new usr/src/ man/ man3lib/libavl.3lib

R R R R

10613 Fri Dec 4 18:09:24 2015
new usr/src/ man/ man3lib/libavl.3lib
6498 typo in |ibavl (3LIB) man page
Revi ewed by: Marcel Tel ka <nmarcel @el ka. sk>
Revi ewed by: Yuri Pankov <yuri.pankov@exenta.conr
LR EEEEEEEEEEE SRS RS RS SRS RS RS E R EEERREERREEREREEEEEEEEEESESESE]
1.\
2 .\" This file and its contents are supplied under the ternms of the
3 .\" Common Devel opnent and Distribution License (" "), version 1.0.
4 .\" You may only use this file in accordance with the terms of version
5 Q 1.0 of the CDDL.
6 \"
7 .\" Afull copy of the text of the CDDL shoul d have acconpanied this
8 .\" source. A copy of the CDDL is also available via the Internet at
9 .\" http://wwvillunps.org/license/ CDDL.

10 .\"

11 .\

12 .\" Copyright 2015 Joyent, Inc.
13 .\"

14 .Dd Dec 04, 2015

14 .Dd May 07, 2015

15 . Dt LIBAVL 3LIB

16 . Cs

17 . sh NAME

18 . Nm i bavl

19 . Nd generic self-balancing binary search tree library
20 .Sh SYNOPSI' S

21 .Lb libavl

22 .1n sys/avl.h

23 . Sh DESCRI PTI ON

24 The

25 . Nm

26 library provides a generic inplenentation of AVL trees, a form of

27 sel f-bal ancing binary tree. The interfaces provided allow for an

28 efficient way of inplenenting an ordered set of data structures and, due
29 to its enbeddabl e nature, allow for a single instance of a data

30 structure to belong to multiple AVL trees.

31 .Lp

32 Each AVL tree contains entries of a single type of data structure.

33 Rather than allocating nenory for pointers for those data structures,
34 the storage for the tree is enbedded into the data structures by

35 declaring a nenber of type

36 .Vt avl_node_t .

37 Wien an AVL tree is created, through the use of

38 .Fn avl _create ,

39 it encodes the size of the data structure, the offset of the data

40 structure, and a conparator function which is used to conpare two

41 instances of a data structure. A data structure may be a nenber of

42 nultiple AVL trees by creating AVL trees which use different

43 offsets (different nenbers) into the data structure.

44 . Lp

45 AVL trees support both | ook up of an arbitrary item and ordered

46 iteration over the contents of the entire tree. In addition, from any
47 node, you can find the previous and next entries in the tree, if they
48 exist. In addition, AVL trees support arbitrary insertion and del etion.
49 . Ss Performance

50 AVL trees are often used in place of linked |lists. Conpared to the
51 standard, intrusive, doubly linked list, it has the follow ng

52 performance characteristics:

53 .Bl -hang -width Ds

54 .1t Sy Lookup One Node

55 .Bd -filled -conpact

56 Lookup of a single node in a linked list is

57 .Sy Q'n) ,

58 whereas | ookup of a single node in an AVL tree is

new usr/src/ man/ man3lib/libavl.3lib

59
0

- Sy (1 og(n))
Ed

It Sy Insert One Node

.Bd -filled -conpact

Inserting a single node into a linked list is
q1) .

inserting a single node into an AVL tree is

Sy Q(log(n))
. Pp

Note, insertions into an AVL tree always result in an ordered tree.
Insertions into a linked list do not guarantee order. If order is
required, then the time to do the insertion into a linked list will
depend on the tine of the search algorithm being enployed to find the
place to insert at.

Ed

It Sy Del ete One Node

.Bd -filled -conpact

Deleting a single node froma linked list is

Sy 1), ‘

whereas deleting a single node froman AVL tree takes

.Sy ((1og(n))
tine.

. Ed

.1t Sy Delete Al Nodes

.Bd -filled -conpact

Deleting all nodes froma linked list is

Sy Q) o
Wth an AVL tree, if using the

. Xr avl _destroy_nodes 3AVL

. Xr avl _del ete_nodes 3AVL
function then deleting all nodes

is
Sy am .o . o
However, if iterating over each entry in the tree and then renoving it using
a while | oop,

. Xr avl _first 3AVL

and

. Xr avl _renove 3AVL

then the tine to renove all nodes is

.Sy Q(n\ *\ log(n)).
Ed

.1t Sy Visit the Next or Previous Node

.Bd -filled -conpact

Visiting the next or previous node in a linked list is

SSy A1) ) ) )
whereas going fromthe next to the previous node in an AVL tree will
take between

-Sy A1)

and

Sy Q(log(n))

. Ed

.H

. Pp

In general, AVL trees are a good alternative for linked |ists when order
or | ookup speed is inportant and a reasonabl e nunber of items will be
present.

. Sh | NTERFACES

The shared obj ect

.Sy libavl.so.1

provides the public interfaces defined bel ow. See

. Xr Intro(3)

for additional information on shared object interfaces. |ndividual
functions are docunented in their own nanual pages.

.Bl -colum -offset indent ".Sy avl_is_enpty" ".Sy avl_destroy_nodes"
.1t Sy avl_add Ta Sy avl _create

.1t Sy avl _destroy Ta Sy avl _destroy_nodes



new usr/src/ man/ man3lib/libavl.3lib

124 .
125 .
126 .
127 .
128 .

129
130
131
132
133
134
135

137
138

139 .

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

It Sy avl_find Ta Sy avl _first

It Sy avl _insert Ta Sy avl_insert_here

It Sy avl _is_enpty Ta Sy avl_| ast

It Sy avl_nearest Ta Sy avl _nummodes

It Sy avl _renpve Ta Sy avl _swap

.H

. Pp

In addition, the library defines C pre-processor macros which are
defined bel ow and docunented in their own nanual pages.

A\

.\" Use the sanme colum wi dths in both cases where we describe the I|ist

.\" of interfaces, to allow the manual page to better line up when rendered.
136 .

.Bl -colum -offset indent ".Sy avl_is_enpty" ".Sy avl_destroy_nodes"
LIt Sy AVL_NEXT Ta Sy AVL_PREV
El
. Sh TYPES
The
Nm

iibrary defines the follow ng types:
L

-Lp

.Sy avl _tree_t

.Lp

Type used for the root of the AVL tree. Consuners define one of these
for each of the different trees that they want to have.

.Lp
.Sy avl _node_t
L

-Lp

Type used as the data node for an AVL tree. One of these is enbedded in
each data structure that is the menber of an AVL tree.

.Lp

.Sy avl _index_t

.Lp

Type used to locate a position in a tree. This is used with

. Xr avl _find 3AVL

and

.Xr avl _insert 3AVL .
. Sh LOCKI NG

The

. Nm

library provides no locking. Callers that are using the same AVL tree
fromnultiple threads need to provide their own synchronization. If only
one thread is ever accessing or nodifying the AVL tree, then there are
no synchroni zation concerns. If nultiple AVL trees exist, then they may
all be used sinultaneously; however, they are subject to the same rules
around sinul t aneous access froma single thread.

.Lp
Al routines are both

.Sy Fork-safe

and

.Sy Async-Signal -Safe .
Callers may call functions in
N

. Nm
froma signal handler and

. Nm

calls are all safe in face of
. Xr fork 2 ;

however, if callers have their own |ocks, then they nust make sure that
they are accounted for by the use of routines such as

. Xr pthread_atfork 3C .

. Sh EXAMPLES

The foll owi ng code shows exanples of exercising all of the functionality
that is present in

. Nm .

It can be conpiled by using a C conpiler and |inking

agai nst

new

190
191
192
193
194
195
196
197
198

200
201
202
203

205

207
208
209
210
211
212
213

usr/src/ man/ man3lib/libavl.3lib

.Nm .
For exanple, given a file nanmed avl.c, with gcc, one would run:

.Bd -literal

$ gcc -Wall -o avl avl.c -lavl
. Ed

.Bd -literal

/*

* Exanpl e of using AVL Trees
*/

#i ncl ude <sys/avl . h>

#i ncl ude <stddef.h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

static avl _tree_t inttree;

/*
* The structure that we're storing in an AVL tree.
*

typedef struct intnode {
int in_val;
avl _node_t in_avl;
} intnode_t;

__unchanged_portion_onitted_



