shnum) == -1) {
1667 (void) fprintf(stderr,
1668 "%s: %s: elf_getshdrnum failed: %s\n",
1669 prog_name, filename, elf_errmsg(-1));
1670 return;
1671 }
1672 if (elf_getshdrstrndx(elf_file, &shstrndx) == -1) {
1673 (void) fprintf(stderr,
1674 "%s: %s: elf_getshdrstrndx failed: %s\n",
1675 prog_name, filename, elf_errmsg(-1));
1676 return;
1677 }

1679 if ((buffer = calloc(shnum, sizeof (SCNTAB))) == NULL) {
1680 (void) fprintf(stderr, "%s: %s: cannot calloc space\n",
1681 prog_name, filename);
1682 return;
1683 }
1684 /* LINTED */
1685 num_scns = (int)shnum - 1;

1687 p_symtab = (SCNTAB *)0;
1688 p_dynsym = (SCNTAB *)0;
1689 p_scns = buffer;
1690 p_head_scns = buffer;

1692 while ((scn = elf_nextscn(elf_file, scn)) != 0) {
1693 if ((gelf_getshdr(scn, &buffer->p_shdr)) == 0) {
1694 (void) fprintf(stderr,
1695 "%s: %s: %s\n", prog_name, filename,
1696 elf_errmsg(-1));
1697 return;
1698 }
1699 s_name = (char *)
1700 elf_strptr(elf_file, shstrndx, buffer->p_shdr.sh_name);
1701 buffer->scn_name = s_name ? s_name : (char *)UNKNOWN;
1702 buffer->p_sd = scn;

1704 if (buffer->p_shdr.sh_type == SHT_SYMTAB) {
1705 found += 1;
1706 p_symtab = buffer;
1707 }
1708 if (buffer->p_shdr.sh_type == SHT_DYNSYM)
1709 p_dynsym = buffer;
1710 buffer++;
1711 }

1713 /*
1714 * These functions depend upon the presence of the section header table
1715 * and will not be invoked in its absence

new/usr/src/cmd/sgs/dump/common/dump.c 11

1716 */
1717 if (h_flag) {
1718 dump_shdr(elf_file, p_scns, num_scns, filename);
1719 }
1720 if (p_symtab && (t_flag || T_flag)) {
1721 dump_symbol_table(elf_file, p_symtab, filename);
1722 }
1723 if (c_flag) {
1724 dump_string_table(p_scns, num_scns);
1725 }
1726 if (r_flag) {
1727 dump_reloc_table(elf_file, elf_head_p,
1728 p_scns, num_scns, filename);
1729 }
1730 if (L_flag) {
1731 dump_dynamic(elf_file, p_scns, num_scns, filename);
1732 }
1733 if (s_flag) {
1734 dump_section(elf_file, elf_head_p, p_scns,
1735 num_scns, filename);
1736 }
1737 }

1739 /*
1740 * Load the archive string table(s) (for extended-length strings)
1741 * into an in-core table/list
1742 */
1743 static struct stab_list_s *
1744 load_arstring_table(struct stab_list_s *STabList,
1745 int fd, Elf *elf_file, Elf_Arhdr *p_ar, char *filename)
1746 {
1747 off_t here;
1748 struct stab_list_s *STL_entry, *STL_next;

1750 if (p_ar) {
1751 STL_entry = malloc(sizeof (struct stab_list_s));
1752 STL_entry->next = 0;
1753 STL_entry->strings = 0;
1754 STL_entry->size = 0;

1756 if (!STabList)
1757 STabList = STL_entry;
1758 else {
1759 STL_next = STabList;
1760 while (STL_next->next != (void *)0)
1761 STL_next = STL_next->next;
1762 STL_next->next = STL_entry;
1763 }

1765 STL_entry->size = p_ar->ar_size;
1766 STL_entry->strings = malloc(p_ar->ar_size);
1767 here = elf_getbase(elf_file);
1768 if ((lseek(fd, here, 0)) != here) {
1769 (void) fprintf(stderr,
1770 "%s: %s: could not lseek\n", prog_name, filename);
1771 }

1773 if ((read(fd, STL_entry->strings, p_ar->ar_size)) == -1) {
1774 (void) fprintf(stderr,
1775 "%s: %s: could not read\n", prog_name, filename);
1776 }
1777 }
1778 return (STabList);
1779 }

1781 /*

new/usr/src/cmd/sgs/dump/common/dump.c 12

1782 * Print the archive header for each member of an archive.
1783 * Also call ar_sym_read to print the symbols in the
1784 * archive symbol table if g_flag. Input is a file descriptor,
1785 * an ELF file descriptor, and the filename. Putting the call
1786 * to dump the archive symbol table in this function is more
1787 * efficient since it is necessary to examine the archive member
1788 * name in the archive header to determine which member is the
1789 * symbol table.
1790 */
1791 static void
1792 dump_ar_hdr(int fd, Elf *elf_file, char *filename)
1793 {
1794 extern int v_flag, g_flag, a_flag, p_flag;
1795 Elf_Arhdr *p_ar;
1796 Elf *arf;
1797 Elf_Cmd cmd;
1798 int title = 0;
1799 int err = 0;

1801 char buf[DATESIZE];

1803 cmd = ELF_C_READ;
1804 while ((arf = elf_begin(fd, cmd, elf_file)) != 0) {
1805 p_ar = elf_getarhdr(arf);
1806 if (p_ar == NULL) {
1807 (void) fprintf(stderr,
1808 "%s: %s: %s\n", prog_name, filename,
1809 elf_errmsg(-1));
1810 continue;
1811 }
1812 if ((strcmp(p_ar->ar_name, "/") == 0) ||
1813 (strcmp(p_ar->ar_name, "/SYM64/") == 0)) {
1814 if (g_flag)
1815 ar_sym_read(elf_file, filename);
1816 } else if (strcmp(p_ar->ar_name, "//") == 0) {
1817 StringTableList = load_arstring_table(
1818 StringTableList, fd, arf, p_ar, filename);
1819 cmd = elf_next(arf);
1820 (void) elf_end(arf);
1821 continue;
1822 } else {
1823 if (a_flag) {
1824 (void) printf("%s[%s]:\n", filename,
1825 p_ar->ar_name);
1826 if (!p_flag && title == 0) {
1827 if (!v_flag)
1828 (void) printf(
1829 "\n\n\t\t\t***ARCHIVE HEADER***"
1830 "\n Date Uid Gid Mode Size Member Name\n\n");
1831 else
1832 (void) printf(
1833 "\n\n\t\t\t***ARCHIVE HEADER***"
1834 "\n Date Uid Gid Mode Size Member Name\n\n");
1835 title = 1;
1836 }
1837 if (!v_flag) {
1838 (void) printf(
1839 "\t0x%.8lx %6d %6d 0%.6ho 0x%.8lx %-s\n\n",
1840 p_ar->ar_date, (int)p_ar->ar_uid,
1841 (int)p_ar->ar_gid,
1842 (int)p_ar->ar_mode,
1843 p_ar->ar_size, p_ar->ar_name);
1844 } else {
1845 if ((strftime(buf, DATESIZE,
1846 "%b %d %H:%M:%S %Y",
1847 localtime(

new/usr/src/cmd/sgs/dump/common/dump.c 13

1848 &(p_ar->ar_date)))) == 0) {
1849 (void) fprintf(stderr,
1850 "%s: %s: don’t have enough space to store the date\n", prog_name, filename);
1851 exit(1);
1852 }
1853 (void) printf(
1854 "\t%s %6d %6d 0%.6ho 0x%.8lx %-s\n\n",
1855 buf, (int)p_ar->ar_uid,
1856 (int)p_ar->ar_gid,
1857 (int)p_ar->ar_mode,
1858 p_ar->ar_size, p_ar->ar_name);
1859 }
1860 }
1861 }
1862 cmd = elf_next(arf);
1863 (void) elf_end(arf);
1864 } /* end while */

1866 err = elf_errno();
1867 if (err != 0) {
1868 (void) fprintf(stderr,
1869 "%s: %s: %s\n", prog_name, filename, elf_errmsg(err));
1870 }
1871 }

1873 /*
1874 * Process member files of an archive. This function provides
1875 * a loop through an archive equivalent the processing of
1876 * each_file for individual object files.
1877 */
1878 static void
1879 dump_ar_files(int fd, Elf *elf_file, char *filename)
1880 {
1881 Elf_Arhdr *p_ar;
1882 Elf *arf;
1883 Elf_Cmd cmd;
1884 Elf_Kind file_type;
1885 GElf_Ehdr elf_head;
1886 char *fullname;

1888 cmd = ELF_C_READ;
1889 while ((arf = elf_begin(fd, cmd, elf_file)) != 0) {
1890 size_t len;

1892 p_ar = elf_getarhdr(arf);
1893 if (p_ar == NULL) {
1894 (void) fprintf(stderr, "%s: %s: %s\n",
1895 prog_name, filename, elf_errmsg(-1));
1896 return;
1897 }
1898 if (p_ar->ar_name[0] == ’/’) {
1899 cmd = elf_next(arf);
1900 (void) elf_end(arf);
1901 continue;
1902 }

1904 len = strlen(filename) + strlen(p_ar->ar_name) + 3;
1905 if ((fullname = malloc(len)) == NULL)
1906 return;
1907 (void) snprintf(fullname, len, "%s[%s]", filename,
1908 p_ar->ar_name);
1909 (void) printf("\n%s:\n", fullname);
1910 file_type = elf_kind(arf);
1911 if (file_type == ELF_K_ELF) {
1912 if (dump_elf_header(arf, fullname, &elf_head) == NULL)
1913 return;

new/usr/src/cmd/sgs/dump/common/dump.c 14

1914 if (o_flag)
1915 dump_exec_header(arf,
1916 (unsigned)elf_head.e_phnum, fullname);
1917 if (x_flag)
1918 dump_section_table(arf, &elf_head, fullname);
1919 } else {
1920 (void) fprintf(stderr, "%s: %s: invalid file type\n",
1921 prog_name, fullname);
1922 cmd = elf_next(arf);
1923 (void) elf_end(arf);
1924 continue;
1925 }

1927 cmd = elf_next(arf);
1928 (void) elf_end(arf);
1929 } /* end while */
1930 }

1932 /*
1933 * Takes a filename as input. Test first for a valid version
1934 * of libelf.a and exit on error. Process each valid file
1935 * or archive given as input on the command line. Check
1936 * for file type. If it is an archive, process the archive-
1937 * specific options first, then files within the archive.
1938 * If it is an ELF object file, process it; otherwise
1939 * warn that it is an invalid file type.
1940 * All options except the archive-specific and program
1941 * execution header are processed in the function, dump_section_table.
1942 */
1943 static void
1944 each_file(char *filename)
1945 {
1946 Elf *elf_file;
1947 GElf_Ehdr elf_head;
1948 int fd;
1949 Elf_Kind file_type;

1951 struct stat buf;

1953 Elf_Cmd cmd;
1954 errno = 0;

1956 if (stat(filename, &buf) == -1) {
1957 int err = errno;
1958 (void) fprintf(stderr, "%s: %s: %s", prog_name, filename,
1959 strerror(err));
1960 return;
1961 }

1963 if ((fd = open((filename), O_RDONLY)) == -1) {
1964 (void) fprintf(stderr, "%s: %s: cannot read\n", prog_name,
1965 filename);
1966 return;
1967 }
1968 cmd = ELF_C_READ;
1969 if ((elf_file = elf_begin(fd, cmd, (Elf *)0)) == NULL) {
1970 (void) fprintf(stderr, "%s: %s: %s\n", prog_name, filename,
1971 elf_errmsg(-1));
1972 return;
1973 }

1975 file_type = elf_kind(elf_file);
1976 if (file_type == ELF_K_AR) {
1977 if (a_flag || g_flag) {
1978 dump_ar_hdr(fd, elf_file, filename);
1979 elf_file = elf_begin(fd, cmd, (Elf *)0);

new/usr/src/cmd/sgs/dump/common/dump.c 15

1980 }
1981 if (z_flag)
1982 dump_ar_files(fd, elf_file, filename);
1983 } else {
1984 if (file_type == ELF_K_ELF) {
1985 (void) printf("\n%s:\n", filename);
1986 if (dump_elf_header(elf_file, filename, &elf_head)) {
1987 if (o_flag)
1988 dump_exec_header(elf_file,
1989 (unsigned)elf_head.e_phnum,
1990 filename);
1991 if (x_flag)
1992 dump_section_table(elf_file,
1993 &elf_head, filename);
1994 }
1995 } else {
1996 (void) fprintf(stderr, "%s: %s: invalid file type\n",
1997 prog_name, filename);
1998 }
1999 }
2000 (void) elf_end(elf_file);
2001 (void) close(fd);
2002 }

2004 /*
2005 * Sets up flags for command line options given and then
2006 * calls each_file() to process each file.
2007 */
2008 int
2009 main(int argc, char *argv[], char *envp[])
2010 {
2011 char *optstr = OPTSTR; /* option string used by getopt() */
2012 int optchar;

2014 /*
2015 * Check for a binary that better fits this architecture.
2016 */
2017 (void) conv_check_native(argv, envp);

2019 prog_name = argv[0];

2021 (void) setlocale(LC_ALL, "");
2022 while ((optchar = getopt(argc, argv, optstr)) != -1) {
2023 switch (optchar) {
2024 case ’a’:
2025 a_flag = 1;
2026 x_flag = 1;
2027 break;
2028 case ’g’:
2029 g_flag = 1;
2030 x_flag = 1;
2031 break;
2032 case ’v’:
2033 v_flag = 1;
2034 break;
2035 case ’p’:
2036 p_flag = 1;
2037 break;
2038 case ’f’:
2039 f_flag = 1;
2040 z_flag = 1;
2041 break;
2042 case ’o’:
2043 o_flag = 1;
2044 z_flag = 1;
2045 break;

new/usr/src/cmd/sgs/dump/common/dump.c 16

2046 case ’h’:
2047 h_flag = 1;
2048 x_flag = 1;
2049 z_flag = 1;
2050 break;
2051 case ’s’:
2052 s_flag = 1;
2053 x_flag = 1;
2054 z_flag = 1;
2055 break;
2056 case ’d’:
2057 d_flag = 1;
2058 x_flag = 1;
2059 z_flag = 1;
2060 set_range(optarg, &d_low, &d_hi);
2061 break;
2062 case ’n’:
2063 n_flag++;
2064 x_flag = 1;
2065 z_flag = 1;
2066 name = optarg;
2067 break;
2068 case ’r’:
2069 r_flag = 1;
2070 x_flag = 1;
2071 z_flag = 1;
2072 break;
2073 case ’t’:
2074 t_flag = 1;
2075 x_flag = 1;
2076 z_flag = 1;
2077 break;
2078 case ’C’:
2079 C_flag = 1;
2080 t_flag = 1;
2081 x_flag = 1;
2082 z_flag = 1;
2083 break;
2084 case ’T’:
2085 T_flag = 1;
2086 x_flag = 1;
2087 z_flag = 1;
2088 set_range(optarg, &T_low, &T_hi);
2089 break;
2090 case ’c’:
2091 c_flag = 1;
2092 x_flag = 1;
2093 z_flag = 1;
2094 break;
2095 case ’L’:
2096 L_flag = 1;
2097 x_flag = 1;
2098 z_flag = 1;
2099 break;
2100 case ’V’:
2101 V_flag = 1;
2102 (void) fprintf(stderr, "dump: %s %s\n",
2103 (const char *)SGU_PKG,
2104 (const char *)SGU_REL);
2105 break;
2106 case ’?’:
2107 errflag += 1;
2108 break;
2109 default:
2110 break;
2111 }

new/usr/src/cmd/sgs/dump/common/dump.c 17

2112 }

2114 if (errflag || (optind >= argc) || (!z_flag && !x_flag)) {
2115 if (!(V_flag && (argc == 2))) {
2116 usage();
2117 exit(269);
2118 }
2119 }

2121 if (elf_version(EV_CURRENT) == EV_NONE) {
2122 (void) fprintf(stderr, "%s: libelf is out of date\n",
2123 prog_name);
2124 exit(101);
2125 }

2127 while (optind < argc) {
2128 each_file(argv[optind]);
2129 optind++;
2130 }
2131 return (0);
2132 }

new/usr/src/cmd/sgs/include/_libelf.h 1

**
 1735 Sun Feb 24 19:19:06 2019
new/usr/src/cmd/sgs/include/_libelf.h
ld should reject kernel modules as input
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 #ifndef __LIBELF_H
27 #define __LIBELF_H

29 /*
30 * Version of libelf.h that supplies definitions for APIs that
31 * are private to the linker package. Includes the standard libelf.h
32 * and then supplements it with the private additions.
33 */

35 #include <libelf.h>
36 #include <gelf.h>

38 #ifdef __cplusplus
39 extern "C" {
40 #endif

42 typedef void _elf_execfill_func_t(void *, off_t, size_t);

44 extern void _elf_execfill(_elf_execfill_func_t *);
45 extern size_t _elf_getnextoff(Elf *);
46 extern off_t _elf_getarhdrbase(Elf *);
47 extern size_t _elf_getarsymwordsize(Elf *);
48 extern Elf64_Off _elf_getxoff(Elf_Data *);
49 extern GElf_Xword _gelf_getdyndtflags_1(Elf *);
50 extern GElf_Xword _gelf_getdynval(Elf *, GElf_Sxword);
51 #endif /* ! codereview */
52 extern int _elf_swap_wrimage(Elf *);
53 extern uint_t _elf_sys_encoding(void);

55 #ifdef __cplusplus
56 }
57 #endif

59 #endif /* __LIBELF_H */

new/usr/src/cmd/sgs/include/libld.h 1

**
 66899 Sun Feb 24 19:19:07 2019
new/usr/src/cmd/sgs/include/libld.h
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
ld: implement -ztype and rework option parsing
**
______unchanged_portion_omitted_

412 #define FLG_OF_DYNAMIC 0x00000001 /* generate dynamic output module */
413 #define FLG_OF_STATIC 0x00000002 /* generate static output module */
414 #define FLG_OF_EXEC 0x00000004 /* generate an executable */
415 #define FLG_OF_RELOBJ 0x00000008 /* generate a relocatable object */
416 #define FLG_OF_SHAROBJ 0x00000010 /* generate a shared object */
417 #define FLG_OF_BFLAG 0x00000020 /* do no special plt building: -b */
418 #define FLG_OF_IGNENV 0x00000040 /* ignore LD_LIBRARY_PATH: -i */
419 #define FLG_OF_STRIP 0x00000080 /* strip output: -s */
420 #define FLG_OF_NOWARN 0x00000100 /* disable symbol warnings: -t */
421 #define FLG_OF_NOUNDEF 0x00000200 /* allow no undefined symbols: -zdefs */
422 #define FLG_OF_PURETXT 0x00000400 /* allow no text relocations: -ztext */
423 #define FLG_OF_GENMAP 0x00000800 /* generate a memory map: -m */
424 #define FLG_OF_DYNLIBS 0x00001000 /* dynamic input allowed: -Bdynamic */
425 #define FLG_OF_SYMBOLIC 0x00002000 /* bind global symbols: -Bsymbolic */
426 #define FLG_OF_ADDVERS 0x00004000 /* add version stamp: -Qy */
427 #define FLG_OF_NOLDYNSYM 0x00008000 /* -znoldynsym set */
428 #define FLG_OF_IS_ORDER 0x00010000 /* input section ordering within a */
429 /* segment is required */
430 #define FLG_OF_EC_FILES 0x00020000 /* Ent_desc exist w/non-NULL ec_files */
431 #define FLG_OF_TEXTREL 0x00040000 /* text relocations have been found */
432 #define FLG_OF_MULDEFS 0x00080000 /* multiple symbols are allowed */
433 #define FLG_OF_TLSPHDR 0x00100000 /* a TLS program header is required */
434 #define FLG_OF_BLDGOT 0x00200000 /* build GOT table */
435 #define FLG_OF_VERDEF 0x00400000 /* record version definitions */
436 #define FLG_OF_VERNEED 0x00800000 /* record version dependencies */
437 #define FLG_OF_NOVERSEC 0x01000000 /* don’t record version sections */
438 #define FLG_OF_KEY 0x02000000 /* file requires sort keys */
439 #define FLG_OF_PROCRED 0x04000000 /* process any symbol reductions by */
440 /* effecting the symbol table */
441 /* output and relocations */
442 #define FLG_OF_SYMINFO 0x08000000 /* create a syminfo section */
443 #define FLG_OF_AUX 0x10000000 /* ofl_filter is an auxiliary filter */
444 #define FLG_OF_FATAL 0x20000000 /* fatal error during input */
445 #define FLG_OF_WARN 0x40000000 /* warning during input processing. */
446 #define FLG_OF_VERBOSE 0x80000000 /* -z verbose flag set */

448 #define FLG_OF_MAPSYMB 0x000100000000 /* symbolic scope definition seen */
449 #define FLG_OF_MAPGLOB 0x000200000000 /* global scope definition seen */
450 #define FLG_OF_COMREL 0x000400000000 /* -z combreloc set, which enables */
451 /* DT_RELACNT tracking, */
452 #define FLG_OF_NOCOMREL 0x000800000000 /* -z nocombreloc set */
453 #define FLG_OF_AUTOLCL 0x001000000000 /* automatically reduce unspecified */
454 /* global symbols to locals */
455 #define FLG_OF_AUTOELM 0x002000000000 /* automatically eliminate */
456 /* unspecified global symbols */
457 #define FLG_OF_REDLSYM 0x004000000000 /* reduce local symbols */
458 #define FLG_OF_OS_ORDER 0x008000000000 /* output section ordering required */
459 #define FLG_OF_OSABI 0x010000000000 /* tag object as ELFOSABI_SOLARIS */
460 #define FLG_OF_ADJOSCNT 0x020000000000 /* adjust ofl_shdrcnt to accommodate */
461 /* discarded sections */
462 #define FLG_OF_OTOSCAP 0x040000000000 /* convert object capabilities to */
463 /* symbol capabilities */
464 #define FLG_OF_PTCAP 0x080000000000 /* PT_SUNWCAP required */
465 #define FLG_OF_CAPSTRS 0x100000000000 /* capability strings are required */
466 #define FLG_OF_EHFRAME 0x200000000000 /* output contains .eh_frame section */
467 #define FLG_OF_FATWARN 0x400000000000 /* make warnings fatal */

new/usr/src/cmd/sgs/include/libld.h 2

468 #define FLG_OF_ADEFLIB 0x800000000000 /* no libraries in default path */

470 #define FLG_OF_KMOD 0x1000000000000 /* output is a kernel module */

472 #endif /* ! codereview */
473 /*
474 * In the flags1 arena, establish any options that are applicable to archive
475 * extraction first, and associate a mask. These values are recorded with any
476 * archive descriptor so that they may be reset should the archive require a
477 * rescan to try and resolve undefined symbols.
478 */
479 #define FLG_OF1_ALLEXRT 0x0000000001 /* extract all members from an */
480 /* archive file */
481 #define FLG_OF1_WEAKEXT 0x0000000002 /* allow archive extraction to */
482 /* resolve weak references */
483 #define MSK_OF1_ARCHIVE 0x0000000003 /* archive flags mask */

485 #define FLG_OF1_NOINTRP 0x0000000008 /* -z nointerp flag set */
486 #define FLG_OF1_ZDIRECT 0x0000000010 /* -z direct flag set */
487 #define FLG_OF1_NDIRECT 0x0000000020 /* no-direct bindings specified */
488 #define FLG_OF1_DEFERRED 0x0000000040 /* deferred dependency recording */

490 #define FLG_OF1_RELDYN 0x0000000100 /* process .dynamic in rel obj */
491 #define FLG_OF1_NRLXREL 0x0000000200 /* -z norelaxreloc flag set */
492 #define FLG_OF1_RLXREL 0x0000000400 /* -z relaxreloc flag set */
493 #define FLG_OF1_IGNORE 0x0000000800 /* ignore unused dependencies */
494 #define FLG_OF1_NOSGHND 0x0000001000 /* -z nosighandler flag set */
495 #define FLG_OF1_TEXTOFF 0x0000002000 /* text relocations are ok */
496 #define FLG_OF1_ABSEXEC 0x0000004000 /* -zabsexec set */
497 #define FLG_OF1_LAZYLD 0x0000008000 /* lazy loading of objects enabled */
498 #define FLG_OF1_GRPPRM 0x0000010000 /* dependencies are to have */
499 /* GROUPPERM enabled */

501 #define FLG_OF1_NOPARTI 0x0000040000 /* -znopartial set */
502 #define FLG_OF1_BSSOREL 0x0000080000 /* output relocation against bss */
503 /* section */
504 #define FLG_OF1_TLSOREL 0x0000100000 /* output relocation against .tlsbss */
505 /* section */
506 #define FLG_OF1_MEMORY 0x0000200000 /* produce a memory model */
507 #define FLG_OF1_NGLBDIR 0x0000400000 /* no DT_1_DIRECT flag allowed */
508 #define FLG_OF1_ENCDIFF 0x0000800000 /* host running linker has different */
509 /* byte order than output object */
510 #define FLG_OF1_VADDR 0x0001000000 /* a segment defines explicit vaddr */
511 #define FLG_OF1_EXTRACT 0x0002000000 /* archive member has been extracted */
512 #define FLG_OF1_RESCAN 0x0004000000 /* any archives should be rescanned */
513 #define FLG_OF1_IGNPRC 0x0008000000 /* ignore processing required */
514 #define FLG_OF1_NCSTTAB 0x0010000000 /* -znocompstrtab set */
515 #define FLG_OF1_DONE 0x0020000000 /* link-editor processing complete */
516 #define FLG_OF1_NONREG 0x0040000000 /* non-regular file specified as */
517 /* the output file */
518 #define FLG_OF1_ALNODIR 0x0080000000 /* establish NODIRECT for all */
519 /* exported interfaces. */
520 #define FLG_OF1_OVHWCAP1 0x0100000000 /* override CA_SUNW_HW_1 capabilities */
521 #define FLG_OF1_OVSFCAP1 0x0200000000 /* override CA_SUNW_SF_1 capabilities */
522 #define FLG_OF1_OVHWCAP2 0x0400000000 /* override CA_SUNW_HW_2 capabilities */
523 #define FLG_OF1_OVMACHCAP 0x0800000000 /* override CA_SUNW_MACH capability */
524 #define FLG_OF1_OVPLATCAP 0x1000000000 /* override CA_SUNW_PLAT capability */
525 #define FLG_OF1_OVIDCAP 0x2000000000 /* override CA_SUNW_ID capability */

527 /*
528 * Guidance flags. The flags with the FLG_OFG_NO_ prefix are used to suppress
529 * messages for a given category, and use the lower 28 bits of the word,
530 * The upper nibble is reserved for other guidance status.
531 */
532 #define FLG_OFG_ENABLE 0x10000000 /* -z guidance option active */
533 #define FLG_OFG_ISSUED 0x20000000 /* -z guidance message issued */

new/usr/src/cmd/sgs/include/libld.h 3

535 #define FLG_OFG_NO_ALL 0x0fffffff /* disable all guidance */
536 #define FLG_OFG_NO_DEFS 0x00000001 /* specify all dependencies */
537 #define FLG_OFG_NO_DB 0x00000002 /* use direct bindings */
538 #define FLG_OFG_NO_LAZY 0x00000004 /* be explicit about lazyload */
539 #define FLG_OFG_NO_MF 0x00000008 /* use v2 mapfile syntax */
540 #define FLG_OFG_NO_TEXT 0x00000010 /* verify pure text segment */
541 #define FLG_OFG_NO_UNUSED 0x00000020 /* remove unused dependency */
542 #define FLG_OFG_NO_KMOD 0x00000040 /* use -z type=kmod */
543 #endif /* ! codereview */

545 /*
546 * Test to see if a guidance should be given for a given category
547 * or not. _no_flag is one of the FLG_OFG_NO_xxx flags. Returns TRUE
548 * if the guidance should be issued, and FALSE to remain silent.
549 */
550 #define OFL_GUIDANCE(_ofl, _no_flag) (((_ofl)->ofl_guideflags & \
551 (FLG_OFG_ENABLE | (_no_flag))) == FLG_OFG_ENABLE)

553 /*
554 * Test to see if the output file would allow the presence of
555 * a .dynsym section.
556 */
557 #define OFL_ALLOW_DYNSYM(_ofl) (((_ofl)->ofl_flags & \
558 (FLG_OF_DYNAMIC | FLG_OF_RELOBJ)) == FLG_OF_DYNAMIC)

560 /*
561 * Test to see if the output file would allow the presence of
562 * a .SUNW_ldynsym section. The requirements are that a .dynsym
563 * is allowed, and -znoldynsym has not been specified. Note that
564 * even if the answer is True (1), we will only generate one if there
565 * are local symbols that require it.
566 */
567 #define OFL_ALLOW_LDYNSYM(_ofl) (((_ofl)->ofl_flags & \
568 (FLG_OF_DYNAMIC | FLG_OF_RELOBJ | FLG_OF_NOLDYNSYM)) == FLG_OF_DYNAMIC)

570 /*
571 * Test to see if relocation processing should be done. This is normally
572 * true, but can be disabled via the ’-z noreloc’ option. Note that
573 * relocatable objects are still relocated even if ’-z noreloc’ is present.
574 */
575 #define OFL_DO_RELOC(_ofl) (((_ofl)->ofl_flags & FLG_OF_RELOBJ) || \
576 !((_ofl)->ofl_dtflags_1 & DF_1_NORELOC))

578 /*
579 * Determine whether a static executable is being built.
580 */
581 #define OFL_IS_STATIC_EXEC(_ofl) (((_ofl)->ofl_flags & \
582 (FLG_OF_STATIC | FLG_OF_EXEC)) == (FLG_OF_STATIC | FLG_OF_EXEC))

584 /*
585 * Determine whether a static object is being built. This macro is used
586 * to select the appropriate string table, and symbol table that other
587 * sections need to reference.
588 */
589 #define OFL_IS_STATIC_OBJ(_ofl) ((_ofl)->ofl_flags & \
590 (FLG_OF_RELOBJ | FLG_OF_STATIC))

592 /*
593 * Macros for counting symbol table entries. These are used to size symbol
594 * tables and associated sections (.syminfo, SUNW_capinfo, .hash, etc.) and
595 * set required sh_info entries (the offset to the first global symbol).
596 */
597 #define SYMTAB_LOC_CNT(_ofl) /* local .symtab entries */ \
598 (2 + /* NULL and STT_FILE */ \
599 (_ofl)->ofl_shdrcnt + /* section symbol */ \

new/usr/src/cmd/sgs/include/libld.h 4

600 (_ofl)->ofl_caploclcnt + /* local capabilities */ \
601 (_ofl)->ofl_scopecnt + /* scoped symbols */ \
602 (_ofl)->ofl_locscnt) /* standard locals */
603 #define SYMTAB_ALL_CNT(_ofl) /* all .symtab entries */ \
604 (SYMTAB_LOC_CNT(_ofl) + /* .symtab locals */ \
605 (_ofl)->ofl_globcnt) /* standard globals */

607 #define DYNSYM_LOC_CNT(_ofl) /* local .dynsym entries */ \
608 (1 + /* NULL */ \
609 (_ofl)->ofl_dynshdrcnt + /* section symbols */ \
610 (_ofl)->ofl_caploclcnt + /* local capabilities */ \
611 (_ofl)->ofl_lregsymcnt) /* local register symbols */
612 #define DYNSYM_ALL_CNT(_ofl) /* all .dynsym entries */ \
613 (DYNSYM_LOC_CNT(_ofl) + /* .dynsym locals */ \
614 (_ofl)->ofl_globcnt) /* standard globals */

616 /*
617 * Define a move descriptor used within relocation structures.
618 */
619 typedef struct {
620 Move *mr_move;
621 Sym_desc *mr_sym;
622 } Mv_reloc;

624 /*
625 * Relocation (active & output) processing structure - transparent to common
626 * code. There can be millions of these structures in a large link, so it
627 * is important to keep it small. You should only add new items to Rel_desc
628 * if they are critical, apply to most relocations, and cannot be easily
629 * computed from the other information.
630 *
631 * Items that can be derived should be implemented as a function that accepts
632 * a Rel_desc argument, and returns the desired data. ld_reloc_sym_name() is
633 * an example of this.
634 *
635 * Lesser used relocation data is kept in an auxiliary block, Rel_aux,
636 * that is only allocated as necessary. In exchange for adding one pointer
637 * of overhead to Rel_desc (rel_aux), most relocations are reduced in size
638 * by the size of Rel_aux. This strategy relies on the data in Rel_aux
639 * being rarely needed --- otherwise it will backfire badly.
640 *
641 * Note that rel_raddend is primarily only of interest to RELA relocations,
642 * and is set to 0 for REL. However, there is an exception: If FLG_REL_NADDEND
643 * is set, then rel_raddend contains a replacement value for the implicit
644 * addend found in the relocation target.
645 *
646 * Fields should be ordered from largest to smallest, to minimize packing
647 * holes in the struct layout.
648 */
649 struct rel_desc {
650 Is_desc *rel_isdesc; /* input section reloc is against */
651 Sym_desc *rel_sym; /* sym relocation is against */
652 Rel_aux *rel_aux; /* NULL, or auxiliary data */
653 Xword rel_roffset; /* relocation offset */
654 Sxword rel_raddend; /* addend from input relocation */
655 Word rel_flags; /* misc. flags for relocations */
656 Word rel_rtype; /* relocation type */
657 };

659 /*
660 * Data that would be kept in Rel_desc if the size of that structure was
661 * not an issue. This auxiliary block is only allocated as needed,
662 * and must only contain rarely needed items. The goal is for the vast
663 * majority of Rel_desc structs to not have an auxiliary block.
664 *
665 * When a Rel_desc does not have an auxiliary block, a default value

new/usr/src/cmd/sgs/include/libld.h 5

666 * is assumed for each auxiliary item:
667 *
668 * - ra_osdesc:
669 * Output section to which relocation applies. The default
670 * value for this is the output section associated with the
671 * input section (rel_isdesc->is_osdesc), or NULL if there
672 * is no associated input section.
673 *
674 * - ra_usym:
675 * If the symbol associated with a relocation is part of a weak/strong
676 * pair, then ra_usym contains the strong symbol and rel_sym the weak.
677 * Otherwise, the default value is the same value as rel_sym.
678 *
679 * - ra_move:
680 * Move table data. The default value is NULL.
681 *
682 * - ra_typedata:
683 * ELF_R_TYPE_DATA(info). This value applies only to a small
684 * subset of 64-bit sparc relocations, and is otherwise 0. The
685 * default value is 0.
686 *
687 * If any value in Rel_aux is non-default, then an auxiliary block is
688 * necessary, and each field contains its actual value. If all the auxiliary
689 * values are default, no Rel_aux is needed, and the RELAUX_GET_xxx()
690 * macros below are able to supply the proper default.
691 *
692 * To set a Rel_aux value, use the ld_reloc_set_aux_XXX() functions.
693 * These functions are written to avoid unnecessary auxiliary allocations,
694 * and know the rules for each item.
695 */
696 struct rel_aux {
697 Os_desc *ra_osdesc; /* output section reloc is against */
698 Sym_desc *ra_usym; /* strong sym if this is a weak pair */
699 Mv_reloc *ra_move; /* move table information */
700 Word ra_typedata; /* ELF_R_TYPE_DATA(info) */
701 };

703 /*
704 * Test a given auxiliary value to determine if it has the default value
705 * for that item, as described above. If all the auxiliary items have
706 * their default values, no auxiliary place is necessary to represent them.
707 * If any one of them is non-default, the auxiliary block is needed.
708 */
709 #define RELAUX_ISDEFAULT_MOVE(_rdesc, _mv) (_mv == NULL)
710 #define RELAUX_ISDEFAULT_USYM(_rdesc, _usym) ((_rdesc)->rel_sym == _usym)
711 #define RELAUX_ISDEFAULT_OSDESC(_rdesc, _osdesc) \
712 ((((_rdesc)->rel_isdesc == NULL) && (_osdesc == NULL)) || \
713 ((_rdesc)->rel_isdesc && ((_rdesc)->rel_isdesc->is_osdesc == _osdesc)))
714 #define RELAUX_ISDEFAULT_TYPEDATA(_rdesc, _typedata) (_typedata == 0)

716 /*
717 * Retrieve the value of an auxiliary relocation item, preserving the illusion
718 * that every relocation descriptor has an auxiliary block attached. The
719 * real implementation is that an auxiliary block is only present if one or
720 * more auxiliary items have non-default values. These macros return the true
721 * value if an auxiliary block is present, and the default value for the
722 * item otherwise.
723 */
724 #define RELAUX_GET_MOVE(_rdesc) \
725 ((_rdesc)->rel_aux ? (_rdesc)->rel_aux->ra_move : NULL)
726 #define RELAUX_GET_USYM(_rdesc) \
727 ((_rdesc)->rel_aux ? (_rdesc)->rel_aux->ra_usym : (_rdesc)->rel_sym)
728 #define RELAUX_GET_OSDESC(_rdesc) \
729 ((_rdesc)->rel_aux ? (_rdesc)->rel_aux->ra_osdesc : \
730 ((_rdesc)->rel_isdesc ? (_rdesc)->rel_isdesc->is_osdesc : NULL))
731 #define RELAUX_GET_TYPEDATA(_rdesc) \

new/usr/src/cmd/sgs/include/libld.h 6

732 ((_rdesc)->rel_aux ? (_rdesc)->rel_aux->ra_typedata : 0)

734 /*
735 * common flags used on the Rel_desc structure (defined in machrel.h).
736 */
737 #define FLG_REL_GOT 0x00000001 /* relocation against GOT */
738 #define FLG_REL_PLT 0x00000002 /* relocation against PLT */
739 #define FLG_REL_BSS 0x00000004 /* relocation against BSS */
740 #define FLG_REL_LOAD 0x00000008 /* section loadable */
741 #define FLG_REL_SCNNDX 0x00000010 /* use section index for symbol ndx */
742 #define FLG_REL_CLVAL 0x00000020 /* clear VALUE for active relocation */
743 #define FLG_REL_ADVAL 0x00000040 /* add VALUE for output relocation, */
744 /* only relevant to SPARC and */
745 /* R_SPARC_RELATIVE */
746 #define FLG_REL_GOTCL 0x00000080 /* clear the GOT entry. This is */
747 /* relevant to RELA relocations, */
748 /* not REL (i386) relocations */
749 #define FLG_REL_MOVETAB 0x00000100 /* Relocation against .SUNW_move */
750 /* adjustments required before */
751 /* actual relocation */
752 #define FLG_REL_NOINFO 0x00000200 /* Relocation comes from a section */
753 /* with a null sh_info field */
754 #define FLG_REL_REG 0x00000400 /* Relocation target is reg sym */
755 #define FLG_REL_FPTR 0x00000800 /* relocation against func. desc. */
756 #define FLG_REL_RFPTR1 0x00001000 /* Relative relocation against */
757 /* 1st part of FD */
758 #define FLG_REL_RFPTR2 0x00002000 /* Relative relocation against */
759 /* 2nd part of FD */
760 #define FLG_REL_DISP 0x00004000 /* *disp* relocation */
761 #define FLG_REL_STLS 0x00008000 /* IE TLS reference to */
762 /* static TLS GOT index */
763 #define FLG_REL_DTLS 0x00010000 /* GD TLS reference relative to */
764 /* dynamic TLS GOT index */
765 #define FLG_REL_MTLS 0x00020000 /* LD TLS reference against GOT */
766 #define FLG_REL_STTLS 0x00040000 /* LE TLS reference directly */
767 /* to static tls index */
768 #define FLG_REL_TLSFIX 0x00080000 /* relocation points to TLS instr. */
769 /* which needs updating */
770 #define FLG_REL_RELA 0x00100000 /* descriptor captures a Rela */
771 #define FLG_REL_GOTFIX 0x00200000 /* relocation points to GOTOP instr. */
772 /* which needs updating */
773 #define FLG_REL_NADDEND 0x00400000 /* Replace implicit addend in dest */
774 /* with value in rel_raddend */
775 /* Relevant to REL (i386) */
776 /* relocations, not to RELA. */

778 /*
779 * We often need the name of the symbol contained in a relocation descriptor
780 * for diagnostic or error output. This is usually the symbol name, but
781 * we substitute a constructed name in some cases. Hence, the name is
782 * generated on the fly by a private function within libld. This is the
783 * prototype for that function.
784 */
785 typedef const char *(* rel_desc_sname_func_t)(Rel_desc *);

787 /*
788 * Header for a relocation descriptor cache buffer.
789 */
790 struct rel_cachebuf {
791 Rel_desc *rc_end;
792 Rel_desc *rc_free;
793 Rel_desc rc_arr[1];
794 };

796 /*
797 * Header for a relocation auxiliary descriptor cache buffer.

new/usr/src/cmd/sgs/include/libld.h 7

798 */
799 struct rel_aux_cachebuf {
800 Rel_aux *rac_end;
801 Rel_aux *rac_free;
802 Rel_aux rac_arr[1];
803 };

805 /*
806 * Convenience macro for traversing every relocation descriptor found within
807 * a given relocation cache, transparently handling the cache buffers and
808 * skipping any unallocated descriptors within the buffers.
809 *
810 * entry:
811 * _rel_cache - Relocate descriptor cache (Rel_cache) to traverse
812 * _idx - Aliste index variable for use by the macro
813 * _rcbp - Cache buffer pointer, for use by the macro
814 * _orsp - Rel_desc pointer, which will take on the value of a different
815 * relocation descriptor in the cache in each iteration.
816 *
817 * The caller must not assign new values to _idx, _rcbp, or _orsp within
818 * the scope of REL_CACHE_TRAVERSE.
819 */
820 #define REL_CACHE_TRAVERSE(_rel_cache, _idx, _rcbp, _orsp) \
821 for (APLIST_TRAVERSE((_rel_cache)->rc_list, _idx, _rcbp)) \
822 for (_orsp = _rcbp->rc_arr; _orsp < _rcbp->rc_free; _orsp++)

824 /*
825 * Symbol value descriptor. For relocatable objects, each symbols value is
826 * its offset within its associated section. Therefore, to uniquely define
827 * each symbol within a relocatable object, record and sort the sh_offset and
828 * symbol value. This information is used to search for displacement
829 * relocations as part of copy relocation validation.
830 */
831 typedef struct {
832 Addr ssv_value;
833 Sym_desc *ssv_sdp;
834 } Ssv_desc;

836 /*
837 * Input file processing structures.
838 */
839 struct ifl_desc { /* input file descriptor */
840 const char *ifl_name; /* full file name */
841 const char *ifl_soname; /* shared object name */
842 dev_t ifl_stdev; /* device id and inode number for .so */
843 ino_t ifl_stino; /* multiple inclusion checks */
844 Ehdr *ifl_ehdr; /* elf header describing this file */
845 Elf *ifl_elf; /* elf descriptor for this file */
846 Sym_desc **ifl_oldndx; /* original symbol table indices */
847 Sym_desc *ifl_locs; /* symbol desc version of locals */
848 Ssv_desc *ifl_sortsyms; /* sorted list of symbols by value */
849 Word ifl_locscnt; /* no. of local symbols to process */
850 Word ifl_symscnt; /* total no. of symbols to process */
851 Word ifl_sortcnt; /* no. of sorted symbols to process */
852 Word ifl_shnum; /* number of sections in file */
853 Word ifl_shstrndx; /* index to .shstrtab */
854 Word ifl_vercnt; /* number of versions in file */
855 Half ifl_neededndx; /* index to NEEDED in .dyn section */
856 Word ifl_flags; /* explicit/implicit reference */
857 Is_desc **ifl_isdesc; /* isdesc[scn ndx] = Is_desc ptr */
858 Sdf_desc *ifl_sdfdesc; /* control definition */
859 Versym *ifl_versym; /* version symbol table array */
860 Ver_index *ifl_verndx; /* verndx[ver ndx] = Ver_index */
861 APlist *ifl_verdesc; /* version descriptor list */
862 APlist *ifl_relsect; /* relocation section list */
863 Alist *ifl_groups; /* SHT_GROUP section list */

new/usr/src/cmd/sgs/include/libld.h 8

864 Cap_desc *ifl_caps; /* capabilities descriptor */
865 };

867 #define FLG_IF_CMDLINE 0x00000001 /* full filename specified from the */
868 /* command line (no -l) */
869 #define FLG_IF_NEEDED 0x00000002 /* shared object should be recorded */
870 #define FLG_IF_DIRECT 0x00000004 /* establish direct bindings to this */
871 /* object */
872 #define FLG_IF_EXTRACT 0x00000008 /* file extracted from an archive */
873 #define FLG_IF_VERNEED 0x00000010 /* version dependency information is */
874 /* required */
875 #define FLG_IF_DEPREQD 0x00000020 /* dependency is required to satisfy */
876 /* symbol references */
877 #define FLG_IF_NEEDSTR 0x00000040 /* dependency specified by -Nn */
878 /* flag */
879 #define FLG_IF_IGNORE 0x00000080 /* ignore unused dependencies */
880 #define FLG_IF_NODIRECT 0x00000100 /* object contains symbols that */
881 /* cannot be directly bound to */
882 #define FLG_IF_LAZYLD 0x00000200 /* dependency should be lazy loaded */
883 #define FLG_IF_GRPPRM 0x00000400 /* dependency establishes a group */
884 #define FLG_IF_DISPPEND 0x00000800 /* displacement relocation done */
885 /* in the ld time. */
886 #define FLG_IF_DISPDONE 0x00001000 /* displacement relocation done */
887 /* at the run time */
888 #define FLG_IF_MAPFILE 0x00002000 /* file is a mapfile */
889 #define FLG_IF_HSTRTAB 0x00004000 /* file has a string section */
890 #define FLG_IF_FILEREF 0x00008000 /* file contains a section which */
891 /* is included in the output */
892 /* allocatable image */
893 #define FLG_IF_GNUVER 0x00010000 /* file used GNU-style versioning */
894 #define FLG_IF_ORDERED 0x00020000 /* ordered section processing */
895 /* required */
896 #define FLG_IF_OTOSCAP 0x00040000 /* convert object capabilities to */
897 /* symbol capabilities */
898 #define FLG_IF_DEFERRED 0x00080000 /* dependency is deferred */
899 #define FLG_IF_RTLDINF 0x00100000 /* dependency has DT_SUNW_RTLTINF set */
900 #define FLG_IF_GROUPS 0x00200000 /* input file has groups to process */

902 /*
903 * Symbol states that require the generation of a DT_POSFLAG_1 .dynamic entry.
904 */
905 #define MSK_IF_POSFLAG1 (FLG_IF_LAZYLD | FLG_IF_GRPPRM | FLG_IF_DEFERRED)

907 /*
908 * Symbol states that require an associated Syminfo entry.
909 */
910 #define MSK_IF_SYMINFO (FLG_IF_LAZYLD | FLG_IF_DIRECT | FLG_IF_DEFERRED)

913 struct is_desc { /* input section descriptor */
914 const char *is_name; /* original section name */
915 const char *is_sym_name; /* NULL, or name string to use for */
916 /* related STT_SECTION symbols */
917 Shdr *is_shdr; /* the elf section header */
918 Ifl_desc *is_file; /* infile desc for this section */
919 Os_desc *is_osdesc; /* new output section for this */
920 /* input section */
921 Elf_Data *is_indata; /* input sections raw data */
922 Is_desc *is_symshndx; /* related SHT_SYM_SHNDX section */
923 Is_desc *is_comdatkeep; /* If COMDAT section is discarded, */
924 /* this is section that was kept */
925 Word is_scnndx; /* original section index in file */
926 Word is_ordndx; /* index for section. Used to decide */
927 /* where to insert section when */
928 /* reordering sections */
929 Word is_keyident; /* key for SHF_{ORDERED|LINK_ORDER} */

new/usr/src/cmd/sgs/include/libld.h 9

930 /* processing and ident used for */
931 /* placing/ordering sections */
932 Word is_flags; /* Various flags */
933 };

935 #define FLG_IS_ORDERED 0x0001 /* this is a SHF_ORDERED section */
936 #define FLG_IS_KEY 0x0002 /* section requires sort keys */
937 #define FLG_IS_DISCARD 0x0004 /* section is to be discarded */
938 #define FLG_IS_RELUPD 0x0008 /* symbol defined here may have moved */
939 #define FLG_IS_SECTREF 0x0010 /* section has been referenced */
940 #define FLG_IS_GDATADEF 0x0020 /* section contains global data sym */
941 #define FLG_IS_EXTERNAL 0x0040 /* isp from a user file */
942 #define FLG_IS_INSTRMRG 0x0080 /* Usable SHF_MERGE|SHF_STRINGS sec */
943 #define FLG_IS_GNSTRMRG 0x0100 /* Generated mergeable string section */

945 #define FLG_IS_PLACE 0x0400 /* section requires to be placed */
946 #define FLG_IS_COMDAT 0x0800 /* section is COMDAT */
947 #define FLG_IS_EHFRAME 0x1000 /* section is .eh_frame */

949 /*
950 * Output sections contain lists of input sections that are assigned to them.
951 * These items fall into 4 categories:
952 * BEFORE - Ordered sections that specify SHN_BEFORE, in input order.
953 * ORDERED - Ordered sections that are sorted using unsorted sections
954 * as the sort key.
955 * DEFAULT - Sections that are placed into the output section
956 * in input order.
957 * AFTER - Ordered sections that specify SHN_AFTER, in input order.
958 */
959 #define OS_ISD_BEFORE 0
960 #define OS_ISD_ORDERED 1
961 #define OS_ISD_DEFAULT 2
962 #define OS_ISD_AFTER 3
963 #define OS_ISD_NUM 4
964 typedef APlist *os_isdecs_arr[OS_ISD_NUM];

966 /*
967 * Convenience macro for traversing every input section associated
968 * with a given output section. The primary benefit of this macro
969 * is that it preserves a precious level of code indentation in the
970 * code that uses it.
971 */
972 #define OS_ISDESCS_TRAVERSE(_list_idx, _osp, _idx, _isp) \
973 for (_list_idx = 0; _list_idx < OS_ISD_NUM; _list_idx++) \
974 for (APLIST_TRAVERSE(_osp->os_isdescs[_list_idx], _idx, _isp))

977 /*
978 * Map file and output file processing structures
979 */
980 struct os_desc { /* Output section descriptor */
981 const char *os_name; /* the section name */
982 Elf_Scn *os_scn; /* the elf section descriptor */
983 Shdr *os_shdr; /* the elf section header */
984 Os_desc *os_relosdesc; /* the output relocation section */
985 APlist *os_relisdescs; /* reloc input section descriptors */
986 /* for this output section */
987 os_isdecs_arr os_isdescs; /* lists of input sections in output */
988 APlist *os_mstrisdescs; /* FLG_IS_INSTRMRG input sections */
989 Sg_desc *os_sgdesc; /* segment os_desc is placed on */
990 Elf_Data *os_outdata; /* output sections raw data */
991 avl_tree_t *os_comdats; /* AVL tree of COMDAT input sections */
992 /* associated to output section */
993 Word os_identndx; /* section identifier for input */
994 /* section processing, followed */
995 /* by section symbol index */

new/usr/src/cmd/sgs/include/libld.h 10

996 Word os_ordndx; /* index for section. Used to decide */
997 /* where to insert section when */
998 /* reordering sections */
999 Xword os_szoutrels; /* size of output relocation section */

1000 uint_t os_namehash; /* hash on section name */
1001 uchar_t os_flags; /* various flags */
1002 };

1004 #define FLG_OS_KEY 0x01 /* section requires sort keys */
1005 #define FLG_OS_OUTREL 0x02 /* output rel against this section */
1006 #define FLG_OS_SECTREF 0x04 /* isps are not affected by -zignore */
1007 #define FLG_OS_EHFRAME 0x08 /* section is .eh_frame */

1009 /*
1010 * The sg_id field of the segment descriptor is used to establish the default
1011 * order for program headers and segments in the output object. Segments are
1012 * ordered according to the following SGID values that classify them based on
1013 * their attributes. The initial set of built in segments are in this order,
1014 * and new mapfile defined segments are inserted into these groups. Within a
1015 * given SGID group, the position of new segments depends on the syntax
1016 * version of the mapfile that creates them. Version 1 (original sysv)
1017 * mapfiles place the new segment at the head of their group (reverse creation
1018 * order). The newer syntax places them at the end, following the others
1019 * (creation order).
1020 *
1021 * Note that any new segments must always be added after PT_PHDR and
1022 * PT_INTERP (refer Generic ABI, Page 5-4).
1023 */
1024 #define SGID_PHDR 0 /* PT_PHDR */
1025 #define SGID_INTERP 1 /* PT_INTERP */
1026 #define SGID_SUNWCAP 2 /* PT_SUNWCAP */
1027 #define SGID_TEXT 3 /* PT_LOAD */
1028 #define SGID_DATA 4 /* PT_LOAD */
1029 #define SGID_BSS 5 /* PT_LOAD */
1030 #if defined(_ELF64)
1031 #define SGID_LRODATA 6 /* PT_LOAD (amd64-only) */
1032 #define SGID_LDATA 7 /* PT_LOAD (amd64-only) */
1033 #endif
1034 #define SGID_TEXT_EMPTY 8 /* PT_LOAD, reserved (?E in version 1 syntax) */
1035 #define SGID_NULL_EMPTY 9 /* PT_NULL, reserved (?E in version 1 syntax) */
1036 #define SGID_DYN 10 /* PT_DYNAMIC */
1037 #define SGID_DTRACE 11 /* PT_SUNWDTRACE */
1038 #define SGID_TLS 12 /* PT_TLS */
1039 #define SGID_UNWIND 13 /* PT_SUNW_UNWIND */
1040 #define SGID_SUNWSTACK 14 /* PT_SUNWSTACK */
1041 #define SGID_NOTE 15 /* PT_NOTE */
1042 #define SGID_NULL 16 /* PT_NULL, mapfile defined empty phdr slots */
1043 /* for use by post processors */
1044 #define SGID_EXTRA 17 /* PT_NULL (final catchall) */

1046 typedef Half sg_flags_t;
1047 struct sg_desc { /* output segment descriptor */
1048 Word sg_id; /* segment identifier (for sorting) */
1049 Phdr sg_phdr; /* segment header for output file */
1050 const char *sg_name; /* segment name for PT_LOAD, PT_NOTE, */
1051 /* and PT_NULL, otherwise NULL */
1052 Xword sg_round; /* data rounding required (mapfile) */
1053 Xword sg_length; /* maximum segment length; if 0 */
1054 /* segment is not specified */
1055 APlist *sg_osdescs; /* list of output section descriptors */
1056 APlist *sg_is_order; /* list of entry criteria */
1057 /* giving input section order */
1058 Alist *sg_os_order; /* list specifying output section */
1059 /* ordering for the segment */
1060 sg_flags_t sg_flags;
1061 APlist *sg_sizesym; /* size symbols for this segment */

new/usr/src/cmd/sgs/include/libld.h 11

1062 Xword sg_align; /* LCM of sh_addralign */
1063 Elf_Scn *sg_fscn; /* the SCN of the first section. */
1064 avl_node_t sg_avlnode; /* AVL book-keeping */
1065 };

1067 #define FLG_SG_P_VADDR 0x0001 /* p_vaddr segment attribute set */
1068 #define FLG_SG_P_PADDR 0x0002 /* p_paddr segment attribute set */
1069 #define FLG_SG_LENGTH 0x0004 /* length segment attribute set */
1070 #define FLG_SG_P_ALIGN 0x0008 /* p_align segment attribute set */
1071 #define FLG_SG_ROUND 0x0010 /* round segment attribute set */
1072 #define FLG_SG_P_FLAGS 0x0020 /* p_flags segment attribute set */
1073 #define FLG_SG_P_TYPE 0x0040 /* p_type segment attribute set */
1074 #define FLG_SG_IS_ORDER 0x0080 /* input section ordering is required */
1075 /* for this segment. */
1076 #define FLG_SG_NOHDR 0x0100 /* don’t map ELF or phdrs into */
1077 /* this segment */
1078 #define FLG_SG_EMPTY 0x0200 /* an empty segment specification */
1079 /* no input sections will be */
1080 /* associated to this section */
1081 #define FLG_SG_KEY 0x0400 /* segment requires sort keys */
1082 #define FLG_SG_NODISABLE 0x0800 /* FLG_SG_DISABLED is not allowed on */
1083 /* this segment */
1084 #define FLG_SG_DISABLED 0x1000 /* this segment is disabled */
1085 #define FLG_SG_PHREQ 0x2000 /* this segment requires a program */
1086 /* header */
1087 #define FLG_SG_ORDERED 0x4000 /* SEGMENT_ORDER segment */

1089 struct sec_order {
1090 const char *sco_secname; /* section name to be ordered */
1091 Half sco_flags;
1092 };

1094 #define FLG_SGO_USED 0x0001 /* was ordering used? */

1096 typedef Half ec_flags_t;
1097 struct ent_desc { /* input section entrance criteria */
1098 const char *ec_name; /* entrace criteria name, or NULL */
1099 Alist *ec_files; /* files from which to accept */
1100 /* sections */
1101 const char *ec_is_name; /* input section name to match */
1102 /* (NULL if none) */
1103 Word ec_type; /* section type */
1104 Word ec_attrmask; /* section attribute mask (AWX) */
1105 Word ec_attrbits; /* sections attribute bits */
1106 Sg_desc *ec_segment; /* output segment to enter if matched */
1107 Word ec_ordndx; /* index to determine where section */
1108 /* meeting this criteria should */
1109 /* inserted. Used for reordering */
1110 /* of sections. */
1111 ec_flags_t ec_flags;
1112 avl_node_t ec_avlnode; /* AVL book-keeping */
1113 };

1115 #define FLG_EC_BUILTIN 0x0001 /* built in descriptor */
1116 #define FLG_EC_USED 0x0002 /* entrance criteria met? */
1117 #define FLG_EC_CATCHALL 0x0004 /* Catches any section */

1119 /*
1120 * Ent_desc_file is the type of element maintained in the ec_files Alist
1121 * of an entrance criteria descriptor. Each item maintains one file
1122 * path, and a set of flags that specify the type of comparison it implies,
1123 * and other information about it. The comparison type is maintained in
1124 * the bottom byte of the flags.
1125 */
1126 #define TYP_ECF_MASK 0x00ff /* Comparison type mask */
1127 #define TYP_ECF_PATH 0 /* Compare to file path */

new/usr/src/cmd/sgs/include/libld.h 12

1128 #define TYP_ECF_BASENAME 1 /* Compare to file basename */
1129 #define TYP_ECF_OBJNAME 2 /* Compare to regular file basename, */
1130 /* or to archive member name */
1131 #define TYP_ECF_NUM 3

1133 #define FLG_ECF_ARMEMBER 0x0100 /* name includes archive member */

1135 typedef struct {
1136 Word edf_flags; /* Type of comparison */
1137 const char *edf_name; /* String to compare to */
1138 size_t edf_name_len; /* strlen(edf_name) */
1139 } Ent_desc_file;

1141 /*
1142 * One structure is allocated for a move entry, and associated to the symbol
1143 * against which a move is targeted.
1144 */
1145 typedef struct {
1146 Move *md_move; /* original Move entry */
1147 Xword md_start; /* start position */
1148 Xword md_len; /* length of initialization */
1149 Word md_oidx; /* output Move entry index */
1150 } Mv_desc;

1152 /*
1153 * Symbol descriptor.
1154 */
1155 typedef Lword sd_flag_t;
1156 struct sym_desc {
1157 Alist *sd_GOTndxs; /* list of associated GOT entries */
1158 Sym *sd_sym; /* pointer to symbol table entry */
1159 Sym *sd_osym; /* copy of the original symbol entry */
1160 /* used only for local partial */
1161 Alist *sd_move; /* move information associated with a */
1162 /* partially initialized symbol */
1163 const char *sd_name; /* symbols name */
1164 Ifl_desc *sd_file; /* file where symbol is taken */
1165 Is_desc *sd_isc; /* input section of symbol definition */
1166 Sym_aux *sd_aux; /* auxiliary global symbol info. */
1167 Word sd_symndx; /* index in output symbol table */
1168 Word sd_shndx; /* sect. index sym is associated w/ */
1169 sd_flag_t sd_flags; /* state flags */
1170 Half sd_ref; /* reference definition of symbol */
1171 };

1173 /*
1174 * The auxiliary symbol descriptor contains the additional information (beyond
1175 * the symbol descriptor) required to process global symbols. These symbols are
1176 * accessed via an internal symbol hash table where locality of reference is
1177 * important for performance.
1178 */
1179 struct sym_aux {
1180 APlist *sa_dfiles; /* files where symbol is defined */
1181 Sym sa_sym; /* copy of symtab entry */
1182 const char *sa_vfile; /* first unavailable definition */
1183 const char *sa_rfile; /* file with first symbol referenced */
1184 Word sa_hash; /* the pure hash value of symbol */
1185 Word sa_PLTndx; /* index into PLT for symbol */
1186 Word sa_PLTGOTndx; /* GOT entry indx for PLT indirection */
1187 Word sa_linkndx; /* index of associated symbol from */
1188 /* ET_DYN file */
1189 Half sa_symspec; /* special symbol ids */
1190 Half sa_overndx; /* output file versioning index */
1191 Half sa_dverndx; /* dependency versioning index */
1192 Os_desc *sa_boundsec; /* output section of SECBOUND_ syms */
1193 #endif /* ! codereview */

new/usr/src/cmd/sgs/include/libld.h 13

1194 };

1196 /*
1197 * Nodes used to track symbols in the global AVL symbol dictionary.
1198 */
1199 struct sym_avlnode {
1200 avl_node_t sav_node; /* AVL node */
1201 Word sav_hash; /* symbol hash value */
1202 const char *sav_name; /* symbol name */
1203 Sym_desc *sav_sdp; /* symbol descriptor */
1204 };

1206 /*
1207 * These are the ids for processing of ‘Special symbols’. They are used
1208 * to set the sym->sd_aux->sa_symspec field.
1209 */
1210 #define SDAUX_ID_ETEXT 1 /* etext && _etext symbol */
1211 #define SDAUX_ID_EDATA 2 /* edata && _edata symbol */
1212 #define SDAUX_ID_END 3 /* end, _end, && _END_ symbol */
1213 #define SDAUX_ID_DYN 4 /* DYNAMIC && _DYNAMIC symbol */
1214 #define SDAUX_ID_PLT 5 /* _PROCEDURE_LINKAGE_TABLE_ symbol */
1215 #define SDAUX_ID_GOT 6 /* _GLOBAL_OFFSET_TABLE_ symbol */
1216 #define SDAUX_ID_START 7 /* START_ && _START_ symbol */
1217 #define SDAUX_ID_SECBOUND_START 8 /* __start_<section> symbols */
1218 #define SDAUX_ID_SECBOUND_STOP 9 /* __stop_<section> symbols */
1219 #endif /* ! codereview */

1221 /*
1222 * Flags for sym_desc.sd_flags
1223 */
1224 #define FLG_SY_MVTOCOMM 0x00000001 /* assign symbol to common (.bss) */
1225 /* this is a result of a */
1226 /* copy reloc against sym */
1227 #define FLG_SY_GLOBREF 0x00000002 /* a global reference has been seen */
1228 #define FLG_SY_WEAKDEF 0x00000004 /* a weak definition has been used */
1229 #define FLG_SY_CLEAN 0x00000008 /* ‘Sym’ entry points to original */
1230 /* input file (read-only). */
1231 #define FLG_SY_UPREQD 0x00000010 /* symbol value update is required, */
1232 /* either it’s used as an entry */
1233 /* point or for relocation, but */
1234 /* it must be updated even if */
1235 /* the -s flag is in effect */
1236 #define FLG_SY_NOTAVAIL 0x00000020 /* symbol is not available to the */
1237 /* application either because it */
1238 /* originates from an implicitly */
1239 /* referenced shared object, or */
1240 /* because it is not part of a */
1241 /* specified version. */
1242 #define FLG_SY_REDUCED 0x00000040 /* a global is reduced to local */
1243 #define FLG_SY_VERSPROM 0x00000080 /* version definition has been */
1244 /* promoted to output file */
1245 #define FLG_SY_PROT 0x00000100 /* stv_protected visibility seen */
1246 #define FLG_SY_MAPREF 0x00000200 /* symbol reference generated by user */
1247 /* from mapfile */
1248 #define FLG_SY_REFRSD 0x00000400 /* symbols sd_ref has been raised */
1249 /* due to a copy-relocs */
1250 /* weak-strong pairing */
1251 #define FLG_SY_INTPOSE 0x00000800 /* symbol defines an interposer */
1252 #define FLG_SY_INVALID 0x00001000 /* unwanted/erroneous symbol */
1253 #define FLG_SY_SMGOT 0x00002000 /* small got index assigned to symbol */
1254 /* sparc only */
1255 #define FLG_SY_PARENT 0x00004000 /* symbol to be found in parent */
1256 /* only used with direct bindings */
1257 #define FLG_SY_LAZYLD 0x00008000 /* symbol to cause lazyloading of */
1258 /* parent object */
1259 #define FLG_SY_ISDISC 0x00010000 /* symbol is a member of a DISCARDED */

new/usr/src/cmd/sgs/include/libld.h 14

1260 /* section (COMDAT) */
1261 #define FLG_SY_PAREXPN 0x00020000 /* partially init. symbol to be */
1262 /* expanded */
1263 #define FLG_SY_PLTPAD 0x00040000 /* pltpadding has been allocated for */
1264 /* this symbol */
1265 #define FLG_SY_REGSYM 0x00080000 /* REGISTER symbol (sparc only) */
1266 #define FLG_SY_SOFOUND 0x00100000 /* compared against an SO definition */
1267 #define FLG_SY_EXTERN 0x00200000 /* symbol is external, allows -zdefs */
1268 /* error suppression */
1269 #define FLG_SY_MAPUSED 0x00400000 /* mapfile symbol used (occurred */
1270 /* within a relocatable object) */
1271 #define FLG_SY_COMMEXP 0x00800000 /* COMMON symbol which has been */
1272 /* allocated */
1273 #define FLG_SY_CMDREF 0x01000000 /* symbol was referenced from the */
1274 /* command line. (ld -u <>, */
1275 /* ld -zrtldinfo=<>, ...) */
1276 #define FLG_SY_SPECSEC 0x02000000 /* section index is reserved value */
1277 /* ABS, COMMON, ... */
1278 #define FLG_SY_TENTSYM 0x04000000 /* tentative symbol */
1279 #define FLG_SY_VISIBLE 0x08000000 /* symbols visibility determined */
1280 #define FLG_SY_STDFLTR 0x10000000 /* symbol is a standard filter */
1281 #define FLG_SY_AUXFLTR 0x20000000 /* symbol is an auxiliary filter */
1282 #define FLG_SY_DYNSORT 0x40000000 /* req. in dyn[sym|tls]sort section */
1283 #define FLG_SY_NODYNSORT 0x80000000 /* excluded from dyn[sym_tls]sort sec */

1285 #define FLG_SY_DEFAULT 0x0000100000000 /* global symbol, default */
1286 #define FLG_SY_SINGLE 0x0000200000000 /* global symbol, singleton defined */
1287 #define FLG_SY_PROTECT 0x0000400000000 /* global symbol, protected defined */
1288 #define FLG_SY_EXPORT 0x0000800000000 /* global symbol, exported defined */

1290 #define MSK_SY_GLOBAL \
1291 (FLG_SY_DEFAULT | FLG_SY_SINGLE | FLG_SY_PROTECT | FLG_SY_EXPORT)
1292 /* this mask indicates that the */
1293 /* symbol has been explicitly */
1294 /* defined within a mapfile */
1295 /* definition, and is a candidate */
1296 /* for versioning */

1298 #define FLG_SY_HIDDEN 0x0001000000000 /* global symbol, reduce to local */
1299 #define FLG_SY_ELIM 0x0002000000000 /* global symbol, eliminate */
1300 #define FLG_SY_IGNORE 0x0004000000000 /* global symbol, ignored */

1302 #define MSK_SY_LOCAL (FLG_SY_HIDDEN | FLG_SY_ELIM | FLG_SY_IGNORE)
1303 /* this mask allows all local state */
1304 /* flags to be removed when the */
1305 /* symbol is copy relocated */

1307 #define FLG_SY_EXPDEF 0x0008000000000 /* symbol visibility defined */
1308 /* explicitly */

1310 #define MSK_SY_NOAUTO (FLG_SY_SINGLE | FLG_SY_EXPORT | FLG_SY_EXPDEF)
1311 /* this mask indicates that the */
1312 /* symbol is not a candidate for */
1313 /* auto-reduction/elimination */

1315 #define FLG_SY_MAPFILE 0x0010000000000 /* symbol attribute defined in a */
1316 /* mapfile */
1317 #define FLG_SY_DIR 0x0020000000000 /* global symbol, direct bindings */
1318 #define FLG_SY_NDIR 0x0040000000000 /* global symbol, nondirect bindings */
1319 #define FLG_SY_OVERLAP 0x0080000000000 /* move entry overlap detected */
1320 #define FLG_SY_CAP 0x0100000000000 /* symbol is associated with */
1321 /* capabilities */
1322 #define FLG_SY_DEFERRED 0x0200000000000 /* symbol should not be bound to */
1323 /* during BIND_NOW relocations */

1325 /*

new/usr/src/cmd/sgs/include/libld.h 15

1326 * A symbol can only be truly hidden if it is not a capabilities symbol.
1327 */
1328 #define SYM_IS_HIDDEN(_sdp) \
1329 (((_sdp)->sd_flags & (FLG_SY_HIDDEN | FLG_SY_CAP)) == FLG_SY_HIDDEN)

1331 /*
1332 * Create a mask for (sym.st_other & visibility) since the gABI does not yet
1333 * define a ELF*_ST_OTHER macro.
1334 */
1335 #define MSK_SYM_VISIBILITY 0x7

1337 /*
1338 * Structure to manage the shared object definition lists. There are two lists
1339 * that use this structure:
1340 *
1341 * - ofl_soneed; maintain the list of implicitly required dependencies
1342 * (ie. shared objects needed by other shared objects). These definitions
1343 * may include RPATH’s required to locate the dependencies, and any
1344 * version requirements.
1345 *
1346 * - ofl_socntl; maintains the shared object control definitions. These are
1347 * provided by the user (via a mapfile) and are used to indicate any
1348 * version control requirements.
1349 */
1350 struct sdf_desc {
1351 const char *sdf_name; /* the shared objects file name */
1352 char *sdf_rpath; /* library search path DT_RPATH */
1353 const char *sdf_rfile; /* referencing file for diagnostics */
1354 Ifl_desc *sdf_file; /* the final input file descriptor */
1355 Alist *sdf_vers; /* list of versions that are required */
1356 /* from this object */
1357 Alist *sdf_verneed; /* list of VERNEEDS to create for */
1358 /* object via mapfile ADDVERS */
1359 Word sdf_flags;
1360 };

1362 #define FLG_SDF_SELECT 0x01 /* version control selection required */
1363 #define FLG_SDF_VERIFY 0x02 /* version definition verification */
1364 /* required */
1365 #define FLG_SDF_ADDVER 0x04 /* add VERNEED references */

1367 /*
1368 * Structure to manage shared object version usage requirements.
1369 */
1370 struct sdv_desc {
1371 const char *sdv_name; /* version name */
1372 const char *sdv_ref; /* versions reference */
1373 Word sdv_flags; /* flags */
1374 };

1376 #define FLG_SDV_MATCHED 0x01 /* VERDEF found and matched */

1378 /*
1379 * Structures to manage versioning information. Two versioning structures are
1380 * defined:
1381 *
1382 * - a version descriptor maintains a linked list of versions and their
1383 * associated dependencies. This is used to build the version definitions
1384 * for an image being created (see map_symbol), and to determine the
1385 * version dependency graph for any input files that are versioned.
1386 *
1387 * - a version index array contains each version of an input file that is
1388 * being processed. It informs us which versions are available for
1389 * binding, and is used to generate any version dependency information.
1390 */
1391 struct ver_desc {

new/usr/src/cmd/sgs/include/libld.h 16

1392 const char *vd_name; /* version name */
1393 Ifl_desc *vd_file; /* file that defined version */
1394 Word vd_hash; /* hash value of name */
1395 Half vd_ndx; /* coordinates with symbol index */
1396 Half vd_flags; /* version information */
1397 APlist *vd_deps; /* version dependencies */
1398 Ver_desc *vd_ref; /* dependency’s first reference */
1399 };

1401 struct ver_index {
1402 const char *vi_name; /* dependency version name */
1403 Half vi_flags; /* communicates availability */
1404 Half vi_overndx; /* index assigned to this version in */
1405 /* output object Verneed section */
1406 Ver_desc *vi_desc; /* cross reference to descriptor */
1407 };

1409 /*
1410 * Define any internal version descriptor flags ([vd|vi]_flags). Note that the
1411 * first byte is reserved for user visible flags (refer VER_FLG’s in link.h).
1412 */
1413 #define MSK_VER_USER 0x0f /* mask for user visible flags */

1415 #define FLG_VER_AVAIL 0x10 /* version is available for binding */
1416 #define FLG_VER_REFER 0x20 /* version has been referenced */
1417 #define FLG_VER_CYCLIC 0x40 /* a member of cyclic dependency */

1419 /*
1420 * isalist(1) descriptor - used to break an isalist string into its component
1421 * options.
1422 */
1423 struct isa_opt {
1424 char *isa_name; /* individual isa option name */
1425 size_t isa_namesz; /* and associated size */
1426 };

1428 struct isa_desc {
1429 char *isa_list; /* sysinfo(SI_ISALIST) list */
1430 size_t isa_listsz; /* and associated size */
1431 Isa_opt *isa_opt; /* table of individual isa options */
1432 size_t isa_optno; /* and associated number */
1433 };

1435 /*
1436 * uname(2) descriptor - used to break a utsname structure into its component
1437 * options (at least those that we’re interested in).
1438 */
1439 struct uts_desc {
1440 char *uts_osname; /* operating system name */
1441 size_t uts_osnamesz; /* and associated size */
1442 char *uts_osrel; /* operating system release */
1443 size_t uts_osrelsz; /* and associated size */
1444 };

1446 /*
1447 * SHT_GROUP descriptor - used to track group sections at the global
1448 * level to resolve conflicts and determine which to keep.
1449 */
1450 struct group_desc {
1451 Is_desc *gd_isc; /* input section descriptor */
1452 Is_desc *gd_oisc; /* overriding input section */
1453 /* descriptor when discarded */
1454 const char *gd_name; /* group name (signature symbol) */
1455 Word *gd_data; /* data for group section */
1456 size_t gd_cnt; /* number of entries in group data */
1457 };

new/usr/src/cmd/sgs/include/libld.h 17

1459 /*
1460 * Indexes into the ld_support_funcs[] table.
1461 */
1462 typedef enum {
1463 LDS_VERSION = 0, /* Must be first and have value 0 */
1464 LDS_INPUT_DONE,
1465 LDS_START,
1466 LDS_ATEXIT,
1467 LDS_OPEN,
1468 LDS_FILE,
1469 LDS_INSEC,
1470 LDS_SEC,
1471 LDS_NUM
1472 } Support_ndx;

1474 /*
1475 * Structure to manage archive member caching. Each archive has an archive
1476 * descriptor (Ar_desc) associated with it. This contains pointers to the
1477 * archive symbol table (obtained by elf_getarsyms(3e)) and an auxiliary
1478 * structure (Ar_uax[]) that parallels this symbol table. The member element
1479 * of this auxiliary table indicates whether the archive member associated with
1480 * the symbol offset has already been extracted (AREXTRACTED) or partially
1481 * processed (refer process_member()).
1482 */
1483 typedef struct ar_mem {
1484 Elf *am_elf; /* elf descriptor for this member */
1485 const char *am_name; /* members name */
1486 const char *am_path; /* path (ie. lib(foo.o)) */
1487 Sym *am_syms; /* start of global symbols */
1488 char *am_strs; /* associated string table start */
1489 Xword am_symn; /* no. of global symbols */
1490 } Ar_mem;

1492 typedef struct ar_aux {
1493 Sym_desc *au_syms; /* internal symbol descriptor */
1494 Ar_mem *au_mem; /* associated member */
1495 } Ar_aux;

1497 #define FLG_ARMEM_PROC (Ar_mem *)-1

1499 typedef struct ar_desc {
1500 const char *ad_name; /* archive file name */
1501 Elf *ad_elf; /* elf descriptor for the archive */
1502 Elf_Arsym *ad_start; /* archive symbol table start */
1503 Ar_aux *ad_aux; /* auxiliary symbol information */
1504 dev_t ad_stdev; /* device id and inode number for */
1505 ino_t ad_stino; /* multiple inclusion checks */
1506 ofl_flag_t ad_flags; /* archive specific cmd line flags */
1507 } Ar_desc;

1509 /*
1510 * Define any archive descriptor flags. NOTE, make sure they do not clash with
1511 * any output file descriptor archive extraction flags, as these are saved in
1512 * the same entry (see MSK_OF1_ARCHIVE).
1513 */
1514 #define FLG_ARD_EXTRACT 0x00010000 /* archive member has been extracted */

1516 /* Mapfile versions supported by libld */
1517 #define MFV_NONE 0 /* Not a valid version */
1518 #define MFV_SYSV 1 /* Original System V syntax */
1519 #define MFV_SOLARIS 2 /* Solaris mapfile syntax */
1520 #define MFV_NUM 3 /* # of mapfile versions */

1523 /*

new/usr/src/cmd/sgs/include/libld.h 18

1524 * Function Declarations.
1525 */
1526 #if defined(_ELF64)

1528 #define ld_create_outfile ld64_create_outfile
1529 #define ld_ent_setup ld64_ent_setup
1530 #define ld_init_strings ld64_init_strings
1531 #define ld_init_target ld64_init_target
1532 #define ld_make_sections ld64_make_sections
1533 #define ld_main ld64_main
1534 #define ld_ofl_cleanup ld64_ofl_cleanup
1535 #define ld_process_mem ld64_process_mem
1536 #define ld_reloc_init ld64_reloc_init
1537 #define ld_reloc_process ld64_reloc_process
1538 #define ld_sym_validate ld64_sym_validate
1539 #define ld_update_outfile ld64_update_outfile

1541 #else

1543 #define ld_create_outfile ld32_create_outfile
1544 #define ld_ent_setup ld32_ent_setup
1545 #define ld_init_strings ld32_init_strings
1546 #define ld_init_target ld32_init_target
1547 #define ld_make_sections ld32_make_sections
1548 #define ld_main ld32_main
1549 #define ld_ofl_cleanup ld32_ofl_cleanup
1550 #define ld_process_mem ld32_process_mem
1551 #define ld_reloc_init ld32_reloc_init
1552 #define ld_reloc_process ld32_reloc_process
1553 #define ld_sym_validate ld32_sym_validate
1554 #define ld_update_outfile ld32_update_outfile

1556 #endif

1558 extern int ld_getopt(Lm_list *, int, int, char **);

1560 extern int ld32_main(int, char **, Half);
1561 extern int ld64_main(int, char **, Half);

1563 extern uintptr_t ld_create_outfile(Ofl_desc *);
1564 extern uintptr_t ld_ent_setup(Ofl_desc *, Xword);
1565 extern uintptr_t ld_init_strings(Ofl_desc *);
1566 extern int ld_init_target(Lm_list *, Half mach);
1567 extern uintptr_t ld_make_sections(Ofl_desc *);
1568 extern void ld_ofl_cleanup(Ofl_desc *);
1569 extern Ifl_desc *ld_process_mem(const char *, const char *, char *,
1570 size_t, Ofl_desc *, Rej_desc *);
1571 extern uintptr_t ld_reloc_init(Ofl_desc *);
1572 extern uintptr_t ld_reloc_process(Ofl_desc *);
1573 extern uintptr_t ld_sym_validate(Ofl_desc *);
1574 extern uintptr_t ld_update_outfile(Ofl_desc *);

1576 #ifdef __cplusplus
1577 }
1578 #endif

1580 #endif /* _LIBLD_H */

new/usr/src/cmd/sgs/include/sgs.h 1

**
 8404 Sun Feb 24 19:19:07 2019
new/usr/src/cmd/sgs/include/sgs.h
ld should reject kernel modules as input
**
______unchanged_portion_omitted_

177 #define SGS_REJ_NONE 0
178 #define SGS_REJ_MACH 1 /* wrong ELF machine type */
179 #define SGS_REJ_CLASS 2 /* wrong ELF class (32-bit/64-bit) */
180 #define SGS_REJ_DATA 3 /* wrong ELF data format (MSG/LSB) */
181 #define SGS_REJ_TYPE 4 /* bad ELF type */
182 #define SGS_REJ_BADFLAG 5 /* bad ELF flags value */
183 #define SGS_REJ_MISFLAG 6 /* mismatched ELF flags value */
184 #define SGS_REJ_VERSION 7 /* mismatched ELF/lib version */
185 #define SGS_REJ_HAL 8 /* HAL R1 extensions required */
186 #define SGS_REJ_US3 9 /* Sun UltraSPARC III extensions */
187 /* required */
188 #define SGS_REJ_STR 10 /* generic error - info is a string */
189 #define SGS_REJ_UNKFILE 11 /* unknown file type */
190 #define SGS_REJ_UNKCAP 12 /* unknown capabilities */
191 #define SGS_REJ_HWCAP_1 13 /* hardware capabilities mismatch */
192 #define SGS_REJ_SFCAP_1 14 /* software capabilities mismatch */
193 #define SGS_REJ_MACHCAP 15 /* machine capability mismatch */
194 #define SGS_REJ_PLATCAP 16 /* platform capability mismatch */
195 #define SGS_REJ_HWCAP_2 17 /* hardware capabilities mismatch */
196 #define SGS_REJ_ARCHIVE 18 /* archive used in invalid context */
197 #define SGS_REJ_KMOD 19 /* object is a kernel module */
198 #define SGS_REJ_NUM 20
197 #define SGS_REJ_NUM 19

200 #define FLG_REJ_ALTER 0x01 /* object name is an alternative */

202 /*
203 * For those source files used both inside and outside of the
204 * libld source base (tools/common/string_table.c) we can
205 * automatically switch between the allocation models
206 * based off of the ’cc -DUSE_LIBLD_MALLOC’ flag.
207 */
208 #ifdef USE_LIBLD_MALLOC
209 #define calloc(x, a) libld_malloc(((size_t)x) * ((size_t)a))
210 #define free libld_free
211 #define malloc libld_malloc
212 #define realloc libld_realloc

214 #define libld_calloc(x, a) libld_malloc(((size_t)x) * ((size_t)a))
215 extern void libld_free(void *);
216 extern void *libld_malloc(size_t);
217 extern void *libld_realloc(void *, size_t);
218 #endif

220 /*
221 * Data structures (defined in libld.h).
222 */
223 typedef struct audit_desc Audit_desc;
224 typedef struct audit_info Audit_info;
225 typedef struct audit_list Audit_list;
226 typedef struct cap_desc Cap_desc;
227 typedef struct ent_desc Ent_desc;
228 typedef struct group_desc Group_desc;
229 typedef struct ifl_desc Ifl_desc;
230 typedef struct is_desc Is_desc;
231 typedef struct isa_desc Isa_desc;
232 typedef struct isa_opt Isa_opt;
233 typedef struct os_desc Os_desc;
234 typedef struct ofl_desc Ofl_desc;

new/usr/src/cmd/sgs/include/sgs.h 2

235 typedef struct rel_cache Rel_cache;
236 typedef struct rel_cachebuf Rel_cachebuf;
237 typedef struct rel_aux_cachebuf Rel_aux_cachebuf;
238 typedef struct rel_aux Rel_aux;
239 typedef struct rel_desc Rel_desc;
240 typedef struct sdf_desc Sdf_desc;
241 typedef struct sdv_desc Sdv_desc;
242 typedef struct sec_order Sec_order;
243 typedef struct sg_desc Sg_desc;
244 typedef struct sort_desc Sort_desc;
245 typedef struct sym_avlnode Sym_avlnode;
246 typedef struct sym_aux Sym_aux;
247 typedef struct sym_desc Sym_desc;
248 typedef struct uts_desc Uts_desc;
249 typedef struct ver_desc Ver_desc;
250 typedef struct ver_index Ver_index;

252 /*
253 * Data structures defined in rtld.h.
254 */
255 typedef struct lm_list Lm_list;
256 #ifdef _SYSCALL32
257 typedef struct lm_list32 Lm_list32;
258 #endif /* _SYSCALL32 */

260 /*
261 * For the various utilities that include sgs.h
262 */
263 extern int assfail(const char *, const char *, int);
264 extern void eprintf(Lm_list *, Error, const char *, ...);
265 extern void veprintf(Lm_list *, Error, const char *, va_list);
266 extern uint_t sgs_str_hash(const char *);
267 extern uint_t findprime(uint_t);

269 #endif /* _ASM */

271 #ifdef __cplusplus
272 }

______unchanged_portion_omitted_

new/usr/src/cmd/sgs/libconv/common/dynamic.c 1

**
 34970 Sun Feb 24 19:19:08 2019
new/usr/src/cmd/sgs/libconv/common/dynamic.c
ld: implement -ztype and rework option parsing
**
______unchanged_portion_omitted_

419 const conv_ds_t **
420 conv_dyn_tag_strings(conv_iter_osabi_t osabi, Half mach,
421 Conv_fmt_flags_t fmt_flags)
422 {
423 /*
424 * Maximum # of items that can be in the returned array. Size this
425 * by counting the maximum depth in the switch statement that fills
426 * retarr at the end of this function.
427 */
428 #define MAX_RET 12

430 /*
431 * Generic dynamic tags:
432 * - Note hole between DT_FLAGS and DT_PREINIT_ARRAY (tag 32).
433 * We use a 0, which is the signal for "not defined".
434 * - This range has alternative names for dump, requiring an
435 * additional array.
436 */
437 static const Msg tags_null_cf[] = {
438 MSG_DT_NULL_CF, MSG_DT_NEEDED_CF,
439 MSG_DT_PLTRELSZ_CF, MSG_DT_PLTGOT_CF,
440 MSG_DT_HASH_CF, MSG_DT_STRTAB_CF,
441 MSG_DT_SYMTAB_CF, MSG_DT_RELA_CF,
442 MSG_DT_RELASZ_CF, MSG_DT_RELAENT_CF,
443 MSG_DT_STRSZ_CF, MSG_DT_SYMENT_CF,
444 MSG_DT_INIT_CF, MSG_DT_FINI_CF,
445 MSG_DT_SONAME_CF, MSG_DT_RPATH_CF,
446 MSG_DT_SYMBOLIC_CF, MSG_DT_REL_CF,
447 MSG_DT_RELSZ_CF, MSG_DT_RELENT_CF,
448 MSG_DT_PLTREL_CF, MSG_DT_DEBUG_CF,
449 MSG_DT_TEXTREL_CF, MSG_DT_JMPREL_CF,
450 MSG_DT_BIND_NOW_CF, MSG_DT_INIT_ARRAY_CF,
451 MSG_DT_FINI_ARRAY_CF, MSG_DT_INIT_ARRAYSZ_CF,
452 MSG_DT_FINI_ARRAYSZ_CF, MSG_DT_RUNPATH_CF,
453 MSG_DT_FLAGS_CF, 0,
454 MSG_DT_PREINIT_ARRAY_CF, MSG_DT_PREINIT_ARRAYSZ_CF
455 };
456 static const Msg tags_null_cfnp[] = {
457 MSG_DT_NULL_CFNP, MSG_DT_NEEDED_CFNP,
458 MSG_DT_PLTRELSZ_CFNP, MSG_DT_PLTGOT_CFNP,
459 MSG_DT_HASH_CFNP, MSG_DT_STRTAB_CFNP,
460 MSG_DT_SYMTAB_CFNP, MSG_DT_RELA_CFNP,
461 MSG_DT_RELASZ_CFNP, MSG_DT_RELAENT_CFNP,
462 MSG_DT_STRSZ_CFNP, MSG_DT_SYMENT_CFNP,
463 MSG_DT_INIT_CFNP, MSG_DT_FINI_CFNP,
464 MSG_DT_SONAME_CFNP, MSG_DT_RPATH_CFNP,
465 MSG_DT_SYMBOLIC_CFNP, MSG_DT_REL_CFNP,
466 MSG_DT_RELSZ_CFNP, MSG_DT_RELENT_CFNP,
467 MSG_DT_PLTREL_CFNP, MSG_DT_DEBUG_CFNP,
468 MSG_DT_TEXTREL_CFNP, MSG_DT_JMPREL_CFNP,
469 MSG_DT_BIND_NOW_CFNP, MSG_DT_INIT_ARRAY_CFNP,
470 MSG_DT_FINI_ARRAY_CFNP, MSG_DT_INIT_ARRAYSZ_CFNP,
471 MSG_DT_FINI_ARRAYSZ_CFNP, MSG_DT_RUNPATH_CFNP,
472 MSG_DT_FLAGS_CFNP, 0,
473 MSG_DT_PREINIT_ARRAY_CFNP, MSG_DT_PREINIT_ARRAYSZ_CFNP
474 };
475 static const Msg tags_null_nf[] = {
476 MSG_DT_NULL_NF, MSG_DT_NEEDED_NF,
477 MSG_DT_PLTRELSZ_NF, MSG_DT_PLTGOT_NF,

new/usr/src/cmd/sgs/libconv/common/dynamic.c 2

478 MSG_DT_HASH_NF, MSG_DT_STRTAB_NF,
479 MSG_DT_SYMTAB_NF, MSG_DT_RELA_NF,
480 MSG_DT_RELASZ_NF, MSG_DT_RELAENT_NF,
481 MSG_DT_STRSZ_NF, MSG_DT_SYMENT_NF,
482 MSG_DT_INIT_NF, MSG_DT_FINI_NF,
483 MSG_DT_SONAME_NF, MSG_DT_RPATH_NF,
484 MSG_DT_SYMBOLIC_NF, MSG_DT_REL_NF,
485 MSG_DT_RELSZ_NF, MSG_DT_RELENT_NF,
486 MSG_DT_PLTREL_NF, MSG_DT_DEBUG_NF,
487 MSG_DT_TEXTREL_NF, MSG_DT_JMPREL_NF,
488 MSG_DT_BIND_NOW_NF, MSG_DT_INIT_ARRAY_NF,
489 MSG_DT_FINI_ARRAY_NF, MSG_DT_INIT_ARRAYSZ_NF,
490 MSG_DT_FINI_ARRAYSZ_NF, MSG_DT_RUNPATH_NF,
491 MSG_DT_FLAGS_NF, 0,
492 MSG_DT_PREINIT_ARRAY_NF, MSG_DT_PREINIT_ARRAYSZ_NF
493 };
494 static const Msg tags_null_dmp[] = {
495 MSG_DT_NULL_CFNP, MSG_DT_NEEDED_CFNP,
496 MSG_DT_PLTRELSZ_DMP, MSG_DT_PLTGOT_CFNP,
497 MSG_DT_HASH_CFNP, MSG_DT_STRTAB_CFNP,
498 MSG_DT_SYMTAB_CFNP, MSG_DT_RELA_CFNP,
499 MSG_DT_RELASZ_CFNP, MSG_DT_RELAENT_CFNP,
500 MSG_DT_STRSZ_CFNP, MSG_DT_SYMENT_CFNP,
501 MSG_DT_INIT_CFNP, MSG_DT_FINI_CFNP,
502 MSG_DT_SONAME_CFNP, MSG_DT_RPATH_CFNP,
503 MSG_DT_SYMBOLIC_DMP, MSG_DT_REL_CFNP,
504 MSG_DT_RELSZ_CFNP, MSG_DT_RELENT_CFNP,
505 MSG_DT_PLTREL_CFNP, MSG_DT_DEBUG_CFNP,
506 MSG_DT_TEXTREL_CFNP, MSG_DT_JMPREL_CFNP,
507 MSG_DT_BIND_NOW_CFNP, MSG_DT_INIT_ARRAY_CFNP,
508 MSG_DT_FINI_ARRAY_CFNP, MSG_DT_INIT_ARRAYSZ_CFNP,
509 MSG_DT_FINI_ARRAYSZ_CFNP, MSG_DT_RUNPATH_CFNP,
510 MSG_DT_FLAGS_CFNP, 0,
511 MSG_DT_PREINIT_ARRAY_CFNP, MSG_DT_PREINIT_ARRAYSZ_CFNP
512 };
513 static const conv_ds_msg_t ds_null_cf = {
514 CONV_DS_MSG_INIT(DT_NULL, tags_null_cf) };
515 static const conv_ds_msg_t ds_null_cfnp = {
516 CONV_DS_MSG_INIT(DT_NULL, tags_null_cfnp) };
517 static const conv_ds_msg_t ds_null_nf = {
518 CONV_DS_MSG_INIT(DT_NULL, tags_null_nf) };
519 static const conv_ds_msg_t ds_null_dmp = {
520 CONV_DS_MSG_INIT(DT_NULL, tags_null_dmp) };

522 /*
523 * DT_SPARC_REGISTER was originally assigned 0x7000001. It is processor
524 * specific, and should have been in the range DT_LOPROC-DT_HIPROC
525 * instead of here. When the error was fixed,
526 * DT_DEPRECATED_SPARC_REGISTER was created to maintain backward
527 * compatability.
528 */
529 static const Msg tags_sdreg_cf[] = {
530 MSG_DT_DEP_SPARC_REG_CF };
531 static const Msg tags_sdreg_cfnp[] = {
532 MSG_DT_DEP_SPARC_REG_CFNP };
533 static const Msg tags_sdreg_nf[] = {
534 MSG_DT_DEP_SPARC_REG_NF };

536 static const conv_ds_msg_t ds_sdreg_cf = {
537 CONV_DS_MSG_INIT(DT_DEPRECATED_SPARC_REGISTER, tags_sdreg_cf) };
538 static const conv_ds_msg_t ds_sdreg_cfnp = {
539 CONV_DS_MSG_INIT(DT_DEPRECATED_SPARC_REGISTER, tags_sdreg_cfnp) };
540 static const conv_ds_msg_t ds_sdreg_nf = {
541 CONV_DS_MSG_INIT(DT_DEPRECATED_SPARC_REGISTER, tags_sdreg_nf) };

new/usr/src/cmd/sgs/libconv/common/dynamic.c 3

544 /*
545 * SUNW: DT_LOOS -> DT_HIOS range. Note holes between DT_SUNW_TLSSORTSZ,
546 * DT_SUNW_STRPAD, and DT_SUNW_LDMACH. We handle the outliers
547 * separately below as single values.
548 */
549 static const Msg tags_sunw_auxiliary_cf[] = {
550 MSG_DT_SUNW_AUXILIARY_CF, MSG_DT_SUNW_RTLDINF_CF,
551 MSG_DT_SUNW_FILTER_CF, MSG_DT_SUNW_CAP_CF,
552 MSG_DT_SUNW_SYMTAB_CF, MSG_DT_SUNW_SYMSZ_CF,
553 MSG_DT_SUNW_SORTENT_CF, MSG_DT_SUNW_SYMSORT_CF,
554 MSG_DT_SUNW_SYMSORTSZ_CF, MSG_DT_SUNW_TLSSORT_CF,
555 MSG_DT_SUNW_TLSSORTSZ_CF, MSG_DT_SUNW_CAPINFO_CF,
556 MSG_DT_SUNW_STRPAD_CF, MSG_DT_SUNW_CAPCHAIN_CF,
557 MSG_DT_SUNW_LDMACH_CF, 0,
558 MSG_DT_SUNW_CAPCHAINENT_CF, 0,
559 MSG_DT_SUNW_CAPCHAINSZ_CF, 0,
560 0, 0,
561 MSG_DT_SUNW_ASLR_CF, 0,
562 0, 0,
563 MSG_DT_SUNW_KMOD_CF
561 MSG_DT_SUNW_ASLR_CF
564 };
565 static const Msg tags_sunw_auxiliary_cfnp[] = {
566 MSG_DT_SUNW_AUXILIARY_CFNP, MSG_DT_SUNW_RTLDINF_CFNP,
567 MSG_DT_SUNW_FILTER_CFNP, MSG_DT_SUNW_CAP_CFNP,
568 MSG_DT_SUNW_SYMTAB_CFNP, MSG_DT_SUNW_SYMSZ_CFNP,
569 MSG_DT_SUNW_SORTENT_CFNP, MSG_DT_SUNW_SYMSORT_CFNP,
570 MSG_DT_SUNW_SYMSORTSZ_CFNP, MSG_DT_SUNW_TLSSORT_CFNP,
571 MSG_DT_SUNW_TLSSORTSZ_CFNP, MSG_DT_SUNW_CAPINFO_CFNP,
572 MSG_DT_SUNW_STRPAD_CFNP, MSG_DT_SUNW_CAPCHAIN_CFNP,
573 MSG_DT_SUNW_LDMACH_CFNP, 0,
574 MSG_DT_SUNW_CAPCHAINENT_CFNP, 0,
575 MSG_DT_SUNW_CAPCHAINSZ_CFNP, 0,
576 0, 0,
577 MSG_DT_SUNW_ASLR_CFNP, 0,
578 0, 0,
579 MSG_DT_SUNW_KMOD_CFNP
575 MSG_DT_SUNW_ASLR_CFNP
580 };
581 static const Msg tags_sunw_auxiliary_nf[] = {
582 MSG_DT_SUNW_AUXILIARY_NF, MSG_DT_SUNW_RTLDINF_NF,
583 MSG_DT_SUNW_FILTER_NF, MSG_DT_SUNW_CAP_NF,
584 MSG_DT_SUNW_SYMTAB_NF, MSG_DT_SUNW_SYMSZ_NF,
585 MSG_DT_SUNW_SORTENT_NF, MSG_DT_SUNW_SYMSORT_NF,
586 MSG_DT_SUNW_SYMSORTSZ_NF, MSG_DT_SUNW_TLSSORT_NF,
587 MSG_DT_SUNW_TLSSORTSZ_NF, MSG_DT_SUNW_CAPINFO_NF,
588 MSG_DT_SUNW_STRPAD_NF, MSG_DT_SUNW_CAPCHAIN_NF,
589 MSG_DT_SUNW_LDMACH_NF, 0,
590 MSG_DT_SUNW_CAPCHAINENT_NF, 0,
591 MSG_DT_SUNW_CAPCHAINSZ_NF, 0,
592 0, 0,
593 MSG_DT_SUNW_ASLR_NF, 0,
594 0, 0,
595 MSG_DT_SUNW_KMOD_NF
589 MSG_DT_SUNW_ASLR_NF
596 };
597 static const conv_ds_msg_t ds_sunw_auxiliary_cf = {
598 CONV_DS_MSG_INIT(DT_SUNW_AUXILIARY, tags_sunw_auxiliary_cf) };
599 static const conv_ds_msg_t ds_sunw_auxiliary_cfnp = {
600 CONV_DS_MSG_INIT(DT_SUNW_AUXILIARY, tags_sunw_auxiliary_cfnp) };
601 static const conv_ds_msg_t ds_sunw_auxiliary_nf = {
602 CONV_DS_MSG_INIT(DT_SUNW_AUXILIARY, tags_sunw_auxiliary_nf) };

604 /*
605 * GNU: (In DT_VALRNGLO section) DT_GNU_PRELINKED - DT_GNU_LIBLISTSZ
606 */

new/usr/src/cmd/sgs/libconv/common/dynamic.c 4

607 static const Msg tags_gnu_prelinked_cf[] = {
608 MSG_DT_GNU_PRELINKED_CF, MSG_DT_GNU_CONFLICTSZ_CF,
609 MSG_DT_GNU_LIBLISTSZ_CF
610 };
611 static const Msg tags_gnu_prelinked_cfnp[] = {
612 MSG_DT_GNU_PRELINKED_CFNP, MSG_DT_GNU_CONFLICTSZ_CFNP,
613 MSG_DT_GNU_LIBLISTSZ_CFNP
614 };
615 static const Msg tags_gnu_prelinked_nf[] = {
616 MSG_DT_GNU_PRELINKED_NF, MSG_DT_GNU_CONFLICTSZ_NF,
617 MSG_DT_GNU_LIBLISTSZ_NF
618 };
619 static const conv_ds_msg_t ds_gnu_prelinked_cf = {
620 CONV_DS_MSG_INIT(DT_GNU_PRELINKED, tags_gnu_prelinked_cf) };
621 static const conv_ds_msg_t ds_gnu_prelinked_cfnp = {
622 CONV_DS_MSG_INIT(DT_GNU_PRELINKED, tags_gnu_prelinked_cfnp) };
623 static const conv_ds_msg_t ds_gnu_prelinked_nf = {
624 CONV_DS_MSG_INIT(DT_GNU_PRELINKED, tags_gnu_prelinked_nf) };

626 /*
627 * SUNW: DT_VALRNGLO - DT_VALRNGHI range.
628 */
629 static const Msg tags_checksum_cf[] = {
630 MSG_DT_CHECKSUM_CF, MSG_DT_PLTPADSZ_CF,
631 MSG_DT_MOVEENT_CF, MSG_DT_MOVESZ_CF,
632 MSG_DT_FEATURE_1_CF, MSG_DT_POSFLAG_1_CF,
633 MSG_DT_SYMINSZ_CF, MSG_DT_SYMINENT_CF
634 };
635 static const Msg tags_checksum_cfnp[] = {
636 MSG_DT_CHECKSUM_CFNP, MSG_DT_PLTPADSZ_CFNP,
637 MSG_DT_MOVEENT_CFNP, MSG_DT_MOVESZ_CFNP,
638 MSG_DT_FEATURE_1_CFNP, MSG_DT_POSFLAG_1_CFNP,
639 MSG_DT_SYMINSZ_CFNP, MSG_DT_SYMINENT_CFNP
640 };
641 static const Msg tags_checksum_nf[] = {
642 MSG_DT_CHECKSUM_NF, MSG_DT_PLTPADSZ_NF,
643 MSG_DT_MOVEENT_NF, MSG_DT_MOVESZ_NF,
644 MSG_DT_FEATURE_1_NF, MSG_DT_POSFLAG_1_NF,
645 MSG_DT_SYMINSZ_NF, MSG_DT_SYMINENT_NF
646 };
647 static const conv_ds_msg_t ds_checksum_cf = {
648 CONV_DS_MSG_INIT(DT_CHECKSUM, tags_checksum_cf) };
649 static const conv_ds_msg_t ds_checksum_cfnp = {
650 CONV_DS_MSG_INIT(DT_CHECKSUM, tags_checksum_cfnp) };
651 static const conv_ds_msg_t ds_checksum_nf = {
652 CONV_DS_MSG_INIT(DT_CHECKSUM, tags_checksum_nf) };

654 /*
655 * GNU: (In DT_ADDRRNGLO section) DT_GNU_HASH - DT_GNU_LIBLIST
656 */
657 static const Msg tags_gnu_hash_cf[] = {
658 MSG_DT_GNU_HASH_CF, MSG_DT_TLSDESC_PLT_CF,
659 MSG_DT_TLSDESC_GOT_CF, MSG_DT_GNU_CONFLICT_CF,
660 MSG_DT_GNU_LIBLIST_CF
661 };
662 static const Msg tags_gnu_hash_cfnp[] = {
663 MSG_DT_GNU_HASH_CFNP, MSG_DT_TLSDESC_PLT_CFNP,
664 MSG_DT_TLSDESC_GOT_CFNP, MSG_DT_GNU_CONFLICT_CFNP,
665 MSG_DT_GNU_LIBLIST_CFNP
666 };
667 static const Msg tags_gnu_hash_nf[] = {
668 MSG_DT_GNU_HASH_NF, MSG_DT_TLSDESC_PLT_NF,
669 MSG_DT_TLSDESC_GOT_NF, MSG_DT_GNU_CONFLICT_NF,
670 MSG_DT_GNU_LIBLIST_NF
671 };
672 static const conv_ds_msg_t ds_gnu_hash_cf = {

new/usr/src/cmd/sgs/libconv/common/dynamic.c 5

673 CONV_DS_MSG_INIT(DT_GNU_HASH, tags_gnu_hash_cf) };
674 static const conv_ds_msg_t ds_gnu_hash_cfnp = {
675 CONV_DS_MSG_INIT(DT_GNU_HASH, tags_gnu_hash_cfnp) };
676 static const conv_ds_msg_t ds_gnu_hash_nf = {
677 CONV_DS_MSG_INIT(DT_GNU_HASH, tags_gnu_hash_nf) };

679 /*
680 * SUNW: DT_ADDRRNGLO - DT_ADDRRNGHI range.
681 */
682 static const Msg tags_config_cf[] = {
683 MSG_DT_CONFIG_CF, MSG_DT_DEPAUDIT_CF,
684 MSG_DT_AUDIT_CF, MSG_DT_PLTPAD_CF,
685 MSG_DT_MOVETAB_CF, MSG_DT_SYMINFO_CF
686 };
687 static const Msg tags_config_cfnp[] = {
688 MSG_DT_CONFIG_CFNP, MSG_DT_DEPAUDIT_CFNP,
689 MSG_DT_AUDIT_CFNP, MSG_DT_PLTPAD_CFNP,
690 MSG_DT_MOVETAB_CFNP, MSG_DT_SYMINFO_CFNP
691 };
692 static const Msg tags_config_nf[] = {
693 MSG_DT_CONFIG_NF, MSG_DT_DEPAUDIT_NF,
694 MSG_DT_AUDIT_NF, MSG_DT_PLTPAD_NF,
695 MSG_DT_MOVETAB_NF, MSG_DT_SYMINFO_NF
696 };
697 static const conv_ds_msg_t ds_config_cf = {
698 CONV_DS_MSG_INIT(DT_CONFIG, tags_config_cf) };
699 static const conv_ds_msg_t ds_config_cfnp = {
700 CONV_DS_MSG_INIT(DT_CONFIG, tags_config_cfnp) };
701 static const conv_ds_msg_t ds_config_nf = {
702 CONV_DS_MSG_INIT(DT_CONFIG, tags_config_nf) };

704 /*
705 * SUNW: generic range. Note hole between DT_VERSYM and DT_RELACOUNT.
706 */
707 static const Msg tags_versym_cf[] = { MSG_DT_VERSYM_CF };
708 static const Msg tags_versym_cfnp[] = { MSG_DT_VERSYM_CFNP };
709 static const Msg tags_versym_nf[] = { MSG_DT_VERSYM_NF };
710 static const conv_ds_msg_t ds_versym_cf = {
711 CONV_DS_MSG_INIT(DT_VERSYM, tags_versym_cf) };
712 static const conv_ds_msg_t ds_versym_cfnp = {
713 CONV_DS_MSG_INIT(DT_VERSYM, tags_versym_cfnp) };
714 static const conv_ds_msg_t ds_versym_nf = {
715 CONV_DS_MSG_INIT(DT_VERSYM, tags_versym_nf) };

717 static const Msg tags_relacount_cf[] = {
718 MSG_DT_RELACOUNT_CF, MSG_DT_RELCOUNT_CF,
719 MSG_DT_FLAGS_1_CF, MSG_DT_VERDEF_CF,
720 MSG_DT_VERDEFNUM_CF, MSG_DT_VERNEED_CF,
721 MSG_DT_VERNEEDNUM_CF
722 };
723 static const Msg tags_relacount_cfnp[] = {
724 MSG_DT_RELACOUNT_CFNP, MSG_DT_RELCOUNT_CFNP,
725 MSG_DT_FLAGS_1_CFNP, MSG_DT_VERDEF_CFNP,
726 MSG_DT_VERDEFNUM_CFNP, MSG_DT_VERNEED_CFNP,
727 MSG_DT_VERNEEDNUM_CFNP
728 };
729 static const Msg tags_relacount_nf[] = {
730 MSG_DT_RELACOUNT_NF, MSG_DT_RELCOUNT_NF,
731 MSG_DT_FLAGS_1_NF, MSG_DT_VERDEF_NF,
732 MSG_DT_VERDEFNUM_NF, MSG_DT_VERNEED_NF,
733 MSG_DT_VERNEEDNUM_NF
734 };
735 static const conv_ds_msg_t ds_relacount_cf = {
736 CONV_DS_MSG_INIT(DT_RELACOUNT, tags_relacount_cf) };
737 static const conv_ds_msg_t ds_relacount_cfnp = {
738 CONV_DS_MSG_INIT(DT_RELACOUNT, tags_relacount_cfnp) };

new/usr/src/cmd/sgs/libconv/common/dynamic.c 6

739 static const conv_ds_msg_t ds_relacount_nf = {
740 CONV_DS_MSG_INIT(DT_RELACOUNT, tags_relacount_nf) };

742 /*
743 * DT_LOPROC - DT_HIPROC range: solaris/sparc-only
744 */
745 static const Msg tags_sparc_reg_cf[] = { MSG_DT_SPARC_REGISTER_CF };
746 static const Msg tags_sparc_reg_cfnp[] = { MSG_DT_SPARC_REGISTER_CFNP };
747 static const Msg tags_sparc_reg_nf[] = { MSG_DT_SPARC_REGISTER_NF };
748 static const Msg tags_sparc_reg_dmp[] = { MSG_DT_SPARC_REGISTER_DMP };
749 static const conv_ds_msg_t ds_sparc_reg_cf = {
750 CONV_DS_MSG_INIT(DT_SPARC_REGISTER, tags_sparc_reg_cf) };
751 static const conv_ds_msg_t ds_sparc_reg_cfnp = {
752 CONV_DS_MSG_INIT(DT_SPARC_REGISTER, tags_sparc_reg_cfnp) };
753 static const conv_ds_msg_t ds_sparc_reg_nf = {
754 CONV_DS_MSG_INIT(DT_SPARC_REGISTER, tags_sparc_reg_nf) };
755 static const conv_ds_msg_t ds_sparc_reg_dmp = {
756 CONV_DS_MSG_INIT(DT_SPARC_REGISTER, tags_sparc_reg_dmp) };

758 /*
759 * DT_LOPROC - DT_HIPROC range: Solaris osabi, all hardware
760 */
761 static const Msg tags_auxiliary_cf[] = {
762 MSG_DT_AUXILIARY_CF, MSG_DT_USED_CF,
763 MSG_DT_FILTER_CF
764 };
765 static const Msg tags_auxiliary_cfnp[] = {
766 MSG_DT_AUXILIARY_CFNP, MSG_DT_USED_CFNP,
767 MSG_DT_FILTER_CFNP
768 };
769 static const Msg tags_auxiliary_nf[] = {
770 MSG_DT_AUXILIARY_NF, MSG_DT_USED_NF,
771 MSG_DT_FILTER_NF
772 };
773 static const conv_ds_msg_t ds_auxiliary_cf = {
774 CONV_DS_MSG_INIT(DT_AUXILIARY, tags_auxiliary_cf) };
775 static const conv_ds_msg_t ds_auxiliary_cfnp = {
776 CONV_DS_MSG_INIT(DT_AUXILIARY, tags_auxiliary_cfnp) };
777 static const conv_ds_msg_t ds_auxiliary_nf = {
778 CONV_DS_MSG_INIT(DT_AUXILIARY, tags_auxiliary_nf) };

781 static const conv_ds_t *retarr[MAX_RET];

783 int ndx = 0;
784 int fmt_osabi = CONV_TYPE_FMT_ALT(fmt_flags);
785 int mach_sparc, osabi_solaris, osabi_linux;

789 osabi_solaris = (osabi == ELFOSABI_NONE) ||
790 (osabi == ELFOSABI_SOLARIS) || (osabi == CONV_OSABI_ALL);
791 osabi_linux = (osabi == ELFOSABI_LINUX) || (osabi == CONV_OSABI_ALL);
792 mach_sparc = (mach == EM_SPARC) || (mach == EM_SPARCV9) ||
793 (mach == EM_SPARC32PLUS) || (mach == CONV_MACH_ALL);

795 /*
796 * Fill in retarr with the descriptors for the messages that
797 * apply to the current osabi. Note that we order these items such
798 * that the more common are placed at the beginning, and the less
799 * likely at the end. This should speed the common case.
800 *
801 * Note that the CFNP and DMP styles are very similar, so they
802 * are combined in ’default’, and fmt_osabi is consulted when there
803 * are differences.
804 */

new/usr/src/cmd/sgs/libconv/common/dynamic.c 7

805 switch (fmt_osabi) {
806 case CONV_FMT_ALT_CF:
807 retarr[ndx++] = CONV_DS_ADDR(ds_null_cf);
808 if (osabi_solaris)
809 retarr[ndx++] = CONV_DS_ADDR(ds_sunw_auxiliary_cf);
810 retarr[ndx++] = CONV_DS_ADDR(ds_checksum_cf);
811 retarr[ndx++] = CONV_DS_ADDR(ds_config_cf);
812 retarr[ndx++] = CONV_DS_ADDR(ds_versym_cf);
813 retarr[ndx++] = CONV_DS_ADDR(ds_relacount_cf);
814 if (osabi_solaris) {
815 retarr[ndx++] = CONV_DS_ADDR(ds_auxiliary_cf);
816 if (mach_sparc) {
817 retarr[ndx++] = CONV_DS_ADDR(ds_sparc_reg_cf);
818 retarr[ndx++] = CONV_DS_ADDR(ds_sdreg_cf);
819 }
820 }
821 if (osabi_linux) {
822 retarr[ndx++] = CONV_DS_ADDR(ds_gnu_prelinked_cf);
823 retarr[ndx++] = CONV_DS_ADDR(ds_gnu_hash_cf);
824 }
825 break;

827 case CONV_FMT_ALT_NF:
828 retarr[ndx++] = CONV_DS_ADDR(ds_null_nf);
829 if (osabi_solaris)
830 retarr[ndx++] = CONV_DS_ADDR(ds_sunw_auxiliary_nf);
831 retarr[ndx++] = CONV_DS_ADDR(ds_checksum_nf);
832 retarr[ndx++] = CONV_DS_ADDR(ds_config_nf);
833 retarr[ndx++] = CONV_DS_ADDR(ds_versym_nf);
834 retarr[ndx++] = CONV_DS_ADDR(ds_relacount_nf);
835 if (osabi_solaris) {
836 retarr[ndx++] = CONV_DS_ADDR(ds_auxiliary_nf);
837 if (mach_sparc) {
838 retarr[ndx++] = CONV_DS_ADDR(ds_sparc_reg_nf);
839 retarr[ndx++] = CONV_DS_ADDR(ds_sdreg_nf);
840 }
841 }
842 if (osabi_linux) {
843 retarr[ndx++] = CONV_DS_ADDR(ds_gnu_prelinked_nf);
844 retarr[ndx++] = CONV_DS_ADDR(ds_gnu_hash_nf);
845 }
846 break;
847 default:
848 /*
849 * The default style for the generic range is CFNP,
850 * while dump has a couple of different strings.
851 */

853 retarr[ndx++] = (fmt_osabi == CONV_FMT_ALT_DUMP) ?
854 CONV_DS_ADDR(ds_null_dmp) : CONV_DS_ADDR(ds_null_cfnp);
855 if (osabi_solaris)
856 retarr[ndx++] = CONV_DS_ADDR(ds_sunw_auxiliary_cfnp);
857 retarr[ndx++] = CONV_DS_ADDR(ds_checksum_cfnp);
858 retarr[ndx++] = CONV_DS_ADDR(ds_config_cfnp);
859 retarr[ndx++] = CONV_DS_ADDR(ds_versym_cfnp);
860 retarr[ndx++] = CONV_DS_ADDR(ds_relacount_cfnp);
861 if (osabi_solaris) {
862 retarr[ndx++] = CONV_DS_ADDR(ds_auxiliary_cfnp);
863 if (mach_sparc) {
864 /*
865 * The default style for DT_SPARC_REGISTER
866 * is the dump style, which omits the ’SPARC_’.
867 * CFNP keeps the prefix.
868 */
869 retarr[ndx++] =
870 (fmt_osabi == CONV_FMT_ALT_CFNP) ?

new/usr/src/cmd/sgs/libconv/common/dynamic.c 8

871 CONV_DS_ADDR(ds_sparc_reg_cfnp) :
872 CONV_DS_ADDR(ds_sparc_reg_dmp);
873 retarr[ndx++] = CONV_DS_ADDR(ds_sdreg_cfnp);
874 }
875 }
876 if (osabi_linux) {
877 retarr[ndx++] = CONV_DS_ADDR(ds_gnu_prelinked_cfnp);
878 retarr[ndx++] = CONV_DS_ADDR(ds_gnu_hash_cfnp);
879 }
880 break;
881 }

883 retarr[ndx++] = NULL;
884 assert(ndx <= MAX_RET);
885 return (retarr);
886 }

______unchanged_portion_omitted_

new/usr/src/cmd/sgs/libconv/common/dynamic.msg 1

**
 16695 Sun Feb 24 19:19:08 2019
new/usr/src/cmd/sgs/libconv/common/dynamic.msg
ld: implement -ztype and rework option parsing
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 @ MSG_DT_NULL_CF "DT_NULL" # 0
27 @ MSG_DT_NULL_CFNP "NULL"
28 @ MSG_DT_NULL_NF "null"
29 @ MSG_DT_NEEDED_CF "DT_NEEDED" # 1
30 @ MSG_DT_NEEDED_CFNP "NEEDED"
31 @ MSG_DT_NEEDED_NF "needed"
32 @ MSG_DT_PLTRELSZ_CF "DT_PLTRELSZ" # 2
33 @ MSG_DT_PLTRELSZ_CFNP "PLTRELSZ"
34 @ MSG_DT_PLTRELSZ_NF "pltrelsz"
35 @ MSG_DT_PLTRELSZ_DMP "PLTSZ"
36 @ MSG_DT_PLTGOT_CF "DT_PLTGOT" # 3
37 @ MSG_DT_PLTGOT_CFNP "PLTGOT"
38 @ MSG_DT_PLTGOT_NF "pltgot"
39 @ MSG_DT_HASH_CF "DT_HASH" # 4
40 @ MSG_DT_HASH_CFNP "HASH"
41 @ MSG_DT_HASH_NF "hash"
42 @ MSG_DT_STRTAB_CF "DT_STRTAB" # 5
43 @ MSG_DT_STRTAB_CFNP "STRTAB"
44 @ MSG_DT_STRTAB_NF "strtab"
45 @ MSG_DT_SYMTAB_CF "DT_SYMTAB" # 6
46 @ MSG_DT_SYMTAB_CFNP "SYMTAB"
47 @ MSG_DT_SYMTAB_NF "symtab"
48 @ MSG_DT_RELA_CF "DT_RELA" # 7
49 @ MSG_DT_RELA_CFNP "RELA"
50 @ MSG_DT_RELA_NF "rela"
51 @ MSG_DT_RELASZ_CF "DT_RELASZ" # 8
52 @ MSG_DT_RELASZ_CFNP "RELASZ"
53 @ MSG_DT_RELASZ_NF "relasz"
54 @ MSG_DT_RELAENT_CF "DT_RELAENT" # 9
55 @ MSG_DT_RELAENT_CFNP "RELAENT"
56 @ MSG_DT_RELAENT_NF "relaent"
57 @ MSG_DT_STRSZ_CF "DT_STRSZ" # 10
58 @ MSG_DT_STRSZ_CFNP "STRSZ"
59 @ MSG_DT_STRSZ_NF "strsz"
60 @ MSG_DT_SYMENT_CF "DT_SYMENT" # 11
61 @ MSG_DT_SYMENT_CFNP "SYMENT"

new/usr/src/cmd/sgs/libconv/common/dynamic.msg 2

62 @ MSG_DT_SYMENT_NF "syment"
63 @ MSG_DT_INIT_CF "DT_INIT" # 12
64 @ MSG_DT_INIT_CFNP "INIT"
65 @ MSG_DT_INIT_NF "init"
66 @ MSG_DT_FINI_CF "DT_FINI" # 13
67 @ MSG_DT_FINI_CFNP "FINI"
68 @ MSG_DT_FINI_NF "fini"
69 @ MSG_DT_SONAME_CF "DT_SONAME" # 14
70 @ MSG_DT_SONAME_CFNP "SONAME"
71 @ MSG_DT_SONAME_NF "soname"
72 @ MSG_DT_RPATH_CF "DT_RPATH" # 15
73 @ MSG_DT_RPATH_CFNP "RPATH"
74 @ MSG_DT_RPATH_NF "rpath"
75 @ MSG_DT_SYMBOLIC_CF "DT_SYMBOLIC" # 16
76 @ MSG_DT_SYMBOLIC_CFNP "SYMBOLIC"
77 @ MSG_DT_SYMBOLIC_NF "symbolic"
78 @ MSG_DT_SYMBOLIC_DMP "SYMB"
79 @ MSG_DT_REL_CF "DT_REL" # 17
80 @ MSG_DT_REL_CFNP "REL"
81 @ MSG_DT_REL_NF "rel"
82 @ MSG_DT_RELSZ_CF "DT_RELSZ" # 18
83 @ MSG_DT_RELSZ_CFNP "RELSZ"
84 @ MSG_DT_RELSZ_NF "relsz"
85 @ MSG_DT_RELENT_CF "DT_RELENT" # 19
86 @ MSG_DT_RELENT_CFNP "RELENT"
87 @ MSG_DT_RELENT_NF "relent"
88 @ MSG_DT_PLTREL_CF "DT_PLTREL" # 20
89 @ MSG_DT_PLTREL_CFNP "PLTREL"
90 @ MSG_DT_PLTREL_NF "pltrel"
91 @ MSG_DT_DEBUG_CF "DT_DEBUG" # 21
92 @ MSG_DT_DEBUG_CFNP "DEBUG"
93 @ MSG_DT_DEBUG_NF "debug"
94 @ MSG_DT_TEXTREL_CF "DT_TEXTREL" # 22
95 @ MSG_DT_TEXTREL_CFNP "TEXTREL"
96 @ MSG_DT_TEXTREL_NF "textrel"
97 @ MSG_DT_JMPREL_CF "DT_JMPREL" # 23
98 @ MSG_DT_JMPREL_CFNP "JMPREL"
99 @ MSG_DT_JMPREL_NF "jmprel"
100 @ MSG_DT_BIND_NOW_CF "DT_BIND_NOW" # 24
101 @ MSG_DT_BIND_NOW_CFNP "BIND_NOW"
102 @ MSG_DT_BIND_NOW_NF "bind_now"
103 @ MSG_DT_INIT_ARRAY_CF "DT_INIT_ARRAY" # 25
104 @ MSG_DT_INIT_ARRAY_CFNP "INIT_ARRAY"
105 @ MSG_DT_INIT_ARRAY_NF "init_array"
106 @ MSG_DT_FINI_ARRAY_CF "DT_FINI_ARRAY" # 26
107 @ MSG_DT_FINI_ARRAY_CFNP "FINI_ARRAY"
108 @ MSG_DT_FINI_ARRAY_NF "fini_array"
109 @ MSG_DT_INIT_ARRAYSZ_CF "DT_INIT_ARRAYSZ" # 27
110 @ MSG_DT_INIT_ARRAYSZ_CFNP "INIT_ARRAYSZ"
111 @ MSG_DT_INIT_ARRAYSZ_NF "init_arraysz"
112 @ MSG_DT_FINI_ARRAYSZ_CF "DT_FINI_ARRAYSZ" # 28
113 @ MSG_DT_FINI_ARRAYSZ_CFNP "FINI_ARRAYSZ"
114 @ MSG_DT_FINI_ARRAYSZ_NF "fini_arraysz"
115 @ MSG_DT_RUNPATH_CF "DT_RUNPATH" # 29
116 @ MSG_DT_RUNPATH_CFNP "RUNPATH"
117 @ MSG_DT_RUNPATH_NF "runpath"
118 @ MSG_DT_FLAGS_CF "DT_FLAGS" # 30
119 @ MSG_DT_FLAGS_CFNP "FLAGS"
120 @ MSG_DT_FLAGS_NF "flags"
121 @ MSG_DT_PREINIT_ARRAY_CF "DT_PREINIT_ARRAY" # 32
122 @ MSG_DT_PREINIT_ARRAY_CFNP "PREINIT_ARRAY"
123 @ MSG_DT_PREINIT_ARRAY_NF "preinit_array"
124 @ MSG_DT_PREINIT_ARRAYSZ_CF "DT_PREINIT_ARRAYSZ" # 33
125 @ MSG_DT_PREINIT_ARRAYSZ_CFNP "PREINIT_ARRAYSZ"
126 @ MSG_DT_PREINIT_ARRAYSZ_NF "preinit_arraysz"
127 @ MSG_DT_DEP_SPARC_REG_CF "DT_DEPRECATED_SPARC_REGISTER" # 0x07000001

new/usr/src/cmd/sgs/libconv/common/dynamic.msg 3

128 @ MSG_DT_DEP_SPARC_REG_CFNP "DEPRECATED_SPARC_REGISTER"
129 @ MSG_DT_DEP_SPARC_REG_NF "deprecated_sparc_register"
130 @ MSG_DT_SUNW_AUXILIARY_CF "DT_SUNW_AUXILIARY" # 0x6000000d
131 @ MSG_DT_SUNW_AUXILIARY_CFNP "SUNW_AUXILIARY"
132 @ MSG_DT_SUNW_AUXILIARY_NF "sunw_auxiliary"
133 @ MSG_DT_SUNW_RTLDINF_CF "DT_SUNW_RTLDINF" # 0x6000000e
134 @ MSG_DT_SUNW_RTLDINF_CFNP "SUNW_RTLDINF"
135 @ MSG_DT_SUNW_RTLDINF_NF "sunw_rtldinf"
136 @ MSG_DT_SUNW_FILTER_CF "DT_SUNW_FILTER" # 0x6000000f
137 @ MSG_DT_SUNW_FILTER_CFNP "SUNW_FILTER"
138 @ MSG_DT_SUNW_FILTER_NF "sunw_filter"
139 @ MSG_DT_SUNW_CAP_CF "DT_SUNW_CAP" # 0x60000010
140 @ MSG_DT_SUNW_CAP_CFNP "SUNW_CAP"
141 @ MSG_DT_SUNW_CAP_NF "sunw_cap"
142 @ MSG_DT_SUNW_SYMTAB_CF "DT_SUNW_SYMTAB" # 0x60000011
143 @ MSG_DT_SUNW_SYMTAB_CFNP "SUNW_SYMTAB"
144 @ MSG_DT_SUNW_SYMTAB_NF "sunw_symtab"
145 @ MSG_DT_SUNW_SYMSZ_CF "DT_SUNW_SYMSZ" # 0x60000012
146 @ MSG_DT_SUNW_SYMSZ_CFNP "SUNW_SYMSZ"
147 @ MSG_DT_SUNW_SYMSZ_NF "sunw_symsz"
148 @ MSG_DT_SUNW_SORTENT_CF "DT_SUNW_SORTENT" # 0x60000013
149 @ MSG_DT_SUNW_SORTENT_CFNP "SUNW_SORTENT"
150 @ MSG_DT_SUNW_SORTENT_NF "sunw_sortent"
151 @ MSG_DT_SUNW_SYMSORT_CF "DT_SUNW_SYMSORT" # 0x60000014
152 @ MSG_DT_SUNW_SYMSORT_CFNP "SUNW_SYMSORT"
153 @ MSG_DT_SUNW_SYMSORT_NF "sunw_symsort"
154 @ MSG_DT_SUNW_SYMSORTSZ_CF "DT_SUNW_SYMSORTSZ" # 0x60000015
155 @ MSG_DT_SUNW_SYMSORTSZ_CFNP "SUNW_SYMSORTSZ"
156 @ MSG_DT_SUNW_SYMSORTSZ_NF "sunw_symsortsz"
157 @ MSG_DT_SUNW_TLSSORT_CF "DT_SUNW_TLSSORT" # 0x60000016
158 @ MSG_DT_SUNW_TLSSORT_CFNP "SUNW_TLSSORT"
159 @ MSG_DT_SUNW_TLSSORT_NF "sunw_tlssort"
160 @ MSG_DT_SUNW_TLSSORTSZ_CF "DT_SUNW_TLSSORTSZ" # 0x60000017
161 @ MSG_DT_SUNW_TLSSORTSZ_CFNP "SUNW_TLSSORTSZ"
162 @ MSG_DT_SUNW_TLSSORTSZ_NF "sunw_tlssortsz"
163 @ MSG_DT_SUNW_CAPINFO_CF "DT_SUNW_CAPINFO" # 0x60000018
164 @ MSG_DT_SUNW_CAPINFO_CFNP "SUNW_CAPINFO"
165 @ MSG_DT_SUNW_CAPINFO_NF "sunw_capinfo"
166 @ MSG_DT_SUNW_STRPAD_CF "DT_SUNW_STRPAD" # 0x60000019
167 @ MSG_DT_SUNW_STRPAD_CFNP "SUNW_STRPAD"
168 @ MSG_DT_SUNW_STRPAD_NF "sunw_strpad"
169 @ MSG_DT_SUNW_CAPCHAIN_CF "DT_SUNW_CAPCHAIN" # 0x6000001a
170 @ MSG_DT_SUNW_CAPCHAIN_CFNP "SUNW_CAPCHAIN"
171 @ MSG_DT_SUNW_CAPCHAIN_NF "sunw_capchain"
172 @ MSG_DT_SUNW_LDMACH_CF "DT_SUNW_LDMACH" # 0x6000001b
173 @ MSG_DT_SUNW_LDMACH_CFNP "SUNW_LDMACH"
174 @ MSG_DT_SUNW_LDMACH_NF "sunw_ldmach"
175 @ MSG_DT_SUNW_CAPCHAINENT_CF "DT_SUNW_CAPCHAINENT" # 0x6000001d
176 @ MSG_DT_SUNW_CAPCHAINENT_CFNP "SUNW_CAPCHAINENT"
177 @ MSG_DT_SUNW_CAPCHAINENT_NF "sunw_capchainent"
178 @ MSG_DT_SUNW_CAPCHAINSZ_CF "DT_SUNW_CAPCHAINSZ" # 0x6000001f
178 @ MSG_DT_SUNW_CAPCHAINSZ_CF "DT_SUNW_CAPCHAINSZ" # 0x6000001d
179 @ MSG_DT_SUNW_CAPCHAINSZ_CFNP "SUNW_CAPCHAINSZ"
180 @ MSG_DT_SUNW_CAPCHAINSZ_NF "sunw_capchainsz"
181 @ MSG_DT_SUNW_ASLR_CF "DT_SUNW_ASLR" # 0x60000023
182 @ MSG_DT_SUNW_ASLR_CFNP "SUNW_ASLR"
183 @ MSG_DT_SUNW_ASLR_NF "sunw_aslr"
184 @ MSG_DT_SUNW_KMOD_CF "DT_SUNW_KMOD" # 0x60000027
185 @ MSG_DT_SUNW_KMOD_CFNP "SUNW_KMOD"
186 @ MSG_DT_SUNW_KMOD_NF "sunw_kmod"
187 #endif /* ! codereview */

189 @ MSG_DT_GNU_PRELINKED_CF "DT_GNU_PRELINKED" # 0x6ffffdf5
190 @ MSG_DT_GNU_PRELINKED_CFNP "GNU_PRELINKED"
191 @ MSG_DT_GNU_PRELINKED_NF "gnu_prelinked"
192 @ MSG_DT_GNU_CONFLICTSZ_CF "DT_GNU_CONFLICTSZ" # 0x6ffffdf6

new/usr/src/cmd/sgs/libconv/common/dynamic.msg 4

193 @ MSG_DT_GNU_CONFLICTSZ_CFNP "GNU_CONFLICTSZ"
194 @ MSG_DT_GNU_CONFLICTSZ_NF "gnu_conflictsz"
195 @ MSG_DT_GNU_LIBLISTSZ_CF "DT_GNU_LIBLISTSZ" # 0x6ffffdf7
196 @ MSG_DT_GNU_LIBLISTSZ_CFNP "GNU_LIBLISTSZ"
197 @ MSG_DT_GNU_LIBLISTSZ_NF "gnu_liblistsz"
198 @ MSG_DT_CHECKSUM_CF "DT_CHECKSUM" # 0x6ffffdf8
199 @ MSG_DT_CHECKSUM_CFNP "CHECKSUM"
200 @ MSG_DT_CHECKSUM_NF "checksum"
201 @ MSG_DT_PLTPADSZ_CF "DT_PLTPADSZ" # 0x6ffffdf9
202 @ MSG_DT_PLTPADSZ_CFNP "PLTPADSZ"
203 @ MSG_DT_PLTPADSZ_NF "pltpadsz"
204 @ MSG_DT_MOVEENT_CF "DT_MOVEENT" # 0x6ffffdfa
205 @ MSG_DT_MOVEENT_CFNP "MOVEENT"
206 @ MSG_DT_MOVEENT_NF "moveent"
207 @ MSG_DT_MOVESZ_CF "DT_MOVESZ" # 0x6ffffdfb
208 @ MSG_DT_MOVESZ_CFNP "MOVESZ"
209 @ MSG_DT_MOVESZ_NF "movesz"
210 @ MSG_DT_FEATURE_1_CF "DT_FEATURE_1" # 0x6ffffdfc
211 @ MSG_DT_FEATURE_1_CFNP "FEATURE_1"
212 @ MSG_DT_FEATURE_1_NF "feature_1"
213 @ MSG_DT_POSFLAG_1_CF "DT_POSFLAG_1" # 0x6ffffdfd
214 @ MSG_DT_POSFLAG_1_CFNP "POSFLAG_1"
215 @ MSG_DT_POSFLAG_1_NF "posflag_1"
216 @ MSG_DT_SYMINSZ_CF "DT_SYMINSZ" # 0x6ffffdfe
217 @ MSG_DT_SYMINSZ_CFNP "SYMINSZ"
218 @ MSG_DT_SYMINSZ_NF "syminsz"
219 @ MSG_DT_SYMINENT_CF "DT_SYMINENT" # 0x6ffffdff
220 @ MSG_DT_SYMINENT_CFNP "SYMINENT"
221 @ MSG_DT_SYMINENT_NF "syminent"
222 @ MSG_DT_GNU_HASH_CF "DT_GNU_HASH" # 0x6ffffef5
223 @ MSG_DT_GNU_HASH_CFNP "GNU_HASH"
224 @ MSG_DT_GNU_HASH_NF "gnu_hash"
225 @ MSG_DT_TLSDESC_PLT_CF "DT_TLSDESC_PLT" # 0x6ffffef6
226 @ MSG_DT_TLSDESC_PLT_CFNP "TLSDESC_PLT"
227 @ MSG_DT_TLSDESC_PLT_NF "tlsdesc_plt"
228 @ MSG_DT_TLSDESC_GOT_CF "DT_TLSDESC_GOT" # 0x6ffffef7
229 @ MSG_DT_TLSDESC_GOT_CFNP "TLSDESC_GOT"
230 @ MSG_DT_TLSDESC_GOT_NF "tlsdesc_got"
231 @ MSG_DT_GNU_CONFLICT_CF "DT_GNU_CONFLICT" # 0x6ffffef8
232 @ MSG_DT_GNU_CONFLICT_CFNP "GNU_CONFLICT"
233 @ MSG_DT_GNU_CONFLICT_NF "gnu_conflict"
234 @ MSG_DT_GNU_LIBLIST_CF "DT_GNU_LIBLIST" # 0x6ffffef9
235 @ MSG_DT_GNU_LIBLIST_CFNP "GNU_LIBLIST"
236 @ MSG_DT_GNU_LIBLIST_NF "gnu_liblist"
237 @ MSG_DT_CONFIG_CF "DT_CONFIG" # 0x6ffffefa
238 @ MSG_DT_CONFIG_CFNP "CONFIG"
239 @ MSG_DT_CONFIG_NF "config"
240 @ MSG_DT_DEPAUDIT_CF "DT_DEPAUDIT" # 0x6ffffefb
241 @ MSG_DT_DEPAUDIT_CFNP "DEPAUDIT"
242 @ MSG_DT_DEPAUDIT_NF "depaudit"
243 @ MSG_DT_AUDIT_CF "DT_AUDIT" # 0x6ffffefc
244 @ MSG_DT_AUDIT_CFNP "AUDIT"
245 @ MSG_DT_AUDIT_NF "audit"
246 @ MSG_DT_PLTPAD_CF "DT_PLTPAD" # 0x6ffffefd
247 @ MSG_DT_PLTPAD_CFNP "PLTPAD"
248 @ MSG_DT_PLTPAD_NF "pltpad"
249 @ MSG_DT_MOVETAB_CF "DT_MOVETAB" # 0x6ffffefe
250 @ MSG_DT_MOVETAB_CFNP "MOVETAB"
251 @ MSG_DT_MOVETAB_NF "movetab"
252 @ MSG_DT_SYMINFO_CF "DT_SYMINFO" # 0x6ffffeff
253 @ MSG_DT_SYMINFO_CFNP "SYMINFO"
254 @ MSG_DT_SYMINFO_NF "syminfo"
255 @ MSG_DT_VERSYM_CF "DT_VERSYM" # 0x6ffffff0
256 @ MSG_DT_VERSYM_CFNP "VERSYM"
257 @ MSG_DT_VERSYM_NF "versym"
258 @ MSG_DT_RELACOUNT_CF "DT_RELACOUNT" # 0x6ffffff9

new/usr/src/cmd/sgs/libconv/common/dynamic.msg 5

259 @ MSG_DT_RELACOUNT_CFNP "RELACOUNT"
260 @ MSG_DT_RELACOUNT_NF "relacount"
261 @ MSG_DT_RELCOUNT_CF "DT_RELCOUNT" # 0x6ffffffa
262 @ MSG_DT_RELCOUNT_CFNP "RELCOUNT"
263 @ MSG_DT_RELCOUNT_NF "relcount"
264 @ MSG_DT_FLAGS_1_CF "DT_FLAGS_1" # 0x6ffffffb
265 @ MSG_DT_FLAGS_1_CFNP "FLAGS_1"
266 @ MSG_DT_FLAGS_1_NF "flags_1"
267 @ MSG_DT_VERDEF_CF "DT_VERDEF" # 0x6ffffffc
268 @ MSG_DT_VERDEF_CFNP "VERDEF"
269 @ MSG_DT_VERDEF_NF "verdef"
270 @ MSG_DT_VERDEFNUM_CF "DT_VERDEFNUM" # 0x6ffffffd
271 @ MSG_DT_VERDEFNUM_CFNP "VERDEFNUM"
272 @ MSG_DT_VERDEFNUM_NF "verdefnum"
273 @ MSG_DT_VERNEED_CF "DT_VERNEED" # 0x6ffffffe
274 @ MSG_DT_VERNEED_CFNP "VERNEED"
275 @ MSG_DT_VERNEED_NF "verneed"
276 @ MSG_DT_VERNEEDNUM_CF "DT_VERNEEDNUM" # 0x6fffffff
277 @ MSG_DT_VERNEEDNUM_CFNP "VERNEEDNUM"
278 @ MSG_DT_VERNEEDNUM_NF "verneednum"
279 @ MSG_DT_SPARC_REGISTER_CF "DT_SPARC_REGISTER" # 0x70000001
280 @ MSG_DT_SPARC_REGISTER_CFNP "SPARC_REGISTER"
281 @ MSG_DT_SPARC_REGISTER_NF "sparc_register"
282 @ MSG_DT_SPARC_REGISTER_DMP "REGISTER"
283 @ MSG_DT_AUXILIARY_CF "DT_AUXILIARY" # 0x7ffffffd
284 @ MSG_DT_AUXILIARY_CFNP "AUXILIARY"
285 @ MSG_DT_AUXILIARY_NF "auxiliary"
286 @ MSG_DT_USED_CF "DT_USED" # 0x7ffffffe
287 @ MSG_DT_USED_CFNP "USED"
288 @ MSG_DT_USED_NF "used"
289 @ MSG_DT_FILTER_CF "DT_FILTER" # 0x7fffffff
290 @ MSG_DT_FILTER_CFNP "FILTER"
291 @ MSG_DT_FILTER_NF "filter"

294 @ MSG_DF_ORIGIN_CF "DF_ORIGIN" # 0x00000001
295 @ MSG_DF_ORIGIN_CFNP "ORIGIN"
296 @ MSG_DF_ORIGIN_NF "origin"
297 @ MSG_DF_SYMBOLIC_CF "DF_SYMBOLIC" # 0x00000002
298 @ MSG_DF_SYMBOLIC_CFNP "SYMBOLIC"
299 @ MSG_DF_SYMBOLIC_NF "symbolic"
300 @ MSG_DF_TEXTREL_CF "DF_TEXTREL" # 0x00000004
301 @ MSG_DF_TEXTREL_CFNP "TEXTREL"
302 @ MSG_DF_TEXTREL_NF "textrel"
303 @ MSG_DF_BIND_NOW_CF "DF_BIND_NOW" # 0x00000008
304 @ MSG_DF_BIND_NOW_CFNP "BIND_NOW"
305 @ MSG_DF_BIND_NOW_NF "bind_now"
306 @ MSG_DF_STATIC_TLS_CF "DF_STATIC_TLS" # 0x00000010
307 @ MSG_DF_STATIC_TLS_CFNP "STATIC_TLS"
308 @ MSG_DF_STATIC_TLS_NF "static_tls"

311 @ MSG_DF_1_NOW_CF "DF_1_NOW" # 0x00000001
312 @ MSG_DF_1_NOW_CFNP "NOW"
313 @ MSG_DF_1_NOW_NF "now"
314 @ MSG_DF_1_GLOBAL_CF "DF_1_GLOBAL" # 0x00000002
315 @ MSG_DF_1_GLOBAL_CFNP "GLOBAL"
316 @ MSG_DF_1_GLOBAL_NF "global"
317 @ MSG_DF_1_GROUP_CF "DF_1_GROUP" # 0x00000004
318 @ MSG_DF_1_GROUP_CFNP "GROUP"
319 @ MSG_DF_1_GROUP_NF "group"
320 @ MSG_DF_1_NODELETE_CF "DF_1_NODELETE" # 0x00000008
321 @ MSG_DF_1_NODELETE_CFNP "NODELETE"
322 @ MSG_DF_1_NODELETE_NF "nodelete"
323 @ MSG_DF_1_LOADFLTR_CF "DF_1_LOADFLTR" # 0x00000010
324 @ MSG_DF_1_LOADFLTR_CFNP "LOADFLTR"

new/usr/src/cmd/sgs/libconv/common/dynamic.msg 6

325 @ MSG_DF_1_LOADFLTR_NF "loadfltr"
326 @ MSG_DF_1_INITFIRST_CF "DF_1_INITFIRST" # 0x00000020
327 @ MSG_DF_1_INITFIRST_CFNP "INITFIRST"
328 @ MSG_DF_1_INITFIRST_NF "initfirst"
329 @ MSG_DF_1_NOOPEN_CF "DF_1_NOOPEN" # 0x00000040
330 @ MSG_DF_1_NOOPEN_CFNP "NOOPEN"
331 @ MSG_DF_1_NOOPEN_NF "noopen"
332 @ MSG_DF_1_ORIGIN_CF "DF_1_ORIGIN" # 0x00000080
333 @ MSG_DF_1_ORIGIN_CFNP "ORIGIN"
334 @ MSG_DF_1_ORIGIN_NF "origin"
335 @ MSG_DF_1_DIRECT_CF "DF_1_DIRECT" # 0x00000100
336 @ MSG_DF_1_DIRECT_CFNP "DIRECT"
337 @ MSG_DF_1_DIRECT_NF "direct"
338 @ MSG_DF_1_TRANS_CF "DF_1_TRANS" # 0x00000200
339 @ MSG_DF_1_TRANS_CFNP "TRANS"
340 @ MSG_DF_1_TRANS_NF "trans"
341 @ MSG_DF_1_INTERPOSE_CF "DF_1_INTERPOSE" # 0x00000400
342 @ MSG_DF_1_INTERPOSE_CFNP "INTERPOSE"
343 @ MSG_DF_1_INTERPOSE_NF "interpose"
344 @ MSG_DF_1_INTERPOSE_DEF "OBJECT-INTERPOSE"
345 @ MSG_DF_1_NODEFLIB_CF "DF_1_NODEFLIB" # 0x00000800
346 @ MSG_DF_1_NODEFLIB_CFNP "NODEFLIB"
347 @ MSG_DF_1_NODEFLIB_NF "nodeflib"
348 @ MSG_DF_1_NODUMP_CF "DF_1_NODUMP" # 0x00001000
349 @ MSG_DF_1_NODUMP_CFNP "NODUMP"
350 @ MSG_DF_1_NODUMP_NF "nodump"
351 @ MSG_DF_1_CONFALT_CF "DF_1_CONFALT" # 0x00002000
352 @ MSG_DF_1_CONFALT_CFNP "CONFALT"
353 @ MSG_DF_1_CONFALT_NF "confalt"
354 @ MSG_DF_1_ENDFILTEE_CF "DF_1_ENDFILTEE" # 0x00004000
355 @ MSG_DF_1_ENDFILTEE_CFNP "ENDFILTEE"
356 @ MSG_DF_1_ENDFILTEE_NF "endfiltee"
357 @ MSG_DF_1_DISPRELDNE_CF "DF_1_DISPRELDNE" # 0x00008000
358 @ MSG_DF_1_DISPRELDNE_CFNP "DISPRELDNE"
359 @ MSG_DF_1_DISPRELDNE_NF "dispreldne"
360 @ MSG_DF_1_DISPRELDNE_DEF "DISPLACE-RELOCS-DONE"
361 @ MSG_DF_1_DISPRELPND_CF "DF_1_DISPRELPND" # 0x00010000
362 @ MSG_DF_1_DISPRELPND_CFNP "DISPRELPND"
363 @ MSG_DF_1_DISPRELPND_NF "disprelpnd"
364 @ MSG_DF_1_DISPRELPND_DEF "DISPLACE-RELOCS-PEND"
365 @ MSG_DF_1_NODIRECT_CF "DF_1_NODIRECT" # 0x00020000
366 @ MSG_DF_1_NODIRECT_CFNP "NODIRECT"
367 @ MSG_DF_1_NODIRECT_NF "nodirect"
368 @ MSG_DF_1_IGNMULDEF_CF "DF_1_IGNMULDEF" # 0x00040000
369 @ MSG_DF_1_IGNMULDEF_CFNP "IGNMULDEF"
370 @ MSG_DF_1_IGNMULDEF_NF "ignmuldef"
371 @ MSG_DF_1_IGNMULDEF_DEF "IGNORE-MULDEFS"
372 @ MSG_DF_1_NOKSYMS_CF "DF_1_NOKSYMS" # 0x00080000
373 @ MSG_DF_1_NOKSYMS_CFNP "NOKSYMS"
374 @ MSG_DF_1_NOKSYMS_NF "noksyms"
375 @ MSG_DF_1_NOHDR_CF "DF_1_NOHDR" # 0x00100000
376 @ MSG_DF_1_NOHDR_CFNP "NOHDR"
377 @ MSG_DF_1_NOHDR_NF "nohdr"
378 @ MSG_DF_1_EDITED_CF "DF_1_EDITED" # 0x00200000
379 @ MSG_DF_1_EDITED_CFNP "EDITED"
380 @ MSG_DF_1_EDITED_NF "edited"
381 @ MSG_DF_1_NORELOC_CF "DF_1_NORELOC" # 0x00400000
382 @ MSG_DF_1_NORELOC_CFNP "NORELOC"
383 @ MSG_DF_1_NORELOC_NF "noreloc"
384 @ MSG_DF_1_SYMINTPOSE_CF "DF_1_SYMINTPOSE" # 0x00800000
385 @ MSG_DF_1_SYMINTPOSE_CFNP "SYMINTPOSE"
386 @ MSG_DF_1_SYMINTPOSE_NF "symintpose"
387 @ MSG_DF_1_SYMINTPOSE_DEF "SYMBOL-INTERPOSE"
388 @ MSG_DF_1_GLOBAUDIT_CF "DF_1_GLOBAUDIT" # 0x01000000
389 @ MSG_DF_1_GLOBAUDIT_CFNP "GLOBAUDIT"
390 @ MSG_DF_1_GLOBAUDIT_NF "globaudit"

new/usr/src/cmd/sgs/libconv/common/dynamic.msg 7

391 @ MSG_DF_1_GLOBAUDIT_DEF "GLOBAL-AUDITING"
392 @ MSG_DF_1_SINGLETON_CF "DF_1_SINGLETON" # 0x02000000
393 @ MSG_DF_1_SINGLETON_CFNP "SINGLETON"
394 @ MSG_DF_1_SINGLETON_NF "singleton"
395 @ MSG_DF_1_SINGLETON_DEF "SINGLETON-EXISTS"

398 @ MSG_DF_P1_LAZYLOAD_CF "DF_P1_LAZYLOAD" # 0x00000001
399 @ MSG_DF_P1_LAZYLOAD_CFNP "LAZYLOAD"
400 @ MSG_DF_P1_LAZYLOAD_NF "lazyload"
401 @ MSG_DF_P1_LAZYLOAD_DEF "LAZY"
402 @ MSG_DF_P1_GROUPPERM_CF "DF_P1_GROUPPERM" # 0x00000002
403 @ MSG_DF_P1_GROUPPERM_CFNP "GROUPPERM"
404 @ MSG_DF_P1_GROUPPERM_NF "groupperm"
405 @ MSG_DF_P1_GROUPPERM_DEF "GROUP"
406 @ MSG_DF_P1_DEFERRED_CF "DF_P1_DEFERRED" # 0x00000004
407 @ MSG_DF_P1_DEFERRED_CFNP "DEFERRED"
408 @ MSG_DF_P1_DEFERRED_NF "deferred"
409 @ MSG_DF_P1_DEFERRED_DEF "DEFERRED"

412 @ MSG_DTF_1_PARINIT_CF "DTF_1_PARINIT" # 0x00000001
413 @ MSG_DTF_1_PARINIT_CFNP "PARINIT"
414 @ MSG_DTF_1_PARINIT_NF "parinit"
415 @ MSG_DTF_1_CONFEXP_CF "DTF_1_CONFEXP" # 0x00000002
416 @ MSG_DTF_1_CONFEXP_CFNP "CONFEXP"
417 @ MSG_DTF_1_CONFEXP_NF "confexp"

420 @ MSG_BND_NEEDED "NEEDED"
421 @ MSG_BND_REFER "REFERENCED"
422 @ MSG_BND_FILTER "FILTER"

425 @ MSG_BND_ADDED "OBJECTS-ADDED"
426 @ MSG_BND_REEVAL "OBJECTS-REEVALUATED"
427 @ MSG_BND_DELETED "OBJECTS-DELETED"
428 @ MSG_BND_ATEXIT "ATEXIT-PROCESSING"
429 @ MSG_BND_REVISIT "(revisiting)"

431 @ MSG_STR_EMPTY ""

433 @ MSG_GBL_ZERO "0"

new/usr/src/cmd/sgs/libconv/common/elf.c 1

**
 38228 Sun Feb 24 19:19:09 2019
new/usr/src/cmd/sgs/libconv/common/elf.c
ld should reject kernel modules as input
**
______unchanged_portion_omitted_

1182 /*
1183 * A generic means of returning additional information for a rejected file in
1184 * terms of a string. ELFOSABI_SOLARIS is assummed.
1185 */
1186 const char *
1187 conv_reject_desc(Rej_desc * rej, Conv_reject_desc_buf_t *reject_desc_buf,
1188 Half mach)
1189 {
1190 ushort_t type = rej->rej_type;
1191 uint_t info = rej->rej_info;

1193 switch (type) {
1194 case SGS_REJ_MACH:
1195 return (conv_ehdr_mach((Half)info, 0,
1196 &reject_desc_buf->inv_buf));
1197 case SGS_REJ_CLASS:
1198 return (conv_ehdr_class((uchar_t)info, 0,
1199 &reject_desc_buf->inv_buf));
1200 case SGS_REJ_DATA:
1201 return (conv_ehdr_data((uchar_t)info, 0,
1202 &reject_desc_buf->inv_buf));
1203 case SGS_REJ_TYPE:
1204 return (conv_ehdr_type(ELFOSABI_SOLARIS, (Half)info, 0,
1205 &reject_desc_buf->inv_buf));
1206 case SGS_REJ_BADFLAG:
1207 case SGS_REJ_MISFLAG:
1208 case SGS_REJ_HAL:
1209 case SGS_REJ_US3:
1210 return (conv_ehdr_flags(mach, (Word)info, 0,
1211 &reject_desc_buf->flags_buf));
1212 case SGS_REJ_UNKFILE:
1213 case SGS_REJ_ARCHIVE:
1214 case SGS_REJ_KMOD:
1215 #endif /* ! codereview */
1216 return (NULL);
1217 case SGS_REJ_STR:
1218 case SGS_REJ_HWCAP_1:
1219 case SGS_REJ_SFCAP_1:
1220 case SGS_REJ_HWCAP_2:
1221 case SGS_REJ_MACHCAP:
1222 case SGS_REJ_PLATCAP:
1223 if (rej->rej_str)
1224 return ((const char *)rej->rej_str);
1225 else
1226 return (MSG_ORIG(MSG_STR_EMPTY));
1227 default:
1228 return (conv_invalid_val(&reject_desc_buf->inv_buf, info,
1229 CONV_FMT_DECIMAL));
1230 }
1231 }

new/usr/src/cmd/sgs/libelf/common/gelf.c 1

**
 23848 Sun Feb 24 19:19:09 2019
new/usr/src/cmd/sgs/libelf/common/gelf.c
ld should reject kernel modules as input
**
______unchanged_portion_omitted_

1088 /*
1089 * If the specified object has a dynamic section, and that section
1090 * contains a DT_FLAGS_1 entry, then return the value of that entry.
1091 * Otherwise, return 0.
1092 */
1093 GElf_Xword
1094 _gelf_getdynval(Elf *elf, GElf_Sxword tag)
1094 _gelf_getdyndtflags_1(Elf *elf)
1095 {
1096 Elf_Scn *scn = NULL;
1097 Elf_Data *data;
1098 GElf_Shdr shdr;
1099 GElf_Dyn dyn;
1100 int i, n;

1102 while (scn = elf_nextscn(elf, scn)) {
1103 if (gelf_getshdr(scn, &shdr) == NULL)
1104 break;
1105 if (shdr.sh_type != SHT_DYNAMIC)
1106 continue;
1107 if (data = elf_getdata(scn, NULL)) {
1108 n = shdr.sh_size / shdr.sh_entsize;
1109 for (i = 0; i < n; i++) {
1110 (void) gelf_getdyn(data, i, &dyn);
1111 if (dyn.d_tag == tag) {
1111 if (dyn.d_tag == DT_FLAGS_1) {
1112 return (dyn.d_un.d_val);
1113 }
1114 }
1115 }
1116 break;
1117 }
1118 return (0);
1119 }

1121 GElf_Xword
1122 _gelf_getdyndtflags_1(Elf *elf)
1123 {
1124 return (_gelf_getdynval(elf, DT_FLAGS_1));
1125 #endif /* ! codereview */
1126 }

new/usr/src/cmd/sgs/libelf/common/mapfile-vers 1

**
 3258 Sun Feb 24 19:19:10 2019
new/usr/src/cmd/sgs/libelf/common/mapfile-vers
ld should reject kernel modules as input
**
______unchanged_portion_omitted_

162 SYMBOL_VERSION SUNWprivate_1.1 {
163 global:
164 _elf_execfill;
165 _elf_getarhdrbase;
166 _elf_getarsymwordsize;
167 _elf_getnextoff;
168 _elf_getxoff;
169 _elf_outsync;
170 _elf_sys_encoding;
171 _elf_swap_wrimage;
172 _gelf_getdyndtflags_1;
173 _gelf_getdynval;
174 #endif /* ! codereview */

176 $if _ELF32
177 elf_demangle;
178 $endif
179 };

new/usr/src/cmd/sgs/libld/common/args.c 1

**
 67390 Sun Feb 24 19:19:10 2019
new/usr/src/cmd/sgs/libld/common/args.c
ld: implement -ztype and rework option parsing
**
______unchanged_portion_omitted_

98 static Setstate dflag = SET_UNKNOWN;
99 static Setstate zdflag = SET_UNKNOWN;
100 static Setstate Qflag = SET_UNKNOWN;
101 static Setstate Bdflag = SET_UNKNOWN;
102 static Setstate zfwflag = SET_UNKNOWN;

104 static Boolean aflag = FALSE;
105 static Boolean bflag = FALSE;
106 static Boolean rflag = FALSE;
106 static Boolean sflag = FALSE;
107 static Boolean zinflag = FALSE;
108 static Boolean zlflag = FALSE;
109 static Boolean Bgflag = FALSE;
110 static Boolean Blflag = FALSE;
111 static Boolean Beflag = FALSE;
112 static Boolean Bsflag = FALSE;
113 static Boolean Dflag = FALSE;
115 static Boolean Gflag = FALSE;
114 static Boolean Vflag = FALSE;

116 enum output_type {
117 OT_RELOC, /* relocatable object */
118 OT_SHARED, /* shared object */
119 OT_EXEC, /* dynamic executable */
120 OT_KMOD, /* kernel module */
121 };

123 static enum output_type otype = OT_EXEC;

125 #endif /* ! codereview */
126 /*
127 * ztflag’s state is set by pointing it to the matching string:
128 * text | textoff | textwarn
129 */
130 static const char *ztflag = NULL;

132 /*
133 * Remember the guidance flags that result from the initial -z guidance
134 * option, so that they can be compared to any that follow. We only want
135 * to issue a warning when they differ.
136 */
137 static ofl_guideflag_t initial_guidance_flags = 0;

139 static uintptr_t process_files_com(Ofl_desc *, int, char **);
140 static uintptr_t process_flags_com(Ofl_desc *, int, char **, int *);

142 /*
143 * Print usage message to stderr - 2 modes, summary message only,
144 * and full usage message.
145 */
146 static void
147 usage_mesg(Boolean detail)
148 {
149 (void) fprintf(stderr, MSG_INTL(MSG_ARG_USAGE),
150 MSG_ORIG(MSG_STR_OPTIONS));

152 if (detail == FALSE)
153 return;

new/usr/src/cmd/sgs/libld/common/args.c 2

155 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_3));
156 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_6));
157 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_A));
158 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_B));
159 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CBDR));
160 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CBDY));
161 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CBE));
162 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CBG));
163 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CBL));
164 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CBR));
165 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CBS));
166 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_C));
167 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CC));
168 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_D));
169 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CD));
170 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_E));
171 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_F));
172 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CF));
173 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CG));
174 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_H));
175 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_I));
176 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CI));
177 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_L));
178 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CL));
179 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_M));
180 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CM));
181 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CN));
182 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_O));
183 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_P));
184 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CP));
185 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CQ));
186 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_R));
187 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CR));
188 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_S));
189 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CS));
190 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_T));
191 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_U));
192 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CV));
193 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_CY));
194 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZA));
195 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZAE));
196 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZAL));
197 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZADLIB));
198 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZC));
199 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZDEF));
200 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZDFS));
201 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZDRS));
202 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZE));
203 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZFATW));
204 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZFA));
205 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZGP));
206 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZGUIDE));
207 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZH));
208 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZIG));
209 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZINA));
210 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZINI));
211 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZINT));
212 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZLAZY));
213 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZLD32));
214 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZLD64));
215 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZLO));
216 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZM));
217 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZNC));
218 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZNDFS));
219 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZNDEF));
220 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZNDEL));

new/usr/src/cmd/sgs/libld/common/args.c 3

221 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZNDLO));
222 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZNDU));
223 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZNLD));
224 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZNOW));
225 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZNPA));
226 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZNV));
227 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZO));
228 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZPIA));
229 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZRL));
230 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZRREL));
231 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZRS));
232 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZRSN));
233 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZRSGRP));
234 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZSCAP));
235 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZTARG));
236 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZT));
237 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZTO));
238 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZTW));
239 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZTY));
240 #endif /* ! codereview */
241 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZWRAP));
242 (void) fprintf(stderr, MSG_INTL(MSG_ARG_DETAIL_ZVER));
243 }

245 /*
246 * Rescan the archives seen on the command line in order
247 * to handle circularly dependent archives, stopping when
248 * no further member extraction occurs.
249 *
250 * entry:
251 * ofl - Output file descriptor
252 * isgrp - True if this is a an archive group search, False
253 * to search starting with argv[1] through end_arg_ndx
254 * end_arg_ndx - Index of final argv element to consider.
255 */
256 static uintptr_t
257 ld_rescan_archives(Ofl_desc *ofl, int isgrp, int end_arg_ndx)
258 {
259 ofl->ofl_flags1 |= FLG_OF1_EXTRACT;

261 while (ofl->ofl_flags1 & FLG_OF1_EXTRACT) {
262 Aliste idx;
263 Ar_desc *adp;
264 Word start_ndx = isgrp ? ofl->ofl_ars_gsndx : 0;
265 Word ndx = 0;

267 ofl->ofl_flags1 &= ~FLG_OF1_EXTRACT;

269 DBG_CALL(Dbg_file_ar_rescan(ofl->ofl_lml,
270 isgrp ? ofl->ofl_ars_gsandx : 1, end_arg_ndx));

272 for (APLIST_TRAVERSE(ofl->ofl_ars, idx, adp)) {
273 /* If not to starting index yet, skip it */
274 if (ndx++ < start_ndx)
275 continue;

277 /*
278 * If this archive was processed with -z allextract,
279 * then all members have already been extracted.
280 */
281 if (adp->ad_elf == NULL)
282 continue;

284 /*
285 * Reestablish any archive specific command line flags.
286 */

new/usr/src/cmd/sgs/libld/common/args.c 4

287 ofl->ofl_flags1 &= ~MSK_OF1_ARCHIVE;
288 ofl->ofl_flags1 |= (adp->ad_flags & MSK_OF1_ARCHIVE);

290 /*
291 * Re-process the archive. Note that a file descriptor
292 * is unnecessary, as the file is already available in
293 * memory.
294 */
295 if (!ld_process_archive(adp->ad_name, -1, adp, ofl))
296 return (S_ERROR);
297 if (ofl->ofl_flags & FLG_OF_FATAL)
298 return (1);
299 }
300 }

302 return (1);
303 }

305 /*
306 * Checks the command line option flags for consistency.
307 */
308 static uintptr_t
309 check_flags(Ofl_desc * ofl, int argc)
310 {
311 /*
312 * If the user specified -zguidance=noall, then we can safely disable
313 * the entire feature. The purpose of -zguidance=noall is to allow
314 * the user to override guidance specified from a makefile via
315 * the LD_OPTIONS environment variable, and so, we want to behave
316 * in exactly the same manner we would have if no option were present.
317 */
318 if ((ofl->ofl_guideflags & (FLG_OFG_ENABLE | FLG_OFG_NO_ALL)) ==
319 (FLG_OFG_ENABLE | FLG_OFG_NO_ALL))
320 ofl->ofl_guideflags &= ~FLG_OFG_ENABLE;

322 if (Plibpath && (Llibdir || Ulibdir))
323 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_ARG_YP),
324 Llibdir ? ’L’ : ’U’);

326 if ((otype == OT_RELOC) || (otype == OT_KMOD)) {
327 if (otype == OT_RELOC) {
118 if (rflag) {
328 if (dflag == SET_UNKNOWN)
329 dflag = SET_FALSE;
330 if ((dflag == SET_TRUE) &&
331 OFL_GUIDANCE(ofl, FLG_OFG_NO_KMOD)) {
332 ld_eprintf(ofl, ERR_GUIDANCE,
333 MSG_INTL(MSG_GUIDE_KMOD));
334 }
335 } else if (otype == OT_KMOD) {
336 if (dflag != SET_UNKNOWN) {
337 ld_eprintf(ofl, ERR_FATAL,
338 MSG_INTL(MSG_MARG_INCOMP),
339 MSG_INTL(MSG_MARG_TYPE_KMOD),
340 MSG_ORIG(MSG_ARG_D));
341 }

343 dflag = SET_TRUE;
344 }

346 #endif /* ! codereview */
347 /*
348 * Combining relocations when building a relocatable
349 * object isn’t allowed. Warn the user, but proceed.
350 */
351 if (ofl->ofl_flags & FLG_OF_COMREL) {

new/usr/src/cmd/sgs/libld/common/args.c 5

352 const char *msg;

354 if (otype == OT_RELOC) {
355 msg = MSG_INTL(MSG_MARG_REL);
356 } else {
357 msg = MSG_INTL(MSG_MARG_TYPE_KMOD);
358 }
121 if (ofl->ofl_flags & FLG_OF_COMREL)
359 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_MARG_INCOMP),
360 msg,
123 MSG_INTL(MSG_MARG_REL),
361 MSG_ORIG(MSG_ARG_ZCOMBRELOC));
362 }
363 #endif /* ! codereview */
364 ofl->ofl_flags |= FLG_OF_RELOBJ;

366 if (otype == OT_KMOD)
367 ofl->ofl_flags |= FLG_OF_KMOD;
368 #endif /* ! codereview */
369 } else {
370 /*
371 * Translating object capabilities to symbol capabilities is
372 * only meaningful when creating a relocatable object.
373 */
374 if (ofl->ofl_flags & FLG_OF_OTOSCAP)
375 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_MARG_ONLY),
376 MSG_ORIG(MSG_ARG_ZSYMBOLCAP),
377 MSG_INTL(MSG_MARG_REL));

379 /*
380 * If the user hasn’t explicitly requested that relocations
381 * not be combined, combine them by default.
382 */
383 if ((ofl->ofl_flags & FLG_OF_NOCOMREL) == 0)
384 ofl->ofl_flags |= FLG_OF_COMREL;
385 }

387 if (zdflag == SET_TRUE)
388 ofl->ofl_flags |= FLG_OF_NOUNDEF;

390 if (zinflag)
391 ofl->ofl_dtflags_1 |= DF_1_INTERPOSE;

393 if (sflag)
394 ofl->ofl_flags |= FLG_OF_STRIP;

396 if (Qflag == SET_TRUE)
397 ofl->ofl_flags |= FLG_OF_ADDVERS;

399 if (Blflag)
400 ofl->ofl_flags |= FLG_OF_AUTOLCL;

402 if (Beflag)
403 ofl->ofl_flags |= FLG_OF_AUTOELM;

405 if (Blflag && Beflag)
406 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_ARG_INCOMP),
407 MSG_ORIG(MSG_ARG_BELIMINATE), MSG_ORIG(MSG_ARG_BLOCAL));

409 if (ofl->ofl_interp && (ofl->ofl_flags1 & FLG_OF1_NOINTRP))
410 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_ARG_INCOMP),
411 MSG_ORIG(MSG_ARG_CI), MSG_ORIG(MSG_ARG_ZNOINTERP));

413 if ((ofl->ofl_flags1 & (FLG_OF1_NRLXREL | FLG_OF1_RLXREL)) ==
414 (FLG_OF1_NRLXREL | FLG_OF1_RLXREL))
415 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_ARG_INCOMP),

new/usr/src/cmd/sgs/libld/common/args.c 6

416 MSG_ORIG(MSG_ARG_ZRELAXRELOC),
417 MSG_ORIG(MSG_ARG_ZNORELAXRELOC));

419 if (ofl->ofl_filtees && (otype != OT_SHARED))
125 if (ofl->ofl_filtees && !Gflag)
420 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_MARG_ST_ONLYAVL),
421 ((ofl->ofl_flags & FLG_OF_AUX) ?
422 MSG_INTL(MSG_MARG_FILTER_AUX) : MSG_INTL(MSG_MARG_FILTER)));

424 if (dflag != SET_FALSE) {
425 /*
426 * Set -Bdynamic on by default, setting is rechecked as input
427 * files are processed.
428 */
429 ofl->ofl_flags |=
430 (FLG_OF_DYNAMIC | FLG_OF_DYNLIBS | FLG_OF_PROCRED);

432 if (aflag)
433 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_ARG_INCOMP),
434 MSG_ORIG(MSG_ARG_DY), MSG_ORIG(MSG_ARG_A));

436 if (bflag)
437 ofl->ofl_flags |= FLG_OF_BFLAG;

439 if (Bgflag == TRUE) {
440 if (zdflag == SET_FALSE)
441 ld_eprintf(ofl, ERR_FATAL,
442 MSG_INTL(MSG_ARG_INCOMP),
443 MSG_ORIG(MSG_ARG_BGROUP),
444 MSG_ORIG(MSG_ARG_ZNODEF));
445 ofl->ofl_dtflags_1 |= DF_1_GROUP;
446 ofl->ofl_flags |= FLG_OF_NOUNDEF;
447 }

449 /*
450 * If the use of default library searching has been suppressed
451 * but no runpaths have been provided we’re going to have a hard
452 * job running this object.
453 */
454 if ((ofl->ofl_dtflags_1 & DF_1_NODEFLIB) && !ofl->ofl_rpath)
455 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_ARG_NODEFLIB),
456 MSG_INTL(MSG_MARG_RPATH));

458 /*
459 * By default, text relocation warnings are given when building
460 * an executable unless the -b flag is specified. This option
461 * implies that unclean text can be created, so no warnings are
462 * generated unless specifically asked for.
463 */
464 if ((ztflag == MSG_ORIG(MSG_ARG_ZTEXTOFF)) ||
465 ((ztflag == NULL) && bflag)) {
466 ofl->ofl_flags1 |= FLG_OF1_TEXTOFF;
467 ofl->ofl_guideflags |= FLG_OFG_NO_TEXT;
468 } else if (ztflag == MSG_ORIG(MSG_ARG_ZTEXT)) {
469 ofl->ofl_flags |= FLG_OF_PURETXT;
470 ofl->ofl_guideflags |= FLG_OFG_NO_TEXT;
471 }

473 if ((otype == OT_SHARED) || (otype == OT_EXEC)) {
179 if (Gflag || !rflag) {
474 /*
475 * Create a dynamic object. -Bdirect indicates that all
476 * references should be bound directly. This also
477 * enables lazyloading. Individual symbols can be
478 * bound directly (or not) using mapfiles and the
479 * DIRECT (NODIRECT) qualifier. With this capability,

new/usr/src/cmd/sgs/libld/common/args.c 7

480 * each syminfo entry is tagged SYMINFO_FLG_DIRECTBIND.
481 * Prior to this per-symbol direct binding, runtime
482 * direct binding was controlled via the DF_1_DIRECT
483 * flag. This flag affected all references from the
484 * object. -Bdirect continues to set this flag, and
485 * thus provides a means of taking a newly built
486 * direct binding object back to older systems.
487 *
488 * NOTE, any use of per-symbol NODIRECT bindings, or
489 * -znodirect, will disable the creation of the
490 * DF_1_DIRECT flag. Older runtime linkers do not
491 * have the capability to do per-symbol direct bindings.
492 */
493 if (Bdflag == SET_TRUE) {
494 ofl->ofl_dtflags_1 |= DF_1_DIRECT;
495 ofl->ofl_flags1 |= FLG_OF1_LAZYLD;
496 ofl->ofl_guideflags |= FLG_OFG_NO_LAZY;
497 ofl->ofl_flags |= FLG_OF_SYMINFO;
498 }

500 /*
501 * -Bnodirect disables directly binding to any symbols
502 * exported from the object being created. Individual
503 * references to external objects can still be affected
504 * by -zdirect or mapfile DIRECT directives.
505 */
506 if (Bdflag == SET_FALSE) {
507 ofl->ofl_flags1 |= (FLG_OF1_NDIRECT |
508 FLG_OF1_NGLBDIR | FLG_OF1_ALNODIR);
509 ofl->ofl_flags |= FLG_OF_SYMINFO;
510 }
511 }

513 if (otype == OT_EXEC) {
219 if (!Gflag && !rflag) {
514 /*
515 * Dynamically linked executable.
516 */
517 ofl->ofl_flags |= FLG_OF_EXEC;

519 if (zdflag != SET_FALSE)
520 ofl->ofl_flags |= FLG_OF_NOUNDEF;

522 /*
523 * -z textwarn is the default for executables, and
524 * only an explicit -z text* option can change that,
525 * so there’s no need to provide additional guidance.
526 */
527 ofl->ofl_guideflags |= FLG_OFG_NO_TEXT;

529 if (Bsflag)
530 ld_eprintf(ofl, ERR_FATAL,
531 MSG_INTL(MSG_ARG_DY_INCOMP),
532 MSG_ORIG(MSG_ARG_BSYMBOLIC));
533 if (ofl->ofl_soname)
534 ld_eprintf(ofl, ERR_FATAL,
535 MSG_INTL(MSG_MARG_DY_INCOMP),
536 MSG_INTL(MSG_MARG_SONAME));
537 } else if (otype == OT_SHARED) {
243 } else if (!rflag) {
538 /*
539 * Shared library.
540 */
541 ofl->ofl_flags |= FLG_OF_SHAROBJ;

543 /*

new/usr/src/cmd/sgs/libld/common/args.c 8

544 * By default, print text relocation warnings for
545 * executables but *not* for shared objects. However,
546 * if -z guidance is on, issue warnings for shared
547 * objects as well.
548 *
549 * If -z textwarn is explicitly specified, also issue
550 * guidance messages if -z guidance is on, but not
551 * for -z text or -z textoff.
552 */
553 if (ztflag == NULL) {
554 if (!OFL_GUIDANCE(ofl, FLG_OFG_NO_TEXT))
555 ofl->ofl_flags1 |= FLG_OF1_TEXTOFF;
556 } else if ((ofl->ofl_flags & FLG_OF_PURETXT) ||
557 (ofl->ofl_flags1 & FLG_OF1_TEXTOFF)) {
558 ofl->ofl_guideflags |= FLG_OFG_NO_TEXT;
559 }

561 if (Bsflag) {
562 /*
563 * -Bsymbolic, and -Bnodirect make no sense.
564 */
565 if (Bdflag == SET_FALSE)
566 ld_eprintf(ofl, ERR_FATAL,
567 MSG_INTL(MSG_ARG_INCOMP),
568 MSG_ORIG(MSG_ARG_BSYMBOLIC),
569 MSG_ORIG(MSG_ARG_BNODIRECT));
570 ofl->ofl_flags |= FLG_OF_SYMBOLIC;
571 ofl->ofl_dtflags |= DF_SYMBOLIC;
572 }
573 } else {
574 /*
575 * Dynamic relocatable object.
576 */
577 if (ztflag == NULL)
578 ofl->ofl_flags1 |= FLG_OF1_TEXTOFF;
579 ofl->ofl_guideflags |= FLG_OFG_NO_TEXT;

581 if (ofl->ofl_interp)
582 ld_eprintf(ofl, ERR_FATAL,
583 MSG_INTL(MSG_MARG_INCOMP),
584 MSG_INTL(MSG_MARG_REL),
585 MSG_ORIG(MSG_ARG_CI));
586 }

588 assert((ofl->ofl_flags & (FLG_OF_SHAROBJ|FLG_OF_EXEC)) !=
589 (FLG_OF_SHAROBJ|FLG_OF_EXEC));
590 #endif /* ! codereview */
591 } else {
592 ofl->ofl_flags |= FLG_OF_STATIC;

594 if (bflag)
595 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_ARG_ST_INCOMP),
596 MSG_ORIG(MSG_ARG_B));
597 if (ofl->ofl_soname)
598 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_MARG_ST_INCOMP),
599 MSG_INTL(MSG_MARG_SONAME));
600 if (ofl->ofl_depaudit)
601 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_ARG_ST_INCOMP),
602 MSG_ORIG(MSG_ARG_CP));
603 if (ofl->ofl_audit)
604 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_ARG_ST_INCOMP),
605 MSG_ORIG(MSG_ARG_P));
606 if (ofl->ofl_config)
607 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_ARG_ST_INCOMP),
608 MSG_ORIG(MSG_ARG_C));
609 if (ztflag)

new/usr/src/cmd/sgs/libld/common/args.c 9

610 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_ARG_ST_INCOMP),
611 MSG_ORIG(MSG_ARG_ZTEXTALL));
612 if (otype == OT_SHARED)
293 if (Gflag)
613 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_MARG_ST_INCOMP),
614 MSG_INTL(MSG_MARG_SO));
615 if (aflag && (otype == OT_RELOC))
296 if (aflag && rflag)
616 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_MARG_INCOMP),
617 MSG_ORIG(MSG_ARG_A), MSG_INTL(MSG_MARG_REL));

619 if (otype == OT_RELOC) {
300 if (rflag) {
620 /*
621 * We can only strip the symbol table and string table
622 * if no output relocations will refer to them.
623 */
624 if (sflag)
625 ld_eprintf(ofl, ERR_WARNING,
626 MSG_INTL(MSG_ARG_STRIP),
627 MSG_INTL(MSG_MARG_REL),
628 MSG_INTL(MSG_MARG_STRIP));

630 if (ztflag == NULL)
631 ofl->ofl_flags1 |= FLG_OF1_TEXTOFF;
632 ofl->ofl_guideflags |= FLG_OFG_NO_TEXT;

634 if (ofl->ofl_interp)
635 ld_eprintf(ofl, ERR_FATAL,
636 MSG_INTL(MSG_MARG_INCOMP),
637 MSG_INTL(MSG_MARG_REL),
638 MSG_ORIG(MSG_ARG_CI));
639 } else {
640 /*
641 * Static executable.
642 */
643 ofl->ofl_flags |= FLG_OF_EXEC | FLG_OF_PROCRED;

645 if (zdflag != SET_FALSE)
646 ofl->ofl_flags |= FLG_OF_NOUNDEF;
647 }
648 }

650 /*
651 * If the user didn’t supply an output file name supply a default.
652 */
653 if (ofl->ofl_name == NULL)
654 ofl->ofl_name = MSG_ORIG(MSG_STR_AOUT);

656 /*
657 * We set the entrance criteria after all input argument processing as
658 * it is only at this point we’re sure what the output image will be
659 * (static or dynamic).
660 */
661 if (ld_ent_setup(ofl, ld_targ.t_m.m_segm_align) == S_ERROR)
662 return (S_ERROR);

664 /*
665 * Does the host currently running the linker have the same
666 * byte order as the target for which the object is being produced?
667 * If not, set FLG_OF1_ENCDIFF so relocation code will know
668 * to check.
669 */
670 if (_elf_sys_encoding() != ld_targ.t_m.m_data)
671 ofl->ofl_flags1 |= FLG_OF1_ENCDIFF;

new/usr/src/cmd/sgs/libld/common/args.c 10

673 /*
674 * If the target has special executable section filling requirements,
675 * register the fill function with libelf
676 */
677 if (ld_targ.t_ff.ff_execfill != NULL)
678 _elf_execfill(ld_targ.t_ff.ff_execfill);

680 /*
681 * Initialize string tables. Symbol definitions within mapfiles can
682 * result in the creation of input sections.
683 */
684 if (ld_init_strings(ofl) == S_ERROR)
685 return (S_ERROR);

687 /*
688 * Process mapfiles. Mapfile can redefine or add sections/segments,
689 * so this must come after the default entrance criteria are established
690 * (above).
691 */
692 if (ofl->ofl_maps) {
693 const char *name;
694 Aliste idx;

696 for (APLIST_TRAVERSE(ofl->ofl_maps, idx, name))
697 if (!ld_map_parse(name, ofl))
698 return (S_ERROR);

700 if (!ld_map_post_process(ofl))
701 return (S_ERROR);
702 }

704 /*
705 * If a mapfile has been used to define a single symbolic scope of
706 * interfaces, -Bsymbolic is established. This global setting goes
707 * beyond individual symbol protection, and ensures all relocations
708 * (even those that reference section symbols) are processed within
709 * the object being built.
710 */
711 if (((ofl->ofl_flags &
712 (FLG_OF_MAPSYMB | FLG_OF_MAPGLOB)) == FLG_OF_MAPSYMB) &&
713 (ofl->ofl_flags & (FLG_OF_AUTOLCL | FLG_OF_AUTOELM))) {
714 ofl->ofl_flags |= FLG_OF_SYMBOLIC;
715 ofl->ofl_dtflags |= DF_SYMBOLIC;
716 }

718 /*
719 * If -zloadfltr is set, verify that filtering is in effect. Filters
720 * are either established from the command line, and affect the whole
721 * object, or are set on a per-symbol basis from a mapfile.
722 */
723 if (zlflag) {
724 if ((ofl->ofl_filtees == NULL) && (ofl->ofl_dtsfltrs == NULL))
725 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_ARG_NOFLTR),
726 MSG_ORIG(MSG_ARG_ZLOADFLTR));
727 ofl->ofl_dtflags_1 |= DF_1_LOADFLTR;
728 }

730 /*
731 * Check that we have something to work with. This check is carried out
732 * after mapfile processing as its possible a mapfile is being used to
733 * define symbols, in which case it would be sufficient to build the
734 * output file purely from the mapfile.
735 */
736 if ((ofl->ofl_objscnt == 0) && (ofl->ofl_soscnt == 0)) {
737 if ((Vflag ||
738 (Dflag && (dbg_desc->d_extra & DBG_E_HELP_EXIT))) &&

new/usr/src/cmd/sgs/libld/common/args.c 11

739 (argc == 2)) {
740 ofl->ofl_flags1 |= FLG_OF1_DONE;
741 } else {
742 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_ARG_NOFILES));
743 return (S_ERROR);
744 }
745 }
746 return (1);
747 }

______unchanged_portion_omitted_

1011 static int optitle = 0;
1012 /*
1013 * Parsing options pass1 for process_flags().
1014 */
1015 static uintptr_t
1016 parseopt_pass1(Ofl_desc *ofl, int argc, char **argv, int *usage)
1017 {
1018 int c, ndx = optind;

1020 /*
1021 * The -32, -64 and -ztarget options are special, in that we validate
1022 * them, but otherwise ignore them. libld.so (this code) is called
1023 * from the ld front end program. ld has already examined the
1024 * arguments to determine the output class and machine type of the
1025 * output object, as reflected in the version (32/64) of ld_main()
1026 * that was called and the value of the ’mach’ argument passed.
1027 * By time execution reaches this point, these options have already
1028 * been seen and acted on.
1029 */
1030 while ((c = ld_getopt(ofl->ofl_lml, ndx, argc, argv)) != -1) {

1032 switch (c) {
1033 case ’3’:
1034 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));

1036 /*
1037 * -32 is processed by ld to determine the output class.
1038 * Here we sanity check the option incase some other
1039 * -3* option is mistakenly passed to us.
1040 */
1041 if (optarg[0] != ’2’)
1042 ld_eprintf(ofl, ERR_FATAL,
1043 MSG_INTL(MSG_ARG_ILLEGAL),
1044 MSG_ORIG(MSG_ARG_3), optarg);
1045 continue;

1047 case ’6’:
1048 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));

1050 /*
1051 * -64 is processed by ld to determine the output class.
1052 * Here we sanity check the option incase some other
1053 * -6* option is mistakenly passed to us.
1054 */
1055 if (optarg[0] != ’4’)
1056 ld_eprintf(ofl, ERR_FATAL,
1057 MSG_INTL(MSG_ARG_ILLEGAL),
1058 MSG_ORIG(MSG_ARG_6), optarg);
1059 continue;

1061 case ’a’:
1062 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, NULL));
1063 aflag = TRUE;
1064 break;

new/usr/src/cmd/sgs/libld/common/args.c 12

1066 case ’b’:
1067 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, NULL));
1068 bflag = TRUE;

1070 /*
1071 * This is a hack, and may be undone later.
1072 * The -b option is only used to build the Unix
1073 * kernel and its related kernel-mode modules.
1074 * We do not want those files to get a .SUNW_ldynsym
1075 * section. At least for now, the kernel makes no
1076 * use of .SUNW_ldynsym, and we do not want to use
1077 * the space to hold it. Therefore, we overload
1078 * the use of -b to also imply -znoldynsym.
1079 */
1080 ofl->ofl_flags |= FLG_OF_NOLDYNSYM;
1081 break;

1083 case ’c’:
1084 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1085 if (ofl->ofl_config)
1086 ld_eprintf(ofl, ERR_WARNING_NF,
1087 MSG_INTL(MSG_ARG_MTONCE),
1088 MSG_ORIG(MSG_ARG_C));
1089 else
1090 ofl->ofl_config = optarg;
1091 break;

1093 case ’C’:
1094 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, NULL));
1095 demangle_flag = 1;
1096 break;

1098 case ’d’:
1099 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1100 if ((optarg[0] == ’n’) && (optarg[1] == ’\0’)) {
1101 if (dflag != SET_UNKNOWN)
1102 ld_eprintf(ofl, ERR_WARNING_NF,
1103 MSG_INTL(MSG_ARG_MTONCE),
1104 MSG_ORIG(MSG_ARG_D));
1105 else
1106 dflag = SET_FALSE;
1107 } else if ((optarg[0] == ’y’) && (optarg[1] == ’\0’)) {
1108 if (dflag != SET_UNKNOWN)
1109 ld_eprintf(ofl, ERR_WARNING_NF,
1110 MSG_INTL(MSG_ARG_MTONCE),
1111 MSG_ORIG(MSG_ARG_D));
1112 else
1113 dflag = SET_TRUE;
1114 } else {
1115 ld_eprintf(ofl, ERR_FATAL,
1116 MSG_INTL(MSG_ARG_ILLEGAL),
1117 MSG_ORIG(MSG_ARG_D), optarg);
1118 }
1119 break;

1121 case ’e’:
1122 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1123 if (ofl->ofl_entry)
1124 ld_eprintf(ofl, ERR_WARNING_NF,
1125 MSG_INTL(MSG_MARG_MTONCE),
1126 MSG_INTL(MSG_MARG_ENTRY));
1127 else
1128 ofl->ofl_entry = (void *)optarg;
1129 break;

1131 case ’f’:

new/usr/src/cmd/sgs/libld/common/args.c 13

1132 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1133 if (ofl->ofl_filtees &&
1134 (!(ofl->ofl_flags & FLG_OF_AUX))) {
1135 ld_eprintf(ofl, ERR_FATAL,
1136 MSG_INTL(MSG_MARG_INCOMP),
1137 MSG_INTL(MSG_MARG_FILTER_AUX),
1138 MSG_INTL(MSG_MARG_FILTER));
1139 } else {
1140 if ((ofl->ofl_filtees =
1141 add_string(ofl->ofl_filtees, optarg)) ==
1142 (const char *)S_ERROR)
1143 return (S_ERROR);
1144 ofl->ofl_flags |= FLG_OF_AUX;
1145 }
1146 break;

1148 case ’F’:
1149 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1150 if (ofl->ofl_filtees &&
1151 (ofl->ofl_flags & FLG_OF_AUX)) {
1152 ld_eprintf(ofl, ERR_FATAL,
1153 MSG_INTL(MSG_MARG_INCOMP),
1154 MSG_INTL(MSG_MARG_FILTER),
1155 MSG_INTL(MSG_MARG_FILTER_AUX));
1156 } else {
1157 if ((ofl->ofl_filtees =
1158 add_string(ofl->ofl_filtees, optarg)) ==
1159 (const char *)S_ERROR)
1160 return (S_ERROR);
1161 }
1162 break;

1164 case ’h’:
1165 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1166 if (ofl->ofl_soname)
1167 ld_eprintf(ofl, ERR_WARNING_NF,
1168 MSG_INTL(MSG_MARG_MTONCE),
1169 MSG_INTL(MSG_MARG_SONAME));
1170 else
1171 ofl->ofl_soname = (const char *)optarg;
1172 break;

1174 case ’i’:
1175 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, NULL));
1176 ofl->ofl_flags |= FLG_OF_IGNENV;
1177 break;

1179 case ’I’:
1180 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1181 if (ofl->ofl_interp)
1182 ld_eprintf(ofl, ERR_WARNING_NF,
1183 MSG_INTL(MSG_ARG_MTONCE),
1184 MSG_ORIG(MSG_ARG_CI));
1185 else
1186 ofl->ofl_interp = (const char *)optarg;
1187 break;

1189 case ’l’:
1190 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1191 /*
1192 * For now, count any library as a shared object. This
1193 * is used to size the internal symbol cache. This
1194 * value is recalculated later on actual file processing
1195 * to get an accurate shared object count.
1196 */
1197 ofl->ofl_soscnt++;

new/usr/src/cmd/sgs/libld/common/args.c 14

1198 break;

1200 case ’m’:
1201 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, NULL));
1202 ofl->ofl_flags |= FLG_OF_GENMAP;
1203 break;

1205 case ’o’:
1206 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1207 if (ofl->ofl_name)
1208 ld_eprintf(ofl, ERR_WARNING_NF,
1209 MSG_INTL(MSG_MARG_MTONCE),
1210 MSG_INTL(MSG_MARG_OUTFILE));
1211 else
1212 ofl->ofl_name = (const char *)optarg;
1213 break;

1215 case ’p’:
1216 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));

1218 /*
1219 * Multiple instances of this option may occur. Each
1220 * additional instance is effectively concatenated to
1221 * the previous separated by a colon.
1222 */
1223 if (*optarg != ’\0’) {
1224 if ((ofl->ofl_audit =
1225 add_string(ofl->ofl_audit,
1226 optarg)) == (const char *)S_ERROR)
1227 return (S_ERROR);
1228 }
1229 break;

1231 case ’P’:
1232 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));

1234 /*
1235 * Multiple instances of this option may occur. Each
1236 * additional instance is effectively concatenated to
1237 * the previous separated by a colon.
1238 */
1239 if (*optarg != ’\0’) {
1240 if ((ofl->ofl_depaudit =
1241 add_string(ofl->ofl_depaudit,
1242 optarg)) == (const char *)S_ERROR)
1243 return (S_ERROR);
1244 }
1245 break;

1247 case ’r’:
1248 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, NULL));
1249 otype = OT_RELOC;
930 rflag = TRUE;
1250 break;

1252 case ’R’:
1253 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));

1255 /*
1256 * Multiple instances of this option may occur. Each
1257 * additional instance is effectively concatenated to
1258 * the previous separated by a colon.
1259 */
1260 if (*optarg != ’\0’) {
1261 if ((ofl->ofl_rpath =
1262 add_string(ofl->ofl_rpath,

new/usr/src/cmd/sgs/libld/common/args.c 15

1263 optarg)) == (const char *)S_ERROR)
1264 return (S_ERROR);
1265 }
1266 break;

1268 case ’s’:
1269 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, NULL));
1270 sflag = TRUE;
1271 break;

1273 case ’t’:
1274 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, NULL));
1275 ofl->ofl_flags |= FLG_OF_NOWARN;
1276 break;

1278 case ’u’:
1279 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1280 break;

1282 case ’z’:
1283 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));

1285 /*
1286 * Skip comma that might be present between -z and its
1287 * argument (e.g. if -Wl,-z,assert-deflib was passed).
1288 */
1289 if (strncmp(optarg, MSG_ORIG(MSG_STR_COMMA),
1290 MSG_STR_COMMA_SIZE) == 0)
1291 optarg++;

1293 /*
1294 * For specific help, print our usage message and exit
1295 * immediately to ensure a 0 return code.
1296 */
1297 if (strncmp(optarg, MSG_ORIG(MSG_ARG_HELP),
1298 MSG_ARG_HELP_SIZE) == 0) {
1299 usage_mesg(TRUE);
1300 exit(0);
1301 }

1303 /*
1304 * For some options set a flag - further consistancy
1305 * checks will be carried out in check_flags().
1306 */
1307 if ((strncmp(optarg, MSG_ORIG(MSG_ARG_LD32),
1308 MSG_ARG_LD32_SIZE) == 0) ||
1309 (strncmp(optarg, MSG_ORIG(MSG_ARG_LD64),
1310 MSG_ARG_LD64_SIZE) == 0)) {
1311 if (createargv(ofl, usage) == S_ERROR)
1312 return (S_ERROR);

1314 } else if (
1315 strcmp(optarg, MSG_ORIG(MSG_ARG_DEFS)) == 0) {
1316 if (zdflag != SET_UNKNOWN)
1317 ld_eprintf(ofl, ERR_WARNING_NF,
1318 MSG_INTL(MSG_ARG_MTONCE),
1319 MSG_ORIG(MSG_ARG_ZDEFNODEF));
1320 else
1321 zdflag = SET_TRUE;
1322 ofl->ofl_guideflags |= FLG_OFG_NO_DEFS;
1323 } else if (strcmp(optarg,
1324 MSG_ORIG(MSG_ARG_NODEFS)) == 0) {
1325 if (zdflag != SET_UNKNOWN)
1326 ld_eprintf(ofl, ERR_WARNING_NF,
1327 MSG_INTL(MSG_ARG_MTONCE),
1328 MSG_ORIG(MSG_ARG_ZDEFNODEF));

new/usr/src/cmd/sgs/libld/common/args.c 16

1329 else
1330 zdflag = SET_FALSE;
1331 ofl->ofl_guideflags |= FLG_OFG_NO_DEFS;
1332 } else if (strcmp(optarg,
1333 MSG_ORIG(MSG_ARG_TEXT)) == 0) {
1334 if (ztflag &&
1335 (ztflag != MSG_ORIG(MSG_ARG_ZTEXT)))
1336 ld_eprintf(ofl, ERR_FATAL,
1337 MSG_INTL(MSG_ARG_INCOMP),
1338 MSG_ORIG(MSG_ARG_ZTEXT),
1339 ztflag);
1340 ztflag = MSG_ORIG(MSG_ARG_ZTEXT);
1341 } else if (strcmp(optarg,
1342 MSG_ORIG(MSG_ARG_TEXTOFF)) == 0) {
1343 if (ztflag &&
1344 (ztflag != MSG_ORIG(MSG_ARG_ZTEXTOFF)))
1345 ld_eprintf(ofl, ERR_FATAL,
1346 MSG_INTL(MSG_ARG_INCOMP),
1347 MSG_ORIG(MSG_ARG_ZTEXTOFF),
1348 ztflag);
1349 ztflag = MSG_ORIG(MSG_ARG_ZTEXTOFF);
1350 } else if (strcmp(optarg,
1351 MSG_ORIG(MSG_ARG_TEXTWARN)) == 0) {
1352 if (ztflag &&
1353 (ztflag != MSG_ORIG(MSG_ARG_ZTEXTWARN)))
1354 ld_eprintf(ofl, ERR_FATAL,
1355 MSG_INTL(MSG_ARG_INCOMP),
1356 MSG_ORIG(MSG_ARG_ZTEXTWARN),
1357 ztflag);
1358 ztflag = MSG_ORIG(MSG_ARG_ZTEXTWARN);

1360 /*
1361 * For other options simply set the ofl flags directly.
1362 */
1363 } else if (strcmp(optarg,
1364 MSG_ORIG(MSG_ARG_RESCAN)) == 0) {
1365 ofl->ofl_flags1 |= FLG_OF1_RESCAN;
1366 } else if (strcmp(optarg,
1367 MSG_ORIG(MSG_ARG_ABSEXEC)) == 0) {
1368 ofl->ofl_flags1 |= FLG_OF1_ABSEXEC;
1369 } else if (strcmp(optarg,
1370 MSG_ORIG(MSG_ARG_LOADFLTR)) == 0) {
1371 zlflag = TRUE;
1372 } else if (strcmp(optarg,
1373 MSG_ORIG(MSG_ARG_NORELOC)) == 0) {
1374 ofl->ofl_dtflags_1 |= DF_1_NORELOC;
1375 } else if (strcmp(optarg,
1376 MSG_ORIG(MSG_ARG_NOVERSION)) == 0) {
1377 ofl->ofl_flags |= FLG_OF_NOVERSEC;
1378 } else if (strcmp(optarg,
1379 MSG_ORIG(MSG_ARG_MULDEFS)) == 0) {
1380 ofl->ofl_flags |= FLG_OF_MULDEFS;
1381 } else if (strcmp(optarg,
1382 MSG_ORIG(MSG_ARG_REDLOCSYM)) == 0) {
1383 ofl->ofl_flags |= FLG_OF_REDLSYM;
1384 } else if (strcmp(optarg,
1385 MSG_ORIG(MSG_ARG_INITFIRST)) == 0) {
1386 ofl->ofl_dtflags_1 |= DF_1_INITFIRST;
1387 } else if (strcmp(optarg,
1388 MSG_ORIG(MSG_ARG_NODELETE)) == 0) {
1389 ofl->ofl_dtflags_1 |= DF_1_NODELETE;
1390 } else if (strcmp(optarg,
1391 MSG_ORIG(MSG_ARG_NOPARTIAL)) == 0) {
1392 ofl->ofl_flags1 |= FLG_OF1_NOPARTI;
1393 } else if (strcmp(optarg,
1394 MSG_ORIG(MSG_ARG_NOOPEN)) == 0) {

new/usr/src/cmd/sgs/libld/common/args.c 17

1395 ofl->ofl_dtflags_1 |= DF_1_NOOPEN;
1396 } else if (strcmp(optarg,
1397 MSG_ORIG(MSG_ARG_NOW)) == 0) {
1398 ofl->ofl_dtflags_1 |= DF_1_NOW;
1399 ofl->ofl_dtflags |= DF_BIND_NOW;
1400 } else if (strcmp(optarg,
1401 MSG_ORIG(MSG_ARG_ORIGIN)) == 0) {
1402 ofl->ofl_dtflags_1 |= DF_1_ORIGIN;
1403 ofl->ofl_dtflags |= DF_ORIGIN;
1404 } else if (strcmp(optarg,
1405 MSG_ORIG(MSG_ARG_NODEFAULTLIB)) == 0) {
1406 ofl->ofl_dtflags_1 |= DF_1_NODEFLIB;
1407 } else if (strcmp(optarg,
1408 MSG_ORIG(MSG_ARG_NODUMP)) == 0) {
1409 ofl->ofl_dtflags_1 |= DF_1_NODUMP;
1410 } else if (strcmp(optarg,
1411 MSG_ORIG(MSG_ARG_ENDFILTEE)) == 0) {
1412 ofl->ofl_dtflags_1 |= DF_1_ENDFILTEE;
1413 } else if (strcmp(optarg,
1414 MSG_ORIG(MSG_ARG_VERBOSE)) == 0) {
1415 ofl->ofl_flags |= FLG_OF_VERBOSE;
1416 } else if (strcmp(optarg,
1417 MSG_ORIG(MSG_ARG_COMBRELOC)) == 0) {
1418 ofl->ofl_flags |= FLG_OF_COMREL;
1419 } else if (strcmp(optarg,
1420 MSG_ORIG(MSG_ARG_NOCOMBRELOC)) == 0) {
1421 ofl->ofl_flags |= FLG_OF_NOCOMREL;
1422 } else if (strcmp(optarg,
1423 MSG_ORIG(MSG_ARG_NOCOMPSTRTAB)) == 0) {
1424 ofl->ofl_flags1 |= FLG_OF1_NCSTTAB;
1425 } else if (strcmp(optarg,
1426 MSG_ORIG(MSG_ARG_NOINTERP)) == 0) {
1427 ofl->ofl_flags1 |= FLG_OF1_NOINTRP;
1428 } else if (strcmp(optarg,
1429 MSG_ORIG(MSG_ARG_INTERPOSE)) == 0) {
1430 zinflag = TRUE;
1431 } else if (strcmp(optarg,
1432 MSG_ORIG(MSG_ARG_IGNORE)) == 0) {
1433 ofl->ofl_flags1 |= FLG_OF1_IGNPRC;
1434 } else if (strcmp(optarg,
1435 MSG_ORIG(MSG_ARG_RELAXRELOC)) == 0) {
1436 ofl->ofl_flags1 |= FLG_OF1_RLXREL;
1437 } else if (strcmp(optarg,
1438 MSG_ORIG(MSG_ARG_NORELAXRELOC)) == 0) {
1439 ofl->ofl_flags1 |= FLG_OF1_NRLXREL;
1440 } else if (strcmp(optarg,
1441 MSG_ORIG(MSG_ARG_NOLDYNSYM)) == 0) {
1442 ofl->ofl_flags |= FLG_OF_NOLDYNSYM;
1443 } else if (strcmp(optarg,
1444 MSG_ORIG(MSG_ARG_GLOBAUDIT)) == 0) {
1445 ofl->ofl_dtflags_1 |= DF_1_GLOBAUDIT;
1446 } else if (strcmp(optarg,
1447 MSG_ORIG(MSG_ARG_NOSIGHANDLER)) == 0) {
1448 ofl->ofl_flags1 |= FLG_OF1_NOSGHND;
1449 } else if (strcmp(optarg,
1450 MSG_ORIG(MSG_ARG_SYMBOLCAP)) == 0) {
1451 ofl->ofl_flags |= FLG_OF_OTOSCAP;

1453 /*
1454 * Check archive group usage
1455 * -z rescan-start ... -z rescan-end
1456 * to ensure they don’t overlap and are well formed.
1457 */
1458 } else if (strcmp(optarg,
1459 MSG_ORIG(MSG_ARG_RESCAN_START)) == 0) {
1460 if (ofl->ofl_ars_gsandx == 0) {

new/usr/src/cmd/sgs/libld/common/args.c 18

1461 ofl->ofl_ars_gsandx = ndx;
1462 } else if (ofl->ofl_ars_gsandx > 0) {
1463 /* Another group is still open */
1464 ld_eprintf(ofl, ERR_FATAL,
1465 MSG_INTL(MSG_ARG_AR_GRP_OLAP),
1466 MSG_INTL(MSG_MARG_AR_GRPS));
1467 /* Don’t report cascading errors */
1468 ofl->ofl_ars_gsandx = -1;
1469 }
1470 } else if (strcmp(optarg,
1471 MSG_ORIG(MSG_ARG_RESCAN_END)) == 0) {
1472 if (ofl->ofl_ars_gsandx > 0) {
1473 ofl->ofl_ars_gsandx = 0;
1474 } else if (ofl->ofl_ars_gsandx == 0) {
1475 /* There was no matching begin */
1476 ld_eprintf(ofl, ERR_FATAL,
1477 MSG_INTL(MSG_ARG_AR_GRP_BAD),
1478 MSG_INTL(MSG_MARG_AR_GRP_END),
1479 MSG_INTL(MSG_MARG_AR_GRP_START));
1480 /* Don’t report cascading errors */
1481 ofl->ofl_ars_gsandx = -1;
1482 }

1484 /*
1485 * If -z wrap is seen, enter the symbol to be wrapped
1486 * into the wrap AVL tree.
1487 */
1488 } else if (strncmp(optarg, MSG_ORIG(MSG_ARG_WRAP),
1489 MSG_ARG_WRAP_SIZE) == 0) {
1490 if (ld_wrap_enter(ofl,
1491 optarg + MSG_ARG_WRAP_SIZE) == NULL)
1492 return (S_ERROR);
1493 } else if (strncmp(optarg, MSG_ORIG(MSG_ARG_ASLR),
1494 MSG_ARG_ASLR_SIZE) == 0) {
1495 char *p = optarg + MSG_ARG_ASLR_SIZE;
1496 if (*p == ’\0’) {
1497 ofl->ofl_aslr = 1;
1498 } else if (*p == ’=’) {
1499 p++;

1501 if ((strcmp(p,
1502 MSG_ORIG(MSG_ARG_ENABLED)) == 0) ||
1503 (strcmp(p,
1504 MSG_ORIG(MSG_ARG_ENABLE)) == 0)) {
1505 ofl->ofl_aslr = 1;
1506 } else if ((strcmp(p,
1507 MSG_ORIG(MSG_ARG_DISABLED)) == 0) ||
1508 (strcmp(p,
1509 MSG_ORIG(MSG_ARG_DISABLE)) == 0)) {
1510 ofl->ofl_aslr = -1;
1511 } else {
1512 ld_eprintf(ofl, ERR_FATAL,
1513 MSG_INTL(MSG_ARG_ILLEGAL),
1514 MSG_ORIG(MSG_ARG_ZASLR), p);
1515 return (S_ERROR);
1516 }
1517 } else {
1518 ld_eprintf(ofl, ERR_FATAL,
1519 MSG_INTL(MSG_ARG_ILLEGAL),
1520 MSG_ORIG(MSG_ARG_Z), optarg);
1521 return (S_ERROR);
1522 }
1523 } else if ((strncmp(optarg, MSG_ORIG(MSG_ARG_GUIDE),
1524 MSG_ARG_GUIDE_SIZE) == 0) &&
1525 ((optarg[MSG_ARG_GUIDE_SIZE] == ’=’) ||
1526 (optarg[MSG_ARG_GUIDE_SIZE] == ’\0’))) {

new/usr/src/cmd/sgs/libld/common/args.c 19

1527 if (!guidance_parse(ofl, optarg))
1528 return (S_ERROR);
1529 } else if (strcmp(optarg,
1530 MSG_ORIG(MSG_ARG_FATWARN)) == 0) {
1531 if (zfwflag == SET_FALSE) {
1532 ld_eprintf(ofl, ERR_WARNING_NF,
1533 MSG_INTL(MSG_ARG_MTONCE),
1534 MSG_ORIG(MSG_ARG_ZFATWNOFATW));
1535 } else {
1536 zfwflag = SET_TRUE;
1537 ofl->ofl_flags |= FLG_OF_FATWARN;
1538 }
1539 } else if (strcmp(optarg,
1540 MSG_ORIG(MSG_ARG_NOFATWARN)) == 0) {
1541 if (zfwflag == SET_TRUE)
1542 ld_eprintf(ofl, ERR_WARNING_NF,
1543 MSG_INTL(MSG_ARG_MTONCE),
1544 MSG_ORIG(MSG_ARG_ZFATWNOFATW));
1545 else
1546 zfwflag = SET_FALSE;

1548 /*
1549 * Process everything related to -z assert-deflib. This
1550 * must be done in pass 1 because it gets used in pass
1551 * 2.
1552 */
1553 } else if (strncmp(optarg, MSG_ORIG(MSG_ARG_ASSDEFLIB),
1554 MSG_ARG_ASSDEFLIB_SIZE) == 0) {
1555 if (assdeflib_parse(ofl, optarg) != TRUE)
1556 return (S_ERROR);
1557 } else if (strncmp(optarg, MSG_ORIG(MSG_ARG_TYPE),
1558 MSG_ARG_TYPE_SIZE) == 0) {
1559 char *p = optarg + MSG_ARG_TYPE_SIZE;
1560 if (*p != ’=’) {
1561 ld_eprintf(ofl, ERR_FATAL,
1562 MSG_INTL(MSG_ARG_ILLEGAL),
1563 MSG_ORIG(MSG_ARG_Z), optarg);
1564 return (S_ERROR);
1565 }

1567 p++;
1568 if (strcmp(p,
1569 MSG_ORIG(MSG_ARG_TYPE_RELOC)) == 0) {
1570 otype = OT_RELOC;
1571 } else if (strcmp(p,
1572 MSG_ORIG(MSG_ARG_TYPE_EXEC)) == 0) {
1573 otype = OT_EXEC;
1574 } else if (strcmp(p,
1575 MSG_ORIG(MSG_ARG_TYPE_SHARED)) == 0) {
1576 otype = OT_SHARED;
1577 } else if (strcmp(p,
1578 MSG_ORIG(MSG_ARG_TYPE_KMOD)) == 0) {
1579 otype = OT_KMOD;
1580 } else {
1581 ld_eprintf(ofl, ERR_FATAL,
1582 MSG_INTL(MSG_ARG_ILLEGAL),
1583 MSG_ORIG(MSG_ARG_Z), optarg);
1584 return (S_ERROR);
1585 }
1586 #endif /* ! codereview */
1587 /*
1588 * The following options just need validation as they
1589 * are interpreted on the second pass through the
1590 * command line arguments.
1591 */
1592 } else if (

new/usr/src/cmd/sgs/libld/common/args.c 20

1593 strncmp(optarg, MSG_ORIG(MSG_ARG_INITARRAY),
1594 MSG_ARG_INITARRAY_SIZE) &&
1595 strncmp(optarg, MSG_ORIG(MSG_ARG_FINIARRAY),
1596 MSG_ARG_FINIARRAY_SIZE) &&
1597 strncmp(optarg, MSG_ORIG(MSG_ARG_PREINITARRAY),
1598 MSG_ARG_PREINITARRAY_SIZE) &&
1599 strncmp(optarg, MSG_ORIG(MSG_ARG_RTLDINFO),
1600 MSG_ARG_RTLDINFO_SIZE) &&
1601 strncmp(optarg, MSG_ORIG(MSG_ARG_DTRACE),
1602 MSG_ARG_DTRACE_SIZE) &&
1603 strcmp(optarg, MSG_ORIG(MSG_ARG_ALLEXTRT)) &&
1604 strcmp(optarg, MSG_ORIG(MSG_ARG_DFLEXTRT)) &&
1605 strcmp(optarg, MSG_ORIG(MSG_ARG_DIRECT)) &&
1606 strcmp(optarg, MSG_ORIG(MSG_ARG_NODIRECT)) &&
1607 strcmp(optarg, MSG_ORIG(MSG_ARG_GROUPPERM)) &&
1608 strcmp(optarg, MSG_ORIG(MSG_ARG_LAZYLOAD)) &&
1609 strcmp(optarg, MSG_ORIG(MSG_ARG_NOGROUPPERM)) &&
1610 strcmp(optarg, MSG_ORIG(MSG_ARG_NOLAZYLOAD)) &&
1611 strcmp(optarg, MSG_ORIG(MSG_ARG_NODEFERRED)) &&
1612 strcmp(optarg, MSG_ORIG(MSG_ARG_RECORD)) &&
1613 strcmp(optarg, MSG_ORIG(MSG_ARG_ALTEXEC64)) &&
1614 strcmp(optarg, MSG_ORIG(MSG_ARG_WEAKEXT)) &&
1615 strncmp(optarg, MSG_ORIG(MSG_ARG_TARGET),
1616 MSG_ARG_TARGET_SIZE) &&
1617 strcmp(optarg, MSG_ORIG(MSG_ARG_RESCAN_NOW)) &&
1618 strcmp(optarg, MSG_ORIG(MSG_ARG_DEFERRED))) {
1619 ld_eprintf(ofl, ERR_FATAL,
1620 MSG_INTL(MSG_ARG_ILLEGAL),
1621 MSG_ORIG(MSG_ARG_Z), optarg);
1622 }

1624 break;

1626 case ’D’:
1627 /*
1628 * If we have not yet read any input files go ahead
1629 * and process any debugging options (this allows any
1630 * argument processing, entrance criteria and library
1631 * initialization to be displayed). Otherwise, if an
1632 * input file has been seen, skip interpretation until
1633 * process_files (this allows debugging to be turned
1634 * on and off around individual groups of files).
1635 */
1636 Dflag = 1;
1637 if (ofl->ofl_objscnt == 0) {
1638 if (dbg_setup(ofl, optarg, 2) == 0)
1639 return (S_ERROR);
1640 }

1642 /*
1643 * A diagnostic can only be provided after dbg_setup().
1644 * As this is the first diagnostic that can be produced
1645 * by ld(1), issue a title for timing and basic output.
1646 */
1647 if ((optitle == 0) && DBG_ENABLED) {
1648 optitle++;
1649 DBG_CALL(Dbg_basic_options(ofl->ofl_lml));
1650 }
1651 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1652 break;

1654 case ’B’:
1655 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1656 if (strcmp(optarg, MSG_ORIG(MSG_ARG_DIRECT)) == 0) {
1657 if (Bdflag == SET_FALSE) {
1658 ld_eprintf(ofl, ERR_FATAL,

new/usr/src/cmd/sgs/libld/common/args.c 21

1659 MSG_INTL(MSG_ARG_INCOMP),
1660 MSG_ORIG(MSG_ARG_BNODIRECT),
1661 MSG_ORIG(MSG_ARG_BDIRECT));
1662 } else {
1663 Bdflag = SET_TRUE;
1664 ofl->ofl_guideflags |= FLG_OFG_NO_DB;
1665 }
1666 } else if (strcmp(optarg,
1667 MSG_ORIG(MSG_ARG_NODIRECT)) == 0) {
1668 if (Bdflag == SET_TRUE) {
1669 ld_eprintf(ofl, ERR_FATAL,
1670 MSG_INTL(MSG_ARG_INCOMP),
1671 MSG_ORIG(MSG_ARG_BDIRECT),
1672 MSG_ORIG(MSG_ARG_BNODIRECT));
1673 } else {
1674 Bdflag = SET_FALSE;
1675 ofl->ofl_guideflags |= FLG_OFG_NO_DB;
1676 }
1677 } else if (strcmp(optarg,
1678 MSG_ORIG(MSG_STR_SYMBOLIC)) == 0)
1679 Bsflag = TRUE;
1680 else if (strcmp(optarg, MSG_ORIG(MSG_ARG_REDUCE)) == 0)
1681 ofl->ofl_flags |= FLG_OF_PROCRED;
1682 else if (strcmp(optarg, MSG_ORIG(MSG_STR_LOCAL)) == 0)
1683 Blflag = TRUE;
1684 else if (strcmp(optarg, MSG_ORIG(MSG_ARG_GROUP)) == 0)
1685 Bgflag = TRUE;
1686 else if (strcmp(optarg,
1687 MSG_ORIG(MSG_STR_ELIMINATE)) == 0)
1688 Beflag = TRUE;
1689 else if (strcmp(optarg,
1690 MSG_ORIG(MSG_ARG_TRANSLATOR)) == 0) {
1691 ld_eprintf(ofl, ERR_WARNING,
1692 MSG_INTL(MSG_ARG_UNSUPPORTED),
1693 MSG_ORIG(MSG_ARG_BTRANSLATOR));
1694 } else if (strcmp(optarg,
1695 MSG_ORIG(MSG_STR_LD_DYNAMIC)) &&
1696 strcmp(optarg, MSG_ORIG(MSG_ARG_STATIC))) {
1697 ld_eprintf(ofl, ERR_FATAL,
1698 MSG_INTL(MSG_ARG_ILLEGAL),
1699 MSG_ORIG(MSG_ARG_CB), optarg);
1700 }
1701 break;

1703 case ’G’:
1704 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, NULL));
1705 otype = OT_SHARED;
1238 Gflag = TRUE;
1706 break;

1708 case ’L’:
1709 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1710 break;

1712 case ’M’:
1713 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1714 if (aplist_append(&(ofl->ofl_maps), optarg,
1715 AL_CNT_OFL_MAPFILES) == NULL)
1716 return (S_ERROR);
1717 break;

1719 case ’N’:
1720 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1721 break;

1723 case ’Q’:

new/usr/src/cmd/sgs/libld/common/args.c 22

1724 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1725 if ((optarg[0] == ’n’) && (optarg[1] == ’\0’)) {
1726 if (Qflag != SET_UNKNOWN)
1727 ld_eprintf(ofl, ERR_WARNING_NF,
1728 MSG_INTL(MSG_ARG_MTONCE),
1729 MSG_ORIG(MSG_ARG_CQ));
1730 else
1731 Qflag = SET_FALSE;
1732 } else if ((optarg[0] == ’y’) && (optarg[1] == ’\0’)) {
1733 if (Qflag != SET_UNKNOWN)
1734 ld_eprintf(ofl, ERR_WARNING_NF,
1735 MSG_INTL(MSG_ARG_MTONCE),
1736 MSG_ORIG(MSG_ARG_CQ));
1737 else
1738 Qflag = SET_TRUE;
1739 } else {
1740 ld_eprintf(ofl, ERR_FATAL,
1741 MSG_INTL(MSG_ARG_ILLEGAL),
1742 MSG_ORIG(MSG_ARG_CQ), optarg);
1743 }
1744 break;

1746 case ’S’:
1747 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1748 if (aplist_append(&lib_support, optarg,
1749 AL_CNT_SUPPORT) == NULL)
1750 return (S_ERROR);
1751 break;

1753 case ’V’:
1754 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, NULL));
1755 if (!Vflag)
1756 (void) fprintf(stderr, MSG_ORIG(MSG_STR_STRNL),
1757 ofl->ofl_sgsid);
1758 Vflag = TRUE;
1759 break;

1761 case ’Y’:
1762 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, optarg));
1763 if (strncmp(optarg, MSG_ORIG(MSG_ARG_LCOM), 2) == 0) {
1764 if (Llibdir)
1765 ld_eprintf(ofl, ERR_WARNING_NF,
1766 MSG_INTL(MSG_ARG_MTONCE),
1767 MSG_ORIG(MSG_ARG_CYL));
1768 else
1769 Llibdir = optarg + 2;
1770 } else if (strncmp(optarg,
1771 MSG_ORIG(MSG_ARG_UCOM), 2) == 0) {
1772 if (Ulibdir)
1773 ld_eprintf(ofl, ERR_WARNING_NF,
1774 MSG_INTL(MSG_ARG_MTONCE),
1775 MSG_ORIG(MSG_ARG_CYU));
1776 else
1777 Ulibdir = optarg + 2;
1778 } else if (strncmp(optarg,
1779 MSG_ORIG(MSG_ARG_PCOM), 2) == 0) {
1780 if (Plibpath)
1781 ld_eprintf(ofl, ERR_WARNING_NF,
1782 MSG_INTL(MSG_ARG_MTONCE),
1783 MSG_ORIG(MSG_ARG_CYP));
1784 else
1785 Plibpath = optarg + 2;
1786 } else {
1787 ld_eprintf(ofl, ERR_FATAL,
1788 MSG_INTL(MSG_ARG_ILLEGAL),
1789 MSG_ORIG(MSG_ARG_CY), optarg);

new/usr/src/cmd/sgs/libld/common/args.c 23

1790 }
1791 break;

1793 case ’?’:
1794 DBG_CALL(Dbg_args_option(ofl->ofl_lml, ndx, c, NULL));
1795 /*
1796 * If the option character is ’-’, we’re looking at a
1797 * long option which couldn’t be translated, display a
1798 * more useful error.
1799 */
1800 if (optopt == ’-’) {
1801 eprintf(ofl->ofl_lml, ERR_FATAL,
1802 MSG_INTL(MSG_ARG_LONG_UNKNOWN),
1803 argv[optind-1]);
1804 } else {
1805 eprintf(ofl->ofl_lml, ERR_FATAL,
1806 MSG_INTL(MSG_ARG_UNKNOWN), optopt);
1807 }
1808 (*usage)++;
1809 break;

1811 default:
1812 break;
1813 }

1815 /*
1816 * Update the argument index for the next getopt() iteration.
1817 */
1818 ndx = optind;
1819 }
1820 return (1);
1821 }
______unchanged_portion_omitted_

new/usr/src/cmd/sgs/libld/common/files.c 1

**
 107936 Sun Feb 24 19:19:11 2019
new/usr/src/cmd/sgs/libld/common/files.c
ld should reject kernel modules as input
**
______unchanged_portion_omitted_

3023 /*
3024 * Process the current input file. There are basically three types of files
3025 * that come through here:
3026 *
3027 * - files explicitly defined on the command line (ie. foo.o or bar.so),
3028 * in this case only the ‘name’ field is valid.
3029 *
3030 * - libraries determined from the -l command line option (ie. -lbar),
3031 * in this case the ‘soname’ field contains the basename of the located
3032 * file.
3033 *
3034 * Any shared object specified via the above two conventions must be recorded
3035 * as a needed dependency.
3036 *
3037 * - libraries specified as dependencies of those libraries already obtained
3038 * via the command line (ie. bar.so has a DT_NEEDED entry of fred.so.1),
3039 * in this case the ‘soname’ field contains either a full pathname (if the
3040 * needed entry contained a ‘/’), or the basename of the located file.
3041 * These libraries are processed to verify symbol binding but are not
3042 * recorded as dependencies of the output file being generated.
3043 *
3044 * entry:
3045 * name - File name
3046 * soname - SONAME for needed sharable library, as described above
3047 * fd - Open file descriptor
3048 * elf - Open ELF handle
3049 * flags - FLG_IF_ flags applicable to file
3050 * ofl - Output file descriptor
3051 * rej - Rejection descriptor used to record rejection reason
3052 * ifl_ret - NULL, or address of pointer to receive reference to
3053 * resulting input descriptor for file. If ifl_ret is non-NULL,
3054 * the file cannot be an archive or it will be rejected.
3055 *
3056 * exit:
3057 * If a error occurs in examining the file, S_ERROR is returned.
3058 * If the file can be examined, but is not suitable, *rej is updated,
3059 * and 0 is returned. If the file is acceptable, 1 is returned, and if
3060 * ifl_ret is non-NULL, *ifl_ret is set to contain the pointer to the
3061 * resulting input descriptor.
3062 */
3063 uintptr_t
3064 ld_process_ifl(const char *name, const char *soname, int fd, Elf *elf,
3065 Word flags, Ofl_desc *ofl, Rej_desc *rej, Ifl_desc **ifl_ret)
3066 {
3067 Ifl_desc *ifl;
3068 Ehdr *ehdr;
3069 uintptr_t error = 0;
3070 struct stat status;
3071 Ar_desc *adp;
3072 Rej_desc _rej;

3074 /*
3075 * If this file was not extracted from an archive obtain its device
3076 * information. This will be used to determine if the file has already
3077 * been processed (rather than simply comparing filenames, the device
3078 * information provides a quicker comparison and detects linked files).
3079 */
3080 if (fd && ((flags & FLG_IF_EXTRACT) == 0))
3081 (void) fstat(fd, &status);

new/usr/src/cmd/sgs/libld/common/files.c 2

3082 else {
3083 status.st_dev = 0;
3084 status.st_ino = 0;
3085 }

3087 switch (elf_kind(elf)) {
3088 case ELF_K_AR:
3089 /*
3090 * If the caller has supplied a non-NULL ifl_ret, then
3091 * we cannot process archives, for there will be no
3092 * input file descriptor for us to return. In this case,
3093 * reject the attempt.
3094 */
3095 if (ifl_ret != NULL) {
3096 _rej.rej_type = SGS_REJ_ARCHIVE;
3097 _rej.rej_name = name;
3098 DBG_CALL(Dbg_file_rejected(ofl->ofl_lml, &_rej,
3099 ld_targ.t_m.m_mach));
3100 if (rej->rej_type == 0) {
3101 *rej = _rej;
3102 rej->rej_name = strdup(_rej.rej_name);
3103 }
3104 return (0);
3105 }

3107 /*
3108 * Determine if we’ve already come across this archive file.
3109 */
3110 if (!(flags & FLG_IF_EXTRACT)) {
3111 Aliste idx;

3113 for (APLIST_TRAVERSE(ofl->ofl_ars, idx, adp)) {
3114 if ((adp->ad_stdev != status.st_dev) ||
3115 (adp->ad_stino != status.st_ino))
3116 continue;

3118 /*
3119 * We’ve seen this file before so reuse the
3120 * original archive descriptor and discard the
3121 * new elf descriptor. Note that a file
3122 * descriptor is unnecessary, as the file is
3123 * already available in memory.
3124 */
3125 DBG_CALL(Dbg_file_reuse(ofl->ofl_lml, name,
3126 adp->ad_name));
3127 (void) elf_end(elf);
3128 if (!ld_process_archive(name, -1, adp, ofl))
3129 return (S_ERROR);
3130 return (1);
3131 }
3132 }

3134 /*
3135 * As we haven’t processed this file before establish a new
3136 * archive descriptor.
3137 */
3138 adp = ld_ar_setup(name, elf, ofl);
3139 if ((adp == NULL) || (adp == (Ar_desc *)S_ERROR))
3140 return ((uintptr_t)adp);
3141 adp->ad_stdev = status.st_dev;
3142 adp->ad_stino = status.st_ino;

3144 ld_sup_file(ofl, name, ELF_K_AR, flags, elf);

3146 /*
3147 * Indicate that the ELF descriptor no longer requires a file

new/usr/src/cmd/sgs/libld/common/files.c 3

3148 * descriptor by reading the entire file. The file is already
3149 * read via the initial mmap(2) behind elf_begin(3elf), thus
3150 * this operation is effectively a no-op. However, a side-
3151 * effect is that the internal file descriptor, maintained in
3152 * the ELF descriptor, is set to -1. This setting will not
3153 * be compared with any file descriptor that is passed to
3154 * elf_begin(), should this archive, or one of the archive
3155 * members, be processed again from the command line or
3156 * because of a -z rescan.
3157 */
3158 if (elf_cntl(elf, ELF_C_FDREAD) == -1) {
3159 ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_CNTL),
3160 name);
3161 return (0);
3162 }

3164 if (!ld_process_archive(name, -1, adp, ofl))
3165 return (S_ERROR);
3166 return (1);

3168 case ELF_K_ELF:
3169 /*
3170 * Obtain the elf header so that we can determine what type of
3171 * elf ELF_K_ELF file this is.
3172 */
3173 if ((ehdr = elf_getehdr(elf)) == NULL) {
3174 int _class = gelf_getclass(elf);

3176 /*
3177 * This can fail for a number of reasons. Typically
3178 * the object class is incorrect (ie. user is building
3179 * 64-bit but managed to point at 32-bit libraries).
3180 * Other ELF errors can include a truncated or corrupt
3181 * file. Try to get the best error message possible.
3182 */
3183 if (ld_targ.t_m.m_class != _class) {
3184 _rej.rej_type = SGS_REJ_CLASS;
3185 _rej.rej_info = (uint_t)_class;
3186 } else {
3187 _rej.rej_type = SGS_REJ_STR;
3188 _rej.rej_str = elf_errmsg(-1);
3189 }
3190 _rej.rej_name = name;
3191 DBG_CALL(Dbg_file_rejected(ofl->ofl_lml, &_rej,
3192 ld_targ.t_m.m_mach));
3193 if (rej->rej_type == 0) {
3194 *rej = _rej;
3195 rej->rej_name = strdup(_rej.rej_name);
3196 }
3197 return (0);
3198 }

3200 if (_gelf_getdynval(elf, DT_SUNW_KMOD) == 1) {
3201 _rej.rej_name = name;
3202 DBG_CALL(Dbg_file_rejected(ofl->ofl_lml, &_rej,
3203 ld_targ.t_m.m_mach));
3204 _rej.rej_type = SGS_REJ_KMOD;
3205 _rej.rej_str = elf_errmsg(-1);

3207 #endif /* ! codereview */
3208 if (rej->rej_type == 0) {
3209 *rej = _rej;
3210 rej->rej_name = strdup(_rej.rej_name);
3211 }
3212 return (0);
3213 }

new/usr/src/cmd/sgs/libld/common/files.c 4

3215 /*
3216 * Determine if we’ve already come across this file.
3217 */
3218 if (!(flags & FLG_IF_EXTRACT)) {
3219 APlist *apl;
3220 Aliste idx;

3222 if (ehdr->e_type == ET_REL)
3223 apl = ofl->ofl_objs;
3224 else
3225 apl = ofl->ofl_sos;

3227 /*
3228 * Traverse the appropriate file list and determine if
3229 * a dev/inode match is found.
3230 */
3231 for (APLIST_TRAVERSE(apl, idx, ifl)) {
3232 /*
3233 * Ifl_desc generated via -Nneed, therefore no
3234 * actual file behind it.
3235 */
3236 if (ifl->ifl_flags & FLG_IF_NEEDSTR)
3237 continue;

3239 if ((ifl->ifl_stino != status.st_ino) ||
3240 (ifl->ifl_stdev != status.st_dev))
3241 continue;

3243 /*
3244 * Disregard (skip) this image.
3245 */
3246 DBG_CALL(Dbg_file_skip(ofl->ofl_lml,
3247 ifl->ifl_name, name));
3248 (void) elf_end(elf);

3250 /*
3251 * If the file was explicitly defined on the
3252 * command line (this is always the case for
3253 * relocatable objects, and is true for shared
3254 * objects when they weren’t specified via -l or
3255 * were dragged in as an implicit dependency),
3256 * then warn the user.
3257 */
3258 if ((flags & FLG_IF_CMDLINE) ||
3259 (ifl->ifl_flags & FLG_IF_CMDLINE)) {
3260 const char *errmsg;

3262 /*
3263 * Determine whether this is the same
3264 * file name as originally encountered
3265 * so as to provide the most
3266 * descriptive diagnostic.
3267 */
3268 errmsg =
3269 (strcmp(name, ifl->ifl_name) == 0) ?
3270 MSG_INTL(MSG_FIL_MULINC_1) :
3271 MSG_INTL(MSG_FIL_MULINC_2);
3272 ld_eprintf(ofl, ERR_WARNING,
3273 errmsg, name, ifl->ifl_name);
3274 }
3275 if (ifl_ret)
3276 *ifl_ret = ifl;
3277 return (1);
3278 }
3279 }

new/usr/src/cmd/sgs/libld/common/files.c 5

3281 /*
3282 * At this point, we know we need the file. Establish an input
3283 * file descriptor and continue processing.
3284 */
3285 ifl = ifl_setup(name, ehdr, elf, flags, ofl, rej);
3286 if ((ifl == NULL) || (ifl == (Ifl_desc *)S_ERROR))
3287 return ((uintptr_t)ifl);
3288 ifl->ifl_stdev = status.st_dev;
3289 ifl->ifl_stino = status.st_ino;

3291 /*
3292 * If -zignore is in effect, mark this file as a potential
3293 * candidate (the files use isn’t actually determined until
3294 * symbol resolution and relocation processing are completed).
3295 */
3296 if (ofl->ofl_flags1 & FLG_OF1_IGNORE)
3297 ifl->ifl_flags |= FLG_IF_IGNORE;

3299 switch (ehdr->e_type) {
3300 case ET_REL:
3301 (*ld_targ.t_mr.mr_mach_eflags)(ehdr, ofl);
3302 error = process_elf(ifl, elf, ofl);
3303 break;
3304 case ET_DYN:
3305 if ((ofl->ofl_flags & FLG_OF_STATIC) ||
3306 !(ofl->ofl_flags & FLG_OF_DYNLIBS)) {
3307 ld_eprintf(ofl, ERR_FATAL,
3308 MSG_INTL(MSG_FIL_SOINSTAT), name);
3309 return (0);
3310 }

3312 /*
3313 * Record any additional shared object information.
3314 * If no soname is specified (eg. this file was
3315 * derived from a explicit filename declaration on the
3316 * command line, ie. bar.so) use the pathname.
3317 * This entry may be overridden if the files dynamic
3318 * section specifies an DT_SONAME value.
3319 */
3320 if (soname == NULL)
3321 ifl->ifl_soname = ifl->ifl_name;
3322 else
3323 ifl->ifl_soname = soname;

3325 /*
3326 * If direct bindings, lazy loading, group permissions,
3327 * or deferred dependencies need to be established, mark
3328 * this object.
3329 */
3330 if (ofl->ofl_flags1 & FLG_OF1_ZDIRECT)
3331 ifl->ifl_flags |= FLG_IF_DIRECT;
3332 if (ofl->ofl_flags1 & FLG_OF1_LAZYLD)
3333 ifl->ifl_flags |= FLG_IF_LAZYLD;
3334 if (ofl->ofl_flags1 & FLG_OF1_GRPPRM)
3335 ifl->ifl_flags |= FLG_IF_GRPPRM;
3336 if (ofl->ofl_flags1 & FLG_OF1_DEFERRED)
3337 ifl->ifl_flags |=
3338 (FLG_IF_LAZYLD | FLG_IF_DEFERRED);

3340 error = process_elf(ifl, elf, ofl);

3342 /*
3343 * Determine whether this dependency requires a syminfo.
3344 */
3345 if (ifl->ifl_flags & MSK_IF_SYMINFO)

new/usr/src/cmd/sgs/libld/common/files.c 6

3346 ofl->ofl_flags |= FLG_OF_SYMINFO;

3348 /*
3349 * Guidance: Use -z lazyload/nolazyload.
3350 * libc is exempt from this advice, because it cannot
3351 * be lazy loaded, and requests to do so are ignored.
3352 */
3353 if (OFL_GUIDANCE(ofl, FLG_OFG_NO_LAZY) &&
3354 ((ifl->ifl_flags & FLG_IF_RTLDINF) == 0)) {
3355 ld_eprintf(ofl, ERR_GUIDANCE,
3356 MSG_INTL(MSG_GUIDE_LAZYLOAD));
3357 ofl->ofl_guideflags |= FLG_OFG_NO_LAZY;
3358 }

3360 /*
3361 * Guidance: Use -B direct/nodirect or
3362 * -z direct/nodirect.
3363 */
3364 if (OFL_GUIDANCE(ofl, FLG_OFG_NO_DB)) {
3365 ld_eprintf(ofl, ERR_GUIDANCE,
3366 MSG_INTL(MSG_GUIDE_DIRECT));
3367 ofl->ofl_guideflags |= FLG_OFG_NO_DB;
3368 }

3370 break;
3371 default:
3372 (void) elf_errno();
3373 _rej.rej_type = SGS_REJ_UNKFILE;
3374 _rej.rej_name = name;
3375 DBG_CALL(Dbg_file_rejected(ofl->ofl_lml, &_rej,
3376 ld_targ.t_m.m_mach));
3377 if (rej->rej_type == 0) {
3378 *rej = _rej;
3379 rej->rej_name = strdup(_rej.rej_name);
3380 }
3381 return (0);
3382 }
3383 break;
3384 default:
3385 (void) elf_errno();
3386 _rej.rej_type = SGS_REJ_UNKFILE;
3387 _rej.rej_name = name;
3388 DBG_CALL(Dbg_file_rejected(ofl->ofl_lml, &_rej,
3389 ld_targ.t_m.m_mach));
3390 if (rej->rej_type == 0) {
3391 *rej = _rej;
3392 rej->rej_name = strdup(_rej.rej_name);
3393 }
3394 return (0);
3395 }
3396 if ((error == 0) || (error == S_ERROR))
3397 return (error);

3399 if (ifl_ret)
3400 *ifl_ret = ifl;
3401 return (1);
3402 }

3404 /*
3405 * Having successfully opened a file, set up the necessary elf structures to
3406 * process it further. This small section of processing is slightly different
3407 * from the elf initialization required to process a relocatable object from an
3408 * archive (see libs.c: ld_process_archive()).
3409 */
3410 uintptr_t
3411 ld_process_open(const char *opath, const char *ofile, int *fd, Ofl_desc *ofl,

new/usr/src/cmd/sgs/libld/common/files.c 7

3412 Word flags, Rej_desc *rej, Ifl_desc **ifl_ret)
3413 {
3414 Elf *elf;
3415 const char *npath = opath;
3416 const char *nfile = ofile;

3418 if ((elf = elf_begin(*fd, ELF_C_READ, NULL)) == NULL) {
3419 ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), npath);
3420 return (0);
3421 }

3423 /*
3424 * Determine whether the support library wishes to process this open.
3425 * The support library may return:
3426 * . a different ELF descriptor (in which case they should have
3427 * closed the original)
3428 * . a different file descriptor (in which case they should have
3429 * closed the original)
3430 * . a different path and file name (presumably associated with
3431 * a different file descriptor)
3432 *
3433 * A file descriptor of -1, or and ELF descriptor of zero indicates
3434 * the file should be ignored.
3435 */
3436 ld_sup_open(ofl, &npath, &nfile, fd, flags, &elf, NULL, 0,
3437 elf_kind(elf));

3439 if ((*fd == -1) || (elf == NULL))
3440 return (0);

3442 return (ld_process_ifl(npath, nfile, *fd, elf, flags, ofl, rej,
3443 ifl_ret));
3444 }

3446 /*
3447 * Having successfully mapped a file, set up the necessary elf structures to
3448 * process it further. This routine is patterned after ld_process_open() and
3449 * is only called by ld.so.1(1) to process a relocatable object.
3450 */
3451 Ifl_desc *
3452 ld_process_mem(const char *path, const char *file, char *addr, size_t size,
3453 Ofl_desc *ofl, Rej_desc *rej)
3454 {
3455 Elf *elf;
3456 uintptr_t open_ret;
3457 Ifl_desc *ifl;

3459 if ((elf = elf_memory(addr, size)) == NULL) {
3460 ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_MEMORY), path);
3461 return (0);
3462 }

3464 open_ret = ld_process_ifl(path, file, 0, elf, 0, ofl, rej, &ifl);
3465 if (open_ret != 1)
3466 return ((Ifl_desc *) open_ret);
3467 return (ifl);
3468 }

3470 /*
3471 * Process a required library (i.e. the dependency of a shared object).
3472 * Combine the directory and filename, check the resultant path size, and try
3473 * opening the pathname.
3474 */
3475 static Ifl_desc *
3476 process_req_lib(Sdf_desc *sdf, const char *dir, const char *file,
3477 Ofl_desc *ofl, Rej_desc *rej)

new/usr/src/cmd/sgs/libld/common/files.c 8

3478 {
3479 size_t dlen, plen;
3480 int fd;
3481 char path[PATH_MAX];
3482 const char *_dir = dir;

3484 /*
3485 * Determine the sizes of the directory and filename to insure we don’t
3486 * exceed our buffer.
3487 */
3488 if ((dlen = strlen(dir)) == 0) {
3489 _dir = MSG_ORIG(MSG_STR_DOT);
3490 dlen = 1;
3491 }
3492 dlen++;
3493 plen = dlen + strlen(file) + 1;
3494 if (plen > PATH_MAX) {
3495 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_FIL_PTHTOLONG),
3496 _dir, file);
3497 return (0);
3498 }

3500 /*
3501 * Build the entire pathname and try and open the file.
3502 */
3503 (void) strcpy(path, _dir);
3504 (void) strcat(path, MSG_ORIG(MSG_STR_SLASH));
3505 (void) strcat(path, file);
3506 DBG_CALL(Dbg_libs_req(ofl->ofl_lml, sdf->sdf_name,
3507 sdf->sdf_rfile, path));

3509 if ((fd = open(path, O_RDONLY)) == -1)
3510 return (0);
3511 else {
3512 uintptr_t open_ret;
3513 Ifl_desc *ifl;
3514 char *_path;

3516 if ((_path = libld_malloc(strlen(path) + 1)) == NULL)
3517 return ((Ifl_desc *)S_ERROR);
3518 (void) strcpy(_path, path);
3519 open_ret = ld_process_open(_path, &_path[dlen], &fd, ofl,
3520 0, rej, &ifl);
3521 if (fd != -1)
3522 (void) close(fd);
3523 if (open_ret != 1)
3524 return ((Ifl_desc *)open_ret);
3525 return (ifl);
3526 }
3527 }

3529 /*
3530 * Finish any library processing. Walk the list of so’s that have been listed
3531 * as "included" by shared objects we have previously processed. Examine them,
3532 * without adding them as explicit dependents of this program, in order to
3533 * complete our symbol definition process. The search path rules are:
3534 *
3535 * - use any user supplied paths, i.e. LD_LIBRARY_PATH and -L, then
3536 *
3537 * - use any RPATH defined within the parent shared object, then
3538 *
3539 * - use the default directories, i.e. LIBPATH or -YP.
3540 */
3541 uintptr_t
3542 ld_finish_libs(Ofl_desc *ofl)
3543 {

new/usr/src/cmd/sgs/libld/common/files.c 9

3544 Aliste idx1;
3545 Sdf_desc *sdf;
3546 Rej_desc rej = { 0 };

3548 /*
3549 * Make sure we are back in dynamic mode.
3550 */
3551 ofl->ofl_flags |= FLG_OF_DYNLIBS;

3553 for (APLIST_TRAVERSE(ofl->ofl_soneed, idx1, sdf)) {
3554 Aliste idx2;
3555 char *path, *slash = NULL;
3556 int fd;
3557 Ifl_desc *ifl;
3558 char *file = (char *)sdf->sdf_name;

3560 /*
3561 * See if this file has already been processed. At the time
3562 * this implicit dependency was determined there may still have
3563 * been more explicit dependencies to process. Note, if we ever
3564 * do parse the command line three times we would be able to
3565 * do all this checking when processing the dynamic section.
3566 */
3567 if (sdf->sdf_file)
3568 continue;

3570 for (APLIST_TRAVERSE(ofl->ofl_sos, idx2, ifl)) {
3571 if (!(ifl->ifl_flags & FLG_IF_NEEDSTR) &&
3572 (strcmp(file, ifl->ifl_soname) == 0)) {
3573 sdf->sdf_file = ifl;
3574 break;
3575 }
3576 }
3577 if (sdf->sdf_file)
3578 continue;

3580 /*
3581 * If the current path name element embeds a "/", then it’s to
3582 * be taken "as is", with no searching involved. Process all
3583 * "/" occurrences, so that we can deduce the base file name.
3584 */
3585 for (path = file; *path; path++) {
3586 if (*path == ’/’)
3587 slash = path;
3588 }
3589 if (slash) {
3590 DBG_CALL(Dbg_libs_req(ofl->ofl_lml, sdf->sdf_name,
3591 sdf->sdf_rfile, file));
3592 if ((fd = open(file, O_RDONLY)) == -1) {
3593 ld_eprintf(ofl, ERR_WARNING,
3594 MSG_INTL(MSG_FIL_NOTFOUND), file,
3595 sdf->sdf_rfile);
3596 } else {
3597 uintptr_t open_ret;
3598 Rej_desc _rej = { 0 };

3600 open_ret = ld_process_open(file, ++slash,
3601 &fd, ofl, 0, &_rej, &ifl);
3602 if (fd != -1)
3603 (void) close(fd);
3604 if (open_ret == S_ERROR)
3605 return (S_ERROR);

3607 if (_rej.rej_type) {
3608 Conv_reject_desc_buf_t rej_buf;

new/usr/src/cmd/sgs/libld/common/files.c 10

3610 ld_eprintf(ofl, ERR_WARNING,
3611 MSG_INTL(reject[_rej.rej_type]),
3612 _rej.rej_name ? rej.rej_name :
3613 MSG_INTL(MSG_STR_UNKNOWN),
3614 conv_reject_desc(&_rej, &rej_buf,
3615 ld_targ.t_m.m_mach));
3616 } else
3617 sdf->sdf_file = ifl;
3618 }
3619 continue;
3620 }

3622 /*
3623 * Now search for this file in any user defined directories.
3624 */
3625 for (APLIST_TRAVERSE(ofl->ofl_ulibdirs, idx2, path)) {
3626 Rej_desc _rej = { 0 };

3628 ifl = process_req_lib(sdf, path, file, ofl, &_rej);
3629 if (ifl == (Ifl_desc *)S_ERROR) {
3630 return (S_ERROR);
3631 }
3632 if (_rej.rej_type) {
3633 if (rej.rej_type == 0) {
3634 rej = _rej;
3635 rej.rej_name = strdup(_rej.rej_name);
3636 }
3637 }
3638 if (ifl) {
3639 sdf->sdf_file = ifl;
3640 break;
3641 }
3642 }
3643 if (sdf->sdf_file)
3644 continue;

3646 /*
3647 * Next use the local rules defined within the parent shared
3648 * object.
3649 */
3650 if (sdf->sdf_rpath != NULL) {
3651 char *rpath, *next;

3653 rpath = libld_malloc(strlen(sdf->sdf_rpath) + 1);
3654 if (rpath == NULL)
3655 return (S_ERROR);
3656 (void) strcpy(rpath, sdf->sdf_rpath);
3657 DBG_CALL(Dbg_libs_path(ofl->ofl_lml, rpath,
3658 LA_SER_RUNPATH, sdf->sdf_rfile));
3659 if ((path = strtok_r(rpath,
3660 MSG_ORIG(MSG_STR_COLON), &next)) != NULL) {
3661 do {
3662 Rej_desc _rej = { 0 };

3664 path = expand(sdf->sdf_rfile, path,
3665 &next);

3667 ifl = process_req_lib(sdf, path,
3668 file, ofl, &_rej);
3669 if (ifl == (Ifl_desc *)S_ERROR) {
3670 return (S_ERROR);
3671 }
3672 if ((_rej.rej_type) &&
3673 (rej.rej_type == 0)) {
3674 rej = _rej;
3675 rej.rej_name =

new/usr/src/cmd/sgs/libld/common/files.c 11

3676 strdup(_rej.rej_name);
3677 }
3678 if (ifl) {
3679 sdf->sdf_file = ifl;
3680 break;
3681 }
3682 } while ((path = strtok_r(NULL,
3683 MSG_ORIG(MSG_STR_COLON), &next)) != NULL);
3684 }
3685 }
3686 if (sdf->sdf_file)
3687 continue;

3689 /*
3690 * Finally try the default library search directories.
3691 */
3692 for (APLIST_TRAVERSE(ofl->ofl_dlibdirs, idx2, path)) {
3693 Rej_desc _rej = { 0 };

3695 ifl = process_req_lib(sdf, path, file, ofl, &rej);
3696 if (ifl == (Ifl_desc *)S_ERROR) {
3697 return (S_ERROR);
3698 }
3699 if (_rej.rej_type) {
3700 if (rej.rej_type == 0) {
3701 rej = _rej;
3702 rej.rej_name = strdup(_rej.rej_name);
3703 }
3704 }
3705 if (ifl) {
3706 sdf->sdf_file = ifl;
3707 break;
3708 }
3709 }
3710 if (sdf->sdf_file)
3711 continue;

3713 /*
3714 * If we’ve got this far we haven’t found the shared object.
3715 * If an object was found, but was rejected for some reason,
3716 * print a diagnostic to that effect, otherwise generate a
3717 * generic "not found" diagnostic.
3718 */
3719 if (rej.rej_type) {
3720 Conv_reject_desc_buf_t rej_buf;

3722 ld_eprintf(ofl, ERR_WARNING,
3723 MSG_INTL(reject[rej.rej_type]),
3724 rej.rej_name ? rej.rej_name :
3725 MSG_INTL(MSG_STR_UNKNOWN),
3726 conv_reject_desc(&rej, &rej_buf,
3727 ld_targ.t_m.m_mach));
3728 } else {
3729 ld_eprintf(ofl, ERR_WARNING,
3730 MSG_INTL(MSG_FIL_NOTFOUND), file, sdf->sdf_rfile);
3731 }
3732 }

3734 /*
3735 * Finally, now that all objects have been input, make sure any version
3736 * requirements have been met.
3737 */
3738 return (ld_vers_verify(ofl));
3739 }

new/usr/src/cmd/sgs/libld/common/globals.c 1

**
 4129 Sun Feb 24 19:19:11 2019
new/usr/src/cmd/sgs/libld/common/globals.c
ld should reject kernel modules as input
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1988 AT&T
24 * All Rights Reserved
25 *
26 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
27 */

29 /*
30 * Global variables
31 */
32 #include <sys/elf.h>
33 #include "msg.h"
34 #include "_libld.h"

36 Ld_heap *ld_heap; /* list of allocated blocks for */
37 /* link-edit dynamic allocations */
38 APlist *lib_support; /* list of support libraries specified */
39 /* (-S option) */
40 int demangle_flag; /* symbol demangling required */

42 /*
43 * Paths and directories for library searches. These are used to set up
44 * linked lists of directories which are maintained in the ofl structure.
45 */
46 char *Plibpath; /* User specified -YP or defaults to LIBPATH */
47 char *Llibdir; /* User specified -YL */
48 char *Ulibdir; /* User specified -YU */

50 /*
51 * A default library search path is used if one was not supplied on the command
52 * line. Note: these strings can not use MSG_ORIG() since they are modified as
53 * part of the path processing.
54 */
55 char def64_Plibpath[] = "/lib/64:/usr/lib/64";
56 char def32_Plibpath[] = "/usr/ccs/lib:/lib:/usr/lib";

58 /*
59 * Rejected file error messages (indexed to match SGS_REJ_ values).
60 */
61 const Msg

new/usr/src/cmd/sgs/libld/common/globals.c 2

62 reject[SGS_REJ_NUM] = {
63 MSG_STR_EMPTY,
64 MSG_REJ_MACH, /* MSG_INTL(MSG_REJ_MACH) */
65 MSG_REJ_CLASS, /* MSG_INTL(MSG_REJ_CLASS) */
66 MSG_REJ_DATA, /* MSG_INTL(MSG_REJ_DATA) */
67 MSG_REJ_TYPE, /* MSG_INTL(MSG_REJ_TYPE) */
68 MSG_REJ_BADFLAG, /* MSG_INTL(MSG_REJ_BADFLAG) */
69 MSG_REJ_MISFLAG, /* MSG_INTL(MSG_REJ_MISFLAG) */
70 MSG_REJ_VERSION, /* MSG_INTL(MSG_REJ_VERSION) */
71 MSG_REJ_HAL, /* MSG_INTL(MSG_REJ_HAL) */
72 MSG_REJ_US3, /* MSG_INTL(MSG_REJ_US3) */
73 MSG_REJ_STR, /* MSG_INTL(MSG_REJ_STR) */
74 MSG_REJ_UNKFILE, /* MSG_INTL(MSG_REJ_UNKFILE) */
75 MSG_REJ_UNKCAP, /* MSG_INTL(MSG_REJ_UNKCAP) */
76 MSG_REJ_HWCAP_1, /* MSG_INTL(MSG_REJ_HWCAP_1) */
77 MSG_REJ_SFCAP_1, /* MSG_INTL(MSG_REJ_SFCAP_1) */
78 MSG_REJ_MACHCAP, /* MSG_INTL(MSG_REJ_MACHCAP) */
79 MSG_REJ_PLATCAP, /* MSG_INTL(MSG_REJ_PLATCAP) */
80 MSG_REJ_HWCAP_2, /* MSG_INTL(MSG_REJ_HWCAP_2) */
81 MSG_REJ_ARCHIVE, /* MSG_INTL(MSG_REJ_ARCHIVE) */
82 MSG_REJ_KMOD /* MSG_INTL(MSG_REJ_KMOD) */
81 MSG_REJ_ARCHIVE /* MSG_INTL(MSG_REJ_ARCHIVE) */
83 };
84 #if SGS_REJ_NUM != (SGS_REJ_KMOD + 1)
83 #if SGS_REJ_NUM != (SGS_REJ_ARCHIVE + 1)
85 #error SGS_REJ_NUM has changed
86 #endif

88 /*
89 * Symbol types that we include in .SUNW_ldynsym sections
90 * (indexed by STT_ values).
91 */
92 const int
93 ldynsym_symtype[] = {
94 0, /* STT_NOTYPE (not counting 1st slot) */
95 0, /* STT_OBJECT */
96 1, /* STT_FUNC */
97 0, /* STT_SECTION */
98 1, /* STT_FILE */
99 0, /* STT_COMMON */
100 0, /* STT_TLS */
101 0, /* 7 */
102 0, /* 8 */
103 0, /* 9 */
104 0, /* 10 */
105 0, /* 11 */
106 0, /* 12 */
107 0, /* STT_SPARC_REGISTER */
108 0, /* 14 */
109 0, /* 15 */
110 };

______unchanged_portion_omitted_

new/usr/src/cmd/sgs/libld/common/libld.msg 1

**
 60944 Sun Feb 24 19:19:11 2019
new/usr/src/cmd/sgs/libld/common/libld.msg
ld should reject kernel modules as input
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
ld: implement -ztype and rework option parsing
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 #
27 # Copyright (c) 2012, Joyent, Inc. All rights reserved.
28 # Copyright 2017 RackTop Systems.
29 #

31 @ _START_

33 # Message file for cmd/sgs/libld.

35 @ MSG_ID_LIBLD

37 #
38 # TRANSLATION_NOTE -- Beginning of USAGE message
39 # The following messages are the usage messages for the ld command.
40 # Tab characters (\t) are used to align the messages.
41 #
42 # Each usage message starts with \t, and if the message has more than one
43 # line, the following messages are aligned by 3 tab characters.
44 # When you see \n\t\t\t, the first \n is used to change the line,
45 # and following 3 tab characters are used to align the line.
46 #
47 # Each usage message option is surrounded by [and]. Then the
48 # description of the option follows. The descriptions should be aligned,
49 # so tab characters are padded as needed after the closing bracket].
50 #
51 # How to align the messages are up to the translators and the
52 # localization engineers.
53 #
54 # In C locale, the first 3 messages would look like the following:
55 #
56 # usage: ld [-6:abc:.....] file(s)
57 # [-a] create an absolute file

new/usr/src/cmd/sgs/libld/common/libld.msg 2

58 # [-b] do not do special PIC relocations in a.out
59 # [-c file] record configuration ’file’
60 #
61 @ MSG_ARG_USAGE "usage: ld [-%s] file(s)\n"
62 @ MSG_ARG_DETAIL_3 "\t[-32]\t\tenforce a 32-bit link-edit\n"
63 @ MSG_ARG_DETAIL_6 "\t[-64]\t\tenforce a 64-bit link-edit\n"
64 @ MSG_ARG_DETAIL_A "\t[-a]\t\tcreate an absolute file\n"
65 @ MSG_ARG_DETAIL_B "\t[-b]\t\tdo not do special PIC relocations in a.out\n"
66 @ MSG_ARG_DETAIL_CBDR "\t[-B direct | nodirect]\n\
67 \t\t\testablish direct bindings, or inhibit direct \
68 binding\n\
69 \t\t\tto, the object being created\n"
70 @ MSG_ARG_DETAIL_CBDY "\t[-B dynamic | static]\n\
71 \t\t\tsearch for shared libraries|archives\n"
72 @ MSG_ARG_DETAIL_CBE "\t[-B eliminate]\teliminate unqualified global \
73 symbols from the\n\t\t\tsymbol table\n"
74 @ MSG_ARG_DETAIL_CBG "\t[-B group]\trelocate object from within group\n"
75 @ MSG_ARG_DETAIL_CBL "\t[-B local]\treduce unqualified global symbols to \
76 local\n"
77 @ MSG_ARG_DETAIL_CBR "\t[-B reduce]\tprocess symbol reductions\n"
78 @ MSG_ARG_DETAIL_CBS "\t[-B symbolic]\tbind external references to \
79 definitions when creating\n\
80 \t\t\tshared objects\n"
81 @ MSG_ARG_DETAIL_C "\t[-c name]\trecord configuration file ’name’\n"
82 @ MSG_ARG_DETAIL_CC "\t[-C]\t\tdemangle C++ symbol name diagnostics\n"
83 @ MSG_ARG_DETAIL_D "\t[-d y | n]\toperate in dynamic|static mode\n"
84 @ MSG_ARG_DETAIL_CD "\t[-D token,...]\tprint diagnostic messages\n"
85 @ MSG_ARG_DETAIL_E "\t[-e epsym], [--entry epsym]\n\
86 \t\t\tuse ’epsym’ as entry point address\n"
87 @ MSG_ARG_DETAIL_F "\t[-f name], [--auxiliary name]\n\
88 \t\t\tspecify library for which this file is an \
89 auxiliary\n\t\t\tfilter\n"
90 @ MSG_ARG_DETAIL_CF "\t[-F name], [--filter name]\n\
91 \t\t\tspecify library for which this file is a filter\n
92 @ MSG_ARG_DETAIL_CG "\t[-G], [-shared]\n\
93 \t\t\tcreate a shared object\n"
94 @ MSG_ARG_DETAIL_H "\t[-h name], [--soname name]\n\
95 \t\t\tuse ’name’ as internal shared object identifier\n
96 @ MSG_ARG_DETAIL_I "\t[-i]\t\tignore LD_LIBRARY_PATH setting\n"
97 @ MSG_ARG_DETAIL_CI "\t[-I name]\tuse ’name’ as path of interpreter\n"
98 @ MSG_ARG_DETAIL_L "\t[-l x], [--library x]\n\
99 \t\t\tsearch for libx.so or libx.a\n"
100 @ MSG_ARG_DETAIL_CL "\t[-L path], [--library-path path]\n\
101 \t\t\tsearch for libraries in directory ’path’\n"
102 @ MSG_ARG_DETAIL_M "\t[-m]\t\tprint memory map\n"
103 @ MSG_ARG_DETAIL_CM "\t[-M mapfile]\tuse processing directives contained \
104 in ’mapfile’\n"
105 @ MSG_ARG_DETAIL_CN "\t[-N string]\tcreate a dynamic dependency for \
106 ’string’\n"
107 @ MSG_ARG_DETAIL_O "\t[-o outfile], [--output outfile]\n\
108 \t\t\tname the output file ’outfile’\n"
109 @ MSG_ARG_DETAIL_P "\t[-p auditlib]\tidentify audit library to accompany \
110 this object\n"
111 @ MSG_ARG_DETAIL_CP "\t[-P auditlib]\tidentify audit library for \
112 processing the dependencies\n\
113 \t\t\tof this object\n"
114 @ MSG_ARG_DETAIL_CQ "\t[-Q y | n]\tdo|do not place version information in \
115 output file\n"
116 @ MSG_ARG_DETAIL_R "\t[-r], [--relocatable]\n\
117 \t\t\tcreate a relocatable object\n"
118 @ MSG_ARG_DETAIL_CR "\t[-R path], [-rpath path]\n\
119 \t\t\tspecify a library search path to be used at run \
120 time\n"
121 @ MSG_ARG_DETAIL_S "\t[-s], [--strip-all]\n\
122 \t\t\tstrip any symbol and debugging information\n"
123 @ MSG_ARG_DETAIL_CS "\t[-S supportlib]\n\

new/usr/src/cmd/sgs/libld/common/libld.msg 3

124 \t\t\tspecify a link-edit support library\n"
125 @ MSG_ARG_DETAIL_T "\t[-t]\t\tdo not warn of multiply-defined symbols \
126 that have\n\t\t\tdifferent sizes or alignments\n"
127 @ MSG_ARG_DETAIL_U "\t[-u symname], [--undefined symname]\n\
128 \t\t\tcreate an undefined symbol ’symname’\n"
129 @ MSG_ARG_DETAIL_CV "\t[-V], [--version]\n\
130 \t\t\tprint version information\n"
131 @ MSG_ARG_DETAIL_CY "\t[-Y P,dirlist]\tuse ’dirlist’ as a default path \
132 when searching for\n\
133 \t\t\tlibraries\n"
134 @ MSG_ARG_DETAIL_ZA "\t[-z absexec]\twhen building an executable absolute \
135 symbols\n \
136 \t\t\treferenced in dynamic objects are promoted to\n \
137 \t\t\tthe executable\n"
138 @ MSG_ARG_DETAIL_ZAE "\t[-z allextract | defaultextract | weakextract],\n\
139 \t[--whole-archive | --no-whole-archive]\n\
140 \t\t\textract all member files, only members that \
141 resolve\n\
142 \t\t\tundefined or tentative symbols, or \
143 allow extraction of\n\
144 \t\t\tarchive members to resolve weak references from \
145 \n\t\t\t\archive files\n"
146 @ MSG_ARG_DETAIL_ZAL "\t[-z altexec64]\texecute the 64-bit link-editor\n"
147 @ MSG_ARG_DETAIL_ZADLIB "\t[-z assert-deflib]\n\
148 \t\t\tenables warnings for linking with libraries in \
149 the \n\t\t\tdefault search path\n\
150 \t[-z assert-deflib=libname]\n\
151 \t\t\tenables warnings for linking with libraries in \
152 the \n\t\t\tdefault search path, but ’libname’ is exempt
153 @ MSG_ARG_DETAIL_ZC "\t[-z combreloc | nocombreloc]\n\
154 \t\t\tcombine|do not combine multiple relocation \
155 sections\n"
156 @ MSG_ARG_DETAIL_ZNC "\t[-z nocompstrtab]\n\t\t\tdisable compression of \
157 string tables\n"
158 @ MSG_ARG_DETAIL_ZDEF "\t[-z deferred | nodeferred]\n\
159 \t\t\tenable|disable deferred identification of \
160 shared object\n\t\t\tdependencies\n"
161 @ MSG_ARG_DETAIL_ZDFS "\t[-z defs], [--no-undefined]\n\
162 \t\t\tdisallow undefined symbol references\n"
163 @ MSG_ARG_DETAIL_ZDRS "\t[-z direct | nodirect]\n\
164 \t\t\tenable|disable direct binding to shared object\n\
165 \t\t\tdependencies\n"
166 @ MSG_ARG_DETAIL_ZE "\t[-z endfiltee]\tmarks a filtee such that it will \
167 terminate a filters\n\t\t\tsearch\n"
168 @ MSG_ARG_DETAIL_ZFATW "\t[-z fatal-warnings | nofatal-warnings],\n\
169 \t[--fatal-warnings | --no-fatal-warnings]\n\
170 \t\tenable|disable treatment of warnings as fatal\n"
171 @ MSG_ARG_DETAIL_ZFA "\t[-z finiarray=function]\n\
172 \t\t\tname of function to be appended to the \
173 .fini_array\n"
174 @ MSG_ARG_DETAIL_ZGP "\t[-z groupperm | nogroupperm]\n\
175 \t\t\tenable|disable setting of group permissions\n\
176 \t\t\ton dynamic dependencies\n"
177 @ MSG_ARG_DETAIL_ZGUIDE "\t[-z guidance | -z guidance=item1,item2,...]\n\
178 \t\t\tenable guidance warnings. items: \
179 noall, nodefs,\n\
180 \t\t\tnodirect, nolazyload, nomapfile, notext, \
181 nounused\n"
182 @ MSG_ARG_DETAIL_ZH "\t[-z help], [--help]\n\
183 \t\t\tprint this usage message\n"
184 @ MSG_ARG_DETAIL_ZIG "\t[-z ignore | record]\n\
185 \t\t\tignore|record unused dynamic dependencies\n"
186 @ MSG_ARG_DETAIL_ZINA "\t[-z initarray=function]\n\
187 \t\t\tname of function to be appended to the \
188 .init_array\n"
189 @ MSG_ARG_DETAIL_ZINI "\t[-z initfirst]\tmark object to indicate that its \

new/usr/src/cmd/sgs/libld/common/libld.msg 4

190 .init section should\n\
191 \t\t\tbe executed before the .init section of any \
192 other\n\t\t\tobjects\n"
193 @ MSG_ARG_DETAIL_ZINT "\t[-z interpose]\
194 \tdynamic object is to be an ’interposer’ on direct\n\
195 \t\t\tbindings\n"
196 @ MSG_ARG_DETAIL_ZLAZY "\t[-z lazyload | nolazyload]\n\
197 \t\t\tenable|disable delayed loading of shared \
198 object\n\t\t\tdependencies\n"
199 @ MSG_ARG_DETAIL_ZLD32 "\t[-z ld32=arg1,arg2,...]\n\
200 \t\t\tdefine arguments applicable to the \
201 32-bit class of ld(1)\n"
202 @ MSG_ARG_DETAIL_ZLD64 "\t[-z ld64=arg1,arg2,...]\n\
203 \t\t\tdefine arguments applicable to the \
204 64-bit class of ld(1)\n"
205 @ MSG_ARG_DETAIL_ZLO "\t[-z loadfltr]\tmark filter as requiring immediate \
206 loading of its\n\
207 \t\t\tfiltees at runtime\n"
208 @ MSG_ARG_DETAIL_ZM "\t[-z muldefs], [--allow-multiple-definition]\n\
209 \t\t\tallow multiply-defined symbols\n"
210 @ MSG_ARG_DETAIL_ZNDFS "\t[-z nodefs]\tallow undefined symbol references\n"
211 @ MSG_ARG_DETAIL_ZNDEF "\t[-z nodefaultlib]\n\
212 \t\t\tmark object to ignore any default library \
213 search path\n"
214 @ MSG_ARG_DETAIL_ZNDEL "\t[-z nodelete]\tmark object as non-deletable\n"
215 @ MSG_ARG_DETAIL_ZNDLO "\t[-z nodlopen]\tmark object as non-dlopen()’able\n"
216 @ MSG_ARG_DETAIL_ZNDU "\t[-z nodump]\tmark object as non-dldump()’able\n"
217 @ MSG_ARG_DETAIL_ZNLD "\t[-z noldynsym]\tdo not add a .SUNW_ldynsym section\n"
218 @ MSG_ARG_DETAIL_ZNPA "\t[-z nopartial]\texpand any partially initialized \
219 symbols\n"
220 @ MSG_ARG_DETAIL_ZNV "\t[-z noversion]\tdo not record any version sections\n"
221 @ MSG_ARG_DETAIL_ZNOW "\t[-z now]\tmark object as requiring non-lazy \
222 binding\n"
223 @ MSG_ARG_DETAIL_ZO "\t[-z origin]\tmark object as requiring $ORIGIN \
224 processing\n"
225 @ MSG_ARG_DETAIL_ZPIA "\t[-z preinitarray=function]\n\
226 \t\t\tname of function to be appended to the \
227 .preinit_array\n"
228 @ MSG_ARG_DETAIL_ZRL "\t[-z redlocsym]\treduce local syms in .symtab to \
229 a minimum\n"
230 @ MSG_ARG_DETAIL_ZRREL "\t[-z relaxreloc]\trelax rules used for relocations \
231 against COMDAT sections\n"
232 @ MSG_ARG_DETAIL_ZRS "\t[-z rescan]\tafter processing all arguments, rescan \
233 archive list\n\
234 \t\t\tuntil no further member extraction occurs\n"
235 @ MSG_ARG_DETAIL_ZRSN "\t[-z rescan-now]\timmediately rescan archive list \
236 until\n\
237 \t\t\tno further member extraction occurs\n"
238 @ MSG_ARG_DETAIL_ZRSGRP "\t[-z rescan-start archives... -z rescan-end],\n\
239 \t[--start-group archives... --end-group], \
240 [-(archives... -)]\n\
241 \t\t\trescan specified archive group upon reaching\n\
242 \t\t\tthe end of the group, until no further\n\
243 \t\t\tmember extraction occurs\n"
244 @ MSG_ARG_DETAIL_ZSCAP "\t[-z symbolcap]\tconvert object capabilities to \
245 symbol capabilities\n"
246 @ MSG_ARG_DETAIL_ZTARG "\t[-z target=platform]\n\
247 \t\t\ttarget machine for cross linking\n"
248 @ MSG_ARG_DETAIL_ZT "\t[-z text]\tdisallow output relocations against \
249 text\n"
250 @ MSG_ARG_DETAIL_ZTO "\t[-z textoff]\tallow output relocations against \
251 text\n"
252 @ MSG_ARG_DETAIL_ZTW "\t[-z textwarn]\twarn if there are relocations \
253 against text\n"
254 @ MSG_ARG_DETAIL_ZTY "\t[-z type=type]\tspecify the type of object \
255 (exec, kmod, reloc, shared)\n"

new/usr/src/cmd/sgs/libld/common/libld.msg 5

256 #endif /* ! codereview */
257 @ MSG_ARG_DETAIL_ZWRAP "\t[-z wrap=symbol], [-wrap=symbol], [--wrap=symbol]\n\
258 \t\t\twrap symbol references\n"
259 @ MSG_ARG_DETAIL_ZVER "\t[-z verbose]\t\
260 generate warnings for suspicious processings\n"

262 #
263 # TRANSLATION_NOTE -- End of USAGE message
264 #
265 @ MSG_GRP_INVALNDX "file %s: group section [%u]%s: entry %d: \
266 invalid section index: %d"

268 # Relocation processing messages (some of these are required to satisfy
269 # do_reloc(), which is common code used by cmd/sgs/rtld - make sure both
270 # message files remain consistent).

272 @ MSG_REL_NOFIT "relocation error: %s: file %s: symbol %s: \
273 value 0x%llx does not fit"
274 @ MSG_REL_NONALIGN "relocation error: %s: file %s: symbol %s: \
275 offset 0x%llx is non-aligned"
276 @ MSG_REL_NULL "relocation error: file %s: section [%u]%s: \
277 skipping null relocation record"
278 @ MSG_REL_NOTSUP "relocation error: %s: file %s: section [%u]%s: \
279 relocation not currently supported"
280 @ MSG_REL_PICREDLOC "relocation error: %s: file %s symbol %s: \
281 -z redlocsym may not be used for pic code"
282 @ MSG_REL_TLSLE "relocation error: %s: file %s: symbol %s: \
283 relocation illegal when building a shared object"
284 @ MSG_REL_TLSBND "relocation error: %s: file %s: symbol %s: \
285 bound to: %s: relocation illegal when not bound \
286 to object being created"
287 @ MSG_REL_TLSSTAT "relocation error: %s: file %s: symbol %s: \
288 relocation illegal when building a static object"
289 @ MSG_REL_TLSBADSYM "relocation error: %s: file %s: symbol %s: \
290 bad symbol type %s: symbol type must be TLS"
291 @ MSG_REL_BADTLS "relocation error: %s: file %s: symbol %s: \
292 relocation illegal for TLS symbol"
293 @ MSG_REL_BADGOTBASED "relocation error: %s: file %s: symbol %s: a GOT \
294 relative relocation must reference a local symbol"
295 @ MSG_REL_UNKNWSYM "relocation error: %s: file %s: section [%u]%s: \
296 attempt to relocate with respect to unknown \
297 symbol %s: offset 0x%llx, symbol index %d"
298 @ MSG_REL_UNSUPSZ "relocation error: %s: file %s: symbol %s: \
299 offset size (%d bytes) is not supported"
300 @ MSG_REL_INVALOFFSET "relocation error: %s: file %s section [%u]%s: \
301 invalid offset symbol ’%s’: offset 0x%llx"
302 @ MSG_REL_INVALRELT "relocation error: file %s: section [%u]%s: \
303 invalid relocation type: 0x%x"
304 @ MSG_REL_EMPTYSEC "relocation error: %s: file %s: symbol %s: \
305 attempted against empty section [%u]%s"
306 @ MSG_REL_EXTERNSYM "relocation error: %s: file %s: symbol %s: \
307 external symbolic relocation against non-allocatable \
308 section %s; cannot be processed at runtime: \
309 relocation ignored"
310 @ MSG_REL_UNEXPREL "relocation error: %s: file %s: symbol %s: \
311 unexpected relocation; generic processing performed"
312 @ MSG_REL_UNEXPSYM "relocation error: %s: file %s: symbol %s: \
313 unexpected symbol referenced from file %s"
314 @ MSG_REL_SYMDISC "relocation error: %s: file %s: section [%u]%s: \
315 symbol %s: symbol has been discarded with discarded \
316 section: [%u]%s"
317 @ MSG_REL_NOSYMBOL "relocation error: %s: file %s: section: [%u]%s: \
318 offset: 0x%llx: relocation requires reference symbol"
319 @ MSG_REL_DISPREL1 "relocation error: %s: file %s: symbol %s: \
320 displacement relocation applied to the symbol \
321 %s at 0x%llx: symbol %s is a copy relocated symbol"

new/usr/src/cmd/sgs/libld/common/libld.msg 6

322 @ MSG_REL_UNSUPSIZE "relocation error: %s: file %s: section [%u]%s: \
323 relocation against section symbol unsupported"

325 @ MSG_REL_DISPREL2 "relocation warning: %s: file %s: symbol %s: \
326 may contain displacement relocation"
327 @ MSG_REL_DISPREL3 "relocation warning: %s: file %s: symbol %s: \
328 displacement relocation applied to the symbol \
329 %s: at 0x%llx: displacement relocation will not be \
330 visible in output image"
331 @ MSG_REL_DISPREL4 "relocation warning: %s: file %s: symbol %s: \
332 displacement relocation to be applied to the symbol \
333 %s: at 0x%llx: displacement relocation will be \
334 visible in output image"
335 @ MSG_REL_COPY "relocation warning: %s: file %s: symbol %s: \
336 relocation bound to a symbol with STV_PROTECTED \
337 visibility"
338 @ MSG_RELINVSEC "relocation warning: %s: file %s: section: [%u]%s: \
339 against suspicious section [%u]%s; relocation ignored"
340 @ MSG_REL_TLSIE "relocation warning: %s: file %s: symbol %s: \
341 relocation has restricted use when building a shared \
342 object"

344 @ MSG_REL_SLOPCDATNONAM "relocation warning: %s: file %s: section [%u]%s: \
345 relocation against discarded COMDAT section [%u]%s: \
346 redirected to file %s"
347 @ MSG_REL_SLOPCDATNAM "relocation warning: %s: file %s: section [%u]%s: \
348 symbol %s: relocation against discarded COMDAT \
349 section [%u]%s: redirected to file %s"
350 @ MSG_REL_SLOPCDATNOSYM "relocation warning: %s: file %s: section [%u]%s: \
351 symbol %s: relocation against discarded COMDAT \
352 section [%u]%s: symbol not found, relocation ignored"

354 @ MSG_REL_NOREG "relocation error: REGISTER relocation not supported \
355 on target architecture"

357 #
358 # TRANSLATION_NOTE
359 # The following 7 messages are the message to print the
360 # following example messages.
361 #
362 #Text relocation remains referenced
363 # against symbol offset in file
364 #str 0x14 main.o
365 #printf 0x1c main.o
366 #
367 # The first two lines are the header, and the next msgid
368 # is the format string for the header.
369 # Tabs and spaces are used for alignment.
370 # The first and third %s are for: "Text relocation remains against symbol"
371 # The second %s and fourth %s are for: "referenced in file"
372 # The third %s is for: "offset"
373 #
374 @ MSG_REL_REMAIN_FMT_1 "%-40s\t%s\n %s\t\t %s\t%s"
375 #
376 # TRANSLATION_NOTE
377 # The next two msdid make a sentence. So translate:
378 # "Text relocation remain against symbol"
379 # And separate them into two msgstr considering the proper
380 # alignment.
381 @ MSG_REL_RMN_ITM_11 "Text relocation remains"
382 @ MSG_REL_RMN_ITM_12 "against symbol"
383 @ MSG_REL_RMN_ITM_13 "warning: Text relocation remains"

385 @ MSG_REL_RMN_ITM_2 "offset"

387 #

new/usr/src/cmd/sgs/libld/common/libld.msg 7

388 # TRANSLATION_NOTE
389 # The next two msdid make a sentence. So translate:
390 # "referenced in file"
391 # And separate them into two msgstr considering the proper
392 # alignment.
393 @ MSG_REL_RMN_ITM_31 "referenced"
394 @ MSG_REL_RMN_ITM_32 "in file"
395 @ MSG_REL_REMAIN_2 "%-35s 0x%-8llx\t%s"
396 @ MSG_REL_REMAIN_3 "relocations remain against allocatable but \
397 non-writable sections"

399 # Files processing messages

401 @ MSG_FIL_MULINC_1 "file %s: attempted multiple inclusion of file"
402 @ MSG_FIL_MULINC_2 "file %s: linked to %s: attempted multiple inclusion \
403 of file"
404 @ MSG_FIL_SOINSTAT "input of shared object ’%s’ in static mode"
405 @ MSG_FIL_INVALSEC "file %s: section [%u]%s has invalid type %s"
406 @ MSG_FIL_NOTFOUND "file %s: required by %s, not found"
407 @ MSG_FIL_MALSTR "file %s: section [%u]%s: malformed string table, \
408 initial or final byte"
409 @ MSG_FIL_PTHTOLONG "’%s/%s’ pathname too long"
410 @ MSG_FIL_EXCLUDE "file %s: section [%u]%s contains both SHF_EXCLUDE and \
411 SHF_ALLOC flags: SHF_EXCLUDE ignored"
412 @ MSG_FIL_INTERRUPT "file %s: creation interrupted: %s"
413 @ MSG_FIL_INVRELOC1 "file %s: section [%u]%s: relocations can not be \
414 applied against section [%u]%s"
415 @ MSG_FIL_INVSHINFO "file %s: section [%u]%s: has invalid sh_info: %lld"
416 @ MSG_FIL_INVSHLINK "file %s: section [%u]%s: has invalid sh_link: %lld"
417 @ MSG_FIL_INVSHENTSIZE "file %s: section [%u]%s: has invalid sh_entsize: %lld"
418 @ MSG_FIL_NOSTRTABLE "file %s: section [%u]%s: symbol[%d]: specifies string \
419 table offset 0x%llx: no string table is available"
420 @ MSG_FIL_EXCSTRTABLE "file %s: section [%u]%s: symbol[%d]: specifies string \
421 table offset 0x%llx: exceeds string table %s: \
422 size 0x%llx"
423 @ MSG_FIL_NONAMESYM "file %s: section [%u]%s: symbol[%d]: global symbol has
424 no name"
425 @ MSG_FIL_UNKCAP "file %s: section [%u]%s: unknown capability tag: %d"
426 @ MSG_FIL_BADSF1 "file %s: section [%u]%s: unknown software \
427 capabilities: 0x%llx; ignored"
428 @ MSG_FIL_INADDR32SF1 "file %s: section [%u]%s: software capability ADDR32: is
429 ineffective when building 32-bit object; ignored"
430 @ MSG_FIL_EXADDR32SF1 "file %s: section [%u]%s: software capability ADDR32: \
431 requires executable be built with ADDR32 capability"

433 @ MSG_FIL_BADORDREF "file %s: section [%u]%s: contains illegal reference \
434 to discarded section: [%u]%s"

436 # Recording name conflicts

438 @ MSG_REC_OPTCNFLT "recording name conflict: file ’%s’ and %s provide \
439 identical dependency names: %s"
440 @ MSG_REC_OBJCNFLT "recording name conflict: file ’%s’ and file ’%s’ \
441 provide identical dependency names: %s %s"
442 @ MSG_REC_CNFLTHINT "(possible multiple inclusion of the same file)"

444 # System call messages

446 @ MSG_SYS_OPEN "file %s: open failed: %s"
447 @ MSG_SYS_UNLINK "file %s: unlink failed: %s"
448 @ MSG_SYS_MMAPANON "mmap anon failed: %s"
449 @ MSG_SYS_MALLOC "malloc failed: %s"

452 # Messages related to platform support

new/usr/src/cmd/sgs/libld/common/libld.msg 8

454 @ MSG_TARG_UNSUPPORTED "unsupported ELF machine type: %s"

457 # ELF processing messages

459 @ MSG_ELF_LIBELF "libelf: version not supported: %d"

461 @ MSG_ELF_ARMEM "file %s: unable to locate archive member;\n\t\
462 offset=%x, symbol=%s"

464 @ MSG_ELF_ARSYM "file %s ignored: unable to locate archive symbol table"

466 @ MSG_ELF_VERSYM "file %s: version symbol section entry mismatch:\n\t\
467 (section [%u]%s entries=%d; section [%u]%s entries=%d)"

469 @ MSG_ELF_NOGROUPSECT "file %s: section [%u]%s: SHF_GROUP flag set, but no \
470 corresponding SHT_GROUP section found"

472 # Section processing errors

474 @ MSG_SCN_NONALLOC "%s: non-allocatable section ’%s’ directed to a \
475 loadable segment: %s"

477 @ MSG_SCN_MULTICOMDAT "file %s: section [%u]%s: cannot be susceptible to multi
478 COMDAT mechanisms: %s"

480 @ MSG_SCN_DWFOVRFLW "%s: section %s: encoded DWARF data exceeds \
481 section size"
482 @ MSG_SCN_DWFBADENC "%s: section %s: invalid DWARF encoding: %#x"

484 # Symbol processing errors

486 @ MSG_SYM_NOSECDEF "symbol ’%s’ in file %s has no section definition"
487 @ MSG_SYM_INVSEC "symbol ’%s’ in file %s associated with invalid \
488 section[%lld]"
489 @ MSG_SYM_TLS "symbol ’%s’ in file %s (STT_TLS), is defined \
490 in a non-SHF_TLS section"
491 @ MSG_SYM_BADADDR "symbol ’%s’ in file %s: section [%u]%s: size %#llx: \
492 symbol (address %#llx, size %#llx) lies outside \
493 of containing section"
494 @ MSG_SYM_BADADDR_ROTXT "symbol ’%s’ in file %s: readonly text section \
495 [%u]%s: size %#llx: symbol (address %#llx, \
496 size %#llx) lies outside of containing section"
497 @ MSG_SYM_MULDEF "symbol ’%s’ is multiply-defined:"
498 @ MSG_SYM_CONFVIS "symbol ’%s’ has conflicting visibilities:"
499 @ MSG_SYM_DIFFTYPE "symbol ’%s’ has differing types:"
500 @ MSG_SYM_DIFFATTR "symbol ’%s’ has differing %s:\n\
501 \t(file %s value=0x%llx; file %s value=0x%llx);"
502 @ MSG_SYM_FILETYPES "\t(file %s type=%s; file %s type=%s);"
503 @ MSG_SYM_VISTYPES "\t(file %s visibility=%s; file %s visibility=%s);"
504 @ MSG_SYM_DEFTAKEN "\t%s definition taken"
505 @ MSG_SYM_DEFUPDATE "\t%s definition taken and updated with larger size"
506 @ MSG_SYM_LARGER "\tlargest value applied"
507 @ MSG_SYM_TENTERR "\ttentative symbol cannot override defined symbol \
508 of smaller size"

510 @ MSG_SYM_INVSHNDX "symbol %s has invalid section index; \
511 ignored:\n\t(file %s value=%s);"
512 @ MSG_SYM_NONGLOB "global symbol %s has non-global binding:\n\
513 \t(file %s value=%s);"
514 @ MSG_SYM_RESERVE "reserved symbol ’%s’ already defined in file %s"
515 @ MSG_SYM_NOTNULL "undefined symbol ’%s’ with non-zero value encountered \
516 from file %s"
517 @ MSG_SYM_DUPSORTADDR "section %s: symbol ’%s’ and symbol ’%s’ have the \
518 same address: %#llx: remove duplicate with \
519 NOSORTSYM mapfile directive"

new/usr/src/cmd/sgs/libld/common/libld.msg 9

521 @ MSG_PSYM_INVMINFO1 "file %s: section [%u]%s: entry[%d] has invalid m_info:
522 0x%llx for symbol index"
523 @ MSG_PSYM_INVMINFO2 "file %s: section [%u]%s: entry[%d] has invalid m_info:
524 0x%llx for size"
525 @ MSG_PSYM_INVMREPEAT "file %s: section [%u]%s: entry[%d] has invalid m_repeat
526 0x%llx"
527 @ MSG_PSYM_CANNOTEXPND "file %s: section [%u]%s: entry[%d] can not be expanded:
528 associated symbol size is unknown %s"
529 @ MSG_PSYM_NOSTATIC "and partial initialization cannot be deferred to \
530 a static object"
531 @ MSG_MOVE_OVERLAP "file %s: section [%u]%s: symbol ’%s’ overlapping move \
532 initialization: start=0x%llx, length=0x%llx: \
533 start=0x%llx, length=0x%llx"
534 @ MSG_PSYM_EXPREASON1 "output file is static object"
535 @ MSG_PSYM_EXPREASON2 "-z nopartial option in effect"
536 @ MSG_PSYM_EXPREASON3 "move infrastructure size is greater than move data"

538 #
539 # Support library failures
540 #
541 @ MSG_SUP_NOLOAD "dlopen() of support library (%s) failed with \
542 error: %s"
543 @ MSG_SUP_BADVERSION "initialization of support library (%s) failed with \
544 bad version. supported: %d returned: %d"

547 #
548 # TRANSLATION_NOTE
549 # The following 7 messages are the message to print the
550 # following example messages.
551 #
552 #Undefined first referenced
553 # symbol in file
554 #inquire halt_hold.o
555 #
556 @ MSG_SYM_FMT_UNDEF "%s\t\t\t%s\
557 \n %s \t\t\t %s"

559 #
560 # TRANSLATION_NOTE
561 # The next two msdid make a sentence. So translate:
562 # "Undefined symbol"
563 # And separate them into two msgstr considering the proper
564 # alignment.
565 @ MSG_SYM_UNDEF_ITM_11 "Undefined"
566 @ MSG_SYM_UNDEF_ITM_12 "symbol"
567 #
568 # TRANSLATION_NOTE
569 # The next two msdid make a sentence. So translate:
570 # "first referenced in file"
571 # And separate them into two msgstr considering the proper
572 # alignment.
573 @ MSG_SYM_UNDEF_ITM_21 "first referenced"
574 @ MSG_SYM_UNDEF_ITM_22 "in file"
575 #

577 @ MSG_SYM_UND_UNDEF "%-35s %s"
578 @ MSG_SYM_UND_NOVER "%-35s %s (symbol has no version assigned)"
579 @ MSG_SYM_UND_IMPL "%-35s %s (symbol belongs to implicit dependency %s)"
580 @ MSG_SYM_UND_NOTA "%-35s %s (symbol belongs to unavailable version %s \
581 (%s))"
582 @ MSG_SYM_UND_BNDLOCAL "%-35s %s (symbol scope specifies local binding)"

584 @ MSG_SYM_ENTRY "entry point"
585 @ MSG_SYM_UNDEF "%s symbol ’%s’ is undefined"

new/usr/src/cmd/sgs/libld/common/libld.msg 10

586 @ MSG_SYM_EXTERN "%s symbol ’%s’ is undefined (symbol belongs to \
587 dependency %s)"
588 @ MSG_SYM_NOCRT "symbol ’%s’ not found, but %s section exists - \
589 possible link-edit without using the compiler driver"

591 # Output file update messages

593 @ MSG_UPD_NOREADSEG "No read-only segments found. Setting ’_etext’ to 0"
594 @ MSG_UPD_NORDWRSEG "No read-write segments found. Setting ’_edata’ to 0"
595 @ MSG_UPD_NOSEG "Setting ’end’ and ’_end’ to 0"

597 @ MSG_UPD_SEGOVERLAP "%s: segment address overlap;\n\
598 \tprevious segment ending at address 0x%llx overlaps\n\
599 \tuser defined segment ’%s’ starting at address 0x%llx"
600 @ MSG_UPD_LARGSIZE "%s: segment %s calculated size 0x%llx\n\
601 \tis larger than user-defined size 0x%llx"

603 @ MSG_UPD_NOBITS "NOBITS section found before end of initialized data"
604 @ MSG_SEG_FIRNOTLOAD "First segment has type %s, PT_LOAD required: %s"
605 @ MSG_UPD_MULEHFRAME "file %s; section [%u]%s and file %s; section [%u]%s \
606 have incompatibile attributes and cannot \
607 be merged into a single output section"

610 # Version processing messages

612 @ MSG_VER_HIGHER "file %s: version revision %d is higher than \
613 expected %d"
614 @ MSG_VER_NOEXIST "file %s: version ’%s’ does not exist:\n\
615 \trequired by file %s"
616 @ MSG_VER_UNDEF "version ’%s’ undefined, referenced by version ’%s’:\n\
617 \trequired by file %s"
618 @ MSG_VER_UNAVAIL "file %s: version ’%s’ is unavailable:\n\
619 \trequired by file %s"
620 @ MSG_VER_DEFINED "version symbol ’%s’ already defined in file %s"
621 @ MSG_VER_INVALNDX "version symbol ’%s’ from file %s has an invalid \
622 version index (%d)"
623 @ MSG_VER_ADDVERS "unused $ADDVERS specification from file ’%s’ \
624 for object ’%s’\nversion(s):"
625 @ MSG_VER_ADDVER "\t%s"
626 @ MSG_VER_CYCLIC "following versions generate cyclic dependency:"

628 # Capabilities messages

630 @ MSG_CAP_MULDEF "capabilities symbol ’%s’ has multiply-defined members:"
631 @ MSG_CAP_MULDEFSYMS "\t(file %s symbol ’%s’; file %s symbol ’%s’);"
632 @ MSG_CAP_REDUNDANT "file %s: section [%u]%s: symbol capabilities \
633 redundant, as object capabilities are more restrictive"
634 @ MSG_CAP_NOSYMSFOUND "no global symbols have been found that are associated \
635 with capabilities identified relocatable objects: \
636 -z symbolcap has no effect"

638 @ MSG_CAPINFO_INVALSYM "file %s: capabilities info section [%u]%s: index %d: \
639 family member symbol ’%s’: invalid"
640 @ MSG_CAPINFO_INVALLEAD "file %s: capabilities info section [%u]%s: index %d: \
641 family lead symbol ’%s’: invalid symbol index %d"

643 # Basic strings

645 @ MSG_STR_ALIGNMENTS "alignments"
646 @ MSG_STR_COMMAND "(command line)"
647 @ MSG_STR_TLSREL "(internal TLS relocation requirement)"
648 @ MSG_STR_SIZES "sizes"
649 @ MSG_STR_UNKNOWN "<unknown>"
650 @ MSG_STR_SECTION "%s (section)"
651 @ MSG_STR_SECTION_MSTR "%s (merged string section)"

new/usr/src/cmd/sgs/libld/common/libld.msg 11

653 #
654 # TRANSLATION_NOTE
655 # The elf_ function name represents a man page reference and should not
656 # be translated.
657 @ MSG_ELF_BEGIN "file %s: elf_begin"
658 @ MSG_ELF_CNTL "file %s: elf_cntl"
659 @ MSG_ELF_GETARHDR "file %s: elf_getarhdr"
660 @ MSG_ELF_GETARSYM "file %s: elf_getarsym"
661 @ MSG_ELF_GETDATA "file %s: elf_getdata"
662 @ MSG_ELF_GETEHDR "file %s: elf_getehdr"
663 @ MSG_ELF_GETPHDR "file %s: elf_getphdr"
664 @ MSG_ELF_GETSCN "file %s: elf_getscn: scnndx: %d"
665 @ MSG_ELF_GETSHDR "file %s: elf_getshdr"
666 @ MSG_ELF_MEMORY "file %s: elf_memory"
667 @ MSG_ELF_NDXSCN "file %s: elf_ndxscn"
668 @ MSG_ELF_NEWDATA "file %s: elf_newdata"
669 @ MSG_ELF_NEWEHDR "file %s: elf_newehdr"
670 @ MSG_ELF_NEWSCN "file %s: elf_newscn"
671 @ MSG_ELF_NEWPHDR "file %s: elf_newphdr"
672 @ MSG_ELF_STRPTR "file %s: elf_strptr"
673 @ MSG_ELF_UPDATE "file %s: elf_update"
674 @ MSG_ELF_SWAP_WRIMAGE "file %s: _elf_swap_wrimage"

677 @ MSG_REJ_MACH "file %s: wrong ELF machine type: %s"
678 @ MSG_REJ_CLASS "file %s: wrong ELF class: %s"
679 @ MSG_REJ_DATA "file %s: wrong ELF data format: %s"
680 @ MSG_REJ_TYPE "file %s: bad ELF type: %s"
681 @ MSG_REJ_BADFLAG "file %s: bad ELF flags value: %s"
682 @ MSG_REJ_MISFLAG "file %s: mismatched ELF flags value: %s"
683 @ MSG_REJ_VERSION "file %s: mismatched ELF/lib version: %s"
684 @ MSG_REJ_HAL "file %s: HAL R1 extensions required"
685 @ MSG_REJ_US3 "file %s: Sun UltraSPARC III extensions required"
686 @ MSG_REJ_STR "file %s: %s"
687 @ MSG_REJ_UNKFILE "file %s: unknown file type"
688 @ MSG_REJ_UNKCAP "file=%s; unknown capability: %d"
689 @ MSG_REJ_HWCAP_1 "file %s: hardware capability (CA_SUNW_HW_1) \
690 unsupported: %s"
691 @ MSG_REJ_SFCAP_1 "file %s: software capability (CA_SUNW_SF_1) \
692 unsupported: %s"
693 @ MSG_REJ_MACHCAP "file %s: machine capability (CA_SUNW_MACH) \
694 unsupported: %s"
695 @ MSG_REJ_PLATCAP "file %s: platform capability (CA_SUNW_PLAT) \
696 unsupported: %s"
697 @ MSG_REJ_HWCAP_2 "file %s: hardware capability (CA_SUNW_HW_2) \
698 unsupported: %s"
699 @ MSG_REJ_ARCHIVE "file %s: invalid archive use"
700 @ MSG_REJ_KMOD "file %s: kernel modules can’t be link-edit input"
701 #endif /* ! codereview */

703 # Guidance messages
704 @ MSG_GUIDE_SUMMARY "see ld(1) -z guidance for more information"
705 @ MSG_GUIDE_DEFS "-z defs option recommended for shared objects"
706 @ MSG_GUIDE_DIRECT "-B direct or -z direct option recommended before \
707 first dependency"
708 @ MSG_GUIDE_LAZYLOAD "-z lazyload option recommended before \
709 first dependency"
710 @ MSG_GUIDE_MAPFILE "version 2 mapfile syntax recommended: %s"
711 @ MSG_GUIDE_TEXT "position independent (PIC) code recommended for \
712 shared objects"
713 @ MSG_GUIDE_UNUSED "removal of unused dependency recommended: %s"
714 @ MSG_GUIDE_KMOD "use -z type=kmod, not -r -dy"
715 #endif /* ! codereview */

717 @ _END_

new/usr/src/cmd/sgs/libld/common/libld.msg 12

720 # The following strings represent reserved names. Reference to these strings
721 # is via the MSG_ORIG() macro, and thus translations are not required.

723 @ MSG_STR_EOF "<eof>"
724 @ MSG_STR_ERROR "<error>"
725 @ MSG_STR_EMPTY ""
726 @ MSG_QSTR_BANG "’!’"
727 @ MSG_STR_COLON ":"
728 @ MSG_QSTR_COLON "’:’"
729 @ MSG_QSTR_SEMICOLON "’;’"
730 @ MSG_QSTR_EQUAL "’=’"
731 @ MSG_QSTR_PLUSEQ "’+=’"
732 @ MSG_QSTR_MINUSEQ "’-=’"
733 @ MSG_QSTR_ATSIGN "’@’"
734 @ MSG_QSTR_DASH "’-’"
735 @ MSG_QSTR_LEFTBKT "’{’"
736 @ MSG_QSTR_RIGHTBKT "’}’"
737 @ MSG_QSTR_PIPE "’|’"
738 @ MSG_QSTR_STAR "’*’"
739 @ MSG_STR_DOT "."
740 @ MSG_STR_SLASH "/"
741 @ MSG_STR_COMMA ","
742 @ MSG_STR_DYNAMIC "(.dynamic)"
743 @ MSG_STR_ORIGIN "$ORIGIN"
744 @ MSG_STR_MACHINE "$MACHINE"
745 @ MSG_STR_PLATFORM "$PLATFORM"
746 @ MSG_STR_ISALIST "$ISALIST"
747 @ MSG_STR_OSNAME "$OSNAME"
748 @ MSG_STR_OSREL "$OSREL"
749 @ MSG_STR_UU_REAL_U "__real_"
750 @ MSG_STR_UU_WRAP_U "__wrap_"
751 @ MSG_STR_UELF32 "_ELF32"
752 @ MSG_STR_UELF64 "_ELF64"
753 @ MSG_STR_USPARC "_sparc"
754 @ MSG_STR_UX86 "_x86"
755 @ MSG_STR_TRUE "true"

757 @ MSG_STR_CDIR_ADD "$add"
758 @ MSG_STR_CDIR_CLEAR "$clear"
759 @ MSG_STR_CDIR_ERROR "$error"
760 @ MSG_STR_CDIR_MFVER "$mapfile_version"
761 @ MSG_STR_CDIR_IF "$if"
762 @ MSG_STR_CDIR_ELIF "$elif"
763 @ MSG_STR_CDIR_ELSE "$else"
764 @ MSG_STR_CDIR_ENDIF "$endif"

766 @ MSG_STR_GROUP "GROUP"
767 @ MSG_STR_SUNW_COMDAT "SUNW_COMDAT"

769 @ MSG_FMT_ARMEM "%s(%s)"
770 @ MSG_FMT_COLPATH "%s:%s"
771 @ MSG_FMT_SYMNAM "’%s’"
772 @ MSG_FMT_NULLSYMNAM "%s[%d]"
773 @ MSG_FMT_STRCAT "%s%s"

775 @ MSG_PTH_RTLD "/usr/lib/ld.so.1"

777 @ MSG_SUNW_OST_SGS "SUNW_OST_SGS"

780 # Section strings

782 @ MSG_SCN_BSS ".bss"
783 @ MSG_SCN_DATA ".data"

new/usr/src/cmd/sgs/libld/common/libld.msg 13

784 @ MSG_SCN_COMMENT ".comment"
785 @ MSG_SCN_DEBUG ".debug"
786 @ MSG_SCN_DEBUG_INFO ".debug_info"
787 @ MSG_SCN_DYNAMIC ".dynamic"
788 @ MSG_SCN_DYNSYMSORT ".SUNW_dynsymsort"
789 @ MSG_SCN_DYNTLSSORT ".SUNW_dyntlssort"
790 @ MSG_SCN_DYNSTR ".dynstr"
791 @ MSG_SCN_DYNSYM ".dynsym"
792 @ MSG_SCN_DYNSYM_SHNDX ".dynsym_shndx"
793 @ MSG_SCN_LDYNSYM ".SUNW_ldynsym"
794 @ MSG_SCN_LDYNSYM_SHNDX ".SUNW_ldynsym_shndx"
795 @ MSG_SCN_EX_SHARED ".ex_shared"
796 @ MSG_SCN_EX_RANGES ".exception_ranges"
797 @ MSG_SCN_EXCL ".excl"
798 @ MSG_SCN_FINI ".fini"
799 @ MSG_SCN_FINIARRAY ".fini_array"
800 @ MSG_SCN_GOT ".got"
801 @ MSG_SCN_GNU_LINKONCE ".gnu.linkonce."
802 @ MSG_SCN_HASH ".hash"
803 @ MSG_SCN_INDEX ".index"
804 @ MSG_SCN_INIT ".init"
805 @ MSG_SCN_INITARRAY ".init_array"
806 @ MSG_SCN_INTERP ".interp"
807 @ MSG_SCN_LBSS ".lbss"
808 @ MSG_SCN_LDATA ".ldata"
809 @ MSG_SCN_LINE ".line"
810 @ MSG_SCN_LRODATA ".lrodata"
811 @ MSG_SCN_PLT ".plt"
812 @ MSG_SCN_PREINITARRAY ".preinit_array"
813 @ MSG_SCN_REL ".rel"
814 @ MSG_SCN_RELA ".rela"
815 @ MSG_SCN_RODATA ".rodata"
816 @ MSG_SCN_SBSS ".sbss"
817 @ MSG_SCN_SBSS2 ".sbss2"
818 @ MSG_SCN_SDATA ".sdata"
819 @ MSG_SCN_SDATA2 ".sdata2"
820 @ MSG_SCN_SHSTRTAB ".shstrtab"
821 @ MSG_SCN_STAB ".stab"
822 @ MSG_SCN_STABEXCL ".stab.exclstr"
823 @ MSG_SCN_STRTAB ".strtab"
824 @ MSG_SCN_SUNWMOVE ".SUNW_move"
825 @ MSG_SCN_SUNWRELOC ".SUNW_reloc"
826 @ MSG_SCN_SUNWSYMINFO ".SUNW_syminfo"
827 @ MSG_SCN_SUNWVERSION ".SUNW_version"
828 @ MSG_SCN_SUNWVERSYM ".SUNW_versym"
829 @ MSG_SCN_SUNWCAP ".SUNW_cap"
830 @ MSG_SCN_SUNWCAPINFO ".SUNW_capinfo"
831 @ MSG_SCN_SUNWCAPCHAIN ".SUNW_capchain"
832 @ MSG_SCN_SYMTAB ".symtab"
833 @ MSG_SCN_SYMTAB_SHNDX ".symtab_shndx"
834 @ MSG_SCN_TBSS ".tbss"
835 @ MSG_SCN_TDATA ".tdata"
836 @ MSG_SCN_TEXT ".text"

838 @ MSG_SYM_FINIARRAY "finiarray"
839 @ MSG_SYM_INITARRAY "initarray"
840 @ MSG_SYM_PREINITARRAY "preinitarray"

842 #
843 # GNU section names
844 #
845 @ MSG_SCN_CTORS ".ctors"
846 @ MSG_SCN_DTORS ".dtors"
847 @ MSG_SCN_EHFRAME ".eh_frame"
848 @ MSG_SCN_EHFRAME_HDR ".eh_frame_hdr"
849 @ MSG_SCN_GCC_X_TBL ".gcc_except_table"

new/usr/src/cmd/sgs/libld/common/libld.msg 14

850 @ MSG_SCN_JCR ".jcr"

852 # Segment names for segments referenced by entrance criteria

854 @ MSG_ENT_BSS "bss"
855 @ MSG_ENT_DATA "data"
856 @ MSG_ENT_EXTRA "extra"
857 @ MSG_ENT_LDATA "ldata"
858 @ MSG_ENT_LRODATA "lrodata"
859 @ MSG_ENT_NOTE "note"
860 @ MSG_ENT_TEXT "text"

862 # Symbol names

864 @ MSG_SYM_START "_start"
865 @ MSG_SYM_MAIN "main"

867 @ MSG_SYM_FINI_U "_fini"
868 @ MSG_SYM_INIT_U "_init"
869 @ MSG_SYM_DYNAMIC "DYNAMIC"
870 @ MSG_SYM_DYNAMIC_U "_DYNAMIC"
871 @ MSG_SYM_EDATA "edata"
872 @ MSG_SYM_EDATA_U "_edata"
873 @ MSG_SYM_END "end"
874 @ MSG_SYM_END_U "_end"
875 @ MSG_SYM_ETEXT "etext"
876 @ MSG_SYM_ETEXT_U "_etext"
877 @ MSG_SYM_GOFTBL "GLOBAL_OFFSET_TABLE_"
878 @ MSG_SYM_GOFTBL_U "_GLOBAL_OFFSET_TABLE_"
879 @ MSG_SYM_PLKTBL "PROCEDURE_LINKAGE_TABLE_"
880 @ MSG_SYM_PLKTBL_U "_PROCEDURE_LINKAGE_TABLE_"
881 @ MSG_SYM_TLSGETADDR_U "__tls_get_addr"
882 @ MSG_SYM_TLSGETADDR_UU "___tls_get_addr"

884 @ MSG_SYM_L_END "END_"
885 @ MSG_SYM_L_END_U "_END_"
886 @ MSG_SYM_L_START "START_"
887 @ MSG_SYM_L_START_U "_START_"

889 @ MSG_SYM_SECBOUND_START "__start_"
890 @ MSG_SYM_SECBOUND_STOP "__stop_"

892 #endif /* ! codereview */
893 # Support functions

895 @ MSG_SUP_VERSION "ld_version"
896 @ MSG_SUP_INPUT_DONE "ld_input_done"

898 @ MSG_SUP_START_64 "ld_start64"
899 @ MSG_SUP_ATEXIT_64 "ld_atexit64"
900 @ MSG_SUP_OPEN_64 "ld_open64"
901 @ MSG_SUP_FILE_64 "ld_file64"
902 @ MSG_SUP_INSEC_64 "ld_input_section64"
903 @ MSG_SUP_SEC_64 "ld_section64"

905 @ MSG_SUP_START "ld_start"
906 @ MSG_SUP_ATEXIT "ld_atexit"
907 @ MSG_SUP_OPEN "ld_open"
908 @ MSG_SUP_FILE "ld_file"
909 @ MSG_SUP_INSEC "ld_input_section"
910 @ MSG_SUP_SEC "ld_section"

912 #
913 # Message previously in ’ld’
914 #
915 #

new/usr/src/cmd/sgs/libld/common/libld.msg 15

916 @ _START_

918 # System error messages

920 @ MSG_SYS_STAT "file %s: stat failed: %s"
921 @ MSG_SYS_READ "file %s: read failed: %s"
922 @ MSG_SYS_NOTREG "file %s: is not a regular file"

924 # Argument processing messages

926 @ MSG_ARG_DY_INCOMP "%s option is incompatible with building a dynamic \
927 executable"
928 @ MSG_MARG_DY_INCOMP "%s is incompatible with building a dynamic \
929 executable"
930 @ MSG_ARG_ST_INCOMP "%s option is incompatible with building a static \
931 object (-dn, -r, --relocatable)"
932 @ MSG_MARG_ST_INCOMP "%s is incompatible with building a static \
933 object (-dn, -r, --relocatable)"
934 @ MSG_MARG_ST_ONLYAVL "%s is only available when building a shared object"
935 @ MSG_ARG_INCOMP "option %s and %s are incompatible"
936 @ MSG_MARG_INCOMP "%s and %s are incompatible"
937 @ MSG_ARG_MTONCE "option %s appears more than once, first setting taken"
938 @ MSG_MARG_MTONCE "%s appears more than once, first setting taken"
939 @ MSG_ARG_ILLEGAL "option %s has illegal argument ’%s’"
940 @ MSG_ARG_YP "option -YP and -Y%c may not be specified concurrently"
941 @ MSG_ARG_STRIP "%s specified with %s; only debugging \
942 information stripped"
943 @ MSG_ARG_NOFILES "no files on input command line"
944 @ MSG_ARG_NOFLTR "option %s is only meaningful when building a filter"
945 @ MSG_ARG_NODEFLIB "the default library search path has been suppressed, \
946 but no runpaths have been specified via %s"
947 @ MSG_ARG_NOENTRY "entry point symbol ’%s’ is undefined"
948 @ MSG_ARG_UNSUPPORTED "option %s is no longer supported; ignored"
949 @ MSG_MARG_ONLY "option %s can only be used with a %s"
950 @ MSG_ARG_UNKNOWN "unrecognized option ’-%c’"
951 @ MSG_ARG_LONG_UNKNOWN "unrecognized option ’%s’"
952 @ MSG_ARG_USEHELP "use the -z help option for usage information"

955 @ MSG_ARG_FLAGS "flags processing errors"
956 @ MSG_ARG_FILES "file processing errors. No output written to %s"
957 @ MSG_ARG_SYM_WARN "symbol referencing errors"
958 @ MSG_ARG_SYM_FATAL "symbol referencing errors. No output written to %s"
959 @ MSG_ARG_AR_GRP_OLAP "%s cannot be nested"
960 @ MSG_ARG_AR_GRP_BAD "%s used without corresponding %s"

963 # Messages used to refer to options where there is more than
964 # one name accepted.

966 @ MSG_MARG_AR_GRPS "archive rescan groups \
967 (-z rescan-start, -(, --start-group)"
968 @ MSG_MARG_AR_GRP_END "archive rescan group end option \
969 (-z rescan-end, -), --end-group)"
970 @ MSG_MARG_AR_GRP_START "archive rescan group start option \
971 (-z rescan-start, -(, --start-group)"
972 @ MSG_MARG_ENTRY "entry point option (-e, --entry)"
973 @ MSG_MARG_FILTER_AUX "auxiliary filter option (-f, --auxiliary)"
974 @ MSG_MARG_FILTER "filter option (-F, --filter)"
975 @ MSG_MARG_OUTFILE "output object option (-o, --output)"
976 @ MSG_MARG_REL "relocatable object option (-r, --relocatable, \
977 -z type=reloc)"
254 @ MSG_MARG_REL "relocatable object option (-r, --relocatable)"
978 @ MSG_MARG_RPATH "runpath option (-R, -rpath)"
979 @ MSG_MARG_SO "shared object option (-G, -shared, -z type=shared)"
256 @ MSG_MARG_SO "shared object option (-G, -shared)"

new/usr/src/cmd/sgs/libld/common/libld.msg 16

980 @ MSG_MARG_SONAME "soname option (-h, --soname)"
981 @ MSG_MARG_STRIP "strip option (-s, --strip-all)"
982 @ MSG_MARG_TYPE_KMOD "-z type=kmod"
983 #endif /* ! codereview */

985 # Entrance criteria messages

987 @ MSG_ENT_MAP_FMT_TIL_1 "\t\t%s\n\n"
988 @ MSG_ENT_MAP_TITLE_1 "LINK EDITOR MEMORY MAP"

990 #
991 # TRANSLATION_NOTE -- Entry map header
992 #
993 # The next message is a format string for a title. The title is composed of
994 # two lines. In C locale, it would look like:
995 #
996 # output input new
997 # section section displacement size
998 #
999 # The \t characters are used for alignment. (output section), (input section),

1000 # and (new displacement) have to be aligned.
1001 #
1002 @ MSG_ENT_MAP_FMT_TIL_2 "\n%s\t\t%s\t\t%s\n%s\t\t%s\t\t%s\t%s\n\n"
1003 @ MSG_ENT_MAP_FMT_TIL_3 "\n%s\t\t%s\t\t%s\n%s\t\t%s\t\t%s\t\t%s\n\n"
1004 @ MSG_ENT_ITM_OUTPUT "output"
1005 @ MSG_ENT_ITM_INPUT "input"
1006 @ MSG_ENT_ITM_NEW "new"
1007 @ MSG_ENT_ITM_SECTION "section"
1008 @ MSG_ENT_ITM_DISPMNT "displacement"
1009 @ MSG_ENT_ITM_SIZE "size"
1010 @ MSG_ENT_ITM_VIRTUAL "virtual"
1011 @ MSG_ENT_ITM_ADDRESS "address"

1013 @ MSG_ENT_MAP_ENTRY_1 "%-8.8s\t\t\t%08.2llx\t%08.2llx\n"
1014 @ MSG_ENT_MAP_ENTRY_2 "\t\t%-8.8s\t%08.2llx\t%08.2llx %s\n"

1016 #
1017 # TRANSLATION_NOTE -- multiple defined symbol table header
1018 #
1019 # In C locale, an example output is:
1020 #
1021 # MULTIPLY DEFINED SYMBOLS
1022 #
1023 #
1024 #symbol definition used also defined in
1025 #
1026 #variable1 main.o
1027 # ./libfred.so
1028 @ MSG_ENT_MUL_FMT_TIL_0 "\n\n\t\t%s\n\n\n"
1029 @ MSG_ENT_MUL_TIL_0 "MULTIPLY DEFINED SYMBOLS"

1031 #
1032 # TRANSLATION_NOTE -- This is the format string for:
1033 #
1034 #symbol definition used also defined in
1035 #
1036 @ MSG_ENT_MUL_FMT_TIL_1 "%s\t\t\t\t %s %s\n\n"
1037 @ MSG_ENT_MUL_ITM_SYM "symbol"
1038 @ MSG_ENT_MUL_ITM_DEF_0 "definition used"
1039 @ MSG_ENT_MUL_ITM_DEF_1 "also defined in"

1041 #
1042 # TRANSLATION_NOTE -- This is the format string for the second item:
1043 #
1044 @ MSG_ENT_MUL_ENTRY_1 "%-35s %s\n"

new/usr/src/cmd/sgs/libld/common/libld.msg 17

1046 #
1047 # TRANSLATION_NOTE -- This is the format string for the third item:
1048 #
1049 @ MSG_ENT_MUL_ENTRY_2 "\t\t\t\t\t\t\t%s\n"

1051 @ MSG_ENT_NOSEC_1 "mapfile: %s segment: section ’%s’ does not appear \
1052 in mapfile specified input file(s)"
1053 @ MSG_ENT_NOSEC_2 "mapfile: %s segment: section ’%s’ does not appear \
1054 in any input file"

1056 # Library messages

1058 @ MSG_LIB_NOTFOUND "library -l%s: not found"
1059 @ MSG_LIB_MALFORM "LD_LIBRARY_PATH malformed"
1060 @ MSG_LIB_BADYP "-YP library path malformed"

1063 # Mapfile processing messages

1065 @ MSG_MAP_BADAUTORED "%s: %llu: auto-reduction (’*’) can only be used in \
1066 hidden/local, or eliminate scope"
1067 @ MSG_MAP_BADFLAG "%s: %llu: badly formed section flags ’%s’"
1068 @ MSG_MAP_BADBNAME "%s: %llu: basename cannot contain path \
1069 separator (’/’): %s"
1070 @ MSG_MAP_BADONAME "%s: %llu: object name cannot contain path \
1071 separator (’/’): %s"
1072 @ MSG_MAP_REDEFATT "%s: %llu: redefining %s attribute for ’%s’"
1073 @ MSG_MAP_PREMEOF "%s: %llu: premature EOF"
1074 @ MSG_MAP_ILLCHAR "%s: %llu: illegal character ’\\%03o’"
1075 @ MSG_MAP_MALFORM "%s: %llu: malformed entry"
1076 @ MSG_MAP_NONLOAD "%s: %llu: %s not allowed on non-LOAD segments"
1077 @ MSG_MAP_NOSTACK1 "%s: %llu: %s not allowed on STACK segment"
1078 @ MSG_MAP_MOREONCE "%s: %llu: %s set more than once on same line"
1079 @ MSG_MAP_NOTERM "%s: %llu: unterminated quoted string: %s"
1080 @ MSG_MAP_SECINSEG "%s: %llu: section within segment ordering done on \
1081 a non-existent segment ’%s’"
1082 @ MSG_MAP_UNEXINHERIT "%s: %llu: unnamed version cannot inherit from other \
1083 versions: %s"
1084 @ MSG_MAP_UNEXTOK "%s: %llu: unexpected occurrence of ’%c’ token"

1086 @ MSG_MAP_SEGEMPLOAD "%s: %llu: empty segment must be of type LOAD or NULL"
1087 @ MSG_MAP_SEGEMPEXE "%s: %llu: a LOAD empty segment definition is only \
1088 allowed when creating a dynamic executable"
1089 @ MSG_MAP_SEGEMPATT "%s: %llu: a LOAD empty segment must have an address \
1090 and size"
1091 @ MSG_MAP_SEGEMPNOATT "%s: %llu: a NULL empty segment must not have an \
1092 address or size"
1093 @ MSG_MAP_SEGEMPSEC "%s: %llu: empty segment can not have sections \
1094 assigned to it"
1095 @ MSG_MAP_SEGEMNOPERM "%s: %llu: empty segment must not have \
1096 p_flags set: 0x%x"

1098 @ MSG_MAP_CNTADDRORDER "%s: %llu: segment cannot have an explicit address \
1099 and also be in the SEGMENT_ORDER list: %s"
1100 @ MSG_MAP_CNTDISSEG "%s: %llu: segment cannot be disabled: %s"
1101 @ MSG_MAP_DUPNAMENT "%s: %llu: cannot redefine entrance criteria: %s"
1102 @ MSG_MAP_DUPORDSEG "%s: %llu: segment is already in %s list: %s"
1103 @ MSG_MAP_DUP_OS_ORD "%s: %llu: section is already in OS_ORDER list: %s"
1104 @ MSG_MAP_DUP_IS_ORD "%s: %llu: entrance criteria is already in \
1105 IS_ORDER list: %s"
1106 @ MSG_MAP_UNKENT "%s: %llu: unknown entrance criteria \
1107 (ASSIGN_SECTION): %s"
1108 @ MSG_MAP_UNKSEG "%s: %llu: unknown segment: %s"
1109 @ MSG_MAP_UNKSYMDEF "%s: %llu: unknown symbol definition: %s"
1110 @ MSG_MAP_UNKSEGTYP "%s: %llu: unknown internal segment type %d"
1111 @ MSG_MAP_UNKSOTYP "%s: %llu: unknown shared object type: %s"

new/usr/src/cmd/sgs/libld/common/libld.msg 18

1112 @ MSG_MAP_UNKSEGATT "%s: %llu: unknown segment attribute: %s"
1113 @ MSG_MAP_UNKSEGFLG "%s: %llu: unknown segment flag: ?%c"
1114 @ MSG_MAP_UNKSECTYP "%s: %llu: unknown section type: %s"

1116 @ MSG_MAP_SEGSIZE "%s: %lld: existing segment size symbols cannot \
1117 be reset: %s"
1118 @ MSG_MAP_SEGADDR "%s: %llu: segment address or length ’%s’ %s"
1119 @ MSG_MAP_BADCAPVAL "%s: %llu: bad capability value: %s"
1120 @ MSG_MAP_UNKCAPATTR "%s: %llu: unknown capability attribute ’%s’"
1121 @ MSG_MAP_EMPTYCAP "%s: %llu: empty capability definition; ignored"

1123 @ MSG_MAP_SYMDEF1 "%s: %llu: symbol ’%s’ is already defined in file: \
1124 %s: %s"
1125 @ MSG_MAP_SYMDEF2 "%s: %llu: symbol ’%s’: %s"

1127 @ MSG_MAP_EXPSCOL "%s: %llu: expected a ’;’"
1128 @ MSG_MAP_EXPEQU "%s: %llu: expected a ’=’, ’:’, ’|’, or ’@’"
1129 @ MSG_MAP_EXPSEGATT "%s: %llu: expected one or more segment attributes \
1130 after an ’=’"
1131 @ MSG_MAP_EXPSEGNAM "%s: %llu: expected a segment name at the beginning \
1132 of a line"
1133 @ MSG_MAP_EXPSEGTYPE "%s: %llu: %s segment cannot be used with %s \
1134 directive: %s"
1135 @ MSG_MAP_EXPSYM_1 "%s: %llu: expected a symbol name after ’@’"
1136 @ MSG_MAP_EXPSYM_2 "%s: %llu: expected a symbol name after ’{’"
1137 @ MSG_MAP_EXPSEC "%s: %llu: expected a section name after ’|’"
1138 @ MSG_MAP_EXPSO "%s: %llu: expected a shared object definition \
1139 after ’-’"
1140 @ MSG_MAP_MULTFILTEE "%s: %llu: multiple filtee definitions are unsupported"
1141 @ MSG_MAP_NOFILTER "%s: %llu: filtee definition required"
1142 @ MSG_MAP_BADSF1 "%s: %llu: unknown software capabilities: 0x%llx; \
1143 ignored"
1144 @ MSG_MAP_INADDR32SF1 "%s: %llu: software capability ADDR32: is ineffective \
1145 when building 32-bit object: ignored"
1146 @ MSG_MAP_NOINTPOSE "%s: %llu: interposition symbols can only be defined \
1147 when building a dynamic executable"
1148 @ MSG_MAP_NOEXVLSZ "%s: %llu: value and size attributes are incompatible \
1149 with extern or parent symbols"
1150 @ MSG_MAP_FLTR_ONLYAVL "%s: %llu: symbol filtering is only available when \
1151 building a shared object"

1153 @ MSG_MAP_SEGSAME "segments ’%s’ and ’%s’ have the same assigned \
1154 virtual address"
1155 @ MSG_MAP_EXCLIMIT "exceeds internal limit"
1156 @ MSG_MAP_NOBADFRM "number is badly formed"

1158 @ MSG_MAP_SEGTYP "segment type"
1159 @ MSG_MAP_SEGVADDR "segment virtual address"
1160 @ MSG_MAP_SEGPHYS "segment physical address"
1161 @ MSG_MAP_SEGLEN "segment length"
1162 @ MSG_MAP_SEGFLAG "segment flags"
1163 @ MSG_MAP_SEGALIGN "segment alignment"
1164 @ MSG_MAP_SEGROUND "segment rounding"

1166 @ MSG_MAP_SECTYP "section type"
1167 @ MSG_MAP_SECFLAG "section flags"
1168 @ MSG_MAP_SECNAME "section name"

1170 @ MSG_MAP_SYMVAL "symbol value"
1171 @ MSG_MAP_SYMSIZE "symbol size"

1173 @ MSG_MAP_DIFF_SYMVAL "symbol values differ"
1174 @ MSG_MAP_DIFF_SYMSZ "symbol sizes differ"
1175 @ MSG_MAP_DIFF_SYMTYP "symbol types differ"
1176 @ MSG_MAP_DIFF_SYMNDX "symbol indexes differ"
1177 @ MSG_MAP_DIFF_SYMLCL "symbol scope conflict against local and non-local"

new/usr/src/cmd/sgs/libld/common/libld.msg 19

1178 @ MSG_MAP_DIFF_SYMGLOB "symbol scope conflict against singleton/exported"
1179 @ MSG_MAP_DIFF_SYMPROT "symbol scope conflict against protected"
1180 @ MSG_MAP_DIFF_SYMVER "symbol version conflict"
1181 @ MSG_MAP_DIFF_SYMMUL "symbol multiple definition"
1182 @ MSG_MAP_DIFF_SNGLDIR "singleton scope and direct declaration are \
1183 incompatible"
1184 @ MSG_MAP_DIFF_PROTNDIR "protected scope and no-direct declaration \
1185 are incompatible"

1188 @ MSG_MAP_SECORDER "section ordering requested, but no matching section \
1189 found: segment: %s section: %s"

1192 # Mapfile Directives

1194 @ MSG_MAP_EXP_ATTR "%s: %llu: expected attribute name (%s), or \
1195 terminator (’;’, ’}’): %s"
1196 @ MSG_MAP_EXP_CAPMASK "%s: %llu: expected capability name, integer value, or \
1197 terminator (’;’, ’}’): %s"
1198 @ MSG_MAP_EXP_CAPNAME "%s: %llu: expected name, or terminator (’;’, ’}’): %s"
1199 @ MSG_MAP_EXP_CAPID "%s: %llu: expected name, or ’{’ following %s: %s"
1200 @ MSG_MAP_EXP_CAPHW "%s: %llu: expected hardware capability, or \
1201 terminator (’;’, ’}’): %s"
1202 @ MSG_MAP_EXP_CAPSF "%s: %llu: expected software capability, or \
1203 terminator (’;’, ’}’): %s"
1204 @ MSG_MAP_EXP_EQ "%s: %llu: expected ’=’ following %s: %s"
1205 @ MSG_MAP_EXP_EQ_ALL "%s: %llu: expected ’=’, ’+=’, or ’-=’ following %s: %s"
1206 @ MSG_MAP_EXP_EQ_PEQ "%s: %llu: expected ’=’ following %s: %s"
1207 @ MSG_MAP_EXP_DIR "%s: %llu: expected mapfile directive (%s): %s"
1208 @ MSG_MAP_SFLG_EXBANG "%s: %llu: ’!’ appears without corresponding flag"
1209 @ MSG_MAP_EXP_FILNAM "%s: %llu: expected file name following %s: %s"
1210 @ MSG_MAP_EXP_FILPATH "%s: %llu: expected file path following %s: %s"
1211 @ MSG_MAP_EXP_INT "%s: %llu: expected integer value following %s: %s"
1212 @ MSG_MAP_EXP_LBKT "%s: %llu: expected ’{’ following %s: %s"
1213 @ MSG_MAP_EXP_OBJNAM "%s: %llu: expected object name following %s: %s"
1214 @ MSG_MAP_SFLG_ONEBANG "%s: %llu: ’!’ can only be specified once per flag"
1215 @ MSG_MAP_EXP_SECFLAG "%s: %llu: expected section flag (%s), ’!’, or \
1216 terminator (’;’, ’}’): %s"
1217 @ MSG_MAP_EXP_SECNAM "%s: %llu: expected section name following %s: %s"
1218 @ MSG_MAP_EXP_SEGFLAG "%s: %llu: expected segment flag (%s), or \
1219 terminator (’;’, ’}’): %s"
1220 @ MSG_MAP_EXP_ECNAM "%s: %llu: expected entrance criteria (ASSIGN_SECTION) \
1221 name, or terminator (’;’, ’}’): %s"
1222 @ MSG_MAP_EXP_SEGNAM "%s: %llu: expected segment name following %s: %s"
1223 @ MSG_MAP_EXP_SEM "%s: %llu: expected ’;’ to terminate %s: %s"
1224 @ MSG_MAP_EXP_SEMLBKT "%s: %llu: expected ’;’ or ’{’ following %s: %s"
1225 @ MSG_MAP_EXP_SEMRBKT "%s: %llu: expected ’;’ or ’}’ to terminate %s: %s"
1226 @ MSG_MAP_EXP_SHTYPE "%s: %llu: expected section type: %s"
1227 @ MSG_MAP_EXP_SYM "%s: %llu: expected symbol name, symbol scope, \
1228 or ’*’: %s"
1229 @ MSG_MAP_EXP_SYMEND "%s: %llu: expected inherited version name, or \
1230 terminator (’;’): %s"
1231 @ MSG_MAP_EXP_SYMDELIM "%s: %llu: expected one of ’:’, ’;’, or ’{’: %s"
1232 @ MSG_MAP_EXP_SYMFLAG "%s: %llu: expected symbol flag (%s), or \
1233 terminator (’;’, ’}’): %s"
1234 @ MSG_MAP_EXP_SYMNAM "%s: %llu: expected symbol name following %s: %s"
1235 @ MSG_MAP_EXP_SYMSCOPE "%s: %llu: expected symbol scope (%s): %s"
1236 @ MSG_MAP_EXP_SYMTYPE "%s: %llu: expected symbol type (%s): %s"
1237 @ MSG_MAP_EXP_VERSION "%s: %llu: expected version name following %s: %s"
1238 @ MSG_MAP_BADEXTRA "%s: %llu: unexpected text found following %s directive"
1239 @ MSG_MAP_VALUELIMIT "%s: %llu: numeric value exceeds word size: %s"
1240 @ MSG_MAP_MALVALUE "%s: %llu: malformed numeric value: %s"
1241 @ MSG_MAP_BADVALUETAIL "%s: %llu: unexpected characters following numeric \
1242 constant: %s"
1243 @ MSG_MAP_WSNEEDED "%s: %llu: whitespace needed before token: %s"

new/usr/src/cmd/sgs/libld/common/libld.msg 20

1244 @ MSG_MAP_BADCHAR "%s: %llu: unexpected text: %s"
1245 @ MSG_MAP_BADKWQUOTE "%s: %llu: mapfile keywords should not be quoted: %s"
1246 @ MSG_MAP_CDIR_NOTBOL "%s: %llu: mapfile control directive not at start of \
1247 line: %s"
1248 @ MSG_MAP_NOATTR "%s: %llu: %s specified no attributes (empty {})"
1249 @ MSG_MAP_NOVALUES "%s: %llu: %s specified without values"
1250 @ MSG_MAP_INTERR "<internal error>"
1251 @ MSG_MAP_ISORDVER "%s: %llu: version 0 mapfile ?O flag and version 1 \
1252 segment IS_ORDER attribute are mutually exclusive: %s"
1253 @ MSG_MAP_SYMATTR "symbol attributes";

1255 # Mapfile Control Directives

1257 @ MSG_MAP_CDIR_BADVDIR "%s: %llu: $mapfile_version directive must specify \
1258 version 2 or higher: %d"
1259 @ MSG_MAP_CDIR_BADVER "%s: %llu: unknown mapfile version: %d"
1260 @ MSG_MAP_CDIR_REPVER "%s: %llu: $mapfile_version must be first directive \
1261 in file"
1262 @ MSG_MAP_CDIR_REQARG "%s: %llu: %s directive requires an argument"
1263 @ MSG_MAP_CDIR_REQNOARG "%s: %llu: %s directive does not accept arguments"
1264 @ MSG_MAP_CDIR_BAD "%s: %llu: unrecognized mapfile control directive"
1265 @ MSG_MAP_CDIR_NOIF "%s: %llu: %s directive used without opening $if"
1266 @ MSG_MAP_CDIR_ELSE "%s: %llu: %s directive preceded by $else on line %d"
1267 @ MSG_MAP_CDIR_NOEND "%s: %llu: EOF encountered without closing $endif \
1268 for $if on line %d"
1269 @ MSG_MAP_CDIR_ERROR "%s: %llu: error: %s"

1272 # Mapfile Conditional Expressions

1274 @ MSG_MAP_CEXP_TOKERR "%s: %llu: syntax error in conditional expression at: %s
1275 @ MSG_MAP_CEXP_SEMERR "%s: %llu: malformed conditional expression"
1276 @ MSG_MAP_CEXP_BADOPUSE "%s: %llu: invalid operator use in conditional \
1277 expression"
1278 @ MSG_MAP_CEXP_UNBALPAR "%s: %llu: unbalanced parenthesis in conditional \
1279 expression"
1280 @ MSG_MAP_BADCESC "%s: %llu: unrecognized escape in double quoted \
1281 token: \\%c\n"

1283 # Generic error diagnostic labels

1285 @ MSG_STR_NULL "(null)"

1287 @ MSG_DBG_DFLT_FMT "debug: "
1288 @ MSG_DBG_AOUT_FMT "debug: a.out: "
1289 @ MSG_DBG_NAME_FMT "debug: %s: "

1291 # -z assert-deflib strings

1293 @ MSG_ARG_ASSDEFLIB_MALFORMED "library name malformed: %s"
1294 @ MSG_ARG_ASSDEFLIB_FOUND "dynamic library found on default search path \
1295 (%s): lib%s.so"

1297 @ _END_

1300 # Software identification. Note, the SGU strings is historic, and has
1301 # little relevance. It is preserved as applications have used this
1302 # string to identify the Solaris link-editor.

1304 @ MSG_SGS_ID "ld: Software Generation Utilities - \
1305 Solaris Link Editors: "

1307 # The following strings represent reserved words, files, pathnames and symbols.
1308 # Reference to this strings is via the MSG_ORIG() macro, and thus no message
1309 # translation is required.

new/usr/src/cmd/sgs/libld/common/libld.msg 21

1311 @ MSG_DBG_FOPEN_MODE "w"

1313 @ MSG_DBG_CLS32_FMT "32: "
1314 @ MSG_DBG_CLS64_FMT "64: "

1316 @ MSG_STR_PATHTOK ";:"
1317 @ MSG_STR_AOUT "a.out"

1319 @ MSG_STR_LIB_A "%s/lib%s.a"
1320 @ MSG_STR_LIB_SO "%s/lib%s.so"
1321 @ MSG_STR_PATH "%s/%s"
1322 @ MSG_STR_STRNL "%s\n"
1323 @ MSG_STR_NL "\n"
1324 @ MSG_STR_CAPGROUPID "CAP_GROUP_%d"

1326 @ MSG_STR_LD_DYNAMIC "dynamic"
1327 @ MSG_STR_SYMBOLIC "symbolic"
1328 @ MSG_STR_ELIMINATE "eliminate"
1329 @ MSG_STR_LOCAL "local"
1330 @ MSG_STR_PROGBITS "progbits"
1331 @ MSG_STR_SYMTAB "symtab"
1332 @ MSG_STR_DYNSYM "dynsym"
1333 @ MSG_STR_REL "rel"
1334 @ MSG_STR_RELA "rela"
1335 @ MSG_STR_STRTAB "strtab"
1336 @ MSG_STR_HASH "hash"
1337 @ MSG_STR_LIB "lib"
1338 @ MSG_STR_NOTE "note"
1339 @ MSG_STR_NOBITS "nobits"
1340 @ MSG_STR_HWCAP_1 "hwcap_1"
1341 @ MSG_STR_SFCAP_1 "sfcap_1"
1342 @ MSG_STR_SOEXT ".so"

1344 @ MSG_STR_OPTIONS "3:6:abc:d:e:f:h:il:mo:p:rstu:z:B:CD:F:GI:L:M:N:P:Q:R:\
1345 S:VW:Y:?"

1347 # Argument processing strings

1349 @ MSG_ARG_3 "-3"
1350 @ MSG_ARG_6 "-6"
1351 @ MSG_ARG_A "-a"
1352 @ MSG_ARG_B "-b"
1353 @ MSG_ARG_CB "-B"
1354 @ MSG_ARG_BDIRECT "-Bdirect"
1355 @ MSG_ARG_BDYNAMIC "-Bdynamic"
1356 @ MSG_ARG_BELIMINATE "-Beliminate"
1357 @ MSG_ARG_BGROUP "-Bgroup"
1358 @ MSG_ARG_BLOCAL "-Blocal"
1359 @ MSG_ARG_BNODIRECT "-Bnodirect"
1360 @ MSG_ARG_BSYMBOLIC "-Bsymbolic"
1361 @ MSG_ARG_BTRANSLATOR "-Btranslator"
1362 @ MSG_ARG_C "-c"
1363 @ MSG_ARG_D "-d"
1364 @ MSG_ARG_DY "-dy"
1365 @ MSG_ARG_CI "-I"
1366 @ MSG_ARG_CN "-N"
1367 @ MSG_ARG_P "-p"
1368 @ MSG_ARG_CP "-P"
1369 @ MSG_ARG_CQ "-Q"
1370 @ MSG_ARG_CY "-Y"
1371 @ MSG_ARG_CYL "-YL"
1372 @ MSG_ARG_CYP "-YP"
1373 @ MSG_ARG_CYU "-YU"
1374 @ MSG_ARG_Z "-z"
1375 @ MSG_ARG_ZDEFNODEF "-z[defs|nodefs]"

new/usr/src/cmd/sgs/libld/common/libld.msg 22

1376 @ MSG_ARG_ZASLR "-zaslr"
1377 @ MSG_ARG_ZGUIDE "-zguidance"
1378 @ MSG_ARG_ZNODEF "-znodefs"
1379 @ MSG_ARG_ZNOINTERP "-znointerp"
1380 @ MSG_ARG_ZRELAXRELOC "-zrelaxreloc"
1381 @ MSG_ARG_ZNORELAXRELOC "-znorelaxreloc"
1382 @ MSG_ARG_ZTEXT "-ztext"
1383 @ MSG_ARG_ZTEXTOFF "-ztextoff"
1384 @ MSG_ARG_ZTEXTWARN "-ztextwarn"
1385 @ MSG_ARG_ZTEXTALL "-z[text|textwarn|textoff]"
1386 @ MSG_ARG_ZLOADFLTR "-zloadfltr"
1387 @ MSG_ARG_ZCOMBRELOC "-zcombreloc"
1388 @ MSG_ARG_ZSYMBOLCAP "-zsymbolcap"
1389 @ MSG_ARG_ZFATWNOFATW "-z[fatal-warnings|nofatalwarnings]"

1391 @ MSG_ARG_ABSEXEC "absexec"
1392 @ MSG_ARG_ALTEXEC64 "altexec64"
1393 @ MSG_ARG_ASLR "aslr"
1394 @ MSG_ARG_NOCOMPSTRTAB "nocompstrtab"
1395 @ MSG_ARG_GROUPPERM "groupperm"
1396 @ MSG_ARG_NOGROUPPERM "nogroupperm"
1397 @ MSG_ARG_LAZYLOAD "lazyload"
1398 @ MSG_ARG_NOLAZYLOAD "nolazyload"
1399 @ MSG_ARG_INTERPOSE "interpose"
1400 @ MSG_ARG_DIRECT "direct"
1401 @ MSG_ARG_NODIRECT "nodirect"
1402 @ MSG_ARG_IGNORE "ignore"
1403 @ MSG_ARG_RECORD "record"
1404 @ MSG_ARG_INITFIRST "initfirst"
1405 @ MSG_ARG_INITARRAY "initarray="
1406 @ MSG_ARG_FINIARRAY "finiarray="
1407 @ MSG_ARG_PREINITARRAY "preinitarray="
1408 @ MSG_ARG_RTLDINFO "rtldinfo="
1409 @ MSG_ARG_DTRACE "dtrace="
1410 @ MSG_ARG_TRANSLATOR "translator"
1411 @ MSG_ARG_NOOPEN "nodlopen"
1412 @ MSG_ARG_NOW "now"
1413 @ MSG_ARG_ORIGIN "origin"
1414 @ MSG_ARG_DEFS "defs"
1415 @ MSG_ARG_NODEFS "nodefs"
1416 @ MSG_ARG_NODUMP "nodump"
1417 @ MSG_ARG_NOVERSION "noversion"
1418 @ MSG_ARG_TEXT "text"
1419 @ MSG_ARG_TEXTOFF "textoff"
1420 @ MSG_ARG_TEXTWARN "textwarn"
1421 @ MSG_ARG_MULDEFS "muldefs"
1422 @ MSG_ARG_NODELETE "nodelete"
1423 @ MSG_ARG_NOINTERP "nointerp"
1424 @ MSG_ARG_NOPARTIAL "nopartial"
1425 @ MSG_ARG_NORELOC "noreloc"
1426 @ MSG_ARG_REDLOCSYM "redlocsym"
1427 @ MSG_ARG_VERBOSE "verbose"
1428 @ MSG_ARG_WEAKEXT "weakextract"
1429 @ MSG_ARG_LOADFLTR "loadfltr"
1430 @ MSG_ARG_ALLEXTRT "allextract"
1431 @ MSG_ARG_DFLEXTRT "defaultextract"
1432 @ MSG_ARG_COMBRELOC "combreloc"
1433 @ MSG_ARG_NOCOMBRELOC "nocombreloc"
1434 @ MSG_ARG_NODEFAULTLIB "nodefaultlib"
1435 @ MSG_ARG_ENDFILTEE "endfiltee"
1436 @ MSG_ARG_LD32 "ld32="
1437 @ MSG_ARG_LD64 "ld64="
1438 @ MSG_ARG_RESCAN "rescan"
1439 @ MSG_ARG_RESCAN_NOW "rescan-now"
1440 @ MSG_ARG_RESCAN_START "rescan-start"
1441 @ MSG_ARG_RESCAN_END "rescan-end"

new/usr/src/cmd/sgs/libld/common/libld.msg 23

1442 @ MSG_ARG_GUIDE "guidance"
1443 @ MSG_ARG_NOLDYNSYM "noldynsym"
1444 @ MSG_ARG_RELAXRELOC "relaxreloc"
1445 @ MSG_ARG_NORELAXRELOC "norelaxreloc"
1446 @ MSG_ARG_NOSIGHANDLER "nosighandler"
1447 @ MSG_ARG_GLOBAUDIT "globalaudit"
1448 @ MSG_ARG_TARGET "target="
1449 @ MSG_ARG_WRAP "wrap="
1450 @ MSG_ARG_FATWARN "fatal-warnings"
1451 @ MSG_ARG_NOFATWARN "nofatal-warnings"
1452 @ MSG_ARG_HELP "help"
1453 @ MSG_ARG_GROUP "group"
1454 @ MSG_ARG_REDUCE "reduce"
1455 @ MSG_ARG_STATIC "static"
1456 @ MSG_ARG_SYMBOLCAP "symbolcap"
1457 @ MSG_ARG_DEFERRED "deferred"
1458 @ MSG_ARG_NODEFERRED "nodeferred"
1459 @ MSG_ARG_ASSDEFLIB "assert-deflib"
1460 @ MSG_ARG_TYPE "type"
1461 #endif /* ! codereview */

1463 @ MSG_ARG_LCOM "L,"
1464 @ MSG_ARG_PCOM "P,"
1465 @ MSG_ARG_UCOM "U,"

1467 @ MSG_ARG_T_RPATH "rpath"
1468 @ MSG_ARG_T_SHARED "shared"
1469 @ MSG_ARG_T_SONAME "soname"
1470 @ MSG_ARG_T_WL "l,-"

1472 @ MSG_ARG_T_AUXFLTR "-auxiliary"
1473 @ MSG_ARG_T_MULDEFS "-allow-multiple-definition"
1474 @ MSG_ARG_T_INTERP "-dynamic-linker"
1475 @ MSG_ARG_T_ENDGROUP "-end-group"
1476 @ MSG_ARG_T_ENTRY "-entry"
1477 @ MSG_ARG_T_STDFLTR "-filter"
1478 @ MSG_ARG_T_FATWARN "-fatal-warnings"
1479 @ MSG_ARG_T_NOFATWARN "-no-fatal-warnings"
1480 @ MSG_ARG_T_HELP "-help"
1481 @ MSG_ARG_T_LIBRARY "-library"
1482 @ MSG_ARG_T_LIBPATH "-library-path"
1483 @ MSG_ARG_T_NOUNDEF "-no-undefined"
1484 @ MSG_ARG_T_NOWHOLEARC "-no-whole-archive"
1485 @ MSG_ARG_T_OUTPUT "-output"
1486 @ MSG_ARG_T_RELOCATABLE "-relocatable"
1487 @ MSG_ARG_T_STARTGROUP "-start-group"
1488 @ MSG_ARG_T_STRIP "-strip-all"
1489 @ MSG_ARG_T_UNDEF "-undefined"
1490 @ MSG_ARG_T_VERSION "-version"
1491 @ MSG_ARG_T_WHOLEARC "-whole-archive"
1492 @ MSG_ARG_T_WRAP "-wrap"
1493 @ MSG_ARG_T_OPAR "("
1494 @ MSG_ARG_T_CPAR ")"

1496 @ MSG_ARG_ENABLED "enabled"
1497 @ MSG_ARG_DISABLED "disabled"
1498 @ MSG_ARG_ENABLE "enable"
1499 @ MSG_ARG_DISABLE "disable"

1501 # -z guidance=item strings
1502 @ MSG_ARG_GUIDE_DELIM ",: \t"
1503 @ MSG_ARG_GUIDE_NO_ALL "noall"
1504 @ MSG_ARG_GUIDE_NO_DEFS "nodefs"
1505 @ MSG_ARG_GUIDE_NO_DIRECT "nodirect"
1506 @ MSG_ARG_GUIDE_NO_LAZYLOAD "nolazyload"
1507 @ MSG_ARG_GUIDE_NO_MAPFILE "nomapfile"

new/usr/src/cmd/sgs/libld/common/libld.msg 24

1508 @ MSG_ARG_GUIDE_NO_TEXT "notext"
1509 @ MSG_ARG_GUIDE_NO_UNUSED "nounused"

1511 # -z type= strings
1512 @ MSG_ARG_TYPE_RELOC "reloc"
1513 @ MSG_ARG_TYPE_EXEC "exec"
1514 @ MSG_ARG_TYPE_SHARED "shared"
1515 @ MSG_ARG_TYPE_KMOD "kmod"
1516 #endif /* ! codereview */

1518 # Environment variable strings

1520 @ MSG_LD_RUN_PATH "LD_RUN_PATH"
1521 @ MSG_LD_LIBPATH_32 "LD_LIBRARY_PATH_32"
1522 @ MSG_LD_LIBPATH_64 "LD_LIBRARY_PATH_64"
1523 @ MSG_LD_LIBPATH "LD_LIBRARY_PATH"

1525 @ MSG_LD_NOVERSION_32 "LD_NOVERSION_32"
1526 @ MSG_LD_NOVERSION_64 "LD_NOVERSION_64"
1527 @ MSG_LD_NOVERSION "LD_NOVERSION"

1529 @ MSG_SGS_SUPPORT_32 "SGS_SUPPORT_32"
1530 @ MSG_SGS_SUPPORT_64 "SGS_SUPPORT_64"
1531 @ MSG_SGS_SUPPORT "SGS_SUPPORT"

1534 # Symbol names

1536 @ MSG_SYM_LIBVER_U "_lib_version"

1539 # Mapfile tokens

1541 @ MSG_MAP_LOAD "load"
1542 @ MSG_MAP_NOTE "note"
1543 @ MSG_MAP_NULL "null"
1544 @ MSG_MAP_STACK "stack"
1545 @ MSG_MAP_ADDVERS "addvers"
1546 @ MSG_MAP_FUNCTION "function"
1547 @ MSG_MAP_DATA "data"
1548 @ MSG_MAP_COMMON "common"
1549 @ MSG_MAP_PARENT "parent"
1550 @ MSG_MAP_EXTERN "extern"
1551 @ MSG_MAP_DIRECT "direct"
1552 @ MSG_MAP_NODIRECT "nodirect"
1553 @ MSG_MAP_FILTER "filter"
1554 @ MSG_MAP_AUXILIARY "auxiliary"
1555 @ MSG_MAP_OVERRIDE "override"
1556 @ MSG_MAP_INTERPOSE "interpose"
1557 @ MSG_MAP_DYNSORT "dynsort"
1558 @ MSG_MAP_NODYNSORT "nodynsort"

1560 @ MSG_MAPKW_ALIGN "ALIGN"
1561 @ MSG_MAPKW_ALLOC "ALLOC"
1562 @ MSG_MAPKW_ALLOW "ALLOW"
1563 @ MSG_MAPKW_AMD64_LARGE "AMD64_LARGE"
1564 @ MSG_MAPKW_ASSIGN_SECTION "ASSIGN_SECTION"
1565 @ MSG_MAPKW_AUX "AUXILIARY"
1566 @ MSG_MAPKW_CAPABILITY "CAPABILITY"
1567 @ MSG_MAPKW_COMMON "COMMON"
1568 @ MSG_MAPKW_DATA "DATA"
1569 @ MSG_MAPKW_DEFAULT "DEFAULT"
1570 @ MSG_MAPKW_DEPEND_VERSIONS "DEPEND_VERSIONS"
1571 @ MSG_MAPKW_DIRECT "DIRECT"
1572 @ MSG_MAPKW_DISABLE "DISABLE"
1573 @ MSG_MAPKW_DYNSORT "DYNSORT"

new/usr/src/cmd/sgs/libld/common/libld.msg 25

1574 @ MSG_MAPKW_ELIMINATE "ELIMINATE"
1575 @ MSG_MAPKW_EXECUTE "EXECUTE"
1576 @ MSG_MAPKW_EXPORTED "EXPORTED"
1577 @ MSG_MAPKW_EXTERN "EXTERN"
1578 @ MSG_MAPKW_FILTER "FILTER"
1579 @ MSG_MAPKW_FILE_BASENAME "FILE_BASENAME"
1580 @ MSG_MAPKW_FILE_PATH "FILE_PATH"
1581 @ MSG_MAPKW_FILE_OBJNAME "FILE_OBJNAME"
1582 @ MSG_MAPKW_FUNCTION "FUNCTION"
1583 @ MSG_MAPKW_FLAGS "FLAGS"
1584 @ MSG_MAPKW_GLOBAL "GLOBAL"
1585 @ MSG_MAPKW_INTERPOSE "INTERPOSE"
1586 @ MSG_MAPKW_HIDDEN "HIDDEN"
1587 @ MSG_MAPKW_HDR_NOALLOC "HDR_NOALLOC"
1588 @ MSG_MAPKW_HW "HW"
1589 @ MSG_MAPKW_HW_1 "HW_1"
1590 @ MSG_MAPKW_HW_2 "HW_2"
1591 @ MSG_MAPKW_IS_NAME "IS_NAME"
1592 @ MSG_MAPKW_IS_ORDER "IS_ORDER"
1593 @ MSG_MAPKW_LOAD_SEGMENT "LOAD_SEGMENT"
1594 @ MSG_MAPKW_LOCAL "LOCAL"
1595 @ MSG_MAPKW_MACHINE "MACHINE"
1596 @ MSG_MAPKW_MAX_SIZE "MAX_SIZE"
1597 @ MSG_MAPKW_NOHDR "NOHDR"
1598 @ MSG_MAPKW_NODIRECT "NODIRECT"
1599 @ MSG_MAPKW_NODYNSORT "NODYNSORT"
1600 @ MSG_MAPKW_NOTE_SEGMENT "NOTE_SEGMENT"
1601 @ MSG_MAPKW_NULL_SEGMENT "NULL_SEGMENT"
1602 @ MSG_MAPKW_OS_ORDER "OS_ORDER"
1603 @ MSG_MAPKW_PADDR "PADDR"
1604 @ MSG_MAPKW_PARENT "PARENT"
1605 @ MSG_MAPKW_PHDR_ADD_NULL "PHDR_ADD_NULL"
1606 @ MSG_MAPKW_PLATFORM "PLATFORM"
1607 @ MSG_MAPKW_PROTECTED "PROTECTED"
1608 @ MSG_MAPKW_READ "READ"
1609 @ MSG_MAPKW_ROUND "ROUND"
1610 @ MSG_MAPKW_REQUIRE "REQUIRE"
1611 @ MSG_MAPKW_SEGMENT_ORDER "SEGMENT_ORDER"
1612 @ MSG_MAPKW_SF "SF"
1613 @ MSG_MAPKW_SF_1 "SF_1"
1614 @ MSG_MAPKW_SINGLETON "SINGLETON"
1615 @ MSG_MAPKW_SIZE "SIZE"
1616 @ MSG_MAPKW_SIZE_SYMBOL "SIZE_SYMBOL"
1617 @ MSG_MAPKW_STACK "STACK"
1618 @ MSG_MAPKW_SYMBOL_SCOPE "SYMBOL_SCOPE"
1619 @ MSG_MAPKW_SYMBOL_VERSION "SYMBOL_VERSION"
1620 @ MSG_MAPKW_SYMBOLIC "SYMBOLIC"
1621 @ MSG_MAPKW_TYPE "TYPE"
1622 @ MSG_MAPKW_VADDR "VADDR"
1623 @ MSG_MAPKW_VALUE "VALUE"
1624 @ MSG_MAPKW_WRITE "WRITE"

1627 @ MSG_STR_DTRACE "PT_SUNWDTRACE"

new/usr/src/cmd/sgs/libld/common/relocate.c 1

**
 94536 Sun Feb 24 19:19:12 2019
new/usr/src/cmd/sgs/libld/common/relocate.c
ld: implement -ztype and rework option parsing
**
______unchanged_portion_omitted_

1473 uintptr_t
1474 ld_process_sym_reloc(Ofl_desc *ofl, Rel_desc *reld, Rel *reloc, Is_desc *isp,
1475 const char *isname, Word isscnndx)
1476 {
1477 Word rtype = reld->rel_rtype;
1478 ofl_flag_t flags = ofl->ofl_flags;
1479 Sym_desc *sdp = reld->rel_sym;
1480 Sym_aux *sap;
1481 Boolean local;
1482 Conv_inv_buf_t inv_buf;

1484 DBG_CALL(Dbg_reloc_in(ofl->ofl_lml, ELF_DBG_LD, ld_targ.t_m.m_mach,
1485 ld_targ.t_m.m_rel_sht_type, (void *)reloc, isname, isscnndx,
1486 ld_reloc_sym_name(reld)));

1488 /*
1489 * Indicate this symbol is being used for relocation and therefore must
1490 * have its output address updated accordingly (refer to update_osym()).
1491 */
1492 sdp->sd_flags |= FLG_SY_UPREQD;

1494 /*
1495 * Indicate the section this symbol is defined in has been referenced,
1496 * therefor it *is not* a candidate for elimination.
1497 */
1498 if (sdp->sd_isc) {
1499 sdp->sd_isc->is_flags |= FLG_IS_SECTREF;
1500 sdp->sd_isc->is_file->ifl_flags |= FLG_IF_FILEREF;
1501 }

1503 if (!ld_reloc_set_aux_usym(ofl, reld, sdp))
1504 return (S_ERROR);

1506 /*
1507 * Determine if this symbol is actually an alias to another symbol. If
1508 * so, and the alias is not REF_DYN_SEEN, set ra_usym to point to the
1509 * weak symbols strong counter-part. The one exception is if the
1510 * FLG_SY_MVTOCOMM flag is set on the weak symbol. If this is the case,
1511 * the strong is only here because of its promotion, and the weak symbol
1512 * should still be used for the relocation reference (see reloc_exec()).
1513 */
1514 sap = sdp->sd_aux;
1515 if (sap && sap->sa_linkndx &&
1516 ((ELF_ST_BIND(sdp->sd_sym->st_info) == STB_WEAK) ||
1517 (sdp->sd_flags & FLG_SY_WEAKDEF)) &&
1518 (!(sdp->sd_flags & FLG_SY_MVTOCOMM))) {
1519 Sym_desc *_sdp;

1521 _sdp = sdp->sd_file->ifl_oldndx[sap->sa_linkndx];
1522 if ((_sdp->sd_ref != REF_DYN_SEEN) &&
1523 !ld_reloc_set_aux_usym(ofl, reld, _sdp))
1524 return (S_ERROR);
1525 }

1527 /*
1528 * Determine whether this symbol should be bound locally or not.
1529 * Symbols are bound locally if one of the following is true:
1530 *
1531 * - the symbol is of type STB_LOCAL.

new/usr/src/cmd/sgs/libld/common/relocate.c 2

1532 *
1533 * - the output image is not a relocatable object and the relocation
1534 * is relative to the .got.
1535 *
1536 * - the section being relocated is of type SHT_SUNW_dof. These
1537 * sections must be bound to the functions in the containing
1538 * object and can not be interposed upon.
1539 *
1540 * - the symbol has been reduced (scoped to a local or symbolic) and
1541 * reductions are being processed.
1542 *
1543 * - the -Bsymbolic flag is in use when building a shared object,
1544 * and the symbol hasn’t explicitly been defined as nodirect.
1545 *
1546 * - an executable (fixed address))is being created, and the symbol
1546 * - an executable (fixed address) is being created, and the symbol
1547 * is defined in the executable.
1548 *
1549 * - the relocation is against a segment which will not be loaded
1550 * into memory. In this case, the relocation must be resolved
1551 * now, as ld.so.1 can not process relocations against unmapped
1552 * segments.
1553 */
1554 local = FALSE;
1555 if (ELF_ST_BIND(sdp->sd_sym->st_info) == STB_LOCAL) {
1556 local = TRUE;
1557 } else if (!(reld->rel_flags & FLG_REL_LOAD)) {
1558 local = TRUE;
1559 } else if (sdp->sd_sym->st_shndx != SHN_UNDEF) {
1560 if (reld->rel_isdesc &&
1561 reld->rel_isdesc->is_shdr->sh_type == SHT_SUNW_dof) {
1562 local = TRUE;
1563 } else if (!(flags & FLG_OF_RELOBJ) &&
1564 (IS_LOCALBND(rtype) || IS_SEG_RELATIVE(rtype))) {
1565 local = TRUE;
1566 } else if ((sdp->sd_ref == REF_REL_NEED) &&
1567 ((sdp->sd_flags & FLG_SY_CAP) == 0)) {
1568 /*
1569 * Global symbols may have been individually reduced in
1570 * scope. If the whole object is to be self contained,
1571 * such as when generating an executable or a symbolic
1572 * shared object, make sure all relocation symbol
1573 * references (sections too) are treated locally. Note,
1574 * explicit no-direct symbols should not be bound to
1575 * locally.
1576 */
1577 if ((sdp->sd_flags &
1578 (FLG_SY_HIDDEN | FLG_SY_PROTECT)))
1579 local = TRUE;
1580 else if ((flags & FLG_OF_EXEC) ||
1581 ((flags & FLG_OF_SYMBOLIC) &&
1582 ((sdp->sd_flags & FLG_SY_NDIR) == 0))) {
1583 local = TRUE;
1584 }
1585 }
1586 }

1588 /*
1589 * If this is a PC_RELATIVE relocation, the relocation could be
1590 * compromised if the relocated address is later used as a copy
1591 * relocated symbol (PSARC 1999/636, bugid 4187211). Scan the input
1592 * files symbol table to cross reference this relocation offset.
1593 */
1594 if ((ofl->ofl_flags & FLG_OF_SHAROBJ) &&
1595 IS_PC_RELATIVE(rtype) &&
1596 (IS_GOT_PC(rtype) == 0) &&

new/usr/src/cmd/sgs/libld/common/relocate.c 3

1597 (IS_PLT(rtype) == 0)) {
1598 if (disp_inspect(ofl, reld, local) == S_ERROR)
1599 return (S_ERROR);
1600 }

1602 /*
1603 * GOT based relocations must bind to the object being built - since
1604 * they are relevant to the current GOT. If not building a relocatable
1605 * object - give a appropriate error message.
1606 */
1607 if (!local && !(flags & FLG_OF_RELOBJ) &&
1608 IS_GOT_BASED(rtype)) {
1609 Ifl_desc *ifl = reld->rel_isdesc->is_file;

1611 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_REL_BADGOTBASED),
1612 conv_reloc_type(ifl->ifl_ehdr->e_machine, rtype,
1613 0, &inv_buf), ifl->ifl_name, demangle(sdp->sd_name));
1614 return (S_ERROR);
1615 }

1617 /*
1618 * TLS symbols can only have TLS relocations.
1619 */
1620 if ((ELF_ST_TYPE(sdp->sd_sym->st_info) == STT_TLS) &&
1621 (IS_TLS_INS(rtype) == 0)) {
1622 /*
1623 * The above test is relaxed if the target section is
1624 * non-allocable.
1625 */
1626 if (RELAUX_GET_OSDESC(reld)->os_shdr->sh_flags & SHF_ALLOC) {
1627 Ifl_desc *ifl = reld->rel_isdesc->is_file;

1629 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS),
1630 conv_reloc_type(ifl->ifl_ehdr->e_machine,
1631 rtype, 0, &inv_buf), ifl->ifl_name,
1632 demangle(sdp->sd_name));
1633 return (S_ERROR);
1634 }
1635 }

1637 /*
1638 * Select the relocation to perform.
1639 */
1640 if (IS_REGISTER(rtype)) {
1641 if (ld_targ.t_mr.mr_reloc_register == NULL) {
1642 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_REL_NOREG));
1643 return (S_ERROR);
1644 }
1645 return ((*ld_targ.t_mr.mr_reloc_register)(reld, isp, ofl));
1646 }

1648 if (flags & FLG_OF_RELOBJ)
1649 return (reloc_relobj(local, reld, ofl));

1651 if (IS_TLS_INS(rtype))
1652 return (reloc_TLS(local, reld, ofl));

1654 if (IS_GOT_OPINS(rtype)) {
1655 if (ld_targ.t_mr.mr_reloc_GOTOP == NULL) {
1656 assert(0);
1657 return (S_ERROR);
1658 }
1659 return ((*ld_targ.t_mr.mr_reloc_GOTOP)(local, reld, ofl));
1660 }

1662 if (IS_GOT_RELATIVE(rtype))

new/usr/src/cmd/sgs/libld/common/relocate.c 4

1663 return (ld_reloc_GOT_relative(local, reld, ofl));

1665 if (local)
1666 return ((*ld_targ.t_mr.mr_reloc_local)(reld, ofl));

1668 if ((IS_PLT(rtype) || ((sdp->sd_flags & FLG_SY_CAP) &&
1669 (ELF_ST_TYPE(sdp->sd_sym->st_info) == STT_FUNC))) &&
1670 ((flags & FLG_OF_BFLAG) == 0))
1671 return (ld_reloc_plt(reld, ofl));

1673 if ((sdp->sd_ref == REF_REL_NEED) ||
1674 (flags & FLG_OF_BFLAG) || (flags & FLG_OF_SHAROBJ) ||
1675 (ELF_ST_TYPE(sdp->sd_sym->st_info) == STT_NOTYPE))
1676 return ((*ld_targ.t_mr.mr_add_outrel)(NULL, reld, ofl));

1678 if (sdp->sd_ref == REF_DYN_NEED)
1679 return (reloc_exec(reld, ofl));

1681 /*
1682 * IS_NOT_REL(rtype)
1683 */
1684 return (reloc_generic(reld, ofl));
1685 }
______unchanged_portion_omitted_

new/usr/src/cmd/sgs/libld/common/sections.c 1

**
 96493 Sun Feb 24 19:19:13 2019
new/usr/src/cmd/sgs/libld/common/sections.c
ld: implement -ztype and rework option parsing
**
______unchanged_portion_omitted_

927 /*
928 * Make the dynamic section. Calculate the size of any strings referenced
929 * within this structure, they will be added to the global string table
930 * (.dynstr). This routine should be called before make_dynstr().
931 *
932 * This routine must be maintained in parallel with update_odynamic()
933 * in update.c
934 */
935 static uintptr_t
936 make_dynamic(Ofl_desc *ofl)
937 {
938 Shdr *shdr;
939 Os_desc *osp;
940 Elf_Data *data;
941 Is_desc *isec;
942 size_t cnt = 0;
943 Aliste idx;
944 Ifl_desc *ifl;
945 Sym_desc *sdp;
946 size_t size;
947 Str_tbl *strtbl;
948 ofl_flag_t flags = ofl->ofl_flags;
949 int not_relobj = !(flags & FLG_OF_RELOBJ);
950 int unused = 0;

952 /*
953 * Select the required string table.
954 */
955 if (OFL_IS_STATIC_OBJ(ofl))
956 strtbl = ofl->ofl_strtab;
957 else
958 strtbl = ofl->ofl_dynstrtab;

960 /*
961 * Only a limited subset of DT_ entries apply to relocatable
962 * objects. See the comment at the head of update_odynamic() in
963 * update.c for details.
964 */
965 if (new_section(ofl, SHT_DYNAMIC, MSG_ORIG(MSG_SCN_DYNAMIC), 0,
966 &isec, &shdr, &data) == S_ERROR)
967 return (S_ERROR);

969 /*
970 * new_section() does not set SHF_ALLOC. If we’re building anything
971 * besides a relocatable object, then the .dynamic section should
972 * reside in allocatable memory.
973 */
974 if (not_relobj)
975 shdr->sh_flags |= SHF_ALLOC;

977 /*
978 * new_section() does not set SHF_WRITE. If we’re building an object
979 * that specifies an interpretor, then a DT_DEBUG entry is created,
980 * which is initialized to the applications link-map list at runtime.
981 */
982 if (ofl->ofl_osinterp)
983 shdr->sh_flags |= SHF_WRITE;

985 osp = ofl->ofl_osdynamic =

new/usr/src/cmd/sgs/libld/common/sections.c 2

986 ld_place_section(ofl, isec, NULL, ld_targ.t_id.id_dynamic, NULL);

988 /*
989 * Reserve entries for any needed dependencies.
990 */
991 for (APLIST_TRAVERSE(ofl->ofl_sos, idx, ifl)) {
992 if (!(ifl->ifl_flags & (FLG_IF_NEEDED | FLG_IF_NEEDSTR)))
993 continue;

995 /*
996 * If this dependency didn’t satisfy any symbol references,
997 * generate a debugging diagnostic (ld(1) -Dunused can be used
998 * to display these). If this is a standard needed dependency,
999 * and -z ignore is in effect, drop the dependency. Explicitly

1000 * defined dependencies (i.e., -N dep) don’t get dropped, and
1001 * are flagged as being required to simplify update_odynamic()
1002 * processing.
1003 */
1004 if ((ifl->ifl_flags & FLG_IF_NEEDSTR) ||
1005 ((ifl->ifl_flags & FLG_IF_DEPREQD) == 0)) {
1006 if (unused++ == 0)
1007 DBG_CALL(Dbg_util_nl(ofl->ofl_lml, DBG_NL_STD));
1008 DBG_CALL(Dbg_unused_file(ofl->ofl_lml, ifl->ifl_soname,
1009 (ifl->ifl_flags & FLG_IF_NEEDSTR), 0));

1011 /*
1012 * Guidance: Remove unused dependency.
1013 *
1014 * If -z ignore is in effect, this warning is not
1015 * needed because we will quietly remove the unused
1016 * dependency.
1017 */
1018 if (OFL_GUIDANCE(ofl, FLG_OFG_NO_UNUSED) &&
1019 ((ifl->ifl_flags & FLG_IF_IGNORE) == 0))
1020 ld_eprintf(ofl, ERR_GUIDANCE,
1021 MSG_INTL(MSG_GUIDE_UNUSED),
1022 ifl->ifl_soname);

1024 if (ifl->ifl_flags & FLG_IF_NEEDSTR)
1025 ifl->ifl_flags |= FLG_IF_DEPREQD;
1026 else if (ifl->ifl_flags & FLG_IF_IGNORE)
1027 continue;
1028 }

1030 /*
1031 * If this object requires a DT_POSFLAG_1 entry, reserve it.
1032 */
1033 if ((ifl->ifl_flags & MSK_IF_POSFLAG1) && not_relobj)
1034 cnt++;

1036 if (st_insert(strtbl, ifl->ifl_soname) == -1)
1037 return (S_ERROR);
1038 cnt++;

1040 /*
1041 * If the needed entry contains the $ORIGIN token make sure
1042 * the associated DT_1_FLAGS entry is created.
1043 */
1044 if (strstr(ifl->ifl_soname, MSG_ORIG(MSG_STR_ORIGIN))) {
1045 ofl->ofl_dtflags_1 |= DF_1_ORIGIN;
1046 ofl->ofl_dtflags |= DF_ORIGIN;
1047 }
1048 }

1050 if (unused)
1051 DBG_CALL(Dbg_util_nl(ofl->ofl_lml, DBG_NL_STD));

new/usr/src/cmd/sgs/libld/common/sections.c 3

1053 if (not_relobj) {
1054 /*
1055 * Reserve entries for any per-symbol auxiliary/filter strings.
1056 */
1057 cnt += alist_nitems(ofl->ofl_dtsfltrs);

1059 /*
1060 * Reserve entries for _init() and _fini() section addresses.
1061 */
1062 if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_INIT_U),
1063 SYM_NOHASH, NULL, ofl)) != NULL) &&
1064 (sdp->sd_ref == REF_REL_NEED) &&
1065 (sdp->sd_sym->st_shndx != SHN_UNDEF)) {
1066 sdp->sd_flags |= FLG_SY_UPREQD;
1067 cnt++;
1068 }
1069 if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_FINI_U),
1070 SYM_NOHASH, NULL, ofl)) != NULL) &&
1071 (sdp->sd_ref == REF_REL_NEED) &&
1072 (sdp->sd_sym->st_shndx != SHN_UNDEF)) {
1073 sdp->sd_flags |= FLG_SY_UPREQD;
1074 cnt++;
1075 }

1077 /*
1078 * Reserve entries for any soname, filter name (shared libs
1079 * only), run-path pointers, cache names and audit requirements.
1080 */
1081 if (ofl->ofl_soname) {
1082 cnt++;
1083 if (st_insert(strtbl, ofl->ofl_soname) == -1)
1084 return (S_ERROR);
1085 }
1086 if (ofl->ofl_filtees) {
1087 cnt++;
1088 if (st_insert(strtbl, ofl->ofl_filtees) == -1)
1089 return (S_ERROR);

1091 /*
1092 * If the filtees entry contains the $ORIGIN token
1093 * make sure the associated DT_1_FLAGS entry is created.
1094 */
1095 if (strstr(ofl->ofl_filtees,
1096 MSG_ORIG(MSG_STR_ORIGIN))) {
1097 ofl->ofl_dtflags_1 |= DF_1_ORIGIN;
1098 ofl->ofl_dtflags |= DF_ORIGIN;
1099 }
1100 }
1101 }

1103 if (ofl->ofl_rpath) {
1104 cnt += 2; /* DT_RPATH & DT_RUNPATH */
1105 if (st_insert(strtbl, ofl->ofl_rpath) == -1)
1106 return (S_ERROR);

1108 /*
1109 * If the rpath entry contains the $ORIGIN token make sure
1110 * the associated DT_1_FLAGS entry is created.
1111 */
1112 if (strstr(ofl->ofl_rpath, MSG_ORIG(MSG_STR_ORIGIN))) {
1113 ofl->ofl_dtflags_1 |= DF_1_ORIGIN;
1114 ofl->ofl_dtflags |= DF_ORIGIN;
1115 }
1116 }

new/usr/src/cmd/sgs/libld/common/sections.c 4

1118 if (not_relobj) {
1119 Aliste idx;
1120 Sg_desc *sgp;

1122 if (ofl->ofl_config) {
1123 cnt++;
1124 if (st_insert(strtbl, ofl->ofl_config) == -1)
1125 return (S_ERROR);

1127 /*
1128 * If the config entry contains the $ORIGIN token
1129 * make sure the associated DT_1_FLAGS entry is created.
1130 */
1131 if (strstr(ofl->ofl_config, MSG_ORIG(MSG_STR_ORIGIN))) {
1132 ofl->ofl_dtflags_1 |= DF_1_ORIGIN;
1133 ofl->ofl_dtflags |= DF_ORIGIN;
1134 }
1135 }
1136 if (ofl->ofl_depaudit) {
1137 cnt++;
1138 if (st_insert(strtbl, ofl->ofl_depaudit) == -1)
1139 return (S_ERROR);
1140 }
1141 if (ofl->ofl_audit) {
1142 cnt++;
1143 if (st_insert(strtbl, ofl->ofl_audit) == -1)
1144 return (S_ERROR);
1145 }

1147 /*
1148 * Reserve entries for the DT_HASH, DT_STRTAB, DT_STRSZ,
1149 * DT_SYMTAB, DT_SYMENT, and DT_CHECKSUM.
1150 */
1151 cnt += 6;

1153 /*
1154 * If we are including local functions at the head of
1155 * the dynsym, then also reserve entries for DT_SUNW_SYMTAB
1156 * and DT_SUNW_SYMSZ.
1157 */
1158 if (OFL_ALLOW_LDYNSYM(ofl))
1159 cnt += 2;

1161 if ((ofl->ofl_dynsymsortcnt > 0) ||
1162 (ofl->ofl_dyntlssortcnt > 0))
1163 cnt++; /* DT_SUNW_SORTENT */

1165 if (ofl->ofl_dynsymsortcnt > 0)
1166 cnt += 2; /* DT_SUNW_[SYMSORT|SYMSORTSZ] */

1168 if (ofl->ofl_dyntlssortcnt > 0)
1169 cnt += 2; /* DT_SUNW_[TLSSORT|TLSSORTSZ] */

1171 if ((flags & (FLG_OF_VERDEF | FLG_OF_NOVERSEC)) ==
1172 FLG_OF_VERDEF)
1173 cnt += 2; /* DT_VERDEF & DT_VERDEFNUM */

1175 if ((flags & (FLG_OF_VERNEED | FLG_OF_NOVERSEC)) ==
1176 FLG_OF_VERNEED)
1177 cnt += 2; /* DT_VERNEED & DT_VERNEEDNUM */

1179 if ((flags & FLG_OF_COMREL) && ofl->ofl_relocrelcnt)
1180 cnt++; /* DT_RELACOUNT */

1182 if (flags & FLG_OF_TEXTREL) /* DT_TEXTREL */
1183 cnt++;

new/usr/src/cmd/sgs/libld/common/sections.c 5

1185 if (ofl->ofl_osfiniarray) /* DT_FINI_ARRAY */
1186 cnt += 2; /* DT_FINI_ARRAYSZ */

1188 if (ofl->ofl_osinitarray) /* DT_INIT_ARRAY */
1189 cnt += 2; /* DT_INIT_ARRAYSZ */

1191 if (ofl->ofl_ospreinitarray) /* DT_PREINIT_ARRAY & */
1192 cnt += 2; /* DT_PREINIT_ARRAYSZ */

1194 /*
1195 * If we have plt’s reserve a DT_PLTRELSZ, DT_PLTREL and
1196 * DT_JMPREL.
1197 */
1198 if (ofl->ofl_pltcnt)
1199 cnt += 3;

1201 /*
1202 * If plt padding is needed (Sparcv9).
1203 */
1204 if (ofl->ofl_pltpad)
1205 cnt += 2; /* DT_PLTPAD & DT_PLTPADSZ */

1207 /*
1208 * If we have any relocations reserve a DT_REL, DT_RELSZ and
1209 * DT_RELENT entry.
1210 */
1211 if (ofl->ofl_relocsz)
1212 cnt += 3;

1214 /*
1215 * If a syminfo section is required create DT_SYMINFO,
1216 * DT_SYMINSZ, and DT_SYMINENT entries.
1217 */
1218 if (flags & FLG_OF_SYMINFO)
1219 cnt += 3;

1221 /*
1222 * If there are any partially initialized sections allocate
1223 * DT_MOVETAB, DT_MOVESZ and DT_MOVEENT.
1224 */
1225 if (ofl->ofl_osmove)
1226 cnt += 3;

1228 /*
1229 * Allocate one DT_REGISTER entry for every register symbol.
1230 */
1231 cnt += ofl->ofl_regsymcnt;

1233 /*
1234 * Reserve a entry for each ’-zrtldinfo=...’ specified
1235 * on the command line.
1236 */
1237 for (APLIST_TRAVERSE(ofl->ofl_rtldinfo, idx, sdp))
1238 cnt++;

1240 /*
1241 * The following entry should only be placed in a segment that
1242 * is writable.
1243 */
1244 if (((sgp = osp->os_sgdesc) != NULL) &&
1245 (sgp->sg_phdr.p_flags & PF_W) && ofl->ofl_osinterp)
1246 cnt++; /* DT_DEBUG */

1248 /*
1249 * Capabilities require a .dynamic entry for the .SUNW_cap

new/usr/src/cmd/sgs/libld/common/sections.c 6

1250 * section.
1251 */
1252 if (ofl->ofl_oscap)
1253 cnt++; /* DT_SUNW_CAP */

1255 /*
1256 * Symbol capabilities require a .dynamic entry for the
1257 * .SUNW_capinfo section.
1258 */
1259 if (ofl->ofl_oscapinfo)
1260 cnt++; /* DT_SUNW_CAPINFO */

1262 /*
1263 * Capabilities chain information requires a .SUNW_capchain
1264 * entry (DT_SUNW_CAPCHAIN), entry size (DT_SUNW_CAPCHAINENT),
1265 * and total size (DT_SUNW_CAPCHAINSZ).
1266 */
1267 if (ofl->ofl_oscapchain)
1268 cnt += 3;

1270 if (flags & FLG_OF_SYMBOLIC)
1271 cnt++; /* DT_SYMBOLIC */

1273 if (ofl->ofl_aslr != 0) /* DT_SUNW_ASLR */
1274 cnt++;
1275 }

1277 if (ofl->ofl_flags & FLG_OF_KMOD)
1278 cnt++;

1280 #endif /* ! codereview */
1281 /*
1282 * Account for Architecture dependent .dynamic entries, and defaults.
1283 */
1284 (*ld_targ.t_mr.mr_mach_make_dynamic)(ofl, &cnt);

1286 /*
1287 * DT_FLAGS, DT_FLAGS_1, DT_SUNW_STRPAD, and DT_NULL. Also,
1288 * allow room for the unused extra DT_NULLs. These are included
1289 * to allow an ELF editor room to add items later.
1290 */
1291 cnt += 4 + DYNAMIC_EXTRA_ELTS;

1293 /*
1294 * DT_SUNW_LDMACH. Used to hold the ELF machine code of the
1295 * linker that produced the output object. This information
1296 * allows us to determine whether a given object was linked
1297 * natively, or by a linker running on a different type of
1298 * system. This information can be valuable if one suspects
1299 * that a problem might be due to alignment or byte order issues.
1300 */
1301 cnt++;

1303 /*
1304 * Determine the size of the section from the number of entries.
1305 */
1306 size = cnt * (size_t)shdr->sh_entsize;

1308 shdr->sh_size = (Xword)size;
1309 data->d_size = size;

1311 /*
1312 * There are several tags that are specific to the Solaris osabi
1313 * range which we unconditionally put into any dynamic section
1314 * we create (e.g. DT_SUNW_STRPAD or DT_SUNW_LDMACH). As such,
1315 * any Solaris object with a dynamic section should be tagged as

new/usr/src/cmd/sgs/libld/common/sections.c 7

1316 * ELFOSABI_SOLARIS.
1317 */
1318 ofl->ofl_flags |= FLG_OF_OSABI;

1320 return ((uintptr_t)ofl->ofl_osdynamic);
1321 }

1323 /*
1324 * Build the GOT section and its associated relocation entries.
1325 */
1326 uintptr_t
1327 ld_make_got(Ofl_desc *ofl)
1328 {
1329 Elf_Data *data;
1330 Shdr *shdr;
1331 Is_desc *isec;
1332 size_t size = (size_t)ofl->ofl_gotcnt * ld_targ.t_m.m_got_entsize;
1333 size_t rsize = (size_t)ofl->ofl_relocgotsz;

1335 if (new_section(ofl, SHT_PROGBITS, MSG_ORIG(MSG_SCN_GOT), 0,
1336 &isec, &shdr, &data) == S_ERROR)
1337 return (S_ERROR);

1339 data->d_size = size;

1341 shdr->sh_flags |= SHF_WRITE;
1342 shdr->sh_size = (Xword)size;
1343 shdr->sh_entsize = ld_targ.t_m.m_got_entsize;

1345 ofl->ofl_osgot = ld_place_section(ofl, isec, NULL,
1346 ld_targ.t_id.id_got, NULL);
1347 if (ofl->ofl_osgot == (Os_desc *)S_ERROR)
1348 return (S_ERROR);

1350 ofl->ofl_osgot->os_szoutrels = (Xword)rsize;

1352 return (1);
1353 }

1355 /*
1356 * Build an interpreter section.
1357 */
1358 static uintptr_t
1359 make_interp(Ofl_desc *ofl)
1360 {
1361 Shdr *shdr;
1362 Elf_Data *data;
1363 Is_desc *isec;
1364 const char *iname = ofl->ofl_interp;
1365 size_t size;

1367 /*
1368 * If -z nointerp is in effect, don’t create an interpreter section.
1369 */
1370 if (ofl->ofl_flags1 & FLG_OF1_NOINTRP)
1371 return (1);

1373 /*
1374 * An .interp section is always created for a dynamic executable.
1375 * A user can define the interpreter to use. This definition overrides
1376 * the default that would be recorded in an executable, and triggers
1377 * the creation of an .interp section in any other object. Presumably
1378 * the user knows what they are doing. Refer to the generic ELF ABI
1379 * section 5-4, and the ld(1) -I option.
1380 */
1381 if (((ofl->ofl_flags & (FLG_OF_DYNAMIC | FLG_OF_EXEC |

new/usr/src/cmd/sgs/libld/common/sections.c 8

1382 FLG_OF_RELOBJ)) != (FLG_OF_DYNAMIC | FLG_OF_EXEC)) && !iname)
1383 return (1);

1385 /*
1386 * In the case of a dynamic executable, supply a default interpreter
1387 * if the user has not specified their own.
1388 */
1389 if (iname == NULL)
1390 iname = ofl->ofl_interp = ld_targ.t_m.m_def_interp;

1392 size = strlen(iname) + 1;

1394 if (new_section(ofl, SHT_PROGBITS, MSG_ORIG(MSG_SCN_INTERP), 0,
1395 &isec, &shdr, &data) == S_ERROR)
1396 return (S_ERROR);

1398 data->d_size = size;
1399 shdr->sh_size = (Xword)size;
1400 data->d_align = shdr->sh_addralign = 1;

1402 ofl->ofl_osinterp =
1403 ld_place_section(ofl, isec, NULL, ld_targ.t_id.id_interp, NULL);
1404 return ((uintptr_t)ofl->ofl_osinterp);
1405 }

1407 /*
1408 * Common function used to build the SHT_SUNW_versym section, SHT_SUNW_syminfo
1409 * section, and SHT_SUNW_capinfo section. Each of these sections provide
1410 * additional symbol information, and their size parallels the associated
1411 * symbol table.
1412 */
1413 static Os_desc *
1414 make_sym_sec(Ofl_desc *ofl, const char *sectname, Word stype, int ident)
1415 {
1416 Shdr *shdr;
1417 Elf_Data *data;
1418 Is_desc *isec;

1420 /*
1421 * We don’t know the size of this section yet, so set it to 0. The
1422 * size gets filled in after the associated symbol table is sized.
1423 */
1424 if (new_section(ofl, stype, sectname, 0, &isec, &shdr, &data) ==
1425 S_ERROR)
1426 return ((Os_desc *)S_ERROR);

1428 return (ld_place_section(ofl, isec, NULL, ident, NULL));
1429 }

1431 /*
1432 * Determine whether a symbol capability is redundant because the object
1433 * capabilities are more restrictive.
1434 */
1435 inline static int
1436 is_cap_redundant(Objcapset *ocapset, Objcapset *scapset)
1437 {
1438 Alist *oalp, *salp;
1439 elfcap_mask_t omsk, smsk;

1441 /*
1442 * Inspect any platform capabilities. If the object defines platform
1443 * capabilities, then the object will only be loaded for those
1444 * platforms. A symbol capability set that doesn’t define the same
1445 * platforms is redundant, and a symbol capability that does not provide
1446 * at least one platform name that matches a platform name in the object
1447 * capabilities will never execute (as the object wouldn’t have been

new/usr/src/cmd/sgs/libld/common/sections.c 9

1448 * loaded).
1449 */
1450 oalp = ocapset->oc_plat.cl_val;
1451 salp = scapset->oc_plat.cl_val;
1452 if (oalp && ((salp == NULL) || cap_names_match(oalp, salp)))
1453 return (1);

1455 /*
1456 * If the symbol capability set defines platforms, and the object
1457 * doesn’t, then the symbol set is more restrictive.
1458 */
1459 if (salp && (oalp == NULL))
1460 return (0);

1462 /*
1463 * Next, inspect any machine name capabilities. If the object defines
1464 * machine name capabilities, then the object will only be loaded for
1465 * those machines. A symbol capability set that doesn’t define the same
1466 * machine names is redundant, and a symbol capability that does not
1467 * provide at least one machine name that matches a machine name in the
1468 * object capabilities will never execute (as the object wouldn’t have
1469 * been loaded).
1470 */
1471 oalp = ocapset->oc_plat.cl_val;
1472 salp = scapset->oc_plat.cl_val;
1473 if (oalp && ((salp == NULL) || cap_names_match(oalp, salp)))
1474 return (1);

1476 /*
1477 * If the symbol capability set defines machine names, and the object
1478 * doesn’t, then the symbol set is more restrictive.
1479 */
1480 if (salp && (oalp == NULL))
1481 return (0);

1483 /*
1484 * Next, inspect any hardware capabilities. If the objects hardware
1485 * capabilities are greater than or equal to that of the symbols
1486 * capabilities, then the symbol capability set is redundant. If the
1487 * symbols hardware capabilities are greater that the objects, then the
1488 * symbol set is more restrictive.
1489 *
1490 * Note that this is a somewhat arbitrary definition, as each capability
1491 * bit is independent of the others, and some of the higher order bits
1492 * could be considered to be less important than lower ones. However,
1493 * this is the only reasonable non-subjective definition.
1494 */
1495 omsk = ocapset->oc_hw_2.cm_val;
1496 smsk = scapset->oc_hw_2.cm_val;
1497 if ((omsk > smsk) || (omsk && (omsk == smsk)))
1498 return (1);
1499 if (omsk < smsk)
1500 return (0);

1502 /*
1503 * Finally, inspect the remaining hardware capabilities.
1504 */
1505 omsk = ocapset->oc_hw_1.cm_val;
1506 smsk = scapset->oc_hw_1.cm_val;
1507 if ((omsk > smsk) || (omsk && (omsk == smsk)))
1508 return (1);

1510 return (0);
1511 }

1513 /*

new/usr/src/cmd/sgs/libld/common/sections.c 10

1514 * Capabilities values might have been assigned excluded values. These
1515 * excluded values should be removed before calculating any capabilities
1516 * sections size.
1517 */
1518 static void
1519 capmask_value(Lm_list *lml, Word type, Capmask *capmask, int *title)
1520 {
1521 /*
1522 * First determine whether any bits should be excluded.
1523 */
1524 if ((capmask->cm_val & capmask->cm_exc) == 0)
1525 return;

1527 DBG_CALL(Dbg_cap_post_title(lml, title));

1529 DBG_CALL(Dbg_cap_val_entry(lml, DBG_STATE_CURRENT, type,
1530 capmask->cm_val, ld_targ.t_m.m_mach));
1531 DBG_CALL(Dbg_cap_val_entry(lml, DBG_STATE_EXCLUDE, type,
1532 capmask->cm_exc, ld_targ.t_m.m_mach));

1534 capmask->cm_val &= ~capmask->cm_exc;

1536 DBG_CALL(Dbg_cap_val_entry(lml, DBG_STATE_RESOLVED, type,
1537 capmask->cm_val, ld_targ.t_m.m_mach));
1538 }

1540 static void
1541 capstr_value(Lm_list *lml, Word type, Caplist *caplist, int *title)
1542 {
1543 Aliste idx1, idx2;
1544 char *estr;
1545 Capstr *capstr;
1546 Boolean found = FALSE;

1548 /*
1549 * First determine whether any strings should be excluded.
1550 */
1551 for (APLIST_TRAVERSE(caplist->cl_exc, idx1, estr)) {
1552 for (ALIST_TRAVERSE(caplist->cl_val, idx2, capstr)) {
1553 if (strcmp(estr, capstr->cs_str) == 0) {
1554 found = TRUE;
1555 break;
1556 }
1557 }
1558 }

1560 if (found == FALSE)
1561 return;

1563 /*
1564 * Traverse the current strings, then delete the excluded strings,
1565 * and finally display the resolved strings.
1566 */
1567 if (DBG_ENABLED) {
1568 Dbg_cap_post_title(lml, title);
1569 for (ALIST_TRAVERSE(caplist->cl_val, idx2, capstr)) {
1570 Dbg_cap_ptr_entry(lml, DBG_STATE_CURRENT, type,
1571 capstr->cs_str);
1572 }
1573 }
1574 for (APLIST_TRAVERSE(caplist->cl_exc, idx1, estr)) {
1575 for (ALIST_TRAVERSE(caplist->cl_val, idx2, capstr)) {
1576 if (strcmp(estr, capstr->cs_str) == 0) {
1577 DBG_CALL(Dbg_cap_ptr_entry(lml,
1578 DBG_STATE_EXCLUDE, type, capstr->cs_str));
1579 alist_delete(caplist->cl_val, &idx2);

new/usr/src/cmd/sgs/libld/common/sections.c 11

1580 break;
1581 }
1582 }
1583 }
1584 if (DBG_ENABLED) {
1585 for (ALIST_TRAVERSE(caplist->cl_val, idx2, capstr)) {
1586 Dbg_cap_ptr_entry(lml, DBG_STATE_RESOLVED, type,
1587 capstr->cs_str);
1588 }
1589 }
1590 }

1592 /*
1593 * Build a capabilities section.
1594 */
1595 #define CAP_UPDATE(cap, capndx, tag, val) \
1596 cap->c_tag = tag; \
1597 cap->c_un.c_val = val; \
1598 cap++, capndx++;

1600 static uintptr_t
1601 make_cap(Ofl_desc *ofl, Word shtype, const char *shname, int ident)
1602 {
1603 Shdr *shdr;
1604 Elf_Data *data;
1605 Is_desc *isec;
1606 Cap *cap;
1607 size_t size = 0;
1608 Word capndx = 0;
1609 Str_tbl *strtbl;
1610 Objcapset *ocapset = &ofl->ofl_ocapset;
1611 Aliste idx1;
1612 Capstr *capstr;
1613 int title = 0;

1615 /*
1616 * Determine which string table to use for any CA_SUNW_MACH,
1617 * CA_SUNW_PLAT, or CA_SUNW_ID strings.
1618 */
1619 if (OFL_IS_STATIC_OBJ(ofl))
1620 strtbl = ofl->ofl_strtab;
1621 else
1622 strtbl = ofl->ofl_dynstrtab;

1624 /*
1625 * If symbol capabilities have been requested, but none have been
1626 * created, warn the user. This scenario can occur if none of the
1627 * input relocatable objects defined any object capabilities.
1628 */
1629 if ((ofl->ofl_flags & FLG_OF_OTOSCAP) && (ofl->ofl_capsymcnt == 0))
1630 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_CAP_NOSYMSFOUND));

1632 /*
1633 * If symbol capabilities have been collected, but no symbols are left
1634 * referencing these capabilities, promote the capability groups back
1635 * to an object capability definition.
1636 */
1637 if ((ofl->ofl_flags & FLG_OF_OTOSCAP) && ofl->ofl_capsymcnt &&
1638 (ofl->ofl_capfamilies == NULL)) {
1639 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_CAP_NOSYMSFOUND));
1640 ld_cap_move_symtoobj(ofl);
1641 ofl->ofl_capsymcnt = 0;
1642 ofl->ofl_capgroups = NULL;
1643 ofl->ofl_flags &= ~FLG_OF_OTOSCAP;
1644 }

new/usr/src/cmd/sgs/libld/common/sections.c 12

1646 /*
1647 * Remove any excluded capabilities.
1648 */
1649 capstr_value(ofl->ofl_lml, CA_SUNW_PLAT, &ocapset->oc_plat, &title);
1650 capstr_value(ofl->ofl_lml, CA_SUNW_MACH, &ocapset->oc_mach, &title);
1651 capmask_value(ofl->ofl_lml, CA_SUNW_HW_2, &ocapset->oc_hw_2, &title);
1652 capmask_value(ofl->ofl_lml, CA_SUNW_HW_1, &ocapset->oc_hw_1, &title);
1653 capmask_value(ofl->ofl_lml, CA_SUNW_SF_1, &ocapset->oc_sf_1, &title);

1655 /*
1656 * Determine how many entries are required for any object capabilities.
1657 */
1658 size += alist_nitems(ocapset->oc_plat.cl_val);
1659 size += alist_nitems(ocapset->oc_mach.cl_val);
1660 if (ocapset->oc_hw_2.cm_val)
1661 size++;
1662 if (ocapset->oc_hw_1.cm_val)
1663 size++;
1664 if (ocapset->oc_sf_1.cm_val)
1665 size++;

1667 /*
1668 * Only identify a capabilities group if the group has content. If a
1669 * capabilities identifier exists, and no other capabilities have been
1670 * supplied, remove the identifier. This scenario could exist if a
1671 * user mistakenly defined a lone identifier, or if an identified group
1672 * was overridden so as to clear the existing capabilities and the
1673 * identifier was not also cleared.
1674 */
1675 if (ocapset->oc_id.cs_str) {
1676 if (size)
1677 size++;
1678 else
1679 ocapset->oc_id.cs_str = NULL;
1680 }
1681 if (size)
1682 size++; /* Add CA_SUNW_NULL */

1684 /*
1685 * Determine how many entries are required for any symbol capabilities.
1686 */
1687 if (ofl->ofl_capsymcnt) {
1688 /*
1689 * If there are no object capabilities, a CA_SUNW_NULL entry
1690 * is required before any symbol capabilities.
1691 */
1692 if (size == 0)
1693 size++;
1694 size += ofl->ofl_capsymcnt;
1695 }

1697 if (size == 0)
1698 return (NULL);

1700 if (new_section(ofl, shtype, shname, size, &isec,
1701 &shdr, &data) == S_ERROR)
1702 return (S_ERROR);

1704 if ((data->d_buf = libld_malloc(shdr->sh_size)) == NULL)
1705 return (S_ERROR);

1707 cap = (Cap *)data->d_buf;

1709 /*
1710 * Fill in any object capabilities. If there is an identifier, then the
1711 * identifier comes first. The remaining items follow in precedence

new/usr/src/cmd/sgs/libld/common/sections.c 13

1712 * order, although the order isn’t important for runtime verification.
1713 */
1714 if (ocapset->oc_id.cs_str) {
1715 ofl->ofl_flags |= FLG_OF_CAPSTRS;
1716 if (st_insert(strtbl, ocapset->oc_id.cs_str) == -1)
1717 return (S_ERROR);
1718 ocapset->oc_id.cs_ndx = capndx;
1719 CAP_UPDATE(cap, capndx, CA_SUNW_ID, 0);
1720 }
1721 if (ocapset->oc_plat.cl_val) {
1722 ofl->ofl_flags |= (FLG_OF_PTCAP | FLG_OF_CAPSTRS);

1724 /*
1725 * Insert any platform name strings in the appropriate string
1726 * table. The capability value can’t be filled in yet, as the
1727 * final offset of the strings isn’t known until later.
1728 */
1729 for (ALIST_TRAVERSE(ocapset->oc_plat.cl_val, idx1, capstr)) {
1730 if (st_insert(strtbl, capstr->cs_str) == -1)
1731 return (S_ERROR);
1732 capstr->cs_ndx = capndx;
1733 CAP_UPDATE(cap, capndx, CA_SUNW_PLAT, 0);
1734 }
1735 }
1736 if (ocapset->oc_mach.cl_val) {
1737 ofl->ofl_flags |= (FLG_OF_PTCAP | FLG_OF_CAPSTRS);

1739 /*
1740 * Insert the machine name strings in the appropriate string
1741 * table. The capability value can’t be filled in yet, as the
1742 * final offset of the strings isn’t known until later.
1743 */
1744 for (ALIST_TRAVERSE(ocapset->oc_mach.cl_val, idx1, capstr)) {
1745 if (st_insert(strtbl, capstr->cs_str) == -1)
1746 return (S_ERROR);
1747 capstr->cs_ndx = capndx;
1748 CAP_UPDATE(cap, capndx, CA_SUNW_MACH, 0);
1749 }
1750 }
1751 if (ocapset->oc_hw_2.cm_val) {
1752 ofl->ofl_flags |= FLG_OF_PTCAP;
1753 CAP_UPDATE(cap, capndx, CA_SUNW_HW_2, ocapset->oc_hw_2.cm_val);
1754 }
1755 if (ocapset->oc_hw_1.cm_val) {
1756 ofl->ofl_flags |= FLG_OF_PTCAP;
1757 CAP_UPDATE(cap, capndx, CA_SUNW_HW_1, ocapset->oc_hw_1.cm_val);
1758 }
1759 if (ocapset->oc_sf_1.cm_val) {
1760 ofl->ofl_flags |= FLG_OF_PTCAP;
1761 CAP_UPDATE(cap, capndx, CA_SUNW_SF_1, ocapset->oc_sf_1.cm_val);
1762 }
1763 CAP_UPDATE(cap, capndx, CA_SUNW_NULL, 0);

1765 /*
1766 * Fill in any symbol capabilities.
1767 */
1768 if (ofl->ofl_capgroups) {
1769 Cap_group *cgp;

1771 for (APLIST_TRAVERSE(ofl->ofl_capgroups, idx1, cgp)) {
1772 Objcapset *scapset = &cgp->cg_set;
1773 Aliste idx2;
1774 Is_desc *isp;

1776 cgp->cg_ndx = capndx;

new/usr/src/cmd/sgs/libld/common/sections.c 14

1778 if (scapset->oc_id.cs_str) {
1779 ofl->ofl_flags |= FLG_OF_CAPSTRS;
1780 /*
1781 * Insert the identifier string in the
1782 * appropriate string table. The capability
1783 * value can’t be filled in yet, as the final
1784 * offset of the string isn’t known until later.
1785 */
1786 if (st_insert(strtbl,
1787 scapset->oc_id.cs_str) == -1)
1788 return (S_ERROR);
1789 scapset->oc_id.cs_ndx = capndx;
1790 CAP_UPDATE(cap, capndx, CA_SUNW_ID, 0);
1791 }

1793 if (scapset->oc_plat.cl_val) {
1794 ofl->ofl_flags |= FLG_OF_CAPSTRS;

1796 /*
1797 * Insert the platform name string in the
1798 * appropriate string table. The capability
1799 * value can’t be filled in yet, as the final
1800 * offset of the string isn’t known until later.
1801 */
1802 for (ALIST_TRAVERSE(scapset->oc_plat.cl_val,
1803 idx2, capstr)) {
1804 if (st_insert(strtbl,
1805 capstr->cs_str) == -1)
1806 return (S_ERROR);
1807 capstr->cs_ndx = capndx;
1808 CAP_UPDATE(cap, capndx,
1809 CA_SUNW_PLAT, 0);
1810 }
1811 }
1812 if (scapset->oc_mach.cl_val) {
1813 ofl->ofl_flags |= FLG_OF_CAPSTRS;

1815 /*
1816 * Insert the machine name string in the
1817 * appropriate string table. The capability
1818 * value can’t be filled in yet, as the final
1819 * offset of the string isn’t known until later.
1820 */
1821 for (ALIST_TRAVERSE(scapset->oc_mach.cl_val,
1822 idx2, capstr)) {
1823 if (st_insert(strtbl,
1824 capstr->cs_str) == -1)
1825 return (S_ERROR);
1826 capstr->cs_ndx = capndx;
1827 CAP_UPDATE(cap, capndx,
1828 CA_SUNW_MACH, 0);
1829 }
1830 }
1831 if (scapset->oc_hw_2.cm_val) {
1832 CAP_UPDATE(cap, capndx, CA_SUNW_HW_2,
1833 scapset->oc_hw_2.cm_val);
1834 }
1835 if (scapset->oc_hw_1.cm_val) {
1836 CAP_UPDATE(cap, capndx, CA_SUNW_HW_1,
1837 scapset->oc_hw_1.cm_val);
1838 }
1839 if (scapset->oc_sf_1.cm_val) {
1840 CAP_UPDATE(cap, capndx, CA_SUNW_SF_1,
1841 scapset->oc_sf_1.cm_val);
1842 }
1843 CAP_UPDATE(cap, capndx, CA_SUNW_NULL, 0);

new/usr/src/cmd/sgs/libld/common/sections.c 15

1845 /*
1846 * If any object capabilities are available, determine
1847 * whether these symbol capabilities are less
1848 * restrictive, and hence redundant.
1849 */
1850 if (((ofl->ofl_flags & FLG_OF_PTCAP) == 0) ||
1851 (is_cap_redundant(ocapset, scapset) == 0))
1852 continue;

1854 /*
1855 * Indicate any files that provide redundant symbol
1856 * capabilities.
1857 */
1858 for (APLIST_TRAVERSE(cgp->cg_secs, idx2, isp)) {
1859 ld_eprintf(ofl, ERR_WARNING,
1860 MSG_INTL(MSG_CAP_REDUNDANT),
1861 isp->is_file->ifl_name,
1862 EC_WORD(isp->is_scnndx), isp->is_name);
1863 }
1864 }
1865 }

1867 /*
1868 * If capabilities strings are required, the sh_info field of the
1869 * section header will be set to the associated string table.
1870 */
1871 if (ofl->ofl_flags & FLG_OF_CAPSTRS)
1872 shdr->sh_flags |= SHF_INFO_LINK;

1874 /*
1875 * Place these capabilities in the output file.
1876 */
1877 if ((ofl->ofl_oscap = ld_place_section(ofl, isec,
1878 NULL, ident, NULL)) == (Os_desc *)S_ERROR)
1879 return (S_ERROR);

1881 /*
1882 * If symbol capabilities are required, then a .SUNW_capinfo section is
1883 * also created. This table will eventually be sized to match the
1884 * associated symbol table.
1885 */
1886 if (ofl->ofl_capfamilies) {
1887 if ((ofl->ofl_oscapinfo = make_sym_sec(ofl,
1888 MSG_ORIG(MSG_SCN_SUNWCAPINFO), SHT_SUNW_capinfo,
1889 ld_targ.t_id.id_capinfo)) == (Os_desc *)S_ERROR)
1890 return (S_ERROR);

1892 /*
1893 * If we’re generating a dynamic object, capabilities family
1894 * members are maintained in a .SUNW_capchain section.
1895 */
1896 if (ofl->ofl_capchaincnt &&
1897 ((ofl->ofl_flags & FLG_OF_RELOBJ) == 0)) {
1898 if (new_section(ofl, SHT_SUNW_capchain,
1899 MSG_ORIG(MSG_SCN_SUNWCAPCHAIN),
1900 ofl->ofl_capchaincnt, &isec, &shdr,
1901 &data) == S_ERROR)
1902 return (S_ERROR);

1904 ofl->ofl_oscapchain = ld_place_section(ofl, isec,
1905 NULL, ld_targ.t_id.id_capchain, NULL);
1906 if (ofl->ofl_oscapchain == (Os_desc *)S_ERROR)
1907 return (S_ERROR);

1909 }

new/usr/src/cmd/sgs/libld/common/sections.c 16

1910 }
1911 return (1);
1912 }
1913 #undef CAP_UPDATE

1915 /*
1916 * Build the PLT section and its associated relocation entries.
1917 */
1918 static uintptr_t
1919 make_plt(Ofl_desc *ofl)
1920 {
1921 Shdr *shdr;
1922 Elf_Data *data;
1923 Is_desc *isec;
1924 size_t size = ld_targ.t_m.m_plt_reservsz +
1925 (((size_t)ofl->ofl_pltcnt + (size_t)ofl->ofl_pltpad) *
1926 ld_targ.t_m.m_plt_entsize);
1927 size_t rsize = (size_t)ofl->ofl_relocpltsz;

1929 /*
1930 * On sparc, account for the NOP at the end of the plt.
1931 */
1932 if (ld_targ.t_m.m_mach == LD_TARG_BYCLASS(EM_SPARC, EM_SPARCV9))
1933 size += sizeof (Word);

1935 if (new_section(ofl, SHT_PROGBITS, MSG_ORIG(MSG_SCN_PLT), 0,
1936 &isec, &shdr, &data) == S_ERROR)
1937 return (S_ERROR);

1939 data->d_size = size;
1940 data->d_align = ld_targ.t_m.m_plt_align;

1942 shdr->sh_flags = ld_targ.t_m.m_plt_shf_flags;
1943 shdr->sh_size = (Xword)size;
1944 shdr->sh_addralign = ld_targ.t_m.m_plt_align;
1945 shdr->sh_entsize = ld_targ.t_m.m_plt_entsize;

1947 ofl->ofl_osplt = ld_place_section(ofl, isec, NULL,
1948 ld_targ.t_id.id_plt, NULL);
1949 if (ofl->ofl_osplt == (Os_desc *)S_ERROR)
1950 return (S_ERROR);

1952 ofl->ofl_osplt->os_szoutrels = (Xword)rsize;

1954 return (1);
1955 }

1957 /*
1958 * Make the hash table. Only built for dynamic executables and shared
1959 * libraries, and provides hashed lookup into the global symbol table
1960 * (.dynsym) for the run-time linker to resolve symbol lookups.
1961 */
1962 static uintptr_t
1963 make_hash(Ofl_desc *ofl)
1964 {
1965 Shdr *shdr;
1966 Elf_Data *data;
1967 Is_desc *isec;
1968 size_t size;
1969 Word nsyms = ofl->ofl_globcnt;
1970 size_t cnt;

1972 /*
1973 * Allocate section header structures. We set entcnt to 0
1974 * because it’s going to change after we place this section.
1975 */

new/usr/src/cmd/sgs/libld/common/sections.c 17

1976 if (new_section(ofl, SHT_HASH, MSG_ORIG(MSG_SCN_HASH), 0,
1977 &isec, &shdr, &data) == S_ERROR)
1978 return (S_ERROR);

1980 /*
1981 * Place the section first since it will affect the local symbol
1982 * count.
1983 */
1984 ofl->ofl_oshash =
1985 ld_place_section(ofl, isec, NULL, ld_targ.t_id.id_hash, NULL);
1986 if (ofl->ofl_oshash == (Os_desc *)S_ERROR)
1987 return (S_ERROR);

1989 /*
1990 * Calculate the number of output hash buckets.
1991 */
1992 ofl->ofl_hashbkts = findprime(nsyms);

1994 /*
1995 * The size of the hash table is determined by
1996 *
1997 * i. the initial nbucket and nchain entries (2)
1998 * ii. the number of buckets (calculated above)
1999 * iii. the number of chains (this is based on the number of
2000 * symbols in the .dynsym array).
2001 */
2002 cnt = 2 + ofl->ofl_hashbkts + DYNSYM_ALL_CNT(ofl);
2003 size = cnt * shdr->sh_entsize;

2005 /*
2006 * Finalize the section header and data buffer initialization.
2007 */
2008 if ((data->d_buf = libld_calloc(size, 1)) == NULL)
2009 return (S_ERROR);
2010 data->d_size = size;
2011 shdr->sh_size = (Xword)size;

2013 return (1);
2014 }

2016 /*
2017 * Generate the standard symbol table. Contains all locals and globals,
2018 * and resides in a non-allocatable section (ie. it can be stripped).
2019 */
2020 static uintptr_t
2021 make_symtab(Ofl_desc *ofl)
2022 {
2023 Shdr *shdr;
2024 Elf_Data *data;
2025 Is_desc *isec;
2026 Is_desc *xisec = 0;
2027 size_t size;
2028 Word symcnt;

2030 /*
2031 * Create the section headers. Note that we supply an ent_cnt
2032 * of 0. We won’t know the count until the section has been placed.
2033 */
2034 if (new_section(ofl, SHT_SYMTAB, MSG_ORIG(MSG_SCN_SYMTAB), 0,
2035 &isec, &shdr, &data) == S_ERROR)
2036 return (S_ERROR);

2038 /*
2039 * Place the section first since it will affect the local symbol
2040 * count.
2041 */

new/usr/src/cmd/sgs/libld/common/sections.c 18

2042 if ((ofl->ofl_ossymtab = ld_place_section(ofl, isec, NULL,
2043 ld_targ.t_id.id_symtab, NULL)) == (Os_desc *)S_ERROR)
2044 return (S_ERROR);

2046 /*
2047 * At this point we’ve created all but the ’shstrtab’ section.
2048 * Determine if we have to use ’Extended Sections’. If so - then
2049 * also create a SHT_SYMTAB_SHNDX section.
2050 */
2051 if ((ofl->ofl_shdrcnt + 1) >= SHN_LORESERVE) {
2052 Shdr *xshdr;
2053 Elf_Data *xdata;

2055 if (new_section(ofl, SHT_SYMTAB_SHNDX,
2056 MSG_ORIG(MSG_SCN_SYMTAB_SHNDX), 0, &xisec,
2057 &xshdr, &xdata) == S_ERROR)
2058 return (S_ERROR);

2060 if ((ofl->ofl_ossymshndx = ld_place_section(ofl, xisec, NULL,
2061 ld_targ.t_id.id_symtab_ndx, NULL)) == (Os_desc *)S_ERROR)
2062 return (S_ERROR);
2063 }

2065 /*
2066 * Calculated number of symbols, which need to be augmented by
2067 * the (yet to be created) .shstrtab entry.
2068 */
2069 symcnt = (size_t)(1 + SYMTAB_ALL_CNT(ofl));
2070 size = symcnt * shdr->sh_entsize;

2072 /*
2073 * Finalize the section header and data buffer initialization.
2074 */
2075 data->d_size = size;
2076 shdr->sh_size = (Xword)size;

2078 /*
2079 * If we created a SHT_SYMTAB_SHNDX - then set it’s sizes too.
2080 */
2081 if (xisec) {
2082 size_t xsize = symcnt * sizeof (Word);

2084 xisec->is_indata->d_size = xsize;
2085 xisec->is_shdr->sh_size = (Xword)xsize;
2086 }

2088 return (1);
2089 }

2091 /*
2092 * Build a dynamic symbol table. These tables reside in the text
2093 * segment of a dynamic executable or shared library.
2094 *
2095 * .SUNW_ldynsym contains local function symbols
2096 * .dynsym contains only globals symbols
2097 *
2098 * The two tables are created adjacent to each other, with .SUNW_ldynsym
2099 * coming first.
2100 */
2101 static uintptr_t
2102 make_dynsym(Ofl_desc *ofl)
2103 {
2104 Shdr *shdr, *lshdr;
2105 Elf_Data *data, *ldata;
2106 Is_desc *isec, *lisec;
2107 size_t size;

new/usr/src/cmd/sgs/libld/common/sections.c 19

2108 Xword cnt;
2109 int allow_ldynsym;

2111 /*
2112 * Unless explicitly disabled, always produce a .SUNW_ldynsym section
2113 * when it is allowed by the file type, even if the resulting
2114 * table only ends up with a single STT_FILE in it. There are
2115 * two reasons: (1) It causes the generation of the DT_SUNW_SYMTAB
2116 * entry in the .dynamic section, which is something we would
2117 * like to encourage, and (2) Without it, we cannot generate
2118 * the associated .SUNW_dyn[sym|tls]sort sections, which are of
2119 * value to DTrace.
2120 *
2121 * In practice, it is extremely rare for an object not to have
2122 * local symbols for .SUNW_ldynsym, so 99% of the time, we’d be
2123 * doing it anyway.
2124 */
2125 allow_ldynsym = OFL_ALLOW_LDYNSYM(ofl);

2127 /*
2128 * Create the section headers. Note that we supply an ent_cnt
2129 * of 0. We won’t know the count until the section has been placed.
2130 */
2131 if (allow_ldynsym && new_section(ofl, SHT_SUNW_LDYNSYM,
2132 MSG_ORIG(MSG_SCN_LDYNSYM), 0, &lisec, &lshdr, &ldata) == S_ERROR)
2133 return (S_ERROR);

2135 if (new_section(ofl, SHT_DYNSYM, MSG_ORIG(MSG_SCN_DYNSYM), 0,
2136 &isec, &shdr, &data) == S_ERROR)
2137 return (S_ERROR);

2139 /*
2140 * Place the section(s) first since it will affect the local symbol
2141 * count.
2142 */
2143 if (allow_ldynsym &&
2144 ((ofl->ofl_osldynsym = ld_place_section(ofl, lisec, NULL,
2145 ld_targ.t_id.id_ldynsym, NULL)) == (Os_desc *)S_ERROR))
2146 return (S_ERROR);
2147 ofl->ofl_osdynsym =
2148 ld_place_section(ofl, isec, NULL, ld_targ.t_id.id_dynsym, NULL);
2149 if (ofl->ofl_osdynsym == (Os_desc *)S_ERROR)
2150 return (S_ERROR);

2152 cnt = DYNSYM_ALL_CNT(ofl);
2153 size = (size_t)cnt * shdr->sh_entsize;

2155 /*
2156 * Finalize the section header and data buffer initialization.
2157 */
2158 data->d_size = size;
2159 shdr->sh_size = (Xword)size;

2161 /*
2162 * An ldynsym contains local function symbols. It is not
2163 * used for linking, but if present, serves to allow better
2164 * stack traces to be generated in contexts where the symtab
2165 * is not available. (dladdr(), or stripped executable/library files).
2166 */
2167 if (allow_ldynsym) {
2168 cnt = 1 + ofl->ofl_dynlocscnt + ofl->ofl_dynscopecnt;
2169 size = (size_t)cnt * shdr->sh_entsize;

2171 ldata->d_size = size;
2172 lshdr->sh_size = (Xword)size;
2173 }

new/usr/src/cmd/sgs/libld/common/sections.c 20

2175 return (1);
2176 }

2178 /*
2179 * Build .SUNW_dynsymsort and/or .SUNW_dyntlssort sections. These are
2180 * index sections for the .SUNW_ldynsym/.dynsym pair that present data
2181 * and function symbols sorted by address.
2182 */
2183 static uintptr_t
2184 make_dynsort(Ofl_desc *ofl)
2185 {
2186 Shdr *shdr;
2187 Elf_Data *data;
2188 Is_desc *isec;

2190 /* Only do it if the .SUNW_ldynsym section is present */
2191 if (!OFL_ALLOW_LDYNSYM(ofl))
2192 return (1);

2194 /* .SUNW_dynsymsort */
2195 if (ofl->ofl_dynsymsortcnt > 0) {
2196 if (new_section(ofl, SHT_SUNW_symsort,
2197 MSG_ORIG(MSG_SCN_DYNSYMSORT), ofl->ofl_dynsymsortcnt,
2198 &isec, &shdr, &data) == S_ERROR)
2199 return (S_ERROR);

2201 if ((ofl->ofl_osdynsymsort = ld_place_section(ofl, isec, NULL,
2202 ld_targ.t_id.id_dynsort, NULL)) == (Os_desc *)S_ERROR)
2203 return (S_ERROR);
2204 }

2206 /* .SUNW_dyntlssort */
2207 if (ofl->ofl_dyntlssortcnt > 0) {
2208 if (new_section(ofl, SHT_SUNW_tlssort,
2209 MSG_ORIG(MSG_SCN_DYNTLSSORT),
2210 ofl->ofl_dyntlssortcnt, &isec, &shdr, &data) == S_ERROR)
2211 return (S_ERROR);

2213 if ((ofl->ofl_osdyntlssort = ld_place_section(ofl, isec, NULL,
2214 ld_targ.t_id.id_dynsort, NULL)) == (Os_desc *)S_ERROR)
2215 return (S_ERROR);
2216 }

2218 return (1);
2219 }

2221 /*
2222 * Helper routine for make_dynsym_shndx. Builds a
2223 * a SHT_SYMTAB_SHNDX for .dynsym or .SUNW_ldynsym, without knowing
2224 * which one it is.
2225 */
2226 static uintptr_t
2227 make_dyn_shndx(Ofl_desc *ofl, const char *shname, Os_desc *symtab,
2228 Os_desc **ret_os)
2229 {
2230 Is_desc *isec;
2231 Is_desc *dynsymisp;
2232 Shdr *shdr, *dynshdr;
2233 Elf_Data *data;

2235 dynsymisp = ld_os_first_isdesc(symtab);
2236 dynshdr = dynsymisp->is_shdr;

2238 if (new_section(ofl, SHT_SYMTAB_SHNDX, shname,
2239 (dynshdr->sh_size / dynshdr->sh_entsize),

new/usr/src/cmd/sgs/libld/common/sections.c 21

2240 &isec, &shdr, &data) == S_ERROR)
2241 return (S_ERROR);

2243 if ((*ret_os = ld_place_section(ofl, isec, NULL,
2244 ld_targ.t_id.id_dynsym_ndx, NULL)) == (Os_desc *)S_ERROR)
2245 return (S_ERROR);

2247 assert(*ret_os);

2249 return (1);
2250 }

2252 /*
2253 * Build a SHT_SYMTAB_SHNDX for the .dynsym, and .SUNW_ldynsym
2254 */
2255 static uintptr_t
2256 make_dynsym_shndx(Ofl_desc *ofl)
2257 {
2258 /*
2259 * If there is a .SUNW_ldynsym, generate a section for its extended
2260 * index section as well.
2261 */
2262 if (OFL_ALLOW_LDYNSYM(ofl)) {
2263 if (make_dyn_shndx(ofl, MSG_ORIG(MSG_SCN_LDYNSYM_SHNDX),
2264 ofl->ofl_osldynsym, &ofl->ofl_osldynshndx) == S_ERROR)
2265 return (S_ERROR);
2266 }

2268 /* The Generate a section for the dynsym */
2269 if (make_dyn_shndx(ofl, MSG_ORIG(MSG_SCN_DYNSYM_SHNDX),
2270 ofl->ofl_osdynsym, &ofl->ofl_osdynshndx) == S_ERROR)
2271 return (S_ERROR);

2273 return (1);
2274 }

2277 /*
2278 * Build a string table for the section headers.
2279 */
2280 static uintptr_t
2281 make_shstrtab(Ofl_desc *ofl)
2282 {
2283 Shdr *shdr;
2284 Elf_Data *data;
2285 Is_desc *isec;
2286 size_t size;

2288 if (new_section(ofl, SHT_STRTAB, MSG_ORIG(MSG_SCN_SHSTRTAB),
2289 0, &isec, &shdr, &data) == S_ERROR)
2290 return (S_ERROR);

2292 /*
2293 * Place the section first, as it may effect the number of section
2294 * headers to account for.
2295 */
2296 ofl->ofl_osshstrtab =
2297 ld_place_section(ofl, isec, NULL, ld_targ.t_id.id_note, NULL);
2298 if (ofl->ofl_osshstrtab == (Os_desc *)S_ERROR)
2299 return (S_ERROR);

2301 size = st_getstrtab_sz(ofl->ofl_shdrsttab);
2302 assert(size > 0);

2304 data->d_size = size;
2305 shdr->sh_size = (Xword)size;

new/usr/src/cmd/sgs/libld/common/sections.c 22

2307 return (1);
2308 }

2310 /*
2311 * Build a string section for the standard symbol table.
2312 */
2313 static uintptr_t
2314 make_strtab(Ofl_desc *ofl)
2315 {
2316 Shdr *shdr;
2317 Elf_Data *data;
2318 Is_desc *isec;
2319 size_t size;

2321 /*
2322 * This string table consists of all the global and local symbols.
2323 * Account for null bytes at end of the file name and the beginning
2324 * of section.
2325 */
2326 if (st_insert(ofl->ofl_strtab, ofl->ofl_name) == -1)
2327 return (S_ERROR);

2329 size = st_getstrtab_sz(ofl->ofl_strtab);
2330 assert(size > 0);

2332 if (new_section(ofl, SHT_STRTAB, MSG_ORIG(MSG_SCN_STRTAB),
2333 0, &isec, &shdr, &data) == S_ERROR)
2334 return (S_ERROR);

2336 /* Set the size of the data area */
2337 data->d_size = size;
2338 shdr->sh_size = (Xword)size;

2340 ofl->ofl_osstrtab =
2341 ld_place_section(ofl, isec, NULL, ld_targ.t_id.id_strtab, NULL);
2342 return ((uintptr_t)ofl->ofl_osstrtab);
2343 }

2345 /*
2346 * Build a string table for the dynamic symbol table.
2347 */
2348 static uintptr_t
2349 make_dynstr(Ofl_desc *ofl)
2350 {
2351 Shdr *shdr;
2352 Elf_Data *data;
2353 Is_desc *isec;
2354 size_t size;

2356 /*
2357 * If producing a .SUNW_ldynsym, account for the initial STT_FILE
2358 * symbol that precedes the scope reduced global symbols.
2359 */
2360 if (OFL_ALLOW_LDYNSYM(ofl)) {
2361 if (st_insert(ofl->ofl_dynstrtab, ofl->ofl_name) == -1)
2362 return (S_ERROR);
2363 ofl->ofl_dynscopecnt++;
2364 }

2366 /*
2367 * Account for any local, named register symbols. These locals are
2368 * required for reference from DT_REGISTER .dynamic entries.
2369 */
2370 if (ofl->ofl_regsyms) {
2371 int ndx;

new/usr/src/cmd/sgs/libld/common/sections.c 23

2373 for (ndx = 0; ndx < ofl->ofl_regsymsno; ndx++) {
2374 Sym_desc *sdp;

2376 if ((sdp = ofl->ofl_regsyms[ndx]) == NULL)
2377 continue;

2379 if (!SYM_IS_HIDDEN(sdp) &&
2380 (ELF_ST_BIND(sdp->sd_sym->st_info) != STB_LOCAL))
2381 continue;

2383 if (sdp->sd_sym->st_name == NULL)
2384 continue;

2386 if (st_insert(ofl->ofl_dynstrtab, sdp->sd_name) == -1)
2387 return (S_ERROR);
2388 }
2389 }

2391 /*
2392 * Reserve entries for any per-symbol auxiliary/filter strings.
2393 */
2394 if (ofl->ofl_dtsfltrs != NULL) {
2395 Dfltr_desc *dftp;
2396 Aliste idx;

2398 for (ALIST_TRAVERSE(ofl->ofl_dtsfltrs, idx, dftp))
2399 if (st_insert(ofl->ofl_dynstrtab, dftp->dft_str) == -1)
2400 return (S_ERROR);
2401 }

2403 size = st_getstrtab_sz(ofl->ofl_dynstrtab);
2404 assert(size > 0);

2406 if (new_section(ofl, SHT_STRTAB, MSG_ORIG(MSG_SCN_DYNSTR),
2407 0, &isec, &shdr, &data) == S_ERROR)
2408 return (S_ERROR);

2410 /* Make it allocable if necessary */
2411 if (!(ofl->ofl_flags & FLG_OF_RELOBJ))
2412 shdr->sh_flags |= SHF_ALLOC;

2414 /* Set the size of the data area */
2415 data->d_size = size + DYNSTR_EXTRA_PAD;

2417 shdr->sh_size = (Xword)size;

2419 ofl->ofl_osdynstr =
2420 ld_place_section(ofl, isec, NULL, ld_targ.t_id.id_dynstr, NULL);
2421 return ((uintptr_t)ofl->ofl_osdynstr);
2422 }

2424 /*
2425 * Generate an output relocation section which will contain the relocation
2426 * information to be applied to the ‘osp’ section.
2427 *
2428 * If (osp == NULL) then we are creating the coalesced relocation section
2429 * for an executable and/or a shared object.
2430 */
2431 static uintptr_t
2432 make_reloc(Ofl_desc *ofl, Os_desc *osp)
2433 {
2434 Shdr *shdr;
2435 Elf_Data *data;
2436 Is_desc *isec;
2437 size_t size;

new/usr/src/cmd/sgs/libld/common/sections.c 24

2438 Xword sh_flags;
2439 char *sectname;
2440 Os_desc *rosp;
2441 Word relsize;
2442 const char *rel_prefix;

2444 /* LINTED */
2445 if (ld_targ.t_m.m_rel_sht_type == SHT_REL) {
2446 /* REL */
2447 relsize = sizeof (Rel);
2448 rel_prefix = MSG_ORIG(MSG_SCN_REL);
2449 } else {
2450 /* RELA */
2451 relsize = sizeof (Rela);
2452 rel_prefix = MSG_ORIG(MSG_SCN_RELA);
2453 }

2455 if (osp) {
2456 size = osp->os_szoutrels;
2457 sh_flags = osp->os_shdr->sh_flags;
2458 if ((sectname = libld_malloc(strlen(rel_prefix) +
2459 strlen(osp->os_name) + 1)) == 0)
2460 return (S_ERROR);
2461 (void) strcpy(sectname, rel_prefix);
2462 (void) strcat(sectname, osp->os_name);
2463 } else if (ofl->ofl_flags & FLG_OF_COMREL) {
2464 size = (ofl->ofl_reloccnt - ofl->ofl_reloccntsub) * relsize;
2465 sh_flags = SHF_ALLOC;
2466 sectname = (char *)MSG_ORIG(MSG_SCN_SUNWRELOC);
2467 } else {
2468 size = ofl->ofl_relocrelsz;
2469 sh_flags = SHF_ALLOC;
2470 sectname = (char *)rel_prefix;
2471 }

2473 /*
2474 * Keep track of total size of ’output relocations’ (to be stored
2475 * in .dynamic)
2476 */
2477 /* LINTED */
2478 ofl->ofl_relocsz += (Xword)size;

2480 if (new_section(ofl, ld_targ.t_m.m_rel_sht_type, sectname, 0, &isec,
2481 &shdr, &data) == S_ERROR)
2482 return (S_ERROR);

2484 data->d_size = size;

2486 shdr->sh_size = (Xword)size;
2487 if (OFL_ALLOW_DYNSYM(ofl) && (sh_flags & SHF_ALLOC))
2488 shdr->sh_flags = SHF_ALLOC;

2490 if (osp) {
2491 /*
2492 * The sh_info field of the SHT_REL* sections points to the
2493 * section the relocations are to be applied to.
2494 */
2495 shdr->sh_flags |= SHF_INFO_LINK;
2496 }

2498 rosp = ld_place_section(ofl, isec, NULL, ld_targ.t_id.id_rel, NULL);
2499 if (rosp == (Os_desc *)S_ERROR)
2500 return (S_ERROR);

2502 /*
2503 * Associate this relocation section to the section its going to

new/usr/src/cmd/sgs/libld/common/sections.c 25

2504 * relocate.
2505 */
2506 if (osp) {
2507 Aliste idx;
2508 Is_desc *risp;

2510 /*
2511 * This is used primarily so that we can update
2512 * SHT_GROUP[sect_no] entries to point to the
2513 * created output relocation sections.
2514 */
2515 for (APLIST_TRAVERSE(osp->os_relisdescs, idx, risp)) {
2516 risp->is_osdesc = rosp;

2518 /*
2519 * If the input relocation section had the SHF_GROUP
2520 * flag set - propagate it to the output relocation
2521 * section.
2522 */
2523 if (risp->is_shdr->sh_flags & SHF_GROUP) {
2524 rosp->os_shdr->sh_flags |= SHF_GROUP;
2525 break;
2526 }
2527 }
2528 osp->os_relosdesc = rosp;
2529 } else
2530 ofl->ofl_osrel = rosp;

2532 /*
2533 * If this is the first relocation section we’ve encountered save it
2534 * so that the .dynamic entry can be initialized accordingly.
2535 */
2536 if (ofl->ofl_osrelhead == (Os_desc *)0)
2537 ofl->ofl_osrelhead = rosp;

2539 return (1);
2540 }

2542 /*
2543 * Generate version needed section.
2544 */
2545 static uintptr_t
2546 make_verneed(Ofl_desc *ofl)
2547 {
2548 Shdr *shdr;
2549 Elf_Data *data;
2550 Is_desc *isec;

2552 /*
2553 * verneed sections do not have a constant element size, so the
2554 * value of ent_cnt specified here (0) is meaningless.
2555 */
2556 if (new_section(ofl, SHT_SUNW_verneed, MSG_ORIG(MSG_SCN_SUNWVERSION),
2557 0, &isec, &shdr, &data) == S_ERROR)
2558 return (S_ERROR);

2560 /* During version processing we calculated the total size. */
2561 data->d_size = ofl->ofl_verneedsz;
2562 shdr->sh_size = (Xword)ofl->ofl_verneedsz;

2564 ofl->ofl_osverneed =
2565 ld_place_section(ofl, isec, NULL, ld_targ.t_id.id_version, NULL);
2566 return ((uintptr_t)ofl->ofl_osverneed);
2567 }

2569 /*

new/usr/src/cmd/sgs/libld/common/sections.c 26

2570 * Generate a version definition section.
2571 *
2572 * o the SHT_SUNW_verdef section defines the versions that exist within this
2573 * image.
2574 */
2575 static uintptr_t
2576 make_verdef(Ofl_desc *ofl)
2577 {
2578 Shdr *shdr;
2579 Elf_Data *data;
2580 Is_desc *isec;
2581 Ver_desc *vdp;
2582 Str_tbl *strtab;

2584 /*
2585 * Reserve a string table entry for the base version dependency (other
2586 * dependencies have symbol representations, which will already be
2587 * accounted for during symbol processing).
2588 */
2589 vdp = (Ver_desc *)ofl->ofl_verdesc->apl_data[0];

2591 if (OFL_IS_STATIC_OBJ(ofl))
2592 strtab = ofl->ofl_strtab;
2593 else
2594 strtab = ofl->ofl_dynstrtab;

2596 if (st_insert(strtab, vdp->vd_name) == -1)
2597 return (S_ERROR);

2599 /*
2600 * verdef sections do not have a constant element size, so the
2601 * value of ent_cnt specified here (0) is meaningless.
2602 */
2603 if (new_section(ofl, SHT_SUNW_verdef, MSG_ORIG(MSG_SCN_SUNWVERSION),
2604 0, &isec, &shdr, &data) == S_ERROR)
2605 return (S_ERROR);

2607 /* During version processing we calculated the total size. */
2608 data->d_size = ofl->ofl_verdefsz;
2609 shdr->sh_size = (Xword)ofl->ofl_verdefsz;

2611 ofl->ofl_osverdef =
2612 ld_place_section(ofl, isec, NULL, ld_targ.t_id.id_version, NULL);
2613 return ((uintptr_t)ofl->ofl_osverdef);
2614 }

2616 /*
2617 * This routine is called when -z nopartial is in effect.
2618 */
2619 uintptr_t
2620 ld_make_parexpn_data(Ofl_desc *ofl, size_t size, Xword align)
2621 {
2622 Shdr *shdr;
2623 Elf_Data *data;
2624 Is_desc *isec;
2625 Os_desc *osp;

2627 if (new_section(ofl, SHT_PROGBITS, MSG_ORIG(MSG_SCN_DATA), 0,
2628 &isec, &shdr, &data) == S_ERROR)
2629 return (S_ERROR);

2631 shdr->sh_flags |= SHF_WRITE;
2632 data->d_size = size;
2633 shdr->sh_size = (Xword)size;
2634 if (align != 0) {
2635 data->d_align = align;

new/usr/src/cmd/sgs/libld/common/sections.c 27

2636 shdr->sh_addralign = align;
2637 }

2639 if ((data->d_buf = libld_calloc(size, 1)) == NULL)
2640 return (S_ERROR);

2642 /*
2643 * Retain handle to this .data input section. Variables using move
2644 * sections (partial initialization) will be redirected here when
2645 * such global references are added and ’-z nopartial’ is in effect.
2646 */
2647 ofl->ofl_isparexpn = isec;
2648 osp = ld_place_section(ofl, isec, NULL, ld_targ.t_id.id_data, NULL);
2649 if (osp == (Os_desc *)S_ERROR)
2650 return (S_ERROR);

2652 if (!(osp->os_flags & FLG_OS_OUTREL)) {
2653 ofl->ofl_dynshdrcnt++;
2654 osp->os_flags |= FLG_OS_OUTREL;
2655 }
2656 return (1);
2657 }

2659 /*
2660 * Make .sunwmove section
2661 */
2662 uintptr_t
2663 ld_make_sunwmove(Ofl_desc *ofl, int mv_nums)
2664 {
2665 Shdr *shdr;
2666 Elf_Data *data;
2667 Is_desc *isec;
2668 Aliste idx;
2669 Sym_desc *sdp;
2670 int cnt = 1;

2673 if (new_section(ofl, SHT_SUNW_move, MSG_ORIG(MSG_SCN_SUNWMOVE),
2674 mv_nums, &isec, &shdr, &data) == S_ERROR)
2675 return (S_ERROR);

2677 if ((data->d_buf = libld_calloc(data->d_size, 1)) == NULL)
2678 return (S_ERROR);

2680 /*
2681 * Copy move entries
2682 */
2683 for (APLIST_TRAVERSE(ofl->ofl_parsyms, idx, sdp)) {
2684 Aliste idx2;
2685 Mv_desc *mdp;

2687 if (sdp->sd_flags & FLG_SY_PAREXPN)
2688 continue;

2690 for (ALIST_TRAVERSE(sdp->sd_move, idx2, mdp))
2691 mdp->md_oidx = cnt++;
2692 }

2694 if ((ofl->ofl_osmove = ld_place_section(ofl, isec, NULL, 0, NULL)) ==
2695 (Os_desc *)S_ERROR)
2696 return (S_ERROR);

2698 return (1);
2699 }

2701 /*

new/usr/src/cmd/sgs/libld/common/sections.c 28

2702 * Given a relocation descriptor that references a string table
2703 * input section, locate the string referenced and return a pointer
2704 * to it.
2705 */
2706 static const char *
2707 strmerge_get_reloc_str(Ofl_desc *ofl, Rel_desc *rsp)
2708 {
2709 Sym_desc *sdp = rsp->rel_sym;
2710 Xword str_off;

2712 /*
2713 * In the case of an STT_SECTION symbol, the addend of the
2714 * relocation gives the offset into the string section. For
2715 * other symbol types, the symbol value is the offset.
2716 */

2718 if (ELF_ST_TYPE(sdp->sd_sym->st_info) != STT_SECTION) {
2719 str_off = sdp->sd_sym->st_value;
2720 } else if ((rsp->rel_flags & FLG_REL_RELA) == FLG_REL_RELA) {
2721 /*
2722 * For SHT_RELA, the addend value is found in the
2723 * rel_raddend field of the relocation.
2724 */
2725 str_off = rsp->rel_raddend;
2726 } else { /* REL and STT_SECTION */
2727 /*
2728 * For SHT_REL, the "addend" is not part of the relocation
2729 * record. Instead, it is found at the relocation target
2730 * address.
2731 */
2732 uchar_t *addr = (uchar_t *)((uintptr_t)rsp->rel_roffset +
2733 (uintptr_t)rsp->rel_isdesc->is_indata->d_buf);

2735 if (ld_reloc_targval_get(ofl, rsp, addr, &str_off) == 0)
2736 return (0);
2737 }

2739 return (str_off + (char *)sdp->sd_isc->is_indata->d_buf);
2740 }

2742 /*
2743 * First pass over the relocation records for string table merging.
2744 * Build lists of relocations and symbols that will need modification,
2745 * and insert the strings they reference into the mstrtab string table.
2746 *
2747 * entry:
2748 * ofl, osp - As passed to ld_make_strmerge().
2749 * mstrtab - String table to receive input strings. This table
2750 * must be in its first (initialization) pass and not
2751 * yet cooked (st_getstrtab_sz() not yet called).
2752 * rel_alpp - APlist to receive pointer to any relocation
2753 * descriptors with STT_SECTION symbols that reference
2754 * one of the input sections being merged.
2755 * sym_alpp - APlist to receive pointer to any symbols that reference
2756 * one of the input sections being merged.
2757 * rcp - Pointer to cache of relocation descriptors to examine.
2758 * Either &ofl->ofl_actrels (active relocations)
2759 * or &ofl->ofl_outrels (output relocations).
2760 *
2761 * exit:
2762 * On success, rel_alpp and sym_alpp are updated, and
2763 * any strings in the mergeable input sections referenced by
2764 * a relocation has been entered into mstrtab. True (1) is returned.
2765 *
2766 * On failure, False (0) is returned.
2767 */

new/usr/src/cmd/sgs/libld/common/sections.c 29

2768 static int
2769 strmerge_pass1(Ofl_desc *ofl, Os_desc *osp, Str_tbl *mstrtab,
2770 APlist **rel_alpp, APlist **sym_alpp, Rel_cache *rcp)
2771 {
2772 Aliste idx;
2773 Rel_cachebuf *rcbp;
2774 Sym_desc *sdp;
2775 Sym_desc *last_sdp = NULL;
2776 Rel_desc *rsp;
2777 const char *name;

2779 REL_CACHE_TRAVERSE(rcp, idx, rcbp, rsp) {
2780 sdp = rsp->rel_sym;
2781 if ((sdp->sd_isc == NULL) || ((sdp->sd_isc->is_flags &
2782 (FLG_IS_DISCARD | FLG_IS_INSTRMRG)) != FLG_IS_INSTRMRG) ||
2783 (sdp->sd_isc->is_osdesc != osp))
2784 continue;

2786 /*
2787 * Remember symbol for use in the third pass. There is no
2788 * reason to save a given symbol more than once, so we take
2789 * advantage of the fact that relocations to a given symbol
2790 * tend to cluster in the list. If this is the same symbol
2791 * we saved last time, don’t bother.
2792 */
2793 if (last_sdp != sdp) {
2794 if (aplist_append(sym_alpp, sdp, AL_CNT_STRMRGSYM) ==
2795 NULL)
2796 return (0);
2797 last_sdp = sdp;
2798 }

2800 /* Enter the string into our new string table */
2801 name = strmerge_get_reloc_str(ofl, rsp);
2802 if (st_insert(mstrtab, name) == -1)
2803 return (0);

2805 /*
2806 * If this is an STT_SECTION symbol, then the second pass
2807 * will need to modify this relocation, so hang on to it.
2808 */
2809 if ((ELF_ST_TYPE(sdp->sd_sym->st_info) == STT_SECTION) &&
2810 (aplist_append(rel_alpp, rsp, AL_CNT_STRMRGREL) == NULL))
2811 return (0);
2812 }

2814 return (1);
2815 }

2817 /*
2818 * If the output section has any SHF_MERGE|SHF_STRINGS input sections,
2819 * replace them with a single merged/compressed input section.
2820 *
2821 * entry:
2822 * ofl - Output file descriptor
2823 * osp - Output section descriptor
2824 * rel_alpp, sym_alpp, - Address of 2 APlists, to be used
2825 * for internal processing. On the initial call to
2826 * ld_make_strmerge, these list pointers must be NULL.
2827 * The caller is encouraged to pass the same lists back for
2828 * successive calls to this function without freeing
2829 * them in between calls. This causes a single pair of
2830 * memory allocations to be reused multiple times.
2831 *
2832 * exit:
2833 * If section merging is possible, it is done. If no errors are

new/usr/src/cmd/sgs/libld/common/sections.c 30

2834 * encountered, True (1) is returned. On error, S_ERROR.
2835 *
2836 * The contents of rel_alpp and sym_alpp on exit are
2837 * undefined. The caller can free them, or pass them back to a subsequent
2838 * call to this routine, but should not examine their contents.
2839 */
2840 static uintptr_t
2841 ld_make_strmerge(Ofl_desc *ofl, Os_desc *osp, APlist **rel_alpp,
2842 APlist **sym_alpp)
2843 {
2844 Str_tbl *mstrtab; /* string table for string merge secs */
2845 Is_desc *mstrsec; /* Generated string merge section */
2846 Is_desc *isp;
2847 Shdr *mstr_shdr;
2848 Elf_Data *mstr_data;
2849 Sym_desc *sdp;
2850 Rel_desc *rsp;
2851 Aliste idx;
2852 size_t data_size;
2853 int st_setstring_status;
2854 size_t stoff;

2856 /* If string table compression is disabled, there’s nothing to do */
2857 if ((ofl->ofl_flags1 & FLG_OF1_NCSTTAB) != 0)
2858 return (1);

2860 /*
2861 * Pass over the mergeable input sections, and if they haven’t
2862 * all been discarded, create a string table.
2863 */
2864 mstrtab = NULL;
2865 for (APLIST_TRAVERSE(osp->os_mstrisdescs, idx, isp)) {
2866 if (isdesc_discarded(isp))
2867 continue;

2869 /*
2870 * Input sections of 0 size are dubiously valid since they do
2871 * not even contain the NUL string. Ignore them.
2872 */
2873 if (isp->is_shdr->sh_size == 0)
2874 continue;

2876 /*
2877 * We have at least one non-discarded section.
2878 * Create a string table descriptor.
2879 */
2880 if ((mstrtab = st_new(FLG_STNEW_COMPRESS)) == NULL)
2881 return (S_ERROR);
2882 break;
2883 }

2885 /* If no string table was created, we have no mergeable sections */
2886 if (mstrtab == NULL)
2887 return (1);

2889 /*
2890 * This routine has to make 3 passes:
2891 *
2892 * 1) Examine all relocations, insert strings from relocations
2893 * to the mergeable input sections into the string table.
2894 * 2) Modify the relocation values to be correct for the
2895 * new merged section.
2896 * 3) Modify the symbols used by the relocations to reference
2897 * the new section.
2898 *
2899 * These passes cannot be combined:

new/usr/src/cmd/sgs/libld/common/sections.c 31

2900 * - The string table code works in two passes, and all
2901 * strings have to be loaded in pass one before the
2902 * offset of any strings can be determined.
2903 * - Multiple relocations reference a single symbol, so the
2904 * symbol cannot be modified until all relocations are
2905 * fixed.
2906 *
2907 * The number of relocations related to section merging is usually
2908 * a mere fraction of the overall active and output relocation lists,
2909 * and the number of symbols is usually a fraction of the number
2910 * of related relocations. We therefore build APlists for the
2911 * relocations and symbols in the first pass, and then use those
2912 * lists to accelerate the operation of pass 2 and 3.
2913 *
2914 * Reinitialize the lists to a completely empty state.
2915 */
2916 aplist_reset(*rel_alpp);
2917 aplist_reset(*sym_alpp);

2919 /*
2920 * Pass 1:
2921 *
2922 * Every relocation related to this output section (and the input
2923 * sections that make it up) is found in either the active, or the
2924 * output relocation list, depending on whether the relocation is to
2925 * be processed by this invocation of the linker, or inserted into the
2926 * output object.
2927 *
2928 * Build lists of relocations and symbols that will need modification,
2929 * and insert the strings they reference into the mstrtab string table.
2930 */
2931 if (strmerge_pass1(ofl, osp, mstrtab, rel_alpp, sym_alpp,
2932 &ofl->ofl_actrels) == 0)
2933 goto return_s_error;
2934 if (strmerge_pass1(ofl, osp, mstrtab, rel_alpp, sym_alpp,
2935 &ofl->ofl_outrels) == 0)
2936 goto return_s_error;

2938 /*
2939 * Get the size of the new input section. Requesting the
2940 * string table size "cooks" the table, and finalizes its contents.
2941 */
2942 data_size = st_getstrtab_sz(mstrtab);

2944 /* Create a new input section to hold the merged strings */
2945 if (new_section_from_template(ofl, isp, data_size,
2946 &mstrsec, &mstr_shdr, &mstr_data) == S_ERROR)
2947 goto return_s_error;
2948 mstrsec->is_flags |= FLG_IS_GNSTRMRG;

2950 /*
2951 * Allocate a data buffer for the new input section.
2952 * Then, associate the buffer with the string table descriptor.
2953 */
2954 if ((mstr_data->d_buf = libld_malloc(data_size)) == NULL)
2955 goto return_s_error;
2956 if (st_setstrbuf(mstrtab, mstr_data->d_buf, data_size) == -1)
2957 goto return_s_error;

2959 /* Add the new section to the output image */
2960 if (ld_place_section(ofl, mstrsec, NULL, osp->os_identndx, NULL) ==
2961 (Os_desc *)S_ERROR)
2962 goto return_s_error;

2964 /*
2965 * Pass 2:

new/usr/src/cmd/sgs/libld/common/sections.c 32

2966 *
2967 * Revisit the relocation descriptors with STT_SECTION symbols
2968 * that were saved by the first pass. Update each relocation
2969 * record so that the offset it contains is for the new section
2970 * instead of the original.
2971 */
2972 for (APLIST_TRAVERSE(*rel_alpp, idx, rsp)) {
2973 const char *name;

2975 /* Put the string into the merged string table */
2976 name = strmerge_get_reloc_str(ofl, rsp);
2977 st_setstring_status = st_setstring(mstrtab, name, &stoff);
2978 if (st_setstring_status == -1) {
2979 /*
2980 * A failure to insert at this point means that
2981 * something is corrupt. This isn’t a resource issue.
2982 */
2983 assert(st_setstring_status != -1);
2984 goto return_s_error;
2985 }

2987 /*
2988 * Alter the relocation to access the string at the
2989 * new offset in our new string table.
2990 *
2991 * For SHT_RELA platforms, it suffices to simply
2992 * update the rel_raddend field of the relocation.
2993 *
2994 * For SHT_REL platforms, the new "addend" value
2995 * needs to be written at the address being relocated.
2996 * However, we can’t alter the input sections which
2997 * are mapped readonly, and the output image has not
2998 * been created yet. So, we defer this operation,
2999 * using the rel_raddend field of the relocation
3000 * which is normally 0 on a REL platform, to pass the
3001 * new "addend" value to ld_perform_outreloc() or
3002 * ld_do_activerelocs(). The FLG_REL_NADDEND flag
3003 * tells them that this is the case.
3004 */
3005 if ((rsp->rel_flags & FLG_REL_RELA) == 0) /* REL */
3006 rsp->rel_flags |= FLG_REL_NADDEND;
3007 rsp->rel_raddend = (Sxword)stoff;

3009 /*
3010 * Generate a symbol name string for STT_SECTION symbols
3011 * that might reference our merged section. This shows up
3012 * in debug output and helps show how the relocation has
3013 * changed from its original input section to our merged one.
3014 */
3015 if (ld_stt_section_sym_name(mstrsec) == NULL)
3016 goto return_s_error;
3017 }

3019 /*
3020 * Pass 3:
3021 *
3022 * Modify the symbols referenced by the relocation descriptors
3023 * so that they reference the new input section containing the
3024 * merged strings instead of the original input sections.
3025 */
3026 for (APLIST_TRAVERSE(*sym_alpp, idx, sdp)) {
3027 /*
3028 * If we’ve already processed this symbol, don’t do it
3029 * twice. strmerge_pass1() uses a heuristic (relocations to
3030 * the same symbol clump together) to avoid inserting a
3031 * given symbol more than once, but repeat symbols in

new/usr/src/cmd/sgs/libld/common/sections.c 33

3032 * the list can occur.
3033 */
3034 if ((sdp->sd_isc->is_flags & FLG_IS_INSTRMRG) == 0)
3035 continue;

3037 if (ELF_ST_TYPE(sdp->sd_sym->st_info) != STT_SECTION) {
3038 /*
3039 * This is not an STT_SECTION symbol, so its
3040 * value is the offset of the string within the
3041 * input section. Update the address to reflect
3042 * the address in our new merged section.
3043 */
3044 const char *name = sdp->sd_sym->st_value +
3045 (char *)sdp->sd_isc->is_indata->d_buf;

3047 st_setstring_status =
3048 st_setstring(mstrtab, name, &stoff);
3049 if (st_setstring_status == -1) {
3050 /*
3051 * A failure to insert at this point means
3052 * something is corrupt. This isn’t a
3053 * resource issue.
3054 */
3055 assert(st_setstring_status != -1);
3056 goto return_s_error;
3057 }

3059 if (ld_sym_copy(sdp) == S_ERROR)
3060 goto return_s_error;
3061 sdp->sd_sym->st_value = (Word)stoff;
3062 }

3064 /* Redirect the symbol to our new merged section */
3065 sdp->sd_isc = mstrsec;
3066 }

3068 /*
3069 * There are no references left to the original input string sections.
3070 * Mark them as discarded so they don’t go into the output image.
3071 * At the same time, add up the sizes of the replaced sections.
3072 */
3073 data_size = 0;
3074 for (APLIST_TRAVERSE(osp->os_mstrisdescs, idx, isp)) {
3075 if (isp->is_flags & (FLG_IS_DISCARD | FLG_IS_GNSTRMRG))
3076 continue;

3078 data_size += isp->is_indata->d_size;

3080 isp->is_flags |= FLG_IS_DISCARD;
3081 DBG_CALL(Dbg_sec_discarded(ofl->ofl_lml, isp, mstrsec));
3082 }

3084 /* Report how much space we saved in the output section */
3085 DBG_CALL(Dbg_sec_genstr_compress(ofl->ofl_lml, osp->os_name, data_size,
3086 mstr_data->d_size));

3088 st_destroy(mstrtab);
3089 return (1);

3091 return_s_error:
3092 st_destroy(mstrtab);
3093 return (S_ERROR);
3094 }

3096 /*
3097 * Update a data buffers size. A number of sections have to be created, and

new/usr/src/cmd/sgs/libld/common/sections.c 34

3098 * the sections header contributes to the size of the eventual section. Thus,
3099 * a section may be created, and once all associated sections have been created,
3100 * we return to establish the required section size.
3101 */
3102 inline static void
3103 update_data_size(Os_desc *osp, ulong_t cnt)
3104 {
3105 Is_desc *isec = ld_os_first_isdesc(osp);
3106 Elf_Data *data = isec->is_indata;
3107 Shdr *shdr = osp->os_shdr;
3108 size_t size = cnt * shdr->sh_entsize;

3110 shdr->sh_size = (Xword)size;
3111 data->d_size = size;
3112 }

3114 /*
3115 * The following sections are built after all input file processing and symbol
3116 * validation has been carried out. The order is important (because the
3117 * addition of a section adds a new symbol there is a chicken and egg problem
3118 * of maintaining the appropriate counts). By maintaining a known order the
3119 * individual routines can compensate for later, known, additions.
3120 */
3121 uintptr_t
3122 ld_make_sections(Ofl_desc *ofl)
3123 {
3124 ofl_flag_t flags = ofl->ofl_flags;
3125 Sg_desc *sgp;

3127 /*
3128 * Generate any special sections.
3129 */
3130 if (flags & FLG_OF_ADDVERS)
3131 if (make_comment(ofl) == S_ERROR)
3132 return (S_ERROR);

3134 if (make_interp(ofl) == S_ERROR)
3135 return (S_ERROR);

3137 /*
3138 * Create a capabilities section if required.
3139 */
3140 if (make_cap(ofl, SHT_SUNW_cap, MSG_ORIG(MSG_SCN_SUNWCAP),
3141 ld_targ.t_id.id_cap) == S_ERROR)
3142 return (S_ERROR);

3144 /*
3145 * Create any init/fini array sections.
3146 */
3147 if (make_array(ofl, SHT_INIT_ARRAY, MSG_ORIG(MSG_SCN_INITARRAY),
3148 ofl->ofl_initarray) == S_ERROR)
3149 return (S_ERROR);

3151 if (make_array(ofl, SHT_FINI_ARRAY, MSG_ORIG(MSG_SCN_FINIARRAY),
3152 ofl->ofl_finiarray) == S_ERROR)
3153 return (S_ERROR);

3155 if (make_array(ofl, SHT_PREINIT_ARRAY, MSG_ORIG(MSG_SCN_PREINITARRAY),
3156 ofl->ofl_preiarray) == S_ERROR)
3157 return (S_ERROR);

3159 /*
3160 * Make the .plt section. This occurs after any other relocation
3161 * sections are generated (see reloc_init()) to ensure that the
3162 * associated relocation section is after all the other relocation
3163 * sections.

new/usr/src/cmd/sgs/libld/common/sections.c 35

3164 */
3165 if ((ofl->ofl_pltcnt) || (ofl->ofl_pltpad))
3166 if (make_plt(ofl) == S_ERROR)
3167 return (S_ERROR);

3169 /*
3170 * Determine whether any sections or files are not referenced. Under
3171 * -Dunused a diagnostic for any unused components is generated, under
3172 * -zignore the component is removed from the final output.
3173 */
3174 if (DBG_ENABLED || (ofl->ofl_flags1 & FLG_OF1_IGNPRC)) {
3175 if (ignore_section_processing(ofl) == S_ERROR)
3176 return (S_ERROR);
3177 }

3179 /*
3180 * If we have detected a situation in which previously placed
3181 * output sections may have been discarded, perform the necessary
3182 * readjustment.
3183 */
3184 if (ofl->ofl_flags & FLG_OF_ADJOSCNT)
3185 adjust_os_count(ofl);

3187 /*
3188 * Do any of the output sections contain input sections that
3189 * are candidates for string table merging? For each such case,
3190 * we create a replacement section, insert it, and discard the
3191 * originals.
3192 *
3193 * rel_alpp and sym_alpp are used by ld_make_strmerge()
3194 * for its internal processing. We are responsible for the
3195 * initialization and cleanup, and ld_make_strmerge() handles the rest.
3196 * This allows us to reuse a single pair of memory buffers, allocated
3197 * for this processing, for all the output sections.
3198 */
3199 if ((ofl->ofl_flags1 & FLG_OF1_NCSTTAB) == 0) {
3200 int error_seen = 0;
3201 APlist *rel_alpp = NULL;
3202 APlist *sym_alpp = NULL;
3203 Aliste idx1;

3205 for (APLIST_TRAVERSE(ofl->ofl_segs, idx1, sgp)) {
3206 Os_desc *osp;
3207 Aliste idx2;

3209 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp))
3210 if ((osp->os_mstrisdescs != NULL) &&
3211 (ld_make_strmerge(ofl, osp,
3212 &rel_alpp, &sym_alpp) ==
3213 S_ERROR)) {
3214 error_seen = 1;
3215 break;
3216 }
3217 }
3218 if (rel_alpp != NULL)
3219 libld_free(rel_alpp);
3220 if (sym_alpp != NULL)
3221 libld_free(sym_alpp);
3222 if (error_seen != 0)
3223 return (S_ERROR);
3224 }

3226 /*
3227 * Add any necessary versioning information.
3228 */
3229 if (!(flags & FLG_OF_NOVERSEC)) {

new/usr/src/cmd/sgs/libld/common/sections.c 36

3230 if ((flags & FLG_OF_VERNEED) &&
3231 (make_verneed(ofl) == S_ERROR))
3232 return (S_ERROR);
3233 if ((flags & FLG_OF_VERDEF) &&
3234 (make_verdef(ofl) == S_ERROR))
3235 return (S_ERROR);
3236 if ((flags & (FLG_OF_VERNEED | FLG_OF_VERDEF)) &&
3237 ((ofl->ofl_osversym = make_sym_sec(ofl,
3238 MSG_ORIG(MSG_SCN_SUNWVERSYM), SHT_SUNW_versym,
3239 ld_targ.t_id.id_version)) == (Os_desc*)S_ERROR))
3240 return (S_ERROR);
3241 }

3243 /*
3244 * Create a syminfo section if necessary.
3245 */
3246 if (flags & FLG_OF_SYMINFO) {
3247 if ((ofl->ofl_ossyminfo = make_sym_sec(ofl,
3248 MSG_ORIG(MSG_SCN_SUNWSYMINFO), SHT_SUNW_syminfo,
3249 ld_targ.t_id.id_syminfo)) == (Os_desc *)S_ERROR)
3250 return (S_ERROR);
3251 }

3253 if (flags & FLG_OF_COMREL) {
3254 /*
3255 * If -zcombreloc is enabled then all relocations (except for
3256 * the PLT’s) are coalesced into a single relocation section.
3257 */
3258 if (ofl->ofl_reloccnt) {
3259 if (make_reloc(ofl, NULL) == S_ERROR)
3260 return (S_ERROR);
3261 }
3262 } else {
3263 Aliste idx1;

3265 /*
3266 * Create the required output relocation sections. Note, new
3267 * sections may be added to the section list that is being
3268 * traversed. These insertions can move the elements of the
3269 * Alist such that a section descriptor is re-read. Recursion
3270 * is prevented by maintaining a previous section pointer and
3271 * insuring that this pointer isn’t re-examined.
3272 */
3273 for (APLIST_TRAVERSE(ofl->ofl_segs, idx1, sgp)) {
3274 Os_desc *osp, *posp = 0;
3275 Aliste idx2;

3277 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {
3278 if ((osp != posp) && osp->os_szoutrels &&
3279 (osp != ofl->ofl_osplt)) {
3280 if (make_reloc(ofl, osp) == S_ERROR)
3281 return (S_ERROR);
3282 }
3283 posp = osp;
3284 }
3285 }

3287 /*
3288 * If we’re not building a combined relocation section, then
3289 * build a .rel[a] section as required.
3290 */
3291 if (ofl->ofl_relocrelsz) {
3292 if (make_reloc(ofl, NULL) == S_ERROR)
3293 return (S_ERROR);
3294 }
3295 }

new/usr/src/cmd/sgs/libld/common/sections.c 37

3297 /*
3298 * The PLT relocations are always in their own section, and we try to
3299 * keep them at the end of the PLT table. We do this to keep the hot
3300 * "data" PLT’s at the head of the table nearer the .dynsym & .hash.
3301 */
3302 if (ofl->ofl_osplt && ofl->ofl_relocpltsz) {
3303 if (make_reloc(ofl, ofl->ofl_osplt) == S_ERROR)
3304 return (S_ERROR);
3305 }

3307 /*
3308 * Finally build the symbol and section header sections.
3309 */
3310 if (flags & FLG_OF_DYNAMIC) {
3311 if (make_dynamic(ofl) == S_ERROR)
3312 return (S_ERROR);

3314 /*
3315 * A number of sections aren’t necessary within a relocatable
3316 * object, even if -dy has been used.
3317 */
3318 if (!(flags & FLG_OF_RELOBJ)) {
3319 if (make_hash(ofl) == S_ERROR)
3320 return (S_ERROR);
3321 if (make_dynstr(ofl) == S_ERROR)
3322 return (S_ERROR);
3323 if (make_dynsym(ofl) == S_ERROR)
3324 return (S_ERROR);
3325 if (ld_unwind_make_hdr(ofl) == S_ERROR)
3326 return (S_ERROR);
3327 if (make_dynsort(ofl) == S_ERROR)
3328 return (S_ERROR);
3329 }
3330 }

3332 if (!(flags & FLG_OF_STRIP) || (flags & FLG_OF_RELOBJ) ||
3333 ((flags & FLG_OF_STATIC) && ofl->ofl_osversym)) {
3334 /*
3335 * Do we need to make a SHT_SYMTAB_SHNDX section
3336 * for the dynsym. If so - do it now.
3337 */
3338 if (ofl->ofl_osdynsym &&
3339 ((ofl->ofl_shdrcnt + 3) >= SHN_LORESERVE)) {
3340 if (make_dynsym_shndx(ofl) == S_ERROR)
3341 return (S_ERROR);
3342 }

3344 if (make_strtab(ofl) == S_ERROR)
3345 return (S_ERROR);
3346 if (make_symtab(ofl) == S_ERROR)
3347 return (S_ERROR);
3348 } else {
3349 /*
3350 * Do we need to make a SHT_SYMTAB_SHNDX section
3351 * for the dynsym. If so - do it now.
3352 */
3353 if (ofl->ofl_osdynsym &&
3354 ((ofl->ofl_shdrcnt + 1) >= SHN_LORESERVE)) {
3355 if (make_dynsym_shndx(ofl) == S_ERROR)
3356 return (S_ERROR);
3357 }
3358 }

3360 if (make_shstrtab(ofl) == S_ERROR)
3361 return (S_ERROR);

new/usr/src/cmd/sgs/libld/common/sections.c 38

3363 /*
3364 * Now that we’ve created all output sections, adjust the size of the
3365 * SHT_SUNW_versym and SHT_SUNW_syminfo section, which are dependent on
3366 * the associated symbol table sizes.
3367 */
3368 if (ofl->ofl_osversym || ofl->ofl_ossyminfo) {
3369 ulong_t cnt;
3370 Is_desc *isp;
3371 Os_desc *osp;

3373 if (OFL_IS_STATIC_OBJ(ofl))
3374 osp = ofl->ofl_ossymtab;
3375 else
3376 osp = ofl->ofl_osdynsym;

3378 isp = ld_os_first_isdesc(osp);
3379 cnt = (isp->is_shdr->sh_size / isp->is_shdr->sh_entsize);

3381 if (ofl->ofl_osversym)
3382 update_data_size(ofl->ofl_osversym, cnt);

3384 if (ofl->ofl_ossyminfo)
3385 update_data_size(ofl->ofl_ossyminfo, cnt);
3386 }

3388 /*
3389 * Now that we’ve created all output sections, adjust the size of the
3390 * SHT_SUNW_capinfo, which is dependent on the associated symbol table
3391 * size.
3392 */
3393 if (ofl->ofl_oscapinfo) {
3394 ulong_t cnt;

3396 /*
3397 * Symbol capabilities symbols are placed directly after the
3398 * STT_FILE symbol, section symbols, and any register symbols.
3399 * Effectively these are the first of any series of demoted
3400 * (scoped) symbols.
3401 */
3402 if (OFL_IS_STATIC_OBJ(ofl))
3403 cnt = SYMTAB_ALL_CNT(ofl);
3404 else
3405 cnt = DYNSYM_ALL_CNT(ofl);

3407 update_data_size(ofl->ofl_oscapinfo, cnt);
3408 }
3409 return (1);
3410 }

3412 /*
3413 * Build an additional data section - used to back OBJT symbol definitions
3414 * added with a mapfile.
3415 */
3416 Is_desc *
3417 ld_make_data(Ofl_desc *ofl, size_t size)
3418 {
3419 Shdr *shdr;
3420 Elf_Data *data;
3421 Is_desc *isec;

3423 if (new_section(ofl, SHT_PROGBITS, MSG_ORIG(MSG_SCN_DATA), 0,
3424 &isec, &shdr, &data) == S_ERROR)
3425 return ((Is_desc *)S_ERROR);

3427 data->d_size = size;

new/usr/src/cmd/sgs/libld/common/sections.c 39

3428 shdr->sh_size = (Xword)size;
3429 shdr->sh_flags |= SHF_WRITE;

3431 if (aplist_append(&ofl->ofl_mapdata, isec, AL_CNT_OFL_MAPSECS) == NULL)
3432 return ((Is_desc *)S_ERROR);

3434 return (isec);
3435 }

3437 /*
3438 * Build an additional text section - used to back FUNC symbol definitions
3439 * added with a mapfile.
3440 */
3441 Is_desc *
3442 ld_make_text(Ofl_desc *ofl, size_t size)
3443 {
3444 Shdr *shdr;
3445 Elf_Data *data;
3446 Is_desc *isec;

3448 /*
3449 * Insure the size is sufficient to contain the minimum return
3450 * instruction.
3451 */
3452 if (size < ld_targ.t_nf.nf_size)
3453 size = ld_targ.t_nf.nf_size;

3455 if (new_section(ofl, SHT_PROGBITS, MSG_ORIG(MSG_SCN_TEXT), 0,
3456 &isec, &shdr, &data) == S_ERROR)
3457 return ((Is_desc *)S_ERROR);

3459 data->d_size = size;
3460 shdr->sh_size = (Xword)size;
3461 shdr->sh_flags |= SHF_EXECINSTR;

3463 /*
3464 * Fill the buffer with the appropriate return instruction.
3465 * Note that there is no need to swap bytes on a non-native,
3466 * link, as the data being copied is given in bytes.
3467 */
3468 if ((data->d_buf = libld_calloc(size, 1)) == NULL)
3469 return ((Is_desc *)S_ERROR);
3470 (void) memcpy(data->d_buf, ld_targ.t_nf.nf_template,
3471 ld_targ.t_nf.nf_size);

3473 /*
3474 * If size was larger than required, and the target supplies
3475 * a fill function, use it to fill the balance. If there is no
3476 * fill function, we accept the 0-fill supplied by libld_calloc().
3477 */
3478 if ((ld_targ.t_ff.ff_execfill != NULL) && (size > ld_targ.t_nf.nf_size))
3479 ld_targ.t_ff.ff_execfill(data->d_buf, ld_targ.t_nf.nf_size,
3480 size - ld_targ.t_nf.nf_size);

3482 if (aplist_append(&ofl->ofl_maptext, isec, AL_CNT_OFL_MAPSECS) == NULL)
3483 return ((Is_desc *)S_ERROR);

3485 return (isec);
3486 }

3488 void
3489 ld_comdat_validate(Ofl_desc *ofl, Ifl_desc *ifl)
3490 {
3491 int i;

3493 for (i = 0; i < ifl->ifl_shnum; i++) {

new/usr/src/cmd/sgs/libld/common/sections.c 40

3494 Is_desc *isp = ifl->ifl_isdesc[i];
3495 int types = 0;
3496 char buf[1024] = "";
3497 Group_desc *gr = NULL;

3499 if ((isp == NULL) || (isp->is_flags & FLG_IS_COMDAT) == 0)
3500 continue;

3502 if (isp->is_shdr->sh_type == SHT_SUNW_COMDAT) {
3503 types++;
3504 (void) strlcpy(buf, MSG_ORIG(MSG_STR_SUNW_COMDAT),
3505 sizeof (buf));
3506 }

3508 if (strncmp(MSG_ORIG(MSG_SCN_GNU_LINKONCE), isp->is_name,
3509 MSG_SCN_GNU_LINKONCE_SIZE) == 0) {
3510 types++;
3511 if (types > 1)
3512 (void) strlcat(buf, ", ", sizeof (buf));
3513 (void) strlcat(buf, MSG_ORIG(MSG_SCN_GNU_LINKONCE),
3514 sizeof (buf));
3515 }

3517 if ((isp->is_shdr->sh_flags & SHF_GROUP) &&
3518 ((gr = ld_get_group(ofl, isp)) != NULL) &&
3519 (gr->gd_data[0] & GRP_COMDAT)) {
3520 types++;
3521 if (types > 1)
3522 (void) strlcat(buf, ", ", sizeof (buf));
3523 (void) strlcat(buf, MSG_ORIG(MSG_STR_GROUP),
3524 sizeof (buf));
3525 }

3527 if (types > 1)
3528 ld_eprintf(ofl, ERR_FATAL,
3529 MSG_INTL(MSG_SCN_MULTICOMDAT), ifl->ifl_name,
3530 EC_WORD(isp->is_scnndx), isp->is_name, buf);
3531 }
3532 }

new/usr/src/cmd/sgs/libld/common/syms.c 1

**
 97619 Sun Feb 24 19:19:13 2019
new/usr/src/cmd/sgs/libld/common/syms.c
fill out symbol-bound symbols in kmods
linker_set sections shouldn’t need leading ’.’
code review
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**
______unchanged_portion_omitted_

610 /*
611 * Add a special symbol to the symbol table. Takes special symbol name with
612 * and without underscores. This routine is called, after all other symbol
613 * resolution has completed, to generate a reserved absolute symbol (the
614 * underscore version). Special symbols are updated with the appropriate
615 * values in update_osym(). If the user has already defined this symbol
616 * issue a warning and leave the symbol as is. If the non-underscore symbol
617 * is referenced then turn it into a weak alias of the underscored symbol.
618 *
619 * The bits in sdflags_u are OR’d into the flags field of the symbol for the
620 * underscored symbol.
621 *
622 * If this is a global symbol, and it hasn’t explicitly been defined as being
623 * directly bound to, indicate that it can’t be directly bound to.
624 * Historically, most special symbols only have meaning to the object in which
625 * they exist, however, they’ve always been global. To ensure compatibility
626 * with any unexpected use presently in effect, ensure these symbols don’t get
627 * directly bound to. Note, that establishing this state here isn’t sufficient
628 * to create a syminfo table, only if a syminfo table is being created by some
629 * other symbol directives will the nodirect binding be recorded. This ensures
630 * we don’t create syminfo sections for all objects we create, as this might add
631 * unnecessary bloat to users who haven’t explicitly requested extra symbol
632 * information.
633 */
634 static uintptr_t
635 sym_add_spec(const char *name, const char *uname, Word sdaux_id,
636 sd_flag_t sdflags_u, sd_flag_t sdflags, Ofl_desc *ofl)
637 {
638 Sym_desc *sdp;
639 Sym_desc *usdp;
640 Sym *sym;
641 Word hash;
642 avl_index_t where;

644 /* LINTED */
645 hash = (Word)elf_hash(uname);
646 if (usdp = ld_sym_find(uname, hash, &where, ofl)) {
647 /*
648 * If the underscore symbol exists and is undefined, or was
649 * defined in a shared library, convert it to a local symbol.
650 * Otherwise leave it as is and warn the user.
651 */
652 if ((usdp->sd_shndx == SHN_UNDEF) ||
653 (usdp->sd_ref != REF_REL_NEED)) {
654 usdp->sd_ref = REF_REL_NEED;
655 usdp->sd_shndx = usdp->sd_sym->st_shndx = SHN_ABS;
656 usdp->sd_flags |= FLG_SY_SPECSEC | sdflags_u;
657 usdp->sd_sym->st_info =
658 ELF_ST_INFO(STB_GLOBAL, STT_OBJECT);
659 usdp->sd_isc = NULL;
660 usdp->sd_sym->st_size = 0;
661 usdp->sd_sym->st_value = 0;
662 /* LINTED */
663 usdp->sd_aux->sa_symspec = (Half)sdaux_id;

new/usr/src/cmd/sgs/libld/common/syms.c 2

665 /*
666 * If a user hasn’t specifically indicated that the
667 * scope of this symbol be made local, then leave it
668 * as global (ie. prevent automatic scoping). The GOT
669 * should be defined protected, whereas all other
670 * special symbols are tagged as no-direct.
671 */
672 if (!SYM_IS_HIDDEN(usdp) &&
673 (sdflags & FLG_SY_DEFAULT)) {
674 usdp->sd_aux->sa_overndx = VER_NDX_GLOBAL;
675 if (sdaux_id == SDAUX_ID_GOT) {
676 usdp->sd_flags &= ~FLG_SY_NDIR;
677 usdp->sd_flags |= FLG_SY_PROTECT;
678 usdp->sd_sym->st_other = STV_PROTECTED;
679 } else if (
680 ((usdp->sd_flags & FLG_SY_DIR) == 0) &&
681 ((ofl->ofl_flags & FLG_OF_SYMBOLIC) == 0)) {
682 usdp->sd_flags |= FLG_SY_NDIR;
683 }
684 }
685 usdp->sd_flags |= sdflags;

687 /*
688 * If the reference originated from a mapfile ensure
689 * we mark the symbol as used.
690 */
691 if (usdp->sd_flags & FLG_SY_MAPREF)
692 usdp->sd_flags |= FLG_SY_MAPUSED;

694 DBG_CALL(Dbg_syms_updated(ofl, usdp, uname));
695 } else {
695 } else
696 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_SYM_RESERVE),
697 uname, usdp->sd_file->ifl_name);
698 }
699 #endif /* ! codereview */
700 } else {
701 /*
702 * If the symbol does not exist create it.
703 */
704 if ((sym = libld_calloc(sizeof (Sym), 1)) == NULL)
705 return (S_ERROR);
706 sym->st_shndx = SHN_ABS;
707 sym->st_info = ELF_ST_INFO(STB_GLOBAL, STT_OBJECT);
708 sym->st_size = 0;
709 sym->st_value = 0;
710 DBG_CALL(Dbg_syms_created(ofl->ofl_lml, uname));
711 if ((usdp = ld_sym_enter(uname, sym, hash, (Ifl_desc *)NULL,
712 ofl, 0, SHN_ABS, (FLG_SY_SPECSEC | sdflags_u), &where)) ==
713 (Sym_desc *)S_ERROR)
714 return (S_ERROR);
715 usdp->sd_ref = REF_REL_NEED;
716 /* LINTED */
717 usdp->sd_aux->sa_symspec = (Half)sdaux_id;

719 usdp->sd_aux->sa_overndx = VER_NDX_GLOBAL;

721 if (sdaux_id == SDAUX_ID_GOT) {
722 usdp->sd_flags |= FLG_SY_PROTECT;
723 usdp->sd_sym->st_other = STV_PROTECTED;
724 } else if ((sdflags & FLG_SY_DEFAULT) &&
725 ((ofl->ofl_flags & FLG_OF_SYMBOLIC) == 0)) {
726 usdp->sd_flags |= FLG_SY_NDIR;
727 }
728 usdp->sd_flags |= sdflags;

new/usr/src/cmd/sgs/libld/common/syms.c 3

729 }

731 if (name && (sdp = ld_sym_find(name, SYM_NOHASH, NULL, ofl)) &&
732 (sdp->sd_sym->st_shndx == SHN_UNDEF)) {
733 uchar_t bind;

735 /*
736 * If the non-underscore symbol exists and is undefined
737 * convert it to be a local. If the underscore has
738 * sa_symspec set (ie. it was created above) then simulate this
739 * as a weak alias.
740 */
741 sdp->sd_ref = REF_REL_NEED;
742 sdp->sd_shndx = sdp->sd_sym->st_shndx = SHN_ABS;
743 sdp->sd_flags |= FLG_SY_SPECSEC;
744 sdp->sd_isc = NULL;
745 sdp->sd_sym->st_size = 0;
746 sdp->sd_sym->st_value = 0;
747 /* LINTED */
748 sdp->sd_aux->sa_symspec = (Half)sdaux_id;
749 if (usdp->sd_aux->sa_symspec) {
750 usdp->sd_aux->sa_linkndx = 0;
751 sdp->sd_aux->sa_linkndx = 0;
752 bind = STB_WEAK;
753 } else
754 bind = STB_GLOBAL;
755 sdp->sd_sym->st_info = ELF_ST_INFO(bind, STT_OBJECT);

757 /*
758 * If a user hasn’t specifically indicated the scope of this
759 * symbol be made local then leave it as global (ie. prevent
760 * automatic scoping). The GOT should be defined protected,
761 * whereas all other special symbols are tagged as no-direct.
762 */
763 if (!SYM_IS_HIDDEN(sdp) &&
764 (sdflags & FLG_SY_DEFAULT)) {
765 sdp->sd_aux->sa_overndx = VER_NDX_GLOBAL;
766 if (sdaux_id == SDAUX_ID_GOT) {
767 sdp->sd_flags &= ~FLG_SY_NDIR;
768 sdp->sd_flags |= FLG_SY_PROTECT;
769 sdp->sd_sym->st_other = STV_PROTECTED;
770 } else if (((sdp->sd_flags & FLG_SY_DIR) == 0) &&
771 ((ofl->ofl_flags & FLG_OF_SYMBOLIC) == 0)) {
772 sdp->sd_flags |= FLG_SY_NDIR;
773 }
774 }
775 sdp->sd_flags |= sdflags;

777 /*
778 * If the reference originated from a mapfile ensure
779 * we mark the symbol as used.
780 */
781 if (sdp->sd_flags & FLG_SY_MAPREF)
782 sdp->sd_flags |= FLG_SY_MAPUSED;

784 DBG_CALL(Dbg_syms_updated(ofl, sdp, name));
785 }
786 return (1);
787 }

790 /*
791 * Undefined symbols can fall into one of four types:
792 *
793 * - the symbol is really undefined (SHN_UNDEF).
794 *

new/usr/src/cmd/sgs/libld/common/syms.c 4

795 * - versioning has been enabled, however this symbol has not been assigned
796 * to one of the defined versions.
797 *
798 * - the symbol has been defined by an implicitly supplied library, ie. one
799 * which was encounted because it was NEEDED by another library, rather
800 * than from a command line supplied library which would become the only
801 * dependency of the output file being produced.
802 *
803 * - the symbol has been defined by a version of a shared object that is
804 * not permitted for this link-edit.
805 *
806 * In all cases the file who made the first reference to this symbol will have
807 * been recorded via the ‘sa_rfile’ pointer.
808 */
809 typedef enum {
810 UNDEF, NOVERSION, IMPLICIT, NOTAVAIL,
811 BNDLOCAL
812 } Type;

814 static const Msg format[] = {
815 MSG_SYM_UND_UNDEF, /* MSG_INTL(MSG_SYM_UND_UNDEF) */
816 MSG_SYM_UND_NOVER, /* MSG_INTL(MSG_SYM_UND_NOVER) */
817 MSG_SYM_UND_IMPL, /* MSG_INTL(MSG_SYM_UND_IMPL) */
818 MSG_SYM_UND_NOTA, /* MSG_INTL(MSG_SYM_UND_NOTA) */
819 MSG_SYM_UND_BNDLOCAL /* MSG_INTL(MSG_SYM_UND_BNDLOCAL) */
820 };

822 /*
823 * Issue an undefined symbol message for the given symbol.
824 *
825 * entry:
826 * ofl - Output descriptor
827 * sdp - Undefined symbol to report
828 * type - Type of undefined symbol
829 * ofl_flag - One of 0, FLG_OF_FATAL, or FLG_OF_WARN.
830 * undef_state - Address of variable to be initialized to 0
831 * before the first call to sym_undef_entry, and passed
832 * to each subsequent call. A non-zero value for *undef_state
833 * indicates that this is not the first call in the series.
834 *
835 * exit:
836 * If *undef_state is 0, a title is issued.
837 *
838 * A message for the undefined symbol is issued.
839 *
840 * If ofl_flag is non-zero, its value is OR’d into *undef_state. Otherwise,
841 * all bits other than FLG_OF_FATAL and FLG_OF_WARN are set, in order to
842 * provide *undef_state with a non-zero value. These other bits have
843 * no meaning beyond that, and serve to ensure that *undef_state is
844 * non-zero if sym_undef_entry() has been called.
845 */
846 static void
847 sym_undef_entry(Ofl_desc *ofl, Sym_desc *sdp, Type type, ofl_flag_t ofl_flag,
848 ofl_flag_t *undef_state)
849 {
850 const char *name1, *name2, *name3;
851 Ifl_desc *ifl = sdp->sd_file;
852 Sym_aux *sap = sdp->sd_aux;

854 if (*undef_state == 0)
855 ld_eprintf(ofl, ERR_NONE, MSG_INTL(MSG_SYM_FMT_UNDEF),
856 MSG_INTL(MSG_SYM_UNDEF_ITM_11),
857 MSG_INTL(MSG_SYM_UNDEF_ITM_21),
858 MSG_INTL(MSG_SYM_UNDEF_ITM_12),
859 MSG_INTL(MSG_SYM_UNDEF_ITM_22));

new/usr/src/cmd/sgs/libld/common/syms.c 5

861 ofl->ofl_flags |= ofl_flag;
862 *undef_state |= ofl_flag ? ofl_flag : ~(FLG_OF_FATAL | FLG_OF_WARN);

864 switch (type) {
865 case UNDEF:
866 case BNDLOCAL:
867 name1 = sap->sa_rfile;
868 break;
869 case NOVERSION:
870 name1 = ifl->ifl_name;
871 break;
872 case IMPLICIT:
873 name1 = sap->sa_rfile;
874 name2 = ifl->ifl_name;
875 break;
876 case NOTAVAIL:
877 name1 = sap->sa_rfile;
878 name2 = sap->sa_vfile;
879 name3 = ifl->ifl_verndx[sap->sa_dverndx].vi_name;
880 break;
881 default:
882 return;
883 }

885 ld_eprintf(ofl, ERR_NONE, MSG_INTL(format[type]),
886 demangle(sdp->sd_name), name1, name2, name3);
887 }

889 /*
890 * If an undef symbol exists naming a bound for the output section,
891 * turn it into a defined symbol with the correct value.
892 *
893 * We set an arbitrary 1KB limit on the resulting symbol names.
894 */
895 static void
896 sym_add_bounds(Ofl_desc *ofl, Os_desc *osp, Word bound)
897 {
898 Sym_desc *bsdp;
899 char symn[1024];
900 size_t nsz;

902 switch (bound) {
903 case SDAUX_ID_SECBOUND_START:
904 nsz = snprintf(symn, sizeof (symn), "%s%s",
905 MSG_ORIG(MSG_SYM_SECBOUND_START), osp->os_name);
906 if (nsz >= sizeof (symn))
907 return;
908 break;
909 case SDAUX_ID_SECBOUND_STOP:
910 nsz = snprintf(symn, sizeof (symn), "%s%s",
911 MSG_ORIG(MSG_SYM_SECBOUND_STOP), osp->os_name);
912 if (nsz >= sizeof (symn))
913 return;
914 break;
915 default:
916 assert(0);
917 }

919 if ((bsdp = ld_sym_find(symn, SYM_NOHASH, NULL, ofl)) != NULL) {
920 if ((bsdp->sd_shndx != SHN_UNDEF) &&
921 (bsdp->sd_ref == REF_REL_NEED)) {
922 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_SYM_RESERVE),
923 symn, bsdp->sd_file->ifl_name);
924 return;
925 }

new/usr/src/cmd/sgs/libld/common/syms.c 6

927 DBG_CALL(Dbg_syms_updated(ofl, bsdp, symn));

929 bsdp->sd_aux->sa_symspec = bound;
930 bsdp->sd_aux->sa_boundsec = osp;
931 bsdp->sd_flags |= FLG_SY_SPECSEC;
932 bsdp->sd_ref = REF_REL_NEED;
933 bsdp->sd_sym->st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
934 bsdp->sd_sym->st_other = STV_PROTECTED;
935 bsdp->sd_isc = NULL;
936 bsdp->sd_sym->st_size = 0;
937 bsdp->sd_sym->st_value = 0;
938 bsdp->sd_shndx = bsdp->sd_sym->st_shndx = SHN_ABS;
939 }
940 }

942 static Boolean
943 is_cname(const char *name)
944 {
945 if (strlen(name) == strspn(name,
946 "abcdefghijklmnopqrstuvwxyz"
947 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
948 "0123456789"
949 "_"))
950 return (TRUE);
951 else
952 return (FALSE);
953 }

955 /*
956 #endif /* ! codereview */
957 * At this point all symbol input processing has been completed, therefore
958 * complete the symbol table entries by generating any necessary internal
959 * symbols.
960 */
961 uintptr_t
962 ld_sym_spec(Ofl_desc *ofl)
963 {
964 Sym_desc *sdp;
965 Sg_desc *sgp;
966 Aliste idx1;

968 DBG_CALL(Dbg_syms_spec_title(ofl->ofl_lml));

970 /*
971 * For each section in the output file, look for symbols named for the
972 * __start/__stop patterns. If references exist, flesh the symbols to
973 * be defined.
974 *
975 * The symbols are given values at the same time as the other special
976 * symbols.
977 */
978 if (!(ofl->ofl_flags & FLG_OF_RELOBJ) ||
979 (ofl->ofl_flags & FLG_OF_KMOD)) {
980 for (APLIST_TRAVERSE(ofl->ofl_segs, idx1, sgp)) {
981 Os_desc *osp;
982 Aliste idx2;

984 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {
985 if (is_cname(osp->os_name)) {
986 sym_add_bounds(ofl, osp,
987 SDAUX_ID_SECBOUND_START);
988 sym_add_bounds(ofl, osp,
989 SDAUX_ID_SECBOUND_STOP);
990 }
991 }
992 }

new/usr/src/cmd/sgs/libld/common/syms.c 7

993 }
994 #endif /* ! codereview */

996 if (ofl->ofl_flags & FLG_OF_RELOBJ)
997 return (1);

698 DBG_CALL(Dbg_syms_spec_title(ofl->ofl_lml));

999 if (sym_add_spec(MSG_ORIG(MSG_SYM_ETEXT), MSG_ORIG(MSG_SYM_ETEXT_U),
1000 SDAUX_ID_ETEXT, 0, (FLG_SY_DEFAULT | FLG_SY_EXPDEF),
1001 ofl) == S_ERROR)
1002 return (S_ERROR);
1003 if (sym_add_spec(MSG_ORIG(MSG_SYM_EDATA), MSG_ORIG(MSG_SYM_EDATA_U),
1004 SDAUX_ID_EDATA, 0, (FLG_SY_DEFAULT | FLG_SY_EXPDEF),
1005 ofl) == S_ERROR)
1006 return (S_ERROR);
1007 if (sym_add_spec(MSG_ORIG(MSG_SYM_END), MSG_ORIG(MSG_SYM_END_U),
1008 SDAUX_ID_END, FLG_SY_DYNSORT, (FLG_SY_DEFAULT | FLG_SY_EXPDEF),
1009 ofl) == S_ERROR)
1010 return (S_ERROR);
1011 if (sym_add_spec(MSG_ORIG(MSG_SYM_L_END), MSG_ORIG(MSG_SYM_L_END_U),
1012 SDAUX_ID_END, 0, FLG_SY_HIDDEN, ofl) == S_ERROR)
1013 return (S_ERROR);
1014 if (sym_add_spec(MSG_ORIG(MSG_SYM_L_START), MSG_ORIG(MSG_SYM_L_START_U),
1015 SDAUX_ID_START, 0, FLG_SY_HIDDEN, ofl) == S_ERROR)
1016 return (S_ERROR);

1018 /*
1019 * Historically we’ve always produced a _DYNAMIC symbol, even for
1020 * static executables (in which case its value will be 0).
1021 */
1022 if (sym_add_spec(MSG_ORIG(MSG_SYM_DYNAMIC), MSG_ORIG(MSG_SYM_DYNAMIC_U),
1023 SDAUX_ID_DYN, FLG_SY_DYNSORT, (FLG_SY_DEFAULT | FLG_SY_EXPDEF),
1024 ofl) == S_ERROR)
1025 return (S_ERROR);

1027 if (OFL_ALLOW_DYNSYM(ofl))
1028 if (sym_add_spec(MSG_ORIG(MSG_SYM_PLKTBL),
1029 MSG_ORIG(MSG_SYM_PLKTBL_U), SDAUX_ID_PLT,
1030 FLG_SY_DYNSORT, (FLG_SY_DEFAULT | FLG_SY_EXPDEF),
1031 ofl) == S_ERROR)
1032 return (S_ERROR);

1034 /*
1035 * A GOT reference will be accompanied by the associated GOT symbol.
1036 * Make sure it gets assigned the appropriate special attributes.
1037 */
1038 if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_GOFTBL_U),
1039 SYM_NOHASH, NULL, ofl)) != NULL) && (sdp->sd_ref != REF_DYN_SEEN)) {
1040 if (sym_add_spec(MSG_ORIG(MSG_SYM_GOFTBL),
1041 MSG_ORIG(MSG_SYM_GOFTBL_U), SDAUX_ID_GOT, FLG_SY_DYNSORT,
1042 (FLG_SY_DEFAULT | FLG_SY_EXPDEF), ofl) == S_ERROR)
1043 return (S_ERROR);
1044 }

1046 return (1);
1047 }
______unchanged_portion_omitted_

new/usr/src/cmd/sgs/libld/common/update.c 1

**
 118868 Sun Feb 24 19:19:13 2019
new/usr/src/cmd/sgs/libld/common/update.c
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
ld: implement -ztype and rework option parsing
**
______unchanged_portion_omitted_

132 /*
133 * Build and update any output symbol tables. Here we work on all the symbol
134 * tables at once to reduce the duplication of symbol and string manipulation.
135 * Symbols and their associated strings are copied from the read-only input
136 * file images to the output image and their values and index’s updated in the
137 * output image.
138 */
139 static Addr
140 update_osym(Ofl_desc *ofl)
141 {
142 /*
143 * There are several places in this function where we wish
144 * to insert a symbol index to the combined .SUNW_ldynsym/.dynsym
145 * symbol table into one of the two sort sections (.SUNW_dynsymsort
146 * or .SUNW_dyntlssort), if that symbol has the right attributes.
147 * This macro is used to generate the necessary code from a single
148 * specification.
149 *
150 * entry:
151 * _sdp, _sym, _type - As per DYNSORT_COUNT. See _libld.h
152 * _sym_ndx - Index that _sym will have in the combined
153 * .SUNW_ldynsym/.dynsym symbol table.
154 */
155 #define ADD_TO_DYNSORT(_sdp, _sym, _type, _sym_ndx) \
156 { \
157 Word *_dynsort_arr, *_dynsort_ndx; \
158 \
159 if (dynsymsort_symtype[_type]) { \
160 _dynsort_arr = dynsymsort; \
161 _dynsort_ndx = &dynsymsort_ndx; \
162 } else if (_type == STT_TLS) { \
163 _dynsort_arr = dyntlssort; \
164 _dynsort_ndx = &dyntlssort_ndx; \
165 } else { \
166 _dynsort_arr = NULL; \
167 } \
168 if ((_dynsort_arr != NULL) && DYNSORT_TEST_ATTR(_sdp, _sym)) \
169 _dynsort_arr[(*_dynsort_ndx)++] = _sym_ndx; \
170 }

172 Sym_desc *sdp;
173 Sym_avlnode *sav;
174 Sg_desc *sgp, *tsgp = NULL, *dsgp = NULL, *esgp = NULL;
175 Os_desc *osp, *iosp = NULL, *fosp = NULL;
176 Is_desc *isc;
177 Ifl_desc *ifl;
178 Word bssndx, etext_ndx, edata_ndx = 0, end_ndx, start_ndx;
179 Word end_abs = 0, etext_abs = 0, edata_abs;
180 Word tlsbssndx = 0, parexpnndx;
181 #if defined(_ELF64)
182 Word lbssndx = 0;
183 Addr lbssaddr = 0;
184 #endif
185 Addr bssaddr, etext = 0, edata = 0, end = 0, start = 0;
186 Addr tlsbssaddr = 0;
187 Addr parexpnbase, parexpnaddr;

new/usr/src/cmd/sgs/libld/common/update.c 2

188 int start_set = 0;
189 Sym _sym = {0}, *sym, *symtab = NULL;
190 Sym *dynsym = NULL, *ldynsym = NULL;
191 Word symtab_ndx = 0; /* index into .symtab */
192 Word symtab_gbl_bndx; /* .symtab ndx 1st global */
193 Word ldynsym_ndx = 0; /* index into .SUNW_ldynsym */
194 Word dynsym_ndx = 0; /* index into .dynsym */
195 Word scopesym_ndx = 0; /* index into scoped symbols */
196 Word scopesym_bndx = 0; /* .symtab ndx 1st scoped sym */
197 Word ldynscopesym_ndx = 0; /* index to ldynsym scoped */
198 /* symbols */
199 Word *dynsymsort = NULL; /* SUNW_dynsymsort index */
200 /* vector */
201 Word *dyntlssort = NULL; /* SUNW_dyntlssort index */
202 /* vector */
203 Word dynsymsort_ndx; /* index dynsymsort array */
204 Word dyntlssort_ndx; /* index dyntlssort array */
205 Word *symndx; /* symbol index (for */
206 /* relocation use) */
207 Word *symshndx = NULL; /* .symtab_shndx table */
208 Word *dynshndx = NULL; /* .dynsym_shndx table */
209 Word *ldynshndx = NULL; /* .SUNW_ldynsym_shndx table */
210 Word ldynsym_cnt = NULL; /* number of items in */
211 /* .SUNW_ldynsym */
212 Str_tbl *shstrtab;
213 Str_tbl *strtab;
214 Str_tbl *dynstr;
215 Word *hashtab; /* hash table pointer */
216 Word *hashbkt; /* hash table bucket pointer */
217 Word *hashchain; /* hash table chain pointer */
218 Wk_desc *wkp;
219 Alist *weak = NULL;
220 ofl_flag_t flags = ofl->ofl_flags;
221 Versym *versym;
222 Gottable *gottable; /* used for display got debugging */
223 /* information */
224 Syminfo *syminfo;
225 Sym_s_list *sorted_syms; /* table to hold sorted symbols */
226 Word ssndx; /* global index into sorted_syms */
227 Word scndx; /* scoped index into sorted_syms */
228 size_t stoff; /* string offset */
229 Aliste idx1;

231 /*
232 * Initialize pointers to the symbol table entries and the symbol
233 * table strings. Skip the first symbol entry and the first string
234 * table byte. Note that if we are not generating any output symbol
235 * tables we must still generate and update internal copies so
236 * that the relocation phase has the correct information.
237 */
238 if (!(flags & FLG_OF_STRIP) || (flags & FLG_OF_RELOBJ) ||
239 ((flags & FLG_OF_STATIC) && ofl->ofl_osversym)) {
240 symtab = (Sym *)ofl->ofl_ossymtab->os_outdata->d_buf;
241 symtab[symtab_ndx++] = _sym;
242 if (ofl->ofl_ossymshndx)
243 symshndx =
244 (Word *)ofl->ofl_ossymshndx->os_outdata->d_buf;
245 }
246 if (OFL_ALLOW_DYNSYM(ofl)) {
247 dynsym = (Sym *)ofl->ofl_osdynsym->os_outdata->d_buf;
248 dynsym[dynsym_ndx++] = _sym;
249 /*
250 * If we are also constructing a .SUNW_ldynsym section
251 * to contain local function symbols, then set it up too.
252 */
253 if (ofl->ofl_osldynsym) {

new/usr/src/cmd/sgs/libld/common/update.c 3

254 ldynsym = (Sym *)ofl->ofl_osldynsym->os_outdata->d_buf;
255 ldynsym[ldynsym_ndx++] = _sym;
256 ldynsym_cnt = 1 + ofl->ofl_dynlocscnt +
257 ofl->ofl_dynscopecnt;

259 /*
260 * If there is a SUNW_ldynsym, then there may also
261 * be a .SUNW_dynsymsort and/or .SUNW_dyntlssort
262 * sections, used to collect indices of function
263 * and data symbols sorted by address order.
264 */
265 if (ofl->ofl_osdynsymsort) { /* .SUNW_dynsymsort */
266 dynsymsort = (Word *)
267 ofl->ofl_osdynsymsort->os_outdata->d_buf;
268 dynsymsort_ndx = 0;
269 }
270 if (ofl->ofl_osdyntlssort) { /* .SUNW_dyntlssort */
271 dyntlssort = (Word *)
272 ofl->ofl_osdyntlssort->os_outdata->d_buf;
273 dyntlssort_ndx = 0;
274 }
275 }

277 /*
278 * Initialize the hash table.
279 */
280 hashtab = (Word *)(ofl->ofl_oshash->os_outdata->d_buf);
281 hashbkt = &hashtab[2];
282 hashchain = &hashtab[2 + ofl->ofl_hashbkts];
283 hashtab[0] = ofl->ofl_hashbkts;
284 hashtab[1] = DYNSYM_ALL_CNT(ofl);
285 if (ofl->ofl_osdynshndx)
286 dynshndx =
287 (Word *)ofl->ofl_osdynshndx->os_outdata->d_buf;
288 if (ofl->ofl_osldynshndx)
289 ldynshndx =
290 (Word *)ofl->ofl_osldynshndx->os_outdata->d_buf;
291 }

293 /*
294 * symndx is the symbol index to be used for relocation processing. It
295 * points to the relevant symtab’s (.dynsym or .symtab) symbol ndx.
296 */
297 if (dynsym)
298 symndx = &dynsym_ndx;
299 else
300 symndx = &symtab_ndx;

302 /*
303 * If we have version definitions initialize the version symbol index
304 * table. There is one entry for each symbol which contains the symbols
305 * version index.
306 */
307 if (!(flags & FLG_OF_NOVERSEC) &&
308 (flags & (FLG_OF_VERNEED | FLG_OF_VERDEF))) {
309 versym = (Versym *)ofl->ofl_osversym->os_outdata->d_buf;
310 versym[0] = NULL;
311 } else
312 versym = NULL;

314 /*
315 * If syminfo section exists be prepared to fill it in.
316 */
317 if (ofl->ofl_ossyminfo) {
318 syminfo = ofl->ofl_ossyminfo->os_outdata->d_buf;
319 syminfo[0].si_flags = SYMINFO_CURRENT;

new/usr/src/cmd/sgs/libld/common/update.c 4

320 } else
321 syminfo = NULL;

323 /*
324 * Setup our string tables.
325 */
326 shstrtab = ofl->ofl_shdrsttab;
327 strtab = ofl->ofl_strtab;
328 dynstr = ofl->ofl_dynstrtab;

330 DBG_CALL(Dbg_syms_sec_title(ofl->ofl_lml));

332 /*
333 * Put output file name to the first .symtab and .SUNW_ldynsym symbol.
334 */
335 if (symtab) {
336 (void) st_setstring(strtab, ofl->ofl_name, &stoff);
337 sym = &symtab[symtab_ndx++];
338 /* LINTED */
339 sym->st_name = stoff;
340 sym->st_value = 0;
341 sym->st_size = 0;
342 sym->st_info = ELF_ST_INFO(STB_LOCAL, STT_FILE);
343 sym->st_other = 0;
344 sym->st_shndx = SHN_ABS;

346 if (versym && !dynsym)
347 versym[1] = 0;
348 }
349 if (ldynsym) {
350 (void) st_setstring(dynstr, ofl->ofl_name, &stoff);
351 sym = &ldynsym[ldynsym_ndx];
352 /* LINTED */
353 sym->st_name = stoff;
354 sym->st_value = 0;
355 sym->st_size = 0;
356 sym->st_info = ELF_ST_INFO(STB_LOCAL, STT_FILE);
357 sym->st_other = 0;
358 sym->st_shndx = SHN_ABS;

360 /* Scoped symbols get filled in global loop below */
361 ldynscopesym_ndx = ldynsym_ndx + 1;
362 ldynsym_ndx += ofl->ofl_dynscopecnt;
363 }

365 /*
366 * If we are to display GOT summary information, then allocate
367 * the buffer to ’cache’ the GOT symbols into now.
368 */
369 if (DBG_ENABLED) {
370 if ((ofl->ofl_gottable = gottable =
371 libld_calloc(ofl->ofl_gotcnt, sizeof (Gottable))) == NULL)
372 return ((Addr)S_ERROR);
373 }

375 /*
376 * Traverse the program headers. Determine the last executable segment
377 * and the last data segment so that we can update etext and edata. If
378 * we have empty segments (reservations) record them for setting _end.
379 */
380 for (APLIST_TRAVERSE(ofl->ofl_segs, idx1, sgp)) {
381 Phdr *phd = &(sgp->sg_phdr);
382 Os_desc *osp;
383 Aliste idx2;

385 if (phd->p_type == PT_LOAD) {

new/usr/src/cmd/sgs/libld/common/update.c 5

386 if (sgp->sg_osdescs != NULL) {
387 Word _flags = phd->p_flags & (PF_W | PF_R);

389 if (_flags == PF_R)
390 tsgp = sgp;
391 else if (_flags == (PF_W | PF_R))
392 dsgp = sgp;
393 } else if (sgp->sg_flags & FLG_SG_EMPTY)
394 esgp = sgp;
395 }

397 /*
398 * Generate a section symbol for each output section.
399 */
400 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {
401 Word sectndx;

403 sym = &_sym;
404 sym->st_value = osp->os_shdr->sh_addr;
405 sym->st_info = ELF_ST_INFO(STB_LOCAL, STT_SECTION);
406 /* LINTED */
407 sectndx = elf_ndxscn(osp->os_scn);

409 if (symtab) {
410 if (sectndx >= SHN_LORESERVE) {
411 symshndx[symtab_ndx] = sectndx;
412 sym->st_shndx = SHN_XINDEX;
413 } else {
414 /* LINTED */
415 sym->st_shndx = (Half)sectndx;
416 }
417 symtab[symtab_ndx++] = *sym;
418 }

420 if (dynsym && (osp->os_flags & FLG_OS_OUTREL))
421 dynsym[dynsym_ndx++] = *sym;

423 if ((dynsym == NULL) ||
424 (osp->os_flags & FLG_OS_OUTREL)) {
425 if (versym)
426 versym[*symndx - 1] = 0;
427 osp->os_identndx = *symndx - 1;
428 DBG_CALL(Dbg_syms_sec_entry(ofl->ofl_lml,
429 osp->os_identndx, sgp, osp));
430 }

432 /*
433 * Generate the .shstrtab for this section.
434 */
435 (void) st_setstring(shstrtab, osp->os_name, &stoff);
436 osp->os_shdr->sh_name = (Word)stoff;

438 /*
439 * Find the section index for our special symbols.
440 */
441 if (sgp == tsgp) {
442 /* LINTED */
443 etext_ndx = elf_ndxscn(osp->os_scn);
444 } else if (dsgp == sgp) {
445 if (osp->os_shdr->sh_type != SHT_NOBITS) {
446 /* LINTED */
447 edata_ndx = elf_ndxscn(osp->os_scn);
448 }
449 }

451 if (start_set == 0) {

new/usr/src/cmd/sgs/libld/common/update.c 6

452 start = sgp->sg_phdr.p_vaddr;
453 /* LINTED */
454 start_ndx = elf_ndxscn(osp->os_scn);
455 start_set++;
456 }

458 /*
459 * While we’re here, determine whether a .init or .fini
460 * section exist.
461 */
462 if ((iosp == NULL) && (strcmp(osp->os_name,
463 MSG_ORIG(MSG_SCN_INIT)) == 0))
464 iosp = osp;
465 if ((fosp == NULL) && (strcmp(osp->os_name,
466 MSG_ORIG(MSG_SCN_FINI)) == 0))
467 fosp = osp;
468 }
469 }

471 /*
472 * Add local register symbols to the .dynsym. These are required as
473 * DT_REGISTER .dynamic entries must have a symbol to reference.
474 */
475 if (ofl->ofl_regsyms && dynsym) {
476 int ndx;

478 for (ndx = 0; ndx < ofl->ofl_regsymsno; ndx++) {
479 Sym_desc *rsdp;

481 if ((rsdp = ofl->ofl_regsyms[ndx]) == NULL)
482 continue;

484 if (!SYM_IS_HIDDEN(rsdp) &&
485 (ELF_ST_BIND(rsdp->sd_sym->st_info) != STB_LOCAL))
486 continue;

488 dynsym[dynsym_ndx] = *(rsdp->sd_sym);
489 rsdp->sd_symndx = *symndx;

491 if (dynsym[dynsym_ndx].st_name) {
492 (void) st_setstring(dynstr, rsdp->sd_name,
493 &stoff);
494 dynsym[dynsym_ndx].st_name = stoff;
495 }
496 dynsym_ndx++;
497 }
498 }

500 /*
501 * Having traversed all the output segments, warn the user if the
502 * traditional text or data segments don’t exist. Otherwise from these
503 * segments establish the values for ‘etext’, ‘edata’, ‘end’, ‘END’,
504 * and ‘START’.
505 */
506 if (!(flags & FLG_OF_RELOBJ)) {
507 Sg_desc *sgp;

509 if (tsgp)
510 etext = tsgp->sg_phdr.p_vaddr + tsgp->sg_phdr.p_filesz;
511 else {
512 etext = (Addr)0;
513 etext_ndx = SHN_ABS;
514 etext_abs = 1;
515 if (flags & FLG_OF_VERBOSE)
516 ld_eprintf(ofl, ERR_WARNING,
517 MSG_INTL(MSG_UPD_NOREADSEG));

new/usr/src/cmd/sgs/libld/common/update.c 7

518 }
519 if (dsgp) {
520 edata = dsgp->sg_phdr.p_vaddr + dsgp->sg_phdr.p_filesz;
521 } else {
522 edata = (Addr)0;
523 edata_ndx = SHN_ABS;
524 edata_abs = 1;
525 if (flags & FLG_OF_VERBOSE)
526 ld_eprintf(ofl, ERR_WARNING,
527 MSG_INTL(MSG_UPD_NORDWRSEG));
528 }

530 if (dsgp == NULL) {
531 if (tsgp)
532 sgp = tsgp;
533 else
534 sgp = 0;
535 } else if (tsgp == NULL)
536 sgp = dsgp;
537 else if (dsgp->sg_phdr.p_vaddr > tsgp->sg_phdr.p_vaddr)
538 sgp = dsgp;
539 else if (dsgp->sg_phdr.p_vaddr < tsgp->sg_phdr.p_vaddr)
540 sgp = tsgp;
541 else {
542 /*
543 * One of the segments must be of zero size.
544 */
545 if (tsgp->sg_phdr.p_memsz)
546 sgp = tsgp;
547 else
548 sgp = dsgp;
549 }

551 if (esgp && (esgp->sg_phdr.p_vaddr > sgp->sg_phdr.p_vaddr))
552 sgp = esgp;

554 if (sgp) {
555 end = sgp->sg_phdr.p_vaddr + sgp->sg_phdr.p_memsz;

557 /*
558 * If the last loadable segment is a read-only segment,
559 * then the application which uses the symbol _end to
560 * find the beginning of writable heap area may cause
561 * segmentation violation. We adjust the value of the
562 * _end to skip to the next page boundary.
563 *
564 * 6401812 System interface which returs beginning
565 * heap would be nice.
566 * When the above RFE is implemented, the changes below
567 * could be changed in a better way.
568 */
569 if ((sgp->sg_phdr.p_flags & PF_W) == 0)
570 end = (Addr)S_ROUND(end, sysconf(_SC_PAGESIZE));

572 /*
573 * If we’re dealing with a memory reservation there are
574 * no sections to establish an index for _end, so assign
575 * it as an absolute.
576 */
577 if (sgp->sg_osdescs != NULL) {
578 /*
579 * Determine the last section for this segment.
580 */
581 Os_desc *osp = sgp->sg_osdescs->apl_data
582 [sgp->sg_osdescs->apl_nitems - 1];

new/usr/src/cmd/sgs/libld/common/update.c 8

584 /* LINTED */
585 end_ndx = elf_ndxscn(osp->os_scn);
586 } else {
587 end_ndx = SHN_ABS;
588 end_abs = 1;
589 }
590 } else {
591 end = (Addr) 0;
592 end_ndx = SHN_ABS;
593 end_abs = 1;
594 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_UPD_NOSEG));
595 }
596 }

598 /*
599 * Initialize the scoped symbol table entry point. This is for all
600 * the global symbols that have been scoped to locals and will be
601 * filled in during global symbol processing so that we don’t have
602 * to traverse the globals symbol hash array more than once.
603 */
604 if (symtab) {
605 scopesym_bndx = symtab_ndx;
606 scopesym_ndx = scopesym_bndx;
607 symtab_ndx += ofl->ofl_scopecnt;
608 }

610 /*
611 * If expanding partially expanded symbols under ’-z nopartial’,
612 * prepare to do that.
613 */
614 if (ofl->ofl_isparexpn) {
615 osp = ofl->ofl_isparexpn->is_osdesc;
616 parexpnbase = parexpnaddr = (Addr)(osp->os_shdr->sh_addr +
617 ofl->ofl_isparexpn->is_indata->d_off);
618 /* LINTED */
619 parexpnndx = elf_ndxscn(osp->os_scn);
620 ofl->ofl_parexpnndx = osp->os_identndx;
621 }

623 /*
624 * If we are generating a .symtab collect all the local symbols,
625 * assigning a new virtual address or displacement (value).
626 */
627 for (APLIST_TRAVERSE(ofl->ofl_objs, idx1, ifl)) {
628 Xword lndx, local = ifl->ifl_locscnt;
629 Cap_desc *cdp = ifl->ifl_caps;

631 for (lndx = 1; lndx < local; lndx++) {
632 Gotndx *gnp;
633 uchar_t type;
634 Word *_symshndx;
635 int enter_in_symtab, enter_in_ldynsym;
636 int update_done;

638 sdp = ifl->ifl_oldndx[lndx];
639 sym = sdp->sd_sym;

641 /*
642 * Assign a got offset if necessary.
643 */
644 if ((ld_targ.t_mr.mr_assign_got != NULL) &&
645 (*ld_targ.t_mr.mr_assign_got)(ofl, sdp) == S_ERROR)
646 return ((Addr)S_ERROR);

648 if (DBG_ENABLED) {
649 Aliste idx2;

new/usr/src/cmd/sgs/libld/common/update.c 9

651 for (ALIST_TRAVERSE(sdp->sd_GOTndxs,
652 idx2, gnp)) {
653 gottable->gt_sym = sdp;
654 gottable->gt_gndx.gn_gotndx =
655 gnp->gn_gotndx;
656 gottable->gt_gndx.gn_addend =
657 gnp->gn_addend;
658 gottable++;
659 }
660 }

662 if ((type = ELF_ST_TYPE(sym->st_info)) == STT_SECTION)
663 continue;

665 /*
666 * Ignore any symbols that have been marked as invalid
667 * during input processing. Providing these aren’t used
668 * for relocation they’ll just be dropped from the
669 * output image.
670 */
671 if (sdp->sd_flags & FLG_SY_INVALID)
672 continue;

674 /*
675 * If the section that this symbol was associated
676 * with has been discarded - then we discard
677 * the local symbol along with it.
678 */
679 if (sdp->sd_flags & FLG_SY_ISDISC)
680 continue;

682 /*
683 * If this symbol is from a different file
684 * than the input descriptor we are processing,
685 * treat it as if it has FLG_SY_ISDISC set.
686 * This happens when sloppy_comdat_reloc()
687 * replaces a symbol to a discarded comdat section
688 * with an equivalent symbol from a different
689 * file. We only want to enter such a symbol
690 * once --- as part of the file that actually
691 * supplies it.
692 */
693 if (ifl != sdp->sd_file)
694 continue;

696 /*
697 * Generate an output symbol to represent this input
698 * symbol. Even if the symbol table is to be stripped
699 * we still need to update any local symbols that are
700 * used during relocation.
701 */
702 enter_in_symtab = symtab &&
703 (!(ofl->ofl_flags & FLG_OF_REDLSYM) ||
704 sdp->sd_move);
705 enter_in_ldynsym = ldynsym && sdp->sd_name &&
706 ldynsym_symtype[type] &&
707 !(ofl->ofl_flags & FLG_OF_REDLSYM);
708 _symshndx = NULL;

710 if (enter_in_symtab) {
711 if (!dynsym)
712 sdp->sd_symndx = *symndx;
713 symtab[symtab_ndx] = *sym;

715 /*

new/usr/src/cmd/sgs/libld/common/update.c 10

716 * Provided this isn’t an unnamed register
717 * symbol, update its name.
718 */
719 if (((sdp->sd_flags & FLG_SY_REGSYM) == 0) ||
720 symtab[symtab_ndx].st_name) {
721 (void) st_setstring(strtab,
722 sdp->sd_name, &stoff);
723 symtab[symtab_ndx].st_name = stoff;
724 }
725 sdp->sd_flags &= ~FLG_SY_CLEAN;
726 if (symshndx)
727 _symshndx = &symshndx[symtab_ndx];
728 sdp->sd_sym = sym = &symtab[symtab_ndx++];

730 if ((sdp->sd_flags & FLG_SY_SPECSEC) &&
731 (sym->st_shndx == SHN_ABS) &&
732 !enter_in_ldynsym)
733 continue;
734 } else if (enter_in_ldynsym) {
735 /*
736 * Not using symtab, but we do have ldynsym
737 * available.
738 */
739 ldynsym[ldynsym_ndx] = *sym;
740 (void) st_setstring(dynstr, sdp->sd_name,
741 &stoff);
742 ldynsym[ldynsym_ndx].st_name = stoff;

744 sdp->sd_flags &= ~FLG_SY_CLEAN;
745 if (ldynshndx)
746 _symshndx = &ldynshndx[ldynsym_ndx];
747 sdp->sd_sym = sym = &ldynsym[ldynsym_ndx];
748 /* Add it to sort section if it qualifies */
749 ADD_TO_DYNSORT(sdp, sym, type, ldynsym_ndx);
750 ldynsym_ndx++;
751 } else { /* Not using symtab or ldynsym */
752 /*
753 * If this symbol requires modifying to provide
754 * for a relocation or move table update, make
755 * a copy of it.
756 */
757 if (!(sdp->sd_flags & FLG_SY_UPREQD) &&
758 !(sdp->sd_move))
759 continue;
760 if ((sdp->sd_flags & FLG_SY_SPECSEC) &&
761 (sym->st_shndx == SHN_ABS))
762 continue;

764 if (ld_sym_copy(sdp) == S_ERROR)
765 return ((Addr)S_ERROR);
766 sym = sdp->sd_sym;
767 }

769 /*
770 * Update the symbols contents if necessary.
771 */
772 update_done = 0;
773 if (type == STT_FILE) {
774 sdp->sd_shndx = sym->st_shndx = SHN_ABS;
775 sdp->sd_flags |= FLG_SY_SPECSEC;
776 update_done = 1;
777 }

779 /*
780 * If we are expanding the locally bound partially
781 * initialized symbols, then update the address here.

new/usr/src/cmd/sgs/libld/common/update.c 11

782 */
783 if (ofl->ofl_isparexpn &&
784 (sdp->sd_flags & FLG_SY_PAREXPN) && !update_done) {
785 sym->st_shndx = parexpnndx;
786 sdp->sd_isc = ofl->ofl_isparexpn;
787 sym->st_value = parexpnaddr;
788 parexpnaddr += sym->st_size;
789 if ((flags & FLG_OF_RELOBJ) == 0)
790 sym->st_value -= parexpnbase;
791 }

793 /*
794 * If this isn’t an UNDEF symbol (ie. an input section
795 * is associated), update the symbols value and index.
796 */
797 if (((isc = sdp->sd_isc) != NULL) && !update_done) {
798 Word sectndx;

800 osp = isc->is_osdesc;
801 /* LINTED */
802 sym->st_value +=
803 (Off)_elf_getxoff(isc->is_indata);
804 if ((flags & FLG_OF_RELOBJ) == 0) {
805 sym->st_value += osp->os_shdr->sh_addr;
806 /*
807 * TLS symbols are relative to
808 * the TLS segment.
809 */
810 if ((type == STT_TLS) &&
811 (ofl->ofl_tlsphdr)) {
812 sym->st_value -=
813 ofl->ofl_tlsphdr->p_vaddr;
814 }
815 }
816 /* LINTED */
817 if ((sdp->sd_shndx = sectndx =
818 elf_ndxscn(osp->os_scn)) >= SHN_LORESERVE) {
819 if (_symshndx) {
820 *_symshndx = sectndx;
821 }
822 sym->st_shndx = SHN_XINDEX;
823 } else {
824 /* LINTED */
825 sym->st_shndx = sectndx;
826 }
827 }

829 /*
830 * If entering the symbol in both the symtab and the
831 * ldynsym, then the one in symtab needs to be
832 * copied to ldynsym. If it is only in the ldynsym,
833 * then the code above already set it up and we have
834 * nothing more to do here.
835 */
836 if (enter_in_symtab && enter_in_ldynsym) {
837 ldynsym[ldynsym_ndx] = *sym;
838 (void) st_setstring(dynstr, sdp->sd_name,
839 &stoff);
840 ldynsym[ldynsym_ndx].st_name = stoff;

842 if (_symshndx && ldynshndx)
843 ldynshndx[ldynsym_ndx] = *_symshndx;

845 /* Add it to sort section if it qualifies */
846 ADD_TO_DYNSORT(sdp, sym, type, ldynsym_ndx);

new/usr/src/cmd/sgs/libld/common/update.c 12

848 ldynsym_ndx++;
849 }
850 }

852 /*
853 * If this input file has undergone object to symbol
854 * capabilities conversion, supply any new capabilities symbols.
855 * These symbols are copies of the original global symbols, and
856 * follow the existing local symbols that are supplied from this
857 * input file (which are identified with a preceding STT_FILE).
858 */
859 if (symtab && cdp && cdp->ca_syms) {
860 Aliste idx2;
861 Cap_sym *csp;

863 for (APLIST_TRAVERSE(cdp->ca_syms, idx2, csp)) {
864 Is_desc *isp;

866 sdp = csp->cs_sdp;
867 sym = sdp->sd_sym;

869 if ((isp = sdp->sd_isc) != NULL) {
870 Os_desc *osp = isp->is_osdesc;

872 /*
873 * Update the symbols value.
874 */
875 /* LINTED */
876 sym->st_value +=
877 (Off)_elf_getxoff(isp->is_indata);
878 if ((flags & FLG_OF_RELOBJ) == 0)
879 sym->st_value +=
880 osp->os_shdr->sh_addr;

882 /*
883 * Update the symbols section index.
884 */
885 sdp->sd_shndx = sym->st_shndx =
886 elf_ndxscn(osp->os_scn);
887 }

889 symtab[symtab_ndx] = *sym;
890 (void) st_setstring(strtab, sdp->sd_name,
891 &stoff);
892 symtab[symtab_ndx].st_name = stoff;
893 sdp->sd_symndx = symtab_ndx++;
894 }
895 }
896 }

898 symtab_gbl_bndx = symtab_ndx; /* .symtab index of 1st global entry */

900 /*
901 * Two special symbols are ‘_init’ and ‘_fini’. If these are supplied
902 * by crti.o then they are used to represent the total concatenation of
903 * the ‘.init’ and ‘.fini’ sections.
904 *
905 * Determine whether any .init or .fini sections exist. If these
906 * sections exist and a dynamic object is being built, but no ‘_init’
907 * or ‘_fini’ symbols are found, then the user is probably building
908 * this object directly from ld(1) rather than using a compiler driver
909 * that provides the symbols via crt’s.
910 *
911 * If the .init or .fini section exist, and their associated symbols,
912 * determine the size of the sections and updated the symbols value
913 * accordingly.

new/usr/src/cmd/sgs/libld/common/update.c 13

914 */
915 if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_INIT_U), SYM_NOHASH, 0,
916 ofl)) != NULL) && (sdp->sd_ref == REF_REL_NEED) && sdp->sd_isc &&
917 (sdp->sd_isc->is_osdesc == iosp)) {
918 if (ld_sym_copy(sdp) == S_ERROR)
919 return ((Addr)S_ERROR);
920 sdp->sd_sym->st_size = sdp->sd_isc->is_osdesc->os_shdr->sh_size;

922 } else if (iosp && !(flags & FLG_OF_RELOBJ)) {
923 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_SYM_NOCRT),
924 MSG_ORIG(MSG_SYM_INIT_U), MSG_ORIG(MSG_SCN_INIT));
925 }

927 if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_FINI_U), SYM_NOHASH, 0,
928 ofl)) != NULL) && (sdp->sd_ref == REF_REL_NEED) && sdp->sd_isc &&
929 (sdp->sd_isc->is_osdesc == fosp)) {
930 if (ld_sym_copy(sdp) == S_ERROR)
931 return ((Addr)S_ERROR);
932 sdp->sd_sym->st_size = sdp->sd_isc->is_osdesc->os_shdr->sh_size;

934 } else if (fosp && !(flags & FLG_OF_RELOBJ)) {
935 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_SYM_NOCRT),
936 MSG_ORIG(MSG_SYM_FINI_U), MSG_ORIG(MSG_SCN_FINI));
937 }

939 /*
940 * Assign .bss information for use with updating COMMON symbols.
941 */
942 if (ofl->ofl_isbss) {
943 isc = ofl->ofl_isbss;
944 osp = isc->is_osdesc;

946 bssaddr = osp->os_shdr->sh_addr +
947 (Off)_elf_getxoff(isc->is_indata);
948 /* LINTED */
949 bssndx = elf_ndxscn(osp->os_scn);
950 }

952 #if defined(_ELF64)
953 /*
954 * For amd64 target, assign .lbss information for use
955 * with updating LCOMMON symbols.
956 */
957 if ((ld_targ.t_m.m_mach == EM_AMD64) && ofl->ofl_islbss) {
958 osp = ofl->ofl_islbss->is_osdesc;

960 lbssaddr = osp->os_shdr->sh_addr +
961 (Off)_elf_getxoff(ofl->ofl_islbss->is_indata);
962 /* LINTED */
963 lbssndx = elf_ndxscn(osp->os_scn);
964 }
965 #endif
966 /*
967 * Assign .tlsbss information for use with updating COMMON symbols.
968 */
969 if (ofl->ofl_istlsbss) {
970 osp = ofl->ofl_istlsbss->is_osdesc;
971 tlsbssaddr = osp->os_shdr->sh_addr +
972 (Off)_elf_getxoff(ofl->ofl_istlsbss->is_indata);
973 /* LINTED */
974 tlsbssndx = elf_ndxscn(osp->os_scn);
975 }

977 if ((sorted_syms = libld_calloc(ofl->ofl_globcnt +
978 ofl->ofl_elimcnt + ofl->ofl_scopecnt,
979 sizeof (*sorted_syms))) == NULL)

new/usr/src/cmd/sgs/libld/common/update.c 14

980 return ((Addr)S_ERROR);

982 scndx = 0;
983 ssndx = ofl->ofl_scopecnt + ofl->ofl_elimcnt;

985 DBG_CALL(Dbg_syms_up_title(ofl->ofl_lml));

987 /*
988 * Traverse the internal symbol table updating global symbol information
989 * and allocating common.
990 */
991 for (sav = avl_first(&ofl->ofl_symavl); sav;
992 sav = AVL_NEXT(&ofl->ofl_symavl, sav)) {
993 Sym *symptr;
994 int local;
995 int restore;

997 sdp = sav->sav_sdp;

999 /*
1000 * Ignore any symbols that have been marked as invalid during
1001 * input processing. Providing these aren’t used for
1002 * relocation, they will be dropped from the output image.
1003 */
1004 if (sdp->sd_flags & FLG_SY_INVALID) {
1005 DBG_CALL(Dbg_syms_old(ofl, sdp));
1006 DBG_CALL(Dbg_syms_ignore(ofl, sdp));
1007 continue;
1008 }

1010 /*
1011 * Only needed symbols are copied to the output symbol table.
1012 */
1013 if (sdp->sd_ref == REF_DYN_SEEN)
1014 continue;

1016 if (SYM_IS_HIDDEN(sdp) && (flags & FLG_OF_PROCRED))
1017 local = 1;
1018 else
1019 local = 0;

1021 if (local || (ofl->ofl_hashbkts == 0)) {
1022 sorted_syms[scndx++].sl_sdp = sdp;
1023 } else {
1024 sorted_syms[ssndx].sl_hval = sdp->sd_aux->sa_hash %
1025 ofl->ofl_hashbkts;
1026 sorted_syms[ssndx].sl_sdp = sdp;
1027 ssndx++;
1028 }

1030 /*
1031 * Note - expand the COMMON symbols here because an address
1032 * must be assigned to them in the same order that space was
1033 * calculated in sym_validate(). If this ordering isn’t
1034 * followed differing alignment requirements can throw us all
1035 * out of whack.
1036 *
1037 * The expanded .bss global symbol is handled here as well.
1038 *
1039 * The actual adding entries into the symbol table still occurs
1040 * below in hashbucket order.
1041 */
1042 symptr = sdp->sd_sym;
1043 restore = 0;
1044 if ((sdp->sd_flags & FLG_SY_PAREXPN) ||
1045 ((sdp->sd_flags & FLG_SY_SPECSEC) &&

new/usr/src/cmd/sgs/libld/common/update.c 15

1046 (sdp->sd_shndx = symptr->st_shndx) == SHN_COMMON)) {

1048 /*
1049 * An expanded symbol goes to a special .data section
1050 * prepared for that purpose (ofl->ofl_isparexpn).
1051 * Assign COMMON allocations to .bss.
1052 * Otherwise leave it as is.
1053 */
1054 if (sdp->sd_flags & FLG_SY_PAREXPN) {
1055 restore = 1;
1056 sdp->sd_shndx = parexpnndx;
1057 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1058 symptr->st_value = (Xword) S_ROUND(
1059 parexpnaddr, symptr->st_value);
1060 parexpnaddr = symptr->st_value +
1061 symptr->st_size;
1062 sdp->sd_isc = ofl->ofl_isparexpn;
1063 sdp->sd_flags |= FLG_SY_COMMEXP;

1065 } else if (ELF_ST_TYPE(symptr->st_info) != STT_TLS &&
1066 (local || !(flags & FLG_OF_RELOBJ))) {
1067 restore = 1;
1068 sdp->sd_shndx = bssndx;
1069 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1070 symptr->st_value = (Xword)S_ROUND(bssaddr,
1071 symptr->st_value);
1072 bssaddr = symptr->st_value + symptr->st_size;
1073 sdp->sd_isc = ofl->ofl_isbss;
1074 sdp->sd_flags |= FLG_SY_COMMEXP;

1076 } else if (ELF_ST_TYPE(symptr->st_info) == STT_TLS &&
1077 (local || !(flags & FLG_OF_RELOBJ))) {
1078 restore = 1;
1079 sdp->sd_shndx = tlsbssndx;
1080 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1081 symptr->st_value = (Xword)S_ROUND(tlsbssaddr,
1082 symptr->st_value);
1083 tlsbssaddr = symptr->st_value + symptr->st_size;
1084 sdp->sd_isc = ofl->ofl_istlsbss;
1085 sdp->sd_flags |= FLG_SY_COMMEXP;
1086 /*
1087 * TLS symbols are relative to the TLS segment.
1088 */
1089 symptr->st_value -= ofl->ofl_tlsphdr->p_vaddr;
1090 }
1091 #if defined(_ELF64)
1092 } else if ((ld_targ.t_m.m_mach == EM_AMD64) &&
1093 (sdp->sd_flags & FLG_SY_SPECSEC) &&
1094 ((sdp->sd_shndx = symptr->st_shndx) ==
1095 SHN_X86_64_LCOMMON) &&
1096 ((local || !(flags & FLG_OF_RELOBJ)))) {
1097 restore = 1;
1098 sdp->sd_shndx = lbssndx;
1099 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1100 symptr->st_value = (Xword)S_ROUND(lbssaddr,
1101 symptr->st_value);
1102 lbssaddr = symptr->st_value + symptr->st_size;
1103 sdp->sd_isc = ofl->ofl_islbss;
1104 sdp->sd_flags |= FLG_SY_COMMEXP;
1105 #endif
1106 }

1108 if (restore != 0) {
1109 uchar_t type, bind;

1111 /*

new/usr/src/cmd/sgs/libld/common/update.c 16

1112 * Make sure this COMMON symbol is returned to the same
1113 * binding as was defined in the original relocatable
1114 * object reference.
1115 */
1116 type = ELF_ST_TYPE(symptr->st_info);
1117 if (sdp->sd_flags & FLG_SY_GLOBREF)
1118 bind = STB_GLOBAL;
1119 else
1120 bind = STB_WEAK;

1122 symptr->st_info = ELF_ST_INFO(bind, type);
1123 }
1124 }

1126 /*
1127 * If this is a dynamic object then add any local capabilities symbols.
1128 */
1129 if (dynsym && ofl->ofl_capfamilies) {
1130 Cap_avlnode *cav;

1132 for (cav = avl_first(ofl->ofl_capfamilies); cav;
1133 cav = AVL_NEXT(ofl->ofl_capfamilies, cav)) {
1134 Cap_sym *csp;
1135 Aliste idx;

1137 for (APLIST_TRAVERSE(cav->cn_members, idx, csp)) {
1138 sdp = csp->cs_sdp;

1140 DBG_CALL(Dbg_syms_created(ofl->ofl_lml,
1141 sdp->sd_name));
1142 DBG_CALL(Dbg_syms_entered(ofl, sdp->sd_sym,
1143 sdp));

1145 dynsym[dynsym_ndx] = *sdp->sd_sym;

1147 (void) st_setstring(dynstr, sdp->sd_name,
1148 &stoff);
1149 dynsym[dynsym_ndx].st_name = stoff;

1151 sdp->sd_sym = &dynsym[dynsym_ndx];
1152 sdp->sd_symndx = dynsym_ndx;

1154 /*
1155 * Indicate that this is a capabilities symbol.
1156 * Note, that this identification only provides
1157 * information regarding the symbol that is
1158 * visible from elfdump(1) -y. The association
1159 * of a symbol to its capabilities is derived
1160 * from a .SUNW_capinfo entry.
1161 */
1162 if (syminfo) {
1163 syminfo[dynsym_ndx].si_flags |=
1164 SYMINFO_FLG_CAP;
1165 }

1167 dynsym_ndx++;
1168 }
1169 }
1170 }

1172 if (ofl->ofl_hashbkts) {
1173 qsort(sorted_syms + ofl->ofl_scopecnt + ofl->ofl_elimcnt,
1174 ofl->ofl_globcnt, sizeof (Sym_s_list),
1175 (int (*)(const void *, const void *))sym_hash_compare);
1176 }

new/usr/src/cmd/sgs/libld/common/update.c 17

1178 for (ssndx = 0; ssndx < (ofl->ofl_elimcnt + ofl->ofl_scopecnt +
1179 ofl->ofl_globcnt); ssndx++) {
1180 const char *name;
1181 Sym *sym;
1182 Sym_aux *sap;
1183 Half spec;
1184 int local = 0, dynlocal = 0, enter_in_symtab;
1185 Gotndx *gnp;
1186 Word sectndx;

1188 sdp = sorted_syms[ssndx].sl_sdp;
1189 sectndx = 0;

1191 if (symtab)
1192 enter_in_symtab = 1;
1193 else
1194 enter_in_symtab = 0;

1196 /*
1197 * Assign a got offset if necessary.
1198 */
1199 if ((ld_targ.t_mr.mr_assign_got != NULL) &&
1200 (*ld_targ.t_mr.mr_assign_got)(ofl, sdp) == S_ERROR)
1201 return ((Addr)S_ERROR);

1203 if (DBG_ENABLED) {
1204 Aliste idx2;

1206 for (ALIST_TRAVERSE(sdp->sd_GOTndxs, idx2, gnp)) {
1207 gottable->gt_sym = sdp;
1208 gottable->gt_gndx.gn_gotndx = gnp->gn_gotndx;
1209 gottable->gt_gndx.gn_addend = gnp->gn_addend;
1210 gottable++;
1211 }

1213 if (sdp->sd_aux && sdp->sd_aux->sa_PLTGOTndx) {
1214 gottable->gt_sym = sdp;
1215 gottable->gt_gndx.gn_gotndx =
1216 sdp->sd_aux->sa_PLTGOTndx;
1217 gottable++;
1218 }
1219 }

1221 /*
1222 * If this symbol has been marked as being reduced to local
1223 * scope then it will have to be placed in the scoped portion
1224 * of the .symtab. Retain the appropriate index for use in
1225 * version symbol indexing and relocation.
1226 */
1227 if (SYM_IS_HIDDEN(sdp) && (flags & FLG_OF_PROCRED)) {
1228 local = 1;
1229 if (!(sdp->sd_flags & FLG_SY_ELIM) && !dynsym)
1230 sdp->sd_symndx = scopesym_ndx;
1231 else
1232 sdp->sd_symndx = 0;

1234 if (sdp->sd_flags & FLG_SY_ELIM) {
1235 enter_in_symtab = 0;
1236 } else if (ldynsym && sdp->sd_sym->st_name &&
1237 ldynsym_symtype[
1238 ELF_ST_TYPE(sdp->sd_sym->st_info)]) {
1239 dynlocal = 1;
1240 }
1241 } else {
1242 sdp->sd_symndx = *symndx;
1243 }

new/usr/src/cmd/sgs/libld/common/update.c 18

1245 /*
1246 * Copy basic symbol and string information.
1247 */
1248 name = sdp->sd_name;
1249 sap = sdp->sd_aux;

1251 /*
1252 * If we require to record version symbol indexes, update the
1253 * associated version symbol information for all defined
1254 * symbols. If a version definition is required any zero value
1255 * symbol indexes would have been flagged as undefined symbol
1256 * errors, however if we’re just scoping these need to fall into
1257 * the base of global symbols.
1258 */
1259 if (sdp->sd_symndx && versym) {
1260 Half vndx = 0;

1262 if (sdp->sd_flags & FLG_SY_MVTOCOMM) {
1263 vndx = VER_NDX_GLOBAL;
1264 } else if (sdp->sd_ref == REF_REL_NEED) {
1265 vndx = sap->sa_overndx;

1267 if ((vndx == 0) &&
1268 (sdp->sd_sym->st_shndx != SHN_UNDEF)) {
1269 if (SYM_IS_HIDDEN(sdp))
1270 vndx = VER_NDX_LOCAL;
1271 else
1272 vndx = VER_NDX_GLOBAL;
1273 }
1274 } else if ((sdp->sd_ref == REF_DYN_NEED) &&
1275 (sap->sa_dverndx > 0) &&
1276 (sap->sa_dverndx <= sdp->sd_file->ifl_vercnt) &&
1277 (sdp->sd_file->ifl_verndx != NULL)) {
1278 /* Use index of verneed record */
1279 vndx = sdp->sd_file->ifl_verndx
1280 [sap->sa_dverndx].vi_overndx;
1281 }
1282 versym[sdp->sd_symndx] = vndx;
1283 }

1285 /*
1286 * If we are creating the .syminfo section then set per symbol
1287 * flags here.
1288 */
1289 if (sdp->sd_symndx && syminfo &&
1290 !(sdp->sd_flags & FLG_SY_NOTAVAIL)) {
1291 int ndx = sdp->sd_symndx;
1292 APlist **alpp = &(ofl->ofl_symdtent);

1294 if (sdp->sd_flags & FLG_SY_MVTOCOMM)
1295 /*
1296 * Identify a copy relocation symbol.
1297 */
1298 syminfo[ndx].si_flags |= SYMINFO_FLG_COPY;

1300 if (sdp->sd_ref == REF_DYN_NEED) {
1301 /*
1302 * A reference is bound to a needed dependency.
1303 * Save the syminfo entry, so that when the
1304 * .dynamic section has been updated, a
1305 * DT_NEEDED entry can be associated
1306 * (see update_osyminfo()).
1307 */
1308 if (aplist_append(alpp, sdp,
1309 AL_CNT_OFL_SYMINFOSYMS) == NULL)

new/usr/src/cmd/sgs/libld/common/update.c 19

1310 return (0);

1312 /*
1313 * Flag that the symbol has a direct association
1314 * with the external reference (this is an old
1315 * tagging, that has no real effect by itself).
1316 */
1317 syminfo[ndx].si_flags |= SYMINFO_FLG_DIRECT;

1319 /*
1320 * Flag any lazy or deferred reference.
1321 */
1322 if (sdp->sd_flags & FLG_SY_LAZYLD)
1323 syminfo[ndx].si_flags |=
1324 SYMINFO_FLG_LAZYLOAD;
1325 if (sdp->sd_flags & FLG_SY_DEFERRED)
1326 syminfo[ndx].si_flags |=
1327 SYMINFO_FLG_DEFERRED;

1329 /*
1330 * Enable direct symbol bindings if:
1331 *
1332 * - Symbol was identified with the DIRECT
1333 * keyword in a mapfile.
1334 *
1335 * - Symbol reference has been bound to a
1336 * dependency which was specified as
1337 * requiring direct bindings with -zdirect.
1338 *
1339 * - All symbol references are required to
1340 * use direct bindings via -Bdirect.
1341 */
1342 if (sdp->sd_flags & FLG_SY_DIR)
1343 syminfo[ndx].si_flags |=
1344 SYMINFO_FLG_DIRECTBIND;

1346 } else if ((sdp->sd_flags & FLG_SY_EXTERN) &&
1347 (sdp->sd_sym->st_shndx == SHN_UNDEF)) {
1348 /*
1349 * If this symbol has been explicitly defined
1350 * as external, and remains unresolved, mark
1351 * it as external.
1352 */
1353 syminfo[ndx].si_boundto = SYMINFO_BT_EXTERN;

1355 } else if ((sdp->sd_flags & FLG_SY_PARENT) &&
1356 (sdp->sd_sym->st_shndx == SHN_UNDEF)) {
1357 /*
1358 * If this symbol has been explicitly defined
1359 * to be a reference to a parent object,
1360 * indicate whether a direct binding should be
1361 * established.
1362 */
1363 syminfo[ndx].si_flags |= SYMINFO_FLG_DIRECT;
1364 syminfo[ndx].si_boundto = SYMINFO_BT_PARENT;
1365 if (sdp->sd_flags & FLG_SY_DIR)
1366 syminfo[ndx].si_flags |=
1367 SYMINFO_FLG_DIRECTBIND;

1369 } else if (sdp->sd_flags & FLG_SY_STDFLTR) {
1370 /*
1371 * A filter definition. Although this symbol
1372 * can only be a stub, it might be necessary to
1373 * prevent external direct bindings.
1374 */
1375 syminfo[ndx].si_flags |= SYMINFO_FLG_FILTER;

new/usr/src/cmd/sgs/libld/common/update.c 20

1376 if (sdp->sd_flags & FLG_SY_NDIR)
1377 syminfo[ndx].si_flags |=
1378 SYMINFO_FLG_NOEXTDIRECT;

1380 } else if (sdp->sd_flags & FLG_SY_AUXFLTR) {
1381 /*
1382 * An auxiliary filter definition. By nature,
1383 * this definition is direct, in that should the
1384 * filtee lookup fail, we’ll fall back to this
1385 * object. It may still be necessary to
1386 * prevent external direct bindings.
1387 */
1388 syminfo[ndx].si_flags |= SYMINFO_FLG_AUXILIARY;
1389 if (sdp->sd_flags & FLG_SY_NDIR)
1390 syminfo[ndx].si_flags |=
1391 SYMINFO_FLG_NOEXTDIRECT;

1393 } else if ((sdp->sd_ref == REF_REL_NEED) &&
1394 (sdp->sd_sym->st_shndx != SHN_UNDEF)) {
1395 /*
1396 * This definition exists within the object
1397 * being created. Provide a default boundto
1398 * definition, which may be overridden later.
1399 */
1400 syminfo[ndx].si_boundto = SYMINFO_BT_NONE;

1402 /*
1403 * Indicate whether it is necessary to prevent
1404 * external direct bindings.
1405 */
1406 if (sdp->sd_flags & FLG_SY_NDIR) {
1407 syminfo[ndx].si_flags |=
1408 SYMINFO_FLG_NOEXTDIRECT;
1409 }

1411 /*
1412 * Indicate that this symbol is acting as an
1413 * individual interposer.
1414 */
1415 if (sdp->sd_flags & FLG_SY_INTPOSE) {
1416 syminfo[ndx].si_flags |=
1417 SYMINFO_FLG_INTERPOSE;
1418 }

1420 /*
1421 * Indicate that this symbol is deferred, and
1422 * hence should not be bound to during BIND_NOW
1423 * relocations.
1424 */
1425 if (sdp->sd_flags & FLG_SY_DEFERRED) {
1426 syminfo[ndx].si_flags |=
1427 SYMINFO_FLG_DEFERRED;
1428 }

1430 /*
1431 * If external bindings are allowed, indicate
1432 * the binding, and a direct binding if
1433 * necessary.
1434 */
1435 if ((sdp->sd_flags & FLG_SY_NDIR) == 0) {
1436 syminfo[ndx].si_flags |=
1437 SYMINFO_FLG_DIRECT;

1439 if (sdp->sd_flags & FLG_SY_DIR)
1440 syminfo[ndx].si_flags |=
1441 SYMINFO_FLG_DIRECTBIND;

new/usr/src/cmd/sgs/libld/common/update.c 21

1443 /*
1444 * Provide a default boundto definition,
1445 * which may be overridden later.
1446 */
1447 syminfo[ndx].si_boundto =
1448 SYMINFO_BT_SELF;
1449 }

1451 /*
1452 * Indicate that this is a capabilities symbol.
1453 * Note, that this identification only provides
1454 * information regarding the symbol that is
1455 * visible from elfdump(1) -y. The association
1456 * of a symbol to its capabilities is derived
1457 * from a .SUNW_capinfo entry.
1458 */
1459 if ((sdp->sd_flags & FLG_SY_CAP) &&
1460 ofl->ofl_oscapinfo) {
1461 syminfo[ndx].si_flags |=
1462 SYMINFO_FLG_CAP;
1463 }
1464 }
1465 }

1467 /*
1468 * Note that the ‘sym’ value is reset to be one of the new
1469 * symbol table entries. This symbol will be updated further
1470 * depending on the type of the symbol. Process the .symtab
1471 * first, followed by the .dynsym, thus the ‘sym’ value will
1472 * remain as the .dynsym value when the .dynsym is present.
1473 * This ensures that any versioning symbols st_name value will
1474 * be appropriate for the string table used by version
1475 * entries.
1476 */
1477 if (enter_in_symtab) {
1478 Word _symndx;

1480 if (local)
1481 _symndx = scopesym_ndx;
1482 else
1483 _symndx = symtab_ndx;

1485 symtab[_symndx] = *sdp->sd_sym;
1486 sdp->sd_sym = sym = &symtab[_symndx];
1487 (void) st_setstring(strtab, name, &stoff);
1488 sym->st_name = stoff;
1489 }
1490 if (dynlocal) {
1491 ldynsym[ldynscopesym_ndx] = *sdp->sd_sym;
1492 sdp->sd_sym = sym = &ldynsym[ldynscopesym_ndx];
1493 (void) st_setstring(dynstr, name, &stoff);
1494 ldynsym[ldynscopesym_ndx].st_name = stoff;
1495 /* Add it to sort section if it qualifies */
1496 ADD_TO_DYNSORT(sdp, sym, ELF_ST_TYPE(sym->st_info),
1497 ldynscopesym_ndx);
1498 }

1500 if (dynsym && !local) {
1501 dynsym[dynsym_ndx] = *sdp->sd_sym;

1503 /*
1504 * Provided this isn’t an unnamed register symbol,
1505 * update the symbols name and hash value.
1506 */
1507 if (((sdp->sd_flags & FLG_SY_REGSYM) == 0) ||

new/usr/src/cmd/sgs/libld/common/update.c 22

1508 dynsym[dynsym_ndx].st_name) {
1509 (void) st_setstring(dynstr, name, &stoff);
1510 dynsym[dynsym_ndx].st_name = stoff;

1512 if (stoff) {
1513 Word hashval, _hashndx;

1515 hashval =
1516 sap->sa_hash % ofl->ofl_hashbkts;

1518 /* LINTED */
1519 if (_hashndx = hashbkt[hashval]) {
1520 while (hashchain[_hashndx]) {
1521 _hashndx =
1522 hashchain[_hashndx];
1523 }
1524 hashchain[_hashndx] =
1525 sdp->sd_symndx;
1526 } else {
1527 hashbkt[hashval] =
1528 sdp->sd_symndx;
1529 }
1530 }
1531 }
1532 sdp->sd_sym = sym = &dynsym[dynsym_ndx];

1534 /*
1535 * Add it to sort section if it qualifies.
1536 * The indexes in that section are relative to the
1537 * the adjacent SUNW_ldynsym/dymsym pair, so we
1538 * add the number of items in SUNW_ldynsym to the
1539 * dynsym index.
1540 */
1541 ADD_TO_DYNSORT(sdp, sym, ELF_ST_TYPE(sym->st_info),
1542 ldynsym_cnt + dynsym_ndx);
1543 }

1545 if (!enter_in_symtab && (!dynsym || (local && !dynlocal))) {
1546 if (!(sdp->sd_flags & FLG_SY_UPREQD))
1547 continue;
1548 sym = sdp->sd_sym;
1549 } else
1550 sdp->sd_flags &= ~FLG_SY_CLEAN;

1552 /*
1553 * If we have a weak data symbol for which we need the real
1554 * symbol also, save this processing until later.
1555 *
1556 * The exception to this is if the weak/strong have PLT’s
1557 * assigned to them. In that case we don’t do the post-weak
1558 * processing because the PLT’s must be maintained so that we
1559 * can do ’interpositioning’ on both of the symbols.
1560 */
1561 if ((sap->sa_linkndx) &&
1562 (ELF_ST_BIND(sym->st_info) == STB_WEAK) &&
1563 (!sap->sa_PLTndx)) {
1564 Sym_desc *_sdp;

1566 _sdp = sdp->sd_file->ifl_oldndx[sap->sa_linkndx];

1568 if (_sdp->sd_ref != REF_DYN_SEEN) {
1569 Wk_desc wk;

1571 if (enter_in_symtab) {
1572 if (local) {
1573 wk.wk_symtab =

new/usr/src/cmd/sgs/libld/common/update.c 23

1574 &symtab[scopesym_ndx];
1575 scopesym_ndx++;
1576 } else {
1577 wk.wk_symtab =
1578 &symtab[symtab_ndx];
1579 symtab_ndx++;
1580 }
1581 } else {
1582 wk.wk_symtab = NULL;
1583 }
1584 if (dynsym) {
1585 if (!local) {
1586 wk.wk_dynsym =
1587 &dynsym[dynsym_ndx];
1588 dynsym_ndx++;
1589 } else if (dynlocal) {
1590 wk.wk_dynsym =
1591 &ldynsym[ldynscopesym_ndx];
1592 ldynscopesym_ndx++;
1593 }
1594 } else {
1595 wk.wk_dynsym = NULL;
1596 }
1597 wk.wk_weak = sdp;
1598 wk.wk_alias = _sdp;

1600 if (alist_append(&weak, &wk,
1601 sizeof (Wk_desc), AL_CNT_WEAK) == NULL)
1602 return ((Addr)S_ERROR);

1604 continue;
1605 }
1606 }

1608 DBG_CALL(Dbg_syms_old(ofl, sdp));

1610 spec = NULL;
1611 /*
1612 * assign new symbol value.
1613 */
1614 sectndx = sdp->sd_shndx;
1615 if (sectndx == SHN_UNDEF) {
1616 if (((sdp->sd_flags & FLG_SY_REGSYM) == 0) &&
1617 (sym->st_value != 0)) {
1618 ld_eprintf(ofl, ERR_WARNING,
1619 MSG_INTL(MSG_SYM_NOTNULL),
1620 demangle(name), sdp->sd_file->ifl_name);
1621 }

1623 /*
1624 * Undefined weak global, if we are generating a static
1625 * executable, output as an absolute zero. Otherwise
1626 * leave it as is, ld.so.1 will skip symbols of this
1627 * type (this technique allows applications and
1628 * libraries to test for the existence of a symbol as an
1629 * indication of the presence or absence of certain
1630 * functionality).
1631 */
1632 if (OFL_IS_STATIC_EXEC(ofl) &&
1633 (ELF_ST_BIND(sym->st_info) == STB_WEAK)) {
1634 sdp->sd_flags |= FLG_SY_SPECSEC;
1635 sdp->sd_shndx = sectndx = SHN_ABS;
1636 }
1637 } else if ((sdp->sd_flags & FLG_SY_SPECSEC) &&
1638 (sectndx == SHN_COMMON)) {
1639 /* COMMONs have already been processed */

new/usr/src/cmd/sgs/libld/common/update.c 24

1640 /* EMPTY */
1641 ;
1642 } else {
1643 if ((sdp->sd_flags & FLG_SY_SPECSEC) &&
1644 (sectndx == SHN_ABS))
1645 spec = sdp->sd_aux->sa_symspec;

1647 /* LINTED */
1648 if (sdp->sd_flags & FLG_SY_COMMEXP) {
1649 /*
1650 * This is (or was) a COMMON symbol which was
1651 * processed above - no processing
1652 * required here.
1653 */
1654 ;
1655 } else if (sdp->sd_ref == REF_DYN_NEED) {
1656 uchar_t type, bind;

1658 sectndx = SHN_UNDEF;
1659 sym->st_value = 0;
1660 sym->st_size = 0;

1662 /*
1663 * Make sure this undefined symbol is returned
1664 * to the same binding as was defined in the
1665 * original relocatable object reference.
1666 */
1667 type = ELF_ST_TYPE(sym-> st_info);
1668 if (sdp->sd_flags & FLG_SY_GLOBREF)
1669 bind = STB_GLOBAL;
1670 else
1671 bind = STB_WEAK;

1673 sym->st_info = ELF_ST_INFO(bind, type);

1675 } else if (((sdp->sd_flags & FLG_SY_SPECSEC) == 0) &&
1676 (sdp->sd_ref == REF_REL_NEED)) {
1677 osp = sdp->sd_isc->is_osdesc;
1678 /* LINTED */
1679 sectndx = elf_ndxscn(osp->os_scn);

1681 /*
1682 * In an executable, the new symbol value is the
1683 * old value (offset into defining section) plus
1684 * virtual address of defining section. In a
1685 * relocatable, the new value is the old value
1686 * plus the displacement of the section within
1687 * the file.
1688 */
1689 /* LINTED */
1690 sym->st_value +=
1691 (Off)_elf_getxoff(sdp->sd_isc->is_indata);

1693 if (!(flags & FLG_OF_RELOBJ)) {
1694 sym->st_value += osp->os_shdr->sh_addr;
1695 /*
1696 * TLS symbols are relative to
1697 * the TLS segment.
1698 */
1699 if ((ELF_ST_TYPE(sym->st_info) ==
1700 STT_TLS) && (ofl->ofl_tlsphdr))
1701 sym->st_value -=
1702 ofl->ofl_tlsphdr->p_vaddr;
1703 }
1704 }
1705 }

new/usr/src/cmd/sgs/libld/common/update.c 25

1707 if (spec) {
1708 switch (spec) {
1709 case SDAUX_ID_ETEXT:
1710 sym->st_value = etext;
1711 sectndx = etext_ndx;
1712 if (etext_abs)
1713 sdp->sd_flags |= FLG_SY_SPECSEC;
1714 else
1715 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1716 break;
1717 case SDAUX_ID_EDATA:
1718 sym->st_value = edata;
1719 sectndx = edata_ndx;
1720 if (edata_abs)
1721 sdp->sd_flags |= FLG_SY_SPECSEC;
1722 else
1723 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1724 break;
1725 case SDAUX_ID_END:
1726 sym->st_value = end;
1727 sectndx = end_ndx;
1728 if (end_abs)
1729 sdp->sd_flags |= FLG_SY_SPECSEC;
1730 else
1731 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1732 break;
1733 case SDAUX_ID_START:
1734 sym->st_value = start;
1735 sectndx = start_ndx;
1736 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1737 break;
1738 case SDAUX_ID_DYN:
1739 if (flags & FLG_OF_DYNAMIC) {
1740 sym->st_value = ofl->
1741 ofl_osdynamic->os_shdr->sh_addr;
1742 /* LINTED */
1743 sectndx = elf_ndxscn(
1744 ofl->ofl_osdynamic->os_scn);
1745 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1746 }
1747 break;
1748 case SDAUX_ID_PLT:
1749 if (ofl->ofl_osplt) {
1750 sym->st_value = ofl->
1751 ofl_osplt->os_shdr->sh_addr;
1752 /* LINTED */
1753 sectndx = elf_ndxscn(
1754 ofl->ofl_osplt->os_scn);
1755 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1756 }
1757 break;
1758 case SDAUX_ID_GOT:
1759 /*
1760 * Symbol bias for negative growing tables is
1761 * stored in symbol’s value during
1762 * allocate_got().
1763 */
1764 sym->st_value += ofl->
1765 ofl_osgot->os_shdr->sh_addr;
1766 /* LINTED */
1767 sectndx = elf_ndxscn(ofl->
1768 ofl_osgot->os_scn);
1769 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1770 break;
1771 case SDAUX_ID_SECBOUND_START:

new/usr/src/cmd/sgs/libld/common/update.c 26

1772 sym->st_value = sap->sa_boundsec->
1773 os_shdr->sh_addr;
1774 sectndx = elf_ndxscn(sap->sa_boundsec->os_scn);
1775 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1776 break;
1777 case SDAUX_ID_SECBOUND_STOP:
1778 sym->st_value = sap->sa_boundsec->
1779 os_shdr->sh_addr +
1780 sap->sa_boundsec->os_shdr->sh_size;
1781 sectndx = elf_ndxscn(sap->sa_boundsec->os_scn);
1782 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1783 break;
1784 #endif /* ! codereview */
1785 default:
1786 /* NOTHING */
1787 ;
1788 }
1789 }

1791 /*
1792 * If a plt index has been assigned to an undefined function,
1793 * update the symbols value to the appropriate .plt address.
1794 */
1795 if ((flags & FLG_OF_DYNAMIC) && (flags & FLG_OF_EXEC) &&
1796 (sdp->sd_file) &&
1797 (sdp->sd_file->ifl_ehdr->e_type == ET_DYN) &&
1798 (ELF_ST_TYPE(sym->st_info) == STT_FUNC) &&
1799 !(flags & FLG_OF_BFLAG)) {
1800 if (sap->sa_PLTndx)
1801 sym->st_value =
1802 (*ld_targ.t_mr.mr_calc_plt_addr)(sdp, ofl);
1803 }

1805 /*
1806 * Finish updating the symbols.
1807 */

1809 /*
1810 * Sym Update: if scoped local - set local binding
1811 */
1812 if (local)
1813 sym->st_info = ELF_ST_INFO(STB_LOCAL,
1814 ELF_ST_TYPE(sym->st_info));

1816 /*
1817 * Sym Updated: If both the .symtab and .dynsym
1818 * are present then we’ve actually updated the information in
1819 * the .dynsym, therefore copy this same information to the
1820 * .symtab entry.
1821 */
1822 sdp->sd_shndx = sectndx;
1823 if (enter_in_symtab && dynsym && (!local || dynlocal)) {
1824 Word _symndx = dynlocal ? scopesym_ndx : symtab_ndx;

1826 symtab[_symndx].st_value = sym->st_value;
1827 symtab[_symndx].st_size = sym->st_size;
1828 symtab[_symndx].st_info = sym->st_info;
1829 symtab[_symndx].st_other = sym->st_other;
1830 }

1832 if (enter_in_symtab) {
1833 Word _symndx;

1835 if (local)
1836 _symndx = scopesym_ndx++;
1837 else

new/usr/src/cmd/sgs/libld/common/update.c 27

1838 _symndx = symtab_ndx++;
1839 if (((sdp->sd_flags & FLG_SY_SPECSEC) == 0) &&
1840 (sectndx >= SHN_LORESERVE)) {
1841 assert(symshndx != NULL);
1842 symshndx[_symndx] = sectndx;
1843 symtab[_symndx].st_shndx = SHN_XINDEX;
1844 } else {
1845 /* LINTED */
1846 symtab[_symndx].st_shndx = (Half)sectndx;
1847 }
1848 }

1850 if (dynsym && (!local || dynlocal)) {
1851 /*
1852 * dynsym and ldynsym are distinct tables, so
1853 * we use indirection to access the right one
1854 * and the related extended section index array.
1855 */
1856 Word _symndx;
1857 Sym *_dynsym;
1858 Word *_dynshndx;

1860 if (!local) {
1861 _symndx = dynsym_ndx++;
1862 _dynsym = dynsym;
1863 _dynshndx = dynshndx;
1864 } else {
1865 _symndx = ldynscopesym_ndx++;
1866 _dynsym = ldynsym;
1867 _dynshndx = ldynshndx;
1868 }
1869 if (((sdp->sd_flags & FLG_SY_SPECSEC) == 0) &&
1870 (sectndx >= SHN_LORESERVE)) {
1871 assert(_dynshndx != NULL);
1872 _dynshndx[_symndx] = sectndx;
1873 _dynsym[_symndx].st_shndx = SHN_XINDEX;
1874 } else {
1875 /* LINTED */
1876 _dynsym[_symndx].st_shndx = (Half)sectndx;
1877 }
1878 }

1880 DBG_CALL(Dbg_syms_new(ofl, sym, sdp));
1881 }

1883 /*
1884 * Now that all the symbols have been processed update any weak symbols
1885 * information (ie. copy all information except ‘st_name’). As both
1886 * symbols will be represented in the output, return the weak symbol to
1887 * its correct type.
1888 */
1889 for (ALIST_TRAVERSE(weak, idx1, wkp)) {
1890 Sym_desc *sdp, *_sdp;
1891 Sym *sym, *_sym, *__sym;
1892 uchar_t bind;

1894 sdp = wkp->wk_weak;
1895 _sdp = wkp->wk_alias;
1896 _sym = __sym = _sdp->sd_sym;

1898 sdp->sd_flags |= FLG_SY_WEAKDEF;

1900 /*
1901 * If the symbol definition has been scoped then assign it to
1902 * be local, otherwise if it’s from a shared object then we need
1903 * to maintain the binding of the original reference.

new/usr/src/cmd/sgs/libld/common/update.c 28

1904 */
1905 if (SYM_IS_HIDDEN(sdp)) {
1906 if (flags & FLG_OF_PROCRED)
1907 bind = STB_LOCAL;
1908 else
1909 bind = STB_WEAK;
1910 } else if ((sdp->sd_ref == REF_DYN_NEED) &&
1911 (sdp->sd_flags & FLG_SY_GLOBREF))
1912 bind = STB_GLOBAL;
1913 else
1914 bind = STB_WEAK;

1916 DBG_CALL(Dbg_syms_old(ofl, sdp));
1917 if ((sym = wkp->wk_symtab) != NULL) {
1918 sym->st_value = _sym->st_value;
1919 sym->st_size = _sym->st_size;
1920 sym->st_other = _sym->st_other;
1921 sym->st_shndx = _sym->st_shndx;
1922 sym->st_info = ELF_ST_INFO(bind,
1923 ELF_ST_TYPE(sym->st_info));
1924 __sym = sym;
1925 }
1926 if ((sym = wkp->wk_dynsym) != NULL) {
1927 sym->st_value = _sym->st_value;
1928 sym->st_size = _sym->st_size;
1929 sym->st_other = _sym->st_other;
1930 sym->st_shndx = _sym->st_shndx;
1931 sym->st_info = ELF_ST_INFO(bind,
1932 ELF_ST_TYPE(sym->st_info));
1933 __sym = sym;
1934 }
1935 DBG_CALL(Dbg_syms_new(ofl, __sym, sdp));
1936 }

1938 /*
1939 * Now display GOT debugging information if required.
1940 */
1941 DBG_CALL(Dbg_got_display(ofl, 0, 0,
1942 ld_targ.t_m.m_got_xnumber, ld_targ.t_m.m_got_entsize));

1944 /*
1945 * Update the section headers information. sh_info is
1946 * supposed to contain the offset at which the first
1947 * global symbol resides in the symbol table, while
1948 * sh_link contains the section index of the associated
1949 * string table.
1950 */
1951 if (symtab) {
1952 Shdr *shdr = ofl->ofl_ossymtab->os_shdr;

1954 shdr->sh_info = symtab_gbl_bndx;
1955 /* LINTED */
1956 shdr->sh_link = (Word)elf_ndxscn(ofl->ofl_osstrtab->os_scn);
1957 if (symshndx)
1958 ofl->ofl_ossymshndx->os_shdr->sh_link =
1959 (Word)elf_ndxscn(ofl->ofl_ossymtab->os_scn);

1961 /*
1962 * Ensure that the expected number of symbols
1963 * were entered into the right spots:
1964 * - Scoped symbols in the right range
1965 * - Globals start at the right spot
1966 * (correct number of locals entered)
1967 * - The table is exactly filled
1968 * (correct number of globals entered)
1969 */

new/usr/src/cmd/sgs/libld/common/update.c 29

1970 assert((scopesym_bndx + ofl->ofl_scopecnt) == scopesym_ndx);
1971 assert(shdr->sh_info == SYMTAB_LOC_CNT(ofl));
1972 assert((shdr->sh_info + ofl->ofl_globcnt) == symtab_ndx);
1973 }
1974 if (dynsym) {
1975 Shdr *shdr = ofl->ofl_osdynsym->os_shdr;

1977 shdr->sh_info = DYNSYM_LOC_CNT(ofl);
1978 /* LINTED */
1979 shdr->sh_link = (Word)elf_ndxscn(ofl->ofl_osdynstr->os_scn);

1981 ofl->ofl_oshash->os_shdr->sh_link =
1982 /* LINTED */
1983 (Word)elf_ndxscn(ofl->ofl_osdynsym->os_scn);
1984 if (dynshndx) {
1985 shdr = ofl->ofl_osdynshndx->os_shdr;
1986 shdr->sh_link =
1987 (Word)elf_ndxscn(ofl->ofl_osdynsym->os_scn);
1988 }
1989 }
1990 if (ldynsym) {
1991 Shdr *shdr = ofl->ofl_osldynsym->os_shdr;

1993 /* ldynsym has no globals, so give index one past the end */
1994 shdr->sh_info = ldynsym_ndx;

1996 /*
1997 * The ldynsym and dynsym must be adjacent. The
1998 * idea is that rtld should be able to start with
1999 * the ldynsym and march straight through the end
2000 * of dynsym, seeing them as a single symbol table,
2001 * despite the fact that they are in distinct sections.
2002 * Ensure that this happened correctly.
2003 *
2004 * Note that I use ldynsym_ndx here instead of the
2005 * computation I used to set the section size
2006 * (found in ldynsym_cnt). The two will agree, unless
2007 * we somehow miscounted symbols or failed to insert them
2008 * all. Using ldynsym_ndx here catches that error in
2009 * addition to checking for adjacency.
2010 */
2011 assert(dynsym == (ldynsym + ldynsym_ndx));

2014 /* LINTED */
2015 shdr->sh_link = (Word)elf_ndxscn(ofl->ofl_osdynstr->os_scn);

2017 if (ldynshndx) {
2018 shdr = ofl->ofl_osldynshndx->os_shdr;
2019 shdr->sh_link =
2020 (Word)elf_ndxscn(ofl->ofl_osldynsym->os_scn);
2021 }

2023 /*
2024 * The presence of .SUNW_ldynsym means that there may be
2025 * associated sort sections, one for regular symbols
2026 * and the other for TLS. Each sort section needs the
2027 * following done:
2028 * - Section header link references .SUNW_ldynsym
2029 * - Should have received the expected # of items
2030 * - Sorted by increasing address
2031 */
2032 if (ofl->ofl_osdynsymsort) { /* .SUNW_dynsymsort */
2033 ofl->ofl_osdynsymsort->os_shdr->sh_link =
2034 (Word)elf_ndxscn(ofl->ofl_osldynsym->os_scn);
2035 assert(ofl->ofl_dynsymsortcnt == dynsymsort_ndx);

new/usr/src/cmd/sgs/libld/common/update.c 30

2037 if (dynsymsort_ndx > 1) {
2038 dynsort_compare_syms = ldynsym;
2039 qsort(dynsymsort, dynsymsort_ndx,
2040 sizeof (*dynsymsort), dynsort_compare);
2041 dynsort_dupwarn(ofl, ldynsym,
2042 st_getstrbuf(dynstr),
2043 dynsymsort, dynsymsort_ndx,
2044 MSG_ORIG(MSG_SCN_DYNSYMSORT));
2045 }
2046 }
2047 if (ofl->ofl_osdyntlssort) { /* .SUNW_dyntlssort */
2048 ofl->ofl_osdyntlssort->os_shdr->sh_link =
2049 (Word)elf_ndxscn(ofl->ofl_osldynsym->os_scn);
2050 assert(ofl->ofl_dyntlssortcnt == dyntlssort_ndx);

2052 if (dyntlssort_ndx > 1) {
2053 dynsort_compare_syms = ldynsym;
2054 qsort(dyntlssort, dyntlssort_ndx,
2055 sizeof (*dyntlssort), dynsort_compare);
2056 dynsort_dupwarn(ofl, ldynsym,
2057 st_getstrbuf(dynstr),
2058 dyntlssort, dyntlssort_ndx,
2059 MSG_ORIG(MSG_SCN_DYNTLSSORT));
2060 }
2061 }
2062 }

2064 /*
2065 * Used by ld.so.1 only.
2066 */
2067 return (etext);

2069 #undef ADD_TO_DYNSORT
2070 }

2072 /*
2073 * Build the dynamic section.
2074 *
2075 * This routine must be maintained in parallel with make_dynamic()
2076 * in sections.c
2077 */
2078 static int
2079 update_odynamic(Ofl_desc *ofl)
2080 {
2081 Aliste idx;
2082 Ifl_desc *ifl;
2083 Sym_desc *sdp;
2084 Shdr *shdr;
2085 Dyn *_dyn = (Dyn *)ofl->ofl_osdynamic->os_outdata->d_buf;
2086 Dyn *dyn;
2087 Os_desc *symosp, *strosp;
2088 Str_tbl *strtbl;
2089 size_t stoff;
2090 ofl_flag_t flags = ofl->ofl_flags;
2091 int not_relobj = !(flags & FLG_OF_RELOBJ);
2092 Word cnt;

2094 /*
2095 * Relocatable objects can be built with -r and -dy to trigger the
2096 * creation of a .dynamic section. This model is used to create kernel
2097 * device drivers. The .dynamic section provides a subset of userland
2098 * .dynamic entries, typically entries such as DT_NEEDED and DT_RUNPATH.
2099 *
2100 * Within a dynamic object, any .dynamic string references are to the
2101 * .dynstr table. Within a relocatable object, these strings can reside

new/usr/src/cmd/sgs/libld/common/update.c 31

2102 * within the .strtab.
2103 */
2104 if (OFL_IS_STATIC_OBJ(ofl)) {
2105 symosp = ofl->ofl_ossymtab;
2106 strosp = ofl->ofl_osstrtab;
2107 strtbl = ofl->ofl_strtab;
2108 } else {
2109 symosp = ofl->ofl_osdynsym;
2110 strosp = ofl->ofl_osdynstr;
2111 strtbl = ofl->ofl_dynstrtab;
2112 }

2114 /* LINTED */
2115 ofl->ofl_osdynamic->os_shdr->sh_link = (Word)elf_ndxscn(strosp->os_scn);

2117 dyn = _dyn;

2119 for (APLIST_TRAVERSE(ofl->ofl_sos, idx, ifl)) {
2120 if ((ifl->ifl_flags &
2121 (FLG_IF_IGNORE | FLG_IF_DEPREQD)) == FLG_IF_IGNORE)
2122 continue;

2124 /*
2125 * Create and set up the DT_POSFLAG_1 entry here if required.
2126 */
2127 if ((ifl->ifl_flags & MSK_IF_POSFLAG1) &&
2128 (ifl->ifl_flags & FLG_IF_NEEDED) && not_relobj) {
2129 dyn->d_tag = DT_POSFLAG_1;
2130 if (ifl->ifl_flags & FLG_IF_LAZYLD)
2131 dyn->d_un.d_val = DF_P1_LAZYLOAD;
2132 if (ifl->ifl_flags & FLG_IF_GRPPRM)
2133 dyn->d_un.d_val |= DF_P1_GROUPPERM;
2134 if (ifl->ifl_flags & FLG_IF_DEFERRED)
2135 dyn->d_un.d_val |= DF_P1_DEFERRED;
2136 dyn++;
2137 }

2139 if (ifl->ifl_flags & (FLG_IF_NEEDED | FLG_IF_NEEDSTR))
2140 dyn->d_tag = DT_NEEDED;
2141 else
2142 continue;

2144 (void) st_setstring(strtbl, ifl->ifl_soname, &stoff);
2145 dyn->d_un.d_val = stoff;
2146 /* LINTED */
2147 ifl->ifl_neededndx = (Half)(((uintptr_t)dyn - (uintptr_t)_dyn) /
2148 sizeof (Dyn));
2149 dyn++;
2150 }

2152 if (not_relobj) {
2153 if (ofl->ofl_dtsfltrs != NULL) {
2154 Dfltr_desc *dftp;

2156 for (ALIST_TRAVERSE(ofl->ofl_dtsfltrs, idx, dftp)) {
2157 if (dftp->dft_flag == FLG_SY_AUXFLTR)
2158 dyn->d_tag = DT_SUNW_AUXILIARY;
2159 else
2160 dyn->d_tag = DT_SUNW_FILTER;

2162 (void) st_setstring(strtbl, dftp->dft_str,
2163 &stoff);
2164 dyn->d_un.d_val = stoff;
2165 dftp->dft_ndx = (Half)(((uintptr_t)dyn -
2166 (uintptr_t)_dyn) / sizeof (Dyn));
2167 dyn++;

new/usr/src/cmd/sgs/libld/common/update.c 32

2168 }
2169 }
2170 if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_INIT_U),
2171 SYM_NOHASH, 0, ofl)) != NULL) &&
2172 (sdp->sd_ref == REF_REL_NEED) &&
2173 (sdp->sd_sym->st_shndx != SHN_UNDEF)) {
2174 dyn->d_tag = DT_INIT;
2175 dyn->d_un.d_ptr = sdp->sd_sym->st_value;
2176 dyn++;
2177 }
2178 if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_FINI_U),
2179 SYM_NOHASH, 0, ofl)) != NULL) &&
2180 (sdp->sd_ref == REF_REL_NEED) &&
2181 (sdp->sd_sym->st_shndx != SHN_UNDEF)) {
2182 dyn->d_tag = DT_FINI;
2183 dyn->d_un.d_ptr = sdp->sd_sym->st_value;
2184 dyn++;
2185 }
2186 if (ofl->ofl_soname) {
2187 dyn->d_tag = DT_SONAME;
2188 (void) st_setstring(strtbl, ofl->ofl_soname, &stoff);
2189 dyn->d_un.d_val = stoff;
2190 dyn++;
2191 }
2192 if (ofl->ofl_filtees) {
2193 if (flags & FLG_OF_AUX) {
2194 dyn->d_tag = DT_AUXILIARY;
2195 } else {
2196 dyn->d_tag = DT_FILTER;
2197 }
2198 (void) st_setstring(strtbl, ofl->ofl_filtees, &stoff);
2199 dyn->d_un.d_val = stoff;
2200 dyn++;
2201 }
2202 }

2204 if (ofl->ofl_rpath) {
2205 (void) st_setstring(strtbl, ofl->ofl_rpath, &stoff);
2206 dyn->d_tag = DT_RUNPATH;
2207 dyn->d_un.d_val = stoff;
2208 dyn++;
2209 dyn->d_tag = DT_RPATH;
2210 dyn->d_un.d_val = stoff;
2211 dyn++;
2212 }

2214 if (not_relobj) {
2215 Aliste idx;
2216 Sg_desc *sgp;

2218 if (ofl->ofl_config) {
2219 dyn->d_tag = DT_CONFIG;
2220 (void) st_setstring(strtbl, ofl->ofl_config, &stoff);
2221 dyn->d_un.d_val = stoff;
2222 dyn++;
2223 }
2224 if (ofl->ofl_depaudit) {
2225 dyn->d_tag = DT_DEPAUDIT;
2226 (void) st_setstring(strtbl, ofl->ofl_depaudit, &stoff);
2227 dyn->d_un.d_val = stoff;
2228 dyn++;
2229 }
2230 if (ofl->ofl_audit) {
2231 dyn->d_tag = DT_AUDIT;
2232 (void) st_setstring(strtbl, ofl->ofl_audit, &stoff);
2233 dyn->d_un.d_val = stoff;

new/usr/src/cmd/sgs/libld/common/update.c 33

2234 dyn++;
2235 }

2237 dyn->d_tag = DT_HASH;
2238 dyn->d_un.d_ptr = ofl->ofl_oshash->os_shdr->sh_addr;
2239 dyn++;

2241 shdr = strosp->os_shdr;
2242 dyn->d_tag = DT_STRTAB;
2243 dyn->d_un.d_ptr = shdr->sh_addr;
2244 dyn++;

2246 dyn->d_tag = DT_STRSZ;
2247 dyn->d_un.d_ptr = shdr->sh_size;
2248 dyn++;

2250 /*
2251 * Note, the shdr is set and used in the ofl->ofl_osldynsym case
2252 * that follows.
2253 */
2254 shdr = symosp->os_shdr;
2255 dyn->d_tag = DT_SYMTAB;
2256 dyn->d_un.d_ptr = shdr->sh_addr;
2257 dyn++;

2259 dyn->d_tag = DT_SYMENT;
2260 dyn->d_un.d_ptr = shdr->sh_entsize;
2261 dyn++;

2263 if (ofl->ofl_osldynsym) {
2264 Shdr *lshdr = ofl->ofl_osldynsym->os_shdr;

2266 /*
2267 * We have arranged for the .SUNW_ldynsym data to be
2268 * immediately in front of the .dynsym data.
2269 * This means that you could start at the top
2270 * of .SUNW_ldynsym and see the data for both tables
2271 * without a break. This is the view we want to
2272 * provide for DT_SUNW_SYMTAB, which is why we
2273 * add the lengths together.
2274 */
2275 dyn->d_tag = DT_SUNW_SYMTAB;
2276 dyn->d_un.d_ptr = lshdr->sh_addr;
2277 dyn++;

2279 dyn->d_tag = DT_SUNW_SYMSZ;
2280 dyn->d_un.d_val = lshdr->sh_size + shdr->sh_size;
2281 dyn++;
2282 }

2284 if (ofl->ofl_osdynsymsort || ofl->ofl_osdyntlssort) {
2285 dyn->d_tag = DT_SUNW_SORTENT;
2286 dyn->d_un.d_val = sizeof (Word);
2287 dyn++;
2288 }

2290 if (ofl->ofl_osdynsymsort) {
2291 shdr = ofl->ofl_osdynsymsort->os_shdr;

2293 dyn->d_tag = DT_SUNW_SYMSORT;
2294 dyn->d_un.d_ptr = shdr->sh_addr;
2295 dyn++;

2297 dyn->d_tag = DT_SUNW_SYMSORTSZ;
2298 dyn->d_un.d_val = shdr->sh_size;
2299 dyn++;

new/usr/src/cmd/sgs/libld/common/update.c 34

2300 }

2302 if (ofl->ofl_osdyntlssort) {
2303 shdr = ofl->ofl_osdyntlssort->os_shdr;

2305 dyn->d_tag = DT_SUNW_TLSSORT;
2306 dyn->d_un.d_ptr = shdr->sh_addr;
2307 dyn++;

2309 dyn->d_tag = DT_SUNW_TLSSORTSZ;
2310 dyn->d_un.d_val = shdr->sh_size;
2311 dyn++;
2312 }

2314 /*
2315 * Reserve the DT_CHECKSUM entry. Its value will be filled in
2316 * after the complete image is built.
2317 */
2318 dyn->d_tag = DT_CHECKSUM;
2319 ofl->ofl_checksum = &dyn->d_un.d_val;
2320 dyn++;

2322 /*
2323 * Versioning sections: DT_VERDEF and DT_VERNEED.
2324 *
2325 * The Solaris ld does not produce DT_VERSYM, but the GNU ld
2326 * does, in order to support their style of versioning, which
2327 * differs from ours:
2328 *
2329 * - The top bit of the 16-bit Versym index is
2330 * not part of the version, but is interpreted
2331 * as a "hidden bit".
2332 *
2333 * - External (SHN_UNDEF) symbols can have non-zero
2334 * Versym values, which specify versions in
2335 * referenced objects, via the Verneed section.
2336 *
2337 * - The vna_other field of the Vernaux structures
2338 * found in the Verneed section are not zero as
2339 * with Solaris, but instead contain the version
2340 * index to be used by Versym indices to reference
2341 * the given external version.
2342 *
2343 * The Solaris ld, rtld, and elfdump programs all interpret the
2344 * presence of DT_VERSYM as meaning that GNU versioning rules
2345 * apply to the given file. If DT_VERSYM is not present,
2346 * then Solaris versioning rules apply. If we should ever need
2347 * to change our ld so that it does issue DT_VERSYM, then
2348 * this rule for detecting GNU versioning will no longer work.
2349 * In that case, we will have to invent a way to explicitly
2350 * specify the style of versioning in use, perhaps via a
2351 * new dynamic entry named something like DT_SUNW_VERSIONSTYLE,
2352 * where the d_un.d_val value specifies which style is to be
2353 * used.
2354 */
2355 if ((flags & (FLG_OF_VERDEF | FLG_OF_NOVERSEC)) ==
2356 FLG_OF_VERDEF) {
2357 shdr = ofl->ofl_osverdef->os_shdr;

2359 dyn->d_tag = DT_VERDEF;
2360 dyn->d_un.d_ptr = shdr->sh_addr;
2361 dyn++;
2362 dyn->d_tag = DT_VERDEFNUM;
2363 dyn->d_un.d_ptr = shdr->sh_info;
2364 dyn++;
2365 }

new/usr/src/cmd/sgs/libld/common/update.c 35

2366 if ((flags & (FLG_OF_VERNEED | FLG_OF_NOVERSEC)) ==
2367 FLG_OF_VERNEED) {
2368 shdr = ofl->ofl_osverneed->os_shdr;

2370 dyn->d_tag = DT_VERNEED;
2371 dyn->d_un.d_ptr = shdr->sh_addr;
2372 dyn++;
2373 dyn->d_tag = DT_VERNEEDNUM;
2374 dyn->d_un.d_ptr = shdr->sh_info;
2375 dyn++;
2376 }

2378 if ((flags & FLG_OF_COMREL) && ofl->ofl_relocrelcnt) {
2379 dyn->d_tag = ld_targ.t_m.m_rel_dt_count;
2380 dyn->d_un.d_val = ofl->ofl_relocrelcnt;
2381 dyn++;
2382 }
2383 if (flags & FLG_OF_TEXTREL) {
2384 /*
2385 * Only the presence of this entry is used in this
2386 * implementation, not the value stored.
2387 */
2388 dyn->d_tag = DT_TEXTREL;
2389 dyn->d_un.d_val = 0;
2390 dyn++;
2391 }

2393 if (ofl->ofl_osfiniarray) {
2394 shdr = ofl->ofl_osfiniarray->os_shdr;

2396 dyn->d_tag = DT_FINI_ARRAY;
2397 dyn->d_un.d_ptr = shdr->sh_addr;
2398 dyn++;

2400 dyn->d_tag = DT_FINI_ARRAYSZ;
2401 dyn->d_un.d_val = shdr->sh_size;
2402 dyn++;
2403 }

2405 if (ofl->ofl_osinitarray) {
2406 shdr = ofl->ofl_osinitarray->os_shdr;

2408 dyn->d_tag = DT_INIT_ARRAY;
2409 dyn->d_un.d_ptr = shdr->sh_addr;
2410 dyn++;

2412 dyn->d_tag = DT_INIT_ARRAYSZ;
2413 dyn->d_un.d_val = shdr->sh_size;
2414 dyn++;
2415 }

2417 if (ofl->ofl_ospreinitarray) {
2418 shdr = ofl->ofl_ospreinitarray->os_shdr;

2420 dyn->d_tag = DT_PREINIT_ARRAY;
2421 dyn->d_un.d_ptr = shdr->sh_addr;
2422 dyn++;

2424 dyn->d_tag = DT_PREINIT_ARRAYSZ;
2425 dyn->d_un.d_val = shdr->sh_size;
2426 dyn++;
2427 }

2429 if (ofl->ofl_pltcnt) {
2430 shdr = ofl->ofl_osplt->os_relosdesc->os_shdr;

new/usr/src/cmd/sgs/libld/common/update.c 36

2432 dyn->d_tag = DT_PLTRELSZ;
2433 dyn->d_un.d_ptr = shdr->sh_size;
2434 dyn++;
2435 dyn->d_tag = DT_PLTREL;
2436 dyn->d_un.d_ptr = ld_targ.t_m.m_rel_dt_type;
2437 dyn++;
2438 dyn->d_tag = DT_JMPREL;
2439 dyn->d_un.d_ptr = shdr->sh_addr;
2440 dyn++;
2441 }
2442 if (ofl->ofl_pltpad) {
2443 shdr = ofl->ofl_osplt->os_shdr;

2445 dyn->d_tag = DT_PLTPAD;
2446 if (ofl->ofl_pltcnt) {
2447 dyn->d_un.d_ptr = shdr->sh_addr +
2448 ld_targ.t_m.m_plt_reservsz +
2449 ofl->ofl_pltcnt * ld_targ.t_m.m_plt_entsize;
2450 } else
2451 dyn->d_un.d_ptr = shdr->sh_addr;
2452 dyn++;
2453 dyn->d_tag = DT_PLTPADSZ;
2454 dyn->d_un.d_val = ofl->ofl_pltpad *
2455 ld_targ.t_m.m_plt_entsize;
2456 dyn++;
2457 }
2458 if (ofl->ofl_relocsz) {
2459 shdr = ofl->ofl_osrelhead->os_shdr;

2461 dyn->d_tag = ld_targ.t_m.m_rel_dt_type;
2462 dyn->d_un.d_ptr = shdr->sh_addr;
2463 dyn++;
2464 dyn->d_tag = ld_targ.t_m.m_rel_dt_size;
2465 dyn->d_un.d_ptr = ofl->ofl_relocsz;
2466 dyn++;
2467 dyn->d_tag = ld_targ.t_m.m_rel_dt_ent;
2468 if (shdr->sh_type == SHT_REL)
2469 dyn->d_un.d_ptr = sizeof (Rel);
2470 else
2471 dyn->d_un.d_ptr = sizeof (Rela);
2472 dyn++;
2473 }
2474 if (ofl->ofl_ossyminfo) {
2475 shdr = ofl->ofl_ossyminfo->os_shdr;

2477 dyn->d_tag = DT_SYMINFO;
2478 dyn->d_un.d_ptr = shdr->sh_addr;
2479 dyn++;
2480 dyn->d_tag = DT_SYMINSZ;
2481 dyn->d_un.d_val = shdr->sh_size;
2482 dyn++;
2483 dyn->d_tag = DT_SYMINENT;
2484 dyn->d_un.d_val = sizeof (Syminfo);
2485 dyn++;
2486 }
2487 if (ofl->ofl_osmove) {
2488 shdr = ofl->ofl_osmove->os_shdr;

2490 dyn->d_tag = DT_MOVETAB;
2491 dyn->d_un.d_val = shdr->sh_addr;
2492 dyn++;
2493 dyn->d_tag = DT_MOVESZ;
2494 dyn->d_un.d_val = shdr->sh_size;
2495 dyn++;
2496 dyn->d_tag = DT_MOVEENT;
2497 dyn->d_un.d_val = shdr->sh_entsize;

new/usr/src/cmd/sgs/libld/common/update.c 37

2498 dyn++;
2499 }
2500 if (ofl->ofl_regsymcnt) {
2501 int ndx;

2503 for (ndx = 0; ndx < ofl->ofl_regsymsno; ndx++) {
2504 if ((sdp = ofl->ofl_regsyms[ndx]) == NULL)
2505 continue;

2507 dyn->d_tag = ld_targ.t_m.m_dt_register;
2508 dyn->d_un.d_val = sdp->sd_symndx;
2509 dyn++;
2510 }
2511 }

2513 for (APLIST_TRAVERSE(ofl->ofl_rtldinfo, idx, sdp)) {
2514 dyn->d_tag = DT_SUNW_RTLDINF;
2515 dyn->d_un.d_ptr = sdp->sd_sym->st_value;
2516 dyn++;
2517 }

2519 if (((sgp = ofl->ofl_osdynamic->os_sgdesc) != NULL) &&
2520 (sgp->sg_phdr.p_flags & PF_W) && ofl->ofl_osinterp) {
2521 dyn->d_tag = DT_DEBUG;
2522 dyn->d_un.d_ptr = 0;
2523 dyn++;
2524 }

2526 if (ofl->ofl_oscap) {
2527 dyn->d_tag = DT_SUNW_CAP;
2528 dyn->d_un.d_val = ofl->ofl_oscap->os_shdr->sh_addr;
2529 dyn++;
2530 }
2531 if (ofl->ofl_oscapinfo) {
2532 dyn->d_tag = DT_SUNW_CAPINFO;
2533 dyn->d_un.d_val = ofl->ofl_oscapinfo->os_shdr->sh_addr;
2534 dyn++;
2535 }
2536 if (ofl->ofl_oscapchain) {
2537 shdr = ofl->ofl_oscapchain->os_shdr;

2539 dyn->d_tag = DT_SUNW_CAPCHAIN;
2540 dyn->d_un.d_val = shdr->sh_addr;
2541 dyn++;
2542 dyn->d_tag = DT_SUNW_CAPCHAINSZ;
2543 dyn->d_un.d_val = shdr->sh_size;
2544 dyn++;
2545 dyn->d_tag = DT_SUNW_CAPCHAINENT;
2546 dyn->d_un.d_val = shdr->sh_entsize;
2547 dyn++;
2548 }

2550 if (ofl->ofl_aslr != 0) {
2551 dyn->d_tag = DT_SUNW_ASLR;
2552 dyn->d_un.d_val = (ofl->ofl_aslr == 1);
2553 dyn++;
2554 }

2556 if (flags & FLG_OF_SYMBOLIC) {
2557 dyn->d_tag = DT_SYMBOLIC;
2558 dyn->d_un.d_val = 0;
2559 dyn++;
2560 }
2561 }

2563 dyn->d_tag = DT_FLAGS;

new/usr/src/cmd/sgs/libld/common/update.c 38

2564 dyn->d_un.d_val = ofl->ofl_dtflags;
2565 dyn++;

2567 /*
2568 * If -Bdirect was specified, but some NODIRECT symbols were specified
2569 * via a mapfile, or -znodirect was used on the command line, then
2570 * clear the DF_1_DIRECT flag. The resultant object will use per-symbol
2571 * direct bindings rather than be enabled for global direct bindings.
2572 *
2573 * If any no-direct bindings exist within this object, set the
2574 * DF_1_NODIRECT flag. ld(1) recognizes this flag when processing
2575 * dependencies, and performs extra work to ensure that no direct
2576 * bindings are established to the no-direct symbols that exist
2577 * within these dependencies.
2578 */
2579 if (ofl->ofl_flags1 & FLG_OF1_NGLBDIR)
2580 ofl->ofl_dtflags_1 &= ~DF_1_DIRECT;
2581 if (ofl->ofl_flags1 & FLG_OF1_NDIRECT)
2582 ofl->ofl_dtflags_1 |= DF_1_NODIRECT;

2584 dyn->d_tag = DT_FLAGS_1;
2585 dyn->d_un.d_val = ofl->ofl_dtflags_1;
2586 dyn++;

2588 dyn->d_tag = DT_SUNW_STRPAD;
2589 dyn->d_un.d_val = DYNSTR_EXTRA_PAD;
2590 dyn++;

2592 dyn->d_tag = DT_SUNW_LDMACH;
2593 dyn->d_un.d_val = ld_sunw_ldmach();
2594 dyn++;

2596 if (ofl->ofl_flags & FLG_OF_KMOD) {
2597 dyn->d_tag = DT_SUNW_KMOD;
2598 dyn->d_un.d_val = 1;
2599 dyn++;
2600 }

2602 #endif /* ! codereview */
2603 (*ld_targ.t_mr.mr_mach_update_odynamic)(ofl, &dyn);

2605 for (cnt = 1 + DYNAMIC_EXTRA_ELTS; cnt--; dyn++) {
2606 dyn->d_tag = DT_NULL;
2607 dyn->d_un.d_val = 0;
2608 }

2610 /*
2611 * Ensure that we wrote the right number of entries. If not, we either
2612 * miscounted in make_dynamic(), or we did something wrong in this
2613 * function.
2614 */
2615 assert((ofl->ofl_osdynamic->os_shdr->sh_size /
2616 ofl->ofl_osdynamic->os_shdr->sh_entsize) ==
2617 ((uintptr_t)dyn - (uintptr_t)_dyn) / sizeof (*dyn));

2619 return (1);
2620 }

2622 /*
2623 * Build the version definition section
2624 */
2625 static int
2626 update_overdef(Ofl_desc *ofl)
2627 {
2628 Aliste idx1;
2629 Ver_desc *vdp, *_vdp;

new/usr/src/cmd/sgs/libld/common/update.c 39

2630 Verdef *vdf, *_vdf;
2631 int num = 0;
2632 Os_desc *strosp;
2633 Str_tbl *strtbl;

2635 /*
2636 * Determine which string table to use.
2637 */
2638 if (OFL_IS_STATIC_OBJ(ofl)) {
2639 strtbl = ofl->ofl_strtab;
2640 strosp = ofl->ofl_osstrtab;
2641 } else {
2642 strtbl = ofl->ofl_dynstrtab;
2643 strosp = ofl->ofl_osdynstr;
2644 }

2646 /*
2647 * Traverse the version descriptors and update the version structures
2648 * to point to the dynstr name in preparation for building the version
2649 * section structure.
2650 */
2651 for (APLIST_TRAVERSE(ofl->ofl_verdesc, idx1, vdp)) {
2652 Sym_desc *sdp;

2654 if (vdp->vd_flags & VER_FLG_BASE) {
2655 const char *name = vdp->vd_name;
2656 size_t stoff;

2658 /*
2659 * Create a new string table entry to represent the base
2660 * version name (there is no corresponding symbol for
2661 * this).
2662 */
2663 (void) st_setstring(strtbl, name, &stoff);
2664 /* LINTED */
2665 vdp->vd_name = (const char *)stoff;
2666 } else {
2667 sdp = ld_sym_find(vdp->vd_name, vdp->vd_hash, 0, ofl);
2668 /* LINTED */
2669 vdp->vd_name = (const char *)
2670 (uintptr_t)sdp->sd_sym->st_name;
2671 }
2672 }

2674 _vdf = vdf = (Verdef *)ofl->ofl_osverdef->os_outdata->d_buf;

2676 /*
2677 * Traverse the version descriptors and update the version section to
2678 * reflect each version and its associated dependencies.
2679 */
2680 for (APLIST_TRAVERSE(ofl->ofl_verdesc, idx1, vdp)) {
2681 Aliste idx2;
2682 Half cnt = 1;
2683 Verdaux *vdap, *_vdap;

2685 _vdap = vdap = (Verdaux *)(vdf + 1);

2687 vdf->vd_version = VER_DEF_CURRENT;
2688 vdf->vd_flags = vdp->vd_flags & MSK_VER_USER;
2689 vdf->vd_ndx = vdp->vd_ndx;
2690 vdf->vd_hash = vdp->vd_hash;

2692 /* LINTED */
2693 vdap->vda_name = (uintptr_t)vdp->vd_name;
2694 vdap++;
2695 /* LINTED */

new/usr/src/cmd/sgs/libld/common/update.c 40

2696 _vdap->vda_next = (Word)((uintptr_t)vdap - (uintptr_t)_vdap);

2698 /*
2699 * Traverse this versions dependency list generating the
2700 * appropriate version dependency entries.
2701 */
2702 for (APLIST_TRAVERSE(vdp->vd_deps, idx2, _vdp)) {
2703 /* LINTED */
2704 vdap->vda_name = (uintptr_t)_vdp->vd_name;
2705 _vdap = vdap;
2706 vdap++, cnt++;
2707 /* LINTED */
2708 _vdap->vda_next = (Word)((uintptr_t)vdap -
2709 (uintptr_t)_vdap);
2710 }
2711 _vdap->vda_next = 0;

2713 /*
2714 * Record the versions auxiliary array offset and the associated
2715 * dependency count.
2716 */
2717 /* LINTED */
2718 vdf->vd_aux = (Word)((uintptr_t)(vdf + 1) - (uintptr_t)vdf);
2719 vdf->vd_cnt = cnt;

2721 /*
2722 * Record the next versions offset and update the version
2723 * pointer. Remember the previous version offset as the very
2724 * last structures next pointer should be null.
2725 */
2726 _vdf = vdf;
2727 vdf = (Verdef *)vdap, num++;
2728 /* LINTED */
2729 _vdf->vd_next = (Word)((uintptr_t)vdf - (uintptr_t)_vdf);
2730 }
2731 _vdf->vd_next = 0;

2733 /*
2734 * Record the string table association with the version definition
2735 * section, and the symbol table associated with the version symbol
2736 * table (the actual contents of the version symbol table are filled
2737 * in during symbol update).
2738 */
2739 /* LINTED */
2740 ofl->ofl_osverdef->os_shdr->sh_link = (Word)elf_ndxscn(strosp->os_scn);

2742 /*
2743 * The version definition sections ‘info’ field is used to indicate the
2744 * number of entries in this section.
2745 */
2746 ofl->ofl_osverdef->os_shdr->sh_info = num;

2748 return (1);
2749 }

2751 /*
2752 * Finish the version symbol index section
2753 */
2754 static void
2755 update_oversym(Ofl_desc *ofl)
2756 {
2757 Os_desc *osp;

2759 /*
2760 * Record the symbol table associated with the version symbol table.
2761 * The contents of the version symbol table are filled in during

new/usr/src/cmd/sgs/libld/common/update.c 41

2762 * symbol update.
2763 */
2764 if (OFL_IS_STATIC_OBJ(ofl))
2765 osp = ofl->ofl_ossymtab;
2766 else
2767 osp = ofl->ofl_osdynsym;

2769 /* LINTED */
2770 ofl->ofl_osversym->os_shdr->sh_link = (Word)elf_ndxscn(osp->os_scn);
2771 }

2773 /*
2774 * Build the version needed section
2775 */
2776 static int
2777 update_overneed(Ofl_desc *ofl)
2778 {
2779 Aliste idx1;
2780 Ifl_desc *ifl;
2781 Verneed *vnd, *_vnd;
2782 Os_desc *strosp;
2783 Str_tbl *strtbl;
2784 Word num = 0;

2786 _vnd = vnd = (Verneed *)ofl->ofl_osverneed->os_outdata->d_buf;

2788 /*
2789 * Determine which string table is appropriate.
2790 */
2791 if (OFL_IS_STATIC_OBJ(ofl)) {
2792 strosp = ofl->ofl_osstrtab;
2793 strtbl = ofl->ofl_strtab;
2794 } else {
2795 strosp = ofl->ofl_osdynstr;
2796 strtbl = ofl->ofl_dynstrtab;
2797 }

2799 /*
2800 * Traverse the shared object list looking for dependencies that have
2801 * versions defined within them.
2802 */
2803 for (APLIST_TRAVERSE(ofl->ofl_sos, idx1, ifl)) {
2804 Half _cnt;
2805 Word cnt = 0;
2806 Vernaux *_vnap, *vnap;
2807 size_t stoff;

2809 if (!(ifl->ifl_flags & FLG_IF_VERNEED))
2810 continue;

2812 vnd->vn_version = VER_NEED_CURRENT;

2814 (void) st_setstring(strtbl, ifl->ifl_soname, &stoff);
2815 vnd->vn_file = stoff;

2817 _vnap = vnap = (Vernaux *)(vnd + 1);

2819 /*
2820 * Traverse the version index list recording
2821 * each version as a needed dependency.
2822 */
2823 for (_cnt = 0; _cnt <= ifl->ifl_vercnt; _cnt++) {
2824 Ver_index *vip = &ifl->ifl_verndx[_cnt];

2826 if (vip->vi_flags & FLG_VER_REFER) {
2827 (void) st_setstring(strtbl, vip->vi_name,

new/usr/src/cmd/sgs/libld/common/update.c 42

2828 &stoff);
2829 vnap->vna_name = stoff;

2831 if (vip->vi_desc) {
2832 vnap->vna_hash = vip->vi_desc->vd_hash;
2833 vnap->vna_flags =
2834 vip->vi_desc->vd_flags;
2835 } else {
2836 vnap->vna_hash = 0;
2837 vnap->vna_flags = 0;
2838 }
2839 vnap->vna_other = vip->vi_overndx;

2841 /*
2842 * If version A inherits version B, then
2843 * B is implicit in A. It suffices for ld.so.1
2844 * to verify A at runtime and skip B. The
2845 * version normalization process sets the INFO
2846 * flag for the versions we want ld.so.1 to
2847 * skip.
2848 */
2849 if (vip->vi_flags & VER_FLG_INFO)
2850 vnap->vna_flags |= VER_FLG_INFO;

2852 _vnap = vnap;
2853 vnap++, cnt++;
2854 _vnap->vna_next =
2855 /* LINTED */
2856 (Word)((uintptr_t)vnap - (uintptr_t)_vnap);
2857 }
2858 }

2860 _vnap->vna_next = 0;

2862 /*
2863 * Record the versions auxiliary array offset and
2864 * the associated dependency count.
2865 */
2866 /* LINTED */
2867 vnd->vn_aux = (Word)((uintptr_t)(vnd + 1) - (uintptr_t)vnd);
2868 /* LINTED */
2869 vnd->vn_cnt = (Half)cnt;

2871 /*
2872 * Record the next versions offset and update the version
2873 * pointer. Remember the previous version offset as the very
2874 * last structures next pointer should be null.
2875 */
2876 _vnd = vnd;
2877 vnd = (Verneed *)vnap, num++;
2878 /* LINTED */
2879 _vnd->vn_next = (Word)((uintptr_t)vnd - (uintptr_t)_vnd);
2880 }
2881 _vnd->vn_next = 0;

2883 /*
2884 * Use sh_link to record the associated string table section, and
2885 * sh_info to indicate the number of entries contained in the section.
2886 */
2887 /* LINTED */
2888 ofl->ofl_osverneed->os_shdr->sh_link = (Word)elf_ndxscn(strosp->os_scn);
2889 ofl->ofl_osverneed->os_shdr->sh_info = num;

2891 return (1);
2892 }

new/usr/src/cmd/sgs/libld/common/update.c 43

2894 /*
2895 * Update syminfo section.
2896 */
2897 static uintptr_t
2898 update_osyminfo(Ofl_desc *ofl)
2899 {
2900 Os_desc *symosp, *infosp = ofl->ofl_ossyminfo;
2901 Syminfo *sip = infosp->os_outdata->d_buf;
2902 Shdr *shdr = infosp->os_shdr;
2903 char *strtab;
2904 Aliste idx;
2905 Sym_desc *sdp;
2906 Sfltr_desc *sftp;

2908 if (ofl->ofl_flags & FLG_OF_RELOBJ) {
2909 symosp = ofl->ofl_ossymtab;
2910 strtab = ofl->ofl_osstrtab->os_outdata->d_buf;
2911 } else {
2912 symosp = ofl->ofl_osdynsym;
2913 strtab = ofl->ofl_osdynstr->os_outdata->d_buf;
2914 }

2916 /* LINTED */
2917 infosp->os_shdr->sh_link = (Word)elf_ndxscn(symosp->os_scn);
2918 if (ofl->ofl_osdynamic)
2919 infosp->os_shdr->sh_info =
2920 /* LINTED */
2921 (Word)elf_ndxscn(ofl->ofl_osdynamic->os_scn);

2923 /*
2924 * Update any references with the index into the dynamic table.
2925 */
2926 for (APLIST_TRAVERSE(ofl->ofl_symdtent, idx, sdp))
2927 sip[sdp->sd_symndx].si_boundto = sdp->sd_file->ifl_neededndx;

2929 /*
2930 * Update any filtee references with the index into the dynamic table.
2931 */
2932 for (ALIST_TRAVERSE(ofl->ofl_symfltrs, idx, sftp)) {
2933 Dfltr_desc *dftp;

2935 dftp = alist_item(ofl->ofl_dtsfltrs, sftp->sft_idx);
2936 sip[sftp->sft_sdp->sd_symndx].si_boundto = dftp->dft_ndx;
2937 }

2939 /*
2940 * Display debugging information about section.
2941 */
2942 DBG_CALL(Dbg_syminfo_title(ofl->ofl_lml));
2943 if (DBG_ENABLED) {
2944 Word _cnt, cnt = shdr->sh_size / shdr->sh_entsize;
2945 Sym *symtab = symosp->os_outdata->d_buf;
2946 Dyn *dyn;

2948 if (ofl->ofl_osdynamic)
2949 dyn = ofl->ofl_osdynamic->os_outdata->d_buf;
2950 else
2951 dyn = NULL;

2953 for (_cnt = 1; _cnt < cnt; _cnt++) {
2954 if (sip[_cnt].si_flags || sip[_cnt].si_boundto)
2955 /* LINTED */
2956 DBG_CALL(Dbg_syminfo_entry(ofl->ofl_lml, _cnt,
2957 &sip[_cnt], &symtab[_cnt], strtab, dyn));
2958 }
2959 }

new/usr/src/cmd/sgs/libld/common/update.c 44

2960 return (1);
2961 }

2963 /*
2964 * Build the output elf header.
2965 */
2966 static uintptr_t
2967 update_oehdr(Ofl_desc * ofl)
2968 {
2969 Ehdr *ehdr = ofl->ofl_nehdr;

2971 /*
2972 * If an entry point symbol has already been established (refer
2973 * sym_validate()) simply update the elf header entry point with the
2974 * symbols value. If no entry point is defined it will have been filled
2975 * with the start address of the first section within the text segment
2976 * (refer update_outfile()).
2977 */
2978 if (ofl->ofl_entry)
2979 ehdr->e_entry =
2980 ((Sym_desc *)(ofl->ofl_entry))->sd_sym->st_value;

2982 ehdr->e_ident[EI_DATA] = ld_targ.t_m.m_data;
2983 ehdr->e_version = ofl->ofl_dehdr->e_version;

2985 /*
2986 * When generating a relocatable object under -z symbolcap, set the
2987 * e_machine to be generic, and remove any e_flags. Input relocatable
2988 * objects may identify alternative e_machine (m.machplus) and e_flags
2989 * values. However, the functions within the created output object
2990 * are selected at runtime using the capabilities mechanism, which
2991 * supersedes the e-machine and e_flags information. Therefore,
2992 * e_machine and e_flag values are not propagated to the output object,
2993 * as these values might prevent the kernel from loading the object
2994 * before the runtime linker gets control.
2995 */
2996 if (ofl->ofl_flags & FLG_OF_OTOSCAP) {
2997 ehdr->e_machine = ld_targ.t_m.m_mach;
2998 ehdr->e_flags = 0;
2999 } else {
3000 /*
3001 * Note. it may be necessary to update the e_flags field in the
3002 * machine dependent section.
3003 */
3004 ehdr->e_machine = ofl->ofl_dehdr->e_machine;
3005 ehdr->e_flags = ofl->ofl_dehdr->e_flags;

3007 if (ehdr->e_machine != ld_targ.t_m.m_mach) {
3008 if (ehdr->e_machine != ld_targ.t_m.m_machplus)
3009 return (S_ERROR);
3010 if ((ehdr->e_flags & ld_targ.t_m.m_flagsplus) == 0)
3011 return (S_ERROR);
3012 }
3013 }

3015 if (ofl->ofl_flags & FLG_OF_SHAROBJ)
3016 ehdr->e_type = ET_DYN;
3017 else if (ofl->ofl_flags & FLG_OF_RELOBJ)
3018 ehdr->e_type = ET_REL;
3019 else
3020 ehdr->e_type = ET_EXEC;

3022 return (1);
3023 }

3025 /*

new/usr/src/cmd/sgs/libld/common/update.c 45

3026 * Perform move table expansion.
3027 */
3028 static void
3029 expand_move(Ofl_desc *ofl, Sym_desc *sdp, Move *mvp)
3030 {
3031 Os_desc *osp;
3032 uchar_t *taddr, *taddr0;
3033 Sxword offset;
3034 Half cnt;
3035 uint_t stride;

3037 osp = ofl->ofl_isparexpn->is_osdesc;
3038 offset = sdp->sd_sym->st_value - osp->os_shdr->sh_addr;

3040 taddr0 = taddr = osp->os_outdata->d_buf;
3041 taddr += offset;
3042 taddr = taddr + mvp->m_poffset;

3044 for (cnt = 0; cnt < mvp->m_repeat; cnt++) {
3045 /* LINTED */
3046 DBG_CALL(Dbg_move_expand(ofl->ofl_lml, mvp,
3047 (Addr)(taddr - taddr0)));
3048 stride = (uint_t)mvp->m_stride + 1;

3050 /*
3051 * Update the target address based upon the move entry size.
3052 * This size was validated in ld_process_move().
3053 */
3054 /* LINTED */
3055 switch (ELF_M_SIZE(mvp->m_info)) {
3056 case 1:
3057 /* LINTED */
3058 *taddr = (uchar_t)mvp->m_value;
3059 taddr += stride;
3060 break;
3061 case 2:
3062 /* LINTED */
3063 *((Half *)taddr) = (Half)mvp->m_value;
3064 taddr += 2 * stride;
3065 break;
3066 case 4:
3067 /* LINTED */
3068 *((Word *)taddr) = (Word)mvp->m_value;
3069 taddr += 4 * stride;
3070 break;
3071 case 8:
3072 /* LINTED */
3073 *((u_longlong_t *)taddr) = mvp->m_value;
3074 taddr += 8 * stride;
3075 break;
3076 }
3077 }
3078 }

3080 /*
3081 * Update Move sections.
3082 */
3083 static void
3084 update_move(Ofl_desc *ofl)
3085 {
3086 Word ndx = 0;
3087 ofl_flag_t flags = ofl->ofl_flags;
3088 Move *omvp;
3089 Aliste idx1;
3090 Sym_desc *sdp;

new/usr/src/cmd/sgs/libld/common/update.c 46

3092 /*
3093 * Determine the index of the symbol table that will be referenced by
3094 * the Move section.
3095 */
3096 if (OFL_ALLOW_DYNSYM(ofl))
3097 /* LINTED */
3098 ndx = (Word) elf_ndxscn(ofl->ofl_osdynsym->os_scn);
3099 else if (!(flags & FLG_OF_STRIP) || (flags & FLG_OF_RELOBJ))
3100 /* LINTED */
3101 ndx = (Word) elf_ndxscn(ofl->ofl_ossymtab->os_scn);

3103 /*
3104 * Update sh_link of the Move section, and point to the new Move data.
3105 */
3106 if (ofl->ofl_osmove) {
3107 ofl->ofl_osmove->os_shdr->sh_link = ndx;
3108 omvp = (Move *)ofl->ofl_osmove->os_outdata->d_buf;
3109 }

3111 /*
3112 * Update symbol entry index
3113 */
3114 for (APLIST_TRAVERSE(ofl->ofl_parsyms, idx1, sdp)) {
3115 Aliste idx2;
3116 Mv_desc *mdp;

3118 /*
3119 * Expand move table
3120 */
3121 if (sdp->sd_flags & FLG_SY_PAREXPN) {
3122 const char *str;

3124 if (flags & FLG_OF_STATIC)
3125 str = MSG_INTL(MSG_PSYM_EXPREASON1);
3126 else if (ofl->ofl_flags1 & FLG_OF1_NOPARTI)
3127 str = MSG_INTL(MSG_PSYM_EXPREASON2);
3128 else
3129 str = MSG_INTL(MSG_PSYM_EXPREASON3);

3131 DBG_CALL(Dbg_move_parexpn(ofl->ofl_lml,
3132 sdp->sd_name, str));

3134 for (ALIST_TRAVERSE(sdp->sd_move, idx2, mdp)) {
3135 DBG_CALL(Dbg_move_entry1(ofl->ofl_lml, 0,
3136 mdp->md_move, sdp));
3137 expand_move(ofl, sdp, mdp->md_move);
3138 }
3139 continue;
3140 }

3142 /*
3143 * Process move table
3144 */
3145 DBG_CALL(Dbg_move_outmove(ofl->ofl_lml, sdp->sd_name));

3147 for (ALIST_TRAVERSE(sdp->sd_move, idx2, mdp)) {
3148 Move *imvp;
3149 int idx = 1;
3150 Sym *sym;

3152 imvp = mdp->md_move;
3153 sym = sdp->sd_sym;

3155 DBG_CALL(Dbg_move_entry1(ofl->ofl_lml, 1, imvp, sdp));

3157 *omvp = *imvp;

new/usr/src/cmd/sgs/libld/common/update.c 47

3158 if ((flags & FLG_OF_RELOBJ) == 0) {
3159 if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) {
3160 Os_desc *osp = sdp->sd_isc->is_osdesc;
3161 Word ndx = osp->os_identndx;

3163 omvp->m_info =
3164 /* LINTED */
3165 ELF_M_INFO(ndx, imvp->m_info);

3167 if (ELF_ST_TYPE(sym->st_info) !=
3168 STT_SECTION) {
3169 omvp->m_poffset =
3170 sym->st_value -
3171 osp->os_shdr->sh_addr +
3172 imvp->m_poffset;
3173 }
3174 } else {
3175 omvp->m_info =
3176 /* LINTED */
3177 ELF_M_INFO(sdp->sd_symndx,
3178 imvp->m_info);
3179 }
3180 } else {
3181 Boolean isredloc = FALSE;

3183 if ((ELF_ST_BIND(sym->st_info) == STB_LOCAL) &&
3184 (ofl->ofl_flags & FLG_OF_REDLSYM))
3185 isredloc = TRUE;

3187 if (isredloc && !(sdp->sd_move)) {
3188 Os_desc *osp = sdp->sd_isc->is_osdesc;
3189 Word ndx = osp->os_identndx;

3191 omvp->m_info =
3192 /* LINTED */
3193 ELF_M_INFO(ndx, imvp->m_info);

3195 omvp->m_poffset += sym->st_value;
3196 } else {
3197 if (isredloc)
3198 DBG_CALL(Dbg_syms_reduce(ofl,
3199 DBG_SYM_REDUCE_RETAIN,
3200 sdp, idx,
3201 ofl->ofl_osmove->os_name));

3203 omvp->m_info =
3204 /* LINTED */
3205 ELF_M_INFO(sdp->sd_symndx,
3206 imvp->m_info);
3207 }
3208 }

3210 DBG_CALL(Dbg_move_entry1(ofl->ofl_lml, 0, omvp, sdp));
3211 omvp++;
3212 idx++;
3213 }
3214 }
3215 }

3217 /*
3218 * Scan through the SHT_GROUP output sections. Update their sh_link/sh_info
3219 * fields as well as the section contents.
3220 */
3221 static uintptr_t
3222 update_ogroup(Ofl_desc *ofl)
3223 {

new/usr/src/cmd/sgs/libld/common/update.c 48

3224 Aliste idx;
3225 Os_desc *osp;
3226 uintptr_t error = 0;

3228 for (APLIST_TRAVERSE(ofl->ofl_osgroups, idx, osp)) {
3229 Is_desc *isp;
3230 Ifl_desc *ifl;
3231 Shdr *shdr = osp->os_shdr;
3232 Sym_desc *sdp;
3233 Xword i, grpcnt;
3234 Word *gdata;

3236 /*
3237 * Since input GROUP sections always create unique
3238 * output GROUP sections - we know there is only one
3239 * item on the list.
3240 */
3241 isp = ld_os_first_isdesc(osp);

3243 ifl = isp->is_file;
3244 sdp = ifl->ifl_oldndx[isp->is_shdr->sh_info];
3245 shdr->sh_link = (Word)elf_ndxscn(ofl->ofl_ossymtab->os_scn);
3246 shdr->sh_info = sdp->sd_symndx;

3248 /*
3249 * Scan through the group data section and update
3250 * all of the links to new values.
3251 */
3252 grpcnt = shdr->sh_size / shdr->sh_entsize;
3253 gdata = (Word *)osp->os_outdata->d_buf;

3255 for (i = 1; i < grpcnt; i++) {
3256 Os_desc *_osp;
3257 Is_desc *_isp = ifl->ifl_isdesc[gdata[i]];

3259 /*
3260 * If the referenced section didn’t make it to the
3261 * output file - just zero out the entry.
3262 */
3263 if ((_osp = _isp->is_osdesc) == NULL)
3264 gdata[i] = 0;
3265 else
3266 gdata[i] = (Word)elf_ndxscn(_osp->os_scn);
3267 }
3268 }
3269 return (error);
3270 }

3272 static void
3273 update_ostrtab(Os_desc *osp, Str_tbl *stp, uint_t extra)
3274 {
3275 Elf_Data *data;

3277 if (osp == NULL)
3278 return;

3280 data = osp->os_outdata;
3281 assert(data->d_size == (st_getstrtab_sz(stp) + extra));
3282 (void) st_setstrbuf(stp, data->d_buf, data->d_size - extra);
3283 /* If leaving an extra hole at the end, zero it */
3284 if (extra > 0)
3285 (void) memset((char *)data->d_buf + data->d_size - extra,
3286 0x0, extra);
3287 }

3289 /*

new/usr/src/cmd/sgs/libld/common/update.c 49

3290 * Update capabilities information.
3291 *
3292 * If string table capabilities exist, then the associated string must be
3293 * translated into an offset into the string table.
3294 */
3295 static void
3296 update_oscap(Ofl_desc *ofl)
3297 {
3298 Os_desc *strosp, *cosp;
3299 Cap *cap;
3300 Str_tbl *strtbl;
3301 Capstr *capstr;
3302 size_t stoff;
3303 Aliste idx1;

3305 /*
3306 * Determine which symbol table or string table is appropriate.
3307 */
3308 if (OFL_IS_STATIC_OBJ(ofl)) {
3309 strosp = ofl->ofl_osstrtab;
3310 strtbl = ofl->ofl_strtab;
3311 } else {
3312 strosp = ofl->ofl_osdynstr;
3313 strtbl = ofl->ofl_dynstrtab;
3314 }

3316 /*
3317 * If symbol capabilities exist, set the sh_link field of the .SUNW_cap
3318 * section to the .SUNW_capinfo section.
3319 */
3320 if (ofl->ofl_oscapinfo) {
3321 cosp = ofl->ofl_oscap;
3322 cosp->os_shdr->sh_link =
3323 (Word)elf_ndxscn(ofl->ofl_oscapinfo->os_scn);
3324 }

3326 /*
3327 * If there are capability strings to process, set the sh_info
3328 * field of the .SUNW_cap section to the associated string table, and
3329 * proceed to process any CA_SUNW_PLAT entries.
3330 */
3331 if ((ofl->ofl_flags & FLG_OF_CAPSTRS) == 0)
3332 return;

3334 cosp = ofl->ofl_oscap;
3335 cosp->os_shdr->sh_info = (Word)elf_ndxscn(strosp->os_scn);

3337 cap = ofl->ofl_oscap->os_outdata->d_buf;

3339 /*
3340 * Determine whether an object capability identifier, or object
3341 * machine/platform capabilities exists.
3342 */
3343 capstr = &ofl->ofl_ocapset.oc_id;
3344 if (capstr->cs_str) {
3345 (void) st_setstring(strtbl, capstr->cs_str, &stoff);
3346 cap[capstr->cs_ndx].c_un.c_ptr = stoff;
3347 }
3348 for (ALIST_TRAVERSE(ofl->ofl_ocapset.oc_plat.cl_val, idx1, capstr)) {
3349 (void) st_setstring(strtbl, capstr->cs_str, &stoff);
3350 cap[capstr->cs_ndx].c_un.c_ptr = stoff;
3351 }
3352 for (ALIST_TRAVERSE(ofl->ofl_ocapset.oc_mach.cl_val, idx1, capstr)) {
3353 (void) st_setstring(strtbl, capstr->cs_str, &stoff);
3354 cap[capstr->cs_ndx].c_un.c_ptr = stoff;
3355 }

new/usr/src/cmd/sgs/libld/common/update.c 50

3357 /*
3358 * Determine any symbol capability identifiers, or machine/platform
3359 * capabilities.
3360 */
3361 if (ofl->ofl_capgroups) {
3362 Cap_group *cgp;

3364 for (APLIST_TRAVERSE(ofl->ofl_capgroups, idx1, cgp)) {
3365 Objcapset *ocapset = &cgp->cg_set;
3366 Aliste idx2;

3368 capstr = &ocapset->oc_id;
3369 if (capstr->cs_str) {
3370 (void) st_setstring(strtbl, capstr->cs_str,
3371 &stoff);
3372 cap[capstr->cs_ndx].c_un.c_ptr = stoff;
3373 }
3374 for (ALIST_TRAVERSE(ocapset->oc_plat.cl_val, idx2,
3375 capstr)) {
3376 (void) st_setstring(strtbl, capstr->cs_str,
3377 &stoff);
3378 cap[capstr->cs_ndx].c_un.c_ptr = stoff;
3379 }
3380 for (ALIST_TRAVERSE(ocapset->oc_mach.cl_val, idx2,
3381 capstr)) {
3382 (void) st_setstring(strtbl, capstr->cs_str,
3383 &stoff);
3384 cap[capstr->cs_ndx].c_un.c_ptr = stoff;
3385 }
3386 }
3387 }
3388 }

3390 /*
3391 * Update the .SUNW_capinfo, and possibly the .SUNW_capchain sections.
3392 */
3393 static void
3394 update_oscapinfo(Ofl_desc *ofl)
3395 {
3396 Os_desc *symosp, *ciosp, *ccosp = NULL;
3397 Capinfo *ocapinfo;
3398 Capchain *ocapchain;
3399 Cap_avlnode *cav;
3400 Word chainndx = 0;

3402 /*
3403 * Determine which symbol table is appropriate.
3404 */
3405 if (OFL_IS_STATIC_OBJ(ofl))
3406 symosp = ofl->ofl_ossymtab;
3407 else
3408 symosp = ofl->ofl_osdynsym;

3410 /*
3411 * Update the .SUNW_capinfo sh_link to point to the appropriate symbol
3412 * table section. If we’re creating a dynamic object, the
3413 * .SUNW_capinfo sh_info is updated to point to the .SUNW_capchain
3414 * section.
3415 */
3416 ciosp = ofl->ofl_oscapinfo;
3417 ciosp->os_shdr->sh_link = (Word)elf_ndxscn(symosp->os_scn);

3419 if (OFL_IS_STATIC_OBJ(ofl) == 0) {
3420 ccosp = ofl->ofl_oscapchain;
3421 ciosp->os_shdr->sh_info = (Word)elf_ndxscn(ccosp->os_scn);

new/usr/src/cmd/sgs/libld/common/update.c 51

3422 }

3424 /*
3425 * Establish the data for each section. The first element of each
3426 * section defines the section’s version number.
3427 */
3428 ocapinfo = ciosp->os_outdata->d_buf;
3429 ocapinfo[0] = CAPINFO_CURRENT;
3430 if (ccosp) {
3431 ocapchain = ccosp->os_outdata->d_buf;
3432 ocapchain[chainndx++] = CAPCHAIN_CURRENT;
3433 }

3435 /*
3436 * Traverse all capabilities families. Each member has a .SUNW_capinfo
3437 * assignment. The .SUNW_capinfo entry differs for relocatable objects
3438 * and dynamic objects.
3439 *
3440 * Relocatable objects:
3441 * ELF_C_GROUP ELF_C_SYM
3442 *
3443 * Family lead: CAPINFO_SUNW_GLOB lead symbol index
3444 * Family lead alias: CAPINFO_SUNW_GLOB lead symbol index
3445 * Family member: .SUNW_cap index lead symbol index
3446 *
3447 * Dynamic objects:
3448 * ELF_C_GROUP ELF_C_SYM
3449 *
3450 * Family lead: CAPINFO_SUNW_GLOB .SUNW_capchain index
3451 * Family lead alias: CAPINFO_SUNW_GLOB .SUNW_capchain index
3452 * Family member: .SUNW_cap index lead symbol index
3453 *
3454 * The ELF_C_GROUP field identifies a capabilities symbol. Lead
3455 * capability symbols, and lead capability aliases are identified by
3456 * a CAPINFO_SUNW_GLOB group identifier. For family members, the
3457 * ELF_C_GROUP provides an index to the associate capabilities group
3458 * (i.e, an index into the SUNW_cap section that defines a group).
3459 *
3460 * For relocatable objects, the ELF_C_SYM field identifies the lead
3461 * capability symbol. For the lead symbol itself, the .SUNW_capinfo
3462 * index is the same as the ELF_C_SYM value. For lead alias symbols,
3463 * the .SUNW_capinfo index differs from the ELF_C_SYM value. This
3464 * differentiation of CAPINFO_SUNW_GLOB symbols allows ld(1) to
3465 * identify, and propagate lead alias symbols. For example, the lead
3466 * capability symbol memcpy() would have the ELF_C_SYM for memcpy(),
3467 * and the lead alias _memcpy() would also have the ELF_C_SYM for
3468 * memcpy().
3469 *
3470 * For dynamic objects, both a lead capability symbol, and alias symbol
3471 * would have a ELF_C_SYM value that represents the same capability
3472 * chain index. The capability chain allows ld.so.1 to traverse a
3473 * family chain for a given lead symbol, and select the most appropriate
3474 * family member. The .SUNW_capchain array contains a series of symbol
3475 * indexes for each family member:
3476 *
3477 * chaincap[n] chaincap[n + 1] chaincap[n + 2] chaincap[n + x]
3478 * foo() ndx foo%x() ndx foo%y() ndx 0
3479 *
3480 * For family members, the ELF_C_SYM value associates the capability
3481 * members with their family lead symbol. This association, although
3482 * unused within a dynamic object, allows ld(1) to identify, and
3483 * propagate family members when processing relocatable objects.
3484 */
3485 for (cav = avl_first(ofl->ofl_capfamilies); cav;
3486 cav = AVL_NEXT(ofl->ofl_capfamilies, cav)) {
3487 Cap_sym *csp;

new/usr/src/cmd/sgs/libld/common/update.c 52

3488 Aliste idx;
3489 Sym_desc *asdp, *lsdp = cav->cn_symavlnode.sav_sdp;

3491 if (ccosp) {
3492 /*
3493 * For a dynamic object, identify this lead symbol, and
3494 * point it to the head of a capability chain. Set the
3495 * head of the capability chain to the same lead symbol.
3496 */
3497 ocapinfo[lsdp->sd_symndx] =
3498 ELF_C_INFO(chainndx, CAPINFO_SUNW_GLOB);
3499 ocapchain[chainndx] = lsdp->sd_symndx;
3500 } else {
3501 /*
3502 * For a relocatable object, identify this lead symbol,
3503 * and set the lead symbol index to itself.
3504 */
3505 ocapinfo[lsdp->sd_symndx] =
3506 ELF_C_INFO(lsdp->sd_symndx, CAPINFO_SUNW_GLOB);
3507 }

3509 /*
3510 * Gather any lead symbol aliases.
3511 */
3512 for (APLIST_TRAVERSE(cav->cn_aliases, idx, asdp)) {
3513 if (ccosp) {
3514 /*
3515 * For a dynamic object, identify this lead
3516 * alias symbol, and point it to the same
3517 * capability chain index as the lead symbol.
3518 */
3519 ocapinfo[asdp->sd_symndx] =
3520 ELF_C_INFO(chainndx, CAPINFO_SUNW_GLOB);
3521 } else {
3522 /*
3523 * For a relocatable object, identify this lead
3524 * alias symbol, and set the lead symbol index
3525 * to the lead symbol.
3526 */
3527 ocapinfo[asdp->sd_symndx] =
3528 ELF_C_INFO(lsdp->sd_symndx,
3529 CAPINFO_SUNW_GLOB);
3530 }
3531 }

3533 chainndx++;

3535 /*
3536 * Gather the family members.
3537 */
3538 for (APLIST_TRAVERSE(cav->cn_members, idx, csp)) {
3539 Sym_desc *msdp = csp->cs_sdp;

3541 /*
3542 * Identify the members capability group, and the lead
3543 * symbol of the family this symbol is a member of.
3544 */
3545 ocapinfo[msdp->sd_symndx] =
3546 ELF_C_INFO(lsdp->sd_symndx, csp->cs_group->cg_ndx);
3547 if (ccosp) {
3548 /*
3549 * For a dynamic object, set the next capability
3550 * chain to point to this family member.
3551 */
3552 ocapchain[chainndx++] = msdp->sd_symndx;
3553 }

new/usr/src/cmd/sgs/libld/common/update.c 53

3554 }

3556 /*
3557 * Any chain of family members is terminated with a 0 element.
3558 */
3559 if (ccosp)
3560 ocapchain[chainndx++] = 0;
3561 }
3562 }

3564 /*
3565 * Translate the shdr->sh_{link, info} from its input section value to that
3566 * of the corresponding shdr->sh_{link, info} output section value.
3567 */
3568 static Word
3569 translate_link(Ofl_desc *ofl, Os_desc *osp, Word link, const char *msg)
3570 {
3571 Is_desc *isp;
3572 Ifl_desc *ifl;

3574 /*
3575 * Don’t translate the special section numbers.
3576 */
3577 if (link >= SHN_LORESERVE)
3578 return (link);

3580 /*
3581 * Does this output section translate back to an input file. If not
3582 * then there is no translation to do. In this case we will assume that
3583 * if sh_link has a value, it’s the right value.
3584 */
3585 isp = ld_os_first_isdesc(osp);
3586 if ((ifl = isp->is_file) == NULL)
3587 return (link);

3589 /*
3590 * Sanity check to make sure that the sh_{link, info} value
3591 * is within range for the input file.
3592 */
3593 if (link >= ifl->ifl_shnum) {
3594 ld_eprintf(ofl, ERR_WARNING, msg, ifl->ifl_name,
3595 EC_WORD(isp->is_scnndx), isp->is_name, EC_XWORD(link));
3596 return (link);
3597 }

3599 /*
3600 * Follow the link to the input section.
3601 */
3602 if ((isp = ifl->ifl_isdesc[link]) == NULL)
3603 return (0);
3604 if ((osp = isp->is_osdesc) == NULL)
3605 return (0);

3607 /* LINTED */
3608 return ((Word)elf_ndxscn(osp->os_scn));
3609 }

3611 /*
3612 * Having created all of the necessary sections, segments, and associated
3613 * headers, fill in the program headers and update any other data in the
3614 * output image. Some general rules:
3615 *
3616 * - If an interpreter is required always generate a PT_PHDR entry as
3617 * well. It is this entry that triggers the kernel into passing the
3618 * interpreter an aux vector instead of just a file descriptor.
3619 *

new/usr/src/cmd/sgs/libld/common/update.c 54

3620 * - When generating an image that will be interpreted (ie. a dynamic
3621 * executable, a shared object, or a static executable that has been
3622 * provided with an interpreter - weird, but possible), make the initial
3623 * loadable segment include both the ehdr and phdr[]. Both of these
3624 * tables are used by the interpreter therefore it seems more intuitive
3625 * to explicitly defined them as part of the mapped image rather than
3626 * relying on page rounding by the interpreter to allow their access.
3627 *
3628 * - When generating a static image that does not require an interpreter
3629 * have the first loadable segment indicate the address of the first
3630 * .section as the start address (things like /kernel/unix and ufsboot
3631 * expect this behavior).
3632 */
3633 uintptr_t
3634 ld_update_outfile(Ofl_desc *ofl)
3635 {
3636 Addr size, etext, vaddr;
3637 Sg_desc *sgp;
3638 Sg_desc *dtracesgp = NULL, *capsgp = NULL, *intpsgp = NULL;
3639 Os_desc *osp;
3640 int phdrndx = 0, segndx = -1, secndx, intppndx, intpsndx;
3641 int dtracepndx, dtracesndx, cappndx, capsndx;
3642 Ehdr *ehdr = ofl->ofl_nehdr;
3643 Shdr *hshdr;
3644 Phdr *_phdr = NULL;
3645 Word phdrsz = (ehdr->e_phnum * ehdr->e_phentsize), shscnndx;
3646 ofl_flag_t flags = ofl->ofl_flags;
3647 Word ehdrsz = ehdr->e_ehsize;
3648 Boolean nobits;
3649 Off offset;
3650 Aliste idx1;

3652 /*
3653 * Initialize the starting address for the first segment. Executables
3654 * have different starting addresses depending upon the target ABI,
3655 * where as shared objects have a starting address of 0. If this is
3656 * a 64-bit executable that is being constructed to run in a restricted
3657 * address space, use an alternative origin that will provide more free
3658 * address space for the the eventual process.
3659 */
3660 if (ofl->ofl_flags & FLG_OF_EXEC) {
3661 #if defined(_ELF64)
3662 if (ofl->ofl_ocapset.oc_sf_1.cm_val & SF1_SUNW_ADDR32)
3663 vaddr = ld_targ.t_m.m_segm_aorigin;
3664 else
3665 #endif
3666 vaddr = ld_targ.t_m.m_segm_origin;
3667 } else
3668 vaddr = 0;

3670 /*
3671 * Loop through the segment descriptors and pick out what we need.
3672 */
3673 DBG_CALL(Dbg_seg_title(ofl->ofl_lml));
3674 for (APLIST_TRAVERSE(ofl->ofl_segs, idx1, sgp)) {
3675 Phdr *phdr = &(sgp->sg_phdr);
3676 Xword p_align;
3677 Aliste idx2;
3678 Sym_desc *sdp;

3680 segndx++;

3682 /*
3683 * If an interpreter is required generate a PT_INTERP and
3684 * PT_PHDR program header entry. The PT_PHDR entry describes
3685 * the program header table itself. This information will be

new/usr/src/cmd/sgs/libld/common/update.c 55

3686 * passed via the aux vector to the interpreter (ld.so.1).
3687 * The program header array is actually part of the first
3688 * loadable segment (and the PT_PHDR entry is the first entry),
3689 * therefore its virtual address isn’t known until the first
3690 * loadable segment is processed.
3691 */
3692 if (phdr->p_type == PT_PHDR) {
3693 if (ofl->ofl_osinterp) {
3694 phdr->p_offset = ehdr->e_phoff;
3695 phdr->p_filesz = phdr->p_memsz = phdrsz;

3697 DBG_CALL(Dbg_seg_entry(ofl, segndx, sgp));
3698 ofl->ofl_phdr[phdrndx++] = *phdr;
3699 }
3700 continue;
3701 }
3702 if (phdr->p_type == PT_INTERP) {
3703 if (ofl->ofl_osinterp) {
3704 intpsgp = sgp;
3705 intpsndx = segndx;
3706 intppndx = phdrndx++;
3707 }
3708 continue;
3709 }

3711 /*
3712 * If we are creating a PT_SUNWDTRACE segment, remember where
3713 * the program header is. The header values are assigned after
3714 * update_osym() has completed and the symbol table addresses
3715 * have been updated.
3716 */
3717 if (phdr->p_type == PT_SUNWDTRACE) {
3718 if (ofl->ofl_dtracesym &&
3719 ((flags & FLG_OF_RELOBJ) == 0)) {
3720 dtracesgp = sgp;
3721 dtracesndx = segndx;
3722 dtracepndx = phdrndx++;
3723 }
3724 continue;
3725 }

3727 /*
3728 * If a hardware/software capabilities section is required,
3729 * generate the PT_SUNWCAP header. Note, as this comes before
3730 * the first loadable segment, we don’t yet know its real
3731 * virtual address. This is updated later.
3732 */
3733 if (phdr->p_type == PT_SUNWCAP) {
3734 if (ofl->ofl_oscap && (ofl->ofl_flags & FLG_OF_PTCAP) &&
3735 ((flags & FLG_OF_RELOBJ) == 0)) {
3736 capsgp = sgp;
3737 capsndx = segndx;
3738 cappndx = phdrndx++;
3739 }
3740 continue;
3741 }

3743 /*
3744 * As the dynamic program header occurs after the loadable
3745 * headers in the segment descriptor table, all the address
3746 * information for the .dynamic output section will have been
3747 * figured out by now.
3748 */
3749 if (phdr->p_type == PT_DYNAMIC) {
3750 if (OFL_ALLOW_DYNSYM(ofl)) {
3751 Shdr *shdr = ofl->ofl_osdynamic->os_shdr;

new/usr/src/cmd/sgs/libld/common/update.c 56

3753 phdr->p_vaddr = shdr->sh_addr;
3754 phdr->p_offset = shdr->sh_offset;
3755 phdr->p_filesz = shdr->sh_size;
3756 phdr->p_flags = ld_targ.t_m.m_dataseg_perm;

3758 DBG_CALL(Dbg_seg_entry(ofl, segndx, sgp));
3759 ofl->ofl_phdr[phdrndx++] = *phdr;
3760 }
3761 continue;
3762 }

3764 /*
3765 * As the unwind (.eh_frame_hdr) program header occurs after
3766 * the loadable headers in the segment descriptor table, all
3767 * the address information for the .eh_frame output section
3768 * will have been figured out by now.
3769 */
3770 if (phdr->p_type == PT_SUNW_UNWIND) {
3771 Shdr *shdr;

3773 if (ofl->ofl_unwindhdr == NULL)
3774 continue;

3776 shdr = ofl->ofl_unwindhdr->os_shdr;

3778 phdr->p_flags = PF_R;
3779 phdr->p_vaddr = shdr->sh_addr;
3780 phdr->p_memsz = shdr->sh_size;
3781 phdr->p_filesz = shdr->sh_size;
3782 phdr->p_offset = shdr->sh_offset;
3783 phdr->p_align = shdr->sh_addralign;
3784 phdr->p_paddr = 0;
3785 ofl->ofl_phdr[phdrndx++] = *phdr;
3786 continue;
3787 }

3789 /*
3790 * The sunwstack program is used to convey non-default
3791 * flags for the process stack. Only emit it if it would
3792 * change the default.
3793 */
3794 if (phdr->p_type == PT_SUNWSTACK) {
3795 if (((flags & FLG_OF_RELOBJ) == 0) &&
3796 ((sgp->sg_flags & FLG_SG_DISABLED) == 0))
3797 ofl->ofl_phdr[phdrndx++] = *phdr;
3798 continue;
3799 }

3801 /*
3802 * As the TLS program header occurs after the loadable
3803 * headers in the segment descriptor table, all the address
3804 * information for the .tls output section will have been
3805 * figured out by now.
3806 */
3807 if (phdr->p_type == PT_TLS) {
3808 Os_desc *tlsosp;
3809 Shdr *lastfileshdr = NULL;
3810 Shdr *firstshdr = NULL, *lastshdr;
3811 Aliste idx;

3813 if (ofl->ofl_ostlsseg == NULL)
3814 continue;

3816 /*
3817 * Scan the output sections that have contributed TLS.

new/usr/src/cmd/sgs/libld/common/update.c 57

3818 * Remember the first and last so as to determine the
3819 * TLS memory size requirement. Remember the last
3820 * progbits section to determine the TLS data
3821 * contribution, which determines the TLS program
3822 * header filesz.
3823 */
3824 for (APLIST_TRAVERSE(ofl->ofl_ostlsseg, idx, tlsosp)) {
3825 Shdr *tlsshdr = tlsosp->os_shdr;

3827 if (firstshdr == NULL)
3828 firstshdr = tlsshdr;
3829 if (tlsshdr->sh_type != SHT_NOBITS)
3830 lastfileshdr = tlsshdr;
3831 lastshdr = tlsshdr;
3832 }

3834 phdr->p_flags = PF_R | PF_W;
3835 phdr->p_vaddr = firstshdr->sh_addr;
3836 phdr->p_offset = firstshdr->sh_offset;
3837 phdr->p_align = firstshdr->sh_addralign;

3839 /*
3840 * Determine the initialized TLS data size. This
3841 * address range is from the start of the TLS segment
3842 * to the end of the last piece of initialized data.
3843 */
3844 if (lastfileshdr)
3845 phdr->p_filesz = lastfileshdr->sh_offset +
3846 lastfileshdr->sh_size - phdr->p_offset;
3847 else
3848 phdr->p_filesz = 0;

3850 /*
3851 * Determine the total TLS memory size. This includes
3852 * all TLS data and TLS uninitialized data. This
3853 * address range is from the start of the TLS segment
3854 * to the memory address of the last piece of
3855 * uninitialized data.
3856 */
3857 phdr->p_memsz = lastshdr->sh_addr +
3858 lastshdr->sh_size - phdr->p_vaddr;

3860 DBG_CALL(Dbg_seg_entry(ofl, segndx, sgp));
3861 ofl->ofl_phdr[phdrndx] = *phdr;
3862 ofl->ofl_tlsphdr = &ofl->ofl_phdr[phdrndx++];
3863 continue;
3864 }

3866 /*
3867 * If this is an empty segment declaration, it will occur after
3868 * all other loadable segments. As empty segments can be
3869 * defined with fixed addresses, make sure that no loadable
3870 * segments overlap. This might occur as the object evolves
3871 * and the loadable segments grow, thus encroaching upon an
3872 * existing segment reservation.
3873 *
3874 * Segments are only created for dynamic objects, thus this
3875 * checking can be skipped when building a relocatable object.
3876 */
3877 if (!(flags & FLG_OF_RELOBJ) &&
3878 (sgp->sg_flags & FLG_SG_EMPTY)) {
3879 int i;
3880 Addr v_e;

3882 vaddr = phdr->p_vaddr;
3883 phdr->p_memsz = sgp->sg_length;

new/usr/src/cmd/sgs/libld/common/update.c 58

3884 DBG_CALL(Dbg_seg_entry(ofl, segndx, sgp));
3885 ofl->ofl_phdr[phdrndx++] = *phdr;

3887 if (phdr->p_type != PT_LOAD)
3888 continue;

3890 v_e = vaddr + phdr->p_memsz;

3892 /*
3893 * Check overlaps
3894 */
3895 for (i = 0; i < phdrndx - 1; i++) {
3896 Addr p_s = (ofl->ofl_phdr[i]).p_vaddr;
3897 Addr p_e;

3899 if ((ofl->ofl_phdr[i]).p_type != PT_LOAD)
3900 continue;

3902 p_e = p_s + (ofl->ofl_phdr[i]).p_memsz;
3903 if (((p_s <= vaddr) && (p_e > vaddr)) ||
3904 ((vaddr <= p_s) && (v_e > p_s)))
3905 ld_eprintf(ofl, ERR_WARNING,
3906 MSG_INTL(MSG_UPD_SEGOVERLAP),
3907 ofl->ofl_name, EC_ADDR(p_e),
3908 sgp->sg_name, EC_ADDR(vaddr));
3909 }
3910 continue;
3911 }

3913 /*
3914 * Having processed any of the special program headers any
3915 * remaining headers will be built to express individual
3916 * segments. Segments are only built if they have output
3917 * section descriptors associated with them (ie. some form of
3918 * input section has been matched to this segment).
3919 */
3920 if (sgp->sg_osdescs == NULL)
3921 continue;

3923 /*
3924 * Determine the segments offset and size from the section
3925 * information provided from elf_update().
3926 * Allow for multiple NOBITS sections.
3927 */
3928 osp = sgp->sg_osdescs->apl_data[0];
3929 hshdr = osp->os_shdr;

3931 phdr->p_filesz = 0;
3932 phdr->p_memsz = 0;
3933 phdr->p_offset = offset = hshdr->sh_offset;

3935 nobits = ((hshdr->sh_type == SHT_NOBITS) &&
3936 ((sgp->sg_flags & FLG_SG_PHREQ) == 0));

3938 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {
3939 Shdr *shdr = osp->os_shdr;

3941 p_align = 0;
3942 if (shdr->sh_addralign > p_align)
3943 p_align = shdr->sh_addralign;

3945 offset = (Off)S_ROUND(offset, shdr->sh_addralign);
3946 offset += shdr->sh_size;

3948 if (shdr->sh_type != SHT_NOBITS) {
3949 if (nobits) {

new/usr/src/cmd/sgs/libld/common/update.c 59

3950 ld_eprintf(ofl, ERR_FATAL,
3951 MSG_INTL(MSG_UPD_NOBITS));
3952 return (S_ERROR);
3953 }
3954 phdr->p_filesz = offset - phdr->p_offset;
3955 } else if ((sgp->sg_flags & FLG_SG_PHREQ) == 0)
3956 nobits = TRUE;
3957 }
3958 phdr->p_memsz = offset - hshdr->sh_offset;

3960 /*
3961 * If this is the first loadable segment of a dynamic object,
3962 * or an interpreter has been specified (a static object built
3963 * with an interpreter will still be given a PT_HDR entry), then
3964 * compensate for the elf header and program header array. Both
3965 * of these are actually part of the loadable segment as they
3966 * may be inspected by the interpreter. Adjust the segments
3967 * size and offset accordingly.
3968 */
3969 if ((_phdr == NULL) && (phdr->p_type == PT_LOAD) &&
3970 ((ofl->ofl_osinterp) || (flags & FLG_OF_DYNAMIC)) &&
3971 (!(ofl->ofl_dtflags_1 & DF_1_NOHDR))) {
3972 size = (Addr)S_ROUND((phdrsz + ehdrsz),
3973 hshdr->sh_addralign);
3974 phdr->p_offset -= size;
3975 phdr->p_filesz += size;
3976 phdr->p_memsz += size;
3977 }

3979 /*
3980 * If segment size symbols are required (specified via a
3981 * mapfile) update their value.
3982 */
3983 for (APLIST_TRAVERSE(sgp->sg_sizesym, idx2, sdp))
3984 sdp->sd_sym->st_value = phdr->p_memsz;

3986 /*
3987 * If no file content has been assigned to this segment (it
3988 * only contains no-bits sections), then reset the offset for
3989 * consistency.
3990 */
3991 if (phdr->p_filesz == 0)
3992 phdr->p_offset = 0;

3994 /*
3995 * If a virtual address has been specified for this segment
3996 * from a mapfile use it and make sure the previous segment
3997 * does not run into this segment.
3998 */
3999 if (phdr->p_type == PT_LOAD) {
4000 if ((sgp->sg_flags & FLG_SG_P_VADDR)) {
4001 if (_phdr && (vaddr > phdr->p_vaddr) &&
4002 (phdr->p_type == PT_LOAD))
4003 ld_eprintf(ofl, ERR_WARNING,
4004 MSG_INTL(MSG_UPD_SEGOVERLAP),
4005 ofl->ofl_name, EC_ADDR(vaddr),
4006 sgp->sg_name,
4007 EC_ADDR(phdr->p_vaddr));
4008 vaddr = phdr->p_vaddr;
4009 phdr->p_align = 0;
4010 } else {
4011 vaddr = phdr->p_vaddr =
4012 (Addr)S_ROUND(vaddr, phdr->p_align);
4013 }
4014 }

new/usr/src/cmd/sgs/libld/common/update.c 60

4016 /*
4017 * Adjust the address offset and p_align if needed.
4018 */
4019 if (((sgp->sg_flags & FLG_SG_P_VADDR) == 0) &&
4020 ((ofl->ofl_dtflags_1 & DF_1_NOHDR) == 0)) {
4021 if (phdr->p_align != 0)
4022 vaddr += phdr->p_offset % phdr->p_align;
4023 else
4024 vaddr += phdr->p_offset;
4025 phdr->p_vaddr = vaddr;
4026 }

4028 /*
4029 * If an interpreter is required set the virtual address of the
4030 * PT_PHDR program header now that we know the virtual address
4031 * of the loadable segment that contains it. Update the
4032 * PT_SUNWCAP header similarly.
4033 */
4034 if ((_phdr == NULL) && (phdr->p_type == PT_LOAD)) {
4035 _phdr = phdr;

4037 if ((ofl->ofl_dtflags_1 & DF_1_NOHDR) == 0) {
4038 if (ofl->ofl_osinterp)
4039 ofl->ofl_phdr[0].p_vaddr =
4040 vaddr + ehdrsz;

4042 /*
4043 * Finally, if we’re creating a dynamic object
4044 * (or a static object in which an interpreter
4045 * is specified) update the vaddr to reflect
4046 * the address of the first section within this
4047 * segment.
4048 */
4049 if ((ofl->ofl_osinterp) ||
4050 (flags & FLG_OF_DYNAMIC))
4051 vaddr += size;
4052 } else {
4053 /*
4054 * If the DF_1_NOHDR flag was set, and an
4055 * interpreter is being generated, the PT_PHDR
4056 * will not be part of any loadable segment.
4057 */
4058 if (ofl->ofl_osinterp) {
4059 ofl->ofl_phdr[0].p_vaddr = 0;
4060 ofl->ofl_phdr[0].p_memsz = 0;
4061 ofl->ofl_phdr[0].p_flags = 0;
4062 }
4063 }
4064 }

4066 /*
4067 * Ensure the ELF entry point defaults to zero. Typically, this
4068 * value is overridden in update_oehdr() to one of the standard
4069 * entry points. Historically, this default was set to the
4070 * address of first executable section, but this has since been
4071 * found to be more confusing than it is helpful.
4072 */
4073 ehdr->e_entry = 0;

4075 DBG_CALL(Dbg_seg_entry(ofl, segndx, sgp));

4077 /*
4078 * Traverse the output section descriptors for this segment so
4079 * that we can update the section headers addresses. We’ve
4080 * calculated the virtual address of the initial section within
4081 * this segment, so each successive section can be calculated

new/usr/src/cmd/sgs/libld/common/update.c 61

4082 * based on their offsets from each other.
4083 */
4084 secndx = 0;
4085 hshdr = 0;
4086 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {
4087 Shdr *shdr = osp->os_shdr;

4089 if (shdr->sh_link)
4090 shdr->sh_link = translate_link(ofl, osp,
4091 shdr->sh_link, MSG_INTL(MSG_FIL_INVSHLINK));

4093 if (shdr->sh_info && (shdr->sh_flags & SHF_INFO_LINK))
4094 shdr->sh_info = translate_link(ofl, osp,
4095 shdr->sh_info, MSG_INTL(MSG_FIL_INVSHINFO));

4097 if (!(flags & FLG_OF_RELOBJ) &&
4098 (phdr->p_type == PT_LOAD)) {
4099 if (hshdr)
4100 vaddr += (shdr->sh_offset -
4101 hshdr->sh_offset);

4103 shdr->sh_addr = vaddr;
4104 hshdr = shdr;
4105 }

4107 DBG_CALL(Dbg_seg_os(ofl, osp, secndx));
4108 secndx++;
4109 }

4111 /*
4112 * Establish the virtual address of the end of the last section
4113 * in this segment so that the next segments offset can be
4114 * calculated from this.
4115 */
4116 if (hshdr)
4117 vaddr += hshdr->sh_size;

4119 /*
4120 * Output sections for this segment complete. Adjust the
4121 * virtual offset for the last sections size, and make sure we
4122 * haven’t exceeded any maximum segment length specification.
4123 */
4124 if ((sgp->sg_length != 0) && (sgp->sg_length < phdr->p_memsz)) {
4125 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_UPD_LARGSIZE),
4126 ofl->ofl_name, sgp->sg_name,
4127 EC_XWORD(phdr->p_memsz), EC_XWORD(sgp->sg_length));
4128 return (S_ERROR);
4129 }

4131 if (phdr->p_type == PT_NOTE) {
4132 phdr->p_vaddr = 0;
4133 phdr->p_paddr = 0;
4134 phdr->p_align = 0;
4135 phdr->p_memsz = 0;
4136 }

4138 if ((phdr->p_type != PT_NULL) && !(flags & FLG_OF_RELOBJ))
4139 ofl->ofl_phdr[phdrndx++] = *phdr;
4140 }

4142 /*
4143 * Update any new output sections. When building the initial output
4144 * image, a number of sections were created but left uninitialized (eg.
4145 * .dynsym, .dynstr, .symtab, .symtab, etc.). Here we update these
4146 * sections with the appropriate data. Other sections may still be
4147 * modified via reloc_process().

new/usr/src/cmd/sgs/libld/common/update.c 62

4148 *
4149 * Copy the interpreter name into the .interp section.
4150 */
4151 if (ofl->ofl_interp)
4152 (void) strcpy((char *)ofl->ofl_osinterp->os_outdata->d_buf,
4153 ofl->ofl_interp);

4155 /*
4156 * Update the .shstrtab, .strtab and .dynstr sections.
4157 */
4158 update_ostrtab(ofl->ofl_osshstrtab, ofl->ofl_shdrsttab, 0);
4159 update_ostrtab(ofl->ofl_osstrtab, ofl->ofl_strtab, 0);
4160 update_ostrtab(ofl->ofl_osdynstr, ofl->ofl_dynstrtab, DYNSTR_EXTRA_PAD);

4162 /*
4163 * Build any output symbol tables, the symbols information is copied
4164 * and updated into the new output image.
4165 */
4166 if ((etext = update_osym(ofl)) == (Addr)S_ERROR)
4167 return (S_ERROR);

4169 /*
4170 * If we have an PT_INTERP phdr, update it now from the associated
4171 * section information.
4172 */
4173 if (intpsgp) {
4174 Phdr *phdr = &(intpsgp->sg_phdr);
4175 Shdr *shdr = ofl->ofl_osinterp->os_shdr;

4177 phdr->p_vaddr = shdr->sh_addr;
4178 phdr->p_offset = shdr->sh_offset;
4179 phdr->p_memsz = phdr->p_filesz = shdr->sh_size;
4180 phdr->p_flags = PF_R;

4182 DBG_CALL(Dbg_seg_entry(ofl, intpsndx, intpsgp));
4183 ofl->ofl_phdr[intppndx] = *phdr;
4184 }

4186 /*
4187 * If we have a PT_SUNWDTRACE phdr, update it now with the address of
4188 * the symbol. It’s only now been updated via update_sym().
4189 */
4190 if (dtracesgp) {
4191 Phdr *aphdr, *phdr = &(dtracesgp->sg_phdr);
4192 Sym_desc *sdp = ofl->ofl_dtracesym;

4194 phdr->p_vaddr = sdp->sd_sym->st_value;
4195 phdr->p_memsz = sdp->sd_sym->st_size;

4197 /*
4198 * Take permissions from the segment that the symbol is
4199 * associated with.
4200 */
4201 aphdr = &sdp->sd_isc->is_osdesc->os_sgdesc->sg_phdr;
4202 assert(aphdr);
4203 phdr->p_flags = aphdr->p_flags;

4205 DBG_CALL(Dbg_seg_entry(ofl, dtracesndx, dtracesgp));
4206 ofl->ofl_phdr[dtracepndx] = *phdr;
4207 }

4209 /*
4210 * If we have a PT_SUNWCAP phdr, update it now from the associated
4211 * section information.
4212 */
4213 if (capsgp) {

new/usr/src/cmd/sgs/libld/common/update.c 63

4214 Phdr *phdr = &(capsgp->sg_phdr);
4215 Shdr *shdr = ofl->ofl_oscap->os_shdr;

4217 phdr->p_vaddr = shdr->sh_addr;
4218 phdr->p_offset = shdr->sh_offset;
4219 phdr->p_memsz = phdr->p_filesz = shdr->sh_size;
4220 phdr->p_flags = PF_R;

4222 DBG_CALL(Dbg_seg_entry(ofl, capsndx, capsgp));
4223 ofl->ofl_phdr[cappndx] = *phdr;
4224 }

4226 /*
4227 * Update the GROUP sections.
4228 */
4229 if (update_ogroup(ofl) == S_ERROR)
4230 return (S_ERROR);

4232 /*
4233 * Update Move Table.
4234 */
4235 if (ofl->ofl_osmove || ofl->ofl_isparexpn)
4236 update_move(ofl);

4238 /*
4239 * Build any output headers, version information, dynamic structure and
4240 * syminfo structure.
4241 */
4242 if (update_oehdr(ofl) == S_ERROR)
4243 return (S_ERROR);
4244 if (!(flags & FLG_OF_NOVERSEC)) {
4245 if ((flags & FLG_OF_VERDEF) &&
4246 (update_overdef(ofl) == S_ERROR))
4247 return (S_ERROR);
4248 if ((flags & FLG_OF_VERNEED) &&
4249 (update_overneed(ofl) == S_ERROR))
4250 return (S_ERROR);
4251 if (flags & (FLG_OF_VERNEED | FLG_OF_VERDEF))
4252 update_oversym(ofl);
4253 }
4254 if (flags & FLG_OF_DYNAMIC) {
4255 if (update_odynamic(ofl) == S_ERROR)
4256 return (S_ERROR);
4257 }
4258 if (ofl->ofl_ossyminfo) {
4259 if (update_osyminfo(ofl) == S_ERROR)
4260 return (S_ERROR);
4261 }

4263 /*
4264 * Update capabilities information if required.
4265 */
4266 if (ofl->ofl_oscap)
4267 update_oscap(ofl);
4268 if (ofl->ofl_oscapinfo)
4269 update_oscapinfo(ofl);

4271 /*
4272 * Sanity test: the first and last data byte of a string table
4273 * must be NULL.
4274 */
4275 assert((ofl->ofl_osshstrtab == NULL) ||
4276 (*((char *)ofl->ofl_osshstrtab->os_outdata->d_buf) == ’\0’));
4277 assert((ofl->ofl_osshstrtab == NULL) ||
4278 (*(((char *)ofl->ofl_osshstrtab->os_outdata->d_buf) +
4279 ofl->ofl_osshstrtab->os_outdata->d_size - 1) == ’\0’));

new/usr/src/cmd/sgs/libld/common/update.c 64

4281 assert((ofl->ofl_osstrtab == NULL) ||
4282 (*((char *)ofl->ofl_osstrtab->os_outdata->d_buf) == ’\0’));
4283 assert((ofl->ofl_osstrtab == NULL) ||
4284 (*(((char *)ofl->ofl_osstrtab->os_outdata->d_buf) +
4285 ofl->ofl_osstrtab->os_outdata->d_size - 1) == ’\0’));

4287 assert((ofl->ofl_osdynstr == NULL) ||
4288 (*((char *)ofl->ofl_osdynstr->os_outdata->d_buf) == ’\0’));
4289 assert((ofl->ofl_osdynstr == NULL) ||
4290 (*(((char *)ofl->ofl_osdynstr->os_outdata->d_buf) +
4291 ofl->ofl_osdynstr->os_outdata->d_size - DYNSTR_EXTRA_PAD - 1) ==
4292 ’\0’));

4294 /*
4295 * Emit Strtab diagnostics.
4296 */
4297 DBG_CALL(Dbg_sec_strtab(ofl->ofl_lml, ofl->ofl_osshstrtab,
4298 ofl->ofl_shdrsttab));
4299 DBG_CALL(Dbg_sec_strtab(ofl->ofl_lml, ofl->ofl_osstrtab,
4300 ofl->ofl_strtab));
4301 DBG_CALL(Dbg_sec_strtab(ofl->ofl_lml, ofl->ofl_osdynstr,
4302 ofl->ofl_dynstrtab));

4304 /*
4305 * Initialize the section headers string table index within the elf
4306 * header.
4307 */
4308 /* LINTED */
4309 if ((shscnndx = elf_ndxscn(ofl->ofl_osshstrtab->os_scn)) <
4310 SHN_LORESERVE) {
4311 ofl->ofl_nehdr->e_shstrndx =
4312 /* LINTED */
4313 (Half)shscnndx;
4314 } else {
4315 /*
4316 * If the STRTAB section index doesn’t fit into
4317 * e_shstrndx, then we store it in ’shdr[0].st_link’.
4318 */
4319 Elf_Scn *scn;
4320 Shdr *shdr0;

4322 if ((scn = elf_getscn(ofl->ofl_elf, 0)) == NULL) {
4323 ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_GETSCN),
4324 ofl->ofl_name);
4325 return (S_ERROR);
4326 }
4327 if ((shdr0 = elf_getshdr(scn)) == NULL) {
4328 ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_GETSHDR),
4329 ofl->ofl_name);
4330 return (S_ERROR);
4331 }
4332 ofl->ofl_nehdr->e_shstrndx = SHN_XINDEX;
4333 shdr0->sh_link = shscnndx;
4334 }

4336 return ((uintptr_t)etext);
4337 }

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 1

**
 88750 Sun Feb 24 19:19:14 2019
new/usr/src/cmd/sgs/packages/common/SUNWonld-README
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
ld: implement -ztype and rework option parsing
**

1 #
2 # Copyright (c) 1996, 2010, Oracle and/or its affiliates. All rights reserved.
3 #
4 # CDDL HEADER START
5 #
6 # The contents of this file are subject to the terms of the
7 # Common Development and Distribution License (the "License").
8 # You may not use this file except in compliance with the License.
9 #

10 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
11 # or http://www.opensolaris.org/os/licensing.
12 # See the License for the specific language governing permissions
13 # and limitations under the License.
14 #
15 # When distributing Covered Code, include this CDDL HEADER in each
16 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
17 # If applicable, add the following below this CDDL HEADER, with the
18 # fields enclosed by brackets "[]" replaced with your own identifying
19 # information: Portions Copyright [yyyy] [name of copyright owner]
20 #
21 # CDDL HEADER END
22 #
23 # Note: The contents of this file are used to determine the versioning
24 # information for the SGS toolset. The number of CRs listed in
25 # this file must grow monotonically, or the SGS version will
26 # move backwards, causing a great deal of confusion. As such,
27 # CRs must never be removed from this file. See
28 # libconv/common/bld_vernote.ksh, and bug#4519569 for more
29 # details on SGS versioning.
30 #
31 --
32 SUNWonld - link-editors development package.
33 --

35 The SUNWonld package is an internal development package containing the
36 link-editors and some related tools. All components live in the OSNET
37 source base, but not all components are delivered as part of the normal
38 OSNET consolidation. The intent of this package is to provide access
39 to new features/bugfixes before they become generally available.

41 General link-editor information can be found:

43 http://linkers.central/
44 http://linkers.sfbay/ (also known as linkers.eng)

46 Comments and Questions:

48 Contact Rod Evans, Ali Bahrami, and/or Seizo Sakurai.

50 Warnings:

52 The postremove script for this package employs /usr/sbin/static/mv,
53 and thus, besides the common core dependencies, this package also
54 has a dependency on the SUNWsutl package.

56 Patches:

58 If the patch has been made official, you’ll find it in:

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 2

60 http://sunsolve.east/cgi/show.pl?target=patches/os-patches

62 If it hasn’t been released, the patch will be in:

64 /net/sunsoftpatch/patches/temporary

66 Note, any patches logged here refer to the temporary ("T") name, as we
67 never know when they’re made official, and although we try to keep all
68 patch information up-to-date the real status of any patch can be
69 determined from:

71 http://sunsoftpatch.eng

73 If it has been obsoleted, the patch will be in:

75 /net/on${RELEASE}-patch/on${RELEASE}/patches/${MACH}/obsolete

78 History:

80 Note, starting after Solaris 10, letter codes in parenthesis may
81 be found following the bug synopsis. Their meanings are as follows:

83 (D) A documentation change accompanies the implementation change.
84 (P) A packaging change accompanies the implementation change.

86 In all cases, see the implementation bug report for details.

88 The following bug fixes exist in the OSNET consolidation workspace
89 from which this package is created:

91 ---------
92 Solaris 8
93 ---------
94 Bugid Risk Synopsis
95 ==
96 4225937 i386 linker emits sparc specific warning messages
97 4215164 shf_order flag handling broken by fix for 4194028.
98 4215587 using ld and the -r option on solaris 7 with compiler option -xarch=v9
99 causes link errors.
100 4234657 103627-08 breaks purify 4.2 (plt padding should not be enabled for
101 32-bit)
102 4235241 dbx no longer gets dlclose notification.
103 --
104 All the above changes are incorporated in the following patches:
105 Solaris/SunOS 5.7_sparc patch 106950-05 (never released)
106 Solaris/SunOS 5.7_x86 patch 106951-05 (never released)
107 Solaris/SunOS 5.6_sparc patch 107733-02 (never released)
108 Solaris/SunOS 5.6_x86 patch 107734-02
109 --
110 4248290 inetd dumps core upon bootup - failure in dlclose() logic.
111 4238071 dlopen() leaks while descriptors under low memory conditions
112 --
113 All the above changes are incorporated in the following patches:
114 Solaris/SunOS 5.7_sparc patch 106950-06
115 Solaris/SunOS 5.7_x86 patch 106951-06
116 Solaris/SunOS 5.6_sparc patch 107733-03 (never released)
117 Solaris/SunOS 5.6_x86 patch 107734-03
118 --
119 4267980 INITFIRST flag of the shard object could be ignored.
120 --
121 All the above changes plus:
122 4238973 fix for 4121152 affects linking of Ada objects
123 4158744 patch 103627-02 causes core when RPATH has blank entry and
124 dlopen/dlclose is used

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 3

125 are incorporated in the following patches:
126 Solaris/SunOS 5.5.1_sparc patch 103627-12 (never released)
127 Solaris/SunOS 5.5.1_x86 patch 103628-11
128 --
129 4256518 miscalculated calloc() during dlclose/tsorting can result in segv
130 4254171 DT_SPARC_REGISTER has invalid value associated with it.
131 --
132 All the above changes are incorporated in the following patches:
133 Solaris/SunOS 5.7_sparc patch 106950-07
134 Solaris/SunOS 5.7_x86 patch 106951-07
135 Solaris/SunOS 5.6_sparc patch 107733-04 (never released)
136 Solaris/SunOS 5.6_x86 patch 107734-04
137 --
138 4293159 ld needs to combine sections with and without SHF_ORDERED flag(comdat)
139 4292238 linking a library which has a static char ptr invokes mprotect() call
140 --
141 All the above changes except for:
142 4256518 miscalculated calloc() during dlclose/tsorting can result in segv
143 4254171 DT_SPARC_REGISTER has invalid value associated with it.
144 plus:
145 4238973 fix for 4121152 affects linking of Ada objects
146 4158744 patch 103627-02 causes core when RPATH has blank entry and
147 dlopen/dlclose is used
148 are incorporated in the following patches:
149 Solaris/SunOS 5.5.1_sparc patch 103627-13
150 Solaris/SunOS 5.5.1_x86 patch 103628-12
151 --
152 All the above changes are incorporated in the following patches:
153 Solaris/SunOS 5.7_sparc patch 106950-08
154 Solaris/SunOS 5.7_x86 patch 106951-08
155 Solaris/SunOS 5.6_sparc patch 107733-05
156 Solaris/SunOS 5.6_x86 patch 107734-05
157 --
158 4295613 COMMON symbol resolution can be incorrect
159 --
160 All the above changes plus:
161 4238973 fix for 4121152 affects linking of Ada objects
162 4158744 patch 103627-02 causes core when RPATH has blank entry and
163 dlopen/dlclose is used
164 are incorporated in the following patches:
165 Solaris/SunOS 5.5.1_sparc patch 103627-14
166 Solaris/SunOS 5.5.1_x86 patch 103628-13
167 --
168 All the above changes plus:
169 4351197 nfs performance problem by 103627-13
170 are incorporated in the following patches:
171 Solaris/SunOS 5.5.1_sparc patch 103627-15
172 Solaris/SunOS 5.5.1_x86 patch 103628-14
173 --
174 All the above changes are incorporated in the following patches:
175 Solaris/SunOS 5.7_sparc patch 106950-09
176 Solaris/SunOS 5.7_x86 patch 106951-09
177 Solaris/SunOS 5.6_sparc patch 107733-06
178 Solaris/SunOS 5.6_x86 patch 107734-06
179 --
180 4158971 increase the default segment alignment for i386 to 64k
181 4064994 Add an $ISALIST token to those understood by the dynamic linker
182 xxxxxxx ia64 common code putback
183 4239308 LD_DEBUG busted for sparc machines
184 4239008 Support MAP_ANON
185 4238494 link-auditing extensions required
186 4232239 R_SPARC_LOX10 truncates field
187 4231722 R_SPARC_UA* relocations are busted
188 4235514 R_SPARC_OLO10 relocation fails
189 4244025 sgsmsg update
190 4239281 need to support SECREL relocations for ia64

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 4

191 4253751 ia64 linker must support PT_IA_64_UNWIND tables
192 4259254 dlmopen mistakenly closes fd 0 (stdin) under certain error conditions
193 4260872 libelf hangs when libthread present
194 4224569 linker core dumping when profiling specified
195 4270937 need mechanism to suppress ld.so.1’s use of a default search path.
196 1050476 ld.so to permit configuration of search path
197 4273654 filtee processing using $ISALIST could be optimized
198 4271860 get MERCED cruft out of elf.h
199 4248991 Dynamic loader (via PLT) corrupts register G4
200 4275754 cannot mmap file: Resource temporarily unavailable
201 4277689 The linker can not handle relocation against MOVE tabl
202 4270766 atexit processing required on dlclose().
203 4279229 Add a "release" token to those understood by the dynamic linker
204 4215433 ld can bus error when insufficient disc space exists for output file
205 4285571 Pssst, want some free disk space? ld’s miscalculating.
206 4286236 ar gives confusing "bad format" error with a null .stab section
207 4286838 ld.so.1 can’t handle a no-bits segment
208 4287364 ld.so.1 runtime configuration cleanup
209 4289573 disable linking of ia64 binaries for Solaris8
210 4293966 crle(1)’s default directories should be supplied
211 --

213 ------------------------------------
214 Solaris 8 600 (1st Q-update - s28u1)
215 ------------------------------------
216 Bugid Risk Synopsis
217 ==
218 4309212 dlsym can’t find symbol
219 4311226 rejection of preloading in secure apps is inconsistent
220 4312449 dlclose: invalid deletion of dependency can occur using RTLD_GLOBAL
221 --
222 All the above changes are incorporated in the following patches:
223 Solaris/SunOS 5.8_sparc patch 109147-01
224 Solaris/SunOS 5.8_x86 patch 109148-01
225 Solaris/SunOS 5.7_sparc patch 106950-10
226 Solaris/SunOS 5.7_x86 patch 106951-10
227 Solaris/SunOS 5.6_sparc patch 107733-07
228 Solaris/SunOS 5.6_x86 patch 107734-07
229 --

231 ------------------------------------
232 Solaris 8 900 (2nd Q-update - s28u2)
233 ------------------------------------
234 Bugid Risk Synopsis
235 ==
236 4324775 non-PIC code & -zcombreloc don’t mix very well...
237 4327653 run-time linker should preload tables it will process (madvise)
238 4324324 shared object code can be referenced before .init has fired
239 4321634 .init firing of multiple INITFIRST objects can fail
240 --
241 All the above changes are incorporated in the following patches:
242 Solaris/SunOS 5.8_sparc patch 109147-03
243 Solaris/SunOS 5.8_x86 patch 109148-03
244 Solaris/SunOS 5.7_sparc patch 106950-11
245 Solaris/SunOS 5.7_x86 patch 106951-11
246 Solaris/SunOS 5.6_sparc patch 107733-08
247 Solaris/SunOS 5.6_x86 patch 107734-08
248 --
249 4338812 crle(1) omits entries in the directory cache
250 4341496 RFE: provide a static version of /usr/bin/crle
251 4340878 rtld should treat $ORIGIN like LD_LIBRARY_PATH in security issues
252 --
253 All the above changes are incorporated in the following patches:
254 Solaris/SunOS 5.8_sparc patch 109147-04
255 Solaris/SunOS 5.8_x86 patch 109148-04
256 Solaris/SunOS 5.7_sparc patch 106950-12

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 5

257 Solaris/SunOS 5.7_x86 patch 106951-12
258 --
259 4349563 auxiliary filter error handling regression introduced in 4165487
260 4355795 ldd -r now gives "displacement relocated" warnings
261 --
262 All the above changes are incorporated in the following patches:
263 Solaris/SunOS 5.7_sparc patch 106950-13
264 Solaris/SunOS 5.7_x86 patch 106951-13
265 Solaris/SunOS 5.6_sparc patch 107733-09
266 Solaris/SunOS 5.6_x86 patch 107734-09
267 --
268 4210412 versioning a static executable causes ld to core dump
269 4219652 Linker gives misleading error about not finding main (xarch=v9)
270 4103449 ld command needs a command line flag to force 64-bits
271 4187211 problem with RDISP32 linking in copy-relocated objects
272 4287274 dladdr, dlinfo do not provide the full path name of a shared object
273 4297563 dlclose still does not remove all objects.
274 4250694 rtld_db needs a new auxvec entry
275 4235315 new features for rtld_db (DT_CHECKSUM, dynamic linked .o files
276 4303609 64bit libelf.so.1 does not properly implement elf_hash()
277 4310901 su.static fails when OSNet build with lazy-loading
278 4310324 elf_errno() causes Bus Error(coredump) in 64-bit multithreaded programs
279 4306415 ld core dump
280 4316531 BCP: possible failure with dlclose/_preexec_exit_handlers
281 4313765 LD_BREADTH should be shot
282 4318162 crle uses automatic strings in putenv.
283 4255943 Description of -t option incomplete.
284 4322528 sgs message test infrastucture needs improvement
285 4239213 Want an API to obtain linker’s search path
286 4324134 use of extern mapfile directives can contribute unused symbols
287 4322581 ELF data structures could be layed out more efficiently...
288 4040628 Unnecessary section header symbols should be removed from .dynsym
289 4300018 rtld: bindlock should be freed before calling call_fini()
290 4336102 dlclose with non-deletable objects can mishandle dependencies
291 4329785 mixing of SHT_SUNW_COMDAT & SHF_ORDERED causes ld to seg fault
292 4334617 COPY relocations should be produces for references to .bss symbols
293 4248250 relcoation of local ABS symbols incorrect
294 4335801 For complimentary alignments eliminate ld: warning: symbol ‘ll’
295 has differing a
296 4336980 ld.so.1 relative path processing revisited
297 4243097 dlerror(3DL) is not affected by setlocale(3C).
298 4344528 dump should remove -D and -l usage message
299 xxxxxxx enable LD_ALTEXEC to access alternate link-editor
300 --
301 All the above changes are incorporated in the following patches:
302 Solaris/SunOS 5.8_sparc patch 109147-06
303 Solaris/SunOS 5.8_x86 patch 109148-06
304 --

306 ------------------------------------
307 Solaris 8 101 (3rd Q-update - s28u3)
308 ------------------------------------
309 Bugid Risk Synopsis
310 ==
311 4346144 link-auditing: plt_tracing fails if LA_SYMB_NOPLTENTER given after
312 being bound
313 4346001 The ld should support mapfile syntax to generate PT_SUNWSTACK segment
314 4349137 rtld_db: A third fallback method for locating the linkmap
315 4343417 dladdr interface information inadequate
316 4343801 RFE: crle(1): provide option for updating configuration files
317 4346615 ld.so.1 attempting to open a directory gives: No such device
318 4352233 crle should not honor umask
319 4352330 LD_PRELOAD cannot use absolute path for privileged program
320 4357805 RFE: man page for ld(1) does not document all -z or -B options in
321 Solaris 8 9/00
322 4358751 ld.so.1: LD_XXX environ variables and LD_FLAGS should be synchronized.

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 6

323 4358862 link editors should reference "64" symlinks instead of sparcv9 (ia64).
324 4356879 PLTs could use faster code sequences in some cases
325 4367118 new fast baplt’s fail when traversed twice in threaded application
326 4366905 Need a way to determine path to a shared library
327 4351197 nfs performance problem by 103627-13
328 4367405 LD_LIBRARY_PATH_64 not being used
329 4354500 SHF_ORDERED ordered scections does not properly sort sections
330 4369068 ld(1)’s weak symbol processing is inefficient (slow and doesn’t scale).
331 --
332 All the above changes are incorporated in the following patches:
333 Solaris/SunOS 5.8_sparc patch 109147-07
334 Solaris/SunOS 5.8_x86 patch 109148-07
335 Solaris/SunOS 5.7_sparc patch 106950-14
336 Solaris/SunOS 5.7_x86 patch 106951-14
337 --

339 ------------------------------------
340 Solaris 8 701 (5th Q-update - s28u5)
341 ------------------------------------
342 Bugid Risk Synopsis
343 ==
344 4368846 ld(1) fails to version some interfaces given in a mapfile
345 4077245 dump core dump on null pointer.
346 4372554 elfdump should demangle symbols (like nm, dump)
347 4371114 dlclose may unmap a promiscuous object while it’s still in use.
348 4204447 elfdump should understand SHN_AFTER/SHN_BEGIN macro
349 4377941 initialization of interposers may not occur
350 4381116 ldd/ld.so.1 could aid in detecting unused dependencies
351 4381783 dlopen/dlclose of a libCrun+libthread can dump core
352 4385402 linker & run-time linker must support gABI ELF updates
353 4394698 ld.so.1 does not process DF_SYMBOLIC - not gABI conforming
354 4394212 the link editor quietly ignores missing support libraries
355 4390308 ld.so.1 should provide more flexibility LD_PRELOAD’ing 32-bit/64-bit
356 objects
357 4401232 crle(1) could provide better flexibility for alternatives
358 4401815 fix misc nits in debugging output...
359 4402861 cleanup /usr/demo/link_audit & /usr/tmp/librtld_db demo source code...
360 4393044 elfdump should allow raw dumping of sections
361 4413168 SHF_ORDERED bit causes linker to generate a separate section
362 --
363 All the above changes are incorporated in the following patches:
364 Solaris/SunOS 5.8_sparc patch 109147-08
365 Solaris/SunOS 5.8_x86 patch 109148-08
366 --
367 4452202 Typos in <sys/link.h>
368 4452220 dump doesn’t support RUNPATH
369 --
370 All the above changes are incorporated in the following patches:
371 Solaris/SunOS 5.8_sparc patch 109147-09
372 Solaris/SunOS 5.8_x86 patch 109148-09
373 --

375 -------------------------------------
376 Solaris 8 1001 (6th Q-update - s28u6)
377 -------------------------------------
378 Bugid Risk Synopsis
379 ==
380 4421842 fixups in SHT_GROUP processing required...
381 4450433 problem with liblddbg output on -Dsection,detail when
382 processing SHF_LINK_ORDER
383 --
384 All the above changes are incorporated in the following patches:
385 Solaris/SunOS 5.8_sparc patch 109147-10
386 Solaris/SunOS 5.8_x86 patch 109148-10
387 Solaris/SunOS 5.7_sparc patch 106950-15
388 Solaris/SunOS 5.7_x86 patch 106951-15

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 7

389 --
390 4463473 pldd showing wrong output
391 --
392 All the above changes are incorporated in the following patches:
393 Solaris/SunOS 5.8_sparc patch 109147-11
394 Solaris/SunOS 5.8_x86 patch 109148-11
395 --

397 ------------------------------------
398 Solaris 8 202 (7th Q-update - s28u7)
399 ------------------------------------
400 Bugid Risk Synopsis
401 ==
402 4488954 ld.so.1 reuses same buffer to send ummapping range to
403 _preexec_exit_handlers()
404 --
405 All the above changes are incorporated in the following patches:
406 Solaris/SunOS 5.8_sparc patch 109147-12
407 Solaris/SunOS 5.8_x86 patch 109148-12
408 --

410 ---------
411 Solaris 9
412 ---------
413 Bugid Risk Synopsis
414 ==
415 4505289 incorrect handling of _START_ and _END_
416 4506164 mcs does not recognize #linkbefore or #linkafter qualifiers
417 4447560 strip is creating unexecutable files...
418 4513842 library names not in ld.so string pool cause corefile bugs
419 --
420 All the above changes are incorporated in the following patches:
421 Solaris/SunOS 5.8_sparc patch 109147-13
422 Solaris/SunOS 5.8_x86 patch 109148-13
423 Solaris/SunOS 5.7_sparc patch 106950-16
424 Solaris/SunOS 5.7_x86 patch 106951-16
425 --
426 4291384 ld -M with a mapfile does not properly align Fortran REAL*8 data
427 4413322 SunOS 5.9 librtld_db doesn’t show dlopened ".o" files anymore?
428 4429371 librtld_db busted on ia32 with SC6.x compilers...
429 4418274 elfdump dumps core on invalid input
430 4432224 libelf xlate routines are out of date
431 4433643 Memory leak using dlopen()/dlclose() in Solaris 8
432 4446564 ldd/lddstub - core dump conditions
433 4446115 translating SUNW_move sections is broken
434 4450225 The rdb command can fall into an infinite loop
435 4448531 Linker Causes Segmentation Fault
436 4453241 Regression in 4291384 can result in empty symbol table.
437 4453398 invalid runpath token can cause ld to spin.
438 4460230 ld (for OS 5.8 and 5.9) loses error message
439 4462245 ld.so.1 core dumps when executed directly...
440 4455802 need more flexibility in establishing a support library for ld
441 4467068 dyn_plt_entsize not properly initialized in ld.so.1
442 4468779 elf_plt_trace_write() broken on i386 (link-auditing)
443 4465871 -zld32 and -zld64 does not work the way it should
444 4461890 bad shared object created with -zredlocsym
445 4469400 ld.so.1: is_so_loaded isn’t as efficient as we thought...
446 4469566 lazy loading fallback can reference un-relocated objects
447 4470493 libelf incorectly translates NOTE sections accross architectures...
448 4469684 rtld leaks dl_handles and permits on dlopen/dlclose
449 4475174 ld.so.1 prematurly reports the failure to load a object...
450 4475514 ld.so.1 can core dump in memory allocation fails (no swap)
451 4481851 Setting ld.so.1 environment variables globally would be useful
452 4482035 setting LD_PROFILE & LD_AUDIT causes ping command to issue warnings
453 on 5.8
454 4377735 segment reservations cause sbrk() to fail

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 8

455 4491434 ld.so.1 can leak file-descriptors when loading same named objects
456 4289232 some of warning/error/debugging messages from libld.so can be revised
457 4462748 Linker Portion of TLS Support
458 4496718 run-time linkers mutex_locks not working with ld_libc interface
459 4497270 The -zredlocsym option should not eliminate partially initialized local
460 symbols
461 4496963 dumping an object with crle(1) that uses $ORIGIN can loose its
462 dependencies
463 4499413 Sun linker orders of magnitude slower than gnu linker
464 4461760 lazy loading libXm and libXt can fail.
465 4469031 The partial initialized (local) symbols for intel platform is not
466 working.
467 4492883 Add link-editor option to multi-pass archives to resolve unsatisfied
468 symbols
469 4503731 linker-related commands misspell "argument"
470 4503768 whocalls(1) should output messages to stderr, not stdout
471 4503748 whocalls(1) usage message and manpage could be improved
472 4503625 nm should be taught about TLS symbols - that they aren’t allowed that is
473 4300120 segment address validation is too simplistic to handle segment
474 reservations
475 4404547 krtld/reloc.h could have better error message, has typos
476 4270931 R_SPARC_HIX22 relocation is not handled properly
477 4485320 ld needs to support more the 32768 PLTs
478 4516434 sotruss can not watch libc_psr.so.1
479 4213100 sotruss could use more flexible pattern matching
480 4503457 ld seg fault with comdat
481 4510264 sections with SHF_TLS can come in different orders...
482 4518079 link-editor support library unable to modify section header flags
483 4515913 ld.so.1 can incorrectly decrement external reference counts on dlclose()
484 4519569 ld -V does not return a interesting value...
485 4524512 ld.so.1 should allow alternate termination signals
486 4524767 elfdump dies on bogus sh_name fields...
487 4524735 ld getopt processing of ’-’ changed
488 4521931 subroutine in a shared object as LOCL instead of GLOB
489 --
490 All the above changes are incorporated in the following patches:
491 Solaris/SunOS 5.8_sparc patch 109147-14
492 Solaris/SunOS 5.8_x86 patch 109148-14
493 Solaris/SunOS 5.7_sparc patch 106950-17
494 Solaris/SunOS 5.7_x86 patch 106951-17
495 --
496 4532729 tentative definition of TLS variable causes linker to dump core
497 4526745 fixup ld error message about duplicate dependencies/needed names
498 4522999 Solaris linker one order of magnitude slower than GNU linker
499 4518966 dldump undoes existing relocations with no thought of alignment or size.
500 4587441 Certain libraries have race conditions when setting error codes
501 4523798 linker option to align bss to large pagesize alignments.
502 4524008 ld can improperly set st_size of symbols named "_init" or "_fini"
503 4619282 ld cannot link a program with the option -sb
504 4620846 Perl Configure probing broken by ld changes
505 4621122 multiple ld ’-zinitarray=’ on a commandline fails
506 --
507 Solaris/SunOS 5.8_sparc patch 109147-15
508 Solaris/SunOS 5.8_x86 patch 109148-15
509 Solaris/SunOS 5.7_sparc patch 106950-18
510 Solaris/SunOS 5.7_x86 patch 106951-18
511 Solaris/SunOS 5.6_sparc patch 107733-10
512 Solaris/SunOS 5.6_x86 patch 107734-10
513 --
514 All the above changes plus:
515 4616944 ar seg faults when order of object file is reversed.
516 are incorporated in the following patches:
517 Solaris/SunOS 5.8_sparc patch 109147-16
518 Solaris/SunOS 5.8_x86 patch 109148-16
519 --
520 All the above changes plus:

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 9

521 4872634 Large LD_PRELOAD values can cause SEGV of process
522 are incorporated in the following patches:
523 Solaris/SunOS 5.6_sparc patch T107733-11
524 Solaris/SunOS 5.6_x86 patch T107734-11
525 --

527 ------------------------------------
528 Solaris 9 1202 (2nd Q-update - s9u2)
529 ------------------------------------
530 Bugid Risk Synopsis
531 ==
532 4546416 add help messages to ld.so mdbmodule
533 4526752 we should build and ship ld.so’s mdb module
534 4624658 update 386 TLS relocation values
535 4622472 LA_SYMB_DLSYM not set for la_symbind() invocations
536 4638070 ldd/ld.so.1 could aid in detecting unreferenced dependencies
537 PSARC/2002/096 Detecting unreferenced dependencies with ldd(1)
538 4633860 Optimization for unused static global variables
539 PSARC/2002/113 ld -zignore - section elimination
540 4642829 ld.so.1 mprotect()’s text segment for weak relocations (it shouldn’t)
541 4621479 ’make’ in $SRC/cmd/sgs/tools tries to install things in the proto area
542 4529912 purge ia64 source from sgs
543 4651709 dlopen(RTLD_NOLOAD) can disable lazy loading
544 4655066 crle: -u with nonexistent config file doesn’t work
545 4654406 string tables created by the link-editor could be smaller...
546 PSARC/2002/160 ld -znocompstrtab - disable string-table compression
547 4651493 RTLD_NOW can result in binding to an object prior to its init being run.
548 4662575 linker displacement relocation checking introduces significant
549 linker overhead
550 4533195 ld interposes on malloc()/free() preventing support library from freeing
551 memory
552 4630224 crle get’s confused about memory layout of objects...
553 4664855 crle on application failed with ld.so.1 encountering mmap() returning
554 ENOMEM err
555 4669582 latest dynamic linker causes libthread _init to get skipped
556 4671493 ld.so.1 inconsistantly assigns PATHNAME() on primary objects
557 4668517 compile with map.bssalign doesn’t copy _iob to bss
558 --
559 All the above changes are incorporated in the following patches:
560 Solaris/SunOS 5.9_sparc patch T112963-01
561 Solaris/SunOS 5.8_sparc patch T109147-17
562 Solaris/SunOS 5.8_x86 patch T109148-17
563 --
564 4701749 On Solaris 8 + 109147-16 ld crashes when building a dynamic library.
565 4707808 The ldd command is broken in the latest 2.8 linker patch.
566 --
567 All the above changes are incorporated in the following patches:
568 Solaris/SunOS 5.9_sparc patch T112963-02
569 Solaris/SunOS 5.8_sparc patch T109147-18
570 Solaris/SunOS 5.8_x86 patch T109148-18
571 --
572 4696204 enable extended section indexes in relocatable objects
573 PSARC/2001/332 ELF gABI updates - round II
574 PSARC/2002/369 libelf interfaces to support ELF Extended Sections
575 4706503 linkers need to cope with EF_SPARCV9_PSO/EF_SPARCV9_RMO
576 4716929 updating of local register symbols in dynamic symtab busted...
577 4710814 add "official" support for the "symbolic" keyword in linker map-file
578 PSARC/2002/439 linker mapfile visibility declarations
579 --
580 All the above changes are incorporated in the following patches:
581 Solaris/SunOS 5.9_sparc patch T112963-03
582 Solaris/SunOS 5.8_sparc patch T109147-19
583 Solaris/SunOS 5.8_x86 patch T109148-19
584 Solaris/SunOS 5.7_sparc patch T106950-19
585 Solaris/SunOS 5.7_x86 patch T106951-19
586 --

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 10

588 -----------------------------------
589 Solaris 9 403 (3nd Q-update - s9u3)
590 -----------------------------------
591 Bugid Risk Synopsis
592 ==
593 4731174 strip(1) does not fixup SHT_GROUP data
594 4733697 -zignore with gcc may exclude C++ exception sections
595 4733317 R_SPARC_*_HIX22 calculations are wrong with 32bit LD building
596 ELF64 binaries
597 4735165 fatal linker error when compiling C++ programs with -xlinkopt
598 4736951 The mcs broken when the target file is an archive file
599 --
600 All the above changes are incorporated in the following patches:
601 Solaris/SunOS 5.8_sparc patch T109147-20
602 Solaris/SunOS 5.8_x86 patch T109148-20
603 Solaris/SunOS 5.7_sparc patch T106950-20
604 Solaris/SunOS 5.7_x86 patch T106951-20
605 --
606 4739660 Threads deadlock in schedlock and dynamic linker lock.
607 4653148 ld.so.1/libc should unregister its dlclose() exit handler via a fini.
608 4743413 ld.so.1 doesn’t terminate argv with NULL pointer when invoked directly
609 4746231 linker core-dumps when SECTION relocations are made against discarded
610 sections
611 4730433 ld.so.1 wastes time repeatedly opening dependencies
612 4744337 missing RD_CONSISTENT event with dlmopen(LD_ID_NEWLM, ...)
613 4670835 rd_load_objiter can ignore callback’s return value
614 4745932 strip utility doesn’t strip out Dwarf2 debug section
615 4754751 "strip" command doesn’t remove comdat stab sections.
616 4755674 Patch 109147-18 results in coredump.
617 --
618 All the above changes are incorporated in the following patches:
619 Solaris/SunOS 5.9_sparc patch T112963-04
620 Solaris/SunOS 5.7_sparc patch T106950-21
621 Solaris/SunOS 5.7_x86 patch T106951-21
622 --
623 4772927 strip core dumps on an archive library
624 4774727 direct-bindings can fail against copy-reloc symbols
625 --
626 All the above changes are incorporated in the following patches:
627 Solaris/SunOS 5.9_sparc patch T112963-05
628 Solaris/SunOS 5.9_x86 patch T113986-01
629 Solaris/SunOS 5.8_sparc patch T109147-21
630 Solaris/SunOS 5.8_x86 patch T109148-21
631 Solaris/SunOS 5.7_sparc patch T106950-22
632 Solaris/SunOS 5.7_x86 patch T106951-22
633 --

635 -----------------------------------
636 Solaris 9 803 (4th Q-update - s9u4)
637 -----------------------------------
638 Bugid Risk Synopsis
639 ==
640 4730110 ld.so.1 list implementation could scale better
641 4728822 restrict the objects dlsym() searches.
642 PSARC/2002/478 New dlopen(3dl) flag - RTLD_FIRST
643 4714146 crle: 64-bit secure pathname is incorrect.
644 4504895 dlclose() does not remove all objects
645 4698800 Wrong comments in /usr/lib/ld/sparcv9/map.*
646 4745129 dldump is inconsistent with .dynamic processing errors.
647 4753066 LD_SIGNAL isn’t very useful in a threaded environment
648 PSARC/2002/569 New dlinfo(3dl) flag - RTLD_DI_SIGNAL
649 4765536 crle: symbolic links can confuse alternative object configuration info
650 4766815 ld -r of object the TLS data fails
651 4770484 elfdump can not handle stripped archive file
652 4770494 The ld command gives improper error message handling broken archive

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 11

653 4775738 overwriting output relocation table when ’ld -zignore’ is used
654 4778247 elfdump -e of core files fails
655 4779976 elfdump dies on bad relocation entries
656 4787579 invalid SHT_GROUP entries can cause linker to seg fault
657 4783869 dlclose: filter closure exhibits hang/failure - introduced with 4504895
658 4778418 ld.so.1: there be nits out there
659 4792461 Thread-Local Storage - x86 instruction sequence updates
660 PSARC/2002/746 Thread-Local Storage - x86 instruction sequence updates
661 4461340 sgs: ugly build output while suppressing ia64 (64-bit) build on Intel
662 4790194 dlopen(..., RTLD_GROUP) has an odd interaction with interposition
663 4804328 auditing of threaded applications results in deadlock
664 4806476 building relocatable objects with SHF_EXCLUDE loses relocation
665 information
666 --
667 All the above changes are incorporated in the following patches:
668 Solaris/SunOS 5.9_sparc patch T112963-06
669 Solaris/SunOS 5.9_x86 patch T113986-02
670 Solaris/SunOS 5.8_sparc patch T109147-22
671 Solaris/SunOS 5.8_x86 patch T109148-22
672 --
673 4731183 compiler creates .tlsbss section instead of .tbss as documented
674 4816378 TLS: a tls test case dumps core with C and C++ compilers
675 4817314 TLS_GD relocations against local symbols do not reference symbol...
676 4811951 non-default symbol visibility overriden by definition in shared object
677 4802194 relocation error of mozilla built by K2 compiler
678 4715815 ld should allow linking with no output file (or /dev/null)
679 4793721 Need a way to null all code in ISV objects enabling ld performance
680 tuning
681 --
682 All the above changes plus:
683 4796237 RFE: link-editor became extremely slow with patch 109147-20 and
684 static libraries
685 are incorporated in the following patches:
686 Solaris/SunOS 5.9_sparc patch T112963-07
687 Solaris/SunOS 5.9_x86 patch T113986-03
688 Solaris/SunOS 5.8_sparc patch T109147-23
689 Solaris/SunOS 5.8_x86 patch T109148-23
690 --

692 ------------------------------------
693 Solaris 9 1203 (5th Q-update - s9u5)
694 ------------------------------------
695 Bugid Risk Synopsis
696 ==
697 4830584 mmap for the padding region doesn’t get freed after dlclose
698 4831650 ld.so.1 can walk off the end of it’s call_init() array...
699 4831544 ldd using .so modules compiled with FD7 compiler caused a core dump
700 4834784 Accessing members in a TLS structure causes a core dump in Oracle
701 4824026 segv when -z combreloc is used with -xlinkopt
702 4825296 typo in elfdump
703 --
704 All the above changes are incorporated in the following patches:
705 Solaris/SunOS 5.9_sparc patch T112963-08
706 Solaris/SunOS 5.9_x86 patch T113986-04
707 Solaris/SunOS 5.8_sparc patch T109147-24
708 Solaris/SunOS 5.8_x86 patch T109148-24
709 --
710 4470917 Solaris Process Model Unification (link-editor components only)
711 PSARC/2002/117 Solaris Process Model Unification
712 4744411 Bloomberg wants a faster linker.
713 4811969 64-bit links can be much slower than 32-bit.
714 4825065 ld(1) should ignore consecutive empty sections.
715 4838226 unrelocated shared objects may be erroneously collected for init firing
716 4830889 TLS: testcase coredumps with -xarch=v9 and -g
717 4845764 filter removal can leave dangling filtee pointer
718 4811093 apptrace -F libc date core dumps

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 12

719 4826315 Link editors need to be pre- and post- Unified Process Model aware
720 4868300 interposing on direct bindings can fail
721 4872634 Large LD_PRELOAD values can cause SEGV of process
722 --
723 All the above changes are incorporated in the following patches:
724 Solaris/SunOS 5.9_sparc patch T112963-09
725 Solaris/SunOS 5.9_x86 patch T113986-05
726 Solaris/SunOS 5.8_sparc patch T109147-25
727 Solaris/SunOS 5.8_x86 patch T109148-25
728 --

730 ------------------------------------
731 Solaris 9 404 (6th Q-update - s9u6)
732 ------------------------------------
733 Bugid Risk Synopsis
734 ==
735 4870260 The elfdump command should produce more warning message on invalid move
736 entries.
737 4865418 empty PT_TLS program headers cause problems in TLS enabled applications
738 4825151 compiler core dumped with a -mt -xF=%all test
739 4845829 The runtime linker fails to dlopen() long path name.
740 4900684 shared libraries with more then 32768 plt’s fail for sparc ELF64
741 4906062 Makefiles under usr/src/cmd/sgs needs to be updated
742 --
743 All the above changes are incorporated in the following patches:
744 Solaris/SunOS 5.9_sparc patch T112963-10
745 Solaris/SunOS 5.9_x86 patch T113986-06
746 Solaris/SunOS 5.8_sparc patch T109147-26
747 Solaris/SunOS 5.8_x86 patch T109148-26
748 Solaris/SunOS 5.7_sparc patch T106950-24
749 Solaris/SunOS 5.7_x86 patch T106951-24
750 --
751 4900320 rtld library mapping could be faster
752 4911775 implement GOTDATA proposal in ld
753 PSARC/2003/477 SPARC GOTDATA instruction sequences
754 4904565 Functionality to ignore relocations against external symbols
755 4764817 add section types SHT_DEBUG and SHT_DEBUGSTR
756 PSARC/2003/510 New ELF DEBUG and ANNOTATE sections
757 4850703 enable per-symbol direct bindings
758 4716275 Help required in the link analysis of runtime interfaces
759 PSARC/2003/519 Link-editors: Direct Binding Updates
760 4904573 elfdump may hang when processing archive files
761 4918310 direct binding from an executable can’t be interposed on
762 4918938 ld.so.1 has become SPARC32PLUS - breaks 4.x binary compatibility
763 4911796 S1S8 C++: ld dump core when compiled and linked with xlinkopt=1.
764 4889914 ld crashes with SEGV using -M mapfile under certain conditions
765 4911936 exception are not catch from shared library with -zignore
766 --
767 All the above changes are incorporated in the following patches:
768 Solaris/SunOS 5.9_sparc patch T112963-11
769 Solaris/SunOS 5.9_x86 patch T113986-07
770 Solaris/SunOS 5.8_sparc patch T109147-27
771 Solaris/SunOS 5.8_x86 patch T109148-27
772 Solaris/SunOS 5.7_sparc patch T106950-25
773 Solaris/SunOS 5.7_x86 patch T106951-25
774 --
775 4946992 ld crashes due to huge number of sections (>65,000)
776 4951840 mcs -c goes into a loop on executable program
777 4939869 Need additional relocation types for abs34 code model
778 PSARC/2003/684 abs34 ELF relocations
779 --
780 All the above changes are incorporated in the following patches:
781 Solaris/SunOS 5.9_sparc patch T112963-12
782 Solaris/SunOS 5.9_x86 patch T113986-08
783 Solaris/SunOS 5.8_sparc patch T109147-28
784 Solaris/SunOS 5.8_x86 patch T109148-28

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 13

785 --

787 ------------------------------------
788 Solaris 9 904 (7th Q-update - s9u7)
789 ------------------------------------
790 Bugid Risk Synopsis
791 ==
792 4912214 Having multiple of libc.so.1 in a link map causes malloc() to fail
793 4526878 ld.so.1 should pass MAP_ALIGN flag to give kernel more flexibility
794 4930997 sgs bld_vernote.ksh script needs to be hardend...
795 4796286 ld.so.1: scenario for trouble?
796 4930985 clean up cruft under usr/src/cmd/sgs/tools
797 4933300 remove references to Ultra-1 in librtld_db demo
798 4936305 string table compression is much too slow...
799 4939626 SUNWonld internal package must be updated...
800 4939565 per-symbol filtering required
801 4948119 ld(1) -z loadfltr fails with per-symbol filtering
802 4948427 ld.so.1 gives fatal error when multiple RTLDINFO objects are loaded
803 4940894 ld core dumps using "-xldscope=symbolic
804 4955373 per-symbol filtering refinements
805 4878827 crle(1M) - display post-UPM search paths, and compensate for pre-UPM.
806 4955802 /usr/ccs/bin/ld dumps core in process_reld()
807 4964415 elfdump issues wrong relocation error message
808 4966465 LD_NOAUXFLTR fails when object is both a standard and auxiliary filter
809 4973865 the link-editor does not scale properly when linking objects with
810 lots of syms
811 4975598 SHT_SUNW_ANNOTATE section relocation not resolved
812 4974828 nss_files nss_compat r_mt tests randomly segfaulting
813 --
814 All the above changes are incorporated in the following patches:
815 Solaris/SunOS 5.9_sparc patch T112963-13
816 Solaris/SunOS 5.9_x86 patch T113986-09
817 --
818 4860508 link-editors should create/promote/verify hardware capabilities
819 5002160 crle: reservation for dumped objects gets confused by mmaped object
820 4967869 linking stripped library causes segv in linker
821 5006657 link-editor doesn’t always handle nodirect binding syminfo information
822 4915901 no way to see ELF information
823 5021773 ld.so.1 has trouble with objects having more than 2 segments.
824 --
825 All the above changes are incorporated in the following patches:
826 Solaris/SunOS 5.9_sparc patch T112963-14
827 Solaris/SunOS 5.9_x86 patch T113986-10
828 Solaris/SunOS 5.8_sparc patch T109147-29
829 Solaris/SunOS 5.8_x86 patch T109148-29
830 --
831 All the above changes plus:
832 6850124 dlopen reports "No such file or directory" in spite of ENOMEM
833 when mmap fails in anon_map()
834 are incorporated in the following patches:
835 Solaris/SunOS 5.9_sparc patch TXXXXXX-XX
836 Solaris/SunOS 5.9_x86 patch TXXXXXX-XX
837 --

839 ----------
840 Solaris 10
841 ----------
842 Bugid Risk Synopsis
843 ==
844 5044797 ld.so.1: secure directory testing is being skipped during filtee
845 processing
846 4963676 Remove remaining static libraries
847 5021541 unnecessary PT_SUNWBSS segment may be created
848 5031495 elfdump complains about bad symbol entries in core files
849 5012172 Need error when creating shared object with .o compiled
850 -xarch=v9 -xcode=abs44

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 14

851 4994738 rd_plt_resolution() resolves ebx-relative PLT entries incorrectly
852 5023493 ld -m output with patch 109147-25 missing .o information
853 --
854 All the above changes are incorporated in the following patches:
855 Solaris/SunOS 5.9_sparc patch T112963-15
856 Solaris/SunOS 5.9_x86 patch T113986-11
857 Solaris/SunOS 5.8_sparc patch T109147-30
858 Solaris/SunOS 5.8_x86 patch T109148-30
859 --
860 5071614 109147-29 & -30 break the build of on28-patch on Solaris 8 2/04
861 5029830 crle: provide for optional alternative dependencies.
862 5034652 ld.so.1 should save, and print, more error messages
863 5036561 ld.so.1 outputs non-fatal fatal message about auxiliary filter libraries
864 5042713 4866170 broke ld.so’s ::setenv
865 5047082 ld can core dump on bad gcc objects
866 5047612 ld.so.1: secure pathname verification is flawed with filter use
867 5047235 elfdump can core dump printing PT_INTERP section
868 4798376 nits in demo code
869 5041446 gelf_update_*() functions inconsistently return NULL or 0
870 5032364 M_ID_TLSBSS and M_ID_UNKNOWN have the same value
871 4707030 Empty LD_PRELOAD_64 doesn’t override LD_PRELOAD
872 4968618 symbolic linkage causes core dump
873 5062313 dladdr() can cause deadlock in MT apps.
874 5056867 $ISALIST/$HWCAP expansion should be more flexible.
875 4918303 0@0.so.1 should not use compiler-supplied crt*.o files
876 5058415 whocalls cannot take more than 10 arguments
877 5067518 The fix for 4918303 breaks the build if a new work space is used.
878 --
879 All the above changes are incorporated in the following patches:
880 Solaris/SunOS 5.9_sparc patch T112963-16
881 Solaris/SunOS 5.9_x86 patch T113986-12
882 Solaris/SunOS 5.8_sparc patch T109147-31
883 Solaris/SunOS 5.8_x86 patch T109148-31
884 --
885 5013759 *file* should report hardware/software capabilities (link-editor
886 components only)
887 5063580 libldstab: file /tmp/posto..: .stab[.index|.sbfocus] found with no
888 matching stri
889 5076838 elfdump(1) is built with a CTF section (the wrong one)
890 5080344 Hardware capabilities are not enforced for a.out
891 5079061 RTLD_DEFAULT can be expensive
892 PSARC/2004/747 New dlsym(3c) Handle - RTLD_PROBE
893 5064973 allow normal relocs against TLS symbols for some sections
894 5085792 LD_XXXX_64 should override LD_XXXX
895 5096272 every executable or library has a .SUNW_dof section
896 5094135 Bloomberg wants a faster ldd.
897 5086352 libld.so.3 should be built with a .SUNW_ctf ELF section, ready for CR
898 5098205 elfdump gives wrong section name for the global offset table
899 5092414 Linker patch 109147-29 makes Broadvison One-To-One server v4.1
900 installation fail
901 5080256 dump(1) doesn’t list ELF hardware capabilities
902 5097347 recursive read lock in gelf_getsym()
903 --
904 All the above changes are incorporated in the following patches:
905 Solaris/SunOS 5.9_sparc patch T112963-17
906 Solaris/SunOS 5.9_x86 patch T113986-13
907 Solaris/SunOS 5.8_sparc patch T109147-32
908 Solaris/SunOS 5.8_x86 patch T109148-32
909 --
910 5106206 ld.so.1 fail to run a Solaris9 program that has libc linked with
911 -z lazyload
912 5102601 ON should deliver a 64-bit operating system for Opteron systems
913 (link-editor components only)
914 6173852 enable link_auditing technology for amd64
915 6174599 linker does not create .eh_frame_hdr sections for eh_frame sections
916 with SHF_LINK_ORDER

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 15

917 6175609 amd64 run-time linker has a corrupted note section
918 6175843 amd64 rdb_demo files not installed
919 6182293 ld.so.1 can repeatedly relocate object .plts (RTLD_NOW).
920 6183645 ld core dumps when automounter fails
921 6178667 ldd list unexpected (file not found) in x86 environment.
922 6181928 Need new reloc types R_AMD64_GOTOFF64 and R_AMD64_GOTPC32
923 6182884 AMD64: ld coredumps when building a shared library
924 6173559 The ld may set incorrect value for sh_addralign under some conditions.
925 5105601 ld.so.1 gets a little too enthusiastic with interposition
926 6189384 ld.so.1 should accommodate a files dev/inode change (libc loopback mnt)
927 6177838 AMD64: linker cannot resolve PLT for 32-bit a.out(s) on amd64-S2 kernel
928 6190863 sparc disassembly code should be removed from rdb_demo
929 6191488 unwind eh_frame_hdr needs corrected encoding value
930 6192490 moe(1) returns /lib/libc.so.1 for optimal expansion of libc HWCAP
931 libraries
932 6192164 AMD64: introduce dlamd64getunwind interface
933 PSARC/2004/747 libc::dlamd64getunwind()
934 6195030 libdl has bad version name
935 6195521 64-bit moe(1) missed the train
936 6198358 AMD64: bad eh_frame_hdr data when C and C++ mixed in a.out
937 6204123 ld.so.1: symbol lookup fails even after lazy loading fallback
938 6207495 UNIX98/UNIX03 vsx namespace violation DYNL.hdr/misc/dlfcn/T.dlfcn
939 14 Failed
940 6217285 ctfmerge crashed during full onnv build
941 --

943 -------------------------------------
944 Solaris 10 106 (1st Q-update - s10u1)
945 -------------------------------------
946 Bugid Risk Synopsis
947 ==
948 6209350 Do not include signature section from dynamic dependency library into
949 relocatable object
950 6212797 The binary compiled on SunOS4.x doesn’t run on Solaris8 with Patch
951 109147-31
952 --
953 All the above changes are incorporated in the following patches:
954 Solaris/SunOS 5.9_sparc patch T112963-18
955 Solaris/SunOS 5.9_x86 patch T113986-14
956 Solaris/SunOS 5.8_sparc patch T109147-33
957 Solaris/SunOS 5.8_x86 patch T109148-33
958 --
959 6219538 112963-17: linker patch causes binary to dump core
960 --
961 All the above changes are incorporated in the following patches:
962 Solaris/SunOS 5.10_sparc patch T117461-01
963 Solaris/SunOS 5.10_x86 patch T118345-01
964 Solaris/SunOS 5.9_sparc patch T112963-19
965 Solaris/SunOS 5.9_x86 patch T113986-15
966 Solaris/SunOS 5.8_sparc patch T109147-34
967 Solaris/SunOS 5.8_x86 patch T109148-34
968 --
969 6257177 incremental builds of usr/src/cmd/sgs can fail...
970 6219651 AMD64: Linker does not issue error for out of range R_AMD64_PC32
971 --
972 All the above changes are incorporated in the following patches:
973 Solaris/SunOS 5.10_sparc patch T117461-02
974 Solaris/SunOS 5.10_x86 patch T118345-02
975 Solaris/SunOS 5.9_sparc patch T112963-20
976 Solaris/SunOS 5.9_x86 patch T113986-16
977 Solaris/SunOS 5.8_sparc patch T109147-35
978 Solaris/SunOS 5.8_x86 patch T109148-35
979 NOTE: The fix for 6219651 is only applicable for 5.10_x86 platform.
980 --
981 5080443 lazy loading failure doesn’t clean up after itself (D)
982 6226206 ld.so.1 failure when processing single segment hwcap filtee

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 16

983 6228472 ld.so.1: link-map control list stacking can loose objects
984 6235000 random packages not getting installed in snv_09 and snv_10 -
985 rtld/common/malloc.c Assertion
986 6219317 Large page support is needed for mapping executables, libraries and
987 files (link-editor components only)
988 6244897 ld.so.1 can’t run apps from commandline
989 6251798 moe(1) returns an internal assertion failure message in some
990 circumstances
991 6251722 ld fails silently with exit 1 status when -z ignore passed
992 6254364 ld won’t build libgenunix.so with absolute relocations
993 6215444 ld.so.1 caches "not there" lazy libraries, foils svc.startd(1M)’s logic
994 6222525 dlsym(3C) trusts caller(), which may return wrong results with tail call
995 optimization
996 6241995 warnings in sgs should be fixed (link-editor components only)
997 6258834 direct binding availability should be verified at runtime
998 6260361 lari shouldn’t count a.out non-zero undefined entries as interesting
999 6260780 ldd doesn’t recognize LD_NOAUXFLTR

1000 6266261 Add ld(1) -Bnodirect support (D)
1001 6261990 invalid e_flags error could be a little more friendly
1002 6261803 lari(1) should find more events uninteresting (D)
1003 6267352 libld_malloc provides inadequate alignment
1004 6268693 SHN_SUNW_IGNORE symbols should be allowed to be mulitiply defined
1005 6262789 Infosys wants a faster linker
1006 --
1007 All the above changes are incorporated in the following patches:
1008 Solaris/SunOS 5.10_sparc patch T117461-03
1009 Solaris/SunOS 5.10_x86 patch T118345-03
1010 Solaris/SunOS 5.9_sparc patch T112963-21
1011 Solaris/SunOS 5.9_x86 patch T113986-17
1012 Solaris/SunOS 5.8_sparc patch T109147-36
1013 Solaris/SunOS 5.8_x86 patch T109148-36
1014 --
1015 6283601 The usr/src/cmd/sgs/packages/common/copyright contains old information
1016 legally problematic
1017 6276905 dlinfo gives inconsistent results (relative vs absolute linkname) (D)
1018 PSARC/2005/357 dlinfo(3c) RTLD_DI_ARGSINFO
1019 6284941 excessive link times with many groups/sections
1020 6280467 dlclose() unmaps shared library before library’s _fini() has finished
1021 6291547 ld.so mishandles LD_AUDIT causing security problems.
1022 --
1023 All the above changes are incorporated in the following patches:
1024 Solaris/SunOS 5.10_sparc patch T117461-04
1025 Solaris/SunOS 5.10_x86 patch T118345-04
1026 Solaris/SunOS 5.9_sparc patch T112963-22
1027 Solaris/SunOS 5.9_x86 patch T113986-18
1028 Solaris/SunOS 5.8_sparc patch T109147-37
1029 Solaris/SunOS 5.8_x86 patch T109148-37
1030 --
1031 6295971 UNIX98/UNIX03 *vsx* DYNL.hdr/misc/dlfcn/T.dlfcn 14 fails, auxv.h syntax
1032 error
1033 6299525 .init order failure when processing cycles
1034 6273855 gcc and sgs/crle don’t get along
1035 6273864 gcc and sgs/libld don’t get along
1036 6273875 gcc and sgs/rtld don’t get along
1037 6272563 gcc and amd64/krtld/doreloc.c don’t get along
1038 6290157 gcc and sgs/librtld_db/rdb_demo don’t get along
1039 6301218 Matlab dumps core on startup when running on 112963-22 (D)
1040 --
1041 All the above changes are incorporated in the following patches:
1042 Solaris/SunOS 5.10_sparc patch T117461-06
1043 Solaris/SunOS 5.10_x86 patch T118345-08
1044 Solaris/SunOS 5.9_sparc patch T112963-23
1045 Solaris/SunOS 5.9_x86 patch T113986-19
1046 Solaris/SunOS 5.8_sparc patch T109147-38
1047 Solaris/SunOS 5.8_x86 patch T109148-38
1048 --

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 17

1049 6314115 Checkpoint refuses to start, crashes on start, after application of
1050 linker patch 112963-22
1051 --
1052 All the above changes are incorporated in the following patches:
1053 Solaris/SunOS 5.9_sparc patch T112963-24
1054 Solaris/SunOS 5.9_x86 patch T113986-20
1055 Solaris/SunOS 5.8_sparc patch T109147-39
1056 Solaris/SunOS 5.8_x86 patch T109148-39
1057 --
1058 6318306 a dlsym() from a filter should be redirected to an associated filtee
1059 6318401 mis-aligned TLS variable
1060 6324019 ld.so.1: malloc alignment is insufficient for new compilers
1061 6324589 psh coredumps on x86 machines on snv_23
1062 6236594 AMD64: Linker needs to handle the new .lbss section (D)
1063 PSARC 2005/514 AMD64 - large section support
1064 6314743 Linker: incorrect resolution for R_AMD64_GOTPC32
1065 6311865 Linker: x86 medium model; invalid ELF program header
1066 --
1067 All the above changes are incorporated in the following patches:
1068 Solaris/SunOS 5.10_sparc patch T117461-07
1069 Solaris/SunOS 5.10_x86 patch T118345-12
1070 --
1071 6309061 link_audit should use __asm__ with gcc
1072 6310736 gcc and sgs/libld don’t get along on SPARC
1073 6329796 Memory leak with iconv_open/iconv_close with patch 109147-33
1074 6332983 s9 linker patches 112963-24/113986-20 causing cluster machines not
1075 to boot
1076 --
1077 All the above changes are incorporated in the following patches:
1078 Solaris/SunOS 5.10_sparc patch T117461-08
1079 Solaris/SunOS 5.10_x86 patch T121208-02
1080 Solaris/SunOS 5.9_sparc patch T112963-25
1081 Solaris/SunOS 5.9_x86 patch T113986-21
1082 Solaris/SunOS 5.8_sparc patch T109147-40
1083 Solaris/SunOS 5.8_x86 patch T109148-40
1084 --
1085 6445311 The sparc S8/S9/S10 linker patches which include the fix for the
1086 CR6222525 are hit by the CR6439613.
1087 --
1088 All the above changes are incorporated in the following patches:
1089 Solaris/SunOS 5.9_sparc patch T112963-26
1090 Solaris/SunOS 5.8_sparc patch T109147-41
1091 --

1093 -------------------------------------
1094 Solaris 10 807 (4th Q-update - s10u4)
1095 -------------------------------------
1096 Bugid Risk Synopsis
1097 ==
1098 6487273 ld.so.1 may open arbitrary locale files when relative path is built
1099 from locale environment vars
1100 6487284 ld.so.1: buffer overflow in doprf() function
1101 --
1102 All the above changes are incorporated in the following patches:
1103 Solaris/SunOS 5.10_sparc patch T124922-01
1104 Solaris/SunOS 5.10_x86 patch T124923-01
1105 Solaris/SunOS 5.9_sparc patch T112963-27
1106 Solaris/SunOS 5.9_x86 patch T113986-22
1107 Solaris/SunOS 5.8_sparc patch T109147-42
1108 Solaris/SunOS 5.8_x86 patch T109148-41
1109 --
1110 6477132 ld.so.1: memory leak when running set*id application
1111 --
1112 All the above changes are incorporated in the following patches:
1113 Solaris/SunOS 5.10_sparc patch T124922-02
1114 Solaris/SunOS 5.10_x86 patch T124923-02

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 18

1115 Solaris/SunOS 5.9_sparc patch T112963-30
1116 Solaris/SunOS 5.9_x86 patch T113986-24
1117 --
1118 6340814 ld.so.1 core dump with HWCAP relocatable object + updated statistics
1119 6307274 crle bug with LD_LIBRARY_PATH
1120 6317969 elfheader limited to 65535 segments (link-editor components only)
1121 6350027 ld.so.1 aborts with assertion failed on amd64
1122 6362044 ld(1) inconsistencies with LD_DEBUG=-Dunused and -zignore
1123 6362047 ld.so.1 dumps core when combining HWCAP and LD_PROFILE
1124 6304206 runtime linker may respect LANG and LC_MESSAGE more than LC_ALL
1125 6363495 Catchup required with Intel relocations
1126 6326497 ld.so not properly processing LD_LIBRARY_PATH ending in :
1127 6307146 mcs dumps core when appending null string to comment section
1128 6371877 LD_PROFILE_64 with gprof does not produce correct results on amd64
1129 6372082 ld -r erroneously creates .got section on i386
1130 6201866 amd64: linker symbol elimination is broken
1131 6372620 printstack() segfaults when called from static function (D)
1132 6380470 32-bit ld(1) incorrectly builds 64-bit relocatable objects
1133 6391407 Insufficient alignment of 32-bit object in archive makes ld segfault
1134 (libelf component only) (D)
1135 6316708 LD_DEBUG should provide a means of identifying/isolating individual
1136 link-map lists (P)
1137 6280209 elfdump cores on memory model 0x3
1138 6197234 elfdump and dump don’t handle 64-bit symbols correctly
1139 6398893 Extended section processing needs some work
1140 6397256 ldd dumps core in elf_fix_name
1141 6327926 ld does not set etext symbol correctly for AMD64 medium model (D)
1142 6390410 64-bit LD_PROFILE can fail: relocation error when binding profile plt
1143 6382945 AMD64-GCC: dbx: internal error: dwarf reference attribute out of bounds
1144 6262333 init section of .so dlopened from audit interface not being called
1145 6409613 elf_outsync() should fsync()
1146 6426048 C++ exceptions broken in Nevada for amd64
1147 6429418 ld.so.1: need work-around for Nvidia drivers use of static TLS
1148 6429504 crle(1) shows wrong defaults for non-existent 64-bit config file
1149 6431835 data corruption on x64 in 64-bit mode while LD_PROFILE is in effect
1150 6423051 static TLS support within the link-editors needs a major face lift (D)
1151 6388946 attempting to dlopen a .o file mislabeled as .so fails
1152 6446740 allow mapfile symbol definitions to create backing storage (D)
1153 4986360 linker crash on exec of .so (as opposed to a.out) -- error preferred
1154 instead
1155 6229145 ld: initarray/finiarray processing occurs after got size is determined
1156 6324924 the linker should warn if there’s a .init section but not _init
1157 6424132 elfdump inserts extra whitespace in bitmap value display
1158 6449485 ld(1) creates misaligned TLS in binary compiled with -xpg
1159 6424550 Write to unallocated (wua) errors when libraries are built with
1160 -z lazyload
1161 6464235 executing the 64-bit ld(1) should be easy (D)
1162 6465623 need a way of building unix without an interpreter
1163 6467925 ld: section deletion (-z ignore) requires improvement
1164 6357230 specfiles should be nuked (link-editor components only)
1165 --
1166 All the above changes are incorporated in the following patches:
1167 Solaris/SunOS 5.10_sparc patch T124922-03
1168 Solaris/SunOS 5.10_x86 patch T124923-03

1170 These patches also include the framework changes for the following bug fixes.
1171 However, the associated feature has not been enabled in Solaris 10 or earlier
1172 releases:

1174 6174390 crle configuration files are inconsistent across platforms (D, P)
1175 6432984 ld(1) output file removal - change default behavior (D)
1176 PSARC/2006/353 ld(1) output file removal - change default behavior
1177 --

1179 -------------------------------------
1180 Solaris 10 508 (5th Q-update - s10u5)

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 19

1181 -------------------------------------
1182 Bugid Risk Synopsis
1183 ==
1184 6561987 data vac_conflict faults on lipthread libthread libs in s10.
1185 --
1186 All the above changes are incorporated in the following patches:
1187 Solaris/SunOS 5.10_sparc patch T127111-01
1188 Solaris/SunOS 5.10_x86 patch T127112-01
1189 --
1190 6501793 GOTOP relocation transition (optimization) fails with offsets > 2^32
1191 6532924 AMD64: Solaris 5.11 55b: SEGV after whocatches
1192 6551627 OGL: SIGSEGV when trying to use OpenGL pipeline with splash screen,
1193 Solaris/Nvidia only
1194 --
1195 All the above changes are incorporated in the following patches:
1196 Solaris/SunOS 5.10_sparc patch T127111-04
1197 Solaris/SunOS 5.10_x86 patch T127112-04
1198 --
1199 6479848 Enhancements to the linker support interface needed. (D)
1200 PSARC/2006/595 link-editor support library interface - ld_open()
1201 6521608 assertion failure in runtime linker related to auditing
1202 6494228 pclose() error when an audit library calls popen() and the main target
1203 is being run under ldd (D)
1204 6568745 segfault when using LD_DEBUG with bit_audit library when instrumenting
1205 mozilla (D)
1206 PSARC/2007/413 Add -zglobalaudit option to ld
1207 6602294 ps_pbrandname breaks apps linked directly against librtld_db
1208 --
1209 All the above changes are incorporated in the following patches:
1210 Solaris/SunOS 5.10_sparc patch T127111-07
1211 Solaris/SunOS 5.10_x86 patch T127112-07
1212 --

1214 -------------------------------------
1215 Solaris 10 908 (6th Q-update - s10u6)
1216 -------------------------------------
1217 Bugid Risk Synopsis
1218 ==
1219 6672544 elf_rtbndr must support non-ABI aligned stacks on amd64
1220 6668050 First trip through PLT does not preserve args in xmm registers
1221 --
1222 All the above changes are incorporated in the following patch:
1223 Solaris/SunOS 5.10_x86 patch T137138-01
1224 --

1226 -------------------------------------
1227 Solaris 10 409 (7th Q-update - s10u7)
1228 -------------------------------------
1229 Bugid Risk Synopsis
1230 ==
1231 6629404 ld with -z ignore doesn’t scale
1232 6606203 link editor ought to allow creation of >2gb sized objects (P)
1233 --
1234 All the above changes are incorporated in the following patches:
1235 Solaris/SunOS 5.10_sparc patch T139574-01
1236 Solaris/SunOS 5.10_x86 patch T139575-01
1237 --
1238 6746674 setuid applications do not find libraries any more because trusted
1239 directories behavior changed (D)
1240 --
1241 All the above changes are incorporated in the following patches:
1242 Solaris/SunOS 5.10_sparc patch T139574-02
1243 Solaris/SunOS 5.10_x86 patch T139575-02
1244 --
1245 6703683 Can’t build VirtualBox on Build 88 or 89
1246 6737579 process_req_lib() in libld consumes file descriptors

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 20

1247 6685125 ld/elfdump do not handle ZERO terminator .eh_frame amd64 unwind entry
1248 --
1249 All the above changes are incorporated in the following patches:
1250 Solaris/SunOS 5.10_sparc patch T139574-03
1251 Solaris/SunOS 5.10_x86 patch T139575-03
1252 --

1254 -------------------------------------
1255 Solaris 10 1009 (8th Q-update - s10u8)
1256 -------------------------------------
1257 Bugid Risk Synopsis
1258 ==
1259 6782597 32-bit ld.so.1 needs to accept objects with large inode number
1260 6805502 The addition of "inline" keywords to sgs code broke the lint
1261 verification in S10
1262 6807864 ld.so.1 is susceptible to a fatal dlsym()/setlocale() race
1263 --
1264 All the above changes are incorporated in the following patches:
1265 Solaris/SunOS 5.10_sparc patch T141692-01
1266 Solaris/SunOS 5.10_x86 patch T141693-01
1267 NOTE: The fix for 6805502 is only applicable to s10.
1268 --
1269 6826410 ld needs to sort sections using 32-bit sort keys
1270 --
1271 All the above changes are incorporated in the following patches:
1272 Solaris/SunOS 5.10_sparc patch T141771-01
1273 Solaris/SunOS 5.10_x86 patch T141772-01
1274 NOTE: The fix for 6826410 is also available for s9 in the following patches:
1275 Solaris/SunOS 5.9_sparc patch T112963-33
1276 Solaris/SunOS 5.9_x86 patch T113986-27
1277 --
1278 6568447 bcp is broken by 6551627
1279 6599700 librtld_db needs better plugin support
1280 6713830 mdb dumped core reading a gcore
1281 6756048 rd_loadobj_iter() should always invoke brand plugin callback
1282 6786744 32-bit dbx failed with unknown rtld_db.so error on snv_104
1283 --
1284 All the above changes are incorporated in the following patches:
1285 Solaris/SunOS 5.10_sparc patch T141444-06
1286 Solaris/SunOS 5.10_x86 patch T141445-06
1287 --

1289 --------------------------------------
1290 Solaris 10 1005 (9th Q-update - s10u9)
1291 --------------------------------------
1292 Bugid Risk Synopsis
1293 ==
1294 6850124 dlopen reports "No such file or directory" in spite of ENOMEM
1295 when mmap fails in anon_map()
1296 6826513 ldd gets confused by a crle(1) LD_PRELOAD setting
1297 6684577 ld should propagate SHF_LINK_ORDER flag to ET_REL objects
1298 6524709 executables using /usr/lib/libc.so.1 as the ELF interpreter dump core
1299 (link-editor components only)
1300 --
1301 All the above changes are incorporated in the following patches:
1302 Solaris/SunOS 5.10_sparc patch T143895-01
1303 Solaris/SunOS 5.10_x86 patch T143896-01
1304 --

1306 --
1307 Solaris 10 XXXX (10th Q-update - s10u10)
1308 --
1309 Bugid Risk Synopsis
1310 ==
1311 6478684 isainfo/cpuid reports pause instruction not supported on amd64
1312 PSARC/2010/089 Removal of AV_386_PAUSE and AV_386_MON

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 21

1313 --
1314 All the above changes are incorporated in the following patches:
1315 Solaris/SunOS 5.10_sparc patch TXXXXXX-XX
1316 Solaris/SunOS 5.10_x86 patch TXXXXXX-XX
1317 --

1319 --
1320 Solaris Nevada (OpenSolaris 2008.05, snv_86)
1321 --
1322 Bugid Risk Synopsis
1323 ==
1324 6409350 BrandZ project integration into Solaris (link-editor components only)
1325 6459189 UNIX03: *VSC* c99 compiler overwrites non-writable file
1326 6423746 add an option to relax the resolution of COMDAT relocs (D)
1327 4934427 runtime linker should load up static symbol names visible to
1328 dladdr() (D)
1329 PSARC 2006/526 SHT_SUNW_LDYNSYM - default local symbol addition
1330 6448719 sys/elf.h could be updated with additional machine and ABI types
1331 6336605 link-editors need to support R_*_SIZE relocations
1332 PSARC/2006/558 R_*_SIZE relocation support
1333 6475375 symbol search optimization to reduce rescans
1334 6475497 elfdump(1) is misreporting sh_link
1335 6482058 lari(1) could be faster, and handle per-symbol filters better
1336 6482974 defining virtual address of text segment can result in an invalid data
1337 segment
1338 6476734 crle(1m) "-l" as described fails system, crle cores trying to fix
1339 /a/var/ld/ld.config in failsafe
1340 6487499 link_audit "make clobber" creates and populates proto area
1341 6488141 ld(1) should detect attempt to reference 0-length .bss section
1342 6496718 restricted visibility symbol references should trigger archive
1343 extraction
1344 6515970 HWCAP processing doesn’t clean up fmap structure - browser fails to
1345 run java applet
1346 6494214 Refinements to symbolic binding, symbol declarations and
1347 interposition (D)
1348 PSARC/2006/714 ld(1) mapfile: symbol interpose definition
1349 6475344 DTrace needs ELF function and data symbols sorted by address (D)
1350 PSARC/2007/026 ELF symbol sort sections
1351 6518480 ld -melf_i386 doesn’t complain (D)
1352 6519951 bfu is just another word for exit today (RPATH -> RUNPATH conversion
1353 bites us) (D)
1354 6521504 ld: hardware capabilities processing from relocatables objects needs
1355 hardening.
1356 6518322 Some ELF utilities need updating for .SUNW_ldynsym section (D)
1357 PSARC/2007/074 -L option for nm(1) to display SHT_SUNW_LDYNSYM symbols
1358 6523787 dlopen() handle gets mistakenly orphaned - results in access to freed
1359 memory
1360 6531189 SEGV in dladdr()
1361 6527318 dlopen(name, RTLD_NOLOAD) returns handle for unloaded library
1362 6518359 extern mapfiles references to _init/_fini can create INIT/FINI
1363 addresses of 0
1364 6533587 ld.so.1: init/fini processing needs to compensate for interposer
1365 expectations
1366 6516118 Reserved space needed in ELF dynamic section and string table (D)
1367 PSARC/2007/127 Reserved space for editing ELF dynamic sections
1368 6535688 elfdump could be more robust in the face of Purify (D)
1369 6516665 The link-editors should be more resilient against gcc’s symbol
1370 versioning
1371 6541004 hwcap filter processing can leak memory
1372 5108874 elfdump SEGVs on bad object file
1373 6547441 Uninitialized variable causes ld.so.1 to crash on object cleanup
1374 6341667 elfdump should check alignments of ELF header elements
1375 6387860 elfdump cores, when processing linux built ELF file
1376 6198202 mcs -d dumps core
1377 6246083 elfdump should allow section index specification
1378 (numeric -N equivalent) (D)

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 22

1379 PSARC/2007/247 Add -I option to elfdump
1380 6556563 elfdump section overlap checking is too slow for large files
1381 5006034 need ?E mapfile feature extension (D)
1382 6565476 rtld symbol version check prevents GNU ld binary from running
1383 6567670 ld(1) symbol size/section size verification uncovers Haskell
1384 compiler inconsistency
1385 6530249 elfdump should handle ELF files with no section header table (D)
1386 PSARC/2007/395 Add -P option to elfdump
1387 6573641 ld.so.1 does not maintain parent relationship to a dlopen() caller.
1388 6577462 Additional improvements needed to handling of gcc’s symbol versioning
1389 6583742 ELF string conversion library needs to lose static writable buffers
1390 6589819 ld generated reference to __tls_get_addr() fails when resolving to a
1391 shared object reference
1392 6595139 various applications should export yy* global variables for libl
1393 PSARC/2007/474 new ldd(1) -w option
1394 6597841 gelf_getdyn() reads one too many dynamic entries
1395 6603313 dlclose() can fail to unload objects after fix for 6573641
1396 6234471 need a way to edit ELF objects (D)
1397 PSARC/2007/509 elfedit
1398 5035454 mixing -Kpic and -KPIC may cause SIGSEGV with -xarch=v9
1399 6473571 strip and mcs get confused and corrupt files when passed
1400 non-ELF arguments
1401 6253589 mcs has problems handling multiple SHT_NOTE sections
1402 6610591 do_reloc() should not require unused arguments
1403 6602451 new symbol visibilities required: EXPORTED, SINGLETON and ELIMINATE (D)
1404 PSARC/2007/559 new symbol visibilities - EXPORTED, SINGLETON, and
1405 ELIMINATE
1406 6570616 elfdump should display incorrectly aligned note section
1407 6614968 elfedit needs string table module (D)
1408 6620533 HWCAP filtering can leave uninitialized data behind - results in
1409 "rejected: Invalid argument"
1410 6617855 nodirect tag can be ignored when other syminfo tags are available
1411 (link-editor components only)
1412 6621066 Reduce need for new elfdump options with every section type (D)
1413 PSARC/2007/620 elfdump -T, and simplified matching
1414 6627765 soffice failure after integration of 6603313 - dangling GROUP pointer.
1415 6319025 SUNWbtool packaging issues in Nevada and S10u1.
1416 6626135 elfedit capabilities str->value mapping should come from
1417 usr/src/common/elfcap
1418 6642769 ld(1) -z combreloc should become default behavior (D)
1419 PSARC/2008/006 make ld(1) -z combreloc become default behavior
1420 6634436 XFFLAG should be updated. (link-editor components only)
1421 6492726 Merge SHF_MERGE|SHF_STRINGS input sections (D)
1422 4947191 OSNet should use direct bindings (link-editor components only)
1423 6654381 lazy loading fall-back needs optimizing
1424 6658385 ld core dumps when building Xorg on nv_82
1425 6516808 ld.so.1’s token expansion provides no escape for platforms that don’t
1426 report HWCAP
1427 6668534 Direct bindings can compromise function address comparisons from
1428 executables
1429 6667661 Direct bindings can compromise executables with insufficient copy
1430 relocation information
1431 6357282 ldd should recognize PARENT and EXTERN symbols (D)
1432 PSARC/2008/148 new ldd(1) -p option
1433 6672394 ldd(1) unused dependency processing is tricked by relocations errors
1434 --

1436 ---
1437 Solaris Nevada (OpenSolaris 2008.11, snv_101)
1438 ---
1439 Bugid Risk Synopsis
1440 ==
1441 6671255 link-editor should support cross linking (D)
1442 PSARC/2008/179 cross link-editor
1443 6674666 elfedit dyn:posflag1 needs option to locate element via NEEDED item
1444 6675591 elfwrap - wrap data in an ELF file (D,P)

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 23

1445 PSARC/2008/198 elfwrap - wrap data in an ELF file
1446 6678244 elfdump dynamic section sanity checking needs refinement
1447 6679212 sgs use of SCCS id for versioning is obstacle to mercurial migration
1448 6681761 lies, darn lies, and linker README files
1449 6509323 Need to disable the Multiple Files loading - same name, different
1450 directories (or its stat() use)
1451 6686889 ld.so.1 regression - bad pointer created with 6509323 integration
1452 6695681 ldd(1) crashes when run from a chrooted environment
1453 6516212 usr/src/cmd/sgs/libelf warlock targets should be fixed or abandoned
1454 6678310 using LD_AUDIT, ld.so.1 calls shared library’s .init before library is
1455 fully relocated (link-editor components only)
1456 6699594 The ld command has a problem handling ’protected’ mapfile keyword.
1457 6699131 elfdump should display core file notes (D)
1458 6702260 single threading .init/.fini sections breaks staroffice
1459 6703919 boot hangs intermittently on x86 with onnv daily.0430 and on
1460 6701798 ld can enter infinite loop processing bad mapfile
1461 6706401 direct binding copy relocation fallback is insufficient for ild
1462 generated objects
1463 6705846 multithreaded C++ application seems to get deadlocked in the dynamic
1464 linker code
1465 6686343 ldd(1) - unused search path diagnosis should be enabled
1466 6712292 ld.so.1 should fall back to an interposer for failed direct bindings
1467 6716350 usr/src/cmd/sgs should be linted by nightly builds
1468 6720509 usr/src/cmd/sgs/sgsdemangler should be removed
1469 6617475 gas creates erroneous FILE symbols [was: ld.so.1 is reported as
1470 false positive by wsdiff]
1471 6724311 dldump() mishandles R_AMD64_JUMP_SLOT relocations
1472 6724774 elfdump -n doesn’t print siginfo structure
1473 6728555 Fix for amd64 aw (6617475) breaks pure gcc builds
1474 6734598 ld(1) archive processing failure due to mismatched file descriptors (D)
1475 6735939 ld(1) discarded symbol relocations errors (Studio and GNU).
1476 6354160 Solaris linker includes more than one copy of code in binary when
1477 linking gnu object code
1478 6744003 ld(1) could provide better argument processing diagnostics (D)
1479 PSARC 2008/583 add gld options to ld(1)
1480 6749055 ld should generate GNU style VERSYM indexes for VERNEED records (D)
1481 PSARC/2008/603 ELF objects to adopt GNU-style Versym indexes
1482 6752728 link-editor can enter UNDEF symbols in symbol sort sections
1483 6756472 AOUT search path pruning (D)
1484 --

1486 ---
1487 Solaris Nevada (OpenSolaris 2009.06, snv_111)
1488 ---
1489 Bugid Risk Synopsis
1490 ==

1492 6754965 introduce the SF1_SUNW_ADDR32 bit in software capabilities (D)
1493 (link-editor components only)
1494 PSARC/2008/622 32-bit Address Restriction Software Capabilities Flag
1495 6756953 customer requests that DT_CONFIG strings be honored for secure apps (D)
1496 6765299 ld --version-script option not compatible with GNU ld (D)
1497 6748160 problem with -zrescan (D)
1498 PSARC/2008/651 New ld archive rescan options
1499 6763342 sloppy relocations need to get sloppier
1500 6736890 PT_SUNWBSS should be disabled (D)
1501 PSARC/2008/715 PT_SUNWBSS removal
1502 6772661 ldd/lddstub/ld.so.1 dump core in current nightly while processing
1503 libsoftcrypto_hwcap.so.1
1504 6765931 mcs generates unlink(NULL) system calls
1505 6775062 remove /usr/lib/libldstab.so (D)
1506 6782977 ld segfaults after support lib version error sends bad args to vprintf()
1507 6773695 ld -z nopartial can break non-pic objects
1508 6778453 RTLD_GROUP prevents use of application defined malloc
1509 6789925 64-bit applications with SF1_SUNW_ADDR32 require non-default starting
1510 address

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 24

1511 6792906 ld -z nopartial fix breaks TLS
1512 6686372 ld.so.1 should use mmapobj(2)
1513 6726108 dlopen() performance could be improved.
1514 6792836 ld is slow when processing GNU linkonce sections
1515 6797468 ld.so.1: orphaned handles aren’t processed correctly
1516 6798676 ld.so.1: enters infinite loop with realloc/defragmentation logic
1517 6237063 request extension to dl* family to provide segment bounds
1518 information (D)
1519 PSARC/2009/054 dlinfo(3c) - segment mapping retrieval
1520 6800388 shstrtab can be sized incorrectly when -z ignore is used
1521 6805009 ld.so.1: link map control list tear down leaves dangling pointer -
1522 pfinstall does it again.
1523 6807050 GNU linkonce sections can create duplicate and incompatible
1524 eh_frame FDE entries
1525 --

1527 --------------
1528 Solaris Nevada
1529 --------------
1530 Bugid Risk Synopsis
1531 ==
1532 6813909 generalize eh_frame support to non-amd64 platforms
1533 6801536 ld: mapfile processing oddities unveiled through mmapobj(2) observations
1534 6802452 libelf shouldn’t use MS_SYNC
1535 6818012 nm tries to modify readonly segment and dumps core
1536 6821646 xVM dom0 doesn’t boot on daily.0324 and beyond
1537 6822828 librtld_db can return RD_ERR before RD_NOMAPS, which compromises dbx
1538 expectations.
1539 6821619 Solaris linkers need systematic approach to ELF OSABI (D)
1540 PSARC/2009/196 ELF objects to set OSABI / elfdump -O option
1541 6827468 6801536 breaks ’ld -s’ if there are weak/strong symbol pairs
1542 6715578 AOUT (BCP) symbol lookup can be compromised with lazy loading.
1543 6752883 ld.so.1 error message should be buffered (not sent to stderr).
1544 6577982 ld.so.1 calls getpid() before it should when any LD_* are set
1545 6831285 linker LD_DEBUG support needs improvements (D)
1546 6806791 filter builds could be optimized (link-editor components only)
1547 6823371 calloc() uses suboptimal memset() causing 15% regression in SpecCPU2006
1548 gcc code (link-editor components only)
1549 6831308 ld.so.1: symbol rescanning does a little too much work
1550 6837777 ld ordered section code uses too much memory and works too hard
1551 6841199 Undo 10 year old workaround and use 64-bit ld on 32-bit objects
1552 6784790 ld should examine archives to determine output object class/machine (D)
1553 PSARC/2009/305 ld -32 option
1554 6849998 remove undocumented mapfile $SPECVERS and $NEED options
1555 6851224 elf_getshnum() and elf_getshstrndx() incompatible with 2002 ELF gABI
1556 agreement (D)
1557 PSARC/2009/363 replace elf_getphnum, elf_getshnum, and elf_getshstrndx
1558 6853809 ld.so.1: rescan fallback optimization is invalid
1559 6854158 ld.so.1: interposition can be skipped because of incorrect
1560 caller/destination validation
1561 6862967 rd_loadobj_iter() failing for core files
1562 6856173 streams core dumps when compiled in 64bit with a very large static
1563 array size
1564 6834197 ld pukes when given an empty plate
1565 6516644 per-symbol filtering shouldn’t be allowed in executables
1566 6878605 ld should accept ’%’ syntax when matching input SHT_PROGBITS sections
1567 6850768 ld option to autogenerate wrappers/interposers similar to GNU ld
1568 --wrap (D)
1569 PSARC/2009/493 ld -z wrap option
1570 6888489 Null environment variables are not overriding crle(1) replaceable
1571 environment variables.
1572 6885456 Need to implement GNU-ld behavior in construction of .init/.fini
1573 sections
1574 6900241 ld should track SHT_GROUP sections by symbol name, not section name
1575 6901773 Special handling of STT_SECTION group signature symbol for GNU objects
1576 6901895 Failing asserts in ld update_osym() trying to build gcc 4.5 develpment

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 25

1577 head
1578 6909523 core dump when run "LD_DEBUG=help ls" in non-English locale
1579 6903688 mdb(1) can’t resolve certain symbols in solaris10-branded processes
1580 from the global zone
1581 6923449 elfdump misinterprets _init/_fini symbols in dynamic section test
1582 6914728 Add dl_iterate_phdr() function to ld.so.1 (D)
1583 PSARC/2010/015 dl_iterate_phdr
1584 6916788 ld version 2 mapfile syntax (D)
1585 PSARC/2009/688 Human readable and extensible ld mapfile syntax
1586 6929607 ld generates incorrect VERDEF entries for ET_REL output objects
1587 6924224 linker should ignore SUNW_dof when calculating the elf checksum
1588 6918143 symbol capabilities (D)
1589 PSARC/2010/022 Linker-editors: Symbol Capabilities
1590 6910387 .tdata and .tbss separation invalidates TLS program header information
1591 6934123 elfdump -d coredumps on PA-RISC elf
1592 6931044 ld should not allow SHT_PROGBITS .eh_frame sections on amd64 (D)
1593 6931056 pvs -r output can include empty versions in output
1594 6938628 ld.so.1 should produce diagnostics for all dl*() entry points
1595 6938111 nm ‘No symbol table data’ message goes to stdout
1596 6941727 ld relocation cache memory use is excessive
1597 6932220 ld -z allextract skips objects that lack global symbols
1598 6943772 Testing for a symbols existence with RTLD_PROBE is compromised by
1599 RTLD_BIND_NOW
1600 PSARC/2010/XXX Deferred symbol references
1601 6943432 dlsym(RTLD_PROBE) should only bind to symbol definitions
1602 6668759 an external method for determining whether an ELF dependency is optional
1603 6954032 Support library with ld_open and -z allextract in snv_139 do not mix
1604 6949596 wrong section alignment generated in joint compilation with shared
1605 library
1606 6961755 ld.so.1’s -e arguments should take precedence over environment
1607 variables. (D)
1608 6748925 moe returns wrong hwcap library in some circumstances
1609 6916796 OSnet mapfiles should use version 2 link-editor syntax
1610 6964517 OSnet mapfiles should use version 2 link-editor syntax (2nd pass)
1611 6948720 SHT_INIT_ARRAY etc. section names don’t follow ELF gABI (D)
1612 6962343 sgsmsg should use mkstemp() for temporary file creation
1613 6965723 libsoftcrypto symbol capabilities rely on compiler generated
1614 capabilities - gcc failure (link-editor components only)
1615 6952219 ld support for archives larger than 2 GB (D, P)
1616 PSARC/2010/224 Support for archives larger than 2 GB
1617 6956152 dlclose() from an auditor can be fatal. Preinit/activity events should
1618 be more flexible. (D)
1619 6971440 moe can core dump while processing libc.
1620 6972234 sgs demo’s could use some cleanup
1621 6935867 .dynamic could be readonly in sharable objects
1622 6975290 ld mishandles GOT relocation against local ABS symbol
1623 6972860 ld should provide user guidance to improve objects (D)
1624 PSARC/2010/312 Link-editor guidance
1625 --

1627 --------------
1628 Illumos
1629 --------------
1630 Bugid Risk Synopsis
1631 ==

1633 308 ld may misalign sections only preceded by empty sections
1634 1301 ld crashes with ’-z ignore’ due to a null data descriptor
1635 1626 libld may accidentally return success while failing
1636 2413 %ymm* need to be preserved on way through PLT
1637 3210 ld should tolerate SHT_PROGBITS for .eh_frame sections on amd64
1638 3228 Want -zassert-deflib for ld
1639 3230 ld.so.1 should check default paths for DT_DEPAUDIT
1640 3260 linker is insufficiently careful with strtok
1641 3261 linker should ignore unknown hardware capabilities
1642 3265 link-editor builds bogus .eh_frame_hdr on ia32

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 26

1643 3453 GNU comdat redirection does exactly the wrong thing
1644 3439 discarded sections shouldn’t end up on output lists
1645 3436 relocatable objects also need sloppy relocation
1646 3451 archive libraries with no symbols shouldn’t require a string table
1647 3616 SHF_GROUP sections should not be discarded via other COMDAT mechanisms
1648 3709 need sloppy relocation for GNU .debug_macro
1649 3722 link-editor is over restrictive of R_AMD64_32 addends
1650 3926 multiple extern map file definitions corrupt symbol table entry
1651 3999 libld extended section handling is broken
1652 4003 dldump() can’t deal with extended sections
1653 4227 ld --library-path is translated to -l-path, not -L
1654 4270 ld(1) argument error reporting is still pretty bad
1655 4383 libelf can’t write extended sections when ELF_F_LAYOUT
1656 4959 completely discarded merged string sections will corrupt output objects
1657 4996 rtld _init race leads to incorrect symbol values
1658 5688 ELF tools need to be more careful with dwarf data
1659 6098 ld(1) should not require symbols which identify group sections be global
1660 6252 ld should merge function/data-sections in the same manner as GNU ld
1661 7323 ld(1) -zignore can erroneously discard init and fini arrays as unreferen
1662 7594 ld -zaslr should accept Solaris-compatible values
1663 8616 ld has trouble parsing -z options specified with -Wl
1664 10267 ld and GCC disagree about i386 local dynamic TLS
1665 XXXXX support -ztype
1666 10366 ld(1) should support GNU-style linker sets
1667 #endif /* ! codereview */

new/usr/src/cmd/sgs/rtld/common/globals.c 1

**
 11088 Sun Feb 24 19:19:15 2019
new/usr/src/cmd/sgs/rtld/common/globals.c
ld should reject kernel modules as input
**
______unchanged_portion_omitted_

200 Dl_argsinfo argsinfo = { 0 }; /* process argument, environment and */
201 /* auxv information. */

203 /*
204 * Frequently used messages are cached here to reduce _dgettext() overhead and
205 * also provide for resetting should the locale change (see _ld_libc()).
206 */
207 const char *err_strs[ERR_NUM] = { NULL };
208 const char *nosym_str = NULL;

211 /*
212 * Rejection error message tables.
213 */
214 const Msg
215 ldd_reject[SGS_REJ_NUM] = {
216 MSG_STR_EMPTY,
217 MSG_LDD_REJ_MACH, /* MSG_INTL(MSG_LDD_REJ_MACH) */
218 MSG_LDD_REJ_CLASS, /* MSG_INTL(MSG_LDD_REJ_CLASS) */
219 MSG_LDD_REJ_DATA, /* MSG_INTL(MSG_LDD_REJ_DATA) */
220 MSG_LDD_REJ_TYPE, /* MSG_INTL(MSG_LDD_REJ_TYPE) */
221 MSG_LDD_REJ_BADFLAG, /* MSG_INTL(MSG_LDD_REJ_BADFLAG) */
222 MSG_LDD_REJ_MISFLAG, /* MSG_INTL(MSG_LDD_REJ_MISFLAG) */
223 MSG_LDD_REJ_VERSION, /* MSG_INTL(MSG_LDD_REJ_VERSION) */
224 MSG_LDD_REJ_HAL, /* MSG_INTL(MSG_LDD_REJ_HAL) */
225 MSG_LDD_REJ_US3, /* MSG_INTL(MSG_LDD_REJ_US3) */
226 MSG_LDD_REJ_STR, /* MSG_INTL(MSG_LDD_REJ_STR) */
227 MSG_LDD_REJ_UNKFILE, /* MSG_INTL(MSG_LDD_REJ_UNKFILE) */
228 MSG_LDD_REJ_UNKCAP, /* MSG_INTL(MSG_LDD_REJ_UNKCAP) */
229 MSG_LDD_REJ_HWCAP_1, /* MSG_INTL(MSG_LDD_REJ_HWCAP_1) */
230 MSG_LDD_REJ_SFCAP_1, /* MSG_INTL(MSG_LDD_REJ_SFCAP_1) */
231 MSG_LDD_REJ_MACHCAP, /* MSG_INTL(MSG_LDD_REJ_MACHCAP) */
232 MSG_LDD_REJ_PLATCAP, /* MSG_INTL(MSG_LDD_REJ_PLATCAP) */
233 MSG_LDD_REJ_HWCAP_2, /* MSG_INTL(MSG_LDD_REJ_HWCAP_2) */
234 MSG_LDD_REJ_ARCHIVE, /* MSG_INTL(MSG_LDD_REJ_ARCHIVE) */
235 MSG_LDD_REJ_KMOD /* MSG_INTL(MSG_LDD_REJ_KMOD) */
234 MSG_LDD_REJ_ARCHIVE /* MSG_INTL(MSG_LDD_REJ_ARCHIVE) */
236 };
237 #if SGS_REJ_NUM != (SGS_REJ_KMOD + 1)
236 #if SGS_REJ_NUM != (SGS_REJ_ARCHIVE + 1)
238 #error SGS_REJ_NUM has changed
239 #endif

241 const Msg
242 err_reject[SGS_REJ_NUM] = {
243 MSG_STR_EMPTY,
244 MSG_ERR_REJ_MACH, /* MSG_INTL(MSG_ERR_REJ_MACH) */
245 MSG_ERR_REJ_CLASS, /* MSG_INTL(MSG_ERR_REJ_CLASS) */
246 MSG_ERR_REJ_DATA, /* MSG_INTL(MSG_ERR_REJ_DATA) */
247 MSG_ERR_REJ_TYPE, /* MSG_INTL(MSG_ERR_REJ_TYPE) */
248 MSG_ERR_REJ_BADFLAG, /* MSG_INTL(MSG_ERR_REJ_BADFLAG) */
249 MSG_ERR_REJ_MISFLAG, /* MSG_INTL(MSG_ERR_REJ_MISFLAG) */
250 MSG_ERR_REJ_VERSION, /* MSG_INTL(MSG_ERR_REJ_VERSION) */
251 MSG_ERR_REJ_HAL, /* MSG_INTL(MSG_ERR_REJ_HAL) */
252 MSG_ERR_REJ_US3, /* MSG_INTL(MSG_ERR_REJ_US3) */
253 MSG_ERR_REJ_STR, /* MSG_INTL(MSG_ERR_REJ_STR) */
254 MSG_ERR_REJ_UNKFILE, /* MSG_INTL(MSG_ERR_REJ_UNKFILE) */
255 MSG_ERR_REJ_UNKCAP, /* MSG_INTL(MSG_ERR_REJ_UNKCAP) */
256 MSG_ERR_REJ_HWCAP_1, /* MSG_INTL(MSG_ERR_REJ_HWCAP_1) */

new/usr/src/cmd/sgs/rtld/common/globals.c 2

257 MSG_ERR_REJ_SFCAP_1, /* MSG_INTL(MSG_ERR_REJ_SFCAP_1) */
258 MSG_ERR_REJ_MACHCAP, /* MSG_INTL(MSG_ERR_REJ_MACHCAP) */
259 MSG_ERR_REJ_PLATCAP, /* MSG_INTL(MSG_ERR_REJ_PLATCAP) */
260 MSG_ERR_REJ_HWCAP_2, /* MSG_INTL(MSG_ERR_REJ_HWCAP_2) */
261 MSG_ERR_REJ_ARCHIVE, /* MSG_INTL(MSG_ERR_REJ_ARCHIVE) */
262 MSG_ERR_REJ_KMOD, /* MSG_INTL(MSG_ERR_REJ_KMOD) */
263 #endif /* ! codereview */
264 };
265 #if SGS_REJ_NUM != (SGS_REJ_KMOD + 1)
261 #if SGS_REJ_NUM != (SGS_REJ_ARCHIVE + 1)
266 #error SGS_REJ_NUM has changed
267 #endif

269 const Msg
270 ldd_warn[SGS_REJ_NUM] = {
271 MSG_STR_EMPTY,
272 MSG_STR_EMPTY,
273 MSG_STR_EMPTY,
274 MSG_STR_EMPTY,
275 MSG_STR_EMPTY,
276 MSG_STR_EMPTY,
277 MSG_STR_EMPTY,
278 MSG_STR_EMPTY,
279 MSG_STR_EMPTY,
280 MSG_STR_EMPTY,
281 MSG_STR_EMPTY,
282 MSG_STR_EMPTY,
283 MSG_LDD_WARN_UNKCAP, /* MSG_INTL(MSG_LDD_WARN_UNKCAP) */
284 MSG_LDD_WARN_HWCAP_1, /* MSG_INTL(MSG_LDD_WARN_HWCAP_1) */
285 MSG_LDD_WARN_SFCAP_1, /* MSG_INTL(MSG_LDD_WARN_SFCAP_1) */
286 MSG_LDD_WARN_MACHCAP, /* MSG_INTL(MSG_LDD_WARN_MACHCAP) */
287 MSG_LDD_WARN_PLATCAP, /* MSG_INTL(MSG_LDD_WARN_PLATCAP) */
288 MSG_LDD_WARN_HWCAP_2, /* MSG_INTL(MSG_LDD_WARN_HWCAP_2) */
289 MSG_STR_EMPTY,
290 MSG_STR_EMPTY,
285 MSG_STR_EMPTY
291 };
292 #if SGS_REJ_NUM != (SGS_REJ_KMOD + 1)
287 #if SGS_REJ_NUM != (SGS_REJ_ARCHIVE + 1)
293 #error SGS_REJ_NUM has changed
294 #endif

new/usr/src/cmd/sgs/rtld/common/rtld.msg 1

**
 15010 Sun Feb 24 19:19:15 2019
new/usr/src/cmd/sgs/rtld/common/rtld.msg
ld should reject kernel modules as input
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 @ _START_

28 # Message file for cmd/sgs/rtld (ld.so.1)

30 @ MSG_ID_RTLD

32 # Usage error
33 @ MSG_USG_BADOPT "usage: ld.so.1 [-e option,...] \
34 dynamic-object [object args,...]"

36 # Message formatting error.
37 @ MSG_EMG_BUFOVRFLW "ld.so.1: internal: message buffer overflow"

39 # Argument processing errors

41 @ MSG_ARG_ILLMODE_1 "illegal mode: RTLD_NOW or RTLD_LAZY or RTLD_NOLOAD \
42 required"
43 @ MSG_ARG_ILLMODE_2 "illegal mode: RTLD_NOW cannot be combined with \
44 RTLD_LAZY"
45 @ MSG_ARG_ILLMODE_3 "illegal mode: LM_ID_NEWLM requires non-zero path"
46 @ MSG_ARG_ILLMODE_4 "illegal mode: LM_ID_NEWLM cannot be combined with \
47 RTLD_PARENT"
48 @ MSG_ARG_ILLMODE_5 "illegal mode: potential multiple path expansion \
49 requires RTLD_FIRST"

51 @ MSG_ARG_ILLPATH "illegal pathname"
52 @ MSG_ARG_ILLSYM "illegal symbol name"
53 @ MSG_ARG_ILLNAME "illegal name"
54 @ MSG_ARG_INVADDR "address 0x%llx does not fall within any mapped object"
55 @ MSG_ARG_INVHNDL "invalid handle: 0x%llx"
56 @ MSG_ARG_ILLVAL "illegal request value"
57 @ MSG_ARG_NOCONFIG "no configuration file in use"
58 @ MSG_ARG_NOPROFNAME "no profile target specified"
59 @ MSG_ARG_ATEXIT "purge of atexit() registrations failed: %d"
60 @ MSG_ARG_SERCNT "information path count (%d) insufficient"
61 @ MSG_ARG_SERSIZE "information buffer size (%lld) insufficient"

new/usr/src/cmd/sgs/rtld/common/rtld.msg 2

62 @ MSG_ARG_ILLFLAGS "illegal flags value: %d"
63 @ MSG_ARG_ILLINFO "non-null info field required for flags value: %d"
64 @ MSG_ARG_INVSIG "invalid signal supplied: %d"

66 # General error diagnostics

68 @ MSG_GEN_NOOPEN "DF_1_NOOPEN tagged object may not be dlopen()’ed"

70 @ MSG_GEN_NOFILE "%s: can’t find file"
71 @ MSG_GEN_ALTER "%s: alternate file in use"
72 @ MSG_GEN_NOSYM "%s: can’t find symbol"
73 @ MSG_GEN_NODUMP "%s: DF_1_NODUMP tagged object may not be dldump()’ed"

75 # Move related messages

77 @ MSG_MOVE_ERR1 "move entry with illegal size; ignored"

80 # Relocation processing messages (some of these are required to satisfy
81 # do_reloc(), which is common code used by cmd/sgs/libld - make sure both
82 # message files remain consistent).

84 @ MSG_REL_NOSYM "relocation error: file %s: symbol %s: \
85 referenced symbol not found"
86 @ MSG_REL_PLTREF "relocation error: %s: unidentifiable procedure \
87 reference: link-map 0x%llx, offset 0x%llx, \
88 called from 0x%llx"
89 @ MSG_REL_UNSUPSZ "relocation error: %s: file %s: symbol %s: \
90 offset size (%d bytes) is not supported"
91 @ MSG_REL_BADTLS "relocation error: %s: file %s: symbol %s: \
92 file contains insufficient TLS support information"

94 # System call messages.

96 @ MSG_SYS_BRK "%s: brk failed: %s"
97 @ MSG_SYS_OPEN "%s: open failed: %s"
98 @ MSG_SYS_MMAP "%s: mmap failed: %s"
99 @ MSG_SYS_MPROT "%s: mprotect failed: %s"
100 @ MSG_SYS_MMAPANON "mmap anon failed: %s"

102 @ MSG_SEC_OPEN "%s: open failed: No such file in secure directories"
103 @ MSG_SEC_ILLEGAL "%s: open failed: illegal insecure pathname"

106 # Configuration failures

108 @ MSG_CONF_APP "configuration file: %s: is specific to application: %s"
109 @ MSG_CONF_DSTAT "configuration file: %s: original directory %s: stat \
110 failed: %s"
111 @ MSG_CONF_FSTAT "configuration file: %s: original file %s: stat \
112 failed: %s"
113 @ MSG_CONF_FCMP "configuration file: %s: original file %s: modified \
114 since configuration file creation"

116 # Link Audit diagnostic message formats

118 @ MSG_AUD_BADVERS "version mismatch: current %d: required %d"
119 @ MSG_AUD_DISABLED "%s: audit initialization failure: disabled"

122 # Versioning diagnostics.

124 @ MSG_VER_NFOUND "%s: version ’%s’ not found (required by file %s)"

127 # Diagnostics generated under the control of ldd(1).

new/usr/src/cmd/sgs/rtld/common/rtld.msg 3

129 @ MSG_LDD_VER_FIND " find version=%s\n"
130 @ MSG_LDD_VER_NFOUND "\t%s (%s) =>\t (version not found)\n"

132 @ MSG_LDD_SYM_NFOUND "\tsymbol not found: %s\t\t(%s)\n"

134 @ MSG_LDD_PTH_TRYING " trying path=%s%s\n"
135 @ MSG_LDD_PTH_LIBPATH " search path=%s (LD_LIBRARY_PATH)\n"
136 @ MSG_LDD_PTH_LIBPATHC " search path=%s (configuration \
137 LD_LIBRARY_PATH - %s)\n"
138 @ MSG_LDD_PTH_RUNPATH " search path=%s (RUNPATH/RPATH from file %s)\n"
139 @ MSG_LDD_PTH_BGNDFL " search path="
140 @ MSG_LDD_PTH_ENDDFL " (default)\n"
141 @ MSG_LDD_PTH_ENDDFLC " (configuration default - %s)\n"
142 @ MSG_LDD_PTH_IGNORE " ignore path=%s (insecure directory name)\n"

144 @ MSG_LDD_FIL_FILTER "\n object=%s; filter for %s\n"
145 @ MSG_LDD_FIL_FIND "\n find object=%s; required by %s\n"
146 @ MSG_LDD_FIL_NFOUND "\t%s =>\t (file not found)\n"
147 @ MSG_LDD_FIL_ILLEGAL "\t%s =>\t (illegal insecure pathname)\n"
148 @ MSG_LDD_FIL_ALTER " (alternate)"

150 @ MSG_LDD_CAP_NFOUND "\t%s =>\t (no capability objects found)\n"

152 @ MSG_LDD_SEC_NFOUND "\t%s =>\t (file not found in secure directories)\n"

154 @ MSG_LDD_REL_ERR1 "\trelocation %s offset invalid: %s: offset=0x%llx \
155 lies outside memory image; relocation discarded\n"
156 @ MSG_LDD_REL_ERR2 "\tloading after relocation has started: interposition \
157 request (DF_1_INTERPOSE) ignored: %s\n"
158 @ MSG_LDD_MOVE_ERR "\tmove %lld offset invalid: %s: offset=0x%llx \
159 lies outside memory image; move discarded\n"
160 @ MSG_LDD_CPY_SIZDIF "\trelocation %s sizes differ: %s\n\
161 \t\t(file %s size=0x%llx; file %s size=0x%llx)\n"
162 @ MSG_LDD_CPY_INSDATA "\t\t%s size used; possible insufficient data copied\n"
163 @ MSG_LDD_CPY_DATRUNC "\t\t%s size used; possible data truncation\n"
164 @ MSG_LDD_CPY_PROT "\trelocation %s symbol: %s: file %s: relocation bound \
165 to a symbol with STV_PROTECTED visibility\n"

167 @ MSG_LDD_INIT_FMT_01 "\n cyclic dependencies detected, group [%d]:\n"
168 @ MSG_LDD_INIT_FMT_02 " init object=%s\n"
169 @ MSG_LDD_INIT_FMT_03 " init object=%s - cyclic group [%d], referenced \
170 by:\n"

172 @ MSG_LDD_UNUSED_FMT " unused object=%s\n"
173 @ MSG_LDD_UNCYC_FMT " unused object=%s; member of cyclic group [%d]\n"
174 @ MSG_LDD_UNREF_FMT " unreferenced object=%s; unused dependency of %s\n"

176 @ MSG_LDD_REL_CPYDISP "\tsymbol %s: file %s: copy relocation symbol may \
177 have been displacement relocated\n"

179 @ MSG_LDD_REJ_MACH " - wrong ELF machine type: %s"
180 @ MSG_LDD_REJ_CLASS " - wrong ELF class: %s"
181 @ MSG_LDD_REJ_DATA " - wrong ELF data format: %s"
182 @ MSG_LDD_REJ_TYPE " - bad ELF type: %s"
183 @ MSG_LDD_REJ_BADFLAG " - bad ELF flags value: %s"
184 @ MSG_LDD_REJ_MISFLAG " - mismatched ELF flags value: %s"
185 @ MSG_LDD_REJ_VERSION " - mismatched ELF/lib version: %s"
186 @ MSG_LDD_REJ_HAL " - HAL R1 extensions required"
187 @ MSG_LDD_REJ_US3 " - Sun UltraSPARC III extensions required"
188 @ MSG_LDD_REJ_STR " - %s"
189 @ MSG_LDD_REJ_UNKFILE " - unknown file type"
190 @ MSG_LDD_REJ_UNKCAP " - unknown capability: %d"
191 @ MSG_LDD_REJ_HWCAP_1 " - hardware capability (CA_SUNW_HW_1) unsupported: %s"
192 @ MSG_LDD_REJ_SFCAP_1 " - software capability (CA_SUNW_SF_1) unsupported: %s"
193 @ MSG_LDD_REJ_MACHCAP " - machine capability (CA_SUNW_MACH) unsupported: %s"

new/usr/src/cmd/sgs/rtld/common/rtld.msg 4

194 @ MSG_LDD_REJ_PLATCAP " - platform capability (CA_SUNW_PLAT) unsupported: %s"
195 @ MSG_LDD_REJ_HWCAP_2 " - hardware capability (CA_SUNW_HW_2) unsupported: %s"
196 @ MSG_LDD_REJ_ARCHIVE " - invalid archive use"
197 @ MSG_LDD_REJ_KMOD " - invalid kernel module use"
198 #endif /* ! codereview */

200 @ MSG_LDD_WARN_UNKCAP "%s: unknown capability: %d"
201 @ MSG_LDD_WARN_HWCAP_1 "%s: warning: hardware capability (CA_SUNW_HW_1) \
202 unsupported: %s\n"
203 @ MSG_LDD_WARN_SFCAP_1 "%s: warning: software capability (CA_SUNW_SF_1) \
204 unsupported: %s\n"
205 @ MSG_LDD_WARN_MACHCAP "%s: warning: machine capability (CA_SUNW_MACH) \
206 unsupported: %s\n"
207 @ MSG_LDD_WARN_PLATCAP "%s: warning: platform capability (CA_SUNW_PLAT) \
208 unsupported: %s\n"
209 @ MSG_LDD_WARN_HWCAP_2 "%s: warning: hardware capability (CA_SUNW_HW_2) \
210 unsupported: %s\n"

212 # Error rejection messages.

214 @ MSG_ERR_REJ_MACH "%s: wrong ELF machine type: %s"
215 @ MSG_ERR_REJ_CLASS "%s: wrong ELF class: %s"
216 @ MSG_ERR_REJ_DATA "%s: wrong ELF data format: %s"
217 @ MSG_ERR_REJ_TYPE "%s: bad ELF type: %s"
218 @ MSG_ERR_REJ_BADFLAG "%s: bad ELF flags value: %s"
219 @ MSG_ERR_REJ_MISFLAG "%s: mismatched ELF flags value: %s"
220 @ MSG_ERR_REJ_VERSION "%s: mismatched ELF/lib version: %s"
221 @ MSG_ERR_REJ_HAL "%s: HAL R1 extensions required"
222 @ MSG_ERR_REJ_US3 "%s: Sun UltraSPARC III extensions required"
223 @ MSG_ERR_REJ_STR "%s: %s"
224 @ MSG_ERR_REJ_UNKFILE "%s: unknown file type"
225 @ MSG_ERR_REJ_UNKCAP "%s: unknown capability: %d"
226 @ MSG_ERR_REJ_HWCAP_1 "%s: hardware capability (CA_SUNW_HW_1) unsupported: %s"
227 @ MSG_ERR_REJ_SFCAP_1 "%s: software capability (CA_SUNW_SF_1) unsupported: %s"
228 @ MSG_ERR_REJ_MACHCAP "%s: machine capability (CA_SUNW_MACH) unsupported: %s"
229 @ MSG_ERR_REJ_PLATCAP "%s: platform capability (CA_SUNW_PLAT) unsupported: %s"
230 @ MSG_ERR_REJ_HWCAP_2 "%s: hardware capability (CA_SUNW_HW_2) unsupported: %s"
231 @ MSG_ERR_REJ_ARCHIVE "%s: invalid archive use"
232 @ MSG_ERR_REJ_KMOD "%s: invalid kernel module use"
233 #endif /* ! codereview */

235 # Error TLS failures

237 @ MSG_TLS_NOSUPPORT "%s: TLS requirement failure : TLS support is \
238 unavailable"
239 @ MSG_TLS_STATBASE "%s: static TLS failure: object is not part of primary \
240 link-map list"
241 @ MSG_TLS_STATSIZE "%s: static TLS failure: object loaded after process \
242 initialization: size (%#llx) exceeds available backup \
243 reservation (%#llx)"
244 @ MSG_TLS_STATINIT "%s: static TLS failure: object loaded after process \
245 initialization: can not accommodate initialized data"

247 # Error expand()

249 @ MSG_ERR_EXPAND1 "%s: %s: path name too long"
250 @ MSG_ERR_EXPAND2 "%s: %s: token %s could not be expanded"

252 # Specific dlinfo() messages.

254 @ MSG_DEF_NODEPFOUND "%s: no deferred dependency found"
255 @ MSG_DEF_NOSYMFOUND "%s: no deferred symbol found"
256 @ MSG_DEF_DEPLOADED "%s: deferred dependency is already loaded"

258 # Error diagnostic standard prefixes.

new/usr/src/cmd/sgs/rtld/common/rtld.msg 5

260 @ MSG_ERR_WARNING "warning: "
261 @ MSG_ERR_GUIDANCE "guidance: "
262 @ MSG_ERR_FATAL "fatal: "
263 @ MSG_ERR_ELF "elf error: "

265 @ MSG_STR_UNKNOWN "(unknown)"
266 @ MSG_STR_NULL "(null)"

268 # Unused errors - used by ldd.

270 @ MSG_USD_LDLIBPATH " unused search path=%s (LD_LIBRARY_PATH)\n"
271 @ MSG_DUP_LDLIBPATH " unused (duplicate) search path=%s \
272 (LD_LIBRARY_PATH)\n"
273 @ MSG_USD_LDLIBPATHC " unused search path=%s (configuration \
274 LD_LIBRARY_PATH - %s)\n"
275 @ MSG_DUP_LDLIBPATHC " unused (duplicate) search path=%s (configuration \
276 LD_LIBRARY_PATH - %s)\n"
277 @ MSG_USD_RUNPATH " unused search path=%s (RUNPATH/RPATH from \
278 file %s)\n"

280 @ MSG_CAP_IGN_UNKCAP "ignoring unknown capability: %s"

282 @ _END_

284 # The following strings represent reserved words, files, pathnames and symbols.
285 # Reference to this strings is via the MSG_ORIG() macro, and thus no message
286 # translation is required.

288 @ MSG_LDD_FIL_PATH "\t%s%s%s\n"
289 @ MSG_LDD_FIL_EQUIV "\t%s =>\t %s%s%s\n"
290 @ MSG_LDD_FMT_PATH1 "%s"
291 @ MSG_LDD_FMT_PATHN ":%s"
292 @ MSG_LDD_INIT_FMT_FILE "\t%s\n"
293 @ MSG_LDD_VER_FOUND "\t%s (%s) =>\t %s\n"

295 @ MSG_STR_EMPTY ""
296 @ MSG_STR_NEGATE "-"
297 @ MSG_STR_ZERO "0"
298 @ MSG_STR_HEX "0x"
299 @ MSG_STR_ELF "ELF"
300 @ MSG_STR_EMSGFOR1 "%s: %s: %s"
301 @ MSG_STR_EMSGFOR2 "%s: %s"
302 @ MSG_STR_HEXNUM "0123456789abcdef"
303 @ MSG_STR_NL "\n"
304 @ MSG_STR_SLASH "/"
305 @ MSG_STR_DELIMIT ": "
306 @ MSG_STR_ONE "1"

308 @ MSG_CAP_DELIMIT ","

310 @ MSG_SUNW_OST_SGS "SUNW_OST_SGS"
311 @ MSG_SUNW_OST_OSLIB "SUNW_OST_OSLIB"

313 @ MSG_TKN_CAPABILITY "CAPABILITY"
314 @ MSG_TKN_MACHINE "MACHINE"
315 @ MSG_TKN_PLATFORM "PLATFORM"
316 @ MSG_TKN_ORIGIN "ORIGIN"
317 @ MSG_TKN_ISALIST "ISALIST"
318 @ MSG_TKN_OSNAME "OSNAME"
319 @ MSG_TKN_OSREL "OSREL"
320 @ MSG_TKN_HWCAP "HWCAP"
321 @ MSG_TKN_BINDINGS "bindings"
322 @ MSG_TKN_POSIX "POSIX"
323 @ MSG_TKN_DOTDOT ".."

325 @ MSG_FMT_CWD "."

new/usr/src/cmd/sgs/rtld/common/rtld.msg 6

326 @ MSG_FMT_MSGFILE "/usr/lib/locale/%s/LC_MESSAGES/%s.mo"

328 @ MSG_FIL_RTLD "ld.so.1"
329 @ MSG_FIL_LIBC "libc.so.1"

331 @ MSG_SYM_ELFERRMSG "elf_errmsg"
332 @ MSG_SYM_ELFERRNO "elf_errno"
333 @ MSG_SYM_ELFPLTTRACE "elf_plt_trace"
334 @ MSG_SYM_ENVIRON "_environ"

336 @ MSG_SYM_LAPREINIT "la_preinit"
337 @ MSG_SYM_LAVERSION "la_version"
338 @ MSG_SYM_LAACTIVITY "la_activity"
339 @ MSG_SYM_LAOBJSEARCH "la_objsearch"
340 @ MSG_SYM_LAOBJOPEN "la_objopen"
341 @ MSG_SYM_LAOBJFILTER "la_objfilter"
342 @ MSG_SYM_LAOBJCLOSE "la_objclose"
343 @ MSG_SYM_LADYNDATA "la_dyndata"

345 @ MSG_SYM_START "_START_"

347 @ MSG_SPECFIL_DYNPLT "dyn_plt(ld.so.1)"

349 @ MSG_PTH_LDPROF "/usr/lib/link_audit/ldprof.so.1"
350 @ MSG_PTH_LDPROFSE "/usr/lib/secure/ldprof.so.1"
351 @ MSG_PTH_LIBSYS "/usr/lib/libsys.so.1"
352 @ MSG_PTH_RTLD "/usr/lib/ld.so.1"
353 @ MSG_PTH_LIB "/lib"
354 @ MSG_PTH_USRLIB "/usr/lib"
355 @ MSG_PTH_LIBSE "/lib/secure"
356 @ MSG_PTH_USRLIBSE "/usr/lib/secure"
357 @ MSG_PTH_DEVNULL "/dev/null"
358 @ MSG_PTH_CONFIG "/var/ld/ld.config"
359 @ MSG_PTH_VARTMP "/var/tmp"

361 @ MSG_ORG_CONFIG "$ORIGIN/ld.config.%s"

363 @ MSG_LD_AUDIT "AUDIT"
364 @ MSG_LD_AUDIT_ARGS "AUDIT_ARGS"
365 @ MSG_LD_BIND_LAZY "BIND_LAZY"
366 @ MSG_LD_BIND_NOW "BIND_NOW"
367 @ MSG_LD_BIND_NOT "BIND_NOT"
368 @ MSG_LD_BINDINGS "BINDINGS"
369 @ MSG_LD_CONFGEN "CONFGEN"
370 @ MSG_LD_CAP_FILES "CAP_FILES"
371 @ MSG_LD_CONFIG "CONFIG"
372 @ MSG_LD_DEBUG "DEBUG"
373 @ MSG_LD_DEBUG_OUTPUT "DEBUG_OUTPUT"
374 @ MSG_LD_DEMANGLE "DEMANGLE"
375 @ MSG_LD_FLAGS "FLAGS"
376 @ MSG_LD_HWCAP "HWCAP"
377 @ MSG_LD_INIT "INIT"
378 @ MSG_LD_LIBPATH "LIBRARY_PATH"
379 @ MSG_LD_LOADAVAIL "LOADAVAIL"
380 @ MSG_LD_LOADFLTR "LOADFLTR"
381 @ MSG_LD_MACHCAP "MACHCAP"
382 @ MSG_LD_NOAUDIT "NOAUDIT"
383 @ MSG_LD_NOAUXFLTR "NOAUXFLTR"
384 @ MSG_LD_NOBAPLT "NOBAPLT"
385 @ MSG_LD_NOCONFIG "NOCONFIG"
386 @ MSG_LD_NODIRCONFIG "NODIRCONFIG"
387 @ MSG_LD_NODIRECT "NODIRECT"
388 @ MSG_LD_NOENVCONFIG "NOENVCONFIG"
389 @ MSG_LD_NOENVIRON "NOENVIRON"
390 @ MSG_LD_NOFLTCONFIG "NOFLTCONFIG"
391 @ MSG_LD_NOLAZY "NOLAZYLOAD"

new/usr/src/cmd/sgs/rtld/common/rtld.msg 7

392 @ MSG_LD_NOOBJALTER "NOOBJALTER"
393 @ MSG_LD_NOPAREXT "NOPAREXT"
394 @ MSG_LD_NOUNRESWEAK "NOUNRESWEAK"
395 @ MSG_LD_NOVERSION "NOVERSION"
396 @ MSG_LD_PLATCAP "PLATCAP"
397 @ MSG_LD_PRELOAD "PRELOAD"
398 @ MSG_LD_PROFILE "PROFILE"
399 @ MSG_LD_PROFILE_OUTPUT "PROFILE_OUTPUT"
400 @ MSG_LD_SFCAP "SFCAP"
401 @ MSG_LD_SIGNAL "SIGNAL"
402 @ MSG_LD_TRACE_OBJS "TRACE_LOADED_OBJECTS"
403 @ MSG_LD_TRACE_OBJS_E "TRACE_LOADED_OBJECTS_E"
404 @ MSG_LD_TRACE_OBJS_A "TRACE_LOADED_OBJECTS_A"
405 @ MSG_LD_TRACE_PTHS "TRACE_SEARCH_PATHS"
406 @ MSG_LD_UNREF "UNREF"
407 @ MSG_LD_UNUSED "UNUSED"
408 @ MSG_LD_VERBOSE "VERBOSE"
409 @ MSG_LD_DEFERRED "DEFERRED"
410 @ MSG_LD_WARN "WARN"

412 @ MSG_LD_BRAND_PREFIX "BRAND_"

414 @ MSG_LC_ALL "ALL="
415 @ MSG_LC_MESSAGES "MESSAGES="

417 @ MSG_EMG_ENOMEM "internal: Not enough space"

419 @ MSG_DBG_PID "%5.5d: "
420 @ MSG_DBG_RESET "---------\n"
421 @ MSG_DBG_UNDEF "debug: "
422 @ MSG_DBG_LMID "%s: "
423 @ MSG_DBG_THREAD "%d: "
424 @ MSG_DBG_FILE "%s.%5.5d"

426 @ MSG_LMID_BASE "BASE"
427 @ MSG_LMID_LDSO "LDSO"
428 @ MSG_LMID_ALT "ALT"

430 @ MSG_LMID_FMT "%s%d"
431 @ MSG_LMID_MAXED "ALTMAXEDOUT"

new/usr/src/man/man1/ld.1 1

**
 59984 Sun Feb 24 19:19:16 2019
new/usr/src/man/man1/ld.1
ld: implement -ztype and rework option parsing
**

1 ’\" te
2 .\" Copyright 1989 AT&T
3 .\" Copyright (c) 2009, Sun Microsystems, Inc. All Rights Reserved
4 .\" Copyright (c) 2012, Joyent, Inc. All Rights Reserved
5 .\" The contents of this file are subject to the terms of the Common Development
6 .\" See the License for the specific language governing permissions and limitat
7 .\" the fields enclosed by brackets "[]" replaced with your own identifying info
8 .TH LD 1 "May 13, 2017"
9 .SH NAME

10 ld \- link-editor for object files
11 .SH SYNOPSIS
12 .LP
13 .nf
14 \fBld\fR [\fB-32\fR | \fB-64\fR] [\fB-a\fR | \fB-r\fR] [\fB-b\fR] [\fB-B\fRdirec
15 [\fB-B\fR dynamic | static] [\fB-B\fR eliminate] [\fB-B\fR group] [\fB-B\fR loca
16 [\fB-B\fR reduce] [\fB-B\fR symbolic] [\fB-c\fR \fIname\fR] [\fB-C\fR] [\fB-d\fR
17 [\fB-D\fR \fItoken\fR,...] [\fB-e\fR \fIepsym\fR] [\fB-f\fR \fIname\fR | \fB-F\f
18 [\fB-i\fR] [\fB-I\fR \fIname\fR] [\fB-l\fR \fIx\fR] [\fB-L\fR \fIpath\fR] [\fB-m
19 [\fB-N\fR \fIstring\fR] [\fB-o\fR \fIoutfile\fR] [\fB-p\fR \fIauditlib\fR] [\fB-
20 [\fB-Q\fR y | n] [\fB-R\fR \fIpath\fR] [\fB-s\fR] [\fB-S\fR \fIsupportlib\fR] [\
21 [\fB-u\fR \fIsymname\fR] [\fB-V\fR] [\fB-Y P\fR\fI,dirlist\fR] [\fB-z\fR absexec
22 [\fB-z\fR allextract | defaultextract | weakextract] [\fB-z\fR altexec64]
23 [\fB-z\fR aslr[=\fIstate\fR]] [\fB-z\fR assert-deflib] [\fB-z\fR assert-deflib=
24 [\fB-z\fR combreloc | nocombreloc] [\fB-z\fR defs | nodefs]
25 [\fB-z\fR direct | nodirect] [\fB-z\fR endfiltee]
26 [\fB-z\fR fatal-warnings | nofatal-warnings] [\fB-z\fR finiarray=\fIfunction\fR
27 [\fB-z\fR globalaudit] [\fB-z\fR groupperm | nogroupperm]
28 [\fB-z\fR guidance[=\fIid1\fR,\fIid2\fR...] [\fB-z\fR help]
29 [\fB-z\fR ignore | record] [\fB-z\fR initarray=\fIfunction\fR] [\fB-z\fR initfir
30 [\fB-z\fR interpose] [\fB-z\fR lazyload | nolazyload]
31 [\fB-z\fR ld32=\fIarg1\fR,\fIarg2\fR,...] [\fB-z\fR ld64=\fIarg1\fR,\fIarg2\fR,.
32 [\fB-z\fR loadfltr] [\fB-z\fR muldefs] [\fB-z\fR nocompstrtab] [\fB-z\fR nodefau
33 [\fB-z\fR nodelete] [\fB-z\fR nodlopen] [\fB-z\fR nodump] [\fB-z\fR noldynsym]
34 [\fB-z\fR nopartial] [\fB-z\fR noversion] [\fB-z\fR now] [\fB-z\fR origin]
35 [\fB-z\fR preinitarray=\fIfunction\fR] [\fB-z\fR redlocsym] [\fB-z\fR relaxreloc
36 [\fB-z\fR rescan-now] [\fB-z\fR recan] [\fB-z\fR rescan-start \fI\&...\fR \fB-z\
37 [\fB-z\fR target=sparc|x86] [\fB-z\fR text | textwarn | textoff]
38 [\fB-z\fR type=\fIexec\fR|\fIkmod\fR|\fIreloc\fR|\fIshared\fR]
39 #endif /* ! codereview */
40 [\fB-z\fR verbose] [\fB-z\fR wrap=\fIsymbol\fR] \fIfilename\fR...
41 .fi

43 .SH DESCRIPTION
44 .LP
45 The link-editor, \fBld\fR, combines relocatable object files by resolving
46 symbol references to symbol definitions, together with performing relocations.
47 \fBld\fR operates in two modes, static or dynamic, as governed by the \fB-d\fR
48 option. In all cases, the output of \fBld\fR is left in the file \fBa.out\fR by
49 default. See NOTES.
50 .sp
51 .LP
52 In dynamic mode, \fB-dy\fR, the default, relocatable object files that are
53 provided as arguments are combined to produce an executable object file. This
54 file is linked at execution with any shared object files that are provided as
55 arguments. If the \fB-G\fR option is specified, relocatable object files are
56 combined to produce a shared object. Without the \fB-G\fR option, a dynamic
57 executable is created.
58 .sp
59 .LP
60 In static mode, \fB-dn\fR, relocatable object files that are provided as
61 arguments are combined to produce a static executable file. If the \fB-r\fR

new/usr/src/man/man1/ld.1 2

62 option is specified, relocatable object files are combined to produce one
63 relocatable object file. See \fBStatic Executables\fR.
64 .sp
65 .LP
66 Dynamic linking is the most common model for combining relocatable objects, and
67 the eventual creation of processes within Solaris. This environment tightly
68 couples the work of the link-editor and the runtime linker, \fBld.so.1\fR(1).
69 Both of these utilities, together with their related technologies and
70 utilities, are extensively documented in the \fILinker and Libraries Guide\fR.
71 .sp
72 .LP
73 If any argument is a library, \fBld\fR by default searches the library exactly
74 once at the point the library is encountered on the argument list. The library
75 can be either a shared object or relocatable archive. See \fBar.h\fR(3HEAD)).
76 .sp
77 .LP
78 A shared object consists of an indivisible, whole unit that has been generated
79 by a previous link-edit of one or more input files. When the link-editor
80 processes a shared object, the entire contents of the shared object become a
81 logical part of the resulting output file image. The shared object is not
82 physically copied during the link-edit as its actual inclusion is deferred
83 until process execution. This logical inclusion means that all symbol entries
84 defined in the shared object are made available to the link-editing process.
85 See Chapter 4, \fIShared Objects,\fR in \fILinker and Libraries Guide\fR
86 .sp
87 .LP
88 For an archive library, \fBld\fR loads only those routines that define an
89 unresolved external reference. \fBld\fR searches the symbol table of the
90 archive library sequentially to resolve external references that can be
91 satisfied by library members. This search is repeated until no external
92 references can be resolved by the archive. Thus, the order of members in the
93 library is functionally unimportant, unless multiple library members exist that
94 define the same external symbol. Archive libraries that have interdependencies
95 can require multiple command line definitions, or the use of one of the
96 \fB-z\fR \fBrescan\fR options. See \fIArchive Processing\fR in \fILinker and
97 Libraries Guide\fR.
98 .sp
99 .LP
100 \fBld\fR is a cross link-editor, able to link 32-bit objects or 64-bit objects,
101 for Sparc or x86 targets. \fBld\fR uses the \fBELF\fR class and machine type of
102 the first relocatable object on the command line to govern the mode in which to
103 operate. The mixing of 32-bit objects and 64-bit objects is not permitted.
104 Similarly, only objects of a single machine type are allowed. See the
105 \fB-32\fR, \fB-64\fR and \fB-z target\fR options, and the \fBLD_NOEXEC_64\fR
106 environment variable.
107 .SS "Static Executables"
108 .LP
109 The creation of static executables has been discouraged for many releases. In
110 fact, 64-bit system archive libraries have never been provided. Because a
111 static executable is built against system archive libraries, the executable
112 contains system implementation details. This self-containment has a number of
113 drawbacks.
114 .RS +4
115 .TP
116 .ie t \(bu
117 .el o
118 The executable is immune to the benefits of system updates delivered as shared
119 objects. The executable therefore, must be rebuilt to take advantage of many
120 system improvements.
121 .RE
122 .RS +4
123 .TP
124 .ie t \(bu
125 .el o
126 The ability of the executable to run on future releases can be compromised.
127 .RE

new/usr/src/man/man1/ld.1 3

128 .RS +4
129 .TP
130 .ie t \(bu
131 .el o
132 The duplication of system implementation details negatively affects system
133 performance.
134 .RE
135 .sp
136 .LP
137 With Solaris 10, 32-bit system archive libraries are no longer provided.
138 Without these libraries, specifically \fBlibc.a\fR, the creation of static
139 executables is no longer achievable without specialized system knowledge.
140 However, the capability of \fBld\fR to process static linking options, and the
141 processing of archive libraries, remains unchanged.
142 .SH OPTIONS
143 .LP
144 The following options are supported.
145 .sp
146 .ne 2
147 .na
148 \fB\fB-32\fR | \fB-64\fR\fR
149 .ad
150 .sp .6
151 .RS 4n
152 Creates a 32-bit, or 64-bit object.
153 .sp
154 By default, the class of the object being generated is determined from the
155 first \fBELF\fR object processed from the command line. If no objects are
156 specified, the class is determined by the first object encountered within the
157 first archive processed from the command line. If there are no objects or
158 archives, the link-editor creates a 32-bit object.
159 .sp
160 The \fB-64\fR option is required to create a 64-bit object solely from a
161 mapfile.
162 .sp
163 This \fB-32\fR or \fB-64\fR options can also be used in the rare case of
164 linking entirely from an archive that contains a mixture of 32 and 64-bit
165 objects. If the first object in the archive is not the class of the object that
166 is required to be created, then the \fB-32\fR or \fB-64\fR option can be used
167 to direct the link-editor. See \fIThe 32-bit link-editor and 64-bit
168 link-editor\fR in \fILinker and Libraries Guide\fR.
169 .RE

171 .sp
172 .ne 2
173 .na
174 \fB\fB-a\fR\fR
175 .ad
176 .sp .6
177 .RS 4n
178 In static mode only, produces an executable object file. Undefined references
179 are not permitted. This option is the default behavior for static mode. The
180 \fB-a\fR option can not be used with the \fB-r\fR option. See \fBStatic
181 Executables\fR under DESCRIPTION.
182 .RE

184 .sp
185 .ne 2
186 .na
187 \fB\fB-b\fR\fR
188 .ad
189 .sp .6
190 .RS 4n
191 In dynamic mode only, provides no special processing for dynamic executable
192 relocations that reference symbols in shared objects. Without the \fB-b\fR
193 option, the link-editor applies techniques within a dynamic executable so that

new/usr/src/man/man1/ld.1 4

194 the text segment can remain read-only. One technique is the creation of special
195 position-independent relocations for references to functions that are defined
196 in shared objects. Another technique arranges for data objects that are defined
197 in shared objects to be copied into the memory image of an executable at
198 runtime.
199 .sp
200 The \fB-b\fR option is intended for specialized dynamic objects and is not
201 recommended for general use. Its use suppresses all specialized processing
202 required to ensure an object’s shareability, and can even prevent the
203 relocation of 64-bit executables.
204 .RE

206 .sp
207 .ne 2
208 .na
209 \fB\fB-B\fR \fBdirect\fR | \fBnodirect\fR\fR
210 .ad
211 .sp .6
212 .RS 4n
213 These options govern direct binding. \fB-B\fR \fBdirect\fR establishes direct
214 binding information by recording the relationship between each symbol reference
215 together with the dependency that provides the definition. In addition, direct
216 binding information is established between each symbol reference and an
217 associated definition within the object being created. The runtime linker uses
218 this information to search directly for a symbol in the associated object
219 rather than to carry out a default symbol search.
220 .sp
221 Direct binding information can only be established to dependencies specified
222 with the link-edit. Thus, you should use the \fB-z\fR \fBdefs\fR option.
223 Objects that wish to interpose on symbols in a direct binding environment
224 should identify themselves as interposers with the \fB-z\fR \fBinterpose\fR
225 option. The use of \fB-B\fR \fBdirect\fR enables \fB-z\fR \fBlazyload\fR for
226 all dependencies.
227 .sp
228 The \fB-B\fR \fBnodirect\fR option prevents any direct binding to the
229 interfaces offered by the object being created. The object being created can
230 continue to directly bind to external interfaces by specifying the \fB-z\fR
231 \fBdirect\fR option. See Appendix D, \fIDirect Bindings,\fR in \fILinker and
232 Libraries Guide\fR.
233 .RE

235 .sp
236 .ne 2
237 .na
238 \fB\fB-B\fR \fBdynamic\fR | \fBstatic\fR\fR
239 .ad
240 .sp .6
241 .RS 4n
242 Options governing library inclusion. \fB-B\fR \fBdynamic\fR is valid in dynamic
243 mode only. These options can be specified any number of times on the command
244 line as toggles: if the \fB-B\fR \fBstatic\fR option is given, no shared
245 objects are accepted until \fB-B\fR \fBdynamic\fR is seen. See the \fB-l\fR
246 option.
247 .RE

249 .sp
250 .ne 2
251 .na
252 \fB\fB-B\fR \fBeliminate\fR\fR
253 .ad
254 .sp .6
255 .RS 4n
256 Causes any global symbols, not assigned to a version definition, to be
257 eliminated from the symbol table. Version definitions can be supplied by means
258 of a \fBmapfile\fR to indicate the global symbols that should remain visible in
259 the generated object. This option achieves the same symbol elimination as the

new/usr/src/man/man1/ld.1 5

260 \fIauto-elimination\fR directive that is available as part of a \fBmapfile\fR
261 version definition. This option can be useful when combining versioned and
262 non-versioned relocatable objects. See also the \fB-B\fR \fBlocal\fR option and
263 the \fB-B\fR \fBreduce\fR option. See \fIDefining Additional Symbols with a
264 mapfile\fR in \fILinker and Libraries Guide\fR.
265 .RE

267 .sp
268 .ne 2
269 .na
270 \fB\fB-B\fR \fBgroup\fR\fR
271 .ad
272 .sp .6
273 .RS 4n
274 Establishes a shared object and its dependencies as a group. Objects within the
275 group are bound to other members of the group at runtime. This mode is similar
276 to adding the object to the process by using \fBdlopen\fR(3C) with the
277 \fBRTLD_GROUP\fR mode. An object that has an explicit dependency on a object
278 identified as a group, becomes a member of the group.
279 .sp
280 As the group must be self contained, use of the \fB-B\fR \fBgroup\fR option
281 also asserts the \fB-z\fR \fBdefs\fR option.
282 .RE

284 .sp
285 .ne 2
286 .na
287 \fB\fB-B\fR \fBlocal\fR\fR
288 .ad
289 .sp .6
290 .RS 4n
291 Causes any global symbols, not assigned to a version definition, to be reduced
292 to local. Version definitions can be supplied by means of a \fBmapfile\fR to
293 indicate the global symbols that should remain visible in the generated object.
294 This option achieves the same symbol reduction as the \fIauto-reduction\fR
295 directive that is available as part of a \fBmapfile\fR version definition. This
296 option can be useful when combining versioned and non-versioned relocatable
297 objects. See also the \fB-B\fR \fBeliminate\fR option and the \fB-B\fR
298 \fBreduce\fR option. See \fIDefining Additional Symbols with a mapfile\fR in
299 \fILinker and Libraries Guide\fR.
300 .RE

302 .sp
303 .ne 2
304 .na
305 \fB\fB-B\fR \fBreduce\fR\fR
306 .ad
307 .sp .6
308 .RS 4n
309 When generating a relocatable object, causes the reduction of symbolic
310 information defined by any version definitions. Version definitions can be
311 supplied by means of a \fBmapfile\fR to indicate the global symbols that should
312 remain visible in the generated object. By default, when a relocatable object
313 is generated, version definitions are only recorded in the output image. The
314 actual reduction of symbolic information is carried out when the object is used
315 in the construction of a dynamic executable or shared object. The \fB-B\fR
316 \fBreduce\fR option is applied automatically when a dynamic executable or
317 shared object is created.
318 .RE

320 .sp
321 .ne 2
322 .na
323 \fB\fB-B\fR \fBsymbolic\fR\fR
324 .ad
325 .sp .6

new/usr/src/man/man1/ld.1 6

326 .RS 4n
327 In dynamic mode only. When building a shared object, binds references to global
328 symbols to their definitions, if available, within the object. Normally,
329 references to global symbols within shared objects are not bound until runtime,
330 even if definitions are available. This model allows definitions of the same
331 symbol in an executable or other shared object to override the object’s own
332 definition. \fBld\fR issues warnings for undefined symbols unless \fB-z\fR
333 \fBdefs\fR overrides.
334 .sp
335 The \fB-B\fR \fBsymbolic\fR option is intended for specialized dynamic objects
336 and is not recommended for general use. To reduce the runtime relocation
337 processing that is required an object, the creation of a version definition is
338 recommended.
339 .RE

341 .sp
342 .ne 2
343 .na
344 \fB\fB-c\fR \fIname\fR\fR
345 .ad
346 .sp .6
347 .RS 4n
348 Records the configuration file \fIname\fR for use at runtime. Configuration
349 files can be employed to alter default search paths, provide a directory cache,
350 together with providing alternative object dependencies. See \fBcrle\fR(1).
351 .RE

353 .sp
354 .ne 2
355 .na
356 \fB\fB-C\fR\fR
357 .ad
358 .sp .6
359 .RS 4n
360 Demangles C++ symbol names displayed in diagnostic messages.
361 .RE

363 .sp
364 .ne 2
365 .na
366 \fB\fB-d\fR \fBy\fR | \fBn\fR\fR
367 .ad
368 .sp .6
369 .RS 4n
370 When \fB-d\fR \fBy\fR, the default, is specified, \fBld\fR uses dynamic
371 linking. When \fB-d\fR \fBn\fR is specified, \fBld\fR uses static linking. See
372 \fBStatic Executables\fR under DESCRIPTION, and \fB-B\fR
373 \fBdynamic\fR|\fBstatic\fR.
374 .RE

376 .sp
377 .ne 2
378 .na
379 \fB\fB-D\fR \fItoken\fR,...\fR
380 .ad
381 .sp .6
382 .RS 4n
383 Prints debugging information as specified by each \fItoken\fR, to the standard
384 error. The special token \fBhelp\fR indicates the full list of tokens
385 available. See \fIDebugging Aids\fR in \fILinker and Libraries Guide\fR.
386 .RE

388 .sp
389 .ne 2
390 .na
391 \fB\fB-e\fR \fIepsym\fR\fR

new/usr/src/man/man1/ld.1 7

392 .ad
393 .br
394 .na
395 \fB\fB--entry\fR \fIepsym\fR\fR
396 .ad
397 .sp .6
398 .RS 4n
399 Sets the entry point address for the output file to be the symbol \fIepsym\fR.
400 .RE

402 .sp
403 .ne 2
404 .na
405 \fB\fB-f\fR \fIname\fR\fR
406 .ad
407 .br
408 .na
409 \fB\fB--auxiliary\fR \fIname\fR\fR
410 .ad
411 .sp .6
412 .RS 4n
413 Useful only when building a shared object. Specifies that the symbol table of
414 the shared object is used as an auxiliary filter on the symbol table of the
415 shared object specified by \fIname\fR. Multiple instances of this option are
416 allowed. This option can not be combined with the \fB-F\fR option. See
417 \fIGenerating Auxiliary Filters\fR in \fILinker and Libraries Guide\fR.
418 .RE

420 .sp
421 .ne 2
422 .na
423 \fB\fB-F\fR \fIname\fR\fR
424 .ad
425 .br
426 .na
427 \fB\fB--filter\fR \fIname\fR\fR
428 .ad
429 .sp .6
430 .RS 4n
431 Useful only when building a shared object. Specifies that the symbol table of
432 the shared object is used as a filter on the symbol table of the shared object
433 specified by \fIname\fR. Multiple instances of this option are allowed. This
434 option can not be combined with the \fB-f\fR option. See \fIGenerating Standard
435 Filters\fR in \fILinker and Libraries Guide\fR.
436 .RE

438 .sp
439 .ne 2
440 .na
441 \fB\fB-G\fR\fR
442 .ad
443 .br
444 .na
445 \fB\fB-shared\fR\fR
446 .ad
447 .sp .6
448 .RS 4n
449 In dynamic mode only, produces a shared object. Undefined symbols are allowed.
450 See Chapter 4, \fIShared Objects,\fR in \fILinker and Libraries Guide\fR.
451 .RE

453 .sp
454 .ne 2
455 .na
456 \fB\fB-h\fR \fIname\fR\fR
457 .ad

new/usr/src/man/man1/ld.1 8

458 .br
459 .na
460 \fB\fB--soname\fR \fIname\fR\fR
461 .ad
462 .sp .6
463 .RS 4n
464 In dynamic mode only, when building a shared object, records \fIname\fR in the
465 object’s dynamic section. \fIname\fR is recorded in any dynamic objects that
466 are linked with this object rather than the object’s file system name.
467 Accordingly, \fIname\fR is used by the runtime linker as the name of the shared
468 object to search for at runtime. See \fIRecording a Shared Object Name\fR in
469 \fILinker and Libraries Guide\fR.
470 .RE

472 .sp
473 .ne 2
474 .na
475 \fB\fB-i\fR\fR
476 .ad
477 .sp .6
478 .RS 4n
479 Ignores \fBLD_LIBRARY_PATH\fR. This option is useful when an
480 \fBLD_LIBRARY_PATH\fR setting is in effect to influence the runtime library
481 search, which would interfere with the link-editing being performed.
482 .RE

484 .sp
485 .ne 2
486 .na
487 \fB\fB-I\fR \fIname\fR\fR
488 .ad
489 .br
490 .na
491 \fB\fB--dynamic-linker\fR \fIname\fR\fR
492 .ad
493 .sp .6
494 .RS 4n
495 When building an executable, uses \fIname\fR as the path name of the
496 interpreter to be written into the program header. The default in static mode
497 is no interpreter. In dynamic mode, the default is the name of the runtime
498 linker, \fBld.so.1\fR(1). Either case can be overridden by \fB-I\fR \fIname\fR.
499 \fBexec\fR(2) loads this interpreter when the \fBa.out\fR is loaded, and passes
500 control to the interpreter rather than to the \fBa.out\fR directly.
501 .RE

503 .sp
504 .ne 2
505 .na
506 \fB\fB-l\fR \fIx\fR\fR
507 .ad
508 .br
509 .na
510 \fB\fB--library\fR \fIx\fR\fR
511 .ad
512 .sp .6
513 .RS 4n
514 Searches a library \fBlib\fR\fIx\fR\fB\&.so\fR or \fBlib\fR\fIx\fR\fB\&.a\fR,
515 the conventional names for shared object and archive libraries, respectively.
516 In dynamic mode, unless the \fB-B\fR \fBstatic\fR option is in effect, \fBld\fR
517 searches each directory specified in the library search path for a
518 \fBlib\fR\fIx\fR\fB\&.so\fR or \fBlib\fR\fIx\fR\fB\&.a\fR file. The directory
519 search stops at the first directory containing either. \fBld\fR chooses the
520 file ending in \fB\&.so\fR if \fB-l\fR\fIx\fR expands to two files with names
521 of the form \fBlib\fR\fIx\fR\fB\&.so\fR and \fBlib\fR\fIx\fR\fB\&.a\fR. If no
522 \fBlib\fR\fIx\fR\fB\&.so\fR is found, then \fBld\fR accepts
523 \fBlib\fR\fIx\fR\fB\&.a\fR. In static mode, or when the \fB-B\fR \fBstatic\fR

new/usr/src/man/man1/ld.1 9

524 option is in effect, \fBld\fR selects only the file ending in \fB\&.a\fR.
525 \fBld\fR searches a library when the library is encountered, so the placement
526 of \fB-l\fR is significant. See \fILinking With Additional Libraries\fR in
527 \fILinker and Libraries Guide\fR.
528 .RE

530 .sp
531 .ne 2
532 .na
533 \fB\fB-L\fR \fIpath\fR\fR
534 .ad
535 .br
536 .na
537 \fB\fB--library-path\fR \fIpath\fR\fR
538 .ad
539 .sp .6
540 .RS 4n
541 Adds \fIpath\fR to the library search directories. \fBld\fR searches for
542 libraries first in any directories specified by the \fB-L\fR options and then
543 in the standard directories. This option is useful only if the option precedes
544 the \fB-l\fR options to which the \fB-L\fR option applies. See \fIDirectories
545 Searched by the Link-Editor\fR in \fILinker and Libraries Guide\fR.
546 .sp
547 The environment variable \fBLD_LIBRARY_PATH\fR can be used to supplement the
548 library search path, however the \fB-L\fR option is recommended, as the
549 environment variable is also interpreted by the runtime environment. See
550 \fBLD_LIBRARY_PATH\fR under ENVIRONMENT VARIABLES.
551 .RE

553 .sp
554 .ne 2
555 .na
556 \fB\fB-m\fR\fR
557 .ad
558 .sp .6
559 .RS 4n
560 Produces a memory map or listing of the input/output sections, together with
561 any non-fatal multiply-defined symbols, on the standard output.
562 .RE

564 .sp
565 .ne 2
566 .na
567 \fB\fB-M\fR \fImapfile\fR\fR
568 .ad
569 .sp .6
570 .RS 4n
571 Reads \fImapfile\fR as a text file of directives to \fBld\fR. This option can
572 be specified multiple times. If \fImapfile\fR is a directory, then all regular
573 files, as defined by \fBstat\fR(2), within the directory are processed. See
574 Chapter 9, \fIMapfile Option,\fR in \fILinker and Libraries Guide\fR. Example
575 mapfiles are provided in \fB/usr/lib/ld\fR. See FILES.
576 .RE

578 .sp
579 .ne 2
580 .na
581 \fB\fB-N\fR \fIstring\fR\fR
582 .ad
583 .sp .6
584 .RS 4n
585 This option causes a \fBDT_NEEDED\fR entry to be added to the \fB\&.dynamic\fR
586 section of the object being built. The value of the \fBDT_NEEDED\fR string is
587 the \fIstring\fR that is specified on the command line. This option is position
588 dependent, and the \fBDT_NEEDED\fR \fB\&.dynamic\fR entry is relative to the
589 other dynamic dependencies discovered on the link-edit line. This option is

new/usr/src/man/man1/ld.1 10

590 useful for specifying dependencies within device driver relocatable objects
591 when combined with the \fB-dy\fR and \fB-r\fR options.
592 .RE

594 .sp
595 .ne 2
596 .na
597 \fB\fB-o\fR \fIoutfile\fR\fR
598 .ad
599 .br
600 .na
601 \fB\fB--output\fR \fIoutfile\fR\fR
602 .ad
603 .sp .6
604 .RS 4n
605 Produces an output object file that is named \fIoutfile\fR. The name of the
606 default object file is \fBa.out\fR.
607 .RE

609 .sp
610 .ne 2
611 .na
612 \fB\fB-p\fR \fIauditlib\fR\fR
613 .ad
614 .sp .6
615 .RS 4n
616 Identifies an audit library, \fIauditlib\fR. This audit library is used to
617 audit the object being created at runtime. A shared object identified as
618 requiring auditing with the \fB-p\fR option, has this requirement inherited by
619 any object that specifies the shared object as a dependency. See the \fB-P\fR
620 option. See \fIRuntime Linker Auditing Interface\fR in \fILinker and Libraries
621 Guide\fR.
622 .RE

624 .sp
625 .ne 2
626 .na
627 \fB\fB-P\fR \fIauditlib\fR\fR
628 .ad
629 .sp .6
630 .RS 4n
631 Identifies an audit library, \fIauditlib\fR. This audit library is used to
632 audit the dependencies of the object being created at runtime. Dependency
633 auditing can also be inherited from dependencies that are identified as
634 requiring auditing. See the \fB-p\fR option, and the \fB-z\fR \fBglobalaudit\fR
635 option. See \fIRuntime Linker Auditing Interface\fR in \fILinker and Libraries
636 Guide\fR.
637 .RE

639 .sp
640 .ne 2
641 .na
642 \fB\fB-Q\fR \fBy\fR | \fBn\fR\fR
643 .ad
644 .sp .6
645 .RS 4n
646 Under \fB-Q\fR \fBy\fR, an \fBident\fR string is added to the \fB\&.comment\fR
647 section of the output file. This string identifies the version of the \fBld\fR
648 used to create the file. This results in multiple \fBld\fR \fBidents\fR when
649 there have been multiple linking steps, such as when using \fBld\fR \fB-r\fR.
650 This identification is identical with the default action of the \fBcc\fR
651 command. \fB-Q\fR \fBn\fR suppresses version identification. \fB\&.comment\fR
652 sections can be manipulated by the \fBmcs\fR(1) utility.
653 .RE

655 .sp

new/usr/src/man/man1/ld.1 11

656 .ne 2
657 .na
658 \fB\fB-r\fR\fR
659 .ad
660 .br
661 .na
662 \fB\fB--relocatable\fR\fR
663 .ad
664 .sp .6
665 .RS 4n
666 Combines relocatable object files to produce one relocatable object file.
667 \fBld\fR does not complain about unresolved references. This option cannot be
668 used with the \fB-a\fR option.
669 .RE

671 .sp
672 .ne 2
673 .na
674 \fB\fB-R\fR \fIpath\fR\fR
675 .ad
676 .br
677 .na
678 \fB\fB-rpath\fR \fIpath\fR\fR
679 .ad
680 .sp .6
681 .RS 4n
682 A colon-separated list of directories used to specify library search
683 directories to the runtime linker. If present and not NULL, the path is
684 recorded in the output object file and passed to the runtime linker. Multiple
685 instances of this option are concatenated together with each \fIpath\fR
686 separated by a colon. See \fIDirectories Searched by the Runtime Linker\fR in
687 \fILinker and Libraries Guide\fR.
688 .sp
689 The use of a runpath within an associated object is preferable to setting
690 global search paths such as through the \fBLD_LIBRARY_PATH\fR environment
691 variable. Only the runpaths that are necessary to find the objects dependencies
692 should be recorded. \fBldd\fR(1) can also be used to discover unused runpaths
693 in dynamic objects, when used with the \fB-U\fR option.
694 .sp
695 Various tokens can also be supplied with a runpath that provide a flexible
696 means of identifying system capabilities or an objects location. See Appendix
697 C, \fIEstablishing Dependencies with Dynamic String Tokens,\fR in \fILinker and
698 Libraries Guide\fR. The \fB$ORIGIN\fR token is especially useful in allowing
699 dynamic objects to be relocated to different locations in the file system.
700 .RE

702 .sp
703 .ne 2
704 .na
705 \fB\fB-s\fR\fR
706 .ad
707 .br
708 .na
709 \fB\fB--strip-all\fR\fR
710 .ad
711 .sp .6
712 .RS 4n
713 Strips symbolic information from the output file. Any debugging information,
714 that is, \fB\&.line\fR, \fB\&.debug*\fR, and \fB\&.stab*\fR sections, and their
715 associated relocation entries are removed. Except for relocatable files, a
716 symbol table \fBSHT_SYMTAB\fR and its associated string table section are not
717 created in the output object file. The elimination of a \fBSHT_SYMTAB\fR symbol
718 table can reduce the \fB\&.stab*\fR debugging information that is generated
719 using the compiler drivers \fB-g\fR option. See the \fB-z\fR \fBredlocsym\fR
720 and \fB-z\fR \fBnoldynsym\fR options.
721 .RE

new/usr/src/man/man1/ld.1 12

723 .sp
724 .ne 2
725 .na
726 \fB\fB-S\fR \fIsupportlib\fR\fR
727 .ad
728 .sp .6
729 .RS 4n
730 The shared object \fIsupportlib\fR is loaded with \fBld\fR and given
731 information regarding the linking process. Shared objects that are defined by
732 using the \fB-S\fR option can also be supplied using the \fBSGS_SUPPORT\fR
733 environment variable. See \fILink-Editor Support Interface\fR in \fILinker and
734 Libraries Guide\fR.
735 .RE

737 .sp
738 .ne 2
739 .na
740 \fB\fB-t\fR\fR
741 .ad
742 .sp .6
743 .RS 4n
744 Turns off the warning for multiply-defined symbols that have different sizes or
745 different alignments.
746 .RE

748 .sp
749 .ne 2
750 .na
751 \fB\fB-u\fR \fIsymname\fR\fR
752 .ad
753 .br
754 .na
755 \fB\fB--undefined\fR \fIsymname\fR\fR
756 .ad
757 .sp .6
758 .RS 4n
759 Enters \fIsymname\fR as an undefined symbol in the symbol table. This option is
760 useful for loading entirely from an archive library. In this instance, an
761 unresolved reference is needed to force the loading of the first routine. The
762 placement of this option on the command line is significant. This option must
763 be placed before the library that defines the symbol. See \fIDefining
764 Additional Symbols with the u option\fR in \fILinker and Libraries Guide\fR.
765 .RE

767 .sp
768 .ne 2
769 .na
770 \fB\fB-V\fR\fR
771 .ad
772 .br
773 .na
774 \fB\fB--version\fR\fR
775 .ad
776 .sp .6
777 .RS 4n
778 Outputs a message giving information about the version of \fBld\fR being used.
779 .RE

781 .sp
782 .ne 2
783 .na
784 \fB\fB-Y\fR \fBP,\fR\fIdirlist\fR\fR
785 .ad
786 .sp .6
787 .RS 4n

new/usr/src/man/man1/ld.1 13

788 Changes the default directories used for finding libraries. \fIdirlist\fR is a
789 colon-separated path list.
790 .RE

792 .sp
793 .ne 2
794 .na
795 \fB\fB-z\fR \fBabsexec\fR\fR
796 .ad
797 .sp .6
798 .RS 4n
799 Useful only when building a dynamic executable. Specifies that references to
800 external absolute symbols should be resolved immediately instead of being left
801 for resolution at runtime. In very specialized circumstances, this option
802 removes text relocations that can result in excessive swap space demands by an
803 executable.
804 .RE

806 .sp
807 .ne 2
808 .na
809 \fB\fB-z\fR \fBallextract\fR | \fBdefaultextract\fR | \fBweakextract\fR\fR
810 .ad
811 .br
812 .na
813 \fB\fB--whole-archive\fR | \fB--no-whole-archive\fR\fR
814 .ad
815 .sp .6
816 .RS 4n
817 Alters the extraction criteria of objects from any archives that follow. By
818 default, archive members are extracted to satisfy undefined references and to
819 promote tentative definitions with data definitions. Weak symbol references do
820 not trigger extraction. Under the \fB-z\fR \fBallextract\fR or
821 \fB--whole-archive\fR options, all archive members are extracted from the
822 archive. Under \fB-z\fR \fBweakextract\fR, weak references trigger archive
823 extraction. The \fB-z\fR \fBdefaultextract\fR or \fB--no-whole-archive\fR
824 options provide a means of returning to the default following use of the former
825 extract options. See \fIArchive Processing\fR in \fILinker and Libraries
826 Guide\fR.
827 .RE

829 .sp
830 .ne 2
831 .na
832 \fB\fB-z\fR \fBaltexec64\fR\fR
833 .ad
834 .sp .6
835 .RS 4n
836 Execute the 64-bit \fBld\fR. The creation of very large 32-bit objects can
837 exhaust the virtual memory that is available to the 32-bit \fBld\fR. The
838 \fB-z\fR \fBaltexec64\fR option can be used to force the use of the associated
839 64-bit \fBld\fR. The 64-bit \fBld\fR provides a larger virtual address space
840 for building 32-bit objects. See \fIThe 32-bit link-editor and 64-bit
841 link-editor\fR in \fILinker and Libraries Guide\fR.
842 .RE

844 .sp
845 .ne 2
846 .na
847 \fB-z\fR \fBaslr[=\fIstate\fR]\fR
848 .ad
849 .sp .6
850 .RS 4n
851 Specify whether the executable’s address space should be randomized on
852 execution. If \fIstate\fR is "enabled" randomization will always occur when
853 this executable is run (regardless of inherited settings). If \fIstate\fR is

new/usr/src/man/man1/ld.1 14

854 "disabled" randomization will never occur when this executable is run. If
855 \fIstate\fR is omitted, ASLR is enabled.

857 An executable that should simply use the settings inherited from its
858 environment should not use this flag at all.
859 .RE

861 .sp
862 .ne 2
863 .na
864 \fB\fB-z\fR \fBcombreloc\fR | \fBnocombreloc\fR\fR
865 .ad
866 .sp .6
867 .RS 4n
868 By default, \fBld\fR combines multiple relocation sections when building
869 executables or shared objects. This section combination differs from
870 relocatable objects, in which relocation sections are maintained in a
871 one-to-one relationship with the sections to which the relocations must be
872 applied. The \fB-z\fR \fBnocombreloc\fR option disables this merging of
873 relocation sections, and preserves the one-to-one relationship found in the
874 original relocatable objects.
875 .sp
876 \fBld\fR sorts the entries of data relocation sections by their symbol
877 reference. This sorting reduces runtime symbol lookup. When multiple relocation
878 sections are combined, this sorting produces the least possible relocation
879 overhead when objects are loaded into memory, and speeds the runtime loading of
880 dynamic objects.
881 .sp
882 Historically, the individual relocation sections were carried over to any
883 executable or shared object, and the \fB-z\fR \fBcombreloc\fR option was
884 required to enable the relocation section merging previously described.
885 Relocation section merging is now the default. The \fB-z\fR \fBcombreloc\fR
886 option is still accepted for the benefit of old build environments, but the
887 option is unnecessary, and has no effect.
888 .RE

890 .sp
891 .ne 2
892 .na
893 \fB\fB-z\fR \fBassert-deflib\fR\fR
894 .ad
895 .br
896 .na
897 \fB\fB-z\fR \fBassert-deflib=\fR\fIlibname\fR\fR
898 .ad
899 .sp .6
900 .RS 4n
901 Enables warnings that check the location of where libraries passed in with
902 \fB-l\fR are found. If the link-editor finds a library on its default search
903 path it will emit a warning. This warning can be made fatal in conjunction with
904 the option \fB-z fatal-warnings\fR. Passing \fIlibname\fR white lists a library
905 from this check. The library must be the full name of the library, e.g.
906 \fIlibc.so\fR. To white list multiple libraries, the \fB-z
907 assert-deflib=\fR\fIlibname\fR option can be repeated multiple times. This
908 option is useful when trying to build self-contained objects where a referenced
909 library might exist in the default system library path and in alternate paths
910 specified by \fB-L\fR, but you only want the alternate paths to be used.
911 .RE

913 .sp
914 .ne 2
915 .na
916 \fB\fB-z\fR \fBdefs\fR | \fBnodefs\fR\fR
917 .ad
918 .br
919 .na

new/usr/src/man/man1/ld.1 15

920 \fB\fB--no-undefined\fR\fR
921 .ad
922 .sp .6
923 .RS 4n
924 The \fB-z\fR \fBdefs\fR option and the \fB--no-undefined\fR option force a
925 fatal error if any undefined symbols remain at the end of the link. This mode
926 is the default when an executable is built. For historic reasons, this mode is
927 \fBnot\fR the default when building a shared object. Use of the \fB-z\fR
928 \fBdefs\fR option is recommended, as this mode assures the object being built
929 is self-contained. A self-contained object has all symbolic references resolved
930 internally, or to the object’s immediate dependencies.
931 .sp
932 The \fB-z\fR \fBnodefs\fR option allows undefined symbols. For historic
933 reasons, this mode is the default when a shared object is built. When used with
934 executables, the behavior of references to such undefined symbols is
935 unspecified. Use of the \fB-z\fR \fBnodefs\fR option is not recommended.
936 .RE

938 .sp
939 .ne 2
940 .na
941 \fB\fB-z\fR \fBdirect\fR | \fBnodirect\fR\fR
942 .ad
943 .sp .6
944 .RS 4n
945 Enables or disables direct binding to any dependencies that follow on the
946 command line. These options allow finer control over direct binding than the
947 global counterpart \fB-B\fR \fBdirect\fR. The \fB-z\fR \fBdirect\fR option also
948 differs from the \fB-B\fR \fBdirect\fR option in the following areas. Direct
949 binding information is not established between a symbol reference and an
950 associated definition within the object being created. Lazy loading is not
951 enabled.
952 .RE

954 .sp
955 .ne 2
956 .na
957 \fB\fB-z\fR \fBendfiltee\fR\fR
958 .ad
959 .sp .6
960 .RS 4n
961 Marks a filtee so that when processed by a filter, the filtee terminates any
962 further filtee searches by the filter. See \fIReducing Filtee Searches\fR in
963 \fILinker and Libraries Guide\fR.
964 .RE

966 .sp
967 .ne 2
968 .na
969 \fB\fB-z\fR \fBfatal-warnings\fR | \fBnofatal-warnings\fR\fR
970 .ad
971 .br
972 .na
973 \fB\fB--fatal-warnings\fR | \fB--no-fatal-warnings\fR
974 .ad
975 .sp .6
976 .RS 4n
977 Controls the behavior of warnings emitted from the link-editor. Setting \fB-z
978 fatal-warnings\fR promotes warnings emitted by the link-editor to fatal errors
979 that will cause the link-editor to fail before linking. \fB-z
980 nofatal-warnings\fR instead demotes these warnings such that they will not cause
981 the link-editor to exit prematurely.
982 .RE

985 .sp

new/usr/src/man/man1/ld.1 16

986 .ne 2
987 .na
988 \fB\fB-z\fR \fBfiniarray=\fR\fIfunction\fR\fR
989 .ad
990 .sp .6
991 .RS 4n
992 Appends an entry to the \fB\&.fini_array\fR section of the object being built.
993 If no \fB\&.fini_array\fR section is present, a section is created. The new
994 entry is initialized to point to \fIfunction\fR. See \fIInitialization and
995 Termination Sections\fR in \fILinker and Libraries Guide\fR.
996 .RE

998 .sp
999 .ne 2

1000 .na
1001 \fB\fB-z\fR \fBglobalaudit\fR\fR
1002 .ad
1003 .sp .6
1004 .RS 4n
1005 This option supplements an audit library definition that has been recorded with
1006 the \fB-P\fR option. This option is only meaningful when building a dynamic
1007 executable. Audit libraries that are defined within an object with the \fB-P\fR
1008 option typically allow for the auditing of the immediate dependencies of the
1009 object. The \fB-z\fR \fBglobalaudit\fR promotes the auditor to a global
1010 auditor, thus allowing the auditing of all dependencies. See \fIInvoking the
1011 Auditing Interface\fR in \fILinker and Libraries Guide\fR.
1012 .sp
1013 An auditor established with the \fB-P\fR option and the \fB-z\fR
1014 \fBglobalaudit\fR option, is equivalent to the auditor being established with
1015 the \fBLD_AUDIT\fR environment variable. See \fBld.so.1\fR(1).
1016 .RE

1018 .sp
1019 .ne 2
1020 .na
1021 \fB\fB-z\fR \fBgroupperm\fR | \fBnogroupperm\fR\fR
1022 .ad
1023 .sp .6
1024 .RS 4n
1025 Assigns, or deassigns each dependency that follows to a unique group. The
1026 assignment of a dependency to a group has the same effect as if the dependency
1027 had been built using the \fB-B\fR \fBgroup\fR option.
1028 .RE

1030 .sp
1031 .ne 2
1032 .na
1033 \fB-z\fR \fBguidance\fR[=\fIid1\fR,\fIid2\fR...]
1034 .ad
1035 .sp .6
1036 .RS 4n
1037 Give messages suggesting link-editor features that could improve the resulting
1038 dynamic object.
1039 .LP
1040 Specific classes of suggestion can be silenced by specifying an optional comma s
1041 list of guidance identifiers.
1042 .LP
1043 The current classes of suggestion provided are:

1045 .sp
1046 .ne 2
1047 .na
1048 Enable use of direct binding
1049 .ad
1050 .sp .6
1051 .RS 4n

new/usr/src/man/man1/ld.1 17

1052 Suggests that \fB-z direct\fR or \fB-B direct\fR be present prior to any
1053 specified dependency. This allows predictable symbol binding at runtime.

1055 Can be disabled with \fB-z guidance=nodirect\fR
1056 .RE

1058 .sp
1059 .ne 2
1060 .na
1061 Enable lazy dependency loading
1062 .ad
1063 .sp .6
1064 .RS 4n
1065 Suggests that \fB-z lazyload\fR be present prior to any specified dependency.
1066 This allows the dynamic object to be loaded more quickly.

1068 Can be disabled with \fB-z guidance=nolazyload\fR.
1069 .RE

1071 .sp
1072 .ne 2
1073 .na
1074 Shared objects should define all their dependencies.
1075 .ad
1076 .sp .6
1077 .RS 4n
1078 Suggests that \fB-z defs\fR be specified on the link-editor command line.
1079 Shared objects that explicitly state all their dependencies behave more
1080 predictably when used.

1082 Can be be disabled with \fB-z guidance=nodefs\fR
1083 .RE

1085 .sp
1086 .ne 2
1087 .na
1088 Version 2 mapfile syntax
1089 .ad
1090 .sp .6
1091 .RS 4n
1092 Suggests that any specified mapfiles use the more readable version 2 syntax.

1094 Can be disabled with \fB-z guidance=nomapfile\fR.
1095 .RE

1097 .sp
1098 .ne 2
1099 .na
1100 Read-only text segment
1101 .ad
1102 .sp .6
1103 .RS 4n
1104 Should any runtime relocations within the text segment exist, suggests that
1105 the object be compiled with position independent code (PIC). Keeping large
1106 allocatable sections read-only allows them to be shared between processes
1107 using a given shared object.

1109 Can be disabled with \fB-z guidance=notext\fR
1110 .RE

1112 .sp
1113 .ne 2
1114 .na
1115 No unused dependencies
1116 .ad
1117 .sp .6

new/usr/src/man/man1/ld.1 18

1118 .RS 4n
1119 Suggests that any dependency not referenced by the resulting dynamic object be
1120 removed from the link-editor command line.

1122 Can be disabled with \fB-z guidance=nounused\fR.
1123 .RE
1124 .RE

1126 .sp
1127 .ne 2
1128 .na
1129 \fB\fB-z\fR \fBhelp\fR\fR
1130 .ad
1131 .br
1132 .na
1133 \fB\fB--help\fR\fR
1134 .ad
1135 .sp .6
1136 .RS 4n
1137 Print a summary of the command line options on the standard output and exit.
1138 .RE

1140 .sp
1141 .ne 2
1142 .na
1143 \fB\fB-z\fR \fBignore\fR | \fBrecord\fR\fR
1144 .ad
1145 .sp .6
1146 .RS 4n
1147 Ignores, or records, dynamic dependencies that are not referenced as part of
1148 the link-edit. Ignores, or records, unreferenced \fBELF\fR sections from the
1149 relocatable objects that are read as part of the link-edit. By default,
1150 \fB-z\fR \fBrecord\fR is in effect.
1151 .sp
1152 If an \fBELF\fR section is ignored, the section is eliminated from the output
1153 file being generated. A section is ignored when three conditions are true. The
1154 eliminated section must contribute to an allocatable segment. The eliminated
1155 section must provide no global symbols. No other section from any object that
1156 contributes to the link-edit, must reference an eliminated section.
1157 .RE

1159 .sp
1160 .ne 2
1161 .na
1162 \fB\fB-z\fR \fBinitarray=\fR\fIfunction\fR\fR
1163 .ad
1164 .sp .6
1165 .RS 4n
1166 Appends an entry to the \fB\&.init_array\fR section of the object being built.
1167 If no \fB\&.init_array\fR section is present, a section is created. The new
1168 entry is initialized to point to \fIfunction\fR. See \fIInitialization and
1169 Termination Sections\fR in \fILinker and Libraries Guide\fR.
1170 .RE

1172 .sp
1173 .ne 2
1174 .na
1175 \fB\fB-z\fR \fBinitfirst\fR\fR
1176 .ad
1177 .sp .6
1178 .RS 4n
1179 Marks the object so that its runtime initialization occurs before the runtime
1180 initialization of any other objects brought into the process at the same time.
1181 In addition, the object runtime finalization occurs after the runtime
1182 finalization of any other objects removed from the process at the same time.
1183 This option is only meaningful when building a shared object.

new/usr/src/man/man1/ld.1 19

1184 .RE

1186 .sp
1187 .ne 2
1188 .na
1189 \fB\fB-z\fR \fBinterpose\fR\fR
1190 .ad
1191 .sp .6
1192 .RS 4n
1193 Marks the object as an interposer. At runtime, an object is identified as an
1194 explicit interposer if the object has been tagged using the \fB-z interpose\fR
1195 option. An explicit interposer is also established when an object is loaded
1196 using the \fBLD_PRELOAD\fR environment variable. Implicit interposition can
1197 occur because of the load order of objects, however, this implicit
1198 interposition is unknown to the runtime linker. Explicit interposition can
1199 ensure that interposition takes place regardless of the order in which objects
1200 are loaded. Explicit interposition also ensures that the runtime linker
1201 searches for symbols in any explicit interposers when direct bindings are in
1202 effect.
1203 .RE

1205 .sp
1206 .ne 2
1207 .na
1208 \fB\fB-z\fR \fBlazyload\fR | \fBnolazyload\fR\fR
1209 .ad
1210 .sp .6
1211 .RS 4n
1212 Enables or disables the marking of dynamic dependencies to be lazily loaded.
1213 Dynamic dependencies which are marked \fBlazyload\fR are not loaded at initial
1214 process start-up. These dependencies are delayed until the first binding to the
1215 object is made. \fBNote:\fR Lazy loading requires the correct declaration of
1216 dependencies, together with associated runpaths for each dynamic object used
1217 within a process. See \fILazy Loading of Dynamic Dependencies\fR in \fILinker
1218 and Libraries Guide\fR.
1219 .RE

1221 .sp
1222 .ne 2
1223 .na
1224 \fB\fB-z\fR \fBld32\fR=\fIarg1\fR,\fIarg2\fR,...\fR
1225 .ad
1226 .br
1227 .na
1228 \fB\fB-z\fR \fBld64\fR=\fIarg1\fR,\fIarg2\fR,...\fR
1229 .ad
1230 .sp .6
1231 .RS 4n
1232 The class of the link-editor is affected by the class of the output file being
1233 created and by the capabilities of the underlying operating system. The
1234 \fB-z\fR \fBld\fR[\fB32\fR|\fB64\fR] options provide a means of defining any
1235 link-editor argument. The defined argument is only interpreted, respectively,
1236 by the 32-bit class or 64-bit class of the link-editor.
1237 .sp
1238 For example, support libraries are class specific, so the correct class of
1239 support library can be ensured using:
1240 .sp
1241 .in +2
1242 .nf
1243 \fBld ... -z ld32=-Saudit32.so.1 -z ld64=-Saudit64.so.1 ...\fR
1244 .fi
1245 .in -2
1246 .sp

1248 The class of link-editor that is invoked is determined from the \fBELF\fR class
1249 of the first relocatable file that is seen on the command line. This

new/usr/src/man/man1/ld.1 20

1250 determination is carried out \fBprior\fR to any \fB-z\fR
1251 \fBld\fR[\fB32\fR|\fB64\fR] processing.
1252 .RE

1254 .sp
1255 .ne 2
1256 .na
1257 \fB\fB-z\fR \fBloadfltr\fR\fR
1258 .ad
1259 .sp .6
1260 .RS 4n
1261 Marks a filter to indicate that filtees must be processed immediately at
1262 runtime. Normally, filter processing is delayed until a symbol reference is
1263 bound to the filter. The runtime processing of an object that contains this
1264 flag mimics that which occurs if the \fBLD_LOADFLTR\fR environment variable is
1265 in effect. See the \fBld.so.1\fR(1).
1266 .RE

1268 .sp
1269 .ne 2
1270 .na
1271 \fB\fB-z\fR \fBmuldefs\fR\fR
1272 .ad
1273 .br
1274 .na
1275 \fB\fB--allow-multiple-definition\fR\fR
1276 .ad
1277 .sp .6
1278 .RS 4n
1279 Allows multiple symbol definitions. By default, multiple symbol definitions
1280 that occur between relocatable objects result in a fatal error condition. This
1281 option, suppresses the error condition, allowing the first symbol definition to
1282 be taken.
1283 .RE

1285 .sp
1286 .ne 2
1287 .na
1288 \fB\fB-z\fR \fBnocompstrtab\fR\fR
1289 .ad
1290 .sp .6
1291 .RS 4n
1292 Disables the compression of \fBELF\fR string tables. By default, string
1293 compression is applied to \fBSHT_STRTAB\fR sections, and to \fBSHT_PROGBITS\fR
1294 sections that have their \fBSHF_MERGE\fR and \fBSHF_STRINGS\fR section flags
1295 set.
1296 .RE

1298 .sp
1299 .ne 2
1300 .na
1301 \fB\fB-z\fR \fBnodefaultlib\fR\fR
1302 .ad
1303 .sp .6
1304 .RS 4n
1305 Marks the object so that the runtime default library search path, used after
1306 any \fBLD_LIBRARY_PATH\fR or runpaths, is ignored. This option implies that all
1307 dependencies of the object can be satisfied from its runpath.
1308 .RE

1310 .sp
1311 .ne 2
1312 .na
1313 \fB\fB-z\fR \fBnodelete\fR\fR
1314 .ad
1315 .sp .6

new/usr/src/man/man1/ld.1 21

1316 .RS 4n
1317 Marks the object as non-deletable at runtime. This mode is similar to adding
1318 the object to the process by using \fBdlopen\fR(3C) with the
1319 \fBRTLD_NODELETE\fR mode.
1320 .RE

1322 .sp
1323 .ne 2
1324 .na
1325 \fB\fB-z\fR \fBnodlopen\fR\fR
1326 .ad
1327 .sp .6
1328 .RS 4n
1329 Marks the object as not available to \fBdlopen\fR(3C), either as the object
1330 specified by the \fBdlopen()\fR, or as any form of dependency required by the
1331 object specified by the \fBdlopen()\fR. This option is only meaningful when
1332 building a shared object.
1333 .RE

1335 .sp
1336 .ne 2
1337 .na
1338 \fB\fB-z\fR \fBnodump\fR\fR
1339 .ad
1340 .sp .6
1341 .RS 4n
1342 Marks the object as not available to \fBdldump\fR(3C).
1343 .RE

1345 .sp
1346 .ne 2
1347 .na
1348 \fB\fB-z\fR \fBnoldynsym\fR\fR
1349 .ad
1350 .sp .6
1351 .RS 4n
1352 Prevents the inclusion of a \fB\&.SUNW_ldynsym\fR section in dynamic
1353 executables or sharable libraries. The \fB\&.SUNW_ldynsym\fR section augments
1354 the \fB\&.dynsym\fR section by providing symbols for local functions. Local
1355 function symbols allow debuggers to display local function names in stack
1356 traces from stripped programs. Similarly, \fBdladdr\fR(3C) is able to supply
1357 more accurate results.
1358 .sp
1359 The \fB-z\fR \fBnoldynsym\fR option also prevents the inclusion of the two
1360 symbol sort sections that are related to the \fB\&.SUNW_ldynsym\fR section. The
1361 \fB\&.SUNW_dynsymsort\fR section provides sorted access to regular function and
1362 variable symbols. The \fB\&.SUNW_dyntlssort\fR section provides sorted access
1363 to thread local storage (\fBTLS\fR) variable symbols.
1364 .sp
1365 The \fB\&.SUNW_ldynsym\fR, \fB\&.SUNW_dynsymsort\fR, and
1366 \fB\&.SUNW_dyntlssort\fR sections, which becomes part of the allocable text
1367 segment of the resulting file, cannot be removed by \fBstrip\fR(1). Therefore,
1368 the \fB-z\fR \fBnoldynsym\fR option is the only way to prevent their inclusion.
1369 See the \fB-s\fR and \fB-z\fR \fBredlocsym\fR options.
1370 .RE

1372 .sp
1373 .ne 2
1374 .na
1375 \fB\fB-z\fR \fBnopartial\fR\fR
1376 .ad
1377 .sp .6
1378 .RS 4n
1379 Partially initialized symbols, that are defined within relocatable object
1380 files, are expanded in the output file being generated.
1381 .RE

new/usr/src/man/man1/ld.1 22

1383 .sp
1384 .ne 2
1385 .na
1386 \fB\fB-z\fR \fBnoversion\fR\fR
1387 .ad
1388 .sp .6
1389 .RS 4n
1390 Does not record any versioning sections. Any version sections or associated
1391 \fB\&.dynamic\fR section entries are not generated in the output image.
1392 .RE

1394 .sp
1395 .ne 2
1396 .na
1397 \fB\fB-z\fR \fBnow\fR\fR
1398 .ad
1399 .sp .6
1400 .RS 4n
1401 Marks the object as requiring non-lazy runtime binding. This mode is similar to
1402 adding the object to the process by using \fBdlopen\fR(3C) with the
1403 \fBRTLD_NOW\fR mode. This mode is also similar to having the \fBLD_BIND_NOW\fR
1404 environment variable in effect. See \fBld.so.1\fR(1).
1405 .RE

1407 .sp
1408 .ne 2
1409 .na
1410 \fB\fB-z\fR \fBorigin\fR\fR
1411 .ad
1412 .sp .6
1413 .RS 4n
1414 Marks the object as requiring immediate \fB$ORIGIN\fR processing at runtime.
1415 This option is only maintained for historic compatibility, as the runtime
1416 analysis of objects to provide for \fB$ORIGIN\fR processing is now default.
1417 .RE

1419 .sp
1420 .ne 2
1421 .na
1422 \fB\fB-z\fR \fBpreinitarray=\fR\fIfunction\fR\fR
1423 .ad
1424 .sp .6
1425 .RS 4n
1426 Appends an entry to the \fB\&.preinitarray\fR section of the object being
1427 built. If no \fB\&.preinitarray\fR section is present, a section is created.
1428 The new entry is initialized to point to \fIfunction\fR. See \fIInitialization
1429 and Termination Sections\fR in \fILinker and Libraries Guide\fR.
1430 .RE

1432 .sp
1433 .ne 2
1434 .na
1435 \fB\fB-z\fR \fBredlocsym\fR\fR
1436 .ad
1437 .sp .6
1438 .RS 4n
1439 Eliminates all local symbols except for the \fISECT\fR symbols from the symbol
1440 table \fBSHT_SYMTAB\fR. All relocations that refer to local symbols are updated
1441 to refer to the corresponding \fISECT\fR symbol. This option allows specialized
1442 objects to greatly reduce their symbol table sizes. Eliminated local symbols
1443 can reduce the \fB\&.stab*\fR debugging information that is generated using the
1444 compiler drivers \fB-g\fR option. See the \fB-s\fR and \fB-z\fR \fBnoldynsym\fR
1445 options.
1446 .RE

new/usr/src/man/man1/ld.1 23

1448 .sp
1449 .ne 2
1450 .na
1451 \fB\fB-z\fR \fBrelaxreloc\fR\fR
1452 .ad
1453 .sp .6
1454 .RS 4n
1455 \fBld\fR normally issues a fatal error upon encountering a relocation using a
1456 symbol that references an eliminated COMDAT section. If \fB-z\fR
1457 \fBrelaxreloc\fR is enabled, \fBld\fR instead redirects such relocations to the
1458 equivalent symbol in the COMDAT section that was kept. \fB-z\fR
1459 \fBrelaxreloc\fR is a specialized option, mainly of interest to compiler
1460 authors, and is not intended for general use.
1461 .RE

1463 .sp
1464 .ne 2
1465 .na
1466 \fB\fB-z\fR \fBrescan-now\fR\fR
1467 .ad
1468 .br
1469 .na
1470 \fB\fB-z\fR \fBrescan\fR\fR
1471 .ad
1472 .sp .6
1473 .RS 4n
1474 These options rescan the archive files that are provided to the link-edit. By
1475 default, archives are processed once as the archives appear on the command
1476 line. Archives are traditionally specified at the end of the command line so
1477 that their symbol definitions resolve any preceding references. However,
1478 specifying archives multiple times to satisfy their own interdependencies can
1479 be necessary.
1480 .sp
1481 \fB-z\fR \fBrescan-now\fR is a positional option, and is processed by the
1482 link-editor immediately when encountered on the command line. All archives seen
1483 on the command line up to that point are immediately reprocessed in an attempt
1484 to locate additional archive members that resolve symbol references. This
1485 archive rescanning is repeated until a pass over the archives occurs in which
1486 no new members are extracted.
1487 .sp
1488 \fB-z\fR \fBrescan\fR is a position independent option. The link-editor defers
1489 the rescan operation until after it has processed the entire command line, and
1490 then initiates a final rescan operation over all archives seen on the command
1491 line. The \fB-z\fR \fBrescan\fR operation can interact incorrectly
1492 with objects that contain initialization (.init) or finalization (.fini)
1493 sections, preventing the code in those sections from running. For this reason,
1494 \fB-z\fR \fBrescan\fR is deprecated, and use of \fB-z\fR \fBrescan-now\fR is
1495 advised.
1496 .RE

1498 .sp
1499 .ne 2
1500 .na
1501 \fB\fB-z\fR \fBrescan-start\fR ... \fB-z\fR \fBrescan-end\fR\fR
1502 .ad
1503 .br
1504 .na
1505 \fB\fB--start-group\fR ... \fB--end-group\fR\fR
1506 .ad
1507 .br
1508 .na
1509 \fB\fB-(\fR ... \fB-)\fR\fR
1510 .ad
1511 .sp .6
1512 .RS 4n
1513 Defines an archive rescan group. This is a positional construct, and is

new/usr/src/man/man1/ld.1 24

1514 processed by the link-editor immediately upon encountering the closing
1515 delimiter option. Archives found within the group delimiter options are
1516 reprocessed as a group in an attempt to locate additional archive members that
1517 resolve symbol references. This archive rescanning is repeated until a pass
1518 over the archives occurs in which no new members are extracted.
1519 Archive rescan groups cannot be nested.
1520 .RE

1522 .sp
1523 .ne 2
1524 .na
1525 \fB\fB-z\fR \fBtarget=sparc|x86\fR \fI\fR\fR
1526 .ad
1527 .sp .6
1528 .RS 4n
1529 Specifies the machine type for the output object. Supported targets are Sparc
1530 and x86. The 32-bit machine type for the specified target is used unless the
1531 \fB-64\fR option is also present, in which case the corresponding 64-bit
1532 machine type is used. By default, the machine type of the object being
1533 generated is determined from the first \fBELF\fR object processed from the
1534 command line. If no objects are specified, the machine type is determined by
1535 the first object encountered within the first archive processed from the
1536 command line. If there are no objects or archives, the link-editor assumes the
1537 native machine. This option is useful when creating an object directly with
1538 \fBld\fR whose input is solely from a \fBmapfile\fR. See the \fB-M\fR option.
1539 It can also be useful in the rare case of linking entirely from an archive that
1540 contains objects of different machine types for which the first object is not
1541 of the desired machine type. See \fIThe 32-bit link-editor and 64-bit
1542 link-editor\fR in \fILinker and Libraries Guide\fR.
1543 .RE

1545 .sp
1546 .ne 2
1547 .na
1548 \fB\fB-z\fR \fBtext\fR\fR
1549 .ad
1550 .sp .6
1551 .RS 4n
1552 In dynamic mode only, forces a fatal error if any relocations against
1553 non-writable, allocatable sections remain. For historic reasons, this mode is
1554 not the default when building an executable or shared object. However, its use
1555 is recommended to ensure that the text segment of the dynamic object being
1556 built is shareable between multiple running processes. A shared text segment
1557 incurs the least relocation overhead when loaded into memory. See
1558 \fIPosition-Independent Code\fR in \fILinker and Libraries Guide\fR.
1559 .RE

1561 .sp
1562 .ne 2
1563 .na
1564 \fB\fB-z\fR \fBtextoff\fR\fR
1565 .ad
1566 .sp .6
1567 .RS 4n
1568 In dynamic mode only, allows relocations against all allocatable sections,
1569 including non-writable ones. This mode is the default when building a shared
1570 object.
1571 .RE

1573 .sp
1574 .ne 2
1575 .na
1576 \fB\fB-z\fR \fBtextwarn\fR\fR
1577 .ad
1578 .sp .6
1579 .RS 4n

new/usr/src/man/man1/ld.1 25

1580 In dynamic mode only, lists a warning if any relocations against non-writable,
1581 allocatable sections remain. This mode is the default when building an
1582 executable.
1583 .RE

1585 .sp
1586 .ne 2
1587 .na
1588 \fB-z\fR \fBtype=exec|kmod|reloc|shared\fR
1589 .ad
1590 .sp .6
1591 .RS 4n
1592 Specifies the type of object to create.

1594 .sp
1595 .ne 2
1596 .na
1597 exec
1598 .ad
1599 .sp .6
1600 .RS 4n
1601 Dynamic executable
1602 .RE

1604 .sp
1605 .ne 2
1606 .na
1607 reloc
1608 .ad
1609 .sp .6
1610 .RS 4n
1611 Relocatable object
1612 .RE

1614 .sp
1615 .ne 2
1616 .na
1617 shared
1618 .ad
1619 .sp .6
1620 .RS 4n
1621 Dynamic shared object
1622 .RE

1624 .sp
1625 .ne 2
1626 .na
1627 kmod
1628 .ad
1629 .sp .6
1630 .RS 4n
1631 illumos kernel module
1632 .RE
1633 #endif /* ! codereview */
1634 .RE

1636 .sp
1637 .ne 2
1638 .na
1639 \fB\fB-z\fR \fBverbose\fR\fR
1640 .ad
1641 .sp .6
1642 .RS 4n
1643 This option provides additional warning diagnostics during a link-edit.
1644 Presently, this option conveys suspicious use of displacement relocations. This
1645 option also conveys the restricted use of static \fBTLS\fR relocations when

new/usr/src/man/man1/ld.1 26

1646 building shared objects. In future, this option might be enhanced to provide
1647 additional diagnostics that are deemed too noisy to be generated by default.
1648 .RE

1650 .sp
1651 .ne 2
1652 .na
1653 \fB\fB-z\fR\fBwrap=\fR\fIsymbol\fR\fR
1654 .ad
1655 .br
1656 .na
1657 \fB\fB-wrap=\fR \fIsymbol\fR\fR
1658 .ad
1659 .br
1660 .na
1661 \fB\fB--wrap=\fR \fIsymbol\fR\fR
1662 .ad
1663 .sp .6
1664 .RS 4n
1665 Rename undefined references to \fIsymbol\fR in order to allow wrapper code to
1666 be linked into the output object without having to modify source code. When
1667 \fB-z wrap\fR is specified, all undefined references to \fIsymbol\fR are
1668 modified to reference \fB__wrap_\fR\fIsymbol\fR, and all references to
1669 \fB__real_\fR\fIsymbol\fR are modified to reference \fIsymbol\fR. The user is
1670 expected to provide an object containing the \fB__wrap_\fR\fIsymbol\fR
1671 function. This wrapper function can call \fB__real_\fR\fIsymbol\fR in order to
1672 reference the actual function being wrapped.
1673 .sp
1674 The following is an example of a wrapper for the \fBmalloc\fR(3C) function:
1675 .sp
1676 .in +2
1677 .nf
1678 void *
1679 __wrap_malloc(size_t c)
1680 {
1681 (void) printf("malloc called with %zu\en", c);
1682 return (__real_malloc(c));
1683 }
1684 .fi
1685 .in -2

1687 If you link other code with this file using \fB-z\fR \fBwrap=malloc\fR to
1688 compile all the objects, then all calls to \fBmalloc\fR will call the function
1689 \fB__wrap_malloc\fR instead. The call to \fB__real_malloc\fR will call the real
1690 \fBmalloc\fR function.
1691 .sp
1692 The real and wrapped functions should be maintained in separate source files.
1693 Otherwise, the compiler or assembler may resolve the call instead of leaving
1694 that operation for the link-editor to carry out, and prevent the wrap from
1695 occurring.
1696 .RE

1698 .SH ENVIRONMENT VARIABLES
1699 .ne 2
1700 .na
1701 \fB\fBLD_ALTEXEC\fR\fR
1702 .ad
1703 .sp .6
1704 .RS 4n
1705 An alternative link-editor path name. \fBld\fR executes, and passes control to
1706 this alternative link-editor. This environment variable provides a generic
1707 means of overriding the default link-editor that is called from the various
1708 compiler drivers. See the \fB-z altexec64\fR option.
1709 .RE

1711 .sp

new/usr/src/man/man1/ld.1 27

1712 .ne 2
1713 .na
1714 \fB\fBLD_LIBRARY_PATH\fR\fR
1715 .ad
1716 .sp .6
1717 .RS 4n
1718 A list of directories in which to search for the libraries specified using the
1719 \fB-l\fR option. Multiple directories are separated by a colon. In the most
1720 general case, this environment variable contains two directory lists separated
1721 by a semicolon:
1722 .sp
1723 .in +2
1724 .nf
1725 \fIdirlist1\fR\fB;\fR\fIdirlist2\fR
1726 .fi
1727 .in -2
1728 .sp

1730 If \fBld\fR is called with any number of occurrences of \fB-L\fR, as in:
1731 .sp
1732 .in +2
1733 .nf
1734 \fBld ... -L\fIpath1\fR ... -L\fIpathn\fR ...\fR
1735 .fi
1736 .in -2
1737 .sp

1739 then the search path ordering is:
1740 .sp
1741 .in +2
1742 .nf
1743 \fB\fIdirlist1 path1\fR ... \fIpathn dirlist2\fR LIBPATH\fR
1744 .fi
1745 .in -2
1746 .sp

1748 When the list of directories does not contain a semicolon, the list is
1749 interpreted as \fIdirlist2\fR.
1750 .sp
1751 The \fBLD_LIBRARY_PATH\fR environment variable also affects the runtime linkers
1752 search for dynamic dependencies.
1753 .sp
1754 This environment variable can be specified with a _32 or _64 suffix. This makes
1755 the environment variable specific, respectively, to 32-bit or 64-bit processes
1756 and overrides any non-suffixed version of the environment variable that is in
1757 effect.
1758 .RE

1760 .sp
1761 .ne 2
1762 .na
1763 \fB\fBLD_NOEXEC_64\fR\fR
1764 .ad
1765 .sp .6
1766 .RS 4n
1767 Suppresses the automatic execution of the 64-bit link-editor. By default, the
1768 link-editor executes the 64-bit version when the \fBELF\fR class of the first
1769 relocatable file identifies a 64-bit object. The 64-bit image that a 32-bit
1770 link-editor can create, has some limitations. However, some link-edits might
1771 find the use of the 32-bit link-editor faster.
1772 .RE

1774 .sp
1775 .ne 2
1776 .na
1777 \fB\fBLD_OPTIONS\fR\fR

new/usr/src/man/man1/ld.1 28

1778 .ad
1779 .sp .6
1780 .RS 4n
1781 A default set of options to \fBld\fR. \fBLD_OPTIONS\fR is interpreted by
1782 \fBld\fR just as though its value had been placed on the command line,
1783 immediately following the name used to invoke \fBld\fR, as in:
1784 .sp
1785 .in +2
1786 .nf
1787 \fBld $LD_OPTIONS ... \fIother-arguments\fR ...\fR
1788 .fi
1789 .in -2
1790 .sp

1792 .RE

1794 .sp
1795 .ne 2
1796 .na
1797 \fB\fBLD_RUN_PATH\fR\fR
1798 .ad
1799 .sp .6
1800 .RS 4n
1801 An alternative mechanism for specifying a runpath to the link-editor. See the
1802 \fB-R\fR option. If both \fBLD_RUN_PATH\fR and the \fB-R\fR option are
1803 specified, \fB-R\fR supersedes.
1804 .RE

1806 .sp
1807 .ne 2
1808 .na
1809 \fB\fBSGS_SUPPORT\fR\fR
1810 .ad
1811 .sp .6
1812 .RS 4n
1813 Provides a colon-separated list of shared objects that are loaded with the
1814 link-editor and given information regarding the linking process. This
1815 environment variable can be specified with a _32 or _64 suffix. This makes the
1816 environment variable specific, respectively, to the 32-bit or 64-bit class of
1817 \fBld\fR and overrides any non-suffixed version of the environment variable
1818 that is in effect. See the \fB-S\fR option.
1819 .RE

1821 .sp
1822 .LP
1823 Notice that environment variable-names that begin with the
1824 characters ’\fBLD_\fR’ are reserved for possible future enhancements to \fBld\fR
1825 \fBld.so.1\fR(1).
1826 .SH FILES
1827 .ne 2
1828 .na
1829 \fB\fBlib\fIx\fR.so\fR\fR
1830 .ad
1831 .RS 15n
1832 shared object libraries.
1833 .RE

1835 .sp
1836 .ne 2
1837 .na
1838 \fB\fBlib\fIx\fR.a\fR\fR
1839 .ad
1840 .RS 15n
1841 archive libraries.
1842 .RE

new/usr/src/man/man1/ld.1 29

1844 .sp
1845 .ne 2
1846 .na
1847 \fB\fBa.out\fR\fR
1848 .ad
1849 .RS 15n
1850 default output file.
1851 .RE

1853 .sp
1854 .ne 2
1855 .na
1856 \fB\fILIBPATH\fR\fR
1857 .ad
1858 .RS 15n
1859 For 32-bit libraries, the default search path is \fB/usr/ccs/lib\fR, followed
1860 by \fB/lib\fR, and finally \fB/usr/lib\fR. For 64-bit libraries, the default
1861 search path is \fB/lib/64\fR, followed by \fB/usr/lib/64\fR.
1862 .RE

1864 .sp
1865 .ne 2
1866 .na
1867 \fB\fB/usr/lib/ld\fR\fR
1868 .ad
1869 .RS 15n
1870 A directory containing several \fBmapfiles\fR that can be used during
1871 link-editing. These \fBmapfiles\fR provide various capabilities, such as
1872 defining memory layouts, aligning bss, and defining non-executable stacks.
1873 .RE

1875 .SH ATTRIBUTES
1876 .LP
1877 See \fBattributes\fR(5) for descriptions of the following attributes:
1878 .sp

1880 .sp
1881 .TS
1882 box;
1883 c | c
1884 l | l .
1885 ATTRIBUTE TYPE ATTRIBUTE VALUE
1886 _
1887 Interface Stability Committed
1888 .TE

1890 .SH SEE ALSO
1891 .LP
1892 \fBas\fR(1), \fBcrle\fR(1), \fBgprof\fR(1), \fBld.so.1\fR(1), \fBldd\fR(1),
1893 \fBmcs\fR(1), \fBpvs\fR(1), \fBexec\fR(2), \fBstat\fR(2), \fBdlopen\fR(3C),
1894 \fBdldump\fR(3C), \fBelf\fR(3ELF), \fBar.h\fR(3HEAD), \fBa.out\fR(4),
1895 \fBattributes\fR(5)
1896 .sp
1897 .LP
1898 \fILinker and Libraries Guide\fR
1899 .SH NOTES
1900 .LP
1901 Default options applied by \fBld\fR are maintained for historic reasons. In
1902 today’s programming environment, where dynamic objects dominate, alternative
1903 defaults would often make more sense. However, historic defaults must be
1904 maintained to ensure compatibility with existing program development
1905 environments. Historic defaults are called out wherever possible in this
1906 manual. For a description of the current recommended options, see Appendix A,
1907 \fILink-Editor Quick Reference,\fR in \fILinker and Libraries Guide\fR.
1908 .sp
1909 .LP

new/usr/src/man/man1/ld.1 30

1910 If the file being created by \fBld\fR already exists, the file is unlinked
1911 after all input files have been processed. A new file with the specified name
1912 is then created. This allows \fBld\fR to create a new version of the file,
1913 while simultaneously allowing existing processes that are accessing the old
1914 file contents to continue running. If the old file has no other links, the disk
1915 space of the removed file is freed when the last process referencing the file
1916 terminates.
1917 .sp
1918 .LP
1919 The behavior of \fBld\fR when the file being created already exists was changed
1920 with \fBSXCE\fR build \fB43\fR. In older versions, the existing file was
1921 rewritten in place, an approach with the potential to corrupt any running
1922 processes that is using the file. This change has an implication for output
1923 files that have multiple hard links in the file system. Previously, all links
1924 would remain intact, with all links accessing the new file contents. The new
1925 \fBld\fR behavior \fBbreaks\fR such links, with the result that only the
1926 specified output file name references the new file. All the other links
1927 continue to reference the old file. To ensure consistent behavior, applications
1928 that rely on multiple hard links to linker output files should explicitly
1929 remove and relink the other file names.

new/usr/src/pkg/manifests/system-test-elftest.mf 1

**
 2618 Sun Feb 24 19:19:16 2019
new/usr/src/pkg/manifests/system-test-elftest.mf
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2018, Richard Lowe.
14 #

16 set name=pkg.fmri value=pkg:/system/test/elftest@$(PKGVERS)
17 set name=pkg.description value="ELF Unit Tests"
18 set name=pkg.summary value="ELF Test Suite"
19 set name=info.classification \
20 value=org.opensolaris.category.2008:Development/System
21 set name=variant.arch value=$(ARCH)
22 dir path=opt/elf-tests
23 dir path=opt/elf-tests/bin
24 dir path=opt/elf-tests/runfiles
25 dir path=opt/elf-tests/tests
26 dir path=opt/elf-tests/tests/assert-deflib
27 dir path=opt/elf-tests/tests/linker-sets
28 dir path=opt/elf-tests/tests/tls
29 dir path=opt/elf-tests/tests/tls/x64
30 dir path=opt/elf-tests/tests/tls/x64/ie
31 dir path=opt/elf-tests/tests/tls/x86
32 dir path=opt/elf-tests/tests/tls/x86/ld
33 file path=opt/elf-tests/bin/elftest mode=0555
34 file path=opt/elf-tests/runfiles/default.run mode=0444
35 file path=opt/elf-tests/tests/assert-deflib/link.c mode=0444
36 file path=opt/elf-tests/tests/assert-deflib/test-deflib mode=0555
37 file path=opt/elf-tests/tests/linker-sets/in-use-check mode=0555
38 file path=opt/elf-tests/tests/linker-sets/simple mode=0555
39 file path=opt/elf-tests/tests/linker-sets/simple-src.c mode=0444
40 file path=opt/elf-tests/tests/linker-sets/simple.out mode=0444
41 file path=opt/elf-tests/tests/tls/x64/ie/Makefile.test mode=0444
42 file path=opt/elf-tests/tests/tls/x64/ie/style1-func-with-r12.s mode=0444
43 file path=opt/elf-tests/tests/tls/x64/ie/style1-func-with-r13.s mode=0444
44 file path=opt/elf-tests/tests/tls/x64/ie/style1-func.s mode=0444
45 file path=opt/elf-tests/tests/tls/x64/ie/style1-main.s mode=0444
46 file path=opt/elf-tests/tests/tls/x64/ie/style2-with-badness.s mode=0444
47 file path=opt/elf-tests/tests/tls/x64/ie/style2-with-r12.s mode=0444
48 file path=opt/elf-tests/tests/tls/x64/ie/style2-with-r13.s mode=0444
49 file path=opt/elf-tests/tests/tls/x64/ie/style2.s mode=0444
50 file path=opt/elf-tests/tests/tls/x64/ie/x64-ie-test mode=0555
51 file path=opt/elf-tests/tests/tls/x86/ld/Makefile.test mode=0444
52 file path=opt/elf-tests/tests/tls/x86/ld/half-ldm.s mode=0444
53 file path=opt/elf-tests/tests/tls/x86/ld/x86-ld-test mode=0555
54 license lic_CDDL license=lic_CDDL
55 depend fmri=developer/linker type=require
56 depend fmri=developer/object-file type=require
57 depend fmri=system/test/testrunner type=require
58 #endif /* ! codereview */

new/usr/src/test/Makefile 1

**
 687 Sun Feb 24 19:19:17 2019
new/usr/src/test/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012 by Delphix. All rights reserved.
14 # Copyright 2014 Garrett D’Amore <garrett@damore.org>
15 #

17 .PARALLEL: $(SUBDIRS)

19 SUBDIRS = \
20 crypto-tests \
21 elf-tests \
22 libc-tests \
23 os-tests \
24 smbclient-tests \
25 test-runner \
26 util-tests \
27 zfs-tests
19 SUBDIRS = libc-tests crypto-tests os-tests test-runner util-tests zfs-tests \
20 smbclient-tests

29 include Makefile.com

new/usr/src/test/elf-tests/Makefile 1

**
 559 Sun Feb 24 19:19:17 2019
new/usr/src/test/elf-tests/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2015 Nexenta Systems, Inc. All rights reserved.
14 #

16 .PARALLEL: $(SUBDIRS)

18 SUBDIRS = cmd doc runfiles tests

20 include $(SRC)/test/Makefile.com
21 #endif /* ! codereview */

new/usr/src/test/elf-tests/cmd/Makefile 1

**
 544 Sun Feb 24 19:19:17 2019
new/usr/src/test/elf-tests/cmd/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2015 Nexenta Systems, Inc. All rights reserved.
14 #

16 .PARALLEL: $(SUBDIRS)

18 SUBDIRS = scripts

20 include $(SRC)/test/Makefile.com
21 #endif /* ! codereview */

new/usr/src/test/elf-tests/cmd/scripts/Makefile 1

**
 852 Sun Feb 24 19:19:17 2019
new/usr/src/test/elf-tests/cmd/scripts/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012 by Delphix. All rights reserved.
14 # Copyright 2015 Nexenta Systems, Inc. All rights reserved.
15 #

17 include $(SRC)/Makefile.master
18 include $(SRC)/test/Makefile.com

20 ROOTOPTPKG = $(ROOT)/opt/elf-tests
21 ROOTBIN = $(ROOTOPTPKG)/bin

23 PROGS = elftest

25 CMDS = $(PROGS:%=$(ROOTBIN)/%)
26 $(CMDS) := FILEMODE = 0555

28 all lint clean clobber:

30 install: $(CMDS)

32 $(CMDS): $(ROOTBIN)

34 $(ROOTBIN):
35 $(INS.dir)

37 $(ROOTBIN)/%: %.ksh
38 $(INS.rename)
39 #endif /* ! codereview */

new/usr/src/test/elf-tests/cmd/scripts/elftest.ksh 1

**
 990 Sun Feb 24 19:19:18 2019
new/usr/src/test/elf-tests/cmd/scripts/elftest.ksh
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #!/usr/bin/ksh

3 #
4 # This file and its contents are supplied under the terms of the
5 # Common Development and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terms of version
7 # 1.0 of the CDDL.
8 #
9 # A full copy of the text of the CDDL should have accompanied this

10 # source. A copy of the CDDL is also available via the Internet at
11 # http://www.illumos.org/license/CDDL.
12 #

14 #
15 # Copyright 2015 Nexenta Systems, Inc. All rights reserved.
16 #

18 export ELF_TESTS="/opt/elf-tests"
19 runner="/opt/test-runner/bin/run"

21 function fail
22 {
23 echo $1
24 exit ${2:-1}
25 }

27 function find_runfile
28 {
29 typeset distro=default

31 [[-n $distro]] && echo $ELF_TESTS/runfiles/$distro.run
32 }

34 while getopts c: c; do
35 case $c in
36 ’c’)
37 runfile=$OPTARG
38 [[-f $runfile]] || fail "Cannot read file: $runfile"
39 ;;
40 esac
41 done
42 shift $((OPTIND - 1))

44 [[-z $runfile]] && runfile=$(find_runfile)
45 [[-z $runfile]] && fail "Couldn’t determine distro"

47 $runner -c $runfile

49 exit $?
50 #endif /* ! codereview */

new/usr/src/test/elf-tests/doc/README 1

**
 2003 Sun Feb 24 19:19:18 2019
new/usr/src/test/elf-tests/doc/README
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012 by Delphix. All rights reserved.
14 # Copyright 2015 Nexenta Systems, Inc. All rights reserved.
15 #

17 ELF Software Generation Utilities Unit Test Suite README

19 1. Building and installing the ELF/SGS Unit Test Suite
20 2. Running the ELF/SGS Unit Test Suite
21 3. Test results

23 --

25 1. Building and installing the ELF/SGS Unit Test Suite

27 The ELF/SGS Unit Test Suite runs under the testrunner framework (which can be
28 installed as pkg:/system/test/testrunner). To build both the ELF/SGS Unit Test S
29 and the testrunner without running a full nightly:

31 build_machine$ bldenv [-d] <your_env_file>
32 build_machine$ cd $SRC/test
33 build_machine$ dmake install
34 build_machine$ cd $SRC/pkg
35 build_machine$ dmake install

37 Then set the publisher on the test machine to point to your repository and
38 install the ELF/SGS Unit Test Suite.

40 test_machine# pkg install pkg:/system/test/elftest

42 Note, the framework will be installed automatically, as the ELF/SGS Unit Test Su
43 depends on it.

45 2. Running the ELF/SGS Unit Test Suite

47 The pre-requisites for running the ELF/SGS Unit Test Suite are:
48 None

50 Once the pre-requisites are satisfied, simply run the elftest script:

52 test_machine$ /opt/elf-tests/bin/elftest

54 3. Test results

56 While the ELF/SGS Unit Test Suite is running, one informational line is printed
57 the end of each test, and a results summary is printed at the end of the run.
58 The results summary includes the location of the complete logs, which is of the
59 form /var/tmp/test_results/<ISO 8601 date>.

new/usr/src/test/elf-tests/doc/README 2

60 #endif /* ! codereview */

new/usr/src/test/elf-tests/runfiles/Makefile 1

**
 908 Sun Feb 24 19:19:18 2019
new/usr/src/test/elf-tests/runfiles/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012 by Delphix. All rights reserved.
14 # Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
15 # Copyright 2014 Garrett D’Amore <garrett@damore.org>
16 #

18 include $(SRC)/Makefile.master

20 SRCS = default.run

22 ROOTOPTPKG = $(ROOT)/opt/elf-tests
23 RUNFILES = $(ROOTOPTPKG)/runfiles

25 CMDS = $(SRCS:%=$(RUNFILES)/%)
26 $(CMDS) := FILEMODE = 0444

28 all: $(SRCS)

30 install: $(CMDS)

32 clean lint clobber:

34 $(CMDS): $(RUNFILES) $(SRCS)

36 $(RUNFILES):
37 $(INS.dir)

39 $(RUNFILES)/%: %
40 $(INS.file)
41 #endif /* ! codereview */

new/usr/src/test/elf-tests/runfiles/default.run 1

**
 815 Sun Feb 24 19:19:18 2019
new/usr/src/test/elf-tests/runfiles/default.run
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

2 #
3 # This file and its contents are supplied under the terms of the
4 # Common Development and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terms of version
6 # 1.0 of the CDDL.
7 #
8 # A full copy of the text of the CDDL should have accompanied this
9 # source. A copy of the CDDL is also available via the Internet at

10 # http://www.illumos.org/license/CDDL.
11 #

13 # Copyright 2018, Richard Lowe.

15 [DEFAULT]
16 pre =
17 verbose = False
18 quiet = False
19 timeout = 60
20 post =
21 outputdir = /var/tmp/test_results

23 [/opt/elf-tests/tests/linker-sets]
24 tests = [’simple’, ’in-use-check’]

26 [/opt/elf-tests/tests/assert-deflib]
27 tests = [’test-deflib’]

30 [/opt/elf-tests/tests/tls/x64/ie]
31 arch = i86pc
32 tests = [’x64-ie-test’]

34 [/opt/elf-tests/tests/tls/x86/ld]
35 arch = i86pc
36 tests = [’x86-ld-test’]
37 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/Makefile 1

**
 582 Sun Feb 24 19:19:19 2019
new/usr/src/test/elf-tests/tests/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012, 2016 by Delphix. All rights reserved.
14 # Copyright 2018 Joyent, Inc.
15 #

17 SUBDIRS = \
18 assert-deflib \
19 linker-sets \
20 tls

22 include $(SRC)/test/Makefile.com
23 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/assert-deflib/Makefile 1

**
 940 Sun Feb 24 19:19:19 2019
new/usr/src/test/elf-tests/tests/assert-deflib/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 # Copyright 2018, Richard Lowe.

14 include $(SRC)/cmd/Makefile.cmd
15 include $(SRC)/test/Makefile.com

17 PROG = test-deflib

19 DATAFILES = link.c

21 ROOTOPTPKG = $(ROOT)/opt/elf-tests
22 TESTDIR = $(ROOTOPTPKG)/tests/assert-deflib

24 CMDS = $(PROG:%=$(TESTDIR)/%)
25 $(CMDS) := FILEMODE = 0555

28 DATA = $(DATAFILES:%=$(TESTDIR)/%)
29 $(DATA) := FILEMODE = 0444

31 all: $(PROG)

33 install: all $(CMDS) $(DATA)

35 lint:

37 clobber: clean
38 -$(RM) $(PROG)

40 clean:
41 -$(RM) $(CLEANFILES)

43 $(CMDS): $(TESTDIR) $(PROG)

45 $(TESTDIR):
46 $(INS.dir)

48 $(TESTDIR)/%: %
49 $(INS.file)
50 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/assert-deflib/test-deflib.sh 1

**
 3870 Sun Feb 24 19:19:19 2019
new/usr/src/test/elf-tests/tests/assert-deflib/test-deflib.sh
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #!/bin/bash
2 #
3 # This file and its contents are supplied under the terms of the
4 # Common Development and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terms of version
6 # 1.0 of the CDDL.
7 #
8 # A full copy of the text of the CDDL should have accompanied this
9 # source. A copy of the CDDL is also available via the Internet at

10 # http://www.illumos.org/license/CDDL.
11 #

13 #
14 # Copyright (c) 2012, Joyent, Inc.
15 #

17 #
18 # This test validates that the -zassert-deflib option of ld(1) works correctly.
19 # It requires that some cc is in your path and that you have passed in the path
20 # to the proto area with the new version of libld.so.4. One thing that we have
21 # to do is be careful with using LD_LIBRARY_PATH. Setting LD_LIBRARY_PATH does
22 # not change the default search path so we want to make sure that we use a
23 # different ISA (e.g. 32-bit vs 64-bit) from the binary we’re generating.
24 #
25 unalias -a

27 if [[-z $ELF_TESTS]]; then
28 print -u2 "Don’t know where the test data is rooted";
29 exit 1;
30 fi

32 #endif /* ! codereview */
33 sh_path=
34 sh_lib="lib"
35 sh_lib64="$sh_lib/64"
36 sh_soname="libld.so.4"
37 sh_cc="gcc"
27 sh_cc="cc"
38 sh_cflags="-m32"
39 sh_file="${ELF_TESTS}/tests/assert-deflib/link.c"
29 sh_file="link.c"
40 sh_arg0=$(basename $0)

42 function fatal
43 {
44 local msg="$*"
45 [[-z "$msg"]] && msg="failed"
46 echo "$sh_arg0: $msg" >&2
47 exit 1
48 }

______unchanged_portion_omitted_

82 sh_path=${1:-/}
72 sh_path=$1
73 [[-z "$1"]] && fatal "<proto root>"
83 validate

85 run "-Wl,-zassert-deflib" 0 \
86 "Testing basic compilation succeeds with warnings..." \

new/usr/src/test/elf-tests/tests/assert-deflib/test-deflib.sh 2

87 "failed to compile with warnings"

89 run "-Wl,-zassert-deflib -Wl,-zfatal-warnings" 1 \
90 "Testing basic compilation fails if warning are fatal..." \
91 "linking succeeeded, expected failure"

93 run "-Wl,-zassert-deflib=libc.so -Wl,-zfatal-warnings" 0 \
94 "Testing basic exception with fatal warnings..." \
95 "linking failed despite exception"

97 run "-Wl,-zassert-deflib=libc.so -Wl,-zfatal-warnings" 0 \
98 "Testing basic exception with fatal warnings..." \
99 "linking failed despite exception"

102 run "-Wl,-zassert-deflib=lib.so -Wl,-zfatal-warnings" 1 \
103 "Testing invalid library name..." \
104 "ld should not allow invalid library name"

106 run "-Wl,-zassert-deflib=libf -Wl,-zfatal-warnings" 1 \
107 "Testing invalid library name..." \
108 "ld should not allow invalid library name"

110 run "-Wl,-zassert-deflib=libf.s -Wl,-zfatal-warnings" 1 \
111 "Testing invalid library name..." \
112 "ld should not allow invalid library name"

114 run "-Wl,-zassert-deflib=libc.so -Wl,-zfatal-warnings -lelf" 1 \
115 "Errors even if one library is under exception path..." \
116 "one exception shouldn’t stop another"

118 args="-Wl,-zassert-deflib=libc.so -Wl,-zassert-deflib=libelf.so"
119 args="$args -Wl,-zfatal-warnings -lelf"

121 run "$args" 0 \
122 "Multiple exceptions work..." \
123 "multiple exceptions don’t work"

125 args="-Wl,-zassert-deflib=libc.so -Wl,-zassert-deflib=libelfe.so"
126 args="$args -Wl,-zfatal-warnings -lelf"

128 run "$args" 1 \
129 "Exceptions only catch the specific library" \
130 "exceptions caught the wrong library"

132 args="-Wl,-zassert-deflib=libc.so -Wl,-zassert-deflib=libel.so"
133 args="$args -Wl,-zfatal-warnings -lelf"

135 run "$args" 1 \
136 "Exceptions only catch the specific library" \
137 "exceptions caught the wrong library"

139 echo "Tests passed."
140 exit 0

new/usr/src/test/elf-tests/tests/linker-sets/Makefile 1

**
 967 Sun Feb 24 19:19:20 2019
new/usr/src/test/elf-tests/tests/linker-sets/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 # Copyright 2018, Richard Lowe.

14 include $(SRC)/cmd/Makefile.cmd
15 include $(SRC)/test/Makefile.com

17 PROG = simple in-use-check

19 DATAFILES = simple-src.c \
20 simple.out

22 ROOTOPTPKG = $(ROOT)/opt/elf-tests
23 TESTDIR = $(ROOTOPTPKG)/tests/linker-sets

25 CMDS = $(PROG:%=$(TESTDIR)/%)
26 $(CMDS) := FILEMODE = 0555

29 DATA = $(DATAFILES:%=$(TESTDIR)/%)
30 $(DATA) := FILEMODE = 0444

32 all: $(PROG)

34 install: all $(CMDS) $(DATA)

36 lint:

38 clobber: clean
39 -$(RM) $(PROG)

41 clean:
42 -$(RM) $(CLEANFILES)

44 $(CMDS): $(TESTDIR) $(PROG)

46 $(TESTDIR):
47 $(INS.dir)

49 $(TESTDIR)/%: %
50 $(INS.file)
51 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/linker-sets/in-use-check.sh 1

**
 1250 Sun Feb 24 19:19:20 2019
new/usr/src/test/elf-tests/tests/linker-sets/in-use-check.sh
linker_set sections shouldn’t need leading ’.’
code review
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #!/usr/bin/ksh
2 #
3 # This file and its contents are supplied under the terms of the
4 # Common Development and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terms of version
6 # 1.0 of the CDDL.
7 #
8 # A full copy of the text of the CDDL should have accompanied this
9 # source. A copy of the CDDL is also available via the Internet at

10 # http://www.illumos.org/license/CDDL.
11 #

13 #
14 # Copyright 2018, Richard Lowe.
15 #

17 # Test that existing definitions of the start/stop symbols are reported
18 # as conflicting with internal symbols.

20 tmpdir=/tmp/test.$$
21 mkdir $tmpdir
22 cd $tmpdir

24 cleanup() {
25 cd /
26 rm -fr $tmpdir
27 }

29 trap ’cleanup’ EXIT

31 cat > broken.c <<EOF
32 char foo[1024] __attribute__((section("set_foo")));
33 void *__start_set_foo;

35 int
36 main()
37 {
38 return (0);
39 }
40 EOF

42 # We expect any alternate linker to be in LD_ALTEXEC for us already
43 gcc -o broken broken.c -Wall -Wextra -Wl,-zfatal-warnings > in-use.$$.out 2>&1
44 if (($? == 0)); then
45 print -u2 "use of a reserved symbol didn’t fail"
46 exit 1;
47 fi

49 grep -q "^ld: warning: reserved symbol ’__start_set_foo’ already defined in file
50 if (($? != 0)); then
51 print -u2 "use of a reserved symbol failed for the wrong reason"
52 exit 1;
53 fi
54 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/linker-sets/simple-src.c 1

**
 3414 Sun Feb 24 19:19:20 2019
new/usr/src/test/elf-tests/tests/linker-sets/simple-src.c
linker_set sections shouldn’t need leading ’.’
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 /* The meat of this file is a copy of the FreeBSD sys/link_set.h */
2 /*
3 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
4 *
5 * Copyright (c) 1999 John D. Polstra
6 * Copyright (c) 1999,2001 Peter Wemm <peter@FreeBSD.org>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without

10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * $FreeBSD$
31 */

33 #include <stdio.h>

35 #define MAKE_SET(set, sym) \
36 __asm__(".globl __start_set_" #set); \
37 __asm__(".globl __stop_set_" #set); \
38 static __attribute__((section("set_" #set), used)) \
39 void const *__set_##set##_sym_##sym = &(sym)

41 /*
42 * Initialize before referring to a given linker set.
43 */
44 #define SET_DECLARE(set, ptype) \
45 extern __attribute__((weak)) ptype *__start_set_ ## set; \
46 extern __attribute__((weak)) ptype *__stop_set_ ## set

48 #define SET_BEGIN(set) (&__start_set_ ## set)
49 #define SET_LIMIT(set) (&__stop_set_ ## set)

51 /*
52 * Iterate over all the elements of a set.
53 *
54 * Sets always contain addresses of things, and "pvar" points to words
55 * containing those addresses. Thus is must be declared as "type **pvar",
56 * and the address of each set item is obtained inside the loop by "*pvar".
57 */
58 #define SET_FOREACH(pvar, set) \

new/usr/src/test/elf-tests/tests/linker-sets/simple-src.c 2

59 for (pvar = SET_BEGIN(set); pvar < SET_LIMIT(set); pvar++)

61 #define SET_ITEM(set, i) \
62 ((SET_BEGIN(set))[i])

64 /*
65 * Provide a count of the items in a set.
66 */
67 #define SET_COUNT(set) \
68 (SET_LIMIT(set) - SET_BEGIN(set))

70 struct foo {
71 char buf[128];
72 };

74 SET_DECLARE(foo, struct foo);

76 struct foo a = { "foo" };
77 struct foo b = { "bar" };
78 struct foo c = { "baz" };

80 MAKE_SET(foo, a);
81 MAKE_SET(foo, b);
82 MAKE_SET(foo, c);

84 int
85 main(int __attribute__((unused)) argc, char __attribute__((unused)) **argv)
86 {
87 struct foo **c;
88 int i = 0;

90 printf("Set count: %d\n", SET_COUNT(foo));

93 printf("a: %s\n", ((struct foo *)__set_foo_sym_a)->buf);
94 printf("b: %s\n", ((struct foo *)__set_foo_sym_b)->buf);
95 printf("c: %s\n", ((struct foo *)__set_foo_sym_c)->buf);

97 printf("item(foo, 0): %s\n", SET_ITEM(foo, 0)->buf);
98 printf("item(foo, 1): %s\n", SET_ITEM(foo, 1)->buf);
99 printf("item(foo, 2): %s\n", SET_ITEM(foo, 2)->buf);

101 SET_FOREACH(c, foo) {
102 printf("foo[%d]: %s\n", i, (*c)->buf);
103 i++;
104 }
105 }
106 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/linker-sets/simple.out 1

**
 124 Sun Feb 24 19:19:20 2019
new/usr/src/test/elf-tests/tests/linker-sets/simple.out
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 Set count: 3
2 a: foo
3 b: bar
4 c: baz
5 item(foo, 0): foo
6 item(foo, 1): bar
7 item(foo, 2): baz
8 foo[0]: foo
9 foo[1]: bar

10 foo[2]: baz
11 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/linker-sets/simple.sh 1

**
 1398 Sun Feb 24 19:19:20 2019
new/usr/src/test/elf-tests/tests/linker-sets/simple.sh
code review
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #!/usr/bin/ksh
2 #
3 # This file and its contents are supplied under the terms of the
4 # Common Development and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terms of version
6 # 1.0 of the CDDL.
7 #
8 # A full copy of the text of the CDDL should have accompanied this
9 # source. A copy of the CDDL is also available via the Internet at

10 # http://www.illumos.org/license/CDDL.
11 #

13 #
14 # Copyright 2018, Richard Lowe.
15 #

17 # Test that a simple use of linker-sets, that is, automatically generated start
18 # and end symbols for sections can be generated and used.

20 if [[-z $ELF_TESTS]]; then
21 print -u2 "Don’t know where the test data is rooted";
22 exit 1;
23 fi

25 tmpdir=/tmp/test.$$
26 mkdir $tmpdir
27 cd $tmpdir

29 cleanup() {
30 cd /
31 rm -fr $tmpdir
32 }

34 trap ’cleanup’ EXIT

36 # We expect any alternate linker to be in LD_ALTEXEC for us already
37 gcc -o simple ${ELF_TESTS}/tests/linker-sets/simple-src.c -Wall -Wextra
38 if (($? != 0)); then
39 print -u2 "compilation of ${ELF_TESTS}/tests/linker-sets/simple-src.c failed
40 exit 1;
41 fi

43 ./simple > simple.$$.out 2>&1

45 if (($? != 0)); then
46 print -u2 "execution of ${ELF_TESTS}/tests/linker-sets/simple-src.c failed";
47 exit 1;
48 fi

50 diff -u ${ELF_TESTS}/tests/linker-sets/simple.out simple.$$.out
51 if (($? != 0)); then
52 print -u2 "${ELF_TESTS}/tests/linker-sets/simple-src.c output mismatch"
53 exit 1;
54 fi
55 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/Makefile 1

**
 550 Sun Feb 24 19:19:21 2019
new/usr/src/test/elf-tests/tests/tls/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012, 2016 by Delphix. All rights reserved.
14 # Copyright 2018 Joyent, Inc.
15 #

17 SUBDIRS = x64 x86

19 include $(SRC)/test/Makefile.com
20 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/x64/Makefile 1

**
 545 Sun Feb 24 19:19:21 2019
new/usr/src/test/elf-tests/tests/tls/x64/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012, 2016 by Delphix. All rights reserved.
14 # Copyright 2018 Joyent, Inc.
15 #

17 SUBDIRS = ie

19 include $(SRC)/test/Makefile.com
20 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/x64/ie/Makefile 1

**
 1117 Sun Feb 24 19:19:21 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 # Copyright 2018, Richard Lowe.

14 include $(SRC)/cmd/Makefile.cmd
15 include $(SRC)/test/Makefile.com

17 PROG = x64-ie-test

19 DATAFILES = \
20 Makefile.test \
21 style1-func-with-r12.s \
22 style1-func-with-r13.s \
23 style1-func.s \
24 style1-main.s \
25 style2-with-badness.s \
26 style2-with-r12.s \
27 style2-with-r13.s \
28 style2.s

30 ROOTOPTPKG = $(ROOT)/opt/elf-tests
31 TESTDIR = $(ROOTOPTPKG)/tests/tls/x64/ie

33 CMDS = $(PROG:%=$(TESTDIR)/%)
34 $(CMDS) := FILEMODE = 0555

37 DATA = $(DATAFILES:%=$(TESTDIR)/%)
38 $(DATA) := FILEMODE = 0444

40 all: $(PROG)

42 install: all $(CMDS) $(DATA)

44 lint:

46 clobber: clean
47 -$(RM) $(PROG)

49 clean:
50 -$(RM) $(CLEANFILES)

52 $(CMDS): $(TESTDIR) $(PROG)

54 $(TESTDIR):
55 $(INS.dir)

57 $(TESTDIR)/%: %
58 $(INS.file)
59 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/x64/ie/Makefile.test 1

**
 2363 Sun Feb 24 19:19:21 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/Makefile.test
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 # Copyright 2012, Richard Lowe.

14 CC = gcc
14 include $(SRC)/Makefile.master

16 # We have to use GCC, and only GCC. The best way is to ask cw(1) which GCC to u
17 CC_CMD = $(ONBLD_TOOLS)/bin/$(MACH)/cw -_gcc -_compiler
18 CC = $(CC_CMD:sh)
15 CFLAGS = -O1 -m64

17 LINK.c = $(CC) $(CFLAGS) -o $@ $^
21 LINK.c = env LD_ALTEXEC=$(PROTO)/usr/bin/amd64/ld $(CC) $(CFLAGS) -o $@ $^
18 COMPILE.c = $(CC) $(CFLAGS) -c -o $@ $^
19 COMPILE.s = $(CC) $(CFLAGS) -c -o $@ $^

21 .KEEP_STATE:

23 install default: all

25 %.o: $(ELF_TESTS)/tests/tls/x64/ie/%.c
29 .c.o:
26 $(COMPILE.c)
27 %.o: $(ELF_TESTS)/tests/tls/x64/ie/%.s

32 .s.o:
28 $(COMPILE.s)

30 # A basic use of TLS that uses the movq m/r --> movq i/r variant
31 PROGS += style2
32 STYLE2OBJS = style2.o
33 style2: $(STYLE2OBJS)
34 $(LINK.c)

36 # A copy of style2 that uses %r13 in the TLS sequence, and thus excercises the
37 # REX transitions of the movq mem,reg -> movq imm,reg variant.
38 PROGS += style2-with-r13
39 STYLE2R13OBJS = style2-with-r13.o
40 style2-with-r13: $(STYLE2R13OBJS)
41 $(LINK.c)

43 # A copy of style2 that uses %r12 in the TLS sequence, so we can verify that
44 # it is _not_ special to this variant
45 PROGS += style2-with-r12
46 STYLE2R12OBJS = style2-with-r12.o
47 style2-with-r12: $(STYLE2R12OBJS)
48 $(LINK.c)

50 # A copy of style2 that has a R_AMD64_GOTTPOFF relocation with a bad insn sequen

new/usr/src/test/elf-tests/tests/tls/x64/ie/Makefile.test 2

51 STYLE2BADNESSOBJS = style2-with-badness.o
52 style2-with-badness: $(STYLE2BADNESSOBJS)
53 -$(LINK.c)

55 # A basic use of TLS that uses the addq mem/reg --> leaq mem,reg variant
56 PROGS += style1
57 STYLE1OBJS = style1-main.o style1-func.o
58 style1: $(STYLE1OBJS)
59 $(LINK.c)

61 # A copy of style1-func that uses %r13 in the TLS sequence and thus excercises
62 # the REX transitions. of the addq mem,reg --> leaq mem,reg variant
63 PROGS += style1-with-r13
64 STYLE1R13OBJS = style1-main.o style1-func-with-r13.o
65 style1-with-r13: $(STYLE1R13OBJS)
66 $(LINK.c)

68 # A copy of style1-func that uses %r12 to test the addq mem,reg --> addq imm,reg
69 PROGS += style1-with-r12
70 STYLE1R12OBJS = style1-main.o style1-func-with-r12.o
71 style1-with-r12: $(STYLE1R12OBJS)
72 $(LINK.c)

74 all: $(PROGS)

76 clobber clean:
77 rm -f $(PROGS) $(STYLE1OBJS) $(STYLE1R13OBJS) $(STYLE1R12OBJS) \
78 $(STYLE2OBJS) $(STYLE2R13OBJS) $(STYLE2R12OBJS) $(STYLE2BADNESSOBJS)

80 fail: style2-with-badness FRC

82 FRC:

new/usr/src/test/elf-tests/tests/tls/x64/ie/style1-func-with-r12.s 1

**
 842 Sun Feb 24 19:19:22 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/style1-func-with-r12.s
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**
______unchanged_portion_omitted_

new/usr/src/test/elf-tests/tests/tls/x64/ie/style2-with-badness.s 1

**
 925 Sun Feb 24 19:19:23 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/style2-with-badness.s
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**
______unchanged_portion_omitted_

new/usr/src/test/elf-tests/tests/tls/x64/ie/style2-with-r12.s 1

**
 953 Sun Feb 24 19:19:24 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/style2-with-r12.s
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012, Richard Lowe.
14 */

16 .section .rodata.str1.1,"aMS",@progbits,1
17 .LC0:
18 .string "foo: %p\n"
19 .text
20 .globl main
21 .type main, @function
22 main:
23 .LFB0:
24 pushq %rbp
25 .LCFI0:
26 movq %rsp, %rbp
27 .LCFI1:
28 movq foo@GOTTPOFF(%rip), %r12
29 addq %fs:0, %r12
30 movq %r12, %rsi
31 movl $.LC0, %edi
32 movl $0, %eax
33 call printf
34 movl $0, %eax
35 leave
36 ret
37 .LFE0:
38 .size main, .-main
39 .globl foo
40 .section .rodata.str1.1
41 .LC1:
42 .string "foo"

44 #endif /* ! codereview */
45 .section .tdata,"awT",@progbits
46 .align 8
47 .type foo, @object
48 .size foo, 8
49 foo:
50 .quad .LC1

new/usr/src/test/elf-tests/tests/tls/x64/ie/style2-with-r13.s 1

**
 952 Sun Feb 24 19:19:24 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/style2-with-r13.s
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**
______unchanged_portion_omitted_

new/usr/src/test/elf-tests/tests/tls/x64/ie/style2.s 1

**
 925 Sun Feb 24 19:19:25 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/style2.s
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**
______unchanged_portion_omitted_

new/usr/src/test/elf-tests/tests/tls/x64/ie/x64-ie-test.sh 1

**
 2251 Sun Feb 24 19:19:25 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/x64-ie-test.sh
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #!/bin/ksh
2 #
3 # This file and its contents are supplied under the terms of the
4 # Common Development and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terms of version
6 # 1.0 of the CDDL.
7 #
8 # A full copy of the text of the CDDL should have accompanied this
9 # source. A copy of the CDDL is also available via the Internet at

10 # http://www.illumos.org/license/CDDL.
11 #

13 # Copyright 2012, Richard Lowe.

15 function grep_test {
16 name=$1
17 pattern=$2

19 if /usr/bin/fgrep -q "${pattern}"; then
20 print -u2 "pass: $name"
21 else
22 print -u2 "FAIL: $name"
23 exit 1
24 #endif /* ! codereview */
25 fi
26 }

28 function dis_test {
29 name=${1}
30 func=${2}
31 file=${3}
32 pattern=${4}

34 dis -F${func} ${file} | grep_test "${name}" "${pattern}"
35 }

37 if [[-z $ELF_TESTS]]; then
38 print -u2 "Don’t know where the test data is rooted";
39 exit 1;
40 fi

42 make -f ${ELF_TESTS}/tests/tls/x64/ie/Makefile.test
23 make PROTO="${1}"

44 dis_test "addq-->leaq 1" func style1 \
45 ’func+0x10: 48 8d 92 f8 ff ff leaq -0x8(%rdx),%rdx’
46 dis_test "addq-->leaq 2" func style1 \
47 ’func+0x17: 48 8d b6 f0 ff ff leaq -0x10(%rsi),%rsi’

49 dis_test "addq-->leaq w/REX 1" func style1-with-r13 \
50 ’func+0x10: 48 8d 92 f8 ff ff leaq -0x8(%rdx),%rdx’
51 dis_test "addq-->leaq w/REX 2" func style1-with-r13 \
52 ’func+0x17: 4d 8d ad f0 ff ff leaq -0x10(%r13),%r13’

54 dis_test "addq-->addq for SIB 1" func style1-with-r12 \
55 ’func+0x10: 48 8d 92 f8 ff ff leaq -0x8(%rdx),%rdx’
56 dis_test "addq-->addq for SIB 2" func style1-with-r12 \
57 ’func+0x17: 49 81 c4 f0 ff ff addq $-0x10,%r12 <0xfffffffffffffff0>’

new/usr/src/test/elf-tests/tests/tls/x64/ie/x64-ie-test.sh 2

59 dis_test "movq-->movq" main style2 \
60 ’main+0x4: 48 c7 c6 f0 ff ff movq $-0x10,%rsi <0xfffffffffffffff0>’

62 dis_test "movq-->movq w/REX" main style2-with-r13 \
63 ’main+0x4: 49 c7 c5 f0 ff ff movq $-0x10,%r13 <0xfffffffffffffff0>’

65 dis_test "movq-->movq incase of SIB" main style2-with-r12 \
66 ’main+0x4: 49 c7 c4 f0 ff ff movq $-0x10,%r12 <0xfffffffffffffff0>’

68 make -f ${ELF_TESTS}/tests/tls/x64/ie/Makefile.test fail 2>&1 | grep_test "bad i
49 make PROTO="${1}" fail 2>&1 | grep_test "bad insn sequence" \
69 ’ld: fatal: relocation error: R_AMD64_TPOFF32: file style2-with-badness.o: sy

new/usr/src/test/elf-tests/tests/tls/x86/Makefile 1

**
 545 Sun Feb 24 19:19:26 2019
new/usr/src/test/elf-tests/tests/tls/x86/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012, 2016 by Delphix. All rights reserved.
14 # Copyright 2018 Joyent, Inc.
15 #

17 SUBDIRS = ld

19 include $(SRC)/test/Makefile.com
20 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/x86/ld/Makefile 1

**
 964 Sun Feb 24 19:19:26 2019
new/usr/src/test/elf-tests/tests/tls/x86/ld/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 # Copyright 2018, Richard Lowe.

14 include $(SRC)/cmd/Makefile.cmd
15 include $(SRC)/test/Makefile.com

17 PROG = x86-ld-test

19 DATAFILES = \
20 Makefile.test \
21 half-ldm.s \

23 ROOTOPTPKG = $(ROOT)/opt/elf-tests
24 TESTDIR = $(ROOTOPTPKG)/tests/tls/x86/ld

26 CMDS = $(PROG:%=$(TESTDIR)/%)
27 $(CMDS) := FILEMODE = 0555

30 DATA = $(DATAFILES:%=$(TESTDIR)/%)
31 $(DATA) := FILEMODE = 0444

33 all: $(PROG)

35 install: all $(CMDS) $(DATA)

37 lint:

39 clobber: clean
40 -$(RM) $(PROG)

42 clean:
43 -$(RM) $(CLEANFILES)

45 $(CMDS): $(TESTDIR) $(PROG)

47 $(TESTDIR):
48 $(INS.dir)

50 $(TESTDIR)/%: %
51 $(INS.file)
52 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/x86/ld/Makefile.test 1

**
 1053 Sun Feb 24 19:19:26 2019
new/usr/src/test/elf-tests/tests/tls/x86/ld/Makefile.test
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 # Copyright 2012, Richard Lowe.

14 CC = gcc
15 CFLAGS = -O1 -m32

17 LINK.c = $(CC) $(CFLAGS) -o $@ $^
18 COMPILE.c = $(CC) $(CFLAGS) -c -o $@ $^
19 COMPILE.s = $(CC) $(CFLAGS) -c -o $@ $^

21 .KEEP_STATE:

23 install default: all

25 %.o: $(ELF_TESTS)/tests/tls/x86/ld/%.c
26 $(COMPILE.c)
27 %.o: $(ELF_TESTS)/tests/tls/x86/ld/%.s
28 $(COMPILE.s)

30 # an R_386_TLS_LDM with a regular R_386_PLT32 not a R_386_TLS_LDM_PLT
31 PROGS += half-ldm

33 half-ldm: half-ldm.o
34 $(LINK.c)

36 all: $(PROGS)

38 clobber clean:
39 rm -f $(PROGS) $(STYLE1OBJS) $(STYLE1R13OBJS) $(STYLE1R12OBJS) \
40 $(STYLE2OBJS) $(STYLE2R13OBJS) $(STYLE2R12OBJS) $(STYLE2BADNESSOBJS)

42 fail: style2-with-badness FRC

44 FRC:
45 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/x86/ld/half-ldm.s 1

**
 1355 Sun Feb 24 19:19:26 2019
new/usr/src/test/elf-tests/tests/tls/x86/ld/half-ldm.s
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.u

10 */

12 /*
13 * Copyright 2019, Richard Lowe.
14 */

16 .section .rodata.str1.1,"aMS",@progbits,1
17 .LC0:
18 .string "foo: %s (%p)\n"
19 .section .tdata,"awT",@progbits
20 .align 4
21 .type foo, @object
22 .size foo,4
23 .local foo
24 foo:
25 .string "foo"
26 .text
27 .globl main
28 .type main, @function
29 main:
30 pushl %ebp
31 movl %esp, %ebp
32 /*
33 * an R_386_TLS_LDM relocation without a following
34 * followed by an R_386_PLT32 relocation, rather than an
35 * R_386_TLS_LDM_PLT the call should be removed, and _not_
36 * left alone unrelocated as it was prior to:
37 * 10267 ld and GCC disagree about i386 local dynamic TLS
38 */
39 leal foo@TLSLDM(%ebx), %eax
40 call ___tls_get_addr@PLT
41 leal foo@DTPOFF(%eax), %edx
42 pushl %edx
43 pushl %edx
44 pushl $.LC0
45 call printf@PLT
46 movl $0x0,%eax
47 leave
48 ret
49 .size main, .-main
50 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/x86/ld/x86-ld-test.sh 1

**
 1107 Sun Feb 24 19:19:26 2019
new/usr/src/test/elf-tests/tests/tls/x86/ld/x86-ld-test.sh
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #!/bin/ksh
2 #
3 # This file and its contents are supplied under the terms of the
4 # Common Development and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terms of version
6 # 1.0 of the CDDL.
7 #
8 # A full copy of the text of the CDDL should have accompanied this
9 # source. A copy of the CDDL is also available via the Internet at

10 # http://www.illumos.org/license/CDDL.
11 #

13 # Copyright 2012, Richard Lowe.

15 function grep_test {
16 name=$1
17 pattern=$2

19 if /usr/bin/grep -q "${pattern}"; then
20 print -u2 "pass: $name"
21 else
22 print -u2 "FAIL: $name"
23 exit 1
24 fi
25 }

27 function dis_test {
28 name=${1}
29 func=${2}
30 file=${3}
31 pattern=${4}

33 dis -F${func} ${file} | grep_test "${name}" "${pattern}"
34 }

36 if [[-z $ELF_TESTS]]; then
37 print -u2 "Don’t know where the test data is rooted";
38 exit 1;
39 fi

41 make -f ${ELF_TESTS}/tests/tls/x86/ld/Makefile.test

43 dis_test "call-->nop" main half-ldm \
44 ’main\+0x9: 0f 1f 44 00 00 nopl 0x0(%eax,%eax)’

46 ./half-ldm | grep_test ’half-ldm execution’ \
47 ’^foo: foo ([a-f0-9]*)$’
48 #endif /* ! codereview */

new/usr/src/uts/common/sys/link.h 1

**
 23445 Sun Feb 24 19:19:27 2019
new/usr/src/uts/common/sys/link.h
ld: implement -ztype and rework option parsing
**
______unchanged_portion_omitted_
69 #endif /* defined(_LP64) || defined(_LONGLONG_TYPE) */
70 #endif /* _ASM */

72 /*
73 * Tag values
74 */
75 #define DT_NULL 0 /* last entry in list */
76 #define DT_NEEDED 1 /* a needed object */
77 #define DT_PLTRELSZ 2 /* size of relocations for the PLT */
78 #define DT_PLTGOT 3 /* addresses used by procedure linkage table */
79 #define DT_HASH 4 /* hash table */
80 #define DT_STRTAB 5 /* string table */
81 #define DT_SYMTAB 6 /* symbol table */
82 #define DT_RELA 7 /* addr of relocation entries */
83 #define DT_RELASZ 8 /* size of relocation table */
84 #define DT_RELAENT 9 /* base size of relocation entry */
85 #define DT_STRSZ 10 /* size of string table */
86 #define DT_SYMENT 11 /* size of symbol table entry */
87 #define DT_INIT 12 /* _init addr */
88 #define DT_FINI 13 /* _fini addr */
89 #define DT_SONAME 14 /* name of this shared object */
90 #define DT_RPATH 15 /* run-time search path */
91 #define DT_SYMBOLIC 16 /* shared object linked -Bsymbolic */
92 #define DT_REL 17 /* addr of relocation entries */
93 #define DT_RELSZ 18 /* size of relocation table */
94 #define DT_RELENT 19 /* base size of relocation entry */
95 #define DT_PLTREL 20 /* relocation type for PLT entry */
96 #define DT_DEBUG 21 /* pointer to r_debug structure */
97 #define DT_TEXTREL 22 /* text relocations remain for this object */
98 #define DT_JMPREL 23 /* pointer to the PLT relocation entries */
99 #define DT_BIND_NOW 24 /* perform all relocations at load of object */
100 #define DT_INIT_ARRAY 25 /* pointer to .init_array */
101 #define DT_FINI_ARRAY 26 /* pointer to .fini_array */
102 #define DT_INIT_ARRAYSZ 27 /* size of .init_array */
103 #define DT_FINI_ARRAYSZ 28 /* size of .fini_array */
104 #define DT_RUNPATH 29 /* run-time search path */
105 #define DT_FLAGS 30 /* state flags - see DF_* */

107 /*
108 * DT_* encoding rules: The value of each dynamic tag determines the
109 * interpretation of the d_un union. This convention provides for simpler
110 * interpretation of dynamic tags by external tools. A tag whose value
111 * is an even number indicates a dynamic section entry that uses d_ptr.
112 * A tag whose value is an odd number indicates a dynamic section entry
113 * that uses d_val, or that uses neither d_ptr nor d_val.
114 *
115 * There are exceptions to the above rule:
116 * - Tags with values that are less than DT_ENCODING.
117 * - Tags with values that fall between DT_LOOS and DT_SUNW_ENCODING
118 * - Tags with values that fall between DT_HIOS and DT_LOPROC
119 *
120 * Third party tools must handle these exception ranges explicitly
121 * on an item by item basis.
122 */
123 #define DT_ENCODING 32 /* positive tag DT_* encoding rules */
124 /* start after this */
125 #define DT_PREINIT_ARRAY 32 /* pointer to .preinit_array */
126 #define DT_PREINIT_ARRAYSZ 33 /* size of .preinit_array */

128 #define DT_MAXPOSTAGS 34 /* number of positive tags */

new/usr/src/uts/common/sys/link.h 2

130 /*
131 * DT_* encoding rules do not apply between DT_LOOS and DT_SUNW_ENCODING
132 */
133 #define DT_LOOS 0x6000000d /* OS specific range */
134 #define DT_SUNW_AUXILIARY 0x6000000d /* symbol auxiliary name */
135 #define DT_SUNW_RTLDINF 0x6000000e /* ld.so.1 info (private) */
136 #define DT_SUNW_FILTER 0x6000000f /* symbol filter name */
137 #define DT_SUNW_CAP 0x60000010 /* hardware/software */
138 /* capabilities */
139 #define DT_SUNW_SYMTAB 0x60000011 /* symtab with local fcn */
140 /* symbols immediately */
141 /* preceding DT_SYMTAB */
142 #define DT_SUNW_SYMSZ 0x60000012 /* Size of SUNW_SYMTAB table */

144 /*
145 * DT_* encoding rules apply between DT_SUNW_ENCODING and DT_HIOS
146 */
147 #define DT_SUNW_ENCODING 0x60000013 /* DT_* encoding rules resume */
148 /* after this */
149 #define DT_SUNW_SORTENT 0x60000013 /* sizeof [SYM|TLS]SORT entry */
150 #define DT_SUNW_SYMSORT 0x60000014 /* sym indices sorted by addr */
151 #define DT_SUNW_SYMSORTSZ 0x60000015 /* size of SUNW_SYMSORT */
152 #define DT_SUNW_TLSSORT 0x60000016 /* tls sym ndx sort by offset */
153 #define DT_SUNW_TLSSORTSZ 0x60000017 /* size of SUNW_TLSSORT */
154 #define DT_SUNW_CAPINFO 0x60000018 /* capabilities symbols */
155 #define DT_SUNW_STRPAD 0x60000019 /* # of unused bytes at the */
156 /* end of dynstr */
157 #define DT_SUNW_CAPCHAIN 0x6000001a /* capabilities chain info */
158 #define DT_SUNW_LDMACH 0x6000001b /* EM_ machine code of linker */
159 /* that produced object */
160 #define DT_SUNW_CAPCHAINENT 0x6000001d /* capabilities chain entry */
161 #define DT_SUNW_CAPCHAINSZ 0x6000001f /* capabilities chain size */
162 /* 0x60000021 would be DT_SUNW_PARENT */
163 #define DT_SUNW_ASLR 0x60000023 /* executable ASLR desire */
164 #define DT_SUNW_KMOD 0x60000027 /* object is a kernel module */
165 #endif /* ! codereview */

167 /*
168 * DT_* encoding rules do not apply between DT_HIOS and DT_LOPROC
169 */
170 #define DT_HIOS 0x6ffff000

172 /*
173 * The following values have been deprecated and remain here to allow
174 * compatibility with older binaries.
175 */
176 #define DT_DEPRECATED_SPARC_REGISTER 0x7000001

178 /*
179 * DT_* entries which fall between DT_VALRNGHI & DT_VALRNGLO use the
180 * Dyn.d_un.d_val field of the Elf*_Dyn structure.
181 */
182 #define DT_VALRNGLO 0x6ffffd00

184 #define DT_GNU_PRELINKED 0x6ffffdf5 /* prelinking timestamp (unused) */
185 #define DT_GNU_CONFLICTSZ 0x6ffffdf6 /* size of conflict section (unused) */
186 #define DT_GNU_LIBLISTSZ 0x6ffffdf7 /* size of library list (unused) */
187 #define DT_CHECKSUM 0x6ffffdf8 /* elf checksum */
188 #define DT_PLTPADSZ 0x6ffffdf9 /* pltpadding size */
189 #define DT_MOVEENT 0x6ffffdfa /* move table entry size */
190 #define DT_MOVESZ 0x6ffffdfb /* move table size */
191 #define DT_FEATURE_1 0x6ffffdfc /* feature holder (unused) */
192 #define DT_POSFLAG_1 0x6ffffdfd /* flags for DT_* entries, effecting */
193 /* the following DT_* entry. */
194 /* See DF_P1_* definitions */

new/usr/src/uts/common/sys/link.h 3

195 #define DT_SYMINSZ 0x6ffffdfe /* syminfo table size (in bytes) */
196 #define DT_SYMINENT 0x6ffffdff /* syminfo entry size (in bytes) */
197 #define DT_VALRNGHI 0x6ffffdff

199 /*
200 * DT_* entries which fall between DT_ADDRRNGHI & DT_ADDRRNGLO use the
201 * Dyn.d_un.d_ptr field of the Elf*_Dyn structure.
202 *
203 * If any adjustment is made to the ELF object after it has been
204 * built, these entries will need to be adjusted.
205 */
206 #define DT_ADDRRNGLO 0x6ffffe00

208 #define DT_GNU_HASH 0x6ffffef5 /* GNU-style hash table (unused) */
209 #define DT_TLSDESC_PLT 0x6ffffef6 /* GNU (unused) */
210 #define DT_TLSDESC_GOT 0x6ffffef7 /* GNU (unused) */
211 #define DT_GNU_CONFLICT 0x6ffffef8 /* start of conflict section (unused) */
212 #define DT_GNU_LIBLIST 0x6ffffef9 /* Library list (unused) */

214 #define DT_CONFIG 0x6ffffefa /* configuration information */
215 #define DT_DEPAUDIT 0x6ffffefb /* dependency auditing */
216 #define DT_AUDIT 0x6ffffefc /* object auditing */
217 #define DT_PLTPAD 0x6ffffefd /* pltpadding (sparcv9) */
218 #define DT_MOVETAB 0x6ffffefe /* move table */
219 #define DT_SYMINFO 0x6ffffeff /* syminfo table */
220 #define DT_ADDRRNGHI 0x6ffffeff

222 /*
223 * The following DT_* entries should have been assigned within one of the
224 * DT_* ranges, but existed before such ranges had been established.
225 */
226 #define DT_VERSYM 0x6ffffff0 /* version symbol table - unused by */
227 /* Solaris (see libld/update.c) */

229 #define DT_RELACOUNT 0x6ffffff9 /* number of RELATIVE relocations */
230 #define DT_RELCOUNT 0x6ffffffa /* number of RELATIVE relocations */
231 #define DT_FLAGS_1 0x6ffffffb /* state flags - see DF_1_* defs */
232 #define DT_VERDEF 0x6ffffffc /* version definition table and */
233 #define DT_VERDEFNUM 0x6ffffffd /* associated no. of entries */
234 #define DT_VERNEED 0x6ffffffe /* version needed table and */
235 #define DT_VERNEEDNUM 0x6fffffff /* associated no. of entries */

237 /*
238 * DT_* entries between DT_HIPROC and DT_LOPROC are reserved for processor
239 * specific semantics.
240 *
241 * DT_* encoding rules apply to all tag values larger than DT_LOPROC.
242 */
243 #define DT_LOPROC 0x70000000 /* processor specific range */
244 #define DT_AUXILIARY 0x7ffffffd /* shared library auxiliary name */
245 #define DT_USED 0x7ffffffe /* ignored - same as needed */
246 #define DT_FILTER 0x7fffffff /* shared library filter name */
247 #define DT_HIPROC 0x7fffffff

250 /*
251 * Values for DT_FLAGS
252 */
253 #define DF_ORIGIN 0x00000001 /* ORIGIN processing required */
254 #define DF_SYMBOLIC 0x00000002 /* symbolic bindings in effect */
255 #define DF_TEXTREL 0x00000004 /* text relocations remain */
256 #define DF_BIND_NOW 0x00000008 /* process all relocations */
257 #define DF_STATIC_TLS 0x00000010 /* obj. contains static TLS refs */

259 /*
260 * Values for the DT_POSFLAG_1 .dynamic entry.

new/usr/src/uts/common/sys/link.h 4

261 * These values only affect the following DT_* entry.
262 */
263 #define DF_P1_LAZYLOAD 0x00000001 /* following object is to be */
264 /* lazy loaded */
265 #define DF_P1_GROUPPERM 0x00000002 /* following object’s symbols are */
266 /* not available for general */
267 /* symbol bindings. */
268 #define DF_P1_DEFERRED 0x00000004 /* following object is deferred */

270 /*
271 * Values for the DT_FLAGS_1 .dynamic entry.
272 */
273 #define DF_1_NOW 0x00000001 /* set RTLD_NOW for this object */
274 #define DF_1_GLOBAL 0x00000002 /* set RTLD_GLOBAL for this object */
275 #define DF_1_GROUP 0x00000004 /* set RTLD_GROUP for this object */
276 #define DF_1_NODELETE 0x00000008 /* set RTLD_NODELETE for this object */
277 #define DF_1_LOADFLTR 0x00000010 /* trigger filtee loading at runtime */
278 #define DF_1_INITFIRST 0x00000020 /* set RTLD_INITFIRST for this object */
279 #define DF_1_NOOPEN 0x00000040 /* set RTLD_NOOPEN for this object */
280 #define DF_1_ORIGIN 0x00000080 /* ORIGIN processing required */
281 #define DF_1_DIRECT 0x00000100 /* direct binding enabled */
282 #define DF_1_TRANS 0x00000200 /* unused obsolete name */
283 #define DF_1_INTERPOSE 0x00000400 /* object is an interposer */
284 #define DF_1_NODEFLIB 0x00000800 /* ignore default library search path */
285 #define DF_1_NODUMP 0x00001000 /* object can’t be dldump(3x)’ed */
286 #define DF_1_CONFALT 0x00002000 /* configuration alternative created */
287 #define DF_1_ENDFILTEE 0x00004000 /* filtee terminates filters search */
288 #define DF_1_DISPRELDNE 0x00008000 /* disp reloc applied at build time */
289 #define DF_1_DISPRELPND 0x00010000 /* disp reloc applied at run-time */
290 #define DF_1_NODIRECT 0x00020000 /* object contains symbols that */
291 /* cannot be directly bound to */
292 #define DF_1_IGNMULDEF 0x00040000 /* internal: krtld ignore muldefs */
293 #define DF_1_NOKSYMS 0x00080000 /* internal: don’t export object’s */
294 /* symbols via /dev/ksyms */
295 #define DF_1_NOHDR 0x00100000 /* mapfile: 1st segment mapping */
296 /* omits ELF & program headers */
297 #define DF_1_EDITED 0x00200000 /* object has been modified since */
298 /* being built by ’ld’ */
299 #define DF_1_NORELOC 0x00400000 /* internal: unrelocated object */
300 #define DF_1_SYMINTPOSE 0x00800000 /* individual symbol interposers */
301 /* exist */
302 #define DF_1_GLOBAUDIT 0x01000000 /* establish global auditing */
303 #define DF_1_SINGLETON 0x02000000 /* singleton symbols exist */

305 /*
306 * Values set to DT_FEATURE_1 tag’s d_val (unused obsolete tag)
307 */
308 #define DTF_1_PARINIT 0x00000001 /* partially initialization feature */
309 #define DTF_1_CONFEXP 0x00000002 /* configuration file expected */

312 /*
313 * Version structures. There are three types of version structure:
314 *
315 * o A definition of the versions within the image itself.
316 * Each version definition is assigned a unique index (starting from
317 * VER_NDX_BGNDEF) which is used to cross-reference symbols associated to
318 * the version. Each version can have one or more dependencies on other
319 * version definitions within the image. The version name, and any
320 * dependency names, are specified in the version definition auxiliary
321 * array. Version definition entries require a version symbol index table.
322 *
323 * o A version requirement on a needed dependency. Each needed entry
324 * specifies the shared object dependency (as specified in DT_NEEDED).
325 * One or more versions required from this dependency are specified in the
326 * version needed auxiliary array.

new/usr/src/uts/common/sys/link.h 5

327 *
328 * o A version symbol index table. Each symbol indexes into this array
329 * to determine its version index. Index values of VER_NDX_BGNDEF or
330 * greater indicate the version definition to which a symbol is associated.
331 * (the size of a symbol index entry is recorded in the sh_info field).
332 */
333 #ifndef _ASM

335 typedef struct { /* Version Definition Structure. */
336 Elf32_Half vd_version; /* this structures version revision */
337 Elf32_Half vd_flags; /* version information */
338 Elf32_Half vd_ndx; /* version index */
339 Elf32_Half vd_cnt; /* no. of associated aux entries */
340 Elf32_Word vd_hash; /* version name hash value */
341 Elf32_Word vd_aux; /* no. of bytes from start of this */
342 /* verdef to verdaux array */
343 Elf32_Word vd_next; /* no. of bytes from start of this */
344 } Elf32_Verdef; /* verdef to next verdef entry */

346 typedef struct { /* Verdef Auxiliary Structure. */
347 Elf32_Word vda_name; /* first element defines the version */
348 /* name. Additional entries */
349 /* define dependency names. */
350 Elf32_Word vda_next; /* no. of bytes from start of this */
351 } Elf32_Verdaux; /* verdaux to next verdaux entry */

354 typedef struct { /* Version Requirement Structure. */
355 Elf32_Half vn_version; /* this structures version revision */
356 Elf32_Half vn_cnt; /* no. of associated aux entries */
357 Elf32_Word vn_file; /* name of needed dependency (file) */
358 Elf32_Word vn_aux; /* no. of bytes from start of this */
359 /* verneed to vernaux array */
360 Elf32_Word vn_next; /* no. of bytes from start of this */
361 } Elf32_Verneed; /* verneed to next verneed entry */

363 typedef struct { /* Verneed Auxiliary Structure. */
364 Elf32_Word vna_hash; /* version name hash value */
365 Elf32_Half vna_flags; /* version information */
366 Elf32_Half vna_other;
367 Elf32_Word vna_name; /* version name */
368 Elf32_Word vna_next; /* no. of bytes from start of this */
369 } Elf32_Vernaux; /* vernaux to next vernaux entry */

371 typedef Elf32_Half Elf32_Versym; /* Version symbol index array */

373 typedef struct {
374 Elf32_Half si_boundto; /* direct bindings - symbol bound to */
375 Elf32_Half si_flags; /* per symbol flags */
376 } Elf32_Syminfo;

379 #if defined(_LP64) || defined(_LONGLONG_TYPE)
380 typedef struct {
381 Elf64_Half vd_version; /* this structures version revision */
382 Elf64_Half vd_flags; /* version information */
383 Elf64_Half vd_ndx; /* version index */
384 Elf64_Half vd_cnt; /* no. of associated aux entries */
385 Elf64_Word vd_hash; /* version name hash value */
386 Elf64_Word vd_aux; /* no. of bytes from start of this */
387 /* verdef to verdaux array */
388 Elf64_Word vd_next; /* no. of bytes from start of this */
389 } Elf64_Verdef; /* verdef to next verdef entry */

391 typedef struct {
392 Elf64_Word vda_name; /* first element defines the version */

new/usr/src/uts/common/sys/link.h 6

393 /* name. Additional entries */
394 /* define dependency names. */
395 Elf64_Word vda_next; /* no. of bytes from start of this */
396 } Elf64_Verdaux; /* verdaux to next verdaux entry */

398 typedef struct {
399 Elf64_Half vn_version; /* this structures version revision */
400 Elf64_Half vn_cnt; /* no. of associated aux entries */
401 Elf64_Word vn_file; /* name of needed dependency (file) */
402 Elf64_Word vn_aux; /* no. of bytes from start of this */
403 /* verneed to vernaux array */
404 Elf64_Word vn_next; /* no. of bytes from start of this */
405 } Elf64_Verneed; /* verneed to next verneed entry */

407 typedef struct {
408 Elf64_Word vna_hash; /* version name hash value */
409 Elf64_Half vna_flags; /* version information */
410 Elf64_Half vna_other;
411 Elf64_Word vna_name; /* version name */
412 Elf64_Word vna_next; /* no. of bytes from start of this */
413 } Elf64_Vernaux; /* vernaux to next vernaux entry */

415 typedef Elf64_Half Elf64_Versym;

417 typedef struct {
418 Elf64_Half si_boundto; /* direct bindings - symbol bound to */
419 Elf64_Half si_flags; /* per symbol flags */
420 } Elf64_Syminfo;
421 #endif /* defined(_LP64) || defined(_LONGLONG_TYPE) */

423 #endif /* _ASM */

425 /*
426 * Versym symbol index values. Values greater than VER_NDX_GLOBAL
427 * and less then VER_NDX_LORESERVE associate symbols with user
428 * specified version descriptors.
429 */
430 #define VER_NDX_LOCAL 0 /* symbol is local */
431 #define VER_NDX_GLOBAL 1 /* symbol is global and assigned to */
432 /* the base version */
433 #define VER_NDX_LORESERVE 0xff00 /* beginning of RESERVED entries */
434 #define VER_NDX_ELIMINATE 0xff01 /* symbol is to be eliminated */

436 /*
437 * Verdef (vd_flags) and Vernaux (vna_flags) flags values.
438 */
439 #define VER_FLG_BASE 0x1 /* version definition of file itself */
440 /* (Verdef only) */
441 #define VER_FLG_WEAK 0x2 /* weak version identifier */
442 #define VER_FLG_INFO 0x4 /* version is recorded in object for */
443 /* informational purposes */
444 /* (Versym reference) only. No */
445 /* runtime verification is */
446 /* required. (Vernaux only) */

448 /*
449 * Verdef version values.
450 */
451 #define VER_DEF_NONE 0 /* Ver_def version */
452 #define VER_DEF_CURRENT 1
453 #define VER_DEF_NUM 2

455 /*
456 * Verneed version values.
457 */
458 #define VER_NEED_NONE 0 /* Ver_need version */

new/usr/src/uts/common/sys/link.h 7

459 #define VER_NEED_CURRENT 1
460 #define VER_NEED_NUM 2

463 /*
464 * Syminfo flag values
465 */
466 #define SYMINFO_FLG_DIRECT 0x0001 /* symbol ref has direct association */
467 /* to object containing defn. */
468 #define SYMINFO_FLG_FILTER 0x0002 /* symbol ref is associated to a */
469 /* standard filter */
470 #define SYMINFO_FLG_PASSTHRU SYMINFO_FLG_FILTER /* unused obsolete name */
471 #define SYMINFO_FLG_COPY 0x0004 /* symbol is a copy-reloc */
472 #define SYMINFO_FLG_LAZYLOAD 0x0008 /* object containing defn. should be */
473 /* lazily-loaded */
474 #define SYMINFO_FLG_DIRECTBIND 0x0010 /* ref should be bound directly to */
475 /* object containing defn. */
476 #define SYMINFO_FLG_NOEXTDIRECT 0x0020 /* don’t let an external reference */
477 /* directly bind to this symbol */
478 #define SYMINFO_FLG_AUXILIARY 0x0040 /* symbol ref is associated to a */
479 /* auxiliary filter */
480 #define SYMINFO_FLG_INTERPOSE 0x0080 /* symbol defines an interposer */
481 #define SYMINFO_FLG_CAP 0x0100 /* symbol is capabilities specific */
482 #define SYMINFO_FLG_DEFERRED 0x0200 /* symbol should not be included in */
483 /* BIND_NOW relocations */

485 /*
486 * Syminfo.si_boundto values.
487 */
488 #define SYMINFO_BT_SELF 0xffff /* symbol bound to self */
489 #define SYMINFO_BT_PARENT 0xfffe /* symbol bound to parent */
490 #define SYMINFO_BT_NONE 0xfffd /* no special symbol binding */
491 #define SYMINFO_BT_EXTERN 0xfffc /* symbol defined as external */
492 #define SYMINFO_BT_LOWRESERVE 0xff00 /* beginning of reserved entries */

494 /*
495 * Syminfo version values.
496 */
497 #define SYMINFO_NONE 0 /* Syminfo version */
498 #define SYMINFO_CURRENT 1
499 #define SYMINFO_NUM 2

502 /*
503 * Public structure defined and maintained within the runtime linker
504 */
505 #ifndef _ASM

507 typedef struct link_map Link_map;

509 struct link_map {
510 unsigned long l_addr; /* address at which object is mapped */
511 char *l_name; /* full name of loaded object */
512 #ifdef _LP64
513 Elf64_Dyn *l_ld; /* dynamic structure of object */
514 #else
515 Elf32_Dyn *l_ld; /* dynamic structure of object */
516 #endif
517 Link_map *l_next; /* next link object */
518 Link_map *l_prev; /* previous link object */
519 char *l_refname; /* filters reference name */
520 };

522 #ifdef _SYSCALL32
523 typedef struct link_map32 Link_map32;

new/usr/src/uts/common/sys/link.h 8

525 struct link_map32 {
526 Elf32_Word l_addr;
527 Elf32_Addr l_name;
528 Elf32_Addr l_ld;
529 Elf32_Addr l_next;
530 Elf32_Addr l_prev;
531 Elf32_Addr l_refname;
532 };
533 #endif

535 typedef enum {
536 RT_CONSISTENT,
537 RT_ADD,
538 RT_DELETE
539 } r_state_e;

541 typedef enum {
542 RD_FL_NONE = 0, /* no flags */
543 RD_FL_ODBG = (1<<0), /* old style debugger present */
544 RD_FL_DBG = (1<<1) /* debugging enabled */
545 } rd_flags_e;

549 /*
550 * Debugging events enabled inside of the runtime linker. To
551 * access these events see the librtld_db interface.
552 */
553 typedef enum {
554 RD_NONE = 0, /* no event */
555 RD_PREINIT, /* the Initial rendezvous before .init */
556 RD_POSTINIT, /* the Second rendezvous after .init */
557 RD_DLACTIVITY /* a dlopen or dlclose has happened */
558 } rd_event_e;

560 struct r_debug {
561 int r_version; /* debugging info version no. */
562 Link_map *r_map; /* address of link_map */
563 unsigned long r_brk; /* address of update routine */
564 r_state_e r_state;
565 unsigned long r_ldbase; /* base addr of ld.so */
566 Link_map *r_ldsomap; /* address of ld.so.1’s link map */
567 rd_event_e r_rdevent; /* debug event */
568 rd_flags_e r_flags; /* misc flags. */
569 };

571 #ifdef _SYSCALL32
572 struct r_debug32 {
573 Elf32_Word r_version; /* debugging info version no. */
574 Elf32_Addr r_map; /* address of link_map */
575 Elf32_Word r_brk; /* address of update routine */
576 r_state_e r_state;
577 Elf32_Word r_ldbase; /* base addr of ld.so */
578 Elf32_Addr r_ldsomap; /* address of ld.so.1’s link map */
579 rd_event_e r_rdevent; /* debug event */
580 rd_flags_e r_flags; /* misc flags. */
581 };
582 #endif

585 #define R_DEBUG_VERSION 2 /* current r_debug version */
586 #endif /* _ASM */

588 /*
589 * Attribute/value structures used to bootstrap ELF-based dynamic linker.
590 */

new/usr/src/uts/common/sys/link.h 9

591 #ifndef _ASM
592 typedef struct {
593 Elf32_Sword eb_tag; /* what this one is */
594 union { /* possible values */
595 Elf32_Word eb_val;
596 Elf32_Addr eb_ptr;
597 Elf32_Off eb_off;
598 } eb_un;
599 } Elf32_Boot;

601 #if defined(_LP64) || defined(_LONGLONG_TYPE)
602 typedef struct {
603 Elf64_Xword eb_tag; /* what this one is */
604 union { /* possible values */
605 Elf64_Xword eb_val;
606 Elf64_Addr eb_ptr;
607 Elf64_Off eb_off;
608 } eb_un;
609 } Elf64_Boot;
610 #endif /* defined(_LP64) || defined(_LONGLONG_TYPE) */
611 #endif /* _ASM */

613 /*
614 * Attributes
615 */
616 #define EB_NULL 0 /* (void) last entry */
617 #define EB_DYNAMIC 1 /* (*) dynamic structure of subject */
618 #define EB_LDSO_BASE 2 /* (caddr_t) base address of ld.so */
619 #define EB_ARGV 3 /* (caddr_t) argument vector */
620 #define EB_ENVP 4 /* (char **) environment strings */
621 #define EB_AUXV 5 /* (auxv_t *) auxiliary vector */
622 #define EB_DEVZERO 6 /* (int) fd for /dev/zero */
623 #define EB_PAGESIZE 7 /* (int) page size */
624 #define EB_MAX 8 /* number of "EBs" */
625 #define EB_MAX_SIZE32 64 /* size in bytes, _ILP32 */
626 #define EB_MAX_SIZE64 128 /* size in bytes, _LP64 */

629 #ifndef _ASM

631 /*
632 * Concurrency communication structure for libc callbacks.
633 */
634 extern void _ld_libc(void *);

636 #pragma unknown_control_flow(_ld_libc)
637 #endif /* _ASM */

639 #ifdef __cplusplus
640 }
641 #endif

643 #endif /* _SYS_LINK_H */

