
new/usr/src/cmd/csplit/csplit.c 1

**
 14783 Mon Jan 21 16:21:44 2019
new/usr/src/cmd/csplit/csplit.c
10128 csplit should use strlcpy
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /* All Rights Reserved */

29 /*
30 * Copyright (c) 2018, Joyent, Inc.
31 */

33 /*
34 * csplit - Context or line file splitter
35 * Compile: cc -O -s -o csplit csplit.c
36 */

38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <unistd.h>
41 #include <string.h>
42 #include <ctype.h>
43 #include <errno.h>
44 #include <limits.h>
45 #include <regexpr.h>
46 #include <signal.h>
47 #include <locale.h>
48 #include <libintl.h>

50 #define LAST 0LL
51 #define ERR -1
52 #define FALSE 0
53 #define TRUE 1
54 #define EXPMODE 2
55 #define LINMODE 3
56 #define LINSIZ LINE_MAX /* POSIX.2 - read lines LINE_MAX long */

58 /* Globals */

60 char linbuf[LINSIZ]; /* Input line buffer */
61 char *expbuf;

new/usr/src/cmd/csplit/csplit.c 2

62 char tmpbuf[BUFSIZ]; /* Temporary buffer for stdin */
63 char file[8192] = "xx"; /* File name buffer */
64 char *targ; /* Arg ptr for error messages */
65 char *sptr;
66 FILE *infile, *outfile; /* I/O file streams */
67 int silent, keep, create; /* Flags: -s(ilent), -k(eep), (create) */
68 int errflg;
69 int fiwidth = 2; /* file index width (output file names) */
70 extern int optind;
71 extern char *optarg;
72 offset_t offset; /* Regular expression offset value */
73 offset_t curline; /* Current line in input file */

75 /*
76 * These defines are needed for regexp handling(see regexp(7))
77 */
78 #define PERROR(x) fatal("%s: Illegal Regular Expression\n", targ);

80 static int asc_to_ll(char *, long long *);
81 static void closefile(void);
82 static void fatal(char *, char *);
83 static offset_t findline(char *, offset_t);
84 static void flush(void);
85 static FILE *getfile(void);
86 static char *getaline(int);
87 static void line_arg(char *);
88 static void num_arg(char *, int);
89 static void re_arg(char *);
90 static void sig(int);
91 static void to_line(offset_t);
92 static void usage(void);

94 int
95 main(int argc, char **argv)
96 {
97 int ch, mode;
98 char *ptr;

100 (void) setlocale(LC_ALL, "");
101 #if !defined(TEXT_DOMAIN) /* Should be defined by cc -D */
102 #define TEXT_DOMAIN "SYS_TEST" /* Use this only if it weren’t */
103 #endif
104 (void) textdomain(TEXT_DOMAIN);

106 while ((ch = getopt(argc, argv, "skf:n:")) != EOF) {
107 switch (ch) {
108 case ’f’:
109 (void) strcpy(file, optarg);
110 if ((ptr = strrchr(optarg, ’/’)) == NULL)
111 ptr = optarg;
112 else
113 ptr++;

115 break;
116 case ’n’: /* POSIX.2 */
117 for (ptr = optarg; *ptr != NULL; ptr++)
118 if (!isdigit((int)*ptr))
119 fatal("-n num\n", NULL);
120 fiwidth = atoi(optarg);
121 break;
122 case ’k’:
123 keep++;
124 break;
125 case ’s’:
126 silent++;
127 break;

new/usr/src/cmd/csplit/csplit.c 3

128 case ’?’:
129 errflg++;
130 }
131 }

133 argv = &argv[optind];
134 argc -= optind;
135 if (argc <= 1 || errflg)
136 usage();

138 if (strcmp(*argv, "-") == 0) {
139 infile = tmpfile();

141 while (fread(tmpbuf, 1, BUFSIZ, stdin) != 0) {
142 if (fwrite(tmpbuf, 1, BUFSIZ, infile) == 0)
143 if (errno == ENOSPC) {
144 (void) fprintf(stderr, "csplit: ");
145 (void) fprintf(stderr, gettext(
146 "No space left on device\n"));
147 exit(1);
148 } else {
149 (void) fprintf(stderr, "csplit: ");
150 (void) fprintf(stderr, gettext(
151 "Bad write to temporary "
152 "file\n"));
153 exit(1);
154 }

156 /* clear the buffer to get correct size when writing buffer */

158 (void) memset(tmpbuf, ’\0’, sizeof (tmpbuf));
159 }
160 rewind(infile);
161 } else if ((infile = fopen(*argv, "r")) == NULL)
162 fatal("Cannot open %s\n", *argv);
163 ++argv;
164 curline = (offset_t)1;
165 (void) signal(SIGINT, sig);

167 /*
168 * The following for loop handles the different argument types.
169 * A switch is performed on the first character of the argument
170 * and each case calls the appropriate argument handling routine.
171 */

173 for (; *argv; ++argv) {
174 targ = *argv;
175 switch (**argv) {
176 case ’/’:
177 mode = EXPMODE;
178 create = TRUE;
179 re_arg(*argv);
180 break;
181 case ’%’:
182 mode = EXPMODE;
183 create = FALSE;
184 re_arg(*argv);
185 break;
186 case ’{’:
187 num_arg(*argv, mode);
188 mode = FALSE;
189 break;
190 default:
191 mode = LINMODE;
192 create = TRUE;
193 line_arg(*argv);

new/usr/src/cmd/csplit/csplit.c 4

194 break;
195 }
196 }
197 create = TRUE;
198 to_line(LAST);
199 return (0);
200 }

______unchanged_portion_omitted_

343 /*
344 * Getfile does nothing if the create flag is not set. If the create
345 * flag is set, getfile positions the file pointer(fptr) at the end of
346 * the file name prefix on the first call(fptr=0). The file counter is
347 * stored in the file name and incremented. If the subsequent fopen
348 * fails, the file name is copied to tfile for the error message, the
349 * previous file name is restored for cleanup, and fatal is called. If
350 * the fopen succeeds, the stream(opfil) is returned.
351 */

353 FILE *
354 getfile()
355 {
356 static char *fptr;
357 static int ctr;
358 FILE *opfil;
359 char tfile[15];
360 char *delim;
361 char savedelim;

363 if (create) {
364 if (fptr == 0)
365 for (fptr = file; *fptr != NULL; fptr++)
366 continue;
367 (void) sprintf(fptr, "%.*d", fiwidth, ctr++);

369 /* check for suffix length overflow */
370 if (strlen(fptr) > fiwidth) {
371 fatal("Suffix longer than %ld chars; increase -n\n",
372 (char *)fiwidth);
373 }

375 /* check for filename length overflow */

377 delim = strrchr(file, ’/’);
378 if (delim == (char *)NULL) {
379 if (strlen(file) > pathconf(".", _PC_NAME_MAX)) {
380 fatal("Name too long: %s\n", file);
381 }
382 } else {
383 /* truncate file at pathname delim to do pathconf */
384 savedelim = *delim;
385 *delim = ’\0’;
386 /*
387 * file: pppppppp\0fffff\0
388 * ^ file
389 * ^ delim
390 */
391 if (strlen(delim + 1) > pathconf(file, _PC_NAME_MAX)) {
392 fatal("Name too long: %s\n", delim + 1);
393 }
394 *delim = savedelim;
395 }

397 if ((opfil = fopen(file, "w")) == NULL) {
398 (void) strlcpy(tfile, file, sizeof (tfile));
394 (void) strcpy(tfile, file);

new/usr/src/cmd/csplit/csplit.c 5

399 (void) sprintf(fptr, "%.*d", fiwidth, (ctr-2));
400 fatal("Cannot create %s\n", tfile);
401 }
402 return (opfil);
403 }
404 return (NULL);
405 }

______unchanged_portion_omitted_

