new usr/ src/ common/ snbi os/ snb_i nfo. c 1

R R R R

41282 Wed Jan 30 11:28:01 2019
new usr/src/ common/ snbi os/ snb_i nfo.c
10145 snbi os_i nfo_boot() gets NULL check wong

LR R R R R R R R

* Ok %k % ok F

B T T I

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyri ght 2015 Omi TI Conputer Consulting, Inc. Al rights reserved.
Copyright (c) 2018, Joyent, Inc.

Copyright (c) 2017, Joyent, Inc.

Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved.

Use is subject to license terns.

SMBI GS | nformati on Routines

The routines in this file are used to convert fromthe SMBICS data format to
a nore reasonabl e and stable set of structures offered as part of our ABI.
These functions take the general form

stp = snb_| ookup_t ype(shp,
smb_foo_t foo;

foo);

snb_i nf o_bcopy(st p- >snbst _hdr,
bzero(caller’s struct);

&f oo, sizeof (foo));

copy/ convert foo nenbers into caller’s struct

We copy the internal structure on to an autonmtic variable so as to avoid
checks everywhere for structures that the BIGS has inproperly truncated, and
also to automatically handl e the case of a structure that has been extended.
When necessary, this code can use snmb_gteq() to determ ne whether the SMBI OS
data is of a particular revision that is supposed to contain a new field.

Note, when trying to bzero the caller’s struct you have to be careful about
versions. One can only bzero the initial version that existed in illunps. In
other words, if someone passes an older library handle that doesn’t support a
version you cannot assune that their structures have those additional nenbers
in them Instead, a ’'base’ version is introduced for such types that have
differences and instead we only bzero out the base version and then handl e
the additional nenbers. In general, because all additional menbers will be
assigned, there’s no reason to zero themout unless they are arrays that
won't be entirely filled in.

in other

Due to history, anything added after the update fromversion 2.4,

new

usr/ src/ comon/ snbi os/ snb_i nfo. ¢

* words additions fromor after '5094 Update |ibsnbios with recent itens’
* (4e901881) is currently being used for this. Wile we don’t allow software
* conpiling against this to get an older form this was the first major update
* and a good starting point for us to enforce this behavior which is useful for
* moving forward to making this nore public.
*

-~

#i ncl ude <sys/snbi os_i npl . h>
#i ncl ude <sys/byteorder. h>

#i fdef _KERNEL
#i ncl ude <sys/sunddi. h>

73 #el se
74 #include <fcntl. h>
75 #include <unistd. h>
76 #include <string. h>
77 #endif
79 | *
80 * A large nunber of SMBICS structures contain a set of common strings used to
81 * describe a h/w conponent’s serial nunber, manufacturer, etc. These fields
82 * helpfully have different names and of fsets and sonetinmes aren’t consistent.
83 * To sinplify life for our clients, we factor these common things out into
84 * smbios_info_t, which can be retrieved for any structure. The follow ng
85 * table describes the mapping froma given structure to the snbios_info_t.
86 * Multiple SMBICS stuctures’ contained objects are al so handl ed here.
87 */
88 static const struct snb_infospec {
89 uint8_t is_type; /* structure type */
90 uint8_t is_manu; /* manufacturer offset */
91 uint8_t is_product; /* product nane of fset */
92 uint8_t is_version; /* version of fset */
93 uint8 t is_serial; /* serial nunber offset */
94 uint8_t is_asset; /* asset tag offset */
95 uint8_t is_location; /* location string offset */
96 uint8_t is_part; /* part nunber offset */
97 uint8_t is_contc; /* contained count */
98 uint8 t is_contsz; /* contained size */
99 uint8_t is_contv; /* contained objects */
100 } _snb_infospecs[] = {
__unchanged_portion_onmtted_
982 id_t
983 snbi os_i nf o_boot (snbi os_hdl _t *shp, snbios_boot_t *bp)
984 {
985 const smb_struct_t *stp = snb_| ookup_type(shp, SMB_TYPE_BOOT);
986 const snb_boot _t *b;
986 const snb_boot _t *b = (snb_boot _t *)(uintptr_t)stp->snbst_hdr;
988 if (stp == NULL)
989 return (-1); /* errno is set for us */
991 bzero(bp, sizeof (snbios_boot_t));
993 b = (snmb_boot_t *)(uintptr_t)stp->snbst_hdr;
995 bp- >snbt _status = b->snbbo_status[0];
996 bp->snbt _si ze = stp->snbst_hdr->snbh_| en - sizeof (snb_boot_t);
997 bp->snbt _data = bp->snbt_size ? &b->snbbo_stat us[1] NULL;
999 return (stp->snbst_hdr->snbh_hdl);
1000 }

__unchanged_portion_omtted_

