new usr/src/ man/ man3c/ cond_i nit. 3c

R R R R

13502 Sat Feb 15 09: 54: 06 2020
new usr/src/ man/ man3c/ cond_i ni t. 3c
12309 errors in section 9e of the manual
LEEE R R R EE SRR EEEEEEEEEEE R EREEEEEEEEEEEEEEEEEEREEEEEEEEEESEE]

1.\
2 .\" Sun Mcrosystens, Inc. gratefully acknow edges The Open G oup for
3 .\" permission to reproduce portions of its copyrighted docunentation.
4 \" Oiginal docunentation from The Open G oup can be obtained online at
5 .\" http://ww. opengroup. or g/ bookst ore/ .
6 \"
7
8
9

‘\" The Institute of Electrical and El ectronics Engi neers and The Open
.\" Goup, have given us permission to reprint portions of their
" docunentati on.

11 \" In the following statenent, the phrase ‘‘this text’’ refers to portions
12 .\" of the system docunent at i on.

13 .\

14 .\" Portions of this text are reprinted and reproduced in electronic form
15 .\" in the SunOCS Reference Manual, from|EEE Std 1003.1, 2004 Edition,

16 .\" Standard for Information Technol ogy -- Portable Operating System

17 .\" Interface (PCSI X), The Open G oup Base Specifications |ssue 6,

18 .\" Copyright (C) 2001-2004 by the Institute of Electrical and El ectronics
19 .\" Engineers, Inc and The Open Group. In the event of any discrepancy
20 .\" between these versions and the original | EEE and The Open G oup

21 .\" Standard, the original |EEE and The Open G oup Standard is the referee
22 .\" docunent. The original Standard can be obtained online at

23 Q htt p: / / www. opengr oup. or g/ uni x/ onl i ne. htm .

24 \"

25 .\" This notice shall appear on any product containing this material.

26 .\"

27 .\" The contents of this file are subject to the terms of the

28 .\" Common Devel opment and Distribution License (the "License")

29 .\" You may not use this file except in conpliance with the License.

30 .\"

31 .\" You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
32 .\" or http://ww. opensol aris.org/os/licensing.

33 .\" See the License for the specific |anguage governi ng pernissions

34 .\" and limtations under the License.

35 .\"

36 .\" Wien distributing Covered Code, include this CDDL HEADER in each

37 .\" file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

38 .\" If applicable, add the follow ng below this CDDL HEADER, with the

39 .\" fields enclosed by brackets "[]" replaced with your own identifying
40 Q information: Portions Copyright [yyyy] [name of copyright owner]

41 .\"

42 \"

43 .\" Portions Copyright (c) 1995 IEEE. All Rights Reserved.

44 \" Copyright (c) 2001, The |IEEE and The Open G oup. All Rights Reserved.
45 t Copyright (c) 2007, Sun Mcrosystens, Inc. Al Rights Reserved.

46 .\"

47 .TH COND_INIT 3C "February 15, 2020"

47 .TH COND_INIT 3C "Jun 5, 2007"

48 . SH NAME

49 cond_init, cond_wait, cond_tinmedwait, cond_reltinedwait, cond_signal,
50 cond_broadcast, cond_destroy \- condition variables

51 . SH SYNOPSI S

52 .LP

52 .nf

53 cc -nm [\fIflag\fR ..] \fifile\fR .. [\fllibrary\fR ..]
54 #include <thread. h>

55 #i ncl ude <synch. h>

57 \fBint\fR \fBcond_init\fR(\fBcond_t *\fRflcvp\fR, \fBint\fR\fltype\fR \fBvoid
i

60
61
62
63

new usr/src/ man/ man3c/ cond_i nit. 3c 2

.LP

. nf

\fBint\fR \fBcond_wai t\fR(\fBcond_t *\fRflcvp\fR, \fBnutex_t *\fRfInp\fR);

Cfi

.LP

. nf

\fBint\fR \fBcond_timedwai t\fR(\fBcond_t *\fR flcvp\fR \fBmutex_t *\fRflnmp\fR,
\fBtinmestruc_t *\fR flabstime\fR);

fi

.LP

. nf

\fBint\fR \fBcond_reltimedwai t\fR(\fBcond_t *\fRflcvp\fR \fBnutex_t *\fRflnp\
\fBtinestruc_t *\fRflreltime\fR);

i

. LP

. nf

\fBint\fR \fBcond_signal\fR(\fBcond_t *\fRflcvp\fR);
i

.LP
. nf
\fBint\fR \fBcond_broadcast\fR(\fBcond_t *\fR flcvp\fR);
Cfi

.LP

. nf
\fBint\fR \fBcond_destroy\f R(\fBcond_t *\fRflcvp\fR);
i

. SH DESCRI PTI ON

.SS "Initialize"

.sp

.LP

Condi tion variabl es and nutexes should be global. Condition variables that are
allocated in witable nenory can synchroni ze threads anbng processes if they
are shared by the cooperating processes (see \fBmmap\fR(2)) and are initialized
for this purpose.

.sp

.LP

The scope of a condition variable is either intra-process or inter-process.
This is dependent upon whether the argument is passed inplicitly or explicitly
to the initialization of that condition variable. A condition variable does not
need to be explicitly initialized. A condition variable is initialized with all
zeros, by default, and its scope is set to within the calling process. For
inter-process synchronization, a condition variable nust be initialized once,
and only once, before use.

.sp

LP

A condition variable nust not be simultaneousl y initialized by miltiple threads
or re-initialized while in use by other threads.

- Sp

.LP

Attributes of condition variables can be set to the default or customized at
initialization.

- SP

.LP

The \fBcond _init()\fR function initializes the condition variable pointed to by
\flcvp\fR A condition variable can have several different types of behavior,
specified by \fltype\fR No current type uses \flarg\fR although a future type
may specify additional behavior parameters with \flarg\fR The \fltype\fR
argument c take one of the follow ng val ues:

.sp

.ne 2

new usr/src/ man/ man3c/ cond_i nit. 3c

124
125
126
127
128
129
130

132
133

.na
\ f B\ f BUSYNC_THREAD\ f R\ f R

.ad

.RS 17n

The condition variable can synchroni ze threads only in this process.
the defaul t.

. RE

This is

.sp
.ne 2

134 .na

135
136
137
138
139
140
141
142
143

\ f B\ f BUSYNC_PROCESS\ f R\ f R

.ad

.RS 17n

The condition variable can synchronize threads in this process and ot her
processes. Only one process should initialize the condition variable. The
object initialized wth this attribute nust be allocated in nmenory shared
bet ween processes, either in SystemV shared nenory (see \fBshmop\fR(2)) or
menory mapped to a file (see \fBmmap\fR(2)). It is illegal to initialize the
object this way and to not allocate it in such shared nenory.

144 . RE

146
147
148
149
150

151 .

152
153
154
155
156

157 .
158 .i

159
160

162
163
164

165 .i

167
168
169
170
171
172
173

174 . f

175

177 .

178
179

180 .
181 .i

182
183

.sp
LP

initializi ng condition variables can al so be acconplished by allocating in

zeroed nmenory, in which case, a \fltype\fR of \fBUSYNC THREAD\fR i s assuned.

- Sp

LP

If default condition variable attributes are used, statically allocated

condi tion variables can be initialized by the macro \fBDEFAULTCW f R

.sp

.LP

Default condition variable initialization (intra-process):

cond _t cvp;

/*initialize condition variable
with defaul t*/

cond_i nit(&vp, NULL, NULL);
i
n-2

.sp
.LP

or

.sp

.in +2

. nf

cond_i ni t (&cvp,
i

.in -2

USYNC_THREAD, NULL);

condt cond = DEFAULTCV,

184 . fi

185

187
188
189

.in -2

.sp
.LP
Custom zed condition variable initialization (inter-process):

in

new usr/src/ man/ man3c/ cond_i ni t. 3c

190
191
192
193
194
195
196

198
202
203
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

.sp

.in +2

. nf

cond_init(&cvp, /* initialize cv with
inter-process scope */

USYNC_PROCESS, NULL);

fi
.in -2

.SS "Condition Wait"

.sp

.LP

The condition wait interface allows a thread to wait for a condition and
atomically rel ease the associated mutex that it needs to hold to check the
condition. The thread waits for another thread to make the condition true and

that thread’s resulting call to signal and wakeup the waiting thread.

.sp

.LP

The \fBcond_wait()\fR function atom cally rel eases the nutex pointed to by

\fInp\fR and causes the calling thread to block on the condition variable
pointed to by \flcvp\fR The bl ocked thread may be awakened by

\fBcond_signal ()\fR \fBcond_broadcast()\fR, or when interrupted by delivery of
a \fBUNIX\fR signal or a \fBfork()\fR

.sp

.LP

The \fBcond_wait ()\fR \fBcond_tinmedwait()\fR and \fBcond_reltinedwait()\fR
functions always return with the nmutex | ocked and owned by the calling thread
even when returning an error, except when the nmutex has the \fBLOCK_ROBUST\fR
attribute and has been left irrecoverable by the mutex's |last owner. The
\fBcond_wait()\fR \fBcond_timedwait()\fR and \fBcond_reltinmedwait()\fR
functions return the appropriate error value if they fail to internally

218 reacquire the nutex.

219 . SS "Condition Signaling"

225 .sp

226 . LP

220 A condition signal allows a thread to unblock a single thread waiting on the
221 condition variable, whereas a condition broadcast allows a thread to unbl ock
222 all threads waiting on the condition variable.

223 .sp

224 . LP

225 The \ f Bcond_si gnal ()\fR function unbl ocks one thread that is blocked on the
226 condition variable pointed to by \flcvp\fR

227 .sp

228 .LP

229 The \fBcond_broadcast ()\fR function unbl ocks all threads that are bl ocked on
230 the condition variable pointed to by \flcvp\fR

231 .sp

232 .LP

233 If no threads are blocked on the condition variable, then \fBcond_signal ()\fR
234 and \fBcond_broadcast ()\fR have no effect.

235 .sp

236 . LP

237 The \fBcond_si gnal ()\fR or \fBcond_broadcast()\fR functions can be called by a

238
239
240
241
242
243
251
252
244
245
246
247
248
249

thread whether or not it currently owns the nutex that threads calling
\fBcond_wait()\fR \fBcond_timedwait()\fR or \fBcond_reltinmedwait()\fR have
associated with the condition variable during their waits. If, however,

predi ctabl e schedul i ng behavior is required, then that nutex should be | ocked
by the thread prior to calling \fBcond_signal ()\fR or \fBcond_broadcast()\fR
. SS "Destroy"

.sp

.LP

The condition destroy functions destroy any state,
associated with the condition variable.

.sp

.LP

The \fBcond_destroy()\fR functi on destroys any state associated with the
condition variable pointed to by \flcvp\fR The space for storing the condition

but not the space,

new usr/src/ man/ man3c/ cond_i nit. 3c

250
251
261
262
252
253
254
266
267
255
256
257
258

variable is not freed.

. SH RETURN VALUES

.sp

.LP

Upon successful conpletion, these functions return \fBO\fR Oherwi se, a
non-zero value is returned to indicate the error.

. SH ERRCORS

.sp

.LP

The \fBcond_tinedwait()\fR and \fBcond_reltimedwait()\fR functions will fail
if:

.sp

.ne 2

259 .na

260
261
262
263

\fB\fBETIME\fRfR

.ad

.RS 9n

The tine specified by \flabstime\fR or \flreltime\fR has passed.

264 . RE

266
267
268
269
270
271

.sp
.LP

The \ fBcond_wai t (
functions will fa
.sp

.ne 2

J\fR, \fBcond_tinedwait()\fR, and \fBcond_reltinmedwait()\fR
ilif:

272 .na

273

\fB\IfBEINTRfRfR

274 . a

275
276

.RS 9n
Interrupted. The calling thread was awakened by the delivery of a UNI X signal.

277 . RE

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

If the nutex pointed to by \fInp\fRis a robust nutex (initialized with
\ f BLOCK_ROBUST\fR attribute), the \fBcond_wait()\fR, \fBcond_tinedwait (
\ f Bcond reltlrredwalt()\fRfunctlons will, under the specified condition
return the follow ng error values. For coerI ete infornation, see the
description of the \fBnutex_l ock()\fR function on the \fBnmutex_init\fR(3C)
manual page.

.sp

.ne 2

- Sp
LP
f t he
f)\fR and
S,

.na
\ f B\ f BENOTRECOVERABLE\ f R\ f R

.ad

. RS 19n

The nutex was protecting the state that has now been left irrecoverable. The
mut ex has not been acquired.

295 . RE

297
298

.sp
.ne 2

299 .na

300
301
302
303
304

\ f B\ f BEOWNERDEAD\ f R\ f R
.ad

. RS 19n

The | ast owner of the mutex died while holding the nutex,
state it was protecting inconsistent.

possibly | eaving the
The nutex is now owned by the caller.

305 . RE

307
308
309
310
311

.sp
.LP

These functions may fail if:
.sp

.ne 2

new usr/src/ man/ man3c/ cond_i nit. 3c

312 .na

313
314
315
316
317

\fB\f BEFAULT\f R fR

.ad

.RS 10n

The \flcond\fR \flattr\fR \flcvp\fR \flarg\fR \flabstine\fR or \flnutex\fR
argument points to an illegal address.

318 . RE

320
321

.sp
.ne 2

322 .na

323

\fB\f BEI NVAL\ f R f R

324 . al

325
326
327
328
329

331
345
332
333
334
335
349
336

338
339
340
341
342
343

. RS 10n

Invalid argunment. For \fBcond_init()\fR \fltype\fR is not a recognized type.
For \fBcond_tinmedwait()\fR, the nunber of nanoseconds is greater than or equal
to 1,000, 000, 000.

. RE

. SH EXAMPLES
.LP
\fBExanple 1 \fRUse \fBcond_wait()\fRin a loop to test some condition.
.sp

.LP

The \ f Bcond_wai
The \ fBcond_wai

i function is normally used in a |l oop testing sone
i
condition, as f

t()\f
t()\fR functin is normally used in a |loop testing sone
ol | ows

.sp
.in +2
. nf
(voi d) mutex_| ock(np);
whil e (cond == FALSE)
(void) cond_wait(cvp, np);

344 }

397
398
399

401
416
417
402
403

405
406
407
408
409
410
411
412

__unchanged_portion_onitted_
“(voi d) mutex_unl ock(np);

i

.in -2

. SH ATTRI BUTES

.sp

.LP

See \fBattributes\fR(5) for descriptions of the followi ng attributes:
.Sp

.sp
. TS
box;
c| c
.

ATTRI BUTE TYPE ATTRI BUTE VALUE

M- Level MT- Saf e

413 . TE

415
432
433
416
417
418
419
438
439
420

. SH SEE ALSO
.sp

.LP
\fBfork\fR(2),
\fBmutex_i ni t\fR(30),
\ f Bcondi tion\fR(5),

. SH NOTES

.sp

.LP

If nmore than one thread is bl ocked on a condition variable,

\fBmap\fR(2), \fBsetitimer\fR(2), \fBshnmop\fR(2),
\fBS|gnaI\fR(3C), \fBattributes\fR(5),
\fBrTutex\fR(S), \ f Bst andar ds\ f R(5)

the order in which

new usr/src/ man/ man3c/ cond_i nit. 3c

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

threads are unbl ocked is determ ned by the scheduling policy. Wen each thread,
unbl ocked as a result of a \fBcond_signal ()\fR or \fBcond_broadcast ()\fR
returns fromits call to \fBcond_wait()\fR or \fBcond_tinmedwait()\fR, t
thread owns the mutex with which it called \fBcond_wait()\fR
\fBcond_timedwait ()\fR, or \fBcond_reltinmedwait()\fR The thread(s) that are
unbl ocked conpete for the nmutex according to the scheduling policy and as if
each had called \fBrmutex_| ock\fR(3C).

.sp

.LP

Wien \fBcond_wait()\fR returns the value of the condition is indeterninate and
nust be reeval uat ed.

.sp

.LP

The \fBcond_tinedwait()\fR and \fBcond_reltinmedwait()\fR functions are similar
to \fBcond_wait()\fR, except that the calling thread will not wait for the
condition to becone true past the absolute time specified by \flabstinme\fR or
the relative time specified by \flreltine\fR Note that \fBcond_tinmedwait()\fR
or \fBcond_reltinmedwait()\fR might continue to block as it trys to reacquire
the nutex pointed to by \flmp\fR, which may be | ocked by another thread. If
either \fBcond_tinedwait()\fR or \fBcond_reltimedwait()\fR returns because of a
tineout, it returns the error value \fBETIME\fR

e

new

* ok kK

new
1230

* ok kK

OCONNOUTRWNE

usr/src/ man/ man9e/ awr it e. 9e 1

B R

3621 Sat Feb 15 09:54:06 2020
usr/src/ man/ man9e/ awr i te. 9e
9 errors in section 9e of the manual

B R R R

"\" te

.\" Copyright (c) 2008, Sun Mcrosystens, Inc. Al Rights Reserved.

.\" Copyright 1989 AT&T

.\" The contents of this file are subject to the terns of the Common Devel opnent
.\" You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE or http:
.\" Wen distributing Covered Code, include this CDDL HEADER in each file and in
.TH AWRI TE 9E "February 15, 2020"

.TH AWRI TE 9E "Mar 28, 1997"

. SH NAME

awite \- asynchronous wite to a device

. SH SYNOPSI S

.LP

. nf

#i ncl ude <sys/uio. h>
#i ncl ude <sys/aio_req. h>
#i ncl ude <sys/cred. h>

#i ncl ude <sys/ddi . h>

#i ncl ude <sys/sunddi. h>

\fBi nt preflx\fR‘\fBawrite\fR(\f Bdev_t\fR \fldev\fR \fBstruct aio_req *\fRflaio

\fBintprefixX\fRfBawite\fR(\fBdev_t\fR \fldev\fR \fBstruct aio_req *\fRflaio
\fBcred_t *\fR flcred_p\fR);

i

. SH | NTERFACE LEVEL

.sp

SoI aris \fBDDl \fRspecific (Solaris DDI). This entry point is optional. Drivers

that do not support an \fBawite()\fR
. SH PARAMVETERS

.sp
.ne 2

entry point should use \fBnodev\fR(9F)

. na
\fB\fldevi\fRfR
.ad

.RS 12n

Devi ce nunber.
. RE

.sp
.ne 2

.na
\fB\flaio_regp\fRfR
d

.a

.RS 12n

Pointer to the \fBaio_reg\fR(9S) structure that describes where the data is
stored.

. RE

.sp
.ne 2

.na
\fB\flcred_p\fRfR
. ad

.RS 12n

Pointer to the credential structure.
. RE

. SH DESCRI PTI ON

.sp
.LP

new usr/src/ man/ man9e/awite. 9e

The driver’s \fBawite()\fRroutine is called to performan asynchronous wite.
\ f Bget mi nor\ f R(9F) can be used to access the m nor nunber conponent of the
\fldev\fR argurment. \fBawite()\fR may use the credential structure pointed to
by \flcred_p\fR to check for superuser access by calling \fBdrv_priv\fR(9F).
The \fBawrite()\fR routine may al so exanmine the \fBui o\fR(9S) structure
through the \fBaio_req\fR structure pointer, \fBaio_reqp\fR \fBawite()\fR
nust call \fBaphysio\fR(9F) with the \fBai o_req\fR pointer and a pointer to the
driver’s \fBstrategy\fR(9E) routine.

.sp

.LP

No fields of the \fBuio\fR(9S) structure pointed to by \fBaio_req\fR other
Ehan \fBuio_offset\fR or \fBuio_loffset\fR may be nodified for non-seekabl e
evi ces.

. SH RETURN VALUES

- Sp

LP
The \fBawite()\fR routine should return
appropriate error nunber.

. SH CONTEXT

.sp

.LP
This function is called fromuser context only.
. SH EXAMPLES

\fBO\fR for success, or the

. LP

\fBExanple 1 \fRUsing the \fBawite()\fR routine:

.sp

.LP

The following is an exanple of an \fBawite()\fR routine:

.sp
.in +2

. nf

static int
xxawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
int instance;

struct xxstate *xsp;

instance = getm nor(dev);
xsp = ddi _get_soft_state(statep, instance);
/*Verify soft state structure has been allocated */
if (xsp == NULL)

return (ENXI O);
return (aphysio(xxstrategy,
xxm nphys, aio));

anocancel , dev, B_WRITE, \e

b
Cfi
.in -2

. SH SEE ALSO
.sp

LP
\fBwite\fR(2), \fBaiowite\fR(3C), \fBaread\fR(9E), \fBread\fR(9E),
\fBstrategy\fR(9E), \fBwite\fR(9E), \fBanocancel\fR(9F), \fBaphyS|o\fR(9F),
\ fBddi _get _soft_state\fR(9F), \fBdrv_priv\fR(9F), \fBgetmnor\fR(QF)

\ f Bmi nphys\ fR(9F), \fBnodev\fR(9F), \fBaio_req\fR(9S), \chb_ops\fR(QS),
\ f Bui o\ f R(9S)

.sp

.LP

\fIWiting Device Drivers\fR

. SH BUGS

.sp

.LP

There is no way other than calling \fBaphysio\fR(9F) to acconplish an
asynchronous wite.

new usr/ src/ man/ man9e/ ddi _uf m 9e

R R R R

14121 Sat Feb 15 09: 54: 06 2020
new usr/ src/ man/ man9e/ ddi _uf m 9e
12309 errors in section 9e of the nanual
IR E SR EE RS RS E R E SRR R R R R R R R R SRR EEEEREEREEEEEEEERSE]
1.\
2 .\" This file and its contents are supplied under the terms of the

3 .\" Conmon Devel opnent and Distribution License ("CDDL"), version 1.0.
4 .\" You may only use this file in accordance with the ternms of version
5.\" 1.0 of the CDDL.
6 .\
7 .\" Afull copy of the text of the CDDL should have acconpanied this
8 .\" source. A copy of the CDDL is also available via the Internet at
9 .\" http://ww.illunos.org/license/ CDDL.

10 .

11 .\"

12 .\" Copyright 2019 Joyent, Inc.

13 .\

14 .Dd February 15, 2020

14 .Dd Apr 30, 2019

15 . Dt DDI _UFM 9E

16 . Cs

17 . Sh NAME

18 . Nm ddi _ufm,

19 . Nm ddi _uf m op_ni nages ,

20 .Nm ddi _ufmop_fill_image ,

21 .Nmddi _ufmop_fill_slot ,

22 . Nm ddi _uf m op_get caps

23 .Nd DDl upgradable firmvare nodul e entry points
24 . Sh SYNOPSI S

25 .Vt typedef struct ddi_ufm handl e ddi _ufm handl e_t
26 .Vt typedef struct ddi _ufmops ddi _ufmops_t

27 .1In sys/ddi _ufmh

28 .Ft int

29 . Fo ddi _uf m op_getcaps

30 .Fa "ddi _ufmhandl e_t *uhp"

31 .Fa "void *drv_arg"

32 .Fa "ddi _ufmcap_t *caps"

33 . Fc

34 .Ft int

35 . Fo ddi _uf m op_ni nages

36 .Fa "ddi _ufmhandl e_t *uhp"

37 .Fa "void *drv_arg"

38 .Fa "uint_t *ningp"

39 . Fc

40 . Ft int

41 . Fo ddi _ufmop_fill _i nage

42 .Fa "ddi _ufm handl e_t *uhp"

43 .Fa "void *drv_arg"

44 . Fa "uint_t ingid"

45 . Fa "ddi _ufm.inmage_t *uip"

46 . Fc

47 .Ft int

48 .Fo ddi _ufmop_fill_slot

49 . Fa "ddi _uf m handl e_t *uhp"

50 .Fa "void *drv_arg"

51 .Fa "uint_t ingid"

52 .Fa "uint_t slotid"

53 .Fa "ddi _ufmslot_t *usp"

54 . Fc

55 . Sh | NTERFACE LEVEL

56 .Sy Evolving - This interface is evolving still in illunmps. APl and ABI

57 . Sh PARAMETERS

58 .Bl -tag -width Fa

59 .It Fa uhp

60 A handl e corresponding to the device's UFM handl e.

new usr/ src/ man/ man9e/ ddi _uf m 9e

This is the same value as returned in

Xr o ddi _ufminit 9F .

It Fa drv_arg

This is a private value that the driver passed in when calling
CXroddi _ufminit 9F .

It Fa ningp

A pointer that the driver should set with a nunmber of inages.

It Fa nslotp

A poi nt er that the driver should set with a nunber of slots.

It Fa ingid

An i nteger indicating which imge information is being requested for.
It Fa uip

An opaque pointer that represents a UFM i mage.

It Fa slotid

An i nteger indicating which slot information is being requested for.
.1t Fa usp

An opaque pointer that represents a UFM sl ot.

.H

Sh DESCRI PTI ON

gpgradabl e firmvare nodules (UFM are a potential conponent of many

evi ces
These interfaces aimto provide a sinple series of callbacks
for a device driver to inplement such that it is easy to report
information and in the future, manipulate firmwvare nodul es.

. Ss UFM Backgr ound

UFMs may cone in different flavors and styles ranging froma
firmware blob, to an EEPROM i mage, to m crocode, and nore.
Take for exarrpl e a hard drive.
Wiile it is a field replaceable unit (FRU), it also contains sone anmount
of firmmare that manages the drive which can be updated independently of
replacing the drive.

P

- Pp

The not herboard often has a UFMin the formof the BI OGS or UEFI.

The Lights out managenent controller on a systemhas a UFM which is usually
the entire system i mage.

CPUs al so have a UFMin the form of nicrocode.

. Pp

An inportant property of a UFMis that it is a property of the device
itself.

For exanple, many WFi device drivers are required to send a binary bl ob of
firmware to the device after every reset.

Because these inmmges are not properties of the device and nust be upgraded by
ei ther changing the device driver or related systemfiles, we do not consider
these UFMs.

. Pp

There are al so devices that have firmware which is a property of the

devi ce, but may not be upgradable fromthe running CS.

This may be because the vendor doesn’t have tooling to upgrade the inage or
because the firmmvare image itself cannot be upgraded in the field at all.
For exanple, a YubiKey has a firmware inage that’s burned into it in the
factory, but there is no way to change the firmvare on it short of

replacing the device in its entirety.

However, because these inmmges are a pernmanent part of the device, we also
consi der thema UFM

.Ss Images and Slots

A device that supports UFMs is made up of one or nore distinct firmware

i mages.

Each image has its own uni que purpose.

For exanple, a notherboard may have both a BI CS and a CPLD i nage, each of which

has i ndependent firmnare revisions.

. Pp

A given i mage may have a nunber of slots.

A slot represents a particular version of the image.

Only one slot can be active at a given tine.

Devi ces support slots such that a firmvare i nage can be downl oaded

to the device without inpacting the current device if it fails hal f-way

new usr/ src/ man/ man9e/ ddi _uf m 9e

127 through.
128 The slot that’s currently in use is referred to as the
129 .Em active

130 sl ot
131 . Pp
132 The various entry points are designed such that all a driver has to do
133 is provide infornmati on about the image and its slots to the kernel, it

134 does not have to wangle with how that is narshalled to users and the
135 appearance of those structures.

136 .Ss Registering with the UFM Subsystem

137 During a device driver’'s

138 . Xr attach 9E

139 entry point, a device driver should register with the UFM subsystem by
140 filling out a UFM operations vector and then calling

141 . Xr ddi _ufminit 9F .

142 The driver may pass in a value, usually a pointer to its soft state
143 pointer, which it will then receive when its subsequent entry points are
144 call ed.

145 . Pp

146 Once the driver has finished initializing, it must call

147 . Xr ddi _uf m update 9F

148 to indicate that the driver is in a state where it’s ready to receive
149 calls to the entry points.

150 . Pp

151 The various UFM entry points nmay be called froman arbitrary kernel
152 context.

153 However, they will only ever be called froma single thread at

154 a given tine.

155 . Ss UFM operations vector

156 The UFM operations vector is a structure that has the foll owi ng nmenbers:
157 .Bd -literal -offset indent

158 typedef struct ddi _ufmops {

159 int (*ddi _uf m op_ni mages) (ddi _uf m handl e_t *uhp, void *arg,
160 uint_t *ningp);

161 int (*ddi _ufmop_ fill _image) (ddi _uf m handl e_t *uhp, void *arg,
162 uint_t ingid, ddi _ufminage_ t *ing);

163 int (*ddi _ufmop_fill_slot)(ddi _ufmhandle_t *uhp, void *arg,
164 int ingid, ddi _ufminmage_t *ing, uint_t slotid,

165 ddi _ufmslot_t *slotp);

166 int (*ddi _uf mop_getcaps)(ddi _ufmhandle_t *uhp, void *arg,
167 ddi _ufmcap_t *caps);

168 } ddi _ufmops_t;

169 . Ed

170 . Pp

171 The

172 . Fn ddi _uf m op_ni nages
173 entry point is optional.

174 1f a device only has a single image, then there is no reason to inplenent the

175 . Fn ddi _uf m op_ni nages entry point.

176 The systemw || assume that there is only a single inmage.

177 . Pp

178 Slots and i mges are nunbered starting at zero.

179 If a driver indicates support for multiple inmages or slots then the images

180 or slots will be nunmbered sequentially going fromO to the nunber of inmges or

181 slots mnus one.

182 These values will be passed to the various entry points to indicate which image

183 and slot the systemis interested in.

184 It is up to the driver to maintain a consistent view of the inmages and slots
185 for a given UFM

186 . Pp

187 The nenbers of this structure should be filled in the followi ng ways:

188 .Bl -tag -width Fn

189 . It Fn ddi _uf m op_ni mages

190 The

191 . Fn ddi _uf m op_ni mages

192 entry point is an optional entry point that answers the question of how

new usr/ src/ man/ man9e/ ddi _uf m 9e

193 many different, distinct firnware i nages are present on the device.
194 Once the driver determ nes how many are present, it should set the value in
195 .Fa ningp to the determ ned val ue.

P

196

197 it is legal for a device to pass in zero for this value, which indicates
198 that there are none present.

199 . P

200 Upon successful conpletion, the driver should return

201 . 0.

202 Otherwi se, the driver should return the appropriate error nunber.

203 For a full list of error nunbers, see

204 . Xr Intro 2 .
205 Common val ues are:
206 .Bl -tag -width Er -offset width
207 .1t Er EIO
208 An error occurred while comuni cating with the device to determ ne the
209 nunber of firmare inmages.
. El

210

211 .1t Fn ddi _ufmop_fill_inage

212 The

213 . Fn ddi _ufmop_fill _i mage

214 entry point is used to fill in information about a given inage.

215 The value in

216 .Fa ingid

217 is used to indicate which image the systemis asking to fil
218 information about

219 If the driver does not recognize the inage 1D in
220 .Fa ingid

221 then it should return an error

222 . Pp

223 The

224 . Ft ddi _ufm.image_t

225 structure passed in

226 .Fa uip
227 is opaque.
228 To fill in information about the inage, the driver should call the functions

229 described in

230 . Xr ddi _ufm.inmage 9F .

231 .Pp

232 The driver should call the

233 . Xr ddi _uf m.image_set _desc 9F

234 function to set a description of the image which indicates its purpose.
235 This shoul d be a human-readabl e string.

236 The driver may also set any ancillary data that it deems may be useful with the

237 . Xr ddi _uf m.inmage_set_m sc 9F function.

238 This function takes an nvlist, allowing the driver to set arbitrary keys and val

239 . Pp
240 Once the driver has finished setting all of the information about the
241 image then the driver should return

242 .Sy 0 .
243 Otherwise, the driver should return the appropriate error nunber.
244 For a full list of error nunbers, see

245 . Xr Intro 2 .

246 Common val ues are:

247 .Bl -tag -width Er -offset width
248 .1t Er EI NVAL

249 The image indicated by

250 .Fa ingid

251 i s unknown.

252 . It Er EIO

253 An error occurred talking to the device while trying to fill out
254 firmware image information.

255 .1t Er ENOMVEM

256 The driver was unable to al | ocate menory while filling out inmage
257 information.
258 . H

new usr/ src/ man/ man9e/ ddi _uf m 9e

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

.1t Fn ddi _ufmop_fill_slot

The
.Fn ddi _ufmop_fill_slot
function is used to fill in information about a specific slot for a

speci fic inmage.

The value in

.Fa imgid

indicates the image the systemwants slot information for and the val ue
in
.Fa slotid

i ndi cates which slot of that image the systemis interested in.
If the device driver does not recognize the value in either or

.Fa imgid

or

.Fa slotid ,

then it should return an error.
. Pp

The

.Ft ddi _ufmslot_t

structure passed in

. Fa usp

i s opaque.

To fill in information about the image the driver should call the functions
described in

.Xr ddi _ufmslot 9F .

. Pp

The driver should call the

. Xr ddi _uf m sl ot_set_version 9F

function to indicate the version of the UFM

The version is a device-specific character string.

It should contain the current version of the UFM as a human can understand it
and it should try to natch the fornmat used by device vendor.

. Pp

The

. Xr ddi _ufmslot_set_attrs 9F

function should be used to set the attributes of the UFM sl ot.

These attributes include the follow ng enuneration val ues:

.Bl -tag -width Dv

.1t Dv DDl _UFM ATTR READABLE

This attribute indicates that the firmvare inmage in the specified slot
nmay be read, even if the device driver does not currently support such
functionality.

.1t Dv DDl _UFM ATTR WRI TEABLE

This attributes indicates that the firmvare image in the specified slot
may be updated, even if the driver does not currently support such
functionality.

.1t Dv DDl _UFM ATTR_ACTI VE

This attributes indicates that the firmvare image in the specified slot
is the active

.Pq i.e. currently running

firmare.

Only one slot should be narked acti ve.

.1t Dv DD _UFM ATTR_EMPTY

This attributes indicates that the specified slot does not currently contain
any firmware inmage.

L H

. Pp
Finally, if there are any device-specific key-value pairs that form
useful, ancillary data, then the driver should assenble an nvlist and
pass it to the

. Xr ddi _ufmset_m sc 9F

function.

. Pp

Once the driver has finished setting all of the information about the
slot then the driver should return

Sy 0.

new usr/ src/ man/ man9e/ ddi _uf m 9e 6
325 Ot herwise, the driver should return the appropriate error nunber.

326 For a full list of error nunbers, see

327 . Xr Intro 2 .

328 Common val ues are:

329 .Bl -tag -width Er -offset width

330 . It Er EINVAL

331 The inmge or slot indicated by

332 .Fa ingid

333 and

334 .Fa slotid

335 is unknown.

336 .1t Er EIO

337 An error occurred talking to the device while trying to fill out

338 firmware slot infornation.

339 . It Er ENOVEM

340 The driver was unable to allocate menory while filling out slot

341 information.

342 . H

343 . It Fn ddi _uf m op_getcaps

344 The

345 . Fn ddi _uf m op_get caps

346 function is used to indicate which DDl UFM capabilities are supported by this
347 driver instance.

348 Currently there is only a single capability

349 . Pg DDl _UFM _CAP_REPORT

350 which indicates that the driver is capable of reporting UFMinformation for this
351 instance.

352 Future UFM versions nmay add additional capabilities such as the ability to

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

obtain a raw dunp of the firmware inage or to upgrade the firnware.

- PP

The driver should indicate the supported capabilities by setting the value in
the

.Ft caps

par ameter.

Once the driver has popul at ed

.Ft caps

with an appropriate value, then the driver should return

Sy 0

O her wi se, the driver should return the appropriate error nunber.

For a full list of error nunbers, see
Xr Intro 2 .
Conmon val ues are:

.Bl -tag -width Er -offset width

It Er EIO

An error occurred talking to the device while trying to discover firmware
capabilities.

capabil ties.

.1t Er ENOVEM

Thle driver was unable to allocate nenory.

. E

M=

. Ss Caching and Updates

The systemwill fetch firmware and slot infornation on an as-needed

basi s.

Once it obtains some information, it may end up caching this information on
behal f of the driver.

Wienever the driver believes that sonething could have changed -- it need know
that it has -- then the driver nust call

.Xr ddi _uf mupdate 9F .

. Ss Locking

Al UFM operations on a single UFM handle will always be run serially.

However, the device driver may still need to apply adequate |ocking to

its structure nenbers as other may be accessing the sane data structure

or trying to comunicate with the device.

.Ss Unregistering fromthe UFM subsystem
When a device driver is detached, it should unregister fromthe UFM

new usr/ src/ man/ man9e/ ddi _uf m 9e

390 subsystem

391 To do so, the driver should call

392 . Xr ddi _ufmfini 9F .

393 By the time this function returns, the driver is guaranteed that no UFM
394 entry points will be called.

395 However, if there are outstanding UFMrel ated activity, the function wll
396 block until it is term nated.

397 .Ss ioctl Interface

398 Userl and consunmers can access UFMinformation via a set of ioctls that are
399 inplemented by the

400 . Xr ufm 7D

401 driver.

402 . Sh CONTEXT

403 The various UFM entry points that a device driver nust inplement wll
404 al ways be called from

405 . Sy kernel

406 cont ext .

407 . Sh SEE ALSO

408 . Xr Intro 2 ,

409 . Xr ufd 7D,

410 . Xr attach 9E ,

411 . Xr ddi _ufmfini 9F

412 . Xr ddi _ufm.inmage 9F ,

413 . Xr ddi _uf m.inage_set _desc 9F ,

414 . Xr ddi _uf m.inage_set_m sc 9F ,

415 . Xr ddi _uf m.inage_set_nslots 9F ,

416 . Xr ddi _ufminit 9F ,

417 . Xr ddi _ufmslot 9F ,

418 . Xr ddi _ufmslot_set_attrs 9F ,

419 . Xr ddi _ufmslot_set_msc 9F ,

420 . Xr ddi _ufm sl ot_set_version 9F ,

421 . Xr ddi _uf mupdate 9F

new usr/ src/ man/ man9e/ mac_capab_transcei ver. 9e

R R R R

12469 Sat Feb 15 09: 54: 06 2020
new usr/ src/ man/ man9e/ mac_capab_transcei ver. 9e
12309 errors in section 9e of the nanual
IR E SR EE RS RS E R E SRR R R R R R R R R SRR EEEEREEREEEEEEEERSE]
1.\
2 .\" This file and its contents are supplied under the terms of the

3 .\" Conmon Devel opnent and Distribution License ("CDDL"), version 1.0.
4 .\" You may only use this file in accordance with the ternms of version
5.\" 1.0 of the CDDL.

6 .\"

7 .\" Afull copy of the text of the CDDL should have acconpanied this
8 .\" source. A copy of the CDDL is also available via the Internet at
9 .\" http://ww.illunos.org/license/ CDDL.

10 .\"

11 .\"

12 .\" Copyright (c) 2017, Joyent, Inc.

13 .\"

14 .Dd February 15, 2020

14 .Dd Nov 26, 2017

15 . Dt MAC_CAPAB_TRANSCEI VER 9E

16 . Cs

17 . Sh NAME

18 . Nm mac_capab_t ranscei ver ,

19 .Nmnct_info ,

20 . Nm nct_read

21 .Nd MAC capability for networking transceivers

22 . Sh SYNOPSI S

23 .In sys/mac_provider.h

24 .Vt typedef struct mac_capab_transcei ver nmac_capab_transceiver_t;
25 .Ft int

26 .Fo "ntt_info"

27 .Fa "void *driver"

28 .Fa "uint_t id"

29 .Fa "mac_transceiver_info_t *infop"

30 . Fc

31 .Ft int

32 .Fo ntt_read

33 .Fa "void *driver"

34 .Fa "uint_t id"

35 .Fa "uint_t page"

36 .Fa "void *buf"

37 .Fa "size_t nbytes"

38 .Fa "off_t offset”

39 .Fa "size_t *nread"

40 . Fc

41 . Sh | NTERFACE LEVEL

42 .Sy Vol atile -

43 This interface is still evolving in illunos.

44 APl and ABI stability is

45 not guar ant eed.

46 . Sh PARAMETERS

47 .Bl -tag -width Fa

48 .1t Fa driver

49 A pointer to the driver’'s private data that was passed in via the
50 .Sy m pdata

51 nenber of the

52 . Xr mac_register 9S

53 structure to the

54 . Xr mac_register 9F

55 function.

56 .1t Faid

57 An integer value indicating which transceiver is being inquired about.
58 .It Fa infop

59 An opaque structure which is used to set information about the

60 transceiver.

new usr/ src/ man/ man9e/ mac_capab_transcei ver. 9e

61

.1t Fa page

A val ue that indicates which page fromthe i2c bus is being requested.
.1t Fa buf

A pointer to which data should be witten to when reading fromthe
devi ce.

.1t Fa nbytes

A val ue indicating the nunber of bytes being asked to read into

. Fa buf .

.1t Fa offset

A value indicating the offset into the page to start reading data.

.1t Fa nread

A value to be updated by the driver with the nunber of successfully read
byt es.

.H

. Sh DESCRI PTI ON

The

. Sy MAC_CAPAB_TRANSCEI VER

capability allows for G.Dv3 networking device drivers to provide
information to the system about their transceiver.

I mpl ementing this capability is optional.

For nore information on how to handl e capabilities and how to indicate
that a capability is not supported, see

. Xr nc_getcapab 9E .

. P

This capability should be inplenented if the device in question supports
a Small Form Factor (SFF) transceiver.

These are nore commonly known by names such as SFP, SFP+, SFP28, QSFP+,
and QSFP28.

This interface does not apply to traditional copper Ethernet phys.
These transceivers provide standardi zed information over the i2c bus at
speci fi c pages.

. Ss Supported Standards

.Bl -tag -width

.1t Sy INF-8074

The

. Sy | NF- 8084

standard was the original nultiple source agreement (MSA) for SFP

devi ces.

It proposed the original series of managenent pages at i2c page 0xa0.
Thi s page contained up to 512 bytes, however, only the first

96 bytes are standardized.

Bytes 97 to 127 are reserved for the vendor.

The renmi ning bytes are reserved by the specification.

The nanagenent page was subsequently adopted by SFP+ devi ces.

.1t Sy SFF-8472

The

.Sy SFF-8472

standard extended the original SFP MSA

This standard added a second i2c page at 0xa2, while maintaining the
original page at Oxa0.

The page at 0xa0 is now explicitly 256 bytes.

The page at 0Oxa2 is also 256 bytes.

This standard was al so adopted for all SFP28 parts, which are comonly
used in transceivers for 25 Gb/s Ethernet.

.1t Sy SFF-8436

The

. Sy SFF-8436

standard was devel oped for QSFP+ transceivers, which involve the

bondi ng of 4 SFP+ |inks.

SFP+ is comonly used in the transceivers for 40 Gb/s Ethernet.

This standard uses i2c page 0xa0 for read-only identification purposes.
The lower half of the page is used for control, while the upper 128
bytes is simlar to the

.Sy | NF-8084

and

.Sy SFF-8472

new usr/ src/ man/ man9e/ mac_capab_transcei ver. 9e

127 standards.

128 .1t Sy SFF-8636

129 The

130 . Sy SFF-8636

131 standard is a common managenent standard which is shared between both
132 SAS and QSFP+ 28 Gb/s transceivers.

133 The latter transceiver is commonly found in 100 Gb/s Ethernet.
134 The transceiver’'s menory map is simlar to that found in the
135 . Sy SFF-8436

136 specification.

137 The identification information is found in the upper 128

138 bytes of page 0xa0, while the |ower part of the page is used for
139 control, anpbng other purposes.

140 . El

141 . Pp

142 The following table summarizes the above information.

143 .Bl -colum "Sy SFF-8636" "1 Gb/s, 10 Gb/s, 25 Gb/s" "256 bytes" "Oxa0, Oxa2"

144 . Em " Standard" Ta Em Speeds Ta Em Size Ta Emi 2c pages

145 .1t INF-8074 Ta 1 Go/s, 10 Go/s Ta 128 bytes Ta Oxal

146 .1t SFF-8472 Ta 1 Go/s, 10 Go/s, 25 GB/s Ta 512 bytes Ta 0xa0, Oxa2
147 .1t SFF-8436 Ta 40 Gob/s Ta 256 bytes Ta 0xaO

148 .1t SFF-8636 Ta 100 Gb/s Ta 256 bytes Ta OxaO

149 . E

150 .Ss MAC Capability Structure

151 When the device driver’s

152 . Xr nt_getcapab 9E

153 function entry point is called with the capability requested set to
154 . Sy MAC_CAPAB_TRANSCEI VER ,

155 then the val ue of the capablllty structure is the follow ng structure:
156 .Bd -literal -offset indent

157 typedef struct mac_capab_transcei ver {

158 uint_t nct_flags;

159 uint_t nct_ntransceivers;

159 uint_t ntt_ntransceiveres;

160 int (*rmct_info)(void *driver, uint_t id,

161 mac_transcei ver_info_t *infop),

162 int (*nct read)(v0|d *driver, uint_t |d uint_t page,
163 void *buf, size_t nbyt es, off_t offset,
164 size_t *nread)

165 } mac_capab_transceiver_t;

166 . Ed

167 . Pp

168 |If the device driver supports the

169 .Sy MAC_CAPAB_TRANSCEI VER

170 capability, it should fill in this structure, based on the follow ng
171 rules:

172 .Bl -tag -width Sy

173 .1t Sy nct_flags

174 The

175 .Vt ntt_flags

176 menber is used to negotiate extensions with the driver.

177 MAC will set the val ue of

178 .Vt nct_flags

179 to include all of the currently known extensions.

180 The driver should intersect this list with the set that they actually
181 support.

182 At this time, no such features are defined and the driver should set the

183 nenber to

184 .Sy 0 .

185 .1t Sy nrt_ntransceivers

186 The val ue of

187 .Sy ntt_ntransceivers

188 indicates the nunber of transceivers present in the device.

188 indicates that the nunber of transceivers present in the device.

189 For nost devices, it is expected that this value will be set to one.
190 However, sone devices do support nultiple transceivers and PHYs that

-0

new usr/ src/ man/ man9e/ mac_capab_transcei ver. 9e

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

show up behind a single |ogical MAC
Pp

it is expected that this value will not change across the lifetine of
the device being attached.

It is inportant to remenber that this represents the total possible
nunber of transceivers in the device, not how nany are currently present
and powered on.

Pp
The number of transceivers will influence the
.Fa id
argunent used in the
.Fn ntt_info
and
.Fn nct_read
entry points.
The transceiver IDs will start at zero and go to the val ue of
.Fa ntt_ntransceivers - 1
it is up to the driver to keep the mapping between actual transceivers
and the transceiver identifiers consistent.
.1t Sy ntt_info
The
.Fn nct_info
entry point is used to set basic information about the transceiver.
This entry point is
.Emrequired .
If the device driver cannot inplenent this entry point, then it should
not indicate that it supports the capability.

218 . Pp

219
220
221
222
223
224

225 . Sy

226
227
228
229
230
231

The

.Fn nct_info

entry point should fill in information about the transceiver with an
identifier of

Faid .

See the descri ption above of

nct _ntranscei vers

for nore information on how the | Ds are determ ned.

. Pp

The driver should then proceed to fill in basic information by calling
the functions described in the section

.Sx Information Functions .

After successfully calling all of the functions, the driver should

232 return

233 .Sy 0 .

234 Oherwise, it should return the appropriate error nunber.
234 O hewise, it should return the appropriate error nunber.
235 For a full list of error nunbers, see

236 . Xr Intro 2 .

237 Common val ues are:

238 .Bl -tag -width Er -offset width

239 .1t Er EINVAL

240 The transceiver identifier

241 .Fa id

242 was invalid.

243 . It Er ENOTSUP

244 This instance of the devices does not support a transceiver.
245 For exanple, a device which sonetines has copper PHYs and therefore this
246 instance does not have any PHYs.

247 . It Er EIO

248 An error occurred while trying to read device registers.
249 For exanple, an FM aware device had an error.

250 . H

251 . It Sy ntt_read

252 The

253
254
255

.Fn nct_read
function is used to read information froma transceiver’s i2c bus.
The

new usr/ src/ man/ man9e/ mac_capab_transcei ver. 9e

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

.Fn nct_read
entry point is an
. Em opti onal
entry point.

P

- PP

The transceiver should first check the val ue of

LFaid,

whi ch indicates which transceiver information is being requested.
See the description above of

.Sy ntt_ntransceivers

for nore information on how the | Ds are determ ned.

. Pp

The driver should try to read up to

. Fa nbytes

of data fromthe i2c bus at page

. Fa page .

The driver should start reading at offset

. Fa of f set

Finally, it should update the value in

. Fa nread

wi th the nunber of bytes witten to the buffer

. Fa buf .

. Pp

If for some reason the driver cannot read all of the requested bytes,
that is acceptable.

Instead it should performa short read.

This nmay occur because the transceiver does not allow reads at a
lrjeq_ues:t ed region or the region is shorter than is common for nost
evi ces.

Upon successful conpletion, the driver should ensure that
. Fa nread

has been updated and then return

Sy 0

O herwi se, the driver should return the appropriate error nunber.
For

a full list of error nunbers, see

Xr Intro 2 .

Conmmon val ues are:

.Bl -tag -width Er -offset width

.1t Er EINVAL

The val ue of

.Fa id

represented an invalid transceiver identifier.

The transcei ver i2c page

. Fa page

is not valid for this type of device.

The val ue of

. Fa of fset

is beyond the range supported for this

. Fa page .

.1t Er EIO

AnI error occurred while trying to read the device i2c pages.
. El

=

.Ss Transceiver Information Functions

The

.Fn ntt_info

entry point is the prinmary required entry point for a device driver
whi ch supports this capability.

The information structure is opaque to the device driver.
Instead, a series of informational functions is

available to the device driver to call on the transceiver.
The device drivers should try to call and fill in as many of these as
possi bl e.

There are two different properties that a driver can set:

new usr/ src/ man/ man9e/ mac_capab_transcei ver. 9e

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

383 .

384
385
386
387

.Bl -enum -offset indent
Lt
Whet her the transceiver is present.

Lt
Whet her the transceiver is usable.
. E

. Pp

To set whether or not the transceiver is present, the driver should call
. Xr mac_transceiver_info_set_present 9F .

This is used to indicate whether the transceiver is plugged in or not.
If the transceiver is a part of the NNC, then this function should

al ways be called with the value set to
.Dv B_TRUE .
Pp

Finally, the driver has the ability to provide infornation about whether
or not the transceiver is usable or not.

A transceiver may be present, but not usable, if the hardware and
firmvare support a limted nunber of transceivers.

To set this information, the driver should call

. Xr mac_transceiver_info_set_usable 9F .

If the transceiver is not present, then the driver should not call this
function.

. Ss Opaque Transceivers

Sone devices abstract the nature of the transceiver and do not allow
direct access to the transceiver.

In this case, if the device driver still has access to enough
information to know if the transceiver is at |least present, then it
shoul d still inplenment the

.Fn ntt_info

entry point.

. Ss Locking and Data Access
Calls to get information about the transceivers may cone at the sane
tine as general I/Orequests to the device to send or receive data.
The driver should nmake sure that reading data fromthe i2c bus of the
transcei ver does not interfere with the device's functionality in this
regard.
Different |ocks should be used.

P

- Pp

On sone devices, reading fromthe transceiver’s i2c bus mght cause a
di sruption of service to the device.

For exanpl e, on sone devices a phy reset may be required or cone about
as a side effect of trying to read the device.

If any kind of disruption would be caused, then the driver
must not inplenment the

.Ft nct_read

entry point.

. Sh CONTEXT

The various call back functions will be called from

. Sy kernel

cont ext .

These functions will never be called from

.Sy interrupt

cont ext .

. Sh SEE ALSO

Xr Intro 2,

. Xr mac 9E ,

. Xr nct_getcapab 9E ,

. Xr mac_register 9F ,

. Xr mac_transceiver_info_set_present 9F ,

. Xr mac_transceiver_info_set_usable 9F ,

. Xr mac_register 9S

. 9N | NF- 8074i

.9 SFP (Small Fornfactor Pluggable) Interface
. 9% SFF Committee

. %0 Revision 1.0

new usr/ src/ man/ man9e/ mac_capab_transcei ver. 9e

388

390
391
392
393
394
395
396
397
398
399

400 .
.Re
402 .
403 .
404 .
. %0
)
.Re

401

405
406
407

LD
389 . Re
.Rs
O
.o
. %0
LD
.Re
.Rs
. ON
Lo
. %0

9w

Rs
9N
9

May 12, 2001

SFF- 8472

Di agnostic Mnitoring Interface for Optical
Revi sion 12.2

Novenber 21, 2014

SFF- 8436

QSFP+ 10 Gbs 4X PLUGGABLE TRANSCEI VER
Revision 4.8

Cctober 31, 2013

SFF- 8636

Managenent I nterface for Cabled Environnents
Revision 2.7

January 26, 2016

Transcei vers

new usr/ src/ man/ man9e/ nc_get pr op. 9e

R R R R

6020 Sat Feb 15 09: 54: 06 2020
new usr/ src/ man/ man9e/ nt_get pr op. 9e
12309 errors in section 9e of the nanual
IR E SR EE RS RS E R E SRR R R R R R R R R SRR EEEEREEREEEEEEEERSE]
1.\
2 .\" This file and its contents are supplied under the terms of the

3 .\" Conmon Devel opnent and Distribution License ("CDDL"), version 1.0.
4 .\" You may only use this file in accordance with the ternms of version
5.\" 1.0 of the CDDL.

6 .\"

7 .\" Afull copy of the text of the CDDL should have acconpanied this

8 .\" source. A copy of the CDDL is also available via the Internet at
9 .\" http://ww.illunos.org/license/ CDDL.

10 .

11 .\"

12 .\" Copyright 2016 Joyent, Inc.

13 .\"

14 .Dd February 15, 2020

14 .Dd Novenber 15, 2016

15 . Dt MC_GETPROP 9E

16 . Cs

17 . Sh NAME

18 . Nm nt_get prop

19 . Nd get device properties
20 . Sh SYNOPSI S

21 .In sys/nmac_provider.h

22 .Ft int

23 . Fo prefix_mgetprop

24 .Fa "void *driver"

25 .Fa "const char *pr_nane"
26 .Fa "mac_prop_id_t pr_nunf
27 .Fa "uint_t pr_val size"
28 .Fa "void *pr_val"

29 . Fc
30 . Sh | NTERFACE LEVEL
31 illunos DDI specific

32 . Sh PARAMETERS

33 . Bl -tag -width Fa

34 .1t Fa driver

35 A pointer to the driver’s private data that was passed in via the
36 .Sy m pdata

37 nenber of the

38 . Xr mac_register 9S

39 structure to the

40 . Xr mac_regi ster 9F

41 function.

42 .1t Fa pr_nane

43 A null-termnated string that contains the name of the property.
44 It Fa pr_num

45 A constant that is used to identify the property.
46 .1t Fa pr_valsize

47 A value that indicates the size in byt es of

48 . Fa pr_val

49 .1t Fa pr_val

50 A pointer to a

51 . Fa pr_val size

52 bylte buffer that can store the property.

54 . Sh DESCRI PTI ON
The

56 . Fn nt_get prop

57 entry point is used to obtain the value of a given device's property and
58 place it into

59 . Fa pr_val

60 . Pp

new usr/ src/ man/ man9e/ nc_get pr op. 9e

When t he
. Fn nt_get prop
entry point is called, the driver needs to first identify the property.

The set of possible properties and their nmeaning is listed in the
. Sx PROPERTI ES

section of

. Xr mac 9E .

It should identify the property based on the val ue of

.Fa pr_num.

Most drivers will use a

.Sy switch

statenent and for any property that it supports it should then check if
the value in

Fa pr_val si ze

is sufficient for the property, conparing it to the mninmm size
listed for the property in

. Xr mac 9E .

If it is not, then it should return an error.

O herwise, it should copy the property’ s value into

. Fa pr_val

When an unknown or unsupported

property is encountered, generally the

.Sy default

case of the switch statenment, the device driver should return an error.
. Pp

The speci al property
Sy MAC_PROP_PRI VATE
indicates that this is a device driver specific private property.
The device driver nust then | ook at the value of the
. Fa pr_name
argument and use
.Xr strcnp 9F
on it, conparing it to each of its private (bounded-size) properties to
|dent|fy which one it is.

Pp
At this ti me, private properties are linted to being string based properties.
If other types of property values are used, they will not be rendered
correctly by
. Xr dladm 1M .
. Pp
The device
driver can access its device soft state by casting the
. Fa device
pointer to the appropriate structure.
As this may be called while other operations are ongoing, the device driver
shoul d enpl oy the appropriate |ocking while reading the properties.
. Sh CONTEXT
The
. Fn nt_get prop
function is generally called from

. Sy kernel

cont ext .

. Sh RETURN VALUES

Upon successful conpletion, the device driver should have copied the

val ue of the property into

. Fa pr_val

and return

.Sy 0.

O herwi se, a positive error should be returned to indicate failure.
. Sh EXAMPLES

The foll owi ng exanpl e shows how a device driver mght structure its
. Fn nc_get prop

entry point.

.Bd -literal

#i ncl ude <sys/nmac_provi der. h>

new usr/ src/ man/ man9e/ nc_get pr op. 9e

127 | *

128 * Note, this exanple nmerely shows the structure of this function.

129 * Different devices will manage their state in different ways. Like other
130 * exanples, this assunes that the device has state in a structure called
131 * exanple_t and that there is a lock which keeps track of that state.
132 */

133 static char *exanple_priv_props[] = {

134 "_rx_intr_throttle",

135 "_tx_intr_throttle",

136 NULL

137 };

139 static int
140 exanpl e_m get prop_private(exanpl e_t *ep, const char *pr_nane, uint_t

pr_val si ze,

141 void *pr_val)

142 {

143 uint32_t val;

145 ASSERT(MUTEX_HELD(&ep- >ep_| ock));

146 if (strcnp(pr_nanme, exanple_priv_props[0] == 0) {

147 val = ep->ep_rx_itr;

148 } else if (strcnp(pr_name, exanple_priv_props[1l] == 0) {
148 } else if (strcnp(pr_nanme, exanpe_priv_props[1l] == 0) {
149 val = ep->ep_tx_itr;

150 } else {

151 return (ENOTSUP);

152 }

154 /*

155 * Due to issues in the GLDv3, these nust be returned as string
156 * properties.

157 */

158 if (snprintf(pr_val, pr_valsize, "%", val) >= pr_valsize)
159 return (EOVERFLOW ;

161 return (0);

162 }

__unchanged_portion_omtted_

new usr/ src/ man/ man9e/ nt_set prop. 9e 1 new usr/ src/ man/ man9e/ nt_set prop. 9e 2
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 61 V\y]en the
6951 Sat Feb 15 09: 54: 06 2020 62 .Fn nt_setprop
new usr/ src/ man/ man9e/ nt_set prop. 9e 63 entry point is called, the driver needs to first identify the property.
12309 errors in section 9e of the nanual 64 The set of possible properties and their nmeaning is listed in the
LEEE R R R EE SRR EEEEEEEEEEE R EREEEEEEEEEEEEEEEEEEREEEEEEEEEESEE] 65 . SX PRODERT' ES
1.\ 66 section of
2 .\" This file and its contents are supplied under the terms of the 67 . Xr mac 9E .
3 .\" Conmon Devel opnent and Distribution License ("CDDL"), version 1.0. 68 It should identify the property based on the val ue of
4 .\" You may only use this file in accordance with the ternms of version 69 .Fa pr_num.
5.\" 1.0 of the CDDL. 70 Most drivers will use a
6 .\" 71 .Sy switch
7 .\" Afull copy of the text of the CDDL should have acconpanied this 72 statement and for any property that it supports it should then check if
8 .\" source. A copy of the CDDL is also available via the Internet at 73 the value in
9 .\" http://ww.illunos.org/license/ CDDL. 74 .Fa pr_val size
10 .\" 75 is sufficient for the property, conparing it to the mninmm size
11 .\" 76 listed for the property in
12 .\" Copyright 2016 Joyent, Inc. 77 . Xr mac 9E .
13 .\" 78 If it is not, then it should return an error.
14 .Dd February 15, 2020 79 O herwise, it should update the property based on the value in
14 .Dd June 02, 2016 80 .Fa pr_val .
15 . Dt MC_SETPROP 9E 81 When an unknown or unsupported property is encountered, generally the
16 . Cs 82 .Sy default
17 . Sh NAME 83 case of the switch statenent, the device driver should return an error.
18 . Nm nt_set prop 84 . Pp
19 . Nd set device properties 85 The special property
20 . Sh SYNOPSI S 86 .Sy MAC_PROP_PRI VATE
21 .In sys/nmac_provider.h 87 indicates that this is a device driver specific private property.
22 .Ft int 88 The device driver nust then | ook at the value of the
23 . Fo prefix_msetprop 89 . Fa pr_nane
24 .Fa "void *driver" 90 argunent and use
25 .Fa "const char *pr_nane" 91 . Xr strcnp 9F
26 .Fa "mac_prop_id_t pr_nunf 92 on it, conparing it to each of its private properties to identify which
27 .Fa "uint_t pr_val size" 93 one it is.
28 .Fa "const void *pr_val" 94 . Pp
29 . Fc 95 Not all properties are supposed to be witable.
30 . Sh | NTERFACE LEVEL 96 Sone devices nmy opt to not allow a property that is designated as read/wite to
31 illunps DDI specific 97 be set.
32 . Sh PARAMETERS 98 Wen such a property is encountered, the driver should return the appropriate
33 . Bl -tag -width Fa 99 error.
34 .1t Fa driver 100 . Pp
35 A pointer to the driver’s private data that was passed in via the 101 The device
36 .Sy m pdata 102 driver can access its device soft state by casting the
37 nenber of the 103 . Fa device
38 . Xr mac_register 9S 104 pointer to the appropriate structure.
39 structure to the 105 As this may be called while other operations are ongoing, the device driver
40 . Xr mac_regi ster 9F 106 shoul d enpl oy the appropriate |ocking while witing the properties.
41 function. 107 . Sh RETURN VALUES
42 .1t Fa pr_nane 108 Upon successful conpletion, the device driver should have copied the
43 A null-termnated string that contains the name of the property. 109 val ue of the property into
44 .1t Fa pr_num 110 . Fa pr_val
45 A constant that is used to identify the property. 111 and return
46 .1t Fa pr_valsize 112 .Sy O .
47 A value that indicates the size in byt es of 113 Gtherwi se, a positive error should be returned to indicate failure.
48 . Fa pr_val . 114 . Sh EXAMPLES
49 .1t Fa pr_val 115 The fol |l owi ng exanpl es shows how a device driver mght structure its
50 A pointer to a 116 . Fn nt_set prop
51 .Fa pr_valsize 116 . Fn nt_setporp
52 byte buffer that contains the new value of the property. 117 entry point.
53 . Hl 118 .Bd -literal
54 . Sh DESCRI PTI ON 119 #incl ude <sys/ mac_provi der. h>
55 The
56 .Fn nt_setprop 121 /*
57 entry point is used to set the value of a given device's property from 122 * Note, this exanple nerely shows the structure of this function.
58 the copy stored in 123 * Different devices will manage their state in different ways. Like other
59 .Fa pr_val . 124 * exanples, this assunmes that the device has state in a structure called
60 . Pp 125 * exanple_t and that there is a | ock which keeps track of that state.

new usr/ src/ man/ man9e/ nt_set pr op. 9e

126 *

127 * For the purpose of this exanple, we assune that this device supports 100 M,

128 * 1 GB, and 10 Gb full dupl ex speeds.
129 */

131 static int

132 exanpl e_m setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num
132 exnpl e_m setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num

new usr/ src/ man/ man9e/ nt_set pr op. 9e

191 exanpl e_update_ntu(ep, new_ntu);
192 }
193 br eak;

195 /*

196 * Devices may have their own private properties. If

197 * shoul d not return ENOTSUP, but instead see if it’'s

198 * recogni ze and handle it simlar to those above. If
*

199 recogni ze the name, then it should return ENOTSUP.
200 */

201 case MAC_PROP_PRI VATE:
202 ret = ENOTSUP;
203 br eak;

205 defaul t:

206 ret = ENOTSUP;
207 br eak;

208 }

209 mut ex_exi t (&ep- >ep_l ock) ;
211 return (ret);

212 }

__unchanged_portion_onitted_

a property they

133 uint_t pr_valsize, const void *pr_val)

134 {

135 uint32_t new ntu;

136 int ret =0;

137 exanple_t *ep = arg;

139 mut ex_ent er (&ep- >ep_| ock) ;

140 switch (pr_num {

141 /*

142 * These represent properties that can never be changed, regardl ess of
143 * the type of PHY on the device (copper, fiber, etc.)

144 */

145 case MAC_PROP_DUPLEX:

146 case MAC_PROP_SPEED:

147 case MAC_PROP_STATUS:

148 case MAC_PROP_ADV_100FDX_CAP:

149 case MAC_PROP_ADV_1000FDX_CAP:

150 case MAC_PROP_ADV_10GFDX_CAP:

151 ret = ENOTSUP;

152 br eak;

154 /*

155 * These EN properties are used to control the advertised speeds of the
156 * device. For this exanple, we assunme that this device does not

157 * copper phy, at which point auto-negotiation and the speeds in

158 * question cannot be changed. These are called out separately as they
159 * shoul d be controllable for copper based devices or It may need to be
160 * conditional depending on the type of phy present.

161 */

162 case MAC_PROP_EN_100FDX_CAP:

163 case MAC_PROP_EN_1000FDX_CAP:

164 case MAC_PROP_EN_10GFDX_CAP:

165 case MAC_PROP_AUTONEG

166 ret = ENOTSUP;

167 br eak;

169 case MAC_PROP_MIU:

170 if (pr_valsize < sizeof (uint32_t)) {

171 ret = EOVERFLOW

172 break;

173 }

174 bcopy(&new ntu, pr_val, sizeof (uint32_t));

176 if (new_nmu < ep->ep_min_ntu ||

177 new_ntu > ep->ep_max_ntu) {

178 ret = ElINVAL;

179 br eak;

180 }

182 /*

183 * We first ask MAC to update the MIU before we do anything.
184 * This may fail. It returns zero on success. The

185 * exanpl e_update_ntu function does device specific updates to
186 * ensure that the MIU on the device is updated and any internal
187 * data structures are up to date.

188 */

189 ret = mac_maxdsu_updat e(&ep->ep_nac_hdl, new ntu);

190 if (ret ==0) {

new usr/ src/ man/ man9e/ pr obe. 9e 1

R R R R

3716 Sat Feb 15 09:54:07 2020

new usr/ src/ man/ man9e/ pr obe. 9e
12309 errors in section 9e of the nanual

R R R R R

OCON~NOUTARWNE

"\ te
.\" Copyright (c) 2000, Sun M crosystens, Inc.
A" Al Rghts Reserved

.\" The contents of this file are subject to the terns of the Common Devel opnent
.\" You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE or http:
.\" When distributing Covered Code, include this CDDL HEADER in each file and in
. TH PROBE 9E "February 15, 2020"

. TH PROBE 9E "Nov 18, 1992"

. SH NAME

probe \- determne if a non-self-identifying device is present

. SH SYNCPSI S

.LP

. nf

#i ncl ude <sys/conf. h>

#i ncl ude <sys/ddi. h>

#i ncl ude <sys/sunddi . h>

fBstatic int prefix\fR fBprobe\fR(\fBdev_info_t *\fRf
fBstatic intprefix\fR fBprobe\fR(\fBdev_info_t *\fRfl
fi

. SH | NTERFACE LEVEL

.sp

.LP

Solaris DDl specific (Solaris DDI). This entry point is required for
non-sel f-identifying devices. You nust wite it for such devices. For
sel f-identifying devices, \fBnulldev\fR(9F) should be specified in the
\fBdev_ops\fR(9S) structure if a probe routine is not necessary.

. SH ARGUMENTS

.sp

.ne 2

. na
\fB\fldip\fR\fR
ad

_RS 8n
Pointer to the device's \fBdev_info\fR structure.
.RE

. SH DESCRI PTI ON
.sp

. LP

\ fBprobe()\fR determi nes whether the device corresponding to \fldip\fR actually
exists and is a valid device for this driver. \fBprobe()\fR is called after
\fBidentify\fR(9E) and before \fBattach\fR(9E) for a given \fldip\fR For

exanpl e, the \fBprobe()\fR routine can map the device registers using

\ fBddi _map_regs\fR(9F) then attenpt to access the hardware using

\ f Bddi _peek\fR(9F) or \fBddi _poke\fR(9F) and deternmine if the device exists.
Then the device registers should be unmapped using \fBddi _unmap_regs\fR(9F).
.sp

.LP

To probe a device that was left powered off after the last \fBdetach()\fR it

m ght be necessary to power it up. If so, the driver nust power up the device
by accessing device registers directly. \fBpmraise_power\fR(9F) will be not be
avail abl e until \fBattach\fR(9E). The framework ensures that the ancestors of
the node being probed and all relevant platformspecific power nmanagenent
hardware is at full power at the tinme that \fBprobe()\fR is called.

.sp

. LP

\fBprobe()\fR shoul d only probe the device. It should not change any software

new usr/ src/ man/ man9e/ pr obe. 9e

state and should not create any software state. Device initialization should be
done in \fBattach\fR(9E).

.sp

.LP

For a self-identifying device, this entry point is not necessary. However, if a
devi ce exists in both self-identifying and non-self-identifying forms, a
\fBprobe()\fR routine can be provided to sinplify the driver.

\fBddi _dev_is_sid\fR(9F) can then be used to determ ne whether \fBprobe()\fR
needs to do any work. See \fBddi _dev_is_sid\fR(9F) for an exanpl e.

. SH RETURN VALUES

.sp

.ne 2

.na
\ f B\ f BDDI _PROBE_SUCCESS\f R \f R
.ad

. RS 23n

If the probe was successful.

. RE

.sp
.ne 2

.na
\ f B\ f BDDI _PROBE_FAI LURE\fR \ f R
.ad

. RS 23n

If the probe failed.

. RE

.sp
.ne 2

. ha
\ f B\ f BDDI _PROBE_DONTCARE\ f R \ f R

. al
.RS 23n

If the probe was unsuccessful, yet \fBattach\fR(9E) should still be call ed.
.RE

.sp
.ne 2

.nha
\ f B\ f BDDI _PROBE_PARTI AL\fR \ fR

.ad

.RS 23n

If the instance is not present now, but may be present in the future.
.RE

. SH SEE ALSO

.sp

. LP

\fBattach\fR(9E), \fBidentify\fR(9E),
\fBddi _map_regs\fR(9F), \fBddi _peek\fR(9F),
\ fBnul I dev\ f R(9F), \fBdev_ops\fR(9S)

\fBddi _dev_is_sid\fR(9F),
\ f Bddi _poke\ f R(9F),
.sp

. LP

\fIWiting Device Drivers\fR

2

new usr/ src/ man/ man9e/ usba_hcdi _hub_updat e. 9e

R R R R

2623 Sat Feb 15 09: 54: 07 2020

new usr/ src/ man/ man9e/ usba_hcdi _hub_updat e. 9e
12309 errors in section 9e of the nanual

R R R R R

A\

.\" This file and its contents are supplied under the terms of the

.\" Common Devel opment and Distribution License ("CDDL"), version 1.0.
.\" You may only use this file in accordance with the terns of version
" 1.0 of the CDDL.

source. A copy of the CDDL is also available via the Internet at

\
A\
A" A full copy of the text of the CDDL should have acconpanied this
\
\" http://ww.illunos.org/license/ CDDL.

" Copyright 2016 Joyent, Inc.

\

.Dd February 15, 2020

.Dd Dec 20, 2016

Dt USBA_HCDI _HUB_UPDATE 9E
Gs

. Sh NAME

. Nm usba_hcdi _hub_updat e

.Nd USB HCD hub update entry point
. Sh SYNOPSI S

.1 n sys/usb/usba/ hedi . h

LFt int

. Fo preflx hcdi _hub_updat e

. Fa "usba_device_t *ud"

.Fa "uint8_t nports"

.Fa "uint8’t tt"

. Sh | NTERFACE LEVEL

Sy Volatile -

i 11umps USB HCD private function

Pp

This is a private function that is not part of the stable DDI.
It may be renoved or changed at any tinme.

. Sh PARAMETERS

.Bl -tag -width Fa

LIt Fa ud

Pointer to a USB device structure being updated.

See

. Xr usba_device 9S
for nore information.

.1t Fa nports
The nunber of ports present on the hub.

It Fa tt
The value of the Think Tine property as defined in the USB
specification’s hub descriptor.

.H

. Sh DESCRI PTI ON

The

. Fn usba_hcdi _hub_updat e

entry point is an optional entry point for USB host controller drivers.
It is used by sonme controllers to allow themto update infornation about
a device in the controller after a device has been determined to be a
hub during enuneration.

If a host controller does not need to take any specific action after enunerating

a hub, then it should sinply set this entry point in the
. Xr usba_hcdl_ops 9S

structure to

.Dv NULL .

. Pp

The

new usr/ src/ man/ man9e/ usba_hcdi _hub_updat e. 9e

.Fa nports
and

.Fa tt

nenbers provide relevant information fromthe device' s hub class
descriptor which can be used to hel p programthe host controller.

Any programm ng shoul d be performed synchronously and be conpl eted before
this function returns.

. Pp

This function will be called after

. Xr usba_hcdi _device_init 9E

has been cal | ed.

Any private data registered with that function will be avail able.
P

- Pp
If this function fails, the enuneration of this device will fail, the
hub driver will not attach to this USB device, and all devices plugged
into this hub will not be detected by the system
. Sh CONTEXT
This function is called fromkernel context only.
This functin is called fromkernel context only.
. Sh RETURN VALUES
Upon successful conpletion, the
Fn usba_hcdi _hub_updat e
function should return
Sy USB_SUCCESS .
O her wi se, it shoul d return the appropriate USB error.
I f uncertain, use
.Sy USB_FAI LURE .
. Sh SEE ALSO
. Xr usba_hcdi _device_init 9E ,
. Xr usba_device 9S
. Xr usba_hcdi _ops 9S

new usr/ src/ man/ man9e/ usba_hcdi _pi pe_open. 9e 1 new usr/ src/ man/ man9e/ usba_hcdi _pi pe_open. 9e
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 61 . Sh DESCRI PTI O\‘
5117 Sat Feb 15 09: 54: 07 2020 62 The
new usr/ src/ man/ man9e/ usba_hcdi _pi pe_open. 9e 63 . Fn usba_hcdi _pi pe_open
12309 errors in section 9e of the manual 64 and
LEEE R R R EE SRR EEEEEEEEEEE R EREEEEEEEEEEEEEEEEEEREEEEEEEEEESEE] 65 . Fn usba_hcdi _pl pe_cl ose
1 .\" 66 entry points are called by the USB franework whenever a client, or the
2 .\" This file and its contents are supplied under the terms of the 67 framework itself, need to open or close a specific pipe.
3 .\" Common Devel opment and Distribution License ("CDDL"), version 1.0. 68 For additional background see
4 .\" You may only use this file in accordance with the ternms of version 69 . Xr usba_hcdi 9E .
5.\" 1.0 of the CDDL. 70 . Pp
6 .\" 71 When a pipe is opened, the host controller driver is responsible for
7 .\" Afull copy of the text of the CDDL shoul d have acconpanied this 72 preparing the specified endpoint for performing transfers.
8 .\" source. A copy of the CDDL is also available via the Internet at 73 This may include allocating bandw dth, programm ng the controller, and nore.
9 .\" http://ww.illunos.org/license/ CDDL. 74 \When the pipe is closed, the host controller driver is responsible for
10 .\" 75 cleaning up any resources that were allocated during the open call.
11 .\" 76 . Pp
12 .\" Copyright 2016 Joyent, Inc. 77 The pi pe handl e,
13 .\" 78 .Fa ph ,
14 .Dd February 15, 2020 79 identifies the endpoint that it the USBA is trying to open or close
14 .Dd Nov 26, 2017 80 through its endpoint descriptor in the
15 . Dt USBA_HCDI _PI PE_OPEN 9E 81 .Sy p_ep
16 . Cs 82 nenber.
17 . Sh NAME 83 The endpoi nt descriptor is described in
18 . Nm usba_hcdi _pi pe_open , 84 . Xr usb_ep_descr 9S .
19 . Nm usba_hcdi _pi pe_cl ose 85 From the endpoi nt descriptor the driver can determne the type of
20 . Nd open and close a USB pi pe 86 endpoint, what the address of the endpoint is, and what direction the
21 .Sh SYNOPSI S 87 endpoint is in.
22 .In sys/usb/ usba/ hedi . 88 When conbi ned, these uniquely describe the pipe.
23 .Ft int 89 . Pp
24 . Fo preflx hcdi _pi pe_open 90 To open a pipe, the driver may need additional conpani on endpoi nt
25 . Fa "usba_pi pe_handl e_data_t *ph" 91 descriptors.
26 .Fa "usb_flags_t usb_flags" 92 If these are available, they will be in the
27 . Fc 93 .Sy p_xep
28 .Ft int 94 nenber of the pipe handle.
29 . Fo prefix_hcdi _pipe_cl ose 95 See
30 . Fa "usba_pi pe_handl e_data_t *ph" 96 . Xr usb_ep_xdescr 9S
31 .Fa "usb_flags_t usb_flags" 97 for nore information on how to determ ne which descriptors are present
32 . Fc 98 and get the information encoded in them
33 . Sh | NTERFACE LEVEL 99 . Pp
34 .Sy Volatile - 100 Host controller drivers should check the USB address of the
35 illunps USB HCD private function 101 USB device that
36 . Pp 102 . Fa ph
37 This is a private function that is not part of the stable DDl . 103 bel ongs to.
38 It may be renpved or changed at any tine. 104 The driver may be asked to open a pipe to the root hub.
39 . Sh PARAMETERS 105 As the root hub is often synthetic, the driver may need to take a different
40 .Bl -tag -width Fa 106 path than normal .
41 . It Fa ph 107 . Ss Pipe open specifics
42 A pointer to a USB pipe handle as defined in 108 A given endpoint on a device can only be opened once.
43 . Xr usba_pi pe_handl e_data 9S . 109 If there’s a request to open an al ready open endpoint, then the request to open
44 .1t Fa usb_flags 110 the pi pe should be failed.
45 Fl ags whi ch describe how al | ocati ons shoul d be perforned. 111 . Pp
46 Valid flags are: 112 By the tine the call to open a pipe returns, the driver shoul d expect
47 .Bl -tag -width Sy 113 that any of the pipe transfer or reset entry points will be called on
48 . It Sy USB_FLAGS_NOSLEEP 114 the pipe.
49 Do not block waiting for nmenory. 115 . P
50 If menory is not available the allocation will fail. 116 A driver can establish private data on an endpoint.
51 .1t Sy USB FLAGS SLEEP 117 During pipe open it may set the
52 Perform a bl ocki ng al | ocation. 118 .Sy p_hcd_private
53 If menory is not available, the function will wait until nmenory is nade 119 nenber to any val ue.
54 avail abl e. 120 Generally this points to an allocated structure that contains data specific to
55 . Pp 121 the host controller.
56 Note, the request may still fail even if 122 This value will remain on the pipe handle.
57 .Sy USB_FLAGS_SLEEP 123 It is the responsibility of the driver to clear the data when the pipe is
58 is specified. 124 cl osed.
59 . E 125 . Ss Pipe close specifics
60 . El 126 When a pipe is closed, the driver nust clean up all of the resources

new usr/ src/ man/ man9e/ usba_hcdi _pi pe_open. 9e

127
128
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

that it allocated when opening the pipe.

For non-periodic transfers, the host controller driver nay assune that there
For non-periodic transfers, the host controller driver may assuene that there
are no outstanding transfers that need to be cleaned up.

However, the sanme is not true for periodic pipes.

. Pp

For pipes that have outstanding periodic transfers, the host controller
driver needs to clean themup and quiesce themas though a call to

ei ther

. Xr usba_hcdi _pi pe_stop_intr_polling 9E

or
. Xr usba_hcdi _pi pe_stop_isoc_polling 9E

had been call ed.

. Pp

Just as with opening the pipe, the driver should pay attention to the
address of the USB device, as it may be the root hub, which may be a
synt hetic pipe.

. P

p
When a call to
. Fn usba_hcdi _pi pe_cl ose
conpl etes, the device should be in a state that the pipe can be opened
agal n.
. Sh RETURN VALUES
Upon successful conpletion, the
. Fn usba_hcdi _pi pe_open
and
. Fn uba_hcdi _pi pe_cl ose
functions should return
. Sy USB_SUCCESS .
O herwi se, it should return the appropriate USB error.
I f uncertain, use
.Sy USB_FAI LURE .
. Sh SEE ALSO
. Xr usba_hcdi 9E ,
. Xr usba_hcdi _pi pe_stop_intr_polling 9E ,
. Xr usba_hcdi _pi pe_stop_isoc_polling 9E ,
. Xr usb_ep_descr 9S ,
. Xr usb_ep_xdescr 9S ,
. Xr usba_pi pe_handl e_data 9S

new usr/ src/ man/ man9f/ gl d. of 1

R R R R

8807 Sat Feb 15 09:54: 07 2020

new usr/ src/ man/ man9f/ gl d. of
12309 errors in section 9e of the nanual

R R R R R

PRRR e
WNNROOONNOUTAWN R

=
oul

"\ te

.\" Copyright (c) 2003, Sun M crosystens, Inc.
A\
.\" The contents of this file are subject to the terns of the Common Devel opnent
\

Al Rights Reserved
You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE or http:

.\" Wen distributing Covered Code, include this CDDL HEADER in each file and in
.TH GLD 9F "February 15, 2020"

.TH GLD 9F "Aug 28, 2003"

. SH NAME

gld, gld_mac_alloc, gld_nac_free, gld_register, gld_unregister, gld_recv,
gld_sched, gld_intr \- Generic LAN Driver service routines

. SH SYNOPSI S

.LP

. nf

#i ncl ude <sys/gld. h>

\fBgld_mac_info_t *\fR fBgld_mac_all oc\fR(\fBdev_info_t *\fRfldip\fR);
i

.LP
. nf
\fBvoi d\fR \fBgl d_mac_free\fR(\fBgl d_mac_info_t *\fRflmacinfo\fR);

fi

.LP
. nf
\fBint\fR\fBgld_register\fR(\fBdev_info_t *\fRfldip\fR, \fBchar *\fR flnane\fR
i

.LP
. nf
\fBint\fR \fBgld_ unregister\fR(\fBgld_mac_info_t *\fR flmacinfo\fR);
i

.LP
. nf
\fBvoi d\fR \fBgld_recv\fR(\fBgld_mac_info_t *\fRflmacinfolfR \fBrblk_t *\fRflI

fi

.LP
. nf
\fBvoi d\fR \ fBgl d_sched\f R(\ fBgl d_mac_i nfo_t *\fR flnacinfo\fR);

fi

.LP
. nf
\fBuint _t\fR\fBgld_intr\fR(\fBcaddr_t);\fR
i

.LP
. nf
\fBvoi d\fR \fBgl d_linkstate\fR(\fBgld_mac_info_t *\fRflmacinfo\fR \fBint32_t\f

fi

. SH | NTERFACE LEVEL

.sp

.LP

Sol aris architecture specific (Solaris DDl).
. SH PARAMETERS

.sp

.ne 2

new usr/ src/ man/ man9f/ gl d. of

.na
\fB\fImacinfo\fR \fR

.ad

.RS 13n

Pointer to a \fBgld_nmac_i nfo\fR(9S) structure.
. RE

.sp
.ne 2

.na
\fB\fldip\fR\fR

.ad

.RS 13n

Pointer to \fBdev_info\fR structure.
.RE

.sp
.ne 2

.na
\fB\flnane\fR \fR

.a
. RS 13n

Device interface nane.
. RE

.sp
.ne 2

.na
\fB\fInp\fR\fR
ad

_RS 13n
Pointer to a nmessage bl ock containing a received packet.
.RE

.sp
.ne 2

. na
\fB\flnewstate\fR \fR
.ad

.RS 13n

Media link state.

. RE

. SH DESCRI PTI ON

.sp

.LP

\fBgld_mac_al loc\fR(\|) allocates a new \fBgld_mac_i nfo\fR(9S) structure and
returns a pointer to 1t. Some of the GLD-private elenents of the structure may
be initialized before \fBgld_mac_alloc\fR(\|) returns; all other elenments are
initialized to zero. The device driver nust initialize sone structure nenbers,
as described in \fBgld_mac_i nfo\fR(9S), before passing the mac_info pointer to
\fBgld_register\fR(\]).

.sp
.LP

\fBgld_mac_free\fR(\|) frees a \fBgld_mac_i nfo\fR(9S) structure previously
all ocated by \fBgld_mac_alloc\fR(\|).

.sp

. LP

\fBgld_register\fR(\|) is called fromthe device driver’s \fBattach\fR(9E)
routine, and is used to link the G.D based device driver with the GLD
framework. Before calling \fBgld_register\fR(\|) the device driver’s
\fBattach\fR(9E) routine nust first use \fBgld_mac_alloc\fR(\|) to allocate a
\fBgld_mac_i nfo\fR(9S) structure, and initialize several of its structure

el ements. See \fBgld_nac_info\fR(9S) for nore information. A successful call to
\fBgld_register\fR(\|) performs the follow ng actions:

.RS +4

new usr/ src/ man/ man9f/ gl d. of

121
122
123
124

. TP

.iet \(bu

.el o

l'inks the device-specific driver with the GLD system

125 . RE

126
127
128
129
130
131

.RS +4

. TP

|et \ (bu

.el

sets the device-specific driver's private data pointer (using

\ fBddi _set _driver_private\fR(9F)) to point to the \fBmacinfo\fR structure;

132 . RE

133

134 .
135 .

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

.RS +4

creates the mnor device node.
. RE

- SPp

LP

The device interface name passed to \fBgld_register\fR(\|) nust exactly match
the nane of the driver nobdule as it exists in the filesystem

.sp

.LP

The driver’s \fBattach\fR(9E) routine should return \fBDD _SUCCESS\fR i f
\fBgld_register\fR(\|) succeeds. If \fBgld_register\fR(\|) returns

\fBDDI _FAILURE\fR, the \fBattach\fR(9E) routine shoul d deal | ocate any resources
it allocated before calling \fBgld_register\fR(\|) and then also return

\ f BDDI _FAI LURE\ f R.

.sp

LP

\fBgId unregister\fR(\|) is called by the device driver’'s \fBdetach\fR(9E)
function, and if successful, performs the follow ng tasks:

.RS +4

.TP

.iet \(bu

.el o

ensures the device's interrupts are stopped,
\fBgl dm stop\fR(\|) routine If necessary;

calling the driver’s

160 . RE

161

162 .
163 .

164
165

.RS +4

renoves the minor device node;

166 . RE

167
168
169

170 .

171

.RS +4

TP

.iet \(bu

el o

unlinks the device-specific driver fromthe G.D system

172 .RE

173

.sp

174 . LP

175
176
177
178
179
180
181
182
183
184
185
186

If \fBgld_unregister\fR(\|) returns \fBDDI _SUCCESS\fR, the \fBdetach\fR(9E)
routine should deall ocate any data structures allocated in the \fBattach\fR(9E)
routine, using \fBgld_mac_free\fR(\|) to deallocate the \fBnmaci nfo\fR
structure, and return \fBDDI _SUCCESS\fR. If \fBgld_unregister\fR(\|) returns
\fBDDI _FAILURE\fR, the driver’s \fBdetach\fR(9E) routine nust |eave the device
operational and return \fBDDl _FAI LURE\ fR

.sp

. LP

\fBgld_recv\fR(\|) is called by the driver’s interrupt handler to pass a

recei ved packet upstream The driver nust construct and pass a STREAMS

\ f BM_DATA\ f R message containing the raw packet. \fBgld_recv\fR(\|) deternines
whi ch STREAMS queues, if any, should receive a copy of the packet, duplicating

new usr/ src/ man/ man9f/ gl d. of

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

226 .
227 .

228

229 i

230

231 .
232 .

it if necessary. It then formats a \fBDL_UNI TDATA_ | ND\f R nessage, if required,
and passes the data up all appropriate streans.

.sp

.LP

The driver should avoid holding nutex or other |ocks during the call to
\fBgld_recvi\fR(\|). In particular, locks that could be taken by a transmt
thread may not be held during a call to \fBgld_recv\fR(\|): the interrupt
thread that calls \fBgld_recv\fR(\|) nay in sonme cases carry out processing
that includes sending an outgoing packet, resulting in a call to the driver’'s
\fBgldm send\fR(\|) routine. If the \fBgldmsend\fR(\|) routine were to try to
acquire a nutex being held by the \fBgldmintr\fR(\|) routine at the time it
calls \fBgld_recv\fR(\|), this could result in a panic due to recursive nutex
entry.

.sp

. LP

\fBgld_sched\fR(\|) is called by the device driver to reschedule stalled

out bound packets. Whenever the driver’s \fBgldmsend\fR(\|) routine has
returned \f BGLD _NORESOURCES\fR, the driver nust later call \fBgld_ sched\fR(\|)
to informthe GD framework that it should retry the packets that previously
could not be sent. \fBgld_sched\fR(\|) should be called as soon as possible
after resources are again available, to ensure that GLD resunes passing

out bound packets to the driver’s \fBgldmsend\fR(\|) routine in a tinmely way.
(If the driver’s \fBgldmstop\fR(\|) routine is called, the driver is absolved
fromthis obligation until it later again returns \fBGLD NORESOQURCES\ f R from
its \fBgldmsend\fR(\|) routine; however, extra calls to \fBgld_sched\fR(\|)
wi |l not cause incorrect operatlon)

sp

\fBgId intr\fR(\|) is GLD's nain interrupt handler. Nornally it is specified as
the interrupt routine in the device driver’'s call to \fBddi_add_intr\fR(9F).
The argunent to the interrupt handl er (specified as \flint_handler_arg\fR in
the call to \fBddi _add_intr\fR(9F)) nust be a pointer to the

\fBgl d_mac_i nfo\f R(9S) structure. \fBgld_intr\fR(\|) will, when appropriate,
cali the device driver’s \fBgldm.intr\fR(\|) function, passing that pointer to
the \fBgld_mac_i nfo\fR(9S) structure. However, if the driver uses a high-Ievel
interrupt, it nmust provide its own high-level interrupt handler, and trigger a
soft interrupt fromwithin that. In this case, \fBgld_intr\fR(\|) may be
specified as the soft interrupt handler in the call to

\fBddi _add_softintr\fR(\]|).

J)\fRis called by the device driver to notify G.D of changes
state. The newstate argunent should be set to one of the

=~

233 .na

234
235
236
237

\ f B\ f BGLD_LI NKSTATE_ DO\ f R \ f R
.ad

. RS 26n

The nedia link is unavail abl e.

238 . RE

240
241
242
243
244
245
246

.sp
.ne 2

. na
\fB\f BGLD_LI NKSTATE_UP\fR \fR
.ad

. RS 26n

The nedia link is unavail able.

247 . RE

249
250

.sp
.ne 2

251 .na

252

\f B\ f BGLD_LI NKSTATE_UNKNOM\ f R \ f R

new usr/ src/ man/ man9f/ gl d. of

253
254
255

.ad
. RS 26n
The status of the nedia link is unknown.

256 . RE

258
259
260
261
267
262
269
270
263
264
265
266
267
268
269
270
271
272
273
274
275

277
278
279
280
281
282
283

.sp
.LP

If a driver calls \fBgl
bit in the gl dmcapabil
bit in the gldmcapab
. SH RETURN VALUES

.sp

. LP
\fBgld_nmac_alloc\fR(\|) returns a pointer to a new \fBgl d_nac_i nfo\fR(9S)
structure.

.sp

.LP

\fBgld_register\fR(\|) and \fBgld_unregister\fR(\|) return:

.sp

.ne 2

kstate()\fR, it nust also set the GLD_CAP_LI NKSTATE
field of the \fBgld_mac_info\fR(9S) structure.
f Byl

d
i
i s field of the \fBgld_mac_info\fR(9S) structure.

in
es
ie

|
ti
It

.na
\fB\f BDDI _SUCCESS\fR \fR
.ad

. RS 16n

on success.

. RE

.sp
.ne 2

. na
\fB\fBDDI _FAILURE\fR \fR
.ad

. RS 16n

on failure.

284 . RE

286
287
288
289
298
299
290
291
292
293
294

.sp
.LP

\fBgld_intr\fR(\|) returns a value appropriate for an interrupt handler.

. SH SEE ALSO

.sp

.LP

\fBgld\fR(7D), \fBgld\fR(9E), \fBgld_nac_info\fR(9S), \fBgld_stats\fR(9S),
\fBdl pi \fR(7P), \fBattach\fR(9E), \fBddi_add_intr\fR(9F)

.Sp

.LP

\fIWiting Device Drivers\fR

new usr/ src/ man/ man9f / mac_r egi st er . 9f

R R R R

6797 Sat Feb 15 09: 54: 07 2020
new usr/ src/ man/ man9f / mac_r egi st er . 9f
12309 errors in section 9e of the manual
IR E SR EE RS RS E R E SRR R R R R R R R R SRR EEEEREEREEEEEEEERSE]
1.\
2 .\" This file and its contents are supplied under the terms of the

3 .\" Conmon Devel opnent and Distribution License ("CDDL"), version 1.0.
4 .\" You may only use this file in accordance with the ternms of version
5.\" 1.0 of the CDDL.

6 .\"

7 .\" Afull copy of the text of the CDDL should have acconpanied this
8 .\" source. A copy of the CDDL is also available via the Internet at
9 .\" http://ww.illunos.org/license/ CDDL.

10 .

11 .\"

12 .\" Copyright (c) 2017, Joyent, Inc.

13 .\"

14 .Dd February 15, 2020

14 .Dd Septenber 22, 2017

15 . Dt MAC_REQ STER 9F

16 . Cs

17 . Sh NAME

18 . Nm nac_register ,

19 . Nm nac_unr egi st er

20 .Nd register and unregister a device driver fromthe MAC franmework
21 . Sh SYNOPSIS

22 .1n sys/ mac_provi der.

23 .Ft int

24 .Fo mac_register

25 .Fa "mac_register_t *nregp"

26 .Fa "mac_handl e_t *nhp"

27 . Fc

28 .Ft int

29 . Fo mac_unregister

30 .Fa "nmac_handl e_t nmh"

31 . Fc

32 . Sh | NTERFACE LEVEL

33 illunps DD specific

34 . Sh PARAMETERS

35 . Bl -tag -width Fa

36 .1t Fa nregp

37 A pointer to a

38 . Xr mac_register 9S

39 structure allocated by calling

40 . Xr mac_al l oc 9F

41 and filled in by the device driver.

42 .1t Fa nhp

43 A pointer to a driver-backed handle to the MAC franmeworKk.
44 .1t Fa nh

45 The driver-backed handl e to the MAC franework.

46 . EH
47 . Sh DESCRI PTI ON
48 The

49 . Fn mac_regi ster

50 function is used to register an instance of a device driver with the
51 . Xr mac 9E

52 framework.

53 Upon successfully calling the

54 .Fn mac_register

55 function, the device will start having its

56 . Xr mac_cal | backs 9S

57 entry points called.

58 The device driver should call this function during it’'s

59 . Xr attach 9E

60 entry point after the device has been configured and is set up.

new usr/ src/ man/ man9f / mac_r egi st er . 9f

For a nore detailed explanation of the exact steps that the device driver
shoul d take and where in the sequence of a driver’'s
.Xr attach 9E

entry point this function should be called, see the
.Sx Registering with MAC

section of

. Xr mac 9E .

. Pp

The driver should provide a pointer to a

. Ft mac_handl e_t

structure as the second argunent to the

Fn mac_regi ster

functi on.

This handle will be used when the device driver needs to interact with the
framework in various ways throughout its life.

It is also where the driver gets the

.Fa mh

argurment for calling the

. Fn mac_unregi ster

function.

It is recommended that the device driver keep the handle around in its soft
state structure for a given instance.

. Pp
If the call to the

.Fn mac_register

function fails, the device driver should unwind its

. Xr attach 9E

entry point, tear down everything that it initialized, and ultinately
return an error fromits

.Xr attach 9E

entry poi nt.

. Pp

If the

.Xr attach 9E

routine fails for some reason after the call to the

.Fn mac_register

function has succeeded, then the driver should call the

. Fn mac_unregi ster

function as part of unwinding all of its state.

. Pp

When a driver is inits

. Xr detach 9E

entry point, it should call the

. Fn mac_unregi ster

function imediately after draining any of its transmt and receive
resources that m ght have been given to the rest of the operating system
t hrough DVA bi ndi ng.

See the

. Sx MBLKS AND DNVA

section of

. Xr mac 9E

for nore information.

Thi s shoul d be done before the driver does any tearing down.

The call to the

. Fn mac_unregi ster

function may fail.

This may happen because the networking stack is still using the device.
In such a case, the driver should fail the call to

. Xr detach 9E

and return

.Sy DDl _FAI LURE .

. Sh CONTEXT

The

. Fn mac_register

function is generally only called froma driver’s

.Xr attach 9E

new usr/ src/ man/ man9f / mac_r egi st er . 9f

127 entry point.

128 The

129 . Fn mac_unregi ster

130 function is generally only called froma driver’s

131 . Xr attach 9E

132 and

133 . Xr detach 9E

134 entry point.

135 However, both functions may be called fromeither

136 .Sy user

137 or

138 . Sy kernel

139 context.

140 . Sh RETURN VALUES

141 Upon successful conpletion, the

142 . Fn mac_register

143 and

144 . Fn mac_unregi ster

145 functions both return

146 .Sy 0 .

147 Otherw se, they return an error nunber.

148 . Sh EXAMPLES

149 The followi ng exanpl e shows how a device driver night call the
150 . Fn mac_regi ster

151 function.

152 .Bd -literal

153 #i ncl ude <sys/ mac_provi der. h>

154 #incl ude <sys/ mac_et her. h>

156 /*

157 * The call to mac_register(9F) generally conmes fromthe context of
158 * attach(9E). This function encapsul ates setting up and initializing
159 * the mac_register_t structure and should be assuned to be called from
160 * attach.

161 *

162 * The exact set of callbacks and private properties will vary based
163 * upon the driver.

164 */

166 static char *exanple_priv_props[] = {

167 "_rx_intr_throttle",

168 " _tx_intr_throttle",

169 NULL

170 };

172 static mac_cal | backs_t exanpl e_m cal | backs = {

173 .nmc_cal | backs = MC_GETCAPAB | MC_SETPRCOP | MC_GETPRCP | MC_PROPI NFO |
173 .mc_cal | bacsk = MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPI NFO |
174 MC_I OCTL,

175 .nc_start = exanple_mstart,

176 .mc_stop = exanpl e_m stop,

177 .nt_setprom sc = exanpl e_m set prom sc,

178 .nc_mul ticst = exanple_mnulticst,

179 .mc_uni cst = exanpl e_m uni cst,

180 .nmc_tx = exanple_mtx,

181 .nt_ioctl = exanple_m.ioctl,

182 . nt_get capab = exanpl e_m get capab,

183 .mc_get prop = exanpl e_m get prop,

184 .nc_setprop = exanpl e_m set prop,

185 .nt_propinfo = exanpl e_m propinfo

186 };

188 static bool ean_t

189 exanpl e_regi ster_mac(exanpl e_t *ep)

190 {

191

int status;

new usr/ src/ man/ man9f / mac_r egi st er . 9f
192 mac_regi ster_t *mac;
194 mac = mac_al | oc(MAC_VERSI ON) ;
195 if (mac == NULL
196 return (B_FALSE);
198 mac->m type_i dent = MAC_PLUGQ N_I DENT_ETHER;
199 mac->mdriver = ep;
200 mac->mdi p = ep->ep_dev_i nfo;
201 mac- >m src_addr = ep->ep_nac_addr;
202 mac- >m cal | backs = &exanpl e_m cal | backs;
203 mac->m min_sdu = 0;
204 mac- >m nex_sdu = ep->ep_sdu;
205 mac->m margi n = VLAN _TAGSZ;
206 mac->m priv_props = exanpl e_priv_props;
206 mac->m priv_props = exnpl e_priv_props;
208 status = nac_register(nmac, &ep->ep_mac_hdl);
209 mac_free(mac);
211 return (status == 0);
212 }

__unchanged_portion_onitted_

