new usr/src/cnd/csplit/csplit.c

R R R R

14783 Mon Jan 21 16: 21: 44 2019
new usr/src/cnd/csplit/csplit.c
10128 csplit shoul d use strlcpy

* *

T TR R

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 *

19 * CDDL HEADER END

20 */

22 /*

23 * Copyright (c) 1989, 2010, Oacle and/or its affiliates. Al rights reserved.
24 */

26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */

27 | * Al Rights Reserved *

29 /*

gg :/Copyright (c) 2018, Joyent, Inc.

33 /*

34 * csplit - Context or line file splitter
35 * Conpile: cc -O-s -0 csplit csplit.c
*/

38 #include <stdio.h>

39 #include <stdlib. h>
40 #i ncl ude <unistd. h>
41 #include <string. h>
42 #include <ctype. h>

43 #incl ude <errno. h>

44 #include <limts.h>
45 #incl ude <regexpr.h>
46 #include <signal.h>
47 #include <l ocal e. h>
48 #include <libintl.h>

50 #define LAST oLL
51 #define ERR -1
52 #define FALSE O
53 #define TRUE 1
54 #define EXPMODE 2
55 #define LI NMODE 3

56 #define LINSIZ LINE_MAX /* POSIX. 2 - read lines LINE_MAX |l ong */
58 /* dobals */
60 char |inbuf[LINSIZ]; /* Input line buffer */

61 char *expbuf;

new usr/src/cnd/csplit/csplit.c

62 char tnpbuf[BUFSI Z];

63 char file[8192] = "xx";

64 char *targ;

65 char *sptr;

66 FILE *infile, *outfile; /* 1/Ofile streams */
/

Tenporary buffer for stdin */
File nane buffer */
Arg ptr for error nessages */

~—
* k%

67 int silent, keep, create; * Flags: -s(ilent), -k(eep), (create) */

68 int errflg;

69 int fiwidth = 2; /* file index width (output file
70 extern int optind;

71 extern char *optarg;

nanes) */

72 offset_t offset; /* Regul ar expression offset value */
73 offset_t curline; /* Current line in input file */

75 | *

76 * These defines are needed for regexp handling(see regexp(7))

77 *

78 #defi ne PERROR(x) fatal ("%: |llegal Regular Expression\n", targ);
80 static int asc_to_ll(char *, long long *);

81 static void closefile(void);

82 static void fatal (char *, char *);

83 static offset_t findline(char *, offset_t);

84 static void flush(void);

85 static FILE *getfile(void);

86 static char *getaline(int);

87 static void line_arg(char *);

88 static void numarg(char *, int);

89 static void re_arg(char *);

90 static void sig(int);

91 static void to_line(offset_t);

92 static void usage(void);

94 int

95 nmin(int argc, char **argv)

96

97 int ch, node;

98 char *ptr;

100 (void) setlocal e(LC_ALL, "");

101 #i f !defined(TEXT_DOVAI N) /* Shoul d be defined by cc -D */
102 #define TEXT_DOVAI N " SYS_TEST" /* Use this only if it weren't */
103 #endi f

104 (voi d) textdomai n(TEXT_DOVAIN);

106 while ((ch = getopt(argc, argv, "skf:n:")) !'= EOF) {

107 switch (ch) {

108 case 'f’:

109 (void) strcpy(file, optarg);

110 if ((ptr = strrchr(optarg, '/’)) == NULL)
111 ptr = optarg;

112 el se

113 ptr++;

115 br eak;

116 case 'n’: /* PCSIX 2 */

117 for (ptr = optarg; *ptr !'= NULL; ptr++)
118 if (lisdigit((int)*ptr))

119 fatal ("-n numn", NULL);
120 fiwidth = atoi (optarg);

121 break;

122 case 'k’ :

123 keep++;

124 br eak;

125 case 's’:

126 si |l ent ++;

127 br eak;

new usr/src/cnd/csplit/csplit.c

128
129
130
131

133
134
135
136

138
139

141
142
143
144
145
146
147
148
149
150
151
152
153
154

156

158
159
160
161
162
163
164
165

167
168
169
170
171

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

case '?':
errfl g++;

}

argv = &argv[optind];

argc -= optind;

if (argc <=1 || errflg)
usage();

if (strcnp(*argv, "-") == 0)
|nf||e-tnpf||e()

while (fread(tnpbuf, 1, BUFSIZ, stdin) != 0) {
if (fwite(tnpbuf, 1, BUFSIZ, infile) == 0)
if (errno == ENOSPC)
(void) fprintf(stderr, "csplit: ");
(void) fprintf(stderr, gettext(
"No space left on device\n"));

exit(1);
} else {
(void) fprintf(stderr, "csplit: ");
(void) fprintf(stderr, gettext(
"Bad wite to tenporary "
"file\n"));
exit(1);
}

/* clear the buffer to get correct size when witing buffer */

(void) memset (tnpbuf, '\0’, sizeof (tnpbuf));

}
rewi nd(infile);

} else if ((|nf le = fopen(*argv "r")) == NULL)
fatal ("Cannot open %s\n", *argv);

++ar gv;

curline = (offset_t)1

(void) signal (G NT, Si 9);

* The following for |oop handles the different argument types.
* Aswitch is performed on the first character of the argunent
* and each case calls the appropriate argument handling routine.
*
/
for (; *argv; ++argv) {
targ = *argy;
switch (**argv) {
case '/’
node = EXPMODE;
create = TRUE;
re_arg(*argv);
br eak;
case '%:
node = EXPMODE;
create = FALSE;
re_arg(*argv);
br eak;
case '{’:
num arg(ar gv,
node = FALSE;
br eak;
defaul t:
node = LI NMODE;
create = TRUE;
l'ine_arg(*argv);

node) ;

new usr/src/cnd/csplit/csplit.c

194 br eak;
195 }
196 }
197 create = TRUE;
198 to_line(LAST);
199 return (0);
200 }
__unchanged_portion_omtted_
343 /| *
344 * Getfile does nothing if the create flag is not set. |If the create
345 * flag is set, getfile positions the file pointer(fptr) at the end of
346 * the file name prefix on the first call(fptr=0). The file counter is
347 * stored in the file nane and increnented. |f the subsequent fopen
348 * fails, the file nane is copied to tfile for the error nessage, the
349 * previous file nane is restored for cleanup, and fatal is called. |If
350 * the fopen succeeds, the stream(opfil) is returned.
351 */
353 FILE *
354 getfile()
355 {
356 static char *fptr;
357 static int ctr;
358 FILE *opfil;
359 char tfile[15];
360 char *delim
361 char savedelim
363 if (create) {
364 if (fptr == 0)
365 for (fptr file *fptr 1= NULL; fptr++)
366 contln
367 (void) sprintf(fptr, "%*d" fiwidth, ctr++);
369 /* check for suffix Iength overflow */
370 if (strien(fptr) > fiwidth) {
371 fatal ("Suffix longer than %d chars; increase
372 (char *)fiwi dth);
373 }
375 /* check for filename |ength overflow */
377 dellm—strrchr(f|le WADN
378 if (delim== (char *)NULL) {
379 if (strlen(flle) > pat hconf (".", CNANENAX)) {
380 fatal ("Name too long: %\n", file);
381
382 } else {
383 /* truncate file at pathnane delimto do path
384 savedel im = *delim
385 *delim="\0";
386 *
387 * file: pppppppp\Offfff\0
388 o Nfile
389 o A delim
390 */
391 if (strlen(delim+ 1) > pathconf(file, _PC_
392 fatal ("Name too long: %\n", de I
393 }
394 *delim = savedelim
395 }
397 if ((opfil = fopen(file, "w')) == NULL) {
398 (v0|d) strlcpy(tf Ie, file, sizeof (tfile));
394 (void) strcpy(tfile, file);

-n\n",

conf */

'V;EM“X)){

new usr/src/cnd/csplit/csplit.c

399 (void) sprintf(fptr, "%*d", fiwidth, (ctr-2));
400 fatal ("Cannot create %\n", tfile);

401 }

402 return (opfil);

403 }

404 return (NULL);

405 }

____unchanged_portion_onmitted_

