1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*      Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T     */
  22 /*        All Rights Reserved   */
  23 
  24 
  25 /*
  26  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  27  * Use is subject to license terms.
  28  */
  29 
  30 #include <sys/types.h>
  31 #include <sys/sysmacros.h>
  32 #include <sys/param.h>
  33 #include <sys/errno.h>
  34 #include <sys/signal.h>
  35 #include <sys/proc.h>
  36 #include <sys/conf.h>
  37 #include <sys/cred.h>
  38 #include <sys/user.h>
  39 #include <sys/vnode.h>
  40 #include <sys/file.h>
  41 #include <sys/session.h>
  42 #include <sys/stream.h>
  43 #include <sys/strsubr.h>
  44 #include <sys/stropts.h>
  45 #include <sys/poll.h>
  46 #include <sys/systm.h>
  47 #include <sys/cpuvar.h>
  48 #include <sys/uio.h>
  49 #include <sys/cmn_err.h>
  50 #include <sys/priocntl.h>
  51 #include <sys/procset.h>
  52 #include <sys/vmem.h>
  53 #include <sys/bitmap.h>
  54 #include <sys/kmem.h>
  55 #include <sys/siginfo.h>
  56 #include <sys/vtrace.h>
  57 #include <sys/callb.h>
  58 #include <sys/debug.h>
  59 #include <sys/modctl.h>
  60 #include <sys/vmsystm.h>
  61 #include <vm/page.h>
  62 #include <sys/atomic.h>
  63 #include <sys/suntpi.h>
  64 #include <sys/strlog.h>
  65 #include <sys/promif.h>
  66 #include <sys/project.h>
  67 #include <sys/vm.h>
  68 #include <sys/taskq.h>
  69 #include <sys/sunddi.h>
  70 #include <sys/sunldi_impl.h>
  71 #include <sys/strsun.h>
  72 #include <sys/isa_defs.h>
  73 #include <sys/multidata.h>
  74 #include <sys/pattr.h>
  75 #include <sys/strft.h>
  76 #include <sys/fs/snode.h>
  77 #include <sys/zone.h>
  78 #include <sys/open.h>
  79 #include <sys/sunldi.h>
  80 #include <sys/sad.h>
  81 #include <sys/netstack.h>
  82 
  83 #define O_SAMESTR(q)    (((q)->q_next) && \
  84         (((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
  85 
  86 /*
  87  * WARNING:
  88  * The variables and routines in this file are private, belonging
  89  * to the STREAMS subsystem. These should not be used by modules
  90  * or drivers. Compatibility will not be guaranteed.
  91  */
  92 
  93 /*
  94  * Id value used to distinguish between different multiplexor links.
  95  */
  96 static int32_t lnk_id = 0;
  97 
  98 #define STREAMS_LOPRI MINCLSYSPRI
  99 static pri_t streams_lopri = STREAMS_LOPRI;
 100 
 101 #define STRSTAT(x)      (str_statistics.x.value.ui64++)
 102 typedef struct str_stat {
 103         kstat_named_t   sqenables;
 104         kstat_named_t   stenables;
 105         kstat_named_t   syncqservice;
 106         kstat_named_t   freebs;
 107         kstat_named_t   qwr_outer;
 108         kstat_named_t   rservice;
 109         kstat_named_t   strwaits;
 110         kstat_named_t   taskqfails;
 111         kstat_named_t   bufcalls;
 112         kstat_named_t   qhelps;
 113         kstat_named_t   qremoved;
 114         kstat_named_t   sqremoved;
 115         kstat_named_t   bcwaits;
 116         kstat_named_t   sqtoomany;
 117 } str_stat_t;
 118 
 119 static str_stat_t str_statistics = {
 120         { "sqenables",          KSTAT_DATA_UINT64 },
 121         { "stenables",          KSTAT_DATA_UINT64 },
 122         { "syncqservice",       KSTAT_DATA_UINT64 },
 123         { "freebs",             KSTAT_DATA_UINT64 },
 124         { "qwr_outer",          KSTAT_DATA_UINT64 },
 125         { "rservice",           KSTAT_DATA_UINT64 },
 126         { "strwaits",           KSTAT_DATA_UINT64 },
 127         { "taskqfails",         KSTAT_DATA_UINT64 },
 128         { "bufcalls",           KSTAT_DATA_UINT64 },
 129         { "qhelps",             KSTAT_DATA_UINT64 },
 130         { "qremoved",           KSTAT_DATA_UINT64 },
 131         { "sqremoved",          KSTAT_DATA_UINT64 },
 132         { "bcwaits",            KSTAT_DATA_UINT64 },
 133         { "sqtoomany",          KSTAT_DATA_UINT64 },
 134 };
 135 
 136 static kstat_t *str_kstat;
 137 
 138 /*
 139  * qrunflag was used previously to control background scheduling of queues. It
 140  * is not used anymore, but kept here in case some module still wants to access
 141  * it via qready() and setqsched macros.
 142  */
 143 char qrunflag;                  /*  Unused */
 144 
 145 /*
 146  * Most of the streams scheduling is done via task queues. Task queues may fail
 147  * for non-sleep dispatches, so there are two backup threads servicing failed
 148  * requests for queues and syncqs. Both of these threads also service failed
 149  * dispatches freebs requests. Queues are put in the list specified by `qhead'
 150  * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
 151  * requests are put into `freebs_list' which has no tail pointer. All three
 152  * lists are protected by a single `service_queue' lock and use
 153  * `services_to_run' condition variable for signaling background threads. Use of
 154  * a single lock should not be a problem because it is only used under heavy
 155  * loads when task queues start to fail and at that time it may be a good idea
 156  * to throttle scheduling requests.
 157  *
 158  * NOTE: queues and syncqs should be scheduled by two separate threads because
 159  * queue servicing may be blocked waiting for a syncq which may be also
 160  * scheduled for background execution. This may create a deadlock when only one
 161  * thread is used for both.
 162  */
 163 
 164 static taskq_t *streams_taskq;          /* Used for most STREAMS scheduling */
 165 
 166 static kmutex_t service_queue;          /* protects all of servicing vars */
 167 static kcondvar_t services_to_run;      /* wake up background service thread */
 168 static kcondvar_t syncqs_to_run;        /* wake up background service thread */
 169 
 170 /*
 171  * List of queues scheduled for background processing due to lack of resources
 172  * in the task queues. Protected by service_queue lock;
 173  */
 174 static struct queue *qhead;
 175 static struct queue *qtail;
 176 
 177 /*
 178  * Same list for syncqs
 179  */
 180 static syncq_t *sqhead;
 181 static syncq_t *sqtail;
 182 
 183 static mblk_t *freebs_list;     /* list of buffers to free */
 184 
 185 /*
 186  * Backup threads for servicing queues and syncqs
 187  */
 188 kthread_t *streams_qbkgrnd_thread;
 189 kthread_t *streams_sqbkgrnd_thread;
 190 
 191 /*
 192  * Bufcalls related variables.
 193  */
 194 struct bclist   strbcalls;      /* list of waiting bufcalls */
 195 kmutex_t        strbcall_lock;  /* protects bufcall list (strbcalls) */
 196 kcondvar_t      strbcall_cv;    /* Signaling when a bufcall is added */
 197 kmutex_t        bcall_monitor;  /* sleep/wakeup style monitor */
 198 kcondvar_t      bcall_cv;       /* wait 'till executing bufcall completes */
 199 kthread_t       *bc_bkgrnd_thread; /* Thread to service bufcall requests */
 200 
 201 kmutex_t        strresources;   /* protects global resources */
 202 kmutex_t        muxifier;       /* single-threads multiplexor creation */
 203 
 204 static void     *str_stack_init(netstackid_t stackid, netstack_t *ns);
 205 static void     str_stack_shutdown(netstackid_t stackid, void *arg);
 206 static void     str_stack_fini(netstackid_t stackid, void *arg);
 207 
 208 /*
 209  * run_queues is no longer used, but is kept in case some 3rd party
 210  * module/driver decides to use it.
 211  */
 212 int run_queues = 0;
 213 
 214 /*
 215  * sq_max_size is the depth of the syncq (in number of messages) before
 216  * qfill_syncq() starts QFULL'ing destination queues. As its primary
 217  * consumer - IP is no longer D_MTPERMOD, but there may be other
 218  * modules/drivers depend on this syncq flow control, we prefer to
 219  * choose a large number as the default value. For potential
 220  * performance gain, this value is tunable in /etc/system.
 221  */
 222 int sq_max_size = 10000;
 223 
 224 /*
 225  * The number of ciputctrl structures per syncq and stream we create when
 226  * needed.
 227  */
 228 int n_ciputctrl;
 229 int max_n_ciputctrl = 16;
 230 /*
 231  * If n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
 232  */
 233 int min_n_ciputctrl = 2;
 234 
 235 /*
 236  * Per-driver/module syncqs
 237  * ========================
 238  *
 239  * For drivers/modules that use PERMOD or outer syncqs we keep a list of
 240  * perdm structures, new entries being added (and new syncqs allocated) when
 241  * setq() encounters a module/driver with a streamtab that it hasn't seen
 242  * before.
 243  * The reason for this mechanism is that some modules and drivers share a
 244  * common streamtab and it is necessary for those modules and drivers to also
 245  * share a common PERMOD syncq.
 246  *
 247  * perdm_list --> dm_str == streamtab_1
 248  *                dm_sq == syncq_1
 249  *                dm_ref
 250  *                dm_next --> dm_str == streamtab_2
 251  *                            dm_sq == syncq_2
 252  *                            dm_ref
 253  *                            dm_next --> ... NULL
 254  *
 255  * The dm_ref field is incremented for each new driver/module that takes
 256  * a reference to the perdm structure and hence shares the syncq.
 257  * References are held in the fmodsw_impl_t structure for each STREAMS module
 258  * or the dev_impl array (indexed by device major number) for each driver.
 259  *
 260  * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
 261  *                   ^                 ^ ^               ^
 262  *                   |  ______________/  |               |
 263  *                   | /                 |               |
 264  * dev_impl:     ...|x|y|...          module A        module B
 265  *
 266  * When a module/driver is unloaded the reference count is decremented and,
 267  * when it falls to zero, the perdm structure is removed from the list and
 268  * the syncq is freed (see rele_dm()).
 269  */
 270 perdm_t *perdm_list = NULL;
 271 static krwlock_t perdm_rwlock;
 272 cdevsw_impl_t *devimpl;
 273 
 274 extern struct qinit strdata;
 275 extern struct qinit stwdata;
 276 
 277 static void runservice(queue_t *);
 278 static void streams_bufcall_service(void);
 279 static void streams_qbkgrnd_service(void);
 280 static void streams_sqbkgrnd_service(void);
 281 static syncq_t *new_syncq(void);
 282 static void free_syncq(syncq_t *);
 283 static void outer_insert(syncq_t *, syncq_t *);
 284 static void outer_remove(syncq_t *, syncq_t *);
 285 static void write_now(syncq_t *);
 286 static void clr_qfull(queue_t *);
 287 static void runbufcalls(void);
 288 static void sqenable(syncq_t *);
 289 static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
 290 static void wait_q_syncq(queue_t *);
 291 static void backenable_insertedq(queue_t *);
 292 
 293 static void queue_service(queue_t *);
 294 static void stream_service(stdata_t *);
 295 static void syncq_service(syncq_t *);
 296 static void qwriter_outer_service(syncq_t *);
 297 static void mblk_free(mblk_t *);
 298 #ifdef DEBUG
 299 static int qprocsareon(queue_t *);
 300 #endif
 301 
 302 static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
 303 static void reset_nfsrv_ptr(queue_t *, queue_t *);
 304 void set_qfull(queue_t *);
 305 
 306 static void sq_run_events(syncq_t *);
 307 static int propagate_syncq(queue_t *);
 308 
 309 static void     blocksq(syncq_t *, ushort_t, int);
 310 static void     unblocksq(syncq_t *, ushort_t, int);
 311 static int      dropsq(syncq_t *, uint16_t);
 312 static void     emptysq(syncq_t *);
 313 static sqlist_t *sqlist_alloc(struct stdata *, int);
 314 static void     sqlist_free(sqlist_t *);
 315 static sqlist_t *sqlist_build(queue_t *, struct stdata *, boolean_t);
 316 static void     sqlist_insert(sqlist_t *, syncq_t *);
 317 static void     sqlist_insertall(sqlist_t *, queue_t *);
 318 
 319 static void     strsetuio(stdata_t *);
 320 
 321 struct kmem_cache *stream_head_cache;
 322 struct kmem_cache *queue_cache;
 323 struct kmem_cache *syncq_cache;
 324 struct kmem_cache *qband_cache;
 325 struct kmem_cache *linkinfo_cache;
 326 struct kmem_cache *ciputctrl_cache = NULL;
 327 
 328 static linkinfo_t *linkinfo_list;
 329 
 330 /* Global esballoc throttling queue */
 331 static esb_queue_t system_esbq;
 332 
 333 /* Array of esballoc throttling queues, of length esbq_nelem */
 334 static esb_queue_t *volatile system_esbq_array;
 335 static int esbq_nelem;
 336 static kmutex_t esbq_lock;
 337 static int esbq_log2_cpus_per_q = 0;
 338 
 339 /* Scale the system_esbq length by setting number of CPUs per queue. */
 340 uint_t esbq_cpus_per_q = 1;
 341 
 342 /*
 343  * esballoc tunable parameters.
 344  */
 345 int             esbq_max_qlen = 0x16;   /* throttled queue length */
 346 clock_t         esbq_timeout = 0x8;     /* timeout to process esb queue */
 347 
 348 /*
 349  * Routines to handle esballoc queueing.
 350  */
 351 static void esballoc_process_queue(esb_queue_t *);
 352 static void esballoc_enqueue_mblk(mblk_t *);
 353 static void esballoc_timer(void *);
 354 static void esballoc_set_timer(esb_queue_t *, clock_t);
 355 static void esballoc_mblk_free(mblk_t *);
 356 
 357 /*
 358  *  Qinit structure and Module_info structures
 359  *      for passthru read and write queues
 360  */
 361 
 362 static void pass_wput(queue_t *, mblk_t *);
 363 static queue_t *link_addpassthru(stdata_t *);
 364 static void link_rempassthru(queue_t *);
 365 
 366 struct  module_info passthru_info = {
 367         0,
 368         "passthru",
 369         0,
 370         INFPSZ,
 371         STRHIGH,
 372         STRLOW
 373 };
 374 
 375 struct  qinit passthru_rinit = {
 376         (int (*)())putnext,
 377         NULL,
 378         NULL,
 379         NULL,
 380         NULL,
 381         &passthru_info,
 382         NULL
 383 };
 384 
 385 struct  qinit passthru_winit = {
 386         (int (*)()) pass_wput,
 387         NULL,
 388         NULL,
 389         NULL,
 390         NULL,
 391         &passthru_info,
 392         NULL
 393 };
 394 
 395 /*
 396  * Verify correctness of list head/tail pointers.
 397  */
 398 #define LISTCHECK(head, tail, link) {                           \
 399         EQUIV(head, tail);                                      \
 400         IMPLY(tail != NULL, tail->link == NULL);             \
 401 }
 402 
 403 /*
 404  * Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
 405  * using a `link' field.
 406  */
 407 #define ENQUEUE(el, head, tail, link) {                         \
 408         ASSERT(el->link == NULL);                            \
 409         LISTCHECK(head, tail, link);                            \
 410         if (head == NULL)                                       \
 411                 head = el;                                      \
 412         else                                                    \
 413                 tail->link = el;                             \
 414         tail = el;                                              \
 415 }
 416 
 417 /*
 418  * Dequeue the first element of the list denoted by `head' and `tail' pointers
 419  * using a `link' field and put result into `el'.
 420  */
 421 #define DQ(el, head, tail, link) {                              \
 422         LISTCHECK(head, tail, link);                            \
 423         el = head;                                              \
 424         if (head != NULL) {                                     \
 425                 head = head->link;                           \
 426                 if (head == NULL)                               \
 427                         tail = NULL;                            \
 428                 el->link = NULL;                             \
 429         }                                                       \
 430 }
 431 
 432 /*
 433  * Remove `el' from the list using `chase' and `curr' pointers and return result
 434  * in `succeed'.
 435  */
 436 #define RMQ(el, head, tail, link, chase, curr, succeed) {       \
 437         LISTCHECK(head, tail, link);                            \
 438         chase = NULL;                                           \
 439         succeed = 0;                                            \
 440         for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
 441                 chase = curr;                                   \
 442         if (curr != NULL) {                                     \
 443                 succeed = 1;                                    \
 444                 ASSERT(curr == el);                             \
 445                 if (chase != NULL)                              \
 446                         chase->link = curr->link;         \
 447                 else                                            \
 448                         head = curr->link;                   \
 449                 curr->link = NULL;                           \
 450                 if (curr == tail)                               \
 451                         tail = chase;                           \
 452         }                                                       \
 453         LISTCHECK(head, tail, link);                            \
 454 }
 455 
 456 /* Handling of delayed messages on the inner syncq. */
 457 
 458 /*
 459  * DEBUG versions should use function versions (to simplify tracing) and
 460  * non-DEBUG kernels should use macro versions.
 461  */
 462 
 463 /*
 464  * Put a queue on the syncq list of queues.
 465  * Assumes SQLOCK held.
 466  */
 467 #define SQPUT_Q(sq, qp)                                                 \
 468 {                                                                       \
 469         ASSERT(MUTEX_HELD(SQLOCK(sq)));                                 \
 470         if (!(qp->q_sqflags & Q_SQQUEUED)) {                             \
 471                 /* The queue should not be linked anywhere */           \
 472                 ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
 473                 /* Head and tail may only be NULL simultaneously */     \
 474                 EQUIV(sq->sq_head, sq->sq_tail);                  \
 475                 /* Queue may be only enqueued on its syncq */           \
 476                 ASSERT(sq == qp->q_syncq);                           \
 477                 /* Check the correctness of SQ_MESSAGES flag */         \
 478                 EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES));     \
 479                 /* Sanity check first/last elements of the list */      \
 480                 IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
 481                 IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
 482                 /*                                                      \
 483                  * Sanity check of priority field: empty queue should   \
 484                  * have zero priority                                   \
 485                  * and nqueues equal to zero.                           \
 486                  */                                                     \
 487                 IMPLY(sq->sq_head == NULL, sq->sq_pri == 0);              \
 488                 /* Sanity check of sq_nqueues field */                  \
 489                 EQUIV(sq->sq_head, sq->sq_nqueues);                       \
 490                 if (sq->sq_head == NULL) {                           \
 491                         sq->sq_head = sq->sq_tail = qp;                   \
 492                         sq->sq_flags |= SQ_MESSAGES;                 \
 493                 } else if (qp->q_spri == 0) {                                \
 494                         qp->q_sqprev = sq->sq_tail;                       \
 495                         sq->sq_tail->q_sqnext = qp;                       \
 496                         sq->sq_tail = qp;                            \
 497                 } else {                                                \
 498                         /*                                              \
 499                          * Put this queue in priority order: higher     \
 500                          * priority gets closer to the head.            \
 501                          */                                             \
 502                         queue_t **qpp = &sq->sq_tail;                    \
 503                         queue_t *qnext = NULL;                          \
 504                                                                         \
 505                         while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
 506                                 qnext = *qpp;                           \
 507                                 qpp = &(*qpp)->q_sqprev;         \
 508                         }                                               \
 509                         qp->q_sqnext = qnext;                                \
 510                         qp->q_sqprev = *qpp;                         \
 511                         if (*qpp != NULL) {                             \
 512                                 (*qpp)->q_sqnext = qp;                       \
 513                         } else {                                        \
 514                                 sq->sq_head = qp;                    \
 515                                 sq->sq_pri = sq->sq_head->q_spri;      \
 516                         }                                               \
 517                         *qpp = qp;                                      \
 518                 }                                                       \
 519                 qp->q_sqflags |= Q_SQQUEUED;                         \
 520                 qp->q_sqtstamp = ddi_get_lbolt();                    \
 521                 sq->sq_nqueues++;                                    \
 522         }                                                               \
 523 }
 524 
 525 /*
 526  * Remove a queue from the syncq list
 527  * Assumes SQLOCK held.
 528  */
 529 #define SQRM_Q(sq, qp)                                                  \
 530         {                                                               \
 531                 ASSERT(MUTEX_HELD(SQLOCK(sq)));                         \
 532                 ASSERT(qp->q_sqflags & Q_SQQUEUED);                      \
 533                 ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL);       \
 534                 ASSERT((sq->sq_flags & SQ_MESSAGES) != 0);               \
 535                 /* Check that the queue is actually in the list */      \
 536                 ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp);        \
 537                 ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp);        \
 538                 ASSERT(sq->sq_nqueues != 0);                         \
 539                 if (qp->q_sqprev == NULL) {                          \
 540                         /* First queue on list, make head q_sqnext */   \
 541                         sq->sq_head = qp->q_sqnext;                       \
 542                 } else {                                                \
 543                         /* Make prev->next == next */                        \
 544                         qp->q_sqprev->q_sqnext = qp->q_sqnext;         \
 545                 }                                                       \
 546                 if (qp->q_sqnext == NULL) {                          \
 547                         /* Last queue on list, make tail sqprev */      \
 548                         sq->sq_tail = qp->q_sqprev;                       \
 549                 } else {                                                \
 550                         /* Make next->prev == prev */                        \
 551                         qp->q_sqnext->q_sqprev = qp->q_sqprev;         \
 552                 }                                                       \
 553                 /* clear out references on this queue */                \
 554                 qp->q_sqprev = qp->q_sqnext = NULL;                       \
 555                 qp->q_sqflags &= ~Q_SQQUEUED;                            \
 556                 /* If there is nothing queued, clear SQ_MESSAGES */     \
 557                 if (sq->sq_head != NULL) {                           \
 558                         sq->sq_pri = sq->sq_head->q_spri;              \
 559                 } else  {                                               \
 560                         sq->sq_flags &= ~SQ_MESSAGES;                    \
 561                         sq->sq_pri = 0;                                      \
 562                 }                                                       \
 563                 sq->sq_nqueues--;                                    \
 564                 ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL ||    \
 565                     (sq->sq_flags & SQ_QUEUED) == 0);                    \
 566         }
 567 
 568 /* Hide the definition from the header file. */
 569 #ifdef SQPUT_MP
 570 #undef SQPUT_MP
 571 #endif
 572 
 573 /*
 574  * Put a message on the queue syncq.
 575  * Assumes QLOCK held.
 576  */
 577 #define SQPUT_MP(qp, mp)                                                \
 578         {                                                               \
 579                 ASSERT(MUTEX_HELD(QLOCK(qp)));                          \
 580                 ASSERT(qp->q_sqhead == NULL ||                               \
 581                     (qp->q_sqtail != NULL &&                         \
 582                     qp->q_sqtail->b_next == NULL));                       \
 583                 qp->q_syncqmsgs++;                                   \
 584                 ASSERT(qp->q_syncqmsgs != 0);        /* Wraparound */        \
 585                 if (qp->q_sqhead == NULL) {                          \
 586                         qp->q_sqhead = qp->q_sqtail = mp;         \
 587                 } else {                                                \
 588                         qp->q_sqtail->b_next = mp;                        \
 589                         qp->q_sqtail = mp;                           \
 590                 }                                                       \
 591                 ASSERT(qp->q_syncqmsgs > 0);                              \
 592                 set_qfull(qp);                                          \
 593         }
 594 
 595 #define SQ_PUTCOUNT_SETFAST_LOCKED(sq) {                                \
 596                 ASSERT(MUTEX_HELD(SQLOCK(sq)));                         \
 597                 if ((sq)->sq_ciputctrl != NULL) {                    \
 598                         int i;                                          \
 599                         int nlocks = (sq)->sq_nciputctrl;            \
 600                         ciputctrl_t *cip = (sq)->sq_ciputctrl;               \
 601                         ASSERT((sq)->sq_type & SQ_CIPUT);                \
 602                         for (i = 0; i <= nlocks; i++) {                      \
 603                                 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
 604                                 cip[i].ciputctrl_count |= SQ_FASTPUT;   \
 605                         }                                               \
 606                 }                                                       \
 607         }
 608 
 609 
 610 #define SQ_PUTCOUNT_CLRFAST_LOCKED(sq) {                                \
 611                 ASSERT(MUTEX_HELD(SQLOCK(sq)));                         \
 612                 if ((sq)->sq_ciputctrl != NULL) {                    \
 613                         int i;                                          \
 614                         int nlocks = (sq)->sq_nciputctrl;            \
 615                         ciputctrl_t *cip = (sq)->sq_ciputctrl;               \
 616                         ASSERT((sq)->sq_type & SQ_CIPUT);                \
 617                         for (i = 0; i <= nlocks; i++) {                      \
 618                                 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
 619                                 cip[i].ciputctrl_count &= ~SQ_FASTPUT;      \
 620                         }                                               \
 621                 }                                                       \
 622         }
 623 
 624 /*
 625  * Run service procedures for all queues in the stream head.
 626  */
 627 #define STR_SERVICE(stp, q) {                                           \
 628         ASSERT(MUTEX_HELD(&stp->sd_qlock));                              \
 629         while (stp->sd_qhead != NULL) {                                      \
 630                 DQ(q, stp->sd_qhead, stp->sd_qtail, q_link);              \
 631                 ASSERT(stp->sd_nqueues > 0);                              \
 632                 stp->sd_nqueues--;                                   \
 633                 ASSERT(!(q->q_flag & QINSERVICE));                       \
 634                 mutex_exit(&stp->sd_qlock);                              \
 635                 queue_service(q);                                       \
 636                 mutex_enter(&stp->sd_qlock);                             \
 637         }                                                               \
 638         ASSERT(stp->sd_nqueues == 0);                                        \
 639         ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL));       \
 640 }
 641 
 642 /*
 643  * Constructor/destructor routines for the stream head cache
 644  */
 645 /* ARGSUSED */
 646 static int
 647 stream_head_constructor(void *buf, void *cdrarg, int kmflags)
 648 {
 649         stdata_t *stp = buf;
 650 
 651         mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
 652         mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
 653         mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
 654         mutex_init(&stp->sd_pid_list_lock, NULL, MUTEX_DEFAULT, NULL);
 655         cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
 656         cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
 657         cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL);
 658         cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
 659         cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
 660         list_create(&stp->sd_pid_list, sizeof (pid_node_t),
 661                 offsetof(pid_node_t, pn_ref_link));
 662         stp->sd_wrq = NULL;
 663 
 664         return (0);
 665 }
 666 
 667 /* ARGSUSED */
 668 static void
 669 stream_head_destructor(void *buf, void *cdrarg)
 670 {
 671         stdata_t *stp = buf;
 672 
 673         mutex_destroy(&stp->sd_lock);
 674         mutex_destroy(&stp->sd_reflock);
 675         mutex_destroy(&stp->sd_qlock);
 676         mutex_destroy(&stp->sd_pid_list_lock);
 677         cv_destroy(&stp->sd_monitor);
 678         cv_destroy(&stp->sd_iocmonitor);
 679         cv_destroy(&stp->sd_refmonitor);
 680         cv_destroy(&stp->sd_qcv);
 681         cv_destroy(&stp->sd_zcopy_wait);
 682         list_destroy(&stp->sd_pid_list);
 683 }
 684 
 685 /*
 686  * Constructor/destructor routines for the queue cache
 687  */
 688 /* ARGSUSED */
 689 static int
 690 queue_constructor(void *buf, void *cdrarg, int kmflags)
 691 {
 692         queinfo_t *qip = buf;
 693         queue_t *qp = &qip->qu_rqueue;
 694         queue_t *wqp = &qip->qu_wqueue;
 695         syncq_t *sq = &qip->qu_syncq;
 696 
 697         qp->q_first = NULL;
 698         qp->q_link = NULL;
 699         qp->q_count = 0;
 700         qp->q_mblkcnt = 0;
 701         qp->q_sqhead = NULL;
 702         qp->q_sqtail = NULL;
 703         qp->q_sqnext = NULL;
 704         qp->q_sqprev = NULL;
 705         qp->q_sqflags = 0;
 706         qp->q_rwcnt = 0;
 707         qp->q_spri = 0;
 708 
 709         mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
 710         cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
 711 
 712         wqp->q_first = NULL;
 713         wqp->q_link = NULL;
 714         wqp->q_count = 0;
 715         wqp->q_mblkcnt = 0;
 716         wqp->q_sqhead = NULL;
 717         wqp->q_sqtail = NULL;
 718         wqp->q_sqnext = NULL;
 719         wqp->q_sqprev = NULL;
 720         wqp->q_sqflags = 0;
 721         wqp->q_rwcnt = 0;
 722         wqp->q_spri = 0;
 723 
 724         mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
 725         cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
 726 
 727         sq->sq_head = NULL;
 728         sq->sq_tail = NULL;
 729         sq->sq_evhead = NULL;
 730         sq->sq_evtail = NULL;
 731         sq->sq_callbpend = NULL;
 732         sq->sq_outer = NULL;
 733         sq->sq_onext = NULL;
 734         sq->sq_oprev = NULL;
 735         sq->sq_next = NULL;
 736         sq->sq_svcflags = 0;
 737         sq->sq_servcount = 0;
 738         sq->sq_needexcl = 0;
 739         sq->sq_nqueues = 0;
 740         sq->sq_pri = 0;
 741 
 742         mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
 743         cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
 744         cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
 745 
 746         return (0);
 747 }
 748 
 749 /* ARGSUSED */
 750 static void
 751 queue_destructor(void *buf, void *cdrarg)
 752 {
 753         queinfo_t *qip = buf;
 754         queue_t *qp = &qip->qu_rqueue;
 755         queue_t *wqp = &qip->qu_wqueue;
 756         syncq_t *sq = &qip->qu_syncq;
 757 
 758         ASSERT(qp->q_sqhead == NULL);
 759         ASSERT(wqp->q_sqhead == NULL);
 760         ASSERT(qp->q_sqnext == NULL);
 761         ASSERT(wqp->q_sqnext == NULL);
 762         ASSERT(qp->q_rwcnt == 0);
 763         ASSERT(wqp->q_rwcnt == 0);
 764 
 765         mutex_destroy(&qp->q_lock);
 766         cv_destroy(&qp->q_wait);
 767 
 768         mutex_destroy(&wqp->q_lock);
 769         cv_destroy(&wqp->q_wait);
 770 
 771         mutex_destroy(&sq->sq_lock);
 772         cv_destroy(&sq->sq_wait);
 773         cv_destroy(&sq->sq_exitwait);
 774 }
 775 
 776 /*
 777  * Constructor/destructor routines for the syncq cache
 778  */
 779 /* ARGSUSED */
 780 static int
 781 syncq_constructor(void *buf, void *cdrarg, int kmflags)
 782 {
 783         syncq_t *sq = buf;
 784 
 785         bzero(buf, sizeof (syncq_t));
 786 
 787         mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
 788         cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
 789         cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
 790 
 791         return (0);
 792 }
 793 
 794 /* ARGSUSED */
 795 static void
 796 syncq_destructor(void *buf, void *cdrarg)
 797 {
 798         syncq_t *sq = buf;
 799 
 800         ASSERT(sq->sq_head == NULL);
 801         ASSERT(sq->sq_tail == NULL);
 802         ASSERT(sq->sq_evhead == NULL);
 803         ASSERT(sq->sq_evtail == NULL);
 804         ASSERT(sq->sq_callbpend == NULL);
 805         ASSERT(sq->sq_callbflags == 0);
 806         ASSERT(sq->sq_outer == NULL);
 807         ASSERT(sq->sq_onext == NULL);
 808         ASSERT(sq->sq_oprev == NULL);
 809         ASSERT(sq->sq_next == NULL);
 810         ASSERT(sq->sq_needexcl == 0);
 811         ASSERT(sq->sq_svcflags == 0);
 812         ASSERT(sq->sq_servcount == 0);
 813         ASSERT(sq->sq_nqueues == 0);
 814         ASSERT(sq->sq_pri == 0);
 815         ASSERT(sq->sq_count == 0);
 816         ASSERT(sq->sq_rmqcount == 0);
 817         ASSERT(sq->sq_cancelid == 0);
 818         ASSERT(sq->sq_ciputctrl == NULL);
 819         ASSERT(sq->sq_nciputctrl == 0);
 820         ASSERT(sq->sq_type == 0);
 821         ASSERT(sq->sq_flags == 0);
 822 
 823         mutex_destroy(&sq->sq_lock);
 824         cv_destroy(&sq->sq_wait);
 825         cv_destroy(&sq->sq_exitwait);
 826 }
 827 
 828 /* ARGSUSED */
 829 static int
 830 ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
 831 {
 832         ciputctrl_t *cip = buf;
 833         int i;
 834 
 835         for (i = 0; i < n_ciputctrl; i++) {
 836                 cip[i].ciputctrl_count = SQ_FASTPUT;
 837                 mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
 838         }
 839 
 840         return (0);
 841 }
 842 
 843 /* ARGSUSED */
 844 static void
 845 ciputctrl_destructor(void *buf, void *cdrarg)
 846 {
 847         ciputctrl_t *cip = buf;
 848         int i;
 849 
 850         for (i = 0; i < n_ciputctrl; i++) {
 851                 ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
 852                 mutex_destroy(&cip[i].ciputctrl_lock);
 853         }
 854 }
 855 
 856 /*
 857  * Init routine run from main at boot time.
 858  */
 859 void
 860 strinit(void)
 861 {
 862         int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
 863 
 864         stream_head_cache = kmem_cache_create("stream_head_cache",
 865             sizeof (stdata_t), 0,
 866             stream_head_constructor, stream_head_destructor, NULL,
 867             NULL, NULL, 0);
 868 
 869         queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
 870             queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
 871 
 872         syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
 873             syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
 874 
 875         qband_cache = kmem_cache_create("qband_cache",
 876             sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 877 
 878         linkinfo_cache = kmem_cache_create("linkinfo_cache",
 879             sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 880 
 881         n_ciputctrl = ncpus;
 882         n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
 883         ASSERT(n_ciputctrl >= 1);
 884         n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
 885         if (n_ciputctrl >= min_n_ciputctrl) {
 886                 ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
 887                     sizeof (ciputctrl_t) * n_ciputctrl,
 888                     sizeof (ciputctrl_t), ciputctrl_constructor,
 889                     ciputctrl_destructor, NULL, NULL, NULL, 0);
 890         }
 891 
 892         streams_taskq = system_taskq;
 893 
 894         if (streams_taskq == NULL)
 895                 panic("strinit: no memory for streams taskq!");
 896 
 897         bc_bkgrnd_thread = thread_create(NULL, 0,
 898             streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
 899 
 900         streams_qbkgrnd_thread = thread_create(NULL, 0,
 901             streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
 902 
 903         streams_sqbkgrnd_thread = thread_create(NULL, 0,
 904             streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
 905 
 906         /*
 907          * Create STREAMS kstats.
 908          */
 909         str_kstat = kstat_create("streams", 0, "strstat",
 910             "net", KSTAT_TYPE_NAMED,
 911             sizeof (str_statistics) / sizeof (kstat_named_t),
 912             KSTAT_FLAG_VIRTUAL);
 913 
 914         if (str_kstat != NULL) {
 915                 str_kstat->ks_data = &str_statistics;
 916                 kstat_install(str_kstat);
 917         }
 918 
 919         /*
 920          * TPI support routine initialisation.
 921          */
 922         tpi_init();
 923 
 924         /*
 925          * Handle to have autopush and persistent link information per
 926          * zone.
 927          * Note: uses shutdown hook instead of destroy hook so that the
 928          * persistent links can be torn down before the destroy hooks
 929          * in the TCP/IP stack are called.
 930          */
 931         netstack_register(NS_STR, str_stack_init, str_stack_shutdown,
 932             str_stack_fini);
 933 }
 934 
 935 void
 936 str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
 937 {
 938         struct stdata *stp;
 939 
 940         ASSERT(vp->v_stream);
 941         stp = vp->v_stream;
 942         /* Have to hold sd_lock to prevent siglist from changing */
 943         mutex_enter(&stp->sd_lock);
 944         if (stp->sd_sigflags & event)
 945                 strsendsig(stp->sd_siglist, event, band, error);
 946         mutex_exit(&stp->sd_lock);
 947 }
 948 
 949 /*
 950  * Send the "sevent" set of signals to a process.
 951  * This might send more than one signal if the process is registered
 952  * for multiple events. The caller should pass in an sevent that only
 953  * includes the events for which the process has registered.
 954  */
 955 static void
 956 dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
 957         uchar_t band, int error)
 958 {
 959         ASSERT(MUTEX_HELD(&proc->p_lock));
 960 
 961         info->si_band = 0;
 962         info->si_errno = 0;
 963 
 964         if (sevent & S_ERROR) {
 965                 sevent &= ~S_ERROR;
 966                 info->si_code = POLL_ERR;
 967                 info->si_errno = error;
 968                 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
 969                     "strsendsig:proc %p info %p", proc, info);
 970                 sigaddq(proc, NULL, info, KM_NOSLEEP);
 971                 info->si_errno = 0;
 972         }
 973         if (sevent & S_HANGUP) {
 974                 sevent &= ~S_HANGUP;
 975                 info->si_code = POLL_HUP;
 976                 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
 977                     "strsendsig:proc %p info %p", proc, info);
 978                 sigaddq(proc, NULL, info, KM_NOSLEEP);
 979         }
 980         if (sevent & S_HIPRI) {
 981                 sevent &= ~S_HIPRI;
 982                 info->si_code = POLL_PRI;
 983                 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
 984                     "strsendsig:proc %p info %p", proc, info);
 985                 sigaddq(proc, NULL, info, KM_NOSLEEP);
 986         }
 987         if (sevent & S_RDBAND) {
 988                 sevent &= ~S_RDBAND;
 989                 if (events & S_BANDURG)
 990                         sigtoproc(proc, NULL, SIGURG);
 991                 else
 992                         sigtoproc(proc, NULL, SIGPOLL);
 993         }
 994         if (sevent & S_WRBAND) {
 995                 sevent &= ~S_WRBAND;
 996                 sigtoproc(proc, NULL, SIGPOLL);
 997         }
 998         if (sevent & S_INPUT) {
 999                 sevent &= ~S_INPUT;
1000                 info->si_code = POLL_IN;
1001                 info->si_band = band;
1002                 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1003                     "strsendsig:proc %p info %p", proc, info);
1004                 sigaddq(proc, NULL, info, KM_NOSLEEP);
1005                 info->si_band = 0;
1006         }
1007         if (sevent & S_OUTPUT) {
1008                 sevent &= ~S_OUTPUT;
1009                 info->si_code = POLL_OUT;
1010                 info->si_band = band;
1011                 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1012                     "strsendsig:proc %p info %p", proc, info);
1013                 sigaddq(proc, NULL, info, KM_NOSLEEP);
1014                 info->si_band = 0;
1015         }
1016         if (sevent & S_MSG) {
1017                 sevent &= ~S_MSG;
1018                 info->si_code = POLL_MSG;
1019                 info->si_band = band;
1020                 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1021                     "strsendsig:proc %p info %p", proc, info);
1022                 sigaddq(proc, NULL, info, KM_NOSLEEP);
1023                 info->si_band = 0;
1024         }
1025         if (sevent & S_RDNORM) {
1026                 sevent &= ~S_RDNORM;
1027                 sigtoproc(proc, NULL, SIGPOLL);
1028         }
1029         if (sevent != 0) {
1030                 panic("strsendsig: unknown event(s) %x", sevent);
1031         }
1032 }
1033 
1034 /*
1035  * Send SIGPOLL/SIGURG signal to all processes and process groups
1036  * registered on the given signal list that want a signal for at
1037  * least one of the specified events.
1038  *
1039  * Must be called with exclusive access to siglist (caller holding sd_lock).
1040  *
1041  * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
1042  * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
1043  * while it is in the siglist.
1044  *
1045  * For performance reasons (MP scalability) the code drops pidlock
1046  * when sending signals to a single process.
1047  * When sending to a process group the code holds
1048  * pidlock to prevent the membership in the process group from changing
1049  * while walking the p_pglink list.
1050  */
1051 void
1052 strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
1053 {
1054         strsig_t *ssp;
1055         k_siginfo_t info;
1056         struct pid *pidp;
1057         proc_t  *proc;
1058 
1059         info.si_signo = SIGPOLL;
1060         info.si_errno = 0;
1061         for (ssp = siglist; ssp; ssp = ssp->ss_next) {
1062                 int sevent;
1063 
1064                 sevent = ssp->ss_events & event;
1065                 if (sevent == 0)
1066                         continue;
1067 
1068                 if ((pidp = ssp->ss_pidp) == NULL) {
1069                         /* pid was released but still on event list */
1070                         continue;
1071                 }
1072 
1073 
1074                 if (ssp->ss_pid > 0) {
1075                         /*
1076                          * XXX This unfortunately still generates
1077                          * a signal when a fd is closed but
1078                          * the proc is active.
1079                          */
1080                         ASSERT(ssp->ss_pid == pidp->pid_id);
1081 
1082                         mutex_enter(&pidlock);
1083                         proc = prfind_zone(pidp->pid_id, ALL_ZONES);
1084                         if (proc == NULL) {
1085                                 mutex_exit(&pidlock);
1086                                 continue;
1087                         }
1088                         mutex_enter(&proc->p_lock);
1089                         mutex_exit(&pidlock);
1090                         dosendsig(proc, ssp->ss_events, sevent, &info,
1091                             band, error);
1092                         mutex_exit(&proc->p_lock);
1093                 } else {
1094                         /*
1095                          * Send to process group. Hold pidlock across
1096                          * calls to dosendsig().
1097                          */
1098                         pid_t pgrp = -ssp->ss_pid;
1099 
1100                         mutex_enter(&pidlock);
1101                         proc = pgfind_zone(pgrp, ALL_ZONES);
1102                         while (proc != NULL) {
1103                                 mutex_enter(&proc->p_lock);
1104                                 dosendsig(proc, ssp->ss_events, sevent,
1105                                     &info, band, error);
1106                                 mutex_exit(&proc->p_lock);
1107                                 proc = proc->p_pglink;
1108                         }
1109                         mutex_exit(&pidlock);
1110                 }
1111         }
1112 }
1113 
1114 /*
1115  * Attach a stream device or module.
1116  * qp is a read queue; the new queue goes in so its next
1117  * read ptr is the argument, and the write queue corresponding
1118  * to the argument points to this queue. Return 0 on success,
1119  * or a non-zero errno on failure.
1120  */
1121 int
1122 qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
1123     boolean_t is_insert)
1124 {
1125         major_t                 major;
1126         cdevsw_impl_t           *dp;
1127         struct streamtab        *str;
1128         queue_t                 *rq;
1129         queue_t                 *wrq;
1130         uint32_t                qflag;
1131         uint32_t                sqtype;
1132         perdm_t                 *dmp;
1133         int                     error;
1134         int                     sflag;
1135 
1136         rq = allocq();
1137         wrq = _WR(rq);
1138         STREAM(rq) = STREAM(wrq) = STREAM(qp);
1139 
1140         if (fp != NULL) {
1141                 str = fp->f_str;
1142                 qflag = fp->f_qflag;
1143                 sqtype = fp->f_sqtype;
1144                 dmp = fp->f_dmp;
1145                 IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
1146                 sflag = MODOPEN;
1147 
1148                 /*
1149                  * stash away a pointer to the module structure so we can
1150                  * unref it in qdetach.
1151                  */
1152                 rq->q_fp = fp;
1153         } else {
1154                 ASSERT(!is_insert);
1155 
1156                 major = getmajor(*devp);
1157                 dp = &devimpl[major];
1158 
1159                 str = dp->d_str;
1160                 ASSERT(str == STREAMSTAB(major));
1161 
1162                 qflag = dp->d_qflag;
1163                 ASSERT(qflag & QISDRV);
1164                 sqtype = dp->d_sqtype;
1165 
1166                 /* create perdm_t if needed */
1167                 if (NEED_DM(dp->d_dmp, qflag))
1168                         dp->d_dmp = hold_dm(str, qflag, sqtype);
1169 
1170                 dmp = dp->d_dmp;
1171                 sflag = 0;
1172         }
1173 
1174         TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
1175             "qattach:qflag == %X(%X)", qflag, *devp);
1176 
1177         /* setq might sleep in allocator - avoid holding locks. */
1178         setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
1179 
1180         /*
1181          * Before calling the module's open routine, set up the q_next
1182          * pointer for inserting a module in the middle of a stream.
1183          *
1184          * Note that we can always set _QINSERTING and set up q_next
1185          * pointer for both inserting and pushing a module.  Then there
1186          * is no need for the is_insert parameter.  In insertq(), called
1187          * by qprocson(), assume that q_next of the new module always points
1188          * to the correct queue and use it for insertion.  Everything should
1189          * work out fine.  But in the first release of _I_INSERT, we
1190          * distinguish between inserting and pushing to make sure that
1191          * pushing a module follows the same code path as before.
1192          */
1193         if (is_insert) {
1194                 rq->q_flag |= _QINSERTING;
1195                 rq->q_next = qp;
1196         }
1197 
1198         /*
1199          * If there is an outer perimeter get exclusive access during
1200          * the open procedure.  Bump up the reference count on the queue.
1201          */
1202         entersq(rq->q_syncq, SQ_OPENCLOSE);
1203         error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
1204         if (error != 0)
1205                 goto failed;
1206         leavesq(rq->q_syncq, SQ_OPENCLOSE);
1207         ASSERT(qprocsareon(rq));
1208         return (0);
1209 
1210 failed:
1211         rq->q_flag &= ~_QINSERTING;
1212         if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
1213                 qprocsoff(rq);
1214         leavesq(rq->q_syncq, SQ_OPENCLOSE);
1215         rq->q_next = wrq->q_next = NULL;
1216         qdetach(rq, 0, 0, crp, B_FALSE);
1217         return (error);
1218 }
1219 
1220 /*
1221  * Handle second open of stream. For modules, set the
1222  * last argument to MODOPEN and do not pass any open flags.
1223  * Ignore dummydev since this is not the first open.
1224  */
1225 int
1226 qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
1227 {
1228         int     error;
1229         dev_t dummydev;
1230         queue_t *wqp = _WR(qp);
1231 
1232         ASSERT(qp->q_flag & QREADR);
1233         entersq(qp->q_syncq, SQ_OPENCLOSE);
1234 
1235         dummydev = *devp;
1236         if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
1237             (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
1238                 leavesq(qp->q_syncq, SQ_OPENCLOSE);
1239                 mutex_enter(&STREAM(qp)->sd_lock);
1240                 qp->q_stream->sd_flag |= STREOPENFAIL;
1241                 mutex_exit(&STREAM(qp)->sd_lock);
1242                 return (error);
1243         }
1244         leavesq(qp->q_syncq, SQ_OPENCLOSE);
1245 
1246         /*
1247          * successful open should have done qprocson()
1248          */
1249         ASSERT(qprocsareon(_RD(qp)));
1250         return (0);
1251 }
1252 
1253 /*
1254  * Detach a stream module or device.
1255  * If clmode == 1 then the module or driver was opened and its
1256  * close routine must be called. If clmode == 0, the module
1257  * or driver was never opened or the open failed, and so its close
1258  * should not be called.
1259  */
1260 void
1261 qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
1262 {
1263         queue_t *wqp = _WR(qp);
1264         ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
1265 
1266         if (STREAM_NEEDSERVICE(STREAM(qp)))
1267                 stream_runservice(STREAM(qp));
1268 
1269         if (clmode) {
1270                 /*
1271                  * Make sure that all the messages on the write side syncq are
1272                  * processed and nothing is left. Since we are closing, no new
1273                  * messages may appear there.
1274                  */
1275                 wait_q_syncq(wqp);
1276 
1277                 entersq(qp->q_syncq, SQ_OPENCLOSE);
1278                 if (is_remove) {
1279                         mutex_enter(QLOCK(qp));
1280                         qp->q_flag |= _QREMOVING;
1281                         mutex_exit(QLOCK(qp));
1282                 }
1283                 (*qp->q_qinfo->qi_qclose)(qp, flag, crp);
1284                 /*
1285                  * Check that qprocsoff() was actually called.
1286                  */
1287                 ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
1288 
1289                 leavesq(qp->q_syncq, SQ_OPENCLOSE);
1290         } else {
1291                 disable_svc(qp);
1292         }
1293 
1294         /*
1295          * Allow any threads blocked in entersq to proceed and discover
1296          * the QWCLOSE is set.
1297          * Note: This assumes that all users of entersq check QWCLOSE.
1298          * Currently runservice is the only entersq that can happen
1299          * after removeq has finished.
1300          * Removeq will have discarded all messages destined to the closing
1301          * pair of queues from the syncq.
1302          * NOTE: Calling a function inside an assert is unconventional.
1303          * However, it does not cause any problem since flush_syncq() does
1304          * not change any state except when it returns non-zero i.e.
1305          * when the assert will trigger.
1306          */
1307         ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
1308         ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
1309         ASSERT((qp->q_flag & QPERMOD) ||
1310             ((qp->q_syncq->sq_head == NULL) &&
1311             (wqp->q_syncq->sq_head == NULL)));
1312 
1313         /* release any fmodsw_impl_t structure held on behalf of the queue */
1314         ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
1315         if (qp->q_fp != NULL)
1316                 fmodsw_rele(qp->q_fp);
1317 
1318         /* freeq removes us from the outer perimeter if any */
1319         freeq(qp);
1320 }
1321 
1322 /* Prevent service procedures from being called */
1323 void
1324 disable_svc(queue_t *qp)
1325 {
1326         queue_t *wqp = _WR(qp);
1327 
1328         ASSERT(qp->q_flag & QREADR);
1329         mutex_enter(QLOCK(qp));
1330         qp->q_flag |= QWCLOSE;
1331         mutex_exit(QLOCK(qp));
1332         mutex_enter(QLOCK(wqp));
1333         wqp->q_flag |= QWCLOSE;
1334         mutex_exit(QLOCK(wqp));
1335 }
1336 
1337 /* Allow service procedures to be called again */
1338 void
1339 enable_svc(queue_t *qp)
1340 {
1341         queue_t *wqp = _WR(qp);
1342 
1343         ASSERT(qp->q_flag & QREADR);
1344         mutex_enter(QLOCK(qp));
1345         qp->q_flag &= ~QWCLOSE;
1346         mutex_exit(QLOCK(qp));
1347         mutex_enter(QLOCK(wqp));
1348         wqp->q_flag &= ~QWCLOSE;
1349         mutex_exit(QLOCK(wqp));
1350 }
1351 
1352 /*
1353  * Remove queue from qhead/qtail if it is enabled.
1354  * Only reset QENAB if the queue was removed from the runlist.
1355  * A queue goes through 3 stages:
1356  *      It is on the service list and QENAB is set.
1357  *      It is removed from the service list but QENAB is still set.
1358  *      QENAB gets changed to QINSERVICE.
1359  *      QINSERVICE is reset (when the service procedure is done)
1360  * Thus we can not reset QENAB unless we actually removed it from the service
1361  * queue.
1362  */
1363 void
1364 remove_runlist(queue_t *qp)
1365 {
1366         if (qp->q_flag & QENAB && qhead != NULL) {
1367                 queue_t *q_chase;
1368                 queue_t *q_curr;
1369                 int removed;
1370 
1371                 mutex_enter(&service_queue);
1372                 RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
1373                 mutex_exit(&service_queue);
1374                 if (removed) {
1375                         STRSTAT(qremoved);
1376                         qp->q_flag &= ~QENAB;
1377                 }
1378         }
1379 }
1380 
1381 
1382 /*
1383  * Wait for any pending service processing to complete.
1384  * The removal of queues from the runlist is not atomic with the
1385  * clearing of the QENABLED flag and setting the INSERVICE flag.
1386  * consequently it is possible for remove_runlist in strclose
1387  * to not find the queue on the runlist but for it to be QENABLED
1388  * and not yet INSERVICE -> hence wait_svc needs to check QENABLED
1389  * as well as INSERVICE.
1390  */
1391 void
1392 wait_svc(queue_t *qp)
1393 {
1394         queue_t *wqp = _WR(qp);
1395 
1396         ASSERT(qp->q_flag & QREADR);
1397 
1398         /*
1399          * Try to remove queues from qhead/qtail list.
1400          */
1401         if (qhead != NULL) {
1402                 remove_runlist(qp);
1403                 remove_runlist(wqp);
1404         }
1405         /*
1406          * Wait till the syncqs associated with the queue disappear from the
1407          * background processing list.
1408          * This only needs to be done for non-PERMOD perimeters since
1409          * for PERMOD perimeters the syncq may be shared and will only be freed
1410          * when the last module/driver is unloaded.
1411          * If for PERMOD perimeters queue was on the syncq list, removeq()
1412          * should call propagate_syncq() or drain_syncq() for it. Both of these
1413          * functions remove the queue from its syncq list, so sqthread will not
1414          * try to access the queue.
1415          */
1416         if (!(qp->q_flag & QPERMOD)) {
1417                 syncq_t *rsq = qp->q_syncq;
1418                 syncq_t *wsq = wqp->q_syncq;
1419 
1420                 /*
1421                  * Disable rsq and wsq and wait for any background processing of
1422                  * syncq to complete.
1423                  */
1424                 wait_sq_svc(rsq);
1425                 if (wsq != rsq)
1426                         wait_sq_svc(wsq);
1427         }
1428 
1429         mutex_enter(QLOCK(qp));
1430         while (qp->q_flag & (QINSERVICE|QENAB))
1431                 cv_wait(&qp->q_wait, QLOCK(qp));
1432         mutex_exit(QLOCK(qp));
1433         mutex_enter(QLOCK(wqp));
1434         while (wqp->q_flag & (QINSERVICE|QENAB))
1435                 cv_wait(&wqp->q_wait, QLOCK(wqp));
1436         mutex_exit(QLOCK(wqp));
1437 }
1438 
1439 /*
1440  * Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
1441  * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
1442  * also be set, and is passed through to allocb_cred_wait().
1443  *
1444  * Returns errno on failure, zero on success.
1445  */
1446 int
1447 putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
1448 {
1449         mblk_t *tmp;
1450         ssize_t  count;
1451         int error = 0;
1452 
1453         ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
1454             (flag & (U_TO_K | K_TO_K)) == K_TO_K);
1455 
1456         if (bp->b_datap->db_type == M_IOCTL) {
1457                 count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1458         } else {
1459                 ASSERT(bp->b_datap->db_type == M_COPYIN);
1460                 count = ((struct copyreq *)bp->b_rptr)->cq_size;
1461         }
1462         /*
1463          * strdoioctl validates ioc_count, so if this assert fails it
1464          * cannot be due to user error.
1465          */
1466         ASSERT(count >= 0);
1467 
1468         if ((tmp = allocb_cred_wait(count, (flag & STR_NOSIG), &error, cr,
1469             curproc->p_pid)) == NULL) {
1470                 return (error);
1471         }
1472         error = strcopyin(arg, tmp->b_wptr, count, flag & (U_TO_K|K_TO_K));
1473         if (error != 0) {
1474                 freeb(tmp);
1475                 return (error);
1476         }
1477         DB_CPID(tmp) = curproc->p_pid;
1478         tmp->b_wptr += count;
1479         bp->b_cont = tmp;
1480 
1481         return (0);
1482 }
1483 
1484 /*
1485  * Copy ioctl data to user-land. Return non-zero errno on failure,
1486  * 0 for success.
1487  */
1488 int
1489 getiocd(mblk_t *bp, char *arg, int copymode)
1490 {
1491         ssize_t count;
1492         size_t  n;
1493         int     error;
1494 
1495         if (bp->b_datap->db_type == M_IOCACK)
1496                 count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1497         else {
1498                 ASSERT(bp->b_datap->db_type == M_COPYOUT);
1499                 count = ((struct copyreq *)bp->b_rptr)->cq_size;
1500         }
1501         ASSERT(count >= 0);
1502 
1503         for (bp = bp->b_cont; bp && count;
1504             count -= n, bp = bp->b_cont, arg += n) {
1505                 n = MIN(count, bp->b_wptr - bp->b_rptr);
1506                 error = strcopyout(bp->b_rptr, arg, n, copymode);
1507                 if (error)
1508                         return (error);
1509         }
1510         ASSERT(count == 0);
1511         return (0);
1512 }
1513 
1514 /*
1515  * Allocate a linkinfo entry given the write queue of the
1516  * bottom module of the top stream and the write queue of the
1517  * stream head of the bottom stream.
1518  */
1519 linkinfo_t *
1520 alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
1521 {
1522         linkinfo_t *linkp;
1523 
1524         linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
1525 
1526         linkp->li_lblk.l_qtop = qup;
1527         linkp->li_lblk.l_qbot = qdown;
1528         linkp->li_fpdown = fpdown;
1529 
1530         mutex_enter(&strresources);
1531         linkp->li_next = linkinfo_list;
1532         linkp->li_prev = NULL;
1533         if (linkp->li_next)
1534                 linkp->li_next->li_prev = linkp;
1535         linkinfo_list = linkp;
1536         linkp->li_lblk.l_index = ++lnk_id;
1537         ASSERT(lnk_id != 0);    /* this should never wrap in practice */
1538         mutex_exit(&strresources);
1539 
1540         return (linkp);
1541 }
1542 
1543 /*
1544  * Free a linkinfo entry.
1545  */
1546 void
1547 lbfree(linkinfo_t *linkp)
1548 {
1549         mutex_enter(&strresources);
1550         if (linkp->li_next)
1551                 linkp->li_next->li_prev = linkp->li_prev;
1552         if (linkp->li_prev)
1553                 linkp->li_prev->li_next = linkp->li_next;
1554         else
1555                 linkinfo_list = linkp->li_next;
1556         mutex_exit(&strresources);
1557 
1558         kmem_cache_free(linkinfo_cache, linkp);
1559 }
1560 
1561 /*
1562  * Check for a potential linking cycle.
1563  * Return 1 if a link will result in a cycle,
1564  * and 0 otherwise.
1565  */
1566 int
1567 linkcycle(stdata_t *upstp, stdata_t *lostp, str_stack_t *ss)
1568 {
1569         struct mux_node *np;
1570         struct mux_edge *ep;
1571         int i;
1572         major_t lomaj;
1573         major_t upmaj;
1574         /*
1575          * if the lower stream is a pipe/FIFO, return, since link
1576          * cycles can not happen on pipes/FIFOs
1577          */
1578         if (lostp->sd_vnode->v_type == VFIFO)
1579                 return (0);
1580 
1581         for (i = 0; i < ss->ss_devcnt; i++) {
1582                 np = &ss->ss_mux_nodes[i];
1583                 MUX_CLEAR(np);
1584         }
1585         lomaj = getmajor(lostp->sd_vnode->v_rdev);
1586         upmaj = getmajor(upstp->sd_vnode->v_rdev);
1587         np = &ss->ss_mux_nodes[lomaj];
1588         for (;;) {
1589                 if (!MUX_DIDVISIT(np)) {
1590                         if (np->mn_imaj == upmaj)
1591                                 return (1);
1592                         if (np->mn_outp == NULL) {
1593                                 MUX_VISIT(np);
1594                                 if (np->mn_originp == NULL)
1595                                         return (0);
1596                                 np = np->mn_originp;
1597                                 continue;
1598                         }
1599                         MUX_VISIT(np);
1600                         np->mn_startp = np->mn_outp;
1601                 } else {
1602                         if (np->mn_startp == NULL) {
1603                                 if (np->mn_originp == NULL)
1604                                         return (0);
1605                                 else {
1606                                         np = np->mn_originp;
1607                                         continue;
1608                                 }
1609                         }
1610                         /*
1611                          * If ep->me_nodep is a FIFO (me_nodep == NULL),
1612                          * ignore the edge and move on. ep->me_nodep gets
1613                          * set to NULL in mux_addedge() if it is a FIFO.
1614                          *
1615                          */
1616                         ep = np->mn_startp;
1617                         np->mn_startp = ep->me_nextp;
1618                         if (ep->me_nodep == NULL)
1619                                 continue;
1620                         ep->me_nodep->mn_originp = np;
1621                         np = ep->me_nodep;
1622                 }
1623         }
1624 }
1625 
1626 /*
1627  * Find linkinfo entry corresponding to the parameters.
1628  */
1629 linkinfo_t *
1630 findlinks(stdata_t *stp, int index, int type, str_stack_t *ss)
1631 {
1632         linkinfo_t *linkp;
1633         struct mux_edge *mep;
1634         struct mux_node *mnp;
1635         queue_t *qup;
1636 
1637         mutex_enter(&strresources);
1638         if ((type & LINKTYPEMASK) == LINKNORMAL) {
1639                 qup = getendq(stp->sd_wrq);
1640                 for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1641                         if ((qup == linkp->li_lblk.l_qtop) &&
1642                             (!index || (index == linkp->li_lblk.l_index))) {
1643                                 mutex_exit(&strresources);
1644                                 return (linkp);
1645                         }
1646                 }
1647         } else {
1648                 ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
1649                 mnp = &ss->ss_mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
1650                 mep = mnp->mn_outp;
1651                 while (mep) {
1652                         if ((index == 0) || (index == mep->me_muxid))
1653                                 break;
1654                         mep = mep->me_nextp;
1655                 }
1656                 if (!mep) {
1657                         mutex_exit(&strresources);
1658                         return (NULL);
1659                 }
1660                 for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1661                         if ((!linkp->li_lblk.l_qtop) &&
1662                             (mep->me_muxid == linkp->li_lblk.l_index)) {
1663                                 mutex_exit(&strresources);
1664                                 return (linkp);
1665                         }
1666                 }
1667         }
1668         mutex_exit(&strresources);
1669         return (NULL);
1670 }
1671 
1672 /*
1673  * Given a queue ptr, follow the chain of q_next pointers until you reach the
1674  * last queue on the chain and return it.
1675  */
1676 queue_t *
1677 getendq(queue_t *q)
1678 {
1679         ASSERT(q != NULL);
1680         while (_SAMESTR(q))
1681                 q = q->q_next;
1682         return (q);
1683 }
1684 
1685 /*
1686  * Wait for the syncq count to drop to zero.
1687  * sq could be either outer or inner.
1688  */
1689 
1690 static void
1691 wait_syncq(syncq_t *sq)
1692 {
1693         uint16_t count;
1694 
1695         mutex_enter(SQLOCK(sq));
1696         count = sq->sq_count;
1697         SQ_PUTLOCKS_ENTER(sq);
1698         SUM_SQ_PUTCOUNTS(sq, count);
1699         while (count != 0) {
1700                 sq->sq_flags |= SQ_WANTWAKEUP;
1701                 SQ_PUTLOCKS_EXIT(sq);
1702                 cv_wait(&sq->sq_wait, SQLOCK(sq));
1703                 count = sq->sq_count;
1704                 SQ_PUTLOCKS_ENTER(sq);
1705                 SUM_SQ_PUTCOUNTS(sq, count);
1706         }
1707         SQ_PUTLOCKS_EXIT(sq);
1708         mutex_exit(SQLOCK(sq));
1709 }
1710 
1711 /*
1712  * Wait while there are any messages for the queue in its syncq.
1713  */
1714 static void
1715 wait_q_syncq(queue_t *q)
1716 {
1717         if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1718                 syncq_t *sq = q->q_syncq;
1719 
1720                 mutex_enter(SQLOCK(sq));
1721                 while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1722                         sq->sq_flags |= SQ_WANTWAKEUP;
1723                         cv_wait(&sq->sq_wait, SQLOCK(sq));
1724                 }
1725                 mutex_exit(SQLOCK(sq));
1726         }
1727 }
1728 
1729 
1730 int
1731 mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
1732     int lhlink)
1733 {
1734         struct stdata *stp;
1735         struct strioctl strioc;
1736         struct linkinfo *linkp;
1737         struct stdata *stpdown;
1738         struct streamtab *str;
1739         queue_t *passq;
1740         syncq_t *passyncq;
1741         queue_t *rq;
1742         cdevsw_impl_t *dp;
1743         uint32_t qflag;
1744         uint32_t sqtype;
1745         perdm_t *dmp;
1746         int error = 0;
1747         netstack_t *ns;
1748         str_stack_t *ss;
1749 
1750         stp = vp->v_stream;
1751         TRACE_1(TR_FAC_STREAMS_FR,
1752             TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
1753         /*
1754          * Test for invalid upper stream
1755          */
1756         if (stp->sd_flag & STRHUP) {
1757                 return (ENXIO);
1758         }
1759         if (vp->v_type == VFIFO) {
1760                 return (EINVAL);
1761         }
1762         if (stp->sd_strtab == NULL) {
1763                 return (EINVAL);
1764         }
1765         if (!stp->sd_strtab->st_muxwinit) {
1766                 return (EINVAL);
1767         }
1768         if (fpdown == NULL) {
1769                 return (EBADF);
1770         }
1771         ns = netstack_find_by_cred(crp);
1772         ASSERT(ns != NULL);
1773         ss = ns->netstack_str;
1774         ASSERT(ss != NULL);
1775 
1776         if (getmajor(stp->sd_vnode->v_rdev) >= ss->ss_devcnt) {
1777                 netstack_rele(ss->ss_netstack);
1778                 return (EINVAL);
1779         }
1780         mutex_enter(&muxifier);
1781         if (stp->sd_flag & STPLEX) {
1782                 mutex_exit(&muxifier);
1783                 netstack_rele(ss->ss_netstack);
1784                 return (ENXIO);
1785         }
1786 
1787         /*
1788          * Test for invalid lower stream.
1789          * The check for the v_type != VFIFO and having a major
1790          * number not >= devcnt is done to avoid problems with
1791          * adding mux_node entry past the end of mux_nodes[].
1792          * For FIFO's we don't add an entry so this isn't a
1793          * problem.
1794          */
1795         if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
1796             (stpdown == stp) || (stpdown->sd_flag &
1797             (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
1798             ((stpdown->sd_vnode->v_type != VFIFO) &&
1799             (getmajor(stpdown->sd_vnode->v_rdev) >= ss->ss_devcnt)) ||
1800             linkcycle(stp, stpdown, ss)) {
1801                 mutex_exit(&muxifier);
1802                 netstack_rele(ss->ss_netstack);
1803                 return (EINVAL);
1804         }
1805         TRACE_1(TR_FAC_STREAMS_FR,
1806             TR_STPDOWN, "stpdown:%p", stpdown);
1807         rq = getendq(stp->sd_wrq);
1808         if (cmd == I_PLINK)
1809                 rq = NULL;
1810 
1811         linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
1812 
1813         strioc.ic_cmd = cmd;
1814         strioc.ic_timout = INFTIM;
1815         strioc.ic_len = sizeof (struct linkblk);
1816         strioc.ic_dp = (char *)&linkp->li_lblk;
1817 
1818         /*
1819          * STRPLUMB protects plumbing changes and should be set before
1820          * link_addpassthru()/link_rempassthru() are called, so it is set here
1821          * and cleared in the end of mlink when passthru queue is removed.
1822          * Setting of STRPLUMB prevents reopens of the stream while passthru
1823          * queue is in-place (it is not a proper module and doesn't have open
1824          * entry point).
1825          *
1826          * STPLEX prevents any threads from entering the stream from above. It
1827          * can't be set before the call to link_addpassthru() because putnext
1828          * from below may cause stream head I/O routines to be called and these
1829          * routines assert that STPLEX is not set. After link_addpassthru()
1830          * nothing may come from below since the pass queue syncq is blocked.
1831          * Note also that STPLEX should be cleared before the call to
1832          * link_rempassthru() since when messages start flowing to the stream
1833          * head (e.g. because of message propagation from the pass queue) stream
1834          * head I/O routines may be called with STPLEX flag set.
1835          *
1836          * When STPLEX is set, nothing may come into the stream from above and
1837          * it is safe to do a setq which will change stream head. So, the
1838          * correct sequence of actions is:
1839          *
1840          * 1) Set STRPLUMB
1841          * 2) Call link_addpassthru()
1842          * 3) Set STPLEX
1843          * 4) Call setq and update the stream state
1844          * 5) Clear STPLEX
1845          * 6) Call link_rempassthru()
1846          * 7) Clear STRPLUMB
1847          *
1848          * The same sequence applies to munlink() code.
1849          */
1850         mutex_enter(&stpdown->sd_lock);
1851         stpdown->sd_flag |= STRPLUMB;
1852         mutex_exit(&stpdown->sd_lock);
1853         /*
1854          * Add passthru queue below lower mux. This will block
1855          * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
1856          */
1857         passq = link_addpassthru(stpdown);
1858 
1859         mutex_enter(&stpdown->sd_lock);
1860         stpdown->sd_flag |= STPLEX;
1861         mutex_exit(&stpdown->sd_lock);
1862 
1863         rq = _RD(stpdown->sd_wrq);
1864         /*
1865          * There may be messages in the streamhead's syncq due to messages
1866          * that arrived before link_addpassthru() was done. To avoid
1867          * background processing of the syncq happening simultaneous with
1868          * setq processing, we disable the streamhead syncq and wait until
1869          * existing background thread finishes working on it.
1870          */
1871         wait_sq_svc(rq->q_syncq);
1872         passyncq = passq->q_syncq;
1873         if (!(passyncq->sq_flags & SQ_BLOCKED))
1874                 blocksq(passyncq, SQ_BLOCKED, 0);
1875 
1876         ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
1877         ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
1878         rq->q_ptr = _WR(rq)->q_ptr = NULL;
1879 
1880         /* setq might sleep in allocator - avoid holding locks. */
1881         /* Note: we are holding muxifier here. */
1882 
1883         str = stp->sd_strtab;
1884         dp = &devimpl[getmajor(vp->v_rdev)];
1885         ASSERT(dp->d_str == str);
1886 
1887         qflag = dp->d_qflag;
1888         sqtype = dp->d_sqtype;
1889 
1890         /* create perdm_t if needed */
1891         if (NEED_DM(dp->d_dmp, qflag))
1892                 dp->d_dmp = hold_dm(str, qflag, sqtype);
1893 
1894         dmp = dp->d_dmp;
1895 
1896         setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
1897             B_TRUE);
1898 
1899         /*
1900          * XXX Remove any "odd" messages from the queue.
1901          * Keep only M_DATA, M_PROTO, M_PCPROTO.
1902          */
1903         error = strdoioctl(stp, &strioc, FNATIVE,
1904             K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
1905         if (error != 0) {
1906                 lbfree(linkp);
1907 
1908                 if (!(passyncq->sq_flags & SQ_BLOCKED))
1909                         blocksq(passyncq, SQ_BLOCKED, 0);
1910                 /*
1911                  * Restore the stream head queue and then remove
1912                  * the passq. Turn off STPLEX before we turn on
1913                  * the stream by removing the passq.
1914                  */
1915                 rq->q_ptr = _WR(rq)->q_ptr = stpdown;
1916                 setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
1917                     B_TRUE);
1918 
1919                 mutex_enter(&stpdown->sd_lock);
1920                 stpdown->sd_flag &= ~STPLEX;
1921                 mutex_exit(&stpdown->sd_lock);
1922 
1923                 link_rempassthru(passq);
1924 
1925                 mutex_enter(&stpdown->sd_lock);
1926                 stpdown->sd_flag &= ~STRPLUMB;
1927                 /* Wakeup anyone waiting for STRPLUMB to clear. */
1928                 cv_broadcast(&stpdown->sd_monitor);
1929                 mutex_exit(&stpdown->sd_lock);
1930 
1931                 mutex_exit(&muxifier);
1932                 netstack_rele(ss->ss_netstack);
1933                 return (error);
1934         }
1935         mutex_enter(&fpdown->f_tlock);
1936         fpdown->f_count++;
1937         mutex_exit(&fpdown->f_tlock);
1938 
1939         /*
1940          * if we've made it here the linkage is all set up so we should also
1941          * set up the layered driver linkages
1942          */
1943 
1944         ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
1945         if (cmd == I_LINK) {
1946                 ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
1947         } else {
1948                 ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
1949         }
1950 
1951         link_rempassthru(passq);
1952 
1953         mux_addedge(stp, stpdown, linkp->li_lblk.l_index, ss);
1954 
1955         /*
1956          * Mark the upper stream as having dependent links
1957          * so that strclose can clean it up.
1958          */
1959         if (cmd == I_LINK) {
1960                 mutex_enter(&stp->sd_lock);
1961                 stp->sd_flag |= STRHASLINKS;
1962                 mutex_exit(&stp->sd_lock);
1963         }
1964         /*
1965          * Wake up any other processes that may have been
1966          * waiting on the lower stream. These will all
1967          * error out.
1968          */
1969         mutex_enter(&stpdown->sd_lock);
1970         /* The passthru module is removed so we may release STRPLUMB */
1971         stpdown->sd_flag &= ~STRPLUMB;
1972         cv_broadcast(&rq->q_wait);
1973         cv_broadcast(&_WR(rq)->q_wait);
1974         cv_broadcast(&stpdown->sd_monitor);
1975         mutex_exit(&stpdown->sd_lock);
1976         mutex_exit(&muxifier);
1977         *rvalp = linkp->li_lblk.l_index;
1978         netstack_rele(ss->ss_netstack);
1979         return (0);
1980 }
1981 
1982 int
1983 mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
1984 {
1985         int             ret;
1986         struct file     *fpdown;
1987 
1988         fpdown = getf(arg);
1989         ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
1990         if (fpdown != NULL)
1991                 releasef(arg);
1992         return (ret);
1993 }
1994 
1995 /*
1996  * Unlink a multiplexor link. Stp is the controlling stream for the
1997  * link, and linkp points to the link's entry in the linkinfo list.
1998  * The muxifier lock must be held on entry and is dropped on exit.
1999  *
2000  * NOTE : Currently it is assumed that mux would process all the messages
2001  * sitting on it's queue before ACKing the UNLINK. It is the responsibility
2002  * of the mux to handle all the messages that arrive before UNLINK.
2003  * If the mux has to send down messages on its lower stream before
2004  * ACKing I_UNLINK, then it *should* know to handle messages even
2005  * after the UNLINK is acked (actually it should be able to handle till we
2006  * re-block the read side of the pass queue here). If the mux does not
2007  * open up the lower stream, any messages that arrive during UNLINK
2008  * will be put in the stream head. In the case of lower stream opening
2009  * up, some messages might land in the stream head depending on when
2010  * the message arrived and when the read side of the pass queue was
2011  * re-blocked.
2012  */
2013 int
2014 munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp,
2015     str_stack_t *ss)
2016 {
2017         struct strioctl strioc;
2018         struct stdata *stpdown;
2019         queue_t *rq, *wrq;
2020         queue_t *passq;
2021         syncq_t *passyncq;
2022         int error = 0;
2023         file_t *fpdown;
2024 
2025         ASSERT(MUTEX_HELD(&muxifier));
2026 
2027         stpdown = linkp->li_fpdown->f_vnode->v_stream;
2028 
2029         /*
2030          * See the comment in mlink() concerning STRPLUMB/STPLEX flags.
2031          */
2032         mutex_enter(&stpdown->sd_lock);
2033         stpdown->sd_flag |= STRPLUMB;
2034         mutex_exit(&stpdown->sd_lock);
2035 
2036         /*
2037          * Add passthru queue below lower mux. This will block
2038          * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
2039          */
2040         passq = link_addpassthru(stpdown);
2041 
2042         if ((flag & LINKTYPEMASK) == LINKNORMAL)
2043                 strioc.ic_cmd = I_UNLINK;
2044         else
2045                 strioc.ic_cmd = I_PUNLINK;
2046         strioc.ic_timout = INFTIM;
2047         strioc.ic_len = sizeof (struct linkblk);
2048         strioc.ic_dp = (char *)&linkp->li_lblk;
2049 
2050         error = strdoioctl(stp, &strioc, FNATIVE,
2051             K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
2052 
2053         /*
2054          * If there was an error and this is not called via strclose,
2055          * return to the user. Otherwise, pretend there was no error
2056          * and close the link.
2057          */
2058         if (error) {
2059                 if (flag & LINKCLOSE) {
2060                         cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
2061                             "unlink ioctl, closing anyway (%d)\n", error);
2062                 } else {
2063                         link_rempassthru(passq);
2064                         mutex_enter(&stpdown->sd_lock);
2065                         stpdown->sd_flag &= ~STRPLUMB;
2066                         cv_broadcast(&stpdown->sd_monitor);
2067                         mutex_exit(&stpdown->sd_lock);
2068                         mutex_exit(&muxifier);
2069                         return (error);
2070                 }
2071         }
2072 
2073         mux_rmvedge(stp, linkp->li_lblk.l_index, ss);
2074         fpdown = linkp->li_fpdown;
2075         lbfree(linkp);
2076 
2077         /*
2078          * We go ahead and drop muxifier here--it's a nasty global lock that
2079          * can slow others down. It's okay to since attempts to mlink() this
2080          * stream will be stopped because STPLEX is still set in the stdata
2081          * structure, and munlink() is stopped because mux_rmvedge() and
2082          * lbfree() have removed it from mux_nodes[] and linkinfo_list,
2083          * respectively.  Note that we defer the closef() of fpdown until
2084          * after we drop muxifier since strclose() can call munlinkall().
2085          */
2086         mutex_exit(&muxifier);
2087 
2088         wrq = stpdown->sd_wrq;
2089         rq = _RD(wrq);
2090 
2091         /*
2092          * Get rid of outstanding service procedure runs, before we make
2093          * it a stream head, since a stream head doesn't have any service
2094          * procedure.
2095          */
2096         disable_svc(rq);
2097         wait_svc(rq);
2098 
2099         /*
2100          * Since we don't disable the syncq for QPERMOD, we wait for whatever
2101          * is queued up to be finished. mux should take care that nothing is
2102          * send down to this queue. We should do it now as we're going to block
2103          * passyncq if it was unblocked.
2104          */
2105         if (wrq->q_flag & QPERMOD) {
2106                 syncq_t *sq = wrq->q_syncq;
2107 
2108                 mutex_enter(SQLOCK(sq));
2109                 while (wrq->q_sqflags & Q_SQQUEUED) {
2110                         sq->sq_flags |= SQ_WANTWAKEUP;
2111                         cv_wait(&sq->sq_wait, SQLOCK(sq));
2112                 }
2113                 mutex_exit(SQLOCK(sq));
2114         }
2115         passyncq = passq->q_syncq;
2116         if (!(passyncq->sq_flags & SQ_BLOCKED)) {
2117 
2118                 syncq_t *sq, *outer;
2119 
2120                 /*
2121                  * Messages could be flowing from underneath. We will
2122                  * block the read side of the passq. This would be
2123                  * sufficient for QPAIR and QPERQ muxes to ensure
2124                  * that no data is flowing up into this queue
2125                  * and hence no thread active in this instance of
2126                  * lower mux. But for QPERMOD and QMTOUTPERIM there
2127                  * could be messages on the inner and outer/inner
2128                  * syncqs respectively. We will wait for them to drain.
2129                  * Because passq is blocked messages end up in the syncq
2130                  * And qfill_syncq could possibly end up setting QFULL
2131                  * which will access the rq->q_flag. Hence, we have to
2132                  * acquire the QLOCK in setq.
2133                  *
2134                  * XXX Messages can also flow from top into this
2135                  * queue though the unlink is over (Ex. some instance
2136                  * in putnext() called from top that has still not
2137                  * accessed this queue. And also putq(lowerq) ?).
2138                  * Solution : How about blocking the l_qtop queue ?
2139                  * Do we really care about such pure D_MP muxes ?
2140                  */
2141 
2142                 blocksq(passyncq, SQ_BLOCKED, 0);
2143 
2144                 sq = rq->q_syncq;
2145                 if ((outer = sq->sq_outer) != NULL) {
2146 
2147                         /*
2148                          * We have to just wait for the outer sq_count
2149                          * drop to zero. As this does not prevent new
2150                          * messages to enter the outer perimeter, this
2151                          * is subject to starvation.
2152                          *
2153                          * NOTE :Because of blocksq above, messages could
2154                          * be in the inner syncq only because of some
2155                          * thread holding the outer perimeter exclusively.
2156                          * Hence it would be sufficient to wait for the
2157                          * exclusive holder of the outer perimeter to drain
2158                          * the inner and outer syncqs. But we will not depend
2159                          * on this feature and hence check the inner syncqs
2160                          * separately.
2161                          */
2162                         wait_syncq(outer);
2163                 }
2164 
2165 
2166                 /*
2167                  * There could be messages destined for
2168                  * this queue. Let the exclusive holder
2169                  * drain it.
2170                  */
2171 
2172                 wait_syncq(sq);
2173                 ASSERT((rq->q_flag & QPERMOD) ||
2174                     ((rq->q_syncq->sq_head == NULL) &&
2175                     (_WR(rq)->q_syncq->sq_head == NULL)));
2176         }
2177 
2178         /*
2179          * We haven't taken care of QPERMOD case yet. QPERMOD is a special
2180          * case as we don't disable its syncq or remove it off the syncq
2181          * service list.
2182          */
2183         if (rq->q_flag & QPERMOD) {
2184                 syncq_t *sq = rq->q_syncq;
2185 
2186                 mutex_enter(SQLOCK(sq));
2187                 while (rq->q_sqflags & Q_SQQUEUED) {
2188                         sq->sq_flags |= SQ_WANTWAKEUP;
2189                         cv_wait(&sq->sq_wait, SQLOCK(sq));
2190                 }
2191                 mutex_exit(SQLOCK(sq));
2192         }
2193 
2194         /*
2195          * flush_syncq changes states only when there are some messages to
2196          * free, i.e. when it returns non-zero value to return.
2197          */
2198         ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
2199         ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
2200 
2201         /*
2202          * Nobody else should know about this queue now.
2203          * If the mux did not process the messages before
2204          * acking the I_UNLINK, free them now.
2205          */
2206 
2207         flushq(rq, FLUSHALL);
2208         flushq(_WR(rq), FLUSHALL);
2209 
2210         /*
2211          * Convert the mux lower queue into a stream head queue.
2212          * Turn off STPLEX before we turn on the stream by removing the passq.
2213          */
2214         rq->q_ptr = wrq->q_ptr = stpdown;
2215         setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
2216 
2217         ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
2218         ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
2219 
2220         enable_svc(rq);
2221 
2222         /*
2223          * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
2224          * needs to be set to prevent reopen() of the stream - such reopen may
2225          * try to call non-existent pass queue open routine and panic.
2226          */
2227         mutex_enter(&stpdown->sd_lock);
2228         stpdown->sd_flag &= ~STPLEX;
2229         mutex_exit(&stpdown->sd_lock);
2230 
2231         ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
2232             ((flag & LINKTYPEMASK) == LINKPERSIST));
2233 
2234         /* clean up the layered driver linkages */
2235         if ((flag & LINKTYPEMASK) == LINKNORMAL) {
2236                 ldi_munlink_fp(stp, fpdown, LINKNORMAL);
2237         } else {
2238                 ldi_munlink_fp(stp, fpdown, LINKPERSIST);
2239         }
2240 
2241         link_rempassthru(passq);
2242 
2243         /*
2244          * Now all plumbing changes are finished and STRPLUMB is no
2245          * longer needed.
2246          */
2247         mutex_enter(&stpdown->sd_lock);
2248         stpdown->sd_flag &= ~STRPLUMB;
2249         cv_broadcast(&stpdown->sd_monitor);
2250         mutex_exit(&stpdown->sd_lock);
2251 
2252         (void) closef(fpdown);
2253         return (0);
2254 }
2255 
2256 /*
2257  * Unlink all multiplexor links for which stp is the controlling stream.
2258  * Return 0, or a non-zero errno on failure.
2259  */
2260 int
2261 munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp, str_stack_t *ss)
2262 {
2263         linkinfo_t *linkp;
2264         int error = 0;
2265 
2266         mutex_enter(&muxifier);
2267         while (linkp = findlinks(stp, 0, flag, ss)) {
2268                 /*
2269                  * munlink() releases the muxifier lock.
2270                  */
2271                 if (error = munlink(stp, linkp, flag, crp, rvalp, ss))
2272                         return (error);
2273                 mutex_enter(&muxifier);
2274         }
2275         mutex_exit(&muxifier);
2276         return (0);
2277 }
2278 
2279 /*
2280  * A multiplexor link has been made. Add an
2281  * edge to the directed graph.
2282  */
2283 void
2284 mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid, str_stack_t *ss)
2285 {
2286         struct mux_node *np;
2287         struct mux_edge *ep;
2288         major_t upmaj;
2289         major_t lomaj;
2290 
2291         upmaj = getmajor(upstp->sd_vnode->v_rdev);
2292         lomaj = getmajor(lostp->sd_vnode->v_rdev);
2293         np = &ss->ss_mux_nodes[upmaj];
2294         if (np->mn_outp) {
2295                 ep = np->mn_outp;
2296                 while (ep->me_nextp)
2297                         ep = ep->me_nextp;
2298                 ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2299                 ep = ep->me_nextp;
2300         } else {
2301                 np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2302                 ep = np->mn_outp;
2303         }
2304         ep->me_nextp = NULL;
2305         ep->me_muxid = muxid;
2306         /*
2307          * Save the dev_t for the purposes of str_stack_shutdown.
2308          * str_stack_shutdown assumes that the device allows reopen, since
2309          * this dev_t is the one after any cloning by xx_open().
2310          * Would prefer finding the dev_t from before any cloning,
2311          * but specfs doesn't retain that.
2312          */
2313         ep->me_dev = upstp->sd_vnode->v_rdev;
2314         if (lostp->sd_vnode->v_type == VFIFO)
2315                 ep->me_nodep = NULL;
2316         else
2317                 ep->me_nodep = &ss->ss_mux_nodes[lomaj];
2318 }
2319 
2320 /*
2321  * A multiplexor link has been removed. Remove the
2322  * edge in the directed graph.
2323  */
2324 void
2325 mux_rmvedge(stdata_t *upstp, int muxid, str_stack_t *ss)
2326 {
2327         struct mux_node *np;
2328         struct mux_edge *ep;
2329         struct mux_edge *pep = NULL;
2330         major_t upmaj;
2331 
2332         upmaj = getmajor(upstp->sd_vnode->v_rdev);
2333         np = &ss->ss_mux_nodes[upmaj];
2334         ASSERT(np->mn_outp != NULL);
2335         ep = np->mn_outp;
2336         while (ep) {
2337                 if (ep->me_muxid == muxid) {
2338                         if (pep)
2339                                 pep->me_nextp = ep->me_nextp;
2340                         else
2341                                 np->mn_outp = ep->me_nextp;
2342                         kmem_free(ep, sizeof (struct mux_edge));
2343                         return;
2344                 }
2345                 pep = ep;
2346                 ep = ep->me_nextp;
2347         }
2348         ASSERT(0);      /* should not reach here */
2349 }
2350 
2351 /*
2352  * Translate the device flags (from conf.h) to the corresponding
2353  * qflag and sq_flag (type) values.
2354  */
2355 int
2356 devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
2357         uint32_t *sqtypep)
2358 {
2359         uint32_t qflag = 0;
2360         uint32_t sqtype = 0;
2361 
2362         if (devflag & _D_OLD)
2363                 goto bad;
2364 
2365         /* Inner perimeter presence and scope */
2366         switch (devflag & D_MTINNER_MASK) {
2367         case D_MP:
2368                 qflag |= QMTSAFE;
2369                 sqtype |= SQ_CI;
2370                 break;
2371         case D_MTPERQ|D_MP:
2372                 qflag |= QPERQ;
2373                 break;
2374         case D_MTQPAIR|D_MP:
2375                 qflag |= QPAIR;
2376                 break;
2377         case D_MTPERMOD|D_MP:
2378                 qflag |= QPERMOD;
2379                 break;
2380         default:
2381                 goto bad;
2382         }
2383 
2384         /* Outer perimeter */
2385         if (devflag & D_MTOUTPERIM) {
2386                 switch (devflag & D_MTINNER_MASK) {
2387                 case D_MP:
2388                 case D_MTPERQ|D_MP:
2389                 case D_MTQPAIR|D_MP:
2390                         break;
2391                 default:
2392                         goto bad;
2393                 }
2394                 qflag |= QMTOUTPERIM;
2395         }
2396 
2397         /* Inner perimeter modifiers */
2398         if (devflag & D_MTINNER_MOD) {
2399                 switch (devflag & D_MTINNER_MASK) {
2400                 case D_MP:
2401                         goto bad;
2402                 default:
2403                         break;
2404                 }
2405                 if (devflag & D_MTPUTSHARED)
2406                         sqtype |= SQ_CIPUT;
2407                 if (devflag & _D_MTOCSHARED) {
2408                         /*
2409                          * The code in putnext assumes that it has the
2410                          * highest concurrency by not checking sq_count.
2411                          * Thus _D_MTOCSHARED can only be supported when
2412                          * D_MTPUTSHARED is set.
2413                          */
2414                         if (!(devflag & D_MTPUTSHARED))
2415                                 goto bad;
2416                         sqtype |= SQ_CIOC;
2417                 }
2418                 if (devflag & _D_MTCBSHARED) {
2419                         /*
2420                          * The code in putnext assumes that it has the
2421                          * highest concurrency by not checking sq_count.
2422                          * Thus _D_MTCBSHARED can only be supported when
2423                          * D_MTPUTSHARED is set.
2424                          */
2425                         if (!(devflag & D_MTPUTSHARED))
2426                                 goto bad;
2427                         sqtype |= SQ_CICB;
2428                 }
2429                 if (devflag & _D_MTSVCSHARED) {
2430                         /*
2431                          * The code in putnext assumes that it has the
2432                          * highest concurrency by not checking sq_count.
2433                          * Thus _D_MTSVCSHARED can only be supported when
2434                          * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
2435                          * supported only for QPERMOD.
2436                          */
2437                         if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
2438                                 goto bad;
2439                         sqtype |= SQ_CISVC;
2440                 }
2441         }
2442 
2443         /* Default outer perimeter concurrency */
2444         sqtype |= SQ_CO;
2445 
2446         /* Outer perimeter modifiers */
2447         if (devflag & D_MTOCEXCL) {
2448                 if (!(devflag & D_MTOUTPERIM)) {
2449                         /* No outer perimeter */
2450                         goto bad;
2451                 }
2452                 sqtype &= ~SQ_COOC;
2453         }
2454 
2455         /* Synchronous Streams extended qinit structure */
2456         if (devflag & D_SYNCSTR)
2457                 qflag |= QSYNCSTR;
2458 
2459         /*
2460          * Private flag used by a transport module to indicate
2461          * to sockfs that it supports direct-access mode without
2462          * having to go through STREAMS.
2463          */
2464         if (devflag & _D_DIRECT) {
2465                 /* Reject unless the module is fully-MT (no perimeter) */
2466                 if ((qflag & QMT_TYPEMASK) != QMTSAFE)
2467                         goto bad;
2468                 qflag |= _QDIRECT;
2469         }
2470 
2471         *qflagp = qflag;
2472         *sqtypep = sqtype;
2473         return (0);
2474 
2475 bad:
2476         cmn_err(CE_WARN,
2477             "stropen: bad MT flags (0x%x) in driver '%s'",
2478             (int)(qflag & D_MTSAFETY_MASK),
2479             stp->st_rdinit->qi_minfo->mi_idname);
2480 
2481         return (EINVAL);
2482 }
2483 
2484 /*
2485  * Set the interface values for a pair of queues (qinit structure,
2486  * packet sizes, water marks).
2487  * setq assumes that the caller does not have a claim (entersq or claimq)
2488  * on the queue.
2489  */
2490 void
2491 setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
2492     perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
2493 {
2494         queue_t *wq;
2495         syncq_t *sq, *outer;
2496 
2497         ASSERT(rq->q_flag & QREADR);
2498         ASSERT((qflag & QMT_TYPEMASK) != 0);
2499         IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
2500 
2501         wq = _WR(rq);
2502         rq->q_qinfo = rinit;
2503         rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
2504         rq->q_lowat = rinit->qi_minfo->mi_lowat;
2505         rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
2506         rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
2507         wq->q_qinfo = winit;
2508         wq->q_hiwat = winit->qi_minfo->mi_hiwat;
2509         wq->q_lowat = winit->qi_minfo->mi_lowat;
2510         wq->q_minpsz = winit->qi_minfo->mi_minpsz;
2511         wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
2512 
2513         /* Remove old syncqs */
2514         sq = rq->q_syncq;
2515         outer = sq->sq_outer;
2516         if (outer != NULL) {
2517                 ASSERT(wq->q_syncq->sq_outer == outer);
2518                 outer_remove(outer, rq->q_syncq);
2519                 if (wq->q_syncq != rq->q_syncq)
2520                         outer_remove(outer, wq->q_syncq);
2521         }
2522         ASSERT(sq->sq_outer == NULL);
2523         ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2524 
2525         if (sq != SQ(rq)) {
2526                 if (!(rq->q_flag & QPERMOD))
2527                         free_syncq(sq);
2528                 if (wq->q_syncq == rq->q_syncq)
2529                         wq->q_syncq = NULL;
2530                 rq->q_syncq = NULL;
2531         }
2532         if (wq->q_syncq != NULL && wq->q_syncq != sq &&
2533             wq->q_syncq != SQ(rq)) {
2534                 free_syncq(wq->q_syncq);
2535                 wq->q_syncq = NULL;
2536         }
2537         ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
2538             rq->q_syncq->sq_tail == NULL));
2539         ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
2540             wq->q_syncq->sq_tail == NULL));
2541 
2542         if (!(rq->q_flag & QPERMOD) &&
2543             rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
2544                 ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2545                 SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
2546                     rq->q_syncq->sq_nciputctrl, 0);
2547                 ASSERT(ciputctrl_cache != NULL);
2548                 kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
2549                 rq->q_syncq->sq_ciputctrl = NULL;
2550                 rq->q_syncq->sq_nciputctrl = 0;
2551         }
2552 
2553         if (!(wq->q_flag & QPERMOD) &&
2554             wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
2555                 ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2556                 SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
2557                     wq->q_syncq->sq_nciputctrl, 0);
2558                 ASSERT(ciputctrl_cache != NULL);
2559                 kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
2560                 wq->q_syncq->sq_ciputctrl = NULL;
2561                 wq->q_syncq->sq_nciputctrl = 0;
2562         }
2563 
2564         sq = SQ(rq);
2565         ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
2566         ASSERT(sq->sq_outer == NULL);
2567         ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2568 
2569         /*
2570          * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
2571          * bits in sq_flag based on the sqtype.
2572          */
2573         ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
2574 
2575         rq->q_syncq = wq->q_syncq = sq;
2576         sq->sq_type = sqtype;
2577         sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
2578 
2579         /*
2580          *  We are making sq_svcflags zero,
2581          *  resetting SQ_DISABLED in case it was set by
2582          *  wait_svc() in the munlink path.
2583          *
2584          */
2585         ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
2586         sq->sq_svcflags = 0;
2587 
2588         /*
2589          * We need to acquire the lock here for the mlink and munlink case,
2590          * where canputnext, backenable, etc can access the q_flag.
2591          */
2592         if (lock_needed) {
2593                 mutex_enter(QLOCK(rq));
2594                 rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2595                 mutex_exit(QLOCK(rq));
2596                 mutex_enter(QLOCK(wq));
2597                 wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2598                 mutex_exit(QLOCK(wq));
2599         } else {
2600                 rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2601                 wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2602         }
2603 
2604         if (qflag & QPERQ) {
2605                 /* Allocate a separate syncq for the write side */
2606                 sq = new_syncq();
2607                 sq->sq_type = rq->q_syncq->sq_type;
2608                 sq->sq_flags = rq->q_syncq->sq_flags;
2609                 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2610                     sq->sq_oprev == NULL);
2611                 wq->q_syncq = sq;
2612         }
2613         if (qflag & QPERMOD) {
2614                 sq = dmp->dm_sq;
2615 
2616                 /*
2617                  * Assert that we do have an inner perimeter syncq and that it
2618                  * does not have an outer perimeter associated with it.
2619                  */
2620                 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2621                     sq->sq_oprev == NULL);
2622                 rq->q_syncq = wq->q_syncq = sq;
2623         }
2624         if (qflag & QMTOUTPERIM) {
2625                 outer = dmp->dm_sq;
2626 
2627                 ASSERT(outer->sq_outer == NULL);
2628                 outer_insert(outer, rq->q_syncq);
2629                 if (wq->q_syncq != rq->q_syncq)
2630                         outer_insert(outer, wq->q_syncq);
2631         }
2632         ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2633             (rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2634         ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2635             (wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2636         ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
2637 
2638         /*
2639          * Initialize struio() types.
2640          */
2641         rq->q_struiot =
2642             (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
2643         wq->q_struiot =
2644             (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
2645 }
2646 
2647 perdm_t *
2648 hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
2649 {
2650         syncq_t *sq;
2651         perdm_t **pp;
2652         perdm_t *p;
2653         perdm_t *dmp;
2654 
2655         ASSERT(str != NULL);
2656         ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
2657 
2658         rw_enter(&perdm_rwlock, RW_READER);
2659         for (p = perdm_list; p != NULL; p = p->dm_next) {
2660                 if (p->dm_str == str) {      /* found one */
2661                         atomic_inc_32(&(p->dm_ref));
2662                         rw_exit(&perdm_rwlock);
2663                         return (p);
2664                 }
2665         }
2666         rw_exit(&perdm_rwlock);
2667 
2668         sq = new_syncq();
2669         if (qflag & QPERMOD) {
2670                 sq->sq_type = sqtype | SQ_PERMOD;
2671                 sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
2672         } else {
2673                 ASSERT(qflag & QMTOUTPERIM);
2674                 sq->sq_onext = sq->sq_oprev = sq;
2675         }
2676 
2677         dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
2678         dmp->dm_sq = sq;
2679         dmp->dm_str = str;
2680         dmp->dm_ref = 1;
2681         dmp->dm_next = NULL;
2682 
2683         rw_enter(&perdm_rwlock, RW_WRITER);
2684         for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
2685                 if (p->dm_str == str) {      /* already present */
2686                         p->dm_ref++;
2687                         rw_exit(&perdm_rwlock);
2688                         free_syncq(sq);
2689                         kmem_free(dmp, sizeof (perdm_t));
2690                         return (p);
2691                 }
2692         }
2693 
2694         *pp = dmp;
2695         rw_exit(&perdm_rwlock);
2696         return (dmp);
2697 }
2698 
2699 void
2700 rele_dm(perdm_t *dmp)
2701 {
2702         perdm_t **pp;
2703         perdm_t *p;
2704 
2705         rw_enter(&perdm_rwlock, RW_WRITER);
2706         ASSERT(dmp->dm_ref > 0);
2707 
2708         if (--dmp->dm_ref > 0) {
2709                 rw_exit(&perdm_rwlock);
2710                 return;
2711         }
2712 
2713         for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
2714                 if (p == dmp)
2715                         break;
2716         ASSERT(p == dmp);
2717         *pp = p->dm_next;
2718         rw_exit(&perdm_rwlock);
2719 
2720         /*
2721          * Wait for any background processing that relies on the
2722          * syncq to complete before it is freed.
2723          */
2724         wait_sq_svc(p->dm_sq);
2725         free_syncq(p->dm_sq);
2726         kmem_free(p, sizeof (perdm_t));
2727 }
2728 
2729 /*
2730  * Make a protocol message given control and data buffers.
2731  * n.b., this can block; be careful of what locks you hold when calling it.
2732  *
2733  * If sd_maxblk is less than *iosize this routine can fail part way through
2734  * (due to an allocation failure). In this case on return *iosize will contain
2735  * the amount that was consumed. Otherwise *iosize will not be modified
2736  * i.e. it will contain the amount that was consumed.
2737  */
2738 int
2739 strmakemsg(
2740         struct strbuf *mctl,
2741         ssize_t *iosize,
2742         struct uio *uiop,
2743         stdata_t *stp,
2744         int32_t flag,
2745         mblk_t **mpp)
2746 {
2747         mblk_t *mpctl = NULL;
2748         mblk_t *mpdata = NULL;
2749         int error;
2750 
2751         ASSERT(uiop != NULL);
2752 
2753         *mpp = NULL;
2754         /* Create control part, if any */
2755         if ((mctl != NULL) && (mctl->len >= 0)) {
2756                 error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
2757                 if (error)
2758                         return (error);
2759         }
2760         /* Create data part, if any */
2761         if (*iosize >= 0) {
2762                 error = strmakedata(iosize, uiop, stp, flag, &mpdata);
2763                 if (error) {
2764                         freemsg(mpctl);
2765                         return (error);
2766                 }
2767         }
2768         if (mpctl != NULL) {
2769                 if (mpdata != NULL)
2770                         linkb(mpctl, mpdata);
2771                 *mpp = mpctl;
2772         } else {
2773                 *mpp = mpdata;
2774         }
2775         return (0);
2776 }
2777 
2778 /*
2779  * Make the control part of a protocol message given a control buffer.
2780  * n.b., this can block; be careful of what locks you hold when calling it.
2781  */
2782 int
2783 strmakectl(
2784         struct strbuf *mctl,
2785         int32_t flag,
2786         int32_t fflag,
2787         mblk_t **mpp)
2788 {
2789         mblk_t *bp = NULL;
2790         unsigned char msgtype;
2791         int error = 0;
2792         cred_t *cr = CRED();
2793 
2794         /* We do not support interrupt threads using the stream head to send */
2795         ASSERT(cr != NULL);
2796 
2797         *mpp = NULL;
2798         /*
2799          * Create control part of message, if any.
2800          */
2801         if ((mctl != NULL) && (mctl->len >= 0)) {
2802                 caddr_t base;
2803                 int ctlcount;
2804                 int allocsz;
2805 
2806                 if (flag & RS_HIPRI)
2807                         msgtype = M_PCPROTO;
2808                 else
2809                         msgtype = M_PROTO;
2810 
2811                 ctlcount = mctl->len;
2812                 base = mctl->buf;
2813 
2814                 /*
2815                  * Give modules a better chance to reuse M_PROTO/M_PCPROTO
2816                  * blocks by increasing the size to something more usable.
2817                  */
2818                 allocsz = MAX(ctlcount, 64);
2819 
2820                 /*
2821                  * Range checking has already been done; simply try
2822                  * to allocate a message block for the ctl part.
2823                  */
2824                 while ((bp = allocb_cred(allocsz, cr,
2825                     curproc->p_pid)) == NULL) {
2826                         if (fflag & (FNDELAY|FNONBLOCK))
2827                                 return (EAGAIN);
2828                         if (error = strwaitbuf(allocsz, BPRI_MED))
2829                                 return (error);
2830                 }
2831 
2832                 bp->b_datap->db_type = msgtype;
2833                 if (copyin(base, bp->b_wptr, ctlcount)) {
2834                         freeb(bp);
2835                         return (EFAULT);
2836                 }
2837                 bp->b_wptr += ctlcount;
2838         }
2839         *mpp = bp;
2840         return (0);
2841 }
2842 
2843 /*
2844  * Make a protocol message given data buffers.
2845  * n.b., this can block; be careful of what locks you hold when calling it.
2846  *
2847  * If sd_maxblk is less than *iosize this routine can fail part way through
2848  * (due to an allocation failure). In this case on return *iosize will contain
2849  * the amount that was consumed. Otherwise *iosize will not be modified
2850  * i.e. it will contain the amount that was consumed.
2851  */
2852 int
2853 strmakedata(
2854         ssize_t   *iosize,
2855         struct uio *uiop,
2856         stdata_t *stp,
2857         int32_t flag,
2858         mblk_t **mpp)
2859 {
2860         mblk_t *mp = NULL;
2861         mblk_t *bp;
2862         int wroff = (int)stp->sd_wroff;
2863         int tail_len = (int)stp->sd_tail;
2864         int extra = wroff + tail_len;
2865         int error = 0;
2866         ssize_t maxblk;
2867         ssize_t count = *iosize;
2868         cred_t *cr;
2869 
2870         *mpp = NULL;
2871         if (count < 0)
2872                 return (0);
2873 
2874         /* We do not support interrupt threads using the stream head to send */
2875         cr = CRED();
2876         ASSERT(cr != NULL);
2877 
2878         maxblk = stp->sd_maxblk;
2879         if (maxblk == INFPSZ)
2880                 maxblk = count;
2881 
2882         /*
2883          * Create data part of message, if any.
2884          */
2885         do {
2886                 ssize_t size;
2887                 dblk_t  *dp;
2888 
2889                 ASSERT(uiop);
2890 
2891                 size = MIN(count, maxblk);
2892 
2893                 while ((bp = allocb_cred(size + extra, cr,
2894                     curproc->p_pid)) == NULL) {
2895                         error = EAGAIN;
2896                         if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
2897                             (error = strwaitbuf(size + extra, BPRI_MED)) != 0) {
2898                                 if (count == *iosize) {
2899                                         freemsg(mp);
2900                                         return (error);
2901                                 } else {
2902                                         *iosize -= count;
2903                                         *mpp = mp;
2904                                         return (0);
2905                                 }
2906                         }
2907                 }
2908                 dp = bp->b_datap;
2909                 dp->db_cpid = curproc->p_pid;
2910                 ASSERT(wroff <= dp->db_lim - bp->b_wptr);
2911                 bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
2912 
2913                 if (flag & STRUIO_POSTPONE) {
2914                         /*
2915                          * Setup the stream uio portion of the
2916                          * dblk for subsequent use by struioget().
2917                          */
2918                         dp->db_struioflag = STRUIO_SPEC;
2919                         dp->db_cksumstart = 0;
2920                         dp->db_cksumstuff = 0;
2921                         dp->db_cksumend = size;
2922                         *(long long *)dp->db_struioun.data = 0ll;
2923                         bp->b_wptr += size;
2924                 } else {
2925                         if (stp->sd_copyflag & STRCOPYCACHED)
2926                                 uiop->uio_extflg |= UIO_COPY_CACHED;
2927 
2928                         if (size != 0) {
2929                                 error = uiomove(bp->b_wptr, size, UIO_WRITE,
2930                                     uiop);
2931                                 if (error != 0) {
2932                                         freeb(bp);
2933                                         freemsg(mp);
2934                                         return (error);
2935                                 }
2936                         }
2937                         bp->b_wptr += size;
2938 
2939                         if (stp->sd_wputdatafunc != NULL) {
2940                                 mblk_t *newbp;
2941 
2942                                 newbp = (stp->sd_wputdatafunc)(stp->sd_vnode,
2943                                     bp, NULL, NULL, NULL, NULL);
2944                                 if (newbp == NULL) {
2945                                         freeb(bp);
2946                                         freemsg(mp);
2947                                         return (ECOMM);
2948                                 }
2949                                 bp = newbp;
2950                         }
2951                 }
2952 
2953                 count -= size;
2954 
2955                 if (mp == NULL)
2956                         mp = bp;
2957                 else
2958                         linkb(mp, bp);
2959         } while (count > 0);
2960 
2961         *mpp = mp;
2962         return (0);
2963 }
2964 
2965 /*
2966  * Wait for a buffer to become available. Return non-zero errno
2967  * if not able to wait, 0 if buffer is probably there.
2968  */
2969 int
2970 strwaitbuf(size_t size, int pri)
2971 {
2972         bufcall_id_t id;
2973 
2974         mutex_enter(&bcall_monitor);
2975         if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
2976             &ttoproc(curthread)->p_flag_cv)) == 0) {
2977                 mutex_exit(&bcall_monitor);
2978                 return (ENOSR);
2979         }
2980         if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
2981                 unbufcall(id);
2982                 mutex_exit(&bcall_monitor);
2983                 return (EINTR);
2984         }
2985         unbufcall(id);
2986         mutex_exit(&bcall_monitor);
2987         return (0);
2988 }
2989 
2990 /*
2991  * This function waits for a read or write event to happen on a stream.
2992  * fmode can specify FNDELAY and/or FNONBLOCK.
2993  * The timeout is in ms with -1 meaning infinite.
2994  * The flag values work as follows:
2995  *      READWAIT        Check for read side errors, send M_READ
2996  *      GETWAIT         Check for read side errors, no M_READ
2997  *      WRITEWAIT       Check for write side errors.
2998  *      NOINTR          Do not return error if nonblocking or timeout.
2999  *      STR_NOERROR     Ignore all errors except STPLEX.
3000  *      STR_NOSIG       Ignore/hold signals during the duration of the call.
3001  *      STR_PEEK        Pass through the strgeterr().
3002  */
3003 int
3004 strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
3005     int *done)
3006 {
3007         int slpflg, errs;
3008         int error;
3009         kcondvar_t *sleepon;
3010         mblk_t *mp;
3011         ssize_t *rd_count;
3012         clock_t rval;
3013 
3014         ASSERT(MUTEX_HELD(&stp->sd_lock));
3015         if ((flag & READWAIT) || (flag & GETWAIT)) {
3016                 slpflg = RSLEEP;
3017                 sleepon = &_RD(stp->sd_wrq)->q_wait;
3018                 errs = STRDERR|STPLEX;
3019         } else {
3020                 slpflg = WSLEEP;
3021                 sleepon = &stp->sd_wrq->q_wait;
3022                 errs = STWRERR|STRHUP|STPLEX;
3023         }
3024         if (flag & STR_NOERROR)
3025                 errs = STPLEX;
3026 
3027         if (stp->sd_wakeq & slpflg) {
3028                 /*
3029                  * A strwakeq() is pending, no need to sleep.
3030                  */
3031                 stp->sd_wakeq &= ~slpflg;
3032                 *done = 0;
3033                 return (0);
3034         }
3035 
3036         if (stp->sd_flag & errs) {
3037                 /*
3038                  * Check for errors before going to sleep since the
3039                  * caller might not have checked this while holding
3040                  * sd_lock.
3041                  */
3042                 error = strgeterr(stp, errs, (flag & STR_PEEK));
3043                 if (error != 0) {
3044                         *done = 1;
3045                         return (error);
3046                 }
3047         }
3048 
3049         /*
3050          * If any module downstream has requested read notification
3051          * by setting SNDMREAD flag using M_SETOPTS, send a message
3052          * down stream.
3053          */
3054         if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
3055                 mutex_exit(&stp->sd_lock);
3056                 if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
3057                     (flag & STR_NOSIG), &error))) {
3058                         mutex_enter(&stp->sd_lock);
3059                         *done = 1;
3060                         return (error);
3061                 }
3062                 mp->b_datap->db_type = M_READ;
3063                 rd_count = (ssize_t *)mp->b_wptr;
3064                 *rd_count = count;
3065                 mp->b_wptr += sizeof (ssize_t);
3066                 /*
3067                  * Send the number of bytes requested by the
3068                  * read as the argument to M_READ.
3069                  */
3070                 stream_willservice(stp);
3071                 putnext(stp->sd_wrq, mp);
3072                 stream_runservice(stp);
3073                 mutex_enter(&stp->sd_lock);
3074 
3075                 /*
3076                  * If any data arrived due to inline processing
3077                  * of putnext(), don't sleep.
3078                  */
3079                 if (_RD(stp->sd_wrq)->q_first != NULL) {
3080                         *done = 0;
3081                         return (0);
3082                 }
3083         }
3084 
3085         if (fmode & (FNDELAY|FNONBLOCK)) {
3086                 if (!(flag & NOINTR))
3087                         error = EAGAIN;
3088                 else
3089                         error = 0;
3090                 *done = 1;
3091                 return (error);
3092         }
3093 
3094         stp->sd_flag |= slpflg;
3095         TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
3096             "strwaitq sleeps (2):%p, %X, %lX, %X, %p",
3097             stp, flag, count, fmode, done);
3098 
3099         rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
3100         if (rval > 0) {
3101                 /* EMPTY */
3102                 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
3103                     "strwaitq awakes(2):%X, %X, %X, %X, %X",
3104                     stp, flag, count, fmode, done);
3105         } else if (rval == 0) {
3106                 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
3107                     "strwaitq interrupt #2:%p, %X, %lX, %X, %p",
3108                     stp, flag, count, fmode, done);
3109                 stp->sd_flag &= ~slpflg;
3110                 cv_broadcast(sleepon);
3111                 if (!(flag & NOINTR))
3112                         error = EINTR;
3113                 else
3114                         error = 0;
3115                 *done = 1;
3116                 return (error);
3117         } else {
3118                 /* timeout */
3119                 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
3120                     "strwaitq timeout:%p, %X, %lX, %X, %p",
3121                     stp, flag, count, fmode, done);
3122                 *done = 1;
3123                 if (!(flag & NOINTR))
3124                         return (ETIME);
3125                 else
3126                         return (0);
3127         }
3128         /*
3129          * If the caller implements delayed errors (i.e. queued after data)
3130          * we can not check for errors here since data as well as an
3131          * error might have arrived at the stream head. We return to
3132          * have the caller check the read queue before checking for errors.
3133          */
3134         if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
3135                 error = strgeterr(stp, errs, (flag & STR_PEEK));
3136                 if (error != 0) {
3137                         *done = 1;
3138                         return (error);
3139                 }
3140         }
3141         *done = 0;
3142         return (0);
3143 }
3144 
3145 /*
3146  * Perform job control discipline access checks.
3147  * Return 0 for success and the errno for failure.
3148  */
3149 
3150 #define cantsend(p, t, sig) \
3151         (sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
3152 
3153 int
3154 straccess(struct stdata *stp, enum jcaccess mode)
3155 {
3156         extern kcondvar_t lbolt_cv;     /* XXX: should be in a header file */
3157         kthread_t *t = curthread;
3158         proc_t *p = ttoproc(t);
3159         sess_t *sp;
3160 
3161         ASSERT(mutex_owned(&stp->sd_lock));
3162 
3163         if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
3164                 return (0);
3165 
3166         mutex_enter(&p->p_lock);         /* protects p_pgidp */
3167 
3168         for (;;) {
3169                 mutex_enter(&p->p_splock);       /* protects p->p_sessp */
3170                 sp = p->p_sessp;
3171                 mutex_enter(&sp->s_lock);        /* protects sp->* */
3172 
3173                 /*
3174                  * If this is not the calling process's controlling terminal
3175                  * or if the calling process is already in the foreground
3176                  * then allow access.
3177                  */
3178                 if (sp->s_dev != stp->sd_vnode->v_rdev ||
3179                     p->p_pgidp == stp->sd_pgidp) {
3180                         mutex_exit(&sp->s_lock);
3181                         mutex_exit(&p->p_splock);
3182                         mutex_exit(&p->p_lock);
3183                         return (0);
3184                 }
3185 
3186                 /*
3187                  * Check to see if controlling terminal has been deallocated.
3188                  */
3189                 if (sp->s_vp == NULL) {
3190                         if (!cantsend(p, t, SIGHUP))
3191                                 sigtoproc(p, t, SIGHUP);
3192                         mutex_exit(&sp->s_lock);
3193                         mutex_exit(&p->p_splock);
3194                         mutex_exit(&p->p_lock);
3195                         return (EIO);
3196                 }
3197 
3198                 mutex_exit(&sp->s_lock);
3199                 mutex_exit(&p->p_splock);
3200 
3201                 if (mode == JCGETP) {
3202                         mutex_exit(&p->p_lock);
3203                         return (0);
3204                 }
3205 
3206                 if (mode == JCREAD) {
3207                         if (p->p_detached || cantsend(p, t, SIGTTIN)) {
3208                                 mutex_exit(&p->p_lock);
3209                                 return (EIO);
3210                         }
3211                         mutex_exit(&p->p_lock);
3212                         mutex_exit(&stp->sd_lock);
3213                         pgsignal(p->p_pgidp, SIGTTIN);
3214                         mutex_enter(&stp->sd_lock);
3215                         mutex_enter(&p->p_lock);
3216                 } else {  /* mode == JCWRITE or JCSETP */
3217                         if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
3218                             cantsend(p, t, SIGTTOU)) {
3219                                 mutex_exit(&p->p_lock);
3220                                 return (0);
3221                         }
3222                         if (p->p_detached) {
3223                                 mutex_exit(&p->p_lock);
3224                                 return (EIO);
3225                         }
3226                         mutex_exit(&p->p_lock);
3227                         mutex_exit(&stp->sd_lock);
3228                         pgsignal(p->p_pgidp, SIGTTOU);
3229                         mutex_enter(&stp->sd_lock);
3230                         mutex_enter(&p->p_lock);
3231                 }
3232 
3233                 /*
3234                  * We call cv_wait_sig_swap() to cause the appropriate
3235                  * action for the jobcontrol signal to take place.
3236                  * If the signal is being caught, we will take the
3237                  * EINTR error return.  Otherwise, the default action
3238                  * of causing the process to stop will take place.
3239                  * In this case, we rely on the periodic cv_broadcast() on
3240                  * &lbolt_cv to wake us up to loop around and test again.
3241                  * We can't get here if the signal is ignored or
3242                  * if the current thread is blocking the signal.
3243                  */
3244                 mutex_exit(&stp->sd_lock);
3245                 if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
3246                         mutex_exit(&p->p_lock);
3247                         mutex_enter(&stp->sd_lock);
3248                         return (EINTR);
3249                 }
3250                 mutex_exit(&p->p_lock);
3251                 mutex_enter(&stp->sd_lock);
3252                 mutex_enter(&p->p_lock);
3253         }
3254 }
3255 
3256 /*
3257  * Return size of message of block type (bp->b_datap->db_type)
3258  */
3259 size_t
3260 xmsgsize(mblk_t *bp)
3261 {
3262         unsigned char type;
3263         size_t count = 0;
3264 
3265         type = bp->b_datap->db_type;
3266 
3267         for (; bp; bp = bp->b_cont) {
3268                 if (type != bp->b_datap->db_type)
3269                         break;
3270                 ASSERT(bp->b_wptr >= bp->b_rptr);
3271                 count += bp->b_wptr - bp->b_rptr;
3272         }
3273         return (count);
3274 }
3275 
3276 /*
3277  * Allocate a stream head.
3278  */
3279 struct stdata *
3280 shalloc(queue_t *qp)
3281 {
3282         stdata_t *stp;
3283 
3284         stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
3285 
3286         stp->sd_wrq = _WR(qp);
3287         stp->sd_strtab = NULL;
3288         stp->sd_iocid = 0;
3289         stp->sd_mate = NULL;
3290         stp->sd_freezer = NULL;
3291         stp->sd_refcnt = 0;
3292         stp->sd_wakeq = 0;
3293         stp->sd_anchor = 0;
3294         stp->sd_struiowrq = NULL;
3295         stp->sd_struiordq = NULL;
3296         stp->sd_struiodnak = 0;
3297         stp->sd_struionak = NULL;
3298         stp->sd_t_audit_data = NULL;
3299         stp->sd_rput_opt = 0;
3300         stp->sd_wput_opt = 0;
3301         stp->sd_read_opt = 0;
3302         stp->sd_rprotofunc = strrput_proto;
3303         stp->sd_rmiscfunc = strrput_misc;
3304         stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
3305         stp->sd_rputdatafunc = stp->sd_wputdatafunc = NULL;
3306         stp->sd_ciputctrl = NULL;
3307         stp->sd_nciputctrl = 0;
3308         stp->sd_qhead = NULL;
3309         stp->sd_qtail = NULL;
3310         stp->sd_servid = NULL;
3311         stp->sd_nqueues = 0;
3312         stp->sd_svcflags = 0;
3313         stp->sd_copyflag = 0;
3314 
3315         return (stp);
3316 }
3317 
3318 /*
3319  * Free a stream head.
3320  */
3321 void
3322 shfree(stdata_t *stp)
3323 {
3324         pid_node_t *pn;
3325 
3326         ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
3327 
3328         stp->sd_wrq = NULL;
3329 
3330         mutex_enter(&stp->sd_qlock);
3331         while (stp->sd_svcflags & STRS_SCHEDULED) {
3332                 STRSTAT(strwaits);
3333                 cv_wait(&stp->sd_qcv, &stp->sd_qlock);
3334         }
3335         mutex_exit(&stp->sd_qlock);
3336 
3337         if (stp->sd_ciputctrl != NULL) {
3338                 ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
3339                 SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
3340                     stp->sd_nciputctrl, 0);
3341                 ASSERT(ciputctrl_cache != NULL);
3342                 kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
3343                 stp->sd_ciputctrl = NULL;
3344                 stp->sd_nciputctrl = 0;
3345         }
3346         ASSERT(stp->sd_qhead == NULL);
3347         ASSERT(stp->sd_qtail == NULL);
3348         ASSERT(stp->sd_nqueues == 0);
3349 
3350         mutex_enter(&stp->sd_pid_list_lock);
3351         while ((pn = list_head(&stp->sd_pid_list)) != NULL) {
3352                 list_remove(&stp->sd_pid_list, pn);
3353                 kmem_free(pn, sizeof (*pn));
3354         }
3355         mutex_exit(&stp->sd_pid_list_lock);
3356 
3357         kmem_cache_free(stream_head_cache, stp);
3358 }
3359 
3360 void
3361 sh_insert_pid(struct stdata *stp, pid_t pid)
3362 {
3363         pid_node_t *pn;
3364 
3365         mutex_enter(&stp->sd_pid_list_lock);
3366         for (pn = list_head(&stp->sd_pid_list);
3367             pn != NULL && pn->pn_pid != pid;
3368             pn = list_next(&stp->sd_pid_list, pn))
3369                 ;
3370 
3371         if (pn != NULL) {
3372                 pn->pn_count++;
3373         } else {
3374                 pn = kmem_zalloc(sizeof (*pn), KM_SLEEP);
3375                 list_link_init(&pn->pn_ref_link);
3376                 pn->pn_pid = pid;
3377                 pn->pn_count = 1;
3378                 list_insert_tail(&stp->sd_pid_list, pn);
3379         }
3380         mutex_exit(&stp->sd_pid_list_lock);
3381 }
3382 
3383 void
3384 sh_remove_pid(struct stdata *stp, pid_t pid)
3385 {
3386         pid_node_t *pn;
3387 
3388         mutex_enter(&stp->sd_pid_list_lock);
3389         for (pn = list_head(&stp->sd_pid_list);
3390             pn != NULL && pn->pn_pid != pid;
3391             pn = list_next(&stp->sd_pid_list, pn))
3392                 ;
3393 
3394         if (pn != NULL) {
3395                 if (pn->pn_count > 1) {
3396                         pn->pn_count--;
3397                 } else {
3398                         list_remove(&stp->sd_pid_list, pn);
3399                         kmem_free(pn, sizeof (*pn));
3400                 }
3401         }
3402         mutex_exit(&stp->sd_pid_list_lock);
3403 }
3404 
3405 mblk_t *
3406 sh_get_pid_mblk(struct stdata *stp)
3407 {
3408         mblk_t *mblk;
3409         int sz, n = 0;
3410         pid_t *pids;
3411         pid_node_t *pn;
3412         conn_pid_info_t *cpi;
3413 
3414         mutex_enter(&stp->sd_pid_list_lock);
3415 
3416         n = list_numnodes(&stp->sd_pid_list);
3417         sz = sizeof (conn_pid_info_t);
3418         sz += (n > 1) ? ((n - 1) * sizeof (pid_t)) : 0;
3419         if ((mblk = allocb(sz, BPRI_HI)) == NULL) {
3420                 mutex_exit(&stp->sd_pid_list_lock);
3421                 return (NULL);
3422         }
3423         mblk->b_wptr += sz;
3424         cpi = (conn_pid_info_t *)mblk->b_datap->db_base;
3425         cpi->cpi_magic = CONN_PID_INFO_MGC;
3426         cpi->cpi_contents = CONN_PID_INFO_XTI;
3427         cpi->cpi_pids_cnt = n;
3428         cpi->cpi_tot_size = sz;
3429         cpi->cpi_pids[0] = 0;
3430 
3431         if (cpi->cpi_pids_cnt > 0) {
3432                 pids = cpi->cpi_pids;
3433                 for (pn = list_head(&stp->sd_pid_list); pn != NULL;
3434                     pids++, pn = list_next(&stp->sd_pid_list, pn))
3435                         *pids = pn->pn_pid;
3436         }
3437         mutex_exit(&stp->sd_pid_list_lock);
3438         return (mblk);
3439 }
3440 
3441 /*
3442  * Allocate a pair of queues and a syncq for the pair
3443  */
3444 queue_t *
3445 allocq(void)
3446 {
3447         queinfo_t *qip;
3448         queue_t *qp, *wqp;
3449         syncq_t *sq;
3450 
3451         qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
3452 
3453         qp = &qip->qu_rqueue;
3454         wqp = &qip->qu_wqueue;
3455         sq = &qip->qu_syncq;
3456 
3457         qp->q_last   = NULL;
3458         qp->q_next   = NULL;
3459         qp->q_ptr    = NULL;
3460         qp->q_flag   = QUSE | QREADR;
3461         qp->q_bandp  = NULL;
3462         qp->q_stream = NULL;
3463         qp->q_syncq  = sq;
3464         qp->q_nband  = 0;
3465         qp->q_nfsrv  = NULL;
3466         qp->q_draining       = 0;
3467         qp->q_syncqmsgs      = 0;
3468         qp->q_spri   = 0;
3469         qp->q_qtstamp        = 0;
3470         qp->q_sqtstamp       = 0;
3471         qp->q_fp     = NULL;
3472 
3473         wqp->q_last  = NULL;
3474         wqp->q_next  = NULL;
3475         wqp->q_ptr   = NULL;
3476         wqp->q_flag  = QUSE;
3477         wqp->q_bandp = NULL;
3478         wqp->q_stream        = NULL;
3479         wqp->q_syncq = sq;
3480         wqp->q_nband = 0;
3481         wqp->q_nfsrv = NULL;
3482         wqp->q_draining      = 0;
3483         wqp->q_syncqmsgs = 0;
3484         wqp->q_qtstamp       = 0;
3485         wqp->q_sqtstamp      = 0;
3486         wqp->q_spri  = 0;
3487 
3488         sq->sq_count = 0;
3489         sq->sq_rmqcount      = 0;
3490         sq->sq_flags = 0;
3491         sq->sq_type  = 0;
3492         sq->sq_callbflags = 0;
3493         sq->sq_cancelid      = 0;
3494         sq->sq_ciputctrl = NULL;
3495         sq->sq_nciputctrl = 0;
3496         sq->sq_needexcl = 0;
3497         sq->sq_svcflags = 0;
3498 
3499         return (qp);
3500 }
3501 
3502 /*
3503  * Free a pair of queues and the "attached" syncq.
3504  * Discard any messages left on the syncq(s), remove the syncq(s) from the
3505  * outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
3506  */
3507 void
3508 freeq(queue_t *qp)
3509 {
3510         qband_t *qbp, *nqbp;
3511         syncq_t *sq, *outer;
3512         queue_t *wqp = _WR(qp);
3513 
3514         ASSERT(qp->q_flag & QREADR);
3515 
3516         /*
3517          * If a previously dispatched taskq job is scheduled to run
3518          * sync_service() or a service routine is scheduled for the
3519          * queues about to be freed, wait here until all service is
3520          * done on the queue and all associated queues and syncqs.
3521          */
3522         wait_svc(qp);
3523 
3524         (void) flush_syncq(qp->q_syncq, qp);
3525         (void) flush_syncq(wqp->q_syncq, wqp);
3526         ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
3527 
3528         /*
3529          * Flush the queues before q_next is set to NULL This is needed
3530          * in order to backenable any downstream queue before we go away.
3531          * Note: we are already removed from the stream so that the
3532          * backenabling will not cause any messages to be delivered to our
3533          * put procedures.
3534          */
3535         flushq(qp, FLUSHALL);
3536         flushq(wqp, FLUSHALL);
3537 
3538         /* Tidy up - removeq only does a half-remove from stream */
3539         qp->q_next = wqp->q_next = NULL;
3540         ASSERT(!(qp->q_flag & QENAB));
3541         ASSERT(!(wqp->q_flag & QENAB));
3542 
3543         outer = qp->q_syncq->sq_outer;
3544         if (outer != NULL) {
3545                 outer_remove(outer, qp->q_syncq);
3546                 if (wqp->q_syncq != qp->q_syncq)
3547                         outer_remove(outer, wqp->q_syncq);
3548         }
3549         /*
3550          * Free any syncqs that are outside what allocq returned.
3551          */
3552         if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
3553                 free_syncq(qp->q_syncq);
3554         if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
3555                 free_syncq(wqp->q_syncq);
3556 
3557         ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3558         ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3559         ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
3560         ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
3561         sq = SQ(qp);
3562         ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
3563         ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
3564         ASSERT(sq->sq_outer == NULL);
3565         ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
3566         ASSERT(sq->sq_callbpend == NULL);
3567         ASSERT(sq->sq_needexcl == 0);
3568 
3569         if (sq->sq_ciputctrl != NULL) {
3570                 ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
3571                 SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
3572                     sq->sq_nciputctrl, 0);
3573                 ASSERT(ciputctrl_cache != NULL);
3574                 kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
3575                 sq->sq_ciputctrl = NULL;
3576                 sq->sq_nciputctrl = 0;
3577         }
3578 
3579         ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
3580         ASSERT(qp->q_count == 0 && wqp->q_count == 0);
3581         ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
3582 
3583         qp->q_flag &= ~QUSE;
3584         wqp->q_flag &= ~QUSE;
3585 
3586         /* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
3587         /* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
3588 
3589         qbp = qp->q_bandp;
3590         while (qbp) {
3591                 nqbp = qbp->qb_next;
3592                 freeband(qbp);
3593                 qbp = nqbp;
3594         }
3595         qbp = wqp->q_bandp;
3596         while (qbp) {
3597                 nqbp = qbp->qb_next;
3598                 freeband(qbp);
3599                 qbp = nqbp;
3600         }
3601         kmem_cache_free(queue_cache, qp);
3602 }
3603 
3604 /*
3605  * Allocate a qband structure.
3606  */
3607 qband_t *
3608 allocband(void)
3609 {
3610         qband_t *qbp;
3611 
3612         qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
3613         if (qbp == NULL)
3614                 return (NULL);
3615 
3616         qbp->qb_next = NULL;
3617         qbp->qb_count        = 0;
3618         qbp->qb_mblkcnt      = 0;
3619         qbp->qb_first        = NULL;
3620         qbp->qb_last = NULL;
3621         qbp->qb_flag = 0;
3622 
3623         return (qbp);
3624 }
3625 
3626 /*
3627  * Free a qband structure.
3628  */
3629 void
3630 freeband(qband_t *qbp)
3631 {
3632         kmem_cache_free(qband_cache, qbp);
3633 }
3634 
3635 /*
3636  * Just like putnextctl(9F), except that allocb_wait() is used.
3637  *
3638  * Consolidation Private, and of course only callable from the stream head or
3639  * routines that may block.
3640  */
3641 int
3642 putnextctl_wait(queue_t *q, int type)
3643 {
3644         mblk_t *bp;
3645         int error;
3646 
3647         if ((datamsg(type) && (type != M_DELAY)) ||
3648             (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
3649                 return (0);
3650 
3651         bp->b_datap->db_type = (unsigned char)type;
3652         putnext(q, bp);
3653         return (1);
3654 }
3655 
3656 /*
3657  * Run any possible bufcalls.
3658  */
3659 void
3660 runbufcalls(void)
3661 {
3662         strbufcall_t *bcp;
3663 
3664         mutex_enter(&bcall_monitor);
3665         mutex_enter(&strbcall_lock);
3666 
3667         if (strbcalls.bc_head) {
3668                 size_t count;
3669                 int nevent;
3670 
3671                 /*
3672                  * count how many events are on the list
3673                  * now so we can check to avoid looping
3674                  * in low memory situations
3675                  */
3676                 nevent = 0;
3677                 for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
3678                         nevent++;
3679 
3680                 /*
3681                  * get estimate of available memory from kmem_avail().
3682                  * awake all bufcall functions waiting for
3683                  * memory whose request could be satisfied
3684                  * by 'count' memory and let 'em fight for it.
3685                  */
3686                 count = kmem_avail();
3687                 while ((bcp = strbcalls.bc_head) != NULL && nevent) {
3688                         STRSTAT(bufcalls);
3689                         --nevent;
3690                         if (bcp->bc_size <= count) {
3691                                 bcp->bc_executor = curthread;
3692                                 mutex_exit(&strbcall_lock);
3693                                 (*bcp->bc_func)(bcp->bc_arg);
3694                                 mutex_enter(&strbcall_lock);
3695                                 bcp->bc_executor = NULL;
3696                                 cv_broadcast(&bcall_cv);
3697                                 strbcalls.bc_head = bcp->bc_next;
3698                                 kmem_free(bcp, sizeof (strbufcall_t));
3699                         } else {
3700                                 /*
3701                                  * too big, try again later - note
3702                                  * that nevent was decremented above
3703                                  * so we won't retry this one on this
3704                                  * iteration of the loop
3705                                  */
3706                                 if (bcp->bc_next != NULL) {
3707                                         strbcalls.bc_head = bcp->bc_next;
3708                                         bcp->bc_next = NULL;
3709                                         strbcalls.bc_tail->bc_next = bcp;
3710                                         strbcalls.bc_tail = bcp;
3711                                 }
3712                         }
3713                 }
3714                 if (strbcalls.bc_head == NULL)
3715                         strbcalls.bc_tail = NULL;
3716         }
3717 
3718         mutex_exit(&strbcall_lock);
3719         mutex_exit(&bcall_monitor);
3720 }
3721 
3722 
3723 /*
3724  * Actually run queue's service routine.
3725  */
3726 static void
3727 runservice(queue_t *q)
3728 {
3729         qband_t *qbp;
3730 
3731         ASSERT(q->q_qinfo->qi_srvp);
3732 again:
3733         entersq(q->q_syncq, SQ_SVC);
3734         TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
3735             "runservice starts:%p", q);
3736 
3737         if (!(q->q_flag & QWCLOSE))
3738                 (*q->q_qinfo->qi_srvp)(q);
3739 
3740         TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
3741             "runservice ends:(%p)", q);
3742 
3743         leavesq(q->q_syncq, SQ_SVC);
3744 
3745         mutex_enter(QLOCK(q));
3746         if (q->q_flag & QENAB) {
3747                 q->q_flag &= ~QENAB;
3748                 mutex_exit(QLOCK(q));
3749                 goto again;
3750         }
3751         q->q_flag &= ~QINSERVICE;
3752         q->q_flag &= ~QBACK;
3753         for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
3754                 qbp->qb_flag &= ~QB_BACK;
3755         /*
3756          * Wakeup thread waiting for the service procedure
3757          * to be run (strclose and qdetach).
3758          */
3759         cv_broadcast(&q->q_wait);
3760 
3761         mutex_exit(QLOCK(q));
3762 }
3763 
3764 /*
3765  * Background processing of bufcalls.
3766  */
3767 void
3768 streams_bufcall_service(void)
3769 {
3770         callb_cpr_t     cprinfo;
3771 
3772         CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
3773             "streams_bufcall_service");
3774 
3775         mutex_enter(&strbcall_lock);
3776 
3777         for (;;) {
3778                 if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
3779                         mutex_exit(&strbcall_lock);
3780                         runbufcalls();
3781                         mutex_enter(&strbcall_lock);
3782                 }
3783                 if (strbcalls.bc_head != NULL) {
3784                         STRSTAT(bcwaits);
3785                         /* Wait for memory to become available */
3786                         CALLB_CPR_SAFE_BEGIN(&cprinfo);
3787                         (void) cv_reltimedwait(&memavail_cv, &strbcall_lock,
3788                             SEC_TO_TICK(60), TR_CLOCK_TICK);
3789                         CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3790                 }
3791 
3792                 /* Wait for new work to arrive */
3793                 if (strbcalls.bc_head == NULL) {
3794                         CALLB_CPR_SAFE_BEGIN(&cprinfo);
3795                         cv_wait(&strbcall_cv, &strbcall_lock);
3796                         CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3797                 }
3798         }
3799 }
3800 
3801 /*
3802  * Background processing of streams background tasks which failed
3803  * taskq_dispatch.
3804  */
3805 static void
3806 streams_qbkgrnd_service(void)
3807 {
3808         callb_cpr_t cprinfo;
3809         queue_t *q;
3810 
3811         CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3812             "streams_bkgrnd_service");
3813 
3814         mutex_enter(&service_queue);
3815 
3816         for (;;) {
3817                 /*
3818                  * Wait for work to arrive.
3819                  */
3820                 while ((freebs_list == NULL) && (qhead == NULL)) {
3821                         CALLB_CPR_SAFE_BEGIN(&cprinfo);
3822                         cv_wait(&services_to_run, &service_queue);
3823                         CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3824                 }
3825                 /*
3826                  * Handle all pending freebs requests to free memory.
3827                  */
3828                 while (freebs_list != NULL) {
3829                         mblk_t *mp = freebs_list;
3830                         freebs_list = mp->b_next;
3831                         mutex_exit(&service_queue);
3832                         mblk_free(mp);
3833                         mutex_enter(&service_queue);
3834                 }
3835                 /*
3836                  * Run pending queues.
3837                  */
3838                 while (qhead != NULL) {
3839                         DQ(q, qhead, qtail, q_link);
3840                         ASSERT(q != NULL);
3841                         mutex_exit(&service_queue);
3842                         queue_service(q);
3843                         mutex_enter(&service_queue);
3844                 }
3845                 ASSERT(qhead == NULL && qtail == NULL);
3846         }
3847 }
3848 
3849 /*
3850  * Background processing of streams background tasks which failed
3851  * taskq_dispatch.
3852  */
3853 static void
3854 streams_sqbkgrnd_service(void)
3855 {
3856         callb_cpr_t cprinfo;
3857         syncq_t *sq;
3858 
3859         CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3860             "streams_sqbkgrnd_service");
3861 
3862         mutex_enter(&service_queue);
3863 
3864         for (;;) {
3865                 /*
3866                  * Wait for work to arrive.
3867                  */
3868                 while (sqhead == NULL) {
3869                         CALLB_CPR_SAFE_BEGIN(&cprinfo);
3870                         cv_wait(&syncqs_to_run, &service_queue);
3871                         CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3872                 }
3873 
3874                 /*
3875                  * Run pending syncqs.
3876                  */
3877                 while (sqhead != NULL) {
3878                         DQ(sq, sqhead, sqtail, sq_next);
3879                         ASSERT(sq != NULL);
3880                         ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
3881                         mutex_exit(&service_queue);
3882                         syncq_service(sq);
3883                         mutex_enter(&service_queue);
3884                 }
3885         }
3886 }
3887 
3888 /*
3889  * Disable the syncq and wait for background syncq processing to complete.
3890  * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
3891  * list.
3892  */
3893 void
3894 wait_sq_svc(syncq_t *sq)
3895 {
3896         mutex_enter(SQLOCK(sq));
3897         sq->sq_svcflags |= SQ_DISABLED;
3898         if (sq->sq_svcflags & SQ_BGTHREAD) {
3899                 syncq_t *sq_chase;
3900                 syncq_t *sq_curr;
3901                 int removed;
3902 
3903                 ASSERT(sq->sq_servcount == 1);
3904                 mutex_enter(&service_queue);
3905                 RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
3906                 mutex_exit(&service_queue);
3907                 if (removed) {
3908                         sq->sq_svcflags &= ~SQ_BGTHREAD;
3909                         sq->sq_servcount = 0;
3910                         STRSTAT(sqremoved);
3911                         goto done;
3912                 }
3913         }
3914         while (sq->sq_servcount != 0) {
3915                 sq->sq_flags |= SQ_WANTWAKEUP;
3916                 cv_wait(&sq->sq_wait, SQLOCK(sq));
3917         }
3918 done:
3919         mutex_exit(SQLOCK(sq));
3920 }
3921 
3922 /*
3923  * Put a syncq on the list of syncq's to be serviced by the sqthread.
3924  * Add the argument to the end of the sqhead list and set the flag
3925  * indicating this syncq has been enabled.  If it has already been
3926  * enabled, don't do anything.
3927  * This routine assumes that SQLOCK is held.
3928  * NOTE that the lock order is to have the SQLOCK first,
3929  * so if the service_syncq lock is held, we need to release it
3930  * before acquiring the SQLOCK (mostly relevant for the background
3931  * thread, and this seems to be common among the STREAMS global locks).
3932  * Note that the sq_svcflags are protected by the SQLOCK.
3933  */
3934 void
3935 sqenable(syncq_t *sq)
3936 {
3937         /*
3938          * This is probably not important except for where I believe it
3939          * is being called.  At that point, it should be held (and it
3940          * is a pain to release it just for this routine, so don't do
3941          * it).
3942          */
3943         ASSERT(MUTEX_HELD(SQLOCK(sq)));
3944 
3945         IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
3946         IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
3947 
3948         /*
3949          * Do not put on list if background thread is scheduled or
3950          * syncq is disabled.
3951          */
3952         if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
3953                 return;
3954 
3955         /*
3956          * Check whether we should enable sq at all.
3957          * Non PERMOD syncqs may be drained by at most one thread.
3958          * PERMOD syncqs may be drained by several threads but we limit the
3959          * total amount to the lesser of
3960          *      Number of queues on the squeue and
3961          *      Number of CPUs.
3962          */
3963         if (sq->sq_servcount != 0) {
3964                 if (((sq->sq_type & SQ_PERMOD) == 0) ||
3965                     (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
3966                         STRSTAT(sqtoomany);
3967                         return;
3968                 }
3969         }
3970 
3971         sq->sq_tstamp = ddi_get_lbolt();
3972         STRSTAT(sqenables);
3973 
3974         /* Attempt a taskq dispatch */
3975         sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
3976             (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
3977         if (sq->sq_servid != NULL) {
3978                 sq->sq_servcount++;
3979                 return;
3980         }
3981 
3982         /*
3983          * This taskq dispatch failed, but a previous one may have succeeded.
3984          * Don't try to schedule on the background thread whilst there is
3985          * outstanding taskq processing.
3986          */
3987         if (sq->sq_servcount != 0)
3988                 return;
3989 
3990         /*
3991          * System is low on resources and can't perform a non-sleeping
3992          * dispatch. Schedule the syncq for a background thread and mark the
3993          * syncq to avoid any further taskq dispatch attempts.
3994          */
3995         mutex_enter(&service_queue);
3996         STRSTAT(taskqfails);
3997         ENQUEUE(sq, sqhead, sqtail, sq_next);
3998         sq->sq_svcflags |= SQ_BGTHREAD;
3999         sq->sq_servcount = 1;
4000         cv_signal(&syncqs_to_run);
4001         mutex_exit(&service_queue);
4002 }
4003 
4004 /*
4005  * Note: fifo_close() depends on the mblk_t on the queue being freed
4006  * asynchronously. The asynchronous freeing of messages breaks the
4007  * recursive call chain of fifo_close() while there are I_SENDFD type of
4008  * messages referring to other file pointers on the queue. Then when
4009  * closing pipes it can avoid stack overflow in case of daisy-chained
4010  * pipes, and also avoid deadlock in case of fifonode_t pairs (which
4011  * share the same fifolock_t).
4012  *
4013  * No need to kpreempt_disable to access cpu_seqid.  If we migrate and
4014  * the esb queue does not match the new CPU, that is OK.
4015  */
4016 void
4017 freebs_enqueue(mblk_t *mp, dblk_t *dbp)
4018 {
4019         int qindex = CPU->cpu_seqid >> esbq_log2_cpus_per_q;
4020         esb_queue_t *eqp;
4021 
4022         ASSERT(dbp->db_mblk == mp);
4023         ASSERT(qindex < esbq_nelem);
4024 
4025         eqp = system_esbq_array;
4026         if (eqp != NULL) {
4027                 eqp += qindex;
4028         } else {
4029                 mutex_enter(&esbq_lock);
4030                 if (kmem_ready && system_esbq_array == NULL)
4031                         system_esbq_array = (esb_queue_t *)kmem_zalloc(
4032                             esbq_nelem * sizeof (esb_queue_t), KM_NOSLEEP);
4033                 mutex_exit(&esbq_lock);
4034                 eqp = system_esbq_array;
4035                 if (eqp != NULL)
4036                         eqp += qindex;
4037                 else
4038                         eqp = &system_esbq;
4039         }
4040 
4041         /*
4042          * Check data sanity. The dblock should have non-empty free function.
4043          * It is better to panic here then later when the dblock is freed
4044          * asynchronously when the context is lost.
4045          */
4046         if (dbp->db_frtnp->free_func == NULL) {
4047                 panic("freebs_enqueue: dblock %p has a NULL free callback",
4048                     (void *)dbp);
4049         }
4050 
4051         mutex_enter(&eqp->eq_lock);
4052         /* queue the new mblk on the esballoc queue */
4053         if (eqp->eq_head == NULL) {
4054                 eqp->eq_head = eqp->eq_tail = mp;
4055         } else {
4056                 eqp->eq_tail->b_next = mp;
4057                 eqp->eq_tail = mp;
4058         }
4059         eqp->eq_len++;
4060 
4061         /* If we're the first thread to reach the threshold, process */
4062         if (eqp->eq_len >= esbq_max_qlen &&
4063             !(eqp->eq_flags & ESBQ_PROCESSING))
4064                 esballoc_process_queue(eqp);
4065 
4066         esballoc_set_timer(eqp, esbq_timeout);
4067         mutex_exit(&eqp->eq_lock);
4068 }
4069 
4070 static void
4071 esballoc_process_queue(esb_queue_t *eqp)
4072 {
4073         mblk_t  *mp;
4074 
4075         ASSERT(MUTEX_HELD(&eqp->eq_lock));
4076 
4077         eqp->eq_flags |= ESBQ_PROCESSING;
4078 
4079         do {
4080                 /*
4081                  * Detach the message chain for processing.
4082                  */
4083                 mp = eqp->eq_head;
4084                 eqp->eq_tail->b_next = NULL;
4085                 eqp->eq_head = eqp->eq_tail = NULL;
4086                 eqp->eq_len = 0;
4087                 mutex_exit(&eqp->eq_lock);
4088 
4089                 /*
4090                  * Process the message chain.
4091                  */
4092                 esballoc_enqueue_mblk(mp);
4093                 mutex_enter(&eqp->eq_lock);
4094         } while ((eqp->eq_len >= esbq_max_qlen) && (eqp->eq_len > 0));
4095 
4096         eqp->eq_flags &= ~ESBQ_PROCESSING;
4097 }
4098 
4099 /*
4100  * taskq callback routine to free esballoced mblk's
4101  */
4102 static void
4103 esballoc_mblk_free(mblk_t *mp)
4104 {
4105         mblk_t  *nextmp;
4106 
4107         for (; mp != NULL; mp = nextmp) {
4108                 nextmp = mp->b_next;
4109                 mp->b_next = NULL;
4110                 mblk_free(mp);
4111         }
4112 }
4113 
4114 static void
4115 esballoc_enqueue_mblk(mblk_t *mp)
4116 {
4117 
4118         if (taskq_dispatch(system_taskq, (task_func_t *)esballoc_mblk_free, mp,
4119             TQ_NOSLEEP) == NULL) {
4120                 mblk_t *first_mp = mp;
4121                 /*
4122                  * System is low on resources and can't perform a non-sleeping
4123                  * dispatch. Schedule for a background thread.
4124                  */
4125                 mutex_enter(&service_queue);
4126                 STRSTAT(taskqfails);
4127 
4128                 while (mp->b_next != NULL)
4129                         mp = mp->b_next;
4130 
4131                 mp->b_next = freebs_list;
4132                 freebs_list = first_mp;
4133                 cv_signal(&services_to_run);
4134                 mutex_exit(&service_queue);
4135         }
4136 }
4137 
4138 static void
4139 esballoc_timer(void *arg)
4140 {
4141         esb_queue_t *eqp = arg;
4142 
4143         mutex_enter(&eqp->eq_lock);
4144         eqp->eq_flags &= ~ESBQ_TIMER;
4145 
4146         if (!(eqp->eq_flags & ESBQ_PROCESSING) &&
4147             eqp->eq_len > 0)
4148                 esballoc_process_queue(eqp);
4149 
4150         esballoc_set_timer(eqp, esbq_timeout);
4151         mutex_exit(&eqp->eq_lock);
4152 }
4153 
4154 static void
4155 esballoc_set_timer(esb_queue_t *eqp, clock_t eq_timeout)
4156 {
4157         ASSERT(MUTEX_HELD(&eqp->eq_lock));
4158 
4159         if (eqp->eq_len > 0 && !(eqp->eq_flags & ESBQ_TIMER)) {
4160                 (void) timeout(esballoc_timer, eqp, eq_timeout);
4161                 eqp->eq_flags |= ESBQ_TIMER;
4162         }
4163 }
4164 
4165 /*
4166  * Setup esbq array length based upon NCPU scaled by CPUs per
4167  * queue. Use static system_esbq until kmem_ready and we can
4168  * create an array in freebs_enqueue().
4169  */
4170 void
4171 esballoc_queue_init(void)
4172 {
4173         esbq_log2_cpus_per_q = highbit(esbq_cpus_per_q - 1);
4174         esbq_cpus_per_q = 1 << esbq_log2_cpus_per_q;
4175         esbq_nelem = howmany(NCPU, esbq_cpus_per_q);
4176         system_esbq.eq_len = 0;
4177         system_esbq.eq_head = system_esbq.eq_tail = NULL;
4178         system_esbq.eq_flags = 0;
4179 }
4180 
4181 /*
4182  * Set the QBACK or QB_BACK flag in the given queue for
4183  * the given priority band.
4184  */
4185 void
4186 setqback(queue_t *q, unsigned char pri)
4187 {
4188         int i;
4189         qband_t *qbp;
4190         qband_t **qbpp;
4191 
4192         ASSERT(MUTEX_HELD(QLOCK(q)));
4193         if (pri != 0) {
4194                 if (pri > q->q_nband) {
4195                         qbpp = &q->q_bandp;
4196                         while (*qbpp)
4197                                 qbpp = &(*qbpp)->qb_next;
4198                         while (pri > q->q_nband) {
4199                                 if ((*qbpp = allocband()) == NULL) {
4200                                         cmn_err(CE_WARN,
4201                                             "setqback: can't allocate qband\n");
4202                                         return;
4203                                 }
4204                                 (*qbpp)->qb_hiwat = q->q_hiwat;
4205                                 (*qbpp)->qb_lowat = q->q_lowat;
4206                                 q->q_nband++;
4207                                 qbpp = &(*qbpp)->qb_next;
4208                         }
4209                 }
4210                 qbp = q->q_bandp;
4211                 i = pri;
4212                 while (--i)
4213                         qbp = qbp->qb_next;
4214                 qbp->qb_flag |= QB_BACK;
4215         } else {
4216                 q->q_flag |= QBACK;
4217         }
4218 }
4219 
4220 int
4221 strcopyin(void *from, void *to, size_t len, int copyflag)
4222 {
4223         if (copyflag & U_TO_K) {
4224                 ASSERT((copyflag & K_TO_K) == 0);
4225                 if (copyin(from, to, len))
4226                         return (EFAULT);
4227         } else {
4228                 ASSERT(copyflag & K_TO_K);
4229                 bcopy(from, to, len);
4230         }
4231         return (0);
4232 }
4233 
4234 int
4235 strcopyout(void *from, void *to, size_t len, int copyflag)
4236 {
4237         if (copyflag & U_TO_K) {
4238                 if (copyout(from, to, len))
4239                         return (EFAULT);
4240         } else {
4241                 ASSERT(copyflag & K_TO_K);
4242                 bcopy(from, to, len);
4243         }
4244         return (0);
4245 }
4246 
4247 /*
4248  * strsignal_nolock() posts a signal to the process(es) at the stream head.
4249  * It assumes that the stream head lock is already held, whereas strsignal()
4250  * acquires the lock first.  This routine was created because a few callers
4251  * release the stream head lock before calling only to re-acquire it after
4252  * it returns.
4253  */
4254 void
4255 strsignal_nolock(stdata_t *stp, int sig, uchar_t band)
4256 {
4257         ASSERT(MUTEX_HELD(&stp->sd_lock));
4258         switch (sig) {
4259         case SIGPOLL:
4260                 if (stp->sd_sigflags & S_MSG)
4261                         strsendsig(stp->sd_siglist, S_MSG, band, 0);
4262                 break;
4263         default:
4264                 if (stp->sd_pgidp)
4265                         pgsignal(stp->sd_pgidp, sig);
4266                 break;
4267         }
4268 }
4269 
4270 void
4271 strsignal(stdata_t *stp, int sig, int32_t band)
4272 {
4273         TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
4274             "strsignal:%p, %X, %X", stp, sig, band);
4275 
4276         mutex_enter(&stp->sd_lock);
4277         switch (sig) {
4278         case SIGPOLL:
4279                 if (stp->sd_sigflags & S_MSG)
4280                         strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
4281                 break;
4282 
4283         default:
4284                 if (stp->sd_pgidp) {
4285                         pgsignal(stp->sd_pgidp, sig);
4286                 }
4287                 break;
4288         }
4289         mutex_exit(&stp->sd_lock);
4290 }
4291 
4292 void
4293 strhup(stdata_t *stp)
4294 {
4295         ASSERT(mutex_owned(&stp->sd_lock));
4296         pollwakeup(&stp->sd_pollist, POLLHUP);
4297         if (stp->sd_sigflags & S_HANGUP)
4298                 strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
4299 }
4300 
4301 /*
4302  * Backenable the first queue upstream from `q' with a service procedure.
4303  */
4304 void
4305 backenable(queue_t *q, uchar_t pri)
4306 {
4307         queue_t *nq;
4308 
4309         /*
4310          * Our presence might not prevent other modules in our own
4311          * stream from popping/pushing since the caller of getq might not
4312          * have a claim on the queue (some drivers do a getq on somebody
4313          * else's queue - they know that the queue itself is not going away
4314          * but the framework has to guarantee q_next in that stream).
4315          */
4316         claimstr(q);
4317 
4318         /* Find nearest back queue with service proc */
4319         for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
4320                 ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
4321         }
4322 
4323         if (nq) {
4324                 kthread_t *freezer;
4325                 /*
4326                  * backenable can be called either with no locks held
4327                  * or with the stream frozen (the latter occurs when a module
4328                  * calls rmvq with the stream frozen). If the stream is frozen
4329                  * by the caller the caller will hold all qlocks in the stream.
4330                  * Note that a frozen stream doesn't freeze a mated stream,
4331                  * so we explicitly check for that.
4332                  */
4333                 freezer = STREAM(q)->sd_freezer;
4334                 if (freezer != curthread || STREAM(q) != STREAM(nq)) {
4335                         mutex_enter(QLOCK(nq));
4336                 }
4337 #ifdef DEBUG
4338                 else {
4339                         ASSERT(frozenstr(q));
4340                         ASSERT(MUTEX_HELD(QLOCK(q)));
4341                         ASSERT(MUTEX_HELD(QLOCK(nq)));
4342                 }
4343 #endif
4344                 setqback(nq, pri);
4345                 qenable_locked(nq);
4346                 if (freezer != curthread || STREAM(q) != STREAM(nq))
4347                         mutex_exit(QLOCK(nq));
4348         }
4349         releasestr(q);
4350 }
4351 
4352 /*
4353  * Return the appropriate errno when one of flags_to_check is set
4354  * in sd_flags. Uses the exported error routines if they are set.
4355  * Will return 0 if non error is set (or if the exported error routines
4356  * do not return an error).
4357  *
4358  * If there is both a read and write error to check, we prefer the read error.
4359  * Also, give preference to recorded errno's over the error functions.
4360  * The flags that are handled are:
4361  *      STPLEX          return EINVAL
4362  *      STRDERR         return sd_rerror (and clear if STRDERRNONPERSIST)
4363  *      STWRERR         return sd_werror (and clear if STWRERRNONPERSIST)
4364  *      STRHUP          return sd_werror
4365  *
4366  * If the caller indicates that the operation is a peek, a nonpersistent error
4367  * is not cleared.
4368  */
4369 int
4370 strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
4371 {
4372         int32_t sd_flag = stp->sd_flag & flags_to_check;
4373         int error = 0;
4374 
4375         ASSERT(MUTEX_HELD(&stp->sd_lock));
4376         ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
4377         if (sd_flag & STPLEX)
4378                 error = EINVAL;
4379         else if (sd_flag & STRDERR) {
4380                 error = stp->sd_rerror;
4381                 if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
4382                         /*
4383                          * Read errors are non-persistent i.e. discarded once
4384                          * returned to a non-peeking caller,
4385                          */
4386                         stp->sd_rerror = 0;
4387                         stp->sd_flag &= ~STRDERR;
4388                 }
4389                 if (error == 0 && stp->sd_rderrfunc != NULL) {
4390                         int clearerr = 0;
4391 
4392                         error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
4393                             &clearerr);
4394                         if (clearerr) {
4395                                 stp->sd_flag &= ~STRDERR;
4396                                 stp->sd_rderrfunc = NULL;
4397                         }
4398                 }
4399         } else if (sd_flag & STWRERR) {
4400                 error = stp->sd_werror;
4401                 if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
4402                         /*
4403                          * Write errors are non-persistent i.e. discarded once
4404                          * returned to a non-peeking caller,
4405                          */
4406                         stp->sd_werror = 0;
4407                         stp->sd_flag &= ~STWRERR;
4408                 }
4409                 if (error == 0 && stp->sd_wrerrfunc != NULL) {
4410                         int clearerr = 0;
4411 
4412                         error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
4413                             &clearerr);
4414                         if (clearerr) {
4415                                 stp->sd_flag &= ~STWRERR;
4416                                 stp->sd_wrerrfunc = NULL;
4417                         }
4418                 }
4419         } else if (sd_flag & STRHUP) {
4420                 /* sd_werror set when STRHUP */
4421                 error = stp->sd_werror;
4422         }
4423         return (error);
4424 }
4425 
4426 
4427 /*
4428  * Single-thread open/close/push/pop
4429  * for twisted streams also
4430  */
4431 int
4432 strstartplumb(stdata_t *stp, int flag, int cmd)
4433 {
4434         int waited = 1;
4435         int error = 0;
4436 
4437         if (STRMATED(stp)) {
4438                 struct stdata *stmatep = stp->sd_mate;
4439 
4440                 STRLOCKMATES(stp);
4441                 while (waited) {
4442                         waited = 0;
4443                         while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4444                                 if ((cmd == I_POP) &&
4445                                     (flag & (FNDELAY|FNONBLOCK))) {
4446                                         STRUNLOCKMATES(stp);
4447                                         return (EAGAIN);
4448                                 }
4449                                 waited = 1;
4450                                 mutex_exit(&stp->sd_lock);
4451                                 if (!cv_wait_sig(&stmatep->sd_monitor,
4452                                     &stmatep->sd_lock)) {
4453                                         mutex_exit(&stmatep->sd_lock);
4454                                         return (EINTR);
4455                                 }
4456                                 mutex_exit(&stmatep->sd_lock);
4457                                 STRLOCKMATES(stp);
4458                         }
4459                         while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4460                                 if ((cmd == I_POP) &&
4461                                     (flag & (FNDELAY|FNONBLOCK))) {
4462                                         STRUNLOCKMATES(stp);
4463                                         return (EAGAIN);
4464                                 }
4465                                 waited = 1;
4466                                 mutex_exit(&stmatep->sd_lock);
4467                                 if (!cv_wait_sig(&stp->sd_monitor,
4468                                     &stp->sd_lock)) {
4469                                         mutex_exit(&stp->sd_lock);
4470                                         return (EINTR);
4471                                 }
4472                                 mutex_exit(&stp->sd_lock);
4473                                 STRLOCKMATES(stp);
4474                         }
4475                         if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4476                                 error = strgeterr(stp,
4477                                     STRDERR|STWRERR|STRHUP|STPLEX, 0);
4478                                 if (error != 0) {
4479                                         STRUNLOCKMATES(stp);
4480                                         return (error);
4481                                 }
4482                         }
4483                 }
4484                 stp->sd_flag |= STRPLUMB;
4485                 STRUNLOCKMATES(stp);
4486         } else {
4487                 mutex_enter(&stp->sd_lock);
4488                 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4489                         if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
4490                             (flag & (FNDELAY|FNONBLOCK))) {
4491                                 mutex_exit(&stp->sd_lock);
4492                                 return (EAGAIN);
4493                         }
4494                         if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
4495                                 mutex_exit(&stp->sd_lock);
4496                                 return (EINTR);
4497                         }
4498                         if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4499                                 error = strgeterr(stp,
4500                                     STRDERR|STWRERR|STRHUP|STPLEX, 0);
4501                                 if (error != 0) {
4502                                         mutex_exit(&stp->sd_lock);
4503                                         return (error);
4504                                 }
4505                         }
4506                 }
4507                 stp->sd_flag |= STRPLUMB;
4508                 mutex_exit(&stp->sd_lock);
4509         }
4510         return (0);
4511 }
4512 
4513 /*
4514  * Complete the plumbing operation associated with stream `stp'.
4515  */
4516 void
4517 strendplumb(stdata_t *stp)
4518 {
4519         ASSERT(MUTEX_HELD(&stp->sd_lock));
4520         ASSERT(stp->sd_flag & STRPLUMB);
4521         stp->sd_flag &= ~STRPLUMB;
4522         cv_broadcast(&stp->sd_monitor);
4523 }
4524 
4525 /*
4526  * This describes how the STREAMS framework handles synchronization
4527  * during open/push and close/pop.
4528  * The key interfaces for open and close are qprocson and qprocsoff,
4529  * respectively. While the close case in general is harder both open
4530  * have close have significant similarities.
4531  *
4532  * During close the STREAMS framework has to both ensure that there
4533  * are no stale references to the queue pair (and syncq) that
4534  * are being closed and also provide the guarantees that are documented
4535  * in qprocsoff(9F).
4536  * If there are stale references to the queue that is closing it can
4537  * result in kernel memory corruption or kernel panics.
4538  *
4539  * Note that is it up to the module/driver to ensure that it itself
4540  * does not have any stale references to the closing queues once its close
4541  * routine returns. This includes:
4542  *  - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
4543  *    associated with the queues. For timeout and bufcall callbacks the
4544  *    module/driver also has to ensure (or wait for) any callbacks that
4545  *    are in progress.
4546  *  - If the module/driver is using esballoc it has to ensure that any
4547  *    esballoc free functions do not refer to a queue that has closed.
4548  *    (Note that in general the close routine can not wait for the esballoc'ed
4549  *    messages to be freed since that can cause a deadlock.)
4550  *  - Cancelling any interrupts that refer to the closing queues and
4551  *    also ensuring that there are no interrupts in progress that will
4552  *    refer to the closing queues once the close routine returns.
4553  *  - For multiplexors removing any driver global state that refers to
4554  *    the closing queue and also ensuring that there are no threads in
4555  *    the multiplexor that has picked up a queue pointer but not yet
4556  *    finished using it.
4557  *
4558  * In addition, a driver/module can only reference the q_next pointer
4559  * in its open, close, put, or service procedures or in a
4560  * qtimeout/qbufcall callback procedure executing "on" the correct
4561  * stream. Thus it can not reference the q_next pointer in an interrupt
4562  * routine or a timeout, bufcall or esballoc callback routine. Likewise
4563  * it can not reference q_next of a different queue e.g. in a mux that
4564  * passes messages from one queues put/service procedure to another queue.
4565  * In all the cases when the driver/module can not access the q_next
4566  * field it must use the *next* versions e.g. canputnext instead of
4567  * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
4568  *
4569  *
4570  * Assuming that the driver/module conforms to the above constraints
4571  * the STREAMS framework has to avoid stale references to q_next for all
4572  * the framework internal cases which include (but are not limited to):
4573  *  - Threads in canput/canputnext/backenable and elsewhere that are
4574  *    walking q_next.
4575  *  - Messages on a syncq that have a reference to the queue through b_queue.
4576  *  - Messages on an outer perimeter (syncq) that have a reference to the
4577  *    queue through b_queue.
4578  *  - Threads that use q_nfsrv (e.g. canput) to find a queue.
4579  *    Note that only canput and bcanput use q_nfsrv without any locking.
4580  *
4581  * The STREAMS framework providing the qprocsoff(9F) guarantees means that
4582  * after qprocsoff returns, the framework has to ensure that no threads can
4583  * enter the put or service routines for the closing read or write-side queue.
4584  * In addition to preventing "direct" entry into the put procedures
4585  * the framework also has to prevent messages being drained from
4586  * the syncq or the outer perimeter.
4587  * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
4588  * mechanism to prevent qwriter(PERIM_OUTER) from running after
4589  * qprocsoff has returned.
4590  * Note that if a module/driver uses put(9F) on one of its own queues
4591  * it is up to the module/driver to ensure that the put() doesn't
4592  * get called when the queue is closing.
4593  *
4594  *
4595  * The framework aspects of the above "contract" is implemented by
4596  * qprocsoff, removeq, and strlock:
4597  *  - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
4598  *    entering the service procedures.
4599  *  - strlock acquires the sd_lock and sd_reflock to prevent putnext,
4600  *    canputnext, backenable etc from dereferencing the q_next that will
4601  *    soon change.
4602  *  - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
4603  *    or other q_next walker that uses claimstr/releasestr to finish.
4604  *  - optionally for every syncq in the stream strlock acquires all the
4605  *    sq_lock's and waits for all sq_counts to drop to a value that indicates
4606  *    that no thread executes in the put or service procedures and that no
4607  *    thread is draining into the module/driver. This ensures that no
4608  *    open, close, put, service, or qtimeout/qbufcall callback procedure is
4609  *    currently executing hence no such thread can end up with the old stale
4610  *    q_next value and no canput/backenable can have the old stale
4611  *    q_nfsrv/q_next.
4612  *  - qdetach (wait_svc) makes sure that any scheduled or running threads
4613  *    have either finished or observed the QWCLOSE flag and gone away.
4614  */
4615 
4616 
4617 /*
4618  * Get all the locks necessary to change q_next.
4619  *
4620  * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for the
4621  * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
4622  * the only threads inside the syncq are threads currently calling removeq().
4623  * Since threads calling removeq() are in the process of removing their queues
4624  * from the stream, we do not need to worry about them accessing a stale q_next
4625  * pointer and thus we do not need to wait for them to exit (in fact, waiting
4626  * for them can cause deadlock).
4627  *
4628  * This routine is subject to starvation since it does not set any flag to
4629  * prevent threads from entering a module in the stream (i.e. sq_count can
4630  * increase on some syncq while it is waiting on some other syncq).
4631  *
4632  * Assumes that only one thread attempts to call strlock for a given
4633  * stream. If this is not the case the two threads would deadlock.
4634  * This assumption is guaranteed since strlock is only called by insertq
4635  * and removeq and streams plumbing changes are single-threaded for
4636  * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
4637  *
4638  * For pipes, it is not difficult to atomically designate a pair of streams
4639  * to be mated. Once mated atomically by the framework the twisted pair remain
4640  * configured that way until dismantled atomically by the framework.
4641  * When plumbing takes place on a twisted stream it is necessary to ensure that
4642  * this operation is done exclusively on the twisted stream since two such
4643  * operations, each initiated on different ends of the pipe will deadlock
4644  * waiting for each other to complete.
4645  *
4646  * On entry, no locks should be held.
4647  * The locks acquired and held by strlock depends on a few factors.
4648  * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
4649  *   and held on exit and all sq_count are at an acceptable level.
4650  * - In all cases, sd_lock and sd_reflock are acquired and held on exit with
4651  *   sd_refcnt being zero.
4652  */
4653 
4654 static void
4655 strlock(struct stdata *stp, sqlist_t *sqlist)
4656 {
4657         syncql_t *sql, *sql2;
4658 retry:
4659         /*
4660          * Wait for any claimstr to go away.
4661          */
4662         if (STRMATED(stp)) {
4663                 struct stdata *stp1, *stp2;
4664 
4665                 STRLOCKMATES(stp);
4666                 /*
4667                  * Note that the selection of locking order is not
4668                  * important, just that they are always acquired in
4669                  * the same order.  To assure this, we choose this
4670                  * order based on the value of the pointer, and since
4671                  * the pointer will not change for the life of this
4672                  * pair, we will always grab the locks in the same
4673                  * order (and hence, prevent deadlocks).
4674                  */
4675                 if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
4676                         stp1 = stp;
4677                         stp2 = stp->sd_mate;
4678                 } else {
4679                         stp2 = stp;
4680                         stp1 = stp->sd_mate;
4681                 }
4682                 mutex_enter(&stp1->sd_reflock);
4683                 if (stp1->sd_refcnt > 0) {
4684                         STRUNLOCKMATES(stp);
4685                         cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock);
4686                         mutex_exit(&stp1->sd_reflock);
4687                         goto retry;
4688                 }
4689                 mutex_enter(&stp2->sd_reflock);
4690                 if (stp2->sd_refcnt > 0) {
4691                         STRUNLOCKMATES(stp);
4692                         mutex_exit(&stp1->sd_reflock);
4693                         cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock);
4694                         mutex_exit(&stp2->sd_reflock);
4695                         goto retry;
4696                 }
4697                 STREAM_PUTLOCKS_ENTER(stp1);
4698                 STREAM_PUTLOCKS_ENTER(stp2);
4699         } else {
4700                 mutex_enter(&stp->sd_lock);
4701                 mutex_enter(&stp->sd_reflock);
4702                 while (stp->sd_refcnt > 0) {
4703                         mutex_exit(&stp->sd_lock);
4704                         cv_wait(&stp->sd_refmonitor, &stp->sd_reflock);
4705                         if (mutex_tryenter(&stp->sd_lock) == 0) {
4706                                 mutex_exit(&stp->sd_reflock);
4707                                 mutex_enter(&stp->sd_lock);
4708                                 mutex_enter(&stp->sd_reflock);
4709                         }
4710                 }
4711                 STREAM_PUTLOCKS_ENTER(stp);
4712         }
4713 
4714         if (sqlist == NULL)
4715                 return;
4716 
4717         for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4718                 syncq_t *sq = sql->sql_sq;
4719                 uint16_t count;
4720 
4721                 mutex_enter(SQLOCK(sq));
4722                 count = sq->sq_count;
4723                 ASSERT(sq->sq_rmqcount <= count);
4724                 SQ_PUTLOCKS_ENTER(sq);
4725                 SUM_SQ_PUTCOUNTS(sq, count);
4726                 if (count == sq->sq_rmqcount)
4727                         continue;
4728 
4729                 /* Failed - drop all locks that we have acquired so far */
4730                 if (STRMATED(stp)) {
4731                         STREAM_PUTLOCKS_EXIT(stp);
4732                         STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4733                         STRUNLOCKMATES(stp);
4734                         mutex_exit(&stp->sd_reflock);
4735                         mutex_exit(&stp->sd_mate->sd_reflock);
4736                 } else {
4737                         STREAM_PUTLOCKS_EXIT(stp);
4738                         mutex_exit(&stp->sd_lock);
4739                         mutex_exit(&stp->sd_reflock);
4740                 }
4741                 for (sql2 = sqlist->sqlist_head; sql2 != sql;
4742                     sql2 = sql2->sql_next) {
4743                         SQ_PUTLOCKS_EXIT(sql2->sql_sq);
4744                         mutex_exit(SQLOCK(sql2->sql_sq));
4745                 }
4746 
4747                 /*
4748                  * The wait loop below may starve when there are many threads
4749                  * claiming the syncq. This is especially a problem with permod
4750                  * syncqs (IP). To lessen the impact of the problem we increment
4751                  * sq_needexcl and clear fastbits so that putnexts will slow
4752                  * down and call sqenable instead of draining right away.
4753                  */
4754                 sq->sq_needexcl++;
4755                 SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4756                 while (count > sq->sq_rmqcount) {
4757                         sq->sq_flags |= SQ_WANTWAKEUP;
4758                         SQ_PUTLOCKS_EXIT(sq);
4759                         cv_wait(&sq->sq_wait, SQLOCK(sq));
4760                         count = sq->sq_count;
4761                         SQ_PUTLOCKS_ENTER(sq);
4762                         SUM_SQ_PUTCOUNTS(sq, count);
4763                 }
4764                 sq->sq_needexcl--;
4765                 if (sq->sq_needexcl == 0)
4766                         SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4767                 SQ_PUTLOCKS_EXIT(sq);
4768                 ASSERT(count == sq->sq_rmqcount);
4769                 mutex_exit(SQLOCK(sq));
4770                 goto retry;
4771         }
4772 }
4773 
4774 /*
4775  * Drop all the locks that strlock acquired.
4776  */
4777 static void
4778 strunlock(struct stdata *stp, sqlist_t *sqlist)
4779 {
4780         syncql_t *sql;
4781 
4782         if (STRMATED(stp)) {
4783                 STREAM_PUTLOCKS_EXIT(stp);
4784                 STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4785                 STRUNLOCKMATES(stp);
4786                 mutex_exit(&stp->sd_reflock);
4787                 mutex_exit(&stp->sd_mate->sd_reflock);
4788         } else {
4789                 STREAM_PUTLOCKS_EXIT(stp);
4790                 mutex_exit(&stp->sd_lock);
4791                 mutex_exit(&stp->sd_reflock);
4792         }
4793 
4794         if (sqlist == NULL)
4795                 return;
4796 
4797         for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4798                 SQ_PUTLOCKS_EXIT(sql->sql_sq);
4799                 mutex_exit(SQLOCK(sql->sql_sq));
4800         }
4801 }
4802 
4803 /*
4804  * When the module has service procedure, we need check if the next
4805  * module which has service procedure is in flow control to trigger
4806  * the backenable.
4807  */
4808 static void
4809 backenable_insertedq(queue_t *q)
4810 {
4811         qband_t *qbp;
4812 
4813         claimstr(q);
4814         if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) {
4815                 if (q->q_next->q_nfsrv->q_flag & QWANTW)
4816                         backenable(q, 0);
4817 
4818                 qbp = q->q_next->q_nfsrv->q_bandp;
4819                 for (; qbp != NULL; qbp = qbp->qb_next)
4820                         if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL)
4821                                 backenable(q, qbp->qb_first->b_band);
4822         }
4823         releasestr(q);
4824 }
4825 
4826 /*
4827  * Given two read queues, insert a new single one after another.
4828  *
4829  * This routine acquires all the necessary locks in order to change
4830  * q_next and related pointer using strlock().
4831  * It depends on the stream head ensuring that there are no concurrent
4832  * insertq or removeq on the same stream. The stream head ensures this
4833  * using the flags STWOPEN, STRCLOSE, and STRPLUMB.
4834  *
4835  * Note that no syncq locks are held during the q_next change. This is
4836  * applied to all streams since, unlike removeq, there is no problem of stale
4837  * pointers when adding a module to the stream. Thus drivers/modules that do a
4838  * canput(rq->q_next) would never get a closed/freed queue pointer even if we
4839  * applied this optimization to all streams.
4840  */
4841 void
4842 insertq(struct stdata *stp, queue_t *new)
4843 {
4844         queue_t *after;
4845         queue_t *wafter;
4846         queue_t *wnew = _WR(new);
4847         boolean_t have_fifo = B_FALSE;
4848 
4849         if (new->q_flag & _QINSERTING) {
4850                 ASSERT(stp->sd_vnode->v_type != VFIFO);
4851                 after = new->q_next;
4852                 wafter = _WR(new->q_next);
4853         } else {
4854                 after = _RD(stp->sd_wrq);
4855                 wafter = stp->sd_wrq;
4856         }
4857 
4858         TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
4859             "insertq:%p, %p", after, new);
4860         ASSERT(after->q_flag & QREADR);
4861         ASSERT(new->q_flag & QREADR);
4862 
4863         strlock(stp, NULL);
4864 
4865         /* Do we have a FIFO? */
4866         if (wafter->q_next == after) {
4867                 have_fifo = B_TRUE;
4868                 wnew->q_next = new;
4869         } else {
4870                 wnew->q_next = wafter->q_next;
4871         }
4872         new->q_next = after;
4873 
4874         set_nfsrv_ptr(new, wnew, after, wafter);
4875         /*
4876          * set_nfsrv_ptr() needs to know if this is an insertion or not,
4877          * so only reset this flag after calling it.
4878          */
4879         new->q_flag &= ~_QINSERTING;
4880 
4881         if (have_fifo) {
4882                 wafter->q_next = wnew;
4883         } else {
4884                 if (wafter->q_next)
4885                         _OTHERQ(wafter->q_next)->q_next = new;
4886                 wafter->q_next = wnew;
4887         }
4888 
4889         set_qend(new);
4890         /* The QEND flag might have to be updated for the upstream guy */
4891         set_qend(after);
4892 
4893         ASSERT(_SAMESTR(new) == O_SAMESTR(new));
4894         ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
4895         ASSERT(_SAMESTR(after) == O_SAMESTR(after));
4896         ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
4897         strsetuio(stp);
4898 
4899         /*
4900          * If this was a module insertion, bump the push count.
4901          */
4902         if (!(new->q_flag & QISDRV))
4903                 stp->sd_pushcnt++;
4904 
4905         strunlock(stp, NULL);
4906 
4907         /* check if the write Q needs backenable */
4908         backenable_insertedq(wnew);
4909 
4910         /* check if the read Q needs backenable */
4911         backenable_insertedq(new);
4912 }
4913 
4914 /*
4915  * Given a read queue, unlink it from any neighbors.
4916  *
4917  * This routine acquires all the necessary locks in order to
4918  * change q_next and related pointers and also guard against
4919  * stale references (e.g. through q_next) to the queue that
4920  * is being removed. It also plays part of the role in ensuring
4921  * that the module's/driver's put procedure doesn't get called
4922  * after qprocsoff returns.
4923  *
4924  * Removeq depends on the stream head ensuring that there are
4925  * no concurrent insertq or removeq on the same stream. The
4926  * stream head ensures this using the flags STWOPEN, STRCLOSE and
4927  * STRPLUMB.
4928  *
4929  * The set of locks needed to remove the queue is different in
4930  * different cases:
4931  *
4932  * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
4933  * waiting for the syncq reference count to drop to 0 indicating that no
4934  * non-close threads are present anywhere in the stream. This ensures that any
4935  * module/driver can reference q_next in its open, close, put, or service
4936  * procedures.
4937  *
4938  * The sq_rmqcount counter tracks the number of threads inside removeq().
4939  * strlock() ensures that there is either no threads executing inside perimeter
4940  * or there is only a thread calling qprocsoff().
4941  *
4942  * strlock() compares the value of sq_count with the number of threads inside
4943  * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
4944  * any threads waiting in strlock() when the sq_rmqcount increases.
4945  */
4946 
4947 void
4948 removeq(queue_t *qp)
4949 {
4950         queue_t *wqp = _WR(qp);
4951         struct stdata *stp = STREAM(qp);
4952         sqlist_t *sqlist = NULL;
4953         boolean_t isdriver;
4954         int moved;
4955         syncq_t *sq = qp->q_syncq;
4956         syncq_t *wsq = wqp->q_syncq;
4957 
4958         ASSERT(stp);
4959 
4960         TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
4961             "removeq:%p %p", qp, wqp);
4962         ASSERT(qp->q_flag&QREADR);
4963 
4964         /*
4965          * For queues using Synchronous streams, we must wait for all threads in
4966          * rwnext() to drain out before proceeding.
4967          */
4968         if (qp->q_flag & QSYNCSTR) {
4969                 /* First, we need wakeup any threads blocked in rwnext() */
4970                 mutex_enter(SQLOCK(sq));
4971                 if (sq->sq_flags & SQ_WANTWAKEUP) {
4972                         sq->sq_flags &= ~SQ_WANTWAKEUP;
4973                         cv_broadcast(&sq->sq_wait);
4974                 }
4975                 mutex_exit(SQLOCK(sq));
4976 
4977                 if (wsq != sq) {
4978                         mutex_enter(SQLOCK(wsq));
4979                         if (wsq->sq_flags & SQ_WANTWAKEUP) {
4980                                 wsq->sq_flags &= ~SQ_WANTWAKEUP;
4981                                 cv_broadcast(&wsq->sq_wait);
4982                         }
4983                         mutex_exit(SQLOCK(wsq));
4984                 }
4985 
4986                 mutex_enter(QLOCK(qp));
4987                 while (qp->q_rwcnt > 0) {
4988                         qp->q_flag |= QWANTRMQSYNC;
4989                         cv_wait(&qp->q_wait, QLOCK(qp));
4990                 }
4991                 mutex_exit(QLOCK(qp));
4992 
4993                 mutex_enter(QLOCK(wqp));
4994                 while (wqp->q_rwcnt > 0) {
4995                         wqp->q_flag |= QWANTRMQSYNC;
4996                         cv_wait(&wqp->q_wait, QLOCK(wqp));
4997                 }
4998                 mutex_exit(QLOCK(wqp));
4999         }
5000 
5001         mutex_enter(SQLOCK(sq));
5002         sq->sq_rmqcount++;
5003         if (sq->sq_flags & SQ_WANTWAKEUP) {
5004                 sq->sq_flags &= ~SQ_WANTWAKEUP;
5005                 cv_broadcast(&sq->sq_wait);
5006         }
5007         mutex_exit(SQLOCK(sq));
5008 
5009         isdriver = (qp->q_flag & QISDRV);
5010 
5011         sqlist = sqlist_build(qp, stp, STRMATED(stp));
5012         strlock(stp, sqlist);
5013 
5014         reset_nfsrv_ptr(qp, wqp);
5015 
5016         ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
5017         ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
5018         /* Do we have a FIFO? */
5019         if (wqp->q_next == qp) {
5020                 stp->sd_wrq->q_next = _RD(stp->sd_wrq);
5021         } else {
5022                 if (wqp->q_next)
5023                         backq(qp)->q_next = qp->q_next;
5024                 if (qp->q_next)
5025                         backq(wqp)->q_next = wqp->q_next;
5026         }
5027 
5028         /* The QEND flag might have to be updated for the upstream guy */
5029         if (qp->q_next)
5030                 set_qend(qp->q_next);
5031 
5032         ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
5033         ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
5034 
5035         /*
5036          * Move any messages destined for the put procedures to the next
5037          * syncq in line. Otherwise free them.
5038          */
5039         moved = 0;
5040         /*
5041          * Quick check to see whether there are any messages or events.
5042          */
5043         if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
5044                 moved += propagate_syncq(qp);
5045         if (wqp->q_syncqmsgs != 0 ||
5046             (wqp->q_syncq->sq_flags & SQ_EVENTS))
5047                 moved += propagate_syncq(wqp);
5048 
5049         strsetuio(stp);
5050 
5051         /*
5052          * If this was a module removal, decrement the push count.
5053          */
5054         if (!isdriver)
5055                 stp->sd_pushcnt--;
5056 
5057         strunlock(stp, sqlist);
5058         sqlist_free(sqlist);
5059 
5060         /*
5061          * Make sure any messages that were propagated are drained.
5062          * Also clear any QFULL bit caused by messages that were propagated.
5063          */
5064 
5065         if (qp->q_next != NULL) {
5066                 clr_qfull(qp);
5067                 /*
5068                  * For the driver calling qprocsoff, propagate_syncq
5069                  * frees all the messages instead of putting it in
5070                  * the stream head
5071                  */
5072                 if (!isdriver && (moved > 0))
5073                         emptysq(qp->q_next->q_syncq);
5074         }
5075         if (wqp->q_next != NULL) {
5076                 clr_qfull(wqp);
5077                 /*
5078                  * We come here for any pop of a module except for the
5079                  * case of driver being removed. We don't call emptysq
5080                  * if we did not move any messages. This will avoid holding
5081                  * PERMOD syncq locks in emptysq
5082                  */
5083                 if (moved > 0)
5084                         emptysq(wqp->q_next->q_syncq);
5085         }
5086 
5087         mutex_enter(SQLOCK(sq));
5088         sq->sq_rmqcount--;
5089         mutex_exit(SQLOCK(sq));
5090 }
5091 
5092 /*
5093  * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
5094  * SQ_WRITER) on a syncq.
5095  * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
5096  * sync queue and waits until sq_count reaches maxcnt.
5097  *
5098  * If maxcnt is -1 there's no need to grab sq_putlocks since the caller
5099  * does not care about putnext threads that are in the middle of calling put
5100  * entry points.
5101  *
5102  * This routine is used for both inner and outer syncqs.
5103  */
5104 static void
5105 blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
5106 {
5107         uint16_t count = 0;
5108 
5109         mutex_enter(SQLOCK(sq));
5110         /*
5111          * Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
5112          * SQ_FROZEN will be set if there is a frozen stream that has a
5113          * queue which also refers to this "shared" syncq.
5114          * SQ_BLOCKED will be set if there is "off" queue which also
5115          * refers to this "shared" syncq.
5116          */
5117         if (maxcnt != -1) {
5118                 count = sq->sq_count;
5119                 SQ_PUTLOCKS_ENTER(sq);
5120                 SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5121                 SUM_SQ_PUTCOUNTS(sq, count);
5122         }
5123         sq->sq_needexcl++;
5124         ASSERT(sq->sq_needexcl != 0);        /* wraparound */
5125 
5126         while ((sq->sq_flags & flag) ||
5127             (maxcnt != -1 && count > (unsigned)maxcnt)) {
5128                 sq->sq_flags |= SQ_WANTWAKEUP;
5129                 if (maxcnt != -1) {
5130                         SQ_PUTLOCKS_EXIT(sq);
5131                 }
5132                 cv_wait(&sq->sq_wait, SQLOCK(sq));
5133                 if (maxcnt != -1) {
5134                         count = sq->sq_count;
5135                         SQ_PUTLOCKS_ENTER(sq);
5136                         SUM_SQ_PUTCOUNTS(sq, count);
5137                 }
5138         }
5139         sq->sq_needexcl--;
5140         sq->sq_flags |= flag;
5141         ASSERT(maxcnt == -1 || count == maxcnt);
5142         if (maxcnt != -1) {
5143                 if (sq->sq_needexcl == 0) {
5144                         SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5145                 }
5146                 SQ_PUTLOCKS_EXIT(sq);
5147         } else if (sq->sq_needexcl == 0) {
5148                 SQ_PUTCOUNT_SETFAST(sq);
5149         }
5150 
5151         mutex_exit(SQLOCK(sq));
5152 }
5153 
5154 /*
5155  * Reset a flag that was set with blocksq.
5156  *
5157  * Can not use this routine to reset SQ_WRITER.
5158  *
5159  * If "isouter" is set then the syncq is assumed to be an outer perimeter
5160  * and drain_syncq is not called. Instead we rely on the qwriter_outer thread
5161  * to handle the queued qwriter operations.
5162  *
5163  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5164  * sq_putlocks are used.
5165  */
5166 static void
5167 unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
5168 {
5169         uint16_t flags;
5170 
5171         mutex_enter(SQLOCK(sq));
5172         ASSERT(resetflag != SQ_WRITER);
5173         ASSERT(sq->sq_flags & resetflag);
5174         flags = sq->sq_flags & ~resetflag;
5175         sq->sq_flags = flags;
5176         if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
5177                 if (flags & SQ_WANTWAKEUP) {
5178                         flags &= ~SQ_WANTWAKEUP;
5179                         cv_broadcast(&sq->sq_wait);
5180                 }
5181                 sq->sq_flags = flags;
5182                 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5183                         if (!isouter) {
5184                                 /* drain_syncq drops SQLOCK */
5185                                 drain_syncq(sq);
5186                                 return;
5187                         }
5188                 }
5189         }
5190         mutex_exit(SQLOCK(sq));
5191 }
5192 
5193 /*
5194  * Reset a flag that was set with blocksq.
5195  * Does not drain the syncq. Use emptysq() for that.
5196  * Returns 1 if SQ_QUEUED is set. Otherwise 0.
5197  *
5198  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5199  * sq_putlocks are used.
5200  */
5201 static int
5202 dropsq(syncq_t *sq, uint16_t resetflag)
5203 {
5204         uint16_t flags;
5205 
5206         mutex_enter(SQLOCK(sq));
5207         ASSERT(sq->sq_flags & resetflag);
5208         flags = sq->sq_flags & ~resetflag;
5209         if (flags & SQ_WANTWAKEUP) {
5210                 flags &= ~SQ_WANTWAKEUP;
5211                 cv_broadcast(&sq->sq_wait);
5212         }
5213         sq->sq_flags = flags;
5214         mutex_exit(SQLOCK(sq));
5215         if (flags & SQ_QUEUED)
5216                 return (1);
5217         return (0);
5218 }
5219 
5220 /*
5221  * Empty all the messages on a syncq.
5222  *
5223  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5224  * sq_putlocks are used.
5225  */
5226 static void
5227 emptysq(syncq_t *sq)
5228 {
5229         uint16_t flags;
5230 
5231         mutex_enter(SQLOCK(sq));
5232         flags = sq->sq_flags;
5233         if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5234                 /*
5235                  * To prevent potential recursive invocation of drain_syncq we
5236                  * do not call drain_syncq if count is non-zero.
5237                  */
5238                 if (sq->sq_count == 0) {
5239                         /* drain_syncq() drops SQLOCK */
5240                         drain_syncq(sq);
5241                         return;
5242                 } else
5243                         sqenable(sq);
5244         }
5245         mutex_exit(SQLOCK(sq));
5246 }
5247 
5248 /*
5249  * Ordered insert while removing duplicates.
5250  */
5251 static void
5252 sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
5253 {
5254         syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
5255 
5256         prev_sqlpp = &sqlist->sqlist_head;
5257         while ((sqlp = *prev_sqlpp) != NULL) {
5258                 if (sqlp->sql_sq >= sqp) {
5259                         if (sqlp->sql_sq == sqp)     /* duplicate */
5260                                 return;
5261                         break;
5262                 }
5263                 prev_sqlpp = &sqlp->sql_next;
5264         }
5265         new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
5266         ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
5267         new_sqlp->sql_next = sqlp;
5268         new_sqlp->sql_sq = sqp;
5269         *prev_sqlpp = new_sqlp;
5270 }
5271 
5272 /*
5273  * Walk the write side queues until we hit either the driver
5274  * or a twist in the stream (_SAMESTR will return false in both
5275  * these cases) then turn around and walk the read side queues
5276  * back up to the stream head.
5277  */
5278 static void
5279 sqlist_insertall(sqlist_t *sqlist, queue_t *q)
5280 {
5281         while (q != NULL) {
5282                 sqlist_insert(sqlist, q->q_syncq);
5283 
5284                 if (_SAMESTR(q))
5285                         q = q->q_next;
5286                 else if (!(q->q_flag & QREADR))
5287                         q = _RD(q);
5288                 else
5289                         q = NULL;
5290         }
5291 }
5292 
5293 /*
5294  * Allocate and build a list of all syncqs in a stream and the syncq(s)
5295  * associated with the "q" parameter. The resulting list is sorted in a
5296  * canonical order and is free of duplicates.
5297  * Assumes the passed queue is a _RD(q).
5298  */
5299 static sqlist_t *
5300 sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
5301 {
5302         sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
5303 
5304         /*
5305          * start with the current queue/qpair
5306          */
5307         ASSERT(q->q_flag & QREADR);
5308 
5309         sqlist_insert(sqlist, q->q_syncq);
5310         sqlist_insert(sqlist, _WR(q)->q_syncq);
5311 
5312         sqlist_insertall(sqlist, stp->sd_wrq);
5313         if (do_twist)
5314                 sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
5315 
5316         return (sqlist);
5317 }
5318 
5319 static sqlist_t *
5320 sqlist_alloc(struct stdata *stp, int kmflag)
5321 {
5322         size_t sqlist_size;
5323         sqlist_t *sqlist;
5324 
5325         /*
5326          * Allocate 2 syncql_t's for each pushed module. Note that
5327          * the sqlist_t structure already has 4 syncql_t's built in:
5328          * 2 for the stream head, and 2 for the driver/other stream head.
5329          */
5330         sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
5331             sizeof (sqlist_t);
5332         if (STRMATED(stp))
5333                 sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
5334         sqlist = kmem_alloc(sqlist_size, kmflag);
5335 
5336         sqlist->sqlist_head = NULL;
5337         sqlist->sqlist_size = sqlist_size;
5338         sqlist->sqlist_index = 0;
5339 
5340         return (sqlist);
5341 }
5342 
5343 /*
5344  * Free the list created by sqlist_alloc()
5345  */
5346 static void
5347 sqlist_free(sqlist_t *sqlist)
5348 {
5349         kmem_free(sqlist, sqlist->sqlist_size);
5350 }
5351 
5352 /*
5353  * Prevent any new entries into any syncq in this stream.
5354  * Used by freezestr.
5355  */
5356 void
5357 strblock(queue_t *q)
5358 {
5359         struct stdata   *stp;
5360         syncql_t        *sql;
5361         sqlist_t        *sqlist;
5362 
5363         q = _RD(q);
5364 
5365         stp = STREAM(q);
5366         ASSERT(stp != NULL);
5367 
5368         /*
5369          * Get a sorted list with all the duplicates removed containing
5370          * all the syncqs referenced by this stream.
5371          */
5372         sqlist = sqlist_build(q, stp, B_FALSE);
5373         for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5374                 blocksq(sql->sql_sq, SQ_FROZEN, -1);
5375         sqlist_free(sqlist);
5376 }
5377 
5378 /*
5379  * Release the block on new entries into this stream
5380  */
5381 void
5382 strunblock(queue_t *q)
5383 {
5384         struct stdata   *stp;
5385         syncql_t        *sql;
5386         sqlist_t        *sqlist;
5387         int             drain_needed;
5388 
5389         q = _RD(q);
5390 
5391         /*
5392          * Get a sorted list with all the duplicates removed containing
5393          * all the syncqs referenced by this stream.
5394          * Have to drop the SQ_FROZEN flag on all the syncqs before
5395          * starting to drain them; otherwise the draining might
5396          * cause a freezestr in some module on the stream (which
5397          * would deadlock).
5398          */
5399         stp = STREAM(q);
5400         ASSERT(stp != NULL);
5401         sqlist = sqlist_build(q, stp, B_FALSE);
5402         drain_needed = 0;
5403         for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5404                 drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
5405         if (drain_needed) {
5406                 for (sql = sqlist->sqlist_head; sql != NULL;
5407                     sql = sql->sql_next)
5408                         emptysq(sql->sql_sq);
5409         }
5410         sqlist_free(sqlist);
5411 }
5412 
5413 #ifdef DEBUG
5414 static int
5415 qprocsareon(queue_t *rq)
5416 {
5417         if (rq->q_next == NULL)
5418                 return (0);
5419         return (_WR(rq->q_next)->q_next == _WR(rq));
5420 }
5421 
5422 int
5423 qclaimed(queue_t *q)
5424 {
5425         uint_t count;
5426 
5427         count = q->q_syncq->sq_count;
5428         SUM_SQ_PUTCOUNTS(q->q_syncq, count);
5429         return (count != 0);
5430 }
5431 
5432 /*
5433  * Check if anyone has frozen this stream with freezestr
5434  */
5435 int
5436 frozenstr(queue_t *q)
5437 {
5438         return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
5439 }
5440 #endif /* DEBUG */
5441 
5442 /*
5443  * Enter a queue.
5444  * Obsoleted interface. Should not be used.
5445  */
5446 void
5447 enterq(queue_t *q)
5448 {
5449         entersq(q->q_syncq, SQ_CALLBACK);
5450 }
5451 
5452 void
5453 leaveq(queue_t *q)
5454 {
5455         leavesq(q->q_syncq, SQ_CALLBACK);
5456 }
5457 
5458 /*
5459  * Enter a perimeter. c_inner and c_outer specifies which concurrency bits
5460  * to check.
5461  * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
5462  * calls and the running of open, close and service procedures.
5463  *
5464  * If c_inner bit is set no need to grab sq_putlocks since we don't care
5465  * if other threads have entered or are entering put entry point.
5466  *
5467  * If c_inner bit is set it might have been possible to use
5468  * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
5469  * open/close path for IP) but since the count may need to be decremented in
5470  * qwait() we wouldn't know which counter to decrement. Currently counter is
5471  * selected by current cpu_seqid and current CPU can change at any moment. XXX
5472  * in the future we might use curthread id bits to select the counter and this
5473  * would stay constant across routine calls.
5474  */
5475 void
5476 entersq(syncq_t *sq, int entrypoint)
5477 {
5478         uint16_t        count = 0;
5479         uint16_t        flags;
5480         uint16_t        waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
5481         uint16_t        type;
5482         uint_t          c_inner = entrypoint & SQ_CI;
5483         uint_t          c_outer = entrypoint & SQ_CO;
5484 
5485         /*
5486          * Increment ref count to keep closes out of this queue.
5487          */
5488         ASSERT(sq);
5489         ASSERT(c_inner && c_outer);
5490         mutex_enter(SQLOCK(sq));
5491         flags = sq->sq_flags;
5492         type = sq->sq_type;
5493         if (!(type & c_inner)) {
5494                 /* Make sure all putcounts now use slowlock. */
5495                 count = sq->sq_count;
5496                 SQ_PUTLOCKS_ENTER(sq);
5497                 SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5498                 SUM_SQ_PUTCOUNTS(sq, count);
5499                 sq->sq_needexcl++;
5500                 ASSERT(sq->sq_needexcl != 0);        /* wraparound */
5501                 waitflags |= SQ_MESSAGES;
5502         }
5503         /*
5504          * Wait until we can enter the inner perimeter.
5505          * If we want exclusive access we wait until sq_count is 0.
5506          * We have to do this before entering the outer perimeter in order
5507          * to preserve put/close message ordering.
5508          */
5509         while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
5510                 sq->sq_flags = flags | SQ_WANTWAKEUP;
5511                 if (!(type & c_inner)) {
5512                         SQ_PUTLOCKS_EXIT(sq);
5513                 }
5514                 cv_wait(&sq->sq_wait, SQLOCK(sq));
5515                 if (!(type & c_inner)) {
5516                         count = sq->sq_count;
5517                         SQ_PUTLOCKS_ENTER(sq);
5518                         SUM_SQ_PUTCOUNTS(sq, count);
5519                 }
5520                 flags = sq->sq_flags;
5521         }
5522 
5523         if (!(type & c_inner)) {
5524                 ASSERT(sq->sq_needexcl > 0);
5525                 sq->sq_needexcl--;
5526                 if (sq->sq_needexcl == 0) {
5527                         SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5528                 }
5529         }
5530 
5531         /* Check if we need to enter the outer perimeter */
5532         if (!(type & c_outer)) {
5533                 /*
5534                  * We have to enter the outer perimeter exclusively before
5535                  * we can increment sq_count to avoid deadlock. This implies
5536                  * that we have to re-check sq_flags and sq_count.
5537                  *
5538                  * is it possible to have c_inner set when c_outer is not set?
5539                  */
5540                 if (!(type & c_inner)) {
5541                         SQ_PUTLOCKS_EXIT(sq);
5542                 }
5543                 mutex_exit(SQLOCK(sq));
5544                 outer_enter(sq->sq_outer, SQ_GOAWAY);
5545                 mutex_enter(SQLOCK(sq));
5546                 flags = sq->sq_flags;
5547                 /*
5548                  * there should be no need to recheck sq_putcounts
5549                  * because outer_enter() has already waited for them to clear
5550                  * after setting SQ_WRITER.
5551                  */
5552                 count = sq->sq_count;
5553 #ifdef DEBUG
5554                 /*
5555                  * SUMCHECK_SQ_PUTCOUNTS should return the sum instead
5556                  * of doing an ASSERT internally. Others should do
5557                  * something like
5558                  *       ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
5559                  * without the need to #ifdef DEBUG it.
5560                  */
5561                 SUMCHECK_SQ_PUTCOUNTS(sq, 0);
5562 #endif
5563                 while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
5564                     (!(type & c_inner) && count != 0)) {
5565                         sq->sq_flags = flags | SQ_WANTWAKEUP;
5566                         cv_wait(&sq->sq_wait, SQLOCK(sq));
5567                         count = sq->sq_count;
5568                         flags = sq->sq_flags;
5569                 }
5570         }
5571 
5572         sq->sq_count++;
5573         ASSERT(sq->sq_count != 0);   /* Wraparound */
5574         if (!(type & c_inner)) {
5575                 /* Exclusive entry */
5576                 ASSERT(sq->sq_count == 1);
5577                 sq->sq_flags |= SQ_EXCL;
5578                 if (type & c_outer) {
5579                         SQ_PUTLOCKS_EXIT(sq);
5580                 }
5581         }
5582         mutex_exit(SQLOCK(sq));
5583 }
5584 
5585 /*
5586  * Leave a syncq. Announce to framework that closes may proceed.
5587  * c_inner and c_outer specify which concurrency bits to check.
5588  *
5589  * Must never be called from driver or module put entry point.
5590  *
5591  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5592  * sq_putlocks are used.
5593  */
5594 void
5595 leavesq(syncq_t *sq, int entrypoint)
5596 {
5597         uint16_t        flags;
5598         uint16_t        type;
5599         uint_t          c_outer = entrypoint & SQ_CO;
5600 #ifdef DEBUG
5601         uint_t          c_inner = entrypoint & SQ_CI;
5602 #endif
5603 
5604         /*
5605          * Decrement ref count, drain the syncq if possible, and wake up
5606          * any waiting close.
5607          */
5608         ASSERT(sq);
5609         ASSERT(c_inner && c_outer);
5610         mutex_enter(SQLOCK(sq));
5611         flags = sq->sq_flags;
5612         type = sq->sq_type;
5613         if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
5614 
5615                 if (flags & SQ_WANTWAKEUP) {
5616                         flags &= ~SQ_WANTWAKEUP;
5617                         cv_broadcast(&sq->sq_wait);
5618                 }
5619                 if (flags & SQ_WANTEXWAKEUP) {
5620                         flags &= ~SQ_WANTEXWAKEUP;
5621                         cv_broadcast(&sq->sq_exitwait);
5622                 }
5623 
5624                 if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
5625                         /*
5626                          * The syncq needs to be drained. "Exit" the syncq
5627                          * before calling drain_syncq.
5628                          */
5629                         ASSERT(sq->sq_count != 0);
5630                         sq->sq_count--;
5631                         ASSERT((flags & SQ_EXCL) || (type & c_inner));
5632                         sq->sq_flags = flags & ~SQ_EXCL;
5633                         drain_syncq(sq);
5634                         ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
5635                         /* Check if we need to exit the outer perimeter */
5636                         /* XXX will this ever be true? */
5637                         if (!(type & c_outer))
5638                                 outer_exit(sq->sq_outer);
5639                         return;
5640                 }
5641         }
5642         ASSERT(sq->sq_count != 0);
5643         sq->sq_count--;
5644         ASSERT((flags & SQ_EXCL) || (type & c_inner));
5645         sq->sq_flags = flags & ~SQ_EXCL;
5646         mutex_exit(SQLOCK(sq));
5647 
5648         /* Check if we need to exit the outer perimeter */
5649         if (!(sq->sq_type & c_outer))
5650                 outer_exit(sq->sq_outer);
5651 }
5652 
5653 /*
5654  * Prevent q_next from changing in this stream by incrementing sq_count.
5655  *
5656  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5657  * sq_putlocks are used.
5658  */
5659 void
5660 claimq(queue_t *qp)
5661 {
5662         syncq_t *sq = qp->q_syncq;
5663 
5664         mutex_enter(SQLOCK(sq));
5665         sq->sq_count++;
5666         ASSERT(sq->sq_count != 0);   /* Wraparound */
5667         mutex_exit(SQLOCK(sq));
5668 }
5669 
5670 /*
5671  * Undo claimq.
5672  *
5673  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5674  * sq_putlocks are used.
5675  */
5676 void
5677 releaseq(queue_t *qp)
5678 {
5679         syncq_t *sq = qp->q_syncq;
5680         uint16_t flags;
5681 
5682         mutex_enter(SQLOCK(sq));
5683         ASSERT(sq->sq_count > 0);
5684         sq->sq_count--;
5685 
5686         flags = sq->sq_flags;
5687         if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
5688                 if (flags & SQ_WANTWAKEUP) {
5689                         flags &= ~SQ_WANTWAKEUP;
5690                         cv_broadcast(&sq->sq_wait);
5691                 }
5692                 sq->sq_flags = flags;
5693                 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5694                         /*
5695                          * To prevent potential recursive invocation of
5696                          * drain_syncq we do not call drain_syncq if count is
5697                          * non-zero.
5698                          */
5699                         if (sq->sq_count == 0) {
5700                                 drain_syncq(sq);
5701                                 return;
5702                         } else
5703                                 sqenable(sq);
5704                 }
5705         }
5706         mutex_exit(SQLOCK(sq));
5707 }
5708 
5709 /*
5710  * Prevent q_next from changing in this stream by incrementing sd_refcnt.
5711  */
5712 void
5713 claimstr(queue_t *qp)
5714 {
5715         struct stdata *stp = STREAM(qp);
5716 
5717         mutex_enter(&stp->sd_reflock);
5718         stp->sd_refcnt++;
5719         ASSERT(stp->sd_refcnt != 0); /* Wraparound */
5720         mutex_exit(&stp->sd_reflock);
5721 }
5722 
5723 /*
5724  * Undo claimstr.
5725  */
5726 void
5727 releasestr(queue_t *qp)
5728 {
5729         struct stdata *stp = STREAM(qp);
5730 
5731         mutex_enter(&stp->sd_reflock);
5732         ASSERT(stp->sd_refcnt != 0);
5733         if (--stp->sd_refcnt == 0)
5734                 cv_broadcast(&stp->sd_refmonitor);
5735         mutex_exit(&stp->sd_reflock);
5736 }
5737 
5738 static syncq_t *
5739 new_syncq(void)
5740 {
5741         return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
5742 }
5743 
5744 static void
5745 free_syncq(syncq_t *sq)
5746 {
5747         ASSERT(sq->sq_head == NULL);
5748         ASSERT(sq->sq_outer == NULL);
5749         ASSERT(sq->sq_callbpend == NULL);
5750         ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
5751             (sq->sq_onext == sq && sq->sq_oprev == sq));
5752 
5753         if (sq->sq_ciputctrl != NULL) {
5754                 ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
5755                 SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
5756                     sq->sq_nciputctrl, 0);
5757                 ASSERT(ciputctrl_cache != NULL);
5758                 kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
5759         }
5760 
5761         sq->sq_tail = NULL;
5762         sq->sq_evhead = NULL;
5763         sq->sq_evtail = NULL;
5764         sq->sq_ciputctrl = NULL;
5765         sq->sq_nciputctrl = 0;
5766         sq->sq_count = 0;
5767         sq->sq_rmqcount = 0;
5768         sq->sq_callbflags = 0;
5769         sq->sq_cancelid = 0;
5770         sq->sq_next = NULL;
5771         sq->sq_needexcl = 0;
5772         sq->sq_svcflags = 0;
5773         sq->sq_nqueues = 0;
5774         sq->sq_pri = 0;
5775         sq->sq_onext = NULL;
5776         sq->sq_oprev = NULL;
5777         sq->sq_flags = 0;
5778         sq->sq_type = 0;
5779         sq->sq_servcount = 0;
5780 
5781         kmem_cache_free(syncq_cache, sq);
5782 }
5783 
5784 /* Outer perimeter code */
5785 
5786 /*
5787  * The outer syncq uses the fields and flags in the syncq slightly
5788  * differently from the inner syncqs.
5789  *      sq_count        Incremented when there are pending or running
5790  *                      writers at the outer perimeter to prevent the set of
5791  *                      inner syncqs that belong to the outer perimeter from
5792  *                      changing.
5793  *      sq_head/tail    List of deferred qwriter(OUTER) operations.
5794  *
5795  *      SQ_BLOCKED      Set to prevent traversing of sq_next,sq_prev while
5796  *                      inner syncqs are added to or removed from the
5797  *                      outer perimeter.
5798  *      SQ_QUEUED       sq_head/tail has messages or events queued.
5799  *
5800  *      SQ_WRITER       A thread is currently traversing all the inner syncqs
5801  *                      setting the SQ_WRITER flag.
5802  */
5803 
5804 /*
5805  * Get write access at the outer perimeter.
5806  * Note that read access is done by entersq, putnext, and put by simply
5807  * incrementing sq_count in the inner syncq.
5808  *
5809  * Waits until "flags" is no longer set in the outer to prevent multiple
5810  * threads from having write access at the same time. SQ_WRITER has to be part
5811  * of "flags".
5812  *
5813  * Increases sq_count on the outer syncq to keep away outer_insert/remove
5814  * until the outer_exit is finished.
5815  *
5816  * outer_enter is vulnerable to starvation since it does not prevent new
5817  * threads from entering the inner syncqs while it is waiting for sq_count to
5818  * go to zero.
5819  */
5820 void
5821 outer_enter(syncq_t *outer, uint16_t flags)
5822 {
5823         syncq_t *sq;
5824         int     wait_needed;
5825         uint16_t        count;
5826 
5827         ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5828             outer->sq_oprev != NULL);
5829         ASSERT(flags & SQ_WRITER);
5830 
5831 retry:
5832         mutex_enter(SQLOCK(outer));
5833         while (outer->sq_flags & flags) {
5834                 outer->sq_flags |= SQ_WANTWAKEUP;
5835                 cv_wait(&outer->sq_wait, SQLOCK(outer));
5836         }
5837 
5838         ASSERT(!(outer->sq_flags & SQ_WRITER));
5839         outer->sq_flags |= SQ_WRITER;
5840         outer->sq_count++;
5841         ASSERT(outer->sq_count != 0);        /* wraparound */
5842         wait_needed = 0;
5843         /*
5844          * Set SQ_WRITER on all the inner syncqs while holding
5845          * the SQLOCK on the outer syncq. This ensures that the changing
5846          * of SQ_WRITER is atomic under the outer SQLOCK.
5847          */
5848         for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5849                 mutex_enter(SQLOCK(sq));
5850                 count = sq->sq_count;
5851                 SQ_PUTLOCKS_ENTER(sq);
5852                 sq->sq_flags |= SQ_WRITER;
5853                 SUM_SQ_PUTCOUNTS(sq, count);
5854                 if (count != 0)
5855                         wait_needed = 1;
5856                 SQ_PUTLOCKS_EXIT(sq);
5857                 mutex_exit(SQLOCK(sq));
5858         }
5859         mutex_exit(SQLOCK(outer));
5860 
5861         /*
5862          * Get everybody out of the syncqs sequentially.
5863          * Note that we don't actually need to acquire the PUTLOCKS, since
5864          * we have already cleared the fastbit, and set QWRITER.  By
5865          * definition, the count can not increase since putnext will
5866          * take the slowlock path (and the purpose of acquiring the
5867          * putlocks was to make sure it didn't increase while we were
5868          * waiting).
5869          *
5870          * Note that we still acquire the PUTLOCKS to be safe.
5871          */
5872         if (wait_needed) {
5873                 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5874                         mutex_enter(SQLOCK(sq));
5875                         count = sq->sq_count;
5876                         SQ_PUTLOCKS_ENTER(sq);
5877                         SUM_SQ_PUTCOUNTS(sq, count);
5878                         while (count != 0) {
5879                                 sq->sq_flags |= SQ_WANTWAKEUP;
5880                                 SQ_PUTLOCKS_EXIT(sq);
5881                                 cv_wait(&sq->sq_wait, SQLOCK(sq));
5882                                 count = sq->sq_count;
5883                                 SQ_PUTLOCKS_ENTER(sq);
5884                                 SUM_SQ_PUTCOUNTS(sq, count);
5885                         }
5886                         SQ_PUTLOCKS_EXIT(sq);
5887                         mutex_exit(SQLOCK(sq));
5888                 }
5889                 /*
5890                  * Verify that none of the flags got set while we
5891                  * were waiting for the sq_counts to drop.
5892                  * If this happens we exit and retry entering the
5893                  * outer perimeter.
5894                  */
5895                 mutex_enter(SQLOCK(outer));
5896                 if (outer->sq_flags & (flags & ~SQ_WRITER)) {
5897                         mutex_exit(SQLOCK(outer));
5898                         outer_exit(outer);
5899                         goto retry;
5900                 }
5901                 mutex_exit(SQLOCK(outer));
5902         }
5903 }
5904 
5905 /*
5906  * Drop the write access at the outer perimeter.
5907  * Read access is dropped implicitly (by putnext, put, and leavesq) by
5908  * decrementing sq_count.
5909  */
5910 void
5911 outer_exit(syncq_t *outer)
5912 {
5913         syncq_t *sq;
5914         int      drain_needed;
5915         uint16_t flags;
5916 
5917         ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5918             outer->sq_oprev != NULL);
5919         ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
5920 
5921         /*
5922          * Atomically (from the perspective of threads calling become_writer)
5923          * drop the write access at the outer perimeter by holding
5924          * SQLOCK(outer) across all the dropsq calls and the resetting of
5925          * SQ_WRITER.
5926          * This defines a locking order between the outer perimeter
5927          * SQLOCK and the inner perimeter SQLOCKs.
5928          */
5929         mutex_enter(SQLOCK(outer));
5930         flags = outer->sq_flags;
5931         ASSERT(outer->sq_flags & SQ_WRITER);
5932         if (flags & SQ_QUEUED) {
5933                 write_now(outer);
5934                 flags = outer->sq_flags;
5935         }
5936 
5937         /*
5938          * sq_onext is stable since sq_count has not yet been decreased.
5939          * Reset the SQ_WRITER flags in all syncqs.
5940          * After dropping SQ_WRITER on the outer syncq we empty all the
5941          * inner syncqs.
5942          */
5943         drain_needed = 0;
5944         for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5945                 drain_needed += dropsq(sq, SQ_WRITER);
5946         ASSERT(!(outer->sq_flags & SQ_QUEUED));
5947         flags &= ~SQ_WRITER;
5948         if (drain_needed) {
5949                 outer->sq_flags = flags;
5950                 mutex_exit(SQLOCK(outer));
5951                 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5952                         emptysq(sq);
5953                 mutex_enter(SQLOCK(outer));
5954                 flags = outer->sq_flags;
5955         }
5956         if (flags & SQ_WANTWAKEUP) {
5957                 flags &= ~SQ_WANTWAKEUP;
5958                 cv_broadcast(&outer->sq_wait);
5959         }
5960         outer->sq_flags = flags;
5961         ASSERT(outer->sq_count > 0);
5962         outer->sq_count--;
5963         mutex_exit(SQLOCK(outer));
5964 }
5965 
5966 /*
5967  * Add another syncq to an outer perimeter.
5968  * Block out all other access to the outer perimeter while it is being
5969  * changed using blocksq.
5970  * Assumes that the caller has *not* done an outer_enter.
5971  *
5972  * Vulnerable to starvation in blocksq.
5973  */
5974 static void
5975 outer_insert(syncq_t *outer, syncq_t *sq)
5976 {
5977         ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5978             outer->sq_oprev != NULL);
5979         ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
5980             sq->sq_oprev == NULL);   /* Can't be in an outer perimeter */
5981 
5982         /* Get exclusive access to the outer perimeter list */
5983         blocksq(outer, SQ_BLOCKED, 0);
5984         ASSERT(outer->sq_flags & SQ_BLOCKED);
5985         ASSERT(!(outer->sq_flags & SQ_WRITER));
5986 
5987         mutex_enter(SQLOCK(sq));
5988         sq->sq_outer = outer;
5989         outer->sq_onext->sq_oprev = sq;
5990         sq->sq_onext = outer->sq_onext;
5991         outer->sq_onext = sq;
5992         sq->sq_oprev = outer;
5993         mutex_exit(SQLOCK(sq));
5994         unblocksq(outer, SQ_BLOCKED, 1);
5995 }
5996 
5997 /*
5998  * Remove a syncq from an outer perimeter.
5999  * Block out all other access to the outer perimeter while it is being
6000  * changed using blocksq.
6001  * Assumes that the caller has *not* done an outer_enter.
6002  *
6003  * Vulnerable to starvation in blocksq.
6004  */
6005 static void
6006 outer_remove(syncq_t *outer, syncq_t *sq)
6007 {
6008         ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
6009             outer->sq_oprev != NULL);
6010         ASSERT(sq->sq_outer == outer);
6011 
6012         /* Get exclusive access to the outer perimeter list */
6013         blocksq(outer, SQ_BLOCKED, 0);
6014         ASSERT(outer->sq_flags & SQ_BLOCKED);
6015         ASSERT(!(outer->sq_flags & SQ_WRITER));
6016 
6017         mutex_enter(SQLOCK(sq));
6018         sq->sq_outer = NULL;
6019         sq->sq_onext->sq_oprev = sq->sq_oprev;
6020         sq->sq_oprev->sq_onext = sq->sq_onext;
6021         sq->sq_oprev = sq->sq_onext = NULL;
6022         mutex_exit(SQLOCK(sq));
6023         unblocksq(outer, SQ_BLOCKED, 1);
6024 }
6025 
6026 /*
6027  * Queue a deferred qwriter(OUTER) callback for this outer perimeter.
6028  * If this is the first callback for this outer perimeter then add
6029  * this outer perimeter to the list of outer perimeters that
6030  * the qwriter_outer_thread will process.
6031  *
6032  * Increments sq_count in the outer syncq to prevent the membership
6033  * of the outer perimeter (in terms of inner syncqs) to change while
6034  * the callback is pending.
6035  */
6036 static void
6037 queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
6038 {
6039         ASSERT(MUTEX_HELD(SQLOCK(outer)));
6040 
6041         mp->b_prev = (mblk_t *)func;
6042         mp->b_queue = q;
6043         mp->b_next = NULL;
6044         outer->sq_count++;   /* Decremented when dequeued */
6045         ASSERT(outer->sq_count != 0);        /* Wraparound */
6046         if (outer->sq_evhead == NULL) {
6047                 /* First message. */
6048                 outer->sq_evhead = outer->sq_evtail = mp;
6049                 outer->sq_flags |= SQ_EVENTS;
6050                 mutex_exit(SQLOCK(outer));
6051                 STRSTAT(qwr_outer);
6052                 (void) taskq_dispatch(streams_taskq,
6053                     (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
6054         } else {
6055                 ASSERT(outer->sq_flags & SQ_EVENTS);
6056                 outer->sq_evtail->b_next = mp;
6057                 outer->sq_evtail = mp;
6058                 mutex_exit(SQLOCK(outer));
6059         }
6060 }
6061 
6062 /*
6063  * Try and upgrade to write access at the outer perimeter. If this can
6064  * not be done without blocking then queue the callback to be done
6065  * by the qwriter_outer_thread.
6066  *
6067  * This routine can only be called from put or service procedures plus
6068  * asynchronous callback routines that have properly entered the queue (with
6069  * entersq). Thus qwriter(OUTER) assumes the caller has one claim on the syncq
6070  * associated with q.
6071  */
6072 void
6073 qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
6074 {
6075         syncq_t *osq, *sq, *outer;
6076         int     failed;
6077         uint16_t flags;
6078 
6079         osq = q->q_syncq;
6080         outer = osq->sq_outer;
6081         if (outer == NULL)
6082                 panic("qwriter(PERIM_OUTER): no outer perimeter");
6083         ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
6084             outer->sq_oprev != NULL);
6085 
6086         mutex_enter(SQLOCK(outer));
6087         flags = outer->sq_flags;
6088         /*
6089          * If some thread is traversing sq_next, or if we are blocked by
6090          * outer_insert or outer_remove, or if the we already have queued
6091          * callbacks, then queue this callback for later processing.
6092          *
6093          * Also queue the qwriter for an interrupt thread in order
6094          * to reduce the time spent running at high IPL.
6095          * to identify there are events.
6096          */
6097         if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
6098                 /*
6099                  * Queue the become_writer request.
6100                  * The queueing is atomic under SQLOCK(outer) in order
6101                  * to synchronize with outer_exit.
6102                  * queue_writer will drop the outer SQLOCK
6103                  */
6104                 if (flags & SQ_BLOCKED) {
6105                         /* Must set SQ_WRITER on inner perimeter */
6106                         mutex_enter(SQLOCK(osq));
6107                         osq->sq_flags |= SQ_WRITER;
6108                         mutex_exit(SQLOCK(osq));
6109                 } else {
6110                         if (!(flags & SQ_WRITER)) {
6111                                 /*
6112                                  * The outer could have been SQ_BLOCKED thus
6113                                  * SQ_WRITER might not be set on the inner.
6114                                  */
6115                                 mutex_enter(SQLOCK(osq));
6116                                 osq->sq_flags |= SQ_WRITER;
6117                                 mutex_exit(SQLOCK(osq));
6118                         }
6119                         ASSERT(osq->sq_flags & SQ_WRITER);
6120                 }
6121                 queue_writer(outer, func, q, mp);
6122                 return;
6123         }
6124         /*
6125          * We are half-way to exclusive access to the outer perimeter.
6126          * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
6127          * while the inner syncqs are traversed.
6128          */
6129         outer->sq_count++;
6130         ASSERT(outer->sq_count != 0);        /* wraparound */
6131         flags |= SQ_WRITER;
6132         /*
6133          * Check if we can run the function immediately. Mark all
6134          * syncqs with the writer flag to prevent new entries into
6135          * put and service procedures.
6136          *
6137          * Set SQ_WRITER on all the inner syncqs while holding
6138          * the SQLOCK on the outer syncq. This ensures that the changing
6139          * of SQ_WRITER is atomic under the outer SQLOCK.
6140          */
6141         failed = 0;
6142         for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
6143                 uint16_t count;
6144                 uint_t  maxcnt = (sq == osq) ? 1 : 0;
6145 
6146                 mutex_enter(SQLOCK(sq));
6147                 count = sq->sq_count;
6148                 SQ_PUTLOCKS_ENTER(sq);
6149                 SUM_SQ_PUTCOUNTS(sq, count);
6150                 if (sq->sq_count > maxcnt)
6151                         failed = 1;
6152                 sq->sq_flags |= SQ_WRITER;
6153                 SQ_PUTLOCKS_EXIT(sq);
6154                 mutex_exit(SQLOCK(sq));
6155         }
6156         if (failed) {
6157                 /*
6158                  * Some other thread has a read claim on the outer perimeter.
6159                  * Queue the callback for deferred processing.
6160                  *
6161                  * queue_writer will set SQ_QUEUED before we drop SQ_WRITER
6162                  * so that other qwriter(OUTER) calls will queue their
6163                  * callbacks as well. queue_writer increments sq_count so we
6164                  * decrement to compensate for the our increment.
6165                  *
6166                  * Dropping SQ_WRITER enables the writer thread to work
6167                  * on this outer perimeter.
6168                  */
6169                 outer->sq_flags = flags;
6170                 queue_writer(outer, func, q, mp);
6171                 /* queue_writer dropper the lock */
6172                 mutex_enter(SQLOCK(outer));
6173                 ASSERT(outer->sq_count > 0);
6174                 outer->sq_count--;
6175                 ASSERT(outer->sq_flags & SQ_WRITER);
6176                 flags = outer->sq_flags;
6177                 flags &= ~SQ_WRITER;
6178                 if (flags & SQ_WANTWAKEUP) {
6179                         flags &= ~SQ_WANTWAKEUP;
6180                         cv_broadcast(&outer->sq_wait);
6181                 }
6182                 outer->sq_flags = flags;
6183                 mutex_exit(SQLOCK(outer));
6184                 return;
6185         } else {
6186                 outer->sq_flags = flags;
6187                 mutex_exit(SQLOCK(outer));
6188         }
6189 
6190         /* Can run it immediately */
6191         (*func)(q, mp);
6192 
6193         outer_exit(outer);
6194 }
6195 
6196 /*
6197  * Dequeue all writer callbacks from the outer perimeter and run them.
6198  */
6199 static void
6200 write_now(syncq_t *outer)
6201 {
6202         mblk_t          *mp;
6203         queue_t         *q;
6204         void    (*func)();
6205 
6206         ASSERT(MUTEX_HELD(SQLOCK(outer)));
6207         ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
6208             outer->sq_oprev != NULL);
6209         while ((mp = outer->sq_evhead) != NULL) {
6210                 /*
6211                  * queues cannot be placed on the queuelist on the outer
6212                  * perimeter.
6213                  */
6214                 ASSERT(!(outer->sq_flags & SQ_MESSAGES));
6215                 ASSERT((outer->sq_flags & SQ_EVENTS));
6216 
6217                 outer->sq_evhead = mp->b_next;
6218                 if (outer->sq_evhead == NULL) {
6219                         outer->sq_evtail = NULL;
6220                         outer->sq_flags &= ~SQ_EVENTS;
6221                 }
6222                 ASSERT(outer->sq_count != 0);
6223                 outer->sq_count--;   /* Incremented when enqueued. */
6224                 mutex_exit(SQLOCK(outer));
6225                 /*
6226                  * Drop the message if the queue is closing.
6227                  * Make sure that the queue is "claimed" when the callback
6228                  * is run in order to satisfy various ASSERTs.
6229                  */
6230                 q = mp->b_queue;
6231                 func = (void (*)())mp->b_prev;
6232                 ASSERT(func != NULL);
6233                 mp->b_next = mp->b_prev = NULL;
6234                 if (q->q_flag & QWCLOSE) {
6235                         freemsg(mp);
6236                 } else {
6237                         claimq(q);
6238                         (*func)(q, mp);
6239                         releaseq(q);
6240                 }
6241                 mutex_enter(SQLOCK(outer));
6242         }
6243         ASSERT(MUTEX_HELD(SQLOCK(outer)));
6244 }
6245 
6246 /*
6247  * The list of messages on the inner syncq is effectively hashed
6248  * by destination queue.  These destination queues are doubly
6249  * linked lists (hopefully) in priority order.  Messages are then
6250  * put on the queue referenced by the q_sqhead/q_sqtail elements.
6251  * Additional messages are linked together by the b_next/b_prev
6252  * elements in the mblk, with (similar to putq()) the first message
6253  * having a NULL b_prev and the last message having a NULL b_next.
6254  *
6255  * Events, such as qwriter callbacks, are put onto a list in FIFO
6256  * order referenced by sq_evhead, and sq_evtail.  This is a singly
6257  * linked list, and messages here MUST be processed in the order queued.
6258  */
6259 
6260 /*
6261  * Run the events on the syncq event list (sq_evhead).
6262  * Assumes there is only one claim on the syncq, it is
6263  * already exclusive (SQ_EXCL set), and the SQLOCK held.
6264  * Messages here are processed in order, with the SQ_EXCL bit
6265  * held all the way through till the last message is processed.
6266  */
6267 void
6268 sq_run_events(syncq_t *sq)
6269 {
6270         mblk_t          *bp;
6271         queue_t         *qp;
6272         uint16_t        flags = sq->sq_flags;
6273         void            (*func)();
6274 
6275         ASSERT(MUTEX_HELD(SQLOCK(sq)));
6276         ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6277             sq->sq_oprev == NULL) ||
6278             (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6279             sq->sq_oprev != NULL));
6280 
6281         ASSERT(flags & SQ_EXCL);
6282         ASSERT(sq->sq_count == 1);
6283 
6284         /*
6285          * We need to process all of the events on this list.  It
6286          * is possible that new events will be added while we are
6287          * away processing a callback, so on every loop, we start
6288          * back at the beginning of the list.
6289          */
6290         /*
6291          * We have to reaccess sq_evhead since there is a
6292          * possibility of a new entry while we were running
6293          * the callback.
6294          */
6295         for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
6296                 ASSERT(bp->b_queue->q_syncq == sq);
6297                 ASSERT(sq->sq_flags & SQ_EVENTS);
6298 
6299                 qp = bp->b_queue;
6300                 func = (void (*)())bp->b_prev;
6301                 ASSERT(func != NULL);
6302 
6303                 /*
6304                  * Messages from the event queue must be taken off in
6305                  * FIFO order.
6306                  */
6307                 ASSERT(sq->sq_evhead == bp);
6308                 sq->sq_evhead = bp->b_next;
6309 
6310                 if (bp->b_next == NULL) {
6311                         /* Deleting last */
6312                         ASSERT(sq->sq_evtail == bp);
6313                         sq->sq_evtail = NULL;
6314                         sq->sq_flags &= ~SQ_EVENTS;
6315                 }
6316                 bp->b_prev = bp->b_next = NULL;
6317                 ASSERT(bp->b_datap->db_ref != 0);
6318 
6319                 mutex_exit(SQLOCK(sq));
6320 
6321                 (*func)(qp, bp);
6322 
6323                 mutex_enter(SQLOCK(sq));
6324                 /*
6325                  * re-read the flags, since they could have changed.
6326                  */
6327                 flags = sq->sq_flags;
6328                 ASSERT(flags & SQ_EXCL);
6329         }
6330         ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
6331         ASSERT(!(sq->sq_flags & SQ_EVENTS));
6332 
6333         if (flags & SQ_WANTWAKEUP) {
6334                 flags &= ~SQ_WANTWAKEUP;
6335                 cv_broadcast(&sq->sq_wait);
6336         }
6337         if (flags & SQ_WANTEXWAKEUP) {
6338                 flags &= ~SQ_WANTEXWAKEUP;
6339                 cv_broadcast(&sq->sq_exitwait);
6340         }
6341         sq->sq_flags = flags;
6342 }
6343 
6344 /*
6345  * Put messages on the event list.
6346  * If we can go exclusive now, do so and process the event list, otherwise
6347  * let the last claim service this list (or wake the sqthread).
6348  * This procedure assumes SQLOCK is held.  To run the event list, it
6349  * must be called with no claims.
6350  */
6351 static void
6352 sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
6353 {
6354         uint16_t count;
6355 
6356         ASSERT(MUTEX_HELD(SQLOCK(sq)));
6357         ASSERT(func != NULL);
6358 
6359         /*
6360          * This is a callback.  Add it to the list of callbacks
6361          * and see about upgrading.
6362          */
6363         mp->b_prev = (mblk_t *)func;
6364         mp->b_queue = q;
6365         mp->b_next = NULL;
6366         if (sq->sq_evhead == NULL) {
6367                 sq->sq_evhead = sq->sq_evtail = mp;
6368                 sq->sq_flags |= SQ_EVENTS;
6369         } else {
6370                 ASSERT(sq->sq_evtail != NULL);
6371                 ASSERT(sq->sq_evtail->b_next == NULL);
6372                 ASSERT(sq->sq_flags & SQ_EVENTS);
6373                 sq->sq_evtail->b_next = mp;
6374                 sq->sq_evtail = mp;
6375         }
6376         /*
6377          * We have set SQ_EVENTS, so threads will have to
6378          * unwind out of the perimeter, and new entries will
6379          * not grab a putlock.  But we still need to know
6380          * how many threads have already made a claim to the
6381          * syncq, so grab the putlocks, and sum the counts.
6382          * If there are no claims on the syncq, we can upgrade
6383          * to exclusive, and run the event list.
6384          * NOTE: We hold the SQLOCK, so we can just grab the
6385          * putlocks.
6386          */
6387         count = sq->sq_count;
6388         SQ_PUTLOCKS_ENTER(sq);
6389         SUM_SQ_PUTCOUNTS(sq, count);
6390         /*
6391          * We have no claim, so we need to check if there
6392          * are no others, then we can upgrade.
6393          */
6394         /*
6395          * There are currently no claims on
6396          * the syncq by this thread (at least on this entry). The thread who has
6397          * the claim should drain syncq.
6398          */
6399         if (count > 0) {
6400                 /*
6401                  * Can't upgrade - other threads inside.
6402                  */
6403                 SQ_PUTLOCKS_EXIT(sq);
6404                 mutex_exit(SQLOCK(sq));
6405                 return;
6406         }
6407         /*
6408          * Need to set SQ_EXCL and make a claim on the syncq.
6409          */
6410         ASSERT((sq->sq_flags & SQ_EXCL) == 0);
6411         sq->sq_flags |= SQ_EXCL;
6412         ASSERT(sq->sq_count == 0);
6413         sq->sq_count++;
6414         SQ_PUTLOCKS_EXIT(sq);
6415 
6416         /* Process the events list */
6417         sq_run_events(sq);
6418 
6419         /*
6420          * Release our claim...
6421          */
6422         sq->sq_count--;
6423 
6424         /*
6425          * And release SQ_EXCL.
6426          * We don't need to acquire the putlocks to release
6427          * SQ_EXCL, since we are exclusive, and hold the SQLOCK.
6428          */
6429         sq->sq_flags &= ~SQ_EXCL;
6430 
6431         /*
6432          * sq_run_events should have released SQ_EXCL
6433          */
6434         ASSERT(!(sq->sq_flags & SQ_EXCL));
6435 
6436         /*
6437          * If anything happened while we were running the
6438          * events (or was there before), we need to process
6439          * them now.  We shouldn't be exclusive sine we
6440          * released the perimeter above (plus, we asserted
6441          * for it).
6442          */
6443         if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
6444                 drain_syncq(sq);
6445         else
6446                 mutex_exit(SQLOCK(sq));
6447 }
6448 
6449 /*
6450  * Perform delayed processing. The caller has to make sure that it is safe
6451  * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
6452  * set).
6453  *
6454  * Assume that the caller has NO claims on the syncq.  However, a claim
6455  * on the syncq does not indicate that a thread is draining the syncq.
6456  * There may be more claims on the syncq than there are threads draining
6457  * (i.e.  #_threads_draining <= sq_count)
6458  *
6459  * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
6460  * in order to preserve qwriter(OUTER) ordering constraints.
6461  *
6462  * sq_putcount only needs to be checked when dispatching the queued
6463  * writer call for CIPUT sync queue, but this is handled in sq_run_events.
6464  */
6465 void
6466 drain_syncq(syncq_t *sq)
6467 {
6468         queue_t         *qp;
6469         uint16_t        count;
6470         uint16_t        type = sq->sq_type;
6471         uint16_t        flags = sq->sq_flags;
6472         boolean_t       bg_service = sq->sq_svcflags & SQ_SERVICE;
6473 
6474         TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6475             "drain_syncq start:%p", sq);
6476         ASSERT(MUTEX_HELD(SQLOCK(sq)));
6477         ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6478             sq->sq_oprev == NULL) ||
6479             (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6480             sq->sq_oprev != NULL));
6481 
6482         /*
6483          * Drop SQ_SERVICE flag.
6484          */
6485         if (bg_service)
6486                 sq->sq_svcflags &= ~SQ_SERVICE;
6487 
6488         /*
6489          * If SQ_EXCL is set, someone else is processing this syncq - let him
6490          * finish the job.
6491          */
6492         if (flags & SQ_EXCL) {
6493                 if (bg_service) {
6494                         ASSERT(sq->sq_servcount != 0);
6495                         sq->sq_servcount--;
6496                 }
6497                 mutex_exit(SQLOCK(sq));
6498                 return;
6499         }
6500 
6501         /*
6502          * This routine can be called by a background thread if
6503          * it was scheduled by a hi-priority thread.  SO, if there are
6504          * NOT messages queued, return (remember, we have the SQLOCK,
6505          * and it cannot change until we release it). Wakeup any waiters also.
6506          */
6507         if (!(flags & SQ_QUEUED)) {
6508                 if (flags & SQ_WANTWAKEUP) {
6509                         flags &= ~SQ_WANTWAKEUP;
6510                         cv_broadcast(&sq->sq_wait);
6511                 }
6512                 if (flags & SQ_WANTEXWAKEUP) {
6513                         flags &= ~SQ_WANTEXWAKEUP;
6514                         cv_broadcast(&sq->sq_exitwait);
6515                 }
6516                 sq->sq_flags = flags;
6517                 if (bg_service) {
6518                         ASSERT(sq->sq_servcount != 0);
6519                         sq->sq_servcount--;
6520                 }
6521                 mutex_exit(SQLOCK(sq));
6522                 return;
6523         }
6524 
6525         /*
6526          * If this is not a concurrent put perimeter, we need to
6527          * become exclusive to drain.  Also, if not CIPUT, we would
6528          * not have acquired a putlock, so we don't need to check
6529          * the putcounts.  If not entering with a claim, we test
6530          * for sq_count == 0.
6531          */
6532         type = sq->sq_type;
6533         if (!(type & SQ_CIPUT)) {
6534                 if (sq->sq_count > 1) {
6535                         if (bg_service) {
6536                                 ASSERT(sq->sq_servcount != 0);
6537                                 sq->sq_servcount--;
6538                         }
6539                         mutex_exit(SQLOCK(sq));
6540                         return;
6541                 }
6542                 sq->sq_flags |= SQ_EXCL;
6543         }
6544 
6545         /*
6546          * This is where we make a claim to the syncq.
6547          * This can either be done by incrementing a putlock, or
6548          * the sq_count.  But since we already have the SQLOCK
6549          * here, we just bump the sq_count.
6550          *
6551          * Note that after we make a claim, we need to let the code
6552          * fall through to the end of this routine to clean itself
6553          * up.  A return in the while loop will put the syncq in a
6554          * very bad state.
6555          */
6556         sq->sq_count++;
6557         ASSERT(sq->sq_count != 0);   /* wraparound */
6558 
6559         while ((flags = sq->sq_flags) & SQ_QUEUED) {
6560                 /*
6561                  * If we are told to stayaway or went exclusive,
6562                  * we are done.
6563                  */
6564                 if (flags & (SQ_STAYAWAY)) {
6565                         break;
6566                 }
6567 
6568                 /*
6569                  * If there are events to run, do so.
6570                  * We have one claim to the syncq, so if there are
6571                  * more than one, other threads are running.
6572                  */
6573                 if (sq->sq_evhead != NULL) {
6574                         ASSERT(sq->sq_flags & SQ_EVENTS);
6575 
6576                         count = sq->sq_count;
6577                         SQ_PUTLOCKS_ENTER(sq);
6578                         SUM_SQ_PUTCOUNTS(sq, count);
6579                         if (count > 1) {
6580                                 SQ_PUTLOCKS_EXIT(sq);
6581                                 /* Can't upgrade - other threads inside */
6582                                 break;
6583                         }
6584                         ASSERT((flags & SQ_EXCL) == 0);
6585                         sq->sq_flags = flags | SQ_EXCL;
6586                         SQ_PUTLOCKS_EXIT(sq);
6587                         /*
6588                          * we have the only claim, run the events,
6589                          * sq_run_events will clear the SQ_EXCL flag.
6590                          */
6591                         sq_run_events(sq);
6592 
6593                         /*
6594                          * If this is a CIPUT perimeter, we need
6595                          * to drop the SQ_EXCL flag so we can properly
6596                          * continue draining the syncq.
6597                          */
6598                         if (type & SQ_CIPUT) {
6599                                 ASSERT(sq->sq_flags & SQ_EXCL);
6600                                 sq->sq_flags &= ~SQ_EXCL;
6601                         }
6602 
6603                         /*
6604                          * And go back to the beginning just in case
6605                          * anything changed while we were away.
6606                          */
6607                         ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
6608                         continue;
6609                 }
6610 
6611                 ASSERT(sq->sq_evhead == NULL);
6612                 ASSERT(!(sq->sq_flags & SQ_EVENTS));
6613 
6614                 /*
6615                  * Find the queue that is not draining.
6616                  *
6617                  * q_draining is protected by QLOCK which we do not hold.
6618                  * But if it was set, then a thread was draining, and if it gets
6619                  * cleared, then it was because the thread has successfully
6620                  * drained the syncq, or a GOAWAY state occurred. For the GOAWAY
6621                  * state to happen, a thread needs the SQLOCK which we hold, and
6622                  * if there was such a flag, we would have already seen it.
6623                  */
6624 
6625                 for (qp = sq->sq_head;
6626                     qp != NULL && (qp->q_draining ||
6627                     (qp->q_sqflags & Q_SQDRAINING));
6628                     qp = qp->q_sqnext)
6629                         ;
6630 
6631                 if (qp == NULL)
6632                         break;
6633 
6634                 /*
6635                  * We have a queue to work on, and we hold the
6636                  * SQLOCK and one claim, call qdrain_syncq.
6637                  * This means we need to release the SQLOCK and
6638                  * acquire the QLOCK (OK since we have a claim).
6639                  * Note that qdrain_syncq will actually dequeue
6640                  * this queue from the sq_head list when it is
6641                  * convinced all the work is done and release
6642                  * the QLOCK before returning.
6643                  */
6644                 qp->q_sqflags |= Q_SQDRAINING;
6645                 mutex_exit(SQLOCK(sq));
6646                 mutex_enter(QLOCK(qp));
6647                 qdrain_syncq(sq, qp);
6648                 mutex_enter(SQLOCK(sq));
6649 
6650                 /* The queue is drained */
6651                 ASSERT(qp->q_sqflags & Q_SQDRAINING);
6652                 qp->q_sqflags &= ~Q_SQDRAINING;
6653                 /*
6654                  * NOTE: After this point qp should not be used since it may be
6655                  * closed.
6656                  */
6657         }
6658 
6659         ASSERT(MUTEX_HELD(SQLOCK(sq)));
6660         flags = sq->sq_flags;
6661 
6662         /*
6663          * sq->sq_head cannot change because we hold the
6664          * sqlock. However, a thread CAN decide that it is no longer
6665          * going to drain that queue.  However, this should be due to
6666          * a GOAWAY state, and we should see that here.
6667          *
6668          * This loop is not very efficient. One solution may be adding a second
6669          * pointer to the "draining" queue, but it is difficult to do when
6670          * queues are inserted in the middle due to priority ordering. Another
6671          * possibility is to yank the queue out of the sq list and put it onto
6672          * the "draining list" and then put it back if it can't be drained.
6673          */
6674 
6675         ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
6676             (type & SQ_CI) || sq->sq_head->q_draining);
6677 
6678         /* Drop SQ_EXCL for non-CIPUT perimeters */
6679         if (!(type & SQ_CIPUT))
6680                 flags &= ~SQ_EXCL;
6681         ASSERT((flags & SQ_EXCL) == 0);
6682 
6683         /* Wake up any waiters. */
6684         if (flags & SQ_WANTWAKEUP) {
6685                 flags &= ~SQ_WANTWAKEUP;
6686                 cv_broadcast(&sq->sq_wait);
6687         }
6688         if (flags & SQ_WANTEXWAKEUP) {
6689                 flags &= ~SQ_WANTEXWAKEUP;
6690                 cv_broadcast(&sq->sq_exitwait);
6691         }
6692         sq->sq_flags = flags;
6693 
6694         ASSERT(sq->sq_count != 0);
6695         /* Release our claim. */
6696         sq->sq_count--;
6697 
6698         if (bg_service) {
6699                 ASSERT(sq->sq_servcount != 0);
6700                 sq->sq_servcount--;
6701         }
6702 
6703         mutex_exit(SQLOCK(sq));
6704 
6705         TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6706             "drain_syncq end:%p", sq);
6707 }
6708 
6709 
6710 /*
6711  *
6712  * qdrain_syncq can be called (currently) from only one of two places:
6713  *      drain_syncq
6714  *      putnext  (or some variation of it).
6715  * and eventually
6716  *      qwait(_sig)
6717  *
6718  * If called from drain_syncq, we found it in the list of queues needing
6719  * service, so there is work to be done (or it wouldn't be in the list).
6720  *
6721  * If called from some putnext variation, it was because the
6722  * perimeter is open, but messages are blocking a putnext and
6723  * there is not a thread working on it.  Now a thread could start
6724  * working on it while we are getting ready to do so ourself, but
6725  * the thread would set the q_draining flag, and we can spin out.
6726  *
6727  * As for qwait(_sig), I think I shall let it continue to call
6728  * drain_syncq directly (after all, it will get here eventually).
6729  *
6730  * qdrain_syncq has to terminate when:
6731  * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
6732  * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
6733  *
6734  * ASSUMES:
6735  *      One claim
6736  *      QLOCK held
6737  *      SQLOCK not held
6738  *      Will release QLOCK before returning
6739  */
6740 void
6741 qdrain_syncq(syncq_t *sq, queue_t *q)
6742 {
6743         mblk_t          *bp;
6744 #ifdef DEBUG
6745         uint16_t        count;
6746 #endif
6747 
6748         TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6749             "drain_syncq start:%p", sq);
6750         ASSERT(q->q_syncq == sq);
6751         ASSERT(MUTEX_HELD(QLOCK(q)));
6752         ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6753         /*
6754          * For non-CIPUT perimeters, we should be called with the exclusive bit
6755          * set already. For CIPUT perimeters, we will be doing a concurrent
6756          * drain, so it better not be set.
6757          */
6758         ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
6759         ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
6760         ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
6761         /*
6762          * All outer pointers are set, or none of them are
6763          */
6764         ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6765             sq->sq_oprev == NULL) ||
6766             (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6767             sq->sq_oprev != NULL));
6768 #ifdef DEBUG
6769         count = sq->sq_count;
6770         /*
6771          * This is OK without the putlocks, because we have one
6772          * claim either from the sq_count, or a putcount.  We could
6773          * get an erroneous value from other counts, but ours won't
6774          * change, so one way or another, we will have at least a
6775          * value of one.
6776          */
6777         SUM_SQ_PUTCOUNTS(sq, count);
6778         ASSERT(count >= 1);
6779 #endif /* DEBUG */
6780 
6781         /*
6782          * The first thing to do is find out if a thread is already draining
6783          * this queue. If so, we are done, just return.
6784          */
6785         if (q->q_draining) {
6786                 mutex_exit(QLOCK(q));
6787                 return;
6788         }
6789 
6790         /*
6791          * If the perimeter is exclusive, there is nothing we can do right now,
6792          * go away. Note that there is nothing to prevent this case from
6793          * changing right after this check, but the spin-out will catch it.
6794          */
6795 
6796         /* Tell other threads that we are draining this queue */
6797         q->q_draining = 1;   /* Protected by QLOCK */
6798 
6799         /*
6800          * If there is nothing to do, clear QFULL as necessary. This caters for
6801          * the case where an empty queue was enqueued onto the syncq.
6802          */
6803         if (q->q_sqhead == NULL) {
6804                 ASSERT(q->q_syncqmsgs == 0);
6805                 mutex_exit(QLOCK(q));
6806                 clr_qfull(q);
6807                 mutex_enter(QLOCK(q));
6808         }
6809 
6810         /*
6811          * Note that q_sqhead must be re-checked here in case another message
6812          * was enqueued whilst QLOCK was dropped during the call to clr_qfull.
6813          */
6814         for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
6815                 /*
6816                  * Because we can enter this routine just because a putnext is
6817                  * blocked, we need to spin out if the perimeter wants to go
6818                  * exclusive as well as just blocked. We need to spin out also
6819                  * if events are queued on the syncq.
6820                  * Don't check for SQ_EXCL, because non-CIPUT perimeters would
6821                  * set it, and it can't become exclusive while we hold a claim.
6822                  */
6823                 if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
6824                         break;
6825                 }
6826 
6827 #ifdef DEBUG
6828                 /*
6829                  * Since we are in qdrain_syncq, we already know the queue,
6830                  * but for sanity, we want to check this against the qp that
6831                  * was passed in by bp->b_queue.
6832                  */
6833 
6834                 ASSERT(bp->b_queue == q);
6835                 ASSERT(bp->b_queue->q_syncq == sq);
6836                 bp->b_queue = NULL;
6837 
6838                 /*
6839                  * We would have the following check in the DEBUG code:
6840                  *
6841                  * if (bp->b_prev != NULL)  {
6842                  *      ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
6843                  * }
6844                  *
6845                  * This can't be done, however, since IP modifies qinfo
6846                  * structure at run-time (switching between IPv4 qinfo and IPv6
6847                  * qinfo), invalidating the check.
6848                  * So the assignment to func is left here, but the ASSERT itself
6849                  * is removed until the whole issue is resolved.
6850                  */
6851 #endif
6852                 ASSERT(q->q_sqhead == bp);
6853                 q->q_sqhead = bp->b_next;
6854                 bp->b_prev = bp->b_next = NULL;
6855                 ASSERT(q->q_syncqmsgs > 0);
6856                 mutex_exit(QLOCK(q));
6857 
6858                 ASSERT(bp->b_datap->db_ref != 0);
6859 
6860                 (void) (*q->q_qinfo->qi_putp)(q, bp);
6861 
6862                 mutex_enter(QLOCK(q));
6863 
6864                 /*
6865                  * q_syncqmsgs should only be decremented after executing the
6866                  * put procedure to avoid message re-ordering. This is due to an
6867                  * optimisation in putnext() which can call the put procedure
6868                  * directly if it sees q_syncqmsgs == 0 (despite Q_SQQUEUED
6869                  * being set).
6870                  *
6871                  * We also need to clear QFULL in the next service procedure
6872                  * queue if this is the last message destined for that queue.
6873                  *
6874                  * It would make better sense to have some sort of tunable for
6875                  * the low water mark, but these semantics are not yet defined.
6876                  * So, alas, we use a constant.
6877                  */
6878                 if (--q->q_syncqmsgs == 0) {
6879                         mutex_exit(QLOCK(q));
6880                         clr_qfull(q);
6881                         mutex_enter(QLOCK(q));
6882                 }
6883 
6884                 /*
6885                  * Always clear SQ_EXCL when CIPUT in order to handle
6886                  * qwriter(INNER). The putp() can call qwriter and get exclusive
6887                  * access IFF this is the only claim. So, we need to test for
6888                  * this possibility, acquire the mutex and clear the bit.
6889                  */
6890                 if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
6891                         mutex_enter(SQLOCK(sq));
6892                         sq->sq_flags &= ~SQ_EXCL;
6893                         mutex_exit(SQLOCK(sq));
6894                 }
6895         }
6896 
6897         /*
6898          * We should either have no messages on this queue, or we were told to
6899          * goaway by a waiter (which we will wake up at the end of this
6900          * function).
6901          */
6902         ASSERT((q->q_sqhead == NULL) ||
6903             (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
6904 
6905         ASSERT(MUTEX_HELD(QLOCK(q)));
6906         ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6907 
6908         /* Remove the q from the syncq list if all the messages are drained. */
6909         if (q->q_sqhead == NULL) {
6910                 ASSERT(q->q_syncqmsgs == 0);
6911                 mutex_enter(SQLOCK(sq));
6912                 if (q->q_sqflags & Q_SQQUEUED)
6913                         SQRM_Q(sq, q);
6914                 mutex_exit(SQLOCK(sq));
6915                 /*
6916                  * Since the queue is removed from the list, reset its priority.
6917                  */
6918                 q->q_spri = 0;
6919         }
6920 
6921         /*
6922          * Remember, the q_draining flag is used to let another thread know
6923          * that there is a thread currently draining the messages for a queue.
6924          * Since we are now done with this queue (even if there may be messages
6925          * still there), we need to clear this flag so some thread will work on
6926          * it if needed.
6927          */
6928         ASSERT(q->q_draining);
6929         q->q_draining = 0;
6930 
6931         /* Called with a claim, so OK to drop all locks. */
6932         mutex_exit(QLOCK(q));
6933 
6934         TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6935             "drain_syncq end:%p", sq);
6936 }
6937 /* END OF QDRAIN_SYNCQ  */
6938 
6939 
6940 /*
6941  * This is the mate to qdrain_syncq, except that it is putting the message onto
6942  * the queue instead of draining. Since the message is destined for the queue
6943  * that is selected, there is no need to identify the function because the
6944  * message is intended for the put routine for the queue. For debug kernels,
6945  * this routine will do it anyway just in case.
6946  *
6947  * After the message is enqueued on the syncq, it calls putnext_tail()
6948  * which will schedule a background thread to actually process the message.
6949  *
6950  * Assumes that there is a claim on the syncq (sq->sq_count > 0) and
6951  * SQLOCK(sq) and QLOCK(q) are not held.
6952  */
6953 void
6954 qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
6955 {
6956         ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6957         ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
6958         ASSERT(sq->sq_count > 0);
6959         ASSERT(q->q_syncq == sq);
6960         ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6961             sq->sq_oprev == NULL) ||
6962             (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6963             sq->sq_oprev != NULL));
6964 
6965         mutex_enter(QLOCK(q));
6966 
6967 #ifdef DEBUG
6968         /*
6969          * This is used for debug in the qfill_syncq/qdrain_syncq case
6970          * to trace the queue that the message is intended for.  Note
6971          * that the original use was to identify the queue and function
6972          * to call on the drain.  In the new syncq, we have the context
6973          * of the queue that we are draining, so call it's putproc and
6974          * don't rely on the saved values.  But for debug this is still
6975          * useful information.
6976          */
6977         mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
6978         mp->b_queue = q;
6979         mp->b_next = NULL;
6980 #endif
6981         ASSERT(q->q_syncq == sq);
6982         /*
6983          * Enqueue the message on the list.
6984          * SQPUT_MP() accesses q_syncqmsgs.  We are already holding QLOCK to
6985          * protect it.  So it's ok to acquire SQLOCK after SQPUT_MP().
6986          */
6987         SQPUT_MP(q, mp);
6988         mutex_enter(SQLOCK(sq));
6989 
6990         /*
6991          * And queue on syncq for scheduling, if not already queued.
6992          * Note that we need the SQLOCK for this, and for testing flags
6993          * at the end to see if we will drain.  So grab it now, and
6994          * release it before we call qdrain_syncq or return.
6995          */
6996         if (!(q->q_sqflags & Q_SQQUEUED)) {
6997                 q->q_spri = curthread->t_pri;
6998                 SQPUT_Q(sq, q);
6999         }
7000 #ifdef DEBUG
7001         else {
7002                 /*
7003                  * All of these conditions MUST be true!
7004                  */
7005                 ASSERT(sq->sq_tail != NULL);
7006                 if (sq->sq_tail == sq->sq_head) {
7007                         ASSERT((q->q_sqprev == NULL) &&
7008                             (q->q_sqnext == NULL));
7009                 } else {
7010                         ASSERT((q->q_sqprev != NULL) ||
7011                             (q->q_sqnext != NULL));
7012                 }
7013                 ASSERT(sq->sq_flags & SQ_QUEUED);
7014                 ASSERT(q->q_syncqmsgs != 0);
7015                 ASSERT(q->q_sqflags & Q_SQQUEUED);
7016         }
7017 #endif
7018         mutex_exit(QLOCK(q));
7019         /*
7020          * SQLOCK is still held, so sq_count can be safely decremented.
7021          */
7022         sq->sq_count--;
7023 
7024         putnext_tail(sq, q, 0);
7025         /* Should not reference sq or q after this point. */
7026 }
7027 
7028 /*  End of qfill_syncq  */
7029 
7030 /*
7031  * Remove all messages from a syncq (if qp is NULL) or remove all messages
7032  * that would be put into qp by drain_syncq.
7033  * Used when deleting the syncq (qp == NULL) or when detaching
7034  * a queue (qp != NULL).
7035  * Return non-zero if one or more messages were freed.
7036  *
7037  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
7038  * sq_putlocks are used.
7039  *
7040  * NOTE: This function assumes that it is called from the close() context and
7041  * that all the queues in the syncq are going away. For this reason it doesn't
7042  * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
7043  * currently valid, but it is useful to rethink this function to behave properly
7044  * in other cases.
7045  */
7046 int
7047 flush_syncq(syncq_t *sq, queue_t *qp)
7048 {
7049         mblk_t          *bp, *mp_head, *mp_next, *mp_prev;
7050         queue_t         *q;
7051         int             ret = 0;
7052 
7053         mutex_enter(SQLOCK(sq));
7054 
7055         /*
7056          * Before we leave, we need to make sure there are no
7057          * events listed for this queue.  All events for this queue
7058          * will just be freed.
7059          */
7060         if (qp != NULL && sq->sq_evhead != NULL) {
7061                 ASSERT(sq->sq_flags & SQ_EVENTS);
7062 
7063                 mp_prev = NULL;
7064                 for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
7065                         mp_next = bp->b_next;
7066                         if (bp->b_queue == qp) {
7067                                 /* Delete this message */
7068                                 if (mp_prev != NULL) {
7069                                         mp_prev->b_next = mp_next;
7070                                         /*
7071                                          * Update sq_evtail if the last element
7072                                          * is removed.
7073                                          */
7074                                         if (bp == sq->sq_evtail) {
7075                                                 ASSERT(mp_next == NULL);
7076                                                 sq->sq_evtail = mp_prev;
7077                                         }
7078                                 } else
7079                                         sq->sq_evhead = mp_next;
7080                                 if (sq->sq_evhead == NULL)
7081                                         sq->sq_flags &= ~SQ_EVENTS;
7082                                 bp->b_prev = bp->b_next = NULL;
7083                                 freemsg(bp);
7084                                 ret++;
7085                         } else {
7086                                 mp_prev = bp;
7087                         }
7088                 }
7089         }
7090 
7091         /*
7092          * Walk sq_head and:
7093          *      - match qp if qp is set, remove it's messages
7094          *      - all if qp is not set
7095          */
7096         q = sq->sq_head;
7097         while (q != NULL) {
7098                 ASSERT(q->q_syncq == sq);
7099                 if ((qp == NULL) || (qp == q)) {
7100                         /*
7101                          * Yank the messages as a list off the queue
7102                          */
7103                         mp_head = q->q_sqhead;
7104                         /*
7105                          * We do not have QLOCK(q) here (which is safe due to
7106                          * assumptions mentioned above). To obtain the lock we
7107                          * need to release SQLOCK which may allow lots of things
7108                          * to change upon us. This place requires more analysis.
7109                          */
7110                         q->q_sqhead = q->q_sqtail = NULL;
7111                         ASSERT(mp_head->b_queue &&
7112                             mp_head->b_queue->q_syncq == sq);
7113 
7114                         /*
7115                          * Free each of the messages.
7116                          */
7117                         for (bp = mp_head; bp != NULL; bp = mp_next) {
7118                                 mp_next = bp->b_next;
7119                                 bp->b_prev = bp->b_next = NULL;
7120                                 freemsg(bp);
7121                                 ret++;
7122                         }
7123                         /*
7124                          * Now remove the queue from the syncq.
7125                          */
7126                         ASSERT(q->q_sqflags & Q_SQQUEUED);
7127                         SQRM_Q(sq, q);
7128                         q->q_spri = 0;
7129                         q->q_syncqmsgs = 0;
7130 
7131                         /*
7132                          * If qp was specified, we are done with it and are
7133                          * going to drop SQLOCK(sq) and return. We wakeup syncq
7134                          * waiters while we still have the SQLOCK.
7135                          */
7136                         if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
7137                                 sq->sq_flags &= ~SQ_WANTWAKEUP;
7138                                 cv_broadcast(&sq->sq_wait);
7139                         }
7140                         /* Drop SQLOCK across clr_qfull */
7141                         mutex_exit(SQLOCK(sq));
7142 
7143                         /*
7144                          * We avoid doing the test that drain_syncq does and
7145                          * unconditionally clear qfull for every flushed
7146                          * message. Since flush_syncq is only called during
7147                          * close this should not be a problem.
7148                          */
7149                         clr_qfull(q);
7150                         if (qp != NULL) {
7151                                 return (ret);
7152                         } else {
7153                                 mutex_enter(SQLOCK(sq));
7154                                 /*
7155                                  * The head was removed by SQRM_Q above.
7156                                  * reread the new head and flush it.
7157                                  */
7158                                 q = sq->sq_head;
7159                         }
7160                 } else {
7161                         q = q->q_sqnext;
7162                 }
7163                 ASSERT(MUTEX_HELD(SQLOCK(sq)));
7164         }
7165 
7166         if (sq->sq_flags & SQ_WANTWAKEUP) {
7167                 sq->sq_flags &= ~SQ_WANTWAKEUP;
7168                 cv_broadcast(&sq->sq_wait);
7169         }
7170 
7171         mutex_exit(SQLOCK(sq));
7172         return (ret);
7173 }
7174 
7175 /*
7176  * Propagate all messages from a syncq to the next syncq that are associated
7177  * with the specified queue. If the queue is attached to a driver or if the
7178  * messages have been added due to a qwriter(PERIM_INNER), free the messages.
7179  *
7180  * Assumes that the stream is strlock()'ed. We don't come here if there
7181  * are no messages to propagate.
7182  *
7183  * NOTE : If the queue is attached to a driver, all the messages are freed
7184  * as there is no point in propagating the messages from the driver syncq
7185  * to the closing stream head which will in turn get freed later.
7186  */
7187 static int
7188 propagate_syncq(queue_t *qp)
7189 {
7190         mblk_t          *bp, *head, *tail, *prev, *next;
7191         syncq_t         *sq;
7192         queue_t         *nqp;
7193         syncq_t         *nsq;
7194         boolean_t       isdriver;
7195         int             moved = 0;
7196         uint16_t        flags;
7197         pri_t           priority = curthread->t_pri;
7198 #ifdef DEBUG
7199         void            (*func)();
7200 #endif
7201 
7202         sq = qp->q_syncq;
7203         ASSERT(MUTEX_HELD(SQLOCK(sq)));
7204         /* debug macro */
7205         SQ_PUTLOCKS_HELD(sq);
7206         /*
7207          * As entersq() does not increment the sq_count for
7208          * the write side, check sq_count for non-QPERQ
7209          * perimeters alone.
7210          */
7211         ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
7212 
7213         /*
7214          * propagate_syncq() can be called because of either messages on the
7215          * queue syncq or because on events on the queue syncq. Do actual
7216          * message propagations if there are any messages.
7217          */
7218         if (qp->q_syncqmsgs) {
7219                 isdriver = (qp->q_flag & QISDRV);
7220 
7221                 if (!isdriver) {
7222                         nqp = qp->q_next;
7223                         nsq = nqp->q_syncq;
7224                         ASSERT(MUTEX_HELD(SQLOCK(nsq)));
7225                         /* debug macro */
7226                         SQ_PUTLOCKS_HELD(nsq);
7227 #ifdef DEBUG
7228                         func = (void (*)())nqp->q_qinfo->qi_putp;
7229 #endif
7230                 }
7231 
7232                 SQRM_Q(sq, qp);
7233                 priority = MAX(qp->q_spri, priority);
7234                 qp->q_spri = 0;
7235                 head = qp->q_sqhead;
7236                 tail = qp->q_sqtail;
7237                 qp->q_sqhead = qp->q_sqtail = NULL;
7238                 qp->q_syncqmsgs = 0;
7239 
7240                 /*
7241                  * Walk the list of messages, and free them if this is a driver,
7242                  * otherwise reset the b_prev and b_queue value to the new putp.
7243                  * Afterward, we will just add the head to the end of the next
7244                  * syncq, and point the tail to the end of this one.
7245                  */
7246 
7247                 for (bp = head; bp != NULL; bp = next) {
7248                         next = bp->b_next;
7249                         if (isdriver) {
7250                                 bp->b_prev = bp->b_next = NULL;
7251                                 freemsg(bp);
7252                                 continue;
7253                         }
7254                         /* Change the q values for this message */
7255                         bp->b_queue = nqp;
7256 #ifdef DEBUG
7257                         bp->b_prev = (mblk_t *)func;
7258 #endif
7259                         moved++;
7260                 }
7261                 /*
7262                  * Attach list of messages to the end of the new queue (if there
7263                  * is a list of messages).
7264                  */
7265 
7266                 if (!isdriver && head != NULL) {
7267                         ASSERT(tail != NULL);
7268                         if (nqp->q_sqhead == NULL) {
7269                                 nqp->q_sqhead = head;
7270                         } else {
7271                                 ASSERT(nqp->q_sqtail != NULL);
7272                                 nqp->q_sqtail->b_next = head;
7273                         }
7274                         nqp->q_sqtail = tail;
7275                         /*
7276                          * When messages are moved from high priority queue to
7277                          * another queue, the destination queue priority is
7278                          * upgraded.
7279                          */
7280 
7281                         if (priority > nqp->q_spri)
7282                                 nqp->q_spri = priority;
7283 
7284                         SQPUT_Q(nsq, nqp);
7285 
7286                         nqp->q_syncqmsgs += moved;
7287                         ASSERT(nqp->q_syncqmsgs != 0);
7288                 }
7289         }
7290 
7291         /*
7292          * Before we leave, we need to make sure there are no
7293          * events listed for this queue.  All events for this queue
7294          * will just be freed.
7295          */
7296         if (sq->sq_evhead != NULL) {
7297                 ASSERT(sq->sq_flags & SQ_EVENTS);
7298                 prev = NULL;
7299                 for (bp = sq->sq_evhead; bp != NULL; bp = next) {
7300                         next = bp->b_next;
7301                         if (bp->b_queue == qp) {
7302                                 /* Delete this message */
7303                                 if (prev != NULL) {
7304                                         prev->b_next = next;
7305                                         /*
7306                                          * Update sq_evtail if the last element
7307                                          * is removed.
7308                                          */
7309                                         if (bp == sq->sq_evtail) {
7310                                                 ASSERT(next == NULL);
7311                                                 sq->sq_evtail = prev;
7312                                         }
7313                                 } else
7314                                         sq->sq_evhead = next;
7315                                 if (sq->sq_evhead == NULL)
7316                                         sq->sq_flags &= ~SQ_EVENTS;
7317                                 bp->b_prev = bp->b_next = NULL;
7318                                 freemsg(bp);
7319                         } else {
7320                                 prev = bp;
7321                         }
7322                 }
7323         }
7324 
7325         flags = sq->sq_flags;
7326 
7327         /* Wake up any waiter before leaving. */
7328         if (flags & SQ_WANTWAKEUP) {
7329                 flags &= ~SQ_WANTWAKEUP;
7330                 cv_broadcast(&sq->sq_wait);
7331         }
7332         sq->sq_flags = flags;
7333 
7334         return (moved);
7335 }
7336 
7337 /*
7338  * Try and upgrade to exclusive access at the inner perimeter. If this can
7339  * not be done without blocking then request will be queued on the syncq
7340  * and drain_syncq will run it later.
7341  *
7342  * This routine can only be called from put or service procedures plus
7343  * asynchronous callback routines that have properly entered the queue (with
7344  * entersq). Thus qwriter_inner assumes the caller has one claim on the syncq
7345  * associated with q.
7346  */
7347 void
7348 qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
7349 {
7350         syncq_t *sq = q->q_syncq;
7351         uint16_t count;
7352 
7353         mutex_enter(SQLOCK(sq));
7354         count = sq->sq_count;
7355         SQ_PUTLOCKS_ENTER(sq);
7356         SUM_SQ_PUTCOUNTS(sq, count);
7357         ASSERT(count >= 1);
7358         ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
7359 
7360         if (count == 1) {
7361                 /*
7362                  * Can upgrade. This case also handles nested qwriter calls
7363                  * (when the qwriter callback function calls qwriter). In that
7364                  * case SQ_EXCL is already set.
7365                  */
7366                 sq->sq_flags |= SQ_EXCL;
7367                 SQ_PUTLOCKS_EXIT(sq);
7368                 mutex_exit(SQLOCK(sq));
7369                 (*func)(q, mp);
7370                 /*
7371                  * Assumes that leavesq, putnext, and drain_syncq will reset
7372                  * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
7373                  * until putnext, leavesq, or drain_syncq drops it.
7374                  * That way we handle nested qwriter(INNER) without dropping
7375                  * SQ_EXCL until the outermost qwriter callback routine is
7376                  * done.
7377                  */
7378                 return;
7379         }
7380         SQ_PUTLOCKS_EXIT(sq);
7381         sqfill_events(sq, q, mp, func);
7382 }
7383 
7384 /*
7385  * Synchronous callback support functions
7386  */
7387 
7388 /*
7389  * Allocate a callback parameter structure.
7390  * Assumes that caller initializes the flags and the id.
7391  * Acquires SQLOCK(sq) if non-NULL is returned.
7392  */
7393 callbparams_t *
7394 callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
7395 {
7396         callbparams_t *cbp;
7397         size_t size = sizeof (callbparams_t);
7398 
7399         cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
7400 
7401         /*
7402          * Only try tryhard allocation if the caller is ready to panic.
7403          * Otherwise just fail.
7404          */
7405         if (cbp == NULL) {
7406                 if (kmflags & KM_PANIC)
7407                         cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
7408                             &size, kmflags);
7409                 else
7410                         return (NULL);
7411         }
7412 
7413         ASSERT(size >= sizeof (callbparams_t));
7414         cbp->cbp_size = size;
7415         cbp->cbp_sq = sq;
7416         cbp->cbp_func = func;
7417         cbp->cbp_arg = arg;
7418         mutex_enter(SQLOCK(sq));
7419         cbp->cbp_next = sq->sq_callbpend;
7420         sq->sq_callbpend = cbp;
7421         return (cbp);
7422 }
7423 
7424 void
7425 callbparams_free(syncq_t *sq, callbparams_t *cbp)
7426 {
7427         callbparams_t **pp, *p;
7428 
7429         ASSERT(MUTEX_HELD(SQLOCK(sq)));
7430 
7431         for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7432                 if (p == cbp) {
7433                         *pp = p->cbp_next;
7434                         kmem_free(p, p->cbp_size);
7435                         return;
7436                 }
7437         }
7438         (void) (STRLOG(0, 0, 0, SL_CONSOLE,
7439             "callbparams_free: not found\n"));
7440 }
7441 
7442 void
7443 callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
7444 {
7445         callbparams_t **pp, *p;
7446 
7447         ASSERT(MUTEX_HELD(SQLOCK(sq)));
7448 
7449         for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7450                 if (p->cbp_id == id && p->cbp_flags == flag) {
7451                         *pp = p->cbp_next;
7452                         kmem_free(p, p->cbp_size);
7453                         return;
7454                 }
7455         }
7456         (void) (STRLOG(0, 0, 0, SL_CONSOLE,
7457             "callbparams_free_id: not found\n"));
7458 }
7459 
7460 /*
7461  * Callback wrapper function used by once-only callbacks that can be
7462  * cancelled (qtimeout and qbufcall)
7463  * Contains inline version of entersq(sq, SQ_CALLBACK) that can be
7464  * cancelled by the qun* functions.
7465  */
7466 void
7467 qcallbwrapper(void *arg)
7468 {
7469         callbparams_t *cbp = arg;
7470         syncq_t *sq;
7471         uint16_t count = 0;
7472         uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
7473         uint16_t type;
7474 
7475         sq = cbp->cbp_sq;
7476         mutex_enter(SQLOCK(sq));
7477         type = sq->sq_type;
7478         if (!(type & SQ_CICB)) {
7479                 count = sq->sq_count;
7480                 SQ_PUTLOCKS_ENTER(sq);
7481                 SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
7482                 SUM_SQ_PUTCOUNTS(sq, count);
7483                 sq->sq_needexcl++;
7484                 ASSERT(sq->sq_needexcl != 0);        /* wraparound */
7485                 waitflags |= SQ_MESSAGES;
7486         }
7487         /* Can not handle exclusive entry at outer perimeter */
7488         ASSERT(type & SQ_COCB);
7489 
7490         while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
7491                 if ((sq->sq_callbflags & cbp->cbp_flags) &&
7492                     (sq->sq_cancelid == cbp->cbp_id)) {
7493                         /* timeout has been cancelled */
7494                         sq->sq_callbflags |= SQ_CALLB_BYPASSED;
7495                         callbparams_free(sq, cbp);
7496                         if (!(type & SQ_CICB)) {
7497                                 ASSERT(sq->sq_needexcl > 0);
7498                                 sq->sq_needexcl--;
7499                                 if (sq->sq_needexcl == 0) {
7500                                         SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7501                                 }
7502                                 SQ_PUTLOCKS_EXIT(sq);
7503                         }
7504                         mutex_exit(SQLOCK(sq));
7505                         return;
7506                 }
7507                 sq->sq_flags |= SQ_WANTWAKEUP;
7508                 if (!(type & SQ_CICB)) {
7509                         SQ_PUTLOCKS_EXIT(sq);
7510                 }
7511                 cv_wait(&sq->sq_wait, SQLOCK(sq));
7512                 if (!(type & SQ_CICB)) {
7513                         count = sq->sq_count;
7514                         SQ_PUTLOCKS_ENTER(sq);
7515                         SUM_SQ_PUTCOUNTS(sq, count);
7516                 }
7517         }
7518 
7519         sq->sq_count++;
7520         ASSERT(sq->sq_count != 0);   /* Wraparound */
7521         if (!(type & SQ_CICB)) {
7522                 ASSERT(count == 0);
7523                 sq->sq_flags |= SQ_EXCL;
7524                 ASSERT(sq->sq_needexcl > 0);
7525                 sq->sq_needexcl--;
7526                 if (sq->sq_needexcl == 0) {
7527                         SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7528                 }
7529                 SQ_PUTLOCKS_EXIT(sq);
7530         }
7531 
7532         mutex_exit(SQLOCK(sq));
7533 
7534         cbp->cbp_func(cbp->cbp_arg);
7535 
7536         /*
7537          * We drop the lock only for leavesq to re-acquire it.
7538          * Possible optimization is inline of leavesq.
7539          */
7540         mutex_enter(SQLOCK(sq));
7541         callbparams_free(sq, cbp);
7542         mutex_exit(SQLOCK(sq));
7543         leavesq(sq, SQ_CALLBACK);
7544 }
7545 
7546 /*
7547  * No need to grab sq_putlocks here. See comment in strsubr.h that
7548  * explains when sq_putlocks are used.
7549  *
7550  * sq_count (or one of the sq_putcounts) has already been
7551  * decremented by the caller, and if SQ_QUEUED, we need to call
7552  * drain_syncq (the global syncq drain).
7553  * If putnext_tail is called with the SQ_EXCL bit set, we are in
7554  * one of two states, non-CIPUT perimeter, and we need to clear
7555  * it, or we went exclusive in the put procedure.  In any case,
7556  * we want to clear the bit now, and it is probably easier to do
7557  * this at the beginning of this function (remember, we hold
7558  * the SQLOCK).  Lastly, if there are other messages queued
7559  * on the syncq (and not for our destination), enable the syncq
7560  * for background work.
7561  */
7562 
7563 /* ARGSUSED */
7564 void
7565 putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
7566 {
7567         uint16_t        flags = sq->sq_flags;
7568 
7569         ASSERT(MUTEX_HELD(SQLOCK(sq)));
7570         ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
7571 
7572         /* Clear SQ_EXCL if set in passflags */
7573         if (passflags & SQ_EXCL) {
7574                 flags &= ~SQ_EXCL;
7575         }
7576         if (flags & SQ_WANTWAKEUP) {
7577                 flags &= ~SQ_WANTWAKEUP;
7578                 cv_broadcast(&sq->sq_wait);
7579         }
7580         if (flags & SQ_WANTEXWAKEUP) {
7581                 flags &= ~SQ_WANTEXWAKEUP;
7582                 cv_broadcast(&sq->sq_exitwait);
7583         }
7584         sq->sq_flags = flags;
7585 
7586         /*
7587          * We have cleared SQ_EXCL if we were asked to, and started
7588          * the wakeup process for waiters.  If there are no writers
7589          * then we need to drain the syncq if we were told to, or
7590          * enable the background thread to do it.
7591          */
7592         if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
7593                 if ((passflags & SQ_QUEUED) ||
7594                     (sq->sq_svcflags & SQ_DISABLED)) {
7595                         /* drain_syncq will take care of events in the list */
7596                         drain_syncq(sq);
7597                         return;
7598                 } else if (flags & SQ_QUEUED) {
7599                         sqenable(sq);
7600                 }
7601         }
7602         /* Drop the SQLOCK on exit */
7603         mutex_exit(SQLOCK(sq));
7604         TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
7605             "putnext_end:(%p, %p, %p) done", NULL, qp, sq);
7606 }
7607 
7608 void
7609 set_qend(queue_t *q)
7610 {
7611         mutex_enter(QLOCK(q));
7612         if (!O_SAMESTR(q))
7613                 q->q_flag |= QEND;
7614         else
7615                 q->q_flag &= ~QEND;
7616         mutex_exit(QLOCK(q));
7617         q = _OTHERQ(q);
7618         mutex_enter(QLOCK(q));
7619         if (!O_SAMESTR(q))
7620                 q->q_flag |= QEND;
7621         else
7622                 q->q_flag &= ~QEND;
7623         mutex_exit(QLOCK(q));
7624 }
7625 
7626 /*
7627  * Set QFULL in next service procedure queue (that cares) if not already
7628  * set and if there are already more messages on the syncq than
7629  * sq_max_size.  If sq_max_size is 0, no flow control will be asserted on
7630  * any syncq.
7631  *
7632  * The fq here is the next queue with a service procedure.  This is where
7633  * we would fail canputnext, so this is where we need to set QFULL.
7634  * In the case when fq != q we need to take QLOCK(fq) to set QFULL flag.
7635  *
7636  * We already have QLOCK at this point. To avoid cross-locks with
7637  * freezestr() which grabs all QLOCKs and with strlock() which grabs both
7638  * SQLOCK and sd_reflock, we need to drop respective locks first.
7639  */
7640 void
7641 set_qfull(queue_t *q)
7642 {
7643         queue_t         *fq = NULL;
7644 
7645         ASSERT(MUTEX_HELD(QLOCK(q)));
7646         if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
7647             (q->q_syncqmsgs > sq_max_size)) {
7648                 if ((fq = q->q_nfsrv) == q) {
7649                         fq->q_flag |= QFULL;
7650                 } else {
7651                         mutex_exit(QLOCK(q));
7652                         mutex_enter(QLOCK(fq));
7653                         fq->q_flag |= QFULL;
7654                         mutex_exit(QLOCK(fq));
7655                         mutex_enter(QLOCK(q));
7656                 }
7657         }
7658 }
7659 
7660 void
7661 clr_qfull(queue_t *q)
7662 {
7663         queue_t *oq = q;
7664 
7665         q = q->q_nfsrv;
7666         /* Fast check if there is any work to do before getting the lock. */
7667         if ((q->q_flag & (QFULL|QWANTW)) == 0) {
7668                 return;
7669         }
7670 
7671         /*
7672          * Do not reset QFULL (and backenable) if the q_count is the reason
7673          * for QFULL being set.
7674          */
7675         mutex_enter(QLOCK(q));
7676         /*
7677          * If queue is empty i.e q_mblkcnt is zero, queue can not be full.
7678          * Hence clear the QFULL.
7679          * If both q_count and q_mblkcnt are less than the hiwat mark,
7680          * clear the QFULL.
7681          */
7682         if (q->q_mblkcnt == 0 || ((q->q_count < q->q_hiwat) &&
7683             (q->q_mblkcnt < q->q_hiwat))) {
7684                 q->q_flag &= ~QFULL;
7685                 /*
7686                  * A little more confusing, how about this way:
7687                  * if someone wants to write,
7688                  * AND
7689                  *    both counts are less than the lowat mark
7690                  *    OR
7691                  *    the lowat mark is zero
7692                  * THEN
7693                  * backenable
7694                  */
7695                 if ((q->q_flag & QWANTW) &&
7696                     (((q->q_count < q->q_lowat) &&
7697                     (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
7698                         q->q_flag &= ~QWANTW;
7699                         mutex_exit(QLOCK(q));
7700                         backenable(oq, 0);
7701                 } else
7702                         mutex_exit(QLOCK(q));
7703         } else
7704                 mutex_exit(QLOCK(q));
7705 }
7706 
7707 /*
7708  * Set the forward service procedure pointer.
7709  *
7710  * Called at insert-time to cache a queue's next forward service procedure in
7711  * q_nfsrv; used by canput() and canputnext().  If the queue to be inserted
7712  * has a service procedure then q_nfsrv points to itself.  If the queue to be
7713  * inserted does not have a service procedure, then q_nfsrv points to the next
7714  * queue forward that has a service procedure.  If the queue is at the logical
7715  * end of the stream (driver for write side, stream head for the read side)
7716  * and does not have a service procedure, then q_nfsrv also points to itself.
7717  */
7718 void
7719 set_nfsrv_ptr(
7720         queue_t  *rnew,         /* read queue pointer to new module */
7721         queue_t  *wnew,         /* write queue pointer to new module */
7722         queue_t  *prev_rq,      /* read queue pointer to the module above */
7723         queue_t  *prev_wq)      /* write queue pointer to the module above */
7724 {
7725         queue_t *qp;
7726 
7727         if (prev_wq->q_next == NULL) {
7728                 /*
7729                  * Insert the driver, initialize the driver and stream head.
7730                  * In this case, prev_rq/prev_wq should be the stream head.
7731                  * _I_INSERT does not allow inserting a driver.  Make sure
7732                  * that it is not an insertion.
7733                  */
7734                 ASSERT(!(rnew->q_flag & _QINSERTING));
7735                 wnew->q_nfsrv = wnew;
7736                 if (rnew->q_qinfo->qi_srvp)
7737                         rnew->q_nfsrv = rnew;
7738                 else
7739                         rnew->q_nfsrv = prev_rq;
7740                 prev_rq->q_nfsrv = prev_rq;
7741                 prev_wq->q_nfsrv = prev_wq;
7742         } else {
7743                 /*
7744                  * set up read side q_nfsrv pointer.  This MUST be done
7745                  * before setting the write side, because the setting of
7746                  * the write side for a fifo may depend on it.
7747                  *
7748                  * Suppose we have a fifo that only has pipemod pushed.
7749                  * pipemod has no read or write service procedures, so
7750                  * nfsrv for both pipemod queues points to prev_rq (the
7751                  * stream read head).  Now push bufmod (which has only a
7752                  * read service procedure).  Doing the write side first,
7753                  * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
7754                  * is WRONG; the next queue forward from wnew with a
7755                  * service procedure will be rnew, not the stream read head.
7756                  * Since the downstream queue (which in the case of a fifo
7757                  * is the read queue rnew) can affect upstream queues, it
7758                  * needs to be done first.  Setting up the read side first
7759                  * sets nfsrv for both pipemod queues to rnew and then
7760                  * when the write side is set up, wnew-q_nfsrv will also
7761                  * point to rnew.
7762                  */
7763                 if (rnew->q_qinfo->qi_srvp) {
7764                         /*
7765                          * use _OTHERQ() because, if this is a pipe, next
7766                          * module may have been pushed from other end and
7767                          * q_next could be a read queue.
7768                          */
7769                         qp = _OTHERQ(prev_wq->q_next);
7770                         while (qp && qp->q_nfsrv != qp) {
7771                                 qp->q_nfsrv = rnew;
7772                                 qp = backq(qp);
7773                         }
7774                         rnew->q_nfsrv = rnew;
7775                 } else
7776                         rnew->q_nfsrv = prev_rq->q_nfsrv;
7777 
7778                 /* set up write side q_nfsrv pointer */
7779                 if (wnew->q_qinfo->qi_srvp) {
7780                         wnew->q_nfsrv = wnew;
7781 
7782                         /*
7783                          * For insertion, need to update nfsrv of the modules
7784                          * above which do not have a service routine.
7785                          */
7786                         if (rnew->q_flag & _QINSERTING) {
7787                                 for (qp = prev_wq;
7788                                     qp != NULL && qp->q_nfsrv != qp;
7789                                     qp = backq(qp)) {
7790                                         qp->q_nfsrv = wnew->q_nfsrv;
7791                                 }
7792                         }
7793                 } else {
7794                         if (prev_wq->q_next == prev_rq)
7795                                 /*
7796                                  * Since prev_wq/prev_rq are the middle of a
7797                                  * fifo, wnew/rnew will also be the middle of
7798                                  * a fifo and wnew's nfsrv is same as rnew's.
7799                                  */
7800                                 wnew->q_nfsrv = rnew->q_nfsrv;
7801                         else
7802                                 wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
7803                 }
7804         }
7805 }
7806 
7807 /*
7808  * Reset the forward service procedure pointer; called at remove-time.
7809  */
7810 void
7811 reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
7812 {
7813         queue_t *tmp_qp;
7814 
7815         /* Reset the write side q_nfsrv pointer for _I_REMOVE */
7816         if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
7817                 for (tmp_qp = backq(wqp);
7818                     tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
7819                     tmp_qp = backq(tmp_qp)) {
7820                         tmp_qp->q_nfsrv = wqp->q_nfsrv;
7821                 }
7822         }
7823 
7824         /* reset the read side q_nfsrv pointer */
7825         if (rqp->q_qinfo->qi_srvp) {
7826                 if (wqp->q_next) {   /* non-driver case */
7827                         tmp_qp = _OTHERQ(wqp->q_next);
7828                         while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
7829                                 /* Note that rqp->q_next cannot be NULL */
7830                                 ASSERT(rqp->q_next != NULL);
7831                                 tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
7832                                 tmp_qp = backq(tmp_qp);
7833                         }
7834                 }
7835         }
7836 }
7837 
7838 /*
7839  * This routine should be called after all stream geometry changes to update
7840  * the stream head cached struio() rd/wr queue pointers. Note must be called
7841  * with the streamlock()ed.
7842  *
7843  * Note: only enables Synchronous STREAMS for a side of a Stream which has
7844  *       an explicit synchronous barrier module queue. That is, a queue that
7845  *       has specified a struio() type.
7846  */
7847 static void
7848 strsetuio(stdata_t *stp)
7849 {
7850         queue_t *wrq;
7851 
7852         if (stp->sd_flag & STPLEX) {
7853                 /*
7854                  * Not streamhead, but a mux, so no Synchronous STREAMS.
7855                  */
7856                 stp->sd_struiowrq = NULL;
7857                 stp->sd_struiordq = NULL;
7858                 return;
7859         }
7860         /*
7861          * Scan the write queue(s) while synchronous
7862          * until we find a qinfo uio type specified.
7863          */
7864         wrq = stp->sd_wrq->q_next;
7865         while (wrq) {
7866                 if (wrq->q_struiot == STRUIOT_NONE) {
7867                         wrq = 0;
7868                         break;
7869                 }
7870                 if (wrq->q_struiot != STRUIOT_DONTCARE)
7871                         break;
7872                 if (! _SAMESTR(wrq)) {
7873                         wrq = 0;
7874                         break;
7875                 }
7876                 wrq = wrq->q_next;
7877         }
7878         stp->sd_struiowrq = wrq;
7879         /*
7880          * Scan the read queue(s) while synchronous
7881          * until we find a qinfo uio type specified.
7882          */
7883         wrq = stp->sd_wrq->q_next;
7884         while (wrq) {
7885                 if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
7886                         wrq = 0;
7887                         break;
7888                 }
7889                 if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
7890                         break;
7891                 if (! _SAMESTR(wrq)) {
7892                         wrq = 0;
7893                         break;
7894                 }
7895                 wrq = wrq->q_next;
7896         }
7897         stp->sd_struiordq = wrq ? _RD(wrq) : 0;
7898 }
7899 
7900 /*
7901  * pass_wput, unblocks the passthru queues, so that
7902  * messages can arrive at muxs lower read queue, before
7903  * I_LINK/I_UNLINK is acked/nacked.
7904  */
7905 static void
7906 pass_wput(queue_t *q, mblk_t *mp)
7907 {
7908         syncq_t *sq;
7909 
7910         sq = _RD(q)->q_syncq;
7911         if (sq->sq_flags & SQ_BLOCKED)
7912                 unblocksq(sq, SQ_BLOCKED, 0);
7913         putnext(q, mp);
7914 }
7915 
7916 /*
7917  * Set up queues for the link/unlink.
7918  * Create a new queue and block it and then insert it
7919  * below the stream head on the lower stream.
7920  * This prevents any messages from arriving during the setq
7921  * as well as while the mux is processing the LINK/I_UNLINK.
7922  * The blocked passq is unblocked once the LINK/I_UNLINK has
7923  * been acked or nacked or if a message is generated and sent
7924  * down muxs write put procedure.
7925  * See pass_wput().
7926  *
7927  * After the new queue is inserted, all messages coming from below are
7928  * blocked. The call to strlock will ensure that all activity in the stream head
7929  * read queue syncq is stopped (sq_count drops to zero).
7930  */
7931 static queue_t *
7932 link_addpassthru(stdata_t *stpdown)
7933 {
7934         queue_t *passq;
7935         sqlist_t sqlist;
7936 
7937         passq = allocq();
7938         STREAM(passq) = STREAM(_WR(passq)) = stpdown;
7939         /* setq might sleep in allocator - avoid holding locks. */
7940         setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
7941             SQ_CI|SQ_CO, B_FALSE);
7942         claimq(passq);
7943         blocksq(passq->q_syncq, SQ_BLOCKED, 1);
7944         insertq(STREAM(passq), passq);
7945 
7946         /*
7947          * Use strlock() to wait for the stream head sq_count to drop to zero
7948          * since we are going to change q_ptr in the stream head.  Note that
7949          * insertq() doesn't wait for any syncq counts to drop to zero.
7950          */
7951         sqlist.sqlist_head = NULL;
7952         sqlist.sqlist_index = 0;
7953         sqlist.sqlist_size = sizeof (sqlist_t);
7954         sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
7955         strlock(stpdown, &sqlist);
7956         strunlock(stpdown, &sqlist);
7957 
7958         releaseq(passq);
7959         return (passq);
7960 }
7961 
7962 /*
7963  * Let messages flow up into the mux by removing
7964  * the passq.
7965  */
7966 static void
7967 link_rempassthru(queue_t *passq)
7968 {
7969         claimq(passq);
7970         removeq(passq);
7971         releaseq(passq);
7972         freeq(passq);
7973 }
7974 
7975 /*
7976  * Wait for the condition variable pointed to by `cvp' to be signaled,
7977  * or for `tim' milliseconds to elapse, whichever comes first.  If `tim'
7978  * is negative, then there is no time limit.  If `nosigs' is non-zero,
7979  * then the wait will be non-interruptible.
7980  *
7981  * Returns >0 if signaled, 0 if interrupted, or -1 upon timeout.
7982  */
7983 clock_t
7984 str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
7985 {
7986         clock_t ret;
7987 
7988         if (tim < 0) {
7989                 if (nosigs) {
7990                         cv_wait(cvp, mp);
7991                         ret = 1;
7992                 } else {
7993                         ret = cv_wait_sig(cvp, mp);
7994                 }
7995         } else if (tim > 0) {
7996                 /*
7997                  * convert milliseconds to clock ticks
7998                  */
7999                 if (nosigs) {
8000                         ret = cv_reltimedwait(cvp, mp,
8001                             MSEC_TO_TICK_ROUNDUP(tim), TR_CLOCK_TICK);
8002                 } else {
8003                         ret = cv_reltimedwait_sig(cvp, mp,
8004                             MSEC_TO_TICK_ROUNDUP(tim), TR_CLOCK_TICK);
8005                 }
8006         } else {
8007                 ret = -1;
8008         }
8009         return (ret);
8010 }
8011 
8012 /*
8013  * Wait until the stream head can determine if it is at the mark but
8014  * don't wait forever to prevent a race condition between the "mark" state
8015  * in the stream head and any mark state in the caller/user of this routine.
8016  *
8017  * This is used by sockets and for a socket it would be incorrect
8018  * to return a failure for SIOCATMARK when there is no data in the receive
8019  * queue and the marked urgent data is traveling up the stream.
8020  *
8021  * This routine waits until the mark is known by waiting for one of these
8022  * three events:
8023  *      The stream head read queue becoming non-empty (including an EOF).
8024  *      The STRATMARK flag being set (due to a MSGMARKNEXT message).
8025  *      The STRNOTATMARK flag being set (which indicates that the transport
8026  *      has sent a MSGNOTMARKNEXT message to indicate that it is not at
8027  *      the mark).
8028  *
8029  * The routine returns 1 if the stream is at the mark; 0 if it can
8030  * be determined that the stream is not at the mark.
8031  * If the wait times out and it can't determine
8032  * whether or not the stream might be at the mark the routine will return -1.
8033  *
8034  * Note: This routine should only be used when a mark is pending i.e.,
8035  * in the socket case the SIGURG has been posted.
8036  * Note2: This can not wakeup just because synchronous streams indicate
8037  * that data is available since it is not possible to use the synchronous
8038  * streams interfaces to determine the b_flag value for the data queued below
8039  * the stream head.
8040  */
8041 int
8042 strwaitmark(vnode_t *vp)
8043 {
8044         struct stdata *stp = vp->v_stream;
8045         queue_t *rq = _RD(stp->sd_wrq);
8046         int mark;
8047 
8048         mutex_enter(&stp->sd_lock);
8049         while (rq->q_first == NULL &&
8050             !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
8051                 stp->sd_flag |= RSLEEP;
8052 
8053                 /* Wait for 100 milliseconds for any state change. */
8054                 if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
8055                         mutex_exit(&stp->sd_lock);
8056                         return (-1);
8057                 }
8058         }
8059         if (stp->sd_flag & STRATMARK)
8060                 mark = 1;
8061         else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
8062                 mark = 1;
8063         else
8064                 mark = 0;
8065 
8066         mutex_exit(&stp->sd_lock);
8067         return (mark);
8068 }
8069 
8070 /*
8071  * Set a read side error. If persist is set change the socket error
8072  * to persistent. If errfunc is set install the function as the exported
8073  * error handler.
8074  */
8075 void
8076 strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
8077 {
8078         struct stdata *stp = vp->v_stream;
8079 
8080         mutex_enter(&stp->sd_lock);
8081         stp->sd_rerror = error;
8082         if (error == 0 && errfunc == NULL)
8083                 stp->sd_flag &= ~STRDERR;
8084         else
8085                 stp->sd_flag |= STRDERR;
8086         if (persist) {
8087                 stp->sd_flag &= ~STRDERRNONPERSIST;
8088         } else {
8089                 stp->sd_flag |= STRDERRNONPERSIST;
8090         }
8091         stp->sd_rderrfunc = errfunc;
8092         if (error != 0 || errfunc != NULL) {
8093                 cv_broadcast(&_RD(stp->sd_wrq)->q_wait);      /* readers */
8094                 cv_broadcast(&stp->sd_wrq->q_wait);           /* writers */
8095                 cv_broadcast(&stp->sd_monitor);                  /* ioctllers */
8096 
8097                 mutex_exit(&stp->sd_lock);
8098                 pollwakeup(&stp->sd_pollist, POLLERR);
8099                 mutex_enter(&stp->sd_lock);
8100 
8101                 if (stp->sd_sigflags & S_ERROR)
8102                         strsendsig(stp->sd_siglist, S_ERROR, 0, error);
8103         }
8104         mutex_exit(&stp->sd_lock);
8105 }
8106 
8107 /*
8108  * Set a write side error. If persist is set change the socket error
8109  * to persistent.
8110  */
8111 void
8112 strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
8113 {
8114         struct stdata *stp = vp->v_stream;
8115 
8116         mutex_enter(&stp->sd_lock);
8117         stp->sd_werror = error;
8118         if (error == 0 && errfunc == NULL)
8119                 stp->sd_flag &= ~STWRERR;
8120         else
8121                 stp->sd_flag |= STWRERR;
8122         if (persist) {
8123                 stp->sd_flag &= ~STWRERRNONPERSIST;
8124         } else {
8125                 stp->sd_flag |= STWRERRNONPERSIST;
8126         }
8127         stp->sd_wrerrfunc = errfunc;
8128         if (error != 0 || errfunc != NULL) {
8129                 cv_broadcast(&_RD(stp->sd_wrq)->q_wait);      /* readers */
8130                 cv_broadcast(&stp->sd_wrq->q_wait);           /* writers */
8131                 cv_broadcast(&stp->sd_monitor);                  /* ioctllers */
8132 
8133                 mutex_exit(&stp->sd_lock);
8134                 pollwakeup(&stp->sd_pollist, POLLERR);
8135                 mutex_enter(&stp->sd_lock);
8136 
8137                 if (stp->sd_sigflags & S_ERROR)
8138                         strsendsig(stp->sd_siglist, S_ERROR, 0, error);
8139         }
8140         mutex_exit(&stp->sd_lock);
8141 }
8142 
8143 /*
8144  * Make the stream return 0 (EOF) when all data has been read.
8145  * No effect on write side.
8146  */
8147 void
8148 strseteof(vnode_t *vp, int eof)
8149 {
8150         struct stdata *stp = vp->v_stream;
8151 
8152         mutex_enter(&stp->sd_lock);
8153         if (!eof) {
8154                 stp->sd_flag &= ~STREOF;
8155                 mutex_exit(&stp->sd_lock);
8156                 return;
8157         }
8158         stp->sd_flag |= STREOF;
8159         if (stp->sd_flag & RSLEEP) {
8160                 stp->sd_flag &= ~RSLEEP;
8161                 cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
8162         }
8163 
8164         mutex_exit(&stp->sd_lock);
8165         pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
8166         mutex_enter(&stp->sd_lock);
8167 
8168         if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
8169                 strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
8170         mutex_exit(&stp->sd_lock);
8171 }
8172 
8173 void
8174 strflushrq(vnode_t *vp, int flag)
8175 {
8176         struct stdata *stp = vp->v_stream;
8177 
8178         mutex_enter(&stp->sd_lock);
8179         flushq(_RD(stp->sd_wrq), flag);
8180         mutex_exit(&stp->sd_lock);
8181 }
8182 
8183 void
8184 strsetrputhooks(vnode_t *vp, uint_t flags,
8185                 msgfunc_t protofunc, msgfunc_t miscfunc)
8186 {
8187         struct stdata *stp = vp->v_stream;
8188 
8189         mutex_enter(&stp->sd_lock);
8190 
8191         if (protofunc == NULL)
8192                 stp->sd_rprotofunc = strrput_proto;
8193         else
8194                 stp->sd_rprotofunc = protofunc;
8195 
8196         if (miscfunc == NULL)
8197                 stp->sd_rmiscfunc = strrput_misc;
8198         else
8199                 stp->sd_rmiscfunc = miscfunc;
8200 
8201         if (flags & SH_CONSOL_DATA)
8202                 stp->sd_rput_opt |= SR_CONSOL_DATA;
8203         else
8204                 stp->sd_rput_opt &= ~SR_CONSOL_DATA;
8205 
8206         if (flags & SH_SIGALLDATA)
8207                 stp->sd_rput_opt |= SR_SIGALLDATA;
8208         else
8209                 stp->sd_rput_opt &= ~SR_SIGALLDATA;
8210 
8211         if (flags & SH_IGN_ZEROLEN)
8212                 stp->sd_rput_opt |= SR_IGN_ZEROLEN;
8213         else
8214                 stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
8215 
8216         mutex_exit(&stp->sd_lock);
8217 }
8218 
8219 void
8220 strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
8221 {
8222         struct stdata *stp = vp->v_stream;
8223 
8224         mutex_enter(&stp->sd_lock);
8225         stp->sd_closetime = closetime;
8226 
8227         if (flags & SH_SIGPIPE)
8228                 stp->sd_wput_opt |= SW_SIGPIPE;
8229         else
8230                 stp->sd_wput_opt &= ~SW_SIGPIPE;
8231         if (flags & SH_RECHECK_ERR)
8232                 stp->sd_wput_opt |= SW_RECHECK_ERR;
8233         else
8234                 stp->sd_wput_opt &= ~SW_RECHECK_ERR;
8235 
8236         mutex_exit(&stp->sd_lock);
8237 }
8238 
8239 void
8240 strsetrwputdatahooks(vnode_t *vp, msgfunc_t rdatafunc, msgfunc_t wdatafunc)
8241 {
8242         struct stdata *stp = vp->v_stream;
8243 
8244         mutex_enter(&stp->sd_lock);
8245 
8246         stp->sd_rputdatafunc = rdatafunc;
8247         stp->sd_wputdatafunc = wdatafunc;
8248 
8249         mutex_exit(&stp->sd_lock);
8250 }
8251 
8252 /* Used within framework when the queue is already locked */
8253 void
8254 qenable_locked(queue_t *q)
8255 {
8256         stdata_t *stp = STREAM(q);
8257 
8258         ASSERT(MUTEX_HELD(QLOCK(q)));
8259 
8260         if (!q->q_qinfo->qi_srvp)
8261                 return;
8262 
8263         /*
8264          * Do not place on run queue if already enabled or closing.
8265          */
8266         if (q->q_flag & (QWCLOSE|QENAB))
8267                 return;
8268 
8269         /*
8270          * mark queue enabled and place on run list if it is not already being
8271          * serviced. If it is serviced, the runservice() function will detect
8272          * that QENAB is set and call service procedure before clearing
8273          * QINSERVICE flag.
8274          */
8275         q->q_flag |= QENAB;
8276         if (q->q_flag & QINSERVICE)
8277                 return;
8278 
8279         /* Record the time of qenable */
8280         q->q_qtstamp = ddi_get_lbolt();
8281 
8282         /*
8283          * Put the queue in the stp list and schedule it for background
8284          * processing if it is not already scheduled or if stream head does not
8285          * intent to process it in the foreground later by setting
8286          * STRS_WILLSERVICE flag.
8287          */
8288         mutex_enter(&stp->sd_qlock);
8289         /*
8290          * If there are already something on the list, stp flags should show
8291          * intention to drain it.
8292          */
8293         IMPLY(STREAM_NEEDSERVICE(stp),
8294             (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
8295 
8296         ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
8297         stp->sd_nqueues++;
8298 
8299         /*
8300          * If no one will drain this stream we are the first producer and
8301          * need to schedule it for background thread.
8302          */
8303         if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
8304                 /*
8305                  * No one will service this stream later, so we have to
8306                  * schedule it now.
8307                  */
8308                 STRSTAT(stenables);
8309                 stp->sd_svcflags |= STRS_SCHEDULED;
8310                 stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
8311                     (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
8312 
8313                 if (stp->sd_servid == NULL) {
8314                         /*
8315                          * Task queue failed so fail over to the backup
8316                          * servicing thread.
8317                          */
8318                         STRSTAT(taskqfails);
8319                         /*
8320                          * It is safe to clear STRS_SCHEDULED flag because it
8321                          * was set by this thread above.
8322                          */
8323                         stp->sd_svcflags &= ~STRS_SCHEDULED;
8324 
8325                         /*
8326                          * Failover scheduling is protected by service_queue
8327                          * lock.
8328                          */
8329                         mutex_enter(&service_queue);
8330                         ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
8331                         ASSERT(q->q_link == NULL);
8332                         /*
8333                          * Append the queue to qhead/qtail list.
8334                          */
8335                         if (qhead == NULL)
8336                                 qhead = q;
8337                         else
8338                                 qtail->q_link = q;
8339                         qtail = q;
8340                         /*
8341                          * Clear stp queue list.
8342                          */
8343                         stp->sd_qhead = stp->sd_qtail = NULL;
8344                         stp->sd_nqueues = 0;
8345                         /*
8346                          * Wakeup background queue processing thread.
8347                          */
8348                         cv_signal(&services_to_run);
8349                         mutex_exit(&service_queue);
8350                 }
8351         }
8352         mutex_exit(&stp->sd_qlock);
8353 }
8354 
8355 static void
8356 queue_service(queue_t *q)
8357 {
8358         /*
8359          * The queue in the list should have
8360          * QENAB flag set and should not have
8361          * QINSERVICE flag set. QINSERVICE is
8362          * set when the queue is dequeued and
8363          * qenable_locked doesn't enqueue a
8364          * queue with QINSERVICE set.
8365          */
8366 
8367         ASSERT(!(q->q_flag & QINSERVICE));
8368         ASSERT((q->q_flag & QENAB));
8369         mutex_enter(QLOCK(q));
8370         q->q_flag &= ~QENAB;
8371         q->q_flag |= QINSERVICE;
8372         mutex_exit(QLOCK(q));
8373         runservice(q);
8374 }
8375 
8376 static void
8377 syncq_service(syncq_t *sq)
8378 {
8379         STRSTAT(syncqservice);
8380         mutex_enter(SQLOCK(sq));
8381         ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
8382         ASSERT(sq->sq_servcount != 0);
8383         ASSERT(sq->sq_next == NULL);
8384 
8385         /* if we came here from the background thread, clear the flag */
8386         if (sq->sq_svcflags & SQ_BGTHREAD)
8387                 sq->sq_svcflags &= ~SQ_BGTHREAD;
8388 
8389         /* let drain_syncq know that it's being called in the background */
8390         sq->sq_svcflags |= SQ_SERVICE;
8391         drain_syncq(sq);
8392 }
8393 
8394 static void
8395 qwriter_outer_service(syncq_t *outer)
8396 {
8397         /*
8398          * Note that SQ_WRITER is used on the outer perimeter
8399          * to signal that a qwriter(OUTER) is either investigating
8400          * running or that it is actually running a function.
8401          */
8402         outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
8403 
8404         /*
8405          * All inner syncq are empty and have SQ_WRITER set
8406          * to block entering the outer perimeter.
8407          *
8408          * We do not need to explicitly call write_now since
8409          * outer_exit does it for us.
8410          */
8411         outer_exit(outer);
8412 }
8413 
8414 static void
8415 mblk_free(mblk_t *mp)
8416 {
8417         dblk_t *dbp = mp->b_datap;
8418         frtn_t *frp = dbp->db_frtnp;
8419 
8420         mp->b_next = NULL;
8421         if (dbp->db_fthdr != NULL)
8422                 str_ftfree(dbp);
8423 
8424         ASSERT(dbp->db_fthdr == NULL);
8425         frp->free_func(frp->free_arg);
8426         ASSERT(dbp->db_mblk == mp);
8427 
8428         if (dbp->db_credp != NULL) {
8429                 crfree(dbp->db_credp);
8430                 dbp->db_credp = NULL;
8431         }
8432         dbp->db_cpid = -1;
8433         dbp->db_struioflag = 0;
8434         dbp->db_struioun.cksum.flags = 0;
8435 
8436         kmem_cache_free(dbp->db_cache, dbp);
8437 }
8438 
8439 /*
8440  * Background processing of the stream queue list.
8441  */
8442 static void
8443 stream_service(stdata_t *stp)
8444 {
8445         queue_t *q;
8446 
8447         mutex_enter(&stp->sd_qlock);
8448 
8449         STR_SERVICE(stp, q);
8450 
8451         stp->sd_svcflags &= ~STRS_SCHEDULED;
8452         stp->sd_servid = NULL;
8453         cv_signal(&stp->sd_qcv);
8454         mutex_exit(&stp->sd_qlock);
8455 }
8456 
8457 /*
8458  * Foreground processing of the stream queue list.
8459  */
8460 void
8461 stream_runservice(stdata_t *stp)
8462 {
8463         queue_t *q;
8464 
8465         mutex_enter(&stp->sd_qlock);
8466         STRSTAT(rservice);
8467         /*
8468          * We are going to drain this stream queue list, so qenable_locked will
8469          * not schedule it until we finish.
8470          */
8471         stp->sd_svcflags |= STRS_WILLSERVICE;
8472 
8473         STR_SERVICE(stp, q);
8474 
8475         stp->sd_svcflags &= ~STRS_WILLSERVICE;
8476         mutex_exit(&stp->sd_qlock);
8477         /*
8478          * Help backup background thread to drain the qhead/qtail list.
8479          */
8480         while (qhead != NULL) {
8481                 STRSTAT(qhelps);
8482                 mutex_enter(&service_queue);
8483                 DQ(q, qhead, qtail, q_link);
8484                 mutex_exit(&service_queue);
8485                 if (q != NULL)
8486                         queue_service(q);
8487         }
8488 }
8489 
8490 void
8491 stream_willservice(stdata_t *stp)
8492 {
8493         mutex_enter(&stp->sd_qlock);
8494         stp->sd_svcflags |= STRS_WILLSERVICE;
8495         mutex_exit(&stp->sd_qlock);
8496 }
8497 
8498 /*
8499  * Replace the cred currently in the mblk with a different one.
8500  * Also update db_cpid.
8501  */
8502 void
8503 mblk_setcred(mblk_t *mp, cred_t *cr, pid_t cpid)
8504 {
8505         dblk_t *dbp = mp->b_datap;
8506         cred_t *ocr = dbp->db_credp;
8507 
8508         ASSERT(cr != NULL);
8509 
8510         if (cr != ocr) {
8511                 crhold(dbp->db_credp = cr);
8512                 if (ocr != NULL)
8513                         crfree(ocr);
8514         }
8515         /* Don't overwrite with NOPID */
8516         if (cpid != NOPID)
8517                 dbp->db_cpid = cpid;
8518 }
8519 
8520 /*
8521  * If the src message has a cred, then replace the cred currently in the mblk
8522  * with it.
8523  * Also update db_cpid.
8524  */
8525 void
8526 mblk_copycred(mblk_t *mp, const mblk_t *src)
8527 {
8528         dblk_t *dbp = mp->b_datap;
8529         cred_t *cr, *ocr;
8530         pid_t cpid;
8531 
8532         cr = msg_getcred(src, &cpid);
8533         if (cr == NULL)
8534                 return;
8535 
8536         ocr = dbp->db_credp;
8537         if (cr != ocr) {
8538                 crhold(dbp->db_credp = cr);
8539                 if (ocr != NULL)
8540                         crfree(ocr);
8541         }
8542         /* Don't overwrite with NOPID */
8543         if (cpid != NOPID)
8544                 dbp->db_cpid = cpid;
8545 }
8546 
8547 int
8548 hcksum_assoc(mblk_t *mp,  multidata_t *mmd, pdesc_t *pd,
8549     uint32_t start, uint32_t stuff, uint32_t end, uint32_t value,
8550     uint32_t flags, int km_flags)
8551 {
8552         int rc = 0;
8553 
8554         ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8555         if (mp->b_datap->db_type == M_DATA) {
8556                 /* Associate values for M_DATA type */
8557                 DB_CKSUMSTART(mp) = (intptr_t)start;
8558                 DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
8559                 DB_CKSUMEND(mp) = (intptr_t)end;
8560                 DB_CKSUMFLAGS(mp) = flags;
8561                 DB_CKSUM16(mp) = (uint16_t)value;
8562 
8563         } else {
8564                 pattrinfo_t pa_info;
8565 
8566                 ASSERT(mmd != NULL);
8567 
8568                 pa_info.type = PATTR_HCKSUM;
8569                 pa_info.len = sizeof (pattr_hcksum_t);
8570 
8571                 if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) {
8572                         pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
8573 
8574                         hck->hcksum_start_offset = start;
8575                         hck->hcksum_stuff_offset = stuff;
8576                         hck->hcksum_end_offset = end;
8577                         hck->hcksum_cksum_val.inet_cksum = (uint16_t)value;
8578                         hck->hcksum_flags = flags;
8579                 } else {
8580                         rc = -1;
8581                 }
8582         }
8583         return (rc);
8584 }
8585 
8586 void
8587 hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
8588     uint32_t *start, uint32_t *stuff, uint32_t *end,
8589     uint32_t *value, uint32_t *flags)
8590 {
8591         ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8592         if (mp->b_datap->db_type == M_DATA) {
8593                 if (flags != NULL) {
8594                         *flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS;
8595                         if ((*flags & (HCK_PARTIALCKSUM |
8596                             HCK_FULLCKSUM)) != 0) {
8597                                 if (value != NULL)
8598                                         *value = (uint32_t)DB_CKSUM16(mp);
8599                                 if ((*flags & HCK_PARTIALCKSUM) != 0) {
8600                                         if (start != NULL)
8601                                                 *start =
8602                                                     (uint32_t)DB_CKSUMSTART(mp);
8603                                         if (stuff != NULL)
8604                                                 *stuff =
8605                                                     (uint32_t)DB_CKSUMSTUFF(mp);
8606                                         if (end != NULL)
8607                                                 *end =
8608                                                     (uint32_t)DB_CKSUMEND(mp);
8609                                 }
8610                         }
8611                 }
8612         } else {
8613                 pattrinfo_t hck_attr = {PATTR_HCKSUM};
8614 
8615                 ASSERT(mmd != NULL);
8616 
8617                 /* get hardware checksum attribute */
8618                 if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) {
8619                         pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf;
8620 
8621                         ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t));
8622                         if (flags != NULL)
8623                                 *flags = hck->hcksum_flags;
8624                         if (start != NULL)
8625                                 *start = hck->hcksum_start_offset;
8626                         if (stuff != NULL)
8627                                 *stuff = hck->hcksum_stuff_offset;
8628                         if (end != NULL)
8629                                 *end = hck->hcksum_end_offset;
8630                         if (value != NULL)
8631                                 *value = (uint32_t)
8632                                     hck->hcksum_cksum_val.inet_cksum;
8633                 }
8634         }
8635 }
8636 
8637 void
8638 lso_info_set(mblk_t *mp, uint32_t mss, uint32_t flags)
8639 {
8640         ASSERT(DB_TYPE(mp) == M_DATA);
8641         ASSERT((flags & ~HW_LSO_FLAGS) == 0);
8642 
8643         /* Set the flags */
8644         DB_LSOFLAGS(mp) |= flags;
8645         DB_LSOMSS(mp) = mss;
8646 }
8647 
8648 void
8649 lso_info_cleanup(mblk_t *mp)
8650 {
8651         ASSERT(DB_TYPE(mp) == M_DATA);
8652 
8653         /* Clear the flags */
8654         DB_LSOFLAGS(mp) &= ~HW_LSO_FLAGS;
8655         DB_LSOMSS(mp) = 0;
8656 }
8657 
8658 /*
8659  * Checksum buffer *bp for len bytes with psum partial checksum,
8660  * or 0 if none, and return the 16 bit partial checksum.
8661  */
8662 unsigned
8663 bcksum(uchar_t *bp, int len, unsigned int psum)
8664 {
8665         int odd = len & 1;
8666         extern unsigned int ip_ocsum();
8667 
8668         if (((intptr_t)bp & 1) == 0 && !odd) {
8669                 /*
8670                  * Bp is 16 bit aligned and len is multiple of 16 bit word.
8671                  */
8672                 return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
8673         }
8674         if (((intptr_t)bp & 1) != 0) {
8675                 /*
8676                  * Bp isn't 16 bit aligned.
8677                  */
8678                 unsigned int tsum;
8679 
8680 #ifdef _LITTLE_ENDIAN
8681                 psum += *bp;
8682 #else
8683                 psum += *bp << 8;
8684 #endif
8685                 len--;
8686                 bp++;
8687                 tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
8688                 psum += (tsum << 8) & 0xffff | (tsum >> 8);
8689                 if (len & 1) {
8690                         bp += len - 1;
8691 #ifdef _LITTLE_ENDIAN
8692                         psum += *bp << 8;
8693 #else
8694                         psum += *bp;
8695 #endif
8696                 }
8697         } else {
8698                 /*
8699                  * Bp is 16 bit aligned.
8700                  */
8701                 psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
8702                 if (odd) {
8703                         bp += len - 1;
8704 #ifdef _LITTLE_ENDIAN
8705                         psum += *bp;
8706 #else
8707                         psum += *bp << 8;
8708 #endif
8709                 }
8710         }
8711         /*
8712          * Normalize psum to 16 bits before returning the new partial
8713          * checksum. The max psum value before normalization is 0x3FDFE.
8714          */
8715         return ((psum >> 16) + (psum & 0xFFFF));
8716 }
8717 
8718 boolean_t
8719 is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd)
8720 {
8721         boolean_t rc;
8722 
8723         ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8724         if (DB_TYPE(mp) == M_DATA) {
8725                 rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0);
8726         } else {
8727                 pattrinfo_t zcopy_attr = {PATTR_ZCOPY};
8728 
8729                 ASSERT(mmd != NULL);
8730                 rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL);
8731         }
8732         return (rc);
8733 }
8734 
8735 void
8736 freemsgchain(mblk_t *mp)
8737 {
8738         mblk_t  *next;
8739 
8740         while (mp != NULL) {
8741                 next = mp->b_next;
8742                 mp->b_next = NULL;
8743 
8744                 freemsg(mp);
8745                 mp = next;
8746         }
8747 }
8748 
8749 mblk_t *
8750 copymsgchain(mblk_t *mp)
8751 {
8752         mblk_t  *nmp = NULL;
8753         mblk_t  **nmpp = &nmp;
8754 
8755         for (; mp != NULL; mp = mp->b_next) {
8756                 if ((*nmpp = copymsg(mp)) == NULL) {
8757                         freemsgchain(nmp);
8758                         return (NULL);
8759                 }
8760 
8761                 nmpp = &((*nmpp)->b_next);
8762         }
8763 
8764         return (nmp);
8765 }
8766 
8767 /* NOTE: Do not add code after this point. */
8768 #undef QLOCK
8769 
8770 /*
8771  * Replacement for QLOCK macro for those that can't use it.
8772  */
8773 kmutex_t *
8774 QLOCK(queue_t *q)
8775 {
8776         return (&(q)->q_lock);
8777 }
8778 
8779 /*
8780  * Dummy runqueues/queuerun functions functions for backwards compatibility.
8781  */
8782 #undef runqueues
8783 void
8784 runqueues(void)
8785 {
8786 }
8787 
8788 #undef queuerun
8789 void
8790 queuerun(void)
8791 {
8792 }
8793 
8794 /*
8795  * Initialize the STR stack instance, which tracks autopush and persistent
8796  * links.
8797  */
8798 /* ARGSUSED */
8799 static void *
8800 str_stack_init(netstackid_t stackid, netstack_t *ns)
8801 {
8802         str_stack_t     *ss;
8803         int i;
8804 
8805         ss = (str_stack_t *)kmem_zalloc(sizeof (*ss), KM_SLEEP);
8806         ss->ss_netstack = ns;
8807 
8808         /*
8809          * set up autopush
8810          */
8811         sad_initspace(ss);
8812 
8813         /*
8814          * set up mux_node structures.
8815          */
8816         ss->ss_devcnt = devcnt;      /* In case it should change before free */
8817         ss->ss_mux_nodes = kmem_zalloc((sizeof (struct mux_node) *
8818             ss->ss_devcnt), KM_SLEEP);
8819         for (i = 0; i < ss->ss_devcnt; i++)
8820                 ss->ss_mux_nodes[i].mn_imaj = i;
8821         return (ss);
8822 }
8823 
8824 /*
8825  * Note: run at zone shutdown and not destroy so that the PLINKs are
8826  * gone by the time other cleanup happens from the destroy callbacks.
8827  */
8828 static void
8829 str_stack_shutdown(netstackid_t stackid, void *arg)
8830 {
8831         str_stack_t *ss = (str_stack_t *)arg;
8832         int i;
8833         cred_t *cr;
8834 
8835         cr = zone_get_kcred(netstackid_to_zoneid(stackid));
8836         ASSERT(cr != NULL);
8837 
8838         /* Undo all the I_PLINKs for this zone */
8839         for (i = 0; i < ss->ss_devcnt; i++) {
8840                 struct mux_edge         *ep;
8841                 ldi_handle_t            lh;
8842                 ldi_ident_t             li;
8843                 int                     ret;
8844                 int                     rval;
8845                 dev_t                   rdev;
8846 
8847                 ep = ss->ss_mux_nodes[i].mn_outp;
8848                 if (ep == NULL)
8849                         continue;
8850                 ret = ldi_ident_from_major((major_t)i, &li);
8851                 if (ret != 0) {
8852                         continue;
8853                 }
8854                 rdev = ep->me_dev;
8855                 ret = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD|FWRITE,
8856                     cr, &lh, li);
8857                 if (ret != 0) {
8858                         ldi_ident_release(li);
8859                         continue;
8860                 }
8861 
8862                 ret = ldi_ioctl(lh, I_PUNLINK, (intptr_t)MUXID_ALL, FKIOCTL,
8863                     cr, &rval);
8864                 if (ret) {
8865                         (void) ldi_close(lh, FREAD|FWRITE, cr);
8866                         ldi_ident_release(li);
8867                         continue;
8868                 }
8869                 (void) ldi_close(lh, FREAD|FWRITE, cr);
8870 
8871                 /* Close layered handles */
8872                 ldi_ident_release(li);
8873         }
8874         crfree(cr);
8875 
8876         sad_freespace(ss);
8877 
8878         kmem_free(ss->ss_mux_nodes, sizeof (struct mux_node) * ss->ss_devcnt);
8879         ss->ss_mux_nodes = NULL;
8880 }
8881 
8882 /*
8883  * Free the structure; str_stack_shutdown did the other cleanup work.
8884  */
8885 /* ARGSUSED */
8886 static void
8887 str_stack_fini(netstackid_t stackid, void *arg)
8888 {
8889         str_stack_t     *ss = (str_stack_t *)arg;
8890 
8891         kmem_free(ss, sizeof (*ss));
8892 }