
new/usr/src/common/smbios/smb_info.c 1

**
 41282 Wed Jan 30 11:28:01 2019
new/usr/src/common/smbios/smb_info.c
10145 smbios_info_boot() gets NULL check wrong
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
24 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2017, Joyent, Inc.
25 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
27 */

29 /*
30 * SMBIOS Information Routines
31 *
32 * The routines in this file are used to convert from the SMBIOS data format to
33 * a more reasonable and stable set of structures offered as part of our ABI.
34 * These functions take the general form:
35 *
36 * stp = smb_lookup_type(shp, foo);
37 * smb_foo_t foo;
38 *
39 * smb_info_bcopy(stp->smbst_hdr, &foo, sizeof (foo));
40 * bzero(caller’s struct);
41 *
42 * copy/convert foo members into caller’s struct
43 *
44 * We copy the internal structure on to an automatic variable so as to avoid
45 * checks everywhere for structures that the BIOS has improperly truncated, and
46 * also to automatically handle the case of a structure that has been extended.
47 * When necessary, this code can use smb_gteq() to determine whether the SMBIOS
48 * data is of a particular revision that is supposed to contain a new field.
49 *
50 * Note, when trying to bzero the caller’s struct you have to be careful about
51 * versions. One can only bzero the initial version that existed in illumos. In
52 * other words, if someone passes an older library handle that doesn’t support a
53 * version you cannot assume that their structures have those additional members
54 * in them. Instead, a ’base’ version is introduced for such types that have
55 * differences and instead we only bzero out the base version and then handle
56 * the additional members. In general, because all additional members will be
57 * assigned, there’s no reason to zero them out unless they are arrays that
58 * won’t be entirely filled in.
59 *
60 * Due to history, anything added after the update from version 2.4, in other

new/usr/src/common/smbios/smb_info.c 2

61 * words additions from or after ’5094 Update libsmbios with recent items’
62 * (4e901881) is currently being used for this. While we don’t allow software
63 * compiling against this to get an older form, this was the first major update
64 * and a good starting point for us to enforce this behavior which is useful for
65 * moving forward to making this more public.
66 */

68 #include <sys/smbios_impl.h>
69 #include <sys/byteorder.h>

71 #ifdef _KERNEL
72 #include <sys/sunddi.h>
73 #else
74 #include <fcntl.h>
75 #include <unistd.h>
76 #include <string.h>
77 #endif

79 /*
80 * A large number of SMBIOS structures contain a set of common strings used to
81 * describe a h/w component’s serial number, manufacturer, etc. These fields
82 * helpfully have different names and offsets and sometimes aren’t consistent.
83 * To simplify life for our clients, we factor these common things out into
84 * smbios_info_t, which can be retrieved for any structure. The following
85 * table describes the mapping from a given structure to the smbios_info_t.
86 * Multiple SMBIOS stuctures’ contained objects are also handled here.
87 */
88 static const struct smb_infospec {
89 uint8_t is_type; /* structure type */
90 uint8_t is_manu; /* manufacturer offset */
91 uint8_t is_product; /* product name offset */
92 uint8_t is_version; /* version offset */
93 uint8_t is_serial; /* serial number offset */
94 uint8_t is_asset; /* asset tag offset */
95 uint8_t is_location; /* location string offset */
96 uint8_t is_part; /* part number offset */
97 uint8_t is_contc; /* contained count */
98 uint8_t is_contsz; /* contained size */
99 uint8_t is_contv; /* contained objects */
100 } _smb_infospecs[] = {

______unchanged_portion_omitted_

982 id_t
983 smbios_info_boot(smbios_hdl_t *shp, smbios_boot_t *bp)
984 {
985 const smb_struct_t *stp = smb_lookup_type(shp, SMB_TYPE_BOOT);
986 const smb_boot_t *b;
986 const smb_boot_t *b = (smb_boot_t *)(uintptr_t)stp->smbst_hdr;

988 if (stp == NULL)
989 return (-1); /* errno is set for us */

991 bzero(bp, sizeof (smbios_boot_t));

993 b = (smb_boot_t *)(uintptr_t)stp->smbst_hdr;

995 bp->smbt_status = b->smbbo_status[0];
996 bp->smbt_size = stp->smbst_hdr->smbh_len - sizeof (smb_boot_t);
997 bp->smbt_data = bp->smbt_size ? &b->smbbo_status[1] : NULL;

999 return (stp->smbst_hdr->smbh_hdl);
1000 }
______unchanged_portion_omitted_

