1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
  24  */
  25 
  26 /*      Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
  27 /*      Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T   */
  28 /*              All Rights Reserved                             */
  29 /*                                                              */
  30 /*      Copyright (c) 1987, 1988 Microsoft Corporation          */
  31 /*              All Rights Reserved                             */
  32 /*                                                              */
  33 
  34 /*
  35  * Copyright 2017 Joyent, Inc.
  36  */
  37 
  38 #include <sys/types.h>
  39 #include <sys/sysmacros.h>
  40 #include <sys/param.h>
  41 #include <sys/signal.h>
  42 #include <sys/systm.h>
  43 #include <sys/user.h>
  44 #include <sys/proc.h>
  45 #include <sys/disp.h>
  46 #include <sys/class.h>
  47 #include <sys/core.h>
  48 #include <sys/syscall.h>
  49 #include <sys/cpuvar.h>
  50 #include <sys/vm.h>
  51 #include <sys/sysinfo.h>
  52 #include <sys/fault.h>
  53 #include <sys/stack.h>
  54 #include <sys/psw.h>
  55 #include <sys/regset.h>
  56 #include <sys/fp.h>
  57 #include <sys/trap.h>
  58 #include <sys/kmem.h>
  59 #include <sys/vtrace.h>
  60 #include <sys/cmn_err.h>
  61 #include <sys/prsystm.h>
  62 #include <sys/mutex_impl.h>
  63 #include <sys/machsystm.h>
  64 #include <sys/archsystm.h>
  65 #include <sys/sdt.h>
  66 #include <sys/avintr.h>
  67 #include <sys/kobj.h>
  68 
  69 #include <vm/hat.h>
  70 
  71 #include <vm/seg_kmem.h>
  72 #include <vm/as.h>
  73 #include <vm/seg.h>
  74 #include <vm/hat_pte.h>
  75 #include <vm/hat_i86.h>
  76 
  77 #include <sys/procfs.h>
  78 
  79 #include <sys/reboot.h>
  80 #include <sys/debug.h>
  81 #include <sys/debugreg.h>
  82 #include <sys/modctl.h>
  83 #include <sys/aio_impl.h>
  84 #include <sys/tnf.h>
  85 #include <sys/tnf_probe.h>
  86 #include <sys/cred.h>
  87 #include <sys/mman.h>
  88 #include <sys/x86_archext.h>
  89 #include <sys/copyops.h>
  90 #include <c2/audit.h>
  91 #include <sys/ftrace.h>
  92 #include <sys/panic.h>
  93 #include <sys/traptrace.h>
  94 #include <sys/ontrap.h>
  95 #include <sys/cpc_impl.h>
  96 #include <sys/bootconf.h>
  97 #include <sys/bootinfo.h>
  98 #include <sys/promif.h>
  99 #include <sys/mach_mmu.h>
 100 #if defined(__xpv)
 101 #include <sys/hypervisor.h>
 102 #endif
 103 #include <sys/contract/process_impl.h>
 104 
 105 #define USER    0x10000         /* user-mode flag added to trap type */
 106 
 107 static const char *trap_type_mnemonic[] = {
 108         "de",   "db",   "2",    "bp",
 109         "of",   "br",   "ud",   "nm",
 110         "df",   "9",    "ts",   "np",
 111         "ss",   "gp",   "pf",   "15",
 112         "mf",   "ac",   "mc",   "xf"
 113 };
 114 
 115 static const char *trap_type[] = {
 116         "Divide error",                         /* trap id 0    */
 117         "Debug",                                /* trap id 1    */
 118         "NMI interrupt",                        /* trap id 2    */
 119         "Breakpoint",                           /* trap id 3    */
 120         "Overflow",                             /* trap id 4    */
 121         "BOUND range exceeded",                 /* trap id 5    */
 122         "Invalid opcode",                       /* trap id 6    */
 123         "Device not available",                 /* trap id 7    */
 124         "Double fault",                         /* trap id 8    */
 125         "Coprocessor segment overrun",          /* trap id 9    */
 126         "Invalid TSS",                          /* trap id 10   */
 127         "Segment not present",                  /* trap id 11   */
 128         "Stack segment fault",                  /* trap id 12   */
 129         "General protection",                   /* trap id 13   */
 130         "Page fault",                           /* trap id 14   */
 131         "Reserved",                             /* trap id 15   */
 132         "x87 floating point error",             /* trap id 16   */
 133         "Alignment check",                      /* trap id 17   */
 134         "Machine check",                        /* trap id 18   */
 135         "SIMD floating point exception",        /* trap id 19   */
 136 };
 137 
 138 #define TRAP_TYPES      (sizeof (trap_type) / sizeof (trap_type[0]))
 139 
 140 #define SLOW_SCALL_SIZE 2
 141 #define FAST_SCALL_SIZE 2
 142 
 143 int tudebug = 0;
 144 int tudebugbpt = 0;
 145 int tudebugfpe = 0;
 146 int tudebugsse = 0;
 147 
 148 #if defined(TRAPDEBUG) || defined(lint)
 149 int tdebug = 0;
 150 int lodebug = 0;
 151 int faultdebug = 0;
 152 #else
 153 #define tdebug  0
 154 #define lodebug 0
 155 #define faultdebug      0
 156 #endif /* defined(TRAPDEBUG) || defined(lint) */
 157 
 158 #if defined(TRAPTRACE)
 159 /*
 160  * trap trace record for cpu0 is allocated here.
 161  * trap trace records for non-boot cpus are allocated in mp_startup_init().
 162  */
 163 static trap_trace_rec_t trap_tr0[TRAPTR_NENT];
 164 trap_trace_ctl_t trap_trace_ctl[NCPU] = {
 165         {
 166             (uintptr_t)trap_tr0,                        /* next record */
 167             (uintptr_t)trap_tr0,                        /* first record */
 168             (uintptr_t)(trap_tr0 + TRAPTR_NENT),        /* limit */
 169             (uintptr_t)0                                /* current */
 170         },
 171 };
 172 
 173 /*
 174  * default trap buffer size
 175  */
 176 size_t trap_trace_bufsize = TRAPTR_NENT * sizeof (trap_trace_rec_t);
 177 int trap_trace_freeze = 0;
 178 int trap_trace_off = 0;
 179 
 180 /*
 181  * A dummy TRAPTRACE entry to use after death.
 182  */
 183 trap_trace_rec_t trap_trace_postmort;
 184 
 185 static void dump_ttrace(void);
 186 #endif  /* TRAPTRACE */
 187 static void dumpregs(struct regs *);
 188 static void showregs(uint_t, struct regs *, caddr_t);
 189 static int kern_gpfault(struct regs *);
 190 
 191 /*ARGSUSED*/
 192 static int
 193 die(uint_t type, struct regs *rp, caddr_t addr, processorid_t cpuid)
 194 {
 195         struct panic_trap_info ti;
 196         const char *trap_name, *trap_mnemonic;
 197 
 198         if (type < TRAP_TYPES) {
 199                 trap_name = trap_type[type];
 200                 trap_mnemonic = trap_type_mnemonic[type];
 201         } else {
 202                 trap_name = "trap";
 203                 trap_mnemonic = "-";
 204         }
 205 
 206 #ifdef TRAPTRACE
 207         TRAPTRACE_FREEZE;
 208 #endif
 209 
 210         ti.trap_regs = rp;
 211         ti.trap_type = type & ~USER;
 212         ti.trap_addr = addr;
 213 
 214         curthread->t_panic_trap = &ti;
 215 
 216         if (type == T_PGFLT && addr < (caddr_t)kernelbase) {
 217                 panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p "
 218                     "occurred in module \"%s\" due to %s",
 219                     type, trap_mnemonic, trap_name, (void *)rp, (void *)addr,
 220                     mod_containing_pc((caddr_t)rp->r_pc),
 221                     addr < (caddr_t)PAGESIZE ?
 222                     "a NULL pointer dereference" :
 223                     "an illegal access to a user address");
 224         } else
 225                 panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p",
 226                     type, trap_mnemonic, trap_name, (void *)rp, (void *)addr);
 227         return (0);
 228 }
 229 
 230 /*
 231  * Rewrite the instruction at pc to be an int $T_SYSCALLINT instruction.
 232  *
 233  * int <vector> is two bytes: 0xCD <vector>
 234  */
 235 
 236 static int
 237 rewrite_syscall(caddr_t pc)
 238 {
 239         uchar_t instr[SLOW_SCALL_SIZE] = { 0xCD, T_SYSCALLINT };
 240 
 241         if (uwrite(curthread->t_procp, instr, SLOW_SCALL_SIZE,
 242             (uintptr_t)pc) != 0)
 243                 return (1);
 244 
 245         return (0);
 246 }
 247 
 248 /*
 249  * Test to see if the instruction at pc is sysenter or syscall. The second
 250  * argument should be the x86 feature flag corresponding to the expected
 251  * instruction.
 252  *
 253  * sysenter is two bytes: 0x0F 0x34
 254  * syscall is two bytes:  0x0F 0x05
 255  * int $T_SYSCALLINT is two bytes: 0xCD 0x91
 256  */
 257 
 258 static int
 259 instr_is_other_syscall(caddr_t pc, int which)
 260 {
 261         uchar_t instr[FAST_SCALL_SIZE];
 262 
 263         ASSERT(which == X86FSET_SEP || which == X86FSET_ASYSC || which == 0xCD);
 264 
 265         if (copyin_nowatch(pc, (caddr_t)instr, FAST_SCALL_SIZE) != 0)
 266                 return (0);
 267 
 268         switch (which) {
 269         case X86FSET_SEP:
 270                 if (instr[0] == 0x0F && instr[1] == 0x34)
 271                         return (1);
 272                 break;
 273         case X86FSET_ASYSC:
 274                 if (instr[0] == 0x0F && instr[1] == 0x05)
 275                         return (1);
 276                 break;
 277         case 0xCD:
 278                 if (instr[0] == 0xCD && instr[1] == T_SYSCALLINT)
 279                         return (1);
 280                 break;
 281         }
 282 
 283         return (0);
 284 }
 285 
 286 static const char *
 287 syscall_insn_string(int syscall_insn)
 288 {
 289         switch (syscall_insn) {
 290         case X86FSET_SEP:
 291                 return ("sysenter");
 292         case X86FSET_ASYSC:
 293                 return ("syscall");
 294         case 0xCD:
 295                 return ("int");
 296         default:
 297                 return ("Unknown");
 298         }
 299 }
 300 
 301 static int
 302 ldt_rewrite_syscall(struct regs *rp, proc_t *p, int syscall_insn)
 303 {
 304         caddr_t linearpc;
 305         int return_code = 0;
 306 
 307         mutex_enter(&p->p_ldtlock);      /* Must be held across linear_pc() */
 308 
 309         if (linear_pc(rp, p, &linearpc) == 0) {
 310 
 311                 /*
 312                  * If another thread beat us here, it already changed
 313                  * this site to the slower (int) syscall instruction.
 314                  */
 315                 if (instr_is_other_syscall(linearpc, 0xCD)) {
 316                         return_code = 1;
 317                 } else if (instr_is_other_syscall(linearpc, syscall_insn)) {
 318 
 319                         if (rewrite_syscall(linearpc) == 0) {
 320                                 return_code = 1;
 321                         }
 322 #ifdef DEBUG
 323                         else
 324                                 cmn_err(CE_WARN, "failed to rewrite %s "
 325                                     "instruction in process %d",
 326                                     syscall_insn_string(syscall_insn),
 327                                     p->p_pid);
 328 #endif /* DEBUG */
 329                 }
 330         }
 331 
 332         mutex_exit(&p->p_ldtlock);       /* Must be held across linear_pc() */
 333 
 334         return (return_code);
 335 }
 336 
 337 /*
 338  * Test to see if the instruction at pc is a system call instruction.
 339  *
 340  * The bytes of an lcall instruction used for the syscall trap.
 341  * static uchar_t lcall[7] = { 0x9a, 0, 0, 0, 0, 0x7, 0 };
 342  * static uchar_t lcallalt[7] = { 0x9a, 0, 0, 0, 0, 0x27, 0 };
 343  */
 344 
 345 #define LCALLSIZE       7
 346 
 347 static int
 348 instr_is_lcall_syscall(caddr_t pc)
 349 {
 350         uchar_t instr[LCALLSIZE];
 351 
 352         if (copyin_nowatch(pc, (caddr_t)instr, LCALLSIZE) == 0 &&
 353             instr[0] == 0x9a &&
 354             instr[1] == 0 &&
 355             instr[2] == 0 &&
 356             instr[3] == 0 &&
 357             instr[4] == 0 &&
 358             (instr[5] == 0x7 || instr[5] == 0x27) &&
 359             instr[6] == 0)
 360                 return (1);
 361 
 362         return (0);
 363 }
 364 
 365 #ifdef __amd64
 366 
 367 /*
 368  * In the first revisions of amd64 CPUs produced by AMD, the LAHF and
 369  * SAHF instructions were not implemented in 64-bit mode. Later revisions
 370  * did implement these instructions. An extension to the cpuid instruction
 371  * was added to check for the capability of executing these instructions
 372  * in 64-bit mode.
 373  *
 374  * Intel originally did not implement these instructions in EM64T either,
 375  * but added them in later revisions.
 376  *
 377  * So, there are different chip revisions by both vendors out there that
 378  * may or may not implement these instructions. The easy solution is to
 379  * just always emulate these instructions on demand.
 380  *
 381  * SAHF == store %ah in the lower 8 bits of %rflags (opcode 0x9e)
 382  * LAHF == load the lower 8 bits of %rflags into %ah (opcode 0x9f)
 383  */
 384 
 385 #define LSAHFSIZE 1
 386 
 387 static int
 388 instr_is_lsahf(caddr_t pc, uchar_t *instr)
 389 {
 390         if (copyin_nowatch(pc, (caddr_t)instr, LSAHFSIZE) == 0 &&
 391             (*instr == 0x9e || *instr == 0x9f))
 392                 return (1);
 393         return (0);
 394 }
 395 
 396 /*
 397  * Emulate the LAHF and SAHF instructions. The reference manuals define
 398  * these instructions to always load/store bit 1 as a 1, and bits 3 and 5
 399  * as a 0. The other, defined, bits are copied (the PS_ICC bits and PS_P).
 400  *
 401  * Note that %ah is bits 8-15 of %rax.
 402  */
 403 static void
 404 emulate_lsahf(struct regs *rp, uchar_t instr)
 405 {
 406         if (instr == 0x9e) {
 407                 /* sahf. Copy bits from %ah to flags. */
 408                 rp->r_ps = (rp->r_ps & ~0xff) |
 409                     ((rp->r_rax >> 8) & PSL_LSAHFMASK) | PS_MB1;
 410         } else {
 411                 /* lahf. Copy bits from flags to %ah. */
 412                 rp->r_rax = (rp->r_rax & ~0xff00) |
 413                     (((rp->r_ps & PSL_LSAHFMASK) | PS_MB1) << 8);
 414         }
 415         rp->r_pc += LSAHFSIZE;
 416 }
 417 #endif /* __amd64 */
 418 
 419 #ifdef OPTERON_ERRATUM_91
 420 
 421 /*
 422  * Test to see if the instruction at pc is a prefetch instruction.
 423  *
 424  * The first byte of prefetch instructions is always 0x0F.
 425  * The second byte is 0x18 for regular prefetch or 0x0D for AMD 3dnow prefetch.
 426  * The third byte (ModRM) contains the register field bits (bits 3-5).
 427  * These bits must be between 0 and 3 inclusive for regular prefetch and
 428  * 0 and 1 inclusive for AMD 3dnow prefetch.
 429  *
 430  * In 64-bit mode, there may be a one-byte REX prefex (0x40-0x4F).
 431  */
 432 
 433 static int
 434 cmp_to_prefetch(uchar_t *p)
 435 {
 436 #ifdef _LP64
 437         if ((p[0] & 0xF0) == 0x40)  /* 64-bit REX prefix */
 438                 p++;
 439 #endif
 440         return ((p[0] == 0x0F && p[1] == 0x18 && ((p[2] >> 3) & 7) <= 3) ||
 441             (p[0] == 0x0F && p[1] == 0x0D && ((p[2] >> 3) & 7) <= 1));
 442 }
 443 
 444 static int
 445 instr_is_prefetch(caddr_t pc)
 446 {
 447         uchar_t instr[4];       /* optional REX prefix plus 3-byte opcode */
 448 
 449         return (copyin_nowatch(pc, instr, sizeof (instr)) == 0 &&
 450             cmp_to_prefetch(instr));
 451 }
 452 
 453 #endif /* OPTERON_ERRATUM_91 */
 454 
 455 /*
 456  * Called from the trap handler when a processor trap occurs.
 457  *
 458  * Note: All user-level traps that might call stop() must exit
 459  * trap() by 'goto out' or by falling through.
 460  * Note Also: trap() is usually called with interrupts enabled, (PS_IE == 1)
 461  * however, there are paths that arrive here with PS_IE == 0 so special care
 462  * must be taken in those cases.
 463  */
 464 void
 465 trap(struct regs *rp, caddr_t addr, processorid_t cpuid)
 466 {
 467         kthread_t *ct = curthread;
 468         enum seg_rw rw;
 469         unsigned type;
 470         proc_t *p = ttoproc(ct);
 471         klwp_t *lwp = ttolwp(ct);
 472         uintptr_t lofault;
 473         label_t *onfault;
 474         faultcode_t pagefault(), res, errcode;
 475         enum fault_type fault_type;
 476         k_siginfo_t siginfo;
 477         uint_t fault = 0;
 478         int mstate;
 479         int sicode = 0;
 480         int watchcode;
 481         int watchpage;
 482         caddr_t vaddr;
 483         int singlestep_twiddle;
 484         size_t sz;
 485         int ta;
 486 #ifdef __amd64
 487         uchar_t instr;
 488 #endif
 489 
 490         ASSERT_STACK_ALIGNED();
 491 
 492         type = rp->r_trapno;
 493         CPU_STATS_ADDQ(CPU, sys, trap, 1);
 494         ASSERT(ct->t_schedflag & TS_DONT_SWAP);
 495 
 496         if (type == T_PGFLT) {
 497 
 498                 errcode = rp->r_err;
 499                 if (errcode & PF_ERR_WRITE)
 500                         rw = S_WRITE;
 501                 else if ((caddr_t)rp->r_pc == addr ||
 502                     (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC)))
 503                         rw = S_EXEC;
 504                 else
 505                         rw = S_READ;
 506 
 507 #if defined(__i386)
 508                 /*
 509                  * Pentium Pro work-around
 510                  */
 511                 if ((errcode & PF_ERR_PROT) && pentiumpro_bug4046376) {
 512                         uint_t  attr;
 513                         uint_t  priv_violation;
 514                         uint_t  access_violation;
 515 
 516                         if (hat_getattr(addr < (caddr_t)kernelbase ?
 517                             curproc->p_as->a_hat : kas.a_hat, addr, &attr)
 518                             == -1) {
 519                                 errcode &= ~PF_ERR_PROT;
 520                         } else {
 521                                 priv_violation = (errcode & PF_ERR_USER) &&
 522                                     !(attr & PROT_USER);
 523                                 access_violation = (errcode & PF_ERR_WRITE) &&
 524                                     !(attr & PROT_WRITE);
 525                                 if (!priv_violation && !access_violation)
 526                                         goto cleanup;
 527                         }
 528                 }
 529 #endif /* __i386 */
 530 
 531         } else if (type == T_SGLSTP && lwp != NULL)
 532                 lwp->lwp_pcb.pcb_drstat = (uintptr_t)addr;
 533 
 534         if (tdebug)
 535                 showregs(type, rp, addr);
 536 
 537         if (USERMODE(rp->r_cs)) {
 538                 /*
 539                  * Set up the current cred to use during this trap. u_cred
 540                  * no longer exists.  t_cred is used instead.
 541                  * The current process credential applies to the thread for
 542                  * the entire trap.  If trapping from the kernel, this
 543                  * should already be set up.
 544                  */
 545                 if (ct->t_cred != p->p_cred) {
 546                         cred_t *oldcred = ct->t_cred;
 547                         /*
 548                          * DTrace accesses t_cred in probe context.  t_cred
 549                          * must always be either NULL, or point to a valid,
 550                          * allocated cred structure.
 551                          */
 552                         ct->t_cred = crgetcred();
 553                         crfree(oldcred);
 554                 }
 555                 ASSERT(lwp != NULL);
 556                 type |= USER;
 557                 ASSERT(lwptoregs(lwp) == rp);
 558                 lwp->lwp_state = LWP_SYS;
 559 
 560                 switch (type) {
 561                 case T_PGFLT + USER:
 562                         if ((caddr_t)rp->r_pc == addr)
 563                                 mstate = LMS_TFAULT;
 564                         else
 565                                 mstate = LMS_DFAULT;
 566                         break;
 567                 default:
 568                         mstate = LMS_TRAP;
 569                         break;
 570                 }
 571                 /* Kernel probe */
 572                 TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
 573                     tnf_microstate, state, mstate);
 574                 mstate = new_mstate(ct, mstate);
 575 
 576                 bzero(&siginfo, sizeof (siginfo));
 577         }
 578 
 579         switch (type) {
 580         case T_PGFLT + USER:
 581         case T_SGLSTP:
 582         case T_SGLSTP + USER:
 583         case T_BPTFLT + USER:
 584                 break;
 585 
 586         default:
 587                 FTRACE_2("trap(): type=0x%lx, regs=0x%lx",
 588                     (ulong_t)type, (ulong_t)rp);
 589                 break;
 590         }
 591 
 592         switch (type) {
 593         case T_SIMDFPE:
 594                 /* Make sure we enable interrupts before die()ing */
 595                 sti();  /* The SIMD exception comes in via cmninttrap */
 596                 /*FALLTHROUGH*/
 597         default:
 598                 if (type & USER) {
 599                         if (tudebug)
 600                                 showregs(type, rp, (caddr_t)0);
 601                         printf("trap: Unknown trap type %d in user mode\n",
 602                             type & ~USER);
 603                         siginfo.si_signo = SIGILL;
 604                         siginfo.si_code  = ILL_ILLTRP;
 605                         siginfo.si_addr  = (caddr_t)rp->r_pc;
 606                         siginfo.si_trapno = type & ~USER;
 607                         fault = FLTILL;
 608                         break;
 609                 } else {
 610                         (void) die(type, rp, addr, cpuid);
 611                         /*NOTREACHED*/
 612                 }
 613 
 614         case T_PGFLT:           /* system page fault */
 615                 /*
 616                  * If we're under on_trap() protection (see <sys/ontrap.h>),
 617                  * set ot_trap and bounce back to the on_trap() call site
 618                  * via the installed trampoline.
 619                  */
 620                 if ((ct->t_ontrap != NULL) &&
 621                     (ct->t_ontrap->ot_prot & OT_DATA_ACCESS)) {
 622                         ct->t_ontrap->ot_trap |= OT_DATA_ACCESS;
 623                         rp->r_pc = ct->t_ontrap->ot_trampoline;
 624                         goto cleanup;
 625                 }
 626 
 627                 /*
 628                  * If we have an Instruction fault in kernel mode, then that
 629                  * means we've tried to execute a user page (SMEP) or both of
 630                  * PAE and NXE are enabled. In either case, given that it's a
 631                  * kernel fault, we should panic immediately and not try to make
 632                  * any more forward progress. This indicates a bug in the
 633                  * kernel, which if execution continued, could be exploited to
 634                  * wreak havoc on the system.
 635                  */
 636                 if (errcode & PF_ERR_EXEC) {
 637                         (void) die(type, rp, addr, cpuid);
 638                 }
 639 
 640                 /*
 641                  * We need to check if SMAP is in play. If SMAP is in play, then
 642                  * any access to a user page will show up as a protection
 643                  * violation. To see if SMAP is enabled we first check if it's a
 644                  * user address and whether we have the feature flag set. If we
 645                  * do and the interrupted registers do not allow for user
 646                  * accesses (PS_ACHK is not enabled), then we need to die
 647                  * immediately.
 648                  */
 649                 if (addr < (caddr_t)kernelbase &&
 650                     is_x86_feature(x86_featureset, X86FSET_SMAP) == B_TRUE &&
 651                     (rp->r_ps & PS_ACHK) == 0) {
 652                         (void) die(type, rp, addr, cpuid);
 653                 }
 654 
 655                 /*
 656                  * See if we can handle as pagefault. Save lofault and onfault
 657                  * across this. Here we assume that an address less than
 658                  * KERNELBASE is a user fault.  We can do this as copy.s
 659                  * routines verify that the starting address is less than
 660                  * KERNELBASE before starting and because we know that we
 661                  * always have KERNELBASE mapped as invalid to serve as a
 662                  * "barrier".
 663                  */
 664                 lofault = ct->t_lofault;
 665                 onfault = ct->t_onfault;
 666                 ct->t_lofault = 0;
 667 
 668                 mstate = new_mstate(ct, LMS_KFAULT);
 669 
 670                 if (addr < (caddr_t)kernelbase) {
 671                         res = pagefault(addr,
 672                             (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 0);
 673                         if (res == FC_NOMAP &&
 674                             addr < p->p_usrstack &&
 675                             grow(addr))
 676                                 res = 0;
 677                 } else {
 678                         res = pagefault(addr,
 679                             (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 1);
 680                 }
 681                 (void) new_mstate(ct, mstate);
 682 
 683                 /*
 684                  * Restore lofault and onfault. If we resolved the fault, exit.
 685                  * If we didn't and lofault wasn't set, die.
 686                  */
 687                 ct->t_lofault = lofault;
 688                 ct->t_onfault = onfault;
 689                 if (res == 0)
 690                         goto cleanup;
 691 
 692 #if defined(OPTERON_ERRATUM_93) && defined(_LP64)
 693                 if (lofault == 0 && opteron_erratum_93) {
 694                         /*
 695                          * Workaround for Opteron Erratum 93. On return from
 696                          * a System Managment Interrupt at a HLT instruction
 697                          * the %rip might be truncated to a 32 bit value.
 698                          * BIOS is supposed to fix this, but some don't.
 699                          * If this occurs we simply restore the high order bits.
 700                          * The HLT instruction is 1 byte of 0xf4.
 701                          */
 702                         uintptr_t       rip = rp->r_pc;
 703 
 704                         if ((rip & 0xfffffffful) == rip) {
 705                                 rip |= 0xfffffffful << 32;
 706                                 if (hat_getpfnum(kas.a_hat, (caddr_t)rip) !=
 707                                     PFN_INVALID &&
 708                                     (*(uchar_t *)rip == 0xf4 ||
 709                                     *(uchar_t *)(rip - 1) == 0xf4)) {
 710                                         rp->r_pc = rip;
 711                                         goto cleanup;
 712                                 }
 713                         }
 714                 }
 715 #endif /* OPTERON_ERRATUM_93 && _LP64 */
 716 
 717 #ifdef OPTERON_ERRATUM_91
 718                 if (lofault == 0 && opteron_erratum_91) {
 719                         /*
 720                          * Workaround for Opteron Erratum 91. Prefetches may
 721                          * generate a page fault (they're not supposed to do
 722                          * that!). If this occurs we simply return back to the
 723                          * instruction.
 724                          */
 725                         caddr_t         pc = (caddr_t)rp->r_pc;
 726 
 727                         /*
 728                          * If the faulting PC is not mapped, this is a
 729                          * legitimate kernel page fault that must result in a
 730                          * panic. If the faulting PC is mapped, it could contain
 731                          * a prefetch instruction. Check for that here.
 732                          */
 733                         if (hat_getpfnum(kas.a_hat, pc) != PFN_INVALID) {
 734                                 if (cmp_to_prefetch((uchar_t *)pc)) {
 735 #ifdef DEBUG
 736                                         cmn_err(CE_WARN, "Opteron erratum 91 "
 737                                             "occurred: kernel prefetch"
 738                                             " at %p generated a page fault!",
 739                                             (void *)rp->r_pc);
 740 #endif /* DEBUG */
 741                                         goto cleanup;
 742                                 }
 743                         }
 744                         (void) die(type, rp, addr, cpuid);
 745                 }
 746 #endif /* OPTERON_ERRATUM_91 */
 747 
 748                 if (lofault == 0)
 749                         (void) die(type, rp, addr, cpuid);
 750 
 751                 /*
 752                  * Cannot resolve fault.  Return to lofault.
 753                  */
 754                 if (lodebug) {
 755                         showregs(type, rp, addr);
 756                         traceregs(rp);
 757                 }
 758                 if (FC_CODE(res) == FC_OBJERR)
 759                         res = FC_ERRNO(res);
 760                 else
 761                         res = EFAULT;
 762                 rp->r_r0 = res;
 763                 rp->r_pc = ct->t_lofault;
 764                 goto cleanup;
 765 
 766         case T_PGFLT + USER:    /* user page fault */
 767                 if (faultdebug) {
 768                         char *fault_str;
 769 
 770                         switch (rw) {
 771                         case S_READ:
 772                                 fault_str = "read";
 773                                 break;
 774                         case S_WRITE:
 775                                 fault_str = "write";
 776                                 break;
 777                         case S_EXEC:
 778                                 fault_str = "exec";
 779                                 break;
 780                         default:
 781                                 fault_str = "";
 782                                 break;
 783                         }
 784                         printf("user %s fault:  addr=0x%lx errcode=0x%x\n",
 785                             fault_str, (uintptr_t)addr, errcode);
 786                 }
 787 
 788 #if defined(OPTERON_ERRATUM_100) && defined(_LP64)
 789                 /*
 790                  * Workaround for AMD erratum 100
 791                  *
 792                  * A 32-bit process may receive a page fault on a non
 793                  * 32-bit address by mistake. The range of the faulting
 794                  * address will be
 795                  *
 796                  *      0xffffffff80000000 .. 0xffffffffffffffff or
 797                  *      0x0000000100000000 .. 0x000000017fffffff
 798                  *
 799                  * The fault is always due to an instruction fetch, however
 800                  * the value of r_pc should be correct (in 32 bit range),
 801                  * so we ignore the page fault on the bogus address.
 802                  */
 803                 if (p->p_model == DATAMODEL_ILP32 &&
 804                     (0xffffffff80000000 <= (uintptr_t)addr ||
 805                     (0x100000000 <= (uintptr_t)addr &&
 806                     (uintptr_t)addr <= 0x17fffffff))) {
 807                         if (!opteron_erratum_100)
 808                                 panic("unexpected erratum #100");
 809                         if (rp->r_pc <= 0xffffffff)
 810                                 goto out;
 811                 }
 812 #endif /* OPTERON_ERRATUM_100 && _LP64 */
 813 
 814                 ASSERT(!(curthread->t_flag & T_WATCHPT));
 815                 watchpage = (pr_watch_active(p) && pr_is_watchpage(addr, rw));
 816 #ifdef __i386
 817                 /*
 818                  * In 32-bit mode, the lcall (system call) instruction fetches
 819                  * one word from the stack, at the stack pointer, because of the
 820                  * way the call gate is constructed.  This is a bogus
 821                  * read and should not be counted as a read watchpoint.
 822                  * We work around the problem here by testing to see if
 823                  * this situation applies and, if so, simply jumping to
 824                  * the code in locore.s that fields the system call trap.
 825                  * The registers on the stack are already set up properly
 826                  * due to the match between the call gate sequence and the
 827                  * trap gate sequence.  We just have to adjust the pc.
 828                  */
 829                 if (watchpage && addr == (caddr_t)rp->r_sp &&
 830                     rw == S_READ && instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
 831                         extern void watch_syscall(void);
 832 
 833                         rp->r_pc += LCALLSIZE;
 834                         watch_syscall();        /* never returns */
 835                         /* NOTREACHED */
 836                 }
 837 #endif /* __i386 */
 838                 vaddr = addr;
 839                 if (!watchpage || (sz = instr_size(rp, &vaddr, rw)) <= 0)
 840                         fault_type = (errcode & PF_ERR_PROT)? F_PROT: F_INVAL;
 841                 else if ((watchcode = pr_is_watchpoint(&vaddr, &ta,
 842                     sz, NULL, rw)) != 0) {
 843                         if (ta) {
 844                                 do_watch_step(vaddr, sz, rw,
 845                                     watchcode, rp->r_pc);
 846                                 fault_type = F_INVAL;
 847                         } else {
 848                                 bzero(&siginfo, sizeof (siginfo));
 849                                 siginfo.si_signo = SIGTRAP;
 850                                 siginfo.si_code = watchcode;
 851                                 siginfo.si_addr = vaddr;
 852                                 siginfo.si_trapafter = 0;
 853                                 siginfo.si_pc = (caddr_t)rp->r_pc;
 854                                 fault = FLTWATCH;
 855                                 break;
 856                         }
 857                 } else {
 858                         /* XXX pr_watch_emul() never succeeds (for now) */
 859                         if (rw != S_EXEC && pr_watch_emul(rp, vaddr, rw))
 860                                 goto out;
 861                         do_watch_step(vaddr, sz, rw, 0, 0);
 862                         fault_type = F_INVAL;
 863                 }
 864 
 865                 res = pagefault(addr, fault_type, rw, 0);
 866 
 867                 /*
 868                  * If pagefault() succeeded, ok.
 869                  * Otherwise attempt to grow the stack.
 870                  */
 871                 if (res == 0 ||
 872                     (res == FC_NOMAP &&
 873                     addr < p->p_usrstack &&
 874                     grow(addr))) {
 875                         lwp->lwp_lastfault = FLTPAGE;
 876                         lwp->lwp_lastfaddr = addr;
 877                         if (prismember(&p->p_fltmask, FLTPAGE)) {
 878                                 bzero(&siginfo, sizeof (siginfo));
 879                                 siginfo.si_addr = addr;
 880                                 (void) stop_on_fault(FLTPAGE, &siginfo);
 881                         }
 882                         goto out;
 883                 } else if (res == FC_PROT && addr < p->p_usrstack &&
 884                     (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC))) {
 885                         report_stack_exec(p, addr);
 886                 }
 887 
 888 #ifdef OPTERON_ERRATUM_91
 889                 /*
 890                  * Workaround for Opteron Erratum 91. Prefetches may generate a
 891                  * page fault (they're not supposed to do that!). If this
 892                  * occurs we simply return back to the instruction.
 893                  *
 894                  * We rely on copyin to properly fault in the page with r_pc.
 895                  */
 896                 if (opteron_erratum_91 &&
 897                     addr != (caddr_t)rp->r_pc &&
 898                     instr_is_prefetch((caddr_t)rp->r_pc)) {
 899 #ifdef DEBUG
 900                         cmn_err(CE_WARN, "Opteron erratum 91 occurred: "
 901                             "prefetch at %p in pid %d generated a trap!",
 902                             (void *)rp->r_pc, p->p_pid);
 903 #endif /* DEBUG */
 904                         goto out;
 905                 }
 906 #endif /* OPTERON_ERRATUM_91 */
 907 
 908                 if (tudebug)
 909                         showregs(type, rp, addr);
 910                 /*
 911                  * In the case where both pagefault and grow fail,
 912                  * set the code to the value provided by pagefault.
 913                  * We map all errors returned from pagefault() to SIGSEGV.
 914                  */
 915                 bzero(&siginfo, sizeof (siginfo));
 916                 siginfo.si_addr = addr;
 917                 switch (FC_CODE(res)) {
 918                 case FC_HWERR:
 919                 case FC_NOSUPPORT:
 920                         siginfo.si_signo = SIGBUS;
 921                         siginfo.si_code = BUS_ADRERR;
 922                         fault = FLTACCESS;
 923                         break;
 924                 case FC_ALIGN:
 925                         siginfo.si_signo = SIGBUS;
 926                         siginfo.si_code = BUS_ADRALN;
 927                         fault = FLTACCESS;
 928                         break;
 929                 case FC_OBJERR:
 930                         if ((siginfo.si_errno = FC_ERRNO(res)) != EINTR) {
 931                                 siginfo.si_signo = SIGBUS;
 932                                 siginfo.si_code = BUS_OBJERR;
 933                                 fault = FLTACCESS;
 934                         }
 935                         break;
 936                 default:        /* FC_NOMAP or FC_PROT */
 937                         siginfo.si_signo = SIGSEGV;
 938                         siginfo.si_code =
 939                             (res == FC_NOMAP)? SEGV_MAPERR : SEGV_ACCERR;
 940                         fault = FLTBOUNDS;
 941                         break;
 942                 }
 943                 break;
 944 
 945         case T_ILLINST + USER:  /* invalid opcode fault */
 946                 /*
 947                  * If the syscall instruction is disabled due to LDT usage, a
 948                  * user program that attempts to execute it will trigger a #ud
 949                  * trap. Check for that case here. If this occurs on a CPU which
 950                  * doesn't even support syscall, the result of all of this will
 951                  * be to emulate that particular instruction.
 952                  */
 953                 if (p->p_ldt != NULL &&
 954                     ldt_rewrite_syscall(rp, p, X86FSET_ASYSC))
 955                         goto out;
 956 
 957 #ifdef __amd64
 958                 /*
 959                  * Emulate the LAHF and SAHF instructions if needed.
 960                  * See the instr_is_lsahf function for details.
 961                  */
 962                 if (p->p_model == DATAMODEL_LP64 &&
 963                     instr_is_lsahf((caddr_t)rp->r_pc, &instr)) {
 964                         emulate_lsahf(rp, instr);
 965                         goto out;
 966                 }
 967 #endif
 968 
 969                 /*FALLTHROUGH*/
 970 
 971                 if (tudebug)
 972                         showregs(type, rp, (caddr_t)0);
 973                 siginfo.si_signo = SIGILL;
 974                 siginfo.si_code  = ILL_ILLOPC;
 975                 siginfo.si_addr  = (caddr_t)rp->r_pc;
 976                 fault = FLTILL;
 977                 break;
 978 
 979         case T_ZERODIV + USER:          /* integer divide by zero */
 980                 if (tudebug && tudebugfpe)
 981                         showregs(type, rp, (caddr_t)0);
 982                 siginfo.si_signo = SIGFPE;
 983                 siginfo.si_code  = FPE_INTDIV;
 984                 siginfo.si_addr  = (caddr_t)rp->r_pc;
 985                 fault = FLTIZDIV;
 986                 break;
 987 
 988         case T_OVFLW + USER:    /* integer overflow */
 989                 if (tudebug && tudebugfpe)
 990                         showregs(type, rp, (caddr_t)0);
 991                 siginfo.si_signo = SIGFPE;
 992                 siginfo.si_code  = FPE_INTOVF;
 993                 siginfo.si_addr  = (caddr_t)rp->r_pc;
 994                 fault = FLTIOVF;
 995                 break;
 996 
 997         case T_NOEXTFLT + USER: /* math coprocessor not available */
 998                 if (tudebug && tudebugfpe)
 999                         showregs(type, rp, addr);
1000                 if (fpnoextflt(rp)) {
1001                         siginfo.si_signo = SIGILL;
1002                         siginfo.si_code  = ILL_ILLOPC;
1003                         siginfo.si_addr  = (caddr_t)rp->r_pc;
1004                         fault = FLTILL;
1005                 }
1006                 break;
1007 
1008         case T_EXTOVRFLT:       /* extension overrun fault */
1009                 /* check if we took a kernel trap on behalf of user */
1010                 {
1011                         extern  void ndptrap_frstor(void);
1012                         if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
1013                                 sti(); /* T_EXTOVRFLT comes in via cmninttrap */
1014                                 (void) die(type, rp, addr, cpuid);
1015                         }
1016                         type |= USER;
1017                 }
1018                 /*FALLTHROUGH*/
1019         case T_EXTOVRFLT + USER:        /* extension overrun fault */
1020                 if (tudebug && tudebugfpe)
1021                         showregs(type, rp, addr);
1022                 if (fpextovrflt(rp)) {
1023                         siginfo.si_signo = SIGSEGV;
1024                         siginfo.si_code  = SEGV_MAPERR;
1025                         siginfo.si_addr  = (caddr_t)rp->r_pc;
1026                         fault = FLTBOUNDS;
1027                 }
1028                 break;
1029 
1030         case T_EXTERRFLT:       /* x87 floating point exception pending */
1031                 /* check if we took a kernel trap on behalf of user */
1032                 {
1033                         extern  void ndptrap_frstor(void);
1034                         if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
1035                                 sti(); /* T_EXTERRFLT comes in via cmninttrap */
1036                                 (void) die(type, rp, addr, cpuid);
1037                         }
1038                         type |= USER;
1039                 }
1040                 /*FALLTHROUGH*/
1041 
1042         case T_EXTERRFLT + USER: /* x87 floating point exception pending */
1043                 if (tudebug && tudebugfpe)
1044                         showregs(type, rp, addr);
1045                 if (sicode = fpexterrflt(rp)) {
1046                         siginfo.si_signo = SIGFPE;
1047                         siginfo.si_code  = sicode;
1048                         siginfo.si_addr  = (caddr_t)rp->r_pc;
1049                         fault = FLTFPE;
1050                 }
1051                 break;
1052 
1053         case T_SIMDFPE + USER:          /* SSE and SSE2 exceptions */
1054                 if (tudebug && tudebugsse)
1055                         showregs(type, rp, addr);
1056                 if (!is_x86_feature(x86_featureset, X86FSET_SSE) &&
1057                     !is_x86_feature(x86_featureset, X86FSET_SSE2)) {
1058                         /*
1059                          * There are rumours that some user instructions
1060                          * on older CPUs can cause this trap to occur; in
1061                          * which case send a SIGILL instead of a SIGFPE.
1062                          */
1063                         siginfo.si_signo = SIGILL;
1064                         siginfo.si_code  = ILL_ILLTRP;
1065                         siginfo.si_addr  = (caddr_t)rp->r_pc;
1066                         siginfo.si_trapno = type & ~USER;
1067                         fault = FLTILL;
1068                 } else if ((sicode = fpsimderrflt(rp)) != 0) {
1069                         siginfo.si_signo = SIGFPE;
1070                         siginfo.si_code = sicode;
1071                         siginfo.si_addr = (caddr_t)rp->r_pc;
1072                         fault = FLTFPE;
1073                 }
1074 
1075                 sti();  /* The SIMD exception comes in via cmninttrap */
1076                 break;
1077 
1078         case T_BPTFLT:  /* breakpoint trap */
1079                 /*
1080                  * Kernel breakpoint traps should only happen when kmdb is
1081                  * active, and even then, it'll have interposed on the IDT, so
1082                  * control won't get here.  If it does, we've hit a breakpoint
1083                  * without the debugger, which is very strange, and very
1084                  * fatal.
1085                  */
1086                 if (tudebug && tudebugbpt)
1087                         showregs(type, rp, (caddr_t)0);
1088 
1089                 (void) die(type, rp, addr, cpuid);
1090                 break;
1091 
1092         case T_SGLSTP: /* single step/hw breakpoint exception */
1093 
1094                 /* Now evaluate how we got here */
1095                 if (lwp != NULL && (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP)) {
1096                         /*
1097                          * i386 single-steps even through lcalls which
1098                          * change the privilege level. So we take a trap at
1099                          * the first instruction in privileged mode.
1100                          *
1101                          * Set a flag to indicate that upon completion of
1102                          * the system call, deal with the single-step trap.
1103                          *
1104                          * The same thing happens for sysenter, too.
1105                          */
1106                         singlestep_twiddle = 0;
1107                         if (rp->r_pc == (uintptr_t)sys_sysenter ||
1108                             rp->r_pc == (uintptr_t)brand_sys_sysenter) {
1109                                 singlestep_twiddle = 1;
1110 #if defined(__amd64)
1111                                 /*
1112                                  * Since we are already on the kernel's
1113                                  * %gs, on 64-bit systems the sysenter case
1114                                  * needs to adjust the pc to avoid
1115                                  * executing the swapgs instruction at the
1116                                  * top of the handler.
1117                                  */
1118                                 if (rp->r_pc == (uintptr_t)sys_sysenter)
1119                                         rp->r_pc = (uintptr_t)
1120                                             _sys_sysenter_post_swapgs;
1121                                 else
1122                                         rp->r_pc = (uintptr_t)
1123                                             _brand_sys_sysenter_post_swapgs;
1124 #endif
1125                         }
1126 #if defined(__i386)
1127                         else if (rp->r_pc == (uintptr_t)sys_call ||
1128                             rp->r_pc == (uintptr_t)brand_sys_call) {
1129                                 singlestep_twiddle = 1;
1130                         }
1131 #endif
1132                         else {
1133                                 /* not on sysenter/syscall; uregs available */
1134                                 if (tudebug && tudebugbpt)
1135                                         showregs(type, rp, (caddr_t)0);
1136                         }
1137                         if (singlestep_twiddle) {
1138                                 rp->r_ps &= ~PS_T; /* turn off trace */
1139                                 lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING;
1140                                 ct->t_post_sys = 1;
1141                                 aston(curthread);
1142                                 goto cleanup;
1143                         }
1144                 }
1145                 /* XXX - needs review on debugger interface? */
1146                 if (boothowto & RB_DEBUG)
1147                         debug_enter((char *)NULL);
1148                 else
1149                         (void) die(type, rp, addr, cpuid);
1150                 break;
1151 
1152         case T_NMIFLT:  /* NMI interrupt */
1153                 printf("Unexpected NMI in system mode\n");
1154                 goto cleanup;
1155 
1156         case T_NMIFLT + USER:   /* NMI interrupt */
1157                 printf("Unexpected NMI in user mode\n");
1158                 break;
1159 
1160         case T_GPFLT:   /* general protection violation */
1161                 /*
1162                  * Any #GP that occurs during an on_trap .. no_trap bracket
1163                  * with OT_DATA_ACCESS or OT_SEGMENT_ACCESS protection,
1164                  * or in a on_fault .. no_fault bracket, is forgiven
1165                  * and we trampoline.  This protection is given regardless
1166                  * of whether we are 32/64 bit etc - if a distinction is
1167                  * required then define new on_trap protection types.
1168                  *
1169                  * On amd64, we can get a #gp from referencing addresses
1170                  * in the virtual address hole e.g. from a copyin or in
1171                  * update_sregs while updating user segment registers.
1172                  *
1173                  * On the 32-bit hypervisor we could also generate one in
1174                  * mfn_to_pfn by reaching around or into where the hypervisor
1175                  * lives which is protected by segmentation.
1176                  */
1177 
1178                 /*
1179                  * If we're under on_trap() protection (see <sys/ontrap.h>),
1180                  * set ot_trap and trampoline back to the on_trap() call site
1181                  * for OT_DATA_ACCESS or OT_SEGMENT_ACCESS.
1182                  */
1183                 if (ct->t_ontrap != NULL) {
1184                         int ttype =  ct->t_ontrap->ot_prot &
1185                             (OT_DATA_ACCESS | OT_SEGMENT_ACCESS);
1186 
1187                         if (ttype != 0) {
1188                                 ct->t_ontrap->ot_trap |= ttype;
1189                                 if (tudebug)
1190                                         showregs(type, rp, (caddr_t)0);
1191                                 rp->r_pc = ct->t_ontrap->ot_trampoline;
1192                                 goto cleanup;
1193                         }
1194                 }
1195 
1196                 /*
1197                  * If we're under lofault protection (copyin etc.),
1198                  * longjmp back to lofault with an EFAULT.
1199                  */
1200                 if (ct->t_lofault) {
1201                         /*
1202                          * Fault is not resolvable, so just return to lofault
1203                          */
1204                         if (lodebug) {
1205                                 showregs(type, rp, addr);
1206                                 traceregs(rp);
1207                         }
1208                         rp->r_r0 = EFAULT;
1209                         rp->r_pc = ct->t_lofault;
1210                         goto cleanup;
1211                 }
1212 
1213                 /*
1214                  * We fall through to the next case, which repeats
1215                  * the OT_SEGMENT_ACCESS check which we've already
1216                  * done, so we'll always fall through to the
1217                  * T_STKFLT case.
1218                  */
1219                 /*FALLTHROUGH*/
1220         case T_SEGFLT:  /* segment not present fault */
1221                 /*
1222                  * One example of this is #NP in update_sregs while
1223                  * attempting to update a user segment register
1224                  * that points to a descriptor that is marked not
1225                  * present.
1226                  */
1227                 if (ct->t_ontrap != NULL &&
1228                     ct->t_ontrap->ot_prot & OT_SEGMENT_ACCESS) {
1229                         ct->t_ontrap->ot_trap |= OT_SEGMENT_ACCESS;
1230                         if (tudebug)
1231                                 showregs(type, rp, (caddr_t)0);
1232                         rp->r_pc = ct->t_ontrap->ot_trampoline;
1233                         goto cleanup;
1234                 }
1235                 /*FALLTHROUGH*/
1236         case T_STKFLT:  /* stack fault */
1237         case T_TSSFLT:  /* invalid TSS fault */
1238                 if (tudebug)
1239                         showregs(type, rp, (caddr_t)0);
1240                 if (kern_gpfault(rp))
1241                         (void) die(type, rp, addr, cpuid);
1242                 goto cleanup;
1243 
1244         /*
1245          * ONLY 32-bit PROCESSES can USE a PRIVATE LDT! 64-bit apps
1246          * should have no need for them, so we put a stop to it here.
1247          *
1248          * So: not-present fault is ONLY valid for 32-bit processes with
1249          * a private LDT trying to do a system call. Emulate it.
1250          *
1251          * #gp fault is ONLY valid for 32-bit processes also, which DO NOT
1252          * have a private LDT, and are trying to do a system call. Emulate it.
1253          */
1254 
1255         case T_SEGFLT + USER:   /* segment not present fault */
1256         case T_GPFLT + USER:    /* general protection violation */
1257 #ifdef _SYSCALL32_IMPL
1258                 if (p->p_model != DATAMODEL_NATIVE) {
1259 #endif /* _SYSCALL32_IMPL */
1260                 if (instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
1261                         if (type == T_SEGFLT + USER)
1262                                 ASSERT(p->p_ldt != NULL);
1263 
1264                         if ((p->p_ldt == NULL && type == T_GPFLT + USER) ||
1265                             type == T_SEGFLT + USER) {
1266 
1267                         /*
1268                          * The user attempted a system call via the obsolete
1269                          * call gate mechanism. Because the process doesn't have
1270                          * an LDT (i.e. the ldtr contains 0), a #gp results.
1271                          * Emulate the syscall here, just as we do above for a
1272                          * #np trap.
1273                          */
1274 
1275                         /*
1276                          * Since this is a not-present trap, rp->r_pc points to
1277                          * the trapping lcall instruction. We need to bump it
1278                          * to the next insn so the app can continue on.
1279                          */
1280                         rp->r_pc += LCALLSIZE;
1281                         lwp->lwp_regs = rp;
1282 
1283                         /*
1284                          * Normally the microstate of the LWP is forced back to
1285                          * LMS_USER by the syscall handlers. Emulate that
1286                          * behavior here.
1287                          */
1288                         mstate = LMS_USER;
1289 
1290                         dosyscall();
1291                         goto out;
1292                         }
1293                 }
1294 #ifdef _SYSCALL32_IMPL
1295                 }
1296 #endif /* _SYSCALL32_IMPL */
1297                 /*
1298                  * If the current process is using a private LDT and the
1299                  * trapping instruction is sysenter, the sysenter instruction
1300                  * has been disabled on the CPU because it destroys segment
1301                  * registers. If this is the case, rewrite the instruction to
1302                  * be a safe system call and retry it. If this occurs on a CPU
1303                  * which doesn't even support sysenter, the result of all of
1304                  * this will be to emulate that particular instruction.
1305                  */
1306                 if (p->p_ldt != NULL &&
1307                     ldt_rewrite_syscall(rp, p, X86FSET_SEP))
1308                         goto out;
1309 
1310                 /*FALLTHROUGH*/
1311 
1312         case T_BOUNDFLT + USER: /* bound fault */
1313         case T_STKFLT + USER:   /* stack fault */
1314         case T_TSSFLT + USER:   /* invalid TSS fault */
1315                 if (tudebug)
1316                         showregs(type, rp, (caddr_t)0);
1317                 siginfo.si_signo = SIGSEGV;
1318                 siginfo.si_code  = SEGV_MAPERR;
1319                 siginfo.si_addr  = (caddr_t)rp->r_pc;
1320                 fault = FLTBOUNDS;
1321                 break;
1322 
1323         case T_ALIGNMENT + USER:        /* user alignment error (486) */
1324                 if (tudebug)
1325                         showregs(type, rp, (caddr_t)0);
1326                 bzero(&siginfo, sizeof (siginfo));
1327                 siginfo.si_signo = SIGBUS;
1328                 siginfo.si_code = BUS_ADRALN;
1329                 siginfo.si_addr = (caddr_t)rp->r_pc;
1330                 fault = FLTACCESS;
1331                 break;
1332 
1333         case T_SGLSTP + USER: /* single step/hw breakpoint exception */
1334                 if (tudebug && tudebugbpt)
1335                         showregs(type, rp, (caddr_t)0);
1336 
1337                 /* Was it single-stepping? */
1338                 if (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP) {
1339                         pcb_t *pcb = &lwp->lwp_pcb;
1340 
1341                         rp->r_ps &= ~PS_T;
1342                         /*
1343                          * If both NORMAL_STEP and WATCH_STEP are in effect,
1344                          * give precedence to WATCH_STEP.  If neither is set,
1345                          * user must have set the PS_T bit in %efl; treat this
1346                          * as NORMAL_STEP.
1347                          */
1348                         if ((fault = undo_watch_step(&siginfo)) == 0 &&
1349                             ((pcb->pcb_flags & NORMAL_STEP) ||
1350                             !(pcb->pcb_flags & WATCH_STEP))) {
1351                                 siginfo.si_signo = SIGTRAP;
1352                                 siginfo.si_code = TRAP_TRACE;
1353                                 siginfo.si_addr = (caddr_t)rp->r_pc;
1354                                 fault = FLTTRACE;
1355                         }
1356                         pcb->pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1357                 }
1358                 break;
1359 
1360         case T_BPTFLT + USER:   /* breakpoint trap */
1361                 if (tudebug && tudebugbpt)
1362                         showregs(type, rp, (caddr_t)0);
1363                 /*
1364                  * int 3 (the breakpoint instruction) leaves the pc referring
1365                  * to the address one byte after the breakpointed address.
1366                  * If the P_PR_BPTADJ flag has been set via /proc, We adjust
1367                  * it back so it refers to the breakpointed address.
1368                  */
1369                 if (p->p_proc_flag & P_PR_BPTADJ)
1370                         rp->r_pc--;
1371                 siginfo.si_signo = SIGTRAP;
1372                 siginfo.si_code  = TRAP_BRKPT;
1373                 siginfo.si_addr  = (caddr_t)rp->r_pc;
1374                 fault = FLTBPT;
1375                 break;
1376 
1377         case T_AST:
1378                 /*
1379                  * This occurs only after the cs register has been made to
1380                  * look like a kernel selector, either through debugging or
1381                  * possibly by functions like setcontext().  The thread is
1382                  * about to cause a general protection fault at common_iret()
1383                  * in locore.  We let that happen immediately instead of
1384                  * doing the T_AST processing.
1385                  */
1386                 goto cleanup;
1387 
1388         case T_AST + USER:      /* profiling, resched, h/w error pseudo trap */
1389                 if (lwp->lwp_pcb.pcb_flags & ASYNC_HWERR) {
1390                         proc_t *p = ttoproc(curthread);
1391                         extern void print_msg_hwerr(ctid_t ct_id, proc_t *p);
1392 
1393                         lwp->lwp_pcb.pcb_flags &= ~ASYNC_HWERR;
1394                         print_msg_hwerr(p->p_ct_process->conp_contract.ct_id,
1395                             p);
1396                         contract_process_hwerr(p->p_ct_process, p);
1397                         siginfo.si_signo = SIGKILL;
1398                         siginfo.si_code = SI_NOINFO;
1399                 } else if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW) {
1400                         lwp->lwp_pcb.pcb_flags &= ~CPC_OVERFLOW;
1401                         if (kcpc_overflow_ast()) {
1402                                 /*
1403                                  * Signal performance counter overflow
1404                                  */
1405                                 if (tudebug)
1406                                         showregs(type, rp, (caddr_t)0);
1407                                 bzero(&siginfo, sizeof (siginfo));
1408                                 siginfo.si_signo = SIGEMT;
1409                                 siginfo.si_code = EMT_CPCOVF;
1410                                 siginfo.si_addr = (caddr_t)rp->r_pc;
1411                                 fault = FLTCPCOVF;
1412                         }
1413                 }
1414 
1415                 break;
1416         }
1417 
1418         /*
1419          * We can't get here from a system trap
1420          */
1421         ASSERT(type & USER);
1422 
1423         if (fault) {
1424                 /* We took a fault so abort single step. */
1425                 lwp->lwp_pcb.pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1426                 /*
1427                  * Remember the fault and fault adddress
1428                  * for real-time (SIGPROF) profiling.
1429                  */
1430                 lwp->lwp_lastfault = fault;
1431                 lwp->lwp_lastfaddr = siginfo.si_addr;
1432 
1433                 DTRACE_PROC2(fault, int, fault, ksiginfo_t *, &siginfo);
1434 
1435                 /*
1436                  * If a debugger has declared this fault to be an
1437                  * event of interest, stop the lwp.  Otherwise just
1438                  * deliver the associated signal.
1439                  */
1440                 if (siginfo.si_signo != SIGKILL &&
1441                     prismember(&p->p_fltmask, fault) &&
1442                     stop_on_fault(fault, &siginfo) == 0)
1443                         siginfo.si_signo = 0;
1444         }
1445 
1446         if (siginfo.si_signo)
1447                 trapsig(&siginfo, (fault != FLTFPE && fault != FLTCPCOVF));
1448 
1449         if (lwp->lwp_oweupc)
1450                 profil_tick(rp->r_pc);
1451 
1452         if (ct->t_astflag | ct->t_sig_check) {
1453                 /*
1454                  * Turn off the AST flag before checking all the conditions that
1455                  * may have caused an AST.  This flag is on whenever a signal or
1456                  * unusual condition should be handled after the next trap or
1457                  * syscall.
1458                  */
1459                 astoff(ct);
1460                 /*
1461                  * If a single-step trap occurred on a syscall (see above)
1462                  * recognize it now.  Do this before checking for signals
1463                  * because deferred_singlestep_trap() may generate a SIGTRAP to
1464                  * the LWP or may otherwise mark the LWP to call issig(FORREAL).
1465                  */
1466                 if (lwp->lwp_pcb.pcb_flags & DEBUG_PENDING)
1467                         deferred_singlestep_trap((caddr_t)rp->r_pc);
1468 
1469                 ct->t_sig_check = 0;
1470 
1471                 /*
1472                  * As in other code paths that check against TP_CHANGEBIND,
1473                  * we perform the check first without p_lock held -- only
1474                  * acquiring p_lock in the unlikely event that it is indeed
1475                  * set.  This is safe because we are doing this after the
1476                  * astoff(); if we are racing another thread setting
1477                  * TP_CHANGEBIND on us, we will pick it up on a subsequent
1478                  * lap through.
1479                  */
1480                 if (curthread->t_proc_flag & TP_CHANGEBIND) {
1481                         mutex_enter(&p->p_lock);
1482                         if (curthread->t_proc_flag & TP_CHANGEBIND) {
1483                                 timer_lwpbind();
1484                                 curthread->t_proc_flag &= ~TP_CHANGEBIND;
1485                         }
1486                         mutex_exit(&p->p_lock);
1487                 }
1488 
1489                 /*
1490                  * for kaio requests that are on the per-process poll queue,
1491                  * aiop->aio_pollq, they're AIO_POLL bit is set, the kernel
1492                  * should copyout their result_t to user memory. by copying
1493                  * out the result_t, the user can poll on memory waiting
1494                  * for the kaio request to complete.
1495                  */
1496                 if (p->p_aio)
1497                         aio_cleanup(0);
1498                 /*
1499                  * If this LWP was asked to hold, call holdlwp(), which will
1500                  * stop.  holdlwps() sets this up and calls pokelwps() which
1501                  * sets the AST flag.
1502                  *
1503                  * Also check TP_EXITLWP, since this is used by fresh new LWPs
1504                  * through lwp_rtt().  That flag is set if the lwp_create(2)
1505                  * syscall failed after creating the LWP.
1506                  */
1507                 if (ISHOLD(p))
1508                         holdlwp();
1509 
1510                 /*
1511                  * All code that sets signals and makes ISSIG evaluate true must
1512                  * set t_astflag afterwards.
1513                  */
1514                 if (ISSIG_PENDING(ct, lwp, p)) {
1515                         if (issig(FORREAL))
1516                                 psig();
1517                         ct->t_sig_check = 1;
1518                 }
1519 
1520                 if (ct->t_rprof != NULL) {
1521                         realsigprof(0, 0, 0);
1522                         ct->t_sig_check = 1;
1523                 }
1524 
1525                 /*
1526                  * /proc can't enable/disable the trace bit itself
1527                  * because that could race with the call gate used by
1528                  * system calls via "lcall". If that happened, an
1529                  * invalid EFLAGS would result. prstep()/prnostep()
1530                  * therefore schedule an AST for the purpose.
1531                  */
1532                 if (lwp->lwp_pcb.pcb_flags & REQUEST_STEP) {
1533                         lwp->lwp_pcb.pcb_flags &= ~REQUEST_STEP;
1534                         rp->r_ps |= PS_T;
1535                 }
1536                 if (lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP) {
1537                         lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP;
1538                         rp->r_ps &= ~PS_T;
1539                 }
1540         }
1541 
1542 out:    /* We can't get here from a system trap */
1543         ASSERT(type & USER);
1544 
1545         if (ISHOLD(p))
1546                 holdlwp();
1547 
1548         /*
1549          * Set state to LWP_USER here so preempt won't give us a kernel
1550          * priority if it occurs after this point.  Call CL_TRAPRET() to
1551          * restore the user-level priority.
1552          *
1553          * It is important that no locks (other than spinlocks) be entered
1554          * after this point before returning to user mode (unless lwp_state
1555          * is set back to LWP_SYS).
1556          */
1557         lwp->lwp_state = LWP_USER;
1558 
1559         if (ct->t_trapret) {
1560                 ct->t_trapret = 0;
1561                 thread_lock(ct);
1562                 CL_TRAPRET(ct);
1563                 thread_unlock(ct);
1564         }
1565         if (CPU->cpu_runrun || curthread->t_schedflag & TS_ANYWAITQ)
1566                 preempt();
1567         prunstop();
1568         (void) new_mstate(ct, mstate);
1569 
1570         /* Kernel probe */
1571         TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
1572             tnf_microstate, state, LMS_USER);
1573 
1574         return;
1575 
1576 cleanup:        /* system traps end up here */
1577         ASSERT(!(type & USER));
1578 }
1579 
1580 /*
1581  * Patch non-zero to disable preemption of threads in the kernel.
1582  */
1583 int IGNORE_KERNEL_PREEMPTION = 0;       /* XXX - delete this someday */
1584 
1585 struct kpreempt_cnts {          /* kernel preemption statistics */
1586         int     kpc_idle;       /* executing idle thread */
1587         int     kpc_intr;       /* executing interrupt thread */
1588         int     kpc_clock;      /* executing clock thread */
1589         int     kpc_blocked;    /* thread has blocked preemption (t_preempt) */
1590         int     kpc_notonproc;  /* thread is surrendering processor */
1591         int     kpc_inswtch;    /* thread has ratified scheduling decision */
1592         int     kpc_prilevel;   /* processor interrupt level is too high */
1593         int     kpc_apreempt;   /* asynchronous preemption */
1594         int     kpc_spreempt;   /* synchronous preemption */
1595 } kpreempt_cnts;
1596 
1597 /*
1598  * kernel preemption: forced rescheduling, preempt the running kernel thread.
1599  *      the argument is old PIL for an interrupt,
1600  *      or the distingished value KPREEMPT_SYNC.
1601  */
1602 void
1603 kpreempt(int asyncspl)
1604 {
1605         kthread_t *ct = curthread;
1606 
1607         if (IGNORE_KERNEL_PREEMPTION) {
1608                 aston(CPU->cpu_dispthread);
1609                 return;
1610         }
1611 
1612         /*
1613          * Check that conditions are right for kernel preemption
1614          */
1615         do {
1616                 if (ct->t_preempt) {
1617                         /*
1618                          * either a privileged thread (idle, panic, interrupt)
1619                          * or will check when t_preempt is lowered
1620                          * We need to specifically handle the case where
1621                          * the thread is in the middle of swtch (resume has
1622                          * been called) and has its t_preempt set
1623                          * [idle thread and a thread which is in kpreempt
1624                          * already] and then a high priority thread is
1625                          * available in the local dispatch queue.
1626                          * In this case the resumed thread needs to take a
1627                          * trap so that it can call kpreempt. We achieve
1628                          * this by using siron().
1629                          * How do we detect this condition:
1630                          * idle thread is running and is in the midst of
1631                          * resume: curthread->t_pri == -1 && CPU->dispthread
1632                          * != CPU->thread
1633                          * Need to ensure that this happens only at high pil
1634                          * resume is called at high pil
1635                          * Only in resume_from_idle is the pil changed.
1636                          */
1637                         if (ct->t_pri < 0) {
1638                                 kpreempt_cnts.kpc_idle++;
1639                                 if (CPU->cpu_dispthread != CPU->cpu_thread)
1640                                         siron();
1641                         } else if (ct->t_flag & T_INTR_THREAD) {
1642                                 kpreempt_cnts.kpc_intr++;
1643                                 if (ct->t_pil == CLOCK_LEVEL)
1644                                         kpreempt_cnts.kpc_clock++;
1645                         } else {
1646                                 kpreempt_cnts.kpc_blocked++;
1647                                 if (CPU->cpu_dispthread != CPU->cpu_thread)
1648                                         siron();
1649                         }
1650                         aston(CPU->cpu_dispthread);
1651                         return;
1652                 }
1653                 if (ct->t_state != TS_ONPROC ||
1654                     ct->t_disp_queue != CPU->cpu_disp) {
1655                         /* this thread will be calling swtch() shortly */
1656                         kpreempt_cnts.kpc_notonproc++;
1657                         if (CPU->cpu_thread != CPU->cpu_dispthread) {
1658                                 /* already in swtch(), force another */
1659                                 kpreempt_cnts.kpc_inswtch++;
1660                                 siron();
1661                         }
1662                         return;
1663                 }
1664                 if (getpil() >= DISP_LEVEL) {
1665                         /*
1666                          * We can't preempt this thread if it is at
1667                          * a PIL >= DISP_LEVEL since it may be holding
1668                          * a spin lock (like sched_lock).
1669                          */
1670                         siron();        /* check back later */
1671                         kpreempt_cnts.kpc_prilevel++;
1672                         return;
1673                 }
1674                 if (!interrupts_enabled()) {
1675                         /*
1676                          * Can't preempt while running with ints disabled
1677                          */
1678                         kpreempt_cnts.kpc_prilevel++;
1679                         return;
1680                 }
1681                 if (asyncspl != KPREEMPT_SYNC)
1682                         kpreempt_cnts.kpc_apreempt++;
1683                 else
1684                         kpreempt_cnts.kpc_spreempt++;
1685 
1686                 ct->t_preempt++;
1687                 preempt();
1688                 ct->t_preempt--;
1689         } while (CPU->cpu_kprunrun);
1690 }
1691 
1692 /*
1693  * Print out debugging info.
1694  */
1695 static void
1696 showregs(uint_t type, struct regs *rp, caddr_t addr)
1697 {
1698         int s;
1699 
1700         s = spl7();
1701         type &= ~USER;
1702         if (PTOU(curproc)->u_comm[0])
1703                 printf("%s: ", PTOU(curproc)->u_comm);
1704         if (type < TRAP_TYPES)
1705                 printf("#%s %s\n", trap_type_mnemonic[type], trap_type[type]);
1706         else
1707                 switch (type) {
1708                 case T_SYSCALL:
1709                         printf("Syscall Trap:\n");
1710                         break;
1711                 case T_AST:
1712                         printf("AST\n");
1713                         break;
1714                 default:
1715                         printf("Bad Trap = %d\n", type);
1716                         break;
1717                 }
1718         if (type == T_PGFLT) {
1719                 printf("Bad %s fault at addr=0x%lx\n",
1720                     USERMODE(rp->r_cs) ? "user": "kernel", (uintptr_t)addr);
1721         } else if (addr) {
1722                 printf("addr=0x%lx\n", (uintptr_t)addr);
1723         }
1724 
1725         printf("pid=%d, pc=0x%lx, sp=0x%lx, eflags=0x%lx\n",
1726             (ttoproc(curthread) && ttoproc(curthread)->p_pidp) ?
1727             ttoproc(curthread)->p_pid : 0, rp->r_pc, rp->r_sp, rp->r_ps);
1728 
1729 #if defined(__lint)
1730         /*
1731          * this clause can be deleted when lint bug 4870403 is fixed
1732          * (lint thinks that bit 32 is illegal in a %b format string)
1733          */
1734         printf("cr0: %x cr4: %b\n",
1735             (uint_t)getcr0(), (uint_t)getcr4(), FMT_CR4);
1736 #else
1737         printf("cr0: %b cr4: %b\n",
1738             (uint_t)getcr0(), FMT_CR0, (uint_t)getcr4(), FMT_CR4);
1739 #endif  /* __lint */
1740 
1741         printf("cr2: %lx", getcr2());
1742 #if !defined(__xpv)
1743         printf("cr3: %lx", getcr3());
1744 #if defined(__amd64)
1745         printf("cr8: %lx\n", getcr8());
1746 #endif
1747 #endif
1748         printf("\n");
1749 
1750         dumpregs(rp);
1751         splx(s);
1752 }
1753 
1754 static void
1755 dumpregs(struct regs *rp)
1756 {
1757 #if defined(__amd64)
1758         const char fmt[] = "\t%3s: %16lx %3s: %16lx %3s: %16lx\n";
1759 
1760         printf(fmt, "rdi", rp->r_rdi, "rsi", rp->r_rsi, "rdx", rp->r_rdx);
1761         printf(fmt, "rcx", rp->r_rcx, " r8", rp->r_r8, " r9", rp->r_r9);
1762         printf(fmt, "rax", rp->r_rax, "rbx", rp->r_rbx, "rbp", rp->r_rbp);
1763         printf(fmt, "r10", rp->r_r10, "r11", rp->r_r11, "r12", rp->r_r12);
1764         printf(fmt, "r13", rp->r_r13, "r14", rp->r_r14, "r15", rp->r_r15);
1765 
1766         printf(fmt, "fsb", rdmsr(MSR_AMD_FSBASE), "gsb", rdmsr(MSR_AMD_GSBASE),
1767             " ds", rp->r_ds);
1768         printf(fmt, " es", rp->r_es, " fs", rp->r_fs, " gs", rp->r_gs);
1769 
1770         printf(fmt, "trp", rp->r_trapno, "err", rp->r_err, "rip", rp->r_rip);
1771         printf(fmt, " cs", rp->r_cs, "rfl", rp->r_rfl, "rsp", rp->r_rsp);
1772 
1773         printf("\t%3s: %16lx\n", " ss", rp->r_ss);
1774 
1775 #elif defined(__i386)
1776         const char fmt[] = "\t%3s: %8lx %3s: %8lx %3s: %8lx %3s: %8lx\n";
1777 
1778         printf(fmt, " gs", rp->r_gs, " fs", rp->r_fs,
1779             " es", rp->r_es, " ds", rp->r_ds);
1780         printf(fmt, "edi", rp->r_edi, "esi", rp->r_esi,
1781             "ebp", rp->r_ebp, "esp", rp->r_esp);
1782         printf(fmt, "ebx", rp->r_ebx, "edx", rp->r_edx,
1783             "ecx", rp->r_ecx, "eax", rp->r_eax);
1784         printf(fmt, "trp", rp->r_trapno, "err", rp->r_err,
1785             "eip", rp->r_eip, " cs", rp->r_cs);
1786         printf("\t%3s: %8lx %3s: %8lx %3s: %8lx\n",
1787             "efl", rp->r_efl, "usp", rp->r_uesp, " ss", rp->r_ss);
1788 
1789 #endif  /* __i386 */
1790 }
1791 
1792 /*
1793  * Test to see if the instruction is iret on i386 or iretq on amd64.
1794  *
1795  * On the hypervisor we can only test for nopop_sys_rtt_syscall. If true
1796  * then we are in the context of hypervisor's failsafe handler because it
1797  * tried to iret and failed due to a bad selector. See xen_failsafe_callback.
1798  */
1799 static int
1800 instr_is_iret(caddr_t pc)
1801 {
1802 
1803 #if defined(__xpv)
1804         extern void nopop_sys_rtt_syscall(void);
1805         return ((pc == (caddr_t)nopop_sys_rtt_syscall) ? 1 : 0);
1806 
1807 #else
1808 
1809 #if defined(__amd64)
1810         static const uint8_t iret_insn[2] = { 0x48, 0xcf };     /* iretq */
1811 
1812 #elif defined(__i386)
1813         static const uint8_t iret_insn[1] = { 0xcf };           /* iret */
1814 #endif  /* __i386 */
1815         return (bcmp(pc, iret_insn, sizeof (iret_insn)) == 0);
1816 
1817 #endif  /* __xpv */
1818 }
1819 
1820 #if defined(__i386)
1821 
1822 /*
1823  * Test to see if the instruction is part of __SEGREGS_POP
1824  *
1825  * Note carefully the appallingly awful dependency between
1826  * the instruction sequence used in __SEGREGS_POP and these
1827  * instructions encoded here.
1828  */
1829 static int
1830 instr_is_segregs_pop(caddr_t pc)
1831 {
1832         static const uint8_t movw_0_esp_gs[4] = { 0x8e, 0x6c, 0x24, 0x0 };
1833         static const uint8_t movw_4_esp_fs[4] = { 0x8e, 0x64, 0x24, 0x4 };
1834         static const uint8_t movw_8_esp_es[4] = { 0x8e, 0x44, 0x24, 0x8 };
1835         static const uint8_t movw_c_esp_ds[4] = { 0x8e, 0x5c, 0x24, 0xc };
1836 
1837         if (bcmp(pc, movw_0_esp_gs, sizeof (movw_0_esp_gs)) == 0 ||
1838             bcmp(pc, movw_4_esp_fs, sizeof (movw_4_esp_fs)) == 0 ||
1839             bcmp(pc, movw_8_esp_es, sizeof (movw_8_esp_es)) == 0 ||
1840             bcmp(pc, movw_c_esp_ds, sizeof (movw_c_esp_ds)) == 0)
1841                 return (1);
1842 
1843         return (0);
1844 }
1845 
1846 #endif  /* __i386 */
1847 
1848 /*
1849  * Test to see if the instruction is part of _sys_rtt.
1850  *
1851  * Again on the hypervisor if we try to IRET to user land with a bad code
1852  * or stack selector we will get vectored through xen_failsafe_callback.
1853  * In which case we assume we got here via _sys_rtt since we only allow
1854  * IRET to user land to take place in _sys_rtt.
1855  */
1856 static int
1857 instr_is_sys_rtt(caddr_t pc)
1858 {
1859         extern void _sys_rtt(), _sys_rtt_end();
1860 
1861         if ((uintptr_t)pc < (uintptr_t)_sys_rtt ||
1862             (uintptr_t)pc > (uintptr_t)_sys_rtt_end)
1863                 return (0);
1864 
1865         return (1);
1866 }
1867 
1868 /*
1869  * Handle #gp faults in kernel mode.
1870  *
1871  * One legitimate way this can happen is if we attempt to update segment
1872  * registers to naughty values on the way out of the kernel.
1873  *
1874  * This can happen in a couple of ways: someone - either accidentally or
1875  * on purpose - creates (setcontext(2), lwp_create(2)) or modifies
1876  * (signal(2)) a ucontext that contains silly segment register values.
1877  * Or someone - either accidentally or on purpose - modifies the prgregset_t
1878  * of a subject process via /proc to contain silly segment register values.
1879  *
1880  * (The unfortunate part is that we can end up discovering the bad segment
1881  * register value in the middle of an 'iret' after we've popped most of the
1882  * stack.  So it becomes quite difficult to associate an accurate ucontext
1883  * with the lwp, because the act of taking the #gp trap overwrites most of
1884  * what we were going to send the lwp.)
1885  *
1886  * OTOH if it turns out that's -not- the problem, and we're -not- an lwp
1887  * trying to return to user mode and we get a #gp fault, then we need
1888  * to die() -- which will happen if we return non-zero from this routine.
1889  */
1890 static int
1891 kern_gpfault(struct regs *rp)
1892 {
1893         kthread_t *t = curthread;
1894         proc_t *p = ttoproc(t);
1895         klwp_t *lwp = ttolwp(t);
1896         struct regs tmpregs, *trp = NULL;
1897         caddr_t pc = (caddr_t)rp->r_pc;
1898         int v;
1899         uint32_t auditing = AU_AUDITING();
1900 
1901         /*
1902          * if we're not an lwp, or in the case of running native the
1903          * pc range is outside _sys_rtt, then we should immediately
1904          * be die()ing horribly.
1905          */
1906         if (lwp == NULL || !instr_is_sys_rtt(pc))
1907                 return (1);
1908 
1909         /*
1910          * So at least we're in the right part of the kernel.
1911          *
1912          * Disassemble the instruction at the faulting pc.
1913          * Once we know what it is, we carefully reconstruct the stack
1914          * based on the order in which the stack is deconstructed in
1915          * _sys_rtt. Ew.
1916          */
1917         if (instr_is_iret(pc)) {
1918                 /*
1919                  * We took the #gp while trying to perform the IRET.
1920                  * This means that either %cs or %ss are bad.
1921                  * All we know for sure is that most of the general
1922                  * registers have been restored, including the
1923                  * segment registers, and all we have left on the
1924                  * topmost part of the lwp's stack are the
1925                  * registers that the iretq was unable to consume.
1926                  *
1927                  * All the rest of the state was crushed by the #gp
1928                  * which pushed -its- registers atop our old save area
1929                  * (because we had to decrement the stack pointer, sigh) so
1930                  * all that we can try and do is to reconstruct the
1931                  * crushed frame from the #gp trap frame itself.
1932                  */
1933                 trp = &tmpregs;
1934                 trp->r_ss = lwptoregs(lwp)->r_ss;
1935                 trp->r_sp = lwptoregs(lwp)->r_sp;
1936                 trp->r_ps = lwptoregs(lwp)->r_ps;
1937                 trp->r_cs = lwptoregs(lwp)->r_cs;
1938                 trp->r_pc = lwptoregs(lwp)->r_pc;
1939                 bcopy(rp, trp, offsetof(struct regs, r_pc));
1940 
1941                 /*
1942                  * Validate simple math
1943                  */
1944                 ASSERT(trp->r_pc == lwptoregs(lwp)->r_pc);
1945                 ASSERT(trp->r_err == rp->r_err);
1946 
1947 
1948 
1949         }
1950 
1951 #if defined(__amd64)
1952         if (trp == NULL && lwp->lwp_pcb.pcb_rupdate != 0) {
1953 
1954                 /*
1955                  * This is the common case -- we're trying to load
1956                  * a bad segment register value in the only section
1957                  * of kernel code that ever loads segment registers.
1958                  *
1959                  * We don't need to do anything at this point because
1960                  * the pcb contains all the pending segment register
1961                  * state, and the regs are still intact because we
1962                  * didn't adjust the stack pointer yet.  Given the fidelity
1963                  * of all this, we could conceivably send a signal
1964                  * to the lwp, rather than core-ing.
1965                  */
1966                 trp = lwptoregs(lwp);
1967                 ASSERT((caddr_t)trp == (caddr_t)rp->r_sp);
1968         }
1969 
1970 #elif defined(__i386)
1971 
1972         if (trp == NULL && instr_is_segregs_pop(pc))
1973                 trp = lwptoregs(lwp);
1974 
1975 #endif  /* __i386 */
1976 
1977         if (trp == NULL)
1978                 return (1);
1979 
1980         /*
1981          * If we get to here, we're reasonably confident that we've
1982          * correctly decoded what happened on the way out of the kernel.
1983          * Rewrite the lwp's registers so that we can create a core dump
1984          * the (at least vaguely) represents the mcontext we were
1985          * being asked to restore when things went so terribly wrong.
1986          */
1987 
1988         /*
1989          * Make sure that we have a meaningful %trapno and %err.
1990          */
1991         trp->r_trapno = rp->r_trapno;
1992         trp->r_err = rp->r_err;
1993 
1994         if ((caddr_t)trp != (caddr_t)lwptoregs(lwp))
1995                 bcopy(trp, lwptoregs(lwp), sizeof (*trp));
1996 
1997 
1998         mutex_enter(&p->p_lock);
1999         lwp->lwp_cursig = SIGSEGV;
2000         mutex_exit(&p->p_lock);
2001 
2002         /*
2003          * Terminate all LWPs but don't discard them.  If another lwp beat
2004          * us to the punch by calling exit(), evaporate now.
2005          */
2006         proc_is_exiting(p);
2007         if (exitlwps(1) != 0) {
2008                 mutex_enter(&p->p_lock);
2009                 lwp_exit();
2010         }
2011 
2012         if (auditing)           /* audit core dump */
2013                 audit_core_start(SIGSEGV);
2014         v = core(SIGSEGV, B_FALSE);
2015         if (auditing)           /* audit core dump */
2016                 audit_core_finish(v ? CLD_KILLED : CLD_DUMPED);
2017         exit(v ? CLD_KILLED : CLD_DUMPED, SIGSEGV);
2018         return (0);
2019 }
2020 
2021 /*
2022  * dump_tss() - Display the TSS structure
2023  */
2024 
2025 #if !defined(__xpv)
2026 #if defined(__amd64)
2027 
2028 static void
2029 dump_tss(void)
2030 {
2031         const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
2032         tss_t *tss = CPU->cpu_tss;
2033 
2034         printf(tss_fmt, "tss_rsp0", (void *)tss->tss_rsp0);
2035         printf(tss_fmt, "tss_rsp1", (void *)tss->tss_rsp1);
2036         printf(tss_fmt, "tss_rsp2", (void *)tss->tss_rsp2);
2037 
2038         printf(tss_fmt, "tss_ist1", (void *)tss->tss_ist1);
2039         printf(tss_fmt, "tss_ist2", (void *)tss->tss_ist2);
2040         printf(tss_fmt, "tss_ist3", (void *)tss->tss_ist3);
2041         printf(tss_fmt, "tss_ist4", (void *)tss->tss_ist4);
2042         printf(tss_fmt, "tss_ist5", (void *)tss->tss_ist5);
2043         printf(tss_fmt, "tss_ist6", (void *)tss->tss_ist6);
2044         printf(tss_fmt, "tss_ist7", (void *)tss->tss_ist7);
2045 }
2046 
2047 #elif defined(__i386)
2048 
2049 static void
2050 dump_tss(void)
2051 {
2052         const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
2053         tss_t *tss = CPU->cpu_tss;
2054 
2055         printf(tss_fmt, "tss_link", (void *)(uintptr_t)tss->tss_link);
2056         printf(tss_fmt, "tss_esp0", (void *)(uintptr_t)tss->tss_esp0);
2057         printf(tss_fmt, "tss_ss0", (void *)(uintptr_t)tss->tss_ss0);
2058         printf(tss_fmt, "tss_esp1", (void *)(uintptr_t)tss->tss_esp1);
2059         printf(tss_fmt, "tss_ss1", (void *)(uintptr_t)tss->tss_ss1);
2060         printf(tss_fmt, "tss_esp2", (void *)(uintptr_t)tss->tss_esp2);
2061         printf(tss_fmt, "tss_ss2", (void *)(uintptr_t)tss->tss_ss2);
2062         printf(tss_fmt, "tss_cr3", (void *)(uintptr_t)tss->tss_cr3);
2063         printf(tss_fmt, "tss_eip", (void *)(uintptr_t)tss->tss_eip);
2064         printf(tss_fmt, "tss_eflags", (void *)(uintptr_t)tss->tss_eflags);
2065         printf(tss_fmt, "tss_eax", (void *)(uintptr_t)tss->tss_eax);
2066         printf(tss_fmt, "tss_ebx", (void *)(uintptr_t)tss->tss_ebx);
2067         printf(tss_fmt, "tss_ecx", (void *)(uintptr_t)tss->tss_ecx);
2068         printf(tss_fmt, "tss_edx", (void *)(uintptr_t)tss->tss_edx);
2069         printf(tss_fmt, "tss_esp", (void *)(uintptr_t)tss->tss_esp);
2070 }
2071 
2072 #endif  /* __amd64 */
2073 #endif  /* !__xpv */
2074 
2075 #if defined(TRAPTRACE)
2076 
2077 int ttrace_nrec = 10;           /* number of records to dump out */
2078 int ttrace_dump_nregs = 0;      /* dump out this many records with regs too */
2079 
2080 /*
2081  * Dump out the last ttrace_nrec traptrace records on each CPU
2082  */
2083 static void
2084 dump_ttrace(void)
2085 {
2086         trap_trace_ctl_t *ttc;
2087         trap_trace_rec_t *rec;
2088         uintptr_t current;
2089         int i, j, k;
2090         int n = NCPU;
2091 #if defined(__amd64)
2092         const char banner[] =
2093             "CPU          ADDRESS    TIMESTAMP TYPE  VC HANDLER          PC\n";
2094         /* Define format for the CPU, ADDRESS, and TIMESTAMP fields */
2095         const char fmt1[] = "%3d %016lx %12llx";
2096         char data1[34]; /* length of string formatted by fmt1 + 1 */
2097 #elif defined(__i386)
2098         const char banner[] =
2099             "CPU  ADDRESS     TIMESTAMP TYPE  VC HANDLER          PC\n";
2100         /* Define format for the CPU, ADDRESS, and TIMESTAMP fields */
2101         const char fmt1[] = "%3d %08lx %12llx";
2102         char data1[26]; /* length of string formatted by fmt1 + 1 */
2103 #endif
2104         /* Define format for the TYPE and VC fields */
2105         const char fmt2[] = "%4s %3x";
2106         char data2[9];  /* length of string formatted by fmt2 + 1 */
2107         /*
2108          * Define format for the HANDLER field. Width is arbitrary, but should
2109          * be enough for common handler's names, and leave enough space for
2110          * the PC field, especially when we are in kmdb.
2111          */
2112         const char fmt3h[] = "#%-15s";
2113         const char fmt3p[] = "%-16p";
2114         const char fmt3s[] = "%-16s";
2115         char data3[17]; /* length of string formatted by fmt3* + 1 */
2116 
2117         if (ttrace_nrec == 0)
2118                 return;
2119 
2120         printf("\n");
2121         printf(banner);
2122 
2123         for (i = 0; i < n; i++) {
2124                 ttc = &trap_trace_ctl[i];
2125                 if (ttc->ttc_first == NULL)
2126                         continue;
2127 
2128                 current = ttc->ttc_next - sizeof (trap_trace_rec_t);
2129                 for (j = 0; j < ttrace_nrec; j++) {
2130                         struct sysent   *sys;
2131                         struct autovec  *vec;
2132                         extern struct av_head autovect[];
2133                         int type;
2134                         ulong_t off;
2135                         char *sym, *stype;
2136 
2137                         if (current < ttc->ttc_first)
2138                                 current =
2139                                     ttc->ttc_limit - sizeof (trap_trace_rec_t);
2140 
2141                         if (current == NULL)
2142                                 continue;
2143 
2144                         rec = (trap_trace_rec_t *)current;
2145 
2146                         if (rec->ttr_stamp == 0)
2147                                 break;
2148 
2149                         (void) snprintf(data1, sizeof (data1), fmt1, i,
2150                             (uintptr_t)rec, rec->ttr_stamp);
2151 
2152                         switch (rec->ttr_marker) {
2153                         case TT_SYSCALL:
2154                         case TT_SYSENTER:
2155                         case TT_SYSC:
2156                         case TT_SYSC64:
2157 #if defined(__amd64)
2158                                 sys = &sysent32[rec->ttr_sysnum];
2159                                 switch (rec->ttr_marker) {
2160                                 case TT_SYSC64:
2161                                         sys = &sysent[rec->ttr_sysnum];
2162                                         /*FALLTHROUGH*/
2163 #elif defined(__i386)
2164                                 sys = &sysent[rec->ttr_sysnum];
2165                                 switch (rec->ttr_marker) {
2166                                 case TT_SYSC64:
2167 #endif
2168                                 case TT_SYSC:
2169                                         stype = "sysc"; /* syscall */
2170                                         break;
2171                                 case TT_SYSCALL:
2172                                         stype = "lcal"; /* lcall */
2173                                         break;
2174                                 case TT_SYSENTER:
2175                                         stype = "syse"; /* sysenter */
2176                                         break;
2177                                 default:
2178                                         break;
2179                                 }
2180                                 (void) snprintf(data2, sizeof (data2), fmt2,
2181                                     stype, rec->ttr_sysnum);
2182                                 if (sys != NULL) {
2183                                         sym = kobj_getsymname(
2184                                             (uintptr_t)sys->sy_callc,
2185                                             &off);
2186                                         if (sym != NULL) {
2187                                                 (void) snprintf(data3,
2188                                                     sizeof (data3), fmt3s, sym);
2189                                         } else {
2190                                                 (void) snprintf(data3,
2191                                                     sizeof (data3), fmt3p,
2192                                                     sys->sy_callc);
2193                                         }
2194                                 } else {
2195                                         (void) snprintf(data3, sizeof (data3),
2196                                             fmt3s, "unknown");
2197                                 }
2198                                 break;
2199 
2200                         case TT_INTERRUPT:
2201                                 (void) snprintf(data2, sizeof (data2), fmt2,
2202                                     "intr", rec->ttr_vector);
2203                                 if (get_intr_handler != NULL)
2204                                         vec = (struct autovec *)
2205                                             (*get_intr_handler)
2206                                             (rec->ttr_cpuid, rec->ttr_vector);
2207                                 else
2208                                         vec =
2209                                             autovect[rec->ttr_vector].avh_link;
2210 
2211                                 if (vec != NULL) {
2212                                         sym = kobj_getsymname(
2213                                             (uintptr_t)vec->av_vector, &off);
2214                                         if (sym != NULL) {
2215                                                 (void) snprintf(data3,
2216                                                     sizeof (data3), fmt3s, sym);
2217                                         } else {
2218                                                 (void) snprintf(data3,
2219                                                     sizeof (data3), fmt3p,
2220                                                     vec->av_vector);
2221                                         }
2222                                 } else {
2223                                         (void) snprintf(data3, sizeof (data3),
2224                                             fmt3s, "unknown");
2225                                 }
2226                                 break;
2227 
2228                         case TT_TRAP:
2229                         case TT_EVENT:
2230                                 type = rec->ttr_regs.r_trapno;
2231                                 (void) snprintf(data2, sizeof (data2), fmt2,
2232                                     "trap", type);
2233                                 if (type < TRAP_TYPES) {
2234                                         (void) snprintf(data3, sizeof (data3),
2235                                             fmt3h, trap_type_mnemonic[type]);
2236                                 } else {
2237                                         switch (type) {
2238                                         case T_AST:
2239                                                 (void) snprintf(data3,
2240                                                     sizeof (data3), fmt3s,
2241                                                     "ast");
2242                                                 break;
2243                                         default:
2244                                                 (void) snprintf(data3,
2245                                                     sizeof (data3), fmt3s, "");
2246                                                 break;
2247                                         }
2248                                 }
2249                                 break;
2250 
2251                         default:
2252                                 break;
2253                         }
2254 
2255                         sym = kobj_getsymname(rec->ttr_regs.r_pc, &off);
2256                         if (sym != NULL) {
2257                                 printf("%s %s %s %s+%lx\n", data1, data2, data3,
2258                                     sym, off);
2259                         } else {
2260                                 printf("%s %s %s %lx\n", data1, data2, data3,
2261                                     rec->ttr_regs.r_pc);
2262                         }
2263 
2264                         if (ttrace_dump_nregs-- > 0) {
2265                                 int s;
2266 
2267                                 if (rec->ttr_marker == TT_INTERRUPT)
2268                                         printf(
2269                                             "\t\tipl %x spl %x pri %x\n",
2270                                             rec->ttr_ipl,
2271                                             rec->ttr_spl,
2272                                             rec->ttr_pri);
2273 
2274                                 dumpregs(&rec->ttr_regs);
2275 
2276                                 printf("\t%3s: %p\n\n", " ct",
2277                                     (void *)rec->ttr_curthread);
2278 
2279                                 /*
2280                                  * print out the pc stack that we recorded
2281                                  * at trap time (if any)
2282                                  */
2283                                 for (s = 0; s < rec->ttr_sdepth; s++) {
2284                                         uintptr_t fullpc;
2285 
2286                                         if (s >= TTR_STACK_DEPTH) {
2287                                                 printf("ttr_sdepth corrupt\n");
2288                                                 break;
2289                                         }
2290 
2291                                         fullpc = (uintptr_t)rec->ttr_stack[s];
2292 
2293                                         sym = kobj_getsymname(fullpc, &off);
2294                                         if (sym != NULL)
2295                                                 printf("-> %s+0x%lx()\n",
2296                                                     sym, off);
2297                                         else
2298                                                 printf("-> 0x%lx()\n", fullpc);
2299                                 }
2300                                 printf("\n");
2301                         }
2302                         current -= sizeof (trap_trace_rec_t);
2303                 }
2304         }
2305 }
2306 
2307 #endif  /* TRAPTRACE */
2308 
2309 void
2310 panic_showtrap(struct panic_trap_info *tip)
2311 {
2312         showregs(tip->trap_type, tip->trap_regs, tip->trap_addr);
2313 
2314 #if defined(TRAPTRACE)
2315         dump_ttrace();
2316 #endif
2317 
2318 #if !defined(__xpv)
2319         if (tip->trap_type == T_DBLFLT)
2320                 dump_tss();
2321 #endif
2322 }
2323 
2324 void
2325 panic_savetrap(panic_data_t *pdp, struct panic_trap_info *tip)
2326 {
2327         panic_saveregs(pdp, tip->trap_regs);
2328 }