
new/usr/src/lib/libctf/common/ctf_merge.c 1

**********************************************************
   43621 Tue Apr 23 06:04:04 2019
new/usr/src/lib/libctf/common/ctf_merge.c
10827 some symbols have the wrong CTF type
Reviewed by: Robert Mustacchi <rm@joyent.com>
**********************************************************

1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.

10  */

12 /*
13  * Copyright 2019, Joyent, Inc.
13  * Copyright (c) 2019 Joyent, Inc.
14  */

16 /*
17  * To perform a merge of two CTF containers, we first diff the two containers
18  * types. For every type that’s in the src container, but not in the dst
19  * container, we note it and add it to dst container. If there are any objects
20  * or functions associated with src, we go through and update the types that
21  * they refer to such that they all refer to types in the dst container.
22  *
23  * The bulk of the logic for the merge, after we’ve run the diff, occurs in
24  * ctf_merge_common().
25  *
26  * In terms of exported APIs, we don’t really export a simple merge two
27  * containers, as the general way this is used, in something like ctfmerge(1),
28  * is to add all the containers and then let us figure out the best way to merge
29  * it.
30  */

32 #include <libctf_impl.h>
33 #include <sys/debug.h>
34 #include <sys/list.h>
35 #include <stddef.h>
36 #include <fcntl.h>
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <mergeq.h>
40 #include <errno.h>

42 typedef struct ctf_merge_tinfo {
43 uint16_t cmt_map; /* Map to the type in out */
44 boolean_t cmt_fixup;
45 boolean_t cmt_forward;
46 boolean_t cmt_missing;
47 } ctf_merge_tinfo_t;

______unchanged_portion_omitted_

617 /*
618  * Now that we’ve successfully merged everything, we’re going to remap the type
619  * table.
620  *
621  * Remember we have two containers: ->cm_src is what we’re working from, and
622  * ->cm_out is where we are building the de-duplicated CTF.
623  *
624  * The index of this table is always the type IDs in ->cm_src.
625  *
626  * When we built this table originally in ctf_diff_self(), if we found a novel

new/usr/src/lib/libctf/common/ctf_merge.c 2

627  * type, we marked it as .cmt_missing to indicate it needs adding to ->cm_out.
628  * Otherwise, .cmt_map indicated the ->cm_src type ID that this type duplicates.
629  *
630  * Then, in ctf_merge_common(), we walked through and added all "cmt_missing"
631  * types to ->cm_out with ctf_merge_add_type(). These routines update cmt_map
632  * to be the *new* type ID in ->cm_out.  In this function, you can read
633  * "cmt_missing" as meaning "added to ->cm_out, and cmt_map updated".
634  *
635  * So at this point, we need to mop up all types where .cmt_missing == B_FALSE,
636  * making sure *their* .cmt_map values also point to the ->cm_out container.
618  * Now that we’ve successfully merged everything, we’re going to clean
619  * up the merge type table. Traditionally if we had just two different
620  * files that we were working between, the types would be fully
621  * resolved. However, because we were comparing with ourself every step
622  * of the way and not our reduced self, we need to go through and update
623  * every mapped entry to what it now points to in the deduped file.
637  */
638 static void
639 ctf_merge_dedup_remap(ctf_merge_types_t *cmp)
626 ctf_merge_fixup_dedup_map(ctf_merge_types_t *cmp)
640 {
641 int i;

643 for (i = 1; i < cmp->cm_src->ctf_typemax + 1; i++) {
644 ctf_id_t tid;

633 /*
634  * Missing types always have their id updated to exactly what it
635  * should be.
636  */
646 if (cmp->cm_tmap[i].cmt_missing == B_TRUE) {
647 VERIFY(cmp->cm_tmap[i].cmt_map != 0);
648 continue;
649 }

651 tid = i;
652 while (cmp->cm_tmap[tid].cmt_missing == B_FALSE) {
653 VERIFY(cmp->cm_tmap[tid].cmt_map != 0);
654 tid = cmp->cm_tmap[tid].cmt_map;
655 }
656 VERIFY(cmp->cm_tmap[tid].cmt_map != 0);
657 cmp->cm_tmap[i].cmt_map = cmp->cm_tmap[tid].cmt_map;
658 }
659 }

662 /*
663  * We’re going to do three passes over the containers.
664  *
665  * Pass 1 checks for forward references in the output container that we know
666  * exist in the source container.
667  *
668  * Pass 2 adds all the missing types from the source container. As part of this
669  * we may be adding a type as a forward reference that doesn’t exist yet.
670  * Any types that we encounter in this form, we need to add to a third pass.
671  *
672  * Pass 3 is the fixup pass. Here we go through and find all the types that were
673  * missing in the first.
674  *
675  * Importantly, we *must* call ctf_update between the second and third pass,
676  * otherwise several of the libctf functions will not properly find the data in
677  * the container. If we’re doing a dedup we also fix up the type mapping.
678  */
679 static int
680 ctf_merge_common(ctf_merge_types_t *cmp)
681 {



new/usr/src/lib/libctf/common/ctf_merge.c 3

682 int ret, i;

684 ctf_phase_dump(cmp->cm_src, "merge-common-src", NULL);
685 ctf_phase_dump(cmp->cm_out, "merge-common-dest", NULL);

687 /* Pass 1 */
688 for (i = 1; i <= cmp->cm_src->ctf_typemax; i++) {
689 if (cmp->cm_tmap[i].cmt_forward == B_TRUE) {
690 ret = ctf_merge_add_sou(cmp, i, B_TRUE);
691 if (ret != 0) {
692 return (ret);
693 }
694 }
695 }

697 /* Pass 2 */
698 for (i = 1; i <= cmp->cm_src->ctf_typemax; i++) {
699 if (cmp->cm_tmap[i].cmt_missing == B_TRUE) {
700 ret = ctf_merge_add_type(cmp, i);
701 if (ret != 0) {
702 ctf_dprintf("Failed to merge type %d\n", i);
703 return (ret);
704 }
705 }
706 }

708 ret = ctf_update(cmp->cm_out);
709 if (ret != 0)
710 return (ret);

712 if (cmp->cm_dedup == B_TRUE) {
713 ctf_merge_dedup_remap(cmp);
704 ctf_merge_fixup_dedup_map(cmp);
714 }

716 ctf_dprintf("Beginning merge pass 3\n");
717 /* Pass 3 */
718 for (i = 1; i <= cmp->cm_src->ctf_typemax; i++) {
719 if (cmp->cm_tmap[i].cmt_fixup == B_TRUE) {
720 ret = ctf_merge_fixup_type(cmp, i);
721 if (ret != 0)
722 return (ret);
723 }
724 }

717 if (cmp->cm_dedup == B_TRUE) {
718 ctf_merge_fixup_dedup_map(cmp);
719 }

726 return (0);
727 }

______unchanged_portion_omitted_


