
new/gcc/common.opt 1

**
 43526 Sun Oct 28 20:56:06 2012
new/gcc/common.opt
Implement -fstrict-calling-conventions
Stock GCC is overly willing to violate the ABI when calling local functions,
such that it passes arguments in registers on i386. This hampers debugging
with anything other than a fully-aware DWARF debugger, and is generally not
something we desire.
Implement a flag which disables this behaviour, enabled by default. The flag is
global, though only effective on i386, to more easily allow its globalization
later which, given the odds, is likely to be necessary.
**

1 ; Options for the language- and target-independent parts of the compiler.

3 ; Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 ; Free Software Foundation, Inc.
5 ;
6 ; This file is part of GCC.
7 ;
8 ; GCC is free software; you can redistribute it and/or modify it under
9 ; the terms of the GNU General Public License as published by the Free

10 ; Software Foundation; either version 3, or (at your option) any later
11 ; version.
12 ;
13 ; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 ; WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 ; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 ; for more details.
17 ;
18 ; You should have received a copy of the GNU General Public License
19 ; along with GCC; see the file COPYING3. If not see
20 ; <http://www.gnu.org/licenses/>.

22 ; See the GCC internals manual (options.texi) for a description of this file’s f

24 ; Please try to keep this file in ASCII collating order.

26 -help
27 Common
28 Display this information

30 -help=
31 Common Report Joined
32 --help=<class> Display descriptions of a specific class of options. <class> is

34 -target-help
35 Common
36 Alias for --help=target

38 ;; The following three entries are to work around the gcc driver
39 ;; program’s insatiable desire to turn options starting with a
40 ;; double dash (--) into options starting with a dash f (-f).
41 fhelp
42 Common

44 fhelp=
45 Common Joined

47 ftarget-help
48 Common

50 -param
51 Common Separate
52 --param <param>=<value> Set parameter <param> to value. See below for a complet

54 -version

new/gcc/common.opt 2

55 Common

57 G
58 Common Joined Separate UInteger
59 -G<number> Put global and static data smaller than <number> bytes into a sp

61 O
62 Common JoinedOrMissing Optimization
63 -O<number> Set optimization level to <number>

65 Os
66 Common Optimization
67 Optimize for space rather than speed

69 W
70 Common RejectNegative
71 This switch is deprecated; use -Wextra instead

73 Waggregate-return
74 Common Var(warn_aggregate_return) Warning
75 Warn about returning structures, unions or arrays

77 Warray-bounds
78 Common Var(warn_array_bounds) Warning
79 Warn if an array is accessed out of bounds

81 Wattributes
82 Common Var(warn_attributes) Init(1) Warning
83 Warn about inappropriate attribute usage

85 Wcast-align
86 Common Var(warn_cast_align) Warning
87 Warn about pointer casts which increase alignment

89 Wdeprecated-declarations
90 Common Var(warn_deprecated_decl) Init(1) Warning
91 Warn about uses of __attribute__((deprecated)) declarations

93 Wdisabled-optimization
94 Common Var(warn_disabled_optimization) Warning
95 Warn when an optimization pass is disabled

97 Werror
98 Common Var(warnings_are_errors)
99 Treat all warnings as errors

101 Werror=
102 Common Joined
103 Treat specified warning as error

105 Wextra
106 Common Warning
107 Print extra (possibly unwanted) warnings

109 Wfatal-errors
110 Common Var(flag_fatal_errors)
111 Exit on the first error occurred

113 Wframe-larger-than=
114 Common RejectNegative Joined UInteger
115 -Wframe-larger-than=<number> Warn if a function’s stack frame requires more than

117 Winline
118 Common Var(warn_inline) Warning
119 Warn when an inlined function cannot be inlined

new/gcc/common.opt 3

121 Wlarger-than-
122 Common RejectNegative Joined UInteger Warning

124 Wlarger-than=
125 Common RejectNegative Joined UInteger Warning
126 -Wlarger-than=<number> Warn if an object is larger than <number> bytes

128 Wlogical-op
129 Common Warning Var(warn_logical_op)
130 Warn when a logical operator is suspicously always evaluating to true or false

132 Wunsafe-loop-optimizations
133 Common Var(warn_unsafe_loop_optimizations) Warning
134 Warn if the loop cannot be optimized due to nontrivial assumptions.

136 Wmissing-noreturn
137 Common Var(warn_missing_noreturn) Warning
138 Warn about functions which might be candidates for __attribute__((noreturn))

140 Wmudflap
141 Common Var(warn_mudflap) Init(1) Warning
142 Warn about constructs not instrumented by -fmudflap

144 Woverflow
145 Common Var(warn_overflow) Init(1) Warning
146 Warn about overflow in arithmetic expressions

148 Wpacked
149 Common Var(warn_packed) Warning
150 Warn when the packed attribute has no effect on struct layout

152 Wpadded
153 Common Var(warn_padded) Warning
154 Warn when padding is required to align structure members

156 Wshadow
157 Common Var(warn_shadow) Warning
158 Warn when one local variable shadows another

160 Wstack-protector
161 Common Var(warn_stack_protect) Warning
162 Warn when not issuing stack smashing protection for some reason

164 Wstrict-aliasing
165 Common Warning
166 Warn about code which might break strict aliasing rules

168 Wstrict-aliasing=
169 Common Joined UInteger Var(warn_strict_aliasing) Init(-1) Warning
170 Warn about code which might break strict aliasing rules

172 Wstrict-overflow
173 Common Warning
174 Warn about optimizations that assume that signed overflow is undefined

176 Wstrict-overflow=
177 Common Joined UInteger Var(warn_strict_overflow) Init(-1) Warning
178 Warn about optimizations that assume that signed overflow is undefined

180 Wswitch
181 Common Var(warn_switch) Warning
182 Warn about enumerated switches, with no default, missing a case

184 Wswitch-default
185 Common Var(warn_switch_default) Warning
186 Warn about enumerated switches missing a \"default:\" statement

new/gcc/common.opt 4

188 Wswitch-enum
189 Common Var(warn_switch_enum) Warning
190 Warn about all enumerated switches missing a specific case

192 Wsystem-headers
193 Common Var(warn_system_headers) Warning
194 Do not suppress warnings from system headers

196 Wtype-limits
197 Common Var(warn_type_limits) Init(-1) Warning
198 Warn if a comparison is always true or always false due to the limited range of

200 Wuninitialized
201 Common Var(warn_uninitialized) Warning
202 Warn about uninitialized automatic variables

204 Wunreachable-code
205 Common Var(warn_notreached) Warning
206 Warn about code that will never be executed

208 Wunused
209 Common Var(warn_unused) Init(0) Warning
210 Enable all -Wunused- warnings

212 Wunused-function
213 Common Var(warn_unused_function) Init(-1) Warning
214 Warn when a function is unused

216 Wunused-label
217 Common Var(warn_unused_label) Init(-1) Warning
218 Warn when a label is unused

220 Wunused-parameter
221 Common Var(warn_unused_parameter) Init(-1) Warning
222 Warn when a function parameter is unused

224 Wunused-value
225 Common Var(warn_unused_value) Init(-1) Warning
226 Warn when an expression value is unused

228 Wunused-variable
229 Common Var(warn_unused_variable) Init(-1) Warning
230 Warn when a variable is unused

232 Wcoverage-mismatch
233 Common RejectNegative Var(warn_coverage_mismatch) Warning
234 Warn instead of error in case profiles in -fprofile-use do not match

236 aux-info
237 Common Separate
238 -aux-info <file> Emit declaration information into <file>

240 aux-info=
241 Common Joined

243 auxbase
244 Common Separate

246 auxbase-strip
247 Common Separate

249 d
250 Common Joined
251 -d<letters> Enable dumps from specific passes of the compiler

new/gcc/common.opt 5

253 dumpbase
254 Common Separate
255 -dumpbase <file> Set the file basename to be used for dumps

257 ; The version of the C++ ABI in use. The following values are allowed:
258 ;
259 ; 0: The version of the ABI believed most conformant with the C++ ABI
260 ; specification. This ABI may change as bugs are discovered and fixed.
261 ; Therefore, 0 will not necessarily indicate the same ABI in different
262 ; versions of G++.
263 ;
264 ; 1: The version of the ABI first used in G++ 3.2.
265 ;
266 ; 2: The version of the ABI first used in G++ 3.4.
267 ;
268 ; Additional positive integers will be assigned as new versions of
269 ; the ABI become the default version of the ABI.
270 fabi-version=
271 Common Joined UInteger Var(flag_abi_version) Init(2)

273 falign-functions
274 Common Report Var(align_functions,0) Optimization UInteger
275 Align the start of functions

277 falign-functions=
278 Common RejectNegative Joined UInteger

280 falign-jumps
281 Common Report Var(align_jumps,0) Optimization UInteger
282 Align labels which are only reached by jumping

284 falign-jumps=
285 Common RejectNegative Joined UInteger

287 falign-labels
288 Common Report Var(align_labels,0) Optimization UInteger
289 Align all labels

291 falign-labels=
292 Common RejectNegative Joined UInteger

294 falign-loops
295 Common Report Var(align_loops) Optimization UInteger
296 Align the start of loops

298 falign-loops=
299 Common RejectNegative Joined UInteger

301 ; This flag is only tested if alias checking is enabled.
302 ; 0 if pointer arguments may alias each other. True in C.
303 ; 1 if pointer arguments may not alias each other but may alias
304 ; global variables.
305 ; 2 if pointer arguments may not alias each other and may not
306 ; alias global variables.
307 ; 3 if pointer arguments may not alias anything. True in Fortran.
308 ; Set by the front end.
309 fargument-alias
310 Common Report Var(flag_argument_noalias,0) Optimization
311 Specify that arguments may alias each other and globals

313 fargument-noalias
314 Common Report Var(flag_argument_noalias,1) VarExists Optimization
315 Assume arguments may alias globals but not each other

317 fargument-noalias-global
318 Common Report Var(flag_argument_noalias,2) VarExists Optimization

new/gcc/common.opt 6

319 Assume arguments alias neither each other nor globals

321 fargument-noalias-anything
322 Common Report Var(flag_argument_noalias,3) VarExists Optimization
323 Assume arguments alias no other storage

325 fasynchronous-unwind-tables
326 Common Report Var(flag_asynchronous_unwind_tables) Optimization
327 Generate unwind tables that are exact at each instruction boundary

329 fauto-inc-dec
330 Common Report Var(flag_auto_inc_dec) Init(1)
331 Generate auto-inc/dec instructions

333 ; -fcheck-bounds causes gcc to generate array bounds checks.
334 ; For C, C++ and ObjC: defaults off.
335 ; For Java: defaults to on.
336 ; For Fortran: defaults to off.
337 fbounds-check
338 Common Report Var(flag_bounds_check)
339 Generate code to check bounds before indexing arrays

341 fbranch-count-reg
342 Common Report Var(flag_branch_on_count_reg) Init(1) Optimization
343 Replace add, compare, branch with branch on count register

345 fbranch-probabilities
346 Common Report Var(flag_branch_probabilities) Optimization
347 Use profiling information for branch probabilities

349 fbranch-target-load-optimize
350 Common Report Var(flag_branch_target_load_optimize) Optimization
351 Perform branch target load optimization before prologue / epilogue threading

353 fbranch-target-load-optimize2
354 Common Report Var(flag_branch_target_load_optimize2) Optimization
355 Perform branch target load optimization after prologue / epilogue threading

357 fbtr-bb-exclusive
358 Common Report Var(flag_btr_bb_exclusive) Optimization
359 Restrict target load migration not to re-use registers in any basic block

361 fcall-saved-
362 Common Joined RejectNegative
363 -fcall-saved-<register> Mark <register> as being preserved across functions

365 fcall-used-
366 Common Joined RejectNegative
367 -fcall-used-<register> Mark <register> as being corrupted by function calls

369 ; Nonzero for -fcaller-saves: allocate values in regs that need to
370 ; be saved across function calls, if that produces overall better code.
371 ; Optional now, so people can test it.
372 fcaller-saves
373 Common Report Var(flag_caller_saves) Optimization
374 Save registers around function calls

376 fcheck-data-deps
377 Common Report Var(flag_check_data_deps)
378 Compare the results of several data dependence analyzers.

380 fcommon
381 Common Report Var(flag_no_common,0) Optimization
382 Do not put uninitialized globals in the common section

384 fconserve-stack

new/gcc/common.opt 7

385 Common Var(flag_conserve_stack) Optimization
386 Do not perform optimizations increasing noticeably stack usage

388 fcprop-registers
389 Common Report Var(flag_cprop_registers) Optimization
390 Perform a register copy-propagation optimization pass

392 fcrossjumping
393 Common Report Var(flag_crossjumping) Optimization
394 Perform cross-jumping optimization

396 fcse-follow-jumps
397 Common Report Var(flag_cse_follow_jumps) Optimization
398 When running CSE, follow jumps to their targets

400 fcse-skip-blocks
401 Common Report Var(flag_cse_skip_blocks) Optimization
402 When running CSE, follow conditional jumps

404 fcx-limited-range
405 Common Report Var(flag_cx_limited_range) Optimization
406 Omit range reduction step when performing complex division

408 fcx-fortran-rules
409 Common Report Var(flag_cx_fortran_rules) Optimization
410 Complex multiplication and division follow Fortran rules

412 fdata-sections
413 Common Report Var(flag_data_sections) Optimization
414 Place data items into their own section

416 fdbg-cnt-list
417 Common Report
418 List all available debugging counters with their limits and counts.

420 fdbg-cnt=
421 Common RejectNegative Joined
422 -fdbg-cnt=<counter>:<limit>[,<counter>:<limit>,...] Set the debug counter lim

424 fdebug-prefix-map=
425 Common Joined RejectNegative
426 Map one directory name to another in debug information

428 ; Nonzero for -fdefer-pop: don’t pop args after each function call
429 ; instead save them up to pop many calls’ args with one insns.
430 fdefer-pop
431 Common Report Var(flag_defer_pop) Optimization
432 Defer popping functions args from stack until later

434 fdelayed-branch
435 Common Report Var(flag_delayed_branch) Optimization
436 Attempt to fill delay slots of branch instructions

438 fdelete-null-pointer-checks
439 Common Report Var(flag_delete_null_pointer_checks) Optimization
440 Delete useless null pointer checks

442 fdiagnostics-show-location=
443 Common Joined RejectNegative
444 -fdiagnostics-show-location=[once|every-line] How often to emit source locatio

446 fdiagnostics-show-option
447 Common
448 Amend appropriate diagnostic messages with the command line option that controls

450 fdump-

new/gcc/common.opt 8

451 Common Joined RejectNegative
452 -fdump-<type> Dump various compiler internals to a file

454 fdump-noaddr
455 Common Report Var(flag_dump_noaddr)
456 Suppress output of addresses in debugging dumps

458 fdump-unnumbered
459 Common Report Var(flag_dump_unnumbered) VarExists
460 Suppress output of instruction numbers, line number notes and addresses in debug

462 fdwarf2-cfi-asm
463 Common Report Var(flag_dwarf2_cfi_asm) Init(HAVE_GAS_CFI_DIRECTIVE)
464 Enable CFI tables via GAS assembler directives.

466 fearly-inlining
467 Common Report Var(flag_early_inlining) Init(1) Optimization
468 Perform early inlining

470 feliminate-dwarf2-dups
471 Common Report Var(flag_eliminate_dwarf2_dups)
472 Perform DWARF2 duplicate elimination

474 feliminate-unused-debug-symbols
475 Common Report Var(flag_debug_only_used_symbols)
476 Perform unused type elimination in debug info

478 feliminate-unused-debug-types
479 Common Report Var(flag_eliminate_unused_debug_types) Init(1)
480 Perform unused type elimination in debug info

482 femit-class-debug-always
483 Common Report Var(flag_emit_class_debug_always) Init(0)
484 Do not suppress C++ class debug information.

486 fexceptions
487 Common Report Var(flag_exceptions) Optimization
488 Enable exception handling

490 fexpensive-optimizations
491 Common Report Var(flag_expensive_optimizations) Optimization
492 Perform a number of minor, expensive optimizations

494 ffast-math
495 Common

497 ffinite-math-only
498 Common Report Var(flag_finite_math_only) Optimization
499 Assume no NaNs or infinities are generated

501 ffixed-
502 Common Joined RejectNegative
503 -ffixed-<register> Mark <register> as being unavailable to the compiler

505 ffloat-store
506 Common Report Var(flag_float_store) Optimization
507 Don’t allocate floats and doubles in extended-precision registers

509 fforce-addr
510 Common
511 Does nothing. Preserved for backward compatibility.

513 fforward-propagate
514 Common Report Var(flag_forward_propagate) Optimization
515 Perform a forward propagation pass on RTL

new/gcc/common.opt 9

517 ; Nonzero means don’t put addresses of constant functions in registers.
518 ; Used for compiling the Unix kernel, where strange substitutions are
519 ; done on the assembly output.
520 ffunction-cse
521 Common Report Var(flag_no_function_cse,0)
522 Allow function addresses to be held in registers

524 ffunction-sections
525 Common Report Var(flag_function_sections)
526 Place each function into its own section

528 fgcse
529 Common Report Var(flag_gcse) Optimization
530 Perform global common subexpression elimination

532 fgcse-lm
533 Common Report Var(flag_gcse_lm) Init(1) Optimization
534 Perform enhanced load motion during global common subexpression elimination

536 fgcse-sm
537 Common Report Var(flag_gcse_sm) Init(0) Optimization
538 Perform store motion after global common subexpression elimination

540 fgcse-las
541 Common Report Var(flag_gcse_las) Init(0) Optimization
542 Perform redundant load after store elimination in global common subexpression
543 elimination

545 fgcse-after-reload
546 Common Report Var(flag_gcse_after_reload) Optimization
547 Perform global common subexpression elimination after register allocation
548 has finished

550 ; This option is not documented yet as its semantics will change.
551 fgraphite
552 Common Report Var(flag_graphite)
553 Enable in and out of Graphite representation

555 floop-strip-mine
556 Common Report Var(flag_loop_strip_mine) Optimization
557 Enable Loop Strip Mining transformation

559 floop-interchange
560 Common Report Var(flag_loop_interchange) Optimization
561 Enable Loop Interchange transformation

563 floop-block
564 Common Report Var(flag_loop_block) Optimization
565 Enable Loop Blocking transformation

567 ; This option is not documented as it does not perform any useful optimization.
568 fgraphite-identity
569 Common Report Var(flag_graphite_identity) Optimization
570 Enable Graphite Identity transformation

572 fguess-branch-probability
573 Common Report Var(flag_guess_branch_prob) Optimization
574 Enable guessing of branch probabilities

576 ; Nonzero means ignore ‘#ident’ directives. 0 means handle them.
577 ; Generate position-independent code for executables if possible
578 ; On SVR4 targets, it also controls whether or not to emit a
579 ; string identifying the compiler.
580 fident
581 Common Report Var(flag_no_ident,0)
582 Process #ident directives

new/gcc/common.opt 10

584 fif-conversion
585 Common Report Var(flag_if_conversion) Optimization
586 Perform conversion of conditional jumps to branchless equivalents

588 fif-conversion2
589 Common Report Var(flag_if_conversion2) Optimization
590 Perform conversion of conditional jumps to conditional execution

592 ; -finhibit-size-directive inhibits output of .size for ELF.
593 ; This is used only for compiling crtstuff.c,
594 ; and it may be extended to other effects
595 ; needed for crtstuff.c on other systems.
596 finhibit-size-directive
597 Common Report Var(flag_inhibit_size_directive)
598 Do not generate .size directives

600 findirect-inlining
601 Common Report Var(flag_indirect_inlining)
602 Perform indirect inlining

604 ; Nonzero means that functions declared ‘inline’ will be treated
605 ; as ‘static’. Prevents generation of zillions of copies of unused
606 ; static inline functions; instead, ‘inlines’ are written out
607 ; only when actually used. Used in conjunction with -g. Also
608 ; does the right thing with #pragma interface.
609 finline
610 Common Report Var(flag_no_inline,0) Init(0)
611 Pay attention to the \"inline\" keyword

613 finline-small-functions
614 Common Report Var(flag_inline_small_functions) Optimization
615 Integrate simple functions into their callers when code size is known to not gro

617 finline-functions
618 Common Report Var(flag_inline_functions) Optimization
619 Integrate simple functions into their callers

621 finline-functions-called-once
622 Common Report Var(flag_inline_functions_called_once) Init(1) Optimization
623 Integrate functions called once into their callers

625 finline-limit-
626 Common RejectNegative Joined UInteger

628 finline-limit=
629 Common RejectNegative Joined UInteger
630 -finline-limit=<number> Limit the size of inlined functions to <number>

632 finstrument-functions
633 Common Report Var(flag_instrument_function_entry_exit)
634 Instrument function entry and exit with profiling calls

636 finstrument-functions-exclude-function-list=
637 Common RejectNegative Joined
638 -finstrument-functions-exclude-function-list=name,... Do not instrument listed

640 finstrument-functions-exclude-file-list=
641 Common RejectNegative Joined
642 -finstrument-functions-exclude-file-list=filename,... Do not instrument functio

644 fipa-cp
645 Common Report Var(flag_ipa_cp) Optimization
646 Perform Interprocedural constant propagation

648 fipa-cp-clone

new/gcc/common.opt 11

649 Common Report Var(flag_ipa_cp_clone) Optimization
650 Perform cloning to make Interprocedural constant propagation stronger

652 fipa-pure-const
653 Common Report Var(flag_ipa_pure_const) Init(0) Optimization
654 Discover pure and const functions

656 fipa-pta
657 Common Report Var(flag_ipa_pta) Init(0) Optimization
658 Perform interprocedural points-to analysis

660 fipa-reference
661 Common Report Var(flag_ipa_reference) Init(0) Optimization
662 Discover readonly and non addressable static variables

664 fipa-type-escape
665 Common Report Var(flag_ipa_type_escape) Init(0) Optimization
666 Type based escape and alias analysis

668 fipa-matrix-reorg
669 Common Report Var(flag_ipa_matrix_reorg) Optimization
670 Perform matrix layout flattening and transposing based
671 on profiling information.

673 fipa-struct-reorg
674 Common Report Var(flag_ipa_struct_reorg)
675 Perform structure layout optimizations based
676 on profiling information.

678 fira-algorithm=
679 Common Joined RejectNegative
680 -fira-algorithm=[CB|priority] Set the used IRA algorithm

682 fira-region=
683 Common Joined RejectNegative
684 -fira-region=[one|all|mixed] Set regions for IRA

686 fira-coalesce
687 Common Report Var(flag_ira_coalesce) Init(0)
688 Do optimistic coalescing.

690 fira-share-save-slots
691 Common Report Var(flag_ira_share_save_slots) Init(1)
692 Share slots for saving different hard registers.

694 fira-share-spill-slots
695 Common Report Var(flag_ira_share_spill_slots) Init(1)
696 Share stack slots for spilled pseudo-registers.

698 fira-verbose=
699 Common RejectNegative Joined UInteger
700 -fira-verbose=<number> Control IRA’s level of diagnostic messages.

702 fivopts
703 Common Report Var(flag_ivopts) Init(1) Optimization
704 Optimize induction variables on trees

706 fjump-tables
707 Common Var(flag_jump_tables) Init(1) Optimization
708 Use jump tables for sufficiently large switch statements

710 fkeep-inline-functions
711 Common Report Var(flag_keep_inline_functions)
712 Generate code for functions even if they are fully inlined

714 fkeep-static-consts

new/gcc/common.opt 12

715 Common Report Var(flag_keep_static_consts) Init(1)
716 Emit static const variables even if they are not used

718 fleading-underscore
719 Common Report Var(flag_leading_underscore) Init(-1)
720 Give external symbols a leading underscore

722 floop-optimize
723 Common
724 Does nothing. Preserved for backward compatibility.

726 fmath-errno
727 Common Report Var(flag_errno_math) Init(1) Optimization
728 Set errno after built-in math functions

730 fmem-report
731 Common Report Var(mem_report)
732 Report on permanent memory allocation

734 ; This will attempt to merge constant section constants, if 1 only
735 ; string constants and constants from constant pool, if 2 also constant
736 ; variables.
737 fmerge-all-constants
738 Common Report Var(flag_merge_constants,2) Init(1) Optimization
739 Attempt to merge identical constants and constant variables

741 fmerge-constants
742 Common Report Var(flag_merge_constants,1) VarExists Optimization
743 Attempt to merge identical constants across compilation units

745 fmerge-debug-strings
746 Common Report Var(flag_merge_debug_strings) Init(1)
747 Attempt to merge identical debug strings across compilation units

749 fmessage-length=
750 Common RejectNegative Joined UInteger
751 -fmessage-length=<number> Limit diagnostics to <number> characters per lin

753 fmodulo-sched
754 Common Report Var(flag_modulo_sched) Optimization
755 Perform SMS based modulo scheduling before the first scheduling pass

757 fmodulo-sched-allow-regmoves
758 Common Report Var(flag_modulo_sched_allow_regmoves)
759 Perform SMS based modulo scheduling with register moves allowed

761 fmove-loop-invariants
762 Common Report Var(flag_move_loop_invariants) Init(1) Optimization
763 Move loop invariant computations out of loops

765 fmudflap
766 Common RejectNegative Report Var(flag_mudflap)
767 Add mudflap bounds-checking instrumentation for single-threaded program

769 fmudflapth
770 Common RejectNegative Report VarExists Var(flag_mudflap,2)
771 Add mudflap bounds-checking instrumentation for multi-threaded program

773 fmudflapir
774 Common RejectNegative Report Var(flag_mudflap_ignore_reads)
775 Ignore read operations when inserting mudflap instrumentation

777 fdce
778 Common Var(flag_dce) Init(1) Optimization
779 Use the RTL dead code elimination pass

new/gcc/common.opt 13

781 fdse
782 Common Var(flag_dse) Init(1) Optimization
783 Use the RTL dead store elimination pass

785 freschedule-modulo-scheduled-loops
786 Common Report Var(flag_resched_modulo_sched) Optimization
787 Enable/Disable the traditional scheduling in loops that already passed modulo sc

789 fnon-call-exceptions
790 Common Report Var(flag_non_call_exceptions) Optimization
791 Support synchronous non-call exceptions

793 fomit-frame-pointer
794 Common Report Var(flag_omit_frame_pointer) Optimization
795 When possible do not generate stack frames

797 foptimize-register-move
798 Common Report Var(flag_regmove) Optimization
799 Do the full register move optimization pass

801 foptimize-sibling-calls
802 Common Report Var(flag_optimize_sibling_calls) Optimization
803 Optimize sibling and tail recursive calls

805 fpre-ipa-mem-report
806 Common Report Var(pre_ipa_mem_report)
807 Report on memory allocation before interprocedural optimization

809 fpost-ipa-mem-report
810 Common Report Var(post_ipa_mem_report)
811 Report on memory allocation before interprocedural optimization

813 fpack-struct
814 Common Report Var(flag_pack_struct) Optimization
815 Pack structure members together without holes

817 fpack-struct=
818 Common RejectNegative Joined UInteger Optimization
819 -fpack-struct=<number> Set initial maximum structure member alignment

821 fpcc-struct-return
822 Common Report Var(flag_pcc_struct_return,1) VarExists
823 Return small aggregates in memory, not registers

825 fpeel-loops
826 Common Report Var(flag_peel_loops) Optimization
827 Perform loop peeling

829 fpeephole
830 Common Report Var(flag_no_peephole,0) Optimization
831 Enable machine specific peephole optimizations

833 fpeephole2
834 Common Report Var(flag_peephole2) Optimization
835 Enable an RTL peephole pass before sched2

837 fPIC
838 Common Report Var(flag_pic,2)
839 Generate position-independent code if possible (large mode)

841 fPIE
842 Common Report Var(flag_pie,2)
843 Generate position-independent code for executables if possible (large mode)

845 fpic
846 Common Report Var(flag_pic,1) VarExists

new/gcc/common.opt 14

847 Generate position-independent code if possible (small mode)

849 fpie
850 Common Report Var(flag_pie,1) VarExists
851 Generate position-independent code for executables if possible (small mode)

853 fpredictive-commoning
854 Common Report Var(flag_predictive_commoning) Optimization
855 Run predictive commoning optimization.

857 fprefetch-loop-arrays
858 Common Report Var(flag_prefetch_loop_arrays) Optimization
859 Generate prefetch instructions, if available, for arrays in loops

861 fprofile
862 Common Report Var(profile_flag)
863 Enable basic program profiling code

865 fprofile-arcs
866 Common Report Var(profile_arc_flag)
867 Insert arc-based program profiling code

869 fprofile-dir=
870 Common Joined RejectNegative
871 Set the top-level directory for storing the profile data.
872 The default is ’pwd’.

874 fprofile-correction
875 Common Report Var(flag_profile_correction)
876 Enable correction of flow inconsistent profile data input

878 fprofile-generate
879 Common
880 Enable common options for generating profile info for profile feedback directed

882 fprofile-generate=
883 Common Joined RejectNegative
884 Enable common options for generating profile info for profile feedback directed

886 fprofile-use
887 Common Var(flag_profile_use)
888 Enable common options for performing profile feedback directed optimizations

890 fprofile-use=
891 Common Joined RejectNegative
892 Enable common options for performing profile feedback directed optimizations, an

894 fprofile-values
895 Common Report Var(flag_profile_values)
896 Insert code to profile values of expressions

898 frandom-seed
899 Common

901 frandom-seed=
902 Common Joined RejectNegative
903 -frandom-seed=<string> Make compile reproducible using <string>

905 ; This switch causes the command line that was used to create an
906 ; object file to be recorded into the object file. The exact format
907 ; of this recording is target and binary file format dependent.
908 ; It is related to the -fverbose-asm switch, but that switch only
909 ; records information in the assembler output file as comments, so
910 ; they never reach the object file.
911 frecord-gcc-switches
912 Common Report Var(flag_record_gcc_switches)

new/gcc/common.opt 15

913 Record gcc command line switches in the object file.

915 freg-struct-return
916 Common Report Var(flag_pcc_struct_return,0) VarExists Optimization
917 Return small aggregates in registers

919 fregmove
920 Common Report Var(flag_regmove) Optimization
921 Enables a register move optimization

923 frename-registers
924 Common Report Var(flag_rename_registers) Init(2) Optimization
925 Perform a register renaming optimization pass

927 freorder-blocks
928 Common Report Var(flag_reorder_blocks) Optimization
929 Reorder basic blocks to improve code placement

931 freorder-blocks-and-partition
932 Common Report Var(flag_reorder_blocks_and_partition) Optimization
933 Reorder basic blocks and partition into hot and cold sections

935 freorder-functions
936 Common Report Var(flag_reorder_functions) Optimization
937 Reorder functions to improve code placement

939 frerun-cse-after-loop
940 Common Report Var(flag_rerun_cse_after_loop) Init(2) Optimization
941 Add a common subexpression elimination pass after loop optimizations

943 frerun-loop-opt
944 Common
945 Does nothing. Preserved for backward compatibility.

947 frounding-math
948 Common Report Var(flag_rounding_math) Optimization
949 Disable optimizations that assume default FP rounding behavior

951 fsched-interblock
952 Common Report Var(flag_schedule_interblock) Init(1) Optimization
953 Enable scheduling across basic blocks

955 fsched-spec
956 Common Report Var(flag_schedule_speculative) Init(1) Optimization
957 Allow speculative motion of non-loads

959 fsched-spec-load
960 Common Report Var(flag_schedule_speculative_load) Optimization
961 Allow speculative motion of some loads

963 fsched-spec-load-dangerous
964 Common Report Var(flag_schedule_speculative_load_dangerous) Optimization
965 Allow speculative motion of more loads

967 fsched-verbose=
968 Common RejectNegative Joined
969 -fsched-verbose=<number> Set the verbosity level of the scheduler

971 fsched2-use-superblocks
972 Common Report Var(flag_sched2_use_superblocks) Optimization
973 If scheduling post reload, do superblock scheduling

975 fsched2-use-traces
976 Common Report Var(flag_sched2_use_traces) Optimization
977 If scheduling post reload, do trace scheduling

new/gcc/common.opt 16

979 fschedule-insns
980 Common Report Var(flag_schedule_insns) Optimization
981 Reschedule instructions before register allocation

983 fschedule-insns2
984 Common Report Var(flag_schedule_insns_after_reload) Optimization
985 Reschedule instructions after register allocation

987 ; This flag should be on when a target implements non-trivial
988 ; scheduling hooks, maybe saving some information for its own sake.
989 ; On IA64, for example, this is used for correct bundling.
990 fselective-scheduling
991 Common Report Var(flag_selective_scheduling) Optimization
992 Schedule instructions using selective scheduling algorithm

994 fselective-scheduling2
995 Common Report Var(flag_selective_scheduling2) Optimization
996 Run selective scheduling after reload

998 fsel-sched-pipelining
999 Common Report Var(flag_sel_sched_pipelining) Init(0) Optimization

1000 Perform software pipelining of inner loops during selective scheduling

1002 fsel-sched-pipelining-outer-loops
1003 Common Report Var(flag_sel_sched_pipelining_outer_loops) Init(0) Optimization
1004 Perform software pipelining of outer loops during selective scheduling

1006 fsel-sched-reschedule-pipelined
1007 Common Report Var(flag_sel_sched_reschedule_pipelined) Init(0) Optimization
1008 Reschedule pipelined regions without pipelining

1010 ; sched_stalled_insns means that insns can be moved prematurely from the queue
1011 ; of stalled insns into the ready list.
1012 fsched-stalled-insns
1013 Common Report Var(flag_sched_stalled_insns) Optimization UInteger
1014 Allow premature scheduling of queued insns

1016 fsched-stalled-insns=
1017 Common RejectNegative Joined UInteger
1018 -fsched-stalled-insns=<number> Set number of queued insns that can be premature

1020 ; sched_stalled_insns_dep controls how many recently scheduled cycles will
1021 ; be examined for a dependency on a stalled insn that is candidate for
1022 ; premature removal from the queue of stalled insns into the ready list (has
1023 ; an effect only if the flag ’sched_stalled_insns’ is set).
1024 fsched-stalled-insns-dep
1025 Common Report Var(flag_sched_stalled_insns_dep,1) Init(1) Optimization UInteger
1026 Set dependence distance checking in premature scheduling of queued insns

1028 fsched-stalled-insns-dep=
1029 Common RejectNegative Joined UInteger
1030 -fsched-stalled-insns-dep=<number> Set dependence distance checking in prem

1032 fsection-anchors
1033 Common Report Var(flag_section_anchors) Optimization
1034 Access data in the same section from shared anchor points

1036 frtl-abstract-sequences
1037 Common Report Var(flag_rtl_seqabstr) Optimization
1038 Perform sequence abstraction optimization on RTL

1040 fsee
1041 Common Report Var(flag_see) Init(0)
1042 Eliminate redundant sign extensions using LCM.

1044 fshow-column

new/gcc/common.opt 17

1045 Common C ObjC C++ ObjC++ Report Var(flag_show_column) Init(0)
1046 Show column numbers in diagnostics, when available. Default off

1048 fsignaling-nans
1049 Common Report Var(flag_signaling_nans) Optimization
1050 Disable optimizations observable by IEEE signaling NaNs

1052 fsigned-zeros
1053 Common Report Var(flag_signed_zeros) Init(1) Optimization
1054 Disable floating point optimizations that ignore the IEEE signedness of zero

1056 fsingle-precision-constant
1057 Common Report Var(flag_single_precision_constant) Optimization
1058 Convert floating point constants to single precision constants

1060 fsplit-ivs-in-unroller
1061 Common Report Var(flag_split_ivs_in_unroller) Init(1) Optimization
1062 Split lifetimes of induction variables when loops are unrolled

1064 fsplit-wide-types
1065 Common Report Var(flag_split_wide_types) Optimization
1066 Split wide types into independent registers

1068 fvariable-expansion-in-unroller
1069 Common Report Var(flag_variable_expansion_in_unroller) Optimization
1070 Apply variable expansion when loops are unrolled

1072 fstack-check=
1073 Common Report RejectNegative Joined
1074 -fstack-check=[no|generic|specific] Insert stack checking code into the prog

1076 fstack-check
1077 Common Report
1078 Insert stack checking code into the program. Same as -fstack-check=specific

1080 fstack-limit
1081 Common

1083 fstack-limit-register=
1084 Common RejectNegative Joined
1085 -fstack-limit-register=<register> Trap if the stack goes past <register>

1087 fstack-limit-symbol=
1088 Common RejectNegative Joined
1089 -fstack-limit-symbol=<name> Trap if the stack goes past symbol <name>

1091 fstack-protector
1092 Common Report Var(flag_stack_protect, 1)
1093 Use propolice as a stack protection method

1095 fstack-protector-all
1096 Common Report RejectNegative Var(flag_stack_protect, 2) VarExists
1097 Use a stack protection method for every function

1099 fstrength-reduce
1100 Common
1101 Does nothing. Preserved for backward compatibility.

1103 ; Nonzero if we should do (language-dependent) alias analysis.
1104 ; Typically, this analysis will assume that expressions of certain
1105 ; types do not alias expressions of certain other types. Only used
1106 ; if alias analysis (in general) is enabled.
1107 fstrict-aliasing
1108 Common Report Var(flag_strict_aliasing) Optimization
1109 Assume strict aliasing rules apply

new/gcc/common.opt 18

1111 fstrict-calling-conventions
1112 Common Report Var(flag_strict_calling_conventions) Init(1)
1113 Use strict ABI calling conventions even for static functions

1115 #endif /* ! codereview */
1116 fstrict-overflow
1117 Common Report Var(flag_strict_overflow)
1118 Treat signed overflow as undefined

1120 fsyntax-only
1121 Common Report Var(flag_syntax_only)
1122 Check for syntax errors, then stop

1124 ftest-coverage
1125 Common Report Var(flag_test_coverage)
1126 Create data files needed by \"gcov\"

1128 fthread-jumps
1129 Common Report Var(flag_thread_jumps) Optimization
1130 Perform jump threading optimizations

1132 ftime-report
1133 Common Report Var(time_report)
1134 Report the time taken by each compiler pass

1136 ftls-model=
1137 Common Joined RejectNegative
1138 -ftls-model=[global-dynamic|local-dynamic|initial-exec|local-exec] Set the

1140 ftoplevel-reorder
1141 Common Report Var(flag_toplevel_reorder) Init(2) Optimization
1142 Reorder top level functions, variables, and asms

1144 ftracer
1145 Common Report Var(flag_tracer)
1146 Perform superblock formation via tail duplication

1148 ; Zero means that floating-point math operations cannot generate a
1149 ; (user-visible) trap. This is the case, for example, in nonstop
1150 ; IEEE 754 arithmetic.
1151 ftrapping-math
1152 Common Report Var(flag_trapping_math) Init(1) Optimization
1153 Assume floating-point operations can trap

1155 ftrapv
1156 Common Report Var(flag_trapv) Optimization
1157 Trap for signed overflow in addition, subtraction and multiplication

1159 ftree-ccp
1160 Common Report Var(flag_tree_ccp) Optimization
1161 Enable SSA-CCP optimization on trees

1163 ftree-store-ccp
1164 Common
1165 Does nothing. Preserved for backward compatibility.

1167 ftree-ch
1168 Common Report Var(flag_tree_ch) Optimization
1169 Enable loop header copying on trees

1171 ftree-copyrename
1172 Common Report Var(flag_tree_copyrename) Optimization
1173 Replace SSA temporaries with better names in copies

1175 ftree-copy-prop
1176 Common Report Var(flag_tree_copy_prop) Optimization

new/gcc/common.opt 19

1177 Enable copy propagation on trees

1179 ftree-store-copy-prop
1180 Common
1181 Does nothing. Preserved for backward compatibility.

1183 ftree-cselim
1184 Common Report Var(flag_tree_cselim) Init(2) Optimization
1185 Transform condition stores into unconditional ones

1187 ftree-switch-conversion
1188 Common Report Var(flag_tree_switch_conversion) Optimization
1189 Perform conversions of switch initializations.

1191 ftree-dce
1192 Common Report Var(flag_tree_dce) Optimization
1193 Enable SSA dead code elimination optimization on trees

1195 ftree-dominator-opts
1196 Common Report Var(flag_tree_dom) Optimization
1197 Enable dominator optimizations

1199 ftree-dse
1200 Common Report Var(flag_tree_dse) Optimization
1201 Enable dead store elimination

1203 ftree-fre
1204 Common Report Var(flag_tree_fre) Optimization
1205 Enable Full Redundancy Elimination (FRE) on trees

1207 ftree-loop-distribution
1208 Common Report Var(flag_tree_loop_distribution) Optimization
1209 Enable loop distribution on trees

1211 ftree-loop-im
1212 Common Report Var(flag_tree_loop_im) Init(1) Optimization
1213 Enable loop invariant motion on trees

1215 ftree-loop-linear
1216 Common Report Var(flag_tree_loop_linear) Optimization
1217 Enable linear loop transforms on trees

1219 ftree-loop-ivcanon
1220 Common Report Var(flag_tree_loop_ivcanon) Init(1) Optimization
1221 Create canonical induction variables in loops

1223 ftree-loop-optimize
1224 Common Report Var(flag_tree_loop_optimize) Init(1) Optimization
1225 Enable loop optimizations on tree level

1227 ftree-parallelize-loops=
1228 Common Report Joined UInteger Var(flag_tree_parallelize_loops) Init(1)
1229 Enable automatic parallelization of loops

1231 ftree-pre
1232 Common Report Var(flag_tree_pre) Optimization
1233 Enable SSA-PRE optimization on trees

1235 ftree-reassoc
1236 Common Report Var(flag_tree_reassoc) Init(1) Optimization
1237 Enable reassociation on tree level

1239 ftree-salias
1240 Common
1241 Does nothing. Preserved for backward compatibility.

new/gcc/common.opt 20

1243 ftree-sink
1244 Common Report Var(flag_tree_sink) Optimization
1245 Enable SSA code sinking on trees

1247 ftree-sra
1248 Common Report Var(flag_tree_sra) Optimization
1249 Perform scalar replacement of aggregates

1251 ftree-ter
1252 Common Report Var(flag_tree_ter) Init(1) Optimization
1253 Replace temporary expressions in the SSA->normal pass

1255 ftree-lrs
1256 Common Report Var(flag_tree_live_range_split) Optimization
1257 Perform live range splitting during the SSA->normal pass

1259 ftree-vrp
1260 Common Report Var(flag_tree_vrp) Init(0) Optimization
1261 Perform Value Range Propagation on trees

1263 funit-at-a-time
1264 Common Report Var(flag_unit_at_a_time) Init(1) Optimization
1265 Compile whole compilation unit at a time

1267 funroll-loops
1268 Common Report Var(flag_unroll_loops) Optimization
1269 Perform loop unrolling when iteration count is known

1271 funroll-all-loops
1272 Common Report Var(flag_unroll_all_loops) Optimization
1273 Perform loop unrolling for all loops

1275 ; Nonzero means that loop optimizer may assume that the induction variables
1276 ; that control loops do not overflow and that the loops with nontrivial
1277 ; exit condition are not infinite
1278 funsafe-loop-optimizations
1279 Common Report Var(flag_unsafe_loop_optimizations) Optimization
1280 Allow loop optimizations to assume that the loops behave in normal way

1282 fassociative-math
1283 Common Report Var(flag_associative_math)
1284 Allow optimization for floating-point arithmetic which may change the
1285 result of the operation due to rounding.

1287 freciprocal-math
1288 Common Report Var(flag_reciprocal_math)
1289 Same as -fassociative-math for expressions which include division.

1291 ; Nonzero means that unsafe floating-point math optimizations are allowed
1292 ; for the sake of speed. IEEE compliance is not guaranteed, and operations
1293 ; are allowed to assume that their arguments and results are "normal"
1294 ; (e.g., nonnegative for SQRT).
1295 funsafe-math-optimizations
1296 Common Report Var(flag_unsafe_math_optimizations) Optimization
1297 Allow math optimizations that may violate IEEE or ISO standards

1299 funswitch-loops
1300 Common Report Var(flag_unswitch_loops) Optimization
1301 Perform loop unswitching

1303 funwind-tables
1304 Common Report Var(flag_unwind_tables) Optimization
1305 Just generate unwind tables for exception handling

1307 fvar-tracking
1308 Common Report Var(flag_var_tracking) VarExists Optimization

new/gcc/common.opt 21

1309 Perform variable tracking

1311 fvar-tracking-uninit
1312 Common Report Var(flag_var_tracking_uninit) Optimization
1313 Perform variable tracking and also tag variables that are uninitialized

1315 ftree-vectorize
1316 Common Report Var(flag_tree_vectorize) Optimization
1317 Enable loop vectorization on trees

1319 fvect-cost-model
1320 Common Report Var(flag_vect_cost_model) Optimization
1321 Enable use of cost model in vectorization

1323 ftree-vect-loop-version
1324 Common Report Var(flag_tree_vect_loop_version) Init(1) Optimization
1325 Enable loop versioning when doing loop vectorization on trees

1327 ftree-vectorizer-verbose=
1328 Common RejectNegative Joined
1329 -ftree-vectorizer-verbose=<number> Set the verbosity level of the vectorize

1331 ftree-scev-cprop
1332 Common Report Var(flag_tree_scev_cprop) Init(1) Optimization
1333 Enable copy propagation of scalar-evolution information.

1335 ; -fverbose-asm causes extra commentary information to be produced in
1336 ; the generated assembly code (to make it more readable). This option
1337 ; is generally only of use to those who actually need to read the
1338 ; generated assembly code (perhaps while debugging the compiler itself).
1339 ; -fno-verbose-asm, the default, causes the extra information
1340 ; to not be added and is useful when comparing two assembler files.
1341 fverbose-asm
1342 Common Report Var(flag_verbose_asm)
1343 Add extra commentary to assembler output

1345 fvisibility=
1346 Common Joined RejectNegative
1347 -fvisibility=[default|internal|hidden|protected] Set the default symbol v

1350 fvpt
1351 Common Report Var(flag_value_profile_transformations) Optimization
1352 Use expression value profiles in optimizations

1354 fweb
1355 Common Report Var(flag_web) Init(2) Optimization
1356 Construct webs and split unrelated uses of single variable

1358 ftree-builtin-call-dce
1359 Common Report Var(flag_tree_builtin_call_dce) Init(0) Optimization
1360 Enable conditional dead code elimination for builtin calls

1362 fwhole-program
1363 Common Report Var(flag_whole_program) Init(0) Optimization
1364 Perform whole program optimizations

1366 fwrapv
1367 Common Report Var(flag_wrapv) Optimization
1368 Assume signed arithmetic overflow wraps around

1370 fzero-initialized-in-bss
1371 Common Report Var(flag_zero_initialized_in_bss) Init(1)
1372 Put zero initialized data in the bss section

1374 g

new/gcc/common.opt 22

1375 Common JoinedOrMissing
1376 Generate debug information in default format

1378 gcoff
1379 Common JoinedOrMissing Negative(gdwarf-2)
1380 Generate debug information in COFF format

1382 gdwarf-2
1383 Common JoinedOrMissing Negative(gstabs)
1384 Generate debug information in DWARF v2 format

1386 ggdb
1387 Common JoinedOrMissing
1388 Generate debug information in default extended format

1390 gstabs
1391 Common JoinedOrMissing Negative(gstabs+)
1392 Generate debug information in STABS format

1394 gstabs+
1395 Common JoinedOrMissing Negative(gvms)
1396 Generate debug information in extended STABS format

1398 gvms
1399 Common JoinedOrMissing Negative(gxcoff)
1400 Generate debug information in VMS format

1402 gxcoff
1403 Common JoinedOrMissing Negative(gxcoff+)
1404 Generate debug information in XCOFF format

1406 gxcoff+
1407 Common JoinedOrMissing Negative(gcoff)
1408 Generate debug information in extended XCOFF format

1410 o
1411 Common Joined Separate
1412 -o <file> Place output into <file>

1414 p
1415 Common Var(profile_flag)
1416 Enable function profiling

1418 pedantic
1419 Common Var(pedantic)
1420 Issue warnings needed for strict compliance to the standard

1422 pedantic-errors
1423 Common
1424 Like -pedantic but issue them as errors

1426 quiet
1427 Common Var(quiet_flag)
1428 Do not display functions compiled or elapsed time

1430 version
1431 Common Var(version_flag)
1432 Display the compiler’s version

1434 w
1435 Common Var(inhibit_warnings)
1436 Suppress warnings

1438 shared
1439 Common RejectNegative Negative(pie)
1440 Create a shared library

new/gcc/common.opt 23

1442 pie
1443 Common RejectNegative Negative(shared)
1444 Create a position independent executable

1446 ; This comment is to ensure we retain the blank line above.

new/gcc/config/i386/i386.c 1

**
 964570 Sun Oct 28 20:56:07 2012
new/gcc/config/i386/i386.c
Implement -fstrict-calling-conventions
Stock GCC is overly willing to violate the ABI when calling local functions,
such that it passes arguments in registers on i386. This hampers debugging
with anything other than a fully-aware DWARF debugger, and is generally not
something we desire.
Implement a flag which disables this behaviour, enabled by default. The flag is
global, though only effective on i386, to more easily allow its globalization
later which, given the odds, is likely to be necessary.
**
______unchanged_portion_omitted_

new/gcc/config/i386/i386.c 2

4346 /* Return the regparm value for a function with the indicated TYPE and DECL.
4347 DECL may be NULL when calling function indirectly
4348 or considering a libcall. */

4350 static int
4351 ix86_function_regparm (const_tree type, const_tree decl)
4352 {
4353 tree attr;
4354 int regparm;

4356 static bool error_issued;

4358 if (TARGET_64BIT)
4359 return (ix86_function_type_abi (type) == SYSV_ABI
4360 ? X86_64_REGPARM_MAX : X64_REGPARM_MAX);

4362 regparm = ix86_regparm;
4363 attr = lookup_attribute ("regparm", TYPE_ATTRIBUTES (type));
4364 if (attr)
4365 {
4366 regparm
4367 = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr)));

4369 if (decl && TREE_CODE (decl) == FUNCTION_DECL)
4370 {
4371 /* We can’t use regparm(3) for nested functions because
4372 these pass static chain pointer in %ecx register. */
4373 if (!error_issued && regparm == 3
4374 && decl_function_context (decl)
4375 && !DECL_NO_STATIC_CHAIN (decl))
4376 {
4377 error ("nested functions are limited to 2 register parameters");
4378 error_issued = true;
4379 return 0;
4380 }
4381 }

4383 return regparm;
4384 }

4386 if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (type)))
4387 return 2;

4389 /* Use register calling convention for local functions when possible. */
4390 if (decl
4391 && TREE_CODE (decl) == FUNCTION_DECL
4392 && optimize
4393 && (TARGET_64BIT || !flag_strict_calling_conventions)
4394 #endif /* ! codereview */
4395 && !profile_flag)
4396 {
4397 /* FIXME: remove this CONST_CAST when cgraph.[ch] is constified. */
4398 struct cgraph_local_info *i = cgraph_local_info (CONST_CAST_TREE(decl));
4399 if (i && i->local)
4400 {
4401 int local_regparm, globals = 0, regno;
4402 struct function *f;

4404 /* Make sure no regparm register is taken by a
4405 fixed register variable. */
4406 for (local_regparm = 0; local_regparm < REGPARM_MAX; local_regparm++)
4407 if (fixed_regs[local_regparm])
4408 break;

4410 /* We can’t use regparm(3) for nested functions as these use
4411 static chain pointer in third argument. */

new/gcc/config/i386/i386.c 3

4412 if (local_regparm == 3
4413 && decl_function_context (decl)
4414 && !DECL_NO_STATIC_CHAIN (decl))
4415 local_regparm = 2;

4417 /* If the function realigns its stackpointer, the prologue will
4418 clobber %ecx. If we’ve already generated code for the callee,
4419 the callee DECL_STRUCT_FUNCTION is gone, so we fall back to
4420 scanning the attributes for the self-realigning property. */
4421 f = DECL_STRUCT_FUNCTION (decl);
4422 /* Since current internal arg pointer won’t conflict with
4423 parameter passing regs, so no need to change stack
4424 realignment and adjust regparm number.

4426 Each fixed register usage increases register pressure,
4427 so less registers should be used for argument passing.
4428 This functionality can be overriden by an explicit
4429 regparm value. */
4430 for (regno = 0; regno <= DI_REG; regno++)
4431 if (fixed_regs[regno])
4432 globals++;

4434 local_regparm
4435 = globals < local_regparm ? local_regparm - globals : 0;

4437 if (local_regparm > regparm)
4438 regparm = local_regparm;
4439 }
4440 }

4442 return regparm;
4443 }

4445 /* Return 1 or 2, if we can pass up to SSE_REGPARM_MAX SFmode (1) and
4446 DFmode (2) arguments in SSE registers for a function with the
4447 indicated TYPE and DECL. DECL may be NULL when calling function
4448 indirectly or considering a libcall. Otherwise return 0. */

4450 static int
4451 ix86_function_sseregparm (const_tree type, const_tree decl, bool warn)
4452 {
4453 gcc_assert (!TARGET_64BIT);

4455 /* Use SSE registers to pass SFmode and DFmode arguments if requested
4456 by the sseregparm attribute. */
4457 if (TARGET_SSEREGPARM
4458 || (type && lookup_attribute ("sseregparm", TYPE_ATTRIBUTES (type))))
4459 {
4460 if (!TARGET_SSE)
4461 {
4462 if (warn)
4463 {
4464 if (decl)
4465 error ("Calling %qD with attribute sseregparm without "
4466 "SSE/SSE2 enabled", decl);
4467 else
4468 error ("Calling %qT with attribute sseregparm without "
4469 "SSE/SSE2 enabled", type);
4470 }
4471 return 0;
4472 }

4474 return 2;
4475 }

4477 /* For local functions, pass up to SSE_REGPARM_MAX SFmode

new/gcc/config/i386/i386.c 4

4478 (and DFmode for SSE2) arguments in SSE registers. */
4479 if (decl && TARGET_SSE_MATH && optimize && !profile_flag &&
4480 (TARGET_64BIT || !flag_strict_calling_conventions))
4393 if (decl && TARGET_SSE_MATH && optimize && !profile_flag)
4481 {
4482 /* FIXME: remove this CONST_CAST when cgraph.[ch] is constified. */
4483 struct cgraph_local_info *i = cgraph_local_info (CONST_CAST_TREE(decl));
4484 if (i && i->local)
4485 return TARGET_SSE2 ? 2 : 1;
4486 }

4488 return 0;
4489 }
______unchanged_portion_omitted_

new/gcc/doc/invoke.texi 1

**
 651723 Sun Oct 28 20:56:09 2012
new/gcc/doc/invoke.texi
Implement -fstrict-calling-conventions
Stock GCC is overly willing to violate the ABI when calling local functions,
such that it passes arguments in registers on i386. This hampers debugging
with anything other than a fully-aware DWARF debugger, and is generally not
something we desire.
Implement a flag which disables this behaviour, enabled by default. The flag is
global, though only effective on i386, to more easily allow its globalization
later which, given the odds, is likely to be necessary.
**
______unchanged_portion_omitted_

2811 The option @option{-Wextra} also prints warning messages for the
2812 following cases:

2814 @itemize @bullet

2816 @item
2817 A pointer is compared against integer zero with @samp{<}, @samp{<=},
2818 @samp{>}, or @samp{>=}.

2820 @item
2821 (C++ only) An enumerator and a non-enumerator both appear in a
2822 conditional expression.

2824 @item
2825 (C++ only) Ambiguous virtual bases.

2827 @item
2828 (C++ only) Subscripting an array which has been declared @samp{register}.

2830 @item
2831 (C++ only) Taking the address of a variable which has been declared
2832 @samp{register}.

2834 @item
2835 (C++ only) A base class is not initialized in a derived class’ copy
2836 constructor.

2838 @end itemize

2840 @item -Wchar-subscripts
2841 @opindex Wchar-subscripts
2842 @opindex Wno-char-subscripts
2843 Warn if an array subscript has type @code{char}. This is a common cause
2844 of error, as programmers often forget that this type is signed on some
2845 machines.
2846 This warning is enabled by @option{-Wall}.

2848 @item -Wcomment
2849 @opindex Wcomment
2850 @opindex Wno-comment
2851 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
2852 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
2853 This warning is enabled by @option{-Wall}.

2855 @item -Wformat
2856 @opindex Wformat
2857 @opindex Wno-format
2858 @opindex ffreestanding
2859 @opindex fno-builtin
2860 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
2861 the arguments supplied have types appropriate to the format string
2862 specified, and that the conversions specified in the format string make

new/gcc/doc/invoke.texi 2

2863 sense. This includes standard functions, and others specified by format
2864 attributes (@pxref{Function Attributes}), in the @code{printf},
2865 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
2866 not in the C standard) families (or other target-specific families).
2867 Which functions are checked without format attributes having been
2868 specified depends on the standard version selected, and such checks of
2869 functions without the attribute specified are disabled by
2870 @option{-ffreestanding} or @option{-fno-builtin}.

2872 The formats are checked against the format features supported by GNU
2873 libc version 2.2. These include all ISO C90 and C99 features, as well
2874 as features from the Single Unix Specification and some BSD and GNU
2875 extensions. Other library implementations may not support all these
2876 features; GCC does not support warning about features that go beyond a
2877 particular library’s limitations. However, if @option{-pedantic} is used
2878 with @option{-Wformat}, warnings will be given about format features not
2879 in the selected standard version (but not for @code{strfmon} formats,
2880 since those are not in any version of the C standard). @xref{C Dialect
2881 Options,,Options Controlling C Dialect}.

2883 Since @option{-Wformat} also checks for null format arguments for
2884 several functions, @option{-Wformat} also implies @option{-Wnonnull}.

2886 @option{-Wformat} is included in @option{-Wall}. For more control over some
2887 aspects of format checking, the options @option{-Wformat-y2k},
2888 @option{-Wno-format-extra-args}, @option{-Wno-format-zero-length},
2889 @option{-Wformat-nonliteral}, @option{-Wformat-security}, and
2890 @option{-Wformat=2} are available, but are not included in @option{-Wall}.

2892 @item -Wformat-y2k
2893 @opindex Wformat-y2k
2894 @opindex Wno-format-y2k
2895 If @option{-Wformat} is specified, also warn about @code{strftime}
2896 formats which may yield only a two-digit year.

2898 @item -Wno-format-contains-nul
2899 @opindex Wno-format-contains-nul
2900 @opindex Wformat-contains-nul
2901 If @option{-Wformat} is specified, do not warn about format strings that
2902 contain NUL bytes.

2904 @item -Wno-format-extra-args
2905 @opindex Wno-format-extra-args
2906 @opindex Wformat-extra-args
2907 If @option{-Wformat} is specified, do not warn about excess arguments to a
2908 @code{printf} or @code{scanf} format function. The C standard specifies
2909 that such arguments are ignored.

2911 Where the unused arguments lie between used arguments that are
2912 specified with @samp{$} operand number specifications, normally
2913 warnings are still given, since the implementation could not know what
2914 type to pass to @code{va_arg} to skip the unused arguments. However,
2915 in the case of @code{scanf} formats, this option will suppress the
2916 warning if the unused arguments are all pointers, since the Single
2917 Unix Specification says that such unused arguments are allowed.

2919 @item -Wno-format-zero-length @r{(C and Objective-C only)}
2920 @opindex Wno-format-zero-length
2921 @opindex Wformat-zero-length
2922 If @option{-Wformat} is specified, do not warn about zero-length formats.
2923 The C standard specifies that zero-length formats are allowed.

2925 @item -Wformat-nonliteral
2926 @opindex Wformat-nonliteral
2927 @opindex Wno-format-nonliteral
2928 If @option{-Wformat} is specified, also warn if the format string is not a

new/gcc/doc/invoke.texi 3

2929 string literal and so cannot be checked, unless the format function
2930 takes its format arguments as a @code{va_list}.

2932 @item -Wformat-security
2933 @opindex Wformat-security
2934 @opindex Wno-format-security
2935 If @option{-Wformat} is specified, also warn about uses of format
2936 functions that represent possible security problems. At present, this
2937 warns about calls to @code{printf} and @code{scanf} functions where the
2938 format string is not a string literal and there are no format arguments,
2939 as in @code{printf (foo);}. This may be a security hole if the format
2940 string came from untrusted input and contains @samp{%n}. (This is
2941 currently a subset of what @option{-Wformat-nonliteral} warns about, but
2942 in future warnings may be added to @option{-Wformat-security} that are not
2943 included in @option{-Wformat-nonliteral}.)

2945 @item -Wformat=2
2946 @opindex Wformat=2
2947 @opindex Wno-format=2
2948 Enable @option{-Wformat} plus format checks not included in
2949 @option{-Wformat}. Currently equivalent to @samp{-Wformat
2950 -Wformat-nonliteral -Wformat-security -Wformat-y2k}.

2952 @item -Wnonnull @r{(C and Objective-C only)}
2953 @opindex Wnonnull
2954 @opindex Wno-nonnull
2955 Warn about passing a null pointer for arguments marked as
2956 requiring a non-null value by the @code{nonnull} function attribute.

2958 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
2959 can be disabled with the @option{-Wno-nonnull} option.

2961 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
2962 @opindex Winit-self
2963 @opindex Wno-init-self
2964 Warn about uninitialized variables which are initialized with themselves.
2965 Note this option can only be used with the @option{-Wuninitialized} option.

2967 For example, GCC will warn about @code{i} being uninitialized in the
2968 following snippet only when @option{-Winit-self} has been specified:
2969 @smallexample
2970 @group
2971 int f()
2972 @{
2973 int i = i;
2974 return i;
2975 @}
2976 @end group
2977 @end smallexample

2979 @item -Wimplicit-int @r{(C and Objective-C only)}
2980 @opindex Wimplicit-int
2981 @opindex Wno-implicit-int
2982 Warn when a declaration does not specify a type.
2983 This warning is enabled by @option{-Wall}.

2985 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
2986 @opindex Wimplicit-function-declaration
2987 @opindex Wno-implicit-function-declaration
2988 Give a warning whenever a function is used before being declared. In
2989 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
2990 enabled by default and it is made into an error by
2991 @option{-pedantic-errors}. This warning is also enabled by
2992 @option{-Wall}.

2994 @item -Wimplicit

new/gcc/doc/invoke.texi 4

2995 @opindex Wimplicit
2996 @opindex Wno-implicit
2997 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
2998 This warning is enabled by @option{-Wall}.

3000 @item -Wignored-qualifiers @r{(C and C++ only)}
3001 @opindex Wignored-qualifiers
3002 @opindex Wno-ignored-qualifiers
3003 Warn if the return type of a function has a type qualifier
3004 such as @code{const}. For ISO C such a type qualifier has no effect,
3005 since the value returned by a function is not an lvalue.
3006 For C++, the warning is only emitted for scalar types or @code{void}.
3007 ISO C prohibits qualified @code{void} return types on function
3008 definitions, so such return types always receive a warning
3009 even without this option.

3011 This warning is also enabled by @option{-Wextra}.

3013 @item -Wmain
3014 @opindex Wmain
3015 @opindex Wno-main
3016 Warn if the type of @samp{main} is suspicious. @samp{main} should be
3017 a function with external linkage, returning int, taking either zero
3018 arguments, two, or three arguments of appropriate types. This warning
3019 is enabled by default in C++ and is enabled by either @option{-Wall}
3020 or @option{-pedantic}.

3022 @item -Wmissing-braces
3023 @opindex Wmissing-braces
3024 @opindex Wno-missing-braces
3025 Warn if an aggregate or union initializer is not fully bracketed. In
3026 the following example, the initializer for @samp{a} is not fully
3027 bracketed, but that for @samp{b} is fully bracketed.

3029 @smallexample
3030 int a[2][2] = @{ 0, 1, 2, 3 @};
3031 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
3032 @end smallexample

3034 This warning is enabled by @option{-Wall}.

3036 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
3037 @opindex Wmissing-include-dirs
3038 @opindex Wno-missing-include-dirs
3039 Warn if a user-supplied include directory does not exist.

3041 @item -Wparentheses
3042 @opindex Wparentheses
3043 @opindex Wno-parentheses
3044 Warn if parentheses are omitted in certain contexts, such
3045 as when there is an assignment in a context where a truth value
3046 is expected, or when operators are nested whose precedence people
3047 often get confused about.

3049 Also warn if a comparison like @samp{x<=y<=z} appears; this is
3050 equivalent to @samp{(x<=y ? 1 : 0) <= z}, which is a different
3051 interpretation from that of ordinary mathematical notation.

3053 Also warn about constructions where there may be confusion to which
3054 @code{if} statement an @code{else} branch belongs. Here is an example of
3055 such a case:

3057 @smallexample
3058 @group
3059 @{
3060 if (a)

new/gcc/doc/invoke.texi 5

3061 if (b)
3062 foo ();
3063 else
3064 bar ();
3065 @}
3066 @end group
3067 @end smallexample

3069 In C/C++, every @code{else} branch belongs to the innermost possible
3070 @code{if} statement, which in this example is @code{if (b)}. This is
3071 often not what the programmer expected, as illustrated in the above
3072 example by indentation the programmer chose. When there is the
3073 potential for this confusion, GCC will issue a warning when this flag
3074 is specified. To eliminate the warning, add explicit braces around
3075 the innermost @code{if} statement so there is no way the @code{else}
3076 could belong to the enclosing @code{if}. The resulting code would
3077 look like this:

3079 @smallexample
3080 @group
3081 @{
3082 if (a)
3083 @{
3084 if (b)
3085 foo ();
3086 else
3087 bar ();
3088 @}
3089 @}
3090 @end group
3091 @end smallexample

3093 This warning is enabled by @option{-Wall}.

3095 @item -Wsequence-point
3096 @opindex Wsequence-point
3097 @opindex Wno-sequence-point
3098 Warn about code that may have undefined semantics because of violations
3099 of sequence point rules in the C and C++ standards.

3101 The C and C++ standards defines the order in which expressions in a C/C++
3102 program are evaluated in terms of @dfn{sequence points}, which represent
3103 a partial ordering between the execution of parts of the program: those
3104 executed before the sequence point, and those executed after it. These
3105 occur after the evaluation of a full expression (one which is not part
3106 of a larger expression), after the evaluation of the first operand of a
3107 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
3108 function is called (but after the evaluation of its arguments and the
3109 expression denoting the called function), and in certain other places.
3110 Other than as expressed by the sequence point rules, the order of
3111 evaluation of subexpressions of an expression is not specified. All
3112 these rules describe only a partial order rather than a total order,
3113 since, for example, if two functions are called within one expression
3114 with no sequence point between them, the order in which the functions
3115 are called is not specified. However, the standards committee have
3116 ruled that function calls do not overlap.

3118 It is not specified when between sequence points modifications to the
3119 values of objects take effect. Programs whose behavior depends on this
3120 have undefined behavior; the C and C++ standards specify that ‘‘Between
3121 the previous and next sequence point an object shall have its stored
3122 value modified at most once by the evaluation of an expression.
3123 Furthermore, the prior value shall be read only to determine the value
3124 to be stored.’’. If a program breaks these rules, the results on any
3125 particular implementation are entirely unpredictable.

new/gcc/doc/invoke.texi 6

3127 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
3128 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
3129 diagnosed by this option, and it may give an occasional false positive
3130 result, but in general it has been found fairly effective at detecting
3131 this sort of problem in programs.

3133 The standard is worded confusingly, therefore there is some debate
3134 over the precise meaning of the sequence point rules in subtle cases.
3135 Links to discussions of the problem, including proposed formal
3136 definitions, may be found on the GCC readings page, at
3137 @w{@uref{http://gcc.gnu.org/readings.html}}.

3139 This warning is enabled by @option{-Wall} for C and C++.

3141 @item -Wreturn-type
3142 @opindex Wreturn-type
3143 @opindex Wno-return-type
3144 Warn whenever a function is defined with a return-type that defaults
3145 to @code{int}. Also warn about any @code{return} statement with no
3146 return-value in a function whose return-type is not @code{void}
3147 (falling off the end of the function body is considered returning
3148 without a value), and about a @code{return} statement with a
3149 expression in a function whose return-type is @code{void}.

3151 For C++, a function without return type always produces a diagnostic
3152 message, even when @option{-Wno-return-type} is specified. The only
3153 exceptions are @samp{main} and functions defined in system headers.

3155 This warning is enabled by @option{-Wall}.

3157 @item -Wswitch
3158 @opindex Wswitch
3159 @opindex Wno-switch
3160 Warn whenever a @code{switch} statement has an index of enumerated type
3161 and lacks a @code{case} for one or more of the named codes of that
3162 enumeration. (The presence of a @code{default} label prevents this
3163 warning.) @code{case} labels outside the enumeration range also
3164 provoke warnings when this option is used.
3165 This warning is enabled by @option{-Wall}.

3167 @item -Wswitch-default
3168 @opindex Wswitch-default
3169 @opindex Wno-switch-default
3170 Warn whenever a @code{switch} statement does not have a @code{default}
3171 case.

3173 @item -Wswitch-enum
3174 @opindex Wswitch-enum
3175 @opindex Wno-switch-enum
3176 Warn whenever a @code{switch} statement has an index of enumerated type
3177 and lacks a @code{case} for one or more of the named codes of that
3178 enumeration. @code{case} labels outside the enumeration range also
3179 provoke warnings when this option is used.

3181 @item -Wsync-nand @r{(C and C++ only)}
3182 @opindex Wsync-nand
3183 @opindex Wno-sync-nand
3184 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
3185 built-in functions are used. These functions changed semantics in GCC 4.4.

3187 @item -Wtrigraphs
3188 @opindex Wtrigraphs
3189 @opindex Wno-trigraphs
3190 Warn if any trigraphs are encountered that might change the meaning of
3191 the program (trigraphs within comments are not warned about).
3192 This warning is enabled by @option{-Wall}.

new/gcc/doc/invoke.texi 7

3194 @item -Wunused-function
3195 @opindex Wunused-function
3196 @opindex Wno-unused-function
3197 Warn whenever a static function is declared but not defined or a
3198 non-inline static function is unused.
3199 This warning is enabled by @option{-Wall}.

3201 @item -Wunused-label
3202 @opindex Wunused-label
3203 @opindex Wno-unused-label
3204 Warn whenever a label is declared but not used.
3205 This warning is enabled by @option{-Wall}.

3207 To suppress this warning use the @samp{unused} attribute
3208 (@pxref{Variable Attributes}).

3210 @item -Wunused-parameter
3211 @opindex Wunused-parameter
3212 @opindex Wno-unused-parameter
3213 Warn whenever a function parameter is unused aside from its declaration.

3215 To suppress this warning use the @samp{unused} attribute
3216 (@pxref{Variable Attributes}).

3218 @item -Wunused-variable
3219 @opindex Wunused-variable
3220 @opindex Wno-unused-variable
3221 Warn whenever a local variable or non-constant static variable is unused
3222 aside from its declaration.
3223 This warning is enabled by @option{-Wall}.

3225 To suppress this warning use the @samp{unused} attribute
3226 (@pxref{Variable Attributes}).

3228 @item -Wunused-value
3229 @opindex Wunused-value
3230 @opindex Wno-unused-value
3231 Warn whenever a statement computes a result that is explicitly not
3232 used. To suppress this warning cast the unused expression to
3233 @samp{void}. This includes an expression-statement or the left-hand
3234 side of a comma expression that contains no side effects. For example,
3235 an expression such as @samp{x[i,j]} will cause a warning, while
3236 @samp{x[(void)i,j]} will not.

3238 This warning is enabled by @option{-Wall}.

3240 @item -Wunused
3241 @opindex Wunused
3242 @opindex Wno-unused
3243 All the above @option{-Wunused} options combined.

3245 In order to get a warning about an unused function parameter, you must
3246 either specify @samp{-Wextra -Wunused} (note that @samp{-Wall} implies
3247 @samp{-Wunused}), or separately specify @option{-Wunused-parameter}.

3249 @item -Wuninitialized
3250 @opindex Wuninitialized
3251 @opindex Wno-uninitialized
3252 Warn if an automatic variable is used without first being initialized
3253 or if a variable may be clobbered by a @code{setjmp} call. In C++,
3254 warn if a non-static reference or non-static @samp{const} member
3255 appears in a class without constructors.

3257 If you want to warn about code which uses the uninitialized value of the
3258 variable in its own initializer, use the @option{-Winit-self} option.

new/gcc/doc/invoke.texi 8

3260 These warnings occur for individual uninitialized or clobbered
3261 elements of structure, union or array variables as well as for
3262 variables which are uninitialized or clobbered as a whole. They do
3263 not occur for variables or elements declared @code{volatile}. Because
3264 these warnings depend on optimization, the exact variables or elements
3265 for which there are warnings will depend on the precise optimization
3266 options and version of GCC used.

3268 Note that there may be no warning about a variable that is used only
3269 to compute a value that itself is never used, because such
3270 computations may be deleted by data flow analysis before the warnings
3271 are printed.

3273 These warnings are made optional because GCC is not smart
3274 enough to see all the reasons why the code might be correct
3275 despite appearing to have an error. Here is one example of how
3276 this can happen:

3278 @smallexample
3279 @group
3280 @{
3281 int x;
3282 switch (y)
3283 @{
3284 case 1: x = 1;
3285 break;
3286 case 2: x = 4;
3287 break;
3288 case 3: x = 5;
3289 @}
3290 foo (x);
3291 @}
3292 @end group
3293 @end smallexample

3295 @noindent
3296 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
3297 always initialized, but GCC doesn’t know this. Here is
3298 another common case:

3300 @smallexample
3301 @{
3302 int save_y;
3303 if (change_y) save_y = y, y = new_y;
3304 @dots{}
3305 if (change_y) y = save_y;
3306 @}
3307 @end smallexample

3309 @noindent
3310 This has no bug because @code{save_y} is used only if it is set.

3312 @cindex @code{longjmp} warnings
3313 This option also warns when a non-volatile automatic variable might be
3314 changed by a call to @code{longjmp}. These warnings as well are possible
3315 only in optimizing compilation.

3317 The compiler sees only the calls to @code{setjmp}. It cannot know
3318 where @code{longjmp} will be called; in fact, a signal handler could
3319 call it at any point in the code. As a result, you may get a warning
3320 even when there is in fact no problem because @code{longjmp} cannot
3321 in fact be called at the place which would cause a problem.

3323 Some spurious warnings can be avoided if you declare all the functions
3324 you use that never return as @code{noreturn}. @xref{Function

new/gcc/doc/invoke.texi 9

3325 Attributes}.

3327 This warning is enabled by @option{-Wall} or @option{-Wextra}.

3329 @item -Wunknown-pragmas
3330 @opindex Wunknown-pragmas
3331 @opindex Wno-unknown-pragmas
3332 @cindex warning for unknown pragmas
3333 @cindex unknown pragmas, warning
3334 @cindex pragmas, warning of unknown
3335 Warn when a #pragma directive is encountered which is not understood by
3336 GCC@. If this command line option is used, warnings will even be issued
3337 for unknown pragmas in system header files. This is not the case if
3338 the warnings were only enabled by the @option{-Wall} command line option.

3340 @item -Wno-pragmas
3341 @opindex Wno-pragmas
3342 @opindex Wpragmas
3343 Do not warn about misuses of pragmas, such as incorrect parameters,
3344 invalid syntax, or conflicts between pragmas. See also
3345 @samp{-Wunknown-pragmas}.

3347 @item -Wstrict-aliasing
3348 @opindex Wstrict-aliasing
3349 @opindex Wno-strict-aliasing
3350 This option is only active when @option{-fstrict-aliasing} is active.
3351 It warns about code which might break the strict aliasing rules that the
3352 compiler is using for optimization. The warning does not catch all
3353 cases, but does attempt to catch the more common pitfalls. It is
3354 included in @option{-Wall}.
3355 It is equivalent to @option{-Wstrict-aliasing=3}

3357 @item -Wstrict-aliasing=n
3358 @opindex Wstrict-aliasing=n
3359 @opindex Wno-strict-aliasing=n
3360 This option is only active when @option{-fstrict-aliasing} is active.
3361 It warns about code which might break the strict aliasing rules that the
3362 compiler is using for optimization.
3363 Higher levels correspond to higher accuracy (fewer false positives).
3364 Higher levels also correspond to more effort, similar to the way -O works.
3365 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=n},
3366 with n=3.

3368 Level 1: Most aggressive, quick, least accurate.
3369 Possibly useful when higher levels
3370 do not warn but -fstrict-aliasing still breaks the code, as it has very few
3371 false negatives. However, it has many false positives.
3372 Warns for all pointer conversions between possibly incompatible types,
3373 even if never dereferenced. Runs in the frontend only.

3375 Level 2: Aggressive, quick, not too precise.
3376 May still have many false positives (not as many as level 1 though),
3377 and few false negatives (but possibly more than level 1).
3378 Unlike level 1, it only warns when an address is taken. Warns about
3379 incomplete types. Runs in the frontend only.

3381 Level 3 (default for @option{-Wstrict-aliasing}):
3382 Should have very few false positives and few false
3383 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
3384 Takes care of the common punn+dereference pattern in the frontend:
3385 @code{*(int*)&some_float}.
3386 If optimization is enabled, it also runs in the backend, where it deals
3387 with multiple statement cases using flow-sensitive points-to information.
3388 Only warns when the converted pointer is dereferenced.
3389 Does not warn about incomplete types.

new/gcc/doc/invoke.texi 10

3391 @item -Wstrict-overflow
3392 @itemx -Wstrict-overflow=@var{n}
3393 @opindex Wstrict-overflow
3394 @opindex Wno-strict-overflow
3395 This option is only active when @option{-fstrict-overflow} is active.
3396 It warns about cases where the compiler optimizes based on the
3397 assumption that signed overflow does not occur. Note that it does not
3398 warn about all cases where the code might overflow: it only warns
3399 about cases where the compiler implements some optimization. Thus
3400 this warning depends on the optimization level.

3402 An optimization which assumes that signed overflow does not occur is
3403 perfectly safe if the values of the variables involved are such that
3404 overflow never does, in fact, occur. Therefore this warning can
3405 easily give a false positive: a warning about code which is not
3406 actually a problem. To help focus on important issues, several
3407 warning levels are defined. No warnings are issued for the use of
3408 undefined signed overflow when estimating how many iterations a loop
3409 will require, in particular when determining whether a loop will be
3410 executed at all.

3412 @table @gcctabopt
3413 @item -Wstrict-overflow=1
3414 Warn about cases which are both questionable and easy to avoid. For
3415 example: @code{x + 1 > x}; with @option{-fstrict-overflow}, the
3416 compiler will simplify this to @code{1}. This level of
3417 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
3418 are not, and must be explicitly requested.

3420 @item -Wstrict-overflow=2
3421 Also warn about other cases where a comparison is simplified to a
3422 constant. For example: @code{abs (x) >= 0}. This can only be
3423 simplified when @option{-fstrict-overflow} is in effect, because
3424 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
3425 zero. @option{-Wstrict-overflow} (with no level) is the same as
3426 @option{-Wstrict-overflow=2}.

3428 @item -Wstrict-overflow=3
3429 Also warn about other cases where a comparison is simplified. For
3430 example: @code{x + 1 > 1} will be simplified to @code{x > 0}.

3432 @item -Wstrict-overflow=4
3433 Also warn about other simplifications not covered by the above cases.
3434 For example: @code{(x * 10) / 5} will be simplified to @code{x * 2}.

3436 @item -Wstrict-overflow=5
3437 Also warn about cases where the compiler reduces the magnitude of a
3438 constant involved in a comparison. For example: @code{x + 2 > y} will
3439 be simplified to @code{x + 1 >= y}. This is reported only at the
3440 highest warning level because this simplification applies to many
3441 comparisons, so this warning level will give a very large number of
3442 false positives.
3443 @end table

3445 @item -Warray-bounds
3446 @opindex Wno-array-bounds
3447 @opindex Warray-bounds
3448 This option is only active when @option{-ftree-vrp} is active
3449 (default for -O2 and above). It warns about subscripts to arrays
3450 that are always out of bounds. This warning is enabled by @option{-Wall}.

3452 @item -Wno-div-by-zero
3453 @opindex Wno-div-by-zero
3454 @opindex Wdiv-by-zero
3455 Do not warn about compile-time integer division by zero. Floating point
3456 division by zero is not warned about, as it can be a legitimate way of

new/gcc/doc/invoke.texi 11

3457 obtaining infinities and NaNs.

3459 @item -Wsystem-headers
3460 @opindex Wsystem-headers
3461 @opindex Wno-system-headers
3462 @cindex warnings from system headers
3463 @cindex system headers, warnings from
3464 Print warning messages for constructs found in system header files.
3465 Warnings from system headers are normally suppressed, on the assumption
3466 that they usually do not indicate real problems and would only make the
3467 compiler output harder to read. Using this command line option tells
3468 GCC to emit warnings from system headers as if they occurred in user
3469 code. However, note that using @option{-Wall} in conjunction with this
3470 option will @emph{not} warn about unknown pragmas in system
3471 headers---for that, @option{-Wunknown-pragmas} must also be used.

3473 @item -Wfloat-equal
3474 @opindex Wfloat-equal
3475 @opindex Wno-float-equal
3476 Warn if floating point values are used in equality comparisons.

3478 The idea behind this is that sometimes it is convenient (for the
3479 programmer) to consider floating-point values as approximations to
3480 infinitely precise real numbers. If you are doing this, then you need
3481 to compute (by analyzing the code, or in some other way) the maximum or
3482 likely maximum error that the computation introduces, and allow for it
3483 when performing comparisons (and when producing output, but that’s a
3484 different problem). In particular, instead of testing for equality, you
3485 would check to see whether the two values have ranges that overlap; and
3486 this is done with the relational operators, so equality comparisons are
3487 probably mistaken.

3489 @item -Wtraditional @r{(C and Objective-C only)}
3490 @opindex Wtraditional
3491 @opindex Wno-traditional
3492 Warn about certain constructs that behave differently in traditional and
3493 ISO C@. Also warn about ISO C constructs that have no traditional C
3494 equivalent, and/or problematic constructs which should be avoided.

3496 @itemize @bullet
3497 @item
3498 Macro parameters that appear within string literals in the macro body.
3499 In traditional C macro replacement takes place within string literals,
3500 but does not in ISO C@.

3502 @item
3503 In traditional C, some preprocessor directives did not exist.
3504 Traditional preprocessors would only consider a line to be a directive
3505 if the @samp{#} appeared in column 1 on the line. Therefore
3506 @option{-Wtraditional} warns about directives that traditional C
3507 understands but would ignore because the @samp{#} does not appear as the
3508 first character on the line. It also suggests you hide directives like
3509 @samp{#pragma} not understood by traditional C by indenting them. Some
3510 traditional implementations would not recognize @samp{#elif}, so it
3511 suggests avoiding it altogether.

3513 @item
3514 A function-like macro that appears without arguments.

3516 @item
3517 The unary plus operator.

3519 @item
3520 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating point
3521 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
3522 constants.) Note, these suffixes appear in macros defined in the system

new/gcc/doc/invoke.texi 12

3523 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @co
3524 Use of these macros in user code might normally lead to spurious
3525 warnings, however GCC’s integrated preprocessor has enough context to
3526 avoid warning in these cases.

3528 @item
3529 A function declared external in one block and then used after the end of
3530 the block.

3532 @item
3533 A @code{switch} statement has an operand of type @code{long}.

3535 @item
3536 A non-@code{static} function declaration follows a @code{static} one.
3537 This construct is not accepted by some traditional C compilers.

3539 @item
3540 The ISO type of an integer constant has a different width or
3541 signedness from its traditional type. This warning is only issued if
3542 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
3543 typically represent bit patterns, are not warned about.

3545 @item
3546 Usage of ISO string concatenation is detected.

3548 @item
3549 Initialization of automatic aggregates.

3551 @item
3552 Identifier conflicts with labels. Traditional C lacks a separate
3553 namespace for labels.

3555 @item
3556 Initialization of unions. If the initializer is zero, the warning is
3557 omitted. This is done under the assumption that the zero initializer in
3558 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
3559 initializer warnings and relies on default initialization to zero in the
3560 traditional C case.

3562 @item
3563 Conversions by prototypes between fixed/floating point values and vice
3564 versa. The absence of these prototypes when compiling with traditional
3565 C would cause serious problems. This is a subset of the possible
3566 conversion warnings, for the full set use @option{-Wtraditional-conversion}.

3568 @item
3569 Use of ISO C style function definitions. This warning intentionally is
3570 @emph{not} issued for prototype declarations or variadic functions
3571 because these ISO C features will appear in your code when using
3572 libiberty’s traditional C compatibility macros, @code{PARAMS} and
3573 @code{VPARAMS}. This warning is also bypassed for nested functions
3574 because that feature is already a GCC extension and thus not relevant to
3575 traditional C compatibility.
3576 @end itemize

3578 @item -Wtraditional-conversion @r{(C and Objective-C only)}
3579 @opindex Wtraditional-conversion
3580 @opindex Wno-traditional-conversion
3581 Warn if a prototype causes a type conversion that is different from what
3582 would happen to the same argument in the absence of a prototype. This
3583 includes conversions of fixed point to floating and vice versa, and
3584 conversions changing the width or signedness of a fixed point argument
3585 except when the same as the default promotion.

3587 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
3588 @opindex Wdeclaration-after-statement

new/gcc/doc/invoke.texi 13

3589 @opindex Wno-declaration-after-statement
3590 Warn when a declaration is found after a statement in a block. This
3591 construct, known from C++, was introduced with ISO C99 and is by default
3592 allowed in GCC@. It is not supported by ISO C90 and was not supported by
3593 GCC versions before GCC 3.0. @xref{Mixed Declarations}.

3595 @item -Wundef
3596 @opindex Wundef
3597 @opindex Wno-undef
3598 Warn if an undefined identifier is evaluated in an @samp{#if} directive.

3600 @item -Wno-endif-labels
3601 @opindex Wno-endif-labels
3602 @opindex Wendif-labels
3603 Do not warn whenever an @samp{#else} or an @samp{#endif} are followed by text.

3605 @item -Wshadow
3606 @opindex Wshadow
3607 @opindex Wno-shadow
3608 Warn whenever a local variable shadows another local variable, parameter or
3609 global variable or whenever a built-in function is shadowed.

3611 @item -Wlarger-than=@var{len}
3612 @opindex Wlarger-than=@var{len}
3613 @opindex Wlarger-than-@var{len}
3614 Warn whenever an object of larger than @var{len} bytes is defined.

3616 @item -Wframe-larger-than=@var{len}
3617 @opindex Wframe-larger-than
3618 Warn if the size of a function frame is larger than @var{len} bytes.
3619 The computation done to determine the stack frame size is approximate
3620 and not conservative.
3621 The actual requirements may be somewhat greater than @var{len}
3622 even if you do not get a warning. In addition, any space allocated
3623 via @code{alloca}, variable-length arrays, or related constructs
3624 is not included by the compiler when determining
3625 whether or not to issue a warning.

3627 @item -Wunsafe-loop-optimizations
3628 @opindex Wunsafe-loop-optimizations
3629 @opindex Wno-unsafe-loop-optimizations
3630 Warn if the loop cannot be optimized because the compiler could not
3631 assume anything on the bounds of the loop indices. With
3632 @option{-funsafe-loop-optimizations} warn if the compiler made
3633 such assumptions.

3635 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
3636 @opindex Wno-pedantic-ms-format
3637 @opindex Wpedantic-ms-format
3638 Disables the warnings about non-ISO @code{printf} / @code{scanf} format
3639 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets
3640 depending on the MS runtime, when you are using the options @option{-Wformat}
3641 and @option{-pedantic} without gnu-extensions.

3643 @item -Wpointer-arith
3644 @opindex Wpointer-arith
3645 @opindex Wno-pointer-arith
3646 Warn about anything that depends on the ‘‘size of’’ a function type or
3647 of @code{void}. GNU C assigns these types a size of 1, for
3648 convenience in calculations with @code{void *} pointers and pointers
3649 to functions. In C++, warn also when an arithmetic operation involves
3650 @code{NULL}. This warning is also enabled by @option{-pedantic}.

3652 @item -Wtype-limits
3653 @opindex Wtype-limits
3654 @opindex Wno-type-limits

new/gcc/doc/invoke.texi 14

3655 Warn if a comparison is always true or always false due to the limited
3656 range of the data type, but do not warn for constant expressions. For
3657 example, warn if an unsigned variable is compared against zero with
3658 @samp{<} or @samp{>=}. This warning is also enabled by
3659 @option{-Wextra}.

3661 @item -Wbad-function-cast @r{(C and Objective-C only)}
3662 @opindex Wbad-function-cast
3663 @opindex Wno-bad-function-cast
3664 Warn whenever a function call is cast to a non-matching type.
3665 For example, warn if @code{int malloc()} is cast to @code{anything *}.

3667 @item -Wc++-compat @r{(C and Objective-C only)}
3668 Warn about ISO C constructs that are outside of the common subset of
3669 ISO C and ISO C++, e.g.@: request for implicit conversion from
3670 @code{void *} to a pointer to non-@code{void} type.

3672 @item -Wc++0x-compat @r{(C++ and Objective-C++ only)}
3673 Warn about C++ constructs whose meaning differs between ISO C++ 1998 and
3674 ISO C++ 200x, e.g., identifiers in ISO C++ 1998 that will become keywords
3675 in ISO C++ 200x. This warning is enabled by @option{-Wall}.

3677 @item -Wcast-qual
3678 @opindex Wcast-qual
3679 @opindex Wno-cast-qual
3680 Warn whenever a pointer is cast so as to remove a type qualifier from
3681 the target type. For example, warn if a @code{const char *} is cast
3682 to an ordinary @code{char *}.

3684 @item -Wcast-align
3685 @opindex Wcast-align
3686 @opindex Wno-cast-align
3687 Warn whenever a pointer is cast such that the required alignment of the
3688 target is increased. For example, warn if a @code{char *} is cast to
3689 an @code{int *} on machines where integers can only be accessed at
3690 two- or four-byte boundaries.

3692 @item -Wwrite-strings
3693 @opindex Wwrite-strings
3694 @opindex Wno-write-strings
3695 When compiling C, give string constants the type @code{const
3696 char[@var{length}]} so that copying the address of one into a
3697 non-@code{const} @code{char *} pointer will get a warning. These
3698 warnings will help you find at compile time code that can try to write
3699 into a string constant, but only if you have been very careful about
3700 using @code{const} in declarations and prototypes. Otherwise, it will
3701 just be a nuisance. This is why we did not make @option{-Wall} request
3702 these warnings.

3704 When compiling C++, warn about the deprecated conversion from string
3705 literals to @code{char *}. This warning is enabled by default for C++
3706 programs.

3708 @item -Wclobbered
3709 @opindex Wclobbered
3710 @opindex Wno-clobbered
3711 Warn for variables that might be changed by @samp{longjmp} or
3712 @samp{vfork}. This warning is also enabled by @option{-Wextra}.

3714 @item -Wconversion
3715 @opindex Wconversion
3716 @opindex Wno-conversion
3717 Warn for implicit conversions that may alter a value. This includes
3718 conversions between real and integer, like @code{abs (x)} when
3719 @code{x} is @code{double}; conversions between signed and unsigned,
3720 like @code{unsigned ui = -1}; and conversions to smaller types, like

new/gcc/doc/invoke.texi 15

3721 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
3722 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
3723 changed by the conversion like in @code{abs (2.0)}. Warnings about
3724 conversions between signed and unsigned integers can be disabled by
3725 using @option{-Wno-sign-conversion}.

3727 For C++, also warn for conversions between @code{NULL} and non-pointer
3728 types; confusing overload resolution for user-defined conversions; and
3729 conversions that will never use a type conversion operator:
3730 conversions to @code{void}, the same type, a base class or a reference
3731 to them. Warnings about conversions between signed and unsigned
3732 integers are disabled by default in C++ unless
3733 @option{-Wsign-conversion} is explicitly enabled.

3735 @item -Wempty-body
3736 @opindex Wempty-body
3737 @opindex Wno-empty-body
3738 Warn if an empty body occurs in an @samp{if}, @samp{else} or @samp{do
3739 while} statement. This warning is also enabled by @option{-Wextra}.

3741 @item -Wenum-compare @r{(C++ and Objective-C++ only)}
3742 @opindex Wenum-compare
3743 @opindex Wno-enum-compare
3744 Warn about a comparison between values of different enum types. This
3745 warning is enabled by default.

3747 @item -Wsign-compare
3748 @opindex Wsign-compare
3749 @opindex Wno-sign-compare
3750 @cindex warning for comparison of signed and unsigned values
3751 @cindex comparison of signed and unsigned values, warning
3752 @cindex signed and unsigned values, comparison warning
3753 Warn when a comparison between signed and unsigned values could produce
3754 an incorrect result when the signed value is converted to unsigned.
3755 This warning is also enabled by @option{-Wextra}; to get the other warnings
3756 of @option{-Wextra} without this warning, use @samp{-Wextra -Wno-sign-compare}.

3758 @item -Wsign-conversion
3759 @opindex Wsign-conversion
3760 @opindex Wno-sign-conversion
3761 Warn for implicit conversions that may change the sign of an integer
3762 value, like assigning a signed integer expression to an unsigned
3763 integer variable. An explicit cast silences the warning. In C, this
3764 option is enabled also by @option{-Wconversion}.

3766 @item -Waddress
3767 @opindex Waddress
3768 @opindex Wno-address
3769 Warn about suspicious uses of memory addresses. These include using
3770 the address of a function in a conditional expression, such as
3771 @code{void func(void); if (func)}, and comparisons against the memory
3772 address of a string literal, such as @code{if (x == "abc")}. Such
3773 uses typically indicate a programmer error: the address of a function
3774 always evaluates to true, so their use in a conditional usually
3775 indicate that the programmer forgot the parentheses in a function
3776 call; and comparisons against string literals result in unspecified
3777 behavior and are not portable in C, so they usually indicate that the
3778 programmer intended to use @code{strcmp}. This warning is enabled by
3779 @option{-Wall}.

3781 @item -Wlogical-op
3782 @opindex Wlogical-op
3783 @opindex Wno-logical-op
3784 Warn about suspicious uses of logical operators in expressions.
3785 This includes using logical operators in contexts where a
3786 bit-wise operator is likely to be expected.

new/gcc/doc/invoke.texi 16

3788 @item -Waggregate-return
3789 @opindex Waggregate-return
3790 @opindex Wno-aggregate-return
3791 Warn if any functions that return structures or unions are defined or
3792 called. (In languages where you can return an array, this also elicits
3793 a warning.)

3795 @item -Wno-attributes
3796 @opindex Wno-attributes
3797 @opindex Wattributes
3798 Do not warn if an unexpected @code{__attribute__} is used, such as
3799 unrecognized attributes, function attributes applied to variables,
3800 etc. This will not stop errors for incorrect use of supported
3801 attributes.

3803 @item -Wno-builtin-macro-redefined
3804 @opindex Wno-builtin-macro-redefined
3805 @opindex Wbuiltin-macro-redefined
3806 Do not warn if certain built-in macros are redefined. This suppresses
3807 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
3808 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.

3810 @item -Wstrict-prototypes @r{(C and Objective-C only)}
3811 @opindex Wstrict-prototypes
3812 @opindex Wno-strict-prototypes
3813 Warn if a function is declared or defined without specifying the
3814 argument types. (An old-style function definition is permitted without
3815 a warning if preceded by a declaration which specifies the argument
3816 types.)

3818 @item -Wold-style-declaration @r{(C and Objective-C only)}
3819 @opindex Wold-style-declaration
3820 @opindex Wno-old-style-declaration
3821 Warn for obsolescent usages, according to the C Standard, in a
3822 declaration. For example, warn if storage-class specifiers like
3823 @code{static} are not the first things in a declaration. This warning
3824 is also enabled by @option{-Wextra}.

3826 @item -Wold-style-definition @r{(C and Objective-C only)}
3827 @opindex Wold-style-definition
3828 @opindex Wno-old-style-definition
3829 Warn if an old-style function definition is used. A warning is given
3830 even if there is a previous prototype.

3832 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
3833 @opindex Wmissing-parameter-type
3834 @opindex Wno-missing-parameter-type
3835 A function parameter is declared without a type specifier in K&R-style
3836 functions:

3838 @smallexample
3839 void foo(bar) @{ @}
3840 @end smallexample

3842 This warning is also enabled by @option{-Wextra}.

3844 @item -Wmissing-prototypes @r{(C and Objective-C only)}
3845 @opindex Wmissing-prototypes
3846 @opindex Wno-missing-prototypes
3847 Warn if a global function is defined without a previous prototype
3848 declaration. This warning is issued even if the definition itself
3849 provides a prototype. The aim is to detect global functions that fail
3850 to be declared in header files.

3852 @item -Wmissing-declarations

new/gcc/doc/invoke.texi 17

3853 @opindex Wmissing-declarations
3854 @opindex Wno-missing-declarations
3855 Warn if a global function is defined without a previous declaration.
3856 Do so even if the definition itself provides a prototype.
3857 Use this option to detect global functions that are not declared in
3858 header files. In C++, no warnings are issued for function templates,
3859 or for inline functions, or for functions in anonymous namespaces.

3861 @item -Wmissing-field-initializers
3862 @opindex Wmissing-field-initializers
3863 @opindex Wno-missing-field-initializers
3864 @opindex W
3865 @opindex Wextra
3866 @opindex Wno-extra
3867 Warn if a structure’s initializer has some fields missing. For
3868 example, the following code would cause such a warning, because
3869 @code{x.h} is implicitly zero:

3871 @smallexample
3872 struct s @{ int f, g, h; @};
3873 struct s x = @{ 3, 4 @};
3874 @end smallexample

3876 This option does not warn about designated initializers, so the following
3877 modification would not trigger a warning:

3879 @smallexample
3880 struct s @{ int f, g, h; @};
3881 struct s x = @{ .f = 3, .g = 4 @};
3882 @end smallexample

3884 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
3885 warnings without this one, use @samp{-Wextra -Wno-missing-field-initializers}.

3887 @item -Wmissing-noreturn
3888 @opindex Wmissing-noreturn
3889 @opindex Wno-missing-noreturn
3890 Warn about functions which might be candidates for attribute @code{noreturn}.
3891 Note these are only possible candidates, not absolute ones. Care should
3892 be taken to manually verify functions actually do not ever return before
3893 adding the @code{noreturn} attribute, otherwise subtle code generation
3894 bugs could be introduced. You will not get a warning for @code{main} in
3895 hosted C environments.

3897 @item -Wmissing-format-attribute
3898 @opindex Wmissing-format-attribute
3899 @opindex Wno-missing-format-attribute
3900 @opindex Wformat
3901 @opindex Wno-format
3902 Warn about function pointers which might be candidates for @code{format}
3903 attributes. Note these are only possible candidates, not absolute ones.
3904 GCC will guess that function pointers with @code{format} attributes that
3905 are used in assignment, initialization, parameter passing or return
3906 statements should have a corresponding @code{format} attribute in the
3907 resulting type. I.e.@: the left-hand side of the assignment or
3908 initialization, the type of the parameter variable, or the return type
3909 of the containing function respectively should also have a @code{format}
3910 attribute to avoid the warning.

3912 GCC will also warn about function definitions which might be
3913 candidates for @code{format} attributes. Again, these are only
3914 possible candidates. GCC will guess that @code{format} attributes
3915 might be appropriate for any function that calls a function like
3916 @code{vprintf} or @code{vscanf}, but this might not always be the
3917 case, and some functions for which @code{format} attributes are
3918 appropriate may not be detected.

new/gcc/doc/invoke.texi 18

3920 @item -Wno-multichar
3921 @opindex Wno-multichar
3922 @opindex Wmultichar
3923 Do not warn if a multicharacter constant (@samp{’FOOF’}) is used.
3924 Usually they indicate a typo in the user’s code, as they have
3925 implementation-defined values, and should not be used in portable code.

3927 @item -Wnormalized=<none|id|nfc|nfkc>
3928 @opindex Wnormalized=
3929 @cindex NFC
3930 @cindex NFKC
3931 @cindex character set, input normalization
3932 In ISO C and ISO C++, two identifiers are different if they are
3933 different sequences of characters. However, sometimes when characters
3934 outside the basic ASCII character set are used, you can have two
3935 different character sequences that look the same. To avoid confusion,
3936 the ISO 10646 standard sets out some @dfn{normalization rules} which
3937 when applied ensure that two sequences that look the same are turned into
3938 the same sequence. GCC can warn you if you are using identifiers which
3939 have not been normalized; this option controls that warning.

3941 There are four levels of warning that GCC supports. The default is
3942 @option{-Wnormalized=nfc}, which warns about any identifier which is
3943 not in the ISO 10646 ‘‘C’’ normalized form, @dfn{NFC}. NFC is the
3944 recommended form for most uses.

3946 Unfortunately, there are some characters which ISO C and ISO C++ allow
3947 in identifiers that when turned into NFC aren’t allowable as
3948 identifiers. That is, there’s no way to use these symbols in portable
3949 ISO C or C++ and have all your identifiers in NFC@.
3950 @option{-Wnormalized=id} suppresses the warning for these characters.
3951 It is hoped that future versions of the standards involved will correct
3952 this, which is why this option is not the default.

3954 You can switch the warning off for all characters by writing
3955 @option{-Wnormalized=none}. You would only want to do this if you
3956 were using some other normalization scheme (like ‘‘D’’), because
3957 otherwise you can easily create bugs that are literally impossible to see.

3959 Some characters in ISO 10646 have distinct meanings but look identical
3960 in some fonts or display methodologies, especially once formatting has
3961 been applied. For instance @code{\u207F}, ‘‘SUPERSCRIPT LATIN SMALL
3962 LETTER N’’, will display just like a regular @code{n} which has been
3963 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
3964 normalization scheme to convert all these into a standard form as
3965 well, and GCC will warn if your code is not in NFKC if you use
3966 @option{-Wnormalized=nfkc}. This warning is comparable to warning
3967 about every identifier that contains the letter O because it might be
3968 confused with the digit 0, and so is not the default, but may be
3969 useful as a local coding convention if the programming environment is
3970 unable to be fixed to display these characters distinctly.

3972 @item -Wno-deprecated
3973 @opindex Wno-deprecated
3974 @opindex Wdeprecated
3975 Do not warn about usage of deprecated features. @xref{Deprecated Features}.

3977 @item -Wno-deprecated-declarations
3978 @opindex Wno-deprecated-declarations
3979 @opindex Wdeprecated-declarations
3980 Do not warn about uses of functions (@pxref{Function Attributes}),
3981 variables (@pxref{Variable Attributes}), and types (@pxref{Type
3982 Attributes}) marked as deprecated by using the @code{deprecated}
3983 attribute.

new/gcc/doc/invoke.texi 19

3985 @item -Wno-overflow
3986 @opindex Wno-overflow
3987 @opindex Woverflow
3988 Do not warn about compile-time overflow in constant expressions.

3990 @item -Woverride-init @r{(C and Objective-C only)}
3991 @opindex Woverride-init
3992 @opindex Wno-override-init
3993 @opindex W
3994 @opindex Wextra
3995 @opindex Wno-extra
3996 Warn if an initialized field without side effects is overridden when
3997 using designated initializers (@pxref{Designated Inits, , Designated
3998 Initializers}).

4000 This warning is included in @option{-Wextra}. To get other
4001 @option{-Wextra} warnings without this one, use @samp{-Wextra
4002 -Wno-override-init}.

4004 @item -Wpacked
4005 @opindex Wpacked
4006 @opindex Wno-packed
4007 Warn if a structure is given the packed attribute, but the packed
4008 attribute has no effect on the layout or size of the structure.
4009 Such structures may be mis-aligned for little benefit. For
4010 instance, in this code, the variable @code{f.x} in @code{struct bar}
4011 will be misaligned even though @code{struct bar} does not itself
4012 have the packed attribute:

4014 @smallexample
4015 @group
4016 struct foo @{
4017 int x;
4018 char a, b, c, d;
4019 @} __attribute__((packed));
4020 struct bar @{
4021 char z;
4022 struct foo f;
4023 @};
4024 @end group
4025 @end smallexample

4027 @item -Wpacked-bitfield-compat
4028 @opindex Wpacked-bitfield-compat
4029 @opindex Wno-packed-bitfield-compat
4030 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
4031 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
4032 the change can lead to differences in the structure layout. GCC
4033 informs you when the offset of such a field has changed in GCC 4.4.
4034 For example there is no longer a 4-bit padding between field @code{a}
4035 and @code{b} in this structure:

4037 @smallexample
4038 struct foo
4039 @{
4040 char a:4;
4041 char b:8;
4042 @} __attribute__ ((packed));
4043 @end smallexample

4045 This warning is enabled by default. Use
4046 @option{-Wno-packed-bitfield-compat} to disable this warning.

4048 @item -Wpadded
4049 @opindex Wpadded
4050 @opindex Wno-padded

new/gcc/doc/invoke.texi 20

4051 Warn if padding is included in a structure, either to align an element
4052 of the structure or to align the whole structure. Sometimes when this
4053 happens it is possible to rearrange the fields of the structure to
4054 reduce the padding and so make the structure smaller.

4056 @item -Wredundant-decls
4057 @opindex Wredundant-decls
4058 @opindex Wno-redundant-decls
4059 Warn if anything is declared more than once in the same scope, even in
4060 cases where multiple declaration is valid and changes nothing.

4062 @item -Wnested-externs @r{(C and Objective-C only)}
4063 @opindex Wnested-externs
4064 @opindex Wno-nested-externs
4065 Warn if an @code{extern} declaration is encountered within a function.

4067 @item -Wunreachable-code
4068 @opindex Wunreachable-code
4069 @opindex Wno-unreachable-code
4070 Warn if the compiler detects that code will never be executed.

4072 This option is intended to warn when the compiler detects that at
4073 least a whole line of source code will never be executed, because
4074 some condition is never satisfied or because it is after a
4075 procedure that never returns.

4077 It is possible for this option to produce a warning even though there
4078 are circumstances under which part of the affected line can be executed,
4079 so care should be taken when removing apparently-unreachable code.

4081 For instance, when a function is inlined, a warning may mean that the
4082 line is unreachable in only one inlined copy of the function.

4084 This option is not made part of @option{-Wall} because in a debugging
4085 version of a program there is often substantial code which checks
4086 correct functioning of the program and is, hopefully, unreachable
4087 because the program does work. Another common use of unreachable
4088 code is to provide behavior which is selectable at compile-time.

4090 @item -Winline
4091 @opindex Winline
4092 @opindex Wno-inline
4093 Warn if a function can not be inlined and it was declared as inline.
4094 Even with this option, the compiler will not warn about failures to
4095 inline functions declared in system headers.

4097 The compiler uses a variety of heuristics to determine whether or not
4098 to inline a function. For example, the compiler takes into account
4099 the size of the function being inlined and the amount of inlining
4100 that has already been done in the current function. Therefore,
4101 seemingly insignificant changes in the source program can cause the
4102 warnings produced by @option{-Winline} to appear or disappear.

4104 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
4105 @opindex Wno-invalid-offsetof
4106 @opindex Winvalid-offsetof
4107 Suppress warnings from applying the @samp{offsetof} macro to a non-POD
4108 type. According to the 1998 ISO C++ standard, applying @samp{offsetof}
4109 to a non-POD type is undefined. In existing C++ implementations,
4110 however, @samp{offsetof} typically gives meaningful results even when
4111 applied to certain kinds of non-POD types. (Such as a simple
4112 @samp{struct} that fails to be a POD type only by virtue of having a
4113 constructor.) This flag is for users who are aware that they are
4114 writing nonportable code and who have deliberately chosen to ignore the
4115 warning about it.

new/gcc/doc/invoke.texi 21

4117 The restrictions on @samp{offsetof} may be relaxed in a future version
4118 of the C++ standard.

4120 @item -Wno-int-to-pointer-cast @r{(C and Objective-C only)}
4121 @opindex Wno-int-to-pointer-cast
4122 @opindex Wint-to-pointer-cast
4123 Suppress warnings from casts to pointer type of an integer of a
4124 different size.

4126 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
4127 @opindex Wno-pointer-to-int-cast
4128 @opindex Wpointer-to-int-cast
4129 Suppress warnings from casts from a pointer to an integer type of a
4130 different size.

4132 @item -Winvalid-pch
4133 @opindex Winvalid-pch
4134 @opindex Wno-invalid-pch
4135 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
4136 the search path but can’t be used.

4138 @item -Wlong-long
4139 @opindex Wlong-long
4140 @opindex Wno-long-long
4141 Warn if @samp{long long} type is used. This is default. To inhibit
4142 the warning messages, use @option{-Wno-long-long}. Flags
4143 @option{-Wlong-long} and @option{-Wno-long-long} are taken into account
4144 only when @option{-pedantic} flag is used.

4146 @item -Wvariadic-macros
4147 @opindex Wvariadic-macros
4148 @opindex Wno-variadic-macros
4149 Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
4150 alternate syntax when in pedantic ISO C99 mode. This is default.
4151 To inhibit the warning messages, use @option{-Wno-variadic-macros}.

4153 @item -Wvla
4154 @opindex Wvla
4155 @opindex Wno-vla
4156 Warn if variable length array is used in the code.
4157 @option{-Wno-vla} will prevent the @option{-pedantic} warning of
4158 the variable length array.

4160 @item -Wvolatile-register-var
4161 @opindex Wvolatile-register-var
4162 @opindex Wno-volatile-register-var
4163 Warn if a register variable is declared volatile. The volatile
4164 modifier does not inhibit all optimizations that may eliminate reads
4165 and/or writes to register variables. This warning is enabled by
4166 @option{-Wall}.

4168 @item -Wdisabled-optimization
4169 @opindex Wdisabled-optimization
4170 @opindex Wno-disabled-optimization
4171 Warn if a requested optimization pass is disabled. This warning does
4172 not generally indicate that there is anything wrong with your code; it
4173 merely indicates that GCC’s optimizers were unable to handle the code
4174 effectively. Often, the problem is that your code is too big or too
4175 complex; GCC will refuse to optimize programs when the optimization
4176 itself is likely to take inordinate amounts of time.

4178 @item -Wpointer-sign @r{(C and Objective-C only)}
4179 @opindex Wpointer-sign
4180 @opindex Wno-pointer-sign
4181 Warn for pointer argument passing or assignment with different signedness.
4182 This option is only supported for C and Objective-C@. It is implied by

new/gcc/doc/invoke.texi 22

4183 @option{-Wall} and by @option{-pedantic}, which can be disabled with
4184 @option{-Wno-pointer-sign}.

4186 @item -Wstack-protector
4187 @opindex Wstack-protector
4188 @opindex Wno-stack-protector
4189 This option is only active when @option{-fstack-protector} is active. It
4190 warns about functions that will not be protected against stack smashing.

4192 @item -Wno-mudflap
4193 @opindex Wno-mudflap
4194 Suppress warnings about constructs that cannot be instrumented by
4195 @option{-fmudflap}.

4197 @item -Woverlength-strings
4198 @opindex Woverlength-strings
4199 @opindex Wno-overlength-strings
4200 Warn about string constants which are longer than the ‘‘minimum
4201 maximum’’ length specified in the C standard. Modern compilers
4202 generally allow string constants which are much longer than the
4203 standard’s minimum limit, but very portable programs should avoid
4204 using longer strings.

4206 The limit applies @emph{after} string constant concatenation, and does
4207 not count the trailing NUL@. In C89, the limit was 509 characters; in
4208 C99, it was raised to 4095. C++98 does not specify a normative
4209 minimum maximum, so we do not diagnose overlength strings in C++@.

4211 This option is implied by @option{-pedantic}, and can be disabled with
4212 @option{-Wno-overlength-strings}.
4213 @end table

4215 @node Debugging Options
4216 @section Options for Debugging Your Program or GCC
4217 @cindex options, debugging
4218 @cindex debugging information options

4220 GCC has various special options that are used for debugging
4221 either your program or GCC:

4223 @table @gcctabopt
4224 @item -g
4225 @opindex g
4226 Produce debugging information in the operating system’s native format
4227 (stabs, COFF, XCOFF, or DWARF 2)@. GDB can work with this debugging
4228 information.

4230 On most systems that use stabs format, @option{-g} enables use of extra
4231 debugging information that only GDB can use; this extra information
4232 makes debugging work better in GDB but will probably make other debuggers
4233 crash or
4234 refuse to read the program. If you want to control for certain whether
4235 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
4236 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).

4238 GCC allows you to use @option{-g} with
4239 @option{-O}. The shortcuts taken by optimized code may occasionally
4240 produce surprising results: some variables you declared may not exist
4241 at all; flow of control may briefly move where you did not expect it;
4242 some statements may not be executed because they compute constant
4243 results or their values were already at hand; some statements may
4244 execute in different places because they were moved out of loops.

4246 Nevertheless it proves possible to debug optimized output. This makes
4247 it reasonable to use the optimizer for programs that might have bugs.

new/gcc/doc/invoke.texi 23

4249 The following options are useful when GCC is generated with the
4250 capability for more than one debugging format.

4252 @item -ggdb
4253 @opindex ggdb
4254 Produce debugging information for use by GDB@. This means to use the
4255 most expressive format available (DWARF 2, stabs, or the native format
4256 if neither of those are supported), including GDB extensions if at all
4257 possible.

4259 @item -gstabs
4260 @opindex gstabs
4261 Produce debugging information in stabs format (if that is supported),
4262 without GDB extensions. This is the format used by DBX on most BSD
4263 systems. On MIPS, Alpha and System V Release 4 systems this option
4264 produces stabs debugging output which is not understood by DBX or SDB@.
4265 On System V Release 4 systems this option requires the GNU assembler.

4267 @item -feliminate-unused-debug-symbols
4268 @opindex feliminate-unused-debug-symbols
4269 Produce debugging information in stabs format (if that is supported),
4270 for only symbols that are actually used.

4272 @item -femit-class-debug-always
4273 Instead of emitting debugging information for a C++ class in only one
4274 object file, emit it in all object files using the class. This option
4275 should be used only with debuggers that are unable to handle the way GCC
4276 normally emits debugging information for classes because using this
4277 option will increase the size of debugging information by as much as a
4278 factor of two.

4280 @item -gstabs+
4281 @opindex gstabs+
4282 Produce debugging information in stabs format (if that is supported),
4283 using GNU extensions understood only by the GNU debugger (GDB)@. The
4284 use of these extensions is likely to make other debuggers crash or
4285 refuse to read the program.

4287 @item -gcoff
4288 @opindex gcoff
4289 Produce debugging information in COFF format (if that is supported).
4290 This is the format used by SDB on most System V systems prior to
4291 System V Release 4.

4293 @item -gxcoff
4294 @opindex gxcoff
4295 Produce debugging information in XCOFF format (if that is supported).
4296 This is the format used by the DBX debugger on IBM RS/6000 systems.

4298 @item -gxcoff+
4299 @opindex gxcoff+
4300 Produce debugging information in XCOFF format (if that is supported),
4301 using GNU extensions understood only by the GNU debugger (GDB)@. The
4302 use of these extensions is likely to make other debuggers crash or
4303 refuse to read the program, and may cause assemblers other than the GNU
4304 assembler (GAS) to fail with an error.

4306 @item -gdwarf-2
4307 @opindex gdwarf-2
4308 Produce debugging information in DWARF version 2 format (if that is
4309 supported). This is the format used by DBX on IRIX 6. With this
4310 option, GCC uses features of DWARF version 3 when they are useful;
4311 version 3 is upward compatible with version 2, but may still cause
4312 problems for older debuggers.

4314 @item -gvms

new/gcc/doc/invoke.texi 24

4315 @opindex gvms
4316 Produce debugging information in VMS debug format (if that is
4317 supported). This is the format used by DEBUG on VMS systems.

4319 @item -g@var{level}
4320 @itemx -ggdb@var{level}
4321 @itemx -gstabs@var{level}
4322 @itemx -gcoff@var{level}
4323 @itemx -gxcoff@var{level}
4324 @itemx -gvms@var{level}
4325 Request debugging information and also use @var{level} to specify how
4326 much information. The default level is 2.

4328 Level 0 produces no debug information at all. Thus, @option{-g0} negates
4329 @option{-g}.

4331 Level 1 produces minimal information, enough for making backtraces in
4332 parts of the program that you don’t plan to debug. This includes
4333 descriptions of functions and external variables, but no information
4334 about local variables and no line numbers.

4336 Level 3 includes extra information, such as all the macro definitions
4337 present in the program. Some debuggers support macro expansion when
4338 you use @option{-g3}.

4340 @option{-gdwarf-2} does not accept a concatenated debug level, because
4341 GCC used to support an option @option{-gdwarf} that meant to generate
4342 debug information in version 1 of the DWARF format (which is very
4343 different from version 2), and it would have been too confusing. That
4344 debug format is long obsolete, but the option cannot be changed now.
4345 Instead use an additional @option{-g@var{level}} option to change the
4346 debug level for DWARF2.

4348 @item -feliminate-dwarf2-dups
4349 @opindex feliminate-dwarf2-dups
4350 Compress DWARF2 debugging information by eliminating duplicated
4351 information about each symbol. This option only makes sense when
4352 generating DWARF2 debugging information with @option{-gdwarf-2}.

4354 @item -femit-struct-debug-baseonly
4355 Emit debug information for struct-like types
4356 only when the base name of the compilation source file
4357 matches the base name of file in which the struct was defined.

4359 This option substantially reduces the size of debugging information,
4360 but at significant potential loss in type information to the debugger.
4361 See @option{-femit-struct-debug-reduced} for a less aggressive option.
4362 See @option{-femit-struct-debug-detailed} for more detailed control.

4364 This option works only with DWARF 2.

4366 @item -femit-struct-debug-reduced
4367 Emit debug information for struct-like types
4368 only when the base name of the compilation source file
4369 matches the base name of file in which the type was defined,
4370 unless the struct is a template or defined in a system header.

4372 This option significantly reduces the size of debugging information,
4373 with some potential loss in type information to the debugger.
4374 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
4375 See @option{-femit-struct-debug-detailed} for more detailed control.

4377 This option works only with DWARF 2.

4379 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
4380 Specify the struct-like types

new/gcc/doc/invoke.texi 25

4381 for which the compiler will generate debug information.
4382 The intent is to reduce duplicate struct debug information
4383 between different object files within the same program.

4385 This option is a detailed version of
4386 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
4387 which will serve for most needs.

4389 A specification has the syntax
4390 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{b

4392 The optional first word limits the specification to
4393 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
4394 A struct type is used directly when it is the type of a variable, member.
4395 Indirect uses arise through pointers to structs.
4396 That is, when use of an incomplete struct would be legal, the use is indirect.
4397 An example is
4398 @samp{struct one direct; struct two * indirect;}.

4400 The optional second word limits the specification to
4401 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
4402 Generic structs are a bit complicated to explain.
4403 For C++, these are non-explicit specializations of template classes,
4404 or non-template classes within the above.
4405 Other programming languages have generics,
4406 but @samp{-femit-struct-debug-detailed} does not yet implement them.

4408 The third word specifies the source files for those
4409 structs for which the compiler will emit debug information.
4410 The values @samp{none} and @samp{any} have the normal meaning.
4411 The value @samp{base} means that
4412 the base of name of the file in which the type declaration appears
4413 must match the base of the name of the main compilation file.
4414 In practice, this means that
4415 types declared in @file{foo.c} and @file{foo.h} will have debug information,
4416 but types declared in other header will not.
4417 The value @samp{sys} means those types satisfying @samp{base}
4418 or declared in system or compiler headers.

4420 You may need to experiment to determine the best settings for your application.

4422 The default is @samp{-femit-struct-debug-detailed=all}.

4424 This option works only with DWARF 2.

4426 @item -fno-merge-debug-strings
4427 @opindex fmerge-debug-strings
4428 @opindex fno-merge-debug-strings
4429 Direct the linker to not merge together strings in the debugging
4430 information which are identical in different object files. Merging is
4431 not supported by all assemblers or linkers. Merging decreases the size
4432 of the debug information in the output file at the cost of increasing
4433 link processing time. Merging is enabled by default.

4435 @item -fdebug-prefix-map=@var{old}=@var{new}
4436 @opindex fdebug-prefix-map
4437 When compiling files in directory @file{@var{old}}, record debugging
4438 information describing them as in @file{@var{new}} instead.

4440 @item -fno-dwarf2-cfi-asm
4441 @opindex fdwarf2-cfi-asm
4442 @opindex fno-dwarf2-cfi-asm
4443 Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section
4444 instead of using GAS @code{.cfi_*} directives.

4446 @cindex @command{prof}

new/gcc/doc/invoke.texi 26

4447 @item -p
4448 @opindex p
4449 Generate extra code to write profile information suitable for the
4450 analysis program @command{prof}. You must use this option when compiling
4451 the source files you want data about, and you must also use it when
4452 linking.

4454 @cindex @command{gprof}
4455 @item -pg
4456 @opindex pg
4457 Generate extra code to write profile information suitable for the
4458 analysis program @command{gprof}. You must use this option when compiling
4459 the source files you want data about, and you must also use it when
4460 linking.

4462 @item -Q
4463 @opindex Q
4464 Makes the compiler print out each function name as it is compiled, and
4465 print some statistics about each pass when it finishes.

4467 @item -ftime-report
4468 @opindex ftime-report
4469 Makes the compiler print some statistics about the time consumed by each
4470 pass when it finishes.

4472 @item -fmem-report
4473 @opindex fmem-report
4474 Makes the compiler print some statistics about permanent memory
4475 allocation when it finishes.

4477 @item -fpre-ipa-mem-report
4478 @opindex fpre-ipa-mem-report
4479 @item -fpost-ipa-mem-report
4480 @opindex fpost-ipa-mem-report
4481 Makes the compiler print some statistics about permanent memory
4482 allocation before or after interprocedural optimization.

4484 @item -fprofile-arcs
4485 @opindex fprofile-arcs
4486 Add code so that program flow @dfn{arcs} are instrumented. During
4487 execution the program records how many times each branch and call is
4488 executed and how many times it is taken or returns. When the compiled
4489 program exits it saves this data to a file called
4490 @file{@var{auxname}.gcda} for each source file. The data may be used for
4491 profile-directed optimizations (@option{-fbranch-probabilities}), or for
4492 test coverage analysis (@option{-ftest-coverage}). Each object file’s
4493 @var{auxname} is generated from the name of the output file, if
4494 explicitly specified and it is not the final executable, otherwise it is
4495 the basename of the source file. In both cases any suffix is removed
4496 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
4497 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
4498 @xref{Cross-profiling}.

4500 @cindex @command{gcov}
4501 @item --coverage
4502 @opindex coverage

4504 This option is used to compile and link code instrumented for coverage
4505 analysis. The option is a synonym for @option{-fprofile-arcs}
4506 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
4507 linking). See the documentation for those options for more details.

4509 @itemize

4511 @item
4512 Compile the source files with @option{-fprofile-arcs} plus optimization

new/gcc/doc/invoke.texi 27

4513 and code generation options. For test coverage analysis, use the
4514 additional @option{-ftest-coverage} option. You do not need to profile
4515 every source file in a program.

4517 @item
4518 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
4519 (the latter implies the former).

4521 @item
4522 Run the program on a representative workload to generate the arc profile
4523 information. This may be repeated any number of times. You can run
4524 concurrent instances of your program, and provided that the file system
4525 supports locking, the data files will be correctly updated. Also
4526 @code{fork} calls are detected and correctly handled (double counting
4527 will not happen).

4529 @item
4530 For profile-directed optimizations, compile the source files again with
4531 the same optimization and code generation options plus
4532 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
4533 Control Optimization}).

4535 @item
4536 For test coverage analysis, use @command{gcov} to produce human readable
4537 information from the @file{.gcno} and @file{.gcda} files. Refer to the
4538 @command{gcov} documentation for further information.

4540 @end itemize

4542 With @option{-fprofile-arcs}, for each function of your program GCC
4543 creates a program flow graph, then finds a spanning tree for the graph.
4544 Only arcs that are not on the spanning tree have to be instrumented: the
4545 compiler adds code to count the number of times that these arcs are
4546 executed. When an arc is the only exit or only entrance to a block, the
4547 instrumentation code can be added to the block; otherwise, a new basic
4548 block must be created to hold the instrumentation code.

4550 @need 2000
4551 @item -ftest-coverage
4552 @opindex ftest-coverage
4553 Produce a notes file that the @command{gcov} code-coverage utility
4554 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
4555 show program coverage. Each source file’s note file is called
4556 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
4557 above for a description of @var{auxname} and instructions on how to
4558 generate test coverage data. Coverage data will match the source files
4559 more closely, if you do not optimize.

4561 @item -fdbg-cnt-list
4562 @opindex fdbg-cnt-list
4563 Print the name and the counter upperbound for all debug counters.

4565 @item -fdbg-cnt=@var{counter-value-list}
4566 @opindex fdbg-cnt
4567 Set the internal debug counter upperbound. @var{counter-value-list}
4568 is a comma-separated list of @var{name}:@var{value} pairs
4569 which sets the upperbound of each debug counter @var{name} to @var{value}.
4570 All debug counters have the initial upperbound of @var{UINT_MAX},
4571 thus dbg_cnt() returns true always unless the upperbound is set by this option.
4572 e.g. With -fdbg-cnt=dce:10,tail_call:0
4573 dbg_cnt(dce) will return true only for first 10 invocations
4574 and dbg_cnt(tail_call) will return false always.

4576 @item -d@var{letters}
4577 @itemx -fdump-rtl-@var{pass}
4578 @opindex d

new/gcc/doc/invoke.texi 28

4579 Says to make debugging dumps during compilation at times specified by
4580 @var{letters}. This is used for debugging the RTL-based passes of the
4581 compiler. The file names for most of the dumps are made by appending a
4582 pass number and a word to the @var{dumpname}. @var{dumpname} is generated
4583 from the name of the output file, if explicitly specified and it is not
4584 an executable, otherwise it is the basename of the source file. These
4585 switches may have different effects when @option{-E} is used for
4586 preprocessing.

4588 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
4589 @option{-d} option @var{letters}. Here are the possible
4590 letters for use in @var{pass} and @var{letters}, and their meanings:

4592 @table @gcctabopt

4594 @item -fdump-rtl-alignments
4595 @opindex fdump-rtl-alignments
4596 Dump after branch alignments have been computed.

4598 @item -fdump-rtl-asmcons
4599 @opindex fdump-rtl-asmcons
4600 Dump after fixing rtl statements that have unsatisfied in/out constraints.

4602 @item -fdump-rtl-auto_inc_dec
4603 @opindex fdump-rtl-auto_inc_dec
4604 Dump after auto-inc-dec discovery. This pass is only run on
4605 architectures that have auto inc or auto dec instructions.

4607 @item -fdump-rtl-barriers
4608 @opindex fdump-rtl-barriers
4609 Dump after cleaning up the barrier instructions.

4611 @item -fdump-rtl-bbpart
4612 @opindex fdump-rtl-bbpart
4613 Dump after partitioning hot and cold basic blocks.

4615 @item -fdump-rtl-bbro
4616 @opindex fdump-rtl-bbro
4617 Dump after block reordering.

4619 @item -fdump-rtl-btl1
4620 @itemx -fdump-rtl-btl2
4621 @opindex fdump-rtl-btl2
4622 @opindex fdump-rtl-btl2
4623 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
4624 after the two branch
4625 target load optimization passes.

4627 @item -fdump-rtl-bypass
4628 @opindex fdump-rtl-bypass
4629 Dump after jump bypassing and control flow optimizations.

4631 @item -fdump-rtl-combine
4632 @opindex fdump-rtl-combine
4633 Dump after the RTL instruction combination pass.

4635 @item -fdump-rtl-compgotos
4636 @opindex fdump-rtl-compgotos
4637 Dump after duplicating the computed gotos.

4639 @item -fdump-rtl-ce1
4640 @itemx -fdump-rtl-ce2
4641 @itemx -fdump-rtl-ce3
4642 @opindex fdump-rtl-ce1
4643 @opindex fdump-rtl-ce2
4644 @opindex fdump-rtl-ce3

new/gcc/doc/invoke.texi 29

4645 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
4646 @option{-fdump-rtl-ce3} enable dumping after the three
4647 if conversion passes.

4649 @itemx -fdump-rtl-cprop_hardreg
4650 @opindex fdump-rtl-cprop_hardreg
4651 Dump after hard register copy propagation.

4653 @itemx -fdump-rtl-csa
4654 @opindex fdump-rtl-csa
4655 Dump after combining stack adjustments.

4657 @item -fdump-rtl-cse1
4658 @itemx -fdump-rtl-cse2
4659 @opindex fdump-rtl-cse1
4660 @opindex fdump-rtl-cse2
4661 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
4662 the two common sub-expression elimination passes.

4664 @itemx -fdump-rtl-dce
4665 @opindex fdump-rtl-dce
4666 Dump after the standalone dead code elimination passes.

4668 @itemx -fdump-rtl-dbr
4669 @opindex fdump-rtl-dbr
4670 Dump after delayed branch scheduling.

4672 @item -fdump-rtl-dce1
4673 @itemx -fdump-rtl-dce2
4674 @opindex fdump-rtl-dce1
4675 @opindex fdump-rtl-dce2
4676 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
4677 the two dead store elimination passes.

4679 @item -fdump-rtl-eh
4680 @opindex fdump-rtl-eh
4681 Dump after finalization of EH handling code.

4683 @item -fdump-rtl-eh_ranges
4684 @opindex fdump-rtl-eh_ranges
4685 Dump after conversion of EH handling range regions.

4687 @item -fdump-rtl-expand
4688 @opindex fdump-rtl-expand
4689 Dump after RTL generation.

4691 @item -fdump-rtl-fwprop1
4692 @itemx -fdump-rtl-fwprop2
4693 @opindex fdump-rtl-fwprop1
4694 @opindex fdump-rtl-fwprop2
4695 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
4696 dumping after the two forward propagation passes.

4698 @item -fdump-rtl-gcse1
4699 @itemx -fdump-rtl-gcse2
4700 @opindex fdump-rtl-gcse1
4701 @opindex fdump-rtl-gcse2
4702 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
4703 after global common subexpression elimination.

4705 @item -fdump-rtl-init-regs
4706 @opindex fdump-rtl-init-regs
4707 Dump after the initialization of the registers.

4709 @item -fdump-rtl-initvals
4710 @opindex fdump-rtl-initvals

new/gcc/doc/invoke.texi 30

4711 Dump after the computation of the initial value sets.

4713 @itemx -fdump-rtl-into_cfglayout
4714 @opindex fdump-rtl-into_cfglayout
4715 Dump after converting to cfglayout mode.

4717 @item -fdump-rtl-ira
4718 @opindex fdump-rtl-ira
4719 Dump after iterated register allocation.

4721 @item -fdump-rtl-jump
4722 @opindex fdump-rtl-jump
4723 Dump after the second jump optimization.

4725 @item -fdump-rtl-loop2
4726 @opindex fdump-rtl-loop2
4727 @option{-fdump-rtl-loop2} enables dumping after the rtl
4728 loop optimization passes.

4730 @item -fdump-rtl-mach
4731 @opindex fdump-rtl-mach
4732 Dump after performing the machine dependent reorganization pass, if that
4733 pass exists.

4735 @item -fdump-rtl-mode_sw
4736 @opindex fdump-rtl-mode_sw
4737 Dump after removing redundant mode switches.

4739 @item -fdump-rtl-rnreg
4740 @opindex fdump-rtl-rnreg
4741 Dump after register renumbering.

4743 @itemx -fdump-rtl-outof_cfglayout
4744 @opindex fdump-rtl-outof_cfglayout
4745 Dump after converting from cfglayout mode.

4747 @item -fdump-rtl-peephole2
4748 @opindex fdump-rtl-peephole2
4749 Dump after the peephole pass.

4751 @item -fdump-rtl-postreload
4752 @opindex fdump-rtl-postreload
4753 Dump after post-reload optimizations.

4755 @itemx -fdump-rtl-pro_and_epilogue
4756 @opindex fdump-rtl-pro_and_epilogue
4757 Dump after generating the function pro and epilogues.

4759 @item -fdump-rtl-regmove
4760 @opindex fdump-rtl-regmove
4761 Dump after the register move pass.

4763 @item -fdump-rtl-sched1
4764 @itemx -fdump-rtl-sched2
4765 @opindex fdump-rtl-sched1
4766 @opindex fdump-rtl-sched2
4767 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
4768 after the basic block scheduling passes.

4770 @item -fdump-rtl-see
4771 @opindex fdump-rtl-see
4772 Dump after sign extension elimination.

4774 @item -fdump-rtl-seqabstr
4775 @opindex fdump-rtl-seqabstr
4776 Dump after common sequence discovery.

new/gcc/doc/invoke.texi 31

4778 @item -fdump-rtl-shorten
4779 @opindex fdump-rtl-shorten
4780 Dump after shortening branches.

4782 @item -fdump-rtl-sibling
4783 @opindex fdump-rtl-sibling
4784 Dump after sibling call optimizations.

4786 @item -fdump-rtl-split1
4787 @itemx -fdump-rtl-split2
4788 @itemx -fdump-rtl-split3
4789 @itemx -fdump-rtl-split4
4790 @itemx -fdump-rtl-split5
4791 @opindex fdump-rtl-split1
4792 @opindex fdump-rtl-split2
4793 @opindex fdump-rtl-split3
4794 @opindex fdump-rtl-split4
4795 @opindex fdump-rtl-split5
4796 @option{-fdump-rtl-split1}, @option{-fdump-rtl-split2},
4797 @option{-fdump-rtl-split3}, @option{-fdump-rtl-split4} and
4798 @option{-fdump-rtl-split5} enable dumping after five rounds of
4799 instruction splitting.

4801 @item -fdump-rtl-sms
4802 @opindex fdump-rtl-sms
4803 Dump after modulo scheduling. This pass is only run on some
4804 architectures.

4806 @item -fdump-rtl-stack
4807 @opindex fdump-rtl-stack
4808 Dump after conversion from GCC’s "flat register file" registers to the
4809 x87’s stack-like registers. This pass is only run on x86 variants.

4811 @item -fdump-rtl-subreg1
4812 @itemx -fdump-rtl-subreg2
4813 @opindex fdump-rtl-subreg1
4814 @opindex fdump-rtl-subreg2
4815 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
4816 the two subreg expansion passes.

4818 @item -fdump-rtl-unshare
4819 @opindex fdump-rtl-unshare
4820 Dump after all rtl has been unshared.

4822 @item -fdump-rtl-vartrack
4823 @opindex fdump-rtl-vartrack
4824 Dump after variable tracking.

4826 @item -fdump-rtl-vregs
4827 @opindex fdump-rtl-vregs
4828 Dump after converting virtual registers to hard registers.

4830 @item -fdump-rtl-web
4831 @opindex fdump-rtl-web
4832 Dump after live range splitting.

4834 @item -fdump-rtl-regclass
4835 @itemx -fdump-rtl-subregs_of_mode_init
4836 @itemx -fdump-rtl-subregs_of_mode_finish
4837 @itemx -fdump-rtl-dfinit
4838 @itemx -fdump-rtl-dfinish
4839 @opindex fdump-rtl-regclass
4840 @opindex fdump-rtl-subregs_of_mode_init
4841 @opindex fdump-rtl-subregs_of_mode_finish
4842 @opindex fdump-rtl-dfinit

new/gcc/doc/invoke.texi 32

4843 @opindex fdump-rtl-dfinish
4844 These dumps are defined but always produce empty files.

4846 @item -fdump-rtl-all
4847 @opindex fdump-rtl-all
4848 Produce all the dumps listed above.

4850 @item -dA
4851 @opindex dA
4852 Annotate the assembler output with miscellaneous debugging information.

4854 @item -dD
4855 @opindex dD
4856 Dump all macro definitions, at the end of preprocessing, in addition to
4857 normal output.

4859 @item -dH
4860 @opindex dH
4861 Produce a core dump whenever an error occurs.

4863 @item -dm
4864 @opindex dm
4865 Print statistics on memory usage, at the end of the run, to
4866 standard error.

4868 @item -dp
4869 @opindex dp
4870 Annotate the assembler output with a comment indicating which
4871 pattern and alternative was used. The length of each instruction is
4872 also printed.

4874 @item -dP
4875 @opindex dP
4876 Dump the RTL in the assembler output as a comment before each instruction.
4877 Also turns on @option{-dp} annotation.

4879 @item -dv
4880 @opindex dv
4881 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
4882 dump a representation of the control flow graph suitable for viewing with VCG
4883 to @file{@var{file}.@var{pass}.vcg}.

4885 @item -dx
4886 @opindex dx
4887 Just generate RTL for a function instead of compiling it. Usually used
4888 with @option{-fdump-rtl-expand}.

4890 @item -dy
4891 @opindex dy
4892 Dump debugging information during parsing, to standard error.
4893 @end table

4895 @item -fdump-noaddr
4896 @opindex fdump-noaddr
4897 When doing debugging dumps, suppress address output. This makes it more
4898 feasible to use diff on debugging dumps for compiler invocations with
4899 different compiler binaries and/or different
4900 text / bss / data / heap / stack / dso start locations.

4902 @item -fdump-unnumbered
4903 @opindex fdump-unnumbered
4904 When doing debugging dumps, suppress instruction numbers and address output.
4905 This makes it more feasible to use diff on debugging dumps for compiler
4906 invocations with different options, in particular with and without
4907 @option{-g}.

new/gcc/doc/invoke.texi 33

4909 @item -fdump-translation-unit @r{(C++ only)}
4910 @itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
4911 @opindex fdump-translation-unit
4912 Dump a representation of the tree structure for the entire translation
4913 unit to a file. The file name is made by appending @file{.tu} to the
4914 source file name. If the @samp{-@var{options}} form is used, @var{options}
4915 controls the details of the dump as described for the
4916 @option{-fdump-tree} options.

4918 @item -fdump-class-hierarchy @r{(C++ only)}
4919 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
4920 @opindex fdump-class-hierarchy
4921 Dump a representation of each class’s hierarchy and virtual function
4922 table layout to a file. The file name is made by appending @file{.class}
4923 to the source file name. If the @samp{-@var{options}} form is used,
4924 @var{options} controls the details of the dump as described for the
4925 @option{-fdump-tree} options.

4927 @item -fdump-ipa-@var{switch}
4928 @opindex fdump-ipa
4929 Control the dumping at various stages of inter-procedural analysis
4930 language tree to a file. The file name is generated by appending a switch
4931 specific suffix to the source file name. The following dumps are possible:

4933 @table @samp
4934 @item all
4935 Enables all inter-procedural analysis dumps.

4937 @item cgraph
4938 Dumps information about call-graph optimization, unused function removal,
4939 and inlining decisions.

4941 @item inline
4942 Dump after function inlining.

4944 @end table

4946 @item -fdump-statistics-@var{option}
4947 @opindex -fdump-statistics
4948 Enable and control dumping of pass statistics in a separate file. The
4949 file name is generated by appending a suffix ending in @samp{.statistics}
4950 to the source file name. If the @samp{-@var{option}} form is used,
4951 @samp{-stats} will cause counters to be summed over the whole compilation unit
4952 while @samp{-details} will dump every event as the passes generate them.
4953 The default with no option is to sum counters for each function compiled.

4955 @item -fdump-tree-@var{switch}
4956 @itemx -fdump-tree-@var{switch}-@var{options}
4957 @opindex fdump-tree
4958 Control the dumping at various stages of processing the intermediate
4959 language tree to a file. The file name is generated by appending a switch
4960 specific suffix to the source file name. If the @samp{-@var{options}}
4961 form is used, @var{options} is a list of @samp{-} separated options that
4962 control the details of the dump. Not all options are applicable to all
4963 dumps, those which are not meaningful will be ignored. The following
4964 options are available

4966 @table @samp
4967 @item address
4968 Print the address of each node. Usually this is not meaningful as it
4969 changes according to the environment and source file. Its primary use
4970 is for tying up a dump file with a debug environment.
4971 @item slim
4972 Inhibit dumping of members of a scope or body of a function merely
4973 because that scope has been reached. Only dump such items when they
4974 are directly reachable by some other path. When dumping pretty-printed

new/gcc/doc/invoke.texi 34

4975 trees, this option inhibits dumping the bodies of control structures.
4976 @item raw
4977 Print a raw representation of the tree. By default, trees are
4978 pretty-printed into a C-like representation.
4979 @item details
4980 Enable more detailed dumps (not honored by every dump option).
4981 @item stats
4982 Enable dumping various statistics about the pass (not honored by every dump
4983 option).
4984 @item blocks
4985 Enable showing basic block boundaries (disabled in raw dumps).
4986 @item vops
4987 Enable showing virtual operands for every statement.
4988 @item lineno
4989 Enable showing line numbers for statements.
4990 @item uid
4991 Enable showing the unique ID (@code{DECL_UID}) for each variable.
4992 @item verbose
4993 Enable showing the tree dump for each statement.
4994 @item all
4995 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
4996 and @option{lineno}.
4997 @end table

4999 The following tree dumps are possible:
5000 @table @samp

5002 @item original
5003 Dump before any tree based optimization, to @file{@var{file}.original}.

5005 @item optimized
5006 Dump after all tree based optimization, to @file{@var{file}.optimized}.

5008 @item gimple
5009 @opindex fdump-tree-gimple
5010 Dump each function before and after the gimplification pass to a file. The
5011 file name is made by appending @file{.gimple} to the source file name.

5013 @item cfg
5014 @opindex fdump-tree-cfg
5015 Dump the control flow graph of each function to a file. The file name is
5016 made by appending @file{.cfg} to the source file name.

5018 @item vcg
5019 @opindex fdump-tree-vcg
5020 Dump the control flow graph of each function to a file in VCG format. The
5021 file name is made by appending @file{.vcg} to the source file name. Note
5022 that if the file contains more than one function, the generated file cannot
5023 be used directly by VCG@. You will need to cut and paste each function’s
5024 graph into its own separate file first.

5026 @item ch
5027 @opindex fdump-tree-ch
5028 Dump each function after copying loop headers. The file name is made by
5029 appending @file{.ch} to the source file name.

5031 @item ssa
5032 @opindex fdump-tree-ssa
5033 Dump SSA related information to a file. The file name is made by appending
5034 @file{.ssa} to the source file name.

5036 @item alias
5037 @opindex fdump-tree-alias
5038 Dump aliasing information for each function. The file name is made by
5039 appending @file{.alias} to the source file name.

new/gcc/doc/invoke.texi 35

5041 @item ccp
5042 @opindex fdump-tree-ccp
5043 Dump each function after CCP@. The file name is made by appending
5044 @file{.ccp} to the source file name.

5046 @item storeccp
5047 @opindex fdump-tree-storeccp
5048 Dump each function after STORE-CCP@. The file name is made by appending
5049 @file{.storeccp} to the source file name.

5051 @item pre
5052 @opindex fdump-tree-pre
5053 Dump trees after partial redundancy elimination. The file name is made
5054 by appending @file{.pre} to the source file name.

5056 @item fre
5057 @opindex fdump-tree-fre
5058 Dump trees after full redundancy elimination. The file name is made
5059 by appending @file{.fre} to the source file name.

5061 @item copyprop
5062 @opindex fdump-tree-copyprop
5063 Dump trees after copy propagation. The file name is made
5064 by appending @file{.copyprop} to the source file name.

5066 @item store_copyprop
5067 @opindex fdump-tree-store_copyprop
5068 Dump trees after store copy-propagation. The file name is made
5069 by appending @file{.store_copyprop} to the source file name.

5071 @item dce
5072 @opindex fdump-tree-dce
5073 Dump each function after dead code elimination. The file name is made by
5074 appending @file{.dce} to the source file name.

5076 @item mudflap
5077 @opindex fdump-tree-mudflap
5078 Dump each function after adding mudflap instrumentation. The file name is
5079 made by appending @file{.mudflap} to the source file name.

5081 @item sra
5082 @opindex fdump-tree-sra
5083 Dump each function after performing scalar replacement of aggregates. The
5084 file name is made by appending @file{.sra} to the source file name.

5086 @item sink
5087 @opindex fdump-tree-sink
5088 Dump each function after performing code sinking. The file name is made
5089 by appending @file{.sink} to the source file name.

5091 @item dom
5092 @opindex fdump-tree-dom
5093 Dump each function after applying dominator tree optimizations. The file
5094 name is made by appending @file{.dom} to the source file name.

5096 @item dse
5097 @opindex fdump-tree-dse
5098 Dump each function after applying dead store elimination. The file
5099 name is made by appending @file{.dse} to the source file name.

5101 @item phiopt
5102 @opindex fdump-tree-phiopt
5103 Dump each function after optimizing PHI nodes into straightline code. The file
5104 name is made by appending @file{.phiopt} to the source file name.

5106 @item forwprop

new/gcc/doc/invoke.texi 36

5107 @opindex fdump-tree-forwprop
5108 Dump each function after forward propagating single use variables. The file
5109 name is made by appending @file{.forwprop} to the source file name.

5111 @item copyrename
5112 @opindex fdump-tree-copyrename
5113 Dump each function after applying the copy rename optimization. The file
5114 name is made by appending @file{.copyrename} to the source file name.

5116 @item nrv
5117 @opindex fdump-tree-nrv
5118 Dump each function after applying the named return value optimization on
5119 generic trees. The file name is made by appending @file{.nrv} to the source
5120 file name.

5122 @item vect
5123 @opindex fdump-tree-vect
5124 Dump each function after applying vectorization of loops. The file name is
5125 made by appending @file{.vect} to the source file name.

5127 @item vrp
5128 @opindex fdump-tree-vrp
5129 Dump each function after Value Range Propagation (VRP). The file name
5130 is made by appending @file{.vrp} to the source file name.

5132 @item all
5133 @opindex fdump-tree-all
5134 Enable all the available tree dumps with the flags provided in this option.
5135 @end table

5137 @item -ftree-vectorizer-verbose=@var{n}
5138 @opindex ftree-vectorizer-verbose
5139 This option controls the amount of debugging output the vectorizer prints.
5140 This information is written to standard error, unless
5141 @option{-fdump-tree-all} or @option{-fdump-tree-vect} is specified,
5142 in which case it is output to the usual dump listing file, @file{.vect}.
5143 For @var{n}=0 no diagnostic information is reported.
5144 If @var{n}=1 the vectorizer reports each loop that got vectorized,
5145 and the total number of loops that got vectorized.
5146 If @var{n}=2 the vectorizer also reports non-vectorized loops that passed
5147 the first analysis phase (vect_analyze_loop_form) - i.e.@: countable,
5148 inner-most, single-bb, single-entry/exit loops. This is the same verbosity
5149 level that @option{-fdump-tree-vect-stats} uses.
5150 Higher verbosity levels mean either more information dumped for each
5151 reported loop, or same amount of information reported for more loops:
5152 If @var{n}=3, alignment related information is added to the reports.
5153 If @var{n}=4, data-references related information (e.g.@: memory dependences,
5154 memory access-patterns) is added to the reports.
5155 If @var{n}=5, the vectorizer reports also non-vectorized inner-most loops
5156 that did not pass the first analysis phase (i.e., may not be countable, or
5157 may have complicated control-flow).
5158 If @var{n}=6, the vectorizer reports also non-vectorized nested loops.
5159 For @var{n}=7, all the information the vectorizer generates during its
5160 analysis and transformation is reported. This is the same verbosity level
5161 that @option{-fdump-tree-vect-details} uses.

5163 @item -frandom-seed=@var{string}
5164 @opindex frandom-string
5165 This option provides a seed that GCC uses when it would otherwise use
5166 random numbers. It is used to generate certain symbol names
5167 that have to be different in every compiled file. It is also used to
5168 place unique stamps in coverage data files and the object files that
5169 produce them. You can use the @option{-frandom-seed} option to produce
5170 reproducibly identical object files.

5172 The @var{string} should be different for every file you compile.

new/gcc/doc/invoke.texi 37

5174 @item -fsched-verbose=@var{n}
5175 @opindex fsched-verbose
5176 On targets that use instruction scheduling, this option controls the
5177 amount of debugging output the scheduler prints. This information is
5178 written to standard error, unless @option{-fdump-rtl-sched1} or
5179 @option{-fdump-rtl-sched2} is specified, in which case it is output
5180 to the usual dump listing file, @file{.sched} or @file{.sched2}
5181 respectively. However for @var{n} greater than nine, the output is
5182 always printed to standard error.

5184 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
5185 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
5186 For @var{n} greater than one, it also output basic block probabilities,
5187 detailed ready list information and unit/insn info. For @var{n} greater
5188 than two, it includes RTL at abort point, control-flow and regions info.
5189 And for @var{n} over four, @option{-fsched-verbose} also includes
5190 dependence info.

5192 @item -save-temps
5193 @opindex save-temps
5194 Store the usual ‘‘temporary’’ intermediate files permanently; place them
5195 in the current directory and name them based on the source file. Thus,
5196 compiling @file{foo.c} with @samp{-c -save-temps} would produce files
5197 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
5198 preprocessed @file{foo.i} output file even though the compiler now
5199 normally uses an integrated preprocessor.

5201 When used in combination with the @option{-x} command line option,
5202 @option{-save-temps} is sensible enough to avoid over writing an
5203 input source file with the same extension as an intermediate file.
5204 The corresponding intermediate file may be obtained by renaming the
5205 source file before using @option{-save-temps}.

5207 @item -time
5208 @opindex time
5209 Report the CPU time taken by each subprocess in the compilation
5210 sequence. For C source files, this is the compiler proper and assembler
5211 (plus the linker if linking is done). The output looks like this:

5213 @smallexample
5214 # cc1 0.12 0.01
5215 # as 0.00 0.01
5216 @end smallexample

5218 The first number on each line is the ‘‘user time’’, that is time spent
5219 executing the program itself. The second number is ‘‘system time’’,
5220 time spent executing operating system routines on behalf of the program.
5221 Both numbers are in seconds.

5223 @item -fvar-tracking
5224 @opindex fvar-tracking
5225 Run variable tracking pass. It computes where variables are stored at each
5226 position in code. Better debugging information is then generated
5227 (if the debugging information format supports this information).

5229 It is enabled by default when compiling with optimization (@option{-Os},
5230 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
5231 the debug info format supports it.

5233 @item -print-file-name=@var{library}
5234 @opindex print-file-name
5235 Print the full absolute name of the library file @var{library} that
5236 would be used when linking---and don’t do anything else. With this
5237 option, GCC does not compile or link anything; it just prints the
5238 file name.

new/gcc/doc/invoke.texi 38

5240 @item -print-multi-directory
5241 @opindex print-multi-directory
5242 Print the directory name corresponding to the multilib selected by any
5243 other switches present in the command line. This directory is supposed
5244 to exist in @env{GCC_EXEC_PREFIX}.

5246 @item -print-multi-lib
5247 @opindex print-multi-lib
5248 Print the mapping from multilib directory names to compiler switches
5249 that enable them. The directory name is separated from the switches by
5250 @samp{;}, and each switch starts with an @samp{@@} instead of the
5251 @samp{-}, without spaces between multiple switches. This is supposed to
5252 ease shell-processing.

5254 @item -print-prog-name=@var{program}
5255 @opindex print-prog-name
5256 Like @option{-print-file-name}, but searches for a program such as @samp{cpp}.

5258 @item -print-libgcc-file-name
5259 @opindex print-libgcc-file-name
5260 Same as @option{-print-file-name=libgcc.a}.

5262 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
5263 but you do want to link with @file{libgcc.a}. You can do

5265 @smallexample
5266 gcc -nostdlib @var{files}@dots{} ‘gcc -print-libgcc-file-name‘
5267 @end smallexample

5269 @item -print-search-dirs
5270 @opindex print-search-dirs
5271 Print the name of the configured installation directory and a list of
5272 program and library directories @command{gcc} will search---and don’t do anythin

5274 This is useful when @command{gcc} prints the error message
5275 @samp{installation problem, cannot exec cpp0: No such file or directory}.
5276 To resolve this you either need to put @file{cpp0} and the other compiler
5277 components where @command{gcc} expects to find them, or you can set the environm
5278 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
5279 Don’t forget the trailing @samp{/}.
5280 @xref{Environment Variables}.

5282 @item -print-sysroot
5283 @opindex print-sysroot
5284 Print the target sysroot directory that will be used during
5285 compilation. This is the target sysroot specified either at configure
5286 time or using the @option{--sysroot} option, possibly with an extra
5287 suffix that depends on compilation options. If no target sysroot is
5288 specified, the option prints nothing.

5290 @item -print-sysroot-headers-suffix
5291 @opindex print-sysroot-headers-suffix
5292 Print the suffix added to the target sysroot when searching for
5293 headers, or give an error if the compiler is not configured with such
5294 a suffix---and don’t do anything else.

5296 @item -dumpmachine
5297 @opindex dumpmachine
5298 Print the compiler’s target machine (for example,
5299 @samp{i686-pc-linux-gnu})---and don’t do anything else.

5301 @item -dumpversion
5302 @opindex dumpversion
5303 Print the compiler version (for example, @samp{3.0})---and don’t do
5304 anything else.

new/gcc/doc/invoke.texi 39

5306 @item -dumpspecs
5307 @opindex dumpspecs
5308 Print the compiler’s built-in specs---and don’t do anything else. (This
5309 is used when GCC itself is being built.) @xref{Spec Files}.

5311 @item -feliminate-unused-debug-types
5312 @opindex feliminate-unused-debug-types
5313 Normally, when producing DWARF2 output, GCC will emit debugging
5314 information for all types declared in a compilation
5315 unit, regardless of whether or not they are actually used
5316 in that compilation unit. Sometimes this is useful, such as
5317 if, in the debugger, you want to cast a value to a type that is
5318 not actually used in your program (but is declared). More often,
5319 however, this results in a significant amount of wasted space.
5320 With this option, GCC will avoid producing debug symbol output
5321 for types that are nowhere used in the source file being compiled.
5322 @end table

5324 @node Optimize Options
5325 @section Options That Control Optimization
5326 @cindex optimize options
5327 @cindex options, optimization

5329 These options control various sorts of optimizations.

5331 Without any optimization option, the compiler’s goal is to reduce the
5332 cost of compilation and to make debugging produce the expected
5333 results. Statements are independent: if you stop the program with a
5334 breakpoint between statements, you can then assign a new value to any
5335 variable or change the program counter to any other statement in the
5336 function and get exactly the results you would expect from the source
5337 code.

5339 Turning on optimization flags makes the compiler attempt to improve
5340 the performance and/or code size at the expense of compilation time
5341 and possibly the ability to debug the program.

5343 The compiler performs optimization based on the knowledge it has of the
5344 program. Compiling multiple files at once to a single output file mode allows
5345 the compiler to use information gained from all of the files when compiling
5346 each of them.

5348 Not all optimizations are controlled directly by a flag. Only
5349 optimizations that have a flag are listed.

5351 @table @gcctabopt
5352 @item -O
5353 @itemx -O1
5354 @opindex O
5355 @opindex O1
5356 Optimize. Optimizing compilation takes somewhat more time, and a lot
5357 more memory for a large function.

5359 With @option{-O}, the compiler tries to reduce code size and execution
5360 time, without performing any optimizations that take a great deal of
5361 compilation time.

5363 @option{-O} turns on the following optimization flags:
5364 @gccoptlist{
5365 -fauto-inc-dec @gol
5366 -fcprop-registers @gol
5367 -fdce @gol
5368 -fdefer-pop @gol
5369 -fdelayed-branch @gol
5370 -fdse @gol

new/gcc/doc/invoke.texi 40

5371 -fguess-branch-probability @gol
5372 -fif-conversion2 @gol
5373 -fif-conversion @gol
5374 -finline-small-functions @gol
5375 -fipa-pure-const @gol
5376 -fipa-reference @gol
5377 -fmerge-constants
5378 -fsplit-wide-types @gol
5379 -ftree-builtin-call-dce @gol
5380 -ftree-ccp @gol
5381 -ftree-ch @gol
5382 -ftree-copyrename @gol
5383 -ftree-dce @gol
5384 -ftree-dominator-opts @gol
5385 -ftree-dse @gol
5386 -ftree-fre @gol
5387 -ftree-sra @gol
5388 -ftree-ter @gol
5389 -funit-at-a-time}

5391 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
5392 where doing so does not interfere with debugging.

5394 @item -O2
5395 @opindex O2
5396 Optimize even more. GCC performs nearly all supported optimizations
5397 that do not involve a space-speed tradeoff.
5398 As compared to @option{-O}, this option increases both compilation time
5399 and the performance of the generated code.

5401 @option{-O2} turns on all optimization flags specified by @option{-O}. It
5402 also turns on the following optimization flags:
5403 @gccoptlist{-fthread-jumps @gol
5404 -falign-functions -falign-jumps @gol
5405 -falign-loops -falign-labels @gol
5406 -fcaller-saves @gol
5407 -fcrossjumping @gol
5408 -fcse-follow-jumps -fcse-skip-blocks @gol
5409 -fdelete-null-pointer-checks @gol
5410 -fexpensive-optimizations @gol
5411 -fgcse -fgcse-lm @gol
5412 -findirect-inlining @gol
5413 -foptimize-sibling-calls @gol
5414 -fpeephole2 @gol
5415 -fregmove @gol
5416 -freorder-blocks -freorder-functions @gol
5417 -frerun-cse-after-loop @gol
5418 -fsched-interblock -fsched-spec @gol
5419 -fschedule-insns -fschedule-insns2 @gol
5420 -fstrict-aliasing -fstrict-overflow @gol
5421 -ftree-switch-conversion @gol
5422 -ftree-pre @gol
5423 -ftree-vrp}

5425 Please note the warning under @option{-fgcse} about
5426 invoking @option{-O2} on programs that use computed gotos.

5428 @item -O3
5429 @opindex O3
5430 Optimize yet more. @option{-O3} turns on all optimizations specified
5431 by @option{-O2} and also turns on the @option{-finline-functions},
5432 @option{-funswitch-loops}, @option{-fpredictive-commoning},
5433 @option{-fgcse-after-reload} and @option{-ftree-vectorize} options.

5435 @item -O0
5436 @opindex O0

new/gcc/doc/invoke.texi 41

5437 Reduce compilation time and make debugging produce the expected
5438 results. This is the default.

5440 @item -Os
5441 @opindex Os
5442 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
5443 do not typically increase code size. It also performs further
5444 optimizations designed to reduce code size.

5446 @option{-Os} disables the following optimization flags:
5447 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
5448 -falign-labels -freorder-blocks -freorder-blocks-and-partition @gol
5449 -fprefetch-loop-arrays -ftree-vect-loop-version}

5451 If you use multiple @option{-O} options, with or without level numbers,
5452 the last such option is the one that is effective.
5453 @end table

5455 Options of the form @option{-f@var{flag}} specify machine-independent
5456 flags. Most flags have both positive and negative forms; the negative
5457 form of @option{-ffoo} would be @option{-fno-foo}. In the table
5458 below, only one of the forms is listed---the one you typically will
5459 use. You can figure out the other form by either removing @samp{no-}
5460 or adding it.

5462 The following options control specific optimizations. They are either
5463 activated by @option{-O} options or are related to ones that are. You
5464 can use the following flags in the rare cases when ‘‘fine-tuning’’ of
5465 optimizations to be performed is desired.

5467 @table @gcctabopt
5468 @item -fno-default-inline
5469 @opindex fno-default-inline
5470 Do not make member functions inline by default merely because they are
5471 defined inside the class scope (C++ only). Otherwise, when you specify
5472 @w{@option{-O}}, member functions defined inside class scope are compiled
5473 inline by default; i.e., you don’t need to add @samp{inline} in front of
5474 the member function name.

5476 @item -fno-defer-pop
5477 @opindex fno-defer-pop
5478 Always pop the arguments to each function call as soon as that function
5479 returns. For machines which must pop arguments after a function call,
5480 the compiler normally lets arguments accumulate on the stack for several
5481 function calls and pops them all at once.

5483 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

5485 @item -fforward-propagate
5486 @opindex fforward-propagate
5487 Perform a forward propagation pass on RTL@. The pass tries to combine two
5488 instructions and checks if the result can be simplified. If loop unrolling
5489 is active, two passes are performed and the second is scheduled after
5490 loop unrolling.

5492 This option is enabled by default at optimization levels @option{-O2},
5493 @option{-O3}, @option{-Os}.

5495 @item -fomit-frame-pointer
5496 @opindex fomit-frame-pointer
5497 Don’t keep the frame pointer in a register for functions that
5498 don’t need one. This avoids the instructions to save, set up and
5499 restore frame pointers; it also makes an extra register available
5500 in many functions. @strong{It also makes debugging impossible on
5501 some machines.}

new/gcc/doc/invoke.texi 42

5503 On some machines, such as the VAX, this flag has no effect, because
5504 the standard calling sequence automatically handles the frame pointer
5505 and nothing is saved by pretending it doesn’t exist. The
5506 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
5507 whether a target machine supports this flag. @xref{Registers,,Register
5508 Usage, gccint, GNU Compiler Collection (GCC) Internals}.

5510 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

5512 @item -foptimize-sibling-calls
5513 @opindex foptimize-sibling-calls
5514 Optimize sibling and tail recursive calls.

5516 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

5518 @item -fno-inline
5519 @opindex fno-inline
5520 Don’t pay attention to the @code{inline} keyword. Normally this option
5521 is used to keep the compiler from expanding any functions inline.
5522 Note that if you are not optimizing, no functions can be expanded inline.

5524 @item -finline-small-functions
5525 @opindex finline-small-functions
5526 Integrate functions into their callers when their body is smaller than expected
5527 function call code (so overall size of program gets smaller). The compiler
5528 heuristically decides which functions are simple enough to be worth integrating
5529 in this way.

5531 Enabled at level @option{-O2}.

5533 @item -findirect-inlining
5534 @opindex findirect-inlining
5535 Inline also indirect calls that are discovered to be known at compile
5536 time thanks to previous inlining. This option has any effect only
5537 when inlining itself is turned on by the @option{-finline-functions}
5538 or @option{-finline-small-functions} options.

5540 Enabled at level @option{-O2}.

5542 @item -finline-functions
5543 @opindex finline-functions
5544 Integrate all simple functions into their callers. The compiler
5545 heuristically decides which functions are simple enough to be worth
5546 integrating in this way.

5548 If all calls to a given function are integrated, and the function is
5549 declared @code{static}, then the function is normally not output as
5550 assembler code in its own right.

5552 Enabled at level @option{-O3}.

5554 @item -finline-functions-called-once
5555 @opindex finline-functions-called-once
5556 Consider all @code{static} functions called once for inlining into their
5557 caller even if they are not marked @code{inline}. If a call to a given
5558 function is integrated, then the function is not output as assembler code
5559 in its own right.

5561 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.

5563 @item -fearly-inlining
5564 @opindex fearly-inlining
5565 Inline functions marked by @code{always_inline} and functions whose body seems
5566 smaller than the function call overhead early before doing
5567 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
5568 makes profiling significantly cheaper and usually inlining faster on programs

new/gcc/doc/invoke.texi 43

5569 having large chains of nested wrapper functions.

5571 Enabled by default.

5573 @item -finline-limit=@var{n}
5574 @opindex finline-limit
5575 By default, GCC limits the size of functions that can be inlined. This flag
5576 allows coarse control of this limit. @var{n} is the size of functions that
5577 can be inlined in number of pseudo instructions.

5579 Inlining is actually controlled by a number of parameters, which may be
5580 specified individually by using @option{--param @var{name}=@var{value}}.
5581 The @option{-finline-limit=@var{n}} option sets some of these parameters
5582 as follows:

5584 @table @gcctabopt
5585 @item max-inline-insns-single
5586 is set to @var{n}/2.
5587 @item max-inline-insns-auto
5588 is set to @var{n}/2.
5589 @end table

5591 See below for a documentation of the individual
5592 parameters controlling inlining and for the defaults of these parameters.

5594 @emph{Note:} there may be no value to @option{-finline-limit} that results
5595 in default behavior.

5597 @emph{Note:} pseudo instruction represents, in this particular context, an
5598 abstract measurement of function’s size. In no way does it represent a count
5599 of assembly instructions and as such its exact meaning might change from one
5600 release to an another.

5602 @item -fkeep-inline-functions
5603 @opindex fkeep-inline-functions
5604 In C, emit @code{static} functions that are declared @code{inline}
5605 into the object file, even if the function has been inlined into all
5606 of its callers. This switch does not affect functions using the
5607 @code{extern inline} extension in GNU C89@. In C++, emit any and all
5608 inline functions into the object file.

5610 @item -fkeep-static-consts
5611 @opindex fkeep-static-consts
5612 Emit variables declared @code{static const} when optimization isn’t turned
5613 on, even if the variables aren’t referenced.

5615 GCC enables this option by default. If you want to force the compiler to
5616 check if the variable was referenced, regardless of whether or not
5617 optimization is turned on, use the @option{-fno-keep-static-consts} option.

5619 @item -fmerge-constants
5620 @opindex fmerge-constants
5621 Attempt to merge identical constants (string constants and floating point
5622 constants) across compilation units.

5624 This option is the default for optimized compilation if the assembler and
5625 linker support it. Use @option{-fno-merge-constants} to inhibit this
5626 behavior.

5628 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

5630 @item -fmerge-all-constants
5631 @opindex fmerge-all-constants
5632 Attempt to merge identical constants and identical variables.

5634 This option implies @option{-fmerge-constants}. In addition to

new/gcc/doc/invoke.texi 44

5635 @option{-fmerge-constants} this considers e.g.@: even constant initialized
5636 arrays or initialized constant variables with integral or floating point
5637 types. Languages like C or C++ require each variable, including multiple
5638 instances of the same variable in recursive calls, to have distinct locations,
5639 so using this option will result in non-conforming
5640 behavior.

5642 @item -fmodulo-sched
5643 @opindex fmodulo-sched
5644 Perform swing modulo scheduling immediately before the first scheduling
5645 pass. This pass looks at innermost loops and reorders their
5646 instructions by overlapping different iterations.

5648 @item -fmodulo-sched-allow-regmoves
5649 @opindex fmodulo-sched-allow-regmoves
5650 Perform more aggressive SMS based modulo scheduling with register moves
5651 allowed. By setting this flag certain anti-dependences edges will be
5652 deleted which will trigger the generation of reg-moves based on the
5653 life-range analysis. This option is effective only with
5654 @option{-fmodulo-sched} enabled.

5656 @item -fno-branch-count-reg
5657 @opindex fno-branch-count-reg
5658 Do not use ‘‘decrement and branch’’ instructions on a count register,
5659 but instead generate a sequence of instructions that decrement a
5660 register, compare it against zero, then branch based upon the result.
5661 This option is only meaningful on architectures that support such
5662 instructions, which include x86, PowerPC, IA-64 and S/390.

5664 The default is @option{-fbranch-count-reg}.

5666 @item -fno-function-cse
5667 @opindex fno-function-cse
5668 Do not put function addresses in registers; make each instruction that
5669 calls a constant function contain the function’s address explicitly.

5671 This option results in less efficient code, but some strange hacks
5672 that alter the assembler output may be confused by the optimizations
5673 performed when this option is not used.

5675 The default is @option{-ffunction-cse}

5677 @item -fno-zero-initialized-in-bss
5678 @opindex fno-zero-initialized-in-bss
5679 If the target supports a BSS section, GCC by default puts variables that
5680 are initialized to zero into BSS@. This can save space in the resulting
5681 code.

5683 This option turns off this behavior because some programs explicitly
5684 rely on variables going to the data section. E.g., so that the
5685 resulting executable can find the beginning of that section and/or make
5686 assumptions based on that.

5688 The default is @option{-fzero-initialized-in-bss}.

5690 @item -fmudflap -fmudflapth -fmudflapir
5691 @opindex fmudflap
5692 @opindex fmudflapth
5693 @opindex fmudflapir
5694 @cindex bounds checking
5695 @cindex mudflap
5696 For front-ends that support it (C and C++), instrument all risky
5697 pointer/array dereferencing operations, some standard library
5698 string/heap functions, and some other associated constructs with
5699 range/validity tests. Modules so instrumented should be immune to
5700 buffer overflows, invalid heap use, and some other classes of C/C++

new/gcc/doc/invoke.texi 45

5701 programming errors. The instrumentation relies on a separate runtime
5702 library (@file{libmudflap}), which will be linked into a program if
5703 @option{-fmudflap} is given at link time. Run-time behavior of the
5704 instrumented program is controlled by the @env{MUDFLAP_OPTIONS}
5705 environment variable. See @code{env MUDFLAP_OPTIONS=-help a.out}
5706 for its options.

5708 Use @option{-fmudflapth} instead of @option{-fmudflap} to compile and to
5709 link if your program is multi-threaded. Use @option{-fmudflapir}, in
5710 addition to @option{-fmudflap} or @option{-fmudflapth}, if
5711 instrumentation should ignore pointer reads. This produces less
5712 instrumentation (and therefore faster execution) and still provides
5713 some protection against outright memory corrupting writes, but allows
5714 erroneously read data to propagate within a program.

5716 @item -fthread-jumps
5717 @opindex fthread-jumps
5718 Perform optimizations where we check to see if a jump branches to a
5719 location where another comparison subsumed by the first is found. If
5720 so, the first branch is redirected to either the destination of the
5721 second branch or a point immediately following it, depending on whether
5722 the condition is known to be true or false.

5724 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

5726 @item -fsplit-wide-types
5727 @opindex fsplit-wide-types
5728 When using a type that occupies multiple registers, such as @code{long
5729 long} on a 32-bit system, split the registers apart and allocate them
5730 independently. This normally generates better code for those types,
5731 but may make debugging more difficult.

5733 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
5734 @option{-Os}.

5736 @item -fcse-follow-jumps
5737 @opindex fcse-follow-jumps
5738 In common subexpression elimination (CSE), scan through jump instructions
5739 when the target of the jump is not reached by any other path. For
5740 example, when CSE encounters an @code{if} statement with an
5741 @code{else} clause, CSE will follow the jump when the condition
5742 tested is false.

5744 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

5746 @item -fcse-skip-blocks
5747 @opindex fcse-skip-blocks
5748 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
5749 follow jumps which conditionally skip over blocks. When CSE
5750 encounters a simple @code{if} statement with no else clause,
5751 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
5752 body of the @code{if}.

5754 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

5756 @item -frerun-cse-after-loop
5757 @opindex frerun-cse-after-loop
5758 Re-run common subexpression elimination after loop optimizations has been
5759 performed.

5761 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

5763 @item -fgcse
5764 @opindex fgcse
5765 Perform a global common subexpression elimination pass.
5766 This pass also performs global constant and copy propagation.

new/gcc/doc/invoke.texi 46

5768 @emph{Note:} When compiling a program using computed gotos, a GCC
5769 extension, you may get better runtime performance if you disable
5770 the global common subexpression elimination pass by adding
5771 @option{-fno-gcse} to the command line.

5773 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

5775 @item -fgcse-lm
5776 @opindex fgcse-lm
5777 When @option{-fgcse-lm} is enabled, global common subexpression elimination will
5778 attempt to move loads which are only killed by stores into themselves. This
5779 allows a loop containing a load/store sequence to be changed to a load outside
5780 the loop, and a copy/store within the loop.

5782 Enabled by default when gcse is enabled.

5784 @item -fgcse-sm
5785 @opindex fgcse-sm
5786 When @option{-fgcse-sm} is enabled, a store motion pass is run after
5787 global common subexpression elimination. This pass will attempt to move
5788 stores out of loops. When used in conjunction with @option{-fgcse-lm},
5789 loops containing a load/store sequence can be changed to a load before
5790 the loop and a store after the loop.

5792 Not enabled at any optimization level.

5794 @item -fgcse-las
5795 @opindex fgcse-las
5796 When @option{-fgcse-las} is enabled, the global common subexpression
5797 elimination pass eliminates redundant loads that come after stores to the
5798 same memory location (both partial and full redundancies).

5800 Not enabled at any optimization level.

5802 @item -fgcse-after-reload
5803 @opindex fgcse-after-reload
5804 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
5805 pass is performed after reload. The purpose of this pass is to cleanup
5806 redundant spilling.

5808 @item -funsafe-loop-optimizations
5809 @opindex funsafe-loop-optimizations
5810 If given, the loop optimizer will assume that loop indices do not
5811 overflow, and that the loops with nontrivial exit condition are not
5812 infinite. This enables a wider range of loop optimizations even if
5813 the loop optimizer itself cannot prove that these assumptions are valid.
5814 Using @option{-Wunsafe-loop-optimizations}, the compiler will warn you
5815 if it finds this kind of loop.

5817 @item -fcrossjumping
5818 @opindex fcrossjumping
5819 Perform cross-jumping transformation. This transformation unifies equivalent co
5820 resulting code may or may not perform better than without cross-jumping.

5822 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

5824 @item -fauto-inc-dec
5825 @opindex fauto-inc-dec
5826 Combine increments or decrements of addresses with memory accesses.
5827 This pass is always skipped on architectures that do not have
5828 instructions to support this. Enabled by default at @option{-O} and
5829 higher on architectures that support this.

5831 @item -fdce
5832 @opindex fdce

new/gcc/doc/invoke.texi 47

5833 Perform dead code elimination (DCE) on RTL@.
5834 Enabled by default at @option{-O} and higher.

5836 @item -fdse
5837 @opindex fdse
5838 Perform dead store elimination (DSE) on RTL@.
5839 Enabled by default at @option{-O} and higher.

5841 @item -fif-conversion
5842 @opindex fif-conversion
5843 Attempt to transform conditional jumps into branch-less equivalents. This
5844 include use of conditional moves, min, max, set flags and abs instructions, and
5845 some tricks doable by standard arithmetics. The use of conditional execution
5846 on chips where it is available is controlled by @code{if-conversion2}.

5848 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

5850 @item -fif-conversion2
5851 @opindex fif-conversion2
5852 Use conditional execution (where available) to transform conditional jumps into
5853 branch-less equivalents.

5855 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

5857 @item -fdelete-null-pointer-checks
5858 @opindex fdelete-null-pointer-checks
5859 Use global dataflow analysis to identify and eliminate useless checks
5860 for null pointers. The compiler assumes that dereferencing a null
5861 pointer would have halted the program. If a pointer is checked after
5862 it has already been dereferenced, it cannot be null.

5864 In some environments, this assumption is not true, and programs can
5865 safely dereference null pointers. Use
5866 @option{-fno-delete-null-pointer-checks} to disable this optimization
5867 for programs which depend on that behavior.

5869 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

5871 @item -fexpensive-optimizations
5872 @opindex fexpensive-optimizations
5873 Perform a number of minor optimizations that are relatively expensive.

5875 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

5877 @item -foptimize-register-move
5878 @itemx -fregmove
5879 @opindex foptimize-register-move
5880 @opindex fregmove
5881 Attempt to reassign register numbers in move instructions and as
5882 operands of other simple instructions in order to maximize the amount of
5883 register tying. This is especially helpful on machines with two-operand
5884 instructions.

5886 Note @option{-fregmove} and @option{-foptimize-register-move} are the same
5887 optimization.

5889 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

5891 @item -fira-algorithm=@var{algorithm}
5892 Use specified coloring algorithm for the integrated register
5893 allocator. The @var{algorithm} argument should be @code{priority} or
5894 @code{CB}. The first algorithm specifies Chow’s priority coloring,
5895 the second one specifies Chaitin-Briggs coloring. The second
5896 algorithm can be unimplemented for some architectures. If it is
5897 implemented, it is the default because Chaitin-Briggs coloring as a
5898 rule generates a better code.

new/gcc/doc/invoke.texi 48

5900 @item -fira-region=@var{region}
5901 Use specified regions for the integrated register allocator. The
5902 @var{region} argument should be one of @code{all}, @code{mixed}, or
5903 @code{one}. The first value means using all loops as register
5904 allocation regions, the second value which is the default means using
5905 all loops except for loops with small register pressure as the
5906 regions, and third one means using all function as a single region.
5907 The first value can give best result for machines with small size and
5908 irregular register set, the third one results in faster and generates
5909 decent code and the smallest size code, and the default value usually
5910 give the best results in most cases and for most architectures.

5912 @item -fira-coalesce
5913 @opindex fira-coalesce
5914 Do optimistic register coalescing. This option might be profitable for
5915 architectures with big regular register files.

5917 @item -fno-ira-share-save-slots
5918 @opindex fno-ira-share-save-slots
5919 Switch off sharing stack slots used for saving call used hard
5920 registers living through a call. Each hard register will get a
5921 separate stack slot and as a result function stack frame will be
5922 bigger.

5924 @item -fno-ira-share-spill-slots
5925 @opindex fno-ira-share-spill-slots
5926 Switch off sharing stack slots allocated for pseudo-registers. Each
5927 pseudo-register which did not get a hard register will get a separate
5928 stack slot and as a result function stack frame will be bigger.

5930 @item -fira-verbose=@var{n}
5931 @opindex fira-verbose
5932 Set up how verbose dump file for the integrated register allocator
5933 will be. Default value is 5. If the value is greater or equal to 10,
5934 the dump file will be stderr as if the value were @var{n} minus 10.

5936 @item -fdelayed-branch
5937 @opindex fdelayed-branch
5938 If supported for the target machine, attempt to reorder instructions
5939 to exploit instruction slots available after delayed branch
5940 instructions.

5942 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

5944 @item -fschedule-insns
5945 @opindex fschedule-insns
5946 If supported for the target machine, attempt to reorder instructions to
5947 eliminate execution stalls due to required data being unavailable. This
5948 helps machines that have slow floating point or memory load instructions
5949 by allowing other instructions to be issued until the result of the load
5950 or floating point instruction is required.

5952 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

5954 @item -fschedule-insns2
5955 @opindex fschedule-insns2
5956 Similar to @option{-fschedule-insns}, but requests an additional pass of
5957 instruction scheduling after register allocation has been done. This is
5958 especially useful on machines with a relatively small number of
5959 registers and where memory load instructions take more than one cycle.

5961 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

5963 @item -fno-sched-interblock
5964 @opindex fno-sched-interblock

new/gcc/doc/invoke.texi 49

5965 Don’t schedule instructions across basic blocks. This is normally
5966 enabled by default when scheduling before register allocation, i.e.@:
5967 with @option{-fschedule-insns} or at @option{-O2} or higher.

5969 @item -fno-sched-spec
5970 @opindex fno-sched-spec
5971 Don’t allow speculative motion of non-load instructions. This is normally
5972 enabled by default when scheduling before register allocation, i.e.@:
5973 with @option{-fschedule-insns} or at @option{-O2} or higher.

5975 @item -fsched-spec-load
5976 @opindex fsched-spec-load
5977 Allow speculative motion of some load instructions. This only makes
5978 sense when scheduling before register allocation, i.e.@: with
5979 @option{-fschedule-insns} or at @option{-O2} or higher.

5981 @item -fsched-spec-load-dangerous
5982 @opindex fsched-spec-load-dangerous
5983 Allow speculative motion of more load instructions. This only makes
5984 sense when scheduling before register allocation, i.e.@: with
5985 @option{-fschedule-insns} or at @option{-O2} or higher.

5987 @item -fsched-stalled-insns
5988 @itemx -fsched-stalled-insns=@var{n}
5989 @opindex fsched-stalled-insns
5990 Define how many insns (if any) can be moved prematurely from the queue
5991 of stalled insns into the ready list, during the second scheduling pass.
5992 @option{-fno-sched-stalled-insns} means that no insns will be moved
5993 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
5994 on how many queued insns can be moved prematurely.
5995 @option{-fsched-stalled-insns} without a value is equivalent to
5996 @option{-fsched-stalled-insns=1}.

5998 @item -fsched-stalled-insns-dep
5999 @itemx -fsched-stalled-insns-dep=@var{n}
6000 @opindex fsched-stalled-insns-dep
6001 Define how many insn groups (cycles) will be examined for a dependency
6002 on a stalled insn that is candidate for premature removal from the queue
6003 of stalled insns. This has an effect only during the second scheduling pass,
6004 and only if @option{-fsched-stalled-insns} is used.
6005 @option{-fno-sched-stalled-insns-dep} is equivalent to
6006 @option{-fsched-stalled-insns-dep=0}.
6007 @option{-fsched-stalled-insns-dep} without a value is equivalent to
6008 @option{-fsched-stalled-insns-dep=1}.

6010 @item -fsched2-use-superblocks
6011 @opindex fsched2-use-superblocks
6012 When scheduling after register allocation, do use superblock scheduling
6013 algorithm. Superblock scheduling allows motion across basic block boundaries
6014 resulting on faster schedules. This option is experimental, as not all machine
6015 descriptions used by GCC model the CPU closely enough to avoid unreliable
6016 results from the algorithm.

6018 This only makes sense when scheduling after register allocation, i.e.@: with
6019 @option{-fschedule-insns2} or at @option{-O2} or higher.

6021 @item -fsched2-use-traces
6022 @opindex fsched2-use-traces
6023 Use @option{-fsched2-use-superblocks} algorithm when scheduling after register
6024 allocation and additionally perform code duplication in order to increase the
6025 size of superblocks using tracer pass. See @option{-ftracer} for details on
6026 trace formation.

6028 This mode should produce faster but significantly longer programs. Also
6029 without @option{-fbranch-probabilities} the traces constructed may not
6030 match the reality and hurt the performance. This only makes

new/gcc/doc/invoke.texi 50

6031 sense when scheduling after register allocation, i.e.@: with
6032 @option{-fschedule-insns2} or at @option{-O2} or higher.

6034 @item -fsee
6035 @opindex fsee
6036 Eliminate redundant sign extension instructions and move the non-redundant
6037 ones to optimal placement using lazy code motion (LCM).

6039 @item -freschedule-modulo-scheduled-loops
6040 @opindex freschedule-modulo-scheduled-loops
6041 The modulo scheduling comes before the traditional scheduling, if a loop
6042 was modulo scheduled we may want to prevent the later scheduling passes
6043 from changing its schedule, we use this option to control that.

6045 @item -fselective-scheduling
6046 @opindex fselective-scheduling
6047 Schedule instructions using selective scheduling algorithm. Selective
6048 scheduling runs instead of the first scheduler pass.

6050 @item -fselective-scheduling2
6051 @opindex fselective-scheduling2
6052 Schedule instructions using selective scheduling algorithm. Selective
6053 scheduling runs instead of the second scheduler pass.

6055 @item -fsel-sched-pipelining
6056 @opindex fsel-sched-pipelining
6057 Enable software pipelining of innermost loops during selective scheduling.
6058 This option has no effect until one of @option{-fselective-scheduling} or
6059 @option{-fselective-scheduling2} is turned on.

6061 @item -fsel-sched-pipelining-outer-loops
6062 @opindex fsel-sched-pipelining-outer-loops
6063 When pipelining loops during selective scheduling, also pipeline outer loops.
6064 This option has no effect until @option{-fsel-sched-pipelining} is turned on.

6066 @item -fcaller-saves
6067 @opindex fcaller-saves
6068 Enable values to be allocated in registers that will be clobbered by
6069 function calls, by emitting extra instructions to save and restore the
6070 registers around such calls. Such allocation is done only when it
6071 seems to result in better code than would otherwise be produced.

6073 This option is always enabled by default on certain machines, usually
6074 those which have no call-preserved registers to use instead.

6076 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

6078 @item -fconserve-stack
6079 @opindex fconserve-stack
6080 Attempt to minimize stack usage. The compiler will attempt to use less
6081 stack space, even if that makes the program slower. This option
6082 implies setting the @option{large-stack-frame} parameter to 100
6083 and the @option{large-stack-frame-growth} parameter to 400.

6085 @item -ftree-reassoc
6086 @opindex ftree-reassoc
6087 Perform reassociation on trees. This flag is enabled by default
6088 at @option{-O} and higher.

6090 @item -ftree-pre
6091 @opindex ftree-pre
6092 Perform partial redundancy elimination (PRE) on trees. This flag is
6093 enabled by default at @option{-O2} and @option{-O3}.

6095 @item -ftree-fre
6096 @opindex ftree-fre

new/gcc/doc/invoke.texi 51

6097 Perform full redundancy elimination (FRE) on trees. The difference
6098 between FRE and PRE is that FRE only considers expressions
6099 that are computed on all paths leading to the redundant computation.
6100 This analysis is faster than PRE, though it exposes fewer redundancies.
6101 This flag is enabled by default at @option{-O} and higher.

6103 @item -ftree-copy-prop
6104 @opindex ftree-copy-prop
6105 Perform copy propagation on trees. This pass eliminates unnecessary
6106 copy operations. This flag is enabled by default at @option{-O} and
6107 higher.

6109 @item -fipa-pure-const
6110 @opindex fipa-pure-const
6111 Discover which functions are pure or constant.
6112 Enabled by default at @option{-O} and higher.

6114 @item -fipa-reference
6115 @opindex fipa-reference
6116 Discover which static variables do not escape cannot escape the
6117 compilation unit.
6118 Enabled by default at @option{-O} and higher.

6120 @item -fipa-struct-reorg
6121 @opindex fipa-struct-reorg
6122 Perform structure reorganization optimization, that change C-like structures
6123 layout in order to better utilize spatial locality. This transformation is
6124 affective for programs containing arrays of structures. Available in two
6125 compilation modes: profile-based (enabled with @option{-fprofile-generate})
6126 or static (which uses built-in heuristics). Require @option{-fipa-type-escape}
6127 to provide the safety of this transformation. It works only in whole program
6128 mode, so it requires @option{-fwhole-program} and @option{-combine} to be
6129 enabled. Structures considered @samp{cold} by this transformation are not
6130 affected (see @option{--param struct-reorg-cold-struct-ratio=@var{value}}).

6132 With this flag, the program debug info reflects a new structure layout.

6134 @item -fipa-pta
6135 @opindex fipa-pta
6136 Perform interprocedural pointer analysis. This option is experimental
6137 and does not affect generated code.

6139 @item -fipa-cp
6140 @opindex fipa-cp
6141 Perform interprocedural constant propagation.
6142 This optimization analyzes the program to determine when values passed
6143 to functions are constants and then optimizes accordingly.
6144 This optimization can substantially increase performance
6145 if the application has constants passed to functions.
6146 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.

6148 @item -fipa-cp-clone
6149 @opindex fipa-cp-clone
6150 Perform function cloning to make interprocedural constant propagation stronger.
6151 When enabled, interprocedural constant propagation will perform function cloning
6152 when externally visible function can be called with constant arguments.
6153 Because this optimization can create multiple copies of functions,
6154 it may significantly increase code size
6155 (see @option{--param ipcp-unit-growth=@var{value}}).
6156 This flag is enabled by default at @option{-O3}.

6158 @item -fipa-matrix-reorg
6159 @opindex fipa-matrix-reorg
6160 Perform matrix flattening and transposing.
6161 Matrix flattening tries to replace a m-dimensional matrix
6162 with its equivalent n-dimensional matrix, where n < m.

new/gcc/doc/invoke.texi 52

6163 This reduces the level of indirection needed for accessing the elements
6164 of the matrix. The second optimization is matrix transposing that
6165 attempts to change the order of the matrix’s dimensions in order to
6166 improve cache locality.
6167 Both optimizations need the @option{-fwhole-program} flag.
6168 Transposing is enabled only if profiling information is available.

6171 @item -ftree-sink
6172 @opindex ftree-sink
6173 Perform forward store motion on trees. This flag is
6174 enabled by default at @option{-O} and higher.

6176 @item -ftree-ccp
6177 @opindex ftree-ccp
6178 Perform sparse conditional constant propagation (CCP) on trees. This
6179 pass only operates on local scalar variables and is enabled by default
6180 at @option{-O} and higher.

6182 @item -ftree-switch-conversion
6183 Perform conversion of simple initializations in a switch to
6184 initializations from a scalar array. This flag is enabled by default
6185 at @option{-O2} and higher.

6187 @item -ftree-dce
6188 @opindex ftree-dce
6189 Perform dead code elimination (DCE) on trees. This flag is enabled by
6190 default at @option{-O} and higher.

6192 @item -ftree-builtin-call-dce
6193 @opindex ftree-builtin-call-dce
6194 Perform conditional dead code elimination (DCE) for calls to builtin functions
6195 that may set @code{errno} but are otherwise side-effect free. This flag is
6196 enabled by default at @option{-O2} and higher if @option{-Os} is not also
6197 specified.

6199 @item -ftree-dominator-opts
6200 @opindex ftree-dominator-opts
6201 Perform a variety of simple scalar cleanups (constant/copy
6202 propagation, redundancy elimination, range propagation and expression
6203 simplification) based on a dominator tree traversal. This also
6204 performs jump threading (to reduce jumps to jumps). This flag is
6205 enabled by default at @option{-O} and higher.

6207 @item -ftree-dse
6208 @opindex ftree-dse
6209 Perform dead store elimination (DSE) on trees. A dead store is a store into
6210 a memory location which will later be overwritten by another store without
6211 any intervening loads. In this case the earlier store can be deleted. This
6212 flag is enabled by default at @option{-O} and higher.

6214 @item -ftree-ch
6215 @opindex ftree-ch
6216 Perform loop header copying on trees. This is beneficial since it increases
6217 effectiveness of code motion optimizations. It also saves one jump. This flag
6218 is enabled by default at @option{-O} and higher. It is not enabled
6219 for @option{-Os}, since it usually increases code size.

6221 @item -ftree-loop-optimize
6222 @opindex ftree-loop-optimize
6223 Perform loop optimizations on trees. This flag is enabled by default
6224 at @option{-O} and higher.

6226 @item -ftree-loop-linear
6227 @opindex ftree-loop-linear
6228 Perform linear loop transformations on tree. This flag can improve cache

new/gcc/doc/invoke.texi 53

6229 performance and allow further loop optimizations to take place.

6231 @item -floop-interchange
6232 Perform loop interchange transformations on loops. Interchanging two
6233 nested loops switches the inner and outer loops. For example, given a
6234 loop like:
6235 @smallexample
6236 DO J = 1, M
6237 DO I = 1, N
6238 A(J, I) = A(J, I) * C
6239 ENDDO
6240 ENDDO
6241 @end smallexample
6242 loop interchange will transform the loop as if the user had written:
6243 @smallexample
6244 DO I = 1, N
6245 DO J = 1, M
6246 A(J, I) = A(J, I) * C
6247 ENDDO
6248 ENDDO
6249 @end smallexample
6250 which can be beneficial when @code{N} is larger than the caches,
6251 because in Fortran, the elements of an array are stored in memory
6252 contiguously by column, and the original loop iterates over rows,
6253 potentially creating at each access a cache miss. This optimization
6254 applies to all the languages supported by GCC and is not limited to
6255 Fortran. To use this code transformation, GCC has to be configured
6256 with @option{--with-ppl} and @option{--with-cloog} to enable the
6257 Graphite loop transformation infrastructure.

6259 @item -floop-strip-mine
6260 Perform loop strip mining transformations on loops. Strip mining
6261 splits a loop into two nested loops. The outer loop has strides
6262 equal to the strip size and the inner loop has strides of the
6263 original loop within a strip. For example, given a loop like:
6264 @smallexample
6265 DO I = 1, N
6266 A(I) = A(I) + C
6267 ENDDO
6268 @end smallexample
6269 loop strip mining will transform the loop as if the user had written:
6270 @smallexample
6271 DO II = 1, N, 4
6272 DO I = II, min (II + 3, N)
6273 A(I) = A(I) + C
6274 ENDDO
6275 ENDDO
6276 @end smallexample
6277 This optimization applies to all the languages supported by GCC and is
6278 not limited to Fortran. To use this code transformation, GCC has to
6279 be configured with @option{--with-ppl} and @option{--with-cloog} to
6280 enable the Graphite loop transformation infrastructure.

6282 @item -floop-block
6283 Perform loop blocking transformations on loops. Blocking strip mines
6284 each loop in the loop nest such that the memory accesses of the
6285 element loops fit inside caches. For example, given a loop like:
6286 @smallexample
6287 DO I = 1, N
6288 DO J = 1, M
6289 A(J, I) = B(I) + C(J)
6290 ENDDO
6291 ENDDO
6292 @end smallexample
6293 loop blocking will transform the loop as if the user had written:
6294 @smallexample

new/gcc/doc/invoke.texi 54

6295 DO II = 1, N, 64
6296 DO JJ = 1, M, 64
6297 DO I = II, min (II + 63, N)
6298 DO J = JJ, min (JJ + 63, M)
6299 A(J, I) = B(I) + C(J)
6300 ENDDO
6301 ENDDO
6302 ENDDO
6303 ENDDO
6304 @end smallexample
6305 which can be beneficial when @code{M} is larger than the caches,
6306 because the innermost loop will iterate over a smaller amount of data
6307 that can be kept in the caches. This optimization applies to all the
6308 languages supported by GCC and is not limited to Fortran. To use this
6309 code transformation, GCC has to be configured with @option{--with-ppl}
6310 and @option{--with-cloog} to enable the Graphite loop transformation
6311 infrastructure.

6313 @item -fcheck-data-deps
6314 @opindex fcheck-data-deps
6315 Compare the results of several data dependence analyzers. This option
6316 is used for debugging the data dependence analyzers.

6318 @item -ftree-loop-distribution
6319 Perform loop distribution. This flag can improve cache performance on
6320 big loop bodies and allow further loop optimizations, like
6321 parallelization or vectorization, to take place. For example, the loop
6322 @smallexample
6323 DO I = 1, N
6324 A(I) = B(I) + C
6325 D(I) = E(I) * F
6326 ENDDO
6327 @end smallexample
6328 is transformed to
6329 @smallexample
6330 DO I = 1, N
6331 A(I) = B(I) + C
6332 ENDDO
6333 DO I = 1, N
6334 D(I) = E(I) * F
6335 ENDDO
6336 @end smallexample

6338 @item -ftree-loop-im
6339 @opindex ftree-loop-im
6340 Perform loop invariant motion on trees. This pass moves only invariants that
6341 would be hard to handle at RTL level (function calls, operations that expand to
6342 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
6343 operands of conditions that are invariant out of the loop, so that we can use
6344 just trivial invariantness analysis in loop unswitching. The pass also includes
6345 store motion.

6347 @item -ftree-loop-ivcanon
6348 @opindex ftree-loop-ivcanon
6349 Create a canonical counter for number of iterations in the loop for that
6350 determining number of iterations requires complicated analysis. Later
6351 optimizations then may determine the number easily. Useful especially
6352 in connection with unrolling.

6354 @item -fivopts
6355 @opindex fivopts
6356 Perform induction variable optimizations (strength reduction, induction
6357 variable merging and induction variable elimination) on trees.

6359 @item -ftree-parallelize-loops=n
6360 @opindex ftree-parallelize-loops

new/gcc/doc/invoke.texi 55

6361 Parallelize loops, i.e., split their iteration space to run in n threads.
6362 This is only possible for loops whose iterations are independent
6363 and can be arbitrarily reordered. The optimization is only
6364 profitable on multiprocessor machines, for loops that are CPU-intensive,
6365 rather than constrained e.g.@: by memory bandwidth. This option
6366 implies @option{-pthread}, and thus is only supported on targets
6367 that have support for @option{-pthread}.

6369 @item -ftree-sra
6370 @opindex ftree-sra
6371 Perform scalar replacement of aggregates. This pass replaces structure
6372 references with scalars to prevent committing structures to memory too
6373 early. This flag is enabled by default at @option{-O} and higher.

6375 @item -ftree-copyrename
6376 @opindex ftree-copyrename
6377 Perform copy renaming on trees. This pass attempts to rename compiler
6378 temporaries to other variables at copy locations, usually resulting in
6379 variable names which more closely resemble the original variables. This flag
6380 is enabled by default at @option{-O} and higher.

6382 @item -ftree-ter
6383 @opindex ftree-ter
6384 Perform temporary expression replacement during the SSA->normal phase. Single
6385 use/single def temporaries are replaced at their use location with their
6386 defining expression. This results in non-GIMPLE code, but gives the expanders
6387 much more complex trees to work on resulting in better RTL generation. This is
6388 enabled by default at @option{-O} and higher.

6390 @item -ftree-vectorize
6391 @opindex ftree-vectorize
6392 Perform loop vectorization on trees. This flag is enabled by default at
6393 @option{-O3}.

6395 @item -ftree-vect-loop-version
6396 @opindex ftree-vect-loop-version
6397 Perform loop versioning when doing loop vectorization on trees. When a loop
6398 appears to be vectorizable except that data alignment or data dependence cannot
6399 be determined at compile time then vectorized and non-vectorized versions of
6400 the loop are generated along with runtime checks for alignment or dependence
6401 to control which version is executed. This option is enabled by default
6402 except at level @option{-Os} where it is disabled.

6404 @item -fvect-cost-model
6405 @opindex fvect-cost-model
6406 Enable cost model for vectorization.

6408 @item -ftree-vrp
6409 @opindex ftree-vrp
6410 Perform Value Range Propagation on trees. This is similar to the
6411 constant propagation pass, but instead of values, ranges of values are
6412 propagated. This allows the optimizers to remove unnecessary range
6413 checks like array bound checks and null pointer checks. This is
6414 enabled by default at @option{-O2} and higher. Null pointer check
6415 elimination is only done if @option{-fdelete-null-pointer-checks} is
6416 enabled.

6418 @item -ftracer
6419 @opindex ftracer
6420 Perform tail duplication to enlarge superblock size. This transformation
6421 simplifies the control flow of the function allowing other optimizations to do
6422 better job.

6424 @item -funroll-loops
6425 @opindex funroll-loops
6426 Unroll loops whose number of iterations can be determined at compile

new/gcc/doc/invoke.texi 56

6427 time or upon entry to the loop. @option{-funroll-loops} implies
6428 @option{-frerun-cse-after-loop}. This option makes code larger,
6429 and may or may not make it run faster.

6431 @item -funroll-all-loops
6432 @opindex funroll-all-loops
6433 Unroll all loops, even if their number of iterations is uncertain when
6434 the loop is entered. This usually makes programs run more slowly.
6435 @option{-funroll-all-loops} implies the same options as
6436 @option{-funroll-loops},

6438 @item -fsplit-ivs-in-unroller
6439 @opindex fsplit-ivs-in-unroller
6440 Enables expressing of values of induction variables in later iterations
6441 of the unrolled loop using the value in the first iteration. This breaks
6442 long dependency chains, thus improving efficiency of the scheduling passes.

6444 Combination of @option{-fweb} and CSE is often sufficient to obtain the
6445 same effect. However in cases the loop body is more complicated than
6446 a single basic block, this is not reliable. It also does not work at all
6447 on some of the architectures due to restrictions in the CSE pass.

6449 This optimization is enabled by default.

6451 @item -fvariable-expansion-in-unroller
6452 @opindex fvariable-expansion-in-unroller
6453 With this option, the compiler will create multiple copies of some
6454 local variables when unrolling a loop which can result in superior code.

6456 @item -fpredictive-commoning
6457 @opindex fpredictive-commoning
6458 Perform predictive commoning optimization, i.e., reusing computations
6459 (especially memory loads and stores) performed in previous
6460 iterations of loops.

6462 This option is enabled at level @option{-O3}.

6464 @item -fprefetch-loop-arrays
6465 @opindex fprefetch-loop-arrays
6466 If supported by the target machine, generate instructions to prefetch
6467 memory to improve the performance of loops that access large arrays.

6469 This option may generate better or worse code; results are highly
6470 dependent on the structure of loops within the source code.

6472 Disabled at level @option{-Os}.

6474 @item -fno-peephole
6475 @itemx -fno-peephole2
6476 @opindex fno-peephole
6477 @opindex fno-peephole2
6478 Disable any machine-specific peephole optimizations. The difference
6479 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
6480 are implemented in the compiler; some targets use one, some use the
6481 other, a few use both.

6483 @option{-fpeephole} is enabled by default.
6484 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

6486 @item -fno-guess-branch-probability
6487 @opindex fno-guess-branch-probability
6488 Do not guess branch probabilities using heuristics.

6490 GCC will use heuristics to guess branch probabilities if they are
6491 not provided by profiling feedback (@option{-fprofile-arcs}). These
6492 heuristics are based on the control flow graph. If some branch probabilities

new/gcc/doc/invoke.texi 57

6493 are specified by @samp{__builtin_expect}, then the heuristics will be
6494 used to guess branch probabilities for the rest of the control flow graph,
6495 taking the @samp{__builtin_expect} info into account. The interactions
6496 between the heuristics and @samp{__builtin_expect} can be complex, and in
6497 some cases, it may be useful to disable the heuristics so that the effects
6498 of @samp{__builtin_expect} are easier to understand.

6500 The default is @option{-fguess-branch-probability} at levels
6501 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

6503 @item -freorder-blocks
6504 @opindex freorder-blocks
6505 Reorder basic blocks in the compiled function in order to reduce number of
6506 taken branches and improve code locality.

6508 Enabled at levels @option{-O2}, @option{-O3}.

6510 @item -freorder-blocks-and-partition
6511 @opindex freorder-blocks-and-partition
6512 In addition to reordering basic blocks in the compiled function, in order
6513 to reduce number of taken branches, partitions hot and cold basic blocks
6514 into separate sections of the assembly and .o files, to improve
6515 paging and cache locality performance.

6517 This optimization is automatically turned off in the presence of
6518 exception handling, for linkonce sections, for functions with a user-defined
6519 section attribute and on any architecture that does not support named
6520 sections.

6522 @item -freorder-functions
6523 @opindex freorder-functions
6524 Reorder functions in the object file in order to
6525 improve code locality. This is implemented by using special
6526 subsections @code{.text.hot} for most frequently executed functions and
6527 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
6528 the linker so object file format must support named sections and linker must
6529 place them in a reasonable way.

6531 Also profile feedback must be available in to make this option effective. See
6532 @option{-fprofile-arcs} for details.

6534 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.

6536 @item -fstrict-aliasing
6537 @opindex fstrict-aliasing
6538 Allow the compiler to assume the strictest aliasing rules applicable to
6539 the language being compiled. For C (and C++), this activates
6540 optimizations based on the type of expressions. In particular, an
6541 object of one type is assumed never to reside at the same address as an
6542 object of a different type, unless the types are almost the same. For
6543 example, an @code{unsigned int} can alias an @code{int}, but not a
6544 @code{void*} or a @code{double}. A character type may alias any other
6545 type.

6547 @anchor{Type-punning}Pay special attention to code like this:
6548 @smallexample
6549 union a_union @{
6550 int i;
6551 double d;
6552 @};

6554 int f() @{
6555 union a_union t;
6556 t.d = 3.0;
6557 return t.i;
6558 @}

new/gcc/doc/invoke.texi 58

6559 @end smallexample
6560 The practice of reading from a different union member than the one most
6561 recently written to (called ‘‘type-punning’’) is common. Even with
6562 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
6563 is accessed through the union type. So, the code above will work as
6564 expected. @xref{Structures unions enumerations and bit-fields
6565 implementation}. However, this code might not:
6566 @smallexample
6567 int f() @{
6568 union a_union t;
6569 int* ip;
6570 t.d = 3.0;
6571 ip = &t.i;
6572 return *ip;
6573 @}
6574 @end smallexample

6576 Similarly, access by taking the address, casting the resulting pointer
6577 and dereferencing the result has undefined behavior, even if the cast
6578 uses a union type, e.g.:
6579 @smallexample
6580 int f() @{
6581 double d = 3.0;
6582 return ((union a_union *) &d)->i;
6583 @}
6584 @end smallexample

6586 The @option{-fstrict-aliasing} option is enabled at levels
6587 @option{-O2}, @option{-O3}, @option{-Os}.

6589 @item -fstrict-calling-conventions
6590 @opindex mstrict-calling-conventions
6591 Use strict ABI calling conventions even with local functions.
6592 This disable certain optimizations that may cause GCC to call local
6593 functions in a manner other than that described by the ABI.

6595 #endif /* ! codereview */
6596 @item -fstrict-overflow
6597 @opindex fstrict-overflow
6598 Allow the compiler to assume strict signed overflow rules, depending
6599 on the language being compiled. For C (and C++) this means that
6600 overflow when doing arithmetic with signed numbers is undefined, which
6601 means that the compiler may assume that it will not happen. This
6602 permits various optimizations. For example, the compiler will assume
6603 that an expression like @code{i + 10 > i} will always be true for
6604 signed @code{i}. This assumption is only valid if signed overflow is
6605 undefined, as the expression is false if @code{i + 10} overflows when
6606 using twos complement arithmetic. When this option is in effect any
6607 attempt to determine whether an operation on signed numbers will
6608 overflow must be written carefully to not actually involve overflow.

6610 This option also allows the compiler to assume strict pointer
6611 semantics: given a pointer to an object, if adding an offset to that
6612 pointer does not produce a pointer to the same object, the addition is
6613 undefined. This permits the compiler to conclude that @code{p + u >
6614 p} is always true for a pointer @code{p} and unsigned integer
6615 @code{u}. This assumption is only valid because pointer wraparound is
6616 undefined, as the expression is false if @code{p + u} overflows using
6617 twos complement arithmetic.

6619 See also the @option{-fwrapv} option. Using @option{-fwrapv} means
6620 that integer signed overflow is fully defined: it wraps. When
6621 @option{-fwrapv} is used, there is no difference between
6622 @option{-fstrict-overflow} and @option{-fno-strict-overflow} for
6623 integers. With @option{-fwrapv} certain types of overflow are
6624 permitted. For example, if the compiler gets an overflow when doing

new/gcc/doc/invoke.texi 59

6625 arithmetic on constants, the overflowed value can still be used with
6626 @option{-fwrapv}, but not otherwise.

6628 The @option{-fstrict-overflow} option is enabled at levels
6629 @option{-O2}, @option{-O3}, @option{-Os}.

6631 @item -falign-functions
6632 @itemx -falign-functions=@var{n}
6633 @opindex falign-functions
6634 Align the start of functions to the next power-of-two greater than
6635 @var{n}, skipping up to @var{n} bytes. For instance,
6636 @option{-falign-functions=32} aligns functions to the next 32-byte
6637 boundary, but @option{-falign-functions=24} would align to the next
6638 32-byte boundary only if this can be done by skipping 23 bytes or less.

6640 @option{-fno-align-functions} and @option{-falign-functions=1} are
6641 equivalent and mean that functions will not be aligned.

6643 Some assemblers only support this flag when @var{n} is a power of two;
6644 in that case, it is rounded up.

6646 If @var{n} is not specified or is zero, use a machine-dependent default.

6648 Enabled at levels @option{-O2}, @option{-O3}.

6650 @item -falign-labels
6651 @itemx -falign-labels=@var{n}
6652 @opindex falign-labels
6653 Align all branch targets to a power-of-two boundary, skipping up to
6654 @var{n} bytes like @option{-falign-functions}. This option can easily
6655 make code slower, because it must insert dummy operations for when the
6656 branch target is reached in the usual flow of the code.

6658 @option{-fno-align-labels} and @option{-falign-labels=1} are
6659 equivalent and mean that labels will not be aligned.

6661 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
6662 are greater than this value, then their values are used instead.

6664 If @var{n} is not specified or is zero, use a machine-dependent default
6665 which is very likely to be @samp{1}, meaning no alignment.

6667 Enabled at levels @option{-O2}, @option{-O3}.

6669 @item -falign-loops
6670 @itemx -falign-loops=@var{n}
6671 @opindex falign-loops
6672 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
6673 like @option{-falign-functions}. The hope is that the loop will be
6674 executed many times, which will make up for any execution of the dummy
6675 operations.

6677 @option{-fno-align-loops} and @option{-falign-loops=1} are
6678 equivalent and mean that loops will not be aligned.

6680 If @var{n} is not specified or is zero, use a machine-dependent default.

6682 Enabled at levels @option{-O2}, @option{-O3}.

6684 @item -falign-jumps
6685 @itemx -falign-jumps=@var{n}
6686 @opindex falign-jumps
6687 Align branch targets to a power-of-two boundary, for branch targets
6688 where the targets can only be reached by jumping, skipping up to @var{n}
6689 bytes like @option{-falign-functions}. In this case, no dummy operations
6690 need be executed.

new/gcc/doc/invoke.texi 60

6692 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
6693 equivalent and mean that loops will not be aligned.

6695 If @var{n} is not specified or is zero, use a machine-dependent default.

6697 Enabled at levels @option{-O2}, @option{-O3}.

6699 @item -funit-at-a-time
6700 @opindex funit-at-a-time
6701 This option is left for compatibility reasons. @option{-funit-at-a-time}
6702 has no effect, while @option{-fno-unit-at-a-time} implies
6703 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.

6705 Enabled by default.

6707 @item -fno-toplevel-reorder
6708 @opindex fno-toplevel-reorder
6709 Do not reorder top-level functions, variables, and @code{asm}
6710 statements. Output them in the same order that they appear in the
6711 input file. When this option is used, unreferenced static variables
6712 will not be removed. This option is intended to support existing code
6713 which relies on a particular ordering. For new code, it is better to
6714 use attributes.

6716 Enabled at level @option{-O0}. When disabled explicitly, it also imply
6717 @option{-fno-section-anchors} that is otherwise enabled at @option{-O0} on some
6718 targets.

6720 @item -fweb
6721 @opindex fweb
6722 Constructs webs as commonly used for register allocation purposes and assign
6723 each web individual pseudo register. This allows the register allocation pass
6724 to operate on pseudos directly, but also strengthens several other optimization
6725 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
6726 however, make debugging impossible, since variables will no longer stay in a
6727 ‘‘home register’’.

6729 Enabled by default with @option{-funroll-loops}.

6731 @item -fwhole-program
6732 @opindex fwhole-program
6733 Assume that the current compilation unit represents whole program being
6734 compiled. All public functions and variables with the exception of @code{main}
6735 and those merged by attribute @code{externally_visible} become static functions
6736 and in a affect gets more aggressively optimized by interprocedural optimizers.
6737 While this option is equivalent to proper use of @code{static} keyword for
6738 programs consisting of single file, in combination with option
6739 @option{--combine} this flag can be used to compile most of smaller scale C
6740 programs since the functions and variables become local for the whole combined
6741 compilation unit, not for the single source file itself.

6743 This option is not supported for Fortran programs.

6745 @item -fcprop-registers
6746 @opindex fcprop-registers
6747 After register allocation and post-register allocation instruction splitting,
6748 we perform a copy-propagation pass to try to reduce scheduling dependencies
6749 and occasionally eliminate the copy.

6751 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.

6753 @item -fprofile-correction
6754 @opindex fprofile-correction
6755 Profiles collected using an instrumented binary for multi-threaded programs may
6756 be inconsistent due to missed counter updates. When this option is specified,

new/gcc/doc/invoke.texi 61

6757 GCC will use heuristics to correct or smooth out such inconsistencies. By
6758 default, GCC will emit an error message when an inconsistent profile is detected

6760 @item -fprofile-dir=@var{path}
6761 @opindex fprofile-dir

6763 Set the directory to search the profile data files in to @var{path}.
6764 This option affects only the profile data generated by
6765 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
6766 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
6767 and its related options.
6768 By default, GCC will use the current directory as @var{path}
6769 thus the profile data file will appear in the same directory as the object file.

6771 @item -fprofile-generate
6772 @itemx -fprofile-generate=@var{path}
6773 @opindex fprofile-generate

6775 Enable options usually used for instrumenting application to produce
6776 profile useful for later recompilation with profile feedback based
6777 optimization. You must use @option{-fprofile-generate} both when
6778 compiling and when linking your program.

6780 The following options are enabled: @code{-fprofile-arcs}, @code{-fprofile-values

6782 If @var{path} is specified, GCC will look at the @var{path} to find
6783 the profile feedback data files. See @option{-fprofile-dir}.

6785 @item -fprofile-use
6786 @itemx -fprofile-use=@var{path}
6787 @opindex fprofile-use
6788 Enable profile feedback directed optimizations, and optimizations
6789 generally profitable only with profile feedback available.

6791 The following options are enabled: @code{-fbranch-probabilities}, @code{-fvpt},
6792 @code{-funroll-loops}, @code{-fpeel-loops}, @code{-ftracer}

6794 By default, GCC emits an error message if the feedback profiles do not
6795 match the source code. This error can be turned into a warning by using
6796 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
6797 code.

6799 If @var{path} is specified, GCC will look at the @var{path} to find
6800 the profile feedback data files. See @option{-fprofile-dir}.
6801 @end table

6803 The following options control compiler behavior regarding floating
6804 point arithmetic. These options trade off between speed and
6805 correctness. All must be specifically enabled.

6807 @table @gcctabopt
6808 @item -ffloat-store
6809 @opindex ffloat-store
6810 Do not store floating point variables in registers, and inhibit other
6811 options that might change whether a floating point value is taken from a
6812 register or memory.

6814 @cindex floating point precision
6815 This option prevents undesirable excess precision on machines such as
6816 the 68000 where the floating registers (of the 68881) keep more
6817 precision than a @code{double} is supposed to have. Similarly for the
6818 x86 architecture. For most programs, the excess precision does only
6819 good, but a few programs rely on the precise definition of IEEE floating
6820 point. Use @option{-ffloat-store} for such programs, after modifying
6821 them to store all pertinent intermediate computations into variables.

new/gcc/doc/invoke.texi 62

6823 @item -ffast-math
6824 @opindex ffast-math
6825 Sets @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
6826 @option{-ffinite-math-only}, @option{-fno-rounding-math},
6827 @option{-fno-signaling-nans} and @option{-fcx-limited-range}.

6829 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.

6831 This option is not turned on by any @option{-O} option since
6832 it can result in incorrect output for programs which depend on
6833 an exact implementation of IEEE or ISO rules/specifications for
6834 math functions. It may, however, yield faster code for programs
6835 that do not require the guarantees of these specifications.

6837 @item -fno-math-errno
6838 @opindex fno-math-errno
6839 Do not set ERRNO after calling math functions that are executed
6840 with a single instruction, e.g., sqrt. A program that relies on
6841 IEEE exceptions for math error handling may want to use this flag
6842 for speed while maintaining IEEE arithmetic compatibility.

6844 This option is not turned on by any @option{-O} option since
6845 it can result in incorrect output for programs which depend on
6846 an exact implementation of IEEE or ISO rules/specifications for
6847 math functions. It may, however, yield faster code for programs
6848 that do not require the guarantees of these specifications.

6850 The default is @option{-fmath-errno}.

6852 On Darwin systems, the math library never sets @code{errno}. There is
6853 therefore no reason for the compiler to consider the possibility that
6854 it might, and @option{-fno-math-errno} is the default.

6856 @item -funsafe-math-optimizations
6857 @opindex funsafe-math-optimizations

6859 Allow optimizations for floating-point arithmetic that (a) assume
6860 that arguments and results are valid and (b) may violate IEEE or
6861 ANSI standards. When used at link-time, it may include libraries
6862 or startup files that change the default FPU control word or other
6863 similar optimizations.

6865 This option is not turned on by any @option{-O} option since
6866 it can result in incorrect output for programs which depend on
6867 an exact implementation of IEEE or ISO rules/specifications for
6868 math functions. It may, however, yield faster code for programs
6869 that do not require the guarantees of these specifications.
6870 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
6871 @option{-fassociative-math} and @option{-freciprocal-math}.

6873 The default is @option{-fno-unsafe-math-optimizations}.

6875 @item -fassociative-math
6876 @opindex fassociative-math

6878 Allow re-association of operands in series of floating-point operations.
6879 This violates the ISO C and C++ language standard by possibly changing
6880 computation result. NOTE: re-ordering may change the sign of zero as
6881 well as ignore NaNs and inhibit or create underflow or overflow (and
6882 thus cannot be used on a code which relies on rounding behavior like
6883 @code{(x + 2**52) - 2**52)}. May also reorder floating-point comparisons
6884 and thus may not be used when ordered comparisons are required.
6885 This option requires that both @option{-fno-signed-zeros} and
6886 @option{-fno-trapping-math} be in effect. Moreover, it doesn’t make
6887 much sense with @option{-frounding-math}.

new/gcc/doc/invoke.texi 63

6889 The default is @option{-fno-associative-math}.

6891 @item -freciprocal-math
6892 @opindex freciprocal-math

6894 Allow the reciprocal of a value to be used instead of dividing by
6895 the value if this enables optimizations. For example @code{x / y}
6896 can be replaced with @code{x * (1/y)} which is useful if @code{(1/y)}
6897 is subject to common subexpression elimination. Note that this loses
6898 precision and increases the number of flops operating on the value.

6900 The default is @option{-fno-reciprocal-math}.

6902 @item -ffinite-math-only
6903 @opindex ffinite-math-only
6904 Allow optimizations for floating-point arithmetic that assume
6905 that arguments and results are not NaNs or +-Infs.

6907 This option is not turned on by any @option{-O} option since
6908 it can result in incorrect output for programs which depend on
6909 an exact implementation of IEEE or ISO rules/specifications for
6910 math functions. It may, however, yield faster code for programs
6911 that do not require the guarantees of these specifications.

6913 The default is @option{-fno-finite-math-only}.

6915 @item -fno-signed-zeros
6916 @opindex fno-signed-zeros
6917 Allow optimizations for floating point arithmetic that ignore the
6918 signedness of zero. IEEE arithmetic specifies the behavior of
6919 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
6920 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
6921 This option implies that the sign of a zero result isn’t significant.

6923 The default is @option{-fsigned-zeros}.

6925 @item -fno-trapping-math
6926 @opindex fno-trapping-math
6927 Compile code assuming that floating-point operations cannot generate
6928 user-visible traps. These traps include division by zero, overflow,
6929 underflow, inexact result and invalid operation. This option requires
6930 that @option{-fno-signaling-nans} be in effect. Setting this option may
6931 allow faster code if one relies on ‘‘non-stop’’ IEEE arithmetic, for example.

6933 This option should never be turned on by any @option{-O} option since
6934 it can result in incorrect output for programs which depend on
6935 an exact implementation of IEEE or ISO rules/specifications for
6936 math functions.

6938 The default is @option{-ftrapping-math}.

6940 @item -frounding-math
6941 @opindex frounding-math
6942 Disable transformations and optimizations that assume default floating
6943 point rounding behavior. This is round-to-zero for all floating point
6944 to integer conversions, and round-to-nearest for all other arithmetic
6945 truncations. This option should be specified for programs that change
6946 the FP rounding mode dynamically, or that may be executed with a
6947 non-default rounding mode. This option disables constant folding of
6948 floating point expressions at compile-time (which may be affected by
6949 rounding mode) and arithmetic transformations that are unsafe in the
6950 presence of sign-dependent rounding modes.

6952 The default is @option{-fno-rounding-math}.

6954 This option is experimental and does not currently guarantee to

new/gcc/doc/invoke.texi 64

6955 disable all GCC optimizations that are affected by rounding mode.
6956 Future versions of GCC may provide finer control of this setting
6957 using C99’s @code{FENV_ACCESS} pragma. This command line option
6958 will be used to specify the default state for @code{FENV_ACCESS}.

6960 @item -frtl-abstract-sequences
6961 @opindex frtl-abstract-sequences
6962 It is a size optimization method. This option is to find identical
6963 sequences of code, which can be turned into pseudo-procedures and
6964 then replace all occurrences with calls to the newly created
6965 subroutine. It is kind of an opposite of @option{-finline-functions}.
6966 This optimization runs at RTL level.

6968 @item -fsignaling-nans
6969 @opindex fsignaling-nans
6970 Compile code assuming that IEEE signaling NaNs may generate user-visible
6971 traps during floating-point operations. Setting this option disables
6972 optimizations that may change the number of exceptions visible with
6973 signaling NaNs. This option implies @option{-ftrapping-math}.

6975 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
6976 be defined.

6978 The default is @option{-fno-signaling-nans}.

6980 This option is experimental and does not currently guarantee to
6981 disable all GCC optimizations that affect signaling NaN behavior.

6983 @item -fsingle-precision-constant
6984 @opindex fsingle-precision-constant
6985 Treat floating point constant as single precision constant instead of
6986 implicitly converting it to double precision constant.

6988 @item -fcx-limited-range
6989 @opindex fcx-limited-range
6990 When enabled, this option states that a range reduction step is not
6991 needed when performing complex division. Also, there is no checking
6992 whether the result of a complex multiplication or division is @code{NaN
6993 + I*NaN}, with an attempt to rescue the situation in that case. The
6994 default is @option{-fno-cx-limited-range}, but is enabled by
6995 @option{-ffast-math}.

6997 This option controls the default setting of the ISO C99
6998 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
6999 all languages.

7001 @item -fcx-fortran-rules
7002 @opindex fcx-fortran-rules
7003 Complex multiplication and division follow Fortran rules. Range
7004 reduction is done as part of complex division, but there is no checking
7005 whether the result of a complex multiplication or division is @code{NaN
7006 + I*NaN}, with an attempt to rescue the situation in that case.

7008 The default is @option{-fno-cx-fortran-rules}.

7010 @end table

7012 The following options control optimizations that may improve
7013 performance, but are not enabled by any @option{-O} options. This
7014 section includes experimental options that may produce broken code.

7016 @table @gcctabopt
7017 @item -fbranch-probabilities
7018 @opindex fbranch-probabilities
7019 After running a program compiled with @option{-fprofile-arcs}
7020 (@pxref{Debugging Options,, Options for Debugging Your Program or

new/gcc/doc/invoke.texi 65

7021 @command{gcc}}), you can compile it a second time using
7022 @option{-fbranch-probabilities}, to improve optimizations based on
7023 the number of times each branch was taken. When the program
7024 compiled with @option{-fprofile-arcs} exits it saves arc execution
7025 counts to a file called @file{@var{sourcename}.gcda} for each source
7026 file. The information in this data file is very dependent on the
7027 structure of the generated code, so you must use the same source code
7028 and the same optimization options for both compilations.

7030 With @option{-fbranch-probabilities}, GCC puts a
7031 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
7032 These can be used to improve optimization. Currently, they are only
7033 used in one place: in @file{reorg.c}, instead of guessing which path a
7034 branch is mostly to take, the @samp{REG_BR_PROB} values are used to
7035 exactly determine which path is taken more often.

7037 @item -fprofile-values
7038 @opindex fprofile-values
7039 If combined with @option{-fprofile-arcs}, it adds code so that some
7040 data about values of expressions in the program is gathered.

7042 With @option{-fbranch-probabilities}, it reads back the data gathered
7043 from profiling values of expressions and adds @samp{REG_VALUE_PROFILE}
7044 notes to instructions for their later usage in optimizations.

7046 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.

7048 @item -fvpt
7049 @opindex fvpt
7050 If combined with @option{-fprofile-arcs}, it instructs the compiler to add
7051 a code to gather information about values of expressions.

7053 With @option{-fbranch-probabilities}, it reads back the data gathered
7054 and actually performs the optimizations based on them.
7055 Currently the optimizations include specialization of division operation
7056 using the knowledge about the value of the denominator.

7058 @item -frename-registers
7059 @opindex frename-registers
7060 Attempt to avoid false dependencies in scheduled code by making use
7061 of registers left over after register allocation. This optimization
7062 will most benefit processors with lots of registers. Depending on the
7063 debug information format adopted by the target, however, it can
7064 make debugging impossible, since variables will no longer stay in
7065 a ‘‘home register’’.

7067 Enabled by default with @option{-funroll-loops}.

7069 @item -ftracer
7070 @opindex ftracer
7071 Perform tail duplication to enlarge superblock size. This transformation
7072 simplifies the control flow of the function allowing other optimizations to do
7073 better job.

7075 Enabled with @option{-fprofile-use}.

7077 @item -funroll-loops
7078 @opindex funroll-loops
7079 Unroll loops whose number of iterations can be determined at compile time or
7080 upon entry to the loop. @option{-funroll-loops} implies
7081 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
7082 It also turns on complete loop peeling (i.e.@: complete removal of loops with
7083 small constant number of iterations). This option makes code larger, and may
7084 or may not make it run faster.

7086 Enabled with @option{-fprofile-use}.

new/gcc/doc/invoke.texi 66

7088 @item -funroll-all-loops
7089 @opindex funroll-all-loops
7090 Unroll all loops, even if their number of iterations is uncertain when
7091 the loop is entered. This usually makes programs run more slowly.
7092 @option{-funroll-all-loops} implies the same options as
7093 @option{-funroll-loops}.

7095 @item -fpeel-loops
7096 @opindex fpeel-loops
7097 Peels the loops for that there is enough information that they do not
7098 roll much (from profile feedback). It also turns on complete loop peeling
7099 (i.e.@: complete removal of loops with small constant number of iterations).

7101 Enabled with @option{-fprofile-use}.

7103 @item -fmove-loop-invariants
7104 @opindex fmove-loop-invariants
7105 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
7106 at level @option{-O1}

7108 @item -funswitch-loops
7109 @opindex funswitch-loops
7110 Move branches with loop invariant conditions out of the loop, with duplicates
7111 of the loop on both branches (modified according to result of the condition).

7113 @item -ffunction-sections
7114 @itemx -fdata-sections
7115 @opindex ffunction-sections
7116 @opindex fdata-sections
7117 Place each function or data item into its own section in the output
7118 file if the target supports arbitrary sections. The name of the
7119 function or the name of the data item determines the section’s name
7120 in the output file.

7122 Use these options on systems where the linker can perform optimizations
7123 to improve locality of reference in the instruction space. Most systems
7124 using the ELF object format and SPARC processors running Solaris 2 have
7125 linkers with such optimizations. AIX may have these optimizations in
7126 the future.

7128 Only use these options when there are significant benefits from doing
7129 so. When you specify these options, the assembler and linker will
7130 create larger object and executable files and will also be slower.
7131 You will not be able to use @code{gprof} on all systems if you
7132 specify this option and you may have problems with debugging if
7133 you specify both this option and @option{-g}.

7135 @item -fbranch-target-load-optimize
7136 @opindex fbranch-target-load-optimize
7137 Perform branch target register load optimization before prologue / epilogue
7138 threading.
7139 The use of target registers can typically be exposed only during reload,
7140 thus hoisting loads out of loops and doing inter-block scheduling needs
7141 a separate optimization pass.

7143 @item -fbranch-target-load-optimize2
7144 @opindex fbranch-target-load-optimize2
7145 Perform branch target register load optimization after prologue / epilogue
7146 threading.

7148 @item -fbtr-bb-exclusive
7149 @opindex fbtr-bb-exclusive
7150 When performing branch target register load optimization, don’t reuse
7151 branch target registers in within any basic block.

new/gcc/doc/invoke.texi 67

7153 @item -fstack-protector
7154 @opindex fstack-protector
7155 Emit extra code to check for buffer overflows, such as stack smashing
7156 attacks. This is done by adding a guard variable to functions with
7157 vulnerable objects. This includes functions that call alloca, and
7158 functions with buffers larger than 8 bytes. The guards are initialized
7159 when a function is entered and then checked when the function exits.
7160 If a guard check fails, an error message is printed and the program exits.

7162 @item -fstack-protector-all
7163 @opindex fstack-protector-all
7164 Like @option{-fstack-protector} except that all functions are protected.

7166 @item -fsection-anchors
7167 @opindex fsection-anchors
7168 Try to reduce the number of symbolic address calculations by using
7169 shared ‘‘anchor’’ symbols to address nearby objects. This transformation
7170 can help to reduce the number of GOT entries and GOT accesses on some
7171 targets.

7173 For example, the implementation of the following function @code{foo}:

7175 @smallexample
7176 static int a, b, c;
7177 int foo (void) @{ return a + b + c; @}
7178 @end smallexample

7180 would usually calculate the addresses of all three variables, but if you
7181 compile it with @option{-fsection-anchors}, it will access the variables
7182 from a common anchor point instead. The effect is similar to the
7183 following pseudocode (which isn’t valid C):

7185 @smallexample
7186 int foo (void)
7187 @{
7188 register int *xr = &x;
7189 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
7190 @}
7191 @end smallexample

7193 Not all targets support this option.

7195 @item --param @var{name}=@var{value}
7196 @opindex param
7197 In some places, GCC uses various constants to control the amount of
7198 optimization that is done. For example, GCC will not inline functions
7199 that contain more that a certain number of instructions. You can
7200 control some of these constants on the command-line using the
7201 @option{--param} option.

7203 The names of specific parameters, and the meaning of the values, are
7204 tied to the internals of the compiler, and are subject to change
7205 without notice in future releases.

7207 In each case, the @var{value} is an integer. The allowable choices for
7208 @var{name} are given in the following table:

7210 @table @gcctabopt
7211 @item sra-max-structure-size
7212 The maximum structure size, in bytes, at which the scalar replacement
7213 of aggregates (SRA) optimization will perform block copies. The
7214 default value, 0, implies that GCC will select the most appropriate
7215 size itself.

7217 @item sra-field-structure-ratio
7218 The threshold ratio (as a percentage) between instantiated fields and

new/gcc/doc/invoke.texi 68

7219 the complete structure size. We say that if the ratio of the number
7220 of bytes in instantiated fields to the number of bytes in the complete
7221 structure exceeds this parameter, then block copies are not used. The
7222 default is 75.

7224 @item struct-reorg-cold-struct-ratio
7225 The threshold ratio (as a percentage) between a structure frequency
7226 and the frequency of the hottest structure in the program. This parameter
7227 is used by struct-reorg optimization enabled by @option{-fipa-struct-reorg}.
7228 We say that if the ratio of a structure frequency, calculated by profiling,
7229 to the hottest structure frequency in the program is less than this
7230 parameter, then structure reorganization is not applied to this structure.
7231 The default is 10.

7233 @item predictable-branch-cost-outcome
7234 When branch is predicted to be taken with probability lower than this threshold
7235 (in percent), then it is considered well predictable. The default is 10.

7237 @item max-crossjump-edges
7238 The maximum number of incoming edges to consider for crossjumping.
7239 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
7240 the number of edges incoming to each block. Increasing values mean
7241 more aggressive optimization, making the compile time increase with
7242 probably small improvement in executable size.

7244 @item min-crossjump-insns
7245 The minimum number of instructions which must be matched at the end
7246 of two blocks before crossjumping will be performed on them. This
7247 value is ignored in the case where all instructions in the block being
7248 crossjumped from are matched. The default value is 5.

7250 @item max-grow-copy-bb-insns
7251 The maximum code size expansion factor when copying basic blocks
7252 instead of jumping. The expansion is relative to a jump instruction.
7253 The default value is 8.

7255 @item max-goto-duplication-insns
7256 The maximum number of instructions to duplicate to a block that jumps
7257 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
7258 passes, GCC factors computed gotos early in the compilation process,
7259 and unfactors them as late as possible. Only computed jumps at the
7260 end of a basic blocks with no more than max-goto-duplication-insns are
7261 unfactored. The default value is 8.

7263 @item max-delay-slot-insn-search
7264 The maximum number of instructions to consider when looking for an
7265 instruction to fill a delay slot. If more than this arbitrary number of
7266 instructions is searched, the time savings from filling the delay slot
7267 will be minimal so stop searching. Increasing values mean more
7268 aggressive optimization, making the compile time increase with probably
7269 small improvement in executable run time.

7271 @item max-delay-slot-live-search
7272 When trying to fill delay slots, the maximum number of instructions to
7273 consider when searching for a block with valid live register
7274 information. Increasing this arbitrarily chosen value means more
7275 aggressive optimization, increasing the compile time. This parameter
7276 should be removed when the delay slot code is rewritten to maintain the
7277 control-flow graph.

7279 @item max-gcse-memory
7280 The approximate maximum amount of memory that will be allocated in
7281 order to perform the global common subexpression elimination
7282 optimization. If more memory than specified is required, the
7283 optimization will not be done.

new/gcc/doc/invoke.texi 69

7285 @item max-gcse-passes
7286 The maximum number of passes of GCSE to run. The default is 1.

7288 @item max-pending-list-length
7289 The maximum number of pending dependencies scheduling will allow
7290 before flushing the current state and starting over. Large functions
7291 with few branches or calls can create excessively large lists which
7292 needlessly consume memory and resources.

7294 @item max-inline-insns-single
7295 Several parameters control the tree inliner used in gcc.
7296 This number sets the maximum number of instructions (counted in GCC’s
7297 internal representation) in a single function that the tree inliner
7298 will consider for inlining. This only affects functions declared
7299 inline and methods implemented in a class declaration (C++).
7300 The default value is 450.

7302 @item max-inline-insns-auto
7303 When you use @option{-finline-functions} (included in @option{-O3}),
7304 a lot of functions that would otherwise not be considered for inlining
7305 by the compiler will be investigated. To those functions, a different
7306 (more restrictive) limit compared to functions declared inline can
7307 be applied.
7308 The default value is 90.

7310 @item large-function-insns
7311 The limit specifying really large functions. For functions larger than this
7312 limit after inlining, inlining is constrained by
7313 @option{--param large-function-growth}. This parameter is useful primarily
7314 to avoid extreme compilation time caused by non-linear algorithms used by the
7315 backend.
7316 The default value is 2700.

7318 @item large-function-growth
7319 Specifies maximal growth of large function caused by inlining in percents.
7320 The default value is 100 which limits large function growth to 2.0 times
7321 the original size.

7323 @item large-unit-insns
7324 The limit specifying large translation unit. Growth caused by inlining of
7325 units larger than this limit is limited by @option{--param inline-unit-growth}.
7326 For small units this might be too tight (consider unit consisting of function A
7327 that is inline and B that just calls A three time. If B is small relative to
7328 A, the growth of unit is 300\% and yet such inlining is very sane. For very
7329 large units consisting of small inlineable functions however the overall unit
7330 growth limit is needed to avoid exponential explosion of code size. Thus for
7331 smaller units, the size is increased to @option{--param large-unit-insns}
7332 before applying @option{--param inline-unit-growth}. The default is 10000

7334 @item inline-unit-growth
7335 Specifies maximal overall growth of the compilation unit caused by inlining.
7336 The default value is 30 which limits unit growth to 1.3 times the original
7337 size.

7339 @item ipcp-unit-growth
7340 Specifies maximal overall growth of the compilation unit caused by
7341 interprocedural constant propagation. The default value is 10 which limits
7342 unit growth to 1.1 times the original size.

7344 @item large-stack-frame
7345 The limit specifying large stack frames. While inlining the algorithm is trying
7346 to not grow past this limit too much. Default value is 256 bytes.

7348 @item large-stack-frame-growth
7349 Specifies maximal growth of large stack frames caused by inlining in percents.
7350 The default value is 1000 which limits large stack frame growth to 11 times

new/gcc/doc/invoke.texi 70

7351 the original size.

7353 @item max-inline-insns-recursive
7354 @itemx max-inline-insns-recursive-auto
7355 Specifies maximum number of instructions out-of-line copy of self recursive inli
7356 function can grow into by performing recursive inlining.

7358 For functions declared inline @option{--param max-inline-insns-recursive} is
7359 taken into account. For function not declared inline, recursive inlining
7360 happens only when @option{-finline-functions} (included in @option{-O3}) is
7361 enabled and @option{--param max-inline-insns-recursive-auto} is used. The
7362 default value is 450.

7364 @item max-inline-recursive-depth
7365 @itemx max-inline-recursive-depth-auto
7366 Specifies maximum recursion depth used by the recursive inlining.

7368 For functions declared inline @option{--param max-inline-recursive-depth} is
7369 taken into account. For function not declared inline, recursive inlining
7370 happens only when @option{-finline-functions} (included in @option{-O3}) is
7371 enabled and @option{--param max-inline-recursive-depth-auto} is used. The
7372 default value is 8.

7374 @item min-inline-recursive-probability
7375 Recursive inlining is profitable only for function having deep recursion
7376 in average and can hurt for function having little recursion depth by
7377 increasing the prologue size or complexity of function body to other
7378 optimizers.

7380 When profile feedback is available (see @option{-fprofile-generate}) the actual
7381 recursion depth can be guessed from probability that function will recurse via
7382 given call expression. This parameter limits inlining only to call expression
7383 whose probability exceeds given threshold (in percents). The default value is
7384 10.

7386 @item inline-call-cost
7387 Specify cost of call instruction relative to simple arithmetics operations
7388 (having cost of 1). Increasing this cost disqualifies inlining of non-leaf
7389 functions and at the same time increases size of leaf function that is believed
7390 reduce function size by being inlined. In effect it increases amount of
7391 inlining for code having large abstraction penalty (many functions that just
7392 pass the arguments to other functions) and decrease inlining for code with low
7393 abstraction penalty. The default value is 12.

7395 @item min-vect-loop-bound
7396 The minimum number of iterations under which a loop will not get vectorized
7397 when @option{-ftree-vectorize} is used. The number of iterations after
7398 vectorization needs to be greater than the value specified by this option
7399 to allow vectorization. The default value is 0.

7401 @item max-unrolled-insns
7402 The maximum number of instructions that a loop should have if that loop
7403 is unrolled, and if the loop is unrolled, it determines how many times
7404 the loop code is unrolled.

7406 @item max-average-unrolled-insns
7407 The maximum number of instructions biased by probabilities of their execution
7408 that a loop should have if that loop is unrolled, and if the loop is unrolled,
7409 it determines how many times the loop code is unrolled.

7411 @item max-unroll-times
7412 The maximum number of unrollings of a single loop.

7414 @item max-peeled-insns
7415 The maximum number of instructions that a loop should have if that loop
7416 is peeled, and if the loop is peeled, it determines how many times

new/gcc/doc/invoke.texi 71

7417 the loop code is peeled.

7419 @item max-peel-times
7420 The maximum number of peelings of a single loop.

7422 @item max-completely-peeled-insns
7423 The maximum number of insns of a completely peeled loop.

7425 @item max-completely-peel-times
7426 The maximum number of iterations of a loop to be suitable for complete peeling.

7428 @item max-completely-peel-loop-nest-depth
7429 The maximum depth of a loop nest suitable for complete peeling.

7431 @item max-unswitch-insns
7432 The maximum number of insns of an unswitched loop.

7434 @item max-unswitch-level
7435 The maximum number of branches unswitched in a single loop.

7437 @item lim-expensive
7438 The minimum cost of an expensive expression in the loop invariant motion.

7440 @item iv-consider-all-candidates-bound
7441 Bound on number of candidates for induction variables below that
7442 all candidates are considered for each use in induction variable
7443 optimizations. Only the most relevant candidates are considered
7444 if there are more candidates, to avoid quadratic time complexity.

7446 @item iv-max-considered-uses
7447 The induction variable optimizations give up on loops that contain more
7448 induction variable uses.

7450 @item iv-always-prune-cand-set-bound
7451 If number of candidates in the set is smaller than this value,
7452 we always try to remove unnecessary ivs from the set during its
7453 optimization when a new iv is added to the set.

7455 @item scev-max-expr-size
7456 Bound on size of expressions used in the scalar evolutions analyzer.
7457 Large expressions slow the analyzer.

7459 @item omega-max-vars
7460 The maximum number of variables in an Omega constraint system.
7461 The default value is 128.

7463 @item omega-max-geqs
7464 The maximum number of inequalities in an Omega constraint system.
7465 The default value is 256.

7467 @item omega-max-eqs
7468 The maximum number of equalities in an Omega constraint system.
7469 The default value is 128.

7471 @item omega-max-wild-cards
7472 The maximum number of wildcard variables that the Omega solver will
7473 be able to insert. The default value is 18.

7475 @item omega-hash-table-size
7476 The size of the hash table in the Omega solver. The default value is
7477 550.

7479 @item omega-max-keys
7480 The maximal number of keys used by the Omega solver. The default
7481 value is 500.

new/gcc/doc/invoke.texi 72

7483 @item omega-eliminate-redundant-constraints
7484 When set to 1, use expensive methods to eliminate all redundant
7485 constraints. The default value is 0.

7487 @item vect-max-version-for-alignment-checks
7488 The maximum number of runtime checks that can be performed when
7489 doing loop versioning for alignment in the vectorizer. See option
7490 ftree-vect-loop-version for more information.

7492 @item vect-max-version-for-alias-checks
7493 The maximum number of runtime checks that can be performed when
7494 doing loop versioning for alias in the vectorizer. See option
7495 ftree-vect-loop-version for more information.

7497 @item max-iterations-to-track

7499 The maximum number of iterations of a loop the brute force algorithm
7500 for analysis of # of iterations of the loop tries to evaluate.

7502 @item hot-bb-count-fraction
7503 Select fraction of the maximal count of repetitions of basic block in program
7504 given basic block needs to have to be considered hot.

7506 @item hot-bb-frequency-fraction
7507 Select fraction of the maximal frequency of executions of basic block in
7508 function given basic block needs to have to be considered hot

7510 @item max-predicted-iterations
7511 The maximum number of loop iterations we predict statically. This is useful
7512 in cases where function contain single loop with known bound and other loop
7513 with unknown. We predict the known number of iterations correctly, while
7514 the unknown number of iterations average to roughly 10. This means that the
7515 loop without bounds would appear artificially cold relative to the other one.

7517 @item align-threshold

7519 Select fraction of the maximal frequency of executions of basic block in
7520 function given basic block will get aligned.

7522 @item align-loop-iterations

7524 A loop expected to iterate at lest the selected number of iterations will get
7525 aligned.

7527 @item tracer-dynamic-coverage
7528 @itemx tracer-dynamic-coverage-feedback

7530 This value is used to limit superblock formation once the given percentage of
7531 executed instructions is covered. This limits unnecessary code size
7532 expansion.

7534 The @option{tracer-dynamic-coverage-feedback} is used only when profile
7535 feedback is available. The real profiles (as opposed to statically estimated
7536 ones) are much less balanced allowing the threshold to be larger value.

7538 @item tracer-max-code-growth
7539 Stop tail duplication once code growth has reached given percentage. This is
7540 rather hokey argument, as most of the duplicates will be eliminated later in
7541 cross jumping, so it may be set to much higher values than is the desired code
7542 growth.

7544 @item tracer-min-branch-ratio

7546 Stop reverse growth when the reverse probability of best edge is less than this
7547 threshold (in percent).

new/gcc/doc/invoke.texi 73

7549 @item tracer-min-branch-ratio
7550 @itemx tracer-min-branch-ratio-feedback

7552 Stop forward growth if the best edge do have probability lower than this
7553 threshold.

7555 Similarly to @option{tracer-dynamic-coverage} two values are present, one for
7556 compilation for profile feedback and one for compilation without. The value
7557 for compilation with profile feedback needs to be more conservative (higher) in
7558 order to make tracer effective.

7560 @item max-cse-path-length

7562 Maximum number of basic blocks on path that cse considers. The default is 10.

7564 @item max-cse-insns
7565 The maximum instructions CSE process before flushing. The default is 1000.

7567 @item max-aliased-vops

7569 Maximum number of virtual operands per function allowed to represent
7570 aliases before triggering the alias partitioning heuristic. Alias
7571 partitioning reduces compile times and memory consumption needed for
7572 aliasing at the expense of precision loss in alias information. The
7573 default value for this parameter is 100 for -O1, 500 for -O2 and 1000
7574 for -O3.

7576 Notice that if a function contains more memory statements than the
7577 value of this parameter, it is not really possible to achieve this
7578 reduction. In this case, the compiler will use the number of memory
7579 statements as the value for @option{max-aliased-vops}.

7581 @item avg-aliased-vops

7583 Average number of virtual operands per statement allowed to represent
7584 aliases before triggering the alias partitioning heuristic. This
7585 works in conjunction with @option{max-aliased-vops}. If a function
7586 contains more than @option{max-aliased-vops} virtual operators, then
7587 memory symbols will be grouped into memory partitions until either the
7588 total number of virtual operators is below @option{max-aliased-vops}
7589 or the average number of virtual operators per memory statement is
7590 below @option{avg-aliased-vops}. The default value for this parameter
7591 is 1 for -O1 and -O2, and 3 for -O3.

7593 @item ggc-min-expand

7595 GCC uses a garbage collector to manage its own memory allocation. This
7596 parameter specifies the minimum percentage by which the garbage
7597 collector’s heap should be allowed to expand between collections.
7598 Tuning this may improve compilation speed; it has no effect on code
7599 generation.

7601 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
7602 RAM >= 1GB@. If @code{getrlimit} is available, the notion of "RAM" is
7603 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
7604 GCC is not able to calculate RAM on a particular platform, the lower
7605 bound of 30% is used. Setting this parameter and
7606 @option{ggc-min-heapsize} to zero causes a full collection to occur at
7607 every opportunity. This is extremely slow, but can be useful for
7608 debugging.

7610 @item ggc-min-heapsize

7612 Minimum size of the garbage collector’s heap before it begins bothering
7613 to collect garbage. The first collection occurs after the heap expands
7614 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,

new/gcc/doc/invoke.texi 74

7615 tuning this may improve compilation speed, and has no effect on code
7616 generation.

7618 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit which
7619 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
7620 with a lower bound of 4096 (four megabytes) and an upper bound of
7621 131072 (128 megabytes). If GCC is not able to calculate RAM on a
7622 particular platform, the lower bound is used. Setting this parameter
7623 very large effectively disables garbage collection. Setting this
7624 parameter and @option{ggc-min-expand} to zero causes a full collection
7625 to occur at every opportunity.

7627 @item max-reload-search-insns
7628 The maximum number of instruction reload should look backward for equivalent
7629 register. Increasing values mean more aggressive optimization, making the
7630 compile time increase with probably slightly better performance. The default
7631 value is 100.

7633 @item max-cselib-memory-locations
7634 The maximum number of memory locations cselib should take into account.
7635 Increasing values mean more aggressive optimization, making the compile time
7636 increase with probably slightly better performance. The default value is 500.

7638 @item reorder-blocks-duplicate
7639 @itemx reorder-blocks-duplicate-feedback

7641 Used by basic block reordering pass to decide whether to use unconditional
7642 branch or duplicate the code on its destination. Code is duplicated when its
7643 estimated size is smaller than this value multiplied by the estimated size of
7644 unconditional jump in the hot spots of the program.

7646 The @option{reorder-block-duplicate-feedback} is used only when profile
7647 feedback is available and may be set to higher values than
7648 @option{reorder-block-duplicate} since information about the hot spots is more
7649 accurate.

7651 @item max-sched-ready-insns
7652 The maximum number of instructions ready to be issued the scheduler should
7653 consider at any given time during the first scheduling pass. Increasing
7654 values mean more thorough searches, making the compilation time increase
7655 with probably little benefit. The default value is 100.

7657 @item max-sched-region-blocks
7658 The maximum number of blocks in a region to be considered for
7659 interblock scheduling. The default value is 10.

7661 @item max-pipeline-region-blocks
7662 The maximum number of blocks in a region to be considered for
7663 pipelining in the selective scheduler. The default value is 15.

7665 @item max-sched-region-insns
7666 The maximum number of insns in a region to be considered for
7667 interblock scheduling. The default value is 100.

7669 @item max-pipeline-region-insns
7670 The maximum number of insns in a region to be considered for
7671 pipelining in the selective scheduler. The default value is 200.

7673 @item min-spec-prob
7674 The minimum probability (in percents) of reaching a source block
7675 for interblock speculative scheduling. The default value is 40.

7677 @item max-sched-extend-regions-iters
7678 The maximum number of iterations through CFG to extend regions.
7679 0 - disable region extension,
7680 N - do at most N iterations.

new/gcc/doc/invoke.texi 75

7681 The default value is 0.

7683 @item max-sched-insn-conflict-delay
7684 The maximum conflict delay for an insn to be considered for speculative motion.
7685 The default value is 3.

7687 @item sched-spec-prob-cutoff
7688 The minimal probability of speculation success (in percents), so that
7689 speculative insn will be scheduled.
7690 The default value is 40.

7692 @item sched-mem-true-dep-cost
7693 Minimal distance (in CPU cycles) between store and load targeting same
7694 memory locations. The default value is 1.

7696 @item selsched-max-lookahead
7697 The maximum size of the lookahead window of selective scheduling. It is a
7698 depth of search for available instructions.
7699 The default value is 50.

7701 @item selsched-max-sched-times
7702 The maximum number of times that an instruction will be scheduled during
7703 selective scheduling. This is the limit on the number of iterations
7704 through which the instruction may be pipelined. The default value is 2.

7706 @item selsched-max-insns-to-rename
7707 The maximum number of best instructions in the ready list that are considered
7708 for renaming in the selective scheduler. The default value is 2.

7710 @item max-last-value-rtl
7711 The maximum size measured as number of RTLs that can be recorded in an expressio
7712 in combiner for a pseudo register as last known value of that register. The def
7713 is 10000.

7715 @item integer-share-limit
7716 Small integer constants can use a shared data structure, reducing the
7717 compiler’s memory usage and increasing its speed. This sets the maximum
7718 value of a shared integer constant. The default value is 256.

7720 @item min-virtual-mappings
7721 Specifies the minimum number of virtual mappings in the incremental
7722 SSA updater that should be registered to trigger the virtual mappings
7723 heuristic defined by virtual-mappings-ratio. The default value is
7724 100.

7726 @item virtual-mappings-ratio
7727 If the number of virtual mappings is virtual-mappings-ratio bigger
7728 than the number of virtual symbols to be updated, then the incremental
7729 SSA updater switches to a full update for those symbols. The default
7730 ratio is 3.

7732 @item ssp-buffer-size
7733 The minimum size of buffers (i.e.@: arrays) that will receive stack smashing
7734 protection when @option{-fstack-protection} is used.

7736 @item max-jump-thread-duplication-stmts
7737 Maximum number of statements allowed in a block that needs to be
7738 duplicated when threading jumps.

7740 @item max-fields-for-field-sensitive
7741 Maximum number of fields in a structure we will treat in
7742 a field sensitive manner during pointer analysis. The default is zero
7743 for -O0, and -O1 and 100 for -Os, -O2, and -O3.

7745 @item prefetch-latency
7746 Estimate on average number of instructions that are executed before

new/gcc/doc/invoke.texi 76

7747 prefetch finishes. The distance we prefetch ahead is proportional
7748 to this constant. Increasing this number may also lead to less
7749 streams being prefetched (see @option{simultaneous-prefetches}).

7751 @item simultaneous-prefetches
7752 Maximum number of prefetches that can run at the same time.

7754 @item l1-cache-line-size
7755 The size of cache line in L1 cache, in bytes.

7757 @item l1-cache-size
7758 The size of L1 cache, in kilobytes.

7760 @item l2-cache-size
7761 The size of L2 cache, in kilobytes.

7763 @item use-canonical-types
7764 Whether the compiler should use the ‘‘canonical’’ type system. By
7765 default, this should always be 1, which uses a more efficient internal
7766 mechanism for comparing types in C++ and Objective-C++. However, if
7767 bugs in the canonical type system are causing compilation failures,
7768 set this value to 0 to disable canonical types.

7770 @item switch-conversion-max-branch-ratio
7771 Switch initialization conversion will refuse to create arrays that are
7772 bigger than @option{switch-conversion-max-branch-ratio} times the number of
7773 branches in the switch.

7775 @item max-partial-antic-length
7776 Maximum length of the partial antic set computed during the tree
7777 partial redundancy elimination optimization (@option{-ftree-pre}) when
7778 optimizing at @option{-O3} and above. For some sorts of source code
7779 the enhanced partial redundancy elimination optimization can run away,
7780 consuming all of the memory available on the host machine. This
7781 parameter sets a limit on the length of the sets that are computed,
7782 which prevents the runaway behavior. Setting a value of 0 for
7783 this parameter will allow an unlimited set length.

7785 @item sccvn-max-scc-size
7786 Maximum size of a strongly connected component (SCC) during SCCVN
7787 processing. If this limit is hit, SCCVN processing for the whole
7788 function will not be done and optimizations depending on it will
7789 be disabled. The default maximum SCC size is 10000.

7791 @item ira-max-loops-num
7792 IRA uses a regional register allocation by default. If a function
7793 contains loops more than number given by the parameter, only at most
7794 given number of the most frequently executed loops will form regions
7795 for the regional register allocation. The default value of the
7796 parameter is 100.

7798 @item ira-max-conflict-table-size
7799 Although IRA uses a sophisticated algorithm of compression conflict
7800 table, the table can be still big for huge functions. If the conflict
7801 table for a function could be more than size in MB given by the
7802 parameter, the conflict table is not built and faster, simpler, and
7803 lower quality register allocation algorithm will be used. The
7804 algorithm do not use pseudo-register conflicts. The default value of
7805 the parameter is 2000.

7807 @item loop-invariant-max-bbs-in-loop
7808 Loop invariant motion can be very expensive, both in compile time and
7809 in amount of needed compile time memory, with very large loops. Loops
7810 with more basic blocks than this parameter won’t have loop invariant
7811 motion optimization performed on them. The default value of the
7812 parameter is 1000 for -O1 and 10000 for -O2 and above.

new/gcc/doc/invoke.texi 77

7814 @end table
7815 @end table

7817 @node Preprocessor Options
7818 @section Options Controlling the Preprocessor
7819 @cindex preprocessor options
7820 @cindex options, preprocessor

7822 These options control the C preprocessor, which is run on each C source
7823 file before actual compilation.

7825 If you use the @option{-E} option, nothing is done except preprocessing.
7826 Some of these options make sense only together with @option{-E} because
7827 they cause the preprocessor output to be unsuitable for actual
7828 compilation.

7830 @table @gcctabopt
7831 @item -Wp,@var{option}
7832 @opindex Wp
7833 You can use @option{-Wp,@var{option}} to bypass the compiler driver
7834 and pass @var{option} directly through to the preprocessor. If
7835 @var{option} contains commas, it is split into multiple options at the
7836 commas. However, many options are modified, translated or interpreted
7837 by the compiler driver before being passed to the preprocessor, and
7838 @option{-Wp} forcibly bypasses this phase. The preprocessor’s direct
7839 interface is undocumented and subject to change, so whenever possible
7840 you should avoid using @option{-Wp} and let the driver handle the
7841 options instead.

7843 @item -Xpreprocessor @var{option}
7844 @opindex Xpreprocessor
7845 Pass @var{option} as an option to the preprocessor. You can use this to
7846 supply system-specific preprocessor options which GCC does not know how to
7847 recognize.

7849 If you want to pass an option that takes an argument, you must use
7850 @option{-Xpreprocessor} twice, once for the option and once for the argument.
7851 @end table

7853 @include cppopts.texi

7855 @node Assembler Options
7856 @section Passing Options to the Assembler

7858 @c prevent bad page break with this line
7859 You can pass options to the assembler.

7861 @table @gcctabopt
7862 @item -Wa,@var{option}
7863 @opindex Wa
7864 Pass @var{option} as an option to the assembler. If @var{option}
7865 contains commas, it is split into multiple options at the commas.

7867 @item -Xassembler @var{option}
7868 @opindex Xassembler
7869 Pass @var{option} as an option to the assembler. You can use this to
7870 supply system-specific assembler options which GCC does not know how to
7871 recognize.

7873 If you want to pass an option that takes an argument, you must use
7874 @option{-Xassembler} twice, once for the option and once for the argument.

7876 @end table

7878 @node Link Options

new/gcc/doc/invoke.texi 78

7879 @section Options for Linking
7880 @cindex link options
7881 @cindex options, linking

7883 These options come into play when the compiler links object files into
7884 an executable output file. They are meaningless if the compiler is
7885 not doing a link step.

7887 @table @gcctabopt
7888 @cindex file names
7889 @item @var{object-file-name}
7890 A file name that does not end in a special recognized suffix is
7891 considered to name an object file or library. (Object files are
7892 distinguished from libraries by the linker according to the file
7893 contents.) If linking is done, these object files are used as input
7894 to the linker.

7896 @item -c
7897 @itemx -S
7898 @itemx -E
7899 @opindex c
7900 @opindex S
7901 @opindex E
7902 If any of these options is used, then the linker is not run, and
7903 object file names should not be used as arguments. @xref{Overall
7904 Options}.

7906 @cindex Libraries
7907 @item -l@var{library}
7908 @itemx -l @var{library}
7909 @opindex l
7910 Search the library named @var{library} when linking. (The second
7911 alternative with the library as a separate argument is only for
7912 POSIX compliance and is not recommended.)

7914 It makes a difference where in the command you write this option; the
7915 linker searches and processes libraries and object files in the order they
7916 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
7917 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
7918 to functions in @samp{z}, those functions may not be loaded.

7920 The linker searches a standard list of directories for the library,
7921 which is actually a file named @file{lib@var{library}.a}. The linker
7922 then uses this file as if it had been specified precisely by name.

7924 The directories searched include several standard system directories
7925 plus any that you specify with @option{-L}.

7927 Normally the files found this way are library files---archive files
7928 whose members are object files. The linker handles an archive file by
7929 scanning through it for members which define symbols that have so far
7930 been referenced but not defined. But if the file that is found is an
7931 ordinary object file, it is linked in the usual fashion. The only
7932 difference between using an @option{-l} option and specifying a file name
7933 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
7934 and searches several directories.

7936 @item -lobjc
7937 @opindex lobjc
7938 You need this special case of the @option{-l} option in order to
7939 link an Objective-C or Objective-C++ program.

7941 @item -nostartfiles
7942 @opindex nostartfiles
7943 Do not use the standard system startup files when linking.
7944 The standard system libraries are used normally, unless @option{-nostdlib}

new/gcc/doc/invoke.texi 79

7945 or @option{-nodefaultlibs} is used.

7947 @item -nodefaultlibs
7948 @opindex nodefaultlibs
7949 Do not use the standard system libraries when linking.
7950 Only the libraries you specify will be passed to the linker.
7951 The standard startup files are used normally, unless @option{-nostartfiles}
7952 is used. The compiler may generate calls to @code{memcmp},
7953 @code{memset}, @code{memcpy} and @code{memmove}.
7954 These entries are usually resolved by entries in
7955 libc. These entry points should be supplied through some other
7956 mechanism when this option is specified.

7958 @item -nostdlib
7959 @opindex nostdlib
7960 Do not use the standard system startup files or libraries when linking.
7961 No startup files and only the libraries you specify will be passed to
7962 the linker. The compiler may generate calls to @code{memcmp}, @code{memset},
7963 @code{memcpy} and @code{memmove}.
7964 These entries are usually resolved by entries in
7965 libc. These entry points should be supplied through some other
7966 mechanism when this option is specified.

7968 @cindex @option{-lgcc}, use with @option{-nostdlib}
7969 @cindex @option{-nostdlib} and unresolved references
7970 @cindex unresolved references and @option{-nostdlib}
7971 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
7972 @cindex @option{-nodefaultlibs} and unresolved references
7973 @cindex unresolved references and @option{-nodefaultlibs}
7974 One of the standard libraries bypassed by @option{-nostdlib} and
7975 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
7976 that GCC uses to overcome shortcomings of particular machines, or special
7977 needs for some languages.
7978 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
7979 Collection (GCC) Internals},
7980 for more discussion of @file{libgcc.a}.)
7981 In most cases, you need @file{libgcc.a} even when you want to avoid
7982 other standard libraries. In other words, when you specify @option{-nostdlib}
7983 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
7984 This ensures that you have no unresolved references to internal GCC
7985 library subroutines. (For example, @samp{__main}, used to ensure C++
7986 constructors will be called; @pxref{Collect2,,@code{collect2}, gccint,
7987 GNU Compiler Collection (GCC) Internals}.)

7989 @item -pie
7990 @opindex pie
7991 Produce a position independent executable on targets which support it.
7992 For predictable results, you must also specify the same set of options
7993 that were used to generate code (@option{-fpie}, @option{-fPIE},
7994 or model suboptions) when you specify this option.

7996 @item -rdynamic
7997 @opindex rdynamic
7998 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
7999 that support it. This instructs the linker to add all symbols, not
8000 only used ones, to the dynamic symbol table. This option is needed
8001 for some uses of @code{dlopen} or to allow obtaining backtraces
8002 from within a program.

8004 @item -s
8005 @opindex s
8006 Remove all symbol table and relocation information from the executable.

8008 @item -static
8009 @opindex static
8010 On systems that support dynamic linking, this prevents linking with the shared

new/gcc/doc/invoke.texi 80

8011 libraries. On other systems, this option has no effect.

8013 @item -shared
8014 @opindex shared
8015 Produce a shared object which can then be linked with other objects to
8016 form an executable. Not all systems support this option. For predictable
8017 results, you must also specify the same set of options that were used to
8018 generate code (@option{-fpic}, @option{-fPIC}, or model suboptions)
8019 when you specify this option.@footnote{On some systems, @samp{gcc -shared}
8020 needs to build supplementary stub code for constructors to work. On
8021 multi-libbed systems, @samp{gcc -shared} must select the correct support
8022 libraries to link against. Failing to supply the correct flags may lead
8023 to subtle defects. Supplying them in cases where they are not necessary
8024 is innocuous.}

8026 @item -shared-libgcc
8027 @itemx -static-libgcc
8028 @opindex shared-libgcc
8029 @opindex static-libgcc
8030 On systems that provide @file{libgcc} as a shared library, these options
8031 force the use of either the shared or static version respectively.
8032 If no shared version of @file{libgcc} was built when the compiler was
8033 configured, these options have no effect.

8035 There are several situations in which an application should use the
8036 shared @file{libgcc} instead of the static version. The most common
8037 of these is when the application wishes to throw and catch exceptions
8038 across different shared libraries. In that case, each of the libraries
8039 as well as the application itself should use the shared @file{libgcc}.

8041 Therefore, the G++ and GCJ drivers automatically add
8042 @option{-shared-libgcc} whenever you build a shared library or a main
8043 executable, because C++ and Java programs typically use exceptions, so
8044 this is the right thing to do.

8046 If, instead, you use the GCC driver to create shared libraries, you may
8047 find that they will not always be linked with the shared @file{libgcc}.
8048 If GCC finds, at its configuration time, that you have a non-GNU linker
8049 or a GNU linker that does not support option @option{--eh-frame-hdr},
8050 it will link the shared version of @file{libgcc} into shared libraries
8051 by default. Otherwise, it will take advantage of the linker and optimize
8052 away the linking with the shared version of @file{libgcc}, linking with
8053 the static version of libgcc by default. This allows exceptions to
8054 propagate through such shared libraries, without incurring relocation
8055 costs at library load time.

8057 However, if a library or main executable is supposed to throw or catch
8058 exceptions, you must link it using the G++ or GCJ driver, as appropriate
8059 for the languages used in the program, or using the option
8060 @option{-shared-libgcc}, such that it is linked with the shared
8061 @file{libgcc}.

8063 @item -symbolic
8064 @opindex symbolic
8065 Bind references to global symbols when building a shared object. Warn
8066 about any unresolved references (unless overridden by the link editor
8067 option @samp{-Xlinker -z -Xlinker defs}). Only a few systems support
8068 this option.

8070 @item -T @var{script}
8071 @opindex T
8072 @cindex linker script
8073 Use @var{script} as the linker script. This option is supported by most
8074 systems using the GNU linker. On some targets, such as bare-board
8075 targets without an operating system, the @option{-T} option may be required
8076 when linking to avoid references to undefined symbols.

new/gcc/doc/invoke.texi 81

8078 @item -Xlinker @var{option}
8079 @opindex Xlinker
8080 Pass @var{option} as an option to the linker. You can use this to
8081 supply system-specific linker options which GCC does not know how to
8082 recognize.

8084 If you want to pass an option that takes a separate argument, you must use
8085 @option{-Xlinker} twice, once for the option and once for the argument.
8086 For example, to pass @option{-assert definitions}, you must write
8087 @samp{-Xlinker -assert -Xlinker definitions}. It does not work to write
8088 @option{-Xlinker "-assert definitions"}, because this passes the entire
8089 string as a single argument, which is not what the linker expects.

8091 When using the GNU linker, it is usually more convenient to pass
8092 arguments to linker options using the @option{@var{option}=@var{value}}
8093 syntax than as separate arguments. For example, you can specify
8094 @samp{-Xlinker -Map=output.map} rather than
8095 @samp{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
8096 this syntax for command-line options.

8098 @item -Wl,@var{option}
8099 @opindex Wl
8100 Pass @var{option} as an option to the linker. If @var{option} contains
8101 commas, it is split into multiple options at the commas. You can use this
8102 syntax to pass an argument to the option.
8103 For example, @samp{-Wl,-Map,output.map} passes @samp{-Map output.map} to the
8104 linker. When using the GNU linker, you can also get the same effect with
8105 @samp{-Wl,-Map=output.map}.

8107 @item -u @var{symbol}
8108 @opindex u
8109 Pretend the symbol @var{symbol} is undefined, to force linking of
8110 library modules to define it. You can use @option{-u} multiple times with
8111 different symbols to force loading of additional library modules.
8112 @end table

8114 @node Directory Options
8115 @section Options for Directory Search
8116 @cindex directory options
8117 @cindex options, directory search
8118 @cindex search path

8120 These options specify directories to search for header files, for
8121 libraries and for parts of the compiler:

8123 @table @gcctabopt
8124 @item -I@var{dir}
8125 @opindex I
8126 Add the directory @var{dir} to the head of the list of directories to be
8127 searched for header files. This can be used to override a system header
8128 file, substituting your own version, since these directories are
8129 searched before the system header file directories. However, you should
8130 not use this option to add directories that contain vendor-supplied
8131 system header files (use @option{-isystem} for that). If you use more than
8132 one @option{-I} option, the directories are scanned in left-to-right
8133 order; the standard system directories come after.

8135 If a standard system include directory, or a directory specified with
8136 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
8137 option will be ignored. The directory will still be searched but as a
8138 system directory at its normal position in the system include chain.
8139 This is to ensure that GCC’s procedure to fix buggy system headers and
8140 the ordering for the include_next directive are not inadvertently changed.
8141 If you really need to change the search order for system directories,
8142 use the @option{-nostdinc} and/or @option{-isystem} options.

new/gcc/doc/invoke.texi 82

8144 @item -iquote@var{dir}
8145 @opindex iquote
8146 Add the directory @var{dir} to the head of the list of directories to
8147 be searched for header files only for the case of @samp{#include
8148 "@var{file}"}; they are not searched for @samp{#include <@var{file}>},
8149 otherwise just like @option{-I}.

8151 @item -L@var{dir}
8152 @opindex L
8153 Add directory @var{dir} to the list of directories to be searched
8154 for @option{-l}.

8156 @item -B@var{prefix}
8157 @opindex B
8158 This option specifies where to find the executables, libraries,
8159 include files, and data files of the compiler itself.

8161 The compiler driver program runs one or more of the subprograms
8162 @file{cpp}, @file{cc1}, @file{as} and @file{ld}. It tries
8163 @var{prefix} as a prefix for each program it tries to run, both with and
8164 without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).

8166 For each subprogram to be run, the compiler driver first tries the
8167 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
8168 was not specified, the driver tries two standard prefixes, which are
8169 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
8170 those results in a file name that is found, the unmodified program
8171 name is searched for using the directories specified in your
8172 @env{PATH} environment variable.

8174 The compiler will check to see if the path provided by the @option{-B}
8175 refers to a directory, and if necessary it will add a directory
8176 separator character at the end of the path.

8178 @option{-B} prefixes that effectively specify directory names also apply
8179 to libraries in the linker, because the compiler translates these
8180 options into @option{-L} options for the linker. They also apply to
8181 includes files in the preprocessor, because the compiler translates these
8182 options into @option{-isystem} options for the preprocessor. In this case,
8183 the compiler appends @samp{include} to the prefix.

8185 The run-time support file @file{libgcc.a} can also be searched for using
8186 the @option{-B} prefix, if needed. If it is not found there, the two
8187 standard prefixes above are tried, and that is all. The file is left
8188 out of the link if it is not found by those means.

8190 Another way to specify a prefix much like the @option{-B} prefix is to use
8191 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
8192 Variables}.

8194 As a special kludge, if the path provided by @option{-B} is
8195 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
8196 9, then it will be replaced by @file{[dir/]include}. This is to help
8197 with boot-strapping the compiler.

8199 @item -specs=@var{file}
8200 @opindex specs
8201 Process @var{file} after the compiler reads in the standard @file{specs}
8202 file, in order to override the defaults that the @file{gcc} driver
8203 program uses when determining what switches to pass to @file{cc1},
8204 @file{cc1plus}, @file{as}, @file{ld}, etc. More than one
8205 @option{-specs=@var{file}} can be specified on the command line, and they
8206 are processed in order, from left to right.

8208 @item --sysroot=@var{dir}

new/gcc/doc/invoke.texi 83

8209 @opindex sysroot
8210 Use @var{dir} as the logical root directory for headers and libraries.
8211 For example, if the compiler would normally search for headers in
8212 @file{/usr/include} and libraries in @file{/usr/lib}, it will instead
8213 search @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.

8215 If you use both this option and the @option{-isysroot} option, then
8216 the @option{--sysroot} option will apply to libraries, but the
8217 @option{-isysroot} option will apply to header files.

8219 The GNU linker (beginning with version 2.16) has the necessary support
8220 for this option. If your linker does not support this option, the
8221 header file aspect of @option{--sysroot} will still work, but the
8222 library aspect will not.

8224 @item -I-
8225 @opindex I-
8226 This option has been deprecated. Please use @option{-iquote} instead for
8227 @option{-I} directories before the @option{-I-} and remove the @option{-I-}.
8228 Any directories you specify with @option{-I} options before the @option{-I-}
8229 option are searched only for the case of @samp{#include "@var{file}"};
8230 they are not searched for @samp{#include <@var{file}>}.

8232 If additional directories are specified with @option{-I} options after
8233 the @option{-I-}, these directories are searched for all @samp{#include}
8234 directives. (Ordinarily @emph{all} @option{-I} directories are used
8235 this way.)

8237 In addition, the @option{-I-} option inhibits the use of the current
8238 directory (where the current input file came from) as the first search
8239 directory for @samp{#include "@var{file}"}. There is no way to
8240 override this effect of @option{-I-}. With @option{-I.} you can specify
8241 searching the directory which was current when the compiler was
8242 invoked. That is not exactly the same as what the preprocessor does
8243 by default, but it is often satisfactory.

8245 @option{-I-} does not inhibit the use of the standard system directories
8246 for header files. Thus, @option{-I-} and @option{-nostdinc} are
8247 independent.
8248 @end table

8250 @c man end

8252 @node Spec Files
8253 @section Specifying subprocesses and the switches to pass to them
8254 @cindex Spec Files

8256 @command{gcc} is a driver program. It performs its job by invoking a
8257 sequence of other programs to do the work of compiling, assembling and
8258 linking. GCC interprets its command-line parameters and uses these to
8259 deduce which programs it should invoke, and which command-line options
8260 it ought to place on their command lines. This behavior is controlled
8261 by @dfn{spec strings}. In most cases there is one spec string for each
8262 program that GCC can invoke, but a few programs have multiple spec
8263 strings to control their behavior. The spec strings built into GCC can
8264 be overridden by using the @option{-specs=} command-line switch to specify
8265 a spec file.

8267 @dfn{Spec files} are plaintext files that are used to construct spec
8268 strings. They consist of a sequence of directives separated by blank
8269 lines. The type of directive is determined by the first non-whitespace
8270 character on the line and it can be one of the following:

8272 @table @code
8273 @item %@var{command}
8274 Issues a @var{command} to the spec file processor. The commands that can

new/gcc/doc/invoke.texi 84

8275 appear here are:

8277 @table @code
8278 @item %include <@var{file}>
8279 @cindex %include
8280 Search for @var{file} and insert its text at the current point in the
8281 specs file.

8283 @item %include_noerr <@var{file}>
8284 @cindex %include_noerr
8285 Just like @samp{%include}, but do not generate an error message if the include
8286 file cannot be found.

8288 @item %rename @var{old_name} @var{new_name}
8289 @cindex %rename
8290 Rename the spec string @var{old_name} to @var{new_name}.

8292 @end table

8294 @item *[@var{spec_name}]:
8295 This tells the compiler to create, override or delete the named spec
8296 string. All lines after this directive up to the next directive or
8297 blank line are considered to be the text for the spec string. If this
8298 results in an empty string then the spec will be deleted. (Or, if the
8299 spec did not exist, then nothing will happened.) Otherwise, if the spec
8300 does not currently exist a new spec will be created. If the spec does
8301 exist then its contents will be overridden by the text of this
8302 directive, unless the first character of that text is the @samp{+}
8303 character, in which case the text will be appended to the spec.

8305 @item [@var{suffix}]:
8306 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
8307 and up to the next directive or blank line are considered to make up the
8308 spec string for the indicated suffix. When the compiler encounters an
8309 input file with the named suffix, it will processes the spec string in
8310 order to work out how to compile that file. For example:

8312 @smallexample
8313 .ZZ:
8314 z-compile -input %i
8315 @end smallexample

8317 This says that any input file whose name ends in @samp{.ZZ} should be
8318 passed to the program @samp{z-compile}, which should be invoked with the
8319 command-line switch @option{-input} and with the result of performing the
8320 @samp{%i} substitution. (See below.)

8322 As an alternative to providing a spec string, the text that follows a
8323 suffix directive can be one of the following:

8325 @table @code
8326 @item @@@var{language}
8327 This says that the suffix is an alias for a known @var{language}. This is
8328 similar to using the @option{-x} command-line switch to GCC to specify a
8329 language explicitly. For example:

8331 @smallexample
8332 .ZZ:
8333 @@c++
8334 @end smallexample

8336 Says that .ZZ files are, in fact, C++ source files.

8338 @item #@var{name}
8339 This causes an error messages saying:

new/gcc/doc/invoke.texi 85

8341 @smallexample
8342 @var{name} compiler not installed on this system.
8343 @end smallexample
8344 @end table

8346 GCC already has an extensive list of suffixes built into it.
8347 This directive will add an entry to the end of the list of suffixes, but
8348 since the list is searched from the end backwards, it is effectively
8349 possible to override earlier entries using this technique.

8351 @end table

8353 GCC has the following spec strings built into it. Spec files can
8354 override these strings or create their own. Note that individual
8355 targets can also add their own spec strings to this list.

8357 @smallexample
8358 asm Options to pass to the assembler
8359 asm_final Options to pass to the assembler post-processor
8360 cpp Options to pass to the C preprocessor
8361 cc1 Options to pass to the C compiler
8362 cc1plus Options to pass to the C++ compiler
8363 endfile Object files to include at the end of the link
8364 link Options to pass to the linker
8365 lib Libraries to include on the command line to the linker
8366 libgcc Decides which GCC support library to pass to the linker
8367 linker Sets the name of the linker
8368 predefines Defines to be passed to the C preprocessor
8369 signed_char Defines to pass to CPP to say whether @code{char} is signed
8370 by default
8371 startfile Object files to include at the start of the link
8372 @end smallexample

8374 Here is a small example of a spec file:

8376 @smallexample
8377 %rename lib old_lib

8379 *lib:
8380 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
8381 @end smallexample

8383 This example renames the spec called @samp{lib} to @samp{old_lib} and
8384 then overrides the previous definition of @samp{lib} with a new one.
8385 The new definition adds in some extra command-line options before
8386 including the text of the old definition.

8388 @dfn{Spec strings} are a list of command-line options to be passed to their
8389 corresponding program. In addition, the spec strings can contain
8390 @samp{%}-prefixed sequences to substitute variable text or to
8391 conditionally insert text into the command line. Using these constructs
8392 it is possible to generate quite complex command lines.

8394 Here is a table of all defined @samp{%}-sequences for spec
8395 strings. Note that spaces are not generated automatically around the
8396 results of expanding these sequences. Therefore you can concatenate them
8397 together or combine them with constant text in a single argument.

8399 @table @code
8400 @item %%
8401 Substitute one @samp{%} into the program name or argument.

8403 @item %i
8404 Substitute the name of the input file being processed.

8406 @item %b

new/gcc/doc/invoke.texi 86

8407 Substitute the basename of the input file being processed.
8408 This is the substring up to (and not including) the last period
8409 and not including the directory.

8411 @item %B
8412 This is the same as @samp{%b}, but include the file suffix (text after
8413 the last period).

8415 @item %d
8416 Marks the argument containing or following the @samp{%d} as a
8417 temporary file name, so that that file will be deleted if GCC exits
8418 successfully. Unlike @samp{%g}, this contributes no text to the
8419 argument.

8421 @item %g@var{suffix}
8422 Substitute a file name that has suffix @var{suffix} and is chosen
8423 once per compilation, and mark the argument in the same way as
8424 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
8425 name is now chosen in a way that is hard to predict even when previously
8426 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
8427 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
8428 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
8429 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
8430 was simply substituted with a file name chosen once per compilation,
8431 without regard to any appended suffix (which was therefore treated
8432 just like ordinary text), making such attacks more likely to succeed.

8434 @item %u@var{suffix}
8435 Like @samp{%g}, but generates a new temporary file name even if
8436 @samp{%u@var{suffix}} was already seen.

8438 @item %U@var{suffix}
8439 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating
8440 new one if there is no such last file name. In the absence of any
8441 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don’
8442 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U
8443 would involve the generation of two distinct file names, one
8444 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} wa
8445 simply substituted with a file name chosen for the previous @samp{%u},
8446 without regard to any appended suffix.

8448 @item %j@var{suffix}
8449 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
8450 writable, and if save-temps is off; otherwise, substitute the name
8451 of a temporary file, just like @samp{%u}. This temporary file is not
8452 meant for communication between processes, but rather as a junk
8453 disposal mechanism.

8455 @item %|@var{suffix}
8456 @itemx %m@var{suffix}
8457 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
8458 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
8459 all. These are the two most common ways to instruct a program that it
8460 should read from standard input or write to standard output. If you
8461 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
8462 construct: see for example @file{f/lang-specs.h}.

8464 @item %.@var{SUFFIX}
8465 Substitutes @var{.SUFFIX} for the suffixes of a matched switch’s args
8466 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
8467 terminated by the next space or %.

8469 @item %w
8470 Marks the argument containing or following the @samp{%w} as the
8471 designated output file of this compilation. This puts the argument
8472 into the sequence of arguments that @samp{%o} will substitute later.

new/gcc/doc/invoke.texi 87

8474 @item %o
8475 Substitutes the names of all the output files, with spaces
8476 automatically placed around them. You should write spaces
8477 around the @samp{%o} as well or the results are undefined.
8478 @samp{%o} is for use in the specs for running the linker.
8479 Input files whose names have no recognized suffix are not compiled
8480 at all, but they are included among the output files, so they will
8481 be linked.

8483 @item %O
8484 Substitutes the suffix for object files. Note that this is
8485 handled specially when it immediately follows @samp{%g, %u, or %U},
8486 because of the need for those to form complete file names. The
8487 handling is such that @samp{%O} is treated exactly as if it had already
8488 been substituted, except that @samp{%g, %u, and %U} do not currently
8489 support additional @var{suffix} characters following @samp{%O} as they would
8490 following, for example, @samp{.o}.

8492 @item %p
8493 Substitutes the standard macro predefinitions for the
8494 current target machine. Use this when running @code{cpp}.

8496 @item %P
8497 Like @samp{%p}, but puts @samp{__} before and after the name of each
8498 predefined macro, except for macros that start with @samp{__} or with
8499 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
8500 C@.

8502 @item %I
8503 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
8504 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
8505 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
8506 and @option{-imultilib} as necessary.

8508 @item %s
8509 Current argument is the name of a library or startup file of some sort.
8510 Search for that file in a standard list of directories and substitute
8511 the full name found.

8513 @item %e@var{str}
8514 Print @var{str} as an error message. @var{str} is terminated by a newline.
8515 Use this when inconsistent options are detected.

8517 @item %(@var{name})
8518 Substitute the contents of spec string @var{name} at this point.

8520 @item %[@var{name}]
8521 Like @samp{%(@dots{})} but put @samp{__} around @option{-D} arguments.

8523 @item %x@{@var{option}@}
8524 Accumulate an option for @samp{%X}.

8526 @item %X
8527 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
8528 spec string.

8530 @item %Y
8531 Output the accumulated assembler options specified by @option{-Wa}.

8533 @item %Z
8534 Output the accumulated preprocessor options specified by @option{-Wp}.

8536 @item %a
8537 Process the @code{asm} spec. This is used to compute the
8538 switches to be passed to the assembler.

new/gcc/doc/invoke.texi 88

8540 @item %A
8541 Process the @code{asm_final} spec. This is a spec string for
8542 passing switches to an assembler post-processor, if such a program is
8543 needed.

8545 @item %l
8546 Process the @code{link} spec. This is the spec for computing the
8547 command line passed to the linker. Typically it will make use of the
8548 @samp{%L %G %S %D and %E} sequences.

8550 @item %D
8551 Dump out a @option{-L} option for each directory that GCC believes might
8552 contain startup files. If the target supports multilibs then the
8553 current multilib directory will be prepended to each of these paths.

8555 @item %L
8556 Process the @code{lib} spec. This is a spec string for deciding which
8557 libraries should be included on the command line to the linker.

8559 @item %G
8560 Process the @code{libgcc} spec. This is a spec string for deciding
8561 which GCC support library should be included on the command line to the linker.

8563 @item %S
8564 Process the @code{startfile} spec. This is a spec for deciding which
8565 object files should be the first ones passed to the linker. Typically
8566 this might be a file named @file{crt0.o}.

8568 @item %E
8569 Process the @code{endfile} spec. This is a spec string that specifies
8570 the last object files that will be passed to the linker.

8572 @item %C
8573 Process the @code{cpp} spec. This is used to construct the arguments
8574 to be passed to the C preprocessor.

8576 @item %1
8577 Process the @code{cc1} spec. This is used to construct the options to be
8578 passed to the actual C compiler (@samp{cc1}).

8580 @item %2
8581 Process the @code{cc1plus} spec. This is used to construct the options to be
8582 passed to the actual C++ compiler (@samp{cc1plus}).

8584 @item %*
8585 Substitute the variable part of a matched option. See below.
8586 Note that each comma in the substituted string is replaced by
8587 a single space.

8589 @item %<@code{S}
8590 Remove all occurrences of @code{-S} from the command line. Note---this
8591 command is position dependent. @samp{%} commands in the spec string
8592 before this one will see @code{-S}, @samp{%} commands in the spec string
8593 after this one will not.

8595 @item %:@var{function}(@var{args})
8596 Call the named function @var{function}, passing it @var{args}.
8597 @var{args} is first processed as a nested spec string, then split
8598 into an argument vector in the usual fashion. The function returns
8599 a string which is processed as if it had appeared literally as part
8600 of the current spec.

8602 The following built-in spec functions are provided:

8604 @table @code

new/gcc/doc/invoke.texi 89

8605 @item @code{getenv}
8606 The @code{getenv} spec function takes two arguments: an environment
8607 variable name and a string. If the environment variable is not
8608 defined, a fatal error is issued. Otherwise, the return value is the
8609 value of the environment variable concatenated with the string. For
8610 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:

8612 @smallexample
8613 %:getenv(TOPDIR /include)
8614 @end smallexample

8616 expands to @file{/path/to/top/include}.

8618 @item @code{if-exists}
8619 The @code{if-exists} spec function takes one argument, an absolute
8620 pathname to a file. If the file exists, @code{if-exists} returns the
8621 pathname. Here is a small example of its usage:

8623 @smallexample
8624 *startfile:
8625 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
8626 @end smallexample

8628 @item @code{if-exists-else}
8629 The @code{if-exists-else} spec function is similar to the @code{if-exists}
8630 spec function, except that it takes two arguments. The first argument is
8631 an absolute pathname to a file. If the file exists, @code{if-exists-else}
8632 returns the pathname. If it does not exist, it returns the second argument.
8633 This way, @code{if-exists-else} can be used to select one file or another,
8634 based on the existence of the first. Here is a small example of its usage:

8636 @smallexample
8637 *startfile:
8638 crt0%O%s %:if-exists(crti%O%s) \
8639 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
8640 @end smallexample

8642 @item @code{replace-outfile}
8643 The @code{replace-outfile} spec function takes two arguments. It looks for the
8644 first argument in the outfiles array and replaces it with the second argument.
8645 is a small example of its usage:

8647 @smallexample
8648 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
8649 @end smallexample

8651 @item @code{print-asm-header}
8652 The @code{print-asm-header} function takes no arguments and simply
8653 prints a banner like:

8655 @smallexample
8656 Assembler options
8657 =================

8659 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
8660 @end smallexample

8662 It is used to separate compiler options from assembler options
8663 in the @option{--target-help} output.
8664 @end table

8666 @item %@{@code{S}@}
8667 Substitutes the @code{-S} switch, if that switch was given to GCC@.
8668 If that switch was not specified, this substitutes nothing. Note that
8669 the leading dash is omitted when specifying this option, and it is
8670 automatically inserted if the substitution is performed. Thus the spec

new/gcc/doc/invoke.texi 90

8671 string @samp{%@{foo@}} would match the command-line option @option{-foo}
8672 and would output the command line option @option{-foo}.

8674 @item %W@{@code{S}@}
8675 Like %@{@code{S}@} but mark last argument supplied within as a file to be
8676 deleted on failure.

8678 @item %@{@code{S}*@}
8679 Substitutes all the switches specified to GCC whose names start
8680 with @code{-S}, but which also take an argument. This is used for
8681 switches like @option{-o}, @option{-D}, @option{-I}, etc.
8682 GCC considers @option{-o foo} as being
8683 one switch whose names starts with @samp{o}. %@{o*@} would substitute this
8684 text, including the space. Thus two arguments would be generated.

8686 @item %@{@code{S}*&@code{T}*@}
8687 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
8688 (the order of @code{S} and @code{T} in the spec is not significant).
8689 There can be any number of ampersand-separated variables; for each the
8690 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.

8692 @item %@{@code{S}:@code{X}@}
8693 Substitutes @code{X}, if the @samp{-S} switch was given to GCC@.

8695 @item %@{!@code{S}:@code{X}@}
8696 Substitutes @code{X}, if the @samp{-S} switch was @emph{not} given to GCC@.

8698 @item %@{@code{S}*:@code{X}@}
8699 Substitutes @code{X} if one or more switches whose names start with
8700 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
8701 once, no matter how many such switches appeared. However, if @code{%*}
8702 appears somewhere in @code{X}, then @code{X} will be substituted once
8703 for each matching switch, with the @code{%*} replaced by the part of
8704 that switch that matched the @code{*}.

8706 @item %@{.@code{S}:@code{X}@}
8707 Substitutes @code{X}, if processing a file with suffix @code{S}.

8709 @item %@{!.@code{S}:@code{X}@}
8710 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.

8712 @item %@{,@code{S}:@code{X}@}
8713 Substitutes @code{X}, if processing a file for language @code{S}.

8715 @item %@{!,@code{S}:@code{X}@}
8716 Substitutes @code{X}, if not processing a file for language @code{S}.

8718 @item %@{@code{S}|@code{P}:@code{X}@}
8719 Substitutes @code{X} if either @code{-S} or @code{-P} was given to
8720 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
8721 @code{*} sequences as well, although they have a stronger binding than
8722 the @samp{|}. If @code{%*} appears in @code{X}, all of the
8723 alternatives must be starred, and only the first matching alternative
8724 is substituted.

8726 For example, a spec string like this:

8728 @smallexample
8729 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
8730 @end smallexample

8732 will output the following command-line options from the following input
8733 command-line options:

8735 @smallexample
8736 fred.c -foo -baz

new/gcc/doc/invoke.texi 91

8737 jim.d -bar -boggle
8738 -d fred.c -foo -baz -boggle
8739 -d jim.d -bar -baz -boggle
8740 @end smallexample

8742 @item %@{S:X; T:Y; :D@}

8744 If @code{S} was given to GCC, substitutes @code{X}; else if @code{T} was
8745 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
8746 be as many clauses as you need. This may be combined with @code{.},
8747 @code{,}, @code{!}, @code{|}, and @code{*} as needed.

8750 @end table

8752 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
8753 construct may contain other nested @samp{%} constructs or spaces, or
8754 even newlines. They are processed as usual, as described above.
8755 Trailing white space in @code{X} is ignored. White space may also
8756 appear anywhere on the left side of the colon in these constructs,
8757 except between @code{.} or @code{*} and the corresponding word.

8759 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
8760 handled specifically in these constructs. If another value of
8761 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
8762 @option{-W} switch is found later in the command line, the earlier
8763 switch value is ignored, except with @{@code{S}*@} where @code{S} is
8764 just one letter, which passes all matching options.

8766 The character @samp{|} at the beginning of the predicate text is used to
8767 indicate that a command should be piped to the following command, but
8768 only if @option{-pipe} is specified.

8770 It is built into GCC which switches take arguments and which do not.
8771 (You might think it would be useful to generalize this to allow each
8772 compiler’s spec to say which switches take arguments. But this cannot
8773 be done in a consistent fashion. GCC cannot even decide which input
8774 files have been specified without knowing which switches take arguments,
8775 and it must know which input files to compile in order to tell which
8776 compilers to run).

8778 GCC also knows implicitly that arguments starting in @option{-l} are to be
8779 treated as compiler output files, and passed to the linker in their
8780 proper position among the other output files.

8782 @c man begin OPTIONS

8784 @node Target Options
8785 @section Specifying Target Machine and Compiler Version
8786 @cindex target options
8787 @cindex cross compiling
8788 @cindex specifying machine version
8789 @cindex specifying compiler version and target machine
8790 @cindex compiler version, specifying
8791 @cindex target machine, specifying

8793 The usual way to run GCC is to run the executable called @file{gcc}, or
8794 @file{<machine>-gcc} when cross-compiling, or
8795 @file{<machine>-gcc-<version>} to run a version other than the one that
8796 was installed last. Sometimes this is inconvenient, so GCC provides
8797 options that will switch to another cross-compiler or version.

8799 @table @gcctabopt
8800 @item -b @var{machine}
8801 @opindex b
8802 The argument @var{machine} specifies the target machine for compilation.

new/gcc/doc/invoke.texi 92

8804 The value to use for @var{machine} is the same as was specified as the
8805 machine type when configuring GCC as a cross-compiler. For
8806 example, if a cross-compiler was configured with @samp{configure
8807 arm-elf}, meaning to compile for an arm processor with elf binaries,
8808 then you would specify @option{-b arm-elf} to run that cross compiler.
8809 Because there are other options beginning with @option{-b}, the
8810 configuration must contain a hyphen, or @option{-b} alone should be one
8811 argument followed by the configuration in the next argument.

8813 @item -V @var{version}
8814 @opindex V
8815 The argument @var{version} specifies which version of GCC to run.
8816 This is useful when multiple versions are installed. For example,
8817 @var{version} might be @samp{4.0}, meaning to run GCC version 4.0.
8818 @end table

8820 The @option{-V} and @option{-b} options work by running the
8821 @file{<machine>-gcc-<version>} executable, so there’s no real reason to
8822 use them if you can just run that directly.

8824 @node Submodel Options
8825 @section Hardware Models and Configurations
8826 @cindex submodel options
8827 @cindex specifying hardware config
8828 @cindex hardware models and configurations, specifying
8829 @cindex machine dependent options

8831 Earlier we discussed the standard option @option{-b} which chooses among
8832 different installed compilers for completely different target
8833 machines, such as VAX vs.@: 68000 vs.@: 80386.

8835 In addition, each of these target machine types can have its own
8836 special options, starting with @samp{-m}, to choose among various
8837 hardware models or configurations---for example, 68010 vs 68020,
8838 floating coprocessor or none. A single installed version of the
8839 compiler can compile for any model or configuration, according to the
8840 options specified.

8842 Some configurations of the compiler also support additional special
8843 options, usually for compatibility with other compilers on the same
8844 platform.

8846 @c This list is ordered alphanumerically by subsection name.
8847 @c It should be the same order and spelling as these options are listed
8848 @c in Machine Dependent Options

8850 @menu
8851 * ARC Options::
8852 * ARM Options::
8853 * AVR Options::
8854 * Blackfin Options::
8855 * CRIS Options::
8856 * CRX Options::
8857 * Darwin Options::
8858 * DEC Alpha Options::
8859 * DEC Alpha/VMS Options::
8860 * FR30 Options::
8861 * FRV Options::
8862 * GNU/Linux Options::
8863 * H8/300 Options::
8864 * HPPA Options::
8865 * i386 and x86-64 Options::
8866 * i386 and x86-64 Windows Options::
8867 * IA-64 Options::
8868 * M32C Options::

new/gcc/doc/invoke.texi 93

8869 * M32R/D Options::
8870 * M680x0 Options::
8871 * M68hc1x Options::
8872 * MCore Options::
8873 * MIPS Options::
8874 * MMIX Options::
8875 * MN10300 Options::
8876 * PDP-11 Options::
8877 * picoChip Options::
8878 * PowerPC Options::
8879 * RS/6000 and PowerPC Options::
8880 * S/390 and zSeries Options::
8881 * Score Options::
8882 * SH Options::
8883 * SPARC Options::
8884 * SPU Options::
8885 * System V Options::
8886 * V850 Options::
8887 * VAX Options::
8888 * VxWorks Options::
8889 * x86-64 Options::
8890 * Xstormy16 Options::
8891 * Xtensa Options::
8892 * zSeries Options::
8893 @end menu

8895 @node ARC Options
8896 @subsection ARC Options
8897 @cindex ARC Options

8899 These options are defined for ARC implementations:

8901 @table @gcctabopt
8902 @item -EL
8903 @opindex EL
8904 Compile code for little endian mode. This is the default.

8906 @item -EB
8907 @opindex EB
8908 Compile code for big endian mode.

8910 @item -mmangle-cpu
8911 @opindex mmangle-cpu
8912 Prepend the name of the cpu to all public symbol names.
8913 In multiple-processor systems, there are many ARC variants with different
8914 instruction and register set characteristics. This flag prevents code
8915 compiled for one cpu to be linked with code compiled for another.
8916 No facility exists for handling variants that are ‘‘almost identical’’.
8917 This is an all or nothing option.

8919 @item -mcpu=@var{cpu}
8920 @opindex mcpu
8921 Compile code for ARC variant @var{cpu}.
8922 Which variants are supported depend on the configuration.
8923 All variants support @option{-mcpu=base}, this is the default.

8925 @item -mtext=@var{text-section}
8926 @itemx -mdata=@var{data-section}
8927 @itemx -mrodata=@var{readonly-data-section}
8928 @opindex mtext
8929 @opindex mdata
8930 @opindex mrodata
8931 Put functions, data, and readonly data in @var{text-section},
8932 @var{data-section}, and @var{readonly-data-section} respectively
8933 by default. This can be overridden with the @code{section} attribute.
8934 @xref{Variable Attributes}.

new/gcc/doc/invoke.texi 94

8936 @item -mfix-cortex-m3-ldrd
8937 @opindex mfix-cortex-m3-ldrd
8938 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
8939 with overlapping destination and base registers are used. This option avoids
8940 generating these instructions. This option is enabled by default when
8941 @option{-mcpu=cortex-m3} is specified.

8943 @end table

8945 @node ARM Options
8946 @subsection ARM Options
8947 @cindex ARM options

8949 These @samp{-m} options are defined for Advanced RISC Machines (ARM)
8950 architectures:

8952 @table @gcctabopt
8953 @item -mabi=@var{name}
8954 @opindex mabi
8955 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
8956 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.

8958 @item -mapcs-frame
8959 @opindex mapcs-frame
8960 Generate a stack frame that is compliant with the ARM Procedure Call
8961 Standard for all functions, even if this is not strictly necessary for
8962 correct execution of the code. Specifying @option{-fomit-frame-pointer}
8963 with this option will cause the stack frames not to be generated for
8964 leaf functions. The default is @option{-mno-apcs-frame}.

8966 @item -mapcs
8967 @opindex mapcs
8968 This is a synonym for @option{-mapcs-frame}.

8970 @ignore
8971 @c not currently implemented
8972 @item -mapcs-stack-check
8973 @opindex mapcs-stack-check
8974 Generate code to check the amount of stack space available upon entry to
8975 every function (that actually uses some stack space). If there is
8976 insufficient space available then either the function
8977 @samp{__rt_stkovf_split_small} or @samp{__rt_stkovf_split_big} will be
8978 called, depending upon the amount of stack space required. The run time
8979 system is required to provide these functions. The default is
8980 @option{-mno-apcs-stack-check}, since this produces smaller code.

8982 @c not currently implemented
8983 @item -mapcs-float
8984 @opindex mapcs-float
8985 Pass floating point arguments using the float point registers. This is
8986 one of the variants of the APCS@. This option is recommended if the
8987 target hardware has a floating point unit or if a lot of floating point
8988 arithmetic is going to be performed by the code. The default is
8989 @option{-mno-apcs-float}, since integer only code is slightly increased in
8990 size if @option{-mapcs-float} is used.

8992 @c not currently implemented
8993 @item -mapcs-reentrant
8994 @opindex mapcs-reentrant
8995 Generate reentrant, position independent code. The default is
8996 @option{-mno-apcs-reentrant}.
8997 @end ignore

8999 @item -mthumb-interwork
9000 @opindex mthumb-interwork

new/gcc/doc/invoke.texi 95

9001 Generate code which supports calling between the ARM and Thumb
9002 instruction sets. Without this option the two instruction sets cannot
9003 be reliably used inside one program. The default is
9004 @option{-mno-thumb-interwork}, since slightly larger code is generated
9005 when @option{-mthumb-interwork} is specified.

9007 @item -mno-sched-prolog
9008 @opindex mno-sched-prolog
9009 Prevent the reordering of instructions in the function prolog, or the
9010 merging of those instruction with the instructions in the function’s
9011 body. This means that all functions will start with a recognizable set
9012 of instructions (or in fact one of a choice from a small set of
9013 different function prologues), and this information can be used to
9014 locate the start if functions inside an executable piece of code. The
9015 default is @option{-msched-prolog}.

9017 @item -mfloat-abi=@var{name}
9018 @opindex mfloat-abi
9019 Specifies which floating-point ABI to use. Permissible values
9020 are: @samp{soft}, @samp{softfp} and @samp{hard}.

9022 Specifying @samp{soft} causes GCC to generate output containing
9023 library calls for floating-point operations.
9024 @samp{softfp} allows the generation of code using hardware floating-point
9025 instructions, but still uses the soft-float calling conventions.
9026 @samp{hard} allows generation of floating-point instructions
9027 and uses FPU-specific calling conventions.

9029 Using @option{-mfloat-abi=hard} with VFP coprocessors is not supported.
9030 Use @option{-mfloat-abi=softfp} with the appropriate @option{-mfpu} option
9031 to allow the compiler to generate code that makes use of the hardware
9032 floating-point capabilities for these CPUs.

9034 The default depends on the specific target configuration. Note that
9035 the hard-float and soft-float ABIs are not link-compatible; you must
9036 compile your entire program with the same ABI, and link with a
9037 compatible set of libraries.

9039 @item -mhard-float
9040 @opindex mhard-float
9041 Equivalent to @option{-mfloat-abi=hard}.

9043 @item -msoft-float
9044 @opindex msoft-float
9045 Equivalent to @option{-mfloat-abi=soft}.

9047 @item -mlittle-endian
9048 @opindex mlittle-endian
9049 Generate code for a processor running in little-endian mode. This is
9050 the default for all standard configurations.

9052 @item -mbig-endian
9053 @opindex mbig-endian
9054 Generate code for a processor running in big-endian mode; the default is
9055 to compile code for a little-endian processor.

9057 @item -mwords-little-endian
9058 @opindex mwords-little-endian
9059 This option only applies when generating code for big-endian processors.
9060 Generate code for a little-endian word order but a big-endian byte
9061 order. That is, a byte order of the form @samp{32107654}. Note: this
9062 option should only be used if you require compatibility with code for
9063 big-endian ARM processors generated by versions of the compiler prior to
9064 2.8.

9066 @item -mcpu=@var{name}

new/gcc/doc/invoke.texi 96

9067 @opindex mcpu
9068 This specifies the name of the target ARM processor. GCC uses this name
9069 to determine what kind of instructions it can emit when generating
9070 assembly code. Permissible names are: @samp{arm2}, @samp{arm250},
9071 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
9072 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
9073 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
9074 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
9075 @samp{arm720},
9076 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
9077 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
9078 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
9079 @samp{strongarm1110},
9080 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
9081 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
9082 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
9083 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
9084 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
9085 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
9086 @samp{arm1156t2-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
9087 @samp{cortex-a8}, @samp{cortex-a9},
9088 @samp{cortex-r4}, @samp{cortex-r4f}, @samp{cortex-m3},
9089 @samp{cortex-m1},
9090 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.

9092 @item -mtune=@var{name}
9093 @opindex mtune
9094 This option is very similar to the @option{-mcpu=} option, except that
9095 instead of specifying the actual target processor type, and hence
9096 restricting which instructions can be used, it specifies that GCC should
9097 tune the performance of the code as if the target were of the type
9098 specified in this option, but still choosing the instructions that it
9099 will generate based on the cpu specified by a @option{-mcpu=} option.
9100 For some ARM implementations better performance can be obtained by using
9101 this option.

9103 @item -march=@var{name}
9104 @opindex march
9105 This specifies the name of the target ARM architecture. GCC uses this
9106 name to determine what kind of instructions it can emit when generating
9107 assembly code. This option can be used in conjunction with or instead
9108 of the @option{-mcpu=} option. Permissible names are: @samp{armv2},
9109 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
9110 @samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te},
9111 @samp{armv6}, @samp{armv6j},
9112 @samp{armv6t2}, @samp{armv6z}, @samp{armv6zk}, @samp{armv6-m},
9113 @samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m},
9114 @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.

9116 @item -mfpu=@var{name}
9117 @itemx -mfpe=@var{number}
9118 @itemx -mfp=@var{number}
9119 @opindex mfpu
9120 @opindex mfpe
9121 @opindex mfp
9122 This specifies what floating point hardware (or hardware emulation) is
9123 available on the target. Permissible names are: @samp{fpa}, @samp{fpe2},
9124 @samp{fpe3}, @samp{maverick}, @samp{vfp}, @samp{vfpv3}, @samp{vfpv3-d16} and
9125 @samp{neon}. @option{-mfp} and @option{-mfpe}
9126 are synonyms for @option{-mfpu}=@samp{fpe}@var{number}, for compatibility
9127 with older versions of GCC@.

9129 If @option{-msoft-float} is specified this specifies the format of
9130 floating point values.

9132 @item -mstructure-size-boundary=@var{n}

new/gcc/doc/invoke.texi 97

9133 @opindex mstructure-size-boundary
9134 The size of all structures and unions will be rounded up to a multiple
9135 of the number of bits set by this option. Permissible values are 8, 32
9136 and 64. The default value varies for different toolchains. For the COFF
9137 targeted toolchain the default value is 8. A value of 64 is only allowed
9138 if the underlying ABI supports it.

9140 Specifying the larger number can produce faster, more efficient code, but
9141 can also increase the size of the program. Different values are potentially
9142 incompatible. Code compiled with one value cannot necessarily expect to
9143 work with code or libraries compiled with another value, if they exchange
9144 information using structures or unions.

9146 @item -mabort-on-noreturn
9147 @opindex mabort-on-noreturn
9148 Generate a call to the function @code{abort} at the end of a
9149 @code{noreturn} function. It will be executed if the function tries to
9150 return.

9152 @item -mlong-calls
9153 @itemx -mno-long-calls
9154 @opindex mlong-calls
9155 @opindex mno-long-calls
9156 Tells the compiler to perform function calls by first loading the
9157 address of the function into a register and then performing a subroutine
9158 call on this register. This switch is needed if the target function
9159 will lie outside of the 64 megabyte addressing range of the offset based
9160 version of subroutine call instruction.

9162 Even if this switch is enabled, not all function calls will be turned
9163 into long calls. The heuristic is that static functions, functions
9164 which have the @samp{short-call} attribute, functions that are inside
9165 the scope of a @samp{#pragma no_long_calls} directive and functions whose
9166 definitions have already been compiled within the current compilation
9167 unit, will not be turned into long calls. The exception to this rule is
9168 that weak function definitions, functions with the @samp{long-call}
9169 attribute or the @samp{section} attribute, and functions that are within
9170 the scope of a @samp{#pragma long_calls} directive, will always be
9171 turned into long calls.

9173 This feature is not enabled by default. Specifying
9174 @option{-mno-long-calls} will restore the default behavior, as will
9175 placing the function calls within the scope of a @samp{#pragma
9176 long_calls_off} directive. Note these switches have no effect on how
9177 the compiler generates code to handle function calls via function
9178 pointers.

9180 @item -msingle-pic-base
9181 @opindex msingle-pic-base
9182 Treat the register used for PIC addressing as read-only, rather than
9183 loading it in the prologue for each function. The run-time system is
9184 responsible for initializing this register with an appropriate value
9185 before execution begins.

9187 @item -mpic-register=@var{reg}
9188 @opindex mpic-register
9189 Specify the register to be used for PIC addressing. The default is R10
9190 unless stack-checking is enabled, when R9 is used.

9192 @item -mcirrus-fix-invalid-insns
9193 @opindex mcirrus-fix-invalid-insns
9194 @opindex mno-cirrus-fix-invalid-insns
9195 Insert NOPs into the instruction stream to in order to work around
9196 problems with invalid Maverick instruction combinations. This option
9197 is only valid if the @option{-mcpu=ep9312} option has been used to
9198 enable generation of instructions for the Cirrus Maverick floating

new/gcc/doc/invoke.texi 98

9199 point co-processor. This option is not enabled by default, since the
9200 problem is only present in older Maverick implementations. The default
9201 can be re-enabled by use of the @option{-mno-cirrus-fix-invalid-insns}
9202 switch.

9204 @item -mpoke-function-name
9205 @opindex mpoke-function-name
9206 Write the name of each function into the text section, directly
9207 preceding the function prologue. The generated code is similar to this:

9209 @smallexample
9210 t0
9211 .ascii "arm_poke_function_name", 0
9212 .align
9213 t1
9214 .word 0xff000000 + (t1 - t0)
9215 arm_poke_function_name
9216 mov ip, sp
9217 stmfd sp!, @{fp, ip, lr, pc@}
9218 sub fp, ip, #4
9219 @end smallexample

9221 When performing a stack backtrace, code can inspect the value of
9222 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
9223 location @code{pc - 12} and the top 8 bits are set, then we know that
9224 there is a function name embedded immediately preceding this location
9225 and has length @code{((pc[-3]) & 0xff000000)}.

9227 @item -mthumb
9228 @opindex mthumb
9229 Generate code for the Thumb instruction set. The default is to
9230 use the 32-bit ARM instruction set.
9231 This option automatically enables either 16-bit Thumb-1 or
9232 mixed 16/32-bit Thumb-2 instructions based on the @option{-mcpu=@var{name}}
9233 and @option{-march=@var{name}} options.

9235 @item -mtpcs-frame
9236 @opindex mtpcs-frame
9237 Generate a stack frame that is compliant with the Thumb Procedure Call
9238 Standard for all non-leaf functions. (A leaf function is one that does
9239 not call any other functions.) The default is @option{-mno-tpcs-frame}.

9241 @item -mtpcs-leaf-frame
9242 @opindex mtpcs-leaf-frame
9243 Generate a stack frame that is compliant with the Thumb Procedure Call
9244 Standard for all leaf functions. (A leaf function is one that does
9245 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.

9247 @item -mcallee-super-interworking
9248 @opindex mcallee-super-interworking
9249 Gives all externally visible functions in the file being compiled an ARM
9250 instruction set header which switches to Thumb mode before executing the
9251 rest of the function. This allows these functions to be called from
9252 non-interworking code.

9254 @item -mcaller-super-interworking
9255 @opindex mcaller-super-interworking
9256 Allows calls via function pointers (including virtual functions) to
9257 execute correctly regardless of whether the target code has been
9258 compiled for interworking or not. There is a small overhead in the cost
9259 of executing a function pointer if this option is enabled.

9261 @item -mtp=@var{name}
9262 @opindex mtp
9263 Specify the access model for the thread local storage pointer. The valid
9264 models are @option{soft}, which generates calls to @code{__aeabi_read_tp},

new/gcc/doc/invoke.texi 99

9265 @option{cp15}, which fetches the thread pointer from @code{cp15} directly
9266 (supported in the arm6k architecture), and @option{auto}, which uses the
9267 best available method for the selected processor. The default setting is
9268 @option{auto}.

9270 @item -mword-relocations
9271 @opindex mword-relocations
9272 Only generate absolute relocations on word sized values (i.e. R_ARM_ABS32).
9273 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
9274 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
9275 is specified.

9277 @end table

9279 @node AVR Options
9280 @subsection AVR Options
9281 @cindex AVR Options

9283 These options are defined for AVR implementations:

9285 @table @gcctabopt
9286 @item -mmcu=@var{mcu}
9287 @opindex mmcu
9288 Specify ATMEL AVR instruction set or MCU type.

9290 Instruction set avr1 is for the minimal AVR core, not supported by the C
9291 compiler, only for assembler programs (MCU types: at90s1200, attiny10,
9292 attiny11, attiny12, attiny15, attiny28).

9294 Instruction set avr2 (default) is for the classic AVR core with up to
9295 8K program memory space (MCU types: at90s2313, at90s2323, attiny22,
9296 at90s2333, at90s2343, at90s4414, at90s4433, at90s4434, at90s8515,
9297 at90c8534, at90s8535).

9299 Instruction set avr3 is for the classic AVR core with up to 128K program
9300 memory space (MCU types: atmega103, atmega603, at43usb320, at76c711).

9302 Instruction set avr4 is for the enhanced AVR core with up to 8K program
9303 memory space (MCU types: atmega8, atmega83, atmega85).

9305 Instruction set avr5 is for the enhanced AVR core with up to 128K program
9306 memory space (MCU types: atmega16, atmega161, atmega163, atmega32, atmega323,
9307 atmega64, atmega128, at43usb355, at94k).

9309 @item -msize
9310 @opindex msize
9311 Output instruction sizes to the asm file.

9313 @item -mno-interrupts
9314 @opindex mno-interrupts
9315 Generated code is not compatible with hardware interrupts.
9316 Code size will be smaller.

9318 @item -mcall-prologues
9319 @opindex mcall-prologues
9320 Functions prologues/epilogues expanded as call to appropriate
9321 subroutines. Code size will be smaller.

9323 @item -mno-tablejump
9324 @opindex mno-tablejump
9325 Do not generate tablejump insns which sometimes increase code size.
9326 The option is now deprecated in favor of the equivalent
9327 @option{-fno-jump-tables}

9329 @item -mtiny-stack
9330 @opindex mtiny-stack

new/gcc/doc/invoke.texi 100

9331 Change only the low 8 bits of the stack pointer.

9333 @item -mint8
9334 @opindex mint8
9335 Assume int to be 8 bit integer. This affects the sizes of all types: A
9336 char will be 1 byte, an int will be 1 byte, an long will be 2 bytes
9337 and long long will be 4 bytes. Please note that this option does not
9338 comply to the C standards, but it will provide you with smaller code
9339 size.
9340 @end table

9342 @node Blackfin Options
9343 @subsection Blackfin Options
9344 @cindex Blackfin Options

9346 @table @gcctabopt
9347 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
9348 @opindex mcpu=
9349 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
9350 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
9351 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
9352 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
9353 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
9354 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
9355 @samp{bf561}.
9356 The optional @var{sirevision} specifies the silicon revision of the target
9357 Blackfin processor. Any workarounds available for the targeted silicon revision
9358 will be enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled
9359 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
9360 will be enabled. The @code{__SILICON_REVISION__} macro is defined to two
9361 hexadecimal digits representing the major and minor numbers in the silicon
9362 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
9363 is not defined. If @var{sirevision} is @samp{any}, the
9364 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
9365 If this optional @var{sirevision} is not used, GCC assumes the latest known
9366 silicon revision of the targeted Blackfin processor.

9368 Support for @samp{bf561} is incomplete. For @samp{bf561},
9369 Only the processor macro is defined.
9370 Without this option, @samp{bf532} is used as the processor by default.
9371 The corresponding predefined processor macros for @var{cpu} is to
9372 be defined. And for @samp{bfin-elf} toolchain, this causes the hardware BSP
9373 provided by libgloss to be linked in if @option{-msim} is not given.

9375 @item -msim
9376 @opindex msim
9377 Specifies that the program will be run on the simulator. This causes
9378 the simulator BSP provided by libgloss to be linked in. This option
9379 has effect only for @samp{bfin-elf} toolchain.
9380 Certain other options, such as @option{-mid-shared-library} and
9381 @option{-mfdpic}, imply @option{-msim}.

9383 @item -momit-leaf-frame-pointer
9384 @opindex momit-leaf-frame-pointer
9385 Don’t keep the frame pointer in a register for leaf functions. This
9386 avoids the instructions to save, set up and restore frame pointers and
9387 makes an extra register available in leaf functions. The option
9388 @option{-fomit-frame-pointer} removes the frame pointer for all functions
9389 which might make debugging harder.

9391 @item -mspecld-anomaly
9392 @opindex mspecld-anomaly
9393 When enabled, the compiler will ensure that the generated code does not
9394 contain speculative loads after jump instructions. If this option is used,
9395 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.

new/gcc/doc/invoke.texi 101

9397 @item -mno-specld-anomaly
9398 @opindex mno-specld-anomaly
9399 Don’t generate extra code to prevent speculative loads from occurring.

9401 @item -mcsync-anomaly
9402 @opindex mcsync-anomaly
9403 When enabled, the compiler will ensure that the generated code does not
9404 contain CSYNC or SSYNC instructions too soon after conditional branches.
9405 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.

9407 @item -mno-csync-anomaly
9408 @opindex mno-csync-anomaly
9409 Don’t generate extra code to prevent CSYNC or SSYNC instructions from
9410 occurring too soon after a conditional branch.

9412 @item -mlow-64k
9413 @opindex mlow-64k
9414 When enabled, the compiler is free to take advantage of the knowledge that
9415 the entire program fits into the low 64k of memory.

9417 @item -mno-low-64k
9418 @opindex mno-low-64k
9419 Assume that the program is arbitrarily large. This is the default.

9421 @item -mstack-check-l1
9422 @opindex mstack-check-l1
9423 Do stack checking using information placed into L1 scratchpad memory by the
9424 uClinux kernel.

9426 @item -mid-shared-library
9427 @opindex mid-shared-library
9428 Generate code that supports shared libraries via the library ID method.
9429 This allows for execute in place and shared libraries in an environment
9430 without virtual memory management. This option implies @option{-fPIC}.
9431 With a @samp{bfin-elf} target, this option implies @option{-msim}.

9433 @item -mno-id-shared-library
9434 @opindex mno-id-shared-library
9435 Generate code that doesn’t assume ID based shared libraries are being used.
9436 This is the default.

9438 @item -mleaf-id-shared-library
9439 @opindex mleaf-id-shared-library
9440 Generate code that supports shared libraries via the library ID method,
9441 but assumes that this library or executable won’t link against any other
9442 ID shared libraries. That allows the compiler to use faster code for jumps
9443 and calls.

9445 @item -mno-leaf-id-shared-library
9446 @opindex mno-leaf-id-shared-library
9447 Do not assume that the code being compiled won’t link against any ID shared
9448 libraries. Slower code will be generated for jump and call insns.

9450 @item -mshared-library-id=n
9451 @opindex mshared-library-id
9452 Specified the identification number of the ID based shared library being
9453 compiled. Specifying a value of 0 will generate more compact code, specifying
9454 other values will force the allocation of that number to the current
9455 library but is no more space or time efficient than omitting this option.

9457 @item -msep-data
9458 @opindex msep-data
9459 Generate code that allows the data segment to be located in a different
9460 area of memory from the text segment. This allows for execute in place in
9461 an environment without virtual memory management by eliminating relocations
9462 against the text section.

new/gcc/doc/invoke.texi 102

9464 @item -mno-sep-data
9465 @opindex mno-sep-data
9466 Generate code that assumes that the data segment follows the text segment.
9467 This is the default.

9469 @item -mlong-calls
9470 @itemx -mno-long-calls
9471 @opindex mlong-calls
9472 @opindex mno-long-calls
9473 Tells the compiler to perform function calls by first loading the
9474 address of the function into a register and then performing a subroutine
9475 call on this register. This switch is needed if the target function
9476 will lie outside of the 24 bit addressing range of the offset based
9477 version of subroutine call instruction.

9479 This feature is not enabled by default. Specifying
9480 @option{-mno-long-calls} will restore the default behavior. Note these
9481 switches have no effect on how the compiler generates code to handle
9482 function calls via function pointers.

9484 @item -mfast-fp
9485 @opindex mfast-fp
9486 Link with the fast floating-point library. This library relaxes some of
9487 the IEEE floating-point standard’s rules for checking inputs against
9488 Not-a-Number (NAN), in the interest of performance.

9490 @item -minline-plt
9491 @opindex minline-plt
9492 Enable inlining of PLT entries in function calls to functions that are
9493 not known to bind locally. It has no effect without @option{-mfdpic}.

9495 @item -mmulticore
9496 @opindex mmulticore
9497 Build standalone application for multicore Blackfin processor. Proper
9498 start files and link scripts will be used to support multicore.
9499 This option defines @code{__BFIN_MULTICORE}. It can only be used with
9500 @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}. It can be used with
9501 @option{-mcorea} or @option{-mcoreb}. If it’s used without
9502 @option{-mcorea} or @option{-mcoreb}, single application/dual core
9503 programming model is used. In this model, the main function of Core B
9504 should be named as coreb_main. If it’s used with @option{-mcorea} or
9505 @option{-mcoreb}, one application per core programming model is used.
9506 If this option is not used, single core application programming
9507 model is used.

9509 @item -mcorea
9510 @opindex mcorea
9511 Build standalone application for Core A of BF561 when using
9512 one application per core programming model. Proper start files
9513 and link scripts will be used to support Core A. This option
9514 defines @code{__BFIN_COREA}. It must be used with @option{-mmulticore}.

9516 @item -mcoreb
9517 @opindex mcoreb
9518 Build standalone application for Core B of BF561 when using
9519 one application per core programming model. Proper start files
9520 and link scripts will be used to support Core B. This option
9521 defines @code{__BFIN_COREB}. When this option is used, coreb_main
9522 should be used instead of main. It must be used with
9523 @option{-mmulticore}.

9525 @item -msdram
9526 @opindex msdram
9527 Build standalone application for SDRAM. Proper start files and
9528 link scripts will be used to put the application into SDRAM.

new/gcc/doc/invoke.texi 103

9529 Loader should initialize SDRAM before loading the application
9530 into SDRAM. This option defines @code{__BFIN_SDRAM}.

9532 @item -micplb
9533 @opindex micplb
9534 Assume that ICPLBs are enabled at runtime. This has an effect on certain
9535 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
9536 are enabled; for standalone applications the default is off.
9537 @end table

9539 @node CRIS Options
9540 @subsection CRIS Options
9541 @cindex CRIS Options

9543 These options are defined specifically for the CRIS ports.

9545 @table @gcctabopt
9546 @item -march=@var{architecture-type}
9547 @itemx -mcpu=@var{architecture-type}
9548 @opindex march
9549 @opindex mcpu
9550 Generate code for the specified architecture. The choices for
9551 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
9552 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
9553 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
9554 @samp{v10}.

9556 @item -mtune=@var{architecture-type}
9557 @opindex mtune
9558 Tune to @var{architecture-type} everything applicable about the generated
9559 code, except for the ABI and the set of available instructions. The
9560 choices for @var{architecture-type} are the same as for
9561 @option{-march=@var{architecture-type}}.

9563 @item -mmax-stack-frame=@var{n}
9564 @opindex mmax-stack-frame
9565 Warn when the stack frame of a function exceeds @var{n} bytes.

9567 @item -metrax4
9568 @itemx -metrax100
9569 @opindex metrax4
9570 @opindex metrax100
9571 The options @option{-metrax4} and @option{-metrax100} are synonyms for
9572 @option{-march=v3} and @option{-march=v8} respectively.

9574 @item -mmul-bug-workaround
9575 @itemx -mno-mul-bug-workaround
9576 @opindex mmul-bug-workaround
9577 @opindex mno-mul-bug-workaround
9578 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
9579 models where it applies. This option is active by default.

9581 @item -mpdebug
9582 @opindex mpdebug
9583 Enable CRIS-specific verbose debug-related information in the assembly
9584 code. This option also has the effect to turn off the @samp{#NO_APP}
9585 formatted-code indicator to the assembler at the beginning of the
9586 assembly file.

9588 @item -mcc-init
9589 @opindex mcc-init
9590 Do not use condition-code results from previous instruction; always emit
9591 compare and test instructions before use of condition codes.

9593 @item -mno-side-effects
9594 @opindex mno-side-effects

new/gcc/doc/invoke.texi 104

9595 Do not emit instructions with side-effects in addressing modes other than
9596 post-increment.

9598 @item -mstack-align
9599 @itemx -mno-stack-align
9600 @itemx -mdata-align
9601 @itemx -mno-data-align
9602 @itemx -mconst-align
9603 @itemx -mno-const-align
9604 @opindex mstack-align
9605 @opindex mno-stack-align
9606 @opindex mdata-align
9607 @opindex mno-data-align
9608 @opindex mconst-align
9609 @opindex mno-const-align
9610 These options (no-options) arranges (eliminate arrangements) for the
9611 stack-frame, individual data and constants to be aligned for the maximum
9612 single data access size for the chosen CPU model. The default is to
9613 arrange for 32-bit alignment. ABI details such as structure layout are
9614 not affected by these options.

9616 @item -m32-bit
9617 @itemx -m16-bit
9618 @itemx -m8-bit
9619 @opindex m32-bit
9620 @opindex m16-bit
9621 @opindex m8-bit
9622 Similar to the stack- data- and const-align options above, these options
9623 arrange for stack-frame, writable data and constants to all be 32-bit,
9624 16-bit or 8-bit aligned. The default is 32-bit alignment.

9626 @item -mno-prologue-epilogue
9627 @itemx -mprologue-epilogue
9628 @opindex mno-prologue-epilogue
9629 @opindex mprologue-epilogue
9630 With @option{-mno-prologue-epilogue}, the normal function prologue and
9631 epilogue that sets up the stack-frame are omitted and no return
9632 instructions or return sequences are generated in the code. Use this
9633 option only together with visual inspection of the compiled code: no
9634 warnings or errors are generated when call-saved registers must be saved,
9635 or storage for local variable needs to be allocated.

9637 @item -mno-gotplt
9638 @itemx -mgotplt
9639 @opindex mno-gotplt
9640 @opindex mgotplt
9641 With @option{-fpic} and @option{-fPIC}, don’t generate (do generate)
9642 instruction sequences that load addresses for functions from the PLT part
9643 of the GOT rather than (traditional on other architectures) calls to the
9644 PLT@. The default is @option{-mgotplt}.

9646 @item -melf
9647 @opindex melf
9648 Legacy no-op option only recognized with the cris-axis-elf and
9649 cris-axis-linux-gnu targets.

9651 @item -mlinux
9652 @opindex mlinux
9653 Legacy no-op option only recognized with the cris-axis-linux-gnu target.

9655 @item -sim
9656 @opindex sim
9657 This option, recognized for the cris-axis-elf arranges
9658 to link with input-output functions from a simulator library. Code,
9659 initialized data and zero-initialized data are allocated consecutively.

new/gcc/doc/invoke.texi 105

9661 @item -sim2
9662 @opindex sim2
9663 Like @option{-sim}, but pass linker options to locate initialized data at
9664 0x40000000 and zero-initialized data at 0x80000000.
9665 @end table

9667 @node CRX Options
9668 @subsection CRX Options
9669 @cindex CRX Options

9671 These options are defined specifically for the CRX ports.

9673 @table @gcctabopt

9675 @item -mmac
9676 @opindex mmac
9677 Enable the use of multiply-accumulate instructions. Disabled by default.

9679 @item -mpush-args
9680 @opindex mpush-args
9681 Push instructions will be used to pass outgoing arguments when functions
9682 are called. Enabled by default.
9683 @end table

9685 @node Darwin Options
9686 @subsection Darwin Options
9687 @cindex Darwin options

9689 These options are defined for all architectures running the Darwin operating
9690 system.

9692 FSF GCC on Darwin does not create ‘‘fat’’ object files; it will create
9693 an object file for the single architecture that it was built to
9694 target. Apple’s GCC on Darwin does create ‘‘fat’’ files if multiple
9695 @option{-arch} options are used; it does so by running the compiler or
9696 linker multiple times and joining the results together with
9697 @file{lipo}.

9699 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
9700 @samp{i686}) is determined by the flags that specify the ISA
9701 that GCC is targetting, like @option{-mcpu} or @option{-march}. The
9702 @option{-force_cpusubtype_ALL} option can be used to override this.

9704 The Darwin tools vary in their behavior when presented with an ISA
9705 mismatch. The assembler, @file{as}, will only permit instructions to
9706 be used that are valid for the subtype of the file it is generating,
9707 so you cannot put 64-bit instructions in an @samp{ppc750} object file.
9708 The linker for shared libraries, @file{/usr/bin/libtool}, will fail
9709 and print an error if asked to create a shared library with a less
9710 restrictive subtype than its input files (for instance, trying to put
9711 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
9712 for executables, @file{ld}, will quietly give the executable the most
9713 restrictive subtype of any of its input files.

9715 @table @gcctabopt
9716 @item -F@var{dir}
9717 @opindex F
9718 Add the framework directory @var{dir} to the head of the list of
9719 directories to be searched for header files. These directories are
9720 interleaved with those specified by @option{-I} options and are
9721 scanned in a left-to-right order.

9723 A framework directory is a directory with frameworks in it. A
9724 framework is a directory with a @samp{"Headers"} and/or
9725 @samp{"PrivateHeaders"} directory contained directly in it that ends
9726 in @samp{".framework"}. The name of a framework is the name of this

new/gcc/doc/invoke.texi 106

9727 directory excluding the @samp{".framework"}. Headers associated with
9728 the framework are found in one of those two directories, with
9729 @samp{"Headers"} being searched first. A subframework is a framework
9730 directory that is in a framework’s @samp{"Frameworks"} directory.
9731 Includes of subframework headers can only appear in a header of a
9732 framework that contains the subframework, or in a sibling subframework
9733 header. Two subframeworks are siblings if they occur in the same
9734 framework. A subframework should not have the same name as a
9735 framework, a warning will be issued if this is violated. Currently a
9736 subframework cannot have subframeworks, in the future, the mechanism
9737 may be extended to support this. The standard frameworks can be found
9738 in @samp{"/System/Library/Frameworks"} and
9739 @samp{"/Library/Frameworks"}. An example include looks like
9740 @code{#include <Framework/header.h>}, where @samp{Framework} denotes
9741 the name of the framework and header.h is found in the
9742 @samp{"PrivateHeaders"} or @samp{"Headers"} directory.

9744 @item -iframework@var{dir}
9745 @opindex iframework
9746 Like @option{-F} except the directory is a treated as a system
9747 directory. The main difference between this @option{-iframework} and
9748 @option{-F} is that with @option{-iframework} the compiler does not
9749 warn about constructs contained within header files found via
9750 @var{dir}. This option is valid only for the C family of languages.

9752 @item -gused
9753 @opindex gused
9754 Emit debugging information for symbols that are used. For STABS
9755 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
9756 This is by default ON@.

9758 @item -gfull
9759 @opindex gfull
9760 Emit debugging information for all symbols and types.

9762 @item -mmacosx-version-min=@var{version}
9763 The earliest version of MacOS X that this executable will run on
9764 is @var{version}. Typical values of @var{version} include @code{10.1},
9765 @code{10.2}, and @code{10.3.9}.

9767 If the compiler was built to use the system’s headers by default,
9768 then the default for this option is the system version on which the
9769 compiler is running, otherwise the default is to make choices which
9770 are compatible with as many systems and code bases as possible.

9772 @item -mkernel
9773 @opindex mkernel
9774 Enable kernel development mode. The @option{-mkernel} option sets
9775 @option{-static}, @option{-fno-common}, @option{-fno-cxa-atexit},
9776 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
9777 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
9778 applicable. This mode also sets @option{-mno-altivec},
9779 @option{-msoft-float}, @option{-fno-builtin} and
9780 @option{-mlong-branch} for PowerPC targets.

9782 @item -mone-byte-bool
9783 @opindex mone-byte-bool
9784 Override the defaults for @samp{bool} so that @samp{sizeof(bool)==1}.
9785 By default @samp{sizeof(bool)} is @samp{4} when compiling for
9786 Darwin/PowerPC and @samp{1} when compiling for Darwin/x86, so this
9787 option has no effect on x86.

9789 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
9790 to generate code that is not binary compatible with code generated
9791 without that switch. Using this switch may require recompiling all
9792 other modules in a program, including system libraries. Use this

new/gcc/doc/invoke.texi 107

9793 switch to conform to a non-default data model.

9795 @item -mfix-and-continue
9796 @itemx -ffix-and-continue
9797 @itemx -findirect-data
9798 @opindex mfix-and-continue
9799 @opindex ffix-and-continue
9800 @opindex findirect-data
9801 Generate code suitable for fast turn around development. Needed to
9802 enable gdb to dynamically load @code{.o} files into already running
9803 programs. @option{-findirect-data} and @option{-ffix-and-continue}
9804 are provided for backwards compatibility.

9806 @item -all_load
9807 @opindex all_load
9808 Loads all members of static archive libraries.
9809 See man ld(1) for more information.

9811 @item -arch_errors_fatal
9812 @opindex arch_errors_fatal
9813 Cause the errors having to do with files that have the wrong architecture
9814 to be fatal.

9816 @item -bind_at_load
9817 @opindex bind_at_load
9818 Causes the output file to be marked such that the dynamic linker will
9819 bind all undefined references when the file is loaded or launched.

9821 @item -bundle
9822 @opindex bundle
9823 Produce a Mach-o bundle format file.
9824 See man ld(1) for more information.

9826 @item -bundle_loader @var{executable}
9827 @opindex bundle_loader
9828 This option specifies the @var{executable} that will be loading the build
9829 output file being linked. See man ld(1) for more information.

9831 @item -dynamiclib
9832 @opindex dynamiclib
9833 When passed this option, GCC will produce a dynamic library instead of
9834 an executable when linking, using the Darwin @file{libtool} command.

9836 @item -force_cpusubtype_ALL
9837 @opindex force_cpusubtype_ALL
9838 This causes GCC’s output file to have the @var{ALL} subtype, instead of
9839 one controlled by the @option{-mcpu} or @option{-march} option.

9841 @item -allowable_client @var{client_name}
9842 @itemx -client_name
9843 @itemx -compatibility_version
9844 @itemx -current_version
9845 @itemx -dead_strip
9846 @itemx -dependency-file
9847 @itemx -dylib_file
9848 @itemx -dylinker_install_name
9849 @itemx -dynamic
9850 @itemx -exported_symbols_list
9851 @itemx -filelist
9852 @itemx -flat_namespace
9853 @itemx -force_flat_namespace
9854 @itemx -headerpad_max_install_names
9855 @itemx -image_base
9856 @itemx -init
9857 @itemx -install_name
9858 @itemx -keep_private_externs

new/gcc/doc/invoke.texi 108

9859 @itemx -multi_module
9860 @itemx -multiply_defined
9861 @itemx -multiply_defined_unused
9862 @itemx -noall_load
9863 @itemx -no_dead_strip_inits_and_terms
9864 @itemx -nofixprebinding
9865 @itemx -nomultidefs
9866 @itemx -noprebind
9867 @itemx -noseglinkedit
9868 @itemx -pagezero_size
9869 @itemx -prebind
9870 @itemx -prebind_all_twolevel_modules
9871 @itemx -private_bundle
9872 @itemx -read_only_relocs
9873 @itemx -sectalign
9874 @itemx -sectobjectsymbols
9875 @itemx -whyload
9876 @itemx -seg1addr
9877 @itemx -sectcreate
9878 @itemx -sectobjectsymbols
9879 @itemx -sectorder
9880 @itemx -segaddr
9881 @itemx -segs_read_only_addr
9882 @itemx -segs_read_write_addr
9883 @itemx -seg_addr_table
9884 @itemx -seg_addr_table_filename
9885 @itemx -seglinkedit
9886 @itemx -segprot
9887 @itemx -segs_read_only_addr
9888 @itemx -segs_read_write_addr
9889 @itemx -single_module
9890 @itemx -static
9891 @itemx -sub_library
9892 @itemx -sub_umbrella
9893 @itemx -twolevel_namespace
9894 @itemx -umbrella
9895 @itemx -undefined
9896 @itemx -unexported_symbols_list
9897 @itemx -weak_reference_mismatches
9898 @itemx -whatsloaded
9899 @opindex allowable_client
9900 @opindex client_name
9901 @opindex compatibility_version
9902 @opindex current_version
9903 @opindex dead_strip
9904 @opindex dependency-file
9905 @opindex dylib_file
9906 @opindex dylinker_install_name
9907 @opindex dynamic
9908 @opindex exported_symbols_list
9909 @opindex filelist
9910 @opindex flat_namespace
9911 @opindex force_flat_namespace
9912 @opindex headerpad_max_install_names
9913 @opindex image_base
9914 @opindex init
9915 @opindex install_name
9916 @opindex keep_private_externs
9917 @opindex multi_module
9918 @opindex multiply_defined
9919 @opindex multiply_defined_unused
9920 @opindex noall_load
9921 @opindex no_dead_strip_inits_and_terms
9922 @opindex nofixprebinding
9923 @opindex nomultidefs
9924 @opindex noprebind

new/gcc/doc/invoke.texi 109

9925 @opindex noseglinkedit
9926 @opindex pagezero_size
9927 @opindex prebind
9928 @opindex prebind_all_twolevel_modules
9929 @opindex private_bundle
9930 @opindex read_only_relocs
9931 @opindex sectalign
9932 @opindex sectobjectsymbols
9933 @opindex whyload
9934 @opindex seg1addr
9935 @opindex sectcreate
9936 @opindex sectobjectsymbols
9937 @opindex sectorder
9938 @opindex segaddr
9939 @opindex segs_read_only_addr
9940 @opindex segs_read_write_addr
9941 @opindex seg_addr_table
9942 @opindex seg_addr_table_filename
9943 @opindex seglinkedit
9944 @opindex segprot
9945 @opindex segs_read_only_addr
9946 @opindex segs_read_write_addr
9947 @opindex single_module
9948 @opindex static
9949 @opindex sub_library
9950 @opindex sub_umbrella
9951 @opindex twolevel_namespace
9952 @opindex umbrella
9953 @opindex undefined
9954 @opindex unexported_symbols_list
9955 @opindex weak_reference_mismatches
9956 @opindex whatsloaded
9957 These options are passed to the Darwin linker. The Darwin linker man page
9958 describes them in detail.
9959 @end table

9961 @node DEC Alpha Options
9962 @subsection DEC Alpha Options

9964 These @samp{-m} options are defined for the DEC Alpha implementations:

9966 @table @gcctabopt
9967 @item -mno-soft-float
9968 @itemx -msoft-float
9969 @opindex mno-soft-float
9970 @opindex msoft-float
9971 Use (do not use) the hardware floating-point instructions for
9972 floating-point operations. When @option{-msoft-float} is specified,
9973 functions in @file{libgcc.a} will be used to perform floating-point
9974 operations. Unless they are replaced by routines that emulate the
9975 floating-point operations, or compiled in such a way as to call such
9976 emulations routines, these routines will issue floating-point
9977 operations. If you are compiling for an Alpha without floating-point
9978 operations, you must ensure that the library is built so as not to call
9979 them.

9981 Note that Alpha implementations without floating-point operations are
9982 required to have floating-point registers.

9984 @item -mfp-reg
9985 @itemx -mno-fp-regs
9986 @opindex mfp-reg
9987 @opindex mno-fp-regs
9988 Generate code that uses (does not use) the floating-point register set.
9989 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
9990 register set is not used, floating point operands are passed in integer

new/gcc/doc/invoke.texi 110

9991 registers as if they were integers and floating-point results are passed
9992 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
9993 so any function with a floating-point argument or return value called by code
9994 compiled with @option{-mno-fp-regs} must also be compiled with that
9995 option.

9997 A typical use of this option is building a kernel that does not use,
9998 and hence need not save and restore, any floating-point registers.

10000 @item -mieee
10001 @opindex mieee
10002 The Alpha architecture implements floating-point hardware optimized for
10003 maximum performance. It is mostly compliant with the IEEE floating
10004 point standard. However, for full compliance, software assistance is
10005 required. This option generates code fully IEEE compliant code
10006 @emph{except} that the @var{inexact-flag} is not maintained (see below).
10007 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
10008 defined during compilation. The resulting code is less efficient but is
10009 able to correctly support denormalized numbers and exceptional IEEE
10010 values such as not-a-number and plus/minus infinity. Other Alpha
10011 compilers call this option @option{-ieee_with_no_inexact}.

10013 @item -mieee-with-inexact
10014 @opindex mieee-with-inexact
10015 This is like @option{-mieee} except the generated code also maintains
10016 the IEEE @var{inexact-flag}. Turning on this option causes the
10017 generated code to implement fully-compliant IEEE math. In addition to
10018 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
10019 macro. On some Alpha implementations the resulting code may execute
10020 significantly slower than the code generated by default. Since there is
10021 very little code that depends on the @var{inexact-flag}, you should
10022 normally not specify this option. Other Alpha compilers call this
10023 option @option{-ieee_with_inexact}.

10025 @item -mfp-trap-mode=@var{trap-mode}
10026 @opindex mfp-trap-mode
10027 This option controls what floating-point related traps are enabled.
10028 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
10029 The trap mode can be set to one of four values:

10031 @table @samp
10032 @item n
10033 This is the default (normal) setting. The only traps that are enabled
10034 are the ones that cannot be disabled in software (e.g., division by zero
10035 trap).

10037 @item u
10038 In addition to the traps enabled by @samp{n}, underflow traps are enabled
10039 as well.

10041 @item su
10042 Like @samp{u}, but the instructions are marked to be safe for software
10043 completion (see Alpha architecture manual for details).

10045 @item sui
10046 Like @samp{su}, but inexact traps are enabled as well.
10047 @end table

10049 @item -mfp-rounding-mode=@var{rounding-mode}
10050 @opindex mfp-rounding-mode
10051 Selects the IEEE rounding mode. Other Alpha compilers call this option
10052 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
10053 of:

10055 @table @samp
10056 @item n

new/gcc/doc/invoke.texi 111

10057 Normal IEEE rounding mode. Floating point numbers are rounded towards
10058 the nearest machine number or towards the even machine number in case
10059 of a tie.

10061 @item m
10062 Round towards minus infinity.

10064 @item c
10065 Chopped rounding mode. Floating point numbers are rounded towards zero.

10067 @item d
10068 Dynamic rounding mode. A field in the floating point control register
10069 (@var{fpcr}, see Alpha architecture reference manual) controls the
10070 rounding mode in effect. The C library initializes this register for
10071 rounding towards plus infinity. Thus, unless your program modifies the
10072 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
10073 @end table

10075 @item -mtrap-precision=@var{trap-precision}
10076 @opindex mtrap-precision
10077 In the Alpha architecture, floating point traps are imprecise. This
10078 means without software assistance it is impossible to recover from a
10079 floating trap and program execution normally needs to be terminated.
10080 GCC can generate code that can assist operating system trap handlers
10081 in determining the exact location that caused a floating point trap.
10082 Depending on the requirements of an application, different levels of
10083 precisions can be selected:

10085 @table @samp
10086 @item p
10087 Program precision. This option is the default and means a trap handler
10088 can only identify which program caused a floating point exception.

10090 @item f
10091 Function precision. The trap handler can determine the function that
10092 caused a floating point exception.

10094 @item i
10095 Instruction precision. The trap handler can determine the exact
10096 instruction that caused a floating point exception.
10097 @end table

10099 Other Alpha compilers provide the equivalent options called
10100 @option{-scope_safe} and @option{-resumption_safe}.

10102 @item -mieee-conformant
10103 @opindex mieee-conformant
10104 This option marks the generated code as IEEE conformant. You must not
10105 use this option unless you also specify @option{-mtrap-precision=i} and either
10106 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
10107 is to emit the line @samp{.eflag 48} in the function prologue of the
10108 generated assembly file. Under DEC Unix, this has the effect that
10109 IEEE-conformant math library routines will be linked in.

10111 @item -mbuild-constants
10112 @opindex mbuild-constants
10113 Normally GCC examines a 32- or 64-bit integer constant to
10114 see if it can construct it from smaller constants in two or three
10115 instructions. If it cannot, it will output the constant as a literal and
10116 generate code to load it from the data segment at runtime.

10118 Use this option to require GCC to construct @emph{all} integer constants
10119 using code, even if it takes more instructions (the maximum is six).

10121 You would typically use this option to build a shared library dynamic
10122 loader. Itself a shared library, it must relocate itself in memory

new/gcc/doc/invoke.texi 112

10123 before it can find the variables and constants in its own data segment.

10125 @item -malpha-as
10126 @itemx -mgas
10127 @opindex malpha-as
10128 @opindex mgas
10129 Select whether to generate code to be assembled by the vendor-supplied
10130 assembler (@option{-malpha-as}) or by the GNU assembler @option{-mgas}.

10132 @item -mbwx
10133 @itemx -mno-bwx
10134 @itemx -mcix
10135 @itemx -mno-cix
10136 @itemx -mfix
10137 @itemx -mno-fix
10138 @itemx -mmax
10139 @itemx -mno-max
10140 @opindex mbwx
10141 @opindex mno-bwx
10142 @opindex mcix
10143 @opindex mno-cix
10144 @opindex mfix
10145 @opindex mno-fix
10146 @opindex mmax
10147 @opindex mno-max
10148 Indicate whether GCC should generate code to use the optional BWX,
10149 CIX, FIX and MAX instruction sets. The default is to use the instruction
10150 sets supported by the CPU type specified via @option{-mcpu=} option or that
10151 of the CPU on which GCC was built if none was specified.

10153 @item -mfloat-vax
10154 @itemx -mfloat-ieee
10155 @opindex mfloat-vax
10156 @opindex mfloat-ieee
10157 Generate code that uses (does not use) VAX F and G floating point
10158 arithmetic instead of IEEE single and double precision.

10160 @item -mexplicit-relocs
10161 @itemx -mno-explicit-relocs
10162 @opindex mexplicit-relocs
10163 @opindex mno-explicit-relocs
10164 Older Alpha assemblers provided no way to generate symbol relocations
10165 except via assembler macros. Use of these macros does not allow
10166 optimal instruction scheduling. GNU binutils as of version 2.12
10167 supports a new syntax that allows the compiler to explicitly mark
10168 which relocations should apply to which instructions. This option
10169 is mostly useful for debugging, as GCC detects the capabilities of
10170 the assembler when it is built and sets the default accordingly.

10172 @item -msmall-data
10173 @itemx -mlarge-data
10174 @opindex msmall-data
10175 @opindex mlarge-data
10176 When @option{-mexplicit-relocs} is in effect, static data is
10177 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
10178 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
10179 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
10180 16-bit relocations off of the @code{$gp} register. This limits the
10181 size of the small data area to 64KB, but allows the variables to be
10182 directly accessed via a single instruction.

10184 The default is @option{-mlarge-data}. With this option the data area
10185 is limited to just below 2GB@. Programs that require more than 2GB of
10186 data must use @code{malloc} or @code{mmap} to allocate the data in the
10187 heap instead of in the program’s data segment.

new/gcc/doc/invoke.texi 113

10189 When generating code for shared libraries, @option{-fpic} implies
10190 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.

10192 @item -msmall-text
10193 @itemx -mlarge-text
10194 @opindex msmall-text
10195 @opindex mlarge-text
10196 When @option{-msmall-text} is used, the compiler assumes that the
10197 code of the entire program (or shared library) fits in 4MB, and is
10198 thus reachable with a branch instruction. When @option{-msmall-data}
10199 is used, the compiler can assume that all local symbols share the
10200 same @code{$gp} value, and thus reduce the number of instructions
10201 required for a function call from 4 to 1.

10203 The default is @option{-mlarge-text}.

10205 @item -mcpu=@var{cpu_type}
10206 @opindex mcpu
10207 Set the instruction set and instruction scheduling parameters for
10208 machine type @var{cpu_type}. You can specify either the @samp{EV}
10209 style name or the corresponding chip number. GCC supports scheduling
10210 parameters for the EV4, EV5 and EV6 family of processors and will
10211 choose the default values for the instruction set from the processor
10212 you specify. If you do not specify a processor type, GCC will default
10213 to the processor on which the compiler was built.

10215 Supported values for @var{cpu_type} are

10217 @table @samp
10218 @item ev4
10219 @itemx ev45
10220 @itemx 21064
10221 Schedules as an EV4 and has no instruction set extensions.

10223 @item ev5
10224 @itemx 21164
10225 Schedules as an EV5 and has no instruction set extensions.

10227 @item ev56
10228 @itemx 21164a
10229 Schedules as an EV5 and supports the BWX extension.

10231 @item pca56
10232 @itemx 21164pc
10233 @itemx 21164PC
10234 Schedules as an EV5 and supports the BWX and MAX extensions.

10236 @item ev6
10237 @itemx 21264
10238 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.

10240 @item ev67
10241 @itemx 21264a
10242 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
10243 @end table

10245 Native Linux/GNU toolchains also support the value @samp{native},
10246 which selects the best architecture option for the host processor.
10247 @option{-mcpu=native} has no effect if GCC does not recognize
10248 the processor.

10250 @item -mtune=@var{cpu_type}
10251 @opindex mtune
10252 Set only the instruction scheduling parameters for machine type
10253 @var{cpu_type}. The instruction set is not changed.

new/gcc/doc/invoke.texi 114

10255 Native Linux/GNU toolchains also support the value @samp{native},
10256 which selects the best architecture option for the host processor.
10257 @option{-mtune=native} has no effect if GCC does not recognize
10258 the processor.

10260 @item -mmemory-latency=@var{time}
10261 @opindex mmemory-latency
10262 Sets the latency the scheduler should assume for typical memory
10263 references as seen by the application. This number is highly
10264 dependent on the memory access patterns used by the application
10265 and the size of the external cache on the machine.

10267 Valid options for @var{time} are

10269 @table @samp
10270 @item @var{number}
10271 A decimal number representing clock cycles.

10273 @item L1
10274 @itemx L2
10275 @itemx L3
10276 @itemx main
10277 The compiler contains estimates of the number of clock cycles for
10278 ‘‘typical’’ EV4 & EV5 hardware for the Level 1, 2 & 3 caches
10279 (also called Dcache, Scache, and Bcache), as well as to main memory.
10280 Note that L3 is only valid for EV5.

10282 @end table
10283 @end table

10285 @node DEC Alpha/VMS Options
10286 @subsection DEC Alpha/VMS Options

10288 These @samp{-m} options are defined for the DEC Alpha/VMS implementations:

10290 @table @gcctabopt
10291 @item -mvms-return-codes
10292 @opindex mvms-return-codes
10293 Return VMS condition codes from main. The default is to return POSIX
10294 style condition (e.g.@: error) codes.
10295 @end table

10297 @node FR30 Options
10298 @subsection FR30 Options
10299 @cindex FR30 Options

10301 These options are defined specifically for the FR30 port.

10303 @table @gcctabopt

10305 @item -msmall-model
10306 @opindex msmall-model
10307 Use the small address space model. This can produce smaller code, but
10308 it does assume that all symbolic values and addresses will fit into a
10309 20-bit range.

10311 @item -mno-lsim
10312 @opindex mno-lsim
10313 Assume that run-time support has been provided and so there is no need
10314 to include the simulator library (@file{libsim.a}) on the linker
10315 command line.

10317 @end table

10319 @node FRV Options
10320 @subsection FRV Options

new/gcc/doc/invoke.texi 115

10321 @cindex FRV Options

10323 @table @gcctabopt
10324 @item -mgpr-32
10325 @opindex mgpr-32

10327 Only use the first 32 general purpose registers.

10329 @item -mgpr-64
10330 @opindex mgpr-64

10332 Use all 64 general purpose registers.

10334 @item -mfpr-32
10335 @opindex mfpr-32

10337 Use only the first 32 floating point registers.

10339 @item -mfpr-64
10340 @opindex mfpr-64

10342 Use all 64 floating point registers

10344 @item -mhard-float
10345 @opindex mhard-float

10347 Use hardware instructions for floating point operations.

10349 @item -msoft-float
10350 @opindex msoft-float

10352 Use library routines for floating point operations.

10354 @item -malloc-cc
10355 @opindex malloc-cc

10357 Dynamically allocate condition code registers.

10359 @item -mfixed-cc
10360 @opindex mfixed-cc

10362 Do not try to dynamically allocate condition code registers, only
10363 use @code{icc0} and @code{fcc0}.

10365 @item -mdword
10366 @opindex mdword

10368 Change ABI to use double word insns.

10370 @item -mno-dword
10371 @opindex mno-dword

10373 Do not use double word instructions.

10375 @item -mdouble
10376 @opindex mdouble

10378 Use floating point double instructions.

10380 @item -mno-double
10381 @opindex mno-double

10383 Do not use floating point double instructions.

10385 @item -mmedia
10386 @opindex mmedia

new/gcc/doc/invoke.texi 116

10388 Use media instructions.

10390 @item -mno-media
10391 @opindex mno-media

10393 Do not use media instructions.

10395 @item -mmuladd
10396 @opindex mmuladd

10398 Use multiply and add/subtract instructions.

10400 @item -mno-muladd
10401 @opindex mno-muladd

10403 Do not use multiply and add/subtract instructions.

10405 @item -mfdpic
10406 @opindex mfdpic

10408 Select the FDPIC ABI, that uses function descriptors to represent
10409 pointers to functions. Without any PIC/PIE-related options, it
10410 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
10411 assumes GOT entries and small data are within a 12-bit range from the
10412 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
10413 are computed with 32 bits.
10414 With a @samp{bfin-elf} target, this option implies @option{-msim}.

10416 @item -minline-plt
10417 @opindex minline-plt

10419 Enable inlining of PLT entries in function calls to functions that are
10420 not known to bind locally. It has no effect without @option{-mfdpic}.
10421 It’s enabled by default if optimizing for speed and compiling for
10422 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
10423 optimization option such as @option{-O3} or above is present in the
10424 command line.

10426 @item -mTLS
10427 @opindex TLS

10429 Assume a large TLS segment when generating thread-local code.

10431 @item -mtls
10432 @opindex tls

10434 Do not assume a large TLS segment when generating thread-local code.

10436 @item -mgprel-ro
10437 @opindex mgprel-ro

10439 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
10440 that is known to be in read-only sections. It’s enabled by default,
10441 except for @option{-fpic} or @option{-fpie}: even though it may help
10442 make the global offset table smaller, it trades 1 instruction for 4.
10443 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
10444 one of which may be shared by multiple symbols, and it avoids the need
10445 for a GOT entry for the referenced symbol, so it’s more likely to be a
10446 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.

10448 @item -multilib-library-pic
10449 @opindex multilib-library-pic

10451 Link with the (library, not FD) pic libraries. It’s implied by
10452 @option{-mlibrary-pic}, as well as by @option{-fPIC} and

new/gcc/doc/invoke.texi 117

10453 @option{-fpic} without @option{-mfdpic}. You should never have to use
10454 it explicitly.

10456 @item -mlinked-fp
10457 @opindex mlinked-fp

10459 Follow the EABI requirement of always creating a frame pointer whenever
10460 a stack frame is allocated. This option is enabled by default and can
10461 be disabled with @option{-mno-linked-fp}.

10463 @item -mlong-calls
10464 @opindex mlong-calls

10466 Use indirect addressing to call functions outside the current
10467 compilation unit. This allows the functions to be placed anywhere
10468 within the 32-bit address space.

10470 @item -malign-labels
10471 @opindex malign-labels

10473 Try to align labels to an 8-byte boundary by inserting nops into the
10474 previous packet. This option only has an effect when VLIW packing
10475 is enabled. It doesn’t create new packets; it merely adds nops to
10476 existing ones.

10478 @item -mlibrary-pic
10479 @opindex mlibrary-pic

10481 Generate position-independent EABI code.

10483 @item -macc-4
10484 @opindex macc-4

10486 Use only the first four media accumulator registers.

10488 @item -macc-8
10489 @opindex macc-8

10491 Use all eight media accumulator registers.

10493 @item -mpack
10494 @opindex mpack

10496 Pack VLIW instructions.

10498 @item -mno-pack
10499 @opindex mno-pack

10501 Do not pack VLIW instructions.

10503 @item -mno-eflags
10504 @opindex mno-eflags

10506 Do not mark ABI switches in e_flags.

10508 @item -mcond-move
10509 @opindex mcond-move

10511 Enable the use of conditional-move instructions (default).

10513 This switch is mainly for debugging the compiler and will likely be removed
10514 in a future version.

10516 @item -mno-cond-move
10517 @opindex mno-cond-move

new/gcc/doc/invoke.texi 118

10519 Disable the use of conditional-move instructions.

10521 This switch is mainly for debugging the compiler and will likely be removed
10522 in a future version.

10524 @item -mscc
10525 @opindex mscc

10527 Enable the use of conditional set instructions (default).

10529 This switch is mainly for debugging the compiler and will likely be removed
10530 in a future version.

10532 @item -mno-scc
10533 @opindex mno-scc

10535 Disable the use of conditional set instructions.

10537 This switch is mainly for debugging the compiler and will likely be removed
10538 in a future version.

10540 @item -mcond-exec
10541 @opindex mcond-exec

10543 Enable the use of conditional execution (default).

10545 This switch is mainly for debugging the compiler and will likely be removed
10546 in a future version.

10548 @item -mno-cond-exec
10549 @opindex mno-cond-exec

10551 Disable the use of conditional execution.

10553 This switch is mainly for debugging the compiler and will likely be removed
10554 in a future version.

10556 @item -mvliw-branch
10557 @opindex mvliw-branch

10559 Run a pass to pack branches into VLIW instructions (default).

10561 This switch is mainly for debugging the compiler and will likely be removed
10562 in a future version.

10564 @item -mno-vliw-branch
10565 @opindex mno-vliw-branch

10567 Do not run a pass to pack branches into VLIW instructions.

10569 This switch is mainly for debugging the compiler and will likely be removed
10570 in a future version.

10572 @item -mmulti-cond-exec
10573 @opindex mmulti-cond-exec

10575 Enable optimization of @code{&&} and @code{||} in conditional execution
10576 (default).

10578 This switch is mainly for debugging the compiler and will likely be removed
10579 in a future version.

10581 @item -mno-multi-cond-exec
10582 @opindex mno-multi-cond-exec

10584 Disable optimization of @code{&&} and @code{||} in conditional execution.

new/gcc/doc/invoke.texi 119

10586 This switch is mainly for debugging the compiler and will likely be removed
10587 in a future version.

10589 @item -mnested-cond-exec
10590 @opindex mnested-cond-exec

10592 Enable nested conditional execution optimizations (default).

10594 This switch is mainly for debugging the compiler and will likely be removed
10595 in a future version.

10597 @item -mno-nested-cond-exec
10598 @opindex mno-nested-cond-exec

10600 Disable nested conditional execution optimizations.

10602 This switch is mainly for debugging the compiler and will likely be removed
10603 in a future version.

10605 @item -moptimize-membar
10606 @opindex moptimize-membar

10608 This switch removes redundant @code{membar} instructions from the
10609 compiler generated code. It is enabled by default.

10611 @item -mno-optimize-membar
10612 @opindex mno-optimize-membar

10614 This switch disables the automatic removal of redundant @code{membar}
10615 instructions from the generated code.

10617 @item -mtomcat-stats
10618 @opindex mtomcat-stats

10620 Cause gas to print out tomcat statistics.

10622 @item -mcpu=@var{cpu}
10623 @opindex mcpu

10625 Select the processor type for which to generate code. Possible values are
10626 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
10627 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.

10629 @end table

10631 @node GNU/Linux Options
10632 @subsection GNU/Linux Options

10634 These @samp{-m} options are defined for GNU/Linux targets:

10636 @table @gcctabopt
10637 @item -mglibc
10638 @opindex mglibc
10639 Use the GNU C library instead of uClibc. This is the default except
10640 on @samp{*-*-linux-*uclibc*} targets.

10642 @item -muclibc
10643 @opindex muclibc
10644 Use uClibc instead of the GNU C library. This is the default on
10645 @samp{*-*-linux-*uclibc*} targets.
10646 @end table

10648 @node H8/300 Options
10649 @subsection H8/300 Options

new/gcc/doc/invoke.texi 120

10651 These @samp{-m} options are defined for the H8/300 implementations:

10653 @table @gcctabopt
10654 @item -mrelax
10655 @opindex mrelax
10656 Shorten some address references at link time, when possible; uses the
10657 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
10658 ld, Using ld}, for a fuller description.

10660 @item -mh
10661 @opindex mh
10662 Generate code for the H8/300H@.

10664 @item -ms
10665 @opindex ms
10666 Generate code for the H8S@.

10668 @item -mn
10669 @opindex mn
10670 Generate code for the H8S and H8/300H in the normal mode. This switch
10671 must be used either with @option{-mh} or @option{-ms}.

10673 @item -ms2600
10674 @opindex ms2600
10675 Generate code for the H8S/2600. This switch must be used with @option{-ms}.

10677 @item -mint32
10678 @opindex mint32
10679 Make @code{int} data 32 bits by default.

10681 @item -malign-300
10682 @opindex malign-300
10683 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
10684 The default for the H8/300H and H8S is to align longs and floats on 4
10685 byte boundaries.
10686 @option{-malign-300} causes them to be aligned on 2 byte boundaries.
10687 This option has no effect on the H8/300.
10688 @end table

10690 @node HPPA Options
10691 @subsection HPPA Options
10692 @cindex HPPA Options

10694 These @samp{-m} options are defined for the HPPA family of computers:

10696 @table @gcctabopt
10697 @item -march=@var{architecture-type}
10698 @opindex march
10699 Generate code for the specified architecture. The choices for
10700 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
10701 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
10702 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
10703 architecture option for your machine. Code compiled for lower numbered
10704 architectures will run on higher numbered architectures, but not the
10705 other way around.

10707 @item -mpa-risc-1-0
10708 @itemx -mpa-risc-1-1
10709 @itemx -mpa-risc-2-0
10710 @opindex mpa-risc-1-0
10711 @opindex mpa-risc-1-1
10712 @opindex mpa-risc-2-0
10713 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} r

10715 @item -mbig-switch
10716 @opindex mbig-switch

new/gcc/doc/invoke.texi 121

10717 Generate code suitable for big switch tables. Use this option only if
10718 the assembler/linker complain about out of range branches within a switch
10719 table.

10721 @item -mjump-in-delay
10722 @opindex mjump-in-delay
10723 Fill delay slots of function calls with unconditional jump instructions
10724 by modifying the return pointer for the function call to be the target
10725 of the conditional jump.

10727 @item -mdisable-fpregs
10728 @opindex mdisable-fpregs
10729 Prevent floating point registers from being used in any manner. This is
10730 necessary for compiling kernels which perform lazy context switching of
10731 floating point registers. If you use this option and attempt to perform
10732 floating point operations, the compiler will abort.

10734 @item -mdisable-indexing
10735 @opindex mdisable-indexing
10736 Prevent the compiler from using indexing address modes. This avoids some
10737 rather obscure problems when compiling MIG generated code under MACH@.

10739 @item -mno-space-regs
10740 @opindex mno-space-regs
10741 Generate code that assumes the target has no space registers. This allows
10742 GCC to generate faster indirect calls and use unscaled index address modes.

10744 Such code is suitable for level 0 PA systems and kernels.

10746 @item -mfast-indirect-calls
10747 @opindex mfast-indirect-calls
10748 Generate code that assumes calls never cross space boundaries. This
10749 allows GCC to emit code which performs faster indirect calls.

10751 This option will not work in the presence of shared libraries or nested
10752 functions.

10754 @item -mfixed-range=@var{register-range}
10755 @opindex mfixed-range
10756 Generate code treating the given register range as fixed registers.
10757 A fixed register is one that the register allocator can not use. This is
10758 useful when compiling kernel code. A register range is specified as
10759 two registers separated by a dash. Multiple register ranges can be
10760 specified separated by a comma.

10762 @item -mlong-load-store
10763 @opindex mlong-load-store
10764 Generate 3-instruction load and store sequences as sometimes required by
10765 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
10766 the HP compilers.

10768 @item -mportable-runtime
10769 @opindex mportable-runtime
10770 Use the portable calling conventions proposed by HP for ELF systems.

10772 @item -mgas
10773 @opindex mgas
10774 Enable the use of assembler directives only GAS understands.

10776 @item -mschedule=@var{cpu-type}
10777 @opindex mschedule
10778 Schedule code according to the constraints for the machine type
10779 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
10780 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
10781 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
10782 proper scheduling option for your machine. The default scheduling is

new/gcc/doc/invoke.texi 122

10783 @samp{8000}.

10785 @item -mlinker-opt
10786 @opindex mlinker-opt
10787 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
10788 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
10789 linkers in which they give bogus error messages when linking some programs.

10791 @item -msoft-float
10792 @opindex msoft-float
10793 Generate output containing library calls for floating point.
10794 @strong{Warning:} the requisite libraries are not available for all HPPA
10795 targets. Normally the facilities of the machine’s usual C compiler are
10796 used, but this cannot be done directly in cross-compilation. You must make
10797 your own arrangements to provide suitable library functions for
10798 cross-compilation.

10800 @option{-msoft-float} changes the calling convention in the output file;
10801 therefore, it is only useful if you compile @emph{all} of a program with
10802 this option. In particular, you need to compile @file{libgcc.a}, the
10803 library that comes with GCC, with @option{-msoft-float} in order for
10804 this to work.

10806 @item -msio
10807 @opindex msio
10808 Generate the predefine, @code{_SIO}, for server IO@. The default is
10809 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
10810 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
10811 options are available under HP-UX and HI-UX@.

10813 @item -mgnu-ld
10814 @opindex gnu-ld
10815 Use GNU ld specific options. This passes @option{-shared} to ld when
10816 building a shared library. It is the default when GCC is configured,
10817 explicitly or implicitly, with the GNU linker. This option does not
10818 have any affect on which ld is called, it only changes what parameters
10819 are passed to that ld. The ld that is called is determined by the
10820 @option{--with-ld} configure option, GCC’s program search path, and
10821 finally by the user’s @env{PATH}. The linker used by GCC can be printed
10822 using @samp{which ‘gcc -print-prog-name=ld‘}. This option is only available
10823 on the 64 bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.

10825 @item -mhp-ld
10826 @opindex hp-ld
10827 Use HP ld specific options. This passes @option{-b} to ld when building
10828 a shared library and passes @option{+Accept TypeMismatch} to ld on all
10829 links. It is the default when GCC is configured, explicitly or
10830 implicitly, with the HP linker. This option does not have any affect on
10831 which ld is called, it only changes what parameters are passed to that
10832 ld. The ld that is called is determined by the @option{--with-ld}
10833 configure option, GCC’s program search path, and finally by the user’s
10834 @env{PATH}. The linker used by GCC can be printed using @samp{which
10835 ‘gcc -print-prog-name=ld‘}. This option is only available on the 64 bit
10836 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.

10838 @item -mlong-calls
10839 @opindex mno-long-calls
10840 Generate code that uses long call sequences. This ensures that a call
10841 is always able to reach linker generated stubs. The default is to generate
10842 long calls only when the distance from the call site to the beginning
10843 of the function or translation unit, as the case may be, exceeds a
10844 predefined limit set by the branch type being used. The limits for
10845 normal calls are 7,600,000 and 240,000 bytes, respectively for the
10846 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
10847 240,000 bytes.

new/gcc/doc/invoke.texi 123

10849 Distances are measured from the beginning of functions when using the
10850 @option{-ffunction-sections} option, or when using the @option{-mgas}
10851 and @option{-mno-portable-runtime} options together under HP-UX with
10852 the SOM linker.

10854 It is normally not desirable to use this option as it will degrade
10855 performance. However, it may be useful in large applications,
10856 particularly when partial linking is used to build the application.

10858 The types of long calls used depends on the capabilities of the
10859 assembler and linker, and the type of code being generated. The
10860 impact on systems that support long absolute calls, and long pic
10861 symbol-difference or pc-relative calls should be relatively small.
10862 However, an indirect call is used on 32-bit ELF systems in pic code
10863 and it is quite long.

10865 @item -munix=@var{unix-std}
10866 @opindex march
10867 Generate compiler predefines and select a startfile for the specified
10868 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
10869 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
10870 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
10871 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
10872 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
10873 and later.

10875 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
10876 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
10877 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
10878 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
10879 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
10880 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.

10882 It is @emph{important} to note that this option changes the interfaces
10883 for various library routines. It also affects the operational behavior
10884 of the C library. Thus, @emph{extreme} care is needed in using this
10885 option.

10887 Library code that is intended to operate with more than one UNIX
10888 standard must test, set and restore the variable @var{__xpg4_extended_mask}
10889 as appropriate. Most GNU software doesn’t provide this capability.

10891 @item -nolibdld
10892 @opindex nolibdld
10893 Suppress the generation of link options to search libdld.sl when the
10894 @option{-static} option is specified on HP-UX 10 and later.

10896 @item -static
10897 @opindex static
10898 The HP-UX implementation of setlocale in libc has a dependency on
10899 libdld.sl. There isn’t an archive version of libdld.sl. Thus,
10900 when the @option{-static} option is specified, special link options
10901 are needed to resolve this dependency.

10903 On HP-UX 10 and later, the GCC driver adds the necessary options to
10904 link with libdld.sl when the @option{-static} option is specified.
10905 This causes the resulting binary to be dynamic. On the 64-bit port,
10906 the linkers generate dynamic binaries by default in any case. The
10907 @option{-nolibdld} option can be used to prevent the GCC driver from
10908 adding these link options.

10910 @item -threads
10911 @opindex threads
10912 Add support for multithreading with the @dfn{dce thread} library
10913 under HP-UX@. This option sets flags for both the preprocessor and
10914 linker.

new/gcc/doc/invoke.texi 124

10915 @end table

10917 @node i386 and x86-64 Options
10918 @subsection Intel 386 and AMD x86-64 Options
10919 @cindex i386 Options
10920 @cindex x86-64 Options
10921 @cindex Intel 386 Options
10922 @cindex AMD x86-64 Options

10924 These @samp{-m} options are defined for the i386 and x86-64 family of
10925 computers:

10927 @table @gcctabopt
10928 @item -mtune=@var{cpu-type}
10929 @opindex mtune
10930 Tune to @var{cpu-type} everything applicable about the generated code, except
10931 for the ABI and the set of available instructions. The choices for
10932 @var{cpu-type} are:
10933 @table @emph
10934 @item generic
10935 Produce code optimized for the most common IA32/AMD64/EM64T processors.
10936 If you know the CPU on which your code will run, then you should use
10937 the corresponding @option{-mtune} option instead of
10938 @option{-mtune=generic}. But, if you do not know exactly what CPU users
10939 of your application will have, then you should use this option.

10941 As new processors are deployed in the marketplace, the behavior of this
10942 option will change. Therefore, if you upgrade to a newer version of
10943 GCC, the code generated option will change to reflect the processors
10944 that were most common when that version of GCC was released.

10946 There is no @option{-march=generic} option because @option{-march}
10947 indicates the instruction set the compiler can use, and there is no
10948 generic instruction set applicable to all processors. In contrast,
10949 @option{-mtune} indicates the processor (or, in this case, collection of
10950 processors) for which the code is optimized.
10951 @item native
10952 This selects the CPU to tune for at compilation time by determining
10953 the processor type of the compiling machine. Using @option{-mtune=native}
10954 will produce code optimized for the local machine under the constraints
10955 of the selected instruction set. Using @option{-march=native} will
10956 enable all instruction subsets supported by the local machine (hence
10957 the result might not run on different machines).
10958 @item i386
10959 Original Intel’s i386 CPU@.
10960 @item i486
10961 Intel’s i486 CPU@. (No scheduling is implemented for this chip.)
10962 @item i586, pentium
10963 Intel Pentium CPU with no MMX support.
10964 @item pentium-mmx
10965 Intel PentiumMMX CPU based on Pentium core with MMX instruction set support.
10966 @item pentiumpro
10967 Intel PentiumPro CPU@.
10968 @item i686
10969 Same as @code{generic}, but when used as @code{march} option, PentiumPro
10970 instruction set will be used, so the code will run on all i686 family chips.
10971 @item pentium2
10972 Intel Pentium2 CPU based on PentiumPro core with MMX instruction set support.
10973 @item pentium3, pentium3m
10974 Intel Pentium3 CPU based on PentiumPro core with MMX and SSE instruction set
10975 support.
10976 @item pentium-m
10977 Low power version of Intel Pentium3 CPU with MMX, SSE and SSE2 instruction set
10978 support. Used by Centrino notebooks.
10979 @item pentium4, pentium4m
10980 Intel Pentium4 CPU with MMX, SSE and SSE2 instruction set support.

new/gcc/doc/invoke.texi 125

10981 @item prescott
10982 Improved version of Intel Pentium4 CPU with MMX, SSE, SSE2 and SSE3 instruction
10983 set support.
10984 @item nocona
10985 Improved version of Intel Pentium4 CPU with 64-bit extensions, MMX, SSE,
10986 SSE2 and SSE3 instruction set support.
10987 @item core2
10988 Intel Core2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
10989 instruction set support.
10990 @item k6
10991 AMD K6 CPU with MMX instruction set support.
10992 @item k6-2, k6-3
10993 Improved versions of AMD K6 CPU with MMX and 3dNOW!@: instruction set support.
10994 @item athlon, athlon-tbird
10995 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW!@: and SSE prefetch instructions
10996 support.
10997 @item athlon-4, athlon-xp, athlon-mp
10998 Improved AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW!@: and full SSE
10999 instruction set support.
11000 @item k8, opteron, athlon64, athlon-fx
11001 AMD K8 core based CPUs with x86-64 instruction set support. (This supersets
11002 MMX, SSE, SSE2, 3dNOW!, enhanced 3dNOW!@: and 64-bit instruction set extensions.
11003 @item k8-sse3, opteron-sse3, athlon64-sse3
11004 Improved versions of k8, opteron and athlon64 with SSE3 instruction set support.
11005 @item amdfam10, barcelona
11006 AMD Family 10h core based CPUs with x86-64 instruction set support. (This
11007 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3dNOW!, enhanced 3dNOW!, ABM and 64-bit
11008 instruction set extensions.)
11009 @item winchip-c6
11010 IDT Winchip C6 CPU, dealt in same way as i486 with additional MMX instruction
11011 set support.
11012 @item winchip2
11013 IDT Winchip2 CPU, dealt in same way as i486 with additional MMX and 3dNOW!@:
11014 instruction set support.
11015 @item c3
11016 Via C3 CPU with MMX and 3dNOW!@: instruction set support. (No scheduling is
11017 implemented for this chip.)
11018 @item c3-2
11019 Via C3-2 CPU with MMX and SSE instruction set support. (No scheduling is
11020 implemented for this chip.)
11021 @item geode
11022 Embedded AMD CPU with MMX and 3dNOW! instruction set support.
11023 @end table

11025 While picking a specific @var{cpu-type} will schedule things appropriately
11026 for that particular chip, the compiler will not generate any code that
11027 does not run on the i386 without the @option{-march=@var{cpu-type}} option
11028 being used.

11030 @item -march=@var{cpu-type}
11031 @opindex march
11032 Generate instructions for the machine type @var{cpu-type}. The choices
11033 for @var{cpu-type} are the same as for @option{-mtune}. Moreover,
11034 specifying @option{-march=@var{cpu-type}} implies @option{-mtune=@var{cpu-type}}

11036 @item -mcpu=@var{cpu-type}
11037 @opindex mcpu
11038 A deprecated synonym for @option{-mtune}.

11040 @item -mfpmath=@var{unit}
11041 @opindex march
11042 Generate floating point arithmetics for selected unit @var{unit}. The choices
11043 for @var{unit} are:

11045 @table @samp
11046 @item 387

new/gcc/doc/invoke.texi 126

11047 Use the standard 387 floating point coprocessor present majority of chips and
11048 emulated otherwise. Code compiled with this option will run almost everywhere.
11049 The temporary results are computed in 80bit precision instead of precision
11050 specified by the type resulting in slightly different results compared to most
11051 of other chips. See @option{-ffloat-store} for more detailed description.

11053 This is the default choice for i386 compiler.

11055 @item sse
11056 Use scalar floating point instructions present in the SSE instruction set.
11057 This instruction set is supported by Pentium3 and newer chips, in the AMD line
11058 by Athlon-4, Athlon-xp and Athlon-mp chips. The earlier version of SSE
11059 instruction set supports only single precision arithmetics, thus the double and
11060 extended precision arithmetics is still done using 387. Later version, present
11061 only in Pentium4 and the future AMD x86-64 chips supports double precision
11062 arithmetics too.

11064 For the i386 compiler, you need to use @option{-march=@var{cpu-type}}, @option{-
11065 or @option{-msse2} switches to enable SSE extensions and make this option
11066 effective. For the x86-64 compiler, these extensions are enabled by default.

11068 The resulting code should be considerably faster in the majority of cases and av
11069 the numerical instability problems of 387 code, but may break some existing
11070 code that expects temporaries to be 80bit.

11072 This is the default choice for the x86-64 compiler.

11074 @item sse,387
11075 @itemx sse+387
11076 @itemx both
11077 Attempt to utilize both instruction sets at once. This effectively double the
11078 amount of available registers and on chips with separate execution units for
11079 387 and SSE the execution resources too. Use this option with care, as it is
11080 still experimental, because the GCC register allocator does not model separate
11081 functional units well resulting in instable performance.
11082 @end table

11084 @item -masm=@var{dialect}
11085 @opindex masm=@var{dialect}
11086 Output asm instructions using selected @var{dialect}. Supported
11087 choices are @samp{intel} or @samp{att} (the default one). Darwin does
11088 not support @samp{intel}.

11090 @item -mieee-fp
11091 @itemx -mno-ieee-fp
11092 @opindex mieee-fp
11093 @opindex mno-ieee-fp
11094 Control whether or not the compiler uses IEEE floating point
11095 comparisons. These handle correctly the case where the result of a
11096 comparison is unordered.

11098 @item -msoft-float
11099 @opindex msoft-float
11100 Generate output containing library calls for floating point.
11101 @strong{Warning:} the requisite libraries are not part of GCC@.
11102 Normally the facilities of the machine’s usual C compiler are used, but
11103 this can’t be done directly in cross-compilation. You must make your
11104 own arrangements to provide suitable library functions for
11105 cross-compilation.

11107 On machines where a function returns floating point results in the 80387
11108 register stack, some floating point opcodes may be emitted even if
11109 @option{-msoft-float} is used.

11111 @item -mno-fp-ret-in-387
11112 @opindex mno-fp-ret-in-387

new/gcc/doc/invoke.texi 127

11113 Do not use the FPU registers for return values of functions.

11115 The usual calling convention has functions return values of types
11116 @code{float} and @code{double} in an FPU register, even if there
11117 is no FPU@. The idea is that the operating system should emulate
11118 an FPU@.

11120 The option @option{-mno-fp-ret-in-387} causes such values to be returned
11121 in ordinary CPU registers instead.

11123 @item -mno-fancy-math-387
11124 @opindex mno-fancy-math-387
11125 Some 387 emulators do not support the @code{sin}, @code{cos} and
11126 @code{sqrt} instructions for the 387. Specify this option to avoid
11127 generating those instructions. This option is the default on FreeBSD,
11128 OpenBSD and NetBSD@. This option is overridden when @option{-march}
11129 indicates that the target cpu will always have an FPU and so the
11130 instruction will not need emulation. As of revision 2.6.1, these
11131 instructions are not generated unless you also use the
11132 @option{-funsafe-math-optimizations} switch.

11134 @item -malign-double
11135 @itemx -mno-align-double
11136 @opindex malign-double
11137 @opindex mno-align-double
11138 Control whether GCC aligns @code{double}, @code{long double}, and
11139 @code{long long} variables on a two word boundary or a one word
11140 boundary. Aligning @code{double} variables on a two word boundary will
11141 produce code that runs somewhat faster on a @samp{Pentium} at the
11142 expense of more memory.

11144 On x86-64, @option{-malign-double} is enabled by default.

11146 @strong{Warning:} if you use the @option{-malign-double} switch,
11147 structures containing the above types will be aligned differently than
11148 the published application binary interface specifications for the 386
11149 and will not be binary compatible with structures in code compiled
11150 without that switch.

11152 @item -m96bit-long-double
11153 @itemx -m128bit-long-double
11154 @opindex m96bit-long-double
11155 @opindex m128bit-long-double
11156 These switches control the size of @code{long double} type. The i386
11157 application binary interface specifies the size to be 96 bits,
11158 so @option{-m96bit-long-double} is the default in 32 bit mode.

11160 Modern architectures (Pentium and newer) would prefer @code{long double}
11161 to be aligned to an 8 or 16 byte boundary. In arrays or structures
11162 conforming to the ABI, this would not be possible. So specifying a
11163 @option{-m128bit-long-double} will align @code{long double}
11164 to a 16 byte boundary by padding the @code{long double} with an additional
11165 32 bit zero.

11167 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
11168 its ABI specifies that @code{long double} is to be aligned on 16 byte boundary.

11170 Notice that neither of these options enable any extra precision over the x87
11171 standard of 80 bits for a @code{long double}.

11173 @strong{Warning:} if you override the default value for your target ABI, the
11174 structures and arrays containing @code{long double} variables will change
11175 their size as well as function calling convention for function taking
11176 @code{long double} will be modified. Hence they will not be binary
11177 compatible with arrays or structures in code compiled without that switch.

new/gcc/doc/invoke.texi 128

11179 @item -mlarge-data-threshold=@var{number}
11180 @opindex mlarge-data-threshold=@var{number}
11181 When @option{-mcmodel=medium} is specified, the data greater than
11182 @var{threshold} are placed in large data section. This value must be the
11183 same across all object linked into the binary and defaults to 65535.

11185 @item -mrtd
11186 @opindex mrtd
11187 Use a different function-calling convention, in which functions that
11188 take a fixed number of arguments return with the @code{ret} @var{num}
11189 instruction, which pops their arguments while returning. This saves one
11190 instruction in the caller since there is no need to pop the arguments
11191 there.

11193 You can specify that an individual function is called with this calling
11194 sequence with the function attribute @samp{stdcall}. You can also
11195 override the @option{-mrtd} option by using the function attribute
11196 @samp{cdecl}. @xref{Function Attributes}.

11198 @strong{Warning:} this calling convention is incompatible with the one
11199 normally used on Unix, so you cannot use it if you need to call
11200 libraries compiled with the Unix compiler.

11202 Also, you must provide function prototypes for all functions that
11203 take variable numbers of arguments (including @code{printf});
11204 otherwise incorrect code will be generated for calls to those
11205 functions.

11207 In addition, seriously incorrect code will result if you call a
11208 function with too many arguments. (Normally, extra arguments are
11209 harmlessly ignored.)

11211 @item -mregparm=@var{num}
11212 @opindex mregparm
11213 Control how many registers are used to pass integer arguments. By
11214 default, no registers are used to pass arguments, and at most 3
11215 registers can be used. You can control this behavior for a specific
11216 function by using the function attribute @samp{regparm}.
11217 @xref{Function Attributes}.

11219 @strong{Warning:} if you use this switch, and
11220 @var{num} is nonzero, then you must build all modules with the same
11221 value, including any libraries. This includes the system libraries and
11222 startup modules.

11224 @item -msseregparm
11225 @opindex msseregparm
11226 Use SSE register passing conventions for float and double arguments
11227 and return values. You can control this behavior for a specific
11228 function by using the function attribute @samp{sseregparm}.
11229 @xref{Function Attributes}.

11231 @strong{Warning:} if you use this switch then you must build all
11232 modules with the same value, including any libraries. This includes
11233 the system libraries and startup modules.

11235 @item -mpc32
11236 @itemx -mpc64
11237 @itemx -mpc80
11238 @opindex mpc32
11239 @opindex mpc64
11240 @opindex mpc80

11242 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
11243 is specified, the significands of results of floating-point operations are
11244 rounded to 24 bits (single precision); @option{-mpc64} rounds the

new/gcc/doc/invoke.texi 129

11245 significands of results of floating-point operations to 53 bits (double
11246 precision) and @option{-mpc80} rounds the significands of results of
11247 floating-point operations to 64 bits (extended double precision), which is
11248 the default. When this option is used, floating-point operations in higher
11249 precisions are not available to the programmer without setting the FPU
11250 control word explicitly.

11252 Setting the rounding of floating-point operations to less than the default
11253 80 bits can speed some programs by 2% or more. Note that some mathematical
11254 libraries assume that extended precision (80 bit) floating-point operations
11255 are enabled by default; routines in such libraries could suffer significant
11256 loss of accuracy, typically through so-called "catastrophic cancellation",
11257 when this option is used to set the precision to less than extended precision.

11259 @item -mstackrealign
11260 @opindex mstackrealign
11261 Realign the stack at entry. On the Intel x86, the @option{-mstackrealign}
11262 option will generate an alternate prologue and epilogue that realigns the
11263 runtime stack if necessary. This supports mixing legacy codes that keep
11264 a 4-byte aligned stack with modern codes that keep a 16-byte stack for
11265 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
11266 applicable to individual functions.

11268 @item -mpreferred-stack-boundary=@var{num}
11269 @opindex mpreferred-stack-boundary
11270 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
11271 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
11272 the default is 4 (16 bytes or 128 bits).

11274 @item -mincoming-stack-boundary=@var{num}
11275 @opindex mincoming-stack-boundary
11276 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
11277 boundary. If @option{-mincoming-stack-boundary} is not specified,
11278 the one specified by @option{-mpreferred-stack-boundary} will be used.

11280 On Pentium and PentiumPro, @code{double} and @code{long double} values
11281 should be aligned to an 8 byte boundary (see @option{-malign-double}) or
11282 suffer significant run time performance penalties. On Pentium III, the
11283 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
11284 properly if it is not 16 byte aligned.

11286 To ensure proper alignment of this values on the stack, the stack boundary
11287 must be as aligned as that required by any value stored on the stack.
11288 Further, every function must be generated such that it keeps the stack
11289 aligned. Thus calling a function compiled with a higher preferred
11290 stack boundary from a function compiled with a lower preferred stack
11291 boundary will most likely misalign the stack. It is recommended that
11292 libraries that use callbacks always use the default setting.

11294 This extra alignment does consume extra stack space, and generally
11295 increases code size. Code that is sensitive to stack space usage, such
11296 as embedded systems and operating system kernels, may want to reduce the
11297 preferred alignment to @option{-mpreferred-stack-boundary=2}.

11299 @item -mmmx
11300 @itemx -mno-mmx
11301 @itemx -msse
11302 @itemx -mno-sse
11303 @itemx -msse2
11304 @itemx -mno-sse2
11305 @itemx -msse3
11306 @itemx -mno-sse3
11307 @itemx -mssse3
11308 @itemx -mno-ssse3
11309 @itemx -msse4.1
11310 @itemx -mno-sse4.1

new/gcc/doc/invoke.texi 130

11311 @itemx -msse4.2
11312 @itemx -mno-sse4.2
11313 @itemx -msse4
11314 @itemx -mno-sse4
11315 @itemx -mavx
11316 @itemx -mno-avx
11317 @itemx -maes
11318 @itemx -mno-aes
11319 @itemx -mpclmul
11320 @itemx -mno-pclmul
11321 @itemx -msse4a
11322 @itemx -mno-sse4a
11323 @itemx -msse5
11324 @itemx -mno-sse5
11325 @itemx -m3dnow
11326 @itemx -mno-3dnow
11327 @itemx -mpopcnt
11328 @itemx -mno-popcnt
11329 @itemx -mabm
11330 @itemx -mno-abm
11331 @opindex mmmx
11332 @opindex mno-mmx
11333 @opindex msse
11334 @opindex mno-sse
11335 @opindex m3dnow
11336 @opindex mno-3dnow
11337 These switches enable or disable the use of instructions in the MMX,
11338 SSE, SSE2, SSE3, SSSE3, SSE4.1, AVX, AES, PCLMUL, SSE4A, SSE5, ABM or
11339 3DNow!@: extended instruction sets.
11340 These extensions are also available as built-in functions: see
11341 @ref{X86 Built-in Functions}, for details of the functions enabled and
11342 disabled by these switches.

11344 To have SSE/SSE2 instructions generated automatically from floating-point
11345 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.

11347 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
11348 generates new AVX instructions or AVX equivalence for all SSEx instructions
11349 when needed.

11351 These options will enable GCC to use these extended instructions in
11352 generated code, even without @option{-mfpmath=sse}. Applications which
11353 perform runtime CPU detection must compile separate files for each
11354 supported architecture, using the appropriate flags. In particular,
11355 the file containing the CPU detection code should be compiled without
11356 these options.

11358 @item -mcld
11359 @opindex mcld
11360 This option instructs GCC to emit a @code{cld} instruction in the prologue
11361 of functions that use string instructions. String instructions depend on
11362 the DF flag to select between autoincrement or autodecrement mode. While the
11363 ABI specifies the DF flag to be cleared on function entry, some operating
11364 systems violate this specification by not clearing the DF flag in their
11365 exception dispatchers. The exception handler can be invoked with the DF flag
11366 set which leads to wrong direction mode, when string instructions are used.
11367 This option can be enabled by default on 32-bit x86 targets by configuring
11368 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
11369 instructions can be suppressed with the @option{-mno-cld} compiler option
11370 in this case.

11372 @item -mcx16
11373 @opindex mcx16
11374 This option will enable GCC to use CMPXCHG16B instruction in generated code.
11375 CMPXCHG16B allows for atomic operations on 128-bit double quadword (or oword)
11376 data types. This is useful for high resolution counters that could be updated

new/gcc/doc/invoke.texi 131

11377 by multiple processors (or cores). This instruction is generated as part of
11378 atomic built-in functions: see @ref{Atomic Builtins} for details.

11380 @item -msahf
11381 @opindex msahf
11382 This option will enable GCC to use SAHF instruction in generated 64-bit code.
11383 Early Intel CPUs with Intel 64 lacked LAHF and SAHF instructions supported
11384 by AMD64 until introduction of Pentium 4 G1 step in December 2005. LAHF and
11385 SAHF are load and store instructions, respectively, for certain status flags.
11386 In 64-bit mode, SAHF instruction is used to optimize @code{fmod}, @code{drem}
11387 or @code{remainder} built-in functions: see @ref{Other Builtins} for details.

11389 @item -mrecip
11390 @opindex mrecip
11391 This option will enable GCC to use RCPSS and RSQRTSS instructions (and their
11392 vectorized variants RCPPS and RSQRTPS) with an additional Newton-Raphson step
11393 to increase precision instead of DIVSS and SQRTSS (and their vectorized
11394 variants) for single precision floating point arguments. These instructions
11395 are generated only when @option{-funsafe-math-optimizations} is enabled
11396 together with @option{-finite-math-only} and @option{-fno-trapping-math}.
11397 Note that while the throughput of the sequence is higher than the throughput
11398 of the non-reciprocal instruction, the precision of the sequence can be
11399 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).

11401 @item -mveclibabi=@var{type}
11402 @opindex mveclibabi
11403 Specifies the ABI type to use for vectorizing intrinsics using an
11404 external library. Supported types are @code{svml} for the Intel short
11405 vector math library and @code{acml} for the AMD math core library style
11406 of interfacing. GCC will currently emit calls to @code{vmldExp2},
11407 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
11408 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
11409 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
11410 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
11411 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
11412 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
11413 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
11414 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
11415 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
11416 function type when @option{-mveclibabi=svml} is used and @code{__vrd2_sin},
11417 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
11418 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
11419 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
11420 @code{__vrs4_log10f} and @code{__vrs4_powf} for corresponding function type
11421 when @option{-mveclibabi=acml} is used. Both @option{-ftree-vectorize} and
11422 @option{-funsafe-math-optimizations} have to be enabled. A SVML or ACML ABI
11423 compatible library will have to be specified at link time.

11425 @item -mpush-args
11426 @itemx -mno-push-args
11427 @opindex mpush-args
11428 @opindex mno-push-args
11429 Use PUSH operations to store outgoing parameters. This method is shorter
11430 and usually equally fast as method using SUB/MOV operations and is enabled
11431 by default. In some cases disabling it may improve performance because of
11432 improved scheduling and reduced dependencies.

11434 @item -maccumulate-outgoing-args
11435 @opindex maccumulate-outgoing-args
11436 If enabled, the maximum amount of space required for outgoing arguments will be
11437 computed in the function prologue. This is faster on most modern CPUs
11438 because of reduced dependencies, improved scheduling and reduced stack usage
11439 when preferred stack boundary is not equal to 2. The drawback is a notable
11440 increase in code size. This switch implies @option{-mno-push-args}.

11442 @item -mthreads

new/gcc/doc/invoke.texi 132

11443 @opindex mthreads
11444 Support thread-safe exception handling on @samp{Mingw32}. Code that relies
11445 on thread-safe exception handling must compile and link all code with the
11446 @option{-mthreads} option. When compiling, @option{-mthreads} defines
11447 @option{-D_MT}; when linking, it links in a special thread helper library
11448 @option{-lmingwthrd} which cleans up per thread exception handling data.

11450 @item -mno-align-stringops
11451 @opindex mno-align-stringops
11452 Do not align destination of inlined string operations. This switch reduces
11453 code size and improves performance in case the destination is already aligned,
11454 but GCC doesn’t know about it.

11456 @item -minline-all-stringops
11457 @opindex minline-all-stringops
11458 By default GCC inlines string operations only when destination is known to be
11459 aligned at least to 4 byte boundary. This enables more inlining, increase code
11460 size, but may improve performance of code that depends on fast memcpy, strlen
11461 and memset for short lengths.

11463 @item -minline-stringops-dynamically
11464 @opindex minline-stringops-dynamically
11465 For string operation of unknown size, inline runtime checks so for small
11466 blocks inline code is used, while for large blocks library call is used.

11468 @item -mstringop-strategy=@var{alg}
11469 @opindex mstringop-strategy=@var{alg}
11470 Overwrite internal decision heuristic about particular algorithm to inline
11471 string operation with. The allowed values are @code{rep_byte},
11472 @code{rep_4byte}, @code{rep_8byte} for expanding using i386 @code{rep} prefix
11473 of specified size, @code{byte_loop}, @code{loop}, @code{unrolled_loop} for
11474 expanding inline loop, @code{libcall} for always expanding library call.

11476 @item -momit-leaf-frame-pointer
11477 @opindex momit-leaf-frame-pointer
11478 Don’t keep the frame pointer in a register for leaf functions. This
11479 avoids the instructions to save, set up and restore frame pointers and
11480 makes an extra register available in leaf functions. The option
11481 @option{-fomit-frame-pointer} removes the frame pointer for all functions
11482 which might make debugging harder.

11484 @item -mtls-direct-seg-refs
11485 @itemx -mno-tls-direct-seg-refs
11486 @opindex mtls-direct-seg-refs
11487 Controls whether TLS variables may be accessed with offsets from the
11488 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
11489 or whether the thread base pointer must be added. Whether or not this
11490 is legal depends on the operating system, and whether it maps the
11491 segment to cover the entire TLS area.

11493 For systems that use GNU libc, the default is on.

11495 @item -mfused-madd
11496 @itemx -mno-fused-madd
11497 @opindex mfused-madd
11498 Enable automatic generation of fused floating point multiply-add instructions
11499 if the ISA supports such instructions. The -mfused-madd option is on by
11500 default. The fused multiply-add instructions have a different
11501 rounding behavior compared to executing a multiply followed by an add.

11503 @item -msse2avx
11504 @itemx -mno-sse2avx
11505 @opindex msse2avx
11506 Specify that the assembler should encode SSE instructions with VEX
11507 prefix. The option @option{-mavx} turns this on by default.
11508 @end table

new/gcc/doc/invoke.texi 133

11510 These @samp{-m} switches are supported in addition to the above
11511 on AMD x86-64 processors in 64-bit environments.

11513 @table @gcctabopt
11514 @item -m32
11515 @itemx -m64
11516 @opindex m32
11517 @opindex m64
11518 Generate code for a 32-bit or 64-bit environment.
11519 The 32-bit environment sets int, long and pointer to 32 bits and
11520 generates code that runs on any i386 system.
11521 The 64-bit environment sets int to 32 bits and long and pointer
11522 to 64 bits and generates code for AMD’s x86-64 architecture. For
11523 darwin only the -m64 option turns off the @option{-fno-pic} and
11524 @option{-mdynamic-no-pic} options.

11526 @item -mno-red-zone
11527 @opindex no-red-zone
11528 Do not use a so called red zone for x86-64 code. The red zone is mandated
11529 by the x86-64 ABI, it is a 128-byte area beyond the location of the
11530 stack pointer that will not be modified by signal or interrupt handlers
11531 and therefore can be used for temporary data without adjusting the stack
11532 pointer. The flag @option{-mno-red-zone} disables this red zone.

11534 @item -mcmodel=small
11535 @opindex mcmodel=small
11536 Generate code for the small code model: the program and its symbols must
11537 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
11538 Programs can be statically or dynamically linked. This is the default
11539 code model.

11541 @item -mcmodel=kernel
11542 @opindex mcmodel=kernel
11543 Generate code for the kernel code model. The kernel runs in the
11544 negative 2 GB of the address space.
11545 This model has to be used for Linux kernel code.

11547 @item -mcmodel=medium
11548 @opindex mcmodel=medium
11549 Generate code for the medium model: The program is linked in the lower 2
11550 GB of the address space. Small symbols are also placed there. Symbols
11551 with sizes larger than @option{-mlarge-data-threshold} are put into
11552 large data or bss sections and can be located above 2GB. Programs can
11553 be statically or dynamically linked.

11555 @item -mcmodel=large
11556 @opindex mcmodel=large
11557 Generate code for the large model: This model makes no assumptions
11558 about addresses and sizes of sections.

11560 @item -msave-args
11561 @opindex msave-args
11562 Save integer arguments on the stack at function entry.
11563 @end table

11565 @node IA-64 Options
11566 @subsection IA-64 Options
11567 @cindex IA-64 Options

11569 These are the @samp{-m} options defined for the Intel IA-64 architecture.

11571 @table @gcctabopt
11572 @item -mbig-endian
11573 @opindex mbig-endian
11574 Generate code for a big endian target. This is the default for HP-UX@.

new/gcc/doc/invoke.texi 134

11576 @item -mlittle-endian
11577 @opindex mlittle-endian
11578 Generate code for a little endian target. This is the default for AIX5
11579 and GNU/Linux.

11581 @item -mgnu-as
11582 @itemx -mno-gnu-as
11583 @opindex mgnu-as
11584 @opindex mno-gnu-as
11585 Generate (or don’t) code for the GNU assembler. This is the default.
11586 @c Also, this is the default if the configure option @option{--with-gnu-as}
11587 @c is used.

11589 @item -mgnu-ld
11590 @itemx -mno-gnu-ld
11591 @opindex mgnu-ld
11592 @opindex mno-gnu-ld
11593 Generate (or don’t) code for the GNU linker. This is the default.
11594 @c Also, this is the default if the configure option @option{--with-gnu-ld}
11595 @c is used.

11597 @item -mno-pic
11598 @opindex mno-pic
11599 Generate code that does not use a global pointer register. The result
11600 is not position independent code, and violates the IA-64 ABI@.

11602 @item -mvolatile-asm-stop
11603 @itemx -mno-volatile-asm-stop
11604 @opindex mvolatile-asm-stop
11605 @opindex mno-volatile-asm-stop
11606 Generate (or don’t) a stop bit immediately before and after volatile asm
11607 statements.

11609 @item -mregister-names
11610 @itemx -mno-register-names
11611 @opindex mregister-names
11612 @opindex mno-register-names
11613 Generate (or don’t) @samp{in}, @samp{loc}, and @samp{out} register names for
11614 the stacked registers. This may make assembler output more readable.

11616 @item -mno-sdata
11617 @itemx -msdata
11618 @opindex mno-sdata
11619 @opindex msdata
11620 Disable (or enable) optimizations that use the small data section. This may
11621 be useful for working around optimizer bugs.

11623 @item -mconstant-gp
11624 @opindex mconstant-gp
11625 Generate code that uses a single constant global pointer value. This is
11626 useful when compiling kernel code.

11628 @item -mauto-pic
11629 @opindex mauto-pic
11630 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
11631 This is useful when compiling firmware code.

11633 @item -minline-float-divide-min-latency
11634 @opindex minline-float-divide-min-latency
11635 Generate code for inline divides of floating point values
11636 using the minimum latency algorithm.

11638 @item -minline-float-divide-max-throughput
11639 @opindex minline-float-divide-max-throughput
11640 Generate code for inline divides of floating point values

new/gcc/doc/invoke.texi 135

11641 using the maximum throughput algorithm.

11643 @item -minline-int-divide-min-latency
11644 @opindex minline-int-divide-min-latency
11645 Generate code for inline divides of integer values
11646 using the minimum latency algorithm.

11648 @item -minline-int-divide-max-throughput
11649 @opindex minline-int-divide-max-throughput
11650 Generate code for inline divides of integer values
11651 using the maximum throughput algorithm.

11653 @item -minline-sqrt-min-latency
11654 @opindex minline-sqrt-min-latency
11655 Generate code for inline square roots
11656 using the minimum latency algorithm.

11658 @item -minline-sqrt-max-throughput
11659 @opindex minline-sqrt-max-throughput
11660 Generate code for inline square roots
11661 using the maximum throughput algorithm.

11663 @item -mno-dwarf2-asm
11664 @itemx -mdwarf2-asm
11665 @opindex mno-dwarf2-asm
11666 @opindex mdwarf2-asm
11667 Don’t (or do) generate assembler code for the DWARF2 line number debugging
11668 info. This may be useful when not using the GNU assembler.

11670 @item -mearly-stop-bits
11671 @itemx -mno-early-stop-bits
11672 @opindex mearly-stop-bits
11673 @opindex mno-early-stop-bits
11674 Allow stop bits to be placed earlier than immediately preceding the
11675 instruction that triggered the stop bit. This can improve instruction
11676 scheduling, but does not always do so.

11678 @item -mfixed-range=@var{register-range}
11679 @opindex mfixed-range
11680 Generate code treating the given register range as fixed registers.
11681 A fixed register is one that the register allocator can not use. This is
11682 useful when compiling kernel code. A register range is specified as
11683 two registers separated by a dash. Multiple register ranges can be
11684 specified separated by a comma.

11686 @item -mtls-size=@var{tls-size}
11687 @opindex mtls-size
11688 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
11689 64.

11691 @item -mtune=@var{cpu-type}
11692 @opindex mtune
11693 Tune the instruction scheduling for a particular CPU, Valid values are
11694 itanium, itanium1, merced, itanium2, and mckinley.

11696 @item -mt
11697 @itemx -pthread
11698 @opindex mt
11699 @opindex pthread
11700 Add support for multithreading using the POSIX threads library. This
11701 option sets flags for both the preprocessor and linker. It does
11702 not affect the thread safety of object code produced by the compiler or
11703 that of libraries supplied with it. These are HP-UX specific flags.

11705 @item -milp32
11706 @itemx -mlp64

new/gcc/doc/invoke.texi 136

11707 @opindex milp32
11708 @opindex mlp64
11709 Generate code for a 32-bit or 64-bit environment.
11710 The 32-bit environment sets int, long and pointer to 32 bits.
11711 The 64-bit environment sets int to 32 bits and long and pointer
11712 to 64 bits. These are HP-UX specific flags.

11714 @item -mno-sched-br-data-spec
11715 @itemx -msched-br-data-spec
11716 @opindex mno-sched-br-data-spec
11717 @opindex msched-br-data-spec
11718 (Dis/En)able data speculative scheduling before reload.
11719 This will result in generation of the ld.a instructions and
11720 the corresponding check instructions (ld.c / chk.a).
11721 The default is ’disable’.

11723 @item -msched-ar-data-spec
11724 @itemx -mno-sched-ar-data-spec
11725 @opindex msched-ar-data-spec
11726 @opindex mno-sched-ar-data-spec
11727 (En/Dis)able data speculative scheduling after reload.
11728 This will result in generation of the ld.a instructions and
11729 the corresponding check instructions (ld.c / chk.a).
11730 The default is ’enable’.

11732 @item -mno-sched-control-spec
11733 @itemx -msched-control-spec
11734 @opindex mno-sched-control-spec
11735 @opindex msched-control-spec
11736 (Dis/En)able control speculative scheduling. This feature is
11737 available only during region scheduling (i.e.@: before reload).
11738 This will result in generation of the ld.s instructions and
11739 the corresponding check instructions chk.s .
11740 The default is ’disable’.

11742 @item -msched-br-in-data-spec
11743 @itemx -mno-sched-br-in-data-spec
11744 @opindex msched-br-in-data-spec
11745 @opindex mno-sched-br-in-data-spec
11746 (En/Dis)able speculative scheduling of the instructions that
11747 are dependent on the data speculative loads before reload.
11748 This is effective only with @option{-msched-br-data-spec} enabled.
11749 The default is ’enable’.

11751 @item -msched-ar-in-data-spec
11752 @itemx -mno-sched-ar-in-data-spec
11753 @opindex msched-ar-in-data-spec
11754 @opindex mno-sched-ar-in-data-spec
11755 (En/Dis)able speculative scheduling of the instructions that
11756 are dependent on the data speculative loads after reload.
11757 This is effective only with @option{-msched-ar-data-spec} enabled.
11758 The default is ’enable’.

11760 @item -msched-in-control-spec
11761 @itemx -mno-sched-in-control-spec
11762 @opindex msched-in-control-spec
11763 @opindex mno-sched-in-control-spec
11764 (En/Dis)able speculative scheduling of the instructions that
11765 are dependent on the control speculative loads.
11766 This is effective only with @option{-msched-control-spec} enabled.
11767 The default is ’enable’.

11769 @item -msched-ldc
11770 @itemx -mno-sched-ldc
11771 @opindex msched-ldc
11772 @opindex mno-sched-ldc

new/gcc/doc/invoke.texi 137

11773 (En/Dis)able use of simple data speculation checks ld.c .
11774 If disabled, only chk.a instructions will be emitted to check
11775 data speculative loads.
11776 The default is ’enable’.

11778 @item -mno-sched-control-ldc
11779 @itemx -msched-control-ldc
11780 @opindex mno-sched-control-ldc
11781 @opindex msched-control-ldc
11782 (Dis/En)able use of ld.c instructions to check control speculative loads.
11783 If enabled, in case of control speculative load with no speculatively
11784 scheduled dependent instructions this load will be emitted as ld.sa and
11785 ld.c will be used to check it.
11786 The default is ’disable’.

11788 @item -mno-sched-spec-verbose
11789 @itemx -msched-spec-verbose
11790 @opindex mno-sched-spec-verbose
11791 @opindex msched-spec-verbose
11792 (Dis/En)able printing of the information about speculative motions.

11794 @item -mno-sched-prefer-non-data-spec-insns
11795 @itemx -msched-prefer-non-data-spec-insns
11796 @opindex mno-sched-prefer-non-data-spec-insns
11797 @opindex msched-prefer-non-data-spec-insns
11798 If enabled, data speculative instructions will be chosen for schedule
11799 only if there are no other choices at the moment. This will make
11800 the use of the data speculation much more conservative.
11801 The default is ’disable’.

11803 @item -mno-sched-prefer-non-control-spec-insns
11804 @itemx -msched-prefer-non-control-spec-insns
11805 @opindex mno-sched-prefer-non-control-spec-insns
11806 @opindex msched-prefer-non-control-spec-insns
11807 If enabled, control speculative instructions will be chosen for schedule
11808 only if there are no other choices at the moment. This will make
11809 the use of the control speculation much more conservative.
11810 The default is ’disable’.

11812 @item -mno-sched-count-spec-in-critical-path
11813 @itemx -msched-count-spec-in-critical-path
11814 @opindex mno-sched-count-spec-in-critical-path
11815 @opindex msched-count-spec-in-critical-path
11816 If enabled, speculative dependencies will be considered during
11817 computation of the instructions priorities. This will make the use of the
11818 speculation a bit more conservative.
11819 The default is ’disable’.

11821 @end table

11823 @node M32C Options
11824 @subsection M32C Options
11825 @cindex M32C options

11827 @table @gcctabopt
11828 @item -mcpu=@var{name}
11829 @opindex mcpu=
11830 Select the CPU for which code is generated. @var{name} may be one of
11831 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
11832 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
11833 the M32C/80 series.

11835 @item -msim
11836 @opindex msim
11837 Specifies that the program will be run on the simulator. This causes
11838 an alternate runtime library to be linked in which supports, for

new/gcc/doc/invoke.texi 138

11839 example, file I/O@. You must not use this option when generating
11840 programs that will run on real hardware; you must provide your own
11841 runtime library for whatever I/O functions are needed.

11843 @item -memregs=@var{number}
11844 @opindex memregs=
11845 Specifies the number of memory-based pseudo-registers GCC will use
11846 during code generation. These pseudo-registers will be used like real
11847 registers, so there is a tradeoff between GCC’s ability to fit the
11848 code into available registers, and the performance penalty of using
11849 memory instead of registers. Note that all modules in a program must
11850 be compiled with the same value for this option. Because of that, you
11851 must not use this option with the default runtime libraries gcc
11852 builds.

11854 @end table

11856 @node M32R/D Options
11857 @subsection M32R/D Options
11858 @cindex M32R/D options

11860 These @option{-m} options are defined for Renesas M32R/D architectures:

11862 @table @gcctabopt
11863 @item -m32r2
11864 @opindex m32r2
11865 Generate code for the M32R/2@.

11867 @item -m32rx
11868 @opindex m32rx
11869 Generate code for the M32R/X@.

11871 @item -m32r
11872 @opindex m32r
11873 Generate code for the M32R@. This is the default.

11875 @item -mmodel=small
11876 @opindex mmodel=small
11877 Assume all objects live in the lower 16MB of memory (so that their addresses
11878 can be loaded with the @code{ld24} instruction), and assume all subroutines
11879 are reachable with the @code{bl} instruction.
11880 This is the default.

11882 The addressability of a particular object can be set with the
11883 @code{model} attribute.

11885 @item -mmodel=medium
11886 @opindex mmodel=medium
11887 Assume objects may be anywhere in the 32-bit address space (the compiler
11888 will generate @code{seth/add3} instructions to load their addresses), and
11889 assume all subroutines are reachable with the @code{bl} instruction.

11891 @item -mmodel=large
11892 @opindex mmodel=large
11893 Assume objects may be anywhere in the 32-bit address space (the compiler
11894 will generate @code{seth/add3} instructions to load their addresses), and
11895 assume subroutines may not be reachable with the @code{bl} instruction
11896 (the compiler will generate the much slower @code{seth/add3/jl}
11897 instruction sequence).

11899 @item -msdata=none
11900 @opindex msdata=none
11901 Disable use of the small data area. Variables will be put into
11902 one of @samp{.data}, @samp{bss}, or @samp{.rodata} (unless the
11903 @code{section} attribute has been specified).
11904 This is the default.

new/gcc/doc/invoke.texi 139

11906 The small data area consists of sections @samp{.sdata} and @samp{.sbss}.
11907 Objects may be explicitly put in the small data area with the
11908 @code{section} attribute using one of these sections.

11910 @item -msdata=sdata
11911 @opindex msdata=sdata
11912 Put small global and static data in the small data area, but do not
11913 generate special code to reference them.

11915 @item -msdata=use
11916 @opindex msdata=use
11917 Put small global and static data in the small data area, and generate
11918 special instructions to reference them.

11920 @item -G @var{num}
11921 @opindex G
11922 @cindex smaller data references
11923 Put global and static objects less than or equal to @var{num} bytes
11924 into the small data or bss sections instead of the normal data or bss
11925 sections. The default value of @var{num} is 8.
11926 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
11927 for this option to have any effect.

11929 All modules should be compiled with the same @option{-G @var{num}} value.
11930 Compiling with different values of @var{num} may or may not work; if it
11931 doesn’t the linker will give an error message---incorrect code will not be
11932 generated.

11934 @item -mdebug
11935 @opindex mdebug
11936 Makes the M32R specific code in the compiler display some statistics
11937 that might help in debugging programs.

11939 @item -malign-loops
11940 @opindex malign-loops
11941 Align all loops to a 32-byte boundary.

11943 @item -mno-align-loops
11944 @opindex mno-align-loops
11945 Do not enforce a 32-byte alignment for loops. This is the default.

11947 @item -missue-rate=@var{number}
11948 @opindex missue-rate=@var{number}
11949 Issue @var{number} instructions per cycle. @var{number} can only be 1
11950 or 2.

11952 @item -mbranch-cost=@var{number}
11953 @opindex mbranch-cost=@var{number}
11954 @var{number} can only be 1 or 2. If it is 1 then branches will be
11955 preferred over conditional code, if it is 2, then the opposite will
11956 apply.

11958 @item -mflush-trap=@var{number}
11959 @opindex mflush-trap=@var{number}
11960 Specifies the trap number to use to flush the cache. The default is
11961 12. Valid numbers are between 0 and 15 inclusive.

11963 @item -mno-flush-trap
11964 @opindex mno-flush-trap
11965 Specifies that the cache cannot be flushed by using a trap.

11967 @item -mflush-func=@var{name}
11968 @opindex mflush-func=@var{name}
11969 Specifies the name of the operating system function to call to flush
11970 the cache. The default is @emph{_flush_cache}, but a function call

new/gcc/doc/invoke.texi 140

11971 will only be used if a trap is not available.

11973 @item -mno-flush-func
11974 @opindex mno-flush-func
11975 Indicates that there is no OS function for flushing the cache.

11977 @end table

11979 @node M680x0 Options
11980 @subsection M680x0 Options
11981 @cindex M680x0 options

11983 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
11984 The default settings depend on which architecture was selected when
11985 the compiler was configured; the defaults for the most common choices
11986 are given below.

11988 @table @gcctabopt
11989 @item -march=@var{arch}
11990 @opindex march
11991 Generate code for a specific M680x0 or ColdFire instruction set
11992 architecture. Permissible values of @var{arch} for M680x0
11993 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
11994 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
11995 architectures are selected according to Freescale’s ISA classification
11996 and the permissible values are: @samp{isaa}, @samp{isaaplus},
11997 @samp{isab} and @samp{isac}.

11999 gcc defines a macro @samp{__mcf@var{arch}__} whenever it is generating
12000 code for a ColdFire target. The @var{arch} in this macro is one of the
12001 @option{-march} arguments given above.

12003 When used together, @option{-march} and @option{-mtune} select code
12004 that runs on a family of similar processors but that is optimized
12005 for a particular microarchitecture.

12007 @item -mcpu=@var{cpu}
12008 @opindex mcpu
12009 Generate code for a specific M680x0 or ColdFire processor.
12010 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
12011 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
12012 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
12013 below, which also classifies the CPUs into families:

12015 @multitable @columnfractions 0.20 0.80
12016 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
12017 @item @samp{51qe} @tab @samp{51qe}
12018 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
12019 @item @samp{5206e} @tab @samp{5206e}
12020 @item @samp{5208} @tab @samp{5207} @samp{5208}
12021 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
12022 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
12023 @item @samp{5216} @tab @samp{5214} @samp{5216}
12024 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @sam
12025 @item @samp{5225} @tab @samp{5224} @samp{5225}
12026 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523
12027 @item @samp{5249} @tab @samp{5249}
12028 @item @samp{5250} @tab @samp{5250}
12029 @item @samp{5271} @tab @samp{5270} @samp{5271}
12030 @item @samp{5272} @tab @samp{5272}
12031 @item @samp{5275} @tab @samp{5274} @samp{5275}
12032 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
12033 @item @samp{5307} @tab @samp{5307}
12034 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
12035 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
12036 @item @samp{5407} @tab @samp{5407}

new/gcc/doc/invoke.texi 141

12037 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{547
12038 @end multitable

12040 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
12041 @var{arch} is compatible with @var{cpu}. Other combinations of
12042 @option{-mcpu} and @option{-march} are rejected.

12044 gcc defines the macro @samp{__mcf_cpu_@var{cpu}} when ColdFire target
12045 @var{cpu} is selected. It also defines @samp{__mcf_family_@var{family}},
12046 where the value of @var{family} is given by the table above.

12048 @item -mtune=@var{tune}
12049 @opindex mtune
12050 Tune the code for a particular microarchitecture, within the
12051 constraints set by @option{-march} and @option{-mcpu}.
12052 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
12053 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
12054 and @samp{cpu32}. The ColdFire microarchitectures
12055 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.

12057 You can also use @option{-mtune=68020-40} for code that needs
12058 to run relatively well on 68020, 68030 and 68040 targets.
12059 @option{-mtune=68020-60} is similar but includes 68060 targets
12060 as well. These two options select the same tuning decisions as
12061 @option{-m68020-40} and @option{-m68020-60} respectively.

12063 gcc defines the macros @samp{__mc@var{arch}} and @samp{__mc@var{arch}__}
12064 when tuning for 680x0 architecture @var{arch}. It also defines
12065 @samp{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
12066 option is used. If gcc is tuning for a range of architectures,
12067 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
12068 it defines the macros for every architecture in the range.

12070 gcc also defines the macro @samp{__m@var{uarch}__} when tuning for
12071 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
12072 of the arguments given above.

12074 @item -m68000
12075 @itemx -mc68000
12076 @opindex m68000
12077 @opindex mc68000
12078 Generate output for a 68000. This is the default
12079 when the compiler is configured for 68000-based systems.
12080 It is equivalent to @option{-march=68000}.

12082 Use this option for microcontrollers with a 68000 or EC000 core,
12083 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.

12085 @item -m68010
12086 @opindex m68010
12087 Generate output for a 68010. This is the default
12088 when the compiler is configured for 68010-based systems.
12089 It is equivalent to @option{-march=68010}.

12091 @item -m68020
12092 @itemx -mc68020
12093 @opindex m68020
12094 @opindex mc68020
12095 Generate output for a 68020. This is the default
12096 when the compiler is configured for 68020-based systems.
12097 It is equivalent to @option{-march=68020}.

12099 @item -m68030
12100 @opindex m68030
12101 Generate output for a 68030. This is the default when the compiler is
12102 configured for 68030-based systems. It is equivalent to

new/gcc/doc/invoke.texi 142

12103 @option{-march=68030}.

12105 @item -m68040
12106 @opindex m68040
12107 Generate output for a 68040. This is the default when the compiler is
12108 configured for 68040-based systems. It is equivalent to
12109 @option{-march=68040}.

12111 This option inhibits the use of 68881/68882 instructions that have to be
12112 emulated by software on the 68040. Use this option if your 68040 does not
12113 have code to emulate those instructions.

12115 @item -m68060
12116 @opindex m68060
12117 Generate output for a 68060. This is the default when the compiler is
12118 configured for 68060-based systems. It is equivalent to
12119 @option{-march=68060}.

12121 This option inhibits the use of 68020 and 68881/68882 instructions that
12122 have to be emulated by software on the 68060. Use this option if your 68060
12123 does not have code to emulate those instructions.

12125 @item -mcpu32
12126 @opindex mcpu32
12127 Generate output for a CPU32. This is the default
12128 when the compiler is configured for CPU32-based systems.
12129 It is equivalent to @option{-march=cpu32}.

12131 Use this option for microcontrollers with a
12132 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
12133 68336, 68340, 68341, 68349 and 68360.

12135 @item -m5200
12136 @opindex m5200
12137 Generate output for a 520X ColdFire CPU@. This is the default
12138 when the compiler is configured for 520X-based systems.
12139 It is equivalent to @option{-mcpu=5206}, and is now deprecated
12140 in favor of that option.

12142 Use this option for microcontroller with a 5200 core, including
12143 the MCF5202, MCF5203, MCF5204 and MCF5206.

12145 @item -m5206e
12146 @opindex m5206e
12147 Generate output for a 5206e ColdFire CPU@. The option is now
12148 deprecated in favor of the equivalent @option{-mcpu=5206e}.

12150 @item -m528x
12151 @opindex m528x
12152 Generate output for a member of the ColdFire 528X family.
12153 The option is now deprecated in favor of the equivalent
12154 @option{-mcpu=528x}.

12156 @item -m5307
12157 @opindex m5307
12158 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
12159 in favor of the equivalent @option{-mcpu=5307}.

12161 @item -m5407
12162 @opindex m5407
12163 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
12164 in favor of the equivalent @option{-mcpu=5407}.

12166 @item -mcfv4e
12167 @opindex mcfv4e
12168 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).

new/gcc/doc/invoke.texi 143

12169 This includes use of hardware floating point instructions.
12170 The option is equivalent to @option{-mcpu=547x}, and is now
12171 deprecated in favor of that option.

12173 @item -m68020-40
12174 @opindex m68020-40
12175 Generate output for a 68040, without using any of the new instructions.
12176 This results in code which can run relatively efficiently on either a
12177 68020/68881 or a 68030 or a 68040. The generated code does use the
12178 68881 instructions that are emulated on the 68040.

12180 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.

12182 @item -m68020-60
12183 @opindex m68020-60
12184 Generate output for a 68060, without using any of the new instructions.
12185 This results in code which can run relatively efficiently on either a
12186 68020/68881 or a 68030 or a 68040. The generated code does use the
12187 68881 instructions that are emulated on the 68060.

12189 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.

12191 @item -mhard-float
12192 @itemx -m68881
12193 @opindex mhard-float
12194 @opindex m68881
12195 Generate floating-point instructions. This is the default for 68020
12196 and above, and for ColdFire devices that have an FPU@. It defines the
12197 macro @samp{__HAVE_68881__} on M680x0 targets and @samp{__mcffpu__}
12198 on ColdFire targets.

12200 @item -msoft-float
12201 @opindex msoft-float
12202 Do not generate floating-point instructions; use library calls instead.
12203 This is the default for 68000, 68010, and 68832 targets. It is also
12204 the default for ColdFire devices that have no FPU.

12206 @item -mdiv
12207 @itemx -mno-div
12208 @opindex mdiv
12209 @opindex mno-div
12210 Generate (do not generate) ColdFire hardware divide and remainder
12211 instructions. If @option{-march} is used without @option{-mcpu},
12212 the default is ‘‘on’’ for ColdFire architectures and ‘‘off’’ for M680x0
12213 architectures. Otherwise, the default is taken from the target CPU
12214 (either the default CPU, or the one specified by @option{-mcpu}). For
12215 example, the default is ‘‘off’’ for @option{-mcpu=5206} and ‘‘on’’ for
12216 @option{-mcpu=5206e}.

12218 gcc defines the macro @samp{__mcfhwdiv__} when this option is enabled.

12220 @item -mshort
12221 @opindex mshort
12222 Consider type @code{int} to be 16 bits wide, like @code{short int}.
12223 Additionally, parameters passed on the stack are also aligned to a
12224 16-bit boundary even on targets whose API mandates promotion to 32-bit.

12226 @item -mno-short
12227 @opindex mno-short
12228 Do not consider type @code{int} to be 16 bits wide. This is the default.

12230 @item -mnobitfield
12231 @itemx -mno-bitfield
12232 @opindex mnobitfield
12233 @opindex mno-bitfield
12234 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}

new/gcc/doc/invoke.texi 144

12235 and @option{-m5200} options imply @w{@option{-mnobitfield}}.

12237 @item -mbitfield
12238 @opindex mbitfield
12239 Do use the bit-field instructions. The @option{-m68020} option implies
12240 @option{-mbitfield}. This is the default if you use a configuration
12241 designed for a 68020.

12243 @item -mrtd
12244 @opindex mrtd
12245 Use a different function-calling convention, in which functions
12246 that take a fixed number of arguments return with the @code{rtd}
12247 instruction, which pops their arguments while returning. This
12248 saves one instruction in the caller since there is no need to pop
12249 the arguments there.

12251 This calling convention is incompatible with the one normally
12252 used on Unix, so you cannot use it if you need to call libraries
12253 compiled with the Unix compiler.

12255 Also, you must provide function prototypes for all functions that
12256 take variable numbers of arguments (including @code{printf});
12257 otherwise incorrect code will be generated for calls to those
12258 functions.

12260 In addition, seriously incorrect code will result if you call a
12261 function with too many arguments. (Normally, extra arguments are
12262 harmlessly ignored.)

12264 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
12265 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.

12267 @item -mno-rtd
12268 @opindex mno-rtd
12269 Do not use the calling conventions selected by @option{-mrtd}.
12270 This is the default.

12272 @item -malign-int
12273 @itemx -mno-align-int
12274 @opindex malign-int
12275 @opindex mno-align-int
12276 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
12277 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
12278 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
12279 Aligning variables on 32-bit boundaries produces code that runs somewhat
12280 faster on processors with 32-bit busses at the expense of more memory.

12282 @strong{Warning:} if you use the @option{-malign-int} switch, GCC will
12283 align structures containing the above types differently than
12284 most published application binary interface specifications for the m68k.

12286 @item -mpcrel
12287 @opindex mpcrel
12288 Use the pc-relative addressing mode of the 68000 directly, instead of
12289 using a global offset table. At present, this option implies @option{-fpic},
12290 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
12291 not presently supported with @option{-mpcrel}, though this could be supported fo
12292 68020 and higher processors.

12294 @item -mno-strict-align
12295 @itemx -mstrict-align
12296 @opindex mno-strict-align
12297 @opindex mstrict-align
12298 Do not (do) assume that unaligned memory references will be handled by
12299 the system.

new/gcc/doc/invoke.texi 145

12301 @item -msep-data
12302 Generate code that allows the data segment to be located in a different
12303 area of memory from the text segment. This allows for execute in place in
12304 an environment without virtual memory management. This option implies
12305 @option{-fPIC}.

12307 @item -mno-sep-data
12308 Generate code that assumes that the data segment follows the text segment.
12309 This is the default.

12311 @item -mid-shared-library
12312 Generate code that supports shared libraries via the library ID method.
12313 This allows for execute in place and shared libraries in an environment
12314 without virtual memory management. This option implies @option{-fPIC}.

12316 @item -mno-id-shared-library
12317 Generate code that doesn’t assume ID based shared libraries are being used.
12318 This is the default.

12320 @item -mshared-library-id=n
12321 Specified the identification number of the ID based shared library being
12322 compiled. Specifying a value of 0 will generate more compact code, specifying
12323 other values will force the allocation of that number to the current
12324 library but is no more space or time efficient than omitting this option.

12326 @item -mxgot
12327 @itemx -mno-xgot
12328 @opindex mxgot
12329 @opindex mno-xgot
12330 When generating position-independent code for ColdFire, generate code
12331 that works if the GOT has more than 8192 entries. This code is
12332 larger and slower than code generated without this option. On M680x0
12333 processors, this option is not needed; @option{-fPIC} suffices.

12335 GCC normally uses a single instruction to load values from the GOT@.
12336 While this is relatively efficient, it only works if the GOT
12337 is smaller than about 64k. Anything larger causes the linker
12338 to report an error such as:

12340 @cindex relocation truncated to fit (ColdFire)
12341 @smallexample
12342 relocation truncated to fit: R_68K_GOT16O foobar
12343 @end smallexample

12345 If this happens, you should recompile your code with @option{-mxgot}.
12346 It should then work with very large GOTs. However, code generated with
12347 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
12348 the value of a global symbol.

12350 Note that some linkers, including newer versions of the GNU linker,
12351 can create multiple GOTs and sort GOT entries. If you have such a linker,
12352 you should only need to use @option{-mxgot} when compiling a single
12353 object file that accesses more than 8192 GOT entries. Very few do.

12355 These options have no effect unless GCC is generating
12356 position-independent code.

12358 @end table

12360 @node M68hc1x Options
12361 @subsection M68hc1x Options
12362 @cindex M68hc1x options

12364 These are the @samp{-m} options defined for the 68hc11 and 68hc12
12365 microcontrollers. The default values for these options depends on
12366 which style of microcontroller was selected when the compiler was configured;

new/gcc/doc/invoke.texi 146

12367 the defaults for the most common choices are given below.

12369 @table @gcctabopt
12370 @item -m6811
12371 @itemx -m68hc11
12372 @opindex m6811
12373 @opindex m68hc11
12374 Generate output for a 68HC11. This is the default
12375 when the compiler is configured for 68HC11-based systems.

12377 @item -m6812
12378 @itemx -m68hc12
12379 @opindex m6812
12380 @opindex m68hc12
12381 Generate output for a 68HC12. This is the default
12382 when the compiler is configured for 68HC12-based systems.

12384 @item -m68S12
12385 @itemx -m68hcs12
12386 @opindex m68S12
12387 @opindex m68hcs12
12388 Generate output for a 68HCS12.

12390 @item -mauto-incdec
12391 @opindex mauto-incdec
12392 Enable the use of 68HC12 pre and post auto-increment and auto-decrement
12393 addressing modes.

12395 @item -minmax
12396 @itemx -nominmax
12397 @opindex minmax
12398 @opindex mnominmax
12399 Enable the use of 68HC12 min and max instructions.

12401 @item -mlong-calls
12402 @itemx -mno-long-calls
12403 @opindex mlong-calls
12404 @opindex mno-long-calls
12405 Treat all calls as being far away (near). If calls are assumed to be
12406 far away, the compiler will use the @code{call} instruction to
12407 call a function and the @code{rtc} instruction for returning.

12409 @item -mshort
12410 @opindex mshort
12411 Consider type @code{int} to be 16 bits wide, like @code{short int}.

12413 @item -msoft-reg-count=@var{count}
12414 @opindex msoft-reg-count
12415 Specify the number of pseudo-soft registers which are used for the
12416 code generation. The maximum number is 32. Using more pseudo-soft
12417 register may or may not result in better code depending on the program.
12418 The default is 4 for 68HC11 and 2 for 68HC12.

12420 @end table

12422 @node MCore Options
12423 @subsection MCore Options
12424 @cindex MCore options

12426 These are the @samp{-m} options defined for the Motorola M*Core
12427 processors.

12429 @table @gcctabopt

12431 @item -mhardlit
12432 @itemx -mno-hardlit

new/gcc/doc/invoke.texi 147

12433 @opindex mhardlit
12434 @opindex mno-hardlit
12435 Inline constants into the code stream if it can be done in two
12436 instructions or less.

12438 @item -mdiv
12439 @itemx -mno-div
12440 @opindex mdiv
12441 @opindex mno-div
12442 Use the divide instruction. (Enabled by default).

12444 @item -mrelax-immediate
12445 @itemx -mno-relax-immediate
12446 @opindex mrelax-immediate
12447 @opindex mno-relax-immediate
12448 Allow arbitrary sized immediates in bit operations.

12450 @item -mwide-bitfields
12451 @itemx -mno-wide-bitfields
12452 @opindex mwide-bitfields
12453 @opindex mno-wide-bitfields
12454 Always treat bit-fields as int-sized.

12456 @item -m4byte-functions
12457 @itemx -mno-4byte-functions
12458 @opindex m4byte-functions
12459 @opindex mno-4byte-functions
12460 Force all functions to be aligned to a four byte boundary.

12462 @item -mcallgraph-data
12463 @itemx -mno-callgraph-data
12464 @opindex mcallgraph-data
12465 @opindex mno-callgraph-data
12466 Emit callgraph information.

12468 @item -mslow-bytes
12469 @itemx -mno-slow-bytes
12470 @opindex mslow-bytes
12471 @opindex mno-slow-bytes
12472 Prefer word access when reading byte quantities.

12474 @item -mlittle-endian
12475 @itemx -mbig-endian
12476 @opindex mlittle-endian
12477 @opindex mbig-endian
12478 Generate code for a little endian target.

12480 @item -m210
12481 @itemx -m340
12482 @opindex m210
12483 @opindex m340
12484 Generate code for the 210 processor.

12486 @item -mno-lsim
12487 @opindex no-lsim
12488 Assume that run-time support has been provided and so omit the
12489 simulator library (@file{libsim.a)} from the linker command line.

12491 @item -mstack-increment=@var{size}
12492 @opindex mstack-increment
12493 Set the maximum amount for a single stack increment operation. Large
12494 values can increase the speed of programs which contain functions
12495 that need a large amount of stack space, but they can also trigger a
12496 segmentation fault if the stack is extended too much. The default
12497 value is 0x1000.

new/gcc/doc/invoke.texi 148

12499 @end table

12501 @node MIPS Options
12502 @subsection MIPS Options
12503 @cindex MIPS options

12505 @table @gcctabopt

12507 @item -EB
12508 @opindex EB
12509 Generate big-endian code.

12511 @item -EL
12512 @opindex EL
12513 Generate little-endian code. This is the default for @samp{mips*el-*-*}
12514 configurations.

12516 @item -march=@var{arch}
12517 @opindex march
12518 Generate code that will run on @var{arch}, which can be the name of a
12519 generic MIPS ISA, or the name of a particular processor.
12520 The ISA names are:
12521 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
12522 @samp{mips32}, @samp{mips32r2}, @samp{mips64} and @samp{mips64r2}.
12523 The processor names are:
12524 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
12525 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
12526 @samp{5kc}, @samp{5kf},
12527 @samp{20kc},
12528 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
12529 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
12530 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1},
12531 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
12532 @samp{loongson2e}, @samp{loongson2f},
12533 @samp{m4k},
12534 @samp{octeon},
12535 @samp{orion},
12536 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
12537 @samp{r4600}, @samp{r4650}, @samp{r6000}, @samp{r8000},
12538 @samp{rm7000}, @samp{rm9000},
12539 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
12540 @samp{sb1},
12541 @samp{sr71000},
12542 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
12543 @samp{vr5000}, @samp{vr5400}, @samp{vr5500}
12544 and @samp{xlr}.
12545 The special value @samp{from-abi} selects the
12546 most compatible architecture for the selected ABI (that is,
12547 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.

12549 Native Linux/GNU toolchains also support the value @samp{native},
12550 which selects the best architecture option for the host processor.
12551 @option{-march=native} has no effect if GCC does not recognize
12552 the processor.

12554 In processor names, a final @samp{000} can be abbreviated as @samp{k}
12555 (for example, @samp{-march=r2k}). Prefixes are optional, and
12556 @samp{vr} may be written @samp{r}.

12558 Names of the form @samp{@var{n}f2_1} refer to processors with
12559 FPUs clocked at half the rate of the core, names of the form
12560 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
12561 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
12562 processors with FPUs clocked a ratio of 3:2 with respect to the core.
12563 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
12564 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are

new/gcc/doc/invoke.texi 149

12565 accepted as synonyms for @samp{@var{n}f1_1}.

12567 GCC defines two macros based on the value of this option. The first
12568 is @samp{_MIPS_ARCH}, which gives the name of target architecture, as
12569 a string. The second has the form @samp{_MIPS_ARCH_@var{foo}},
12570 where @var{foo} is the capitalized value of @samp{_MIPS_ARCH}@.
12571 For example, @samp{-march=r2000} will set @samp{_MIPS_ARCH}
12572 to @samp{"r2000"} and define the macro @samp{_MIPS_ARCH_R2000}.

12574 Note that the @samp{_MIPS_ARCH} macro uses the processor names given
12575 above. In other words, it will have the full prefix and will not
12576 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
12577 the macro names the resolved architecture (either @samp{"mips1"} or
12578 @samp{"mips3"}). It names the default architecture when no
12579 @option{-march} option is given.

12581 @item -mtune=@var{arch}
12582 @opindex mtune
12583 Optimize for @var{arch}. Among other things, this option controls
12584 the way instructions are scheduled, and the perceived cost of arithmetic
12585 operations. The list of @var{arch} values is the same as for
12586 @option{-march}.

12588 When this option is not used, GCC will optimize for the processor
12589 specified by @option{-march}. By using @option{-march} and
12590 @option{-mtune} together, it is possible to generate code that will
12591 run on a family of processors, but optimize the code for one
12592 particular member of that family.

12594 @samp{-mtune} defines the macros @samp{_MIPS_TUNE} and
12595 @samp{_MIPS_TUNE_@var{foo}}, which work in the same way as the
12596 @samp{-march} ones described above.

12598 @item -mips1
12599 @opindex mips1
12600 Equivalent to @samp{-march=mips1}.

12602 @item -mips2
12603 @opindex mips2
12604 Equivalent to @samp{-march=mips2}.

12606 @item -mips3
12607 @opindex mips3
12608 Equivalent to @samp{-march=mips3}.

12610 @item -mips4
12611 @opindex mips4
12612 Equivalent to @samp{-march=mips4}.

12614 @item -mips32
12615 @opindex mips32
12616 Equivalent to @samp{-march=mips32}.

12618 @item -mips32r2
12619 @opindex mips32r2
12620 Equivalent to @samp{-march=mips32r2}.

12622 @item -mips64
12623 @opindex mips64
12624 Equivalent to @samp{-march=mips64}.

12626 @item -mips64r2
12627 @opindex mips64r2
12628 Equivalent to @samp{-march=mips64r2}.

12630 @item -mips16

new/gcc/doc/invoke.texi 150

12631 @itemx -mno-mips16
12632 @opindex mips16
12633 @opindex mno-mips16
12634 Generate (do not generate) MIPS16 code. If GCC is targetting a
12635 MIPS32 or MIPS64 architecture, it will make use of the MIPS16e ASE@.

12637 MIPS16 code generation can also be controlled on a per-function basis
12638 by means of @code{mips16} and @code{nomips16} attributes.
12639 @xref{Function Attributes}, for more information.

12641 @item -mflip-mips16
12642 @opindex mflip-mips16
12643 Generate MIPS16 code on alternating functions. This option is provided
12644 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
12645 not intended for ordinary use in compiling user code.

12647 @item -minterlink-mips16
12648 @itemx -mno-interlink-mips16
12649 @opindex minterlink-mips16
12650 @opindex mno-interlink-mips16
12651 Require (do not require) that non-MIPS16 code be link-compatible with
12652 MIPS16 code.

12654 For example, non-MIPS16 code cannot jump directly to MIPS16 code;
12655 it must either use a call or an indirect jump. @option{-minterlink-mips16}
12656 therefore disables direct jumps unless GCC knows that the target of the
12657 jump is not MIPS16.

12659 @item -mabi=32
12660 @itemx -mabi=o64
12661 @itemx -mabi=n32
12662 @itemx -mabi=64
12663 @itemx -mabi=eabi
12664 @opindex mabi=32
12665 @opindex mabi=o64
12666 @opindex mabi=n32
12667 @opindex mabi=64
12668 @opindex mabi=eabi
12669 Generate code for the given ABI@.

12671 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
12672 generates 64-bit code when you select a 64-bit architecture, but you
12673 can use @option{-mgp32} to get 32-bit code instead.

12675 For information about the O64 ABI, see
12676 @w{@uref{http://gcc.gnu.org/projects/mipso64-abi.html}}.

12678 GCC supports a variant of the o32 ABI in which floating-point registers
12679 are 64 rather than 32 bits wide. You can select this combination with
12680 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @samp{mthc1}
12681 and @samp{mfhc1} instructions and is therefore only supported for
12682 MIPS32R2 processors.

12684 The register assignments for arguments and return values remain the
12685 same, but each scalar value is passed in a single 64-bit register
12686 rather than a pair of 32-bit registers. For example, scalar
12687 floating-point values are returned in @samp{$f0} only, not a
12688 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
12689 remains the same, but all 64 bits are saved.

12691 @item -mabicalls
12692 @itemx -mno-abicalls
12693 @opindex mabicalls
12694 @opindex mno-abicalls
12695 Generate (do not generate) code that is suitable for SVR4-style
12696 dynamic objects. @option{-mabicalls} is the default for SVR4-based

new/gcc/doc/invoke.texi 151

12697 systems.

12699 @item -mshared
12700 @itemx -mno-shared
12701 Generate (do not generate) code that is fully position-independent,
12702 and that can therefore be linked into shared libraries. This option
12703 only affects @option{-mabicalls}.

12705 All @option{-mabicalls} code has traditionally been position-independent,
12706 regardless of options like @option{-fPIC} and @option{-fpic}. However,
12707 as an extension, the GNU toolchain allows executables to use absolute
12708 accesses for locally-binding symbols. It can also use shorter GP
12709 initialization sequences and generate direct calls to locally-defined
12710 functions. This mode is selected by @option{-mno-shared}.

12712 @option{-mno-shared} depends on binutils 2.16 or higher and generates
12713 objects that can only be linked by the GNU linker. However, the option
12714 does not affect the ABI of the final executable; it only affects the ABI
12715 of relocatable objects. Using @option{-mno-shared} will generally make
12716 executables both smaller and quicker.

12718 @option{-mshared} is the default.

12720 @item -mplt
12721 @itemx -mno-plt
12722 @opindex mplt
12723 @opindex mno-plt
12724 Assume (do not assume) that the static and dynamic linkers
12725 support PLTs and copy relocations. This option only affects
12726 @samp{-mno-shared -mabicalls}. For the n64 ABI, this option
12727 has no effect without @samp{-msym32}.

12729 You can make @option{-mplt} the default by configuring
12730 GCC with @option{--with-mips-plt}. The default is
12731 @option{-mno-plt} otherwise.

12733 @item -mxgot
12734 @itemx -mno-xgot
12735 @opindex mxgot
12736 @opindex mno-xgot
12737 Lift (do not lift) the usual restrictions on the size of the global
12738 offset table.

12740 GCC normally uses a single instruction to load values from the GOT@.
12741 While this is relatively efficient, it will only work if the GOT
12742 is smaller than about 64k. Anything larger will cause the linker
12743 to report an error such as:

12745 @cindex relocation truncated to fit (MIPS)
12746 @smallexample
12747 relocation truncated to fit: R_MIPS_GOT16 foobar
12748 @end smallexample

12750 If this happens, you should recompile your code with @option{-mxgot}.
12751 It should then work with very large GOTs, although it will also be
12752 less efficient, since it will take three instructions to fetch the
12753 value of a global symbol.

12755 Note that some linkers can create multiple GOTs. If you have such a
12756 linker, you should only need to use @option{-mxgot} when a single object
12757 file accesses more than 64k’s worth of GOT entries. Very few do.

12759 These options have no effect unless GCC is generating position
12760 independent code.

12762 @item -mgp32

new/gcc/doc/invoke.texi 152

12763 @opindex mgp32
12764 Assume that general-purpose registers are 32 bits wide.

12766 @item -mgp64
12767 @opindex mgp64
12768 Assume that general-purpose registers are 64 bits wide.

12770 @item -mfp32
12771 @opindex mfp32
12772 Assume that floating-point registers are 32 bits wide.

12774 @item -mfp64
12775 @opindex mfp64
12776 Assume that floating-point registers are 64 bits wide.

12778 @item -mhard-float
12779 @opindex mhard-float
12780 Use floating-point coprocessor instructions.

12782 @item -msoft-float
12783 @opindex msoft-float
12784 Do not use floating-point coprocessor instructions. Implement
12785 floating-point calculations using library calls instead.

12787 @item -msingle-float
12788 @opindex msingle-float
12789 Assume that the floating-point coprocessor only supports single-precision
12790 operations.

12792 @item -mdouble-float
12793 @opindex mdouble-float
12794 Assume that the floating-point coprocessor supports double-precision
12795 operations. This is the default.

12797 @item -mllsc
12798 @itemx -mno-llsc
12799 @opindex mllsc
12800 @opindex mno-llsc
12801 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
12802 implement atomic memory built-in functions. When neither option is
12803 specified, GCC will use the instructions if the target architecture
12804 supports them.

12806 @option{-mllsc} is useful if the runtime environment can emulate the
12807 instructions and @option{-mno-llsc} can be useful when compiling for
12808 nonstandard ISAs. You can make either option the default by
12809 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
12810 respectively. @option{--with-llsc} is the default for some
12811 configurations; see the installation documentation for details.

12813 @item -mdsp
12814 @itemx -mno-dsp
12815 @opindex mdsp
12816 @opindex mno-dsp
12817 Use (do not use) revision 1 of the MIPS DSP ASE@.
12818 @xref{MIPS DSP Built-in Functions}. This option defines the
12819 preprocessor macro @samp{__mips_dsp}. It also defines
12820 @samp{__mips_dsp_rev} to 1.

12822 @item -mdspr2
12823 @itemx -mno-dspr2
12824 @opindex mdspr2
12825 @opindex mno-dspr2
12826 Use (do not use) revision 2 of the MIPS DSP ASE@.
12827 @xref{MIPS DSP Built-in Functions}. This option defines the
12828 preprocessor macros @samp{__mips_dsp} and @samp{__mips_dspr2}.

new/gcc/doc/invoke.texi 153

12829 It also defines @samp{__mips_dsp_rev} to 2.

12831 @item -msmartmips
12832 @itemx -mno-smartmips
12833 @opindex msmartmips
12834 @opindex mno-smartmips
12835 Use (do not use) the MIPS SmartMIPS ASE.

12837 @item -mpaired-single
12838 @itemx -mno-paired-single
12839 @opindex mpaired-single
12840 @opindex mno-paired-single
12841 Use (do not use) paired-single floating-point instructions.
12842 @xref{MIPS Paired-Single Support}. This option requires
12843 hardware floating-point support to be enabled.

12845 @item -mdmx
12846 @itemx -mno-mdmx
12847 @opindex mdmx
12848 @opindex mno-mdmx
12849 Use (do not use) MIPS Digital Media Extension instructions.
12850 This option can only be used when generating 64-bit code and requires
12851 hardware floating-point support to be enabled.

12853 @item -mips3d
12854 @itemx -mno-mips3d
12855 @opindex mips3d
12856 @opindex mno-mips3d
12857 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
12858 The option @option{-mips3d} implies @option{-mpaired-single}.

12860 @item -mmt
12861 @itemx -mno-mt
12862 @opindex mmt
12863 @opindex mno-mt
12864 Use (do not use) MT Multithreading instructions.

12866 @item -mlong64
12867 @opindex mlong64
12868 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
12869 an explanation of the default and the way that the pointer size is
12870 determined.

12872 @item -mlong32
12873 @opindex mlong32
12874 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.

12876 The default size of @code{int}s, @code{long}s and pointers depends on
12877 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
12878 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
12879 32-bit @code{long}s. Pointers are the same size as @code{long}s,
12880 or the same size as integer registers, whichever is smaller.

12882 @item -msym32
12883 @itemx -mno-sym32
12884 @opindex msym32
12885 @opindex mno-sym32
12886 Assume (do not assume) that all symbols have 32-bit values, regardless
12887 of the selected ABI@. This option is useful in combination with
12888 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
12889 to generate shorter and faster references to symbolic addresses.

12891 @item -G @var{num}
12892 @opindex G
12893 Put definitions of externally-visible data in a small data section
12894 if that data is no bigger than @var{num} bytes. GCC can then access

new/gcc/doc/invoke.texi 154

12895 the data more efficiently; see @option{-mgpopt} for details.

12897 The default @option{-G} option depends on the configuration.

12899 @item -mlocal-sdata
12900 @itemx -mno-local-sdata
12901 @opindex mlocal-sdata
12902 @opindex mno-local-sdata
12903 Extend (do not extend) the @option{-G} behavior to local data too,
12904 such as to static variables in C@. @option{-mlocal-sdata} is the
12905 default for all configurations.

12907 If the linker complains that an application is using too much small data,
12908 you might want to try rebuilding the less performance-critical parts with
12909 @option{-mno-local-sdata}. You might also want to build large
12910 libraries with @option{-mno-local-sdata}, so that the libraries leave
12911 more room for the main program.

12913 @item -mextern-sdata
12914 @itemx -mno-extern-sdata
12915 @opindex mextern-sdata
12916 @opindex mno-extern-sdata
12917 Assume (do not assume) that externally-defined data will be in
12918 a small data section if that data is within the @option{-G} limit.
12919 @option{-mextern-sdata} is the default for all configurations.

12921 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
12922 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
12923 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
12924 is placed in a small data section. If @var{Var} is defined by another
12925 module, you must either compile that module with a high-enough
12926 @option{-G} setting or attach a @code{section} attribute to @var{Var}’s
12927 definition. If @var{Var} is common, you must link the application
12928 with a high-enough @option{-G} setting.

12930 The easiest way of satisfying these restrictions is to compile
12931 and link every module with the same @option{-G} option. However,
12932 you may wish to build a library that supports several different
12933 small data limits. You can do this by compiling the library with
12934 the highest supported @option{-G} setting and additionally using
12935 @option{-mno-extern-sdata} to stop the library from making assumptions
12936 about externally-defined data.

12938 @item -mgpopt
12939 @itemx -mno-gpopt
12940 @opindex mgpopt
12941 @opindex mno-gpopt
12942 Use (do not use) GP-relative accesses for symbols that are known to be
12943 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
12944 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
12945 configurations.

12947 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
12948 might not hold the value of @code{_gp}. For example, if the code is
12949 part of a library that might be used in a boot monitor, programs that
12950 call boot monitor routines will pass an unknown value in @code{$gp}.
12951 (In such situations, the boot monitor itself would usually be compiled
12952 with @option{-G0}.)

12954 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
12955 @option{-mno-extern-sdata}.

12957 @item -membedded-data
12958 @itemx -mno-embedded-data
12959 @opindex membedded-data
12960 @opindex mno-embedded-data

new/gcc/doc/invoke.texi 155

12961 Allocate variables to the read-only data section first if possible, then
12962 next in the small data section if possible, otherwise in data. This gives
12963 slightly slower code than the default, but reduces the amount of RAM required
12964 when executing, and thus may be preferred for some embedded systems.

12966 @item -muninit-const-in-rodata
12967 @itemx -mno-uninit-const-in-rodata
12968 @opindex muninit-const-in-rodata
12969 @opindex mno-uninit-const-in-rodata
12970 Put uninitialized @code{const} variables in the read-only data section.
12971 This option is only meaningful in conjunction with @option{-membedded-data}.

12973 @item -mcode-readable=@var{setting}
12974 @opindex mcode-readable
12975 Specify whether GCC may generate code that reads from executable sections.
12976 There are three possible settings:

12978 @table @gcctabopt
12979 @item -mcode-readable=yes
12980 Instructions may freely access executable sections. This is the
12981 default setting.

12983 @item -mcode-readable=pcrel
12984 MIPS16 PC-relative load instructions can access executable sections,
12985 but other instructions must not do so. This option is useful on 4KSc
12986 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
12987 It is also useful on processors that can be configured to have a dual
12988 instruction/data SRAM interface and that, like the M4K, automatically
12989 redirect PC-relative loads to the instruction RAM.

12991 @item -mcode-readable=no
12992 Instructions must not access executable sections. This option can be
12993 useful on targets that are configured to have a dual instruction/data
12994 SRAM interface but that (unlike the M4K) do not automatically redirect
12995 PC-relative loads to the instruction RAM.
12996 @end table

12998 @item -msplit-addresses
12999 @itemx -mno-split-addresses
13000 @opindex msplit-addresses
13001 @opindex mno-split-addresses
13002 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
13003 relocation operators. This option has been superseded by
13004 @option{-mexplicit-relocs} but is retained for backwards compatibility.

13006 @item -mexplicit-relocs
13007 @itemx -mno-explicit-relocs
13008 @opindex mexplicit-relocs
13009 @opindex mno-explicit-relocs
13010 Use (do not use) assembler relocation operators when dealing with symbolic
13011 addresses. The alternative, selected by @option{-mno-explicit-relocs},
13012 is to use assembler macros instead.

13014 @option{-mexplicit-relocs} is the default if GCC was configured
13015 to use an assembler that supports relocation operators.

13017 @item -mcheck-zero-division
13018 @itemx -mno-check-zero-division
13019 @opindex mcheck-zero-division
13020 @opindex mno-check-zero-division
13021 Trap (do not trap) on integer division by zero.

13023 The default is @option{-mcheck-zero-division}.

13025 @item -mdivide-traps
13026 @itemx -mdivide-breaks

new/gcc/doc/invoke.texi 156

13027 @opindex mdivide-traps
13028 @opindex mdivide-breaks
13029 MIPS systems check for division by zero by generating either a
13030 conditional trap or a break instruction. Using traps results in
13031 smaller code, but is only supported on MIPS II and later. Also, some
13032 versions of the Linux kernel have a bug that prevents trap from
13033 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
13034 allow conditional traps on architectures that support them and
13035 @option{-mdivide-breaks} to force the use of breaks.

13037 The default is usually @option{-mdivide-traps}, but this can be
13038 overridden at configure time using @option{--with-divide=breaks}.
13039 Divide-by-zero checks can be completely disabled using
13040 @option{-mno-check-zero-division}.

13042 @item -mmemcpy
13043 @itemx -mno-memcpy
13044 @opindex mmemcpy
13045 @opindex mno-memcpy
13046 Force (do not force) the use of @code{memcpy()} for non-trivial block
13047 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
13048 most constant-sized copies.

13050 @item -mlong-calls
13051 @itemx -mno-long-calls
13052 @opindex mlong-calls
13053 @opindex mno-long-calls
13054 Disable (do not disable) use of the @code{jal} instruction. Calling
13055 functions using @code{jal} is more efficient but requires the caller
13056 and callee to be in the same 256 megabyte segment.

13058 This option has no effect on abicalls code. The default is
13059 @option{-mno-long-calls}.

13061 @item -mmad
13062 @itemx -mno-mad
13063 @opindex mmad
13064 @opindex mno-mad
13065 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
13066 instructions, as provided by the R4650 ISA@.

13068 @item -mfused-madd
13069 @itemx -mno-fused-madd
13070 @opindex mfused-madd
13071 @opindex mno-fused-madd
13072 Enable (disable) use of the floating point multiply-accumulate
13073 instructions, when they are available. The default is
13074 @option{-mfused-madd}.

13076 When multiply-accumulate instructions are used, the intermediate
13077 product is calculated to infinite precision and is not subject to
13078 the FCSR Flush to Zero bit. This may be undesirable in some
13079 circumstances.

13081 @item -nocpp
13082 @opindex nocpp
13083 Tell the MIPS assembler to not run its preprocessor over user
13084 assembler files (with a @samp{.s} suffix) when assembling them.

13086 @item -mfix-r4000
13087 @itemx -mno-fix-r4000
13088 @opindex mfix-r4000
13089 @opindex mno-fix-r4000
13090 Work around certain R4000 CPU errata:
13091 @itemize @minus
13092 @item

new/gcc/doc/invoke.texi 157

13093 A double-word or a variable shift may give an incorrect result if executed
13094 immediately after starting an integer division.
13095 @item
13096 A double-word or a variable shift may give an incorrect result if executed
13097 while an integer multiplication is in progress.
13098 @item
13099 An integer division may give an incorrect result if started in a delay slot
13100 of a taken branch or a jump.
13101 @end itemize

13103 @item -mfix-r4400
13104 @itemx -mno-fix-r4400
13105 @opindex mfix-r4400
13106 @opindex mno-fix-r4400
13107 Work around certain R4400 CPU errata:
13108 @itemize @minus
13109 @item
13110 A double-word or a variable shift may give an incorrect result if executed
13111 immediately after starting an integer division.
13112 @end itemize

13114 @item -mfix-r10000
13115 @itemx -mno-fix-r10000
13116 @opindex mfix-r10000
13117 @opindex mno-fix-r10000
13118 Work around certain R10000 errata:
13119 @itemize @minus
13120 @item
13121 @code{ll}/@code{sc} sequences may not behave atomically on revisions
13122 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
13123 @end itemize

13125 This option can only be used if the target architecture supports
13126 branch-likely instructions. @option{-mfix-r10000} is the default when
13127 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
13128 otherwise.

13130 @item -mfix-vr4120
13131 @itemx -mno-fix-vr4120
13132 @opindex mfix-vr4120
13133 Work around certain VR4120 errata:
13134 @itemize @minus
13135 @item
13136 @code{dmultu} does not always produce the correct result.
13137 @item
13138 @code{div} and @code{ddiv} do not always produce the correct result if one
13139 of the operands is negative.
13140 @end itemize
13141 The workarounds for the division errata rely on special functions in
13142 @file{libgcc.a}. At present, these functions are only provided by
13143 the @code{mips64vr*-elf} configurations.

13145 Other VR4120 errata require a nop to be inserted between certain pairs of
13146 instructions. These errata are handled by the assembler, not by GCC itself.

13148 @item -mfix-vr4130
13149 @opindex mfix-vr4130
13150 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
13151 workarounds are implemented by the assembler rather than by GCC,
13152 although GCC will avoid using @code{mflo} and @code{mfhi} if the
13153 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
13154 instructions are available instead.

13156 @item -mfix-sb1
13157 @itemx -mno-fix-sb1
13158 @opindex mfix-sb1

new/gcc/doc/invoke.texi 158

13159 Work around certain SB-1 CPU core errata.
13160 (This flag currently works around the SB-1 revision 2
13161 ‘‘F1’’ and ‘‘F2’’ floating point errata.)

13163 @item -mr10k-cache-barrier=@var{setting}
13164 @opindex mr10k-cache-barrier
13165 Specify whether GCC should insert cache barriers to avoid the
13166 side-effects of speculation on R10K processors.

13168 In common with many processors, the R10K tries to predict the outcome
13169 of a conditional branch and speculatively executes instructions from
13170 the ‘‘taken’’ branch. It later aborts these instructions if the
13171 predicted outcome was wrong. However, on the R10K, even aborted
13172 instructions can have side effects.

13174 This problem only affects kernel stores and, depending on the system,
13175 kernel loads. As an example, a speculatively-executed store may load
13176 the target memory into cache and mark the cache line as dirty, even if
13177 the store itself is later aborted. If a DMA operation writes to the
13178 same area of memory before the ‘‘dirty’’ line is flushed, the cached
13179 data will overwrite the DMA-ed data. See the R10K processor manual
13180 for a full description, including other potential problems.

13182 One workaround is to insert cache barrier instructions before every memory
13183 access that might be speculatively executed and that might have side
13184 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
13185 controls GCC’s implementation of this workaround. It assumes that
13186 aborted accesses to any byte in the following regions will not have
13187 side effects:

13189 @enumerate
13190 @item
13191 the memory occupied by the current function’s stack frame;

13193 @item
13194 the memory occupied by an incoming stack argument;

13196 @item
13197 the memory occupied by an object with a link-time-constant address.
13198 @end enumerate

13200 It is the kernel’s responsibility to ensure that speculative
13201 accesses to these regions are indeed safe.

13203 If the input program contains a function declaration such as:

13205 @smallexample
13206 void foo (void);
13207 @end smallexample

13209 then the implementation of @code{foo} must allow @code{j foo} and
13210 @code{jal foo} to be executed speculatively. GCC honors this
13211 restriction for functions it compiles itself. It expects non-GCC
13212 functions (such as hand-written assembly code) to do the same.

13214 The option has three forms:

13216 @table @gcctabopt
13217 @item -mr10k-cache-barrier=load-store
13218 Insert a cache barrier before a load or store that might be
13219 speculatively executed and that might have side effects even
13220 if aborted.

13222 @item -mr10k-cache-barrier=store
13223 Insert a cache barrier before a store that might be speculatively
13224 executed and that might have side effects even if aborted.

new/gcc/doc/invoke.texi 159

13226 @item -mr10k-cache-barrier=none
13227 Disable the insertion of cache barriers. This is the default setting.
13228 @end table

13230 @item -mflush-func=@var{func}
13231 @itemx -mno-flush-func
13232 @opindex mflush-func
13233 Specifies the function to call to flush the I and D caches, or to not
13234 call any such function. If called, the function must take the same
13235 arguments as the common @code{_flush_func()}, that is, the address of the
13236 memory range for which the cache is being flushed, the size of the
13237 memory range, and the number 3 (to flush both caches). The default
13238 depends on the target GCC was configured for, but commonly is either
13239 @samp{_flush_func} or @samp{__cpu_flush}.

13241 @item mbranch-cost=@var{num}
13242 @opindex mbranch-cost
13243 Set the cost of branches to roughly @var{num} ‘‘simple’’ instructions.
13244 This cost is only a heuristic and is not guaranteed to produce
13245 consistent results across releases. A zero cost redundantly selects
13246 the default, which is based on the @option{-mtune} setting.

13248 @item -mbranch-likely
13249 @itemx -mno-branch-likely
13250 @opindex mbranch-likely
13251 @opindex mno-branch-likely
13252 Enable or disable use of Branch Likely instructions, regardless of the
13253 default for the selected architecture. By default, Branch Likely
13254 instructions may be generated if they are supported by the selected
13255 architecture. An exception is for the MIPS32 and MIPS64 architectures
13256 and processors which implement those architectures; for those, Branch
13257 Likely instructions will not be generated by default because the MIPS32
13258 and MIPS64 architectures specifically deprecate their use.

13260 @item -mfp-exceptions
13261 @itemx -mno-fp-exceptions
13262 @opindex mfp-exceptions
13263 Specifies whether FP exceptions are enabled. This affects how we schedule
13264 FP instructions for some processors. The default is that FP exceptions are
13265 enabled.

13267 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
13268 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
13269 FP pipe.

13271 @item -mvr4130-align
13272 @itemx -mno-vr4130-align
13273 @opindex mvr4130-align
13274 The VR4130 pipeline is two-way superscalar, but can only issue two
13275 instructions together if the first one is 8-byte aligned. When this
13276 option is enabled, GCC will align pairs of instructions that it
13277 thinks should execute in parallel.

13279 This option only has an effect when optimizing for the VR4130.
13280 It normally makes code faster, but at the expense of making it bigger.
13281 It is enabled by default at optimization level @option{-O3}.
13282 @end table

13284 @node MMIX Options
13285 @subsection MMIX Options
13286 @cindex MMIX Options

13288 These options are defined for the MMIX:

13290 @table @gcctabopt

new/gcc/doc/invoke.texi 160

13291 @item -mlibfuncs
13292 @itemx -mno-libfuncs
13293 @opindex mlibfuncs
13294 @opindex mno-libfuncs
13295 Specify that intrinsic library functions are being compiled, passing all
13296 values in registers, no matter the size.

13298 @item -mepsilon
13299 @itemx -mno-epsilon
13300 @opindex mepsilon
13301 @opindex mno-epsilon
13302 Generate floating-point comparison instructions that compare with respect
13303 to the @code{rE} epsilon register.

13305 @item -mabi=mmixware
13306 @itemx -mabi=gnu
13307 @opindex mabi-mmixware
13308 @opindex mabi=gnu
13309 Generate code that passes function parameters and return values that (in
13310 the called function) are seen as registers @code{$0} and up, as opposed to
13311 the GNU ABI which uses global registers @code{$231} and up.

13313 @item -mzero-extend
13314 @itemx -mno-zero-extend
13315 @opindex mzero-extend
13316 @opindex mno-zero-extend
13317 When reading data from memory in sizes shorter than 64 bits, use (do not
13318 use) zero-extending load instructions by default, rather than
13319 sign-extending ones.

13321 @item -mknuthdiv
13322 @itemx -mno-knuthdiv
13323 @opindex mknuthdiv
13324 @opindex mno-knuthdiv
13325 Make the result of a division yielding a remainder have the same sign as
13326 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
13327 remainder follows the sign of the dividend. Both methods are
13328 arithmetically valid, the latter being almost exclusively used.

13330 @item -mtoplevel-symbols
13331 @itemx -mno-toplevel-symbols
13332 @opindex mtoplevel-symbols
13333 @opindex mno-toplevel-symbols
13334 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
13335 code can be used with the @code{PREFIX} assembly directive.

13337 @item -melf
13338 @opindex melf
13339 Generate an executable in the ELF format, rather than the default
13340 @samp{mmo} format used by the @command{mmix} simulator.

13342 @item -mbranch-predict
13343 @itemx -mno-branch-predict
13344 @opindex mbranch-predict
13345 @opindex mno-branch-predict
13346 Use (do not use) the probable-branch instructions, when static branch
13347 prediction indicates a probable branch.

13349 @item -mbase-addresses
13350 @itemx -mno-base-addresses
13351 @opindex mbase-addresses
13352 @opindex mno-base-addresses
13353 Generate (do not generate) code that uses @emph{base addresses}. Using a
13354 base address automatically generates a request (handled by the assembler
13355 and the linker) for a constant to be set up in a global register. The
13356 register is used for one or more base address requests within the range 0

new/gcc/doc/invoke.texi 161

13357 to 255 from the value held in the register. The generally leads to short
13358 and fast code, but the number of different data items that can be
13359 addressed is limited. This means that a program that uses lots of static
13360 data may require @option{-mno-base-addresses}.

13362 @item -msingle-exit
13363 @itemx -mno-single-exit
13364 @opindex msingle-exit
13365 @opindex mno-single-exit
13366 Force (do not force) generated code to have a single exit point in each
13367 function.
13368 @end table

13370 @node MN10300 Options
13371 @subsection MN10300 Options
13372 @cindex MN10300 options

13374 These @option{-m} options are defined for Matsushita MN10300 architectures:

13376 @table @gcctabopt
13377 @item -mmult-bug
13378 @opindex mmult-bug
13379 Generate code to avoid bugs in the multiply instructions for the MN10300
13380 processors. This is the default.

13382 @item -mno-mult-bug
13383 @opindex mno-mult-bug
13384 Do not generate code to avoid bugs in the multiply instructions for the
13385 MN10300 processors.

13387 @item -mam33
13388 @opindex mam33
13389 Generate code which uses features specific to the AM33 processor.

13391 @item -mno-am33
13392 @opindex mno-am33
13393 Do not generate code which uses features specific to the AM33 processor. This
13394 is the default.

13396 @item -mreturn-pointer-on-d0
13397 @opindex mreturn-pointer-on-d0
13398 When generating a function which returns a pointer, return the pointer
13399 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
13400 only in a0, and attempts to call such functions without a prototype
13401 would result in errors. Note that this option is on by default; use
13402 @option{-mno-return-pointer-on-d0} to disable it.

13404 @item -mno-crt0
13405 @opindex mno-crt0
13406 Do not link in the C run-time initialization object file.

13408 @item -mrelax
13409 @opindex mrelax
13410 Indicate to the linker that it should perform a relaxation optimization pass
13411 to shorten branches, calls and absolute memory addresses. This option only
13412 has an effect when used on the command line for the final link step.

13414 This option makes symbolic debugging impossible.
13415 @end table

13417 @node PDP-11 Options
13418 @subsection PDP-11 Options
13419 @cindex PDP-11 Options

13421 These options are defined for the PDP-11:

new/gcc/doc/invoke.texi 162

13423 @table @gcctabopt
13424 @item -mfpu
13425 @opindex mfpu
13426 Use hardware FPP floating point. This is the default. (FIS floating
13427 point on the PDP-11/40 is not supported.)

13429 @item -msoft-float
13430 @opindex msoft-float
13431 Do not use hardware floating point.

13433 @item -mac0
13434 @opindex mac0
13435 Return floating-point results in ac0 (fr0 in Unix assembler syntax).

13437 @item -mno-ac0
13438 @opindex mno-ac0
13439 Return floating-point results in memory. This is the default.

13441 @item -m40
13442 @opindex m40
13443 Generate code for a PDP-11/40.

13445 @item -m45
13446 @opindex m45
13447 Generate code for a PDP-11/45. This is the default.

13449 @item -m10
13450 @opindex m10
13451 Generate code for a PDP-11/10.

13453 @item -mbcopy-builtin
13454 @opindex bcopy-builtin
13455 Use inline @code{movmemhi} patterns for copying memory. This is the
13456 default.

13458 @item -mbcopy
13459 @opindex mbcopy
13460 Do not use inline @code{movmemhi} patterns for copying memory.

13462 @item -mint16
13463 @itemx -mno-int32
13464 @opindex mint16
13465 @opindex mno-int32
13466 Use 16-bit @code{int}. This is the default.

13468 @item -mint32
13469 @itemx -mno-int16
13470 @opindex mint32
13471 @opindex mno-int16
13472 Use 32-bit @code{int}.

13474 @item -mfloat64
13475 @itemx -mno-float32
13476 @opindex mfloat64
13477 @opindex mno-float32
13478 Use 64-bit @code{float}. This is the default.

13480 @item -mfloat32
13481 @itemx -mno-float64
13482 @opindex mfloat32
13483 @opindex mno-float64
13484 Use 32-bit @code{float}.

13486 @item -mabshi
13487 @opindex mabshi
13488 Use @code{abshi2} pattern. This is the default.

new/gcc/doc/invoke.texi 163

13490 @item -mno-abshi
13491 @opindex mno-abshi
13492 Do not use @code{abshi2} pattern.

13494 @item -mbranch-expensive
13495 @opindex mbranch-expensive
13496 Pretend that branches are expensive. This is for experimenting with
13497 code generation only.

13499 @item -mbranch-cheap
13500 @opindex mbranch-cheap
13501 Do not pretend that branches are expensive. This is the default.

13503 @item -msplit
13504 @opindex msplit
13505 Generate code for a system with split I&D@.

13507 @item -mno-split
13508 @opindex mno-split
13509 Generate code for a system without split I&D@. This is the default.

13511 @item -munix-asm
13512 @opindex munix-asm
13513 Use Unix assembler syntax. This is the default when configured for
13514 @samp{pdp11-*-bsd}.

13516 @item -mdec-asm
13517 @opindex mdec-asm
13518 Use DEC assembler syntax. This is the default when configured for any
13519 PDP-11 target other than @samp{pdp11-*-bsd}.
13520 @end table

13522 @node picoChip Options
13523 @subsection picoChip Options
13524 @cindex picoChip options

13526 These @samp{-m} options are defined for picoChip implementations:

13528 @table @gcctabopt

13530 @item -mae=@var{ae_type}
13531 @opindex mcpu
13532 Set the instruction set, register set, and instruction scheduling
13533 parameters for array element type @var{ae_type}. Supported values
13534 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.

13536 @option{-mae=ANY} selects a completely generic AE type. Code
13537 generated with this option will run on any of the other AE types. The
13538 code will not be as efficient as it would be if compiled for a specific
13539 AE type, and some types of operation (e.g., multiplication) will not
13540 work properly on all types of AE.

13542 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
13543 for compiled code, and is the default.

13545 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
13546 option may suffer from poor performance of byte (char) manipulation,
13547 since the DSP AE does not provide hardware support for byte load/stores.

13549 @item -msymbol-as-address
13550 Enable the compiler to directly use a symbol name as an address in a
13551 load/store instruction, without first loading it into a
13552 register. Typically, the use of this option will generate larger
13553 programs, which run faster than when the option isn’t used. However, the
13554 results vary from program to program, so it is left as a user option,

new/gcc/doc/invoke.texi 164

13555 rather than being permanently enabled.

13557 @item -mno-inefficient-warnings
13558 Disables warnings about the generation of inefficient code. These
13559 warnings can be generated, for example, when compiling code which
13560 performs byte-level memory operations on the MAC AE type. The MAC AE has
13561 no hardware support for byte-level memory operations, so all byte
13562 load/stores must be synthesized from word load/store operations. This is
13563 inefficient and a warning will be generated indicating to the programmer
13564 that they should rewrite the code to avoid byte operations, or to target
13565 an AE type which has the necessary hardware support. This option enables
13566 the warning to be turned off.

13568 @end table

13570 @node PowerPC Options
13571 @subsection PowerPC Options
13572 @cindex PowerPC options

13574 These are listed under @xref{RS/6000 and PowerPC Options}.

13576 @node RS/6000 and PowerPC Options
13577 @subsection IBM RS/6000 and PowerPC Options
13578 @cindex RS/6000 and PowerPC Options
13579 @cindex IBM RS/6000 and PowerPC Options

13581 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
13582 @table @gcctabopt
13583 @item -mpower
13584 @itemx -mno-power
13585 @itemx -mpower2
13586 @itemx -mno-power2
13587 @itemx -mpowerpc
13588 @itemx -mno-powerpc
13589 @itemx -mpowerpc-gpopt
13590 @itemx -mno-powerpc-gpopt
13591 @itemx -mpowerpc-gfxopt
13592 @itemx -mno-powerpc-gfxopt
13593 @itemx -mpowerpc64
13594 @itemx -mno-powerpc64
13595 @itemx -mmfcrf
13596 @itemx -mno-mfcrf
13597 @itemx -mpopcntb
13598 @itemx -mno-popcntb
13599 @itemx -mfprnd
13600 @itemx -mno-fprnd
13601 @itemx -mcmpb
13602 @itemx -mno-cmpb
13603 @itemx -mmfpgpr
13604 @itemx -mno-mfpgpr
13605 @itemx -mhard-dfp
13606 @itemx -mno-hard-dfp
13607 @opindex mpower
13608 @opindex mno-power
13609 @opindex mpower2
13610 @opindex mno-power2
13611 @opindex mpowerpc
13612 @opindex mno-powerpc
13613 @opindex mpowerpc-gpopt
13614 @opindex mno-powerpc-gpopt
13615 @opindex mpowerpc-gfxopt
13616 @opindex mno-powerpc-gfxopt
13617 @opindex mpowerpc64
13618 @opindex mno-powerpc64
13619 @opindex mmfcrf
13620 @opindex mno-mfcrf

new/gcc/doc/invoke.texi 165

13621 @opindex mpopcntb
13622 @opindex mno-popcntb
13623 @opindex mfprnd
13624 @opindex mno-fprnd
13625 @opindex mcmpb
13626 @opindex mno-cmpb
13627 @opindex mmfpgpr
13628 @opindex mno-mfpgpr
13629 @opindex mhard-dfp
13630 @opindex mno-hard-dfp
13631 GCC supports two related instruction set architectures for the
13632 RS/6000 and PowerPC@. The @dfn{POWER} instruction set are those
13633 instructions supported by the @samp{rios} chip set used in the original
13634 RS/6000 systems and the @dfn{PowerPC} instruction set is the
13635 architecture of the Freescale MPC5xx, MPC6xx, MPC8xx microprocessors, and
13636 the IBM 4xx, 6xx, and follow-on microprocessors.

13638 Neither architecture is a subset of the other. However there is a
13639 large common subset of instructions supported by both. An MQ
13640 register is included in processors supporting the POWER architecture.

13642 You use these options to specify which instructions are available on the
13643 processor you are using. The default value of these options is
13644 determined when configuring GCC@. Specifying the
13645 @option{-mcpu=@var{cpu_type}} overrides the specification of these
13646 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
13647 rather than the options listed above.

13649 The @option{-mpower} option allows GCC to generate instructions that
13650 are found only in the POWER architecture and to use the MQ register.
13651 Specifying @option{-mpower2} implies @option{-power} and also allows GCC
13652 to generate instructions that are present in the POWER2 architecture but
13653 not the original POWER architecture.

13655 The @option{-mpowerpc} option allows GCC to generate instructions that
13656 are found only in the 32-bit subset of the PowerPC architecture.
13657 Specifying @option{-mpowerpc-gpopt} implies @option{-mpowerpc} and also allows
13658 GCC to use the optional PowerPC architecture instructions in the
13659 General Purpose group, including floating-point square root. Specifying
13660 @option{-mpowerpc-gfxopt} implies @option{-mpowerpc} and also allows GCC to
13661 use the optional PowerPC architecture instructions in the Graphics
13662 group, including floating-point select.

13664 The @option{-mmfcrf} option allows GCC to generate the move from
13665 condition register field instruction implemented on the POWER4
13666 processor and other processors that support the PowerPC V2.01
13667 architecture.
13668 The @option{-mpopcntb} option allows GCC to generate the popcount and
13669 double precision FP reciprocal estimate instruction implemented on the
13670 POWER5 processor and other processors that support the PowerPC V2.02
13671 architecture.
13672 The @option{-mfprnd} option allows GCC to generate the FP round to
13673 integer instructions implemented on the POWER5+ processor and other
13674 processors that support the PowerPC V2.03 architecture.
13675 The @option{-mcmpb} option allows GCC to generate the compare bytes
13676 instruction implemented on the POWER6 processor and other processors
13677 that support the PowerPC V2.05 architecture.
13678 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
13679 general purpose register instructions implemented on the POWER6X
13680 processor and other processors that support the extended PowerPC V2.05
13681 architecture.
13682 The @option{-mhard-dfp} option allows GCC to generate the decimal floating
13683 point instructions implemented on some POWER processors.

13685 The @option{-mpowerpc64} option allows GCC to generate the additional
13686 64-bit instructions that are found in the full PowerPC64 architecture

new/gcc/doc/invoke.texi 166

13687 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
13688 @option{-mno-powerpc64}.

13690 If you specify both @option{-mno-power} and @option{-mno-powerpc}, GCC
13691 will use only the instructions in the common subset of both
13692 architectures plus some special AIX common-mode calls, and will not use
13693 the MQ register. Specifying both @option{-mpower} and @option{-mpowerpc}
13694 permits GCC to use any instruction from either architecture and to
13695 allow use of the MQ register; specify this for the Motorola MPC601.

13697 @item -mnew-mnemonics
13698 @itemx -mold-mnemonics
13699 @opindex mnew-mnemonics
13700 @opindex mold-mnemonics
13701 Select which mnemonics to use in the generated assembler code. With
13702 @option{-mnew-mnemonics}, GCC uses the assembler mnemonics defined for
13703 the PowerPC architecture. With @option{-mold-mnemonics} it uses the
13704 assembler mnemonics defined for the POWER architecture. Instructions
13705 defined in only one architecture have only one mnemonic; GCC uses that
13706 mnemonic irrespective of which of these options is specified.

13708 GCC defaults to the mnemonics appropriate for the architecture in
13709 use. Specifying @option{-mcpu=@var{cpu_type}} sometimes overrides the
13710 value of these option. Unless you are building a cross-compiler, you
13711 should normally not specify either @option{-mnew-mnemonics} or
13712 @option{-mold-mnemonics}, but should instead accept the default.

13714 @item -mcpu=@var{cpu_type}
13715 @opindex mcpu
13716 Set architecture type, register usage, choice of mnemonics, and
13717 instruction scheduling parameters for machine type @var{cpu_type}.
13718 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
13719 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
13720 @samp{505}, @samp{601}, @samp{602}, @samp{603}, @samp{603e}, @samp{604},
13721 @samp{604e}, @samp{620}, @samp{630}, @samp{740}, @samp{7400},
13722 @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
13723 @samp{860}, @samp{970}, @samp{8540}, @samp{e300c2}, @samp{e300c3},
13724 @samp{e500mc}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
13725 @samp{power}, @samp{power2}, @samp{power3}, @samp{power4},
13726 @samp{power5}, @samp{power5+}, @samp{power6}, @samp{power6x}, @samp{power7}
13727 @samp{common}, @samp{powerpc}, @samp{powerpc64}, @samp{rios},
13728 @samp{rios1}, @samp{rios2}, @samp{rsc}, and @samp{rs64}.

13730 @option{-mcpu=common} selects a completely generic processor. Code
13731 generated under this option will run on any POWER or PowerPC processor.
13732 GCC will use only the instructions in the common subset of both
13733 architectures, and will not use the MQ register. GCC assumes a generic
13734 processor model for scheduling purposes.

13736 @option{-mcpu=power}, @option{-mcpu=power2}, @option{-mcpu=powerpc}, and
13737 @option{-mcpu=powerpc64} specify generic POWER, POWER2, pure 32-bit
13738 PowerPC (i.e., not MPC601), and 64-bit PowerPC architecture machine
13739 types, with an appropriate, generic processor model assumed for
13740 scheduling purposes.

13742 The other options specify a specific processor. Code generated under
13743 those options will run best on that processor, and may not run at all on
13744 others.

13746 The @option{-mcpu} options automatically enable or disable the
13747 following options:

13749 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
13750 -mnew-mnemonics -mpopcntb -mpower -mpower2 -mpowerpc64 @gol
13751 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
13752 -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr}

new/gcc/doc/invoke.texi 167

13754 The particular options set for any particular CPU will vary between
13755 compiler versions, depending on what setting seems to produce optimal
13756 code for that CPU; it doesn’t necessarily reflect the actual hardware’s
13757 capabilities. If you wish to set an individual option to a particular
13758 value, you may specify it after the @option{-mcpu} option, like
13759 @samp{-mcpu=970 -mno-altivec}.

13761 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
13762 not enabled or disabled by the @option{-mcpu} option at present because
13763 AIX does not have full support for these options. You may still
13764 enable or disable them individually if you’re sure it’ll work in your
13765 environment.

13767 @item -mtune=@var{cpu_type}
13768 @opindex mtune
13769 Set the instruction scheduling parameters for machine type
13770 @var{cpu_type}, but do not set the architecture type, register usage, or
13771 choice of mnemonics, as @option{-mcpu=@var{cpu_type}} would. The same
13772 values for @var{cpu_type} are used for @option{-mtune} as for
13773 @option{-mcpu}. If both are specified, the code generated will use the
13774 architecture, registers, and mnemonics set by @option{-mcpu}, but the
13775 scheduling parameters set by @option{-mtune}.

13777 @item -mswdiv
13778 @itemx -mno-swdiv
13779 @opindex mswdiv
13780 @opindex mno-swdiv
13781 Generate code to compute division as reciprocal estimate and iterative
13782 refinement, creating opportunities for increased throughput. This
13783 feature requires: optional PowerPC Graphics instruction set for single
13784 precision and FRE instruction for double precision, assuming divides
13785 cannot generate user-visible traps, and the domain values not include
13786 Infinities, denormals or zero denominator.

13788 @item -maltivec
13789 @itemx -mno-altivec
13790 @opindex maltivec
13791 @opindex mno-altivec
13792 Generate code that uses (does not use) AltiVec instructions, and also
13793 enable the use of built-in functions that allow more direct access to
13794 the AltiVec instruction set. You may also need to set
13795 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
13796 enhancements.

13798 @item -mvrsave
13799 @itemx -mno-vrsave
13800 @opindex mvrsave
13801 @opindex mno-vrsave
13802 Generate VRSAVE instructions when generating AltiVec code.

13804 @item -mgen-cell-microcode
13805 @opindex mgen-cell-microcode
13806 Generate Cell microcode instructions

13808 @item -mwarn-cell-microcode
13809 @opindex mwarn-cell-microcode
13810 Warning when a Cell microcode instruction is going to emitted. An example
13811 of a Cell microcode instruction is a variable shift.

13813 @item -msecure-plt
13814 @opindex msecure-plt
13815 Generate code that allows ld and ld.so to build executables and shared
13816 libraries with non-exec .plt and .got sections. This is a PowerPC
13817 32-bit SYSV ABI option.

new/gcc/doc/invoke.texi 168

13819 @item -mbss-plt
13820 @opindex mbss-plt
13821 Generate code that uses a BSS .plt section that ld.so fills in, and
13822 requires .plt and .got sections that are both writable and executable.
13823 This is a PowerPC 32-bit SYSV ABI option.

13825 @item -misel
13826 @itemx -mno-isel
13827 @opindex misel
13828 @opindex mno-isel
13829 This switch enables or disables the generation of ISEL instructions.

13831 @item -misel=@var{yes/no}
13832 This switch has been deprecated. Use @option{-misel} and
13833 @option{-mno-isel} instead.

13835 @item -mspe
13836 @itemx -mno-spe
13837 @opindex mspe
13838 @opindex mno-spe
13839 This switch enables or disables the generation of SPE simd
13840 instructions.

13842 @item -mpaired
13843 @itemx -mno-paired
13844 @opindex mpaired
13845 @opindex mno-paired
13846 This switch enables or disables the generation of PAIRED simd
13847 instructions.

13849 @item -mspe=@var{yes/no}
13850 This option has been deprecated. Use @option{-mspe} and
13851 @option{-mno-spe} instead.

13853 @item -mfloat-gprs=@var{yes/single/double/no}
13854 @itemx -mfloat-gprs
13855 @opindex mfloat-gprs
13856 This switch enables or disables the generation of floating point
13857 operations on the general purpose registers for architectures that
13858 support it.

13860 The argument @var{yes} or @var{single} enables the use of
13861 single-precision floating point operations.

13863 The argument @var{double} enables the use of single and
13864 double-precision floating point operations.

13866 The argument @var{no} disables floating point operations on the
13867 general purpose registers.

13869 This option is currently only available on the MPC854x.

13871 @item -m32
13872 @itemx -m64
13873 @opindex m32
13874 @opindex m64
13875 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
13876 targets (including GNU/Linux). The 32-bit environment sets int, long
13877 and pointer to 32 bits and generates code that runs on any PowerPC
13878 variant. The 64-bit environment sets int to 32 bits and long and
13879 pointer to 64 bits, and generates code for PowerPC64, as for
13880 @option{-mpowerpc64}.

13882 @item -mfull-toc
13883 @itemx -mno-fp-in-toc
13884 @itemx -mno-sum-in-toc

new/gcc/doc/invoke.texi 169

13885 @itemx -mminimal-toc
13886 @opindex mfull-toc
13887 @opindex mno-fp-in-toc
13888 @opindex mno-sum-in-toc
13889 @opindex mminimal-toc
13890 Modify generation of the TOC (Table Of Contents), which is created for
13891 every executable file. The @option{-mfull-toc} option is selected by
13892 default. In that case, GCC will allocate at least one TOC entry for
13893 each unique non-automatic variable reference in your program. GCC
13894 will also place floating-point constants in the TOC@. However, only
13895 16,384 entries are available in the TOC@.

13897 If you receive a linker error message that saying you have overflowed
13898 the available TOC space, you can reduce the amount of TOC space used
13899 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
13900 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
13901 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
13902 generate code to calculate the sum of an address and a constant at
13903 run-time instead of putting that sum into the TOC@. You may specify one
13904 or both of these options. Each causes GCC to produce very slightly
13905 slower and larger code at the expense of conserving TOC space.

13907 If you still run out of space in the TOC even when you specify both of
13908 these options, specify @option{-mminimal-toc} instead. This option causes
13909 GCC to make only one TOC entry for every file. When you specify this
13910 option, GCC will produce code that is slower and larger but which
13911 uses extremely little TOC space. You may wish to use this option
13912 only on files that contain less frequently executed code.

13914 @item -maix64
13915 @itemx -maix32
13916 @opindex maix64
13917 @opindex maix32
13918 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
13919 @code{long} type, and the infrastructure needed to support them.
13920 Specifying @option{-maix64} implies @option{-mpowerpc64} and
13921 @option{-mpowerpc}, while @option{-maix32} disables the 64-bit ABI and
13922 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.

13924 @item -mxl-compat
13925 @itemx -mno-xl-compat
13926 @opindex mxl-compat
13927 @opindex mno-xl-compat
13928 Produce code that conforms more closely to IBM XL compiler semantics
13929 when using AIX-compatible ABI@. Pass floating-point arguments to
13930 prototyped functions beyond the register save area (RSA) on the stack
13931 in addition to argument FPRs. Do not assume that most significant
13932 double in 128-bit long double value is properly rounded when comparing
13933 values and converting to double. Use XL symbol names for long double
13934 support routines.

13936 The AIX calling convention was extended but not initially documented to
13937 handle an obscure K&R C case of calling a function that takes the
13938 address of its arguments with fewer arguments than declared. IBM XL
13939 compilers access floating point arguments which do not fit in the
13940 RSA from the stack when a subroutine is compiled without
13941 optimization. Because always storing floating-point arguments on the
13942 stack is inefficient and rarely needed, this option is not enabled by
13943 default and only is necessary when calling subroutines compiled by IBM
13944 XL compilers without optimization.

13946 @item -mpe
13947 @opindex mpe
13948 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
13949 application written to use message passing with special startup code to
13950 enable the application to run. The system must have PE installed in the

new/gcc/doc/invoke.texi 170

13951 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
13952 must be overridden with the @option{-specs=} option to specify the
13953 appropriate directory location. The Parallel Environment does not
13954 support threads, so the @option{-mpe} option and the @option{-pthread}
13955 option are incompatible.

13957 @item -malign-natural
13958 @itemx -malign-power
13959 @opindex malign-natural
13960 @opindex malign-power
13961 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
13962 @option{-malign-natural} overrides the ABI-defined alignment of larger
13963 types, such as floating-point doubles, on their natural size-based boundary.
13964 The option @option{-malign-power} instructs GCC to follow the ABI-specified
13965 alignment rules. GCC defaults to the standard alignment defined in the ABI@.

13967 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
13968 is not supported.

13970 @item -msoft-float
13971 @itemx -mhard-float
13972 @opindex msoft-float
13973 @opindex mhard-float
13974 Generate code that does not use (uses) the floating-point register set.
13975 Software floating point emulation is provided if you use the
13976 @option{-msoft-float} option, and pass the option to GCC when linking.

13978 @item -msingle-float
13979 @itemx -mdouble-float
13980 @opindex msingle-float
13981 @opindex mdouble-float
13982 Generate code for single or double-precision floating point operations.
13983 @option{-mdouble-float} implies @option{-msingle-float}.

13985 @item -msimple-fpu
13986 @opindex msimple-fpu
13987 Do not generate sqrt and div instructions for hardware floating point unit.

13989 @item -mfpu
13990 @opindex mfpu
13991 Specify type of floating point unit. Valid values are @var{sp_lite}
13992 (equivalent to -msingle-float -msimple-fpu), @var{dp_lite} (equivalent
13993 to -mdouble-float -msimple-fpu), @var{sp_full} (equivalent to -msingle-float),
13994 and @var{dp_full} (equivalent to -mdouble-float).

13996 @item -mxilinx-fpu
13997 @opindex mxilinx-fpu
13998 Perform optimizations for floating point unit on Xilinx PPC 405/440.

14000 @item -mmultiple
14001 @itemx -mno-multiple
14002 @opindex mmultiple
14003 @opindex mno-multiple
14004 Generate code that uses (does not use) the load multiple word
14005 instructions and the store multiple word instructions. These
14006 instructions are generated by default on POWER systems, and not
14007 generated on PowerPC systems. Do not use @option{-mmultiple} on little
14008 endian PowerPC systems, since those instructions do not work when the
14009 processor is in little endian mode. The exceptions are PPC740 and
14010 PPC750 which permit the instructions usage in little endian mode.

14012 @item -mstring
14013 @itemx -mno-string
14014 @opindex mstring
14015 @opindex mno-string
14016 Generate code that uses (does not use) the load string instructions

new/gcc/doc/invoke.texi 171

14017 and the store string word instructions to save multiple registers and
14018 do small block moves. These instructions are generated by default on
14019 POWER systems, and not generated on PowerPC systems. Do not use
14020 @option{-mstring} on little endian PowerPC systems, since those
14021 instructions do not work when the processor is in little endian mode.
14022 The exceptions are PPC740 and PPC750 which permit the instructions
14023 usage in little endian mode.

14025 @item -mupdate
14026 @itemx -mno-update
14027 @opindex mupdate
14028 @opindex mno-update
14029 Generate code that uses (does not use) the load or store instructions
14030 that update the base register to the address of the calculated memory
14031 location. These instructions are generated by default. If you use
14032 @option{-mno-update}, there is a small window between the time that the
14033 stack pointer is updated and the address of the previous frame is
14034 stored, which means code that walks the stack frame across interrupts or
14035 signals may get corrupted data.

14037 @item -mavoid-indexed-addresses
14038 @item -mno-avoid-indexed-addresses
14039 @opindex mavoid-indexed-addresses
14040 @opindex mno-avoid-indexed-addresses
14041 Generate code that tries to avoid (not avoid) the use of indexed load
14042 or store instructions. These instructions can incur a performance
14043 penalty on Power6 processors in certain situations, such as when
14044 stepping through large arrays that cross a 16M boundary. This option
14045 is enabled by default when targetting Power6 and disabled otherwise.

14047 @item -mfused-madd
14048 @itemx -mno-fused-madd
14049 @opindex mfused-madd
14050 @opindex mno-fused-madd
14051 Generate code that uses (does not use) the floating point multiply and
14052 accumulate instructions. These instructions are generated by default if
14053 hardware floating is used.

14055 @item -mmulhw
14056 @itemx -mno-mulhw
14057 @opindex mmulhw
14058 @opindex mno-mulhw
14059 Generate code that uses (does not use) the half-word multiply and
14060 multiply-accumulate instructions on the IBM 405, 440 and 464 processors.
14061 These instructions are generated by default when targetting those
14062 processors.

14064 @item -mdlmzb
14065 @itemx -mno-dlmzb
14066 @opindex mdlmzb
14067 @opindex mno-dlmzb
14068 Generate code that uses (does not use) the string-search @samp{dlmzb}
14069 instruction on the IBM 405, 440 and 464 processors. This instruction is
14070 generated by default when targetting those processors.

14072 @item -mno-bit-align
14073 @itemx -mbit-align
14074 @opindex mno-bit-align
14075 @opindex mbit-align
14076 On System V.4 and embedded PowerPC systems do not (do) force structures
14077 and unions that contain bit-fields to be aligned to the base type of the
14078 bit-field.

14080 For example, by default a structure containing nothing but 8
14081 @code{unsigned} bit-fields of length 1 would be aligned to a 4 byte
14082 boundary and have a size of 4 bytes. By using @option{-mno-bit-align},

new/gcc/doc/invoke.texi 172

14083 the structure would be aligned to a 1 byte boundary and be one byte in
14084 size.

14086 @item -mno-strict-align
14087 @itemx -mstrict-align
14088 @opindex mno-strict-align
14089 @opindex mstrict-align
14090 On System V.4 and embedded PowerPC systems do not (do) assume that
14091 unaligned memory references will be handled by the system.

14093 @item -mrelocatable
14094 @itemx -mno-relocatable
14095 @opindex mrelocatable
14096 @opindex mno-relocatable
14097 On embedded PowerPC systems generate code that allows (does not allow)
14098 the program to be relocated to a different address at runtime. If you
14099 use @option{-mrelocatable} on any module, all objects linked together must
14100 be compiled with @option{-mrelocatable} or @option{-mrelocatable-lib}.

14102 @item -mrelocatable-lib
14103 @itemx -mno-relocatable-lib
14104 @opindex mrelocatable-lib
14105 @opindex mno-relocatable-lib
14106 On embedded PowerPC systems generate code that allows (does not allow)
14107 the program to be relocated to a different address at runtime. Modules
14108 compiled with @option{-mrelocatable-lib} can be linked with either modules
14109 compiled without @option{-mrelocatable} and @option{-mrelocatable-lib} or
14110 with modules compiled with the @option{-mrelocatable} options.

14112 @item -mno-toc
14113 @itemx -mtoc
14114 @opindex mno-toc
14115 @opindex mtoc
14116 On System V.4 and embedded PowerPC systems do not (do) assume that
14117 register 2 contains a pointer to a global area pointing to the addresses
14118 used in the program.

14120 @item -mlittle
14121 @itemx -mlittle-endian
14122 @opindex mlittle
14123 @opindex mlittle-endian
14124 On System V.4 and embedded PowerPC systems compile code for the
14125 processor in little endian mode. The @option{-mlittle-endian} option is
14126 the same as @option{-mlittle}.

14128 @item -mbig
14129 @itemx -mbig-endian
14130 @opindex mbig
14131 @opindex mbig-endian
14132 On System V.4 and embedded PowerPC systems compile code for the
14133 processor in big endian mode. The @option{-mbig-endian} option is
14134 the same as @option{-mbig}.

14136 @item -mdynamic-no-pic
14137 @opindex mdynamic-no-pic
14138 On Darwin and Mac OS X systems, compile code so that it is not
14139 relocatable, but that its external references are relocatable. The
14140 resulting code is suitable for applications, but not shared
14141 libraries.

14143 @item -mprioritize-restricted-insns=@var{priority}
14144 @opindex mprioritize-restricted-insns
14145 This option controls the priority that is assigned to
14146 dispatch-slot restricted instructions during the second scheduling
14147 pass. The argument @var{priority} takes the value @var{0/1/2} to assign
14148 @var{no/highest/second-highest} priority to dispatch slot restricted

new/gcc/doc/invoke.texi 173

14149 instructions.

14151 @item -msched-costly-dep=@var{dependence_type}
14152 @opindex msched-costly-dep
14153 This option controls which dependences are considered costly
14154 by the target during instruction scheduling. The argument
14155 @var{dependence_type} takes one of the following values:
14156 @var{no}: no dependence is costly,
14157 @var{all}: all dependences are costly,
14158 @var{true_store_to_load}: a true dependence from store to load is costly,
14159 @var{store_to_load}: any dependence from store to load is costly,
14160 @var{number}: any dependence which latency >= @var{number} is costly.

14162 @item -minsert-sched-nops=@var{scheme}
14163 @opindex minsert-sched-nops
14164 This option controls which nop insertion scheme will be used during
14165 the second scheduling pass. The argument @var{scheme} takes one of the
14166 following values:
14167 @var{no}: Don’t insert nops.
14168 @var{pad}: Pad with nops any dispatch group which has vacant issue slots,
14169 according to the scheduler’s grouping.
14170 @var{regroup_exact}: Insert nops to force costly dependent insns into
14171 separate groups. Insert exactly as many nops as needed to force an insn
14172 to a new group, according to the estimated processor grouping.
14173 @var{number}: Insert nops to force costly dependent insns into
14174 separate groups. Insert @var{number} nops to force an insn to a new group.

14176 @item -mcall-sysv
14177 @opindex mcall-sysv
14178 On System V.4 and embedded PowerPC systems compile code using calling
14179 conventions that adheres to the March 1995 draft of the System V
14180 Application Binary Interface, PowerPC processor supplement. This is the
14181 default unless you configured GCC using @samp{powerpc-*-eabiaix}.

14183 @item -mcall-sysv-eabi
14184 @opindex mcall-sysv-eabi
14185 Specify both @option{-mcall-sysv} and @option{-meabi} options.

14187 @item -mcall-sysv-noeabi
14188 @opindex mcall-sysv-noeabi
14189 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.

14191 @item -mcall-solaris
14192 @opindex mcall-solaris
14193 On System V.4 and embedded PowerPC systems compile code for the Solaris
14194 operating system.

14196 @item -mcall-linux
14197 @opindex mcall-linux
14198 On System V.4 and embedded PowerPC systems compile code for the
14199 Linux-based GNU system.

14201 @item -mcall-gnu
14202 @opindex mcall-gnu
14203 On System V.4 and embedded PowerPC systems compile code for the
14204 Hurd-based GNU system.

14206 @item -mcall-netbsd
14207 @opindex mcall-netbsd
14208 On System V.4 and embedded PowerPC systems compile code for the
14209 NetBSD operating system.

14211 @item -maix-struct-return
14212 @opindex maix-struct-return
14213 Return all structures in memory (as specified by the AIX ABI)@.

new/gcc/doc/invoke.texi 174

14215 @item -msvr4-struct-return
14216 @opindex msvr4-struct-return
14217 Return structures smaller than 8 bytes in registers (as specified by the
14218 SVR4 ABI)@.

14220 @item -mabi=@var{abi-type}
14221 @opindex mabi
14222 Extend the current ABI with a particular extension, or remove such extension.
14223 Valid values are @var{altivec}, @var{no-altivec}, @var{spe},
14224 @var{no-spe}, @var{ibmlongdouble}, @var{ieeelongdouble}@.

14226 @item -mabi=spe
14227 @opindex mabi=spe
14228 Extend the current ABI with SPE ABI extensions. This does not change
14229 the default ABI, instead it adds the SPE ABI extensions to the current
14230 ABI@.

14232 @item -mabi=no-spe
14233 @opindex mabi=no-spe
14234 Disable Booke SPE ABI extensions for the current ABI@.

14236 @item -mabi=ibmlongdouble
14237 @opindex mabi=ibmlongdouble
14238 Change the current ABI to use IBM extended precision long double.
14239 This is a PowerPC 32-bit SYSV ABI option.

14241 @item -mabi=ieeelongdouble
14242 @opindex mabi=ieeelongdouble
14243 Change the current ABI to use IEEE extended precision long double.
14244 This is a PowerPC 32-bit Linux ABI option.

14246 @item -mprototype
14247 @itemx -mno-prototype
14248 @opindex mprototype
14249 @opindex mno-prototype
14250 On System V.4 and embedded PowerPC systems assume that all calls to
14251 variable argument functions are properly prototyped. Otherwise, the
14252 compiler must insert an instruction before every non prototyped call to
14253 set or clear bit 6 of the condition code register (@var{CR}) to
14254 indicate whether floating point values were passed in the floating point
14255 registers in case the function takes a variable arguments. With
14256 @option{-mprototype}, only calls to prototyped variable argument functions
14257 will set or clear the bit.

14259 @item -msim
14260 @opindex msim
14261 On embedded PowerPC systems, assume that the startup module is called
14262 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
14263 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
14264 configurations.

14266 @item -mmvme
14267 @opindex mmvme
14268 On embedded PowerPC systems, assume that the startup module is called
14269 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
14270 @file{libc.a}.

14272 @item -mads
14273 @opindex mads
14274 On embedded PowerPC systems, assume that the startup module is called
14275 @file{crt0.o} and the standard C libraries are @file{libads.a} and
14276 @file{libc.a}.

14278 @item -myellowknife
14279 @opindex myellowknife
14280 On embedded PowerPC systems, assume that the startup module is called

new/gcc/doc/invoke.texi 175

14281 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
14282 @file{libc.a}.

14284 @item -mvxworks
14285 @opindex mvxworks
14286 On System V.4 and embedded PowerPC systems, specify that you are
14287 compiling for a VxWorks system.

14289 @item -memb
14290 @opindex memb
14291 On embedded PowerPC systems, set the @var{PPC_EMB} bit in the ELF flags
14292 header to indicate that @samp{eabi} extended relocations are used.

14294 @item -meabi
14295 @itemx -mno-eabi
14296 @opindex meabi
14297 @opindex mno-eabi
14298 On System V.4 and embedded PowerPC systems do (do not) adhere to the
14299 Embedded Applications Binary Interface (eabi) which is a set of
14300 modifications to the System V.4 specifications. Selecting @option{-meabi}
14301 means that the stack is aligned to an 8 byte boundary, a function
14302 @code{__eabi} is called to from @code{main} to set up the eabi
14303 environment, and the @option{-msdata} option can use both @code{r2} and
14304 @code{r13} to point to two separate small data areas. Selecting
14305 @option{-mno-eabi} means that the stack is aligned to a 16 byte boundary,
14306 do not call an initialization function from @code{main}, and the
14307 @option{-msdata} option will only use @code{r13} to point to a single
14308 small data area. The @option{-meabi} option is on by default if you
14309 configured GCC using one of the @samp{powerpc*-*-eabi*} options.

14311 @item -msdata=eabi
14312 @opindex msdata=eabi
14313 On System V.4 and embedded PowerPC systems, put small initialized
14314 @code{const} global and static data in the @samp{.sdata2} section, which
14315 is pointed to by register @code{r2}. Put small initialized
14316 non-@code{const} global and static data in the @samp{.sdata} section,
14317 which is pointed to by register @code{r13}. Put small uninitialized
14318 global and static data in the @samp{.sbss} section, which is adjacent to
14319 the @samp{.sdata} section. The @option{-msdata=eabi} option is
14320 incompatible with the @option{-mrelocatable} option. The
14321 @option{-msdata=eabi} option also sets the @option{-memb} option.

14323 @item -msdata=sysv
14324 @opindex msdata=sysv
14325 On System V.4 and embedded PowerPC systems, put small global and static
14326 data in the @samp{.sdata} section, which is pointed to by register
14327 @code{r13}. Put small uninitialized global and static data in the
14328 @samp{.sbss} section, which is adjacent to the @samp{.sdata} section.
14329 The @option{-msdata=sysv} option is incompatible with the
14330 @option{-mrelocatable} option.

14332 @item -msdata=default
14333 @itemx -msdata
14334 @opindex msdata=default
14335 @opindex msdata
14336 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
14337 compile code the same as @option{-msdata=eabi}, otherwise compile code the
14338 same as @option{-msdata=sysv}.

14340 @item -msdata=data
14341 @opindex msdata=data
14342 On System V.4 and embedded PowerPC systems, put small global
14343 data in the @samp{.sdata} section. Put small uninitialized global
14344 data in the @samp{.sbss} section. Do not use register @code{r13}
14345 to address small data however. This is the default behavior unless
14346 other @option{-msdata} options are used.

new/gcc/doc/invoke.texi 176

14348 @item -msdata=none
14349 @itemx -mno-sdata
14350 @opindex msdata=none
14351 @opindex mno-sdata
14352 On embedded PowerPC systems, put all initialized global and static data
14353 in the @samp{.data} section, and all uninitialized data in the
14354 @samp{.bss} section.

14356 @item -G @var{num}
14357 @opindex G
14358 @cindex smaller data references (PowerPC)
14359 @cindex .sdata/.sdata2 references (PowerPC)
14360 On embedded PowerPC systems, put global and static items less than or
14361 equal to @var{num} bytes into the small data or bss sections instead of
14362 the normal data or bss section. By default, @var{num} is 8. The
14363 @option{-G @var{num}} switch is also passed to the linker.
14364 All modules should be compiled with the same @option{-G @var{num}} value.

14366 @item -mregnames
14367 @itemx -mno-regnames
14368 @opindex mregnames
14369 @opindex mno-regnames
14370 On System V.4 and embedded PowerPC systems do (do not) emit register
14371 names in the assembly language output using symbolic forms.

14373 @item -mlongcall
14374 @itemx -mno-longcall
14375 @opindex mlongcall
14376 @opindex mno-longcall
14377 By default assume that all calls are far away so that a longer more
14378 expensive calling sequence is required. This is required for calls
14379 further than 32 megabytes (33,554,432 bytes) from the current location.
14380 A short call will be generated if the compiler knows
14381 the call cannot be that far away. This setting can be overridden by
14382 the @code{shortcall} function attribute, or by @code{#pragma
14383 longcall(0)}.

14385 Some linkers are capable of detecting out-of-range calls and generating
14386 glue code on the fly. On these systems, long calls are unnecessary and
14387 generate slower code. As of this writing, the AIX linker can do this,
14388 as can the GNU linker for PowerPC/64. It is planned to add this feature
14389 to the GNU linker for 32-bit PowerPC systems as well.

14391 On Darwin/PPC systems, @code{#pragma longcall} will generate ‘‘jbsr
14392 callee, L42’’, plus a ‘‘branch island’’ (glue code). The two target
14393 addresses represent the callee and the ‘‘branch island’’. The
14394 Darwin/PPC linker will prefer the first address and generate a ‘‘bl
14395 callee’’ if the PPC ‘‘bl’’ instruction will reach the callee directly;
14396 otherwise, the linker will generate ‘‘bl L42’’ to call the ‘‘branch
14397 island’’. The ‘‘branch island’’ is appended to the body of the
14398 calling function; it computes the full 32-bit address of the callee
14399 and jumps to it.

14401 On Mach-O (Darwin) systems, this option directs the compiler emit to
14402 the glue for every direct call, and the Darwin linker decides whether
14403 to use or discard it.

14405 In the future, we may cause GCC to ignore all longcall specifications
14406 when the linker is known to generate glue.

14408 @item -pthread
14409 @opindex pthread
14410 Adds support for multithreading with the @dfn{pthreads} library.
14411 This option sets flags for both the preprocessor and linker.

new/gcc/doc/invoke.texi 177

14413 @end table

14415 @node S/390 and zSeries Options
14416 @subsection S/390 and zSeries Options
14417 @cindex S/390 and zSeries Options

14419 These are the @samp{-m} options defined for the S/390 and zSeries architecture.

14421 @table @gcctabopt
14422 @item -mhard-float
14423 @itemx -msoft-float
14424 @opindex mhard-float
14425 @opindex msoft-float
14426 Use (do not use) the hardware floating-point instructions and registers
14427 for floating-point operations. When @option{-msoft-float} is specified,
14428 functions in @file{libgcc.a} will be used to perform floating-point
14429 operations. When @option{-mhard-float} is specified, the compiler
14430 generates IEEE floating-point instructions. This is the default.

14432 @item -mhard-dfp
14433 @itemx -mno-hard-dfp
14434 @opindex mhard-dfp
14435 @opindex mno-hard-dfp
14436 Use (do not use) the hardware decimal-floating-point instructions for
14437 decimal-floating-point operations. When @option{-mno-hard-dfp} is
14438 specified, functions in @file{libgcc.a} will be used to perform
14439 decimal-floating-point operations. When @option{-mhard-dfp} is
14440 specified, the compiler generates decimal-floating-point hardware
14441 instructions. This is the default for @option{-march=z9-ec} or higher.

14443 @item -mlong-double-64
14444 @itemx -mlong-double-128
14445 @opindex mlong-double-64
14446 @opindex mlong-double-128
14447 These switches control the size of @code{long double} type. A size
14448 of 64bit makes the @code{long double} type equivalent to the @code{double}
14449 type. This is the default.

14451 @item -mbackchain
14452 @itemx -mno-backchain
14453 @opindex mbackchain
14454 @opindex mno-backchain
14455 Store (do not store) the address of the caller’s frame as backchain pointer
14456 into the callee’s stack frame.
14457 A backchain may be needed to allow debugging using tools that do not understand
14458 DWARF-2 call frame information.
14459 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
14460 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
14461 the backchain is placed into the topmost word of the 96/160 byte register
14462 save area.

14464 In general, code compiled with @option{-mbackchain} is call-compatible with
14465 code compiled with @option{-mmo-backchain}; however, use of the backchain
14466 for debugging purposes usually requires that the whole binary is built with
14467 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
14468 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
14469 to build a linux kernel use @option{-msoft-float}.

14471 The default is to not maintain the backchain.

14473 @item -mpacked-stack
14474 @itemx -mno-packed-stack
14475 @opindex mpacked-stack
14476 @opindex mno-packed-stack
14477 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
14478 specified, the compiler uses the all fields of the 96/160 byte register save

new/gcc/doc/invoke.texi 178

14479 area only for their default purpose; unused fields still take up stack space.
14480 When @option{-mpacked-stack} is specified, register save slots are densely
14481 packed at the top of the register save area; unused space is reused for other
14482 purposes, allowing for more efficient use of the available stack space.
14483 However, when @option{-mbackchain} is also in effect, the topmost word of
14484 the save area is always used to store the backchain, and the return address
14485 register is always saved two words below the backchain.

14487 As long as the stack frame backchain is not used, code generated with
14488 @option{-mpacked-stack} is call-compatible with code generated with
14489 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
14490 S/390 or zSeries generated code that uses the stack frame backchain at run
14491 time, not just for debugging purposes. Such code is not call-compatible
14492 with code compiled with @option{-mpacked-stack}. Also, note that the
14493 combination of @option{-mbackchain},
14494 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
14495 to build a linux kernel use @option{-msoft-float}.

14497 The default is to not use the packed stack layout.

14499 @item -msmall-exec
14500 @itemx -mno-small-exec
14501 @opindex msmall-exec
14502 @opindex mno-small-exec
14503 Generate (or do not generate) code using the @code{bras} instruction
14504 to do subroutine calls.
14505 This only works reliably if the total executable size does not
14506 exceed 64k. The default is to use the @code{basr} instruction instead,
14507 which does not have this limitation.

14509 @item -m64
14510 @itemx -m31
14511 @opindex m64
14512 @opindex m31
14513 When @option{-m31} is specified, generate code compliant to the
14514 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
14515 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
14516 particular to generate 64-bit instructions. For the @samp{s390}
14517 targets, the default is @option{-m31}, while the @samp{s390x}
14518 targets default to @option{-m64}.

14520 @item -mzarch
14521 @itemx -mesa
14522 @opindex mzarch
14523 @opindex mesa
14524 When @option{-mzarch} is specified, generate code using the
14525 instructions available on z/Architecture.
14526 When @option{-mesa} is specified, generate code using the
14527 instructions available on ESA/390. Note that @option{-mesa} is
14528 not possible with @option{-m64}.
14529 When generating code compliant to the GNU/Linux for S/390 ABI,
14530 the default is @option{-mesa}. When generating code compliant
14531 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.

14533 @item -mmvcle
14534 @itemx -mno-mvcle
14535 @opindex mmvcle
14536 @opindex mno-mvcle
14537 Generate (or do not generate) code using the @code{mvcle} instruction
14538 to perform block moves. When @option{-mno-mvcle} is specified,
14539 use a @code{mvc} loop instead. This is the default unless optimizing for
14540 size.

14542 @item -mdebug
14543 @itemx -mno-debug
14544 @opindex mdebug

new/gcc/doc/invoke.texi 179

14545 @opindex mno-debug
14546 Print (or do not print) additional debug information when compiling.
14547 The default is to not print debug information.

14549 @item -march=@var{cpu-type}
14550 @opindex march
14551 Generate code that will run on @var{cpu-type}, which is the name of a system
14552 representing a certain processor type. Possible values for
14553 @var{cpu-type} are @samp{g5}, @samp{g6}, @samp{z900}, @samp{z990},
14554 @samp{z9-109}, @samp{z9-ec} and @samp{z10}.
14555 When generating code using the instructions available on z/Architecture,
14556 the default is @option{-march=z900}. Otherwise, the default is
14557 @option{-march=g5}.

14559 @item -mtune=@var{cpu-type}
14560 @opindex mtune
14561 Tune to @var{cpu-type} everything applicable about the generated code,
14562 except for the ABI and the set of available instructions.
14563 The list of @var{cpu-type} values is the same as for @option{-march}.
14564 The default is the value used for @option{-march}.

14566 @item -mtpf-trace
14567 @itemx -mno-tpf-trace
14568 @opindex mtpf-trace
14569 @opindex mno-tpf-trace
14570 Generate code that adds (does not add) in TPF OS specific branches to trace
14571 routines in the operating system. This option is off by default, even
14572 when compiling for the TPF OS@.

14574 @item -mfused-madd
14575 @itemx -mno-fused-madd
14576 @opindex mfused-madd
14577 @opindex mno-fused-madd
14578 Generate code that uses (does not use) the floating point multiply and
14579 accumulate instructions. These instructions are generated by default if
14580 hardware floating point is used.

14582 @item -mwarn-framesize=@var{framesize}
14583 @opindex mwarn-framesize
14584 Emit a warning if the current function exceeds the given frame size. Because
14585 this is a compile time check it doesn’t need to be a real problem when the progr
14586 runs. It is intended to identify functions which most probably cause
14587 a stack overflow. It is useful to be used in an environment with limited stack
14588 size e.g.@: the linux kernel.

14590 @item -mwarn-dynamicstack
14591 @opindex mwarn-dynamicstack
14592 Emit a warning if the function calls alloca or uses dynamically
14593 sized arrays. This is generally a bad idea with a limited stack size.

14595 @item -mstack-guard=@var{stack-guard}
14596 @itemx -mstack-size=@var{stack-size}
14597 @opindex mstack-guard
14598 @opindex mstack-size
14599 If these options are provided the s390 back end emits additional instructions in
14600 the function prologue which trigger a trap if the stack size is @var{stack-guard
14601 bytes above the @var{stack-size} (remember that the stack on s390 grows downward
14602 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
14603 the frame size of the compiled function is chosen.
14604 These options are intended to be used to help debugging stack overflow problems.
14605 The additionally emitted code causes only little overhead and hence can also be
14606 used in production like systems without greater performance degradation. The gi
14607 values have to be exact powers of 2 and @var{stack-size} has to be greater than
14608 @var{stack-guard} without exceeding 64k.
14609 In order to be efficient the extra code makes the assumption that the stack star
14610 at an address aligned to the value given by @var{stack-size}.

new/gcc/doc/invoke.texi 180

14611 The @var{stack-guard} option can only be used in conjunction with @var{stack-siz
14612 @end table

14614 @node Score Options
14615 @subsection Score Options
14616 @cindex Score Options

14618 These options are defined for Score implementations:

14620 @table @gcctabopt
14621 @item -meb
14622 @opindex meb
14623 Compile code for big endian mode. This is the default.

14625 @item -mel
14626 @opindex mel
14627 Compile code for little endian mode.

14629 @item -mnhwloop
14630 @opindex mnhwloop
14631 Disable generate bcnz instruction.

14633 @item -muls
14634 @opindex muls
14635 Enable generate unaligned load and store instruction.

14637 @item -mmac
14638 @opindex mmac
14639 Enable the use of multiply-accumulate instructions. Disabled by default.

14641 @item -mscore5
14642 @opindex mscore5
14643 Specify the SCORE5 as the target architecture.

14645 @item -mscore5u
14646 @opindex mscore5u
14647 Specify the SCORE5U of the target architecture.

14649 @item -mscore7
14650 @opindex mscore7
14651 Specify the SCORE7 as the target architecture. This is the default.

14653 @item -mscore7d
14654 @opindex mscore7d
14655 Specify the SCORE7D as the target architecture.
14656 @end table

14658 @node SH Options
14659 @subsection SH Options

14661 These @samp{-m} options are defined for the SH implementations:

14663 @table @gcctabopt
14664 @item -m1
14665 @opindex m1
14666 Generate code for the SH1.

14668 @item -m2
14669 @opindex m2
14670 Generate code for the SH2.

14672 @item -m2e
14673 Generate code for the SH2e.

14675 @item -m3
14676 @opindex m3

new/gcc/doc/invoke.texi 181

14677 Generate code for the SH3.

14679 @item -m3e
14680 @opindex m3e
14681 Generate code for the SH3e.

14683 @item -m4-nofpu
14684 @opindex m4-nofpu
14685 Generate code for the SH4 without a floating-point unit.

14687 @item -m4-single-only
14688 @opindex m4-single-only
14689 Generate code for the SH4 with a floating-point unit that only
14690 supports single-precision arithmetic.

14692 @item -m4-single
14693 @opindex m4-single
14694 Generate code for the SH4 assuming the floating-point unit is in
14695 single-precision mode by default.

14697 @item -m4
14698 @opindex m4
14699 Generate code for the SH4.

14701 @item -m4a-nofpu
14702 @opindex m4a-nofpu
14703 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
14704 floating-point unit is not used.

14706 @item -m4a-single-only
14707 @opindex m4a-single-only
14708 Generate code for the SH4a, in such a way that no double-precision
14709 floating point operations are used.

14711 @item -m4a-single
14712 @opindex m4a-single
14713 Generate code for the SH4a assuming the floating-point unit is in
14714 single-precision mode by default.

14716 @item -m4a
14717 @opindex m4a
14718 Generate code for the SH4a.

14720 @item -m4al
14721 @opindex m4al
14722 Same as @option{-m4a-nofpu}, except that it implicitly passes
14723 @option{-dsp} to the assembler. GCC doesn’t generate any DSP
14724 instructions at the moment.

14726 @item -mb
14727 @opindex mb
14728 Compile code for the processor in big endian mode.

14730 @item -ml
14731 @opindex ml
14732 Compile code for the processor in little endian mode.

14734 @item -mdalign
14735 @opindex mdalign
14736 Align doubles at 64-bit boundaries. Note that this changes the calling
14737 conventions, and thus some functions from the standard C library will
14738 not work unless you recompile it first with @option{-mdalign}.

14740 @item -mrelax
14741 @opindex mrelax
14742 Shorten some address references at link time, when possible; uses the

new/gcc/doc/invoke.texi 182

14743 linker option @option{-relax}.

14745 @item -mbigtable
14746 @opindex mbigtable
14747 Use 32-bit offsets in @code{switch} tables. The default is to use
14748 16-bit offsets.

14750 @item -mbitops
14751 @opindex mbitops
14752 Enable the use of bit manipulation instructions on SH2A.

14754 @item -mfmovd
14755 @opindex mfmovd
14756 Enable the use of the instruction @code{fmovd}.

14758 @item -mhitachi
14759 @opindex mhitachi
14760 Comply with the calling conventions defined by Renesas.

14762 @item -mrenesas
14763 @opindex mhitachi
14764 Comply with the calling conventions defined by Renesas.

14766 @item -mno-renesas
14767 @opindex mhitachi
14768 Comply with the calling conventions defined for GCC before the Renesas
14769 conventions were available. This option is the default for all
14770 targets of the SH toolchain except for @samp{sh-symbianelf}.

14772 @item -mnomacsave
14773 @opindex mnomacsave
14774 Mark the @code{MAC} register as call-clobbered, even if
14775 @option{-mhitachi} is given.

14777 @item -mieee
14778 @opindex mieee
14779 Increase IEEE-compliance of floating-point code.
14780 At the moment, this is equivalent to @option{-fno-finite-math-only}.
14781 When generating 16 bit SH opcodes, getting IEEE-conforming results for
14782 comparisons of NANs / infinities incurs extra overhead in every
14783 floating point comparison, therefore the default is set to
14784 @option{-ffinite-math-only}.

14786 @item -minline-ic_invalidate
14787 @opindex minline-ic_invalidate
14788 Inline code to invalidate instruction cache entries after setting up
14789 nested function trampolines.
14790 This option has no effect if -musermode is in effect and the selected
14791 code generation option (e.g. -m4) does not allow the use of the icbi
14792 instruction.
14793 If the selected code generation option does not allow the use of the icbi
14794 instruction, and -musermode is not in effect, the inlined code will
14795 manipulate the instruction cache address array directly with an associative
14796 write. This not only requires privileged mode, but it will also
14797 fail if the cache line had been mapped via the TLB and has become unmapped.

14799 @item -misize
14800 @opindex misize
14801 Dump instruction size and location in the assembly code.

14803 @item -mpadstruct
14804 @opindex mpadstruct
14805 This option is deprecated. It pads structures to multiple of 4 bytes,
14806 which is incompatible with the SH ABI@.

14808 @item -mspace

new/gcc/doc/invoke.texi 183

14809 @opindex mspace
14810 Optimize for space instead of speed. Implied by @option{-Os}.

14812 @item -mprefergot
14813 @opindex mprefergot
14814 When generating position-independent code, emit function calls using
14815 the Global Offset Table instead of the Procedure Linkage Table.

14817 @item -musermode
14818 @opindex musermode
14819 Don’t generate privileged mode only code; implies -mno-inline-ic_invalidate
14820 if the inlined code would not work in user mode.
14821 This is the default when the target is @code{sh-*-linux*}.

14823 @item -multcost=@var{number}
14824 @opindex multcost=@var{number}
14825 Set the cost to assume for a multiply insn.

14827 @item -mdiv=@var{strategy}
14828 @opindex mdiv=@var{strategy}
14829 Set the division strategy to use for SHmedia code. @var{strategy} must be
14830 one of: call, call2, fp, inv, inv:minlat, inv20u, inv20l, inv:call,
14831 inv:call2, inv:fp .
14832 "fp" performs the operation in floating point. This has a very high latency,
14833 but needs only a few instructions, so it might be a good choice if
14834 your code has enough easily exploitable ILP to allow the compiler to
14835 schedule the floating point instructions together with other instructions.
14836 Division by zero causes a floating point exception.
14837 "inv" uses integer operations to calculate the inverse of the divisor,
14838 and then multiplies the dividend with the inverse. This strategy allows
14839 cse and hoisting of the inverse calculation. Division by zero calculates
14840 an unspecified result, but does not trap.
14841 "inv:minlat" is a variant of "inv" where if no cse / hoisting opportunities
14842 have been found, or if the entire operation has been hoisted to the same
14843 place, the last stages of the inverse calculation are intertwined with the
14844 final multiply to reduce the overall latency, at the expense of using a few
14845 more instructions, and thus offering fewer scheduling opportunities with
14846 other code.
14847 "call" calls a library function that usually implements the inv:minlat
14848 strategy.
14849 This gives high code density for m5-*media-nofpu compilations.
14850 "call2" uses a different entry point of the same library function, where it
14851 assumes that a pointer to a lookup table has already been set up, which
14852 exposes the pointer load to cse / code hoisting optimizations.
14853 "inv:call", "inv:call2" and "inv:fp" all use the "inv" algorithm for initial
14854 code generation, but if the code stays unoptimized, revert to the "call",
14855 "call2", or "fp" strategies, respectively. Note that the
14856 potentially-trapping side effect of division by zero is carried by a
14857 separate instruction, so it is possible that all the integer instructions
14858 are hoisted out, but the marker for the side effect stays where it is.
14859 A recombination to fp operations or a call is not possible in that case.
14860 "inv20u" and "inv20l" are variants of the "inv:minlat" strategy. In the case
14861 that the inverse calculation was nor separated from the multiply, they speed
14862 up division where the dividend fits into 20 bits (plus sign where applicable),
14863 by inserting a test to skip a number of operations in this case; this test
14864 slows down the case of larger dividends. inv20u assumes the case of a such
14865 a small dividend to be unlikely, and inv20l assumes it to be likely.

14867 @item -mdivsi3_libfunc=@var{name}
14868 @opindex mdivsi3_libfunc=@var{name}
14869 Set the name of the library function used for 32 bit signed division to
14870 @var{name}. This only affect the name used in the call and inv:call
14871 division strategies, and the compiler will still expect the same
14872 sets of input/output/clobbered registers as if this option was not present.

14874 @item -mfixed-range=@var{register-range}

new/gcc/doc/invoke.texi 184

14875 @opindex mfixed-range
14876 Generate code treating the given register range as fixed registers.
14877 A fixed register is one that the register allocator can not use. This is
14878 useful when compiling kernel code. A register range is specified as
14879 two registers separated by a dash. Multiple register ranges can be
14880 specified separated by a comma.

14882 @item -madjust-unroll
14883 @opindex madjust-unroll
14884 Throttle unrolling to avoid thrashing target registers.
14885 This option only has an effect if the gcc code base supports the
14886 TARGET_ADJUST_UNROLL_MAX target hook.

14888 @item -mindexed-addressing
14889 @opindex mindexed-addressing
14890 Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
14891 This is only safe if the hardware and/or OS implement 32 bit wrap-around
14892 semantics for the indexed addressing mode. The architecture allows the
14893 implementation of processors with 64 bit MMU, which the OS could use to
14894 get 32 bit addressing, but since no current hardware implementation supports
14895 this or any other way to make the indexed addressing mode safe to use in
14896 the 32 bit ABI, the default is -mno-indexed-addressing.

14898 @item -mgettrcost=@var{number}
14899 @opindex mgettrcost=@var{number}
14900 Set the cost assumed for the gettr instruction to @var{number}.
14901 The default is 2 if @option{-mpt-fixed} is in effect, 100 otherwise.

14903 @item -mpt-fixed
14904 @opindex mpt-fixed
14905 Assume pt* instructions won’t trap. This will generally generate better
14906 scheduled code, but is unsafe on current hardware. The current architecture
14907 definition says that ptabs and ptrel trap when the target anded with 3 is 3.
14908 This has the unintentional effect of making it unsafe to schedule ptabs /
14909 ptrel before a branch, or hoist it out of a loop. For example,
14910 __do_global_ctors, a part of libgcc that runs constructors at program
14911 startup, calls functions in a list which is delimited by @minus{}1. With the
14912 -mpt-fixed option, the ptabs will be done before testing against @minus{}1.
14913 That means that all the constructors will be run a bit quicker, but when
14914 the loop comes to the end of the list, the program crashes because ptabs
14915 loads @minus{}1 into a target register. Since this option is unsafe for any
14916 hardware implementing the current architecture specification, the default
14917 is -mno-pt-fixed. Unless the user specifies a specific cost with
14918 @option{-mgettrcost}, -mno-pt-fixed also implies @option{-mgettrcost=100};
14919 this deters register allocation using target registers for storing
14920 ordinary integers.

14922 @item -minvalid-symbols
14923 @opindex minvalid-symbols
14924 Assume symbols might be invalid. Ordinary function symbols generated by
14925 the compiler will always be valid to load with movi/shori/ptabs or
14926 movi/shori/ptrel, but with assembler and/or linker tricks it is possible
14927 to generate symbols that will cause ptabs / ptrel to trap.
14928 This option is only meaningful when @option{-mno-pt-fixed} is in effect.
14929 It will then prevent cross-basic-block cse, hoisting and most scheduling
14930 of symbol loads. The default is @option{-mno-invalid-symbols}.
14931 @end table

14933 @node SPARC Options
14934 @subsection SPARC Options
14935 @cindex SPARC options

14937 These @samp{-m} options are supported on the SPARC:

14939 @table @gcctabopt
14940 @item -mno-app-regs

new/gcc/doc/invoke.texi 185

14941 @itemx -mapp-regs
14942 @opindex mno-app-regs
14943 @opindex mapp-regs
14944 Specify @option{-mapp-regs} to generate output using the global registers
14945 2 through 4, which the SPARC SVR4 ABI reserves for applications. This
14946 is the default.

14948 To be fully SVR4 ABI compliant at the cost of some performance loss,
14949 specify @option{-mno-app-regs}. You should compile libraries and system
14950 software with this option.

14952 @item -mfpu
14953 @itemx -mhard-float
14954 @opindex mfpu
14955 @opindex mhard-float
14956 Generate output containing floating point instructions. This is the
14957 default.

14959 @item -mno-fpu
14960 @itemx -msoft-float
14961 @opindex mno-fpu
14962 @opindex msoft-float
14963 Generate output containing library calls for floating point.
14964 @strong{Warning:} the requisite libraries are not available for all SPARC
14965 targets. Normally the facilities of the machine’s usual C compiler are
14966 used, but this cannot be done directly in cross-compilation. You must make
14967 your own arrangements to provide suitable library functions for
14968 cross-compilation. The embedded targets @samp{sparc-*-aout} and
14969 @samp{sparclite-*-*} do provide software floating point support.

14971 @option{-msoft-float} changes the calling convention in the output file;
14972 therefore, it is only useful if you compile @emph{all} of a program with
14973 this option. In particular, you need to compile @file{libgcc.a}, the
14974 library that comes with GCC, with @option{-msoft-float} in order for
14975 this to work.

14977 @item -mhard-quad-float
14978 @opindex mhard-quad-float
14979 Generate output containing quad-word (long double) floating point
14980 instructions.

14982 @item -msoft-quad-float
14983 @opindex msoft-quad-float
14984 Generate output containing library calls for quad-word (long double)
14985 floating point instructions. The functions called are those specified
14986 in the SPARC ABI@. This is the default.

14988 As of this writing, there are no SPARC implementations that have hardware
14989 support for the quad-word floating point instructions. They all invoke
14990 a trap handler for one of these instructions, and then the trap handler
14991 emulates the effect of the instruction. Because of the trap handler overhead,
14992 this is much slower than calling the ABI library routines. Thus the
14993 @option{-msoft-quad-float} option is the default.

14995 @item -mno-unaligned-doubles
14996 @itemx -munaligned-doubles
14997 @opindex mno-unaligned-doubles
14998 @opindex munaligned-doubles
14999 Assume that doubles have 8 byte alignment. This is the default.

15001 With @option{-munaligned-doubles}, GCC assumes that doubles have 8 byte
15002 alignment only if they are contained in another type, or if they have an
15003 absolute address. Otherwise, it assumes they have 4 byte alignment.
15004 Specifying this option avoids some rare compatibility problems with code
15005 generated by other compilers. It is not the default because it results
15006 in a performance loss, especially for floating point code.

new/gcc/doc/invoke.texi 186

15008 @item -mno-faster-structs
15009 @itemx -mfaster-structs
15010 @opindex mno-faster-structs
15011 @opindex mfaster-structs
15012 With @option{-mfaster-structs}, the compiler assumes that structures
15013 should have 8 byte alignment. This enables the use of pairs of
15014 @code{ldd} and @code{std} instructions for copies in structure
15015 assignment, in place of twice as many @code{ld} and @code{st} pairs.
15016 However, the use of this changed alignment directly violates the SPARC
15017 ABI@. Thus, it’s intended only for use on targets where the developer
15018 acknowledges that their resulting code will not be directly in line with
15019 the rules of the ABI@.

15021 @item -mimpure-text
15022 @opindex mimpure-text
15023 @option{-mimpure-text}, used in addition to @option{-shared}, tells
15024 the compiler to not pass @option{-z text} to the linker when linking a
15025 shared object. Using this option, you can link position-dependent
15026 code into a shared object.

15028 @option{-mimpure-text} suppresses the ‘‘relocations remain against
15029 allocatable but non-writable sections’’ linker error message.
15030 However, the necessary relocations will trigger copy-on-write, and the
15031 shared object is not actually shared across processes. Instead of
15032 using @option{-mimpure-text}, you should compile all source code with
15033 @option{-fpic} or @option{-fPIC}.

15035 This option is only available on SunOS and Solaris.

15037 @item -mcpu=@var{cpu_type}
15038 @opindex mcpu
15039 Set the instruction set, register set, and instruction scheduling parameters
15040 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
15041 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{sparclite},
15042 @samp{f930}, @samp{f934}, @samp{hypersparc}, @samp{sparclite86x},
15043 @samp{sparclet}, @samp{tsc701}, @samp{v9}, @samp{ultrasparc},
15044 @samp{ultrasparc3}, @samp{niagara} and @samp{niagara2}.

15046 Default instruction scheduling parameters are used for values that select
15047 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
15048 @samp{sparclite}, @samp{sparclet}, @samp{v9}.

15050 Here is a list of each supported architecture and their supported
15051 implementations.

15053 @smallexample
15054 v7: cypress
15055 v8: supersparc, hypersparc
15056 sparclite: f930, f934, sparclite86x
15057 sparclet: tsc701
15058 v9: ultrasparc, ultrasparc3, niagara, niagara2
15059 @end smallexample

15061 By default (unless configured otherwise), GCC generates code for the V7
15062 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
15063 additionally optimizes it for the Cypress CY7C602 chip, as used in the
15064 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
15065 SPARCStation 1, 2, IPX etc.

15067 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
15068 architecture. The only difference from V7 code is that the compiler emits
15069 the integer multiply and integer divide instructions which exist in SPARC-V8
15070 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
15071 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
15072 2000 series.

new/gcc/doc/invoke.texi 187

15074 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
15075 the SPARC architecture. This adds the integer multiply, integer divide step
15076 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
15077 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
15078 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
15079 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
15080 MB86934 chip, which is the more recent SPARClite with FPU@.

15082 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
15083 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
15084 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
15085 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
15086 optimizes it for the TEMIC SPARClet chip.

15088 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
15089 architecture. This adds 64-bit integer and floating-point move instructions,
15090 3 additional floating-point condition code registers and conditional move
15091 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
15092 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
15093 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
15094 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
15095 @option{-mcpu=niagara}, the compiler additionally optimizes it for
15096 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
15097 additionally optimizes it for Sun UltraSPARC T2 chips.

15099 @item -mtune=@var{cpu_type}
15100 @opindex mtune
15101 Set the instruction scheduling parameters for machine type
15102 @var{cpu_type}, but do not set the instruction set or register set that the
15103 option @option{-mcpu=@var{cpu_type}} would.

15105 The same values for @option{-mcpu=@var{cpu_type}} can be used for
15106 @option{-mtune=@var{cpu_type}}, but the only useful values are those
15107 that select a particular cpu implementation. Those are @samp{cypress},
15108 @samp{supersparc}, @samp{hypersparc}, @samp{f930}, @samp{f934},
15109 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
15110 @samp{ultrasparc3}, @samp{niagara}, and @samp{niagara2}.

15112 @item -mv8plus
15113 @itemx -mno-v8plus
15114 @opindex mv8plus
15115 @opindex mno-v8plus
15116 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
15117 difference from the V8 ABI is that the global and out registers are
15118 considered 64-bit wide. This is enabled by default on Solaris in 32-bit
15119 mode for all SPARC-V9 processors.

15121 @item -mvis
15122 @itemx -mno-vis
15123 @opindex mvis
15124 @opindex mno-vis
15125 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
15126 Visual Instruction Set extensions. The default is @option{-mno-vis}.

15128 @item -mno-integer-ldd-std
15129 @opindex mno-integer-ldd-std
15130 With @option{-mno-integer-ldd-std}, GCC does not use the @code{ldd}
15131 and @code{std} instructions for integer operands in 32-bit mode. This
15132 is for use with legacy code using 64-bit quantities which are not
15133 64-bit aligned.

15135 @item -massume-32bit-callers
15136 @opindex massume-32bit-callers
15137 With @option{-massume-32bit-callers}, The type promotion of function
15138 arguments is altered such that integer arguments smaller than the word

new/gcc/doc/invoke.texi 188

15139 size are extended in the callee rather than the caller. This is
15140 necessary for system calls from 32bit processes to 64bit kernels in
15141 certain systems. This option should not be used in any situation
15142 other than compiling the kernels of such systems, and has not been
15143 tested outside of that scenario.
15144 @end table

15146 These @samp{-m} options are supported in addition to the above
15147 on SPARC-V9 processors in 64-bit environments:

15149 @table @gcctabopt
15150 @item -mlittle-endian
15151 @opindex mlittle-endian
15152 Generate code for a processor running in little-endian mode. It is only
15153 available for a few configurations and most notably not on Solaris and Linux.

15155 @item -m32
15156 @itemx -m64
15157 @opindex m32
15158 @opindex m64
15159 Generate code for a 32-bit or 64-bit environment.
15160 The 32-bit environment sets int, long and pointer to 32 bits.
15161 The 64-bit environment sets int to 32 bits and long and pointer
15162 to 64 bits.

15164 @item -mcmodel=medlow
15165 @opindex mcmodel=medlow
15166 Generate code for the Medium/Low code model: 64-bit addresses, programs
15167 must be linked in the low 32 bits of memory. Programs can be statically
15168 or dynamically linked.

15170 @item -mcmodel=medmid
15171 @opindex mcmodel=medmid
15172 Generate code for the Medium/Middle code model: 64-bit addresses, programs
15173 must be linked in the low 44 bits of memory, the text and data segments must
15174 be less than 2GB in size and the data segment must be located within 2GB of
15175 the text segment.

15177 @item -mcmodel=medany
15178 @opindex mcmodel=medany
15179 Generate code for the Medium/Anywhere code model: 64-bit addresses, programs
15180 may be linked anywhere in memory, the text and data segments must be less
15181 than 2GB in size and the data segment must be located within 2GB of the
15182 text segment.

15184 @item -mcmodel=embmedany
15185 @opindex mcmodel=embmedany
15186 Generate code for the Medium/Anywhere code model for embedded systems:
15187 64-bit addresses, the text and data segments must be less than 2GB in
15188 size, both starting anywhere in memory (determined at link time). The
15189 global register %g4 points to the base of the data segment. Programs
15190 are statically linked and PIC is not supported.

15192 @item -mstack-bias
15193 @itemx -mno-stack-bias
15194 @opindex mstack-bias
15195 @opindex mno-stack-bias
15196 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
15197 frame pointer if present, are offset by @minus{}2047 which must be added back
15198 when making stack frame references. This is the default in 64-bit mode.
15199 Otherwise, assume no such offset is present.
15200 @end table

15202 These switches are supported in addition to the above on Solaris:

15204 @table @gcctabopt

new/gcc/doc/invoke.texi 189

15205 @item -threads
15206 @opindex threads
15207 Add support for multithreading using the Solaris threads library. This
15208 option sets flags for both the preprocessor and linker. This option does
15209 not affect the thread safety of object code produced by the compiler or
15210 that of libraries supplied with it.

15212 @item -pthreads
15213 @opindex pthreads
15214 Add support for multithreading using the POSIX threads library. This
15215 option sets flags for both the preprocessor and linker. This option does
15216 not affect the thread safety of object code produced by the compiler or
15217 that of libraries supplied with it.

15219 @item -pthread
15220 @opindex pthread
15221 This is a synonym for @option{-pthreads}.
15222 @end table

15224 @node SPU Options
15225 @subsection SPU Options
15226 @cindex SPU options

15228 These @samp{-m} options are supported on the SPU:

15230 @table @gcctabopt
15231 @item -mwarn-reloc
15232 @itemx -merror-reloc
15233 @opindex mwarn-reloc
15234 @opindex merror-reloc

15236 The loader for SPU does not handle dynamic relocations. By default, GCC
15237 will give an error when it generates code that requires a dynamic
15238 relocation. @option{-mno-error-reloc} disables the error,
15239 @option{-mwarn-reloc} will generate a warning instead.

15241 @item -msafe-dma
15242 @itemx -munsafe-dma
15243 @opindex msafe-dma
15244 @opindex munsafe-dma

15246 Instructions which initiate or test completion of DMA must not be
15247 reordered with respect to loads and stores of the memory which is being
15248 accessed. Users typically address this problem using the volatile
15249 keyword, but that can lead to inefficient code in places where the
15250 memory is known to not change. Rather than mark the memory as volatile
15251 we treat the DMA instructions as potentially effecting all memory. With
15252 @option{-munsafe-dma} users must use the volatile keyword to protect
15253 memory accesses.

15255 @item -mbranch-hints
15256 @opindex mbranch-hints

15258 By default, GCC will generate a branch hint instruction to avoid
15259 pipeline stalls for always taken or probably taken branches. A hint
15260 will not be generated closer than 8 instructions away from its branch.
15261 There is little reason to disable them, except for debugging purposes,
15262 or to make an object a little bit smaller.

15264 @item -msmall-mem
15265 @itemx -mlarge-mem
15266 @opindex msmall-mem
15267 @opindex mlarge-mem

15269 By default, GCC generates code assuming that addresses are never larger
15270 than 18 bits. With @option{-mlarge-mem} code is generated that assumes

new/gcc/doc/invoke.texi 190

15271 a full 32 bit address.

15273 @item -mstdmain
15274 @opindex mstdmain

15276 By default, GCC links against startup code that assumes the SPU-style
15277 main function interface (which has an unconventional parameter list).
15278 With @option{-mstdmain}, GCC will link your program against startup
15279 code that assumes a C99-style interface to @code{main}, including a
15280 local copy of @code{argv} strings.

15282 @item -mfixed-range=@var{register-range}
15283 @opindex mfixed-range
15284 Generate code treating the given register range as fixed registers.
15285 A fixed register is one that the register allocator can not use. This is
15286 useful when compiling kernel code. A register range is specified as
15287 two registers separated by a dash. Multiple register ranges can be
15288 specified separated by a comma.

15290 @item -mdual-nops
15291 @itemx -mdual-nops=@var{n}
15292 @opindex mdual-nops
15293 By default, GCC will insert nops to increase dual issue when it expects
15294 it to increase performance. @var{n} can be a value from 0 to 10. A
15295 smaller @var{n} will insert fewer nops. 10 is the default, 0 is the
15296 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.

15298 @item -mhint-max-nops=@var{n}
15299 @opindex mhint-max-nops
15300 Maximum number of nops to insert for a branch hint. A branch hint must
15301 be at least 8 instructions away from the branch it is effecting. GCC
15302 will insert up to @var{n} nops to enforce this, otherwise it will not
15303 generate the branch hint.

15305 @item -mhint-max-distance=@var{n}
15306 @opindex mhint-max-distance
15307 The encoding of the branch hint instruction limits the hint to be within
15308 256 instructions of the branch it is effecting. By default, GCC makes
15309 sure it is within 125.

15311 @item -msafe-hints
15312 @opindex msafe-hints
15313 Work around a hardware bug which causes the SPU to stall indefinitely.
15314 By default, GCC will insert the @code{hbrp} instruction to make sure
15315 this stall won’t happen.

15317 @end table

15319 @node System V Options
15320 @subsection Options for System V

15322 These additional options are available on System V Release 4 for
15323 compatibility with other compilers on those systems:

15325 @table @gcctabopt
15326 @item -G
15327 @opindex G
15328 Create a shared object.
15329 It is recommended that @option{-symbolic} or @option{-shared} be used instead.

15331 @item -Qy
15332 @opindex Qy
15333 Identify the versions of each tool used by the compiler, in a
15334 @code{.ident} assembler directive in the output.

15336 @item -Qn

new/gcc/doc/invoke.texi 191

15337 @opindex Qn
15338 Refrain from adding @code{.ident} directives to the output file (this is
15339 the default).

15341 @item -YP,@var{dirs}
15342 @opindex YP
15343 Search the directories @var{dirs}, and no others, for libraries
15344 specified with @option{-l}.

15346 @item -Ym,@var{dir}
15347 @opindex Ym
15348 Look in the directory @var{dir} to find the M4 preprocessor.
15349 The assembler uses this option.
15350 @c This is supposed to go with a -Yd for predefined M4 macro files, but
15351 @c the generic assembler that comes with Solaris takes just -Ym.
15352 @end table

15354 @node V850 Options
15355 @subsection V850 Options
15356 @cindex V850 Options

15358 These @samp{-m} options are defined for V850 implementations:

15360 @table @gcctabopt
15361 @item -mlong-calls
15362 @itemx -mno-long-calls
15363 @opindex mlong-calls
15364 @opindex mno-long-calls
15365 Treat all calls as being far away (near). If calls are assumed to be
15366 far away, the compiler will always load the functions address up into a
15367 register, and call indirect through the pointer.

15369 @item -mno-ep
15370 @itemx -mep
15371 @opindex mno-ep
15372 @opindex mep
15373 Do not optimize (do optimize) basic blocks that use the same index
15374 pointer 4 or more times to copy pointer into the @code{ep} register, and
15375 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
15376 option is on by default if you optimize.

15378 @item -mno-prolog-function
15379 @itemx -mprolog-function
15380 @opindex mno-prolog-function
15381 @opindex mprolog-function
15382 Do not use (do use) external functions to save and restore registers
15383 at the prologue and epilogue of a function. The external functions
15384 are slower, but use less code space if more than one function saves
15385 the same number of registers. The @option{-mprolog-function} option
15386 is on by default if you optimize.

15388 @item -mspace
15389 @opindex mspace
15390 Try to make the code as small as possible. At present, this just turns
15391 on the @option{-mep} and @option{-mprolog-function} options.

15393 @item -mtda=@var{n}
15394 @opindex mtda
15395 Put static or global variables whose size is @var{n} bytes or less into
15396 the tiny data area that register @code{ep} points to. The tiny data
15397 area can hold up to 256 bytes in total (128 bytes for byte references).

15399 @item -msda=@var{n}
15400 @opindex msda
15401 Put static or global variables whose size is @var{n} bytes or less into
15402 the small data area that register @code{gp} points to. The small data

new/gcc/doc/invoke.texi 192

15403 area can hold up to 64 kilobytes.

15405 @item -mzda=@var{n}
15406 @opindex mzda
15407 Put static or global variables whose size is @var{n} bytes or less into
15408 the first 32 kilobytes of memory.

15410 @item -mv850
15411 @opindex mv850
15412 Specify that the target processor is the V850.

15414 @item -mbig-switch
15415 @opindex mbig-switch
15416 Generate code suitable for big switch tables. Use this option only if
15417 the assembler/linker complain about out of range branches within a switch
15418 table.

15420 @item -mapp-regs
15421 @opindex mapp-regs
15422 This option will cause r2 and r5 to be used in the code generated by
15423 the compiler. This setting is the default.

15425 @item -mno-app-regs
15426 @opindex mno-app-regs
15427 This option will cause r2 and r5 to be treated as fixed registers.

15429 @item -mv850e1
15430 @opindex mv850e1
15431 Specify that the target processor is the V850E1. The preprocessor
15432 constants @samp{__v850e1__} and @samp{__v850e__} will be defined if
15433 this option is used.

15435 @item -mv850e
15436 @opindex mv850e
15437 Specify that the target processor is the V850E@. The preprocessor
15438 constant @samp{__v850e__} will be defined if this option is used.

15440 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
15441 are defined then a default target processor will be chosen and the
15442 relevant @samp{__v850*__} preprocessor constant will be defined.

15444 The preprocessor constants @samp{__v850} and @samp{__v851__} are always
15445 defined, regardless of which processor variant is the target.

15447 @item -mdisable-callt
15448 @opindex mdisable-callt
15449 This option will suppress generation of the CALLT instruction for the
15450 v850e and v850e1 flavors of the v850 architecture. The default is
15451 @option{-mno-disable-callt} which allows the CALLT instruction to be used.

15453 @end table

15455 @node VAX Options
15456 @subsection VAX Options
15457 @cindex VAX options

15459 These @samp{-m} options are defined for the VAX:

15461 @table @gcctabopt
15462 @item -munix
15463 @opindex munix
15464 Do not output certain jump instructions (@code{aobleq} and so on)
15465 that the Unix assembler for the VAX cannot handle across long
15466 ranges.

15468 @item -mgnu

new/gcc/doc/invoke.texi 193

15469 @opindex mgnu
15470 Do output those jump instructions, on the assumption that you
15471 will assemble with the GNU assembler.

15473 @item -mg
15474 @opindex mg
15475 Output code for g-format floating point numbers instead of d-format.
15476 @end table

15478 @node VxWorks Options
15479 @subsection VxWorks Options
15480 @cindex VxWorks Options

15482 The options in this section are defined for all VxWorks targets.
15483 Options specific to the target hardware are listed with the other
15484 options for that target.

15486 @table @gcctabopt
15487 @item -mrtp
15488 @opindex mrtp
15489 GCC can generate code for both VxWorks kernels and real time processes
15490 (RTPs). This option switches from the former to the latter. It also
15491 defines the preprocessor macro @code{__RTP__}.

15493 @item -non-static
15494 @opindex non-static
15495 Link an RTP executable against shared libraries rather than static
15496 libraries. The options @option{-static} and @option{-shared} can
15497 also be used for RTPs (@pxref{Link Options}); @option{-static}
15498 is the default.

15500 @item -Bstatic
15501 @itemx -Bdynamic
15502 @opindex Bstatic
15503 @opindex Bdynamic
15504 These options are passed down to the linker. They are defined for
15505 compatibility with Diab.

15507 @item -Xbind-lazy
15508 @opindex Xbind-lazy
15509 Enable lazy binding of function calls. This option is equivalent to
15510 @option{-Wl,-z,now} and is defined for compatibility with Diab.

15512 @item -Xbind-now
15513 @opindex Xbind-now
15514 Disable lazy binding of function calls. This option is the default and
15515 is defined for compatibility with Diab.
15516 @end table

15518 @node x86-64 Options
15519 @subsection x86-64 Options
15520 @cindex x86-64 options

15522 These are listed under @xref{i386 and x86-64 Options}.

15524 @node i386 and x86-64 Windows Options
15525 @subsection i386 and x86-64 Windows Options
15526 @cindex i386 and x86-64 Windows Options

15528 These additional options are available for Windows targets:

15530 @table @gcctabopt
15531 @item -mconsole
15532 @opindex mconsole
15533 This option is available for Cygwin and MinGW targets. It
15534 specifies that a console application is to be generated, by

new/gcc/doc/invoke.texi 194

15535 instructing the linker to set the PE header subsystem type
15536 required for console applications.
15537 This is the default behaviour for Cygwin and MinGW targets.

15539 @item -mcygwin
15540 @opindex mcygwin
15541 This option is available for Cygwin targets. It specifies that
15542 the Cygwin internal interface is to be used for predefined
15543 preprocessor macros, C runtime libraries and related linker
15544 paths and options. For Cygwin targets this is the default behaviour.
15545 This option is deprecated and will be removed in a future release.

15547 @item -mno-cygwin
15548 @opindex mno-cygwin
15549 This option is available for Cygwin targets. It specifies that
15550 the MinGW internal interface is to be used instead of Cygwin’s, by
15551 setting MinGW-related predefined macros and linker paths and default
15552 library options.
15553 This option is deprecated and will be removed in a future release.

15555 @item -mdll
15556 @opindex mdll
15557 This option is available for Cygwin and MinGW targets. It
15558 specifies that a DLL - a dynamic link library - is to be
15559 generated, enabling the selection of the required runtime
15560 startup object and entry point.

15562 @item -mnop-fun-dllimport
15563 @opindex mnop-fun-dllimport
15564 This option is available for Cygwin and MinGW targets. It
15565 specifies that the dllimport attribute should be ignored.

15567 @item -mthread
15568 @opindex mthread
15569 This option is available for MinGW targets. It specifies
15570 that MinGW-specific thread support is to be used.

15572 @item -mwin32
15573 @opindex mwin32
15574 This option is available for Cygwin and MinGW targets. It
15575 specifies that the typical Windows pre-defined macros are to
15576 be set in the pre-processor, but does not influence the choice
15577 of runtime library/startup code.

15579 @item -mwindows
15580 @opindex mwindows
15581 This option is available for Cygwin and MinGW targets. It
15582 specifies that a GUI application is to be generated by
15583 instructing the linker to set the PE header subsystem type
15584 appropriately.
15585 @end table

15587 See also under @ref{i386 and x86-64 Options} for standard options.

15589 @node Xstormy16 Options
15590 @subsection Xstormy16 Options
15591 @cindex Xstormy16 Options

15593 These options are defined for Xstormy16:

15595 @table @gcctabopt
15596 @item -msim
15597 @opindex msim
15598 Choose startup files and linker script suitable for the simulator.
15599 @end table

new/gcc/doc/invoke.texi 195

15601 @node Xtensa Options
15602 @subsection Xtensa Options
15603 @cindex Xtensa Options

15605 These options are supported for Xtensa targets:

15607 @table @gcctabopt
15608 @item -mconst16
15609 @itemx -mno-const16
15610 @opindex mconst16
15611 @opindex mno-const16
15612 Enable or disable use of @code{CONST16} instructions for loading
15613 constant values. The @code{CONST16} instruction is currently not a
15614 standard option from Tensilica. When enabled, @code{CONST16}
15615 instructions are always used in place of the standard @code{L32R}
15616 instructions. The use of @code{CONST16} is enabled by default only if
15617 the @code{L32R} instruction is not available.

15619 @item -mfused-madd
15620 @itemx -mno-fused-madd
15621 @opindex mfused-madd
15622 @opindex mno-fused-madd
15623 Enable or disable use of fused multiply/add and multiply/subtract
15624 instructions in the floating-point option. This has no effect if the
15625 floating-point option is not also enabled. Disabling fused multiply/add
15626 and multiply/subtract instructions forces the compiler to use separate
15627 instructions for the multiply and add/subtract operations. This may be
15628 desirable in some cases where strict IEEE 754-compliant results are
15629 required: the fused multiply add/subtract instructions do not round the
15630 intermediate result, thereby producing results with @emph{more} bits of
15631 precision than specified by the IEEE standard. Disabling fused multiply
15632 add/subtract instructions also ensures that the program output is not
15633 sensitive to the compiler’s ability to combine multiply and add/subtract
15634 operations.

15636 @item -mserialize-volatile
15637 @itemx -mno-serialize-volatile
15638 @opindex mserialize-volatile
15639 @opindex mno-serialize-volatile
15640 When this option is enabled, GCC inserts @code{MEMW} instructions before
15641 @code{volatile} memory references to guarantee sequential consistency.
15642 The default is @option{-mserialize-volatile}. Use
15643 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.

15645 @item -mtext-section-literals
15646 @itemx -mno-text-section-literals
15647 @opindex mtext-section-literals
15648 @opindex mno-text-section-literals
15649 Control the treatment of literal pools. The default is
15650 @option{-mno-text-section-literals}, which places literals in a separate
15651 section in the output file. This allows the literal pool to be placed
15652 in a data RAM/ROM, and it also allows the linker to combine literal
15653 pools from separate object files to remove redundant literals and
15654 improve code size. With @option{-mtext-section-literals}, the literals
15655 are interspersed in the text section in order to keep them as close as
15656 possible to their references. This may be necessary for large assembly
15657 files.

15659 @item -mtarget-align
15660 @itemx -mno-target-align
15661 @opindex mtarget-align
15662 @opindex mno-target-align
15663 When this option is enabled, GCC instructs the assembler to
15664 automatically align instructions to reduce branch penalties at the
15665 expense of some code density. The assembler attempts to widen density
15666 instructions to align branch targets and the instructions following call

new/gcc/doc/invoke.texi 196

15667 instructions. If there are not enough preceding safe density
15668 instructions to align a target, no widening will be performed. The
15669 default is @option{-mtarget-align}. These options do not affect the
15670 treatment of auto-aligned instructions like @code{LOOP}, which the
15671 assembler will always align, either by widening density instructions or
15672 by inserting no-op instructions.

15674 @item -mlongcalls
15675 @itemx -mno-longcalls
15676 @opindex mlongcalls
15677 @opindex mno-longcalls
15678 When this option is enabled, GCC instructs the assembler to translate
15679 direct calls to indirect calls unless it can determine that the target
15680 of a direct call is in the range allowed by the call instruction. This
15681 translation typically occurs for calls to functions in other source
15682 files. Specifically, the assembler translates a direct @code{CALL}
15683 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
15684 The default is @option{-mno-longcalls}. This option should be used in
15685 programs where the call target can potentially be out of range. This
15686 option is implemented in the assembler, not the compiler, so the
15687 assembly code generated by GCC will still show direct call
15688 instructions---look at the disassembled object code to see the actual
15689 instructions. Note that the assembler will use an indirect call for
15690 every cross-file call, not just those that really will be out of range.
15691 @end table

15693 @node zSeries Options
15694 @subsection zSeries Options
15695 @cindex zSeries options

15697 These are listed under @xref{S/390 and zSeries Options}.

15699 @node Code Gen Options
15700 @section Options for Code Generation Conventions
15701 @cindex code generation conventions
15702 @cindex options, code generation
15703 @cindex run-time options

15705 These machine-independent options control the interface conventions
15706 used in code generation.

15708 Most of them have both positive and negative forms; the negative form
15709 of @option{-ffoo} would be @option{-fno-foo}. In the table below, only
15710 one of the forms is listed---the one which is not the default. You
15711 can figure out the other form by either removing @samp{no-} or adding
15712 it.

15714 @table @gcctabopt
15715 @item -fbounds-check
15716 @opindex fbounds-check
15717 For front-ends that support it, generate additional code to check that
15718 indices used to access arrays are within the declared range. This is
15719 currently only supported by the Java and Fortran front-ends, where
15720 this option defaults to true and false respectively.

15722 @item -ftrapv
15723 @opindex ftrapv
15724 This option generates traps for signed overflow on addition, subtraction,
15725 multiplication operations.

15727 @item -fwrapv
15728 @opindex fwrapv
15729 This option instructs the compiler to assume that signed arithmetic
15730 overflow of addition, subtraction and multiplication wraps around
15731 using twos-complement representation. This flag enables some optimizations
15732 and disables others. This option is enabled by default for the Java

new/gcc/doc/invoke.texi 197

15733 front-end, as required by the Java language specification.

15735 @item -fexceptions
15736 @opindex fexceptions
15737 Enable exception handling. Generates extra code needed to propagate
15738 exceptions. For some targets, this implies GCC will generate frame
15739 unwind information for all functions, which can produce significant data
15740 size overhead, although it does not affect execution. If you do not
15741 specify this option, GCC will enable it by default for languages like
15742 C++ which normally require exception handling, and disable it for
15743 languages like C that do not normally require it. However, you may need
15744 to enable this option when compiling C code that needs to interoperate
15745 properly with exception handlers written in C++. You may also wish to
15746 disable this option if you are compiling older C++ programs that don’t
15747 use exception handling.

15749 @item -fnon-call-exceptions
15750 @opindex fnon-call-exceptions
15751 Generate code that allows trapping instructions to throw exceptions.
15752 Note that this requires platform-specific runtime support that does
15753 not exist everywhere. Moreover, it only allows @emph{trapping}
15754 instructions to throw exceptions, i.e.@: memory references or floating
15755 point instructions. It does not allow exceptions to be thrown from
15756 arbitrary signal handlers such as @code{SIGALRM}.

15758 @item -funwind-tables
15759 @opindex funwind-tables
15760 Similar to @option{-fexceptions}, except that it will just generate any needed
15761 static data, but will not affect the generated code in any other way.
15762 You will normally not enable this option; instead, a language processor
15763 that needs this handling would enable it on your behalf.

15765 @item -fasynchronous-unwind-tables
15766 @opindex fasynchronous-unwind-tables
15767 Generate unwind table in dwarf2 format, if supported by target machine. The
15768 table is exact at each instruction boundary, so it can be used for stack
15769 unwinding from asynchronous events (such as debugger or garbage collector).

15771 @item -fpcc-struct-return
15772 @opindex fpcc-struct-return
15773 Return ‘‘short’’ @code{struct} and @code{union} values in memory like
15774 longer ones, rather than in registers. This convention is less
15775 efficient, but it has the advantage of allowing intercallability between
15776 GCC-compiled files and files compiled with other compilers, particularly
15777 the Portable C Compiler (pcc).

15779 The precise convention for returning structures in memory depends
15780 on the target configuration macros.

15782 Short structures and unions are those whose size and alignment match
15783 that of some integer type.

15785 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
15786 switch is not binary compatible with code compiled with the
15787 @option{-freg-struct-return} switch.
15788 Use it to conform to a non-default application binary interface.

15790 @item -freg-struct-return
15791 @opindex freg-struct-return
15792 Return @code{struct} and @code{union} values in registers when possible.
15793 This is more efficient for small structures than
15794 @option{-fpcc-struct-return}.

15796 If you specify neither @option{-fpcc-struct-return} nor
15797 @option{-freg-struct-return}, GCC defaults to whichever convention is
15798 standard for the target. If there is no standard convention, GCC

new/gcc/doc/invoke.texi 198

15799 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
15800 the principal compiler. In those cases, we can choose the standard, and
15801 we chose the more efficient register return alternative.

15803 @strong{Warning:} code compiled with the @option{-freg-struct-return}
15804 switch is not binary compatible with code compiled with the
15805 @option{-fpcc-struct-return} switch.
15806 Use it to conform to a non-default application binary interface.

15808 @item -fshort-enums
15809 @opindex fshort-enums
15810 Allocate to an @code{enum} type only as many bytes as it needs for the
15811 declared range of possible values. Specifically, the @code{enum} type
15812 will be equivalent to the smallest integer type which has enough room.

15814 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
15815 code that is not binary compatible with code generated without that switch.
15816 Use it to conform to a non-default application binary interface.

15818 @item -fshort-double
15819 @opindex fshort-double
15820 Use the same size for @code{double} as for @code{float}.

15822 @strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
15823 code that is not binary compatible with code generated without that switch.
15824 Use it to conform to a non-default application binary interface.

15826 @item -fshort-wchar
15827 @opindex fshort-wchar
15828 Override the underlying type for @samp{wchar_t} to be @samp{short
15829 unsigned int} instead of the default for the target. This option is
15830 useful for building programs to run under WINE@.

15832 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
15833 code that is not binary compatible with code generated without that switch.
15834 Use it to conform to a non-default application binary interface.

15836 @item -fno-common
15837 @opindex fno-common
15838 In C code, controls the placement of uninitialized global variables.
15839 Unix C compilers have traditionally permitted multiple definitions of
15840 such variables in different compilation units by placing the variables
15841 in a common block.
15842 This is the behavior specified by @option{-fcommon}, and is the default
15843 for GCC on most targets.
15844 On the other hand, this behavior is not required by ISO C, and on some
15845 targets may carry a speed or code size penalty on variable references.
15846 The @option{-fno-common} option specifies that the compiler should place
15847 uninitialized global variables in the data section of the object file,
15848 rather than generating them as common blocks.
15849 This has the effect that if the same variable is declared
15850 (without @code{extern}) in two different compilations,
15851 you will get a multiple-definition error when you link them.
15852 In this case, you must compile with @option{-fcommon} instead.
15853 Compiling with @option{-fno-common} is useful on targets for which
15854 it provides better performance, or if you wish to verify that the
15855 program will work on other systems which always treat uninitialized
15856 variable declarations this way.

15858 @item -fno-ident
15859 @opindex fno-ident
15860 Ignore the @samp{#ident} directive.

15862 @item -finhibit-size-directive
15863 @opindex finhibit-size-directive
15864 Don’t output a @code{.size} assembler directive, or anything else that

new/gcc/doc/invoke.texi 199

15865 would cause trouble if the function is split in the middle, and the
15866 two halves are placed at locations far apart in memory. This option is
15867 used when compiling @file{crtstuff.c}; you should not need to use it
15868 for anything else.

15870 @item -fverbose-asm
15871 @opindex fverbose-asm
15872 Put extra commentary information in the generated assembly code to
15873 make it more readable. This option is generally only of use to those
15874 who actually need to read the generated assembly code (perhaps while
15875 debugging the compiler itself).

15877 @option{-fno-verbose-asm}, the default, causes the
15878 extra information to be omitted and is useful when comparing two assembler
15879 files.

15881 @item -frecord-gcc-switches
15882 @opindex frecord-gcc-switches
15883 This switch causes the command line that was used to invoke the
15884 compiler to be recorded into the object file that is being created.
15885 This switch is only implemented on some targets and the exact format
15886 of the recording is target and binary file format dependent, but it
15887 usually takes the form of a section containing ASCII text. This
15888 switch is related to the @option{-fverbose-asm} switch, but that
15889 switch only records information in the assembler output file as
15890 comments, so it never reaches the object file.

15892 @item -fpic
15893 @opindex fpic
15894 @cindex global offset table
15895 @cindex PIC
15896 Generate position-independent code (PIC) suitable for use in a shared
15897 library, if supported for the target machine. Such code accesses all
15898 constant addresses through a global offset table (GOT)@. The dynamic
15899 loader resolves the GOT entries when the program starts (the dynamic
15900 loader is not part of GCC; it is part of the operating system). If
15901 the GOT size for the linked executable exceeds a machine-specific
15902 maximum size, you get an error message from the linker indicating that
15903 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
15904 instead. (These maximums are 8k on the SPARC and 32k
15905 on the m68k and RS/6000. The 386 has no such limit.)

15907 Position-independent code requires special support, and therefore works
15908 only on certain machines. For the 386, GCC supports PIC for System V
15909 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
15910 position-independent.

15912 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
15913 are defined to 1.

15915 @item -fPIC
15916 @opindex fPIC
15917 If supported for the target machine, emit position-independent code,
15918 suitable for dynamic linking and avoiding any limit on the size of the
15919 global offset table. This option makes a difference on the m68k,
15920 PowerPC and SPARC@.

15922 Position-independent code requires special support, and therefore works
15923 only on certain machines.

15925 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
15926 are defined to 2.

15928 @item -fpie
15929 @itemx -fPIE
15930 @opindex fpie

new/gcc/doc/invoke.texi 200

15931 @opindex fPIE
15932 These options are similar to @option{-fpic} and @option{-fPIC}, but
15933 generated position independent code can be only linked into executables.
15934 Usually these options are used when @option{-pie} GCC option will be
15935 used during linking.

15937 @option{-fpie} and @option{-fPIE} both define the macros
15938 @code{__pie__} and @code{__PIE__}. The macros have the value 1
15939 for @option{-fpie} and 2 for @option{-fPIE}.

15941 @item -fno-jump-tables
15942 @opindex fno-jump-tables
15943 Do not use jump tables for switch statements even where it would be
15944 more efficient than other code generation strategies. This option is
15945 of use in conjunction with @option{-fpic} or @option{-fPIC} for
15946 building code which forms part of a dynamic linker and cannot
15947 reference the address of a jump table. On some targets, jump tables
15948 do not require a GOT and this option is not needed.

15950 @item -ffixed-@var{reg}
15951 @opindex ffixed
15952 Treat the register named @var{reg} as a fixed register; generated code
15953 should never refer to it (except perhaps as a stack pointer, frame
15954 pointer or in some other fixed role).

15956 @var{reg} must be the name of a register. The register names accepted
15957 are machine-specific and are defined in the @code{REGISTER_NAMES}
15958 macro in the machine description macro file.

15960 This flag does not have a negative form, because it specifies a
15961 three-way choice.

15963 @item -fcall-used-@var{reg}
15964 @opindex fcall-used
15965 Treat the register named @var{reg} as an allocable register that is
15966 clobbered by function calls. It may be allocated for temporaries or
15967 variables that do not live across a call. Functions compiled this way
15968 will not save and restore the register @var{reg}.

15970 It is an error to used this flag with the frame pointer or stack pointer.
15971 Use of this flag for other registers that have fixed pervasive roles in
15972 the machine’s execution model will produce disastrous results.

15974 This flag does not have a negative form, because it specifies a
15975 three-way choice.

15977 @item -fcall-saved-@var{reg}
15978 @opindex fcall-saved
15979 Treat the register named @var{reg} as an allocable register saved by
15980 functions. It may be allocated even for temporaries or variables that
15981 live across a call. Functions compiled this way will save and restore
15982 the register @var{reg} if they use it.

15984 It is an error to used this flag with the frame pointer or stack pointer.
15985 Use of this flag for other registers that have fixed pervasive roles in
15986 the machine’s execution model will produce disastrous results.

15988 A different sort of disaster will result from the use of this flag for
15989 a register in which function values may be returned.

15991 This flag does not have a negative form, because it specifies a
15992 three-way choice.

15994 @item -fpack-struct[=@var{n}]
15995 @opindex fpack-struct
15996 Without a value specified, pack all structure members together without

new/gcc/doc/invoke.texi 201

15997 holes. When a value is specified (which must be a small power of two), pack
15998 structure members according to this value, representing the maximum
15999 alignment (that is, objects with default alignment requirements larger than
16000 this will be output potentially unaligned at the next fitting location.

16002 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
16003 code that is not binary compatible with code generated without that switch.
16004 Additionally, it makes the code suboptimal.
16005 Use it to conform to a non-default application binary interface.

16007 @item -finstrument-functions
16008 @opindex finstrument-functions
16009 Generate instrumentation calls for entry and exit to functions. Just
16010 after function entry and just before function exit, the following
16011 profiling functions will be called with the address of the current
16012 function and its call site. (On some platforms,
16013 @code{__builtin_return_address} does not work beyond the current
16014 function, so the call site information may not be available to the
16015 profiling functions otherwise.)

16017 @smallexample
16018 void __cyg_profile_func_enter (void *this_fn,
16019 void *call_site);
16020 void __cyg_profile_func_exit (void *this_fn,
16021 void *call_site);
16022 @end smallexample

16024 The first argument is the address of the start of the current function,
16025 which may be looked up exactly in the symbol table.

16027 This instrumentation is also done for functions expanded inline in other
16028 functions. The profiling calls will indicate where, conceptually, the
16029 inline function is entered and exited. This means that addressable
16030 versions of such functions must be available. If all your uses of a
16031 function are expanded inline, this may mean an additional expansion of
16032 code size. If you use @samp{extern inline} in your C code, an
16033 addressable version of such functions must be provided. (This is
16034 normally the case anyways, but if you get lucky and the optimizer always
16035 expands the functions inline, you might have gotten away without
16036 providing static copies.)

16038 A function may be given the attribute @code{no_instrument_function}, in
16039 which case this instrumentation will not be done. This can be used, for
16040 example, for the profiling functions listed above, high-priority
16041 interrupt routines, and any functions from which the profiling functions
16042 cannot safely be called (perhaps signal handlers, if the profiling
16043 routines generate output or allocate memory).

16045 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
16046 @opindex finstrument-functions-exclude-file-list

16048 Set the list of functions that are excluded from instrumentation (see
16049 the description of @code{-finstrument-functions}). If the file that
16050 contains a function definition matches with one of @var{file}, then
16051 that function is not instrumented. The match is done on substrings:
16052 if the @var{file} parameter is a substring of the file name, it is
16053 considered to be a match.

16055 For example,
16056 @code{-finstrument-functions-exclude-file-list=/bits/stl,include/sys}
16057 will exclude any inline function defined in files whose pathnames
16058 contain @code{/bits/stl} or @code{include/sys}.

16060 If, for some reason, you want to include letter @code{’,’} in one of
16061 @var{sym}, write @code{’\,’}. For example,
16062 @code{-finstrument-functions-exclude-file-list=’\,\,tmp’}

new/gcc/doc/invoke.texi 202

16063 (note the single quote surrounding the option).

16065 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
16066 @opindex finstrument-functions-exclude-function-list

16068 This is similar to @code{-finstrument-functions-exclude-file-list},
16069 but this option sets the list of function names to be excluded from
16070 instrumentation. The function name to be matched is its user-visible
16071 name, such as @code{vector<int> blah(const vector<int> &)}, not the
16072 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
16073 match is done on substrings: if the @var{sym} parameter is a substring
16074 of the function name, it is considered to be a match.

16076 @item -fstack-check
16077 @opindex fstack-check
16078 Generate code to verify that you do not go beyond the boundary of the
16079 stack. You should specify this flag if you are running in an
16080 environment with multiple threads, but only rarely need to specify it in
16081 a single-threaded environment since stack overflow is automatically
16082 detected on nearly all systems if there is only one stack.

16084 Note that this switch does not actually cause checking to be done; the
16085 operating system or the language runtime must do that. The switch causes
16086 generation of code to ensure that they see the stack being extended.

16088 You can additionally specify a string parameter: @code{no} means no
16089 checking, @code{generic} means force the use of old-style checking,
16090 @code{specific} means use the best checking method and is equivalent
16091 to bare @option{-fstack-check}.

16093 Old-style checking is a generic mechanism that requires no specific
16094 target support in the compiler but comes with the following drawbacks:

16096 @enumerate
16097 @item
16098 Modified allocation strategy for large objects: they will always be
16099 allocated dynamically if their size exceeds a fixed threshold.

16101 @item
16102 Fixed limit on the size of the static frame of functions: when it is
16103 topped by a particular function, stack checking is not reliable and
16104 a warning is issued by the compiler.

16106 @item
16107 Inefficiency: because of both the modified allocation strategy and the
16108 generic implementation, the performances of the code are hampered.
16109 @end enumerate

16111 Note that old-style stack checking is also the fallback method for
16112 @code{specific} if no target support has been added in the compiler.

16114 @item -fstack-limit-register=@var{reg}
16115 @itemx -fstack-limit-symbol=@var{sym}
16116 @itemx -fno-stack-limit
16117 @opindex fstack-limit-register
16118 @opindex fstack-limit-symbol
16119 @opindex fno-stack-limit
16120 Generate code to ensure that the stack does not grow beyond a certain value,
16121 either the value of a register or the address of a symbol. If the stack
16122 would grow beyond the value, a signal is raised. For most targets,
16123 the signal is raised before the stack overruns the boundary, so
16124 it is possible to catch the signal without taking special precautions.

16126 For instance, if the stack starts at absolute address @samp{0x80000000}
16127 and grows downwards, you can use the flags
16128 @option{-fstack-limit-symbol=__stack_limit} and

new/gcc/doc/invoke.texi 203

16129 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
16130 of 128KB@. Note that this may only work with the GNU linker.

16132 @cindex aliasing of parameters
16133 @cindex parameters, aliased
16134 @item -fargument-alias
16135 @itemx -fargument-noalias
16136 @itemx -fargument-noalias-global
16137 @itemx -fargument-noalias-anything
16138 @opindex fargument-alias
16139 @opindex fargument-noalias
16140 @opindex fargument-noalias-global
16141 @opindex fargument-noalias-anything
16142 Specify the possible relationships among parameters and between
16143 parameters and global data.

16145 @option{-fargument-alias} specifies that arguments (parameters) may
16146 alias each other and may alias global storage.@*
16147 @option{-fargument-noalias} specifies that arguments do not alias
16148 each other, but may alias global storage.@*
16149 @option{-fargument-noalias-global} specifies that arguments do not
16150 alias each other and do not alias global storage.
16151 @option{-fargument-noalias-anything} specifies that arguments do not
16152 alias any other storage.

16154 Each language will automatically use whatever option is required by
16155 the language standard. You should not need to use these options yourself.

16157 @item -fleading-underscore
16158 @opindex fleading-underscore
16159 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
16160 change the way C symbols are represented in the object file. One use
16161 is to help link with legacy assembly code.

16163 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
16164 generate code that is not binary compatible with code generated without that
16165 switch. Use it to conform to a non-default application binary interface.
16166 Not all targets provide complete support for this switch.

16168 @item -ftls-model=@var{model}
16169 @opindex ftls-model
16170 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
16171 The @var{model} argument should be one of @code{global-dynamic},
16172 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.

16174 The default without @option{-fpic} is @code{initial-exec}; with
16175 @option{-fpic} the default is @code{global-dynamic}.

16177 @item -fvisibility=@var{default|internal|hidden|protected}
16178 @opindex fvisibility
16179 Set the default ELF image symbol visibility to the specified option---all
16180 symbols will be marked with this unless overridden within the code.
16181 Using this feature can very substantially improve linking and
16182 load times of shared object libraries, produce more optimized
16183 code, provide near-perfect API export and prevent symbol clashes.
16184 It is @strong{strongly} recommended that you use this in any shared objects
16185 you distribute.

16187 Despite the nomenclature, @code{default} always means public ie;
16188 available to be linked against from outside the shared object.
16189 @code{protected} and @code{internal} are pretty useless in real-world
16190 usage so the only other commonly used option will be @code{hidden}.
16191 The default if @option{-fvisibility} isn’t specified is
16192 @code{default}, i.e., make every
16193 symbol public---this causes the same behavior as previous versions of
16194 GCC@.

new/gcc/doc/invoke.texi 204

16196 A good explanation of the benefits offered by ensuring ELF
16197 symbols have the correct visibility is given by ‘‘How To Write
16198 Shared Libraries’’ by Ulrich Drepper (which can be found at
16199 @w{@uref{http://people.redhat.com/~drepper/}})---however a superior
16200 solution made possible by this option to marking things hidden when
16201 the default is public is to make the default hidden and mark things
16202 public. This is the norm with DLL’s on Windows and with @option{-fvisibility=hi
16203 and @code{__attribute__ ((visibility("default")))} instead of
16204 @code{__declspec(dllexport)} you get almost identical semantics with
16205 identical syntax. This is a great boon to those working with
16206 cross-platform projects.

16208 For those adding visibility support to existing code, you may find
16209 @samp{#pragma GCC visibility} of use. This works by you enclosing
16210 the declarations you wish to set visibility for with (for example)
16211 @samp{#pragma GCC visibility push(hidden)} and
16212 @samp{#pragma GCC visibility pop}.
16213 Bear in mind that symbol visibility should be viewed @strong{as
16214 part of the API interface contract} and thus all new code should
16215 always specify visibility when it is not the default ie; declarations
16216 only for use within the local DSO should @strong{always} be marked explicitly
16217 as hidden as so to avoid PLT indirection overheads---making this
16218 abundantly clear also aids readability and self-documentation of the code.
16219 Note that due to ISO C++ specification requirements, operator new and
16220 operator delete must always be of default visibility.

16222 Be aware that headers from outside your project, in particular system
16223 headers and headers from any other library you use, may not be
16224 expecting to be compiled with visibility other than the default. You
16225 may need to explicitly say @samp{#pragma GCC visibility push(default)}
16226 before including any such headers.

16228 @samp{extern} declarations are not affected by @samp{-fvisibility}, so
16229 a lot of code can be recompiled with @samp{-fvisibility=hidden} with
16230 no modifications. However, this means that calls to @samp{extern}
16231 functions with no explicit visibility will use the PLT, so it is more
16232 effective to use @samp{__attribute ((visibility))} and/or
16233 @samp{#pragma GCC visibility} to tell the compiler which @samp{extern}
16234 declarations should be treated as hidden.

16236 Note that @samp{-fvisibility} does affect C++ vague linkage
16237 entities. This means that, for instance, an exception class that will
16238 be thrown between DSOs must be explicitly marked with default
16239 visibility so that the @samp{type_info} nodes will be unified between
16240 the DSOs.

16242 An overview of these techniques, their benefits and how to use them
16243 is at @w{@uref{http://gcc.gnu.org/wiki/Visibility}}.

16245 @end table

16247 @c man end

16249 @node Environment Variables
16250 @section Environment Variables Affecting GCC
16251 @cindex environment variables

16253 @c man begin ENVIRONMENT
16254 This section describes several environment variables that affect how GCC
16255 operates. Some of them work by specifying directories or prefixes to use
16256 when searching for various kinds of files. Some are used to specify other
16257 aspects of the compilation environment.

16259 Note that you can also specify places to search using options such as
16260 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These

new/gcc/doc/invoke.texi 205

16261 take precedence over places specified using environment variables, which
16262 in turn take precedence over those specified by the configuration of GCC@.
16263 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
16264 GNU Compiler Collection (GCC) Internals}.

16266 @table @env
16267 @item LANG
16268 @itemx LC_CTYPE
16269 @c @itemx LC_COLLATE
16270 @itemx LC_MESSAGES
16271 @c @itemx LC_MONETARY
16272 @c @itemx LC_NUMERIC
16273 @c @itemx LC_TIME
16274 @itemx LC_ALL
16275 @findex LANG
16276 @findex LC_CTYPE
16277 @c @findex LC_COLLATE
16278 @findex LC_MESSAGES
16279 @c @findex LC_MONETARY
16280 @c @findex LC_NUMERIC
16281 @c @findex LC_TIME
16282 @findex LC_ALL
16283 @cindex locale
16284 These environment variables control the way that GCC uses
16285 localization information that allow GCC to work with different
16286 national conventions. GCC inspects the locale categories
16287 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
16288 so. These locale categories can be set to any value supported by your
16289 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
16290 Kingdom encoded in UTF-8.

16292 The @env{LC_CTYPE} environment variable specifies character
16293 classification. GCC uses it to determine the character boundaries in
16294 a string; this is needed for some multibyte encodings that contain quote
16295 and escape characters that would otherwise be interpreted as a string
16296 end or escape.

16298 The @env{LC_MESSAGES} environment variable specifies the language to
16299 use in diagnostic messages.

16301 If the @env{LC_ALL} environment variable is set, it overrides the value
16302 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
16303 and @env{LC_MESSAGES} default to the value of the @env{LANG}
16304 environment variable. If none of these variables are set, GCC
16305 defaults to traditional C English behavior.

16307 @item TMPDIR
16308 @findex TMPDIR
16309 If @env{TMPDIR} is set, it specifies the directory to use for temporary
16310 files. GCC uses temporary files to hold the output of one stage of
16311 compilation which is to be used as input to the next stage: for example,
16312 the output of the preprocessor, which is the input to the compiler
16313 proper.

16315 @item GCC_EXEC_PREFIX
16316 @findex GCC_EXEC_PREFIX
16317 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
16318 names of the subprograms executed by the compiler. No slash is added
16319 when this prefix is combined with the name of a subprogram, but you can
16320 specify a prefix that ends with a slash if you wish.

16322 If @env{GCC_EXEC_PREFIX} is not set, GCC will attempt to figure out
16323 an appropriate prefix to use based on the pathname it was invoked with.

16325 If GCC cannot find the subprogram using the specified prefix, it
16326 tries looking in the usual places for the subprogram.

new/gcc/doc/invoke.texi 206

16328 The default value of @env{GCC_EXEC_PREFIX} is
16329 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
16330 the installed compiler. In many cases @var{prefix} is the value
16331 of @code{prefix} when you ran the @file{configure} script.

16333 Other prefixes specified with @option{-B} take precedence over this prefix.

16335 This prefix is also used for finding files such as @file{crt0.o} that are
16336 used for linking.

16338 In addition, the prefix is used in an unusual way in finding the
16339 directories to search for header files. For each of the standard
16340 directories whose name normally begins with @samp{/usr/local/lib/gcc}
16341 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
16342 replacing that beginning with the specified prefix to produce an
16343 alternate directory name. Thus, with @option{-Bfoo/}, GCC will search
16344 @file{foo/bar} where it would normally search @file{/usr/local/lib/bar}.
16345 These alternate directories are searched first; the standard directories
16346 come next. If a standard directory begins with the configured
16347 @var{prefix} then the value of @var{prefix} is replaced by
16348 @env{GCC_EXEC_PREFIX} when looking for header files.

16350 @item COMPILER_PATH
16351 @findex COMPILER_PATH
16352 The value of @env{COMPILER_PATH} is a colon-separated list of
16353 directories, much like @env{PATH}. GCC tries the directories thus
16354 specified when searching for subprograms, if it can’t find the
16355 subprograms using @env{GCC_EXEC_PREFIX}.

16357 @item LIBRARY_PATH
16358 @findex LIBRARY_PATH
16359 The value of @env{LIBRARY_PATH} is a colon-separated list of
16360 directories, much like @env{PATH}. When configured as a native compiler,
16361 GCC tries the directories thus specified when searching for special
16362 linker files, if it can’t find them using @env{GCC_EXEC_PREFIX}. Linking
16363 using GCC also uses these directories when searching for ordinary
16364 libraries for the @option{-l} option (but directories specified with
16365 @option{-L} come first).

16367 @item LANG
16368 @findex LANG
16369 @cindex locale definition
16370 This variable is used to pass locale information to the compiler. One way in
16371 which this information is used is to determine the character set to be used
16372 when character literals, string literals and comments are parsed in C and C++.
16373 When the compiler is configured to allow multibyte characters,
16374 the following values for @env{LANG} are recognized:

16376 @table @samp
16377 @item C-JIS
16378 Recognize JIS characters.
16379 @item C-SJIS
16380 Recognize SJIS characters.
16381 @item C-EUCJP
16382 Recognize EUCJP characters.
16383 @end table

16385 If @env{LANG} is not defined, or if it has some other value, then the
16386 compiler will use mblen and mbtowc as defined by the default locale to
16387 recognize and translate multibyte characters.
16388 @end table

16390 @noindent
16391 Some additional environments variables affect the behavior of the
16392 preprocessor.

new/gcc/doc/invoke.texi 207

16394 @include cppenv.texi

16396 @c man end

16398 @node Precompiled Headers
16399 @section Using Precompiled Headers
16400 @cindex precompiled headers
16401 @cindex speed of compilation

16403 Often large projects have many header files that are included in every
16404 source file. The time the compiler takes to process these header files
16405 over and over again can account for nearly all of the time required to
16406 build the project. To make builds faster, GCC allows users to
16407 ‘precompile’ a header file; then, if builds can use the precompiled
16408 header file they will be much faster.

16410 To create a precompiled header file, simply compile it as you would any
16411 other file, if necessary using the @option{-x} option to make the driver
16412 treat it as a C or C++ header file. You will probably want to use a
16413 tool like @command{make} to keep the precompiled header up-to-date when
16414 the headers it contains change.

16416 A precompiled header file will be searched for when @code{#include} is
16417 seen in the compilation. As it searches for the included file
16418 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
16419 compiler looks for a precompiled header in each directory just before it
16420 looks for the include file in that directory. The name searched for is
16421 the name specified in the @code{#include} with @samp{.gch} appended. If
16422 the precompiled header file can’t be used, it is ignored.

16424 For instance, if you have @code{#include "all.h"}, and you have
16425 @file{all.h.gch} in the same directory as @file{all.h}, then the
16426 precompiled header file will be used if possible, and the original
16427 header will be used otherwise.

16429 Alternatively, you might decide to put the precompiled header file in a
16430 directory and use @option{-I} to ensure that directory is searched
16431 before (or instead of) the directory containing the original header.
16432 Then, if you want to check that the precompiled header file is always
16433 used, you can put a file of the same name as the original header in this
16434 directory containing an @code{#error} command.

16436 This also works with @option{-include}. So yet another way to use
16437 precompiled headers, good for projects not designed with precompiled
16438 header files in mind, is to simply take most of the header files used by
16439 a project, include them from another header file, precompile that header
16440 file, and @option{-include} the precompiled header. If the header files
16441 have guards against multiple inclusion, they will be skipped because
16442 they’ve already been included (in the precompiled header).

16444 If you need to precompile the same header file for different
16445 languages, targets, or compiler options, you can instead make a
16446 @emph{directory} named like @file{all.h.gch}, and put each precompiled
16447 header in the directory, perhaps using @option{-o}. It doesn’t matter
16448 what you call the files in the directory, every precompiled header in
16449 the directory will be considered. The first precompiled header
16450 encountered in the directory that is valid for this compilation will
16451 be used; they’re searched in no particular order.

16453 There are many other possibilities, limited only by your imagination,
16454 good sense, and the constraints of your build system.

16456 A precompiled header file can be used only when these conditions apply:

16458 @itemize

new/gcc/doc/invoke.texi 208

16459 @item
16460 Only one precompiled header can be used in a particular compilation.

16462 @item
16463 A precompiled header can’t be used once the first C token is seen. You
16464 can have preprocessor directives before a precompiled header; you can
16465 even include a precompiled header from inside another header, so long as
16466 there are no C tokens before the @code{#include}.

16468 @item
16469 The precompiled header file must be produced for the same language as
16470 the current compilation. You can’t use a C precompiled header for a C++
16471 compilation.

16473 @item
16474 The precompiled header file must have been produced by the same compiler
16475 binary as the current compilation is using.

16477 @item
16478 Any macros defined before the precompiled header is included must
16479 either be defined in the same way as when the precompiled header was
16480 generated, or must not affect the precompiled header, which usually
16481 means that they don’t appear in the precompiled header at all.

16483 The @option{-D} option is one way to define a macro before a
16484 precompiled header is included; using a @code{#define} can also do it.
16485 There are also some options that define macros implicitly, like
16486 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
16487 defined this way.

16489 @item If debugging information is output when using the precompiled
16490 header, using @option{-g} or similar, the same kind of debugging information
16491 must have been output when building the precompiled header. However,
16492 a precompiled header built using @option{-g} can be used in a compilation
16493 when no debugging information is being output.

16495 @item The same @option{-m} options must generally be used when building
16496 and using the precompiled header. @xref{Submodel Options},
16497 for any cases where this rule is relaxed.

16499 @item Each of the following options must be the same when building and using
16500 the precompiled header:

16502 @gccoptlist{-fexceptions}

16504 @item
16505 Some other command-line options starting with @option{-f},
16506 @option{-p}, or @option{-O} must be defined in the same way as when
16507 the precompiled header was generated. At present, it’s not clear
16508 which options are safe to change and which are not; the safest choice
16509 is to use exactly the same options when generating and using the
16510 precompiled header. The following are known to be safe:

16512 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
16513 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
16514 -fsched-verbose=<number> -fschedule-insns -fvisibility= @gol
16515 -pedantic-errors}

16517 @end itemize

16519 For all of these except the last, the compiler will automatically
16520 ignore the precompiled header if the conditions aren’t met. If you
16521 find an option combination that doesn’t work and doesn’t cause the
16522 precompiled header to be ignored, please consider filing a bug report,
16523 see @ref{Bugs}.

new/gcc/doc/invoke.texi 209

16525 If you do use differing options when generating and using the
16526 precompiled header, the actual behavior will be a mixture of the
16527 behavior for the options. For instance, if you use @option{-g} to
16528 generate the precompiled header but not when using it, you may or may
16529 not get debugging information for routines in the precompiled header.

16531 @node Running Protoize
16532 @section Running Protoize

16534 The program @code{protoize} is an optional part of GCC@. You can use
16535 it to add prototypes to a program, thus converting the program to ISO
16536 C in one respect. The companion program @code{unprotoize} does the
16537 reverse: it removes argument types from any prototypes that are found.

16539 When you run these programs, you must specify a set of source files as
16540 command line arguments. The conversion programs start out by compiling
16541 these files to see what functions they define. The information gathered
16542 about a file @var{foo} is saved in a file named @file{@var{foo}.X}.

16544 After scanning comes actual conversion. The specified files are all
16545 eligible to be converted; any files they include (whether sources or
16546 just headers) are eligible as well.

16548 But not all the eligible files are converted. By default,
16549 @code{protoize} and @code{unprotoize} convert only source and header
16550 files in the current directory. You can specify additional directories
16551 whose files should be converted with the @option{-d @var{directory}}
16552 option. You can also specify particular files to exclude with the
16553 @option{-x @var{file}} option. A file is converted if it is eligible, its
16554 directory name matches one of the specified directory names, and its
16555 name within the directory has not been excluded.

16557 Basic conversion with @code{protoize} consists of rewriting most
16558 function definitions and function declarations to specify the types of
16559 the arguments. The only ones not rewritten are those for varargs
16560 functions.

16562 @code{protoize} optionally inserts prototype declarations at the
16563 beginning of the source file, to make them available for any calls that
16564 precede the function’s definition. Or it can insert prototype
16565 declarations with block scope in the blocks where undeclared functions
16566 are called.

16568 Basic conversion with @code{unprotoize} consists of rewriting most
16569 function declarations to remove any argument types, and rewriting
16570 function definitions to the old-style pre-ISO form.

16572 Both conversion programs print a warning for any function declaration or
16573 definition that they can’t convert. You can suppress these warnings
16574 with @option{-q}.

16576 The output from @code{protoize} or @code{unprotoize} replaces the
16577 original source file. The original file is renamed to a name ending
16578 with @samp{.save} (for DOS, the saved filename ends in @samp{.sav}
16579 without the original @samp{.c} suffix). If the @samp{.save} (@samp{.sav}
16580 for DOS) file already exists, then the source file is simply discarded.

16582 @code{protoize} and @code{unprotoize} both depend on GCC itself to
16583 scan the program and collect information about the functions it uses.
16584 So neither of these programs will work until GCC is installed.

16586 Here is a table of the options you can use with @code{protoize} and
16587 @code{unprotoize}. Each option works with both programs unless
16588 otherwise stated.

16590 @table @code

new/gcc/doc/invoke.texi 210

16591 @item -B @var{directory}
16592 Look for the file @file{SYSCALLS.c.X} in @var{directory}, instead of the
16593 usual directory (normally @file{/usr/local/lib}). This file contains
16594 prototype information about standard system functions. This option
16595 applies only to @code{protoize}.

16597 @item -c @var{compilation-options}
16598 Use @var{compilation-options} as the options when running @command{gcc} to
16599 produce the @samp{.X} files. The special option @option{-aux-info} is
16600 always passed in addition, to tell @command{gcc} to write a @samp{.X} file.

16602 Note that the compilation options must be given as a single argument to
16603 @code{protoize} or @code{unprotoize}. If you want to specify several
16604 @command{gcc} options, you must quote the entire set of compilation options
16605 to make them a single word in the shell.

16607 There are certain @command{gcc} arguments that you cannot use, because they
16608 would produce the wrong kind of output. These include @option{-g},
16609 @option{-O}, @option{-c}, @option{-S}, and @option{-o} If you include these in
16610 the @var{compilation-options}, they are ignored.

16612 @item -C
16613 Rename files to end in @samp{.C} (@samp{.cc} for DOS-based file
16614 systems) instead of @samp{.c}. This is convenient if you are converting
16615 a C program to C++. This option applies only to @code{protoize}.

16617 @item -g
16618 Add explicit global declarations. This means inserting explicit
16619 declarations at the beginning of each source file for each function
16620 that is called in the file and was not declared. These declarations
16621 precede the first function definition that contains a call to an
16622 undeclared function. This option applies only to @code{protoize}.

16624 @item -i @var{string}
16625 Indent old-style parameter declarations with the string @var{string}.
16626 This option applies only to @code{protoize}.

16628 @code{unprotoize} converts prototyped function definitions to old-style
16629 function definitions, where the arguments are declared between the
16630 argument list and the initial @samp{@{}. By default, @code{unprotoize}
16631 uses five spaces as the indentation. If you want to indent with just
16632 one space instead, use @option{-i " "}.

16634 @item -k
16635 Keep the @samp{.X} files. Normally, they are deleted after conversion
16636 is finished.

16638 @item -l
16639 Add explicit local declarations. @code{protoize} with @option{-l} inserts
16640 a prototype declaration for each function in each block which calls the
16641 function without any declaration. This option applies only to
16642 @code{protoize}.

16644 @item -n
16645 Make no real changes. This mode just prints information about the conversions
16646 that would have been done without @option{-n}.

16648 @item -N
16649 Make no @samp{.save} files. The original files are simply deleted.
16650 Use this option with caution.

16652 @item -p @var{program}
16653 Use the program @var{program} as the compiler. Normally, the name
16654 @file{gcc} is used.

16656 @item -q

new/gcc/doc/invoke.texi 211

16657 Work quietly. Most warnings are suppressed.

16659 @item -v
16660 Print the version number, just like @option{-v} for @command{gcc}.
16661 @end table

16663 If you need special compiler options to compile one of your program’s
16664 source files, then you should generate that file’s @samp{.X} file
16665 specially, by running @command{gcc} on that source file with the
16666 appropriate options and the option @option{-aux-info}. Then run
16667 @code{protoize} on the entire set of files. @code{protoize} will use
16668 the existing @samp{.X} file because it is newer than the source file.
16669 For example:

16671 @smallexample
16672 gcc -Dfoo=bar file1.c -aux-info file1.X
16673 protoize *.c
16674 @end smallexample

16676 @noindent
16677 You need to include the special files along with the rest in the
16678 @code{protoize} command, even though their @samp{.X} files already
16679 exist, because otherwise they won’t get converted.

16681 @xref{Protoize Caveats}, for more information on how to use
16682 @code{protoize} successfully.

new/gcc/testsuite/gcc.target/i386/local.c 1

**
 483 Sun Oct 28 20:56:11 2012
new/gcc/testsuite/gcc.target/i386/local.c
Implement -fstrict-calling-conventions
Stock GCC is overly willing to violate the ABI when calling local functions,
such that it passes arguments in registers on i386. This hampers debugging
with anything other than a fully-aware DWARF debugger, and is generally not
something we desire.
Implement a flag which disables this behaviour, enabled by default. The flag is
global, though only effective on i386, to more easily allow its globalization
later which, given the odds, is likely to be necessary.
**

1 /* { dg-do compile } */
2 /* { dg-options "-O2 -funit-at-a-time -fno-strict-calling-conventions" { target
3 /* { dg-options "-O2 -funit-at-a-time" { target lp64 } } */
2 /* { dg-options "-O2 -funit-at-a-time" } */
4 /* { dg-final { scan-assembler "magic\[^\\n\]*eax" { target ilp32 } } } */
5 /* { dg-final { scan-assembler "magic\[^\\n\]*edi" { target lp64 } } } */

7 /* Verify that local calling convention is used. */
8 static t(int) __attribute__ ((noinline));
9 m()

10 {
11 t(1);
12 }

______unchanged_portion_omitted_

new/gcc/testsuite/gcc.target/i386/save-args-1.c 1

**
 376 Sun Oct 28 20:56:11 2012
new/gcc/testsuite/gcc.target/i386/save-args-1.c
testsuite/save-args-1: Actually test the full thing, rather than just the bit I
**

1 /* Test -msave-args */
2 /* { dg-do compile { target { { i?86-*-solaris2.* } && lp64 } } } */
3 /* { dg-options "-msave-args" } */
4 /* { dg-final { scan-assembler "movq\t%rsi, -32\\(%rbp\\)" } } */
5 /* { dg-final { scan-assembler "movq\t%rsi, -16\\(%rbp\\)" } } */
6 /* { dg-final { scan-assembler "movq\t%rdi, -8\\(%rbp\\)" } } */

8 int
9 foo(int argc, char **argv)
10 {
11 return (1);
12 }
13 #endif /* ! codereview */

new/gcc/testsuite/gcc.target/i386/strict-cc.c 1

**
 373 Sun Oct 28 20:56:11 2012
new/gcc/testsuite/gcc.target/i386/strict-cc.c
Implement -fstrict-calling-conventions
Stock GCC is overly willing to violate the ABI when calling local functions,
such that it passes arguments in registers on i386. This hampers debugging
with anything other than a fully-aware DWARF debugger, and is generally not
something we desire.
Implement a flag which disables this behaviour, enabled by default. The flag is
global, though only effective on i386, to more easily allow its globalization
later which, given the odds, is likely to be necessary.
**

1 /* { dg-do compile { target { ilp32 } } } */
2 /* { dg-options "-O2 -funit-at-a-time -fstrict-calling-conventions" } */
3 /* { dg-final { scan-assembler "pushl.*\\\$1" } } */

5 #include <stdio.h>

7 /* Verify that local calling convention is not used if strict conventions. */
8 static t(int) __attribute__ ((noinline));
9 m()
10 {
11 t(1);
12 }

14 static t(int a)
15 {
16 printf("%d\n", a);
17 }
18 #endif /* ! codereview */

new/libiberty/testsuite/test-demangle.c 1

**
 7746 Sun Oct 28 20:56:11 2012
new/libiberty/testsuite/test-demangle.c
libiberty/testsuite: Avoid conflicting getline()
**
______unchanged_portion_omitted_

42 static unsigned int lineno;

44 /* Safely read a single line of arbitrary length from standard input. */

46 #define LINELEN 80

48 static void
49 _getline(buf)
49 getline(buf)
50 struct line *buf;
51 {
52 char *data = buf->data;
53 size_t alloc = buf->alloced;
54 size_t count = 0;
55 int c;

57 if (data == 0)
58 {
59 data = xmalloc (LINELEN);
60 alloc = LINELEN;
61 }

63 /* Skip comment lines. */
64 while ((c = getchar()) == ’#’)
65 {
66 while ((c = getchar()) != EOF && c != ’\n’);
67 lineno++;
68 }

70 /* c is the first character on the line, and it’s not a comment
71 line: copy this line into the buffer and return. */
72 while (c != EOF && c != ’\n’)
73 {
74 if (count + 1 >= alloc)
75 {
76 alloc *= 2;
77 data = xrealloc (data, alloc);
78 }
79 data[count++] = c;
80 c = getchar();
81 }
82 lineno++;
83 data[count] = ’\0’;

85 buf->data = data;
86 buf->alloced = alloc;
87 }

______unchanged_portion_omitted_

149 /* The tester operates on a data file consisting of groups of lines:
150 options
151 input to be demangled
152 expected output

154 Supported options:
155 --format=<name> Sets the demangling style.
156 --no-params There are two lines of expected output; the first
157 is with DMGL_PARAMS, the second is without it.
158 --is-v3-ctor Calls is_gnu_v3_mangled_ctor on input; expected

new/libiberty/testsuite/test-demangle.c 2

159 output is an integer representing ctor_kind.
160 --is-v3-dtor Likewise, but for dtors.
161 --ret-postfix Passes the DMGL_RET_POSTFIX option

163 For compatibility, just in case it matters, the options line may be
164 empty, to mean --format=auto. If it doesn’t start with --, then it
165 may contain only a format name.
166 */

168 int
169 main(argc, argv)
170 int argc;
171 char **argv;
172 {
173 enum demangling_styles style = auto_demangling;
174 int no_params;
175 int is_v3_ctor;
176 int is_v3_dtor;
177 int ret_postfix;
178 struct line format;
179 struct line input;
180 struct line expect;
181 char *result;
182 int failures = 0;
183 int tests = 0;

185 if (argc > 1)
186 {
187 fprintf (stderr, "usage: %s < test-set\n", argv[0]);
188 return 2;
189 }

191 format.data = 0;
192 input.data = 0;
193 expect.data = 0;

195 for (;;)
196 {
197 const char *inp;
198
199 _getline (&format);
199 getline (&format);
200 if (feof (stdin))
201 break;

203 _getline (&input);
204 _getline (&expect);
203 getline (&input);
204 getline (&expect);

206 inp = protect_end (input.data);

208 tests++;

210 no_params = 0;
211 ret_postfix = 0;
212 is_v3_ctor = 0;
213 is_v3_dtor = 0;
214 if (format.data[0] == ’\0’)
215 style = auto_demangling;
216 else if (format.data[0] != ’-’)
217 {
218 style = cplus_demangle_name_to_style (format.data);
219 if (style == unknown_demangling)
220 {
221 printf ("FAIL at line %d: unknown demangling style %s\n",

new/libiberty/testsuite/test-demangle.c 3

222 lineno, format.data);
223 failures++;
224 continue;
225 }
226 }
227 else
228 {
229 char *p;
230 char *opt;

232 p = format.data;
233 while (*p != ’\0’)
234 {
235 char c;

237 opt = p;
238 p += strcspn (p, " \t=");
239 c = *p;
240 *p = ’\0’;
241 if (strcmp (opt, "--format") == 0 && c == ’=’)
242 {
243 char *fstyle;

245 *p = c;
246 ++p;
247 fstyle = p;
248 p += strcspn (p, " \t");
249 c = *p;
250 *p = ’\0’;
251 style = cplus_demangle_name_to_style (fstyle);
252 if (style == unknown_demangling)
253 {
254 printf ("FAIL at line %d: unknown demangling style %s\n",
255 lineno, fstyle);
256 failures++;
257 continue;
258 }
259 }
260 else if (strcmp (opt, "--no-params") == 0)
261 no_params = 1;
262 else if (strcmp (opt, "--is-v3-ctor") == 0)
263 is_v3_ctor = 1;
264 else if (strcmp (opt, "--is-v3-dtor") == 0)
265 is_v3_dtor = 1;
266 else if (strcmp (opt, "--ret-postfix") == 0)
267 ret_postfix = 1;
268 else
269 {
270 printf ("FAIL at line %d: unrecognized option %s\n",
271 lineno, opt);
272 failures++;
273 continue;
274 }
275 *p = c;
276 p += strspn (p, " \t");
277 }
278 }

280 if (is_v3_ctor || is_v3_dtor)
281 {
282 char buf[20];

284 if (is_v3_ctor)
285 {
286 enum gnu_v3_ctor_kinds kc;

new/libiberty/testsuite/test-demangle.c 4

288 kc = is_gnu_v3_mangled_ctor (inp);
289 sprintf (buf, "%d", (int) kc);
290 }
291 else
292 {
293 enum gnu_v3_dtor_kinds kd;

295 kd = is_gnu_v3_mangled_dtor (inp);
296 sprintf (buf, "%d", (int) kd);
297 }

299 if (strcmp (buf, expect.data) != 0)
300 {
301 fail (lineno, format.data, input.data, buf, expect.data);
302 failures++;
303 }

305 continue;
306 }

308 cplus_demangle_set_style (style);

310 result = cplus_demangle (inp,
311 DMGL_PARAMS|DMGL_ANSI|DMGL_TYPES
312 |(ret_postfix ? DMGL_RET_POSTFIX : 0));

314 if (result
315 ? strcmp (result, expect.data)
316 : strcmp (input.data, expect.data))
317 {
318 fail (lineno, format.data, input.data, result, expect.data);
319 failures++;
320 }
321 free (result);

323 if (no_params)
324 {
325 _getline (&expect);
325 getline (&expect);
326 result = cplus_demangle (inp, DMGL_ANSI|DMGL_TYPES);

328 if (result
329 ? strcmp (result, expect.data)
330 : strcmp (input.data, expect.data))
331 {
332 fail (lineno, format.data, input.data, result, expect.data);
333 failures++;
334 }
335 free (result);
336 }
337 }

339 free (format.data);
340 free (input.data);
341 free (expect.data);

343 printf ("%s: %d tests, %d failures\n", argv[0], tests, failures);
344 return failures ? 1 : 0;
345 }

______unchanged_portion_omitted_

