new usr/src/cmd/ zl ogi n/ zl ogi n. ¢ 1 new usr/src/cmd/ zl ogi n/ zl ogi n. ¢
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 62 #I ncl ude <aSSeI’I . h>
58084 Wed Jan 22 14:16:29 2014 63 #include <ctype. h>
new usr/src/cnd/ zl ogi n/ zl ogin. c 64 #include <pat hs. h>
3091 add -n to zlogin so its nore conpatible with rsh conmand |ine 65 #i ncl ude <door. h>
LEEE R R R R EE SRR EEEEEEEEEEEEEREEEE SRR EEEEEEEEEEEEREREEEEEEEEESE] 66 #' nCl ude <errno. h>
1/* 67 #include <nss_dbdefs. h>
2 * CDDL HEADER START 68 #include <poll.h>
3 = 69 #include <priv.h>
4 * The contents of this file are subject to the terms of the 70 #include <pwd. h>
5 * Common Devel opnent and Distribution License (the "License"). 71 #include <unistd. h>
6 * You may not use this file except in conpliance with the License. 72 #incl ude <utnpx. h>
7 * 73 #include <sac. h>
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 #include <signal.h>
9 * or http://ww. opensol aris.org/os/licensing. 75 #include <stdarg. h>
10 * See the License for the specific |anguage governi ng perm ssions 76 #include <stdio.h>
11 * and limtations under the License. 77 #include <stdlib. h>
12 * 78 #include <string. h>
13 * When distributing Covered Code, include this CDDL HEADER in each 79 #include <strings. h>
14 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 80 #include <stropts. h>
15 * |If applicable, add the followi ng below this CDDL HEADER, wth the 81 #include <wait.h>
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 #include <zone. h>
17 * information: Portions Copyright [yyyy]l [nane of copyright owner] 83 #include <fcntl.h>
18 * 84 #include <libdevinfo.h>
19 * CDDL HEADER END 85 #include <libintl.h>
20 */ 86 #include <local e. h>
21 | * 87 #include <libzonecfg. h>
22 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. Al rights reserved. 88 #include <libcontract. h>
23 * Copyright 2013 DEY Storage Systens, Inc. 89 #include <libbrand. h>
24 * Copyright (c) 2014 Gary MlIls 90 #include <auth_list.h>
25 =/ 91 #include <auth_attr.h>
92 #incl ude <secdb. h>
27 |*
28 * zlogin provides three types of login which allow users in the gl obal 94 static int nasterfd;
29 * zone to access non-gl obal zones. 95 static struct term os save_term os;
30 * 96 static struct ternios effective_term os;
31 * - "interactive login" is simlar to rlogin(1l); for exanple, the user could 97 static int save_fd;
32 * issue 'zl ogin ny-zone’ or 'zlogin -e A -1 ne ny-zone’. The user is 98 static struct winsize w nsize;
33 * granted a new pty (which is then shoved into the zone), and an I/ O 99 static volatile int dead;
34 * | oop between parent and child processes takes care of the interactive 100 static volatile pid_t child_pid = -1;
35 * session. In this node, login(l) (and its -c option, which neans 101 static int interactive = 0;
36 * "already authenticated") is enployed to take care of the initialization 102 static priv_set_t *dropprivs;
37 * of the user’s session.
38 * 104 static int nocndchar = O;
39 * - "npon-interactive login" is simlar to su(1M; the user could issue 105 static int failsafe = 0;
40 = "zlogin nmy-zone |Is -1’ and the comand woul d be run as specified. 106 static char cnmdchar = '~";
41 = In this node, zlogin sets up pipes as the comunication channel, and 107 static int quiet = 0;
42 * "su’ is used to do the login setup work.
43 * 109 static int pollerr = 0;
44 * - "console login" is the equivalent to accessing the tip line for a
45 = zone. For exanple, the user can issue 'zlogin -C ny-zone'. 111 static const char *pnang;
46 * In this node, zlogin contacts the zoneadnd process via unix domain 112 static char *usernaneg;
47 * socket. If zoneadnd is not running, it starts it. This allows the
48 * console to be available anytine the zone is installed, regardless of 114 /*
49 = whether it is running. 115 * \Wen forced_login is true, the user is not pronpted
50 */ 116 * for an authentication password in the target zone.
117 *
52 #include <sys/socket.h> 118 static boolean_t forced_l ogin = B_FALSE;
53 #include <sys/term os. h>
54 #incl ude <sys/utsnane. h> 120 #if !defined(TEXT_DOVAI N) /* shoul d be defined by cc -D */
55 #include <sys/stat.h> 121 #define TEXT_DOVAI N " SYS_TEST" /* Use this only if it wasn't */
56 #include <sys/types. h> 122 #endi f
57 #include <sys/contract/process. h>
58 #include <sys/ctfs. h> 124 #define SUPATH "/usr/bin/su"
59 #include <sys/brand. h> 125 #define FAI LSAFESHELL "/ sbi n/sh"
60 #include <sys/wait.h> 126 #define DEFAULTSHELL "/ sbin/sh"
61 #include <alloca. h> 127 #define DEF_PATH "/ usr/sbin:/usr/bin"

new usr/src/cmd/ zl ogi n/ zl ogi n. ¢

129 #define CLUSTER_BRAND_NANME "cluster”
131 /*
132 * The ZLOG N BUFSIZ is larger than PIPE_BUF so we can be sure we're clearing
133 * out the pipe when the child is exiting. The ZLOd N_RDBUFSIZ nust be |ess
134 * than ZLOGd N_BUFSIZ (because we share the buffer in doio). This value is
135 * also chosen in conjunction with the H _WATER setting to nake sure we
136 * don’t fill up the pipe. W can wite FIFOH WAT (16k) into the pipe before
137 * blocking. By having ZLOG N_RDBUFSIZ set to 1k and HI _WATER set to 8k, we
138 * know we can always wite a ZLOGA N RDBUFSI Z chunk into the pipe when there
139 */I s less than H _WATER data already in the pipe.
140 *
141 #define ZLOG N_BUFSI Z 8192
142 #define ZLOG N_RDBUFSI Z 1024
143 #define H _WATER 8192
145 /| *
146 * See canonify() below. CANONI FY_LEN is the nmaxi numlength that a
147 * "canonical" sequence will expand to (backslash, three octal digits, NUL).
148 *
149 #define CANONI FY_LEN 5
151 static void
152 usage(voi d)
153 {
154 (void) fprintf(stderr, gettext("usage: % [-nQCES] [-e cndchar] "
152 (v0|d) fprintf(stderr, gettext("usage: % [-QCE 1] [-e cndchar] "
155 "[-1 user] zonenane [command [args ...]]\n"), pnane);
156 exit(2);
157 }
__unchanged_portion_onitted_
1726 int
1727 main(int argc, char **argv)
1728 {
1729 int arg, console = 0;
1730 zonei d_t zonei d;
1731 zone_state_t st
1732 char *login = root "
1733 int 1flag = 0;
1734 int nflag = 0;
1735 char *zonenanme = NULL;
1736 char **proc_args = NULL;
1737 char **new_args, **new_env;
1738 sigset _t bl ock_cld;
1739 char devr oot [MAXPATHLEN] ;
1740 char *slavenane, slaveshortnane[MAXPATHLEN] ;
1741 priv_set_t *privset;
1742 int tnpl _fd;
1743 char zonebr and[MAXNAMVELEN] ;
1744 char defaul t _brand[MAXNAMELEN ;
1745 struct stat sb;
1746 char kernzone[ZONENAME_MAX] ;
1747 brand_handl e_t bh;
1748 char user cmi[MAXPATHLEN]
1749 char aut hnane[MAXAUTHS] ;
1751 (void) setlocal e(LC ALL, "");
1752 (voi d) textdomai n(TEXT_DOVAIN);
1754 (voi d) getpnanme(argv[O0]);
1755 usernanme = get_usernane();
1757 while ((arg = getopt(argc, argv, "nECR Se:1:Q')) != EOF) {
1754 while ((arg = getopt(argc, argv, "ECR Se:1:Q")) != EOF) {

new usr/src/cmd/ zl ogi n/ zl ogi n. ¢

1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796

1798

1800
1801
1802
1792
1793
1803
1804

1806
1807
1808
1797
1798
1809
1810

1812
1813
1814
1815
1816

1818
1819

switch (arg) {
case 'C:

br eak;
case 'E':
nocrmdchar = 1;
br eak;
case 'R : /* undocunented */
if (*optarg !'="/")
zerror(gettext("root path nust be absolute."));
exit(2);
}
if (stat(optarg, &sb) == -1 || !'S ISDIR(sb.st_node)) {
zerror(
gettext("root path nust be a directory."));
exit(2);
zonecf g_set_root(optarg);
break;
case 'Q:
quiet = 1;
br eak;
case 'S :
failsafe = 1;
br eak;
case 'e':
set _cndchar (optarg);
break-
case ’
Iogl n = ptarg;
Iflag =
br eak;
case 'n’
nflag =
break;
defaul t:
usage()
}
}
if (console !'=0) {

console = 1;

if (Iflag != 0)

zerror(gettext(
"-1 may not be specified for console login"));
{

if (console !'=0 &&Iflag 1= 0)
zerror(gettext("-1 may not be specified for console login"));

}

usage();

if (nflag !'= 0)

{
zerror(gettext(
"-n may not be specified for console login"));
{

if (console =0 & failsafe != 0)
zerror(gettext("-S may not be specified for console login"));

}
if (fail

}

usage();

safe = 0)
zerror(gettext(

"-S may not be specified for console login"));
usage();

if (zonecfg_in_alt_root()) {

zerror(gettext(

new usr/src/cmd/ zl ogi n/ zl ogi n. ¢

1820
1802
1803
1821
1822

1824

1826
1827
1828
1829

1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856

1858
1859
1860
1861
1862

1864
1865
1866
1867
1868

1870
1871
1872
1873

1875
1876
1877
1878
1879

1881
1882
1883

"-R may not be specified for console login"));

if (console !'= 0 & zonecfg_in_alt_root())
zerror(gettext("-R may not be specified for console login"));
exit(2);
}
}
if (failsafe '= 0 & Iflag != 0)
zerror(gettext("-1 may not be specified for failsafe login"));
usage() ;
}
if (optind == (argc - 1)) {
/*

* zone nane, no process name; this should be an interactive
* as long as STDIN is really a tty.
*/
if (nflag != 0)
zerror(gettext(

-n may not be specified for interactive login"));

}
if (isatty(STDIN_FILENO))
interactive = 1;
zonenane = argv[optind];
} else if (optind < (argc - 1)) {
if (console)
zerror(gettext("Comands may not be specified for
"consol e login."));
usage();

}
/* zone nane and process name, and possibly some args */
zonenane = argv[optind];
proc_args = &argv[optind + 1];
Interactive = 0;
} else {
usage();
}

if (getzoneid() != GLOBAL_ZONEID) {
zerror(gettext("' %’ nmay only be used fromthe global zone"),
pnane) ;
return (1);

if (strcnp(zonename, GLOBAL_ZONENAME) == 0) {
zerror(gettext("' %’ not applicable to the global zone"),
pnarme)
return (1);

if (zone_get_state(zonenanme, &st) != Z_OK)
zerror(gettext("zone '%’ unknown"), zonenane);
return (1);

if (st < ZONE_STATE_ | NSTALLED) {
zerror(gettext("cannot login to a zone whichis '%’'"),
zone_state_str(st));
return (1);

* In both consol e and non-consol e cases, we require all privs.
* In the consol e case, because we may need to startup zoneadnd.

new usr/src/cnd/ zl ogi n/ zl ogi n. ¢

1884
1885
1886

1888
1889
1890
1891

1893
1894
1895
1896
1897

1899
1900
1901
1902
1903
1904
1905

1907
1908
1909

1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936

1938
1939
1940
1941
1942
1943
1944
1945
1946
1947

1949

* In the non-console case in order to do zone_enter(2), zonept()
* and other tasks.
*/

if ((privset = priv_allocset()) == NULL) {
zperror(gettext("priv_allocset failed"));
return (1);

}

if (getppriv(PRIV_EFFECTIVE, privset) !=
zperror(gettext("getppriv failed"
priv_freeset(privset);
return (1);

0 {
))s

}

if (priv_ |sfu||set(pr|vset) == B_FALSE)
zerror(gettext(You Iack sufficient perlIege to run
"this conmmand (all privs required)"));
priv_freeset(privset);
return (1);

priv_freeset(privset);

*

* Check if user is authorized for requested usage of the zone
*/

(voi d) snprintf (aut hname, MAXAUTHS, "%%%",
ONE_MANAGE_AUTH, KV_OBJECT, zonenama)
if (chkauthattr(authnane usernanme) == 0) {
if (console)
zerror(gettext("% is not authorized for console "
"access to % zone."
user nane, zonenane);
return (1);
} else {
(voi d) snprintf (authnane, MAXAUTHS, "%%%",
ONE_LOG N_AUTH, KV_OBJECT, zonenane);
if (fallsafe |T linteractive)
zerror(gettext("% is not authorized for
"failsafe or non-interactive login "
"to 9% zone."), usernane, zonenane);
return (1);
} else if (chkauthattr(authname, usernane) == 0) {
zerror(gettext("% is not authorized "
" tologinto % zone."),
user nane, zonenane);

return (1);
}
} else {
forced_l ogin = B_TRUE;
}
/*

* The console is a separate case fromthe rest of the code; handle
* it first.
*/
if (console) {
/*

* Ensure that zoneadnd for this zone is running.
*/

if (start_zoneadnd(zonenane) == -1)
return (1);

/| *

new usr/src/cmd/ zl ogi n/ zl ogi n. ¢

1950
1951
1952
1953

1955
1956
1957
1958

1960
1961
1962
1963
1964

1966
1967

1969
1970
1971
1972
1973
1974
1975
1976
1977

1979
1980

1982
1983
1984
1985
1986

1988
1989
1990

1992
1993
1994
1995
1996
1997
1998
1999
2000
2001

2003
2004
2005
2006
2007

2009
2010
2011
2012
2013
2014
2015

}

}
(
i

}

}
!

* Make contact with zoneadnd.

*/

if (get_consol e_master(zonenane) == -1)
return (1);

if (lquiet)
(void) printf(
gettext ("[Connected to zone ' %’ console]\n"),
zonenane) ;

if (set_tty_rawnpde(STDI N_FILENO == -1) {
reset_tty();
zperror(gettext("failed to set stdin pty to raw node"));
return (1);

}

(voi d) sigset(SIGNNCH, sigw nch);
(void) sigw nch(0);

/*

* Run the 1/O loop until we get disconnected.
*
/

doi o(masterfd, -1, masterfd, -1, -1, B FALSE);
reset _tty();
if (!quiet)
(void) printf(
gettext("\n[Connection to zone ' %’ console "
"cl osed]\n"), zonenane);

return (0);

f (st != ZONE_STATE_RUNNING && st != ZONE_STATE_MOUNTED) {
zerror(gettext("login allowed only to running zones
"(% is '%’)."), zonenane, zone_state_str(st));

return (1);

void) strlcpy(kernzone, zonenane, sizeof (kernzone));
f (zonecfg_in_alt_root()) {
FILE *fp = zonecfg_open_scratch("", B_FALSE);

if (fp == NULL || zonecfg_find_scratch(fp, zonenane,
zonecfg_get _root(), kernzone, sizeof (kernzone)) == -1) {
zerror(gettext("cannot find scratch zone %"),
zonenane) ;
if (fp !'= NULL)
zonecfg_cl ose_scratch(fp);
return (1);

zonecf g_cl ose_scratch(fp);

f ((zoneid = getzonei dbynanme(kernzone)) == -
zerror(gettext("“failed to get zoneid for zone "%'"),
zonenane) ;
return (1);

*

* W need the zone root path only if we are setting up a pty.
*/

f (zone_get _devroot (zonenane, devroot, sizeof (devroot)) == -1) {
zerror(gettext("could not get dev path for zone %"),
zonenane) ;

return (1);

new usr/src/cmd/ zl ogi n/ zl ogi n. ¢

2016

2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038

2040
2041
2042
2043

2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063

2065
2066
2067
2068

2070
2071
2072

2074
2075
2076
2077
2078
2079
2080
2081

}

if (zone_get_brand(zonenanme, zonebrand, sizeof (zonebrand)) !'= Z OK) {
zerror(gettext("could not get brand for zone %"), zonenane);
return (1);

}

/

*
* In the alternate root environnent, the only supported

* operations are nount and unmobunt. In this case, just treat
* the zone as native if it is cluster. Custer zones can be
* native for the purpose of LU or upgrade, and the cluster

* brand may not exist in the mniroot (such as in net install
* upgrade).

*/

if

(zonecf g_defaul t _brand(defaul t _brand,
sizeof (default_brand)) !'= Z OK) {
zerror(gettext("unable to determ ne default brand"));
return (1);

}
if (zonecfg_in_alt_root() &&
strcnp(zonebrand, CLUSTER BRAND NAME) == 0) {
(void) strlcpy(zonebrand, default_brand, sizeof (zonebrand));

}

if ((bh = brand_open(zonebrand)) == NULL)
zerror(gettext("could not open brand for zone %"), zonenane);
return (1);

}

if ((new_args = prep_args(bh, login, proc_args)) == NULL) {
zperror(gettext("could not assenble new argunents"));
brand_cl ose(bh);
return (1);

*

* CGet the brand specific user_cnmd. This command is used to get
* a passwd(4) entry for |ogin.
*/

}
!

if (linteractive & !failsafe) {
if (zone_get_user_cnd(bh, login, user_cnd,
si zeof (user_cnmd)) == NULL) {
zerror(gettext("could not get user_cnd for zone %"),
zonenane) ;
brand_cl ose(bh);
return (1);

}
%rand_cl ose(bh);

if ((new_env = prep_env()) == NULL) {
zperror(gettext("could not assermbl e new environnent"));
return (1);

}

if (linteractive) {
if (nflag) {
int nfd;

if ((nfd = open(_PATH _DEVNULL, O RDONLY)) < 0)
zperror(gettext("failed to open null device"));
return (1);

}
if (nfd !'= STDI N_FI LENO
if (dup2(nfd, STDIN_FILENO < 0) {
zperror(gettext(
"failed to dup2 null device"));

new usr/src/cmd/ zl ogi n/ zl ogi n. ¢

2082
2083
2084
2085
2086
2087
2046
2088
2089
2090

2092
2093
2094
2095
2096

2098
2099
2100
2101
2102
2103
2104
2105
2106

2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120

2122
2123
2124

2126
2127
2128
2129
2130

2132
2133
2134
2135
2136

2138
2139
2140
2141
2142
2143
2144
2145
2146

return (1);
}
) (void) close(nfd);
/* [dev/null is now standard input */

}
if (linteractive)
return (noninteractive_| ogi n(zonenane, user_cnd, zoneid,
new_args, new_env));

}

if (zonecfg_in_alt_root())
zerror(gettext("cannot use interactive login with scratch "
"zone"));
return (1);

}

/*

* Things are nore conplex in interactive node; we get the

* master side of the pty, then place the user’s termnal into
* raw node.

*/

if (get_master_pty() == -1) {
zerror(gettext(could not setup master pty device"));
return (1);

}

/*

* Conpute the "short nanme" of the pts. /dev/pts/2 --> pts/2

*/

if ((slavenane = ptsnama(nasterfd)) == NULL) {
zperror(gettext("failed to get nane for pseudo-tty"));
return (1);

}

1 f (strncnp(sl avenanme, "/dev/", strlen("/dev/")) == 0

)
(void) strlcpy(slaveshortnane, slavenane + strlen("/dev/"),
si zeof (slaveshortnane));

el se
(void) strlcpy(slaveshortnane, slavenane,
si zeof (slaveshortnane));
if (!quiet)
(void) printf(gettext("[Connected to zone '%’ 9%]\n"),
zonenane, sl aveshortnane);
if (set_tty_rawnpde(STDIN_FILENO == -1) {
reset _tty();
zperror(gettext(failed to set stdin pty to raw node"));
return (1);
}

if (prefork_dropprivs() !'=10) {
reset _tty();
zperror(gettext("could not allocate privilege set"));

return (1);
}
/'k
* We nust mask SIGCLD until after we have coped with the fork
* sufficiently to deal with it; otherwise we can race and receive the
* signal before child_pid has been initialized (yes, this really
* happens) .
*/
(voi d) sigset(SIGCLD, sigcld);
(voi d) sigenptyset (&bl ock_cl d)
(voi d) sigaddset (&bl ock_cTd, Si CCLD) ;

new usr/src/cnd/ zl ogi n/ zl ogi n. ¢

2147

2149
2150
2151
2152
2153
2154
2155
2156
2157
2158

2160
2161
2162
2163
2164
2165
2166

2168
2169

2171

2173
2174

2176
2177
2178
2179

2181
2182
2183
2184
2185
2186
2187

2189
2190
2191
2192
2193

2195
2196

2198
2199
2200
2201
2202
2203
2204
2205
2206

2208
2209
2210
2211
2212

(voi d) sigprocmask(SI G BLOCK, &block_cld, NULL);

/*

* We activate the contract tenplate at the last minute to
* avoid internmediate functions that could be using fork(2)
* internally.

*/

if ((trpl _fd = init_tenplate()) == -1) {
reset _tty();
zperror(gettext(could not create contract"));
return (1);

}

if ((child_pid=fork()) ==-1

) {
(void) ct_tnpl_clear(tnpl_fd);
reset _tty();
zperror(gettext("could not fork"));
return (1);
} else if (child_pid ==0) { /* child process */
int slavefd, newslave;

(void) ct_tnpl _clear(tnpl_fd);
(void) close(tnpl_fd);

(voi d) sigprocmask(SI G UNBLOCK, &bl ock_cld, NULL);

if ((slavefd = init_slave_pty(zoneid, devroot)) == -1)
return (1);

/*
* Close all fds except for the slave pty.
*

(void) fdwal k(close_func, &slavefd);

/*
* Tenporarily dup slavefd to stderr; that way if we have
* to print out that zone_enter failed, the output wll
* have sonewhere to go.
*/
if (slavefd !'= STDERR FI LENO)
(voi d) dup2(sTavefd, STDERR FILENO);

if (zone_enter(zoneid) == -1)
zerror(gettext("could not enter zone ¥%: 9%"),
zonenane, strerror(errno));
return (1);

if (slavefd ! = STDERR_FI LENO
(void) close(STDERR FI LENO);

/*

* We take pains to get this process into a new process

* group, and subsequently a new session. In this way,

* we'll have a session which doesn’t yet have a controlling
* termnal. Wien we open the slave, it will becone the

* controlling terminal; no PIDs concerning pgrps or sids

* will leak inappropriately into the zone.

*/

(void) setpgrp();

/*

* We need the slave pty to be referenced fromthe zone's
* /dev in order to ensure that the devt's, etc are all

* correct. Otherwise we break ttynane and the |ike.

*/

new usr/src/cnd/ zl ogi n/ zl ogin. c 11

2213
2214
2215
2216
2217
2218

2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231

2233
2234
2235
2236
2237
2238
2239

2241
2242
2243
2244
2245
2246
2247
2248

2250
2251
2252
2253

2255
2256

2258
2259
2260
2261

2263

2265
2266

2268
2269
2270
2271
2272

2274
2275
2276
2277
2278

}

if ((newslave = open(slavenane, O RDWR)) == -1) {
(void) close(slavefd);
return (1);

}
(void) close(slavefd);
sl avefd = newsl ave;

*

* dup the slave to the various FDs, so that when the
* spawned process does a wite/read it maps to the slave
*
*/pty.
(voi d) dup2(slavefd, STDIN_FILENO;
(voi d) dup2(slavefd, STDOUT_FILENO);
(voi d) dup2(slavefd, STDERR FILENO);
if (slavefd !'= STDIN_FI LENO && sl avefd ! = STDOUT_FI LENO &&
slavefd ! = STDERR FI LENO) {
(void) close(slavefd);

}

/*

* In failsafe node, we don’t use login(l), so don't try
* setting up a utnpx entry.

*

if (!failsafe)
if (setup_utnpx(slaveshortnane) == -1)
return (1);

*

* The child needs to run as root to
* execute the brand’ s | ogin program
*

/
if (setuid(0) == -1) {
zperror(gettext("insufficient privilege"));
return (1);

}

(voi d) execve(new_ args[0], new args, new env);
zperror(gettext("exec failure"));
return (1);

(void) ct_tnpl_clear(tnpl_fd);
(void) close(tnpl_fd);

/*
* The rest is only for the parent process.
*

(voi d) sigset(SIGNNCH sigw nch);

post f ork_dropprivs();

(voi d) sigprocmask(SI G UNBLOCK, &bl ock_cld, NULL);
doi o(masterfd, -1, masterfd, -1, -1, B_FALSE);

reset _tty();
if (lquiet)

(void) fprintf(stderr,
gettext("\n[Connection to zone '%’' % closed]\n"),
zonenane, sl aveshortnane);

if (pollerr !'=0) {

(void) fprintf(stderr, gettext("Error: connection closed due
"to unexpected poll events=0x%.\n"), pollerr);
return (1);

new usr/src/cmd/ zl ogi n/ zl ogi n. ¢

2280 return (0);
2281 }

__unchanged_portion_omtted_

12

new usr/src/ man/ manl/ zl ogin. 1 1

R R R R

6921 Wed Jan 22 14:16:29 2014

new usr/src/ man/ manl/ zl ogin. 1

3091

P R xS

sh command |ine

*ok koK Kk ok

add -n to zlogin so its nore conpatible with r

"\ te
.\" Copyright (c) 2006, Sun M crosystens, Inc. All Rights Reserved
.\" The contents of this file are subject to the terns of the Common
.\" Devel opment and Distribution License (the "License"). You may not use this
\" file except in conpliance with the License.
. You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE or
\" http://ww. opensol aris.org/os/licensing. See the License for the specific
.\" language governing permissions and |limtations under the License.
\" When distributing Covered Code, include this CDDL HEADER in each file and
.\" include the License file at usr/src/ OPENSOLARI S.LICENSE. |f applicable,
.\" add the follow ng below this CDDL HEADER, with the fields enclosed by
.\" brackets "[]" replaced with your own identifying information:
" Portions Copyright [yyyy]l [nane of copyright owner]
.\" Copyright 2013 DEY Storage Systens, Inc.
.\" Copyright (c) 2014 Gary Mlls
.TH ZLOG N 1 "Jan 22, 2014"
.TH ZLOG N 1 "Sep 8, 2013"

. SH NAME
zlogin \- enter a zone
. SH SYNOPSI S
LP
. nf

\fBzlogi M fR [\fB-CEQfR] [\fB-e\fR\fIc\fR [\fB-I\fR\flusernanme\fR] \flzonena
i

.LP

. nf

\fBzlogin\fR [\fB-nEQS\fR] [\fB-e\fR\fIc\fR [\fB-I\fR \flusername\fR] \flzonen

\fBzl ogin\fR [\ fB- EQS\fR] [\fB-e\fR\flc\fR [\fB-I\fR \flusername\fR] \flzonena
[\flargument\fR].

. SH DESCRI PTI ON
.sp

.LP

The \fBzlogin\fR utility is used by the adm nistrator to enter an operating
system zone. Only a superuser operating in the global system zone can use this
utility.

.sp

. LP

\fBzl ogi n\f R operates in one of three nodes:

.sp

.ne 2

. na

\fBlnteractive Mde\fR

.ad

. RS 24n

If no utility argument is given and the stdin file descriptor for the
\fBzlogin\fR process is a tty device, \fBzlogin\fR operates in \fBinteractive
nmode\fR In this node, \fBzlogin\fR creates a new pseudo termnal for use
within the login session. Programs requiring a tty device, for exanple,
\fBvi\fR(1), work properly in this node. In this node, \fBzlogin\fR invokes
\fBlogin\fR(1) to provide a suitable |ogin session.

.RE

.sp
.ne 2

. na
\f BNon- I nteractive Mde\fR
.ad

. RS 24n

new usr/src/ man/ manl/ zl ogin. 1

60

If autility is specified, \fBzlogin\fR operates in \fBnon-interactive node\fR
This node can be useful for script authors since stdin, stdout, and stderr are
preserved and the exit status of \flutility\fRis returned upon ternmination. In
this node, \fBzlogin\fR invokes \fBsu\fR(1M in order to set up the user’s
environnment and to provide a | ogin environnent.

.sp
The specified command is passed as a string and interpreted by a shell running
in the non-global zone. See \fBrsh\fR(1).

.RE

.sp
.ne 2

.na
\ f BConsol e Mbde\fR

.ad

. RS 24n

If the \fB-C\fR option is specified, the user is connected to the zone consol e
device and \fBzlogin\fR operates in \fBconsole node\fR The zone console is
avail abl e once the zone is in the installed state. Connections to the console
are persistent across reboot of the zone.

.RE

. SH OPTI ONS

.sp

.LP

The fol |l owi ng options are supported:
.sp

.ne 2

. na
\fB\fB-QfRfR

.ad

. RS 15n

Connects to the zone consol e.
. RE

.sp
.ne 2

.na
\fB\fB-e\fR\fIc\fRfR

.ad

. RS 15n

Specifies a different escape character,

\flc\fR for the key sequence used to

102 access extended functions and to disconnect fromthe login. The default escape
103 character is the tilde (\fB~\fR).

104 .RE

106 . sp

107 .ne 2

108 . na

109 \fB\fB-EAfRfR

110 . ad

111 . RS 15n

112 Disables the ability to access extended functions or to disconnect fromthe
113 login by using the escape sequence character.

114 .RE

116 .sp

117 .ne 2

118 .na

119 \fB\fB-I\fR \flusername\f R fR

120 . ad

121 . RS 15n

122 Specifies a different \flusername\fR for the zone login. If you do not use this
123 option, the zone usernanme used is "root". This option is invalid if the

124

\fB-CQ\fR option is specified.

125 . RE

new usr/src/ man/ manl/ zl ogin. 1

127 .sp
128 .ne 2

129 .na

130 \fB-n\fR

131 . ad

132 . RS 15n

133 Redirect the input of \fBzlogin\fR to \fB/dev/null\fR

134 This option is useful when the command running in the |ocal zone

135 and the shell which invokes \fBzlogin\fR both read from standard i nput

136 . RE

138 .sp

139 .ne 2

140 .na

141 \fB-QfR

142 . ad

143 . RS 15n

144 Specifies quiet node operation. In quiet node, extra nessages indicating the
145 the function of \fBzlogin\fR wi |l not be displayed, giving the possibility
146 to present the appearance that the command is running locally rather than
147 in another zone

148 . RE

150 .sp

151 .ne 2

152 .na

153 \fB\fB-S\fRfR

154 .a

155 . RS 15n

156 "Safe" login node. \fBzl ogin\fR does nininal processing and does not invoke
157 \fBlogi n\fR(1) or \fBsu\fR(1M. The \fB-S\fR option can not be used if a
158 usernane is specified through the \fB-1\fR option, and cannot be used with
159 consol e | ogins. This npbde should only be used to recover a danaged zone when
160 other forms of |ogin have becone inpossible

161 . RE

163 . SS "Escape Sequences"

164 .sp

165 . LP

166 Lines that you type that start with the tilde character (\fB~\fR) are "escape
167 sequences". The escape character can be changed using the \fB-e\fR option
168 .sp

169 .ne 2

170 .na

171 \fB\fB~.\fRfR

172 . ad

173 . RS 6n

174 Di sconnects fromthe zone. This is not the sane as a | ogout, because the |oca
175 host breaks the connection with no warning to the zone's end

176 .RE

178 . SH SECURI TY

179 .sp

180 . LP

181 Once a process has been placed in a zone other than the gl obal zone, the
182 process cannot change zone again, nor can any of its children.

183 . SH OPERANDS

184 .sp

185 . LP

186 The foll owi ng operands are supported

187 .sp

188 .ne 2

189 .na

190 \fB\flzonename\fR f R

191

.ad

new usr/src/ man/ manl/ zl ogin. 1

192 . RS 15n

193 The nanme of the zone to be entered

194 . RE

196 .sp

197 .ne 2

198 .na

199 \fB\flutility\fRfR

200 . ad

201 . RS 15n

202 The utility to be run in the specified zone

203 . RE

205 .sp

206 .ne 2

207 .na

208 \fB\flargunent.. . \fRfR

209 . ad

210 . RS 15n

211 Argunents passed to the utility

212 .RE

214 . SH EXIT STATUS

215 .sp

216 . LP

217 In interactive and non-interactive nodes, the \fBzlogin\fR utility exits when
218 the command or shell in the non-global zone exits. In non-interactive node, the
219 exit status of the renpte programis returned as the exit status of

220 \fBzlogin\fR In interactive node and console |ogin node, the exit status is
221 not returned. \fBzlogin\fRreturns a \fBO\fR exit status as |ong as no

222 connection-related error occurred

223 .sp

224 . LP

225 In all nodes, in the event that a connection to the zone cannot be established
226 the connection fails unexpectedly, or the user is |acking sufficient privilege
227 to performthe requested operation, \fBzlogin\fR exits with status \fB1\fR
228 .sp

229 .LP

230 To summarize, the following exit values are returned

231 .sp

232 .ne 2

233 .na

234 \fB\fBO\fR fR

235 . ad

236 .RS 7n

237 Successful entry

238 .RE

240 .sp

241 .ne 2

242 .na

243 \fB\fBI\fRfR

244 | a

245 RS 7n

246 Permission denied, or failure to enter the zone

247 . RE

249 . sp

250 .ne 2

251 .na

252 \fBAny\fR

253 . ad

254 RS 7n

255 Return code fromutility, or from\fBsu\fR(1M if operating in non-interactive

256
257

node.
. RE

new usr/src/ man/ manl/ zl ogin. 1

259
260
261
262
263

265
266
267
268
269
270
271
272

. SH ATTRI BUTES

.sp

.LP

See \fBattributes\fR(5) for descriptions of the follow ng attributes:

.sp

.sp
. TS

box;

c| c

.

ATTRI BUTE TYPE ATTRI BUTE VALUE

Tnterface Stability Evol vi ng

273 . TE

275
276
277
278
279
280
281
282
283
284
285

. SH SEE ALSO
.sp

.LP
\fBlogin\fR(1), \fBrsh\fR(1), \fBvi\fR(1), \fBsu\fR(1M, \fBzoneadm fR(1M,
\fBzonecfg\fR(1M, \fBattributes\fR(5), \fBzones\fR(5)

. SH NOTES

.sp

.LP

\fBzlogin\fR fails if its open files or any portion of its address space
corresponds to an NFS file. This includes the executable itself or the shared
libraries.

