1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
29 * Copyright (c) 2012 by Delphix. All rights reserved.
30 */
31
32 #ifndef _SYS_DTRACE_H
33 #define _SYS_DTRACE_H
34
35 #ifdef __cplusplus
36 extern "C" {
37 #endif
38
39 /*
40 * DTrace Dynamic Tracing Software: Kernel Interfaces
41 *
42 * Note: The contents of this file are private to the implementation of the
43 * Solaris system and DTrace subsystem and are subject to change at any time
44 * without notice. Applications and drivers using these interfaces will fail
45 * to run on future releases. These interfaces should not be used for any
46 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48 */
49
50 #ifndef _ASM
51
52 #include <sys/types.h>
53 #include <sys/modctl.h>
54 #include <sys/processor.h>
55 #include <sys/systm.h>
56 #include <sys/ctf_api.h>
57 #include <sys/cyclic.h>
58 #include <sys/int_limits.h>
59
60 /*
61 * DTrace Universal Constants and Typedefs
62 */
63 #define DTRACE_CPUALL -1 /* all CPUs */
64 #define DTRACE_IDNONE 0 /* invalid probe identifier */
65 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
66 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
67 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
68 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
69 #define DTRACE_PROVNONE 0 /* invalid provider identifier */
70 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
71 #define DTRACE_ARGNONE -1 /* invalid argument index */
72
73 #define DTRACE_PROVNAMELEN 64
74 #define DTRACE_MODNAMELEN 64
75 #define DTRACE_FUNCNAMELEN 128
76 #define DTRACE_NAMELEN 64
77 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
78 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
79 #define DTRACE_ARGTYPELEN 128
80
81 typedef uint32_t dtrace_id_t; /* probe identifier */
82 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
83 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
84 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
85 typedef uint16_t dtrace_actkind_t; /* action kind */
86 typedef int64_t dtrace_optval_t; /* option value */
87 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
88
89 typedef enum dtrace_probespec {
90 DTRACE_PROBESPEC_NONE = -1,
91 DTRACE_PROBESPEC_PROVIDER = 0,
92 DTRACE_PROBESPEC_MOD,
93 DTRACE_PROBESPEC_FUNC,
94 DTRACE_PROBESPEC_NAME
95 } dtrace_probespec_t;
96
97 /*
98 * DTrace Intermediate Format (DIF)
99 *
100 * The following definitions describe the DTrace Intermediate Format (DIF), a
101 * a RISC-like instruction set and program encoding used to represent
102 * predicates and actions that can be bound to DTrace probes. The constants
103 * below defining the number of available registers are suggested minimums; the
104 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
105 * registers provided by the current DTrace implementation.
106 */
107 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
108 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
109 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
110 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */
111 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
112
113 #define DIF_OP_OR 1 /* or r1, r2, rd */
114 #define DIF_OP_XOR 2 /* xor r1, r2, rd */
115 #define DIF_OP_AND 3 /* and r1, r2, rd */
116 #define DIF_OP_SLL 4 /* sll r1, r2, rd */
117 #define DIF_OP_SRL 5 /* srl r1, r2, rd */
118 #define DIF_OP_SUB 6 /* sub r1, r2, rd */
119 #define DIF_OP_ADD 7 /* add r1, r2, rd */
120 #define DIF_OP_MUL 8 /* mul r1, r2, rd */
121 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
122 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
123 #define DIF_OP_SREM 11 /* srem r1, r2, rd */
124 #define DIF_OP_UREM 12 /* urem r1, r2, rd */
125 #define DIF_OP_NOT 13 /* not r1, rd */
126 #define DIF_OP_MOV 14 /* mov r1, rd */
127 #define DIF_OP_CMP 15 /* cmp r1, r2 */
128 #define DIF_OP_TST 16 /* tst r1 */
129 #define DIF_OP_BA 17 /* ba label */
130 #define DIF_OP_BE 18 /* be label */
131 #define DIF_OP_BNE 19 /* bne label */
132 #define DIF_OP_BG 20 /* bg label */
133 #define DIF_OP_BGU 21 /* bgu label */
134 #define DIF_OP_BGE 22 /* bge label */
135 #define DIF_OP_BGEU 23 /* bgeu label */
136 #define DIF_OP_BL 24 /* bl label */
137 #define DIF_OP_BLU 25 /* blu label */
138 #define DIF_OP_BLE 26 /* ble label */
139 #define DIF_OP_BLEU 27 /* bleu label */
140 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */
141 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */
142 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */
143 #define DIF_OP_LDUB 31 /* ldub [r1], rd */
144 #define DIF_OP_LDUH 32 /* lduh [r1], rd */
145 #define DIF_OP_LDUW 33 /* lduw [r1], rd */
146 #define DIF_OP_LDX 34 /* ldx [r1], rd */
147 #define DIF_OP_RET 35 /* ret rd */
148 #define DIF_OP_NOP 36 /* nop */
149 #define DIF_OP_SETX 37 /* setx intindex, rd */
150 #define DIF_OP_SETS 38 /* sets strindex, rd */
151 #define DIF_OP_SCMP 39 /* scmp r1, r2 */
152 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */
153 #define DIF_OP_LDGS 41 /* ldgs var, rd */
154 #define DIF_OP_STGS 42 /* stgs var, rs */
155 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */
156 #define DIF_OP_LDTS 44 /* ldts var, rd */
157 #define DIF_OP_STTS 45 /* stts var, rs */
158 #define DIF_OP_SRA 46 /* sra r1, r2, rd */
159 #define DIF_OP_CALL 47 /* call subr, rd */
160 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
161 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
162 #define DIF_OP_POPTS 50 /* popts */
163 #define DIF_OP_FLUSHTS 51 /* flushts */
164 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */
165 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */
166 #define DIF_OP_STGAA 54 /* stgaa var, rs */
167 #define DIF_OP_STTAA 55 /* sttaa var, rs */
168 #define DIF_OP_LDLS 56 /* ldls var, rd */
169 #define DIF_OP_STLS 57 /* stls var, rs */
170 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */
171 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */
172 #define DIF_OP_STB 60 /* stb r1, [rd] */
173 #define DIF_OP_STH 61 /* sth r1, [rd] */
174 #define DIF_OP_STW 62 /* stw r1, [rd] */
175 #define DIF_OP_STX 63 /* stx r1, [rd] */
176 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
177 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
178 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
179 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */
180 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
181 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
182 #define DIF_OP_ULDX 70 /* uldx [r1], rd */
183 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
184 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
185 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
186 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */
187 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
188 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
189 #define DIF_OP_RLDX 77 /* rldx [r1], rd */
190 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
191 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
192
193 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
194 #define DIF_STROFF_MAX 0xffff /* highest string table offset */
195 #define DIF_REGISTER_MAX 0xff /* highest register number */
196 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
197 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
198
199 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
200 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
201 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
202
203 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
204 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
205 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
206
207 #define DIF_VAR_ARGS 0x0000 /* arguments array */
208 #define DIF_VAR_REGS 0x0001 /* registers array */
209 #define DIF_VAR_UREGS 0x0002 /* user registers array */
210 #define DIF_VAR_VMREGS 0x0003 /* virtual machine registers array */
211 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
212 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
213 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
214 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */
215 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */
216 #define DIF_VAR_ID 0x0105 /* probe ID */
217 #define DIF_VAR_ARG0 0x0106 /* first argument */
218 #define DIF_VAR_ARG1 0x0107 /* second argument */
219 #define DIF_VAR_ARG2 0x0108 /* third argument */
220 #define DIF_VAR_ARG3 0x0109 /* fourth argument */
221 #define DIF_VAR_ARG4 0x010a /* fifth argument */
222 #define DIF_VAR_ARG5 0x010b /* sixth argument */
223 #define DIF_VAR_ARG6 0x010c /* seventh argument */
224 #define DIF_VAR_ARG7 0x010d /* eighth argument */
225 #define DIF_VAR_ARG8 0x010e /* ninth argument */
226 #define DIF_VAR_ARG9 0x010f /* tenth argument */
227 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
228 #define DIF_VAR_CALLER 0x0111 /* caller */
229 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
230 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */
231 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
232 #define DIF_VAR_PROBENAME 0x0115 /* probe name */
233 #define DIF_VAR_PID 0x0116 /* process ID */
234 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
235 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */
236 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
237 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
238 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
239 #define DIF_VAR_UCALLER 0x011c /* user-level caller */
240 #define DIF_VAR_PPID 0x011d /* parent process ID */
241 #define DIF_VAR_UID 0x011e /* process user ID */
242 #define DIF_VAR_GID 0x011f /* process group ID */
243 #define DIF_VAR_ERRNO 0x0120 /* thread errno */
244
245 #define DIF_SUBR_RAND 0
246 #define DIF_SUBR_MUTEX_OWNED 1
247 #define DIF_SUBR_MUTEX_OWNER 2
248 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
249 #define DIF_SUBR_MUTEX_TYPE_SPIN 4
250 #define DIF_SUBR_RW_READ_HELD 5
251 #define DIF_SUBR_RW_WRITE_HELD 6
252 #define DIF_SUBR_RW_ISWRITER 7
253 #define DIF_SUBR_COPYIN 8
254 #define DIF_SUBR_COPYINSTR 9
255 #define DIF_SUBR_SPECULATION 10
256 #define DIF_SUBR_PROGENYOF 11
257 #define DIF_SUBR_STRLEN 12
258 #define DIF_SUBR_COPYOUT 13
259 #define DIF_SUBR_COPYOUTSTR 14
260 #define DIF_SUBR_ALLOCA 15
261 #define DIF_SUBR_BCOPY 16
262 #define DIF_SUBR_COPYINTO 17
263 #define DIF_SUBR_MSGDSIZE 18
264 #define DIF_SUBR_MSGSIZE 19
265 #define DIF_SUBR_GETMAJOR 20
266 #define DIF_SUBR_GETMINOR 21
267 #define DIF_SUBR_DDI_PATHNAME 22
268 #define DIF_SUBR_STRJOIN 23
269 #define DIF_SUBR_LLTOSTR 24
270 #define DIF_SUBR_BASENAME 25
271 #define DIF_SUBR_DIRNAME 26
272 #define DIF_SUBR_CLEANPATH 27
273 #define DIF_SUBR_STRCHR 28
274 #define DIF_SUBR_STRRCHR 29
275 #define DIF_SUBR_STRSTR 30
276 #define DIF_SUBR_STRTOK 31
277 #define DIF_SUBR_SUBSTR 32
278 #define DIF_SUBR_INDEX 33
279 #define DIF_SUBR_RINDEX 34
280 #define DIF_SUBR_HTONS 35
281 #define DIF_SUBR_HTONL 36
282 #define DIF_SUBR_HTONLL 37
283 #define DIF_SUBR_NTOHS 38
284 #define DIF_SUBR_NTOHL 39
285 #define DIF_SUBR_NTOHLL 40
286 #define DIF_SUBR_INET_NTOP 41
287 #define DIF_SUBR_INET_NTOA 42
288 #define DIF_SUBR_INET_NTOA6 43
289 #define DIF_SUBR_TOUPPER 44
290 #define DIF_SUBR_TOLOWER 45
291 #define DIF_SUBR_GETF 46
292
293 #define DIF_SUBR_MAX 46 /* max subroutine value */
294
295 typedef uint32_t dif_instr_t;
296
297 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
298 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
299 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
300 #define DIF_INSTR_RD(i) ((i) & 0xff)
301 #define DIF_INSTR_RS(i) ((i) & 0xff)
302 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
303 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
304 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
305 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
306 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
307 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
308 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
309
310 #define DIF_INSTR_FMT(op, r1, r2, d) \
311 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
312
313 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
314 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
315 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
316 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
317 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
318 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
319 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
320 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
321 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
322 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
323 #define DIF_INSTR_NOP (DIF_OP_NOP << 24)
324 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
325 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
326 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
327 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
328 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
329 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
330 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
331 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
332 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
333 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
334
335 #define DIF_REG_R0 0 /* %r0 is always set to zero */
336
337 /*
338 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
339 * of variables, function and associative array arguments, and the return type
340 * for each DIF object (shown below). It contains a description of the type,
341 * its size in bytes, and a module identifier.
342 */
343 typedef struct dtrace_diftype {
344 uint8_t dtdt_kind; /* type kind (see below) */
345 uint8_t dtdt_ckind; /* type kind in CTF */
346 uint8_t dtdt_flags; /* type flags (see below) */
347 uint8_t dtdt_pad; /* reserved for future use */
348 uint32_t dtdt_size; /* type size in bytes (unless string) */
349 } dtrace_diftype_t;
350
351 #define DIF_TYPE_CTF 0 /* type is a CTF type */
352 #define DIF_TYPE_STRING 1 /* type is a D string */
353
354 #define DIF_TF_BYREF 0x1 /* type is passed by reference */
355
356 /*
357 * A DTrace Intermediate Format variable record is used to describe each of the
358 * variables referenced by a given DIF object. It contains an integer variable
359 * identifier along with variable scope and properties, as shown below. The
360 * size of this structure must be sizeof (int) aligned.
361 */
362 typedef struct dtrace_difv {
363 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
364 uint32_t dtdv_id; /* variable reference identifier */
365 uint8_t dtdv_kind; /* variable kind (see below) */
366 uint8_t dtdv_scope; /* variable scope (see below) */
367 uint16_t dtdv_flags; /* variable flags (see below) */
368 dtrace_diftype_t dtdv_type; /* variable type (see above) */
369 } dtrace_difv_t;
370
371 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
372 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
373
374 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
375 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
376 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
377
378 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
379 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */
380
381 /*
382 * DTrace Actions
383 *
384 * The upper byte determines the class of the action; the low bytes determines
385 * the specific action within that class. The classes of actions are as
386 * follows:
387 *
388 * [ no class ] <= May record process- or kernel-related data
389 * DTRACEACT_PROC <= Only records process-related data
390 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
391 * DTRACEACT_KERNEL <= Only records kernel-related data
392 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
393 * DTRACEACT_SPECULATIVE <= Speculation-related action
394 * DTRACEACT_AGGREGATION <= Aggregating action
395 */
396 #define DTRACEACT_NONE 0 /* no action */
397 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
398 #define DTRACEACT_EXIT 2 /* exit() action */
399 #define DTRACEACT_PRINTF 3 /* printf() action */
400 #define DTRACEACT_PRINTA 4 /* printa() action */
401 #define DTRACEACT_LIBACT 5 /* library-controlled action */
402 #define DTRACEACT_TRACEMEM 6 /* tracemem() action */
403 #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */
404
405 #define DTRACEACT_PROC 0x0100
406 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
407 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
408 #define DTRACEACT_USYM (DTRACEACT_PROC + 3)
409 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
410 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
411
412 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200
413 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
414 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
415 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
416 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
417
418 #define DTRACEACT_PROC_CONTROL 0x0300
419
420 #define DTRACEACT_KERNEL 0x0400
421 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
422 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
423 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
424
425 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
426 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
427 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
428 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
429
430 #define DTRACEACT_SPECULATIVE 0x0600
431 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
432 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
433 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
434
435 #define DTRACEACT_CLASS(x) ((x) & 0xff00)
436
437 #define DTRACEACT_ISDESTRUCTIVE(x) \
438 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
439 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
440
441 #define DTRACEACT_ISSPECULATIVE(x) \
442 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
443
444 #define DTRACEACT_ISPRINTFLIKE(x) \
445 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
446 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
447
448 /*
449 * DTrace Aggregating Actions
450 *
451 * These are functions f(x) for which the following is true:
452 *
453 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
454 *
455 * where x_n is a set of arbitrary data. Aggregating actions are in their own
456 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
457 * for easier processing of the aggregation argument and data payload for a few
458 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
459 */
460 #define DTRACEACT_AGGREGATION 0x0700
461 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
462 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
463 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
464 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
465 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
466 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
467 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
468 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
469 #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9)
470
471 #define DTRACEACT_ISAGG(x) \
472 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
473
474 #define DTRACE_QUANTIZE_NBUCKETS \
475 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
476
477 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
478
479 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \
480 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
481 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
482 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
483 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
484
485 #define DTRACE_LQUANTIZE_STEPSHIFT 48
486 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
487 #define DTRACE_LQUANTIZE_LEVELSHIFT 32
488 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
489 #define DTRACE_LQUANTIZE_BASESHIFT 0
490 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
491
492 #define DTRACE_LQUANTIZE_STEP(x) \
493 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
494 DTRACE_LQUANTIZE_STEPSHIFT)
495
496 #define DTRACE_LQUANTIZE_LEVELS(x) \
497 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
498 DTRACE_LQUANTIZE_LEVELSHIFT)
499
500 #define DTRACE_LQUANTIZE_BASE(x) \
501 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
502 DTRACE_LQUANTIZE_BASESHIFT)
503
504 #define DTRACE_LLQUANTIZE_FACTORSHIFT 48
505 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48)
506 #define DTRACE_LLQUANTIZE_LOWSHIFT 32
507 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32)
508 #define DTRACE_LLQUANTIZE_HIGHSHIFT 16
509 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16)
510 #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0
511 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX
512
513 #define DTRACE_LLQUANTIZE_FACTOR(x) \
514 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
515 DTRACE_LLQUANTIZE_FACTORSHIFT)
516
517 #define DTRACE_LLQUANTIZE_LOW(x) \
518 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
519 DTRACE_LLQUANTIZE_LOWSHIFT)
520
521 #define DTRACE_LLQUANTIZE_HIGH(x) \
522 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
523 DTRACE_LLQUANTIZE_HIGHSHIFT)
524
525 #define DTRACE_LLQUANTIZE_NSTEP(x) \
526 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
527 DTRACE_LLQUANTIZE_NSTEPSHIFT)
528
529 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
530 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
531 #define DTRACE_USTACK_ARG(x, y) \
532 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
533
534 #ifndef _LP64
535 #ifndef _LITTLE_ENDIAN
536 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name
537 #else
538 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad
539 #endif
540 #else
541 #define DTRACE_PTR(type, name) type *name
542 #endif
543
544 /*
545 * DTrace Object Format (DOF)
546 *
547 * DTrace programs can be persistently encoded in the DOF format so that they
548 * may be embedded in other programs (for example, in an ELF file) or in the
549 * dtrace driver configuration file for use in anonymous tracing. The DOF
550 * format is versioned and extensible so that it can be revised and so that
551 * internal data structures can be modified or extended compatibly. All DOF
552 * structures use fixed-size types, so the 32-bit and 64-bit representations
553 * are identical and consumers can use either data model transparently.
554 *
555 * The file layout is structured as follows:
556 *
557 * +---------------+-------------------+----- ... ----+---- ... ------+
558 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
559 * | (file header) | (section headers) | section data | section data |
560 * +---------------+-------------------+----- ... ----+---- ... ------+
561 * |<------------ dof_hdr.dofh_loadsz --------------->| |
562 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
563 *
564 * The file header stores meta-data including a magic number, data model for
565 * the instrumentation, data encoding, and properties of the DIF code within.
566 * The header describes its own size and the size of the section headers. By
567 * convention, an array of section headers follows the file header, and then
568 * the data for all loadable sections and unloadable sections. This permits
569 * consumer code to easily download the headers and all loadable data into the
570 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
571 *
572 * The section headers describe the size, offset, alignment, and section type
573 * for each section. Sections are described using a set of #defines that tell
574 * the consumer what kind of data is expected. Sections can contain links to
575 * other sections by storing a dof_secidx_t, an index into the section header
576 * array, inside of the section data structures. The section header includes
577 * an entry size so that sections with data arrays can grow their structures.
578 *
579 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
580 * are represented themselves as a collection of related DOF sections. This
581 * permits us to change the set of sections associated with a DIFO over time,
582 * and also permits us to encode DIFOs that contain different sets of sections.
583 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
584 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
585 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
586 *
587 * This loose coupling of the file structure (header and sections) to the
588 * structure of the DTrace program itself (ECB descriptions, action
589 * descriptions, and DIFOs) permits activities such as relocation processing
590 * to occur in a single pass without having to understand D program structure.
591 *
592 * Finally, strings are always stored in ELF-style string tables along with a
593 * string table section index and string table offset. Therefore strings in
594 * DOF are always arbitrary-length and not bound to the current implementation.
595 */
596
597 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
598
599 typedef struct dof_hdr {
600 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
601 uint32_t dofh_flags; /* file attribute flags (if any) */
602 uint32_t dofh_hdrsize; /* size of file header in bytes */
603 uint32_t dofh_secsize; /* size of section header in bytes */
604 uint32_t dofh_secnum; /* number of section headers */
605 uint64_t dofh_secoff; /* file offset of section headers */
606 uint64_t dofh_loadsz; /* file size of loadable portion */
607 uint64_t dofh_filesz; /* file size of entire DOF file */
608 uint64_t dofh_pad; /* reserved for future use */
609 } dof_hdr_t;
610
611 #define DOF_ID_MAG0 0 /* first byte of magic number */
612 #define DOF_ID_MAG1 1 /* second byte of magic number */
613 #define DOF_ID_MAG2 2 /* third byte of magic number */
614 #define DOF_ID_MAG3 3 /* fourth byte of magic number */
615 #define DOF_ID_MODEL 4 /* DOF data model (see below) */
616 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
617 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
618 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */
619 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
620 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
621 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
622
623 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
624 #define DOF_MAG_MAG1 'D'
625 #define DOF_MAG_MAG2 'O'
626 #define DOF_MAG_MAG3 'F'
627
628 #define DOF_MAG_STRING "\177DOF"
629 #define DOF_MAG_STRLEN 4
630
631 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
632 #define DOF_MODEL_ILP32 1
633 #define DOF_MODEL_LP64 2
634
635 #ifdef _LP64
636 #define DOF_MODEL_NATIVE DOF_MODEL_LP64
637 #else
638 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32
639 #endif
640
641 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
642 #define DOF_ENCODE_LSB 1
643 #define DOF_ENCODE_MSB 2
644
645 #ifdef _BIG_ENDIAN
646 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
647 #else
648 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
649 #endif
650
651 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
652 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
653 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
654
655 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
656
657 typedef uint32_t dof_secidx_t; /* section header table index type */
658 typedef uint32_t dof_stridx_t; /* string table index type */
659
660 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */
661 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */
662
663 typedef struct dof_sec {
664 uint32_t dofs_type; /* section type (see below) */
665 uint32_t dofs_align; /* section data memory alignment */
666 uint32_t dofs_flags; /* section flags (if any) */
667 uint32_t dofs_entsize; /* size of section entry (if table) */
668 uint64_t dofs_offset; /* offset of section data within file */
669 uint64_t dofs_size; /* size of section data in bytes */
670 } dof_sec_t;
671
672 #define DOF_SECT_NONE 0 /* null section */
673 #define DOF_SECT_COMMENTS 1 /* compiler comments */
674 #define DOF_SECT_SOURCE 2 /* D program source code */
675 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
676 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
677 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
678 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
679 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */
680 #define DOF_SECT_STRTAB 8 /* string table */
681 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
682 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
683 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
684 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
685 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
686 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
687 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */
688 #define DOF_SECT_PROBES 16 /* dof_probe_t array */
689 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
690 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
691 #define DOF_SECT_INTTAB 19 /* uint64_t array */
692 #define DOF_SECT_UTSNAME 20 /* struct utsname */
693 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
694 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
695 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
696 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
697 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
698 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
699
700 #define DOF_SECF_LOAD 1 /* section should be loaded */
701
702 #define DOF_SEC_ISLOADABLE(x) \
703 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \
704 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \
705 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \
706 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \
707 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \
708 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \
709 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \
710 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \
711 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \
712 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \
713 ((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) || \
714 ((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS))
715
716 typedef struct dof_ecbdesc {
717 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
718 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
719 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
720 uint32_t dofe_pad; /* reserved for future use */
721 uint64_t dofe_uarg; /* user-supplied library argument */
722 } dof_ecbdesc_t;
723
724 typedef struct dof_probedesc {
725 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
726 dof_stridx_t dofp_provider; /* provider string */
727 dof_stridx_t dofp_mod; /* module string */
728 dof_stridx_t dofp_func; /* function string */
729 dof_stridx_t dofp_name; /* name string */
730 uint32_t dofp_id; /* probe identifier (or zero) */
731 } dof_probedesc_t;
732
733 typedef struct dof_actdesc {
734 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
735 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
736 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
737 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
738 uint64_t dofa_arg; /* kind-specific argument */
739 uint64_t dofa_uarg; /* user-supplied argument */
740 } dof_actdesc_t;
741
742 typedef struct dof_difohdr {
743 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
744 dof_secidx_t dofd_links[1]; /* variable length array of indices */
745 } dof_difohdr_t;
746
747 typedef struct dof_relohdr {
748 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
749 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
750 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
751 } dof_relohdr_t;
752
753 typedef struct dof_relodesc {
754 dof_stridx_t dofr_name; /* string name of relocation symbol */
755 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
756 uint64_t dofr_offset; /* byte offset for relocation */
757 uint64_t dofr_data; /* additional type-specific data */
758 } dof_relodesc_t;
759
760 #define DOF_RELO_NONE 0 /* empty relocation entry */
761 #define DOF_RELO_SETX 1 /* relocate setx value */
762
763 typedef struct dof_optdesc {
764 uint32_t dofo_option; /* option identifier */
765 dof_secidx_t dofo_strtab; /* string table, if string option */
766 uint64_t dofo_value; /* option value or string index */
767 } dof_optdesc_t;
768
769 typedef uint32_t dof_attr_t; /* encoded stability attributes */
770
771 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
772 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
773 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
774 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
775
776 typedef struct dof_provider {
777 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
778 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
779 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
780 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
781 dof_stridx_t dofpv_name; /* provider name string */
782 dof_attr_t dofpv_provattr; /* provider attributes */
783 dof_attr_t dofpv_modattr; /* module attributes */
784 dof_attr_t dofpv_funcattr; /* function attributes */
785 dof_attr_t dofpv_nameattr; /* name attributes */
786 dof_attr_t dofpv_argsattr; /* args attributes */
787 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
788 } dof_provider_t;
789
790 typedef struct dof_probe {
791 uint64_t dofpr_addr; /* probe base address or offset */
792 dof_stridx_t dofpr_func; /* probe function string */
793 dof_stridx_t dofpr_name; /* probe name string */
794 dof_stridx_t dofpr_nargv; /* native argument type strings */
795 dof_stridx_t dofpr_xargv; /* translated argument type strings */
796 uint32_t dofpr_argidx; /* index of first argument mapping */
797 uint32_t dofpr_offidx; /* index of first offset entry */
798 uint8_t dofpr_nargc; /* native argument count */
799 uint8_t dofpr_xargc; /* translated argument count */
800 uint16_t dofpr_noffs; /* number of offset entries for probe */
801 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
802 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
803 uint16_t dofpr_pad1; /* reserved for future use */
804 uint32_t dofpr_pad2; /* reserved for future use */
805 } dof_probe_t;
806
807 typedef struct dof_xlator {
808 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
809 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
810 dof_stridx_t dofxl_argv; /* input parameter type strings */
811 uint32_t dofxl_argc; /* input parameter list length */
812 dof_stridx_t dofxl_type; /* output type string name */
813 dof_attr_t dofxl_attr; /* output stability attributes */
814 } dof_xlator_t;
815
816 typedef struct dof_xlmember {
817 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
818 dof_stridx_t dofxm_name; /* member name */
819 dtrace_diftype_t dofxm_type; /* member type */
820 } dof_xlmember_t;
821
822 typedef struct dof_xlref {
823 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
824 uint32_t dofxr_member; /* index of referenced dof_xlmember */
825 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
826 } dof_xlref_t;
827
828 /*
829 * DTrace Intermediate Format Object (DIFO)
830 *
831 * A DIFO is used to store the compiled DIF for a D expression, its return
832 * type, and its string and variable tables. The string table is a single
833 * buffer of character data into which sets instructions and variable
834 * references can reference strings using a byte offset. The variable table
835 * is an array of dtrace_difv_t structures that describe the name and type of
836 * each variable and the id used in the DIF code. This structure is described
837 * above in the DIF section of this header file. The DIFO is used at both
838 * user-level (in the library) and in the kernel, but the structure is never
839 * passed between the two: the DOF structures form the only interface. As a
840 * result, the definition can change depending on the presence of _KERNEL.
841 */
842 typedef struct dtrace_difo {
843 dif_instr_t *dtdo_buf; /* instruction buffer */
844 uint64_t *dtdo_inttab; /* integer table (optional) */
845 char *dtdo_strtab; /* string table (optional) */
846 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
847 uint_t dtdo_len; /* length of instruction buffer */
848 uint_t dtdo_intlen; /* length of integer table */
849 uint_t dtdo_strlen; /* length of string table */
850 uint_t dtdo_varlen; /* length of variable table */
851 dtrace_diftype_t dtdo_rtype; /* return type */
852 uint_t dtdo_refcnt; /* owner reference count */
853 uint_t dtdo_destructive; /* invokes destructive subroutines */
854 #ifndef _KERNEL
855 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
856 dof_relodesc_t *dtdo_ureltab; /* user relocations */
857 struct dt_node **dtdo_xlmtab; /* translator references */
858 uint_t dtdo_krelen; /* length of krelo table */
859 uint_t dtdo_urelen; /* length of urelo table */
860 uint_t dtdo_xlmlen; /* length of translator table */
861 #endif
862 } dtrace_difo_t;
863
864 /*
865 * DTrace Enabling Description Structures
866 *
867 * When DTrace is tracking the description of a DTrace enabling entity (probe,
868 * predicate, action, ECB, record, etc.), it does so in a description
869 * structure. These structures all end in "desc", and are used at both
870 * user-level and in the kernel -- but (with the exception of
871 * dtrace_probedesc_t) they are never passed between them. Typically,
872 * user-level will use the description structures when assembling an enabling.
873 * It will then distill those description structures into a DOF object (see
874 * above), and send it into the kernel. The kernel will again use the
875 * description structures to create a description of the enabling as it reads
876 * the DOF. When the description is complete, the enabling will be actually
877 * created -- turning it into the structures that represent the enabling
878 * instead of merely describing it. Not surprisingly, the description
879 * structures bear a strong resemblance to the DOF structures that act as their
880 * conduit.
881 */
882 struct dtrace_predicate;
883
884 typedef struct dtrace_probedesc {
885 dtrace_id_t dtpd_id; /* probe identifier */
886 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
887 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
888 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
889 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
890 } dtrace_probedesc_t;
891
892 typedef struct dtrace_repldesc {
893 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
894 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
895 } dtrace_repldesc_t;
896
897 typedef struct dtrace_preddesc {
898 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
899 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
900 } dtrace_preddesc_t;
901
902 typedef struct dtrace_actdesc {
903 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
904 struct dtrace_actdesc *dtad_next; /* next action */
905 dtrace_actkind_t dtad_kind; /* kind of action */
906 uint32_t dtad_ntuple; /* number in tuple */
907 uint64_t dtad_arg; /* action argument */
908 uint64_t dtad_uarg; /* user argument */
909 int dtad_refcnt; /* reference count */
910 } dtrace_actdesc_t;
911
912 typedef struct dtrace_ecbdesc {
913 dtrace_actdesc_t *dted_action; /* action description(s) */
914 dtrace_preddesc_t dted_pred; /* predicate description */
915 dtrace_probedesc_t dted_probe; /* probe description */
916 uint64_t dted_uarg; /* library argument */
917 int dted_refcnt; /* reference count */
918 } dtrace_ecbdesc_t;
919
920 /*
921 * DTrace Metadata Description Structures
922 *
923 * DTrace separates the trace data stream from the metadata stream. The only
924 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
925 * timestamp) or (in the case of aggregations) aggregation identifiers. To
926 * determine the structure of the data, DTrace consumers pass the token to the
927 * kernel, and receive in return a corresponding description of the enabled
928 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
929 * dtrace_aggdesc structure). Both of these structures are expressed in terms
930 * of record descriptions (via the dtrace_recdesc structure) that describe the
931 * exact structure of the data. Some record descriptions may also contain a
932 * format identifier; this additional bit of metadata can be retrieved from the
933 * kernel, for which a format description is returned via the dtrace_fmtdesc
934 * structure. Note that all four of these structures must be bitness-neutral
935 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
936 */
937 typedef struct dtrace_recdesc {
938 dtrace_actkind_t dtrd_action; /* kind of action */
939 uint32_t dtrd_size; /* size of record */
940 uint32_t dtrd_offset; /* offset in ECB's data */
941 uint16_t dtrd_alignment; /* required alignment */
942 uint16_t dtrd_format; /* format, if any */
943 uint64_t dtrd_arg; /* action argument */
944 uint64_t dtrd_uarg; /* user argument */
945 } dtrace_recdesc_t;
946
947 typedef struct dtrace_eprobedesc {
948 dtrace_epid_t dtepd_epid; /* enabled probe ID */
949 dtrace_id_t dtepd_probeid; /* probe ID */
950 uint64_t dtepd_uarg; /* library argument */
951 uint32_t dtepd_size; /* total size */
952 int dtepd_nrecs; /* number of records */
953 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
954 } dtrace_eprobedesc_t;
955
956 typedef struct dtrace_aggdesc {
957 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
958 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
959 int dtagd_flags; /* not filled in by kernel */
960 dtrace_aggid_t dtagd_id; /* aggregation ID */
961 dtrace_epid_t dtagd_epid; /* enabled probe ID */
962 uint32_t dtagd_size; /* size in bytes */
963 int dtagd_nrecs; /* number of records */
964 uint32_t dtagd_pad; /* explicit padding */
965 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
966 } dtrace_aggdesc_t;
967
968 typedef struct dtrace_fmtdesc {
969 DTRACE_PTR(char, dtfd_string); /* format string */
970 int dtfd_length; /* length of format string */
971 uint16_t dtfd_format; /* format identifier */
972 } dtrace_fmtdesc_t;
973
974 #define DTRACE_SIZEOF_EPROBEDESC(desc) \
975 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
976 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
977
978 #define DTRACE_SIZEOF_AGGDESC(desc) \
979 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
980 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
981
982 /*
983 * DTrace Option Interface
984 *
985 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
986 * in a DOF image. The dof_optdesc structure contains an option identifier and
987 * an option value. The valid option identifiers are found below; the mapping
988 * between option identifiers and option identifying strings is maintained at
989 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
990 * following are potentially valid option values: all positive integers, zero
991 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
992 * predefined tokens as their values; these are defined with
993 * DTRACEOPT_{option}_{token}.
994 */
995 #define DTRACEOPT_BUFSIZE 0 /* buffer size */
996 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
997 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
998 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */
999 #define DTRACEOPT_SPECSIZE 4 /* speculation size */
1000 #define DTRACEOPT_NSPEC 5 /* number of speculations */
1001 #define DTRACEOPT_STRSIZE 6 /* string size */
1002 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1003 #define DTRACEOPT_CPU 8 /* CPU to trace */
1004 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1005 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1006 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1007 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1008 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1009 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1010 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1011 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1012 #define DTRACEOPT_STATUSRATE 17 /* status rate */
1013 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1014 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1015 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1016 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1017 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1018 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1019 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1020 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1021 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1022 #define DTRACEOPT_TEMPORAL 27 /* temporally ordered output */
1023 #define DTRACEOPT_ZONE 28 /* zone in which to enable probes */
1024 #define DTRACEOPT_MAX 29 /* number of options */
1025
1026 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
1027
1028 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1029 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1030 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1031
1032 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1033 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1034
1035 /*
1036 * DTrace Buffer Interface
1037 *
1038 * In order to get a snapshot of the principal or aggregation buffer,
1039 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1040 * structure. This describes which CPU user-level is interested in, and
1041 * where user-level wishes the kernel to snapshot the buffer to (the
1042 * dtbd_data field). The kernel uses the same structure to pass back some
1043 * information regarding the buffer: the size of data actually copied out, the
1044 * number of drops, the number of errors, the offset of the oldest record,
1045 * and the time of the snapshot.
1046 *
1047 * If the buffer policy is a "switch" policy, taking a snapshot of the
1048 * principal buffer has the additional effect of switching the active and
1049 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1050 * the additional effect of switching the active and inactive buffers.
1051 */
1052 typedef struct dtrace_bufdesc {
1053 uint64_t dtbd_size; /* size of buffer */
1054 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1055 uint32_t dtbd_errors; /* number of errors */
1056 uint64_t dtbd_drops; /* number of drops */
1057 DTRACE_PTR(char, dtbd_data); /* data */
1058 uint64_t dtbd_oldest; /* offset of oldest record */
1059 uint64_t dtbd_timestamp; /* hrtime of snapshot */
1060 } dtrace_bufdesc_t;
1061
1062 /*
1063 * Each record in the buffer (dtbd_data) begins with a header that includes
1064 * the epid and a timestamp. The timestamp is split into two 4-byte parts
1065 * so that we do not require 8-byte alignment.
1066 */
1067 typedef struct dtrace_rechdr {
1068 dtrace_epid_t dtrh_epid; /* enabled probe id */
1069 uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */
1070 uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */
1071 } dtrace_rechdr_t;
1072
1073 #define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \
1074 ((dtrh)->dtrh_timestamp_lo + \
1075 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1076
1077 #define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \
1078 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \
1079 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \
1080 }
1081
1082 /*
1083 * DTrace Status
1084 *
1085 * The status of DTrace is relayed via the dtrace_status structure. This
1086 * structure contains members to count drops other than the capacity drops
1087 * available via the buffer interface (see above). This consists of dynamic
1088 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1089 * speculative drops (including capacity speculative drops, drops due to busy
1090 * speculative buffers and drops due to unavailable speculative buffers).
1091 * Additionally, the status structure contains a field to indicate the number
1092 * of "fill"-policy buffers have been filled and a boolean field to indicate
1093 * that exit() has been called. If the dtst_exiting field is non-zero, no
1094 * further data will be generated until tracing is stopped (at which time any
1095 * enablings of the END action will be processed); if user-level sees that
1096 * this field is non-zero, tracing should be stopped as soon as possible.
1097 */
1098 typedef struct dtrace_status {
1099 uint64_t dtst_dyndrops; /* dynamic drops */
1100 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1101 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1102 uint64_t dtst_specdrops; /* speculative drops */
1103 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1104 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1105 uint64_t dtst_errors; /* total errors */
1106 uint64_t dtst_filled; /* number of filled bufs */
1107 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1108 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1109 char dtst_killed; /* non-zero if killed */
1110 char dtst_exiting; /* non-zero if exit() called */
1111 char dtst_pad[6]; /* pad out to 64-bit align */
1112 } dtrace_status_t;
1113
1114 /*
1115 * DTrace Configuration
1116 *
1117 * User-level may need to understand some elements of the kernel DTrace
1118 * configuration in order to generate correct DIF. This information is
1119 * conveyed via the dtrace_conf structure.
1120 */
1121 typedef struct dtrace_conf {
1122 uint_t dtc_difversion; /* supported DIF version */
1123 uint_t dtc_difintregs; /* # of DIF integer registers */
1124 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1125 uint_t dtc_ctfmodel; /* CTF data model */
1126 uint_t dtc_pad[8]; /* reserved for future use */
1127 } dtrace_conf_t;
1128
1129 /*
1130 * DTrace Faults
1131 *
1132 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1133 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1134 * postprocessing at user-level. Probe processing faults induce an ERROR
1135 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1136 * the error condition using thse symbolic labels.
1137 */
1138 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1139 #define DTRACEFLT_BADADDR 1 /* Bad address */
1140 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1141 #define DTRACEFLT_ILLOP 3 /* Illegal operation */
1142 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1143 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1144 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1145 #define DTRACEFLT_UPRIV 7 /* Illegal user access */
1146 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1147 #define DTRACEFLT_BADSTACK 9 /* Bad stack */
1148
1149 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1150
1151 /*
1152 * DTrace Argument Types
1153 *
1154 * Because it would waste both space and time, argument types do not reside
1155 * with the probe. In order to determine argument types for args[X]
1156 * variables, the D compiler queries for argument types on a probe-by-probe
1157 * basis. (This optimizes for the common case that arguments are either not
1158 * used or used in an untyped fashion.) Typed arguments are specified with a
1159 * string of the type name in the dtragd_native member of the argument
1160 * description structure. Typed arguments may be further translated to types
1161 * of greater stability; the provider indicates such a translated argument by
1162 * filling in the dtargd_xlate member with the string of the translated type.
1163 * Finally, the provider may indicate which argument value a given argument
1164 * maps to by setting the dtargd_mapping member -- allowing a single argument
1165 * to map to multiple args[X] variables.
1166 */
1167 typedef struct dtrace_argdesc {
1168 dtrace_id_t dtargd_id; /* probe identifier */
1169 int dtargd_ndx; /* arg number (-1 iff none) */
1170 int dtargd_mapping; /* value mapping */
1171 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1172 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1173 } dtrace_argdesc_t;
1174
1175 /*
1176 * DTrace Stability Attributes
1177 *
1178 * Each DTrace provider advertises the name and data stability of each of its
1179 * probe description components, as well as its architectural dependencies.
1180 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1181 * order to compute the properties of an input program and report them.
1182 */
1183 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1184 typedef uint8_t dtrace_class_t; /* architectural dependency class */
1185
1186 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1187 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1188 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1189 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1190 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1191 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1192 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1193 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1194 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1195
1196 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1197 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1198 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1199 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1200 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1201 #define DTRACE_CLASS_COMMON 5 /* common to all systems */
1202 #define DTRACE_CLASS_MAX 5 /* maximum valid class */
1203
1204 #define DTRACE_PRIV_NONE 0x0000
1205 #define DTRACE_PRIV_KERNEL 0x0001
1206 #define DTRACE_PRIV_USER 0x0002
1207 #define DTRACE_PRIV_PROC 0x0004
1208 #define DTRACE_PRIV_OWNER 0x0008
1209 #define DTRACE_PRIV_ZONEOWNER 0x0010
1210
1211 #define DTRACE_PRIV_ALL \
1212 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1213 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1214
1215 typedef struct dtrace_ppriv {
1216 uint32_t dtpp_flags; /* privilege flags */
1217 uid_t dtpp_uid; /* user ID */
1218 zoneid_t dtpp_zoneid; /* zone ID */
1219 } dtrace_ppriv_t;
1220
1221 typedef struct dtrace_attribute {
1222 dtrace_stability_t dtat_name; /* entity name stability */
1223 dtrace_stability_t dtat_data; /* entity data stability */
1224 dtrace_class_t dtat_class; /* entity data dependency */
1225 } dtrace_attribute_t;
1226
1227 typedef struct dtrace_pattr {
1228 dtrace_attribute_t dtpa_provider; /* provider attributes */
1229 dtrace_attribute_t dtpa_mod; /* module attributes */
1230 dtrace_attribute_t dtpa_func; /* function attributes */
1231 dtrace_attribute_t dtpa_name; /* name attributes */
1232 dtrace_attribute_t dtpa_args; /* args[] attributes */
1233 } dtrace_pattr_t;
1234
1235 typedef struct dtrace_providerdesc {
1236 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1237 dtrace_pattr_t dtvd_attr; /* stability attributes */
1238 dtrace_ppriv_t dtvd_priv; /* privileges required */
1239 } dtrace_providerdesc_t;
1240
1241 /*
1242 * DTrace Pseudodevice Interface
1243 *
1244 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1245 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1246 * DTrace.
1247 */
1248 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1249 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1250 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1251 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1252 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1253 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1254 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1255 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1256 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1257 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1258 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1259 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1260 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1261 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1262 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1263 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1264 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1265
1266 /*
1267 * DTrace Helpers
1268 *
1269 * In general, DTrace establishes probes in processes and takes actions on
1270 * processes without knowing their specific user-level structures. Instead of
1271 * existing in the framework, process-specific knowledge is contained by the
1272 * enabling D program -- which can apply process-specific knowledge by making
1273 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1274 * operate on user-level data. However, there may exist some specific probes
1275 * of particular semantic relevance that the application developer may wish to
1276 * explicitly export. For example, an application may wish to export a probe
1277 * at the point that it begins and ends certain well-defined transactions. In
1278 * addition to providing probes, programs may wish to offer assistance for
1279 * certain actions. For example, in highly dynamic environments (e.g., Java),
1280 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1281 * names (the translation from instruction addresses to corresponding symbol
1282 * names may only be possible in situ); these environments may wish to define
1283 * a series of actions to be applied in situ to obtain a meaningful stack
1284 * trace.
1285 *
1286 * These two mechanisms -- user-level statically defined tracing and assisting
1287 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1288 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1289 * providers, probes and their arguments. If a helper wishes to provide
1290 * action assistance, probe descriptions and corresponding DIF actions may be
1291 * specified in the helper DOF. For such helper actions, however, the probe
1292 * description describes the specific helper: all DTrace helpers have the
1293 * provider name "dtrace" and the module name "helper", and the name of the
1294 * helper is contained in the function name (for example, the ustack() helper
1295 * is named "ustack"). Any helper-specific name may be contained in the name
1296 * (for example, if a helper were to have a constructor, it might be named
1297 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1298 * action that they are helping is taken. Helper actions may only return DIF
1299 * expressions, and may only call the following subroutines:
1300 *
1301 * alloca() <= Allocates memory out of the consumer's scratch space
1302 * bcopy() <= Copies memory to scratch space
1303 * copyin() <= Copies memory from user-level into consumer's scratch
1304 * copyinto() <= Copies memory into a specific location in scratch
1305 * copyinstr() <= Copies a string into a specific location in scratch
1306 *
1307 * Helper actions may only access the following built-in variables:
1308 *
1309 * curthread <= Current kthread_t pointer
1310 * tid <= Current thread identifier
1311 * pid <= Current process identifier
1312 * ppid <= Parent process identifier
1313 * uid <= Current user ID
1314 * gid <= Current group ID
1315 * execname <= Current executable name
1316 * zonename <= Current zone name
1317 *
1318 * Helper actions may not manipulate or allocate dynamic variables, but they
1319 * may have clause-local and statically-allocated global variables. The
1320 * helper action variable state is specific to the helper action -- variables
1321 * used by the helper action may not be accessed outside of the helper
1322 * action, and the helper action may not access variables that like outside
1323 * of it. Helper actions may not load from kernel memory at-large; they are
1324 * restricting to loading current user state (via copyin() and variants) and
1325 * scratch space. As with probe enablings, helper actions are executed in
1326 * program order. The result of the helper action is the result of the last
1327 * executing helper expression.
1328 *
1329 * Helpers -- composed of either providers/probes or probes/actions (or both)
1330 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1331 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1332 * encapsulates the name and base address of the user-level library or
1333 * executable publishing the helpers and probes as well as the DOF that
1334 * contains the definitions of those helpers and probes.
1335 *
1336 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1337 * helpers and should no longer be used. No other ioctls are valid on the
1338 * helper minor node.
1339 */
1340 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1341 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1342 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1343 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1344
1345 typedef struct dof_helper {
1346 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1347 uint64_t dofhp_addr; /* base address of object */
1348 uint64_t dofhp_dof; /* address of helper DOF */
1349 } dof_helper_t;
1350
1351 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1352 #define DTRACEMNR_HELPER "helper" /* node for helpers */
1353 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1354 #define DTRACEMNRN_HELPER 1 /* minor for helpers */
1355 #define DTRACEMNRN_CLONE 2 /* first clone minor */
1356
1357 #ifdef _KERNEL
1358
1359 /*
1360 * DTrace Provider API
1361 *
1362 * The following functions are implemented by the DTrace framework and are
1363 * used to implement separate in-kernel DTrace providers. Common functions
1364 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1365 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1366 *
1367 * The provider API has two halves: the API that the providers consume from
1368 * DTrace, and the API that providers make available to DTrace.
1369 *
1370 * 1 Framework-to-Provider API
1371 *
1372 * 1.1 Overview
1373 *
1374 * The Framework-to-Provider API is represented by the dtrace_pops structure
1375 * that the provider passes to the framework when registering itself. This
1376 * structure consists of the following members:
1377 *
1378 * dtps_provide() <-- Provide all probes, all modules
1379 * dtps_provide_module() <-- Provide all probes in specified module
1380 * dtps_enable() <-- Enable specified probe
1381 * dtps_disable() <-- Disable specified probe
1382 * dtps_suspend() <-- Suspend specified probe
1383 * dtps_resume() <-- Resume specified probe
1384 * dtps_getargdesc() <-- Get the argument description for args[X]
1385 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1386 * dtps_mode() <-- Return the mode of the fired probe
1387 * dtps_destroy() <-- Destroy all state associated with this probe
1388 *
1389 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1390 *
1391 * 1.2.1 Overview
1392 *
1393 * Called to indicate that the provider should provide all probes. If the
1394 * specified description is non-NULL, dtps_provide() is being called because
1395 * no probe matched a specified probe -- if the provider has the ability to
1396 * create custom probes, it may wish to create a probe that matches the
1397 * specified description.
1398 *
1399 * 1.2.2 Arguments and notes
1400 *
1401 * The first argument is the cookie as passed to dtrace_register(). The
1402 * second argument is a pointer to a probe description that the provider may
1403 * wish to consider when creating custom probes. The provider is expected to
1404 * call back into the DTrace framework via dtrace_probe_create() to create
1405 * any necessary probes. dtps_provide() may be called even if the provider
1406 * has made available all probes; the provider should check the return value
1407 * of dtrace_probe_create() to handle this case. Note that the provider need
1408 * not implement both dtps_provide() and dtps_provide_module(); see
1409 * "Arguments and Notes" for dtrace_register(), below.
1410 *
1411 * 1.2.3 Return value
1412 *
1413 * None.
1414 *
1415 * 1.2.4 Caller's context
1416 *
1417 * dtps_provide() is typically called from open() or ioctl() context, but may
1418 * be called from other contexts as well. The DTrace framework is locked in
1419 * such a way that providers may not register or unregister. This means that
1420 * the provider may not call any DTrace API that affects its registration with
1421 * the framework, including dtrace_register(), dtrace_unregister(),
1422 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1423 * that the provider may (and indeed, is expected to) call probe-related
1424 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1425 * and dtrace_probe_arg().
1426 *
1427 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1428 *
1429 * 1.3.1 Overview
1430 *
1431 * Called to indicate that the provider should provide all probes in the
1432 * specified module.
1433 *
1434 * 1.3.2 Arguments and notes
1435 *
1436 * The first argument is the cookie as passed to dtrace_register(). The
1437 * second argument is a pointer to a modctl structure that indicates the
1438 * module for which probes should be created.
1439 *
1440 * 1.3.3 Return value
1441 *
1442 * None.
1443 *
1444 * 1.3.4 Caller's context
1445 *
1446 * dtps_provide_module() may be called from open() or ioctl() context, but
1447 * may also be called from a module loading context. mod_lock is held, and
1448 * the DTrace framework is locked in such a way that providers may not
1449 * register or unregister. This means that the provider may not call any
1450 * DTrace API that affects its registration with the framework, including
1451 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1452 * dtrace_condense(). However, the context is such that the provider may (and
1453 * indeed, is expected to) call probe-related DTrace routines, including
1454 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1455 * that the provider need not implement both dtps_provide() and
1456 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1457 * below.
1458 *
1459 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1460 *
1461 * 1.4.1 Overview
1462 *
1463 * Called to enable the specified probe.
1464 *
1465 * 1.4.2 Arguments and notes
1466 *
1467 * The first argument is the cookie as passed to dtrace_register(). The
1468 * second argument is the identifier of the probe to be enabled. The third
1469 * argument is the probe argument as passed to dtrace_probe_create().
1470 * dtps_enable() will be called when a probe transitions from not being
1471 * enabled at all to having one or more ECB. The number of ECBs associated
1472 * with the probe may change without subsequent calls into the provider.
1473 * When the number of ECBs drops to zero, the provider will be explicitly
1474 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1475 * be called for a probe identifier that hasn't been explicitly enabled via
1476 * dtps_enable().
1477 *
1478 * 1.4.3 Return value
1479 *
1480 * On success, dtps_enable() should return 0. On failure, -1 should be
1481 * returned.
1482 *
1483 * 1.4.4 Caller's context
1484 *
1485 * The DTrace framework is locked in such a way that it may not be called
1486 * back into at all. cpu_lock is held. mod_lock is not held and may not
1487 * be acquired.
1488 *
1489 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1490 *
1491 * 1.5.1 Overview
1492 *
1493 * Called to disable the specified probe.
1494 *
1495 * 1.5.2 Arguments and notes
1496 *
1497 * The first argument is the cookie as passed to dtrace_register(). The
1498 * second argument is the identifier of the probe to be disabled. The third
1499 * argument is the probe argument as passed to dtrace_probe_create().
1500 * dtps_disable() will be called when a probe transitions from being enabled
1501 * to having zero ECBs. dtrace_probe() should never be called for a probe
1502 * identifier that has been explicitly enabled via dtps_disable().
1503 *
1504 * 1.5.3 Return value
1505 *
1506 * None.
1507 *
1508 * 1.5.4 Caller's context
1509 *
1510 * The DTrace framework is locked in such a way that it may not be called
1511 * back into at all. cpu_lock is held. mod_lock is not held and may not
1512 * be acquired.
1513 *
1514 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1515 *
1516 * 1.6.1 Overview
1517 *
1518 * Called to suspend the specified enabled probe. This entry point is for
1519 * providers that may need to suspend some or all of their probes when CPUs
1520 * are being powered on or when the boot monitor is being entered for a
1521 * prolonged period of time.
1522 *
1523 * 1.6.2 Arguments and notes
1524 *
1525 * The first argument is the cookie as passed to dtrace_register(). The
1526 * second argument is the identifier of the probe to be suspended. The
1527 * third argument is the probe argument as passed to dtrace_probe_create().
1528 * dtps_suspend will only be called on an enabled probe. Providers that
1529 * provide a dtps_suspend entry point will want to take roughly the action
1530 * that it takes for dtps_disable.
1531 *
1532 * 1.6.3 Return value
1533 *
1534 * None.
1535 *
1536 * 1.6.4 Caller's context
1537 *
1538 * Interrupts are disabled. The DTrace framework is in a state such that the
1539 * specified probe cannot be disabled or destroyed for the duration of
1540 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1541 * little latitude; the provider is expected to do no more than a store to
1542 * memory.
1543 *
1544 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1545 *
1546 * 1.7.1 Overview
1547 *
1548 * Called to resume the specified enabled probe. This entry point is for
1549 * providers that may need to resume some or all of their probes after the
1550 * completion of an event that induced a call to dtps_suspend().
1551 *
1552 * 1.7.2 Arguments and notes
1553 *
1554 * The first argument is the cookie as passed to dtrace_register(). The
1555 * second argument is the identifier of the probe to be resumed. The
1556 * third argument is the probe argument as passed to dtrace_probe_create().
1557 * dtps_resume will only be called on an enabled probe. Providers that
1558 * provide a dtps_resume entry point will want to take roughly the action
1559 * that it takes for dtps_enable.
1560 *
1561 * 1.7.3 Return value
1562 *
1563 * None.
1564 *
1565 * 1.7.4 Caller's context
1566 *
1567 * Interrupts are disabled. The DTrace framework is in a state such that the
1568 * specified probe cannot be disabled or destroyed for the duration of
1569 * dtps_resume(). As interrupts are disabled, the provider is afforded
1570 * little latitude; the provider is expected to do no more than a store to
1571 * memory.
1572 *
1573 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1574 * dtrace_argdesc_t *desc)
1575 *
1576 * 1.8.1 Overview
1577 *
1578 * Called to retrieve the argument description for an args[X] variable.
1579 *
1580 * 1.8.2 Arguments and notes
1581 *
1582 * The first argument is the cookie as passed to dtrace_register(). The
1583 * second argument is the identifier of the current probe. The third
1584 * argument is the probe argument as passed to dtrace_probe_create(). The
1585 * fourth argument is a pointer to the argument description. This
1586 * description is both an input and output parameter: it contains the
1587 * index of the desired argument in the dtargd_ndx field, and expects
1588 * the other fields to be filled in upon return. If there is no argument
1589 * corresponding to the specified index, the dtargd_ndx field should be set
1590 * to DTRACE_ARGNONE.
1591 *
1592 * 1.8.3 Return value
1593 *
1594 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1595 * members of the dtrace_argdesc_t structure are all output values.
1596 *
1597 * 1.8.4 Caller's context
1598 *
1599 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1600 * the DTrace framework is locked in such a way that providers may not
1601 * register or unregister. This means that the provider may not call any
1602 * DTrace API that affects its registration with the framework, including
1603 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1604 * dtrace_condense().
1605 *
1606 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1607 * int argno, int aframes)
1608 *
1609 * 1.9.1 Overview
1610 *
1611 * Called to retrieve a value for an argX or args[X] variable.
1612 *
1613 * 1.9.2 Arguments and notes
1614 *
1615 * The first argument is the cookie as passed to dtrace_register(). The
1616 * second argument is the identifier of the current probe. The third
1617 * argument is the probe argument as passed to dtrace_probe_create(). The
1618 * fourth argument is the number of the argument (the X in the example in
1619 * 1.9.1). The fifth argument is the number of stack frames that were used
1620 * to get from the actual place in the code that fired the probe to
1621 * dtrace_probe() itself, the so-called artificial frames. This argument may
1622 * be used to descend an appropriate number of frames to find the correct
1623 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1624 * function is used.
1625 *
1626 * 1.9.3 Return value
1627 *
1628 * The value of the argument.
1629 *
1630 * 1.9.4 Caller's context
1631 *
1632 * This is called from within dtrace_probe() meaning that interrupts
1633 * are disabled. No locks should be taken within this entry point.
1634 *
1635 * 1.10 int dtps_mode(void *arg, dtrace_id_t id, void *parg)
1636 *
1637 * 1.10.1 Overview
1638 *
1639 * Called to determine the mode of a fired probe.
1640 *
1641 * 1.10.2 Arguments and notes
1642 *
1643 * The first argument is the cookie as passed to dtrace_register(). The
1644 * second argument is the identifier of the current probe. The third
1645 * argument is the probe argument as passed to dtrace_probe_create(). This
1646 * entry point must not be left NULL for providers whose probes allow for
1647 * mixed mode tracing, that is to say those unanchored probes that can fire
1648 * during kernel- or user-mode execution.
1649 *
1650 * 1.10.3 Return value
1651 *
1652 * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1653 * or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1654 * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1655 * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If
1656 * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1657 * in the probe firing being silently ignored for the enabling; if the
1658 * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1659 * prevent probe processing for the enabling, but restrictions will be in
1660 * place that induce a UPRIV fault upon attempt to examine probe arguments
1661 * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1662 * is set, similar restrictions will be placed upon operation if the
1663 * privilege is sufficient to process the enabling, but does not otherwise
1664 * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and
1665 * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1666 * two policies must be specified), but either may be combined (or not)
1667 * with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1668 *
1669 * 1.10.4 Caller's context
1670 *
1671 * This is called from within dtrace_probe() meaning that interrupts
1672 * are disabled. No locks should be taken within this entry point.
1673 *
1674 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1675 *
1676 * 1.11.1 Overview
1677 *
1678 * Called to destroy the specified probe.
1679 *
1680 * 1.11.2 Arguments and notes
1681 *
1682 * The first argument is the cookie as passed to dtrace_register(). The
1683 * second argument is the identifier of the probe to be destroyed. The third
1684 * argument is the probe argument as passed to dtrace_probe_create(). The
1685 * provider should free all state associated with the probe. The framework
1686 * guarantees that dtps_destroy() is only called for probes that have either
1687 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1688 * Once dtps_disable() has been called for a probe, no further call will be
1689 * made specifying the probe.
1690 *
1691 * 1.11.3 Return value
1692 *
1693 * None.
1694 *
1695 * 1.11.4 Caller's context
1696 *
1697 * The DTrace framework is locked in such a way that it may not be called
1698 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1699 * acquired.
1700 *
1701 *
1702 * 2 Provider-to-Framework API
1703 *
1704 * 2.1 Overview
1705 *
1706 * The Provider-to-Framework API provides the mechanism for the provider to
1707 * register itself with the DTrace framework, to create probes, to lookup
1708 * probes and (most importantly) to fire probes. The Provider-to-Framework
1709 * consists of:
1710 *
1711 * dtrace_register() <-- Register a provider with the DTrace framework
1712 * dtrace_unregister() <-- Remove a provider's DTrace registration
1713 * dtrace_invalidate() <-- Invalidate the specified provider
1714 * dtrace_condense() <-- Remove a provider's unenabled probes
1715 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1716 * dtrace_probe_create() <-- Create a DTrace probe
1717 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1718 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1719 * dtrace_probe() <-- Fire the specified probe
1720 *
1721 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1722 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1723 * dtrace_provider_id_t *idp)
1724 *
1725 * 2.2.1 Overview
1726 *
1727 * dtrace_register() registers the calling provider with the DTrace
1728 * framework. It should generally be called by DTrace providers in their
1729 * attach(9E) entry point.
1730 *
1731 * 2.2.2 Arguments and Notes
1732 *
1733 * The first argument is the name of the provider. The second argument is a
1734 * pointer to the stability attributes for the provider. The third argument
1735 * is the privilege flags for the provider, and must be some combination of:
1736 *
1737 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1738 *
1739 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1740 * enable probes from this provider
1741 *
1742 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1743 * enable probes from this provider
1744 *
1745 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1746 * may enable probes from this provider
1747 *
1748 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1749 * the privilege requirements above. These probes
1750 * require either (a) a user ID matching the user
1751 * ID of the cred passed in the fourth argument
1752 * or (b) the PRIV_PROC_OWNER privilege.
1753 *
1754 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1755 * the privilege requirements above. These probes
1756 * require either (a) a zone ID matching the zone
1757 * ID of the cred passed in the fourth argument
1758 * or (b) the PRIV_PROC_ZONE privilege.
1759 *
1760 * Note that these flags designate the _visibility_ of the probes, not
1761 * the conditions under which they may or may not fire.
1762 *
1763 * The fourth argument is the credential that is associated with the
1764 * provider. This argument should be NULL if the privilege flags don't
1765 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1766 * framework stashes the uid and zoneid represented by this credential
1767 * for use at probe-time, in implicit predicates. These limit visibility
1768 * of the probes to users and/or zones which have sufficient privilege to
1769 * access them.
1770 *
1771 * The fifth argument is a DTrace provider operations vector, which provides
1772 * the implementation for the Framework-to-Provider API. (See Section 1,
1773 * above.) This must be non-NULL, and each member must be non-NULL. The
1774 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1775 * members (if the provider so desires, _one_ of these members may be left
1776 * NULL -- denoting that the provider only implements the other) and (2)
1777 * the dtps_suspend() and dtps_resume() members, which must either both be
1778 * NULL or both be non-NULL.
1779 *
1780 * The sixth argument is a cookie to be specified as the first argument for
1781 * each function in the Framework-to-Provider API. This argument may have
1782 * any value.
1783 *
1784 * The final argument is a pointer to dtrace_provider_id_t. If
1785 * dtrace_register() successfully completes, the provider identifier will be
1786 * stored in the memory pointed to be this argument. This argument must be
1787 * non-NULL.
1788 *
1789 * 2.2.3 Return value
1790 *
1791 * On success, dtrace_register() returns 0 and stores the new provider's
1792 * identifier into the memory pointed to by the idp argument. On failure,
1793 * dtrace_register() returns an errno:
1794 *
1795 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1796 * This may because a parameter that must be non-NULL was NULL,
1797 * because the name was invalid (either empty or an illegal
1798 * provider name) or because the attributes were invalid.
1799 *
1800 * No other failure code is returned.
1801 *
1802 * 2.2.4 Caller's context
1803 *
1804 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1805 * hold no locks across dtrace_register() that may also be acquired by
1806 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1807 *
1808 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1809 *
1810 * 2.3.1 Overview
1811 *
1812 * Unregisters the specified provider from the DTrace framework. It should
1813 * generally be called by DTrace providers in their detach(9E) entry point.
1814 *
1815 * 2.3.2 Arguments and Notes
1816 *
1817 * The only argument is the provider identifier, as returned from a
1818 * successful call to dtrace_register(). As a result of calling
1819 * dtrace_unregister(), the DTrace framework will call back into the provider
1820 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1821 * completes, however, the DTrace framework will no longer make calls through
1822 * the Framework-to-Provider API.
1823 *
1824 * 2.3.3 Return value
1825 *
1826 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1827 * returns an errno:
1828 *
1829 * EBUSY There are currently processes that have the DTrace pseudodevice
1830 * open, or there exists an anonymous enabling that hasn't yet
1831 * been claimed.
1832 *
1833 * No other failure code is returned.
1834 *
1835 * 2.3.4 Caller's context
1836 *
1837 * Because a call to dtrace_unregister() may induce calls through the
1838 * Framework-to-Provider API, the caller may not hold any lock across
1839 * dtrace_register() that is also acquired in any of the Framework-to-
1840 * Provider API functions. Additionally, mod_lock may not be held.
1841 *
1842 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1843 *
1844 * 2.4.1 Overview
1845 *
1846 * Invalidates the specified provider. All subsequent probe lookups for the
1847 * specified provider will fail, but its probes will not be removed.
1848 *
1849 * 2.4.2 Arguments and note
1850 *
1851 * The only argument is the provider identifier, as returned from a
1852 * successful call to dtrace_register(). In general, a provider's probes
1853 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1854 * an entire provider, regardless of whether or not probes are enabled or
1855 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1856 * probes from firing -- it will merely prevent any new enablings of the
1857 * provider's probes.
1858 *
1859 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1860 *
1861 * 2.5.1 Overview
1862 *
1863 * Removes all the unenabled probes for the given provider. This function is
1864 * not unlike dtrace_unregister(), except that it doesn't remove the
1865 * provider just as many of its associated probes as it can.
1866 *
1867 * 2.5.2 Arguments and Notes
1868 *
1869 * As with dtrace_unregister(), the sole argument is the provider identifier
1870 * as returned from a successful call to dtrace_register(). As a result of
1871 * calling dtrace_condense(), the DTrace framework will call back into the
1872 * given provider's dtps_destroy() entry point for each of the provider's
1873 * unenabled probes.
1874 *
1875 * 2.5.3 Return value
1876 *
1877 * Currently, dtrace_condense() always returns 0. However, consumers of this
1878 * function should check the return value as appropriate; its behavior may
1879 * change in the future.
1880 *
1881 * 2.5.4 Caller's context
1882 *
1883 * As with dtrace_unregister(), the caller may not hold any lock across
1884 * dtrace_condense() that is also acquired in the provider's entry points.
1885 * Also, mod_lock may not be held.
1886 *
1887 * 2.6 int dtrace_attached()
1888 *
1889 * 2.6.1 Overview
1890 *
1891 * Indicates whether or not DTrace has attached.
1892 *
1893 * 2.6.2 Arguments and Notes
1894 *
1895 * For most providers, DTrace makes initial contact beyond registration.
1896 * That is, once a provider has registered with DTrace, it waits to hear
1897 * from DTrace to create probes. However, some providers may wish to
1898 * proactively create probes without first being told by DTrace to do so.
1899 * If providers wish to do this, they must first call dtrace_attached() to
1900 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
1901 * the provider must not make any other Provider-to-Framework API call.
1902 *
1903 * 2.6.3 Return value
1904 *
1905 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1906 *
1907 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1908 * const char *func, const char *name, int aframes, void *arg)
1909 *
1910 * 2.7.1 Overview
1911 *
1912 * Creates a probe with specified module name, function name, and name.
1913 *
1914 * 2.7.2 Arguments and Notes
1915 *
1916 * The first argument is the provider identifier, as returned from a
1917 * successful call to dtrace_register(). The second, third, and fourth
1918 * arguments are the module name, function name, and probe name,
1919 * respectively. Of these, module name and function name may both be NULL
1920 * (in which case the probe is considered to be unanchored), or they may both
1921 * be non-NULL. The name must be non-NULL, and must point to a non-empty
1922 * string.
1923 *
1924 * The fifth argument is the number of artificial stack frames that will be
1925 * found on the stack when dtrace_probe() is called for the new probe. These
1926 * artificial frames will be automatically be pruned should the stack() or
1927 * stackdepth() functions be called as part of one of the probe's ECBs. If
1928 * the parameter doesn't add an artificial frame, this parameter should be
1929 * zero.
1930 *
1931 * The final argument is a probe argument that will be passed back to the
1932 * provider when a probe-specific operation is called. (e.g., via
1933 * dtps_enable(), dtps_disable(), etc.)
1934 *
1935 * Note that it is up to the provider to be sure that the probe that it
1936 * creates does not already exist -- if the provider is unsure of the probe's
1937 * existence, it should assure its absence with dtrace_probe_lookup() before
1938 * calling dtrace_probe_create().
1939 *
1940 * 2.7.3 Return value
1941 *
1942 * dtrace_probe_create() always succeeds, and always returns the identifier
1943 * of the newly-created probe.
1944 *
1945 * 2.7.4 Caller's context
1946 *
1947 * While dtrace_probe_create() is generally expected to be called from
1948 * dtps_provide() and/or dtps_provide_module(), it may be called from other
1949 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1950 *
1951 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1952 * const char *func, const char *name)
1953 *
1954 * 2.8.1 Overview
1955 *
1956 * Looks up a probe based on provdider and one or more of module name,
1957 * function name and probe name.
1958 *
1959 * 2.8.2 Arguments and Notes
1960 *
1961 * The first argument is the provider identifier, as returned from a
1962 * successful call to dtrace_register(). The second, third, and fourth
1963 * arguments are the module name, function name, and probe name,
1964 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
1965 * the identifier of the first probe that is provided by the specified
1966 * provider and matches all of the non-NULL matching criteria.
1967 * dtrace_probe_lookup() is generally used by a provider to be check the
1968 * existence of a probe before creating it with dtrace_probe_create().
1969 *
1970 * 2.8.3 Return value
1971 *
1972 * If the probe exists, returns its identifier. If the probe does not exist,
1973 * return DTRACE_IDNONE.
1974 *
1975 * 2.8.4 Caller's context
1976 *
1977 * While dtrace_probe_lookup() is generally expected to be called from
1978 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1979 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1980 *
1981 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1982 *
1983 * 2.9.1 Overview
1984 *
1985 * Returns the probe argument associated with the specified probe.
1986 *
1987 * 2.9.2 Arguments and Notes
1988 *
1989 * The first argument is the provider identifier, as returned from a
1990 * successful call to dtrace_register(). The second argument is a probe
1991 * identifier, as returned from dtrace_probe_lookup() or
1992 * dtrace_probe_create(). This is useful if a probe has multiple
1993 * provider-specific components to it: the provider can create the probe
1994 * once with provider-specific state, and then add to the state by looking
1995 * up the probe based on probe identifier.
1996 *
1997 * 2.9.3 Return value
1998 *
1999 * Returns the argument associated with the specified probe. If the
2000 * specified probe does not exist, or if the specified probe is not provided
2001 * by the specified provider, NULL is returned.
2002 *
2003 * 2.9.4 Caller's context
2004 *
2005 * While dtrace_probe_arg() is generally expected to be called from
2006 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2007 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2008 *
2009 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2010 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2011 *
2012 * 2.10.1 Overview
2013 *
2014 * The epicenter of DTrace: fires the specified probes with the specified
2015 * arguments.
2016 *
2017 * 2.10.2 Arguments and Notes
2018 *
2019 * The first argument is a probe identifier as returned by
2020 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2021 * arguments are the values to which the D variables "arg0" through "arg4"
2022 * will be mapped.
2023 *
2024 * dtrace_probe() should be called whenever the specified probe has fired --
2025 * however the provider defines it.
2026 *
2027 * 2.10.3 Return value
2028 *
2029 * None.
2030 *
2031 * 2.10.4 Caller's context
2032 *
2033 * dtrace_probe() may be called in virtually any context: kernel, user,
2034 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2035 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2036 * that must be afforded to DTrace is the ability to make calls within
2037 * itself (and to its in-kernel subroutines) and the ability to access
2038 * arbitrary (but mapped) memory. On some platforms, this constrains
2039 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2040 * from any context in which TL is greater than zero. dtrace_probe() may
2041 * also not be called from any routine which may be called by dtrace_probe()
2042 * -- which includes functions in the DTrace framework and some in-kernel
2043 * DTrace subroutines. All such functions "dtrace_"; providers that
2044 * instrument the kernel arbitrarily should be sure to not instrument these
2045 * routines.
2046 */
2047 typedef struct dtrace_pops {
2048 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2049 void (*dtps_provide_module)(void *arg, struct modctl *mp);
2050 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2051 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2052 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2053 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2054 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2055 dtrace_argdesc_t *desc);
2056 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2057 int argno, int aframes);
2058 int (*dtps_mode)(void *arg, dtrace_id_t id, void *parg);
2059 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2060 } dtrace_pops_t;
2061
2062 #define DTRACE_MODE_KERNEL 0x01
2063 #define DTRACE_MODE_USER 0x02
2064 #define DTRACE_MODE_NOPRIV_DROP 0x10
2065 #define DTRACE_MODE_NOPRIV_RESTRICT 0x20
2066 #define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40
2067
2068 typedef uintptr_t dtrace_provider_id_t;
2069
2070 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2071 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2072 extern int dtrace_unregister(dtrace_provider_id_t);
2073 extern int dtrace_condense(dtrace_provider_id_t);
2074 extern void dtrace_invalidate(dtrace_provider_id_t);
2075 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2076 const char *, const char *);
2077 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2078 const char *, const char *, int, void *);
2079 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2080 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2081 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2082
2083 /*
2084 * DTrace Meta Provider API
2085 *
2086 * The following functions are implemented by the DTrace framework and are
2087 * used to implement meta providers. Meta providers plug into the DTrace
2088 * framework and are used to instantiate new providers on the fly. At
2089 * present, there is only one type of meta provider and only one meta
2090 * provider may be registered with the DTrace framework at a time. The
2091 * sole meta provider type provides user-land static tracing facilities
2092 * by taking meta probe descriptions and adding a corresponding provider
2093 * into the DTrace framework.
2094 *
2095 * 1 Framework-to-Provider
2096 *
2097 * 1.1 Overview
2098 *
2099 * The Framework-to-Provider API is represented by the dtrace_mops structure
2100 * that the meta provider passes to the framework when registering itself as
2101 * a meta provider. This structure consists of the following members:
2102 *
2103 * dtms_create_probe() <-- Add a new probe to a created provider
2104 * dtms_provide_pid() <-- Create a new provider for a given process
2105 * dtms_remove_pid() <-- Remove a previously created provider
2106 *
2107 * 1.2 void dtms_create_probe(void *arg, void *parg,
2108 * dtrace_helper_probedesc_t *probedesc);
2109 *
2110 * 1.2.1 Overview
2111 *
2112 * Called by the DTrace framework to create a new probe in a provider
2113 * created by this meta provider.
2114 *
2115 * 1.2.2 Arguments and notes
2116 *
2117 * The first argument is the cookie as passed to dtrace_meta_register().
2118 * The second argument is the provider cookie for the associated provider;
2119 * this is obtained from the return value of dtms_provide_pid(). The third
2120 * argument is the helper probe description.
2121 *
2122 * 1.2.3 Return value
2123 *
2124 * None
2125 *
2126 * 1.2.4 Caller's context
2127 *
2128 * dtms_create_probe() is called from either ioctl() or module load context.
2129 * The DTrace framework is locked in such a way that meta providers may not
2130 * register or unregister. This means that the meta provider cannot call
2131 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2132 * such that the provider may (and is expected to) call provider-related
2133 * DTrace provider APIs including dtrace_probe_create().
2134 *
2135 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2136 * pid_t pid)
2137 *
2138 * 1.3.1 Overview
2139 *
2140 * Called by the DTrace framework to instantiate a new provider given the
2141 * description of the provider and probes in the mprov argument. The
2142 * meta provider should call dtrace_register() to insert the new provider
2143 * into the DTrace framework.
2144 *
2145 * 1.3.2 Arguments and notes
2146 *
2147 * The first argument is the cookie as passed to dtrace_meta_register().
2148 * The second argument is a pointer to a structure describing the new
2149 * helper provider. The third argument is the process identifier for
2150 * process associated with this new provider. Note that the name of the
2151 * provider as passed to dtrace_register() should be the contatenation of
2152 * the dtmpb_provname member of the mprov argument and the processs
2153 * identifier as a string.
2154 *
2155 * 1.3.3 Return value
2156 *
2157 * The cookie for the provider that the meta provider creates. This is
2158 * the same value that it passed to dtrace_register().
2159 *
2160 * 1.3.4 Caller's context
2161 *
2162 * dtms_provide_pid() is called from either ioctl() or module load context.
2163 * The DTrace framework is locked in such a way that meta providers may not
2164 * register or unregister. This means that the meta provider cannot call
2165 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2166 * is such that the provider may -- and is expected to -- call
2167 * provider-related DTrace provider APIs including dtrace_register().
2168 *
2169 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2170 * pid_t pid)
2171 *
2172 * 1.4.1 Overview
2173 *
2174 * Called by the DTrace framework to remove a provider that had previously
2175 * been instantiated via the dtms_provide_pid() entry point. The meta
2176 * provider need not remove the provider immediately, but this entry
2177 * point indicates that the provider should be removed as soon as possible
2178 * using the dtrace_unregister() API.
2179 *
2180 * 1.4.2 Arguments and notes
2181 *
2182 * The first argument is the cookie as passed to dtrace_meta_register().
2183 * The second argument is a pointer to a structure describing the helper
2184 * provider. The third argument is the process identifier for process
2185 * associated with this new provider.
2186 *
2187 * 1.4.3 Return value
2188 *
2189 * None
2190 *
2191 * 1.4.4 Caller's context
2192 *
2193 * dtms_remove_pid() is called from either ioctl() or exit() context.
2194 * The DTrace framework is locked in such a way that meta providers may not
2195 * register or unregister. This means that the meta provider cannot call
2196 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2197 * is such that the provider may -- and is expected to -- call
2198 * provider-related DTrace provider APIs including dtrace_unregister().
2199 */
2200 typedef struct dtrace_helper_probedesc {
2201 char *dthpb_mod; /* probe module */
2202 char *dthpb_func; /* probe function */
2203 char *dthpb_name; /* probe name */
2204 uint64_t dthpb_base; /* base address */
2205 uint32_t *dthpb_offs; /* offsets array */
2206 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2207 uint32_t dthpb_noffs; /* offsets count */
2208 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2209 uint8_t *dthpb_args; /* argument mapping array */
2210 uint8_t dthpb_xargc; /* translated argument count */
2211 uint8_t dthpb_nargc; /* native argument count */
2212 char *dthpb_xtypes; /* translated types strings */
2213 char *dthpb_ntypes; /* native types strings */
2214 } dtrace_helper_probedesc_t;
2215
2216 typedef struct dtrace_helper_provdesc {
2217 char *dthpv_provname; /* provider name */
2218 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2219 } dtrace_helper_provdesc_t;
2220
2221 typedef struct dtrace_mops {
2222 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2223 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2224 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2225 } dtrace_mops_t;
2226
2227 typedef uintptr_t dtrace_meta_provider_id_t;
2228
2229 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2230 dtrace_meta_provider_id_t *);
2231 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2232
2233 /*
2234 * DTrace Kernel Hooks
2235 *
2236 * The following functions are implemented by the base kernel and form a set of
2237 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2238 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2239 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2240 */
2241
2242 typedef enum dtrace_vtime_state {
2243 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2244 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2245 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2246 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2247 } dtrace_vtime_state_t;
2248
2249 extern dtrace_vtime_state_t dtrace_vtime_active;
2250 extern void dtrace_vtime_switch(kthread_t *next);
2251 extern void dtrace_vtime_enable_tnf(void);
2252 extern void dtrace_vtime_disable_tnf(void);
2253 extern void dtrace_vtime_enable(void);
2254 extern void dtrace_vtime_disable(void);
2255
2256 struct regs;
2257
2258 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2259 extern int (*dtrace_return_probe_ptr)(struct regs *);
2260 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2261 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2262 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2263 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2264
2265 typedef uintptr_t dtrace_icookie_t;
2266 typedef void (*dtrace_xcall_t)(void *);
2267
2268 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2269 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2270
2271 extern void dtrace_membar_producer(void);
2272 extern void dtrace_membar_consumer(void);
2273
2274 extern void (*dtrace_cpu_init)(processorid_t);
2275 extern void (*dtrace_modload)(struct modctl *);
2276 extern void (*dtrace_modunload)(struct modctl *);
2277 extern void (*dtrace_helpers_cleanup)();
2278 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2279 extern void (*dtrace_cpustart_init)();
2280 extern void (*dtrace_cpustart_fini)();
2281 extern void (*dtrace_closef)();
2282
2283 extern void (*dtrace_debugger_init)();
2284 extern void (*dtrace_debugger_fini)();
2285 extern dtrace_cacheid_t dtrace_predcache_id;
2286
2287 extern hrtime_t dtrace_gethrtime(void);
2288 extern void dtrace_sync(void);
2289 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2290 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2291 extern void dtrace_vpanic(const char *, __va_list);
2292 extern void dtrace_panic(const char *, ...);
2293
2294 extern int dtrace_safe_defer_signal(void);
2295 extern void dtrace_safe_synchronous_signal(void);
2296
2297 extern int dtrace_mach_aframes(void);
2298
2299 #if defined(__i386) || defined(__amd64)
2300 extern int dtrace_instr_size(uchar_t *instr);
2301 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2302 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2303 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2304 extern void dtrace_invop_callsite(void);
2305 #endif
2306
2307 #ifdef __sparc
2308 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2309 extern void dtrace_getfsr(uint64_t *);
2310 #endif
2311
2312 #define DTRACE_CPUFLAG_ISSET(flag) \
2313 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2314
2315 #define DTRACE_CPUFLAG_SET(flag) \
2316 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2317
2318 #define DTRACE_CPUFLAG_CLEAR(flag) \
2319 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2320
2321 #endif /* _KERNEL */
2322
2323 #endif /* _ASM */
2324
2325 #if defined(__i386) || defined(__amd64)
2326
2327 #define DTRACE_INVOP_PUSHL_EBP 1
2328 #define DTRACE_INVOP_POPL_EBP 2
2329 #define DTRACE_INVOP_LEAVE 3
2330 #define DTRACE_INVOP_NOP 4
2331 #define DTRACE_INVOP_RET 5
2332
2333 #endif
2334
2335 #ifdef __cplusplus
2336 }
2337 #endif
2338
2339 #endif /* _SYS_DTRACE_H */