new usr/src/cnd/ w w. ¢

R R R R

18927 Sat Nov 30 09:38:52 2013
new usr/src/cnd/ w w. ¢
2849 uptine should use | ocale settings for current time

R R R R R R R

Much of this code is replicated in whodo.c. |If you're
fixing bugs here, then you should probably fix "emthere too.

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License")
6 * You may not use this file except in conpliance with the License
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2013 Gary Mlls
23 *
24 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved
25 * Use is subject to license terns.
26 */
28 [* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
29 [* All nghts Reser ved */
31 /*
32 * University Copyright- Copyright (c) 1982, 1986, 1988
33 * The Regents of the University of California
34 * Al Rights Reserved
35 *
36 * University Acknow edgnent- Portions of this docunent are derived from
37 * software devel oped by the University of California, Berkeley, and its
38 * contributors
39 */
41 /*
42 * This is the new w conmand whi ch takes advantage of
43 * the /proc interface to gain access to the information
44 * of all the processes currently on the system
45 *
46 * This program al so inplenents ’uptine’
47 *
48 * Mai ntenance note
4 *
9 *
*
*

/

54 #include <stdio. h>
55 #include <string. h>
56 #include <stdarg. h>
57 #include <stdlib.h>
58 #incl ude <ctype. h>
59 #include <fcntl. h>
60 #include <tinme.h>

61 #include <errno. h>

new usr/src/cnmd/ w w. ¢

123

125
126

#
#
#
#
#
#
#i
#i
#i
#i

| *

*

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

Use t

*/

static struct utnpx dumy;

#def i ne NMAX
#def i ne LMAX

<sys/types. h>
<ut mpx. h>
<sys/stat.h>
<dirent. h>
<procfs. h>

<l ocal e. h>

<uni std. h>
<sys/ | oadavg. h>
<limts. h>
<priv_utils.h>

/* I proc header file */

he full lengths fromutnpx for user and line

(sizeof (dummy.ut_user))
(sizeof (dummy.ut_line))

/* Print mnimumfield widths. */
#define LOG N_W DTH 8
#define LI NE_W DTH 8
#define LI NE_W DTH 12
#define DI V6O(t) ((t+30)/60) /* x/ 60 rounded */
#i fdef ERR
#undef ERR
#endi f
#defi ne ERR (-1)
#defi ne HSI ZE 256 /* size of process hash table */
#def i ne PROCDI R / proc"
#def i ne | Nl TPROCESS (prd_t)1 /* init process pid */
#defi ne NONE ’n’ /* no state */
#def i ne RUNNI NG r’ /* runnabl e process */
#def i ne ZOWVBI E 'z’ /* zonbi e process */
#define VI SI TED v’ /* marked node as visited */
#defi ne PRI NTF(a) if (printf a <0)
perror((gettext("%: printf failed"), prog)); \
exit(1); }
struct uproc {
pid_t p_| upld /* process id */
char p_state; /* nuneric value of process state */
dev_t p_| ttyd, /* controlling tty of process */
time_t p_ting; /* seconds of user & systemtine */
time_t p_ctinme; /* seconds of child user & sys time */
int p_igi tr, /* 1 = ignores SIGQU T and SIG NT */
char p commni PRARGSZ+1] ; /* command */
char ar gs| PRARGSZ+1] ; /* command |ine argunments */
struct uproc *p_child, /* first child pointer */
p_si bling, / sibling pointer */
p_pgrpl, [pgrp link */
p_link; / hash table chain pointer */
b
/*
* define hash table for struct uproc
* Hash function uses process id
* and the size of the hash tabl e(HSI ZE)
* to determine process index into the table
*
/
static struct uproc pr _ht bl [HSI ZE]

static struct
static time_t

upr oc *findhash(pid_t)
findidle(char *);

new usr/src/cnd/ w w. ¢ 3 new usr/src/cnd/ w w. ¢
127 static void clnarglist(char *); 191 login = (argv[0][0] ==’)
128 static void showt ot al s(struct uproc *); 192 cp = strrchr(argv[O0], '/");
129 static void cal ctotal s(struct uproc *); 193 firstchar :Iog|n’>arg [0][1] : (cp == 0) ? argv[0][O] : cp[1];
130 static void prttime(tinme_t, int); 194 prog = argv[O0];
130 static void prttime(tinme_t, char *);
131 static void prtat(time_t *tine); 196 while (argc > 1) {
132 static void checkampn{char *str); 197 if (argv[1][0] == "-")
198 for (i =1; argv[1][i],; i++) {
133 static char *prog; /* pointer to invocation nanme */ 199 swi tch (argv[1][i]) {
134 static int header = 1; /* true if -h flag: don’t print heading */
135 static int Iflag = 1; /* set if -1 flag; 0 for -s flag: short form*/ 201 case 'h':
136 static char *sel _user; /* login of particular user selected */ 202 header = 0;
137 static char firstchar; /* first char of nane of prog invoked as */ 203 br eak;
138 static int | ogi n; /* true if invoked as |ogin shell */
139 static tine_t now, /* current tinme of day */ 205 case '|’:
140 static tine_t upti nme; /* tinme of |ast reboot & elapsed tinme since */ 206 | flag++;
141 static int nusers; /* nunber of users |ogged in now */ 207 br eak;
142 static time_t idle; /* nunber of mnutes user is idle */ 208 case 's’:
143 static tinme_t j obti me; /* total cpu time visible */ 209 Iflag =
144 static char doi ng[520] ; /* process attached to termnal */ 210 br eak;
145 static tine_t procti nme; /* cpu time of process in doing */
146 static pid_t curpid, enpty; 212 case 'u’:
147 static int add_ti nmes; /* bool ean: add the cpu tinmes or not */ 213 case 'W:
214 firstchar = argv[1][i];
149 #if SIGQU T > SIG NT 215 br eak;
150 #define ACTSIZE SIGQUI T
151 #el se 217 defaul t:
152 #define ACTSIZE SI G NT 218 (voi d) fpnntf(stderr gettext(
153 #endi f 219 "%: bad flag °/s\n")
220 prog, argv[1]);
155 int 221 exit(1);
156 main(int argc, char *argv[]) 222 }
157 { 223 }
158 struct utnpx *ut; 224 } else {
159 struct utnpx *ut npbegi n; 225 if (lisalnum(argv[1][O0]) || argc > 2) {
160 struct utnpx *ut npend; 226 (void) fprintf(stderr, gettext(
161 struct utnpx *utp; 227 "usage: % [-hlsuw] [user]\n"), prog);
162 struct uproc *up, *parent, *pgrp; 228 exit(1);
163 struct psinfo i nfo; 229 } else
164 struct sigaction actinfo[ACTSI ZE] ; 230 sel _user = argv[1];
165 struct pstatus statinfo; 231
166 size_t si ze; 232 argc--; argv++;
167 struct stat sbuf; 233 }
168 DR *dirp;
169 struct dirent *dp; 235 I *
170 char pnane[64] ; 236 * read the UTMP_FI LE (contains information about each | ogged in user)
171 char *f nane; 237 */
172 int procfd; 238 if (stat(UTMPX_FILE, &sbuf) == ERR) {
173 char *cp; 239 (void) fpri ntf(st derr gettext("%: stat error of %: %\n"),
174 int i; 240 prog, UTMPX_FILE, strerror(errno));
175 int days, hrs, mns; 241 exit(1);
176 int entries; 242 }
177 doubl e | oadavg[3] ; 243 entries = sbuf.st_size / sizeof (struct futnpx);
244 size = sizeof (struct utnpx) * entries;
179 /* 245 if ((ut = malloc(size)) == NULL) {
180 * This program needs the proc_owner privilege 246 (void) fprintf(stderr, gettext("%: nalloc error of ¥%: %\n"),
181 */ 247 prog, UTMPX_FILE, strerror(errno));
182 (void) __init_suid_priv(PU CLEARLIM TSET, PRIV_PROC_OMER, 248 exit(1);
183 (char *)NULL); 249 }
185 (void) setlocal e(LC_ALL, ""); 251 (voi d) utnmpxname(UTMPX_FI LE) ;
186 #if ! defined(TEXT_DOVAI N)
187 #define TEXT_DOVAI N "SYS_TEST" 253 ut npbegi n = ut;
188 #endi f 254 utmpend = (struct utnpx *)((char *)utnpbegin + size);
189 (voi d) textdomai n(TEXT_DOVAIN);
256 setutxent();

new usr/src/cnd/ w w. ¢

257 while ((
258
259 endut xen

261 (void) t

263 if (head
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

295
296
297
298
299
300
301
302
303
304

306
307

309
310
311
312
312
313
314
315
316
315
317

319
320

ut < utnpend) && ((utp = getutxent()) 1= NULL))
(void) mencpy(ut++, utp, sizeof (*ut

t()

i me(&now); /* get current time */

er) { /* print a header */

prtat(&now);

for (ut = utnpbegin; ut < utnpend; ut++) {

if (ut->ut_type == USER_PROCESS) {

i f (I nonuser(*ut))
nusers++;

} else if (ut->ut_type == BOOT_TIME) {
uptime = now - ut->ut_xtinmne;
uptime += 30;
days = uptine / (60*60*24);
uptime % (60*60*24);
hrs = uptime / (60*60);
uptime % (60*60);
mns = uptime / 60;

PRI NTF((gettext(" up")));
if (days > 0)
PRI NTF((gettext
) (S) "), days));
if (hrs>0&&mns>) {
PRI NTF((" 9%2d: 992d,", hrs, mns));
} else {
if (hrs >0)
PRI NTF((get t ext (
" %l hr(s),"), hrs));
if (mns >0
PRI NTF((get text ()
} n(s),"), mns));

}

ut = utnpbegin; /* rew nd utnp data */
PRI NTF((((nusers ==

gettext (" 9 user") gettext (" 9% users")), nusers));
* Print 1, 5, and 15 nminute |oad averages.
*/
(voi d) getl oadavg(l oadavg, 3);
PRI NTF((gettext (", |oad average: % 2f, % 2f, %2f\n"),
| oadavg[LOADAVG 1M N], | oadavg[LOADAVG 5M N,
| oadavg[LOADAVG_15M N]))
if (firstchar == "u") /* uptinme command */
exit(0);
if (1fl ag)
NTF((dcgettext (NULL, "User tty "
"l ogi n@ idle JCPU PCPU what\ n",
LC TIM)));
"login@ idle JCPU PCPU what\n", LC TIME)));
} else {
PRI NTF((dcgettext(NULL
*User tty idle what \ n",
LC TIMNE)));
" User tty idle what\n", LC_TIME)));
}
if (fflush(stdout) == EOF) {
perror((gettext("%: fflush failed\n"), prog));

new usr/src/cnd/ w w. ¢

321
322
323 }

325 /*

326 * | oop
327 * and b
328 */

329 if (!(di
330

331

332

333 }

335 while ((
336
337
338 retry:
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

357
358
359
360
361
362
363
364
365

367
368

370
371

373

375
376

378
379

381
382
383
384
385
386

exit(1);

through /proc, reading info about each process
uild the parent/child tree

rp = opendir(PROCDIR))) {

(void) fprintf(stderr, gettext("%s:
prog, PROCDIR, strerror(errno));

exit(1);

coul d not open %s: 9%s\n"),

dp = readd|r(d|rp)) I'= NULL) {
it (dp->d_narme[0] == ".")
conti nue;

(void) sprintf(pname, "%/ %/",
fnane = pnane + strl en(pnarre)
(void) strcpy(fname, "psinfo)'
if ((procfd = open(pname, O RDONLY)) < 0)
conti nue;
if (read(procfd, &jnfo
int err = errno;
(voi d) close(procfd)
if (err == GAl N)
goto retry;
if (err !'= ENCENT)
(void) fprintf(stderr, gettext(
"U: read() failed on %: % \n"),
prog, pnane, strerror(err));

PROCDI R, dp->d_nane);

sizeof (info)) != sizeof (info)) {

conti nue;
}
(void) close(procfd);

up = findhash(info.pr_pid);

up->p_ttyd = info.pr_ttydev;

up->p_state = (info.pr_nlw == 0? ZOWBI E :

up->p_time = 0;

up->p_ctime = 0;

up->p_igintr = 0;

(void) strncpy(up->p_comm info.pr_fnang,
si zeof (info.pr_fnane));

up->p_args[0] = O;

RUNNI NG) ;

if (up->p_state != NONE && up->p_state != ZOWBIE) {
(void) strcpy(fname, "status");

/* now we need the proc_owner privilege */
(void) __priv_bracket (PRI V_ON);

procfd = open(pname, O RDONLY);

/* drop proc_owner pri |Iege after open */
(void) __priv_bracket (PRI V_OFF);
if (procfd < 0)

continue;

if (read(procfd, &statinfo,
I = sizeof (statinfo)) {
int err = errno;
(void) cl ose(procfd)
if (err == EAGAIN)
goto retry,;

si zeof (statinfo))

new usr/src/cnd/ w w. ¢

387
388
389
390
391
392
393

395
396
397
398

400

402
403

405

407
408

410
411

413
414
415
416
417
418
419
420
421
422
423
424
425

427
428
429

431
432
433
434
435
436
437
438
439
440
441
442
443
444

446
447
448
449
450
451
452

if (err != ENCENT

)
(void) fprintf(stderr, gettext(

"U: read() failed on %: % \n"),

prog, pnane, strerror(err));
continue;

%voi d) cl ose(procfd);

up->p_tinme = statinfo.pr_utine.tv_sec +
statinfo.pr_stine.tv_sec; /* seconds */

up->p_ctime = statinfo.pr_cutine.tv_sec +
statinfo.pr_cstine.tv_sec;

(void) strcpy(fname, "sigact");

/* now we need the proc_owner privilege */

(void) __priv_bracket(PRIV_ON);

procfd = open(pnanme, O RDONLY);

/* drop proc_owner pri |Iege after open */
(void) __priv_bracket (PRI V_CFF);

if (procfd < 0)
conti nue;

if (read(procfd, actinfo, sizeof (actinfo))
1= sizeof (actlnfo)) {
int err = errno
(void) cl ose(procfd)
if (err == EAGAIN)
goto retry;
if (err I'= ENCENT)

(void) fprintf(stderr, gettext(

"U%: read() failed on %: % \n"),

prog, pnane, strerror(err));
conti nue;

%voi d) cl ose(procfd);

up->p_igintr =
actinfo[SIG NT-1].sa_handler == SI G | GN &&
actinfo[SIGUI T-1].sa_handler == SIG_ | G\,
/*

* Process args.
*/

up->p_args[0] =
clnarglist(info. pr _psargs);
(void) strcat(up->p_args, info.pr_psargs);
if (up->p_args[0] == 0 ||
up->p_args[0] =="-" & up->p_args[1l] <= ' |]
up->p_args[0] =="7") {
(void) strcat(up->p_args, " (");
(void) strcat(up->p_args, up->p_conm);
(void) strcat(up->p_args, ")");

-

N

link pgrp together in case parents go away
Pgrp chain is a single linked |list originating
fromthe pgrp | eader to its group nmenber.

*

/
if (info.pr_pgid !=info.pr_pid) {

_ /* not pgrp |eader */
pgrp = findhash(info.pr_pgid);

new usr/src/cnd/ w w. ¢

453
454
455
456

458
459
460
461
462
463
464
465
466

468
469

471
472

474
475
476
477
478
479
480
481
482

484
485

487
488
489
488
490
491
492
493
494
492
495
496
494
497
498
499

501
502
503
504
505

507
508
509
507
508
509
510
511
510

up->p_pgrpl = pgrp->p_pgrpl;
pgr p->p_pgrpl = up;
parent = findhash(info.pr_ppid);
/* if this is the new nenber, link it in */
if (parent->p_upid !'= I Nl TPROCESS) {
if (parent->p_child)
up->p_si bling = parent->p_child;
up->p_child = 0;

}
parent->p_child = up;
}

/* revert to non-privileged user after opening */
(void) __priv_relinquish();

(void) closedir(dirp);
(void) tinme(&ow);

/*

* | oop through utnpx file, printing process info
* about each | ogged in user

*

/* get current time */

for (ut = utnpbegin; ut < utnpend; ut++) {
if (ut->ut_type != USER _PROCESS)

continue;
if (sel_user &&strncrrp(ut >ut_nane, sel _user, NMAX) != 0)
conti nue; we' re | ooki ng for sonebody else */

int login nanme of the user */
PRINTF(("%*.*s ", LOG N WDTH, NVAX, ut->ut_nane));

/* print tty user is on */
if (Iflag) {
PRINTF(("%*.*s ", LINE_WDTH, LMAX, ut->ut_|ine)
PRINTF(("% *.*s", LINE_WDTH, LMAX, ut->ut_line))
} else {
if (ut->ut_line[0] =="'p & ut->ut_line[l] == "t
ut->ut_line[2] =="'s" & ut->ut_line[3] == "/
PRINTF(("%*.*s ", LINE_WDTH, LMAX
&ut->ut _line[4]));
PRI NTF(("% *.3s", LMAX, &ut->ut_line[4]));
} else {
PRINTF(("%*.*s ", LINE_WDTH, LMAX
PRINTF(("% *.*s", LINE_WDTH, LMAX
ut->ut_line));
}
}
/* print when the user |ogged in */
if (Iflag) {
time_t tims= ut->ut_xtinme;
prtat(&im;
}

/* prlnt idle time */
idle = findidl e(ut->ut_line);
prttime(idl e, 8);
if (idle >= 36 * 60) {
PRI NTF((dcget t ext (NULL, "%ddays ",
(idle + 12 * 60) / (24 * 60)));

rttinme(idle, " ");
showtota s(f n hash(ut >ut _pid));

LC_TI ME),

} else

new usr/src/cnd/ w w. ¢

511
512
513
514
515
516
517

519
520
521
522
523

}
/*

*
*

*

*/

}

if (fclose(stdout) == EOF) {
perror((gettext("%: fclose failed"), prog));
exit(1);

}
return (0);

Prints the CPU time for all processes & children,
and the cpu tinme for interesting process,
and what the user is doing.

524 static void
525 showt ot al s(struct uproc *up)

526 {
527 jobtime = 0O;
528 proctime = 0;
529 enpty = 1;
530 curpid = -1;
531 add_tinmes = 1;
533 cal ctotal s(up);
535 if (Iflag) {
536 /* print CPU time for all processes & children */
537 /* and need to convert clock ticks to seconds first */
538 prttime((time_t)jobtine, 8);
540 prttime((time_t)jobtime, " ");
540 /* print cpu tine for interesting process */
541 /* and need to convert clock ticks to seconds first */
542 prttime((time_t)proctine, 8);
544 prttime((time_t)proctine, " ");
543
544 /* what user is doing, current process */
545 PRI NTF(("% . 32s\n", doing));
547 PRINTF((" % .32s\n", doing));
546 }
__unchanged_portion_onitted_
642 #define HR (60 * 60)
643 #define DAY (24 * HR)
644 #define MON (30 * DAY)
646 /*
647 * prttime prints a tinme in days, hours, mnutes, or seconds.
648 * The second argunent is the field w dt h.
649 * prttime prints a tinme in hours and m nutes or mnutes and seconds.
650 * The character string tail is printed at the end, obvious
651 * strings to pass are "", " ", or "ant.
649 */
650 static void
651 prttine(time_t ti int wdth)
654 prttinme(tinme_t ti m char *tail)
652 {
653 char val ue[12];
654 char *unit;
656 if (tim>= 36 * HR {
657 (void) snprintf(value, sizeof (value), "%",
658 (tim+ (DAY / 2)) / (DAY));
659 unit = dcgettext(NULL, "days", LC TIME);
660 } elseif (tim>= 36 * 60) {
661 (void) snprintf(value, sizeof (value), "%",
662 (tim+ (HR/ 2)) / (HR);

new usr/src/cnmd/ w w. ¢

663 unit = dcgettext(NULL, "hours", LC TIME);
664 } else if (tim>= 60) {
665 (void) snprintf(value, sizeof (value), "%",
666 (tim+ 30) / 60);
667 unit = dcgettext(NULL, "mins", LC TIME);
656 if (tim>= 60)
657 PRI NTF((dcget t ext (NULL, "98d: %92d", LC TIME),
658 (int)tim 60, (int)tin?0));
668 } elseif (tim> 0)
669 (void) snprintf(value, sizeof (value), "%", (int)tim;
670 unit = dcgettext(NULL, "secs", LCTI NE)
660 PRI NTF((dcget t ext (NULL, " %Rd", LC_ Ti ME), (int)tim);
671 } else {
672 (voi d) st rcpy(val ue, "0");
673 unit = ;
662 PRI NTF((" "))
674 }
675 width -= 2 + strlen(val ue);
676 width = (width > 1) ? width : 1;
677 PRINTF(("% %*s ", value, width, unit));
664 PRINTF(("%", tail));
678 }
680 /*
681 * prints a locale-specific time given a pointer to a time of day
668 * prints a 12 hour tinme given a pointer to a tinme of day
682 */
683 static void
684 prtat(time_t *time)
685 {
686 struct tm *p;
688 p localtine(time);
689 if (now - *time <= 18 * HR) {
690 char tinmestr[50];
692 (void) strftime(tinmestr, sizeof (tinestr),
693 "X, p);
694 PRINTF(("% 11s ", timestr));
679 dcgettext (NULL, "% : 9%V " %", LC TIME), p);
680 checkanpn(tinmestr);
681 PRINTF((" %", timestr));
695 } else if (now- *tine <= 7 * DAY) {
696 char weekdayti ne[20];
698 (voi d) strftime(weekdaytine, sizeof (weekdaytine),
699 ' vl O/b", p);
700 PRI NTF(("% 11s ", weekdaytine));
686 dcgettext (NULL, "% % %", LC_TIME), p);
687 checkanmpn{ weekdayti nme);
688 PRI NTF((" %", weekdaytine));
701 } else {
702 char nonthti e[20] ;
704 (v0|d) strftime(nonthtine, sizeof (nmonthtine),
705 9w, p);
706 PRI NTF((% 11s ", monthtime)):
693 dcgett ext (NULL, "%%%", LC TIME), p);
694 PRINTF((" %", nonthtine));
707 }
708 }
__unchanged_portion_onitted_
742 |* replaces all occurences of AMPMwi th am pm */
743 static void
744 checkanpm(char *str)

10

new usr/src/cnd/ w w. ¢

745 {
746
747
748
749
750
751
752 }

char *anpm
while ((ampm = strstr(str, "AM)) != NULL ||
(anpm = strstr(str, "PM)) != NULL) {
*anmpm = t ol ower (*anpm);
(anpmtl) = tol ower ((anpmtl));

11

new usr/ src/ cnd/ whodo/ whodo. ¢

R R R R

20882 Sat Nov 30 09:38:52 2013
new usr/ src/ cnd/ whodo/ whodo. ¢
2849 uptine should use | ocale settings for current time

R R R R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright (c) 2013 Gary Mlls

23 *

24 * Copyright 2009 Sun M crosystens, Inc. Al rights reserved.

25 * Use is subject to license terns.

26 */

28 [* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */

29 [* All Rl ghts Reser ved */

31 /*

32 * University Copyright- Copyright (c) 1982, 1986, 1988

33 * The Regents of the University of California

34 * Al Rights Reserved

35 *

36 * University Acknow edgnent- Portions of this docunent are derived from
37 * software devel oped by the University of California, Berkeley, and its
38 * contributors.

39 */

41 /*

42 * This is the new whodo conmand whi ch takes advantage of

43 * the /proc interface to gain access to the information

44 * of all the processes currently on the system

45 *

46 * Maintenance note:

47 *

48 * Much of this code is replicated in wec. |If you're

49 * fixing bugs here, then you should probably fix 'emthere too.

50 */

52 #include <stdio. h>

53 #include <string. h>

54 #include <stdlib.h>

55 #include <ctype. h>

56 #include <fcntl. h>

57 #include <tine.h>

58 #i ncl ude <errno. h>

59 #include <sys/types. h>
60 #incl ude <ut nmpx. h>

61 #include <sys/utsnane. h>

new usr/ src/ cnd/ whodo/ whodo. ¢

104

121
122
123
124
125
126
127

129
130
131
132
133
134
135
136
136
137
138

#i ncl ude <sys/stat. h>
#i ncl ude <sys/ nkdev. h>
#i ncl ude <dirent. h>
#i ncl ude <procfs. h> /* I proc header file */
#i ncl ude <sys/wait.h>
#i ncl ude <l ocal e. h>
#i ncl ude <uni std. h>
#include <limts. h>
#include <priv_utils.h>
/*
*/Use the full lengths fromutnpx for user and line.
*
#def i ne NVAX (sizeof (((struct utmpx *)O0)->ut_user))
#def i ne LMAX (sizeof (((struct utmpx *)0)->ut_line))
/* Print minimumfield widths. */
#define LOG N_ W DTH
#defi ne LI NE_W DTH 8
#defi ne LI NE_W DTH 12
#define DI V6O(t) ((t+30)/60) /* x/60 rounded */
#i fdef ERR
#undef ERR
#endi f
#defi ne ERR (-1)
#def i ne DEVNAMELEN 14
#def i ne HSI ZE 256 /* size of process hash table */
#def i ne PROCDI R "/ proc"
#defi ne | Nl TPROCESS (pid_t)1 /* init process pid */
#def i ne NONE n /* no state */
#def i ne RUNNI NG r’ /* runnabl e process */
#defi ne ZOWVBI E 'z /* zonbi e process */
#def i ne VI SI TED v’ /* marked node as visited */
static int ndevs; /* nunber of configured devices */
static int maxdev; /* slots for configured devices */
#define DNI NCR 100
static struct devl { /* device list */
char dnanme[DEVNAMELEN ; /* device nane */
dev_t ddev; /* devi ce nunber */
} *devl;
__unchanged_portion_onitted_
/*
* define hash table for struct uproc
* Hash function uses process id
* and the size of the hash tabl e(HSI ZE)
* to determne process index into the table.
*
/
static struct uproc pr _ht bl [HSI ZE] ;
static struct uproc *findhash(pid_t);
static time_t findidle(char *);
static void clnarglist(char *);
static void showproc(struct uproc *);
static void showt ot al s(struct uproc *);
static void cal ctotal s(struct uproc *);
static char *getty(dev_t);
static void prttime(tinme_t, int);
static void prttime(tinme_t, char *)
static void prtat(time_t *);
static void checkanmpn(char *);

new usr/ src/ cnd/ whodo/ whodo. ¢ 3 new usr/ src/ cnd/ whodo/ whodo. ¢
139 static char *prog;
140 static int header = 1; /* true if -h flag: don’t print heading */ 206 case '|’:
141 static int Iflag = 0O; /* true if -1 flag: w command fornmat */ 207 | flag++;
142 static char *sel _user; /* login of particular user selected */ 208 br eak;
143 static tine_t now, /* current tinme of day */
144 static tinme_t upti nme; /* tinme of |ast reboot & elapsed tinme since */ 210 defaul t:
145 static int nusers; /* nunber of users logged in now */ 211 (void) printf(gettext(
146 static tine_t idle,; /* nunber of mnutes user is idle */ 212 "usage: % [-hl] [user]J\n"),
147 static tine_t j obti ne; /* total cpu time visible */ 213 prog);
148 static char doi ng[520] ; /* process attached to termnal */ 214 exit(1);
149 static tinme_t proctine; /* cpu time of process in doing */ 215 }
150 static int enpty; 216 }
151 static pid_t curpid; 217 } else {
218 if (Yisalnum(argv[1][O0]) || argc > 2) {
153 #if SIGQUIT > SIA NT 219 (void) printf(gettext(
154 #define ACTSIZE SIGQUI T 220 "usage: % [-hl] [user]\n"), prog);
155 #el se 221 exit(1);
156 #define ACTSI ZE S| G NT 222 } else
157 #endi f 223 sel _user = argv[1];
224 }
159 int 225 argc--; argv++;
160 mai n(int argc, char *argv[]) 226 }
161 {
162 struct utnpx *ut; 228 /*
163 struct utnpx *ut npbegi n; 229 * read the UTMPX_FILE (contains infornation about
164 struct utnpx *ut npend; 230 * each | ogged in user)
165 struct utnpx *ut p; 231 */
166 struct tm *tm 232 if (stat(UTMPX_FILE, &sbuf) == ERR) {
167 struct uproc *up, *parent, *pgrp; 233 (void) fprintf(stderr, gettext("%: stat error of %: %\n"),
168 struct psinfo i nfo; 234 prog, UTMPX_FILE, strerror(errno));
169 struct sigaction actinfo[ACTSI ZE] ; 235 exit(1);
170 struct pstatus statinfo; 236
171 size_t si ze; 237 entries = sbuf.st_size / sizeof (struct futnpx);
172 struct stat shuf; 238 size = sizeof (struct utnpx) * entries;
173 struct utsnanme uts;
174 DR *dirp; 240 if ((ut = malloc(size)) == NULL) {
175 struct dirent *dp; 241 (void) fprintf(stderr, gettext("%: nalloc error of %: %\n"),
176 char pnane[64] ; 242 prog, UTMPX_FILE, strerror(errno));
177 char *f nane; 243 exit(1);
178 int procfd; 244 }
179 int i
180 int days, hrs, mns; 246 (voi d) utnpxnane(UTMPX_FI LE);
181 int entries;
248 ut npbegin = ut;
183 /* 249 /* LINTED pointer cast may result in inproper alignnent */
184 * This program needs the proc_owner privil ege 250 utnpend = (struct utnpx *)((char *)utnpbegin + size);
185 */
186 (void) __init_suid_priv(PUCLEARLI M TSET, PRI V_PROC OMNER, 252 setutxent();
187 (char *)NULL); 253 while ((ut < utnpend) &% ((utp = getutxent()) !'= NULL))
254 (void) mencpy(ut++, utp, sizeof (*ut));
189 (void) setlocal e(LC_ALL, ""); 255 endut xent () ;
190 #if !defined(TEXT_DOVAI N)
191 #define TEXT_DOMATN "SYS TEST" 257 (void) time(&now); /* get current time */
192 #endi f
193 (voi d) textdomai n(TEXT_DOVAIN) ; 259 if (header) { /* print a header */
260 if (Iflag) { /* w conmand format header */
195 prog = argv[O0]; 261 prtat (&now) ;
262 for (ut = utnpbegin; ut < utnpend; ut++) {
197 while (argc > 1) { 263 if (ut->ut_type == USER _PROCESS) {
198 if (argv[1][0] =="-") { 264 nuser s++;
199 for (i =1; argv[1][i]; i++) { 265 } else if (ut->ut_type == BOOT_TIME) {
200 switch (argv[1][i]) { 266 uptime = now - ut->ut_xtineg;
267 uptime += 30;
202 case 'h': 268 days = uptime / (60*60*24);
203 header = 0; 269 uptinme % (60*60*24);
204 br eak; 270 hrs = uptinme / (60*60);

new usr/ src/ cnd/ whodo/ whodo. ¢

271
272

274
275
276
277
278
279

281
282
283
284
285
286
286
287
288

290
291
292
293
294
294
295

297
298
299
300
301
302
303

305
306
307
308
309
310
311
312
313

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

retry:

}

/*

* |l oop through /proc, reading info about each process
* and build the parent/child tree

*

uptime % (60*60);
mns = uptinme / 60;

(voi d) printf(dcgettext (NULL,
up % day(s), %1 hr(s), "
"%l mn(s)", LC_TIM),
days, hrs, m ns);

}

ut = utnpbegin; /* rewind utnp data */
(void) pri ntf(dcgett ext (NULL,

%l user(s)\n", LC_TI NE), nusers);
(voi d) printf(dcgett ext (NULL, " User tty "
"l ogi N@ idle JCPU PCPU what\ n",
LC TIME));
"login@ idle JCPU PCPU what\n", LC TIM));

/* standard whodo header */
char date_buf[100];

} else {

/*
* print current tine and date
*

(v0| d) strftine(date_buf,
"oe", localtime(&no
dcgettext (NULL, "oC', LC TI ME) ,

(voi d) printf("o/s\n", dat e _buf);

si zeof (date_buf),

| ocal ti me(&now));
/*

* print system nane

*

(v0| d) uname(&uts);

(void) printf("%\ n", uts. nodenane) ;

/
if (!(dirp = opendir(PROCDI R)))

(void) fprintf(stderr,
prog, PROCDIR, strerror(errno));

exit(1);

}

while ((dp = readdir(dirp)) != NULL) {
if (dp->d_nane[0] == ".")

conti nue;

(void) snprintf(pnanme, sizeof (pnane),
"%/ %s/", PROCDI R, dp->d_nane);
fname = pnane + strl en(pnarre)
(void) strcpy(fnarme, "psinfo")'
if ((procfd = open(pnanme, O RDONLY)) < 0)
conti nue;
if (read(procfd, & nfo, sizeof (info)) != sizeof (info)) {
int err = errno;
(void) close(procfd);
if (err == EAGAIN)
goto retry;
if (err I'= ENCENT)
(void) fprintf(stderr, gettext(
"Us: read() failed on %: 9%\n"),
prog, pnane, strerror(err));
conti nue;

gettext("%: could not open %: %\n"),

new usr/ src/ cnd/ whodo/ whodo. ¢

335 }

336 (void) close(procfd);

338 up = findhash(info.pr_pid);

339 up->p_ttyd = info.pr ttydev

340 up->p_state = (info.pr_nlwp == 0? ZOVBIE : RUNNI NG);
341 up->p_tine = 0;

342 up->p_ctine = 0;

343 up->p_igintr = 0;

344 (void) strncpy(up->p_comm info.pr_fnang,

345 si zeof (info.pr_fnane));

346 up->p_args[0] = O;

348 if (up->p_state != NONE && up->p_state != ZOWBIE) {
349 (void) strcpy(fname, "status");

351 /* now we need the proc_owner privilege */
352 (void) __priv_bracket (PRI V_ON);

354 procfd = open(pnanme, O RDONLY);

356 /* drop proc_owner privilege after open */
357 (void) __priv_bracket (PRI V_OFF);

359 if (procfd < 0)

360 conti nue;

362 if (read(procfd, &statinfo, sizeof (statinfo))
363 I = sizeof (statinfo)) {

364 int err = errno;

365 (void) cl ose(procfd)

366 if (err == GAl N)

367 goto retry;

368 if (err I'= ENCENT)

369 (void) fprintf(stderr, gettext(
370 "U: read() failed on %: % \n"),
371 prog, pname, strerror(err));
372 continue;

373 }

374 (void) close(procfd);

376 up->p_tinme = statinfo.pr_utine.tv_sec +

377 statinfo.pr_stine.tv_sec;

378 up->p_ctime = statinfo.pr_cutine.tv_sec +
379 statinfo.pr_cstine.tv_sec;

381 (void) strcpy(fname, "sigact");

383 /* now we need the proc_owner privilege */
384 (void) __priv_bracket(PRIV_ON);

386 procfd = open(pnanme, O RDONLY);

388 /* drop proc_owner privilege after open */
389 (void) __priv_bracket (PRI V_OFF);

391 if (procfd < 0)

392 conti nue;

393 if (read(procfd, actinfo, sizeof (actinfo))
394 I'= sizeof (actinfo)) {

395 int err = errno;

396 (void) close(procfd);

397 if (err == EAGAIN)

398 goto retry;

399 if (err T'= ENCENT)

400 (void) fprintf(stderr, gettext(

new usr/ src/ cnd/ whodo/ whodo. ¢

new usr/ src/ cnd/ whodo/ whodo. ¢

401 "%: read() failed on %: % \n"),
402 prog, pnane, strerror(err));
403 continue;

404 }

405 (void) close(procfd);

407 up->p_igintr =

408 actinfo[SI G NT- 1] sa_handler == SIG I GN &&
409 actinfo[SIGQU T-1].sa_handl er == SIG | G\;
411 up->p_args[0] = O;

413 /*

414 * Process args if there’s a chance we’'ll print it.
415 */

416 if (Iflag) { /* w command needs args */

417 clnarglist(info.pr_psargs);

418 (void) strcpy(up->p_ar gs info.pr_psargs);
419 if (up->p_args[0] == 0 ||

420 up->p_args[0] == "-"

421 up->p_args[1] <= " ||

422 up->p_args[0] == "'7?")

423 (void) strcat(up->p_args, ")
424 (void) strcat(up->p_args, up->p_con);
425 (void) strcat(up->p_args, ")");
426 }

427 }

429 }

431 /*

432 * link pgrp together in case parents go away

433 * Pgrp chain is a single linked list originating

434 * fromthe pgrp leader to its group nenber.

435 */

436 if (info.pr pgld'—lnfo pr_pid) { /* not pgrp |eader */
437 pgrp = fi ndhash(l nfo. pr_pgid);

438 up->p_pgrplink = pgrp->p_pgrplink;

439 pgr p->p_pgrplink = up;

440

441 parent = findhash(info.pr_ppid);

443 /* if this is the new nenber, link it in */

444 if (parent->p_upid != I Nl TPROCESS) {

445 if (parent->p_child) {

446 up->p_si bling = parent->p_child;

447 up->p_child = 0;

448 }

449 parent->p_child = up;

450 }

452 }

454 /* revert to non-privileged user */

455 (void) __priv_relinquish();

457 (void) closedir(dirp);

458 (void) tine(&ow); /* get current time */

460 *

461 * | oop through utnpx file, printing process info

462 * about each | ogged in user

463 */

464 for (ut = utnpbegin; ut < utnpend; ut++) {

465 time_t tim

467 if (ut->ut_type != USER_PROCESS)

468 conti nue;

469 if (sel_| user &&strncnp(ut >ut _nane, sel_user, NVAX) != 0)
470 /* we'Te | ooki ng for sonebody el se */
471 if (Iflag) { /* -1 flag format (w command) *

472 /* print login nane of the user */

473 (v0|d) printf("%=*.*s ", LOG N_WDTH, (int)NMAX,
474 ut - >ut _nane) ;
476 /* print tty user is on */
477 (void) printf("%*.*s ", LINE WDTH, (i t)leAx
477 (void) printf("%*.*s", LINEWDTH, (int)L
478 ut->ut_line);
480 /* print when the user |ogged in */
481 tim= ut->ut_xtine;
482 (void) prtat(&im;
484 /* prlnt idletim */
485 idle = findidl e(ut >ut _line);
486 prttime(idle, 8
486 if (idle >= 36*60)
487 (void) printf(dcgettext(NULL, "9%ddays ",
488 LC TIME), (idle + 12 * 60) / (24 * 60));
489 el se
490 prttime(idle, " ");
487 showt ot al s(fi ndhash((pid_t)ut >ut _pid));
488 } else { /* standard whodo fo */
489 tlm— ut - >ut _xtine;
490 m-IocaItlma(&tln”);
491 (void) printf("\n%*.*s %*.*s 9. 1d: %2. 2d\ n",
492 LINE_ WDTH, (int)LMAX, ut->ut_line,
493 L(IEINWDTH (i nt) NMAX, ut->ut_nane, tm>tm hour,
494 tm>tmmnin
495 shov\proc(flndhash((pld t)ut->ut_pid));
496 }
497 }
499 return (0);
500 }
__unchanged_portion_onitted_
543 | *
544 * Used for -1 flag (w command) fornat.
545 * Prints the CPU time for all processes & children,
546 * and the cpu tine for interesting process,
547 * and what the user is doing.
548 */

549 static void
550 showt ot al s(struct uproc *up)

551 {

552 jobtime = 0;

553 proctime = 0;

554 empty = 1;

555 curpid = -1;

556 (void) strcpy(doing, "-"); /* default act: nornally never prints */
557 cal ctotal s(up);

559 /* print CPUtime for all processes & children */

560 /* and need to convert clock ticks to seconds first */
561 prttime((tinme_t)jobtime, 8);

565 prttime((time_t)jobtine, " ");

563 /* print cpu time for interesting process */

564

/* and need to convert clock ticks to seconds first */

new usr/ src/ cnd/ whodo/ whodo. ¢ 9 new usr/ src/ cnd/ whodo/ whodo. ¢

565 prttime((time_t)proctine, 8) 776 {

569 prttime((time_t)proctine, ") 777 struct tm *p;

567 /* what user is doing, current process */ 779 p local tinme(tinme);

568 (void) printf("%.32s\n", doing); 780 if (now - *time <= 18 * Hm {

572 (void) printf(" %.32s\n", doing); 781 char timestr[50];

569 }

__unchanged_portion_omtted_ 783 (void) strftime(timestr, sizeof (tinestr)

784 "X, ;

732 #define HR (60 * 60) 785 printf("%11s ", timestr);

733 #defi ne DAY (24 * HR) 771 dcgettext (NULL, " %: 9%V " %", LC TIME), p);

734 #define MON (30 * DAY) 772 checkanpn(ti mestr)
773 (void) printf("9%", tinmestr)

736 | * 786 } else if (now- *tine <= 7 * DAY) {

737 * prttime prints a tinme in days, hours, mnutes, or seconds. 787 char weekdayti me[20]

738 * The second argunent is the field width

741 * prints a time in hours and mnutes or mnutes and seconds. 789 (v0|d) strftlnE(weekdaytlne si zeof (weekdayti ne)

742 * The character string 'tail’ is printed at the end, obvious 790

743 * strings to pass are "", " ", or "ani. 791 prlntf(Wblls ", weekdayti nme)

739 */ 778 dcgett ext (NULL, "% % %", LC_TIME), p)

740 static void 779 checkanmpn{ weekdayt i me)

741 prttime(time_t tim int width) 780 (void) printf(" %", weekdaytine)

746 prttime(time_t tim char *tail) 792 } else {

742 { 793 char nont hti me[20]

743 char val ue[12] ;

744 char *unit; 795 (void) strftime(nonthtine, sizeof (nonthtine)
796 "% W, p);

746 if (tim>= 36 * HR) { 797 printf("%11s ", nonthtine);

747 (voi d) snprlntf(value, si zeof (value), "%", 785 dcget t ext (NULL, “9@9@9@" LC_TIME), p)

748 (tim+ (DAY / 2)) / (DAY)); 786 (void) printf(" 9", nDnthtlnE)

749 unit = dcgettext(NULL, "days", LC TIME); 798 }

750 } else if (tim>= 36 * 60) { 799 }

751 (void) snprintf(value, sizeof (value), "%l", ______unchanged_portion_omtted_

752 (tim+ (HR/ 2)) /I (HR);

753 unit = dcgettext(NULL, "hours", LC TIM); 834 /* replaces all occurences of AMPM with am pm */

754 } else if (tim>= 60) { 835 static void

755 (void) snprintf(value, sizeof (value), "%", 836 checkanpm(char *str)

756 (tim+ 30) / 60); 837 {

757 unit = dcgettext(NULL, "mins", LC TIM); 838 char *anmpm

758 } else if (tim>0) { 839 while ((ampm = strstr(str, "AM)) !'= NULL |

759 (void) snprintf(value, sizeof (value), "%", (int)tim; 840 (ampm = strstr(str, "PM')) = NULL) {

760 unit = dcgettext(NULL, "secs", LC TIME); 841 *anmpm = tolomer(*

761 } else { 842 *(anpmtl) = tolomer((anpnwl))

762 (void) strcpy(value, "0"); 843 }

763 unit =" "; 844 }

764 }

765 width -= 2 + strlen(val ue);

766 wmh:(WMh>l)7wmh:

767 printf("% %*s ", val ue, mAdth unit);

748 I1f (tim>= 60)

749 (void) pri t (dcget t ext (NULL, "98d: %92d", LC_TI ME)

750 (int)tim60, (int)tin?60);

751 else if (tim> 0)

752 (void) printf(dcgettext(NULL, " oRd", LC_TIME), (int)tim;

753 el se

754 (void) printf(" ")

755 (void) printf("%", tail);

768 }

771 | *

772 * prints a local e-specific tine given a pointer to a tinme of day
760 * prints a 12 hour time given a pointer to a tinme of day

773 */

774 static void

775 prtat(time_t *tinme)

