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10128 csplit shoul d use strlcpy

* *

T TR R

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 *

19 * CDDL HEADER END

20 */

22 /*

23 * Copyright (c) 1989, 2010, Oacle and/or its affiliates. Al rights reserved.
24 */

26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */

27 | * Al Rights Reserved *

29 /*

gg :/Copyright (c) 2018, Joyent, Inc.

33 /*

34 * csplit - Context or line file splitter
35 * Conpile: cc -O-s -0 csplit csplit.c
*/

38 #include <stdio.h>

39 #include <stdlib. h>
40 #i ncl ude <unistd. h>
41 #include <string. h>
42 #include <ctype. h>

43 #incl ude <errno. h>

44 #include <limts.h>
45 #incl ude <regexpr.h>
46 #include <signal.h>
47 #include <l ocal e. h>
48 #include <libintl.h>

50 #define LAST oLL
51 #define ERR -1
52 #define FALSE O
53 #define TRUE 1
54 #define EXPMODE 2
55 #define LI NMODE 3

56 #define LINSIZ LINE_MAX /* POSIX. 2 - read lines LINE_MAX |l ong */
58 /* dobals */
60 char |inbuf[LINSIZ]; /* Input line buffer */

61 char *expbuf;
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62 char tnpbuf[BUFSI Z];

63 char file[8192] = "xx";

64 char *targ;

65 char *sptr;

66 FILE *infile, *outfile; /* 1/Ofile streams */
/

Tenporary buffer for stdin */
File nane buffer */
Arg ptr for error nessages */

~—
* k%

67 int silent, keep, create; * Flags: -s(ilent), -k(eep), (create) */

68 int errflg;

69 int fiwidth = 2; /* file index width (output file
70 extern int optind;

71 extern char *optarg;

nanes) */

72 offset_t offset; /* Regul ar expression offset value */
73 offset_t curline; /* Current line in input file */

75 | *

76 * These defines are needed for regexp handling(see regexp(7))

77 *

78 #defi ne PERROR(x) fatal ("%: |llegal Regular Expression\n", targ);
80 static int asc_to_ll(char *, long long *);

81 static void closefile(void);

82 static void fatal (char *, char *);

83 static offset_t findline(char *, offset_t);

84 static void flush(void);

85 static FILE *getfile(void);

86 static char *getaline(int);

87 static void line_arg(char *);

88 static void numarg(char *, int);

89 static void re_arg(char *);

90 static void sig(int);

91 static void to_line(offset_t);

92 static void usage(void);

94 int

95 nmin(int argc, char **argv)

96

97 int ch, node;

98 char *ptr;

100 (void) setlocal e(LC_ALL, "");

101 #i f !defined( TEXT_DOVAI N) /* Shoul d be defined by cc -D */
102 #define TEXT_DOVAI N " SYS_TEST" /* Use this only if it weren't */
103 #endi f

104 (voi d) textdomai n( TEXT_DOVAIN);

106 while ((ch = getopt(argc, argv, "skf:n:")) !'= EOF) {

107 switch (ch) {

108 case 'f’:

109 (void) strcpy(file, optarg);

110 if ((ptr = strrchr(optarg, '/’)) == NULL)
111 ptr = optarg;

112 el se

113 ptr++;

115 br eak;

116 case 'n’: /* PCSIX 2 */

117 for (ptr = optarg; *ptr !'= NULL; ptr++)
118 if (lisdigit((int)*ptr))

119 fatal ("-n numn", NULL);
120 fiwidth = atoi (optarg);

121 break;

122 case 'k’ :

123 keep++;

124 br eak;

125 case 's’:

126 si |l ent ++;

127 br eak;
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case '?':
errfl g++;

}

argv = &argv[optind];

argc -= optind;

if (argc <=1 || errflg)
usage();

if (strcnp(*argv, "-") == 0)
|nf||e-tnpf||e()

while (fread(tnpbuf, 1, BUFSIZ, stdin) != 0) {
if (fwite(tnpbuf, 1, BUFSIZ, infile) == 0)
if (errno == ENOSPC)
(void) fprintf(stderr, "csplit: ");
(void) fprintf(stderr, gettext(
"No space left on device\n"));

exit(1);
} else {
(void) fprintf(stderr, "csplit: ");
(void) fprintf(stderr, gettext(
"Bad wite to tenporary "
"file\n"));
exit(1);
}

/* clear the buffer to get correct size when witing buffer */

(void) memset (tnpbuf, '\0’, sizeof (tnpbuf));

}
rewi nd(infile);

} else if ((|nf le = fopen(*argv "r")) == NULL)
fatal ("Cannot open %s\n", *argv);

++ar gv;

curline = (offset_t)1

(void) signal ( G NT, Si 9);

* The following for |oop handles the different argument types.
* Aswitch is performed on the first character of the argunent
* and each case calls the appropriate argument handling routine.
*
/
for (; *argv; ++argv) {
targ = *argy;
switch (**argv) {
case '/’
node = EXPMODE;
create = TRUE;
re_arg(*argv);
br eak;
case '%:
node = EXPMODE;
create = FALSE;
re_arg(*argv);
br eak;
case '{’:
num arg( ar gv,
node = FALSE;
br eak;
defaul t:
node = LI NMODE;
create = TRUE;
l'ine_arg(*argv);

node) ;
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194 br eak;
195 }
196 }
197 create = TRUE;
198 to_line(LAST);
199 return (0);
200 }
__unchanged_portion_omtted_
343 /| *
344 * Getfile does nothing if the create flag is not set. |If the create
345 * flag is set, getfile positions the file pointer(fptr) at the end of
346 * the file name prefix on the first call(fptr=0). The file counter is
347 * stored in the file nane and increnented. |f the subsequent fopen
348 * fails, the file nane is copied to tfile for the error nessage, the
349 * previous file nane is restored for cleanup, and fatal is called. |If
350 * the fopen succeeds, the stream(opfil) is returned.
351 */
353 FILE *
354 getfile()
355 {
356 static char *fptr;
357 static int ctr;
358 FILE *opfil;
359 char tfile[15];
360 char *delim
361 char savedelim
363 if (create) {
364 if (fptr == 0)
365 for (fptr file *fptr 1= NULL; fptr++)
366 contln
367 (void) sprintf(fptr, "%*d" fiwidth, ctr++);
369 /* check for suffix Iength overflow */
370 if (strien(fptr) > fiwidth) {
371 fatal ("Suffix longer than %d chars; increase
372 (char *)fiwi dth);
373 }
375 /* check for filename |ength overflow */
377 dellm—strrchr(f|le WADN
378 if (delim== (char *)NULL) {
379 if (strlen(flle) > pat hconf (".", CNANENAX)) {
380 fatal ("Name too long: %\n", file);
381
382 } else {
383 /* truncate file at pathnane delimto do path
384 savedel im = *delim
385 *delim="\0";
386 *
387 * file: pppppppp\Offfff\0
388 o Nfile
389 o A delim
390 */
391 if (strlen(delim+ 1) > pathconf(file, _PC_
392 fatal ("Name too long: %\n", de I
393 }
394 *delim = savedelim
395 }
397 if ((opfil = fopen(file, "w')) == NULL) {
398 (v0|d) strlcpy(tf Ie, file, sizeof (tfile));
394 (void) strcpy(tfile, file);

-n\n",

conf */

'V;EM“X)){
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399 (void) sprintf(fptr, "%*d", fiwidth, (ctr-2));
400 fatal ("Cannot create %\n", tfile);

401 }

402 return (opfil);

403 }

404 return (NULL);

405 }

____unchanged_portion_onmitted_




