
new/usr/src/cmd/w/w.c 1

**
 18947 Thu Dec 19 12:20:25 2013
new/usr/src/cmd/w/w.c
2849 uptime should use locale settings for current time
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2013 Gary Mills
23 *
24 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */

28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */

31 /*
32 * University Copyright- Copyright (c) 1982, 1986, 1988
33 * The Regents of the University of California
34 * All Rights Reserved
35 *
36 * University Acknowledgment- Portions of this document are derived from
37 * software developed by the University of California, Berkeley, and its
38 * contributors.
39 */

41 /*
42 * This is the new w command which takes advantage of
43 * the /proc interface to gain access to the information
44 * of all the processes currently on the system.
45 *
46 * This program also implements ’uptime’.
47 *
48 * Maintenance note:
49 *
50 * Much of this code is replicated in whodo.c. If you’re
51 * fixing bugs here, then you should probably fix ’em there too.
52 */

54 #include <stdio.h>
55 #include <string.h>
56 #include <stdarg.h>
57 #include <stdlib.h>
58 #include <ctype.h>
59 #include <fcntl.h>
60 #include <time.h>
61 #include <errno.h>

new/usr/src/cmd/w/w.c 2

62 #include <sys/types.h>
63 #include <utmpx.h>
64 #include <sys/stat.h>
65 #include <dirent.h>
66 #include <procfs.h> /* /proc header file */
67 #include <locale.h>
68 #include <unistd.h>
69 #include <sys/loadavg.h>
70 #include <limits.h>
71 #include <priv_utils.h>

73 /*
74 * Use the full lengths from utmpx for user and line.
75 */
76 static struct utmpx dummy;
77 #define NMAX (sizeof (dummy.ut_user))
78 #define LMAX (sizeof (dummy.ut_line))

80 /* Print minimum field widths. */
81 #define LOGIN_WIDTH 8
82 #define LINE_WIDTH 8
82 #define LINE_WIDTH 12

84 #define DIV60(t) ((t+30)/60) /* x/60 rounded */

86 #ifdef ERR
87 #undef ERR
88 #endif
89 #define ERR (-1)

91 #define HSIZE 256 /* size of process hash table */
92 #define PROCDIR "/proc"
93 #define INITPROCESS (pid_t)1 /* init process pid */
94 #define NONE ’n’ /* no state */
95 #define RUNNING ’r’ /* runnable process */
96 #define ZOMBIE ’z’ /* zombie process */
97 #define VISITED ’v’ /* marked node as visited */
98 #define PRINTF(a) if (printf a < 0) { \
99 perror((gettext("%s: printf failed"), prog)); \
100 exit(1); }

102 struct uproc {
103 pid_t p_upid; /* process id */
104 char p_state; /* numeric value of process state */
105 dev_t p_ttyd; /* controlling tty of process */
106 time_t p_time; /* seconds of user & system time */
107 time_t p_ctime; /* seconds of child user & sys time */
108 int p_igintr; /* 1 = ignores SIGQUIT and SIGINT */
109 char p_comm[PRARGSZ+1]; /* command */
110 char p_args[PRARGSZ+1]; /* command line arguments */
111 struct uproc *p_child, /* first child pointer */
112 *p_sibling, /* sibling pointer */
113 *p_pgrpl, /* pgrp link */
114 *p_link; /* hash table chain pointer */
115 };

117 /*
118 * define hash table for struct uproc
119 * Hash function uses process id
120 * and the size of the hash table(HSIZE)
121 * to determine process index into the table.
122 */
123 static struct uproc pr_htbl[HSIZE];

125 static struct uproc *findhash(pid_t);
126 static time_t findidle(char *);

new/usr/src/cmd/w/w.c 3

127 static void clnarglist(char *);
128 static void showtotals(struct uproc *);
129 static void calctotals(struct uproc *);
130 static void prttime(time_t, int);
130 static void prttime(time_t, char *);
131 static void prtat(time_t *time);
132 static void checkampm(char *str);

133 static char *prog; /* pointer to invocation name */
134 static int header = 1; /* true if -h flag: don’t print heading */
135 static int lflag = 1; /* set if -l flag; 0 for -s flag: short form */
136 static char *sel_user; /* login of particular user selected */
137 static char firstchar; /* first char of name of prog invoked as */
138 static int login; /* true if invoked as login shell */
139 static time_t now; /* current time of day */
140 static time_t uptime; /* time of last reboot & elapsed time since */
141 static int nusers; /* number of users logged in now */
142 static time_t idle; /* number of minutes user is idle */
143 static time_t jobtime; /* total cpu time visible */
144 static char doing[520]; /* process attached to terminal */
145 static time_t proctime; /* cpu time of process in doing */
146 static pid_t curpid, empty;
147 static int add_times; /* boolean: add the cpu times or not */

149 #if SIGQUIT > SIGINT
150 #define ACTSIZE SIGQUIT
151 #else
152 #define ACTSIZE SIGINT
153 #endif

155 int
156 main(int argc, char *argv[])
157 {
158 struct utmpx *ut;
159 struct utmpx *utmpbegin;
160 struct utmpx *utmpend;
161 struct utmpx *utp;
162 struct uproc *up, *parent, *pgrp;
163 struct psinfo info;
164 struct sigaction actinfo[ACTSIZE];
165 struct pstatus statinfo;
166 size_t size;
167 struct stat sbuf;
168 DIR *dirp;
169 struct dirent *dp;
170 char pname[64];
171 char *fname;
172 int procfd;
173 char *cp;
174 int i;
175 int days, hrs, mins;
176 int entries;
177 double loadavg[3];

179 /*
180 * This program needs the proc_owner privilege
181 */
182 (void) __init_suid_priv(PU_CLEARLIMITSET, PRIV_PROC_OWNER,
183 (char *)NULL);

185 (void) setlocale(LC_ALL, "");
186 #if !defined(TEXT_DOMAIN)
187 #define TEXT_DOMAIN "SYS_TEST"
188 #endif
189 (void) textdomain(TEXT_DOMAIN);

new/usr/src/cmd/w/w.c 4

191 login = (argv[0][0] == ’-’);
192 cp = strrchr(argv[0], ’/’);
193 firstchar = login ? argv[0][1] : (cp == 0) ? argv[0][0] : cp[1];
194 prog = argv[0];

196 while (argc > 1) {
197 if (argv[1][0] == ’-’) {
198 for (i = 1; argv[1][i]; i++) {
199 switch (argv[1][i]) {

201 case ’h’:
202 header = 0;
203 break;

205 case ’l’:
206 lflag++;
207 break;
208 case ’s’:
209 lflag = 0;
210 break;

212 case ’u’:
213 case ’w’:
214 firstchar = argv[1][i];
215 break;

217 default:
218 (void) fprintf(stderr, gettext(
219 "%s: bad flag %s\n"),
220 prog, argv[1]);
221 exit(1);
222 }
223 }
224 } else {
225 if (!isalnum(argv[1][0]) || argc > 2) {
226 (void) fprintf(stderr, gettext(
227 "usage: %s [-hlsuw] [user]\n"), prog);
228 exit(1);
229 } else
230 sel_user = argv[1];
231 }
232 argc--; argv++;
233 }

235 /*
236 * read the UTMP_FILE (contains information about each logged in user)
237 */
238 if (stat(UTMPX_FILE, &sbuf) == ERR) {
239 (void) fprintf(stderr, gettext("%s: stat error of %s: %s\n"),
240 prog, UTMPX_FILE, strerror(errno));
241 exit(1);
242 }
243 entries = sbuf.st_size / sizeof (struct futmpx);
244 size = sizeof (struct utmpx) * entries;
245 if ((ut = malloc(size)) == NULL) {
246 (void) fprintf(stderr, gettext("%s: malloc error of %s: %s\n"),
247 prog, UTMPX_FILE, strerror(errno));
248 exit(1);
249 }

251 (void) utmpxname(UTMPX_FILE);

253 utmpbegin = ut;
254 utmpend = (struct utmpx *)((char *)utmpbegin + size);

256 setutxent();

new/usr/src/cmd/w/w.c 5

257 while ((ut < utmpend) && ((utp = getutxent()) != NULL))
258 (void) memcpy(ut++, utp, sizeof (*ut));
259 endutxent();

261 (void) time(&now); /* get current time */

263 if (header) { /* print a header */
264 prtat(&now);
265 for (ut = utmpbegin; ut < utmpend; ut++) {
266 if (ut->ut_type == USER_PROCESS) {
267 if (!nonuser(*ut))
268 nusers++;
269 } else if (ut->ut_type == BOOT_TIME) {
270 uptime = now - ut->ut_xtime;
271 uptime += 30;
272 days = uptime / (60*60*24);
273 uptime %= (60*60*24);
274 hrs = uptime / (60*60);
275 uptime %= (60*60);
276 mins = uptime / 60;

278 PRINTF((gettext("up")));
279 PRINTF((gettext(" up")));
279 if (days > 0)
280 PRINTF((gettext(
281 " %d day(s),"), days));
282 if (hrs > 0 && mins > 0) {
283 PRINTF((" %2d:%02d,", hrs, mins));
284 } else {
285 if (hrs > 0)
286 PRINTF((gettext(
287 " %d hr(s),"), hrs));
288 if (mins > 0)
289 PRINTF((gettext(
290 " %d min(s),"), mins));
291 }
292 }
293 }

295 ut = utmpbegin; /* rewind utmp data */
296 PRINTF((((nusers == 1) ?
297 gettext(" %d user") : gettext(" %d users")), nusers));
298 /*
299 * Print 1, 5, and 15 minute load averages.
300 */
301 (void) getloadavg(loadavg, 3);
302 PRINTF((gettext(", load average: %.2f, %.2f, %.2f\n"),
303 loadavg[LOADAVG_1MIN], loadavg[LOADAVG_5MIN],
304 loadavg[LOADAVG_15MIN]));

306 if (firstchar == ’u’) /* uptime command */
307 exit(0);

309 if (lflag) {
310 PRINTF((dcgettext(NULL, "User tty "
311 "login@ idle JCPU PCPU what\n",
312 LC_TIME)));
312 "login@ idle JCPU PCPU what\n", LC_TIME)));
313 } else {
314 PRINTF((dcgettext(NULL,
315 "User tty idle what\n",
316 LC_TIME)));
315 "User tty idle what\n", LC_TIME)));
317 }

319 if (fflush(stdout) == EOF) {

new/usr/src/cmd/w/w.c 6

320 perror((gettext("%s: fflush failed\n"), prog));
321 exit(1);
322 }
323 }

325 /*
326 * loop through /proc, reading info about each process
327 * and build the parent/child tree
328 */
329 if (!(dirp = opendir(PROCDIR))) {
330 (void) fprintf(stderr, gettext("%s: could not open %s: %s\n"),
331 prog, PROCDIR, strerror(errno));
332 exit(1);
333 }

335 while ((dp = readdir(dirp)) != NULL) {
336 if (dp->d_name[0] == ’.’)
337 continue;
338 retry:
339 (void) sprintf(pname, "%s/%s/", PROCDIR, dp->d_name);
340 fname = pname + strlen(pname);
341 (void) strcpy(fname, "psinfo");
342 if ((procfd = open(pname, O_RDONLY)) < 0)
343 continue;
344 if (read(procfd, &info, sizeof (info)) != sizeof (info)) {
345 int err = errno;
346 (void) close(procfd);
347 if (err == EAGAIN)
348 goto retry;
349 if (err != ENOENT)
350 (void) fprintf(stderr, gettext(
351 "%s: read() failed on %s: %s \n"),
352 prog, pname, strerror(err));
353 continue;
354 }
355 (void) close(procfd);

357 up = findhash(info.pr_pid);
358 up->p_ttyd = info.pr_ttydev;
359 up->p_state = (info.pr_nlwp == 0? ZOMBIE : RUNNING);
360 up->p_time = 0;
361 up->p_ctime = 0;
362 up->p_igintr = 0;
363 (void) strncpy(up->p_comm, info.pr_fname,
364 sizeof (info.pr_fname));
365 up->p_args[0] = 0;

367 if (up->p_state != NONE && up->p_state != ZOMBIE) {
368 (void) strcpy(fname, "status");

370 /* now we need the proc_owner privilege */
371 (void) __priv_bracket(PRIV_ON);

373 procfd = open(pname, O_RDONLY);

375 /* drop proc_owner privilege after open */
376 (void) __priv_bracket(PRIV_OFF);

378 if (procfd < 0)
379 continue;

381 if (read(procfd, &statinfo, sizeof (statinfo))
382 != sizeof (statinfo)) {
383 int err = errno;
384 (void) close(procfd);
385 if (err == EAGAIN)

new/usr/src/cmd/w/w.c 7

386 goto retry;
387 if (err != ENOENT)
388 (void) fprintf(stderr, gettext(
389 "%s: read() failed on %s: %s \n"),
390 prog, pname, strerror(err));
391 continue;
392 }
393 (void) close(procfd);

395 up->p_time = statinfo.pr_utime.tv_sec +
396 statinfo.pr_stime.tv_sec; /* seconds */
397 up->p_ctime = statinfo.pr_cutime.tv_sec +
398 statinfo.pr_cstime.tv_sec;

400 (void) strcpy(fname, "sigact");

402 /* now we need the proc_owner privilege */
403 (void) __priv_bracket(PRIV_ON);

405 procfd = open(pname, O_RDONLY);

407 /* drop proc_owner privilege after open */
408 (void) __priv_bracket(PRIV_OFF);

410 if (procfd < 0)
411 continue;

413 if (read(procfd, actinfo, sizeof (actinfo))
414 != sizeof (actinfo)) {
415 int err = errno;
416 (void) close(procfd);
417 if (err == EAGAIN)
418 goto retry;
419 if (err != ENOENT)
420 (void) fprintf(stderr, gettext(
421 "%s: read() failed on %s: %s \n"),
422 prog, pname, strerror(err));
423 continue;
424 }
425 (void) close(procfd);

427 up->p_igintr =
428 actinfo[SIGINT-1].sa_handler == SIG_IGN &&
429 actinfo[SIGQUIT-1].sa_handler == SIG_IGN;

431 /*
432 * Process args.
433 */
434 up->p_args[0] = 0;
435 clnarglist(info.pr_psargs);
436 (void) strcat(up->p_args, info.pr_psargs);
437 if (up->p_args[0] == 0 ||
438 up->p_args[0] == ’-’ && up->p_args[1] <= ’ ’ ||
439 up->p_args[0] == ’?’) {
440 (void) strcat(up->p_args, " (");
441 (void) strcat(up->p_args, up->p_comm);
442 (void) strcat(up->p_args, ")");
443 }
444 }

446 /*
447 * link pgrp together in case parents go away
448 * Pgrp chain is a single linked list originating
449 * from the pgrp leader to its group member.
450 */
451 if (info.pr_pgid != info.pr_pid) { /* not pgrp leader */

new/usr/src/cmd/w/w.c 8

452 pgrp = findhash(info.pr_pgid);
453 up->p_pgrpl = pgrp->p_pgrpl;
454 pgrp->p_pgrpl = up;
455 }
456 parent = findhash(info.pr_ppid);

458 /* if this is the new member, link it in */
459 if (parent->p_upid != INITPROCESS) {
460 if (parent->p_child) {
461 up->p_sibling = parent->p_child;
462 up->p_child = 0;
463 }
464 parent->p_child = up;
465 }
466 }

468 /* revert to non-privileged user after opening */
469 (void) __priv_relinquish();

471 (void) closedir(dirp);
472 (void) time(&now); /* get current time */

474 /*
475 * loop through utmpx file, printing process info
476 * about each logged in user
477 */
478 for (ut = utmpbegin; ut < utmpend; ut++) {
479 if (ut->ut_type != USER_PROCESS)
480 continue;
481 if (sel_user && strncmp(ut->ut_name, sel_user, NMAX) != 0)
482 continue; /* we’re looking for somebody else */

484 /* print login name of the user */
485 PRINTF(("%-*.*s ", LOGIN_WIDTH, NMAX, ut->ut_name));

487 /* print tty user is on */
488 if (lflag) {
489 PRINTF(("%-*.*s ", LINE_WIDTH, LMAX, ut->ut_line));
488 PRINTF(("%-*.*s", LINE_WIDTH, LMAX, ut->ut_line));
490 } else {
491 if (ut->ut_line[0] == ’p’ && ut->ut_line[1] == ’t’ &&
492 ut->ut_line[2] == ’s’ && ut->ut_line[3] == ’/’) {
493 PRINTF(("%-*.*s ", LINE_WIDTH, LMAX,
494 &ut->ut_line[4]));
492 PRINTF(("%-*.3s", LMAX, &ut->ut_line[4]));
495 } else {
496 PRINTF(("%-*.*s ", LINE_WIDTH, LMAX,
494 PRINTF(("%-*.*s", LINE_WIDTH, LMAX,
497 ut->ut_line));
498 }
499 }

501 /* print when the user logged in */
502 if (lflag) {
503 time_t tim = ut->ut_xtime;
504 prtat(&tim);
505 }

507 /* print idle time */
508 idle = findidle(ut->ut_line);
509 prttime(idle, 8);
507 if (idle >= 36 * 60) {
508 PRINTF((dcgettext(NULL, "%2ddays ", LC_TIME),
509 (idle + 12 * 60) / (24 * 60)));
510 } else
511 prttime(idle, " ");

new/usr/src/cmd/w/w.c 9

510 showtotals(findhash(ut->ut_pid));
511 }
512 if (fclose(stdout) == EOF) {
513 perror((gettext("%s: fclose failed"), prog));
514 exit(1);
515 }
516 return (0);
517 }

519 /*
520 * Prints the CPU time for all processes & children,
521 * and the cpu time for interesting process,
522 * and what the user is doing.
523 */
524 static void
525 showtotals(struct uproc *up)
526 {
527 jobtime = 0;
528 proctime = 0;
529 empty = 1;
530 curpid = -1;
531 add_times = 1;

533 calctotals(up);

535 if (lflag) {
536 /* print CPU time for all processes & children */
537 /* and need to convert clock ticks to seconds first */
538 prttime((time_t)jobtime, 8);
540 prttime((time_t)jobtime, " ");

540 /* print cpu time for interesting process */
541 /* and need to convert clock ticks to seconds first */
542 prttime((time_t)proctime, 8);
544 prttime((time_t)proctime, " ");
543 }
544 /* what user is doing, current process */
545 PRINTF(("%-.32s\n", doing));
547 PRINTF((" %-.32s\n", doing));
546 }

______unchanged_portion_omitted_

642 #define HR (60 * 60)
643 #define DAY (24 * HR)
644 #define MON (30 * DAY)

646 /*
647 * Prttime prints an elapsed time in hours, minutes, or seconds,
648 * right-justified with the rightmost column always blank.
649 * The second argument is the minimum field width.
649 * prttime prints a time in hours and minutes or minutes and seconds.
650 * The character string tail is printed at the end, obvious
651 * strings to pass are "", " ", or "am".
650 */
651 static void
652 prttime(time_t tim, int width)
654 prttime(time_t tim, char *tail)
653 {
654 char value[36];

656 if (tim >= 36 * 60) {
657 (void) snprintf(value, sizeof (value), "%d:%02d:%02d",
658 (int)tim / HR, (int)(tim % HR) / 60, (int)tim % 60);
659 } else if (tim >= 60) {
660 (void) snprintf(value, sizeof (value), "%d:%02d",
661 (int)tim / 60, (int)tim % 60);

new/usr/src/cmd/w/w.c 10

656 if (tim >= 60) {
657 PRINTF((dcgettext(NULL, "%3d:%02d", LC_TIME),
658 (int)tim/60, (int)tim%60));
662 } else if (tim > 0) {
663 (void) snprintf(value, sizeof (value), "%d", (int)tim);
660 PRINTF((dcgettext(NULL, " %2d", LC_TIME), (int)tim));
664 } else {
665 (void) strcpy(value, "0");
662 PRINTF((" "));
666 }
667 width = (width > 2) ? width - 1 : 1;
668 PRINTF(("%*s ", width, value));
664 PRINTF(("%s", tail));
669 }

671 /*
672 * Prints the ISO date or time given a pointer to a time of day,
673 * left-justfied in a 12-character expanding field with the
674 * rightmost column always blank.
675 * Includes a dcgettext() override in case a message catalog is needed.
668 * prints a 12 hour time given a pointer to a time of day
676 */
677 static void
678 prtat(time_t *time)
679 {
680 struct tm *p;

682 p = localtime(time);
683 if (now - *time <= 18 * HR) {
684 char timestr[50];

686 (void) strftime(timestr, sizeof (timestr),
687 dcgettext(NULL, "%T", LC_TIME), p);
688 PRINTF(("%-11s ", timestr));
679 dcgettext(NULL, "%l:%M""%p", LC_TIME), p);
680 checkampm(timestr);
681 PRINTF((" %s", timestr));
689 } else if (now - *time <= 7 * DAY) {
690 char weekdaytime[20];

692 (void) strftime(weekdaytime, sizeof (weekdaytime),
693 dcgettext(NULL, "%a %H:%M", LC_TIME), p);
694 PRINTF(("%-11s ", weekdaytime));
686 dcgettext(NULL, "%a%l%p", LC_TIME), p);
687 checkampm(weekdaytime);
688 PRINTF((" %s", weekdaytime));
695 } else {
696 char monthtime[20];

698 (void) strftime(monthtime, sizeof (monthtime),
699 dcgettext(NULL, "%F", LC_TIME), p);
700 PRINTF(("%-11s ", monthtime));
693 dcgettext(NULL, "%e%b%y", LC_TIME), p);
694 PRINTF((" %s", monthtime));
701 }
702 }

______unchanged_portion_omitted_

742 /* replaces all occurences of AM/PM with am/pm */
743 static void
744 checkampm(char *str)
745 {
746 char *ampm;
747 while ((ampm = strstr(str, "AM")) != NULL ||
748 (ampm = strstr(str, "PM")) != NULL) {
749 *ampm = tolower(*ampm);

new/usr/src/cmd/w/w.c 11

750 *(ampm+1) = tolower(*(ampm+1));
751 }
752 }

new/usr/src/cmd/whodo/whodo.c 1

**
 20943 Thu Dec 19 12:20:25 2013
new/usr/src/cmd/whodo/whodo.c
2849 uptime should use locale settings for current time
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2013 Gary Mills
23 *
24 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */

28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */

31 /*
32 * University Copyright- Copyright (c) 1982, 1986, 1988
33 * The Regents of the University of California
34 * All Rights Reserved
35 *
36 * University Acknowledgment- Portions of this document are derived from
37 * software developed by the University of California, Berkeley, and its
38 * contributors.
39 */

41 /*
42 * This is the new whodo command which takes advantage of
43 * the /proc interface to gain access to the information
44 * of all the processes currently on the system.
45 *
46 * Maintenance note:
47 *
48 * Much of this code is replicated in w.c. If you’re
49 * fixing bugs here, then you should probably fix ’em there too.
50 */

52 #include <stdio.h>
53 #include <string.h>
54 #include <stdlib.h>
55 #include <ctype.h>
56 #include <fcntl.h>
57 #include <time.h>
58 #include <errno.h>
59 #include <sys/types.h>
60 #include <utmpx.h>
61 #include <sys/utsname.h>

new/usr/src/cmd/whodo/whodo.c 2

62 #include <sys/stat.h>
63 #include <sys/mkdev.h>
64 #include <dirent.h>
65 #include <procfs.h> /* /proc header file */
66 #include <sys/wait.h>
67 #include <locale.h>
68 #include <unistd.h>
69 #include <limits.h>
70 #include <priv_utils.h>

72 /*
73 * Use the full lengths from utmpx for user and line.
74 */
75 #define NMAX (sizeof (((struct utmpx *)0)->ut_user))
76 #define LMAX (sizeof (((struct utmpx *)0)->ut_line))

78 /* Print minimum field widths. */
79 #define LOGIN_WIDTH 8
80 #define LINE_WIDTH 8
80 #define LINE_WIDTH 12

82 #define DIV60(t) ((t+30)/60) /* x/60 rounded */

84 #ifdef ERR
85 #undef ERR
86 #endif
87 #define ERR (-1)

89 #define DEVNAMELEN 14
90 #define HSIZE 256 /* size of process hash table */
91 #define PROCDIR "/proc"
92 #define INITPROCESS (pid_t)1 /* init process pid */
93 #define NONE ’n’ /* no state */
94 #define RUNNING ’r’ /* runnable process */
95 #define ZOMBIE ’z’ /* zombie process */
96 #define VISITED ’v’ /* marked node as visited */

98 static int ndevs; /* number of configured devices */
99 static int maxdev; /* slots for configured devices */
100 #define DNINCR 100
101 static struct devl { /* device list */
102 char dname[DEVNAMELEN]; /* device name */
103 dev_t ddev; /* device number */
104 } *devl;

______unchanged_portion_omitted_

121 /*
122 * define hash table for struct uproc
123 * Hash function uses process id
124 * and the size of the hash table(HSIZE)
125 * to determine process index into the table.
126 */
127 static struct uproc pr_htbl[HSIZE];

129 static struct uproc *findhash(pid_t);
130 static time_t findidle(char *);
131 static void clnarglist(char *);
132 static void showproc(struct uproc *);
133 static void showtotals(struct uproc *);
134 static void calctotals(struct uproc *);
135 static char *getty(dev_t);
136 static void prttime(time_t, int);
136 static void prttime(time_t, char *);
137 static void prtat(time_t *);
138 static void checkampm(char *);

new/usr/src/cmd/whodo/whodo.c 3

139 static char *prog;
140 static int header = 1; /* true if -h flag: don’t print heading */
141 static int lflag = 0; /* true if -l flag: w command format */
142 static char *sel_user; /* login of particular user selected */
143 static time_t now; /* current time of day */
144 static time_t uptime; /* time of last reboot & elapsed time since */
145 static int nusers; /* number of users logged in now */
146 static time_t idle; /* number of minutes user is idle */
147 static time_t jobtime; /* total cpu time visible */
148 static char doing[520]; /* process attached to terminal */
149 static time_t proctime; /* cpu time of process in doing */
150 static int empty;
151 static pid_t curpid;

153 #if SIGQUIT > SIGINT
154 #define ACTSIZE SIGQUIT
155 #else
156 #define ACTSIZE SIGINT
157 #endif

159 int
160 main(int argc, char *argv[])
161 {
162 struct utmpx *ut;
163 struct utmpx *utmpbegin;
164 struct utmpx *utmpend;
165 struct utmpx *utp;
166 struct tm *tm;
167 struct uproc *up, *parent, *pgrp;
168 struct psinfo info;
169 struct sigaction actinfo[ACTSIZE];
170 struct pstatus statinfo;
171 size_t size;
172 struct stat sbuf;
173 struct utsname uts;
174 DIR *dirp;
175 struct dirent *dp;
176 char pname[64];
177 char *fname;
178 int procfd;
179 int i;
180 int days, hrs, mins;
181 int entries;

183 /*
184 * This program needs the proc_owner privilege
185 */
186 (void) __init_suid_priv(PU_CLEARLIMITSET, PRIV_PROC_OWNER,
187 (char *)NULL);

189 (void) setlocale(LC_ALL, "");
190 #if !defined(TEXT_DOMAIN)
191 #define TEXT_DOMAIN "SYS_TEST"
192 #endif
193 (void) textdomain(TEXT_DOMAIN);

195 prog = argv[0];

197 while (argc > 1) {
198 if (argv[1][0] == ’-’) {
199 for (i = 1; argv[1][i]; i++) {
200 switch (argv[1][i]) {

202 case ’h’:
203 header = 0;
204 break;

new/usr/src/cmd/whodo/whodo.c 4

206 case ’l’:
207 lflag++;
208 break;

210 default:
211 (void) printf(gettext(
212 "usage: %s [-hl] [user]\n"),
213 prog);
214 exit(1);
215 }
216 }
217 } else {
218 if (!isalnum(argv[1][0]) || argc > 2) {
219 (void) printf(gettext(
220 "usage: %s [-hl] [user]\n"), prog);
221 exit(1);
222 } else
223 sel_user = argv[1];
224 }
225 argc--; argv++;
226 }

228 /*
229 * read the UTMPX_FILE (contains information about
230 * each logged in user)
231 */
232 if (stat(UTMPX_FILE, &sbuf) == ERR) {
233 (void) fprintf(stderr, gettext("%s: stat error of %s: %s\n"),
234 prog, UTMPX_FILE, strerror(errno));
235 exit(1);
236 }
237 entries = sbuf.st_size / sizeof (struct futmpx);
238 size = sizeof (struct utmpx) * entries;

240 if ((ut = malloc(size)) == NULL) {
241 (void) fprintf(stderr, gettext("%s: malloc error of %s: %s\n"),
242 prog, UTMPX_FILE, strerror(errno));
243 exit(1);
244 }

246 (void) utmpxname(UTMPX_FILE);

248 utmpbegin = ut;
249 /* LINTED pointer cast may result in improper alignment */
250 utmpend = (struct utmpx *)((char *)utmpbegin + size);

252 setutxent();
253 while ((ut < utmpend) && ((utp = getutxent()) != NULL))
254 (void) memcpy(ut++, utp, sizeof (*ut));
255 endutxent();

257 (void) time(&now); /* get current time */

259 if (header) { /* print a header */
260 if (lflag) { /* w command format header */
261 prtat(&now);
262 for (ut = utmpbegin; ut < utmpend; ut++) {
263 if (ut->ut_type == USER_PROCESS) {
264 nusers++;
265 } else if (ut->ut_type == BOOT_TIME) {
266 uptime = now - ut->ut_xtime;
267 uptime += 30;
268 days = uptime / (60*60*24);
269 uptime %= (60*60*24);
270 hrs = uptime / (60*60);

new/usr/src/cmd/whodo/whodo.c 5

271 uptime %= (60*60);
272 mins = uptime / 60;

274 (void) printf(dcgettext(NULL,
275 "up %d day(s), %d hr(s), "
276 " up %d day(s), %d hr(s), "
276 "%d min(s)", LC_TIME),
277 days, hrs, mins);
278 }
279 }

281 ut = utmpbegin; /* rewind utmp data */
282 (void) printf(dcgettext(NULL,
283 " %d user(s)\n", LC_TIME), nusers);
284 (void) printf(dcgettext(NULL, "User tty "
285 "login@ idle JCPU PCPU what\n",
286 LC_TIME));
286 "login@ idle JCPU PCPU what\n", LC_TIME));
287 } else { /* standard whodo header */
288 char date_buf[100];

290 /*
291 * print current time and date
292 */
293 (void) strftime(date_buf, sizeof (date_buf),
294 "%c", localtime(&now));
294 dcgettext(NULL, "%C", LC_TIME), localtime(&now));
295 (void) printf("%s\n", date_buf);

297 /*
298 * print system name
299 */
300 (void) uname(&uts);
301 (void) printf("%s\n", uts.nodename);
302 }
303 }

305 /*
306 * loop through /proc, reading info about each process
307 * and build the parent/child tree
308 */
309 if (!(dirp = opendir(PROCDIR))) {
310 (void) fprintf(stderr, gettext("%s: could not open %s: %s\n"),
311 prog, PROCDIR, strerror(errno));
312 exit(1);
313 }

315 while ((dp = readdir(dirp)) != NULL) {
316 if (dp->d_name[0] == ’.’)
317 continue;
318 retry:
319 (void) snprintf(pname, sizeof (pname),
320 "%s/%s/", PROCDIR, dp->d_name);
321 fname = pname + strlen(pname);
322 (void) strcpy(fname, "psinfo");
323 if ((procfd = open(pname, O_RDONLY)) < 0)
324 continue;
325 if (read(procfd, &info, sizeof (info)) != sizeof (info)) {
326 int err = errno;
327 (void) close(procfd);
328 if (err == EAGAIN)
329 goto retry;
330 if (err != ENOENT)
331 (void) fprintf(stderr, gettext(
332 "%s: read() failed on %s: %s\n"),
333 prog, pname, strerror(err));

new/usr/src/cmd/whodo/whodo.c 6

334 continue;
335 }
336 (void) close(procfd);

338 up = findhash(info.pr_pid);
339 up->p_ttyd = info.pr_ttydev;
340 up->p_state = (info.pr_nlwp == 0? ZOMBIE : RUNNING);
341 up->p_time = 0;
342 up->p_ctime = 0;
343 up->p_igintr = 0;
344 (void) strncpy(up->p_comm, info.pr_fname,
345 sizeof (info.pr_fname));
346 up->p_args[0] = 0;

348 if (up->p_state != NONE && up->p_state != ZOMBIE) {
349 (void) strcpy(fname, "status");

351 /* now we need the proc_owner privilege */
352 (void) __priv_bracket(PRIV_ON);

354 procfd = open(pname, O_RDONLY);

356 /* drop proc_owner privilege after open */
357 (void) __priv_bracket(PRIV_OFF);

359 if (procfd < 0)
360 continue;

362 if (read(procfd, &statinfo, sizeof (statinfo))
363 != sizeof (statinfo)) {
364 int err = errno;
365 (void) close(procfd);
366 if (err == EAGAIN)
367 goto retry;
368 if (err != ENOENT)
369 (void) fprintf(stderr, gettext(
370 "%s: read() failed on %s: %s \n"),
371 prog, pname, strerror(err));
372 continue;
373 }
374 (void) close(procfd);

376 up->p_time = statinfo.pr_utime.tv_sec +
377 statinfo.pr_stime.tv_sec;
378 up->p_ctime = statinfo.pr_cutime.tv_sec +
379 statinfo.pr_cstime.tv_sec;

381 (void) strcpy(fname, "sigact");

383 /* now we need the proc_owner privilege */
384 (void) __priv_bracket(PRIV_ON);

386 procfd = open(pname, O_RDONLY);

388 /* drop proc_owner privilege after open */
389 (void) __priv_bracket(PRIV_OFF);

391 if (procfd < 0)
392 continue;
393 if (read(procfd, actinfo, sizeof (actinfo))
394 != sizeof (actinfo)) {
395 int err = errno;
396 (void) close(procfd);
397 if (err == EAGAIN)
398 goto retry;
399 if (err != ENOENT)

new/usr/src/cmd/whodo/whodo.c 7

400 (void) fprintf(stderr, gettext(
401 "%s: read() failed on %s: %s \n"),
402 prog, pname, strerror(err));
403 continue;
404 }
405 (void) close(procfd);

407 up->p_igintr =
408 actinfo[SIGINT-1].sa_handler == SIG_IGN &&
409 actinfo[SIGQUIT-1].sa_handler == SIG_IGN;

411 up->p_args[0] = 0;

413 /*
414 * Process args if there’s a chance we’ll print it.
415 */
416 if (lflag) { /* w command needs args */
417 clnarglist(info.pr_psargs);
418 (void) strcpy(up->p_args, info.pr_psargs);
419 if (up->p_args[0] == 0 ||
420 up->p_args[0] == ’-’ &&
421 up->p_args[1] <= ’ ’ ||
422 up->p_args[0] == ’?’) {
423 (void) strcat(up->p_args, " (");
424 (void) strcat(up->p_args, up->p_comm);
425 (void) strcat(up->p_args, ")");
426 }
427 }

429 }

431 /*
432 * link pgrp together in case parents go away
433 * Pgrp chain is a single linked list originating
434 * from the pgrp leader to its group member.
435 */
436 if (info.pr_pgid != info.pr_pid) { /* not pgrp leader */
437 pgrp = findhash(info.pr_pgid);
438 up->p_pgrplink = pgrp->p_pgrplink;
439 pgrp->p_pgrplink = up;
440 }
441 parent = findhash(info.pr_ppid);

443 /* if this is the new member, link it in */
444 if (parent->p_upid != INITPROCESS) {
445 if (parent->p_child) {
446 up->p_sibling = parent->p_child;
447 up->p_child = 0;
448 }
449 parent->p_child = up;
450 }

452 }

454 /* revert to non-privileged user */
455 (void) __priv_relinquish();

457 (void) closedir(dirp);
458 (void) time(&now); /* get current time */

460 /*
461 * loop through utmpx file, printing process info
462 * about each logged in user
463 */
464 for (ut = utmpbegin; ut < utmpend; ut++) {
465 time_t tim;

new/usr/src/cmd/whodo/whodo.c 8

467 if (ut->ut_type != USER_PROCESS)
468 continue;
469 if (sel_user && strncmp(ut->ut_name, sel_user, NMAX) != 0)
470 continue; /* we’re looking for somebody else */
471 if (lflag) { /* -l flag format (w command) */
472 /* print login name of the user */
473 (void) printf("%-*.*s ", LOGIN_WIDTH, (int)NMAX,
474 ut->ut_name);

476 /* print tty user is on */
477 (void) printf("%-*.*s ", LINE_WIDTH, (int)LMAX,
477 (void) printf("%-*.*s", LINE_WIDTH, (int)LMAX,
478 ut->ut_line);

480 /* print when the user logged in */
481 tim = ut->ut_xtime;
482 (void) prtat(&tim);

484 /* print idle time */
485 idle = findidle(ut->ut_line);
486 prttime(idle, 8);
486 if (idle >= 36 * 60)
487 (void) printf(dcgettext(NULL, "%2ddays ",
488 LC_TIME), (idle + 12 * 60) / (24 * 60));
489 else
490 prttime(idle, " ");
487 showtotals(findhash((pid_t)ut->ut_pid));
488 } else { /* standard whodo format */
489 tim = ut->ut_xtime;
490 tm = localtime(&tim);
491 (void) printf("\n%-*.*s %-*.*s %2.1d:%2.2d\n",
492 LINE_WIDTH, (int)LMAX, ut->ut_line,
493 LOGIN_WIDTH, (int)NMAX, ut->ut_name, tm->tm_hour,
494 tm->tm_min);
495 showproc(findhash((pid_t)ut->ut_pid));
496 }
497 }

499 return (0);
500 }

______unchanged_portion_omitted_

543 /*
544 * Used for -l flag (w command) format.
545 * Prints the CPU time for all processes & children,
546 * and the cpu time for interesting process,
547 * and what the user is doing.
548 */
549 static void
550 showtotals(struct uproc *up)
551 {
552 jobtime = 0;
553 proctime = 0;
554 empty = 1;
555 curpid = -1;
556 (void) strcpy(doing, "-"); /* default act: normally never prints */
557 calctotals(up);

559 /* print CPU time for all processes & children */
560 /* and need to convert clock ticks to seconds first */
561 prttime((time_t)jobtime, 8);
565 prttime((time_t)jobtime, " ");

563 /* print cpu time for interesting process */

new/usr/src/cmd/whodo/whodo.c 9

564 /* and need to convert clock ticks to seconds first */
565 prttime((time_t)proctime, 8);
569 prttime((time_t)proctime, " ");

567 /* what user is doing, current process */
568 (void) printf("%-.32s\n", doing);
572 (void) printf(" %-.32s\n", doing);
569 }

______unchanged_portion_omitted_

732 #define HR (60 * 60)
733 #define DAY (24 * HR)
734 #define MON (30 * DAY)
735 #define PRINTF(a) (void) printf a

737 /*
738 * Prttime prints an elapsed time in hours, minutes, or seconds,
739 * right-justified with the rightmost column always blank.
740 * The second argument is the minimum field width.
741 * prints a time in hours and minutes or minutes and seconds.
742 * The character string ’tail’ is printed at the end, obvious
743 * strings to pass are "", " ", or "am".
741 */
742 static void
743 prttime(time_t tim, int width)
746 prttime(time_t tim, char *tail)
744 {
745 char value[36];

747 if (tim >= 36 * 60) {
748 (void) snprintf(value, sizeof (value), "%d:%02d:%02d",
749 (int)tim / HR, (int)(tim % HR) / 60, (int)tim % 60);
750 } else if (tim >= 60) {
751 (void) snprintf(value, sizeof (value), "%d:%02d",
752 (int)tim / 60, (int)tim % 60);
753 } else if (tim > 0) {
754 (void) snprintf(value, sizeof (value), "%d", (int)tim);
755 } else {
756 (void) strcpy(value, "0");
757 }
758 width = (width > 2) ? width - 1 : 1;
759 PRINTF(("%*s ", width, value));
748 if (tim >= 60)
749 (void) printf(dcgettext(NULL, "%3d:%02d", LC_TIME),
750 (int)tim/60, (int)tim%60);
751 else if (tim > 0)
752 (void) printf(dcgettext(NULL, " %2d", LC_TIME), (int)tim);
753 else
754 (void) printf(" ");
755 (void) printf("%s", tail);
760 }

762 /*
763 * Prints the ISO date or time given a pointer to a time of day,
764 * left-justfied in a 12-character expanding field with the
765 * rightmost column always blank.
766 * Includes a dcgettext() override in case a message catalog is needed.
760 * prints a 12 hour time given a pointer to a time of day
767 */
768 static void
769 prtat(time_t *time)
770 {
771 struct tm *p;

773 p = localtime(time);

new/usr/src/cmd/whodo/whodo.c 10

774 if (now - *time <= 18 * HR) {
775 char timestr[50];

777 (void) strftime(timestr, sizeof (timestr),
778 dcgettext(NULL, "%T", LC_TIME), p);
779 PRINTF(("%-11s ", timestr));
771 dcgettext(NULL, " %l:%M""%p", LC_TIME), p);
772 checkampm(timestr);
773 (void) printf("%s", timestr);
780 } else if (now - *time <= 7 * DAY) {
781 char weekdaytime[20];

783 (void) strftime(weekdaytime, sizeof (weekdaytime),
784 dcgettext(NULL, "%a %H:%M", LC_TIME), p);
785 PRINTF(("%-11s ", weekdaytime));
778 dcgettext(NULL, "%a%l%p", LC_TIME), p);
779 checkampm(weekdaytime);
780 (void) printf(" %s", weekdaytime);
786 } else {
787 char monthtime[20];

789 (void) strftime(monthtime, sizeof (monthtime),
790 dcgettext(NULL, "%F", LC_TIME), p);
791 PRINTF(("%-11s ", monthtime));
785 dcgettext(NULL, "%e%b%y", LC_TIME), p);
786 (void) printf(" %s", monthtime);
792 }
793 }

______unchanged_portion_omitted_

834 /* replaces all occurences of AM/PM with am/pm */
835 static void
836 checkampm(char *str)
837 {
838 char *ampm;
839 while ((ampm = strstr(str, "AM")) != NULL ||
840 (ampm = strstr(str, "PM")) != NULL) {
841 *ampm = tolower(*ampm);
842 *(ampm+1) = tolower(*(ampm+1));
843 }
844 }

new/usr/src/man/man1/w.1 1

**
 4757 Thu Dec 19 12:20:25 2013
new/usr/src/man/man1/w.1
2849 uptime should use locale settings for current time
**

1 ’\" te
2 .\" Copyright (c) 2013 Gary Mills
3 .\" Copyright (c) 2004, Sun Microsystems, Inc. All Rights Reserved.
4 .\" The contents of this file are subject to the terms of the Common Development
5 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
6 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
7 .TH W 1 "Dec 15, 2013"
6 .TH W 1 "Mar 19, 2004"
8 .SH NAME
9 w \- display information about currently logged-in users

10 .SH SYNOPSIS
11 .LP
12 .nf
13 \fBw\fR [\fB-hlsuw\fR] [\fIuser\fR]
14 .fi

16 .SH DESCRIPTION
17 .sp
18 .LP
19 The \fBw\fR command displays a summary of the current activity on the system,
20 including what each user is doing. The heading line shows the current time, the
21 length of time the system has been up, the number of users logged into the
22 system, and the average number of jobs in the run queue over the last 1, 5 and
23 15 minutes.
24 .sp
25 .LP
26 The fields displayed are: the user’s login name,
27 the name of the tty the user is on,
28 the time of day the user logged on (in ISO time format, weekday name
29 and \fIhours:minutes\fR, or ISO date format), the idle
30 time\(emthat is, the number of minutes since the user last typed anything
31 (in \fIhours:minutes:seconds\fR),
32 the \fBCPU\fR time used by all processes and their
33 children on that terminal (in \fIhours:minutes:seconds\fR),
34 the \fBCPU\fR time used
35 by the currently active processes (in \fIhours:minutes:seconds\fR),
36 and the name and
25 The fields displayed are: the user’s login name, the name of the tty the user
26 is on, the time of day the user logged on (in \fIhours:minutes\fR), the idle
27 time\(emthat is, the number of minutes since the user last typed anything (in
28 \fIhours:minutes\fR), the \fBCPU\fR time used by all processes and their
29 children on that terminal (in \fIminutes:seconds\fR), the \fBCPU\fR time used
30 by the currently active processes (in \fIminutes:seconds\fR), and the name and
37 arguments of the current process.
38 .SH OPTIONS
39 .sp
40 .LP
41 The following options are supported:
42 .sp
43 .ne 2
44 .na
45 \fB\fB-h\fR\fR
46 .ad
47 .RS 6n
48 Suppresses the heading.
49 .RE

51 .sp
52 .ne 2
53 .na
54 \fB\fB-l\fR\fR

new/usr/src/man/man1/w.1 2

55 .ad
56 .RS 6n
57 Produces a long form of output, which is the default.
58 .RE

60 .sp
61 .ne 2
62 .na
63 \fB\fB-s\fR\fR
64 .ad
65 .RS 6n
66 Produces a short form of output. In the short form, the tty is abbreviated, the
67 login time and \fBCPU\fR times are left off, as are the arguments to commands.
68 .RE

70 .sp
71 .ne 2
72 .na
73 \fB\fB-u\fR\fR
74 .ad
75 .RS 6n
76 Produces the heading line which shows the current time, the length of time the
77 system has been up, the number of users logged into the system, and the average
78 number of jobs in the run queue over the last 1, 5 and 15 minutes.
79 .RE

81 .sp
82 .ne 2
83 .na
84 \fB\fB-w\fR\fR
85 .ad
86 .RS 6n
87 Produces a long form of output, which is also the same as the default.
88 .RE

90 .SH OPERANDS
91 .sp
92 .ne 2
93 .na
94 \fB\fIuser\fR\fR
95 .ad
96 .RS 8n
97 Name of a particular user for whom login information is displayed. If
98 specified, output is restricted to that user.
99 .RE

101 .SH EXAMPLES
102 .LP
103 \fBExample 1 \fRSample Output From the \fBw\fR Command
104 .sp
105 .in +2
106 .nf
107 example% \fBw\fR

110 10:54am up 27 day(s), 57 mins, 1 user, load average: 0.28, 0.26, 0.22
111 User tty login@ idle JCPU PCPU what
112 ralph console 7:10am 1 10:05 4:31 w
113 .fi
114 .in -2
115 .sp

117 .SH ENVIRONMENT VARIABLES
118 .sp
119 .LP
120 See \fBenviron\fR(5) for descriptions of the following environment variables

new/usr/src/man/man1/w.1 3

121 that affect the execution of \fBw\fR: \fBLC_CTYPE\fR, \fBLC_MESSAGES\fR, and
122 \fBLC_TIME\fR.
123 .SH FILES
124 .sp
125 .ne 2
126 .na
127 \fB\fB/var/adm/utmpx\fR\fR
128 .ad
129 .RS 18n
130 user and accounting information
131 .RE

133 .SH SEE ALSO
134 .sp
135 .LP
136 \fBps\fR(1), \fBwho\fR(1), \fBwhodo\fR(1M), \fButmpx\fR(4),
137 \fBattributes\fR(5), \fBenviron\fR(5)
138 .SH NOTES
139 .sp
140 .LP
141 The notion of the "current process" is unclear. The current algorithm is "the
142 highest numbered process on the terminal that is not ignoring interrupts, or,
143 if there is none, the highest numbered process on the terminal". This fails,
144 for example, in critical sections of programs like the shell and editor, or
145 when faulty programs running in the background fork and fail to ignore
146 interrupts. In cases where no process can be found, \fBw\fR prints
147 \fB\(mi\fR\&.
148 .sp
149 .LP
150 The \fBCPU\fR time is only an estimate, in particular, if someone leaves a
151 background process running after logging out, the person currently on that
152 terminal is ‘‘charged’’ with the time.
153 .sp
154 .LP
155 Background processes are not shown, even though they account for much of the
156 load on the system.
157 .sp
158 .LP
159 Sometimes processes, typically those in the background, are printed with null
160 or garbaged arguments. In these cases, the name of the command is printed in
161 parentheses.
162 .sp
163 .LP
164 \fBw\fR does not know about the conventions for detecting background jobs. It
165 will sometimes find a background job instead of the right one.

new/usr/src/man/man1m/whodo.1m 1

**
 5224 Thu Dec 19 12:20:25 2013
new/usr/src/man/man1m/whodo.1m
2849 uptime should use locale settings for current time
**

1 ’\" te
2 .\" Copyright (c) 2013 Gary Mills
3 .\" Copyright (c) 2001 Sun Microsystems, Inc. All Rights Reserved.
4 .\" Copyright 1989 AT&T
5 .\" The contents of this file are subject to the terms of the Common Development
6 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
7 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
8 .TH WHODO 1M "Dec 15, 2013"
7 .TH WHODO 1M "Jun 18, 2003"
9 .SH NAME

10 whodo \- who is doing what
11 .SH SYNOPSIS
12 .LP
13 .nf
14 \fB/usr/sbin/whodo\fR [\fB-h\fR] [\fB-l\fR] [\fIuser\fR]
15 .fi

17 .SH DESCRIPTION
18 .sp
19 .LP
20 The \fBwhodo\fR command produces formatted and dated output from information in
21 the \fB/var/adm/utmpx\fR and \fB/proc/pid\fR files.
22 .sp
23 .LP
24 The display is headed by the date, time, and machine name. For each user logged
25 in, device name, user-ID and login time is shown, followed by a list of active
26 processes associated with the user-ID. The list includes the device name,
27 process-ID, CPU minutes and seconds used, and process name.
28 .sp
29 .LP
30 If \fIuser\fR is specified, output is restricted to all sessions pertaining to
31 that user.
32 .SH OPTIONS
33 .sp
34 .LP
35 The following options are supported:
36 .sp
37 .ne 2
38 .na
39 \fB\fB-h\fR\fR
40 .ad
41 .RS 6n
42 Suppress the heading.
43 .RE

45 .sp
46 .ne 2
47 .na
48 \fB\fB-l\fR\fR
49 .ad
50 .RS 6n
51 Produce a long form of output. The fields displayed are: the user’s login name,
52 the name of the tty the user is on, the time of day the user logged in
53 (in ISO time format, weekday name and \fIhours\fR\fB:\fR\fIminutes\fR,
54 or ISO date format),
55 the idle time \(em that is, the time since the user last typed anything
56 (in \fIhours\fR\fB:\fR\fIminutes\fR\fB:\fR\fIseconds\fR),
57 the CPU time used by all processes and their children on that terminal
58 (in \fIhours\fR\fB:\fR\fIminutes\fR\fB:\fR\fIseconds\fR),
59 the CPU time used by the currently active processes
60 (in \fIhours\fR\fB:\fR\fIminutes\fR\fB:\fR\fIseconds\fR),

new/usr/src/man/man1m/whodo.1m 2

61 and the name and arguments of the current process.
51 the name of the tty the user is on, the time of day the user logged in (in
52 \fIhours\fR\fB:\fR\fIminutes\fR), the idle time \(em that is, the time since
53 the user last typed anything (in \fIhours\fR\fB:\fR\fIminutes\fR), the CPU time
54 used by all processes and their children on that terminal (in
55 \fIminutes\fR\fB:\fR\fIseconds\fR), the CPU time used by the currently active
56 processes (in \fIminutes\fR\fB:\fR\fIseconds\fR), and the name and arguments of
57 the current process.
62 .RE

64 .SH EXAMPLES
65 .LP
66 \fBExample 1 \fRUsing the whodo Command
67 .sp
68 .LP
69 The command:

71 .sp
72 .in +2
73 .nf
74 example% whodo
75 .fi
76 .in -2
77 .sp

79 .sp
80 .LP
81 produces a display like this:

83 .sp
84 .in +2
85 .nf
86 Tue Mar 12 15:48:03 1985
87 bailey
88 tty09 mcn 8:51
89 tty09 28158 0:29 sh

91 tty52 bdr 15:23
92 tty52 21688 0:05 sh
93 tty52 22788 0:01 whodo
94 tty52 22017 0:03 vi
95 tty52 22549 0:01 sh

97 xt162 lee 10:20
98 tty08 6748 0:01 layers
99 xt162 6751 0:01 sh
100 xt163 6761 0:05 sh
101 tty08 6536 0:05 sh
102 .fi
103 .in -2
104 .sp

106 .SH ENVIRONMENT VARIABLES
107 .sp
108 .LP
109 If any of the \fBLC_*\fR variables (\fB\fR\fBLC_CTYPE\fR\fB,\fR
110 \fBLC_MESSAGES\fR\fB,\fR \fBLC_TIME\fR\fB,\fR \fBLC_COLLATE\fR\fB,\fR
111 \fBLC_NUMERIC\fR\fB,\fR and \fBLC_MONETARY\fR) (see \fBenviron\fR(5)) are not
112 set in the environment, the operational behavior of \fBtar\fR(1) for each
113 corresponding locale category is determined by the value of the \fBLANG\fR
114 environment variable. If \fBLC_ALL\fR is set, its contents are used to override
115 both the \fBLANG\fR and the other \fBLC_*\fR variables. If none of the above
116 variables is set in the environment, the "C" (U.S. style) locale determines how
117 \fBwhodo\fR behaves.
118 .sp
119 .ne 2

new/usr/src/man/man1m/whodo.1m 3

120 .na
121 \fB\fBLC_CTYPE\fR\fR
122 .ad
123 .RS 15n
124 Determines how \fBwhodo\fR handles characters. When \fBLC_CTYPE\fR is set to a
125 valid value, \fBwhodo\fR can display and handle text and filenames containing
126 valid characters for that locale. The \fBwhodo\fR command can display and
127 handle Extended Unix code (EUC) characters where any individual character can
128 be 1, 2, or 3 bytes wide. \fBwhodo\fR can also handle EUC characters of 1, 2,
129 or more column widths. In the "C" locale, only characters from ISO 8859-1 are
130 valid.
131 .RE

133 .sp
134 .ne 2
135 .na
136 \fB\fBLC_MESSAGES\fR\fR
137 .ad
138 .RS 15n
139 Determines how diagnostic and informative messages are presented. This includes
140 the language and style of the messages, and the correct form of affirmative and
141 negative responses. In the "C" locale, the messages are presented in the
142 default form found in the program itself (in most cases, U.S. English).
143 .RE

145 .sp
146 .ne 2
147 .na
148 \fB\fBLC_TIME\fR\fR
149 .ad
150 .RS 15n
151 Determines how \fBwhodo\fR handles date and time formats. In the "C" locale,
152 date and time handling follow the U.S. rules.
153 .RE

155 .SH EXIT STATUS
156 .sp
157 .LP
158 The following exit values are returned:
159 .sp
160 .ne 2
161 .na
162 \fB\fB0\fR\fR
163 .ad
164 .RS 12n
165 Successful completion.
166 .RE

168 .sp
169 .ne 2
170 .na
171 \fBnon-zero\fR
172 .ad
173 .RS 12n
174 An error occurred.
175 .RE

177 .SH FILES
178 .sp
179 .ne 2
180 .na
181 \fB\fB/etc/passwd\fR\fR
182 .ad
183 .RS 18n
184 System password file
185 .RE

new/usr/src/man/man1m/whodo.1m 4

187 .sp
188 .ne 2
189 .na
190 \fB\fB/var/adm/utmpx\fR\fR
191 .ad
192 .RS 18n
193 User access and administration information
194 .RE

196 .sp
197 .ne 2
198 .na
199 \fB\fB/proc/pid\fR\fR
200 .ad
201 .RS 18n
202 Contains PID
203 .RE

205 .SH SEE ALSO
206 .sp
207 .LP
208 \fBps\fR(1), \fBwho\fR(1), \fBattributes\fR(5), \fBenviron\fR(5)

