new usr/src/lib/libctf/comon/ctf_nerge.c

R R R R

43621 Tue Apr 23 06: 04:04 2019
new usr/src/lib/libctf/comon/ctf_nerge.c
10827 sone synbols have the wong CTF type
Revi ewed by: Robert Mistacchi <rm@ oyent.conms
EEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEREREREEEEERERERERERESRESRSESESE]

1/*
* This file and its contents are supplied under the terns of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You nmay only use this file in accordance with the terms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunmos.org/license/ CDDL.

=
COWONOUIAWN
* Ok Ok ok E Ok % O

-~

13 * Copyright 2019, Joyent, Inc.
13 * Copyright (c) 2019 Joyent, Inc.
*
/

14
16 /*
17 * To performa merge of two CTF containers, we first diff the two containers
18 * types. For every type that’s in the src container, but not in the dst
19 * container, we note it and add it to dst container. If there are any objects
20 * or functions associated with src, we go through and update the types that
21 * they refer to such that they all refer to types in the dst contailner.
22 *
23 * The bulk of the logic for the nmerge, after we’ve run the diff, occurs in
24 * ctf_merge_common().
25 *
26 * In terms of exported APIs, we don't really export a sinple nmerge two
27 * containers, as the general way this is used, in sonmething |ike ctfnmerge(1),
28 * is to add all the containers and then let us figure out the best way to nmerge
29 * it.

*

-~

32 #include <libctf_inpl.h>
33 #incl ude <sys/debug. h>
34 #include <sys/list.h>

35 #include <stddef.h>

36 #include <fcntl. h>

37 #include <sys/types. h>
38 #include <sys/stat.h>

39 #include <mergeq. h>

40 #i nclude <errno. h>

42 typedef struct ctf_nerge_tinfo {

43 uint16_t cnt_nmap; /* Map to the type in out */
44 bool ean_t cnt _fi xup;

45 bool ean_t cnt_forward;

46 bool ean_t cnt _ni ssing;

47 } ctf_nerge_tinfo_t;
__unchanged_portion_omtted_

617 /*

618 * Now that we’ve successfully nerged everything, we're going to remap the type
619 * table.

620 *

621 * Renmenber we have two containers: ->cmsrc is what we’'re working from and
622 * ->cmout is where we are buil ding the de-duplicated CTF.

623 *

624 * The index of this table is always the type IDs in ->cmsrc.

625 *

626 * Wien we built this table originally in ctf_diff_self(), if we found a novel

new usr/src/lib/libctf/comon/ctf_nerge.c

627 * type, we marked it as .cnt_missing to indicate it needs adding to ->cmout.
628 * Otherw se, .cnt_nap i ndi cated the ->cmsrc type IDthat this type duplicates.
629 *

630 * Then, in ctf_merge_conmon(), we wal ked through and added all "cnt_m ssing"
631 * types to ->cmout with ctf_nerge_add_type(). These routines update cnt_map
632 * to be the *new* type IDin ->mout. 1In this function, you can read

633 * "cmt_m ssing" as neaning "added to ->cmout, and cnt_map updated".

634 *

635 * So at this point, we need to nop up all types where .cnt_missing == B _FALSE,
636 * making sure *their* .cnt _map val ues al so point to the ->cm out cont ainer.
618 * Now that we’ve successfully merged everything, we’'re going to clean

619 * up the nerge type table. Traditionally if we had just two different

620 * files that we were working between, the types would be fully

621 * resolved. However, because we were conparing with ourself every step

622 * of the way and not our reduced self, we need to go through and update

623 * every mapped entry to what it now points to in the deduped file.

637 */

638 static void

639 ctf_merge_dedup_remap(ctf_nerge_types_t *cnp)

626 ctf_nerge_fixup_dedup_nmap(ctf_nerge_types_t *cnp)

640 {

641 int i;

643 for (i =1, i < cnp->cmsrc->ctf_typemax + 1; i++) {

644 ctf _id_t tid;

633 /*

634 * Mssing types always have their id updated to exactly what it
635 * shoul d be.

636 */

646 if (cnmp->cmtmap[i].cm_missing == B_TRUE) {

647 VERI FY(cnp->cm tmap[i].cnt_map != 0);

648 conti nue;

649

651 tid =1i;

652 while (cnp->cmtmap[tid].cnt_m ssing == B_FALSE) {

653 VERI FY(cnp->cm tmap[tid].cnt_map T= 0);

654 tid = cnp->cm_tmap[tid].cnt_map;

655 }

656 VERI FY(cnp->cm tmap[tid].cnt_map !'= 0);

657 cnp->cmtmap[i].cnt_map = cnp->cmtnmap[tid].cnt_nap;

658 }

659 }

662 /*

663 * We're going to do three passes over the containers.

664 *

665 * Pass 1 checks for forward references in the output container that we know
666 * exist in the source container.

667 *

668 * Pass 2 adds all the missing types fromthe source container. As part of this
669 * we nay be adding a type as a forward reference that doesn’t exist yet.

670 * Any types that we encounter in this form we need to add to a third pass.
671 *

672 * Pass 3 is the fixup pass. Here we go through and find all the types that were
673 * missing in the first.

674 *

675 * Inportantly, we *nust* call ctf_update between the second and third pass,
676 * otherw se several of the libctf functions will not properly find the data in
677 * the container. If we're doing a dedup we also fix up the type napping.

678 */

679 static int

680 ctf_merge_comon(ctf_nerge_types_t *cnp)

681 {



new usr/src/lib/libctf/comon/ctf_nerge.c

682 int ret, i;

684 ctf_phase_dunp(cnp->cm src, "nerge-comon-src", NULL);
685 ctf_phase_dunp(cnp->cmout, "nerge-conmon-dest”, NULL);
687 /* Pass 1 */

688 for (i =1, i <= cnp->cmsrc->ctf_typemax; i++)

689 if (cnmp->cmtmap[i].cnt_forward == B_TRUE) {
690 ret = ctf_nerge_add_sou(cnp, i, B TRUE);
691 if (ret I=0) {

692 return (ret);

693 }

694 }

695 }

697 /* Pass 2 */

698 for (i =1; i <= cnp->cmsrc->ctf_typenmax; i++) {
699 if (cnmp->cmtmap[i].cm_mssing == B_TRUE) {
700 ret = ctf_merge_add_type(cnp, i);
701 if (ret 1=0)

702 ctf_dprintf("Failed to nerge type %\ n",
703 return (ret);

704 }

705 }

706 }

708 ret = ctf_update(cnp->cmout);

709 if (ret 1= 0)

710 return (ret);

712 if (cnmp->cmdedup == B_TRUE) {

713 ctf_merge_dedup_remap(cnp);

704 ctf_merge_fixup_dedup_nap(cnp);

714 }

716 ctf_dprintf("Beginning nerge pass 3\n");

717 /* Pass 3 */

718 for (i =1; i <= cnp->cmsrc->ctf_typemax; i++) {
719 if (cnmp->cmtmap[i].cm_fixup == B_TRUE) {
720 ret = ctf_merge_fixup_type(cnp, i);
721 if (ret 1=0)

722 return (ret);

723 }

724 1

717 if (cmp->cmdedup == B_TRUE) {

718 ctf_rmerge_fixup_dedup_map(cnp);

719 1

726 return (0);

727 }

__unchanged_portion_onitted_

i);




