1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  *
  26  * Copyright (c) 2010, Intel Corporation.
  27  * All rights reserved.
  28  *
  29  * Copyright 2013 Joyent, Inc.  All rights reserved.
  30  */
  31 
  32 /*
  33  * This file contains the functionality that mimics the boot operations
  34  * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
  35  * The x86 kernel now does everything on its own.
  36  */
  37 
  38 #include <sys/types.h>
  39 #include <sys/bootconf.h>
  40 #include <sys/bootsvcs.h>
  41 #include <sys/bootinfo.h>
  42 #include <sys/multiboot.h>
  43 #include <sys/multiboot2.h>
  44 #include <sys/multiboot2_impl.h>
  45 #include <sys/bootvfs.h>
  46 #include <sys/bootprops.h>
  47 #include <sys/varargs.h>
  48 #include <sys/param.h>
  49 #include <sys/machparam.h>
  50 #include <sys/machsystm.h>
  51 #include <sys/archsystm.h>
  52 #include <sys/boot_console.h>
  53 #include <sys/cmn_err.h>
  54 #include <sys/systm.h>
  55 #include <sys/promif.h>
  56 #include <sys/archsystm.h>
  57 #include <sys/x86_archext.h>
  58 #include <sys/kobj.h>
  59 #include <sys/privregs.h>
  60 #include <sys/sysmacros.h>
  61 #include <sys/ctype.h>
  62 #include <sys/fastboot.h>
  63 #ifdef __xpv
  64 #include <sys/hypervisor.h>
  65 #include <net/if.h>
  66 #endif
  67 #include <vm/kboot_mmu.h>
  68 #include <vm/hat_pte.h>
  69 #include <sys/kobj.h>
  70 #include <sys/kobj_lex.h>
  71 #include <sys/pci_cfgspace_impl.h>
  72 #include <sys/fastboot_impl.h>
  73 #include <sys/acpi/acconfig.h>
  74 #include <sys/acpi/acpi.h>
  75 
  76 static int have_console = 0;    /* set once primitive console is initialized */
  77 static char *boot_args = "";
  78 
  79 /*
  80  * Debugging macros
  81  */
  82 static uint_t kbm_debug = 0;
  83 #define DBG_MSG(s)      { if (kbm_debug) bop_printf(NULL, "%s", s); }
  84 #define DBG(x)          { if (kbm_debug)                        \
  85         bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x));     \
  86         }
  87 
  88 #define PUT_STRING(s) {                         \
  89         char *cp;                               \
  90         for (cp = (s); *cp; ++cp)               \
  91                 bcons_putchar(*cp);             \
  92         }
  93 
  94 bootops_t bootop;       /* simple bootops we'll pass on to kernel */
  95 struct bsys_mem bm;
  96 
  97 /*
  98  * Boot info from "glue" code in low memory. xbootp is used by:
  99  *      do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish().
 100  */
 101 static struct xboot_info *xbootp;
 102 static uintptr_t next_virt;     /* next available virtual address */
 103 static paddr_t next_phys;       /* next available physical address from dboot */
 104 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */
 105 
 106 /*
 107  * buffer for vsnprintf for console I/O
 108  */
 109 #define BUFFERSIZE      512
 110 static char buffer[BUFFERSIZE];
 111 
 112 /*
 113  * stuff to store/report/manipulate boot property settings.
 114  */
 115 typedef struct bootprop {
 116         struct bootprop *bp_next;
 117         char *bp_name;
 118         uint_t bp_vlen;
 119         char *bp_value;
 120 } bootprop_t;
 121 
 122 static bootprop_t *bprops = NULL;
 123 static char *curr_page = NULL;          /* ptr to avail bprop memory */
 124 static int curr_space = 0;              /* amount of memory at curr_page */
 125 
 126 #ifdef __xpv
 127 start_info_t *xen_info;
 128 shared_info_t *HYPERVISOR_shared_info;
 129 #endif
 130 
 131 /*
 132  * some allocator statistics
 133  */
 134 static ulong_t total_bop_alloc_scratch = 0;
 135 static ulong_t total_bop_alloc_kernel = 0;
 136 
 137 static void build_firmware_properties(struct xboot_info *);
 138 
 139 static int early_allocation = 1;
 140 
 141 int force_fastreboot = 0;
 142 volatile int fastreboot_onpanic = 0;
 143 int post_fastreboot = 0;
 144 #ifdef  __xpv
 145 volatile int fastreboot_capable = 0;
 146 #else
 147 volatile int fastreboot_capable = 1;
 148 #endif
 149 
 150 /*
 151  * Information saved from current boot for fast reboot.
 152  * If the information size exceeds what we have allocated, fast reboot
 153  * will not be supported.
 154  */
 155 multiboot_info_t saved_mbi;
 156 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
 157 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
 158 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
 159 int saved_cmdline_len = 0;
 160 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
 161 
 162 /*
 163  * Turn off fastreboot_onpanic to avoid panic loop.
 164  */
 165 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
 166 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
 167 
 168 /*
 169  * Pointers to where System Resource Affinity Table (SRAT), System Locality
 170  * Information Table (SLIT) and Maximum System Capability Table (MSCT)
 171  * are mapped into virtual memory
 172  */
 173 ACPI_TABLE_SRAT *srat_ptr = NULL;
 174 ACPI_TABLE_SLIT *slit_ptr = NULL;
 175 ACPI_TABLE_MSCT *msct_ptr = NULL;
 176 
 177 /*
 178  * Arbitrary limit on number of localities we handle; if
 179  * this limit is raised to more than UINT16_MAX, make sure
 180  * process_slit() knows how to handle it.
 181  */
 182 #define SLIT_LOCALITIES_MAX     (4096)
 183 
 184 #define SLIT_NUM_PROPNAME       "acpi-slit-localities"
 185 #define SLIT_PROPNAME           "acpi-slit"
 186 
 187 /*
 188  * Allocate aligned physical memory at boot time. This allocator allocates
 189  * from the highest possible addresses. This avoids exhausting memory that
 190  * would be useful for DMA buffers.
 191  */
 192 paddr_t
 193 do_bop_phys_alloc(uint64_t size, uint64_t align)
 194 {
 195         paddr_t pa = 0;
 196         paddr_t start;
 197         paddr_t end;
 198         struct memlist  *ml = (struct memlist *)xbootp->bi_phys_install;
 199 
 200         /*
 201          * Be careful if high memory usage is limited in startup.c
 202          * Since there are holes in the low part of the physical address
 203          * space we can treat physmem as a pfn (not just a pgcnt) and
 204          * get a conservative upper limit.
 205          */
 206         if (physmem != 0 && high_phys > pfn_to_pa(physmem))
 207                 high_phys = pfn_to_pa(physmem);
 208 
 209         /*
 210          * find the highest available memory in physinstalled
 211          */
 212         size = P2ROUNDUP(size, align);
 213         for (; ml; ml = ml->ml_next) {
 214                 start = P2ROUNDUP(ml->ml_address, align);
 215                 end = P2ALIGN(ml->ml_address + ml->ml_size, align);
 216                 if (start < next_phys)
 217                         start = P2ROUNDUP(next_phys, align);
 218                 if (end > high_phys)
 219                         end = P2ALIGN(high_phys, align);
 220 
 221                 if (end <= start)
 222                         continue;
 223                 if (end - start < size)
 224                         continue;
 225 
 226                 /*
 227                  * Early allocations need to use low memory, since
 228                  * physmem might be further limited by bootenv.rc
 229                  */
 230                 if (early_allocation) {
 231                         if (pa == 0 || start < pa)
 232                                 pa = start;
 233                 } else {
 234                         if (end - size > pa)
 235                                 pa = end - size;
 236                 }
 237         }
 238         if (pa != 0) {
 239                 if (early_allocation)
 240                         next_phys = pa + size;
 241                 else
 242                         high_phys = pa;
 243                 return (pa);
 244         }
 245         bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
 246             ") Out of memory\n", size, align);
 247         /*NOTREACHED*/
 248 }
 249 
 250 uintptr_t
 251 alloc_vaddr(size_t size, paddr_t align)
 252 {
 253         uintptr_t rv;
 254 
 255         next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
 256         rv = (uintptr_t)next_virt;
 257         next_virt += size;
 258         return (rv);
 259 }
 260 
 261 /*
 262  * Allocate virtual memory. The size is always rounded up to a multiple
 263  * of base pagesize.
 264  */
 265 
 266 /*ARGSUSED*/
 267 static caddr_t
 268 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
 269 {
 270         paddr_t a = align;      /* same type as pa for masking */
 271         uint_t pgsize;
 272         paddr_t pa;
 273         uintptr_t va;
 274         ssize_t s;              /* the aligned size */
 275         uint_t level;
 276         uint_t is_kernel = (virthint != 0);
 277 
 278         if (a < MMU_PAGESIZE)
 279                 a = MMU_PAGESIZE;
 280         else if (!ISP2(a))
 281                 prom_panic("do_bsys_alloc() incorrect alignment");
 282         size = P2ROUNDUP(size, MMU_PAGESIZE);
 283 
 284         /*
 285          * Use the next aligned virtual address if we weren't given one.
 286          */
 287         if (virthint == NULL) {
 288                 virthint = (caddr_t)alloc_vaddr(size, a);
 289                 total_bop_alloc_scratch += size;
 290         } else {
 291                 total_bop_alloc_kernel += size;
 292         }
 293 
 294         /*
 295          * allocate the physical memory
 296          */
 297         pa = do_bop_phys_alloc(size, a);
 298 
 299         /*
 300          * Add the mappings to the page tables, try large pages first.
 301          */
 302         va = (uintptr_t)virthint;
 303         s = size;
 304         level = 1;
 305         pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
 306         if (xbootp->bi_use_largepage && a == pgsize) {
 307                 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
 308                     s >= pgsize) {
 309                         kbm_map(va, pa, level, is_kernel);
 310                         va += pgsize;
 311                         pa += pgsize;
 312                         s -= pgsize;
 313                 }
 314         }
 315 
 316         /*
 317          * Map remaining pages use small mappings
 318          */
 319         level = 0;
 320         pgsize = MMU_PAGESIZE;
 321         while (s > 0) {
 322                 kbm_map(va, pa, level, is_kernel);
 323                 va += pgsize;
 324                 pa += pgsize;
 325                 s -= pgsize;
 326         }
 327         return (virthint);
 328 }
 329 
 330 /*
 331  * Free virtual memory - we'll just ignore these.
 332  */
 333 /*ARGSUSED*/
 334 static void
 335 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
 336 {
 337         bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
 338             (void *)virt, size);
 339 }
 340 
 341 /*
 342  * Old interface
 343  */
 344 /*ARGSUSED*/
 345 static caddr_t
 346 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
 347     int align, int flags)
 348 {
 349         prom_panic("unsupported call to BOP_EALLOC()\n");
 350         return (0);
 351 }
 352 
 353 
 354 static void
 355 bsetprop(char *name, int nlen, void *value, int vlen)
 356 {
 357         uint_t size;
 358         uint_t need_size;
 359         bootprop_t *b;
 360 
 361         /*
 362          * align the size to 16 byte boundary
 363          */
 364         size = sizeof (bootprop_t) + nlen + 1 + vlen;
 365         size = (size + 0xf) & ~0xf;
 366         if (size > curr_space) {
 367                 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
 368                 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
 369                 curr_space = need_size;
 370         }
 371 
 372         /*
 373          * use a bootprop_t at curr_page and link into list
 374          */
 375         b = (bootprop_t *)curr_page;
 376         curr_page += sizeof (bootprop_t);
 377         curr_space -=  sizeof (bootprop_t);
 378         b->bp_next = bprops;
 379         bprops = b;
 380 
 381         /*
 382          * follow by name and ending zero byte
 383          */
 384         b->bp_name = curr_page;
 385         bcopy(name, curr_page, nlen);
 386         curr_page += nlen;
 387         *curr_page++ = 0;
 388         curr_space -= nlen + 1;
 389 
 390         /*
 391          * copy in value, but no ending zero byte
 392          */
 393         b->bp_value = curr_page;
 394         b->bp_vlen = vlen;
 395         if (vlen > 0) {
 396                 bcopy(value, curr_page, vlen);
 397                 curr_page += vlen;
 398                 curr_space -= vlen;
 399         }
 400 
 401         /*
 402          * align new values of curr_page, curr_space
 403          */
 404         while (curr_space & 0xf) {
 405                 ++curr_page;
 406                 --curr_space;
 407         }
 408 }
 409 
 410 static void
 411 bsetprops(char *name, char *value)
 412 {
 413         bsetprop(name, strlen(name), value, strlen(value) + 1);
 414 }
 415 
 416 static void
 417 bsetprop64(char *name, uint64_t value)
 418 {
 419         bsetprop(name, strlen(name), (void *)&value, sizeof (value));
 420 }
 421 
 422 static void
 423 bsetpropsi(char *name, int value)
 424 {
 425         char prop_val[32];
 426 
 427         (void) snprintf(prop_val, sizeof (prop_val), "%d", value);
 428         bsetprops(name, prop_val);
 429 }
 430 
 431 /*
 432  * to find the size of the buffer to allocate
 433  */
 434 /*ARGSUSED*/
 435 int
 436 do_bsys_getproplen(bootops_t *bop, const char *name)
 437 {
 438         bootprop_t *b;
 439 
 440         for (b = bprops; b; b = b->bp_next) {
 441                 if (strcmp(name, b->bp_name) != 0)
 442                         continue;
 443                 return (b->bp_vlen);
 444         }
 445         return (-1);
 446 }
 447 
 448 /*
 449  * get the value associated with this name
 450  */
 451 /*ARGSUSED*/
 452 int
 453 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
 454 {
 455         bootprop_t *b;
 456 
 457         for (b = bprops; b; b = b->bp_next) {
 458                 if (strcmp(name, b->bp_name) != 0)
 459                         continue;
 460                 bcopy(b->bp_value, value, b->bp_vlen);
 461                 return (0);
 462         }
 463         return (-1);
 464 }
 465 
 466 /*
 467  * get the name of the next property in succession from the standalone
 468  */
 469 /*ARGSUSED*/
 470 static char *
 471 do_bsys_nextprop(bootops_t *bop, char *name)
 472 {
 473         bootprop_t *b;
 474 
 475         /*
 476          * A null name is a special signal for the 1st boot property
 477          */
 478         if (name == NULL || strlen(name) == 0) {
 479                 if (bprops == NULL)
 480                         return (NULL);
 481                 return (bprops->bp_name);
 482         }
 483 
 484         for (b = bprops; b; b = b->bp_next) {
 485                 if (name != b->bp_name)
 486                         continue;
 487                 b = b->bp_next;
 488                 if (b == NULL)
 489                         return (NULL);
 490                 return (b->bp_name);
 491         }
 492         return (NULL);
 493 }
 494 
 495 /*
 496  * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
 497  */
 498 static int
 499 parse_value(char *p, uint64_t *retval)
 500 {
 501         int adjust = 0;
 502         uint64_t tmp = 0;
 503         int digit;
 504         int radix = 10;
 505 
 506         *retval = 0;
 507         if (*p == '-' || *p == '~')
 508                 adjust = *p++;
 509 
 510         if (*p == '0') {
 511                 ++p;
 512                 if (*p == 0)
 513                         return (0);
 514                 if (*p == 'x' || *p == 'X') {
 515                         radix = 16;
 516                         ++p;
 517                 } else {
 518                         radix = 8;
 519                         ++p;
 520                 }
 521         }
 522         while (*p) {
 523                 if ('0' <= *p && *p <= '9')
 524                         digit = *p - '0';
 525                 else if ('a' <= *p && *p <= 'f')
 526                         digit = 10 + *p - 'a';
 527                 else if ('A' <= *p && *p <= 'F')
 528                         digit = 10 + *p - 'A';
 529                 else
 530                         return (-1);
 531                 if (digit >= radix)
 532                         return (-1);
 533                 tmp = tmp * radix + digit;
 534                 ++p;
 535         }
 536         if (adjust == '-')
 537                 tmp = -tmp;
 538         else if (adjust == '~')
 539                 tmp = ~tmp;
 540         *retval = tmp;
 541         return (0);
 542 }
 543 
 544 static boolean_t
 545 unprintable(char *value, int size)
 546 {
 547         int i;
 548 
 549         if (size <= 0 || value[0] == '\0')
 550                 return (B_TRUE);
 551 
 552         for (i = 0; i < size; i++) {
 553                 if (value[i] == '\0')
 554                         return (i != (size - 1));
 555 
 556                 if (!isprint(value[i]))
 557                         return (B_TRUE);
 558         }
 559         return (B_FALSE);
 560 }
 561 
 562 /*
 563  * Print out information about all boot properties.
 564  * buffer is pointer to pre-allocated space to be used as temporary
 565  * space for property values.
 566  */
 567 static void
 568 boot_prop_display(char *buffer)
 569 {
 570         char *name = "";
 571         int i, len;
 572 
 573         bop_printf(NULL, "\nBoot properties:\n");
 574 
 575         while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
 576                 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
 577                 (void) do_bsys_getprop(NULL, name, buffer);
 578                 len = do_bsys_getproplen(NULL, name);
 579                 bop_printf(NULL, "len=%d ", len);
 580                 if (!unprintable(buffer, len)) {
 581                         buffer[len] = 0;
 582                         bop_printf(NULL, "%s\n", buffer);
 583                         continue;
 584                 }
 585                 for (i = 0; i < len; i++) {
 586                         bop_printf(NULL, "%02x", buffer[i] & 0xff);
 587                         if (i < len - 1)
 588                                 bop_printf(NULL, ".");
 589                 }
 590                 bop_printf(NULL, "\n");
 591         }
 592 }
 593 
 594 /*
 595  * 2nd part of building the table of boot properties. This includes:
 596  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
 597  *
 598  * lines look like one of:
 599  * ^$
 600  * ^# comment till end of line
 601  * setprop name 'value'
 602  * setprop name value
 603  * setprop name "value"
 604  *
 605  * we do single character I/O since this is really just looking at memory
 606  */
 607 void
 608 boot_prop_finish(void)
 609 {
 610         int fd;
 611         char *line;
 612         int c;
 613         int bytes_read;
 614         char *name;
 615         int n_len;
 616         char *value;
 617         int v_len;
 618         char *inputdev; /* these override the command line if serial ports */
 619         char *outputdev;
 620         char *consoledev;
 621         uint64_t lvalue;
 622         int use_xencons = 0;
 623 
 624 #ifdef __xpv
 625         if (!DOMAIN_IS_INITDOMAIN(xen_info))
 626                 use_xencons = 1;
 627 #endif /* __xpv */
 628 
 629         DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
 630         fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
 631         DBG(fd);
 632 
 633         line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
 634         while (fd >= 0) {
 635 
 636                 /*
 637                  * get a line
 638                  */
 639                 for (c = 0; ; ++c) {
 640                         bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
 641                         if (bytes_read == 0) {
 642                                 if (c == 0)
 643                                         goto done;
 644                                 break;
 645                         }
 646                         if (line[c] == '\n')
 647                                 break;
 648                 }
 649                 line[c] = 0;
 650 
 651                 /*
 652                  * ignore comment lines
 653                  */
 654                 c = 0;
 655                 while (ISSPACE(line[c]))
 656                         ++c;
 657                 if (line[c] == '#' || line[c] == 0)
 658                         continue;
 659 
 660                 /*
 661                  * must have "setprop " or "setprop\t"
 662                  */
 663                 if (strncmp(line + c, "setprop ", 8) != 0 &&
 664                     strncmp(line + c, "setprop\t", 8) != 0)
 665                         continue;
 666                 c += 8;
 667                 while (ISSPACE(line[c]))
 668                         ++c;
 669                 if (line[c] == 0)
 670                         continue;
 671 
 672                 /*
 673                  * gather up the property name
 674                  */
 675                 name = line + c;
 676                 n_len = 0;
 677                 while (line[c] && !ISSPACE(line[c]))
 678                         ++n_len, ++c;
 679 
 680                 /*
 681                  * gather up the value, if any
 682                  */
 683                 value = "";
 684                 v_len = 0;
 685                 while (ISSPACE(line[c]))
 686                         ++c;
 687                 if (line[c] != 0) {
 688                         value = line + c;
 689                         while (line[c] && !ISSPACE(line[c]))
 690                                 ++v_len, ++c;
 691                 }
 692 
 693                 if (v_len >= 2 && value[0] == value[v_len - 1] &&
 694                     (value[0] == '\'' || value[0] == '"')) {
 695                         ++value;
 696                         v_len -= 2;
 697                 }
 698                 name[n_len] = 0;
 699                 if (v_len > 0)
 700                         value[v_len] = 0;
 701                 else
 702                         continue;
 703 
 704                 /*
 705                  * ignore "boot-file" property, it's now meaningless
 706                  */
 707                 if (strcmp(name, "boot-file") == 0)
 708                         continue;
 709                 if (strcmp(name, "boot-args") == 0 &&
 710                     strlen(boot_args) > 0)
 711                         continue;
 712 
 713                 /*
 714                  * If a property was explicitly set on the command line
 715                  * it will override a setting in bootenv.rc
 716                  */
 717                 if (do_bsys_getproplen(NULL, name) > 0)
 718                         continue;
 719 
 720                 bsetprop(name, n_len, value, v_len + 1);
 721         }
 722 done:
 723         if (fd >= 0)
 724                 (void) BRD_CLOSE(bfs_ops, fd);
 725 
 726         /*
 727          * Check if we have to limit the boot time allocator
 728          */
 729         if (do_bsys_getproplen(NULL, "physmem") != -1 &&
 730             do_bsys_getprop(NULL, "physmem", line) >= 0 &&
 731             parse_value(line, &lvalue) != -1) {
 732                 if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
 733                         physmem = (pgcnt_t)lvalue;
 734                         DBG(physmem);
 735                 }
 736         }
 737         early_allocation = 0;
 738 
 739         /*
 740          * check to see if we have to override the default value of the console
 741          */
 742         if (!use_xencons) {
 743                 inputdev = line;
 744                 v_len = do_bsys_getproplen(NULL, "input-device");
 745                 if (v_len > 0)
 746                         (void) do_bsys_getprop(NULL, "input-device", inputdev);
 747                 else
 748                         v_len = 0;
 749                 inputdev[v_len] = 0;
 750 
 751                 outputdev = inputdev + v_len + 1;
 752                 v_len = do_bsys_getproplen(NULL, "output-device");
 753                 if (v_len > 0)
 754                         (void) do_bsys_getprop(NULL, "output-device",
 755                             outputdev);
 756                 else
 757                         v_len = 0;
 758                 outputdev[v_len] = 0;
 759 
 760                 consoledev = outputdev + v_len + 1;
 761                 v_len = do_bsys_getproplen(NULL, "console");
 762                 if (v_len > 0) {
 763                         (void) do_bsys_getprop(NULL, "console", consoledev);
 764                         if (post_fastreboot &&
 765                             strcmp(consoledev, "graphics") == 0) {
 766                                 bsetprops("console", "text");
 767                                 v_len = strlen("text");
 768                                 bcopy("text", consoledev, v_len);
 769                         }
 770                 } else {
 771                         v_len = 0;
 772                 }
 773                 consoledev[v_len] = 0;
 774                 bcons_init2(inputdev, outputdev, consoledev);
 775         } else {
 776                 /*
 777                  * Ensure console property exists
 778                  * If not create it as "hypervisor"
 779                  */
 780                 v_len = do_bsys_getproplen(NULL, "console");
 781                 if (v_len < 0)
 782                         bsetprops("console", "hypervisor");
 783                 inputdev = outputdev = consoledev = "hypervisor";
 784                 bcons_init2(inputdev, outputdev, consoledev);
 785         }
 786 
 787         if (find_boot_prop("prom_debug") || kbm_debug)
 788                 boot_prop_display(line);
 789 }
 790 
 791 /*
 792  * print formatted output
 793  */
 794 /*PRINTFLIKE2*/
 795 /*ARGSUSED*/
 796 void
 797 bop_printf(bootops_t *bop, const char *fmt, ...)
 798 {
 799         va_list ap;
 800 
 801         if (have_console == 0)
 802                 return;
 803 
 804         va_start(ap, fmt);
 805         (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
 806         va_end(ap);
 807         PUT_STRING(buffer);
 808 }
 809 
 810 /*
 811  * Another panic() variant; this one can be used even earlier during boot than
 812  * prom_panic().
 813  */
 814 /*PRINTFLIKE1*/
 815 void
 816 bop_panic(const char *fmt, ...)
 817 {
 818         va_list ap;
 819 
 820         va_start(ap, fmt);
 821         bop_printf(NULL, fmt, ap);
 822         va_end(ap);
 823 
 824         bop_printf(NULL, "\nPress any key to reboot.\n");
 825         (void) bcons_getchar();
 826         bop_printf(NULL, "Resetting...\n");
 827         pc_reset();
 828 }
 829 
 830 /*
 831  * Do a real mode interrupt BIOS call
 832  */
 833 typedef struct bios_regs {
 834         unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
 835 } bios_regs_t;
 836 typedef int (*bios_func_t)(int, bios_regs_t *);
 837 
 838 /*ARGSUSED*/
 839 static void
 840 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
 841 {
 842 #if defined(__xpv)
 843         prom_panic("unsupported call to BOP_DOINT()\n");
 844 #else   /* __xpv */
 845         static int firsttime = 1;
 846         bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
 847         bios_regs_t br;
 848 
 849         /*
 850          * The first time we do this, we have to copy the pre-packaged
 851          * low memory bios call code image into place.
 852          */
 853         if (firsttime) {
 854                 extern char bios_image[];
 855                 extern uint32_t bios_size;
 856 
 857                 bcopy(bios_image, (void *)bios_func, bios_size);
 858                 firsttime = 0;
 859         }
 860 
 861         br.ax = rp->eax.word.ax;
 862         br.bx = rp->ebx.word.bx;
 863         br.cx = rp->ecx.word.cx;
 864         br.dx = rp->edx.word.dx;
 865         br.bp = rp->ebp.word.bp;
 866         br.si = rp->esi.word.si;
 867         br.di = rp->edi.word.di;
 868         br.ds = rp->ds;
 869         br.es = rp->es;
 870 
 871         DBG_MSG("Doing BIOS call...");
 872         DBG(br.ax);
 873         DBG(br.bx);
 874         DBG(br.dx);
 875         rp->eflags = bios_func(intnum, &br);
 876         DBG_MSG("done\n");
 877 
 878         rp->eax.word.ax = br.ax;
 879         rp->ebx.word.bx = br.bx;
 880         rp->ecx.word.cx = br.cx;
 881         rp->edx.word.dx = br.dx;
 882         rp->ebp.word.bp = br.bp;
 883         rp->esi.word.si = br.si;
 884         rp->edi.word.di = br.di;
 885         rp->ds = br.ds;
 886         rp->es = br.es;
 887 #endif /* __xpv */
 888 }
 889 
 890 static struct boot_syscalls bop_sysp = {
 891         bcons_getchar,
 892         bcons_putchar,
 893         bcons_ischar,
 894 };
 895 
 896 static char *whoami;
 897 
 898 #define BUFLEN  64
 899 
 900 #if defined(__xpv)
 901 
 902 static char namebuf[32];
 903 
 904 static void
 905 xen_parse_props(char *s, char *prop_map[], int n_prop)
 906 {
 907         char **prop_name = prop_map;
 908         char *cp = s, *scp;
 909 
 910         do {
 911                 scp = cp;
 912                 while ((*cp != NULL) && (*cp != ':'))
 913                         cp++;
 914 
 915                 if ((scp != cp) && (*prop_name != NULL)) {
 916                         *cp = NULL;
 917                         bsetprops(*prop_name, scp);
 918                 }
 919 
 920                 cp++;
 921                 prop_name++;
 922                 n_prop--;
 923         } while (n_prop > 0);
 924 }
 925 
 926 #define VBDPATHLEN      64
 927 
 928 /*
 929  * parse the 'xpv-root' property to create properties used by
 930  * ufs_mountroot.
 931  */
 932 static void
 933 xen_vbdroot_props(char *s)
 934 {
 935         char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
 936         const char lnamefix[] = "/dev/dsk/c0d";
 937         char *pnp;
 938         char *prop_p;
 939         char mi;
 940         short minor;
 941         long addr = 0;
 942 
 943         pnp = vbdpath + strlen(vbdpath);
 944         prop_p = s + strlen(lnamefix);
 945         while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
 946                 addr = addr * 10 + *prop_p++ - '0';
 947         (void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
 948         pnp = vbdpath + strlen(vbdpath);
 949         if (*prop_p == 's')
 950                 mi = 'a';
 951         else if (*prop_p == 'p')
 952                 mi = 'q';
 953         else
 954                 ASSERT(0); /* shouldn't be here */
 955         prop_p++;
 956         ASSERT(*prop_p != '\0');
 957         if (ISDIGIT(*prop_p)) {
 958                 minor = *prop_p - '0';
 959                 prop_p++;
 960                 if (ISDIGIT(*prop_p)) {
 961                         minor = minor * 10 + *prop_p - '0';
 962                 }
 963         } else {
 964                 /* malformed root path, use 0 as default */
 965                 minor = 0;
 966         }
 967         ASSERT(minor < 16); /* at most 16 partitions */
 968         mi += minor;
 969         *pnp++ = ':';
 970         *pnp++ = mi;
 971         *pnp++ = '\0';
 972         bsetprops("fstype", "ufs");
 973         bsetprops("bootpath", vbdpath);
 974 
 975         DBG_MSG("VBD bootpath set to ");
 976         DBG_MSG(vbdpath);
 977         DBG_MSG("\n");
 978 }
 979 
 980 /*
 981  * parse the xpv-nfsroot property to create properties used by
 982  * nfs_mountroot.
 983  */
 984 static void
 985 xen_nfsroot_props(char *s)
 986 {
 987         char *prop_map[] = {
 988                 BP_SERVER_IP,   /* server IP address */
 989                 BP_SERVER_NAME, /* server hostname */
 990                 BP_SERVER_PATH, /* root path */
 991         };
 992         int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
 993 
 994         bsetprop("fstype", 6, "nfs", 4);
 995 
 996         xen_parse_props(s, prop_map, n_prop);
 997 
 998         /*
 999          * If a server name wasn't specified, use a default.
1000          */
1001         if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1002                 bsetprops(BP_SERVER_NAME, "unknown");
1003 }
1004 
1005 /*
1006  * Extract our IP address, etc. from the "xpv-ip" property.
1007  */
1008 static void
1009 xen_ip_props(char *s)
1010 {
1011         char *prop_map[] = {
1012                 BP_HOST_IP,             /* IP address */
1013                 NULL,                   /* NFS server IP address (ignored in */
1014                                         /* favour of xpv-nfsroot) */
1015                 BP_ROUTER_IP,           /* IP gateway */
1016                 BP_SUBNET_MASK,         /* IP subnet mask */
1017                 "xpv-hostname",         /* hostname (ignored) */
1018                 BP_NETWORK_INTERFACE,   /* interface name */
1019                 "xpv-hcp",              /* host configuration protocol */
1020         };
1021         int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1022         char ifname[IFNAMSIZ];
1023 
1024         xen_parse_props(s, prop_map, n_prop);
1025 
1026         /*
1027          * A Linux dom0 administrator expects all interfaces to be
1028          * called "ethX", which is not the case here.
1029          *
1030          * If the interface name specified is "eth0", presume that
1031          * this is really intended to be "xnf0" (the first domU ->
1032          * dom0 interface for this domain).
1033          */
1034         if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1035             (strcmp("eth0", ifname) == 0)) {
1036                 bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1037                 bop_printf(NULL,
1038                     "network interface name 'eth0' replaced with 'xnf0'\n");
1039         }
1040 }
1041 
1042 #else   /* __xpv */
1043 
1044 static void
1045 setup_rarp_props(struct sol_netinfo *sip)
1046 {
1047         char buf[BUFLEN];       /* to hold ip/mac addrs */
1048         uint8_t *val;
1049 
1050         val = (uint8_t *)&sip->sn_ciaddr;
1051         (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1052             val[0], val[1], val[2], val[3]);
1053         bsetprops(BP_HOST_IP, buf);
1054 
1055         val = (uint8_t *)&sip->sn_siaddr;
1056         (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1057             val[0], val[1], val[2], val[3]);
1058         bsetprops(BP_SERVER_IP, buf);
1059 
1060         if (sip->sn_giaddr != 0) {
1061                 val = (uint8_t *)&sip->sn_giaddr;
1062                 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1063                     val[0], val[1], val[2], val[3]);
1064                 bsetprops(BP_ROUTER_IP, buf);
1065         }
1066 
1067         if (sip->sn_netmask != 0) {
1068                 val = (uint8_t *)&sip->sn_netmask;
1069                 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1070                     val[0], val[1], val[2], val[3]);
1071                 bsetprops(BP_SUBNET_MASK, buf);
1072         }
1073 
1074         if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1075                 bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1076                     sip->sn_mactype, sip->sn_maclen);
1077         } else {
1078                 val = sip->sn_macaddr;
1079                 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1080                     val[0], val[1], val[2], val[3], val[4], val[5]);
1081                 bsetprops(BP_BOOT_MAC, buf);
1082         }
1083 }
1084 
1085 #endif  /* __xpv */
1086 
1087 static void
1088 build_panic_cmdline(const char *cmd, int cmdlen)
1089 {
1090         int proplen;
1091         size_t arglen;
1092 
1093         arglen = sizeof (fastreboot_onpanic_args);
1094         /*
1095          * If we allready have fastreboot-onpanic set to zero,
1096          * don't add them again.
1097          */
1098         if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1099             proplen <=  sizeof (fastreboot_onpanic_cmdline)) {
1100                 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1101                     fastreboot_onpanic_cmdline);
1102                 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1103                         arglen = 1;
1104         }
1105 
1106         /*
1107          * construct fastreboot_onpanic_cmdline
1108          */
1109         if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1110                 DBG_MSG("Command line too long: clearing "
1111                     FASTREBOOT_ONPANIC "\n");
1112                 fastreboot_onpanic = 0;
1113         } else {
1114                 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1115                 if (arglen != 1)
1116                         bcopy(fastreboot_onpanic_args,
1117                             fastreboot_onpanic_cmdline + cmdlen, arglen);
1118                 else
1119                         fastreboot_onpanic_cmdline[cmdlen] = 0;
1120         }
1121 }
1122 
1123 
1124 #ifndef __xpv
1125 /*
1126  * Construct boot command line for Fast Reboot. The saved_cmdline
1127  * is also reported by "eeprom bootcmd".
1128  */
1129 static void
1130 build_fastboot_cmdline(struct xboot_info *xbp)
1131 {
1132         saved_cmdline_len =  strlen(xbp->bi_cmdline) + 1;
1133         if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1134                 DBG(saved_cmdline_len);
1135                 DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1136                 fastreboot_capable = 0;
1137         } else {
1138                 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1139                     saved_cmdline_len);
1140                 saved_cmdline[saved_cmdline_len - 1] = '\0';
1141                 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1142         }
1143 }
1144 
1145 /*
1146  * Save memory layout, disk drive information, unix and boot archive sizes for
1147  * Fast Reboot.
1148  */
1149 static void
1150 save_boot_info(struct xboot_info *xbi)
1151 {
1152         multiboot_info_t *mbi = xbi->bi_mb_info;
1153         struct boot_modules *modp;
1154         int i;
1155 
1156         bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1157         if (mbi->mmap_length > sizeof (saved_mmap)) {
1158                 DBG_MSG("mbi->mmap_length too big: clearing "
1159                     "fastreboot_capable\n");
1160                 fastreboot_capable = 0;
1161         } else {
1162                 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1163                     mbi->mmap_length);
1164         }
1165 
1166         if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1167                 if (mbi->drives_length > sizeof (saved_drives)) {
1168                         DBG(mbi->drives_length);
1169                         DBG_MSG("mbi->drives_length too big: clearing "
1170                             "fastreboot_capable\n");
1171                         fastreboot_capable = 0;
1172                 } else {
1173                         bcopy((void *)(uintptr_t)mbi->drives_addr,
1174                             (void *)saved_drives, mbi->drives_length);
1175                 }
1176         } else {
1177                 saved_mbi.drives_length = 0;
1178                 saved_mbi.drives_addr = NULL;
1179         }
1180 
1181         /*
1182          * Current file sizes.  Used by fastboot.c to figure out how much
1183          * memory to reserve for panic reboot.
1184          * Use the module list from the dboot-constructed xboot_info
1185          * instead of the list referenced by the multiboot structure
1186          * because that structure may not be addressable now.
1187          */
1188         saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1189         for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1190             i < xbi->bi_module_cnt; i++, modp++) {
1191                 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1192         }
1193 }
1194 #endif  /* __xpv */
1195 
1196 /*
1197  * Import boot environment module variables as properties, applying
1198  * blacklist filter for variables we know we will not use.
1199  *
1200  * Since the environment can be relatively large, containing many variables
1201  * used only for boot loader purposes, we will use a blacklist based filter.
1202  * To keep the blacklist from growing too large, we use prefix based filtering.
1203  * This is possible because in many cases, the loader variable names are
1204  * using a structured layout.
1205  *
1206  * We will not overwrite already set properties.
1207  */
1208 static struct bop_blacklist {
1209         const char *bl_name;
1210         int bl_name_len;
1211 } bop_prop_blacklist[] = {
1212         { "ISADIR", sizeof ("ISADIR") },
1213         { "acpi", sizeof ("acpi") },
1214         { "autoboot_delay", sizeof ("autoboot_delay") },
1215         { "autoboot_delay", sizeof ("autoboot_delay") },
1216         { "beansi_", sizeof ("beansi_") },
1217         { "beastie", sizeof ("beastie") },
1218         { "bemenu", sizeof ("bemenu") },
1219         { "boot.", sizeof ("boot.") },
1220         { "bootenv", sizeof ("bootenv") },
1221         { "currdev", sizeof ("currdev") },
1222         { "dhcp.", sizeof ("dhcp.") },
1223         { "interpret", sizeof ("interpret") },
1224         { "kernel", sizeof ("kernel") },
1225         { "loaddev", sizeof ("loaddev") },
1226         { "loader_", sizeof ("loader_") },
1227         { "module_path", sizeof ("module_path") },
1228         { "nfs.", sizeof ("nfs.") },
1229         { "pcibios", sizeof ("pcibios") },
1230         { "prompt", sizeof ("prompt") },
1231         { "smbios", sizeof ("smbios") },
1232         { "tem", sizeof ("tem") },
1233         { "twiddle_divisor", sizeof ("twiddle_divisor") },
1234         { "zfs_be", sizeof ("zfs_be") },
1235 };
1236 
1237 /*
1238  * Match the name against prefixes in above blacklist. If the match was
1239  * found, this name is blacklisted.
1240  */
1241 static boolean_t
1242 name_is_blacklisted(const char *name)
1243 {
1244         int i, n;
1245 
1246         n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1247         for (i = 0; i < n; i++) {
1248                 if (strncmp(bop_prop_blacklist[i].bl_name, name,
1249                     bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1250                         return (B_TRUE);
1251                 }
1252         }
1253         return (B_FALSE);
1254 }
1255 
1256 static void
1257 process_boot_environment(struct boot_modules *benv)
1258 {
1259         char *env, *ptr, *name, *value;
1260         uint32_t size, name_len, value_len;
1261 
1262         if (benv == NULL || benv->bm_type != BMT_ENV)
1263                 return;
1264         ptr = env = benv->bm_addr;
1265         size = benv->bm_size;
1266         do {
1267                 name = ptr;
1268                 /* find '=' */
1269                 while (*ptr != '=') {
1270                         ptr++;
1271                         if (ptr > env + size) /* Something is very wrong. */
1272                                 return;
1273                 }
1274                 name_len = ptr - name;
1275                 if (sizeof (buffer) <= name_len)
1276                         continue;
1277 
1278                 (void) strncpy(buffer, name, sizeof (buffer));
1279                 buffer[name_len] = '\0';
1280                 name = buffer;
1281 
1282                 value_len = 0;
1283                 value = ++ptr;
1284                 while ((uintptr_t)ptr - (uintptr_t)env < size) {
1285                         if (*ptr == '\0') {
1286                                 ptr++;
1287                                 value_len = (uintptr_t)ptr - (uintptr_t)env;
1288                                 break;
1289                         }
1290                         ptr++;
1291                 }
1292 
1293                 /* Did we reach the end of the module? */
1294                 if (value_len == 0)
1295                         return;
1296 
1297                 if (*value == '\0')
1298                         continue;
1299 
1300                 /* Is this property already set? */
1301                 if (do_bsys_getproplen(NULL, name) >= 0)
1302                         continue;
1303 
1304                 if (name_is_blacklisted(name) == B_TRUE)
1305                         continue;
1306 
1307                 /* Create new property. */
1308                 bsetprops(name, value);
1309 
1310                 /* Avoid reading past the module end. */
1311                 if (size <= (uintptr_t)ptr - (uintptr_t)env)
1312                         return;
1313         } while (*ptr != '\0');
1314 }
1315 
1316 /*
1317  * 1st pass at building the table of boot properties. This includes:
1318  * - values set on the command line: -B a=x,b=y,c=z ....
1319  * - known values we just compute (ie. from xbp)
1320  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1321  *
1322  * the grub command line looked like:
1323  * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1324  *
1325  * whoami is the same as boot-file
1326  */
1327 static void
1328 build_boot_properties(struct xboot_info *xbp)
1329 {
1330         char *name;
1331         int name_len;
1332         char *value;
1333         int value_len;
1334         struct boot_modules *bm, *rdbm, *benv = NULL;
1335         char *propbuf;
1336         int quoted = 0;
1337         int boot_arg_len;
1338         uint_t i, midx;
1339         char modid[32];
1340 #ifndef __xpv
1341         static int stdout_val = 0;
1342         uchar_t boot_device;
1343         char str[3];
1344 #endif
1345 
1346         /*
1347          * These have to be done first, so that kobj_mount_root() works
1348          */
1349         DBG_MSG("Building boot properties\n");
1350         propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1351         DBG((uintptr_t)propbuf);
1352         if (xbp->bi_module_cnt > 0) {
1353                 bm = xbp->bi_modules;
1354                 rdbm = NULL;
1355                 for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1356                         if (bm[i].bm_type == BMT_ROOTFS) {
1357                                 rdbm = &bm[i];
1358                                 continue;
1359                         }
1360                         if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL)
1361                                 continue;
1362 
1363                         if (bm[i].bm_type == BMT_ENV) {
1364                                 if (benv == NULL)
1365                                         benv = &bm[i];
1366                                 else
1367                                         continue;
1368                         }
1369 
1370                         (void) snprintf(modid, sizeof (modid),
1371                             "module-name-%u", midx);
1372                         bsetprops(modid, (char *)bm[i].bm_name);
1373                         (void) snprintf(modid, sizeof (modid),
1374                             "module-addr-%u", midx);
1375                         bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1376                         (void) snprintf(modid, sizeof (modid),
1377                             "module-size-%u", midx);
1378                         bsetprop64(modid, (uint64_t)bm[i].bm_size);
1379                         ++midx;
1380                 }
1381                 if (rdbm != NULL) {
1382                         bsetprop64("ramdisk_start",
1383                             (uint64_t)(uintptr_t)rdbm->bm_addr);
1384                         bsetprop64("ramdisk_end",
1385                             (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1386                 }
1387         }
1388 
1389         /*
1390          * If there are any boot time modules or hashes present, then disable
1391          * fast reboot.
1392          */
1393         if (xbp->bi_module_cnt > 1) {
1394                 fastreboot_disable(FBNS_BOOTMOD);
1395         }
1396 
1397 #ifndef __xpv
1398         /*
1399          * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1400          * since we don't currently support MB2 info and module relocation.
1401          * Note that fast reboot will have already been disabled if multiple
1402          * modules are present, since the current implementation assumes that
1403          * we only have a single module, the boot_archive.
1404          */
1405         if (xbp->bi_mb_version != 1) {
1406                 fastreboot_disable(FBNS_MULTIBOOT2);
1407         }
1408 #endif
1409 
1410         DBG_MSG("Parsing command line for boot properties\n");
1411         value = xbp->bi_cmdline;
1412 
1413         /*
1414          * allocate memory to collect boot_args into
1415          */
1416         boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1417         boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1418         boot_args[0] = 0;
1419         boot_arg_len = 0;
1420 
1421 #ifdef __xpv
1422         /*
1423          * Xen puts a lot of device information in front of the kernel name
1424          * let's grab them and make them boot properties.  The first
1425          * string w/o an "=" in it will be the boot-file property.
1426          */
1427         (void) strcpy(namebuf, "xpv-");
1428         for (;;) {
1429                 /*
1430                  * get to next property
1431                  */
1432                 while (ISSPACE(*value))
1433                         ++value;
1434                 name = value;
1435                 /*
1436                  * look for an "="
1437                  */
1438                 while (*value && !ISSPACE(*value) && *value != '=') {
1439                         value++;
1440                 }
1441                 if (*value != '=') { /* no "=" in the property */
1442                         value = name;
1443                         break;
1444                 }
1445                 name_len = value - name;
1446                 value_len = 0;
1447                 /*
1448                  * skip over the "="
1449                  */
1450                 value++;
1451                 while (value[value_len] && !ISSPACE(value[value_len])) {
1452                         ++value_len;
1453                 }
1454                 /*
1455                  * build property name with "xpv-" prefix
1456                  */
1457                 if (name_len + 4 > 32) { /* skip if name too long */
1458                         value += value_len;
1459                         continue;
1460                 }
1461                 bcopy(name, &namebuf[4], name_len);
1462                 name_len += 4;
1463                 namebuf[name_len] = 0;
1464                 bcopy(value, propbuf, value_len);
1465                 propbuf[value_len] = 0;
1466                 bsetprops(namebuf, propbuf);
1467 
1468                 /*
1469                  * xpv-root is set to the logical disk name of the xen
1470                  * VBD when booting from a disk-based filesystem.
1471                  */
1472                 if (strcmp(namebuf, "xpv-root") == 0)
1473                         xen_vbdroot_props(propbuf);
1474                 /*
1475                  * While we're here, if we have a "xpv-nfsroot" property
1476                  * then we need to set "fstype" to "nfs" so we mount
1477                  * our root from the nfs server.  Also parse the xpv-nfsroot
1478                  * property to create the properties that nfs_mountroot will
1479                  * need to find the root and mount it.
1480                  */
1481                 if (strcmp(namebuf, "xpv-nfsroot") == 0)
1482                         xen_nfsroot_props(propbuf);
1483 
1484                 if (strcmp(namebuf, "xpv-ip") == 0)
1485                         xen_ip_props(propbuf);
1486                 value += value_len;
1487         }
1488 #endif
1489 
1490         while (ISSPACE(*value))
1491                 ++value;
1492         /*
1493          * value now points at the boot-file
1494          */
1495         value_len = 0;
1496         while (value[value_len] && !ISSPACE(value[value_len]))
1497                 ++value_len;
1498         if (value_len > 0) {
1499                 whoami = propbuf;
1500                 bcopy(value, whoami, value_len);
1501                 whoami[value_len] = 0;
1502                 bsetprops("boot-file", whoami);
1503                 /*
1504                  * strip leading path stuff from whoami, so running from
1505                  * PXE/miniroot makes sense.
1506                  */
1507                 if (strstr(whoami, "/platform/") != NULL)
1508                         whoami = strstr(whoami, "/platform/");
1509                 bsetprops("whoami", whoami);
1510         }
1511 
1512         /*
1513          * Values forcibly set boot properties on the command line via -B.
1514          * Allow use of quotes in values. Other stuff goes on kernel
1515          * command line.
1516          */
1517         name = value + value_len;
1518         while (*name != 0) {
1519                 /*
1520                  * anything not " -B" is copied to the command line
1521                  */
1522                 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1523                         boot_args[boot_arg_len++] = *name;
1524                         boot_args[boot_arg_len] = 0;
1525                         ++name;
1526                         continue;
1527                 }
1528 
1529                 /*
1530                  * skip the " -B" and following white space
1531                  */
1532                 name += 3;
1533                 while (ISSPACE(*name))
1534                         ++name;
1535                 while (*name && !ISSPACE(*name)) {
1536                         value = strstr(name, "=");
1537                         if (value == NULL)
1538                                 break;
1539                         name_len = value - name;
1540                         ++value;
1541                         value_len = 0;
1542                         quoted = 0;
1543                         for (; ; ++value_len) {
1544                                 if (!value[value_len])
1545                                         break;
1546 
1547                                 /*
1548                                  * is this value quoted?
1549                                  */
1550                                 if (value_len == 0 &&
1551                                     (value[0] == '\'' || value[0] == '"')) {
1552                                         quoted = value[0];
1553                                         ++value_len;
1554                                 }
1555 
1556                                 /*
1557                                  * In the quote accept any character,
1558                                  * but look for ending quote.
1559                                  */
1560                                 if (quoted) {
1561                                         if (value[value_len] == quoted)
1562                                                 quoted = 0;
1563                                         continue;
1564                                 }
1565 
1566                                 /*
1567                                  * a comma or white space ends the value
1568                                  */
1569                                 if (value[value_len] == ',' ||
1570                                     ISSPACE(value[value_len]))
1571                                         break;
1572                         }
1573 
1574                         if (value_len == 0) {
1575                                 bsetprop(name, name_len, "true", 5);
1576                         } else {
1577                                 char *v = value;
1578                                 int l = value_len;
1579                                 if (v[0] == v[l - 1] &&
1580                                     (v[0] == '\'' || v[0] == '"')) {
1581                                         ++v;
1582                                         l -= 2;
1583                                 }
1584                                 bcopy(v, propbuf, l);
1585                                 propbuf[l] = '\0';
1586                                 bsetprop(name, name_len, propbuf,
1587                                     l + 1);
1588                         }
1589                         name = value + value_len;
1590                         while (*name == ',')
1591                                 ++name;
1592                 }
1593         }
1594 
1595         /*
1596          * set boot-args property
1597          * 1275 name is bootargs, so set
1598          * that too
1599          */
1600         bsetprops("boot-args", boot_args);
1601         bsetprops("bootargs", boot_args);
1602 
1603         process_boot_environment(benv);
1604 
1605 #ifndef __xpv
1606         /*
1607          * Build boot command line for Fast Reboot
1608          */
1609         build_fastboot_cmdline(xbp);
1610 
1611         if (xbp->bi_mb_version == 1) {
1612                 multiboot_info_t *mbi = xbp->bi_mb_info;
1613                 int netboot;
1614                 struct sol_netinfo *sip;
1615 
1616                 /*
1617                  * set the BIOS boot device from GRUB
1618                  */
1619                 netboot = 0;
1620 
1621                 /*
1622                  * Save various boot information for Fast Reboot
1623                  */
1624                 save_boot_info(xbp);
1625 
1626                 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1627                         boot_device = mbi->boot_device >> 24;
1628                         if (boot_device == 0x20)
1629                                 netboot++;
1630                         str[0] = (boot_device >> 4) + '0';
1631                         str[1] = (boot_device & 0xf) + '0';
1632                         str[2] = 0;
1633                         bsetprops("bios-boot-device", str);
1634                 } else {
1635                         netboot = 1;
1636                 }
1637 
1638                 /*
1639                  * In the netboot case, drives_info is overloaded with the
1640                  * dhcp ack. This is not multiboot compliant and requires
1641                  * special pxegrub!
1642                  */
1643                 if (netboot && mbi->drives_length != 0) {
1644                         sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1645                         if (sip->sn_infotype == SN_TYPE_BOOTP)
1646                                 bsetprop("bootp-response",
1647                                     sizeof ("bootp-response"),
1648                                     (void *)(uintptr_t)mbi->drives_addr,
1649                                     mbi->drives_length);
1650                         else if (sip->sn_infotype == SN_TYPE_RARP)
1651                                 setup_rarp_props(sip);
1652                 }
1653         } else {
1654                 multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1655                 multiboot_tag_bootdev_t *bootdev = NULL;
1656                 multiboot_tag_network_t *netdev = NULL;
1657 
1658                 if (mbi != NULL) {
1659                         bootdev = dboot_multiboot2_find_tag(mbi,
1660                             MULTIBOOT_TAG_TYPE_BOOTDEV);
1661                         netdev = dboot_multiboot2_find_tag(mbi,
1662                             MULTIBOOT_TAG_TYPE_NETWORK);
1663                 }
1664                 if (bootdev != NULL) {
1665                         DBG(bootdev->mb_biosdev);
1666                         boot_device = bootdev->mb_biosdev;
1667                         str[0] = (boot_device >> 4) + '0';
1668                         str[1] = (boot_device & 0xf) + '0';
1669                         str[2] = 0;
1670                         bsetprops("bios-boot-device", str);
1671                 }
1672                 if (netdev != NULL) {
1673                         bsetprop("bootp-response", sizeof ("bootp-response"),
1674                             (void *)(uintptr_t)netdev->mb_dhcpack,
1675                             netdev->mb_size -
1676                             sizeof (multiboot_tag_network_t));
1677                 }
1678         }
1679 
1680         bsetprop("stdout", strlen("stdout"),
1681             &stdout_val, sizeof (stdout_val));
1682 #endif /* __xpv */
1683 
1684         /*
1685          * more conjured up values for made up things....
1686          */
1687 #if defined(__xpv)
1688         bsetprops("mfg-name", "i86xpv");
1689         bsetprops("impl-arch-name", "i86xpv");
1690 #else
1691         bsetprops("mfg-name", "i86pc");
1692         bsetprops("impl-arch-name", "i86pc");
1693 #endif
1694 
1695         /*
1696          * Build firmware-provided system properties
1697          */
1698         build_firmware_properties(xbp);
1699 
1700         /*
1701          * XXPV
1702          *
1703          * Find out what these are:
1704          * - cpuid_feature_ecx_include
1705          * - cpuid_feature_ecx_exclude
1706          * - cpuid_feature_edx_include
1707          * - cpuid_feature_edx_exclude
1708          *
1709          * Find out what these are in multiboot:
1710          * - netdev-path
1711          * - fstype
1712          */
1713 }
1714 
1715 #ifdef __xpv
1716 /*
1717  * Under the Hypervisor, memory usable for DMA may be scarce. One
1718  * very likely large pool of DMA friendly memory is occupied by
1719  * the boot_archive, as it was loaded by grub into low MFNs.
1720  *
1721  * Here we free up that memory by copying the boot archive to what are
1722  * likely higher MFN pages and then swapping the mfn/pfn mappings.
1723  */
1724 #define PFN_2GIG        0x80000
1725 static void
1726 relocate_boot_archive(struct xboot_info *xbp)
1727 {
1728         mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1729         struct boot_modules *bm = xbp->bi_modules;
1730         uintptr_t va;
1731         pfn_t va_pfn;
1732         mfn_t va_mfn;
1733         caddr_t copy;
1734         pfn_t copy_pfn;
1735         mfn_t copy_mfn;
1736         size_t  len;
1737         int slop;
1738         int total = 0;
1739         int relocated = 0;
1740         int mmu_update_return;
1741         mmu_update_t t[2];
1742         x86pte_t pte;
1743 
1744         /*
1745          * If all MFN's are below 2Gig, don't bother doing this.
1746          */
1747         if (max_mfn < PFN_2GIG)
1748                 return;
1749         if (xbp->bi_module_cnt < 1) {
1750                 DBG_MSG("no boot_archive!");
1751                 return;
1752         }
1753 
1754         DBG_MSG("moving boot_archive to high MFN memory\n");
1755         va = (uintptr_t)bm->bm_addr;
1756         len = bm->bm_size;
1757         slop = va & MMU_PAGEOFFSET;
1758         if (slop) {
1759                 va += MMU_PAGESIZE - slop;
1760                 len -= MMU_PAGESIZE - slop;
1761         }
1762         len = P2ALIGN(len, MMU_PAGESIZE);
1763 
1764         /*
1765          * Go through all boot_archive pages, swapping any low MFN pages
1766          * with memory at next_phys.
1767          */
1768         while (len != 0) {
1769                 ++total;
1770                 va_pfn = mmu_btop(va - ONE_GIG);
1771                 va_mfn = mfn_list[va_pfn];
1772                 if (mfn_list[va_pfn] < PFN_2GIG) {
1773                         copy = kbm_remap_window(next_phys, 1);
1774                         bcopy((void *)va, copy, MMU_PAGESIZE);
1775                         copy_pfn = mmu_btop(next_phys);
1776                         copy_mfn = mfn_list[copy_pfn];
1777 
1778                         pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1779                         if (HYPERVISOR_update_va_mapping(va, pte,
1780                             UVMF_INVLPG | UVMF_LOCAL))
1781                                 bop_panic("relocate_boot_archive():  "
1782                                     "HYPERVISOR_update_va_mapping() failed");
1783 
1784                         mfn_list[va_pfn] = copy_mfn;
1785                         mfn_list[copy_pfn] = va_mfn;
1786 
1787                         t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1788                         t[0].val = va_pfn;
1789                         t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1790                         t[1].val = copy_pfn;
1791                         if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1792                             DOMID_SELF) != 0 || mmu_update_return != 2)
1793                                 bop_panic("relocate_boot_archive():  "
1794                                     "HYPERVISOR_mmu_update() failed");
1795 
1796                         next_phys += MMU_PAGESIZE;
1797                         ++relocated;
1798                 }
1799                 len -= MMU_PAGESIZE;
1800                 va += MMU_PAGESIZE;
1801         }
1802         DBG_MSG("Relocated pages:\n");
1803         DBG(relocated);
1804         DBG_MSG("Out of total pages:\n");
1805         DBG(total);
1806 }
1807 #endif /* __xpv */
1808 
1809 #if !defined(__xpv)
1810 /*
1811  * simple description of a stack frame (args are 32 bit only currently)
1812  */
1813 typedef struct bop_frame {
1814         struct bop_frame *old_frame;
1815         pc_t retaddr;
1816         long arg[1];
1817 } bop_frame_t;
1818 
1819 void
1820 bop_traceback(bop_frame_t *frame)
1821 {
1822         pc_t pc;
1823         int cnt;
1824         char *ksym;
1825         ulong_t off;
1826 
1827         bop_printf(NULL, "Stack traceback:\n");
1828         for (cnt = 0; cnt < 30; ++cnt) {     /* up to 30 frames */
1829                 pc = frame->retaddr;
1830                 if (pc == 0)
1831                         break;
1832                 ksym = kobj_getsymname(pc, &off);
1833                 if (ksym)
1834                         bop_printf(NULL, "  %s+%lx", ksym, off);
1835                 else
1836                         bop_printf(NULL, "  0x%lx", pc);
1837 
1838                 frame = frame->old_frame;
1839                 if (frame == 0) {
1840                         bop_printf(NULL, "\n");
1841                         break;
1842                 }
1843                 bop_printf(NULL, "\n");
1844         }
1845 }
1846 
1847 struct trapframe {
1848         ulong_t error_code;     /* optional */
1849         ulong_t inst_ptr;
1850         ulong_t code_seg;
1851         ulong_t flags_reg;
1852         ulong_t stk_ptr;
1853         ulong_t stk_seg;
1854 };
1855 
1856 void
1857 bop_trap(ulong_t *tfp)
1858 {
1859         struct trapframe *tf = (struct trapframe *)tfp;
1860         bop_frame_t fakeframe;
1861         static int depth = 0;
1862 
1863         /*
1864          * Check for an infinite loop of traps.
1865          */
1866         if (++depth > 2)
1867                 bop_panic("Nested trap");
1868 
1869         bop_printf(NULL, "Unexpected trap\n");
1870 
1871         /*
1872          * adjust the tf for optional error_code by detecting the code selector
1873          */
1874         if (tf->code_seg != B64CODE_SEL)
1875                 tf = (struct trapframe *)(tfp - 1);
1876         else
1877                 bop_printf(NULL, "error code           0x%lx\n",
1878                     tf->error_code & 0xffffffff);
1879 
1880         bop_printf(NULL, "instruction pointer  0x%lx\n", tf->inst_ptr);
1881         bop_printf(NULL, "code segment         0x%lx\n", tf->code_seg & 0xffff);
1882         bop_printf(NULL, "flags register       0x%lx\n", tf->flags_reg);
1883         bop_printf(NULL, "return %%rsp          0x%lx\n", tf->stk_ptr);
1884         bop_printf(NULL, "return %%ss           0x%lx\n", tf->stk_seg & 0xffff);
1885 
1886         /* grab %[er]bp pushed by our code from the stack */
1887         fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
1888         fakeframe.retaddr = (pc_t)tf->inst_ptr;
1889         bop_printf(NULL, "Attempting stack backtrace:\n");
1890         bop_traceback(&fakeframe);
1891         bop_panic("unexpected trap in early boot");
1892 }
1893 
1894 extern void bop_trap_handler(void);
1895 
1896 static gate_desc_t *bop_idt;
1897 
1898 static desctbr_t bop_idt_info;
1899 
1900 /*
1901  * Install a temporary IDT that lets us catch errors in the boot time code.
1902  * We shouldn't get any faults at all while this is installed, so we'll
1903  * just generate a traceback and exit.
1904  */
1905 static void
1906 bop_idt_init(void)
1907 {
1908         int t;
1909 
1910         bop_idt = (gate_desc_t *)
1911             do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1912         bzero(bop_idt, MMU_PAGESIZE);
1913         for (t = 0; t < NIDT; ++t) {
1914                 /*
1915                  * Note that since boot runs without a TSS, the
1916                  * double fault handler cannot use an alternate stack (64-bit).
1917                  */
1918                 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL,
1919                     SDT_SYSIGT, TRP_KPL, 0);
1920         }
1921         bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1922         bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1923         wr_idtr(&bop_idt_info);
1924 }
1925 #endif  /* !defined(__xpv) */
1926 
1927 /*
1928  * This is where we enter the kernel. It dummies up the boot_ops and
1929  * boot_syscalls vectors and jumps off to _kobj_boot()
1930  */
1931 void
1932 _start(struct xboot_info *xbp)
1933 {
1934         bootops_t *bops = &bootop;
1935         extern void _kobj_boot();
1936 
1937         /*
1938          * 1st off - initialize the console for any error messages
1939          */
1940         xbootp = xbp;
1941 #ifdef __xpv
1942         HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
1943         xen_info = xbp->bi_xen_start_info;
1944 #endif
1945 
1946 #ifndef __xpv
1947         if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
1948             FASTBOOT_MAGIC) {
1949                 post_fastreboot = 1;
1950                 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
1951         }
1952 #endif
1953 
1954         bcons_init(xbp);
1955         have_console = 1;
1956 
1957         /*
1958          * enable debugging
1959          */
1960         if (find_boot_prop("kbm_debug") != NULL)
1961                 kbm_debug = 1;
1962 
1963         DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
1964         DBG_MSG((char *)xbp->bi_cmdline);
1965         DBG_MSG("\n\n\n");
1966 
1967         /*
1968          * physavail is no longer used by startup
1969          */
1970         bm.physinstalled = xbp->bi_phys_install;
1971         bm.pcimem = xbp->bi_pcimem;
1972         bm.rsvdmem = xbp->bi_rsvdmem;
1973         bm.physavail = NULL;
1974 
1975         /*
1976          * initialize the boot time allocator
1977          */
1978         next_phys = xbp->bi_next_paddr;
1979         DBG(next_phys);
1980         next_virt = (uintptr_t)xbp->bi_next_vaddr;
1981         DBG(next_virt);
1982         DBG_MSG("Initializing boot time memory management...");
1983 #ifdef __xpv
1984         {
1985                 xen_platform_parameters_t p;
1986 
1987                 /* This call shouldn't fail, dboot already did it once. */
1988                 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
1989                 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
1990                 DBG(xen_virt_start);
1991         }
1992 #endif
1993         kbm_init(xbp);
1994         DBG_MSG("done\n");
1995 
1996         /*
1997          * Fill in the bootops vector
1998          */
1999         bops->bsys_version = BO_VERSION;
2000         bops->boot_mem = &bm;
2001         bops->bsys_alloc = do_bsys_alloc;
2002         bops->bsys_free = do_bsys_free;
2003         bops->bsys_getproplen = do_bsys_getproplen;
2004         bops->bsys_getprop = do_bsys_getprop;
2005         bops->bsys_nextprop = do_bsys_nextprop;
2006         bops->bsys_printf = bop_printf;
2007         bops->bsys_doint = do_bsys_doint;
2008 
2009         /*
2010          * BOP_EALLOC() is no longer needed
2011          */
2012         bops->bsys_ealloc = do_bsys_ealloc;
2013 
2014 #ifdef __xpv
2015         /*
2016          * On domain 0 we need to free up some physical memory that is
2017          * usable for DMA. Since GRUB loaded the boot_archive, it is
2018          * sitting in low MFN memory. We'll relocated the boot archive
2019          * pages to high PFN memory.
2020          */
2021         if (DOMAIN_IS_INITDOMAIN(xen_info))
2022                 relocate_boot_archive(xbp);
2023 #endif
2024 
2025 #ifndef __xpv
2026         /*
2027          * Install an IDT to catch early pagefaults (shouldn't have any).
2028          * Also needed for kmdb.
2029          */
2030         bop_idt_init();
2031 #endif
2032 
2033         /*
2034          * Start building the boot properties from the command line
2035          */
2036         DBG_MSG("Initializing boot properties:\n");
2037         build_boot_properties(xbp);
2038 
2039         if (find_boot_prop("prom_debug") || kbm_debug) {
2040                 char *value;
2041 
2042                 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2043                 boot_prop_display(value);
2044         }
2045 
2046         /*
2047          * jump into krtld...
2048          */
2049         _kobj_boot(&bop_sysp, NULL, bops, NULL);
2050 }
2051 
2052 
2053 /*ARGSUSED*/
2054 static caddr_t
2055 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2056 {
2057         panic("Attempt to bsys_alloc() too late\n");
2058         return (NULL);
2059 }
2060 
2061 /*ARGSUSED*/
2062 static void
2063 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2064 {
2065         panic("Attempt to bsys_free() too late\n");
2066 }
2067 
2068 void
2069 bop_no_more_mem(void)
2070 {
2071         DBG(total_bop_alloc_scratch);
2072         DBG(total_bop_alloc_kernel);
2073         bootops->bsys_alloc = no_more_alloc;
2074         bootops->bsys_free = no_more_free;
2075 }
2076 
2077 
2078 /*
2079  * Set ACPI firmware properties
2080  */
2081 
2082 static caddr_t
2083 vmap_phys(size_t length, paddr_t pa)
2084 {
2085         paddr_t start, end;
2086         caddr_t va;
2087         size_t  len, page;
2088 
2089 #ifdef __xpv
2090         pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2091 #endif
2092         start = P2ALIGN(pa, MMU_PAGESIZE);
2093         end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2094         len = end - start;
2095         va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2096         for (page = 0; page < len; page += MMU_PAGESIZE)
2097                 kbm_map((uintptr_t)va + page, start + page, 0, 0);
2098         return (va + (pa & MMU_PAGEOFFSET));
2099 }
2100 
2101 static uint8_t
2102 checksum_table(uint8_t *tp, size_t len)
2103 {
2104         uint8_t sum = 0;
2105 
2106         while (len-- > 0)
2107                 sum += *tp++;
2108 
2109         return (sum);
2110 }
2111 
2112 static int
2113 valid_rsdp(ACPI_TABLE_RSDP *rp)
2114 {
2115 
2116         /* validate the V1.x checksum */
2117         if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2118                 return (0);
2119 
2120         /* If pre-ACPI 2.0, this is a valid RSDP */
2121         if (rp->Revision < 2)
2122                 return (1);
2123 
2124         /* validate the V2.x checksum */
2125         if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
2126                 return (0);
2127 
2128         return (1);
2129 }
2130 
2131 /*
2132  * Scan memory range for an RSDP;
2133  * see ACPI 3.0 Spec, 5.2.5.1
2134  */
2135 static ACPI_TABLE_RSDP *
2136 scan_rsdp(paddr_t start, paddr_t end)
2137 {
2138         ssize_t len  = end - start;
2139         caddr_t ptr;
2140 
2141         ptr = vmap_phys(len, start);
2142         while (len > 0) {
2143                 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2144                     valid_rsdp((ACPI_TABLE_RSDP *)ptr))
2145                         return ((ACPI_TABLE_RSDP *)ptr);
2146 
2147                 ptr += ACPI_RSDP_SCAN_STEP;
2148                 len -= ACPI_RSDP_SCAN_STEP;
2149         }
2150 
2151         return (NULL);
2152 }
2153 
2154 /*
2155  * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
2156  */
2157 static ACPI_TABLE_RSDP *
2158 find_rsdp()
2159 {
2160         ACPI_TABLE_RSDP *rsdp;
2161         uint64_t rsdp_val = 0;
2162         uint16_t *ebda_seg;
2163         paddr_t  ebda_addr;
2164 
2165         /* check for "acpi-root-tab" property */
2166         if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2167                 (void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val);
2168                 if (rsdp_val != 0) {
2169                         rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp));
2170                         if (rsdp != NULL) {
2171                                 if (kbm_debug) {
2172                                         bop_printf(NULL,
2173                                             "Using RSDP from bootloader: "
2174                                             "0x%p\n", (void *)rsdp);
2175                                 }
2176                                 return (rsdp);
2177                         }
2178                 }
2179         }
2180 
2181         /*
2182          * Get the EBDA segment and scan the first 1K
2183          */
2184         ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2185             ACPI_EBDA_PTR_LOCATION);
2186         ebda_addr = *ebda_seg << 4;
2187         rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE);
2188         if (rsdp == NULL)
2189                 /* if EBDA doesn't contain RSDP, look in BIOS memory */
2190                 rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE,
2191                     ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE);
2192         return (rsdp);
2193 }
2194 
2195 static ACPI_TABLE_HEADER *
2196 map_fw_table(paddr_t table_addr)
2197 {
2198         ACPI_TABLE_HEADER *tp;
2199         size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2200 
2201         /*
2202          * Map at least a page; if the table is larger than this, remap it
2203          */
2204         tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2205         if (tp->Length > len)
2206                 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2207         return (tp);
2208 }
2209 
2210 static ACPI_TABLE_HEADER *
2211 find_fw_table(char *signature)
2212 {
2213         static int revision = 0;
2214         static ACPI_TABLE_XSDT *xsdt;
2215         static int len;
2216         paddr_t xsdt_addr;
2217         ACPI_TABLE_RSDP *rsdp;
2218         ACPI_TABLE_HEADER *tp;
2219         paddr_t table_addr;
2220         int     n;
2221 
2222         if (strlen(signature) != ACPI_NAME_SIZE)
2223                 return (NULL);
2224 
2225         /*
2226          * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2227          * understand this code.  If we haven't already found the RSDT/XSDT,
2228          * revision will be 0. Find the RSDP and check the revision
2229          * to find out whether to use the RSDT or XSDT.  If revision is
2230          * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2231          * use the XSDT.  If the XSDT address is 0, though, fall back to
2232          * revision 1 and use the RSDT.
2233          */
2234         if (revision == 0) {
2235                 if ((rsdp = find_rsdp()) != NULL) {
2236                         revision = rsdp->Revision;
2237                         /*
2238                          * ACPI 6.0 states that current revision is 2
2239                          * from acpi_table_rsdp definition:
2240                          * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2241                          */
2242                         if (revision > 2)
2243                                 revision = 2;
2244                         switch (revision) {
2245                         case 2:
2246                                 /*
2247                                  * Use the XSDT unless BIOS is buggy and
2248                                  * claims to be rev 2 but has a null XSDT
2249                                  * address
2250                                  */
2251                                 xsdt_addr = rsdp->XsdtPhysicalAddress;
2252                                 if (xsdt_addr != 0)
2253                                         break;
2254                                 /* FALLTHROUGH */
2255                         case 0:
2256                                 /* treat RSDP rev 0 as revision 1 internally */
2257                                 revision = 1;
2258                                 /* FALLTHROUGH */
2259                         case 1:
2260                                 /* use the RSDT for rev 0/1 */
2261                                 xsdt_addr = rsdp->RsdtPhysicalAddress;
2262                                 break;
2263                         default:
2264                                 /* unknown revision */
2265                                 revision = 0;
2266                                 break;
2267                         }
2268                 }
2269                 if (revision == 0)
2270                         return (NULL);
2271 
2272                 /* cache the XSDT info */
2273                 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2274                 len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2275                     ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2276         }
2277 
2278         /*
2279          * Scan the table headers looking for a signature match
2280          */
2281         for (n = 0; n < len; n++) {
2282                 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2283                 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2284                     xsdt->TableOffsetEntry[n];
2285 
2286                 if (table_addr == 0)
2287                         continue;
2288                 tp = map_fw_table(table_addr);
2289                 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2290                         return (tp);
2291                 }
2292         }
2293         return (NULL);
2294 }
2295 
2296 static void
2297 process_mcfg(ACPI_TABLE_MCFG *tp)
2298 {
2299         ACPI_MCFG_ALLOCATION *cfg_baap;
2300         char *cfg_baa_endp;
2301         int64_t ecfginfo[4];
2302 
2303         cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2304         cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2305         while ((char *)cfg_baap < cfg_baa_endp) {
2306                 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2307                         ecfginfo[0] = cfg_baap->Address;
2308                         ecfginfo[1] = cfg_baap->PciSegment;
2309                         ecfginfo[2] = cfg_baap->StartBusNumber;
2310                         ecfginfo[3] = cfg_baap->EndBusNumber;
2311                         bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2312                             ecfginfo, sizeof (ecfginfo));
2313                         break;
2314                 }
2315                 cfg_baap++;
2316         }
2317 }
2318 
2319 #ifndef __xpv
2320 static void
2321 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2322     uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2323 {
2324         ACPI_SUBTABLE_HEADER *item, *end;
2325         uint32_t cpu_count = 0;
2326         uint32_t cpu_possible_count = 0;
2327 
2328         /*
2329          * Determine number of CPUs and keep track of "final" APIC ID
2330          * for each CPU by walking through ACPI MADT processor list
2331          */
2332         end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2333         item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2334 
2335         while (item < end) {
2336                 switch (item->Type) {
2337                 case ACPI_MADT_TYPE_LOCAL_APIC: {
2338                         ACPI_MADT_LOCAL_APIC *cpu =
2339                             (ACPI_MADT_LOCAL_APIC *) item;
2340 
2341                         if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2342                                 if (cpu_apicid_array != NULL)
2343                                         cpu_apicid_array[cpu_count] = cpu->Id;
2344                                 cpu_count++;
2345                         }
2346                         cpu_possible_count++;
2347                         break;
2348                 }
2349                 case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2350                         ACPI_MADT_LOCAL_X2APIC *cpu =
2351                             (ACPI_MADT_LOCAL_X2APIC *) item;
2352 
2353                         if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2354                                 if (cpu_apicid_array != NULL)
2355                                         cpu_apicid_array[cpu_count] =
2356                                             cpu->LocalApicId;
2357                                 cpu_count++;
2358                         }
2359                         cpu_possible_count++;
2360                         break;
2361                 }
2362                 default:
2363                         if (kbm_debug)
2364                                 bop_printf(NULL, "MADT type %d\n", item->Type);
2365                         break;
2366                 }
2367 
2368                 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2369         }
2370         if (cpu_countp)
2371                 *cpu_countp = cpu_count;
2372         if (cpu_possible_countp)
2373                 *cpu_possible_countp = cpu_possible_count;
2374 }
2375 
2376 static void
2377 process_madt(ACPI_TABLE_MADT *tp)
2378 {
2379         uint32_t cpu_count = 0;
2380         uint32_t cpu_possible_count = 0;
2381         uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2382 
2383         if (tp != NULL) {
2384                 /* count cpu's */
2385                 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2386 
2387                 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2388                     cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2389                 if (cpu_apicid_array == NULL)
2390                         bop_panic("Not enough memory for APIC ID array");
2391 
2392                 /* copy IDs */
2393                 process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2394 
2395                 /*
2396                  * Make boot property for array of "final" APIC IDs for each
2397                  * CPU
2398                  */
2399                 bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2400                     cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2401         }
2402 
2403         /*
2404          * Check whether property plat-max-ncpus is already set.
2405          */
2406         if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2407                 /*
2408                  * Set plat-max-ncpus to number of maximum possible CPUs given
2409                  * in MADT if it hasn't been set.
2410                  * There's no formal way to detect max possible CPUs supported
2411                  * by platform according to ACPI spec3.0b. So current CPU
2412                  * hotplug implementation expects that all possible CPUs will
2413                  * have an entry in MADT table and set plat-max-ncpus to number
2414                  * of entries in MADT.
2415                  * With introducing of ACPI4.0, Maximum System Capability Table
2416                  * (MSCT) provides maximum number of CPUs supported by platform.
2417                  * If MSCT is unavailable, fall back to old way.
2418                  */
2419                 if (tp != NULL)
2420                         bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2421         }
2422 
2423         /*
2424          * Set boot property boot-max-ncpus to number of CPUs existing at
2425          * boot time. boot-max-ncpus is mainly used for optimization.
2426          */
2427         if (tp != NULL)
2428                 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2429 
2430         /*
2431          * User-set boot-ncpus overrides firmware count
2432          */
2433         if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2434                 return;
2435 
2436         /*
2437          * Set boot property boot-ncpus to number of active CPUs given in MADT
2438          * if it hasn't been set yet.
2439          */
2440         if (tp != NULL)
2441                 bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2442 }
2443 
2444 static void
2445 process_srat(ACPI_TABLE_SRAT *tp)
2446 {
2447         ACPI_SUBTABLE_HEADER *item, *end;
2448         int i;
2449         int proc_num, mem_num;
2450 #pragma pack(1)
2451         struct {
2452                 uint32_t domain;
2453                 uint32_t apic_id;
2454                 uint32_t sapic_id;
2455         } processor;
2456         struct {
2457                 uint32_t domain;
2458                 uint32_t x2apic_id;
2459         } x2apic;
2460         struct {
2461                 uint32_t domain;
2462                 uint64_t addr;
2463                 uint64_t length;
2464                 uint32_t flags;
2465         } memory;
2466 #pragma pack()
2467         char prop_name[30];
2468         uint64_t maxmem = 0;
2469 
2470         if (tp == NULL)
2471                 return;
2472 
2473         proc_num = mem_num = 0;
2474         end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2475         item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2476         while (item < end) {
2477                 switch (item->Type) {
2478                 case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2479                         ACPI_SRAT_CPU_AFFINITY *cpu =
2480                             (ACPI_SRAT_CPU_AFFINITY *) item;
2481 
2482                         if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2483                                 break;
2484                         processor.domain = cpu->ProximityDomainLo;
2485                         for (i = 0; i < 3; i++)
2486                                 processor.domain +=
2487                                     cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2488                         processor.apic_id = cpu->ApicId;
2489                         processor.sapic_id = cpu->LocalSapicEid;
2490                         (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2491                             proc_num);
2492                         bsetprop(prop_name, strlen(prop_name), &processor,
2493                             sizeof (processor));
2494                         proc_num++;
2495                         break;
2496                 }
2497                 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2498                         ACPI_SRAT_MEM_AFFINITY *mem =
2499                             (ACPI_SRAT_MEM_AFFINITY *)item;
2500 
2501                         if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2502                                 break;
2503                         memory.domain = mem->ProximityDomain;
2504                         memory.addr = mem->BaseAddress;
2505                         memory.length = mem->Length;
2506                         memory.flags = mem->Flags;
2507                         (void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2508                             mem_num);
2509                         bsetprop(prop_name, strlen(prop_name), &memory,
2510                             sizeof (memory));
2511                         if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2512                             (memory.addr + memory.length > maxmem)) {
2513                                 maxmem = memory.addr + memory.length;
2514                         }
2515                         mem_num++;
2516                         break;
2517                 }
2518                 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2519                         ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2520                             (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2521 
2522                         if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2523                                 break;
2524                         x2apic.domain = x2cpu->ProximityDomain;
2525                         x2apic.x2apic_id = x2cpu->ApicId;
2526                         (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2527                             proc_num);
2528                         bsetprop(prop_name, strlen(prop_name), &x2apic,
2529                             sizeof (x2apic));
2530                         proc_num++;
2531                         break;
2532                 }
2533                 default:
2534                         if (kbm_debug)
2535                                 bop_printf(NULL, "SRAT type %d\n", item->Type);
2536                         break;
2537                 }
2538 
2539                 item = (ACPI_SUBTABLE_HEADER *)
2540                     (item->Length + (uintptr_t)item);
2541         }
2542 
2543         /*
2544          * The maximum physical address calculated from the SRAT table is more
2545          * accurate than that calculated from the MSCT table.
2546          */
2547         if (maxmem != 0) {
2548                 plat_dr_physmax = btop(maxmem);
2549         }
2550 }
2551 
2552 static void
2553 process_slit(ACPI_TABLE_SLIT *tp)
2554 {
2555 
2556         /*
2557          * Check the number of localities; if it's too huge, we just
2558          * return and locality enumeration code will handle this later,
2559          * if possible.
2560          *
2561          * Note that the size of the table is the square of the
2562          * number of localities; if the number of localities exceeds
2563          * UINT16_MAX, the table size may overflow an int when being
2564          * passed to bsetprop() below.
2565          */
2566         if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2567                 return;
2568 
2569         bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME),
2570             &tp->LocalityCount, sizeof (tp->LocalityCount));
2571         bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2572             tp->LocalityCount * tp->LocalityCount);
2573 }
2574 
2575 static ACPI_TABLE_MSCT *
2576 process_msct(ACPI_TABLE_MSCT *tp)
2577 {
2578         int last_seen = 0;
2579         int proc_num = 0;
2580         ACPI_MSCT_PROXIMITY *item, *end;
2581         extern uint64_t plat_dr_options;
2582 
2583         ASSERT(tp != NULL);
2584 
2585         end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2586         for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2587             item < end;
2588             item = (void *)(item->Length + (uintptr_t)item)) {
2589                 /*
2590                  * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2591                  * Revision     1
2592                  * Length       22
2593                  */
2594                 if (item->Revision != 1 || item->Length != 22) {
2595                         cmn_err(CE_CONT,
2596                             "?boot: unknown proximity domain structure in MSCT "
2597                             "with Revision(%d), Length(%d).\n",
2598                             (int)item->Revision, (int)item->Length);
2599                         return (NULL);
2600                 } else if (item->RangeStart > item->RangeEnd) {
2601                         cmn_err(CE_CONT,
2602                             "?boot: invalid proximity domain structure in MSCT "
2603                             "with RangeStart(%u), RangeEnd(%u).\n",
2604                             item->RangeStart, item->RangeEnd);
2605                         return (NULL);
2606                 } else if (item->RangeStart != last_seen) {
2607                         /*
2608                          * Items must be organized in ascending order of the
2609                          * proximity domain enumerations.
2610                          */
2611                         cmn_err(CE_CONT,
2612                             "?boot: invalid proximity domain structure in MSCT,"
2613                             " items are not orginized in ascending order.\n");
2614                         return (NULL);
2615                 }
2616 
2617                 /*
2618                  * If ProcessorCapacity is 0 then there would be no CPUs in this
2619                  * domain.
2620                  */
2621                 if (item->ProcessorCapacity != 0) {
2622                         proc_num += (item->RangeEnd - item->RangeStart + 1) *
2623                             item->ProcessorCapacity;
2624                 }
2625 
2626                 last_seen = item->RangeEnd - item->RangeStart + 1;
2627                 /*
2628                  * Break out if all proximity domains have been processed.
2629                  * Some BIOSes may have unused items at the end of MSCT table.
2630                  */
2631                 if (last_seen > tp->MaxProximityDomains) {
2632                         break;
2633                 }
2634         }
2635         if (last_seen != tp->MaxProximityDomains + 1) {
2636                 cmn_err(CE_CONT,
2637                     "?boot: invalid proximity domain structure in MSCT, "
2638                     "proximity domain count doesn't match.\n");
2639                 return (NULL);
2640         }
2641 
2642         /*
2643          * Set plat-max-ncpus property if it hasn't been set yet.
2644          */
2645         if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2646                 if (proc_num != 0) {
2647                         bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2648                 }
2649         }
2650 
2651         /*
2652          * Use Maximum Physical Address from the MSCT table as upper limit for
2653          * memory hot-adding by default. It may be overridden by value from
2654          * the SRAT table or the "plat-dr-physmax" boot option.
2655          */
2656         plat_dr_physmax = btop(tp->MaxAddress + 1);
2657 
2658         /*
2659          * Existence of MSCT implies CPU/memory hotplug-capability for the
2660          * platform.
2661          */
2662         plat_dr_options |= PLAT_DR_FEATURE_CPU;
2663         plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2664 
2665         return (tp);
2666 }
2667 
2668 #else /* __xpv */
2669 static void
2670 enumerate_xen_cpus()
2671 {
2672         processorid_t   id, max_id;
2673 
2674         /*
2675          * User-set boot-ncpus overrides enumeration
2676          */
2677         if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2678                 return;
2679 
2680         /*
2681          * Probe every possible virtual CPU id and remember the
2682          * highest id present; the count of CPUs is one greater
2683          * than this.  This tacitly assumes at least cpu 0 is present.
2684          */
2685         max_id = 0;
2686         for (id = 0; id < MAX_VIRT_CPUS; id++)
2687                 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2688                         max_id = id;
2689 
2690         bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2691 
2692 }
2693 #endif /* __xpv */
2694 
2695 /*ARGSUSED*/
2696 static void
2697 build_firmware_properties(struct xboot_info *xbp)
2698 {
2699         ACPI_TABLE_HEADER *tp = NULL;
2700 
2701 #ifndef __xpv
2702         if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2703                 bsetprops("efi-systype", "64");
2704                 bsetprop64("efi-systab",
2705                     (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2706                 if (kbm_debug)
2707                         bop_printf(NULL, "64-bit UEFI detected.\n");
2708         } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) {
2709                 bsetprops("efi-systype", "32");
2710                 bsetprop64("efi-systab",
2711                     (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2712                 if (kbm_debug)
2713                         bop_printf(NULL, "32-bit UEFI detected.\n");
2714         }
2715 
2716         if (xbp->bi_acpi_rsdp != NULL) {
2717                 bsetprop64("acpi-root-tab",
2718                     (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp);
2719         }
2720 
2721         if (xbp->bi_smbios != NULL) {
2722                 bsetprop64("smbios-address",
2723                     (uint64_t)(uintptr_t)xbp->bi_smbios);
2724         }
2725 
2726         if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
2727                 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2728         else
2729                 msct_ptr = NULL;
2730 
2731         if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
2732                 process_madt((ACPI_TABLE_MADT *)tp);
2733 
2734         if ((srat_ptr = (ACPI_TABLE_SRAT *)
2735             find_fw_table(ACPI_SIG_SRAT)) != NULL)
2736                 process_srat(srat_ptr);
2737 
2738         if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
2739                 process_slit(slit_ptr);
2740 
2741         tp = find_fw_table(ACPI_SIG_MCFG);
2742 #else /* __xpv */
2743         enumerate_xen_cpus();
2744         if (DOMAIN_IS_INITDOMAIN(xen_info))
2745                 tp = find_fw_table(ACPI_SIG_MCFG);
2746 #endif /* __xpv */
2747         if (tp != NULL)
2748                 process_mcfg((ACPI_TABLE_MCFG *)tp);
2749 }
2750 
2751 /*
2752  * fake up a boot property for deferred early console output
2753  * this is used by both graphical boot and the (developer only)
2754  * USB serial console
2755  */
2756 void *
2757 defcons_init(size_t size)
2758 {
2759         static char *p = NULL;
2760 
2761         p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2762         *p = 0;
2763         bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1,
2764             &p, sizeof (p));
2765         return (p);
2766 }
2767 
2768 /*ARGSUSED*/
2769 int
2770 boot_compinfo(int fd, struct compinfo *cbp)
2771 {
2772         cbp->iscmp = 0;
2773         cbp->blksize = MAXBSIZE;
2774         return (0);
2775 }
2776 
2777 #define BP_MAX_STRLEN   32
2778 
2779 /*
2780  * Get value for given boot property
2781  */
2782 int
2783 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2784 {
2785         int             boot_prop_len;
2786         char            str[BP_MAX_STRLEN];
2787         u_longlong_t    value;
2788 
2789         boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2790         if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2791             BOP_GETPROP(bootops, prop_name, str) < 0 ||
2792             kobj_getvalue(str, &value) == -1)
2793                 return (-1);
2794 
2795         if (prop_value)
2796                 *prop_value = value;
2797 
2798         return (0);
2799 }