
new/usr/src/cmd/w/w.c 1

**
 18927 Sat Nov 30 09:38:52 2013
new/usr/src/cmd/w/w.c
2849 uptime should use locale settings for current time
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2013 Gary Mills
23 *
24 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */

28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */

31 /*
32 * University Copyright- Copyright (c) 1982, 1986, 1988
33 * The Regents of the University of California
34 * All Rights Reserved
35 *
36 * University Acknowledgment- Portions of this document are derived from
37 * software developed by the University of California, Berkeley, and its
38 * contributors.
39 */

41 /*
42 * This is the new w command which takes advantage of
43 * the /proc interface to gain access to the information
44 * of all the processes currently on the system.
45 *
46 * This program also implements ’uptime’.
47 *
48 * Maintenance note:
49 *
50 * Much of this code is replicated in whodo.c. If you’re
51 * fixing bugs here, then you should probably fix ’em there too.
52 */

54 #include <stdio.h>
55 #include <string.h>
56 #include <stdarg.h>
57 #include <stdlib.h>
58 #include <ctype.h>
59 #include <fcntl.h>
60 #include <time.h>
61 #include <errno.h>

new/usr/src/cmd/w/w.c 2

62 #include <sys/types.h>
63 #include <utmpx.h>
64 #include <sys/stat.h>
65 #include <dirent.h>
66 #include <procfs.h> /* /proc header file */
67 #include <locale.h>
68 #include <unistd.h>
69 #include <sys/loadavg.h>
70 #include <limits.h>
71 #include <priv_utils.h>

73 /*
74 * Use the full lengths from utmpx for user and line.
75 */
76 static struct utmpx dummy;
77 #define NMAX (sizeof (dummy.ut_user))
78 #define LMAX (sizeof (dummy.ut_line))

80 /* Print minimum field widths. */
81 #define LOGIN_WIDTH 8
82 #define LINE_WIDTH 8
82 #define LINE_WIDTH 12

84 #define DIV60(t) ((t+30)/60) /* x/60 rounded */

86 #ifdef ERR
87 #undef ERR
88 #endif
89 #define ERR (-1)

91 #define HSIZE 256 /* size of process hash table */
92 #define PROCDIR "/proc"
93 #define INITPROCESS (pid_t)1 /* init process pid */
94 #define NONE ’n’ /* no state */
95 #define RUNNING ’r’ /* runnable process */
96 #define ZOMBIE ’z’ /* zombie process */
97 #define VISITED ’v’ /* marked node as visited */
98 #define PRINTF(a) if (printf a < 0) { \
99 perror((gettext("%s: printf failed"), prog)); \
100 exit(1); }

102 struct uproc {
103 pid_t p_upid; /* process id */
104 char p_state; /* numeric value of process state */
105 dev_t p_ttyd; /* controlling tty of process */
106 time_t p_time; /* seconds of user & system time */
107 time_t p_ctime; /* seconds of child user & sys time */
108 int p_igintr; /* 1 = ignores SIGQUIT and SIGINT */
109 char p_comm[PRARGSZ+1]; /* command */
110 char p_args[PRARGSZ+1]; /* command line arguments */
111 struct uproc *p_child, /* first child pointer */
112 *p_sibling, /* sibling pointer */
113 *p_pgrpl, /* pgrp link */
114 *p_link; /* hash table chain pointer */
115 };

117 /*
118 * define hash table for struct uproc
119 * Hash function uses process id
120 * and the size of the hash table(HSIZE)
121 * to determine process index into the table.
122 */
123 static struct uproc pr_htbl[HSIZE];

125 static struct uproc *findhash(pid_t);
126 static time_t findidle(char *);

new/usr/src/cmd/w/w.c 3

127 static void clnarglist(char *);
128 static void showtotals(struct uproc *);
129 static void calctotals(struct uproc *);
130 static void prttime(time_t, int);
130 static void prttime(time_t, char *);
131 static void prtat(time_t *time);
132 static void checkampm(char *str);

133 static char *prog; /* pointer to invocation name */
134 static int header = 1; /* true if -h flag: don’t print heading */
135 static int lflag = 1; /* set if -l flag; 0 for -s flag: short form */
136 static char *sel_user; /* login of particular user selected */
137 static char firstchar; /* first char of name of prog invoked as */
138 static int login; /* true if invoked as login shell */
139 static time_t now; /* current time of day */
140 static time_t uptime; /* time of last reboot & elapsed time since */
141 static int nusers; /* number of users logged in now */
142 static time_t idle; /* number of minutes user is idle */
143 static time_t jobtime; /* total cpu time visible */
144 static char doing[520]; /* process attached to terminal */
145 static time_t proctime; /* cpu time of process in doing */
146 static pid_t curpid, empty;
147 static int add_times; /* boolean: add the cpu times or not */

149 #if SIGQUIT > SIGINT
150 #define ACTSIZE SIGQUIT
151 #else
152 #define ACTSIZE SIGINT
153 #endif

155 int
156 main(int argc, char *argv[])
157 {
158 struct utmpx *ut;
159 struct utmpx *utmpbegin;
160 struct utmpx *utmpend;
161 struct utmpx *utp;
162 struct uproc *up, *parent, *pgrp;
163 struct psinfo info;
164 struct sigaction actinfo[ACTSIZE];
165 struct pstatus statinfo;
166 size_t size;
167 struct stat sbuf;
168 DIR *dirp;
169 struct dirent *dp;
170 char pname[64];
171 char *fname;
172 int procfd;
173 char *cp;
174 int i;
175 int days, hrs, mins;
176 int entries;
177 double loadavg[3];

179 /*
180 * This program needs the proc_owner privilege
181 */
182 (void) __init_suid_priv(PU_CLEARLIMITSET, PRIV_PROC_OWNER,
183 (char *)NULL);

185 (void) setlocale(LC_ALL, "");
186 #if !defined(TEXT_DOMAIN)
187 #define TEXT_DOMAIN "SYS_TEST"
188 #endif
189 (void) textdomain(TEXT_DOMAIN);

new/usr/src/cmd/w/w.c 4

191 login = (argv[0][0] == ’-’);
192 cp = strrchr(argv[0], ’/’);
193 firstchar = login ? argv[0][1] : (cp == 0) ? argv[0][0] : cp[1];
194 prog = argv[0];

196 while (argc > 1) {
197 if (argv[1][0] == ’-’) {
198 for (i = 1; argv[1][i]; i++) {
199 switch (argv[1][i]) {

201 case ’h’:
202 header = 0;
203 break;

205 case ’l’:
206 lflag++;
207 break;
208 case ’s’:
209 lflag = 0;
210 break;

212 case ’u’:
213 case ’w’:
214 firstchar = argv[1][i];
215 break;

217 default:
218 (void) fprintf(stderr, gettext(
219 "%s: bad flag %s\n"),
220 prog, argv[1]);
221 exit(1);
222 }
223 }
224 } else {
225 if (!isalnum(argv[1][0]) || argc > 2) {
226 (void) fprintf(stderr, gettext(
227 "usage: %s [-hlsuw] [user]\n"), prog);
228 exit(1);
229 } else
230 sel_user = argv[1];
231 }
232 argc--; argv++;
233 }

235 /*
236 * read the UTMP_FILE (contains information about each logged in user)
237 */
238 if (stat(UTMPX_FILE, &sbuf) == ERR) {
239 (void) fprintf(stderr, gettext("%s: stat error of %s: %s\n"),
240 prog, UTMPX_FILE, strerror(errno));
241 exit(1);
242 }
243 entries = sbuf.st_size / sizeof (struct futmpx);
244 size = sizeof (struct utmpx) * entries;
245 if ((ut = malloc(size)) == NULL) {
246 (void) fprintf(stderr, gettext("%s: malloc error of %s: %s\n"),
247 prog, UTMPX_FILE, strerror(errno));
248 exit(1);
249 }

251 (void) utmpxname(UTMPX_FILE);

253 utmpbegin = ut;
254 utmpend = (struct utmpx *)((char *)utmpbegin + size);

256 setutxent();

new/usr/src/cmd/w/w.c 5

257 while ((ut < utmpend) && ((utp = getutxent()) != NULL))
258 (void) memcpy(ut++, utp, sizeof (*ut));
259 endutxent();

261 (void) time(&now); /* get current time */

263 if (header) { /* print a header */
264 prtat(&now);
265 for (ut = utmpbegin; ut < utmpend; ut++) {
266 if (ut->ut_type == USER_PROCESS) {
267 if (!nonuser(*ut))
268 nusers++;
269 } else if (ut->ut_type == BOOT_TIME) {
270 uptime = now - ut->ut_xtime;
271 uptime += 30;
272 days = uptime / (60*60*24);
273 uptime %= (60*60*24);
274 hrs = uptime / (60*60);
275 uptime %= (60*60);
276 mins = uptime / 60;

278 PRINTF((gettext(" up")));
279 if (days > 0)
280 PRINTF((gettext(
281 " %d day(s),"), days));
282 if (hrs > 0 && mins > 0) {
283 PRINTF((" %2d:%02d,", hrs, mins));
284 } else {
285 if (hrs > 0)
286 PRINTF((gettext(
287 " %d hr(s),"), hrs));
288 if (mins > 0)
289 PRINTF((gettext(
290 " %d min(s),"), mins));
291 }
292 }
293 }

295 ut = utmpbegin; /* rewind utmp data */
296 PRINTF((((nusers == 1) ?
297 gettext(" %d user") : gettext(" %d users")), nusers));
298 /*
299 * Print 1, 5, and 15 minute load averages.
300 */
301 (void) getloadavg(loadavg, 3);
302 PRINTF((gettext(", load average: %.2f, %.2f, %.2f\n"),
303 loadavg[LOADAVG_1MIN], loadavg[LOADAVG_5MIN],
304 loadavg[LOADAVG_15MIN]));

306 if (firstchar == ’u’) /* uptime command */
307 exit(0);

309 if (lflag) {
310 PRINTF((dcgettext(NULL, "User tty "
311 "login@ idle JCPU PCPU what\n",
312 LC_TIME)));
312 "login@ idle JCPU PCPU what\n", LC_TIME)));
313 } else {
314 PRINTF((dcgettext(NULL,
315 "User tty idle what\n",
316 LC_TIME)));
315 "User tty idle what\n", LC_TIME)));
317 }

319 if (fflush(stdout) == EOF) {
320 perror((gettext("%s: fflush failed\n"), prog));

new/usr/src/cmd/w/w.c 6

321 exit(1);
322 }
323 }

325 /*
326 * loop through /proc, reading info about each process
327 * and build the parent/child tree
328 */
329 if (!(dirp = opendir(PROCDIR))) {
330 (void) fprintf(stderr, gettext("%s: could not open %s: %s\n"),
331 prog, PROCDIR, strerror(errno));
332 exit(1);
333 }

335 while ((dp = readdir(dirp)) != NULL) {
336 if (dp->d_name[0] == ’.’)
337 continue;
338 retry:
339 (void) sprintf(pname, "%s/%s/", PROCDIR, dp->d_name);
340 fname = pname + strlen(pname);
341 (void) strcpy(fname, "psinfo");
342 if ((procfd = open(pname, O_RDONLY)) < 0)
343 continue;
344 if (read(procfd, &info, sizeof (info)) != sizeof (info)) {
345 int err = errno;
346 (void) close(procfd);
347 if (err == EAGAIN)
348 goto retry;
349 if (err != ENOENT)
350 (void) fprintf(stderr, gettext(
351 "%s: read() failed on %s: %s \n"),
352 prog, pname, strerror(err));
353 continue;
354 }
355 (void) close(procfd);

357 up = findhash(info.pr_pid);
358 up->p_ttyd = info.pr_ttydev;
359 up->p_state = (info.pr_nlwp == 0? ZOMBIE : RUNNING);
360 up->p_time = 0;
361 up->p_ctime = 0;
362 up->p_igintr = 0;
363 (void) strncpy(up->p_comm, info.pr_fname,
364 sizeof (info.pr_fname));
365 up->p_args[0] = 0;

367 if (up->p_state != NONE && up->p_state != ZOMBIE) {
368 (void) strcpy(fname, "status");

370 /* now we need the proc_owner privilege */
371 (void) __priv_bracket(PRIV_ON);

373 procfd = open(pname, O_RDONLY);

375 /* drop proc_owner privilege after open */
376 (void) __priv_bracket(PRIV_OFF);

378 if (procfd < 0)
379 continue;

381 if (read(procfd, &statinfo, sizeof (statinfo))
382 != sizeof (statinfo)) {
383 int err = errno;
384 (void) close(procfd);
385 if (err == EAGAIN)
386 goto retry;

new/usr/src/cmd/w/w.c 7

387 if (err != ENOENT)
388 (void) fprintf(stderr, gettext(
389 "%s: read() failed on %s: %s \n"),
390 prog, pname, strerror(err));
391 continue;
392 }
393 (void) close(procfd);

395 up->p_time = statinfo.pr_utime.tv_sec +
396 statinfo.pr_stime.tv_sec; /* seconds */
397 up->p_ctime = statinfo.pr_cutime.tv_sec +
398 statinfo.pr_cstime.tv_sec;

400 (void) strcpy(fname, "sigact");

402 /* now we need the proc_owner privilege */
403 (void) __priv_bracket(PRIV_ON);

405 procfd = open(pname, O_RDONLY);

407 /* drop proc_owner privilege after open */
408 (void) __priv_bracket(PRIV_OFF);

410 if (procfd < 0)
411 continue;

413 if (read(procfd, actinfo, sizeof (actinfo))
414 != sizeof (actinfo)) {
415 int err = errno;
416 (void) close(procfd);
417 if (err == EAGAIN)
418 goto retry;
419 if (err != ENOENT)
420 (void) fprintf(stderr, gettext(
421 "%s: read() failed on %s: %s \n"),
422 prog, pname, strerror(err));
423 continue;
424 }
425 (void) close(procfd);

427 up->p_igintr =
428 actinfo[SIGINT-1].sa_handler == SIG_IGN &&
429 actinfo[SIGQUIT-1].sa_handler == SIG_IGN;

431 /*
432 * Process args.
433 */
434 up->p_args[0] = 0;
435 clnarglist(info.pr_psargs);
436 (void) strcat(up->p_args, info.pr_psargs);
437 if (up->p_args[0] == 0 ||
438 up->p_args[0] == ’-’ && up->p_args[1] <= ’ ’ ||
439 up->p_args[0] == ’?’) {
440 (void) strcat(up->p_args, " (");
441 (void) strcat(up->p_args, up->p_comm);
442 (void) strcat(up->p_args, ")");
443 }
444 }

446 /*
447 * link pgrp together in case parents go away
448 * Pgrp chain is a single linked list originating
449 * from the pgrp leader to its group member.
450 */
451 if (info.pr_pgid != info.pr_pid) { /* not pgrp leader */
452 pgrp = findhash(info.pr_pgid);

new/usr/src/cmd/w/w.c 8

453 up->p_pgrpl = pgrp->p_pgrpl;
454 pgrp->p_pgrpl = up;
455 }
456 parent = findhash(info.pr_ppid);

458 /* if this is the new member, link it in */
459 if (parent->p_upid != INITPROCESS) {
460 if (parent->p_child) {
461 up->p_sibling = parent->p_child;
462 up->p_child = 0;
463 }
464 parent->p_child = up;
465 }
466 }

468 /* revert to non-privileged user after opening */
469 (void) __priv_relinquish();

471 (void) closedir(dirp);
472 (void) time(&now); /* get current time */

474 /*
475 * loop through utmpx file, printing process info
476 * about each logged in user
477 */
478 for (ut = utmpbegin; ut < utmpend; ut++) {
479 if (ut->ut_type != USER_PROCESS)
480 continue;
481 if (sel_user && strncmp(ut->ut_name, sel_user, NMAX) != 0)
482 continue; /* we’re looking for somebody else */

484 /* print login name of the user */
485 PRINTF(("%-*.*s ", LOGIN_WIDTH, NMAX, ut->ut_name));

487 /* print tty user is on */
488 if (lflag) {
489 PRINTF(("%-*.*s ", LINE_WIDTH, LMAX, ut->ut_line));
488 PRINTF(("%-*.*s", LINE_WIDTH, LMAX, ut->ut_line));
490 } else {
491 if (ut->ut_line[0] == ’p’ && ut->ut_line[1] == ’t’ &&
492 ut->ut_line[2] == ’s’ && ut->ut_line[3] == ’/’) {
493 PRINTF(("%-*.*s ", LINE_WIDTH, LMAX,
494 &ut->ut_line[4]));
492 PRINTF(("%-*.3s", LMAX, &ut->ut_line[4]));
495 } else {
496 PRINTF(("%-*.*s ", LINE_WIDTH, LMAX,
494 PRINTF(("%-*.*s", LINE_WIDTH, LMAX,
497 ut->ut_line));
498 }
499 }

501 /* print when the user logged in */
502 if (lflag) {
503 time_t tim = ut->ut_xtime;
504 prtat(&tim);
505 }

507 /* print idle time */
508 idle = findidle(ut->ut_line);
509 prttime(idle, 8);
507 if (idle >= 36 * 60) {
508 PRINTF((dcgettext(NULL, "%2ddays ", LC_TIME),
509 (idle + 12 * 60) / (24 * 60)));
510 } else
511 prttime(idle, " ");
510 showtotals(findhash(ut->ut_pid));

new/usr/src/cmd/w/w.c 9

511 }
512 if (fclose(stdout) == EOF) {
513 perror((gettext("%s: fclose failed"), prog));
514 exit(1);
515 }
516 return (0);
517 }

519 /*
520 * Prints the CPU time for all processes & children,
521 * and the cpu time for interesting process,
522 * and what the user is doing.
523 */
524 static void
525 showtotals(struct uproc *up)
526 {
527 jobtime = 0;
528 proctime = 0;
529 empty = 1;
530 curpid = -1;
531 add_times = 1;

533 calctotals(up);

535 if (lflag) {
536 /* print CPU time for all processes & children */
537 /* and need to convert clock ticks to seconds first */
538 prttime((time_t)jobtime, 8);
540 prttime((time_t)jobtime, " ");

540 /* print cpu time for interesting process */
541 /* and need to convert clock ticks to seconds first */
542 prttime((time_t)proctime, 8);
544 prttime((time_t)proctime, " ");
543 }
544 /* what user is doing, current process */
545 PRINTF(("%-.32s\n", doing));
547 PRINTF((" %-.32s\n", doing));
546 }

______unchanged_portion_omitted_

642 #define HR (60 * 60)
643 #define DAY (24 * HR)
644 #define MON (30 * DAY)

646 /*
647 * prttime prints a time in days, hours, minutes, or seconds.
648 * The second argument is the field width.
649 * prttime prints a time in hours and minutes or minutes and seconds.
650 * The character string tail is printed at the end, obvious
651 * strings to pass are "", " ", or "am".
649 */
650 static void
651 prttime(time_t tim, int width)
654 prttime(time_t tim, char *tail)
652 {
653 char value[12];
654 char *unit;

656 if (tim >= 36 * HR) {
657 (void) snprintf(value, sizeof (value), "%d",
658 (tim + (DAY / 2)) / (DAY));
659 unit = dcgettext(NULL, "days", LC_TIME);
660 } else if (tim >= 36 * 60) {
661 (void) snprintf(value, sizeof (value), "%d",
662 (tim + (HR / 2)) / (HR));

new/usr/src/cmd/w/w.c 10

663 unit = dcgettext(NULL, "hours", LC_TIME);
664 } else if (tim >= 60) {
665 (void) snprintf(value, sizeof (value), "%d",
666 (tim + 30) / 60);
667 unit = dcgettext(NULL, "mins", LC_TIME);
656 if (tim >= 60) {
657 PRINTF((dcgettext(NULL, "%3d:%02d", LC_TIME),
658 (int)tim/60, (int)tim%60));
668 } else if (tim > 0) {
669 (void) snprintf(value, sizeof (value), "%d", (int)tim);
670 unit = dcgettext(NULL, "secs", LC_TIME);
660 PRINTF((dcgettext(NULL, " %2d", LC_TIME), (int)tim));
671 } else {
672 (void) strcpy(value, "0");
673 unit = " ";
662 PRINTF((" "));
674 }
675 width -= 2 + strlen(value);
676 width = (width > 1) ? width : 1;
677 PRINTF(("%s %-*s ", value, width, unit));
664 PRINTF(("%s", tail));
678 }

680 /*
681 * prints a locale-specific time given a pointer to a time of day
668 * prints a 12 hour time given a pointer to a time of day
682 */
683 static void
684 prtat(time_t *time)
685 {
686 struct tm *p;

688 p = localtime(time);
689 if (now - *time <= 18 * HR) {
690 char timestr[50];

692 (void) strftime(timestr, sizeof (timestr),
693 "%X", p);
694 PRINTF(("%-11s ", timestr));
679 dcgettext(NULL, "%l:%M""%p", LC_TIME), p);
680 checkampm(timestr);
681 PRINTF((" %s", timestr));
695 } else if (now - *time <= 7 * DAY) {
696 char weekdaytime[20];

698 (void) strftime(weekdaytime, sizeof (weekdaytime),
699 "%d %b", p);
700 PRINTF(("%-11s ", weekdaytime));
686 dcgettext(NULL, "%a%l%p", LC_TIME), p);
687 checkampm(weekdaytime);
688 PRINTF((" %s", weekdaytime));
701 } else {
702 char monthtime[20];

704 (void) strftime(monthtime, sizeof (monthtime),
705 "%b %Y", p);
706 PRINTF(("%-11s ", monthtime));
693 dcgettext(NULL, "%e%b%y", LC_TIME), p);
694 PRINTF((" %s", monthtime));
707 }
708 }

______unchanged_portion_omitted_

742 /* replaces all occurences of AM/PM with am/pm */
743 static void
744 checkampm(char *str)

new/usr/src/cmd/w/w.c 11

745 {
746 char *ampm;
747 while ((ampm = strstr(str, "AM")) != NULL ||
748 (ampm = strstr(str, "PM")) != NULL) {
749 *ampm = tolower(*ampm);
750 *(ampm+1) = tolower(*(ampm+1));
751 }
752 }

new/usr/src/cmd/whodo/whodo.c 1

**
 20882 Sat Nov 30 09:38:52 2013
new/usr/src/cmd/whodo/whodo.c
2849 uptime should use locale settings for current time
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2013 Gary Mills
23 *
24 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */

28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */

31 /*
32 * University Copyright- Copyright (c) 1982, 1986, 1988
33 * The Regents of the University of California
34 * All Rights Reserved
35 *
36 * University Acknowledgment- Portions of this document are derived from
37 * software developed by the University of California, Berkeley, and its
38 * contributors.
39 */

41 /*
42 * This is the new whodo command which takes advantage of
43 * the /proc interface to gain access to the information
44 * of all the processes currently on the system.
45 *
46 * Maintenance note:
47 *
48 * Much of this code is replicated in w.c. If you’re
49 * fixing bugs here, then you should probably fix ’em there too.
50 */

52 #include <stdio.h>
53 #include <string.h>
54 #include <stdlib.h>
55 #include <ctype.h>
56 #include <fcntl.h>
57 #include <time.h>
58 #include <errno.h>
59 #include <sys/types.h>
60 #include <utmpx.h>
61 #include <sys/utsname.h>

new/usr/src/cmd/whodo/whodo.c 2

62 #include <sys/stat.h>
63 #include <sys/mkdev.h>
64 #include <dirent.h>
65 #include <procfs.h> /* /proc header file */
66 #include <sys/wait.h>
67 #include <locale.h>
68 #include <unistd.h>
69 #include <limits.h>
70 #include <priv_utils.h>

72 /*
73 * Use the full lengths from utmpx for user and line.
74 */
75 #define NMAX (sizeof (((struct utmpx *)0)->ut_user))
76 #define LMAX (sizeof (((struct utmpx *)0)->ut_line))

78 /* Print minimum field widths. */
79 #define LOGIN_WIDTH 8
80 #define LINE_WIDTH 8
80 #define LINE_WIDTH 12

82 #define DIV60(t) ((t+30)/60) /* x/60 rounded */

84 #ifdef ERR
85 #undef ERR
86 #endif
87 #define ERR (-1)

89 #define DEVNAMELEN 14
90 #define HSIZE 256 /* size of process hash table */
91 #define PROCDIR "/proc"
92 #define INITPROCESS (pid_t)1 /* init process pid */
93 #define NONE ’n’ /* no state */
94 #define RUNNING ’r’ /* runnable process */
95 #define ZOMBIE ’z’ /* zombie process */
96 #define VISITED ’v’ /* marked node as visited */

98 static int ndevs; /* number of configured devices */
99 static int maxdev; /* slots for configured devices */
100 #define DNINCR 100
101 static struct devl { /* device list */
102 char dname[DEVNAMELEN]; /* device name */
103 dev_t ddev; /* device number */
104 } *devl;

______unchanged_portion_omitted_

121 /*
122 * define hash table for struct uproc
123 * Hash function uses process id
124 * and the size of the hash table(HSIZE)
125 * to determine process index into the table.
126 */
127 static struct uproc pr_htbl[HSIZE];

129 static struct uproc *findhash(pid_t);
130 static time_t findidle(char *);
131 static void clnarglist(char *);
132 static void showproc(struct uproc *);
133 static void showtotals(struct uproc *);
134 static void calctotals(struct uproc *);
135 static char *getty(dev_t);
136 static void prttime(time_t, int);
136 static void prttime(time_t, char *);
137 static void prtat(time_t *);
138 static void checkampm(char *);

new/usr/src/cmd/whodo/whodo.c 3

139 static char *prog;
140 static int header = 1; /* true if -h flag: don’t print heading */
141 static int lflag = 0; /* true if -l flag: w command format */
142 static char *sel_user; /* login of particular user selected */
143 static time_t now; /* current time of day */
144 static time_t uptime; /* time of last reboot & elapsed time since */
145 static int nusers; /* number of users logged in now */
146 static time_t idle; /* number of minutes user is idle */
147 static time_t jobtime; /* total cpu time visible */
148 static char doing[520]; /* process attached to terminal */
149 static time_t proctime; /* cpu time of process in doing */
150 static int empty;
151 static pid_t curpid;

153 #if SIGQUIT > SIGINT
154 #define ACTSIZE SIGQUIT
155 #else
156 #define ACTSIZE SIGINT
157 #endif

159 int
160 main(int argc, char *argv[])
161 {
162 struct utmpx *ut;
163 struct utmpx *utmpbegin;
164 struct utmpx *utmpend;
165 struct utmpx *utp;
166 struct tm *tm;
167 struct uproc *up, *parent, *pgrp;
168 struct psinfo info;
169 struct sigaction actinfo[ACTSIZE];
170 struct pstatus statinfo;
171 size_t size;
172 struct stat sbuf;
173 struct utsname uts;
174 DIR *dirp;
175 struct dirent *dp;
176 char pname[64];
177 char *fname;
178 int procfd;
179 int i;
180 int days, hrs, mins;
181 int entries;

183 /*
184 * This program needs the proc_owner privilege
185 */
186 (void) __init_suid_priv(PU_CLEARLIMITSET, PRIV_PROC_OWNER,
187 (char *)NULL);

189 (void) setlocale(LC_ALL, "");
190 #if !defined(TEXT_DOMAIN)
191 #define TEXT_DOMAIN "SYS_TEST"
192 #endif
193 (void) textdomain(TEXT_DOMAIN);

195 prog = argv[0];

197 while (argc > 1) {
198 if (argv[1][0] == ’-’) {
199 for (i = 1; argv[1][i]; i++) {
200 switch (argv[1][i]) {

202 case ’h’:
203 header = 0;
204 break;

new/usr/src/cmd/whodo/whodo.c 4

206 case ’l’:
207 lflag++;
208 break;

210 default:
211 (void) printf(gettext(
212 "usage: %s [-hl] [user]\n"),
213 prog);
214 exit(1);
215 }
216 }
217 } else {
218 if (!isalnum(argv[1][0]) || argc > 2) {
219 (void) printf(gettext(
220 "usage: %s [-hl] [user]\n"), prog);
221 exit(1);
222 } else
223 sel_user = argv[1];
224 }
225 argc--; argv++;
226 }

228 /*
229 * read the UTMPX_FILE (contains information about
230 * each logged in user)
231 */
232 if (stat(UTMPX_FILE, &sbuf) == ERR) {
233 (void) fprintf(stderr, gettext("%s: stat error of %s: %s\n"),
234 prog, UTMPX_FILE, strerror(errno));
235 exit(1);
236 }
237 entries = sbuf.st_size / sizeof (struct futmpx);
238 size = sizeof (struct utmpx) * entries;

240 if ((ut = malloc(size)) == NULL) {
241 (void) fprintf(stderr, gettext("%s: malloc error of %s: %s\n"),
242 prog, UTMPX_FILE, strerror(errno));
243 exit(1);
244 }

246 (void) utmpxname(UTMPX_FILE);

248 utmpbegin = ut;
249 /* LINTED pointer cast may result in improper alignment */
250 utmpend = (struct utmpx *)((char *)utmpbegin + size);

252 setutxent();
253 while ((ut < utmpend) && ((utp = getutxent()) != NULL))
254 (void) memcpy(ut++, utp, sizeof (*ut));
255 endutxent();

257 (void) time(&now); /* get current time */

259 if (header) { /* print a header */
260 if (lflag) { /* w command format header */
261 prtat(&now);
262 for (ut = utmpbegin; ut < utmpend; ut++) {
263 if (ut->ut_type == USER_PROCESS) {
264 nusers++;
265 } else if (ut->ut_type == BOOT_TIME) {
266 uptime = now - ut->ut_xtime;
267 uptime += 30;
268 days = uptime / (60*60*24);
269 uptime %= (60*60*24);
270 hrs = uptime / (60*60);

new/usr/src/cmd/whodo/whodo.c 5

271 uptime %= (60*60);
272 mins = uptime / 60;

274 (void) printf(dcgettext(NULL,
275 " up %d day(s), %d hr(s), "
276 "%d min(s)", LC_TIME),
277 days, hrs, mins);
278 }
279 }

281 ut = utmpbegin; /* rewind utmp data */
282 (void) printf(dcgettext(NULL,
283 " %d user(s)\n", LC_TIME), nusers);
284 (void) printf(dcgettext(NULL, "User tty "
285 "login@ idle JCPU PCPU what\n",
286 LC_TIME));
286 "login@ idle JCPU PCPU what\n", LC_TIME));
287 } else { /* standard whodo header */
288 char date_buf[100];

290 /*
291 * print current time and date
292 */
293 (void) strftime(date_buf, sizeof (date_buf),
294 "%c", localtime(&now));
294 dcgettext(NULL, "%C", LC_TIME), localtime(&now));
295 (void) printf("%s\n", date_buf);

297 /*
298 * print system name
299 */
300 (void) uname(&uts);
301 (void) printf("%s\n", uts.nodename);
302 }
303 }

305 /*
306 * loop through /proc, reading info about each process
307 * and build the parent/child tree
308 */
309 if (!(dirp = opendir(PROCDIR))) {
310 (void) fprintf(stderr, gettext("%s: could not open %s: %s\n"),
311 prog, PROCDIR, strerror(errno));
312 exit(1);
313 }

315 while ((dp = readdir(dirp)) != NULL) {
316 if (dp->d_name[0] == ’.’)
317 continue;
318 retry:
319 (void) snprintf(pname, sizeof (pname),
320 "%s/%s/", PROCDIR, dp->d_name);
321 fname = pname + strlen(pname);
322 (void) strcpy(fname, "psinfo");
323 if ((procfd = open(pname, O_RDONLY)) < 0)
324 continue;
325 if (read(procfd, &info, sizeof (info)) != sizeof (info)) {
326 int err = errno;
327 (void) close(procfd);
328 if (err == EAGAIN)
329 goto retry;
330 if (err != ENOENT)
331 (void) fprintf(stderr, gettext(
332 "%s: read() failed on %s: %s\n"),
333 prog, pname, strerror(err));
334 continue;

new/usr/src/cmd/whodo/whodo.c 6

335 }
336 (void) close(procfd);

338 up = findhash(info.pr_pid);
339 up->p_ttyd = info.pr_ttydev;
340 up->p_state = (info.pr_nlwp == 0? ZOMBIE : RUNNING);
341 up->p_time = 0;
342 up->p_ctime = 0;
343 up->p_igintr = 0;
344 (void) strncpy(up->p_comm, info.pr_fname,
345 sizeof (info.pr_fname));
346 up->p_args[0] = 0;

348 if (up->p_state != NONE && up->p_state != ZOMBIE) {
349 (void) strcpy(fname, "status");

351 /* now we need the proc_owner privilege */
352 (void) __priv_bracket(PRIV_ON);

354 procfd = open(pname, O_RDONLY);

356 /* drop proc_owner privilege after open */
357 (void) __priv_bracket(PRIV_OFF);

359 if (procfd < 0)
360 continue;

362 if (read(procfd, &statinfo, sizeof (statinfo))
363 != sizeof (statinfo)) {
364 int err = errno;
365 (void) close(procfd);
366 if (err == EAGAIN)
367 goto retry;
368 if (err != ENOENT)
369 (void) fprintf(stderr, gettext(
370 "%s: read() failed on %s: %s \n"),
371 prog, pname, strerror(err));
372 continue;
373 }
374 (void) close(procfd);

376 up->p_time = statinfo.pr_utime.tv_sec +
377 statinfo.pr_stime.tv_sec;
378 up->p_ctime = statinfo.pr_cutime.tv_sec +
379 statinfo.pr_cstime.tv_sec;

381 (void) strcpy(fname, "sigact");

383 /* now we need the proc_owner privilege */
384 (void) __priv_bracket(PRIV_ON);

386 procfd = open(pname, O_RDONLY);

388 /* drop proc_owner privilege after open */
389 (void) __priv_bracket(PRIV_OFF);

391 if (procfd < 0)
392 continue;
393 if (read(procfd, actinfo, sizeof (actinfo))
394 != sizeof (actinfo)) {
395 int err = errno;
396 (void) close(procfd);
397 if (err == EAGAIN)
398 goto retry;
399 if (err != ENOENT)
400 (void) fprintf(stderr, gettext(

new/usr/src/cmd/whodo/whodo.c 7

401 "%s: read() failed on %s: %s \n"),
402 prog, pname, strerror(err));
403 continue;
404 }
405 (void) close(procfd);

407 up->p_igintr =
408 actinfo[SIGINT-1].sa_handler == SIG_IGN &&
409 actinfo[SIGQUIT-1].sa_handler == SIG_IGN;

411 up->p_args[0] = 0;

413 /*
414 * Process args if there’s a chance we’ll print it.
415 */
416 if (lflag) { /* w command needs args */
417 clnarglist(info.pr_psargs);
418 (void) strcpy(up->p_args, info.pr_psargs);
419 if (up->p_args[0] == 0 ||
420 up->p_args[0] == ’-’ &&
421 up->p_args[1] <= ’ ’ ||
422 up->p_args[0] == ’?’) {
423 (void) strcat(up->p_args, " (");
424 (void) strcat(up->p_args, up->p_comm);
425 (void) strcat(up->p_args, ")");
426 }
427 }

429 }

431 /*
432 * link pgrp together in case parents go away
433 * Pgrp chain is a single linked list originating
434 * from the pgrp leader to its group member.
435 */
436 if (info.pr_pgid != info.pr_pid) { /* not pgrp leader */
437 pgrp = findhash(info.pr_pgid);
438 up->p_pgrplink = pgrp->p_pgrplink;
439 pgrp->p_pgrplink = up;
440 }
441 parent = findhash(info.pr_ppid);

443 /* if this is the new member, link it in */
444 if (parent->p_upid != INITPROCESS) {
445 if (parent->p_child) {
446 up->p_sibling = parent->p_child;
447 up->p_child = 0;
448 }
449 parent->p_child = up;
450 }

452 }

454 /* revert to non-privileged user */
455 (void) __priv_relinquish();

457 (void) closedir(dirp);
458 (void) time(&now); /* get current time */

460 /*
461 * loop through utmpx file, printing process info
462 * about each logged in user
463 */
464 for (ut = utmpbegin; ut < utmpend; ut++) {
465 time_t tim;

new/usr/src/cmd/whodo/whodo.c 8

467 if (ut->ut_type != USER_PROCESS)
468 continue;
469 if (sel_user && strncmp(ut->ut_name, sel_user, NMAX) != 0)
470 continue; /* we’re looking for somebody else */
471 if (lflag) { /* -l flag format (w command) */
472 /* print login name of the user */
473 (void) printf("%-*.*s ", LOGIN_WIDTH, (int)NMAX,
474 ut->ut_name);

476 /* print tty user is on */
477 (void) printf("%-*.*s ", LINE_WIDTH, (int)LMAX,
477 (void) printf("%-*.*s", LINE_WIDTH, (int)LMAX,
478 ut->ut_line);

480 /* print when the user logged in */
481 tim = ut->ut_xtime;
482 (void) prtat(&tim);

484 /* print idle time */
485 idle = findidle(ut->ut_line);
486 prttime(idle, 8);
486 if (idle >= 36 * 60)
487 (void) printf(dcgettext(NULL, "%2ddays ",
488 LC_TIME), (idle + 12 * 60) / (24 * 60));
489 else
490 prttime(idle, " ");
487 showtotals(findhash((pid_t)ut->ut_pid));
488 } else { /* standard whodo format */
489 tim = ut->ut_xtime;
490 tm = localtime(&tim);
491 (void) printf("\n%-*.*s %-*.*s %2.1d:%2.2d\n",
492 LINE_WIDTH, (int)LMAX, ut->ut_line,
493 LOGIN_WIDTH, (int)NMAX, ut->ut_name, tm->tm_hour,
494 tm->tm_min);
495 showproc(findhash((pid_t)ut->ut_pid));
496 }
497 }

499 return (0);
500 }

______unchanged_portion_omitted_

543 /*
544 * Used for -l flag (w command) format.
545 * Prints the CPU time for all processes & children,
546 * and the cpu time for interesting process,
547 * and what the user is doing.
548 */
549 static void
550 showtotals(struct uproc *up)
551 {
552 jobtime = 0;
553 proctime = 0;
554 empty = 1;
555 curpid = -1;
556 (void) strcpy(doing, "-"); /* default act: normally never prints */
557 calctotals(up);

559 /* print CPU time for all processes & children */
560 /* and need to convert clock ticks to seconds first */
561 prttime((time_t)jobtime, 8);
565 prttime((time_t)jobtime, " ");

563 /* print cpu time for interesting process */
564 /* and need to convert clock ticks to seconds first */

new/usr/src/cmd/whodo/whodo.c 9

565 prttime((time_t)proctime, 8);
569 prttime((time_t)proctime, " ");

567 /* what user is doing, current process */
568 (void) printf("%-.32s\n", doing);
572 (void) printf(" %-.32s\n", doing);
569 }

______unchanged_portion_omitted_

732 #define HR (60 * 60)
733 #define DAY (24 * HR)
734 #define MON (30 * DAY)

736 /*
737 * prttime prints a time in days, hours, minutes, or seconds.
738 * The second argument is the field width.
741 * prints a time in hours and minutes or minutes and seconds.
742 * The character string ’tail’ is printed at the end, obvious
743 * strings to pass are "", " ", or "am".
739 */
740 static void
741 prttime(time_t tim, int width)
746 prttime(time_t tim, char *tail)
742 {
743 char value[12];
744 char *unit;

746 if (tim >= 36 * HR) {
747 (void) snprintf(value, sizeof (value), "%d",
748 (tim + (DAY / 2)) / (DAY));
749 unit = dcgettext(NULL, "days", LC_TIME);
750 } else if (tim >= 36 * 60) {
751 (void) snprintf(value, sizeof (value), "%d",
752 (tim + (HR / 2)) / (HR));
753 unit = dcgettext(NULL, "hours", LC_TIME);
754 } else if (tim >= 60) {
755 (void) snprintf(value, sizeof (value), "%d",
756 (tim + 30) / 60);
757 unit = dcgettext(NULL, "mins", LC_TIME);
758 } else if (tim > 0) {
759 (void) snprintf(value, sizeof (value), "%d", (int)tim);
760 unit = dcgettext(NULL, "secs", LC_TIME);
761 } else {
762 (void) strcpy(value, "0");
763 unit = " ";
764 }
765 width -= 2 + strlen(value);
766 width = (width > 1) ? width : 1;
767 printf("%s %-*s ", value, width, unit);
748 if (tim >= 60)
749 (void) printf(dcgettext(NULL, "%3d:%02d", LC_TIME),
750 (int)tim/60, (int)tim%60);
751 else if (tim > 0)
752 (void) printf(dcgettext(NULL, " %2d", LC_TIME), (int)tim);
753 else
754 (void) printf(" ");
755 (void) printf("%s", tail);
768 }

771 /*
772 * prints a locale-specific time given a pointer to a time of day
760 * prints a 12 hour time given a pointer to a time of day
773 */
774 static void
775 prtat(time_t *time)

new/usr/src/cmd/whodo/whodo.c 10

776 {
777 struct tm *p;

779 p = localtime(time);
780 if (now - *time <= 18 * HR) {
781 char timestr[50];

783 (void) strftime(timestr, sizeof (timestr),
784 "%X", p);
785 printf("%-11s ", timestr);
771 dcgettext(NULL, " %l:%M""%p", LC_TIME), p);
772 checkampm(timestr);
773 (void) printf("%s", timestr);
786 } else if (now - *time <= 7 * DAY) {
787 char weekdaytime[20];

789 (void) strftime(weekdaytime, sizeof (weekdaytime),
790 "%d %b", p);
791 printf("%-11s ", weekdaytime);
778 dcgettext(NULL, "%a%l%p", LC_TIME), p);
779 checkampm(weekdaytime);
780 (void) printf(" %s", weekdaytime);
792 } else {
793 char monthtime[20];

795 (void) strftime(monthtime, sizeof (monthtime),
796 "%b %Y", p);
797 printf("%-11s ", monthtime);
785 dcgettext(NULL, "%e%b%y", LC_TIME), p);
786 (void) printf(" %s", monthtime);
798 }
799 }

______unchanged_portion_omitted_

834 /* replaces all occurences of AM/PM with am/pm */
835 static void
836 checkampm(char *str)
837 {
838 char *ampm;
839 while ((ampm = strstr(str, "AM")) != NULL ||
840 (ampm = strstr(str, "PM")) != NULL) {
841 *ampm = tolower(*ampm);
842 *(ampm+1) = tolower(*(ampm+1));
843 }
844 }

