
new/usr/src/cmd/zlogin/zlogin.c 1

**
 58084 Wed Jan 22 14:16:29 2014
new/usr/src/cmd/zlogin/zlogin.c
3091 add -n to zlogin so its more compatible with rsh command line
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2013 DEY Storage Systems, Inc.
24 * Copyright (c) 2014 Gary Mills
25 */

27 /*
28 * zlogin provides three types of login which allow users in the global
29 * zone to access non-global zones.
30 *
31 * - "interactive login" is similar to rlogin(1); for example, the user could
32 * issue ’zlogin my-zone’ or ’zlogin -e ^ -l me my-zone’. The user is
33 * granted a new pty (which is then shoved into the zone), and an I/O
34 * loop between parent and child processes takes care of the interactive
35 * session. In this mode, login(1) (and its -c option, which means
36 * "already authenticated") is employed to take care of the initialization
37 * of the user’s session.
38 *
39 * - "non-interactive login" is similar to su(1M); the user could issue
40 * ’zlogin my-zone ls -l’ and the command would be run as specified.
41 * In this mode, zlogin sets up pipes as the communication channel, and
42 * ’su’ is used to do the login setup work.
43 *
44 * - "console login" is the equivalent to accessing the tip line for a
45 * zone. For example, the user can issue ’zlogin -C my-zone’.
46 * In this mode, zlogin contacts the zoneadmd process via unix domain
47 * socket. If zoneadmd is not running, it starts it. This allows the
48 * console to be available anytime the zone is installed, regardless of
49 * whether it is running.
50 */

52 #include <sys/socket.h>
53 #include <sys/termios.h>
54 #include <sys/utsname.h>
55 #include <sys/stat.h>
56 #include <sys/types.h>
57 #include <sys/contract/process.h>
58 #include <sys/ctfs.h>
59 #include <sys/brand.h>
60 #include <sys/wait.h>
61 #include <alloca.h>

new/usr/src/cmd/zlogin/zlogin.c 2

62 #include <assert.h>
63 #include <ctype.h>
64 #include <paths.h>
65 #include <door.h>
66 #include <errno.h>
67 #include <nss_dbdefs.h>
68 #include <poll.h>
69 #include <priv.h>
70 #include <pwd.h>
71 #include <unistd.h>
72 #include <utmpx.h>
73 #include <sac.h>
74 #include <signal.h>
75 #include <stdarg.h>
76 #include <stdio.h>
77 #include <stdlib.h>
78 #include <string.h>
79 #include <strings.h>
80 #include <stropts.h>
81 #include <wait.h>
82 #include <zone.h>
83 #include <fcntl.h>
84 #include <libdevinfo.h>
85 #include <libintl.h>
86 #include <locale.h>
87 #include <libzonecfg.h>
88 #include <libcontract.h>
89 #include <libbrand.h>
90 #include <auth_list.h>
91 #include <auth_attr.h>
92 #include <secdb.h>

94 static int masterfd;
95 static struct termios save_termios;
96 static struct termios effective_termios;
97 static int save_fd;
98 static struct winsize winsize;
99 static volatile int dead;
100 static volatile pid_t child_pid = -1;
101 static int interactive = 0;
102 static priv_set_t *dropprivs;

104 static int nocmdchar = 0;
105 static int failsafe = 0;
106 static char cmdchar = ’~’;
107 static int quiet = 0;

109 static int pollerr = 0;

111 static const char *pname;
112 static char *username;

114 /*
115 * When forced_login is true, the user is not prompted
116 * for an authentication password in the target zone.
117 */
118 static boolean_t forced_login = B_FALSE;

120 #if !defined(TEXT_DOMAIN) /* should be defined by cc -D */
121 #define TEXT_DOMAIN "SYS_TEST" /* Use this only if it wasn’t */
122 #endif

124 #define SUPATH "/usr/bin/su"
125 #define FAILSAFESHELL "/sbin/sh"
126 #define DEFAULTSHELL "/sbin/sh"
127 #define DEF_PATH "/usr/sbin:/usr/bin"

new/usr/src/cmd/zlogin/zlogin.c 3

129 #define CLUSTER_BRAND_NAME "cluster"

131 /*
132 * The ZLOGIN_BUFSIZ is larger than PIPE_BUF so we can be sure we’re clearing
133 * out the pipe when the child is exiting. The ZLOGIN_RDBUFSIZ must be less
134 * than ZLOGIN_BUFSIZ (because we share the buffer in doio). This value is
135 * also chosen in conjunction with the HI_WATER setting to make sure we
136 * don’t fill up the pipe. We can write FIFOHIWAT (16k) into the pipe before
137 * blocking. By having ZLOGIN_RDBUFSIZ set to 1k and HI_WATER set to 8k, we
138 * know we can always write a ZLOGIN_RDBUFSIZ chunk into the pipe when there
139 * is less than HI_WATER data already in the pipe.
140 */
141 #define ZLOGIN_BUFSIZ 8192
142 #define ZLOGIN_RDBUFSIZ 1024
143 #define HI_WATER 8192

145 /*
146 * See canonify() below. CANONIFY_LEN is the maximum length that a
147 * "canonical" sequence will expand to (backslash, three octal digits, NUL).
148 */
149 #define CANONIFY_LEN 5

151 static void
152 usage(void)
153 {
154 (void) fprintf(stderr, gettext("usage: %s [-nQCES] [-e cmdchar] "
152 (void) fprintf(stderr, gettext("usage: %s [-QCES] [-e cmdchar] "
155 "[-l user] zonename [command [args ...]]\n"), pname);
156 exit(2);
157 }

______unchanged_portion_omitted_

1726 int
1727 main(int argc, char **argv)
1728 {
1729 int arg, console = 0;
1730 zoneid_t zoneid;
1731 zone_state_t st;
1732 char *login = "root";
1733 int lflag = 0;
1734 int nflag = 0;
1735 char *zonename = NULL;
1736 char **proc_args = NULL;
1737 char **new_args, **new_env;
1738 sigset_t block_cld;
1739 char devroot[MAXPATHLEN];
1740 char *slavename, slaveshortname[MAXPATHLEN];
1741 priv_set_t *privset;
1742 int tmpl_fd;
1743 char zonebrand[MAXNAMELEN];
1744 char default_brand[MAXNAMELEN];
1745 struct stat sb;
1746 char kernzone[ZONENAME_MAX];
1747 brand_handle_t bh;
1748 char user_cmd[MAXPATHLEN];
1749 char authname[MAXAUTHS];

1751 (void) setlocale(LC_ALL, "");
1752 (void) textdomain(TEXT_DOMAIN);

1754 (void) getpname(argv[0]);
1755 username = get_username();

1757 while ((arg = getopt(argc, argv, "nECR:Se:l:Q")) != EOF) {
1754 while ((arg = getopt(argc, argv, "ECR:Se:l:Q")) != EOF) {

new/usr/src/cmd/zlogin/zlogin.c 4

1758 switch (arg) {
1759 case ’C’:
1760 console = 1;
1761 break;
1762 case ’E’:
1763 nocmdchar = 1;
1764 break;
1765 case ’R’: /* undocumented */
1766 if (*optarg != ’/’) {
1767 zerror(gettext("root path must be absolute."));
1768 exit(2);
1769 }
1770 if (stat(optarg, &sb) == -1 || !S_ISDIR(sb.st_mode)) {
1771 zerror(
1772 gettext("root path must be a directory."));
1773 exit(2);
1774 }
1775 zonecfg_set_root(optarg);
1776 break;
1777 case ’Q’:
1778 quiet = 1;
1779 break;
1780 case ’S’:
1781 failsafe = 1;
1782 break;
1783 case ’e’:
1784 set_cmdchar(optarg);
1785 break;
1786 case ’l’:
1787 login = optarg;
1788 lflag = 1;
1789 break;
1790 case ’n’:
1791 nflag = 1;
1792 break;
1793 default:
1794 usage();
1795 }
1796 }

1798 if (console != 0) {

1800 if (lflag != 0) {
1801 zerror(gettext(
1802 "-l may not be specified for console login"));
1792 if (console != 0 && lflag != 0) {
1793 zerror(gettext("-l may not be specified for console login"));
1803 usage();
1804 }

1806 if (nflag != 0) {
1807 zerror(gettext(
1808 "-n may not be specified for console login"));
1797 if (console != 0 && failsafe != 0) {
1798 zerror(gettext("-S may not be specified for console login"));
1809 usage();
1810 }

1812 if (failsafe != 0) {
1813 zerror(gettext(
1814 "-S may not be specified for console login"));
1815 usage();
1816 }

1818 if (zonecfg_in_alt_root()) {
1819 zerror(gettext(

new/usr/src/cmd/zlogin/zlogin.c 5

1820 "-R may not be specified for console login"));
1802 if (console != 0 && zonecfg_in_alt_root()) {
1803 zerror(gettext("-R may not be specified for console login"));
1821 exit(2);
1822 }

1824 }

1826 if (failsafe != 0 && lflag != 0) {
1827 zerror(gettext("-l may not be specified for failsafe login"));
1828 usage();
1829 }

1831 if (optind == (argc - 1)) {
1832 /*
1833 * zone name, no process name; this should be an interactive
1834 * as long as STDIN is really a tty.
1835 */
1836 if (nflag != 0) {
1837 zerror(gettext(
1838 "-n may not be specified for interactive login"));
1839 usage();
1840 }
1841 if (isatty(STDIN_FILENO))
1842 interactive = 1;
1843 zonename = argv[optind];
1844 } else if (optind < (argc - 1)) {
1845 if (console) {
1846 zerror(gettext("Commands may not be specified for "
1847 "console login."));
1848 usage();
1849 }
1850 /* zone name and process name, and possibly some args */
1851 zonename = argv[optind];
1852 proc_args = &argv[optind + 1];
1853 interactive = 0;
1854 } else {
1855 usage();
1856 }

1858 if (getzoneid() != GLOBAL_ZONEID) {
1859 zerror(gettext("’%s’ may only be used from the global zone"),
1860 pname);
1861 return (1);
1862 }

1864 if (strcmp(zonename, GLOBAL_ZONENAME) == 0) {
1865 zerror(gettext("’%s’ not applicable to the global zone"),
1866 pname);
1867 return (1);
1868 }

1870 if (zone_get_state(zonename, &st) != Z_OK) {
1871 zerror(gettext("zone ’%s’ unknown"), zonename);
1872 return (1);
1873 }

1875 if (st < ZONE_STATE_INSTALLED) {
1876 zerror(gettext("cannot login to a zone which is ’%s’"),
1877 zone_state_str(st));
1878 return (1);
1879 }

1881 /*
1882 * In both console and non-console cases, we require all privs.
1883 * In the console case, because we may need to startup zoneadmd.

new/usr/src/cmd/zlogin/zlogin.c 6

1884 * In the non-console case in order to do zone_enter(2), zonept()
1885 * and other tasks.
1886 */

1888 if ((privset = priv_allocset()) == NULL) {
1889 zperror(gettext("priv_allocset failed"));
1890 return (1);
1891 }

1893 if (getppriv(PRIV_EFFECTIVE, privset) != 0) {
1894 zperror(gettext("getppriv failed"));
1895 priv_freeset(privset);
1896 return (1);
1897 }

1899 if (priv_isfullset(privset) == B_FALSE) {
1900 zerror(gettext("You lack sufficient privilege to run "
1901 "this command (all privs required)"));
1902 priv_freeset(privset);
1903 return (1);
1904 }
1905 priv_freeset(privset);

1907 /*
1908 * Check if user is authorized for requested usage of the zone
1909 */

1911 (void) snprintf(authname, MAXAUTHS, "%s%s%s",
1912 ZONE_MANAGE_AUTH, KV_OBJECT, zonename);
1913 if (chkauthattr(authname, username) == 0) {
1914 if (console) {
1915 zerror(gettext("%s is not authorized for console "
1916 "access to %s zone."),
1917 username, zonename);
1918 return (1);
1919 } else {
1920 (void) snprintf(authname, MAXAUTHS, "%s%s%s",
1921 ZONE_LOGIN_AUTH, KV_OBJECT, zonename);
1922 if (failsafe || !interactive) {
1923 zerror(gettext("%s is not authorized for "
1924 "failsafe or non-interactive login "
1925 "to %s zone."), username, zonename);
1926 return (1);
1927 } else if (chkauthattr(authname, username) == 0) {
1928 zerror(gettext("%s is not authorized "
1929 " to login to %s zone."),
1930 username, zonename);
1931 return (1);
1932 }
1933 }
1934 } else {
1935 forced_login = B_TRUE;
1936 }

1938 /*
1939 * The console is a separate case from the rest of the code; handle
1940 * it first.
1941 */
1942 if (console) {
1943 /*
1944 * Ensure that zoneadmd for this zone is running.
1945 */
1946 if (start_zoneadmd(zonename) == -1)
1947 return (1);

1949 /*

new/usr/src/cmd/zlogin/zlogin.c 7

1950 * Make contact with zoneadmd.
1951 */
1952 if (get_console_master(zonename) == -1)
1953 return (1);

1955 if (!quiet)
1956 (void) printf(
1957 gettext("[Connected to zone ’%s’ console]\n"),
1958 zonename);

1960 if (set_tty_rawmode(STDIN_FILENO) == -1) {
1961 reset_tty();
1962 zperror(gettext("failed to set stdin pty to raw mode"));
1963 return (1);
1964 }

1966 (void) sigset(SIGWINCH, sigwinch);
1967 (void) sigwinch(0);

1969 /*
1970 * Run the I/O loop until we get disconnected.
1971 */
1972 doio(masterfd, -1, masterfd, -1, -1, B_FALSE);
1973 reset_tty();
1974 if (!quiet)
1975 (void) printf(
1976 gettext("\n[Connection to zone ’%s’ console "
1977 "closed]\n"), zonename);

1979 return (0);
1980 }

1982 if (st != ZONE_STATE_RUNNING && st != ZONE_STATE_MOUNTED) {
1983 zerror(gettext("login allowed only to running zones "
1984 "(%s is ’%s’)."), zonename, zone_state_str(st));
1985 return (1);
1986 }

1988 (void) strlcpy(kernzone, zonename, sizeof (kernzone));
1989 if (zonecfg_in_alt_root()) {
1990 FILE *fp = zonecfg_open_scratch("", B_FALSE);

1992 if (fp == NULL || zonecfg_find_scratch(fp, zonename,
1993 zonecfg_get_root(), kernzone, sizeof (kernzone)) == -1) {
1994 zerror(gettext("cannot find scratch zone %s"),
1995 zonename);
1996 if (fp != NULL)
1997 zonecfg_close_scratch(fp);
1998 return (1);
1999 }
2000 zonecfg_close_scratch(fp);
2001 }

2003 if ((zoneid = getzoneidbyname(kernzone)) == -1) {
2004 zerror(gettext("failed to get zoneid for zone ’%s’"),
2005 zonename);
2006 return (1);
2007 }

2009 /*
2010 * We need the zone root path only if we are setting up a pty.
2011 */
2012 if (zone_get_devroot(zonename, devroot, sizeof (devroot)) == -1) {
2013 zerror(gettext("could not get dev path for zone %s"),
2014 zonename);
2015 return (1);

new/usr/src/cmd/zlogin/zlogin.c 8

2016 }

2018 if (zone_get_brand(zonename, zonebrand, sizeof (zonebrand)) != Z_OK) {
2019 zerror(gettext("could not get brand for zone %s"), zonename);
2020 return (1);
2021 }
2022 /*
2023 * In the alternate root environment, the only supported
2024 * operations are mount and unmount. In this case, just treat
2025 * the zone as native if it is cluster. Cluster zones can be
2026 * native for the purpose of LU or upgrade, and the cluster
2027 * brand may not exist in the miniroot (such as in net install
2028 * upgrade).
2029 */
2030 if (zonecfg_default_brand(default_brand,
2031 sizeof (default_brand)) != Z_OK) {
2032 zerror(gettext("unable to determine default brand"));
2033 return (1);
2034 }
2035 if (zonecfg_in_alt_root() &&
2036 strcmp(zonebrand, CLUSTER_BRAND_NAME) == 0) {
2037 (void) strlcpy(zonebrand, default_brand, sizeof (zonebrand));
2038 }

2040 if ((bh = brand_open(zonebrand)) == NULL) {
2041 zerror(gettext("could not open brand for zone %s"), zonename);
2042 return (1);
2043 }

2045 if ((new_args = prep_args(bh, login, proc_args)) == NULL) {
2046 zperror(gettext("could not assemble new arguments"));
2047 brand_close(bh);
2048 return (1);
2049 }
2050 /*
2051 * Get the brand specific user_cmd. This command is used to get
2052 * a passwd(4) entry for login.
2053 */
2054 if (!interactive && !failsafe) {
2055 if (zone_get_user_cmd(bh, login, user_cmd,
2056 sizeof (user_cmd)) == NULL) {
2057 zerror(gettext("could not get user_cmd for zone %s"),
2058 zonename);
2059 brand_close(bh);
2060 return (1);
2061 }
2062 }
2063 brand_close(bh);

2065 if ((new_env = prep_env()) == NULL) {
2066 zperror(gettext("could not assemble new environment"));
2067 return (1);
2068 }

2070 if (!interactive) {
2071 if (nflag) {
2072 int nfd;

2074 if ((nfd = open(_PATH_DEVNULL, O_RDONLY)) < 0) {
2075 zperror(gettext("failed to open null device"));
2076 return (1);
2077 }
2078 if (nfd != STDIN_FILENO) {
2079 if (dup2(nfd, STDIN_FILENO) < 0) {
2080 zperror(gettext(
2081 "failed to dup2 null device"));

new/usr/src/cmd/zlogin/zlogin.c 9

2082 return (1);
2083 }
2084 (void) close(nfd);
2085 }
2086 /* /dev/null is now standard input */
2087 }
2046 if (!interactive)
2088 return (noninteractive_login(zonename, user_cmd, zoneid,
2089 new_args, new_env));
2090 }

2092 if (zonecfg_in_alt_root()) {
2093 zerror(gettext("cannot use interactive login with scratch "
2094 "zone"));
2095 return (1);
2096 }

2098 /*
2099 * Things are more complex in interactive mode; we get the
2100 * master side of the pty, then place the user’s terminal into
2101 * raw mode.
2102 */
2103 if (get_master_pty() == -1) {
2104 zerror(gettext("could not setup master pty device"));
2105 return (1);
2106 }

2108 /*
2109 * Compute the "short name" of the pts. /dev/pts/2 --> pts/2
2110 */
2111 if ((slavename = ptsname(masterfd)) == NULL) {
2112 zperror(gettext("failed to get name for pseudo-tty"));
2113 return (1);
2114 }
2115 if (strncmp(slavename, "/dev/", strlen("/dev/")) == 0)
2116 (void) strlcpy(slaveshortname, slavename + strlen("/dev/"),
2117 sizeof (slaveshortname));
2118 else
2119 (void) strlcpy(slaveshortname, slavename,
2120 sizeof (slaveshortname));

2122 if (!quiet)
2123 (void) printf(gettext("[Connected to zone ’%s’ %s]\n"),
2124 zonename, slaveshortname);

2126 if (set_tty_rawmode(STDIN_FILENO) == -1) {
2127 reset_tty();
2128 zperror(gettext("failed to set stdin pty to raw mode"));
2129 return (1);
2130 }

2132 if (prefork_dropprivs() != 0) {
2133 reset_tty();
2134 zperror(gettext("could not allocate privilege set"));
2135 return (1);
2136 }

2138 /*
2139 * We must mask SIGCLD until after we have coped with the fork
2140 * sufficiently to deal with it; otherwise we can race and receive the
2141 * signal before child_pid has been initialized (yes, this really
2142 * happens).
2143 */
2144 (void) sigset(SIGCLD, sigcld);
2145 (void) sigemptyset(&block_cld);
2146 (void) sigaddset(&block_cld, SIGCLD);

new/usr/src/cmd/zlogin/zlogin.c 10

2147 (void) sigprocmask(SIG_BLOCK, &block_cld, NULL);

2149 /*
2150 * We activate the contract template at the last minute to
2151 * avoid intermediate functions that could be using fork(2)
2152 * internally.
2153 */
2154 if ((tmpl_fd = init_template()) == -1) {
2155 reset_tty();
2156 zperror(gettext("could not create contract"));
2157 return (1);
2158 }

2160 if ((child_pid = fork()) == -1) {
2161 (void) ct_tmpl_clear(tmpl_fd);
2162 reset_tty();
2163 zperror(gettext("could not fork"));
2164 return (1);
2165 } else if (child_pid == 0) { /* child process */
2166 int slavefd, newslave;

2168 (void) ct_tmpl_clear(tmpl_fd);
2169 (void) close(tmpl_fd);

2171 (void) sigprocmask(SIG_UNBLOCK, &block_cld, NULL);

2173 if ((slavefd = init_slave_pty(zoneid, devroot)) == -1)
2174 return (1);

2176 /*
2177 * Close all fds except for the slave pty.
2178 */
2179 (void) fdwalk(close_func, &slavefd);

2181 /*
2182 * Temporarily dup slavefd to stderr; that way if we have
2183 * to print out that zone_enter failed, the output will
2184 * have somewhere to go.
2185 */
2186 if (slavefd != STDERR_FILENO)
2187 (void) dup2(slavefd, STDERR_FILENO);

2189 if (zone_enter(zoneid) == -1) {
2190 zerror(gettext("could not enter zone %s: %s"),
2191 zonename, strerror(errno));
2192 return (1);
2193 }

2195 if (slavefd != STDERR_FILENO)
2196 (void) close(STDERR_FILENO);

2198 /*
2199 * We take pains to get this process into a new process
2200 * group, and subsequently a new session. In this way,
2201 * we’ll have a session which doesn’t yet have a controlling
2202 * terminal. When we open the slave, it will become the
2203 * controlling terminal; no PIDs concerning pgrps or sids
2204 * will leak inappropriately into the zone.
2205 */
2206 (void) setpgrp();

2208 /*
2209 * We need the slave pty to be referenced from the zone’s
2210 * /dev in order to ensure that the devt’s, etc are all
2211 * correct. Otherwise we break ttyname and the like.
2212 */

new/usr/src/cmd/zlogin/zlogin.c 11

2213 if ((newslave = open(slavename, O_RDWR)) == -1) {
2214 (void) close(slavefd);
2215 return (1);
2216 }
2217 (void) close(slavefd);
2218 slavefd = newslave;

2220 /*
2221 * dup the slave to the various FDs, so that when the
2222 * spawned process does a write/read it maps to the slave
2223 * pty.
2224 */
2225 (void) dup2(slavefd, STDIN_FILENO);
2226 (void) dup2(slavefd, STDOUT_FILENO);
2227 (void) dup2(slavefd, STDERR_FILENO);
2228 if (slavefd != STDIN_FILENO && slavefd != STDOUT_FILENO &&
2229 slavefd != STDERR_FILENO) {
2230 (void) close(slavefd);
2231 }

2233 /*
2234 * In failsafe mode, we don’t use login(1), so don’t try
2235 * setting up a utmpx entry.
2236 */
2237 if (!failsafe)
2238 if (setup_utmpx(slaveshortname) == -1)
2239 return (1);

2241 /*
2242 * The child needs to run as root to
2243 * execute the brand’s login program.
2244 */
2245 if (setuid(0) == -1) {
2246 zperror(gettext("insufficient privilege"));
2247 return (1);
2248 }

2250 (void) execve(new_args[0], new_args, new_env);
2251 zperror(gettext("exec failure"));
2252 return (1);
2253 }

2255 (void) ct_tmpl_clear(tmpl_fd);
2256 (void) close(tmpl_fd);

2258 /*
2259 * The rest is only for the parent process.
2260 */
2261 (void) sigset(SIGWINCH, sigwinch);

2263 postfork_dropprivs();

2265 (void) sigprocmask(SIG_UNBLOCK, &block_cld, NULL);
2266 doio(masterfd, -1, masterfd, -1, -1, B_FALSE);

2268 reset_tty();
2269 if (!quiet)
2270 (void) fprintf(stderr,
2271 gettext("\n[Connection to zone ’%s’ %s closed]\n"),
2272 zonename, slaveshortname);

2274 if (pollerr != 0) {
2275 (void) fprintf(stderr, gettext("Error: connection closed due "
2276 "to unexpected pollevents=0x%x.\n"), pollerr);
2277 return (1);
2278 }

new/usr/src/cmd/zlogin/zlogin.c 12

2280 return (0);
2281 }
______unchanged_portion_omitted_

new/usr/src/man/man1/zlogin.1 1

**
 6921 Wed Jan 22 14:16:29 2014
new/usr/src/man/man1/zlogin.1
3091 add -n to zlogin so its more compatible with rsh command line
**

1 ’\" te
2 .\" Copyright (c) 2006, Sun Microsystems, Inc. All Rights Reserved
3 .\" The contents of this file are subject to the terms of the Common
4 .\" Development and Distribution License (the "License"). You may not use this
5 .\" file except in compliance with the License.
6 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or
7 .\" http://www.opensolaris.org/os/licensing. See the License for the specific
8 .\" language governing permissions and limitations under the License.
9 .\" When distributing Covered Code, include this CDDL HEADER in each file and

10 .\" include the License file at usr/src/OPENSOLARIS.LICENSE. If applicable,
11 .\" add the following below this CDDL HEADER, with the fields enclosed by
12 .\" brackets "[]" replaced with your own identifying information:
13 .\" Portions Copyright [yyyy] [name of copyright owner]
14 .\" Copyright 2013 DEY Storage Systems, Inc.
15 .\" Copyright (c) 2014 Gary Mills
16 .TH ZLOGIN 1 "Jan 22, 2014"
15 .TH ZLOGIN 1 "Sep 8, 2013"
17 .SH NAME
18 zlogin \- enter a zone
19 .SH SYNOPSIS
20 .LP
21 .nf
22 \fBzlogin\fR [\fB-CEQ\fR] [\fB-e\fR \fIc\fR] [\fB-l\fR \fIusername\fR] \fIzonena
23 .fi

25 .LP
26 .nf
27 \fBzlogin\fR [\fB-nEQS\fR] [\fB-e\fR \fIc\fR] [\fB-l\fR \fIusername\fR] \fIzonen
26 \fBzlogin\fR [\fB-EQS\fR] [\fB-e\fR \fIc\fR] [\fB-l\fR \fIusername\fR] \fIzonena
28 [\fIargument\fR]...
29 .fi

31 .SH DESCRIPTION
32 .sp
33 .LP
34 The \fBzlogin\fR utility is used by the administrator to enter an operating
35 system zone. Only a superuser operating in the global system zone can use this
36 utility.
37 .sp
38 .LP
39 \fBzlogin\fR operates in one of three modes:
40 .sp
41 .ne 2
42 .na
43 \fBInteractive Mode\fR
44 .ad
45 .RS 24n
46 If no utility argument is given and the stdin file descriptor for the
47 \fBzlogin\fR process is a tty device, \fBzlogin\fR operates in \fBinteractive
48 mode\fR. In this mode, \fBzlogin\fR creates a new pseudo terminal for use
49 within the login session. Programs requiring a tty device, for example,
50 \fBvi\fR(1), work properly in this mode. In this mode, \fBzlogin\fR invokes
51 \fBlogin\fR(1) to provide a suitable login session.
52 .RE

54 .sp
55 .ne 2
56 .na
57 \fBNon-Interactive Mode\fR
58 .ad
59 .RS 24n

new/usr/src/man/man1/zlogin.1 2

60 If a utility is specified, \fBzlogin\fR operates in \fBnon-interactive mode\fR.
61 This mode can be useful for script authors since stdin, stdout, and stderr are
62 preserved and the exit status of \fIutility\fR is returned upon termination. In
63 this mode, \fBzlogin\fR invokes \fBsu\fR(1M) in order to set up the user’s
64 environment and to provide a login environment.
65 .sp
66 The specified command is passed as a string and interpreted by a shell running
67 in the non-global zone. See \fBrsh\fR(1).
68 .RE

70 .sp
71 .ne 2
72 .na
73 \fBConsole Mode\fR
74 .ad
75 .RS 24n
76 If the \fB-C\fR option is specified, the user is connected to the zone console
77 device and \fBzlogin\fR operates in \fBconsole mode\fR. The zone console is
78 available once the zone is in the installed state. Connections to the console
79 are persistent across reboot of the zone.
80 .RE

82 .SH OPTIONS
83 .sp
84 .LP
85 The following options are supported:
86 .sp
87 .ne 2
88 .na
89 \fB\fB-C\fR\fR
90 .ad
91 .RS 15n
92 Connects to the zone console.
93 .RE

95 .sp
96 .ne 2
97 .na
98 \fB\fB-e\fR \fIc\fR\fR
99 .ad
100 .RS 15n
101 Specifies a different escape character, \fIc\fR, for the key sequence used to
102 access extended functions and to disconnect from the login. The default escape
103 character is the tilde (\fB~\fR).
104 .RE

106 .sp
107 .ne 2
108 .na
109 \fB\fB-E\fR\fR
110 .ad
111 .RS 15n
112 Disables the ability to access extended functions or to disconnect from the
113 login by using the escape sequence character.
114 .RE

116 .sp
117 .ne 2
118 .na
119 \fB\fB-l\fR \fIusername\fR\fR
120 .ad
121 .RS 15n
122 Specifies a different \fIusername\fR for the zone login. If you do not use this
123 option, the zone username used is "root". This option is invalid if the
124 \fB-C\fR option is specified.
125 .RE

new/usr/src/man/man1/zlogin.1 3

127 .sp
128 .ne 2
129 .na
130 \fB-n\fR
131 .ad
132 .RS 15n
133 Redirect the input of \fBzlogin\fR to \fB/dev/null\fR.
134 This option is useful when the command running in the local zone
135 and the shell which invokes \fBzlogin\fR both read from standard input.
136 .RE

138 .sp
139 .ne 2
140 .na
141 \fB-Q\fR
142 .ad
143 .RS 15n
144 Specifies quiet mode operation. In quiet mode, extra messages indicating the
145 the function of \fBzlogin\fR will not be displayed, giving the possibility
146 to present the appearance that the command is running locally rather than
147 in another zone.
148 .RE

150 .sp
151 .ne 2
152 .na
153 \fB\fB-S\fR\fR
154 .ad
155 .RS 15n
156 "Safe" login mode. \fBzlogin\fR does minimal processing and does not invoke
157 \fBlogin\fR(1) or \fBsu\fR(1M). The \fB-S\fR option can not be used if a
158 username is specified through the \fB-l\fR option, and cannot be used with
159 console logins. This mode should only be used to recover a damaged zone when
160 other forms of login have become impossible.
161 .RE

163 .SS "Escape Sequences"
164 .sp
165 .LP
166 Lines that you type that start with the tilde character (\fB~\fR) are "escape
167 sequences". The escape character can be changed using the \fB-e\fR option.
168 .sp
169 .ne 2
170 .na
171 \fB\fB~.\fR\fR
172 .ad
173 .RS 6n
174 Disconnects from the zone. This is not the same as a logout, because the local
175 host breaks the connection with no warning to the zone’s end.
176 .RE

178 .SH SECURITY
179 .sp
180 .LP
181 Once a process has been placed in a zone other than the global zone, the
182 process cannot change zone again, nor can any of its children.
183 .SH OPERANDS
184 .sp
185 .LP
186 The following operands are supported:
187 .sp
188 .ne 2
189 .na
190 \fB\fIzonename\fR\fR
191 .ad

new/usr/src/man/man1/zlogin.1 4

192 .RS 15n
193 The name of the zone to be entered.
194 .RE

196 .sp
197 .ne 2
198 .na
199 \fB\fIutility\fR\fR
200 .ad
201 .RS 15n
202 The utility to be run in the specified zone.
203 .RE

205 .sp
206 .ne 2
207 .na
208 \fB\fIargument...\fR\fR
209 .ad
210 .RS 15n
211 Arguments passed to the utility.
212 .RE

214 .SH EXIT STATUS
215 .sp
216 .LP
217 In interactive and non-interactive modes, the \fBzlogin\fR utility exits when
218 the command or shell in the non-global zone exits. In non-interactive mode, the
219 exit status of the remote program is returned as the exit status of
220 \fBzlogin\fR. In interactive mode and console login mode, the exit status is
221 not returned. \fBzlogin\fR returns a \fB0\fR exit status as long as no
222 connection-related error occurred.
223 .sp
224 .LP
225 In all modes, in the event that a connection to the zone cannot be established,
226 the connection fails unexpectedly, or the user is lacking sufficient privilege
227 to perform the requested operation, \fBzlogin\fR exits with status \fB1\fR.
228 .sp
229 .LP
230 To summarize, the following exit values are returned:
231 .sp
232 .ne 2
233 .na
234 \fB\fB0\fR\fR
235 .ad
236 .RS 7n
237 Successful entry.
238 .RE

240 .sp
241 .ne 2
242 .na
243 \fB\fB1\fR\fR
244 .ad
245 .RS 7n
246 Permission denied, or failure to enter the zone.
247 .RE

249 .sp
250 .ne 2
251 .na
252 \fBAny\fR
253 .ad
254 .RS 7n
255 Return code from utility, or from \fBsu\fR(1M) if operating in non-interactive
256 mode.
257 .RE

new/usr/src/man/man1/zlogin.1 5

259 .SH ATTRIBUTES
260 .sp
261 .LP
262 See \fBattributes\fR(5) for descriptions of the following attributes:
263 .sp

265 .sp
266 .TS
267 box;
268 c | c
269 l | l .
270 ATTRIBUTE TYPE ATTRIBUTE VALUE
271 _
272 Interface Stability Evolving
273 .TE

275 .SH SEE ALSO
276 .sp
277 .LP
278 \fBlogin\fR(1), \fBrsh\fR(1), \fBvi\fR(1), \fBsu\fR(1M), \fBzoneadm\fR(1M),
279 \fBzonecfg\fR(1M), \fBattributes\fR(5), \fBzones\fR(5)
280 .SH NOTES
281 .sp
282 .LP
283 \fBzlogin\fR fails if its open files or any portion of its address space
284 corresponds to an NFS file. This includes the executable itself or the shared
285 libraries.

