new usr/src/cnd/ w w. ¢

R R R R

18947 Thu Dec 19 12:20:25 2013
new usr/src/cnd/ w w. ¢
2849 uptine should use | ocale settings for current time

R R R R R R R

Much of this code is replicated in whodo.c. |If you're
fixing bugs here, then you should probably fix "emthere too.

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License")
6 * You may not use this file except in conpliance with the License
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2013 Gary Mlls
23 *
24 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved
25 * Use is subject to license terns.
26 */
28 [* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
29 [* All nghts Reser ved */
31 /*
32 * University Copyright- Copyright (c) 1982, 1986, 1988
33 * The Regents of the University of California
34 * Al Rights Reserved
35 *
36 * University Acknow edgnent- Portions of this docunent are derived from
37 * software devel oped by the University of California, Berkeley, and its
38 * contributors
39 */
41 /*
42 * This is the new w conmand whi ch takes advantage of
43 * the /proc interface to gain access to the information
44 * of all the processes currently on the system
45 *
46 * This program al so inplenents ’uptine’
47 *
48 * Mai ntenance note
4 *
9 *
*
*

/

54 #include <stdio. h>
55 #include <string. h>
56 #include <stdarg. h>
57 #include <stdlib.h>
58 #incl ude <ctype. h>
59 #include <fcntl. h>
60 #include <tinme.h>

61 #include <errno. h>

new usr/src/cnmd/ w w. ¢

123

125
126

#
#
#
#
#
#
#i
#i
#i
#i

| *

*

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

Use t

*/

static struct utnpx dumy;

#def i ne NMAX
#def i ne LMAX

<sys/types. h>
<ut mpx. h>
<sys/stat.h>
<dirent. h>
<procfs. h>

<l ocal e. h>

<uni std. h>
<sys/ | oadavg. h>
<limts. h>
<priv_utils.h>

/* I proc header file */

he full lengths fromutnpx for user and line

(sizeof (dummy.ut_user))
(sizeof (dummy.ut_line))

/* Print mnimumfield widths. */
#define LOG N_W DTH 8
#define LI NE_W DTH 8
#define LI NE_W DTH 12
#define DI V6O(t) ((t+30)/60) /* x/ 60 rounded */
#i fdef ERR
#undef ERR
#endi f
#defi ne ERR (-1)
#defi ne HSI ZE 256 /* size of process hash table */
#def i ne PROCDI R / proc"
#def i ne | Nl TPROCESS (prd_t)1 /* init process pid */
#defi ne NONE ’n’ /* no state */
#def i ne RUNNI NG r’ /* runnabl e process */
#def i ne ZOWVBI E 'z’ /* zonbi e process */
#define VI SI TED v’ /* marked node as visited */
#defi ne PRI NTF(a) if (printf a <0)
perror((gettext("%: printf failed"), prog)); \
exit(1); }
struct uproc {
pid_t p_| upld /* process id */
char p_state; /* nuneric value of process state */
dev_t p_| ttyd, /* controlling tty of process */
time_t p_ting; /* seconds of user & systemtine */
time_t p_ctinme; /* seconds of child user & sys time */
int p_igi tr, /* 1 = ignores SIGQU T and SIG NT */
char p commni PRARGSZ+1] ; /* command */
char ar gs| PRARGSZ+1] ; /* command |ine argunments */
struct uproc *p_child, /* first child pointer */
p_si bling, / sibling pointer */
p_pgrpl, [pgrp link */
p_link; / hash table chain pointer */
b
/*
* define hash table for struct uproc
* Hash function uses process id
* and the size of the hash tabl e(HSI ZE)
* to determine process index into the table
*
/
static struct uproc pr _ht bl [HSI ZE]

static struct
static time_t

upr oc *findhash(pid_t)
findidle(char *);

new usr/src/cnd/ w w. ¢ 3 new usr/src/cnd/ w w. ¢
127 static void clnarglist(char *); 191 login = (argv[0][0] ==’)
128 static void showt ot al s(struct uproc *); 192 cp = strrchr(argv[O0], '/");
129 static void cal ctotal s(struct uproc *); 193 firstchar :Iog|n’>arg [0][1] : (cp == 0) ? argv[0][O] : cp[1];
130 static void prttime(tinme_t, int); 194 prog = argv[O0];
130 static void prttime(tinme_t, char *);
131 static void prtat(time_t *tine); 196 while (argc > 1) {
132 static void checkampn{char *str); 197 if (argv[1][0] == "-")
198 for (i =1; argv[1][i],; i++) {
133 static char *prog; /* pointer to invocation nanme */ 199 swi tch (argv[1][i]) {
134 static int header = 1; /* true if -h flag: don’t print heading */
135 static int Iflag = 1; /* set if -1 flag; 0 for -s flag: short form*/ 201 case 'h':
136 static char *sel _user; /* login of particular user selected */ 202 header = 0;
137 static char firstchar; /* first char of nane of prog invoked as */ 203 br eak;
138 static int | ogi n; /* true if invoked as |ogin shell */
139 static tine_t now, /* current tinme of day */ 205 case '|’:
140 static tine_t upti nme; /* tinme of |ast reboot & elapsed tinme since */ 206 | flag++;
141 static int nusers; /* nunber of users |ogged in now */ 207 br eak;
142 static time_t idle; /* nunber of mnutes user is idle */ 208 case 's’:
143 static tinme_t j obti me; /* total cpu time visible */ 209 Iflag =
144 static char doi ng[520] ; /* process attached to termnal */ 210 br eak;
145 static tine_t procti nme; /* cpu time of process in doing */
146 static pid_t curpid, enpty; 212 case 'u’:
147 static int add_ti nmes; /* bool ean: add the cpu tinmes or not */ 213 case 'W:
214 firstchar = argv[1][i];
149 #if SIGQU T > SIG NT 215 br eak;
150 #define ACTSIZE SIGQUI T
151 #el se 217 defaul t:
152 #define ACTSIZE SI G NT 218 (voi d) fpnntf(stderr gettext(
153 #endi f 219 "%: bad flag °/s\n")
220 prog, argv[1]);
155 int 221 exit(1);
156 main(int argc, char *argv[]) 222 }
157 { 223 }
158 struct utnpx *ut; 224 } else {
159 struct utnpx *ut npbegi n; 225 if (lisalnum(argv[1][O0]) || argc > 2) {
160 struct utnpx *ut npend; 226 (void) fprintf(stderr, gettext(
161 struct utnpx *utp; 227 "usage: % [-hlsuw] [user]\n"), prog);
162 struct uproc *up, *parent, *pgrp; 228 exit(1);
163 struct psinfo i nfo; 229 } else
164 struct sigaction actinfo[ACTSI ZE] ; 230 sel _user = argv[1];
165 struct pstatus statinfo; 231
166 size_t si ze; 232 argc--; argv++;
167 struct stat sbuf; 233 }
168 DR *dirp;
169 struct dirent *dp; 235 I *
170 char pnane[64] ; 236 * read the UTMP_FI LE (contains information about each | ogged in user)
171 char *f nane; 237 */
172 int procfd; 238 if (stat(UTMPX_FILE, &sbuf) == ERR) {
173 char *cp; 239 (void) fpri ntf(st derr gettext("%: stat error of %: %\n"),
174 int i; 240 prog, UTMPX_FILE, strerror(errno));
175 int days, hrs, mns; 241 exit(1);
176 int entries; 242 }
177 doubl e | oadavg[3] ; 243 entries = sbuf.st_size / sizeof (struct futnpx);
244 size = sizeof (struct utnpx) * entries;
179 /* 245 if ((ut = malloc(size)) == NULL) {
180 * This program needs the proc_owner privilege 246 (void) fprintf(stderr, gettext("%: nalloc error of ¥%: %\n"),
181 */ 247 prog, UTMPX_FILE, strerror(errno));
182 (void) __init_suid_priv(PU CLEARLIM TSET, PRIV_PROC_OMER, 248 exit(1);
183 (char *)NULL); 249 }
185 (void) setlocal e(LC_ALL, ""); 251 (voi d) utnmpxname(UTMPX_FI LE) ;
186 #if ! defined(TEXT_DOVAI N)
187 #define TEXT_DOVAI N "SYS_TEST" 253 ut npbegi n = ut;
188 #endi f 254 utmpend = (struct utnpx *)((char *)utnpbegin + size);
189 (voi d) textdomai n(TEXT_DOVAIN);
256 setutxent();

new usr/src/cnd/ w w. ¢

257 while ((
258
259 endut xen

261 (void) t

263 if (head
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

295
296
297
298
299
300
301
302
303
304

306
307

309
310
311
312
312
313
314
315
316
315
317

319

ut < utnpend) && ((utp = getutxent()) 1= NULL))
(void) mencpy(ut++, utp, sizeof (*ut

t()

i me(&now); /* get current time */

er) { /* print a header */

prtat(&now);

for (ut = utnpbegin; ut < utnpend; ut++) {

if (ut->ut_type == USER_PROCESS) {

i f (I nonuser(*ut))
nusers++;

} else if (ut->ut_type == BOOT_TIME) {
uptime = now - ut->ut_xtinmne;
uptime += 30;
days = uptine / (60*60*24);
uptime % (60*60*24);
hrs = uptime / (60*60);
uptime % (60*60);
mns = uptime / 60;

PRI NTF((gettext("up")));
PRI NTF((gettext(" up")));

if (days > 0)
PRI NTF((get t ext(
_ ay(s)."). days));
if (hrs>0&&mns>){
PRI NTF((" %d:992d,", hrs, nins));
} else {
if (hrs >0)

PRI NTF((get t ext (
" %l hr(s),"), hrs));
if (mns > 0)
PRI NTF((get t ext (
" %l mn(s),"), mns));

}

ut = utnpbegin; /* rewind utnp data */
PRI NTF((((nusers == 1) ?

gettext(" %l user") gettext(" 9%l users")), nusers));
/*
* Print 1, 5, and 15 minute |oad averages.
*
/
(voi d) getl oadavg(l oadavg, 3);
PRI NTF((gettext (", |oad average: % 2f, %2f, %2f\n"),
| oadavg[LOADAVG 1M N], | oadavg[LOADAVG 5M N,
| oadavg[LOADAVG_15M N]));
if (firstchar == "u") /* uptime command */
exit(0);
if (Iflag) {
PRI NTF((dcgettext (NULL, "User tty "
"l ogi N@ idle JCPU PCPU what\ n",
LC TIM)));
"login@ idle JCPU PCPU what\n", LC TIME)));
} else {
PRI NTF((dcgettext (NULL,
tt idle what\n",
LC TI MVE)));
" User tty idle what\n", LCTIME)));

}
if (fflush(stdout) == EOF) {

new usr/src/cnd/ w w. ¢

320 perror((gettext("%: fflush failed\n"), prog));
321 exit(1);

322 }

323 }

325 /*

326 * loop through /proc, reading info about each process

327 * and build the parent/child tree

328 */

329 if (!(dirp = opendir(PROCDIR)))

330 (void) fprintf(stderr, gettext("%: could not open %: %\n"),
331 prog, PROCDIR, strerror(errno));

332 exit(1);

333 }

335 while ((dp = readd|r(d|rp)) I—NULL) {

336 it (dp->d_name[0] == ".")

337 conti nue;

338 retry:

339 (void) sprintf(pname, "%/ %/", PROCDI R, dp->d_nane);
340 fnanme = pnane + strl en(pnama)

341 (void) strcpy(fname, "psinfo")

342 if ((procfd = open(pnarm o RDO\ILY)) < 0)

343 conti nue;

344 if (read(procfd, & nfo, sizeof (info)) != sizeof (info)) {
345 int err = errno;

346 (void) close(procfd);

347 if (err == GAl N)

348 goto retry;

349 if (err I'= ENCENT)

350 (void) fprintf(stderr, gettext(

351 "O: read() failed on %: % \n"),
352 prog, pname, strerror(err));

353 conti nue;

354 }

355 (void) close(procfd);

357 up = findhash(info.pr_pid);

358 up->p_ttyd = info.pr_ttydev;

359 up->p_state = (info.pr_nlwp == 0? ZOVBIE : RUNNI NG);
360 up->p_time = 0;

361 up->p_ctine = 0;

362 up->p_igintr = 0;

363 (voi d) strncpy(up >p_comm info.pr_fnane,

364 si zeof (info.pr_fname));

365 up->p_args[0] = O;

367 if (up->p_state != NONE && up->p_state != ZOWBIE) {
368 (void) strcpy(fname, "status");

370 /* now we need the proc_owner privilege */
371 (void) __priv_bracket (PRI V_ON);

373 procfd = open(pnanme, O RDONLY);

375 /* drop proc_owner pri | ege after open */
376 (void) __priv_bracket (PRI V_OFF);

378 if (procfd < 0)

379 conti nue;

381 if (read(procfd, &statinfo, sizeof (statinfo))
382 I = si zeof (statlnfo)) {

383 int err =errn

384 (voi d) cI ose(procf d);

385 if (err == EAGAIN)

new usr/src/cnd/ w w. ¢

386
387
388
389
390
391
392
393

395
396
397
398

400

402
403

405

407
408

410
411

413
414
415
416
417
418
419
420
421
422
423
424
425

427
428
429

431
432
433
434
435
436
437
438
439
440
441
442
443
444

446
447
448
449
450
451

goto retry;
if (err !'= ENCENT)
(void) fprintf(stderr, gettext(
"%: read() failed on ¥%:
prog, pname, strerror(err));
conti nue;

%voi d) close(procfd);

up->p_time = statinfo.pr_utinme.tv_sec +
statinfo.pr_stine.tv_sec; /* seconds */

up->p_ctime = statinfo.pr_cutine.tv_sec +
statinfo.pr_cstine.tv_sec;

(void) strcpy(fname, "sigact");

/* now we need the proc_owner privilege */

(void) __priv_bracket (PRI V_ON);

procfd = open(pnanme, O RDONLY);

/* drop proc_owner privilege after open */
(void) __priv_bracket (PR V_OFF);

if (procfd < 0)
conti nue;

if (read(procfd, actinfo,
I = sizeof (actinfo))
int err = errno;
(void) cl ose(procfd)
if (err == GAl N)
goto retry;
if (err !'= ENCENT)
(void) fprintf(stderr,
"U: read() failed on %:
prog, pname, strerror(err));

{si zeof (actinfo))

gettext(

conti nue;

%voi d) cl ose(procfd);

up->p_igintr =
actinfo[SIG NT-1].sa_handler == SIG | GN &&
actinfo[SIGUI T-1].sa_handler == SIG | G\,
/*

* Process args.
*/

up->p_args[0] = 0;
clnarglist(info.pr_psargs);
(void) strcat(up->p_args, info.pr_psargs);
if (up->p_args[0] == 0 ||
up->p_args[0] =='-' && up->p_args[1] <=' ' ||
up->p_args[0] =="7") {
(void) strcat(up->p_args, " (");
(void) strcat(up->p_args, up->p_comm);
(void) strcat(up->p_args, ")");

-

* ok kb 3k

link pgrp together in case parents go away
Pgrp chain is a single linked |ist originating
fromthe pgrp | eader to its group nmenber.

if (info.pr_pgid !=info.pr_pid) { /* not pgrp |eader */

% \n"),

% \n"),

new usr/src/cnd/ w w. ¢

452
453
454
455
456

458
459
460
461
462
463
464
465
466

468
469

471
472

474
475
476
477
478
479
480
481
482

484
485

487
488
489
488
490
491
492
493
494
492
495
496
494
497
498
499

501
502
503
504
505

507
508
509
507
508
509
510
511

pgrp = findhash(info.pr_pgid);
up->p_pgrpl = pgrp->p_pgrpl;
} pgr p- >p_pgrpl = up;
parent = findhash(info.pr_ppid);
/* if this is the new nenber, link it in */
if (parent->p_upid !'= I Nl TPROCESS) {
if (parent->p_child)
up->p_sibling =
up->p_child = 0;

}
parent->p_child = up;
}

/* revert to non-privileged user after opening */
(void) __priv_relinquish();

(void) closedir(dirp);
(void) tine(&ow; /* get current time */
/*
* loop through utnpx file,
* about each | ogged in user
*/

printing process info

for (ut = utnpbegin; ut < utnpend; ut++) {
if (ut->ut_type != USER _PROCESS)
conti nue;

if (sel_user &&strncrrp(ut >ut _nane, sel _user,
/* we’re | ooking for sonebody el se */

continue;

int login name of the user */
PRINTF(("%*.*s ",

/* print tty user is on */
if (1flag)
PRINTF(("%*.*s ", LINE_WDTH, LMAX
PRINTF(("% *.*s", LINE_WDTH, LMAX,
} else {
if (ut->ut_line[0] =="p && ut->ut_|
ut->ut_line[2] =="'s" && ut->ut
PRINTF(("%*.*s ",
&ut->ut _line[4]));
PRINTF(("% *.3s", LMAX, &ut-
} else {
PRINTF(("%*.*s ",
PRI NTF(("% *. *s",
ut->ut_line));
}
}
/* print when the user logged in */
if (Iflag) {
time_t tim= ut->ut_xtine;
prtat (& im;
}

/* print idle time */
idle = findidl e(ut->ut_line);
prttlrre(|dle, 8);
if (idle >= 36 * 60) {
PRI NTF((dcgett ext (NULL, "9%2ddays "
(idle + 12 * 60) / (24 * 60)));

)

} else
prttime(idle,

parent->p_child;

LOG N_W DTH, NVAX, ut->ut_nane));

LI NE_W DTH, LMAX,

NVAX) ! = 0)

ut->ut_line));
ut->ut_line));
line[l] =="t’
_line[3] ="/

>ut _line[4]));

LI NE_W DTH, LMAX,
LI NE_W DTH, LMAX,

LC TI ME),

new usr/src/cnd/ w w. ¢

510 showt ot al s(findhash(ut->ut_pid));

511 }

512 if (fclose(stdout) == EOF) {

513 perror((gettext("l’/s fclose failed"), prog));
514 exit(1);

515 }

516 return (0);

517 }

519 /*

520 * Prints the CPUtine for all processes & children,
521 * and the cpu time for interesting process,

522 * and what the user is doing.

523 */

524 static void

525 showt ot al s(struct uproc *up)

526 {
527 jobtime = 0;
528 proctime = 0;
529 enpty = 1;
530 curpid = -1;
531 add_tinmes = 1;
533 cal ctotal s(up);
535 if (Iflag) {
536 /* print CPUtine for all processes & children */
537 /* and need to convert clock ticks to seconds first */
538 prttime((time_t)jobtinme, 8);
540 prttime((time_t)jobtine, " ");
540 /* print cpu tine for interesting process */
541 /* and need to convert clock ticks to seconds first */
542 prttime((time_t)proctine, 8);
544 prttime((time_t)proctime, " ");
543
544 /* what user is doing, current process */
545 PRI NTF(("% .32s\n", doing));
547 PRINTF((" % .32s\n", doing));
546 }
__unchanged_portion_onitted_
642 #define HR (60 * 60)
643 #define DAY (24 * HR)
644 #define MON (30 * DAY)
646 /*
647 * Prttime prints an elapsed tine in hours, mnutes, or seconds,
648 * right-justified with the rightnost colum al ways bl ank.
649 * The second argument is the mininumfield w dth.
649 * prttinme prints a time in hours and minutes or mnutes and seconds.
650 * The character string tall is printed at the end, obvious
651 */strlngs to pass are "", ", or "ant.
650 *

651 static void
652 prttime(time_t tim int width)
654 prttime(time_t tim char *tail)

653 {

654 char val ue[36] ;

656 if (tim>= 36 * 60) {

657 (void) snprintf(value, sizeof (value), "%l %92d: ¥%92d",
658 (int)tim/ HR (int)(tim%HR) / 60, (int)tim % 60);
659 } else if (tim>= 60)

660 (void) snprintf(value, sizeof (value), "%: %2d",

661 (int)tim/ 60, (int)tim % 60);

new usr/src/cnmd/ w w. ¢

656 if (tim>= 60) {

657 PRI NTF((dcget t ext (NULL, "98d: %92d", LC TIME),

658 (int)tim 60, (int)tin?60));

662 } elseif (tim>0) {

663 (void) snprintf(val ue, S|zeof (value), "%wd", (int)tim;
660 PRI NTF((dcgett ext (NULL, Rd", LC_TIME), (int)tim);
664 } else {

665 (voi d) strcpy(val ue, "0");

662 PRI NTF((" "))

666 }

667 width = (wWdth >2) 2 width - 1: 1;

668 PRINTF(("%s ", width, value));

664 PRINTF(("%s", tail));

669 }

671 /*

672 * Prints the SO date or tinme given a pointer to a tinme of day,

673 * left-justfied in a 12-character expanding field with the

674 * rightnost colum al ways bl ank.

675 * Includes a dcgettext() override in case a message catal og i s needed.
668 * prints a 12 hour time given a pointer to a tinme of day

676 */

677 statlc voi d
678 prtat(time_t *tinme)

679 {

680 struct tm *p;

682 p = localtinme(tine);

683 I1f (now - *time <= 18 * HR) {

684 char tinmestr[50];

686 (void) strftime(tinmestr, sizeof (tinestr),
687 dcgettext (NULL, "9d@", LC_TIME), p);

688 PRINTF(("% 11s ", tlnestr))

679 dcgettext (NULL, "% : 9%V "%", LC TIME), p);
680 checkanpn(ti mest r);

681 PRINTF((" %", timestr));

689 } elseif (now- *time <= 7 * DAY) {

690 char weekdayti me[20] ;

692 (void) strftime(weekdaytine, sizeof (weekdaytine),
693 dcgettext (NULL, "% %1 9, LC TIME), p);
694 PRINTF(("% 11s ", weekdayti ne))

686 dcget t ext (NULL, "% % %", LC_TI ME), p);
687 checkanmpm weekdayti me) ;

688 PRI NTF((" %", weekdaytine));

695 } else {

696 char nonthtinme[20] ;

698 (void) strftime(nonthtine, sizeof (nonthtine),
699 dcgett ext (NULL, "9%", LC_TIME), p);

700 PRINTF(("% 11s ", nonthtine));

693 dcgettext (NULL, "%% %", LC TIME), p);
694 PRI NTF((" %", nonthtine));

701 }

702 }

__unchanged_portion_onitted_

742 | * replaces all occurences of AMPMwi th am pm */
743 static void
744 checkanpm(char *str)

745 {

746 char *anmpm

747 while ((anpm = strstr(str, "AM')) !'= NULL ||
748 (ampm = strstr(str, "PM)) I'= NULL) {
749 *anpm = t ol ower (*anpm ;

10

new usr/src/cnd/ w w. ¢

750
751 }
752 }

(anpm+l) = tol ower ((anpm+l));

11

new usr/ src/ cnd/ whodo/ whodo. ¢

R R R R

20943 Thu Dec 19 12:20: 25 2013
new usr/ src/ cnd/ whodo/ whodo. ¢
2849 uptine should use | ocale settings for current time

R R R R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright (c) 2013 Gary Mlls

23 *

24 * Copyright 2009 Sun M crosystens, Inc. Al rights reserved.

25 * Use is subject to license terns.

26 */

28 [* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */

29 [* All Rl ghts Reser ved */

31 /*

32 * University Copyright- Copyright (c) 1982, 1986, 1988

33 * The Regents of the University of California

34 * Al Rights Reserved

35 *

36 * University Acknow edgnent- Portions of this docunent are derived from
37 * software devel oped by the University of California, Berkeley, and its
38 * contributors.

39 */

41 /*

42 * This is the new whodo conmand whi ch takes advantage of

43 * the /proc interface to gain access to the information

44 * of all the processes currently on the system

45 *

46 * Maintenance note:

47 *

48 * Much of this code is replicated in wec. |If you're

49 * fixing bugs here, then you should probably fix 'emthere too.

50 */

52 #include <stdio. h>

53 #include <string. h>

54 #include <stdlib.h>

55 #include <ctype. h>

56 #include <fcntl. h>

57 #include <tine.h>

58 #i ncl ude <errno. h>

59 #include <sys/types. h>
60 #incl ude <ut nmpx. h>

61 #include <sys/utsnane. h>

new usr/ src/ cnd/ whodo/ whodo. ¢

104

121
122
123
124
125
126
127

129
130
131
132
133
134
135
136
136
137
138

#i ncl ude <sys/stat. h>
#i ncl ude <sys/ nkdev. h>
#i ncl ude <dirent. h>
#i ncl ude <procfs. h> /* I proc header file */
#i ncl ude <sys/wait.h>
#i ncl ude <l ocal e. h>
#i ncl ude <uni std. h>
#include <limts. h>
#include <priv_utils.h>
/*
*/Use the full lengths fromutnpx for user and line.
*
#def i ne NVAX (sizeof (((struct utmpx *)O0)->ut_user))
#def i ne LMAX (sizeof (((struct utmpx *)0)->ut_line))
/* Print minimumfield widths. */
#define LOG N_ W DTH
#defi ne LI NE_W DTH 8
#defi ne LI NE_W DTH 12
#define DI V6O(t) ((t+30)/60) /* x/60 rounded */
#i fdef ERR
#undef ERR
#endi f
#defi ne ERR (-1)
#def i ne DEVNAMELEN 14
#def i ne HSI ZE 256 /* size of process hash table */
#def i ne PROCDI R "/ proc"
#defi ne | Nl TPROCESS (pid_t)1 /* init process pid */
#def i ne NONE n /* no state */
#def i ne RUNNI NG r’ /* runnabl e process */
#defi ne ZOWVBI E 'z /* zonbi e process */
#def i ne VI SI TED v’ /* marked node as visited */
static int ndevs; /* nunber of configured devices */
static int maxdev; /* slots for configured devices */
#define DNI NCR 100
static struct devl { /* device list */
char dnanme[DEVNAMELEN ; /* device nane */
dev_t ddev; /* devi ce nunber */
} *devl;
__unchanged_portion_onitted_
/*
* define hash table for struct uproc
* Hash function uses process id
* and the size of the hash tabl e(HSI ZE)
* to determne process index into the table.
*
/
static struct uproc pr _ht bl [HSI ZE] ;
static struct uproc *findhash(pid_t);
static time_t findidle(char *);
static void clnarglist(char *);
static void showproc(struct uproc *);
static void showt ot al s(struct uproc *);
static void cal ctotal s(struct uproc *);
static char *getty(dev_t);
static void prttime(tinme_t, int);
static void prttime(tinme_t, char *)
static void prtat(time_t *);
static void checkanmpn(char *);

new usr/ src/ cnd/ whodo/ whodo. ¢ 3 new usr/ src/ cnd/ whodo/ whodo. ¢
139 static char *prog;
140 static int header = 1; /* true if -h flag: don’t print heading */ 206 case '|’:
141 static int Iflag = 0O; /* true if -1 flag: w command fornmat */ 207 | flag++;
142 static char *sel _user; /* login of particular user selected */ 208 br eak;
143 static tine_t now, /* current tinme of day */
144 static tinme_t upti nme; /* tinme of |ast reboot & elapsed tinme since */ 210 defaul t:
145 static int nusers; /* nunber of users logged in now */ 211 (void) printf(gettext(
146 static tine_t idle,; /* nunber of mnutes user is idle */ 212 "usage: % [-hl] [user]J\n"),
147 static tine_t j obti ne; /* total cpu time visible */ 213 prog);
148 static char doi ng[520] ; /* process attached to termnal */ 214 exit(1);
149 static tinme_t proctine; /* cpu time of process in doing */ 215 }
150 static int enpty; 216 }
151 static pid_t curpid; 217 } else {
218 if (Yisalnum(argv[1][O0]) || argc > 2) {
153 #if SIGQUIT > SIA NT 219 (void) printf(gettext(
154 #define ACTSIZE SIGQUI T 220 "usage: % [-hl] [user]\n"), prog);
155 #el se 221 exit(1);
156 #define ACTSI ZE S| G NT 222 } else
157 #endi f 223 sel _user = argv[1];
224 }
159 int 225 argc--; argv++;
160 mai n(int argc, char *argv[]) 226 }
161 {
162 struct utnpx *ut; 228 /*
163 struct utnpx *ut npbegi n; 229 * read the UTMPX_FILE (contains infornation about
164 struct utnpx *ut npend; 230 * each | ogged in user)
165 struct utnpx *ut p; 231 */
166 struct tm *tm 232 if (stat(UTMPX_FILE, &sbuf) == ERR) {
167 struct uproc *up, *parent, *pgrp; 233 (void) fprintf(stderr, gettext("%: stat error of %: %\n"),
168 struct psinfo i nfo; 234 prog, UTMPX_FILE, strerror(errno));
169 struct sigaction actinfo[ACTSI ZE] ; 235 exit(1);
170 struct pstatus statinfo; 236
171 size_t si ze; 237 entries = sbuf.st_size / sizeof (struct futnpx);
172 struct stat shuf; 238 size = sizeof (struct utnpx) * entries;
173 struct utsnanme uts;
174 DR *dirp; 240 if ((ut = malloc(size)) == NULL) {
175 struct dirent *dp; 241 (void) fprintf(stderr, gettext("%: nalloc error of %: %\n"),
176 char pnane[64] ; 242 prog, UTMPX_FILE, strerror(errno));
177 char *f nane; 243 exit(1);
178 int procfd; 244 }
179 int i
180 int days, hrs, mns; 246 (voi d) utnpxnane(UTMPX_FI LE);
181 int entries;
248 ut npbegin = ut;
183 /* 249 /* LINTED pointer cast may result in inproper alignnent */
184 * This program needs the proc_owner privil ege 250 utnpend = (struct utnpx *)((char *)utnpbegin + size);
185 */
186 (void) __init_suid_priv(PUCLEARLI M TSET, PRI V_PROC OMNER, 252 setutxent();
187 (char *)NULL); 253 while ((ut < utnpend) &% ((utp = getutxent()) !'= NULL))
254 (void) mencpy(ut++, utp, sizeof (*ut));
189 (void) setlocal e(LC_ALL, ""); 255 endut xent () ;
190 #if !defined(TEXT_DOVAI N)
191 #define TEXT_DOMATN "SYS TEST" 257 (void) time(&now); /* get current time */
192 #endi f
193 (voi d) textdomai n(TEXT_DOVAIN) ; 259 if (header) { /* print a header */
260 if (Iflag) { /* w conmand format header */
195 prog = argv[O0]; 261 prtat (&now) ;
262 for (ut = utnpbegin; ut < utnpend; ut++) {
197 while (argc > 1) { 263 if (ut->ut_type == USER _PROCESS) {
198 if (argv[1][0] =="-") { 264 nuser s++;
199 for (i =1; argv[1][i]; i++) { 265 } else if (ut->ut_type == BOOT_TIME) {
200 switch (argv[1][i]) { 266 uptime = now - ut->ut_xtineg;
267 uptime += 30;
202 case 'h': 268 days = uptime / (60*60*24);
203 header = 0; 269 uptinme % (60*60*24);
204 br eak; 270 hrs = uptinme / (60*60);

new usr/ src/ cnd/ whodo/ whodo. ¢

271
272

274
275
276
276
277
278
279

281
282
283
284
285
286
286
287
288

290
291
292
293
294
294
295

297
298
299
300
301
302
303

305
306
307
308
309
310
311
312
313

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

retry:

upti me % (60*60);
mns = uptinme / 60

(voi d) printf(dcgettext (NULL,
up % day(s),
up %l day(s)
"9@d min(s)" LC_TI ME) ,
days, hrs, m ns);

}

ut = utnpbegin; /* rewind utnp data */
(voi d) pri ntf(dcgett ext (NULL,
%l user(s)\n", LC.TI NE nusers);
(void) printf(dcgett ext (NULL, " User tty
"l ogi n@ ide JcPU PCPU what\ n",

“login@ idle JCPU PCPU what\n', LCTIME));
/* standard whodo header */
char date_buf[100];

} else {
/*
* print current tine and date
(voi d) strftime(date_ buf si zeof (date_buf),
"og", Iocaltlne(;

deget t ext (NULL, O/C LC_TI ME),
(void) printf("%\ n", dat e_buf);

| ocal time(&now));

/*
* print system nane
*

(v0| d) uname(&uts);
(void) printf("u%\ n" ut s. nodenane) ;

}

/*

* | oop through /proc, reading info about each process
* and build the parent/child tree

*

if (!(dirp = opendir(PROCDI R)))
(void) fprintf(stderr, gettext("%s:
rog, PROCDIR, strerror(errno));

coul d not open ¥s:

while ((dp = readdlr(dlrp)) |: NULL) {
if (dp->d_nare[0] == ".")

conti nue;

(void) snprintf(pnanme, sizeof (pnane),
"/ ¥%s/", PROCDI R, dp->d_nane);
fnanme = pnane + strl en(pnams)
(void) strcpy(fname, "psinfo"
if ((procfd = open(pnane, O RDO\ILY)) < 0)
conti nue;
if (read(procfd, &info,
int err = errno;
(void) cl ose(pr ocf d);
if (err == GAl N)
goto retry,;
if (err !'= ENCENT)
(void) fprintf(stderr, gettext(
"Os: read() failed on %: %\n"),
prog, pnane, strerror(err));

sizeof (info)) != sizeof (info)) {

%s\n"),

new usr/ src/ cnd/ whodo/ whodo. ¢

334 conti nue;

335 }

336 (void) close(procfd);

338 up = findhash(info.pr_pid);

339 up->p_ttyd = info.pr ttydev

340 up->p_state = (info.pr_nlwp == 0? ZOMBIE : RUNNI NG ;
341 up->p_tine = 0;

342 up->p_ctinme = 0;

343 up->p_igintr = 0;

344 (void) strncpy(up->p_comm info.pr_fnang,

345 si zeof (info.pr_fnane));

346 up->p_args[0] = O;

348 if (up->p_state != NONE && up->p_state != ZOWBIE) {
349 (void) strcpy(fname, "status");

351 /* now we need the proc_owner privilege */
352 (void) __priv_bracket (PRI V_ON);

354 procfd = open(pnanme, O RDONLY);

356 [* drop proc_owner pri | ege after open */
357 (void) __priv_bracket (PRI V_OFF);

359 if (procfd < 0)

360 conti nue;

362 if (read(procfd, &statinfo, sizeof (statinfo))
363 = sizeof (statinfo)) {

364 int err = errno;

365 (void) cl ose(procfd)

366 if (err == EAGAIN)

367 goto retry;

368 if (err I'= ENCENT)

369 (void) fprintf(stderr, gettext(
370 "Us: read() failed on %: % \n"),
371 prog, pname, strerror(err));
372 conti nue;

373 }

374 (void) close(procfd);

376 up->p_time = statinfo.pr_utinme.tv_sec +
377 statinfo.pr_stine.tv_sec;

378 up->p_ctime = statinfo.pr_ cutlmatv sec +
379 statinfo.pr_cstine.tv_sec;

381 (void) strcpy(fname, "sigact");

383 /* now we need the proc_owner privilege */
384 (void) __priv_bracket (PRI V_ON);

386 procfd = open(pnanme, O RDONLY);

388 /* drop proc_owner pri |Iege after open */
389 (void) __priv_bracket (PRI V_OFF);

391 if (procfd < 0)

392 continue;

393 if (read(procfd, actinfo, sizeof (actinfo))
394 I = sizeof (acti nf 0))

395 int err = errno;

396 (void) cl ose(procf d);

397 if (err == EAGAIN)

398 goto retry;

399 if (err 1= ENCENT)

new usr/ src/ cnd/ whodo/ whodo. ¢

new usr/ src/ cnd/ whodo/ whodo. ¢

467 if (ut->ut_type != USER _PROCESS)

468 conti nue;

469 if (sel_ user &&strncrrp(ut >ut_nane, sel _user, NMAX) != 0)
470 /* we'Te | ooki ng for sonebody el se */
471 if (Iflag) { I* - flag fornmat (w command) */

472 /* print login nane of the user */

400 (v0|d) fprintf(stderr,

401 "s: read() failed on %:
402 prog, pname, strerror(err));
403 continue;

404 }

405 (void) close(procfd);

407 up->p_igintr =

408 actinfo[SIG NT-1].sa_handl er == SI G | GN &&
409 actinfo[SI GQUI T-1].sa_handl er > ;
411 up->p_ar gs[0] 0;

413 /*

414 * Process args if there’'s a chance we'll print it.
415 *

416 if (Iflag) { /* w conmand needs args */

417 clnarglist(info.pr_psargs);

418 (void) strcpy(up- >p ar gs info.pr_psargs);
419 if (up->p_args[0] == |

420 up->p_args[0] == '—’

421 up->p_args[1] <="' " ||

422 up->p_args[0] =="'7")

423 (voi d) strcat (up->p_args, "),
424 (void) strcat(up->p_args, up->p_conm);
425 (void) strcat(up->p_args, ")");
426 }

427 }

429 }

431 /*

432 * link pgrp together in case parents go away

433 * Pgrp chain is a single linked |ist originating

434 * fromthe pgrp | eader to its group nenber.

435 */

436 if (info. pr_pgid = info.pr_pid) { /* not pgrp |eader */
437 pgrp = findhash(info.pr_pgid);

438 up->p_pgrplink = pgrp->p_pgr pI i nk;

439 pgr p- >p_pgrpli nk = up;

440

441 parent = findhash(info.pr_ppid);

443 /* if this is the new nenber, link it in */

444 if (parent->p_upid !'= I Nl TPROCESS) {

445 if (parent->p_child) {

446 up->p_si bling = parent->p_child;

447 up->p_child = 0;

448

449 parent->p_child = up;

450 }

452 }

454 /* revert to non-privileged user */

455 (void) __priv_relinquish();

457 (void) closedir(dirp);

458 (void) tine(&ow); /* get current time */

460 /*

461 * | oop through utnpx file, printing process info

462 * about each | ogged in user

463 */

464 for (ut = utnpbegin; ut < utnpend; ut++) {

465 time_t tim

473 (void) printf("%*.*s ", LOG N_WDTH, (int)NVAX,
474 ut - >ut _nane) ;
476 /* print tty user is on */
477 (void) printf("%*.*s ", LINE WDTH, (i t)LI\/y-\X
477 (void) printf("%*.*s", LINEWDTH, (int)L
478 ut->ut_line);
480 /* print when the user logged in */
481 tim= ut->ut_xtine;
482 (void) prtat(&im;
484 /* print idle tinme */
485 idIe=f|nd|dIe(ut >ut _line);
486 prttime(idle, 8);
486 if (idle >= 36 * 60)
487 (void) printf(dcgettext(NULL, "9%ddays "
488 LC TIME), (idle + 12 * 60) / (24* 60))
489 el se
490 prttime(idle, " ");
487 showt ot al s(fi ndhash((pid_t)ut >ut pi d));
488 } else { /* standard whodo fo
489 tim= ut->ut_xtinmne;
490 tm= localtine(&im;
491 (void) printf("\n%*.*s %*.*s 9. 1d: %2. 2d\ n",
492 LINE_W DTH, (int)LMAX, ut->ut_line,
493 LOG N WDTH, (int)NVAX, ut->ut_nane, tm>tm hour,
494 tm>tmnin);
495 showproc(fi ndhash((p| d_t)ut->ut_pid));
496 }
497 }
499 return (0);
500 }
__unchanged_portion_omtted_
543 | *
544 * Used for -l flag (w conmand) format.
545 * Prints the CPU tine for all processes & children,
546 * and the cpu tine for interesting process,
547 * and what the user is doing.
548 */

549 static void
550 showt ot al s(struct uproc *up)

551 {

552 jobtime = 0;

553 proctime = 0;

554 enpty = 1;

555 curpid = -1;

556 (void) strcpy(doing, "-"); /* default act: normally never prints */
557 cal ctotal s(up);

559 /* print CPUtime for all processes & children */

560 /* and need to convert clock ticks to seconds first */
561 prttime((time_t)jobtine, 8);

565 prttime((time_t)jobtime, " ");

563 /* print cpu time for interesting process */

new usr/ src/ cnd/ whodo/ whodo. ¢

564 /* and need to convert clock ticks to seconds first */
565 prttime((time_t)proctinme, 8);
569 prttime((time_t)proctine, " ');
567 /* what user is doing, current process */
568 (void) printf("%.32s\n", doing);
572 (void) printf(" %. 32s\n", doi ng)
569 }
__unchanged_portion_omtted_
732 #define HR (60 * 60)
733 #define DAY (24 * HR)
734 #define MON (30 * DA
735 #define PRI NTF(a) (void) printf a
737 |*
738 * Prttime prints an elapsed tine in hours, minutes, or seconds,
739 * right-justified with the rightnost columm al ways bl ank.
740 * The second argunent is the mininumfield w dth.
741 * prints a time in hours and mnutes or mnutes and seconds.
742 * The character string 'tail’ is printed at the end, obvious
*

743
741 */
742 static void

strings to pass are "", " ", or "ani'.

743 prttine(time_t tim int width)

746 prttinme(time_t tim char *tail)

744 {

745 char val ue[36] ;

747 if (tim>= 36 * 60) {

748 (void) snprintf(value, sizeof (value), "%: 9%2d: ¥92d",
749 (int)tim/ HR (|nt)(t|m%HR) / 60 (int)tim % 60);
750 } else if (tim>= 60)

751 (void) snprintf(value, sizeof (value), "9%: %2d",

752 (int)tim/ 60, (int)tim % 60);

753 } else if (tim>0) {

754 (void) snprintf(value, sizeof (value), "%", (int)tim;
755 } else {

756 (void) strcpy(value, "0");

757 }

758 width = (width >2) ? width - 1: 1;

759 PRINTF(("%s ", width, value));

748 if (tim>= 60)

749 (void) printf(dcgettext(NULL, "9%3d:%2d", LC Tl M),
750 (int)tim 60, (int)tinPg0);

751 else if (tim> 0)

752 (void) printf(dcgettext(NULL, " oRd", LC_TIME), (int)tim;
753 el se

754 (void) printf(" ")

755 (void) printf("us", tail);

760 }

762 | *

763 Prints the 1SO date or tine given a pointer to a tinme of day,

*
764 * |eft-justfied in a 12-character expanding field with the
765 * rightnost colum al ways bl ank.
766 *
760 *
767 */
768 static void
769 prtat(time_t *tinme)
770 {
771 struct tm *p;

prints a 12 hour time given a pointer to a tinme of day

773 p = localtime(tine);

Includes a dcgettext() override in case a message catal og i s needed.

new usr/ src/ cnd/ whodo/ whodo. ¢

774 if (now- *time <= 18 * HR) {

775 char timestr[50];

777 (void) strftime(timestr, sizeof (tinestr),
778 dcgettext (NULL, "9d@", LC_TIME), p);

779 PRINTF(("% 11s ", timestr));

771 dcgettext (NULL, " 9% : 9" %", LC_TIME), p);
772 checkampn{timestr);

773 (void) printf("9%", tinmestr);

780 } elseif (now- *tine <= 7 * DAY) {

781 char weekdayti ne[20];

783 (void) strfti ne(weekdaytl ne, sizeof (weekdaytine),
784 dcgettext (NULL, "% % %', LC TIME), p);
785 PRINTF(("% 11s ", weekdaytime));

778 dcget t ext (NULL, "% % %", LC_TI ME), p);
779 checkanmpn{ weekdayti ne);

780 (void) printf(" %", weekdaytine);

786 } else {

787 char nonthti e[20] ;

789 (voi d) strftima(nvnthtima, si zeof (nonthtine),
790 dcgettext (NULL, "9%", LC TIME), p);

791 PRI NTF(("% 11s ", nonthtine));

785 dcgettext (NULL, "%% %", LC TIME), p);
786 (void) printf(" %", nonthti ne)

792 }

793 }

__unchanged_portion_omtted_

834 /* replaces all occurences of AMPM with am pm */
835 static void

836 checkanpm(char *str)

837 {

838 char *anmpm

839 while ((anpm = strstr(str, "AM')) != NULL ||
840 (anpm = strstr(str, "PM')) I'= NULL) {
841 *ampm = tol ower(* n)

842 *(anpmtl) = tol ower((arrpm+1))

843 1

844 }

10

new usr/src/ man/ manl/w. 1 1

R R R R

4757 Thu Dec 19 12:20:25 2013
new usr/src/ man/ manl/w. 1
2849 uptine should use |ocal e settings
*

L e Es

for current time
*

P]

1'\" te

2 .\" Copyright (c) 2013 Gary Mlls

3 .\" Copyright (c) 2004, Sun Mcrosystens, Inc. Al Rights Reserved.

4 .\" The contents of this file are subject to the ternms of the Common Devel opnent
5 .\" You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE or http:
6 .\" Wen distributing Covered Code, include this CDDL HEADER in each file and in
7 .TH W1 "Dec 15, 2013"

6 .TH W1 "Mar 19, 2004"

8 . SH NAME

9 w\- display information about currently |ogged-in users

10 . SH SYNOPSI S

11 . LP

12 . nf

13 \fBMfR [\fB-hIsumfR] [\fluser\fR]

14 . fi

16 . SH DESCRI PTI ON

17 .sp

18

.LP
19 The \fBwW fR command di spl ays a summary of the current activity on the system
20 including what each user is doing. The heading |ine shows the current tine, the
21 length of time the system has been up, the nunber of users |ogged into the
22 system and the average nunber of jobs in the run queue over the last 1, 5 and
23 15 minutes.

26 The fields displayed are: the user’s |ogin nane,

27 the nane of the tty the user is on,

28 the tine of day the user logged on (in ISOtinme format, weekday nane

29 and \flhours:mnutes\fR, or 1SO date format), the idle

30 tinme\(enthat is, the nunber of minutes since the user |ast typed anything

31 (in \flhours: m nutes:seconds\fR),

32 the \fBCPWfR tinme used by all processes and their

33 children on that terminal (in \flhours:mnutes:seconds\fR),

34 the \fBCPWfR tinme used

35 by the currently active processes (in \flhours:mnutes:seconds\fR),

36 and the name and

25 The fields displayed are: the user’s |login name, the name of the tty the user
26 is on, the tine of day the user logged on (in \flhours:mnutes\fR), the idle
27 time\(enthat is, the number of minutes since the user last typed anything (in
28 \flhours:mnutes\fR), the \fBCPW\fR time used by all processes and their

29 children on that terminal (in \flmnutes:seconds\fR), the \fBCPW\fR tinme used
30 by the currently active processes (in \flmnutes:seconds\fR), and the nane and
37 argunments of the current process.

38 . SH OPTI ONS

39 .sp

40 . LP

41 The follow ng options are supported:
42 .sp

43 .ne 2

44 . na

45 \fB\fB-h\fR fR

46 . ad

47 .RS 6n

48 Suppresses the headi ng.
49 . RE

51 .sp

52 .ne 2

53

. ha
54 \fB\fB-I\fRfR

new usr/src/ man/ manl/w. 1

55
56
57

.ad
. RS 6n
Produces a long formof output, which is the default.

58 . RE

110

115
117

118 .
119 .

120

.sp
.ne 2

.na
\fB\fB-s\fRfR

.ad

. RS 6n

Produces a short formof output. In the short form the tty is abbreviated, the
login tine and \fBCPUfR tines are left off, as are the argunents to commands.

. RE

.sp
.ne 2

.nha
\fB\fB-u\fRfR

.ad

.RS 6n

Produces the heading |ine which shows the current tine, the length of tine the
system has been up, the nunber of users |ogged into the system and the average
nunber of jobs in the run queue over the last 1, 5 and 15 m nutes.

.RE

.sp
.ne 2

.na
\fB\fB-WfRfR

.ad

. RS 6n

Produces a long formof output, which is also the sane as the default.
.RE

. SH OPERANDS
.sp

.ne 2

. na
\fB\fluser\fRfR

. al
.RS 8n
Name of a particular user for whomlogin information is displayed. If

specified, output is restricted to that user.

.RE

. SH EXAMPLES

.LP

\fBExanpl e 1 \fRSanpl e Qutput Fromthe \fBw fR Command
.sp

.in +2

. nf
exanpl e% \ f BM f R

10: 54am up 27 day(s), 57 mins, 1 user, |oad average: 0.28, 0.26, 0.22
User tt | ogi n@ ide JCPU PCPU what
ral ph consol e 7:10am 1 10: 05 4:31 w
i
in -2
.sp
. SH ENVI RONVENT VARI ABLES
sp
LP
See \fBenviron\fR(5) for descriptions of the follow ng environnment variables

new usr/src/ man/ manl/w. 1

121
122
123
124
125
126
127
128
129
130

that affect the execution of \fBWfR \fBLC CTYPE\fR, \fBLC MESSAGES\fR, and
\fBLC_TIME\fR
. SH FI LES

.sp
.ne 2

.na
\fB\fB/var/adm ut npx\f R fR

.ad

.RS 18n

user and accounting information

131 .RE

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

. SH SEE ALSO

.sp

. LP

\fBps\fR(1), \fBwho\fR(1), \fBwhodo\fR(1M, \fButnpx\fR(4),
\fBattributes\fR(5), \fBenviron\fR(5)

. SH NOTES

.sp

.LP

The notion of the "current process" is unclear. The current algorithmis "the
hi ghest nunbered process on the terminal that is not ignoring interrupts, or,
if there is none, the highest nunbered process on the terminal". This fails,
for exanple, in critical sections of programs |like the shell and editor, or
when faulty prograns running in the background fork and fail to ignore
interrupts. In cases where no process can be found, \fBMfR prints
\fB\(mM\fR &

.sp

.LP

The \fBCPUWfR time is only an estimate, in particular, if someone |eaves a
background process running after |ogging out, the person currently on that
termnal is ‘‘charged’’ with the tine.

.sp

.LP

Background processes are not shown, even though they account for much of the
| oad on the system

.sp

.LP

Soneti mes processes, typically those in the background, are printed with null
or garbaged argunents. In these cases, the nanme of the command is printed in
par ent heses.

.sp

.LP

\ fBw f R does not know about the conventions for detecting background jobs. It
will sonetines find a background job instead of the right one.

new usr/ src/ man/ manlnm whodo. 1m 1

R R R R

5224 Thu Dec 19 12:20:25 2013

new usr/ src/ man/ manln whodo. 1m

2849

R R R

O~NO~NOUTRWNE

uptime shoul d use |ocal e settings
*

for current time
* k%

khkkkkhkkhkhkhkkkkkhhkkkkk

"\" te

.\" Copyright (c) 2013 Gary Mlls

.\" Copyright (c) 2001 Sun Mcrosystens, Inc. All Rights Reserved.

.\" Copyright 1989 AT&T

\" The contents of this file are subject to the terns of the Conmon Devel opnent
.\" You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE or http:
.\" Wen distributing Covered Code, include this CDDL HEADER in each file and in
. TH WHODO 1M "Dec 15, 2013"

. TH WHODO 1M "Jun 18, 2003"

. SH NAME

whodo \- who is doing what

. SH SYNCPSI S

.LP

. nf

\?B/usr/sbi n/whodo\fR [\fB-h\fR [\fB-I\fR] [\fluser\fR]

fi

. SH DESCRI PTI ON

.sp

.LP

The \ fBwhodo\ f R conmand produces formatted and dated output frominformation in
the \fB/var/adm utnpx\fR and \fB/ proc/pid\fR files.

.sp

.LP

The display is headed by the date, tine, and nmachi ne nane. For each user | ogged
in, device nanme, user-ID and login time is shown, followed by a list of active
processes associated with the user-ID. The list includes the device nane,
process-1D, CPU minutes and seconds used, and process name.

.sp

.LP

If \fluser\fR is specified, output is restricted to all sessions pertaining to
that user.

. SH OPTI ONS

.sp

.LP

The foll owi ng options are supported:

.sp

.ne 2

.na
\fB\fB-h\fR fR

.ad

. RS 6n

Suppr ess the headi ng.
.RE

.sp
.ne 2

.na

\fB\fB-I\fRfR

.ad

. RS 6n

Produce a long formof output. The fields displayed are: the user’s |ogin nane,
the name of the tty the user is on, the time of day the user |ogged in
(in1SOtinme format, weekday name and \flhours\fRfB:\fR flmnutes\fR
or SO date format),

the idle tine \(emthat is, the tinme since the user |last typed anything
(in\flhours\fRfB:\fRflmnutes\fRfB:\fR flseconds\fR),

the CPU tinme used by all processes and their children on that term nal
(in\flhours\fRfB:\fR flmnutes\fRfB:\fR\ flseconds\fR),

the CPU tine used by the currently active processes
(in\flhours\fRfB:\fRflmnutes\fRfB:\fR flseconds\fR),

new usr/ src/ man/ manln whodo. 1m

118
119

and the nanme and argunents of the current process.

the nane of the tty the user is on, the time of day the user logged in (in
\flhours\fRfB:\fRflImnutes\fR), the idle tine \(emthat is, the time since
the user last typed anything (in \flhours\fRfB:\fRflmnutes\fR), the CPU tine
used by all processes and their children on that termnal (in
\fImnutes\fRfB:\fR flseconds\fR), the CPU tinme used by the currently active
processes (in \flmnutes\fRfB:\fR flseconds\fR), and the nane and argunents of
the current process.

.RE

. SH EXAMPLES

. LP

\fBExanpl e 1 \fRUsi ng the whodo Command

.sp

.LP

The command:

.sp

Lin 42

. nf

exanpl e% whodo

i

.in -2

.sp

.sp

.LP

produces a display like this:

.sp

in 42

. nf

Tue Mar 12 15:48:03 1985

bai | ey

tty09 ncn 8:51
tty09 28158 0: 29 sh

tty52 bdr 15: 23
tty52 21688 0: 05 sh
tty52 22788 0: 01 whodo
tty52 22017 0: 03 vi
tty52 22549 0: 01 sh

Xt 162 | ee 10: 20
tty08 6748 0: 01 | ayers
xt 162 6751 0: 01 sh
xt 163 6761 0: 05 sh
tty08 6536 0: 05 sh

i

.in -2

.sp

. SH ENVI RONMENT VARI ABLES

.sp

.LP

If any of the \fBLC *\fR variables (\fB\fRfBLC CTYPEAfR fB,\fR

f
\ f BLC_MESSAGES\fR fB,\fR \fBLC TIME\fR fB,\fR \f BLC_COLLATE\fR fB,\fR
\fBLC_NUMERIC\fRfB,\fR and \f BLC_ MONETARY\fR) (see \fBenviron\fR(5)) are not
set in the environment, the operational behavior of \fBtar\fR(1) for each
corresponding | ocal e category is determ ned by the value of the \fBLANGfR
environment variable. If \fBLC ALL\fR is set, its contents are used to override
both the \fBLANG fR and the other \fBLC *\fR variables. If none of the above

variables is set in the environnent, the "C' (U.S. style) |ocale deternines how
\ f Bwhodo\ f R behaves.

.sp

.ne 2

new usr/ src/ man/ manlnm whodo. 1m

120
121
122
123
124
125
126
127
128
129
130

131 .

133
134
135
136
137
138
139
140
141
142

.na
\fB\fBLC CTYPE\fR fR

.ad

.RS 15n

Det er mi nes how \ f Bwhodo\ f R handl es characters. Wien \fBLC CTYPE\fR is set to a
valid value, \fBwhodo\fR can display and handl e text and fil enanes contai ni ng
valid characters for that |ocale. The \fBwhodo\fR command can di splay and
handl e Extended Uni x code (EUC) characters where any individual character can
be 1, 2, or 3 bytes wide. \fBwhodo\fR can al so handl e EUC characters of 1, 2,
or nmore colum widths. In the "C' locale, only characters from|SO 8859-1 are
valid.

RE

.sp
.ne 2

.na
\fB\f BLC_MESSAGES\fR f R

.ad

. RS 15n

Det er mi nes how di agnostic and informative nessages are presented. This includes
the | anguage and style of the nessages, and the correct formof affirmtive and
negative responses. In the "C' locale, the nessages are presented in the
default formfound in the programitself (in npst cases, U 'S. English).

143 . RE

145
146
147
148
149
150
151
152
153

155
156
157
158
159
160
161
162
163
164
165

.sp
.ne 2

. na

\fB\fBLC_TIME\fRfR

.ad

. RS 15n

Det ermi nes how \ f Bwhodo\f R handl es date and tine formats. In the "C' |ocal e,
date and time handling follow the U S. rules.

. RE

.SH EXIT STATUS

.sp

.LP

The following exit values are returned:
.sp

.ne 2

.na
\fB\fBO\fRfR

.ad

.RS 12n

Successful conpletion.

166 . RE

168
169
170
171
172
173
174

.sp

.ne 2

. na

\ f Bnon-zero\ fR

. al
.RS 12n
An error occurred.

175 . RE

177
178
179
180
181
182
183
184
185

. SH FI LES

.sp
.ne 2

.na
\fB\fB/etc/passwd\fRfR
.ad

. RS 18n

System password file

. RE

new usr/ src/ man/ manln whodo. 1m

187 .sp
188 .ne 2

189 .na

190 \fB\f B/ var/adnm ut npx\f R f R

191 . ad

192 . RS 18n

193 User access and administration infornmation
194 . RE

196 .sp
197 .ne 2

198 .na

199 \fB\fB/proc/pid\fRfR
200 . ad

201 . RS 18n

202 Contains PID

203 . RE

205 . SH SEE ALSO

206 .sp

207 .LP

208 \fBps\fR(1), \fBwho\fR(1), \fBattributes\fR(5), \fBenviron\fR(5)

