
new/usr/src/cmd/iconv/Makefile 1

**********************************************************
    1544 Sat May 28 21:32:37 2011
new/usr/src/cmd/iconv/Makefile
30 Need iconv
**********************************************************

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source.  A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
14 #

16 PROG=iconv
17 SHFILES=iconv_list

19 include ../Makefile.cmd

21 OBJS = iconv.o charmap.o parser.tab.o scanner.o

23 SRCS = $(OBJS:%.o=%.c)

25 C99MODE= $(C99_ENABLE)
26 LDLIBS += -lgen
27 LDLIBS += -lavl
28 YFLAGS = -d -b parser
29 $(RELEASE_BUILD) CPPFLAGS += -DNDEBUG

31 CLEANFILES = $(OBJS) parser.tab.c parser.tab.h
32 CLOBBERFILES = $(PROG) $(POFILE)
33 PIFILES = $(OBJS:%.o=%.i)
34 POFILE = iconv_cmd.po

36 all: $(PROG) $(SHFILES)

38 ROOTLIBICONV = $(ROOT)/usr/lib/iconv
39 ROOTLIBICONVSH = $(SHFILES:%=$(ROOTLIBICONV)/%)
40 $(ROOTLIBICONVSH) := FILEMODE = 0555

42 install: all $(ROOTPROG) $(ROOTLIBICONV) $(ROOTLIBICONVSH)

44 $(PROG): $(OBJS)
45 $(LINK.c) $(OBJS) -o $@ $(LDLIBS)
46 $(POST_PROCESS)

48 $(OBJS): parser.tab.h

50 parser.tab.c parser.tab.h: parser.y
51 $(YACC) $(YFLAGS) parser.y

53 lint: $(SRCS)
54 $(LINT.c) $(CPPFLAGS) $(SRCS)

56 clean:
57 $(RM) $(CLEANFILES)

59 $(POFILE): $(PIFILES)
60 $(RM) $@
61 $(RM) messages.po

new/usr/src/cmd/iconv/Makefile 2

62 $(XGETTEXT) -s $(PIFILES)
63 $(SED) -e ’/domain/d’ messages.po > $@
64 $(RM) $(PIFILES) messages.po

66 $(ROOTLIBICONV):
67 $(INS.dir)

69 $(ROOTLIBICONV)/%: %
70 $(INS.file)

72 .KEEP_STATE:

74 include ../Makefile.targ



new/usr/src/cmd/iconv/charmap.c 1

**********************************************************
   11277 Sat May 28 21:32:37 2011
new/usr/src/cmd/iconv/charmap.c
30 Need iconv
**********************************************************

1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.

10  */

12 /*
13  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
14  */

16 /*
17  * CHARMAP file handling for iconv.
18  */

20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <string.h>
23 #include <errno.h>
24 #include <limits.h>
25 #include <unistd.h>
26 #include <alloca.h>
27 #include <sys/avl.h>
28 #include <stddef.h>
29 #include <unistd.h>
30 #include "charmap.h"
31 #include "parser.tab.h"
32 #include <assert.h>

34 enum cmap_pass cmap_pass;
35 static avl_tree_t cmap_sym;
36 static avl_tree_t cmap_mbs;

38 typedef struct charmap {
39 const char *name;
40 struct charmap *alias_of;
41 avl_node_t avl_sym;
42 avl_node_t avl_mbs;
43 int warned;
44 int mbs_len;
45 int tombs_len;
46 char mbs[MB_LEN_MAX + 1]; /* input */
47 char tombs[MB_LEN_MAX + 1]; /* output */
48 } charmap_t;

50 static void add_charmap_impl_fr(char *sym, char *mbs, int mbs_len, int nodups);
51 static void add_charmap_impl_to(char *sym, char *mbs, int mbs_len, int nodups);

53 /*
54  * Array of POSIX specific portable characters.
55  */
56 static const struct {
57 char *name;
58 int ch;
59 } portable_chars[] = {
60 { "NUL",  ’\0’ },
61 { "alert", ’\a’ },

new/usr/src/cmd/iconv/charmap.c 2

62 { "backspace", ’\b’ },
63 { "tab", ’\t’ },
64 { "carriage-return", ’\r’ },
65 { "newline", ’\n’ },
66 { "vertical-tab", ’\v’ },
67 { "form-feed", ’\f’ },
68 { "space", ’ ’ },
69 { "exclamation-mark", ’!’ },
70 { "quotation-mark", ’"’ },
71 { "number-sign", ’#’ },
72 { "dollar-sign", ’$’ },
73 { "percent-sign", ’%’ },
74 { "ampersand", ’&’ },
75 { "apostrophe", ’\’’ },
76 { "left-parenthesis", ’(’ },
77 { "right-parenthesis", ’(’ },
78 { "asterisk", ’*’ },
79 { "plus-sign", ’+’ },
80 { "comma",  ’,’},
81 { "hyphen-minus", ’-’ },
82 { "hyphen", ’-’ },
83 { "full-stop", ’.’ },
84 { "period", ’.’ },
85 { "slash", ’/’ },
86 { "solidus", ’/’ },
87 { "zero", ’0’ },
88 { "one", ’1’ },
89 { "two", ’2’ },
90 { "three", ’3’ },
91 { "four", ’4’ },
92 { "five", ’5’ },
93 { "six", ’6’ },
94 { "seven", ’7’ },
95 { "eight", ’8’ },
96 { "nine", ’9’ },
97 { "colon", ’:’ },
98 { "semicolon", ’;’ },
99 { "less-than-sign", ’<’ },
100 { "equals-sign", ’=’ },
101 { "greater-than-sign", ’>’ },
102 { "question-mark", ’?’ },
103 { "commercial-at", ’@’ },
104 { "left-square-bracket", ’[’ },
105 { "backslash", ’\\’ },
106 { "reverse-solidus", ’\\’ },
107 { "right-square-bracket", ’]’ },
108 { "circumflex", ’^’ },
109 { "circumflex-accent", ’^’ },
110 { "low-line", ’_’ },
111 { "underscore", ’_’ },
112 { "grave-accent", ’‘’ },
113 { "left-brace", ’{’ },
114 { "left-curly-bracket", ’{’ },
115 { "vertical-line", ’|’ },
116 { "right-brace", ’}’ },
117 { "right-curly-bracket", ’}’ },
118 { "tilde", ’~’ },
119 { "A", ’A’ },
120 { "B", ’B’ },
121 { "C", ’C’ },
122 { "D", ’D’ },
123 { "E", ’E’ },
124 { "F", ’F’ },
125 { "G", ’G’ },
126 { "H", ’H’ },
127 { "I", ’I’ },



new/usr/src/cmd/iconv/charmap.c 3

128 { "J", ’J’ },
129 { "K", ’K’ },
130 { "L", ’L’ },
131 { "M", ’M’ },
132 { "N", ’N’ },
133 { "O", ’O’ },
134 { "P", ’P’ },
135 { "Q", ’Q’ },
136 { "R", ’R’ },
137 { "S", ’S’ },
138 { "T", ’T’ },
139 { "U", ’U’ },
140 { "V", ’V’ },
141 { "W", ’W’ },
142 { "X", ’X’ },
143 { "Y", ’Y’ },
144 { "Z", ’Z’ },
145 { "a", ’a’ },
146 { "b", ’b’ },
147 { "c", ’c’ },
148 { "d", ’d’ },
149 { "e", ’e’ },
150 { "f", ’f’ },
151 { "g", ’g’ },
152 { "h", ’h’ },
153 { "i", ’i’ },
154 { "j", ’j’ },
155 { "k", ’k’ },
156 { "l", ’l’ },
157 { "m", ’m’ },
158 { "n", ’n’ },
159 { "o", ’o’ },
160 { "p", ’p’ },
161 { "q", ’q’ },
162 { "r", ’r’ },
163 { "s", ’s’ },
164 { "t", ’t’ },
165 { "u", ’u’ },
166 { "v", ’v’ },
167 { "w", ’w’ },
168 { "x", ’x’ },
169 { "y", ’y’ },
170 { "z", ’z’ },
171 { NULL, 0 }
172 };

174 static int
175 cmap_compare_sym(const void *n1, const void *n2)
176 {
177 const charmap_t *c1 = n1;
178 const charmap_t *c2 = n2;
179 int rv;

181 rv = strcmp(c1->name, c2->name);
182 return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
183 }

185 /*
186  * In order for partial match searches to work,
187  * we need these sorted by mbs contents.
188  */
189 static int
190 cmap_compare_mbs(const void *n1, const void *n2)
191 {
192 const charmap_t *c1 = n1;
193 const charmap_t *c2 = n2;

new/usr/src/cmd/iconv/charmap.c 4

194 int len, rv;

196 len = c1->mbs_len;
197 if (len < c2->mbs_len)
198 len = c2->mbs_len;
199 rv = memcmp(c1->mbs, c2->mbs, len);
200 if (rv < 0)
201 return (-1);
202 if (rv > 0)
203 return (1);
204 /* they match through length */
205 if (c1->mbs_len < c2->mbs_len)
206 return (-1);
207 if (c2->mbs_len < c1->mbs_len)
208 return (1);
209 return (0);
210 }

212 void
213 charmap_init(char *to_map, char *from_map)
214 {
215 avl_create(&cmap_sym, cmap_compare_sym, sizeof (charmap_t),
216     offsetof(charmap_t, avl_sym));

218 avl_create(&cmap_mbs, cmap_compare_mbs, sizeof (charmap_t),
219     offsetof(charmap_t, avl_mbs));

221 cmap_pass = CMAP_PASS_FROM;
222 reset_scanner(from_map);
223 (void) yyparse();
224 add_charmap_posix();

226 cmap_pass = CMAP_PASS_TO;
227 reset_scanner(to_map);
228 (void) yyparse();
229 }

231 void
232 charmap_dump()
233 {
234 charmap_t *cm;
235 int i;

237 cm = avl_first(&cmap_mbs);
238 while (cm != NULL) {
239 (void) printf("name=\"%s\"\n", cm->name);

241 (void) printf("\timbs=\"");
242 for (i = 0; i < cm->mbs_len; i++)
243 (void) printf("\\x%02x", cm->mbs[i] & 0xFF);
244 (void) printf("\"\n");

246 (void) printf("\tombs=\"");
247 for (i = 0; i < cm->tombs_len; i++)
248 (void) printf("\\x%02x", cm->tombs[i] & 0xFF);
249 (void) printf("\"\n");

251 cm = AVL_NEXT(&cmap_mbs, cm);
252 }
253 }

255 /*
256  * We parse two charmap files:  First the "from" map, where we build
257  * cmap_mbs and cmap_sym which we’ll later use to translate the input
258  * stream (mbs encodings) to symbols.  Second, we parse the "to" map,
259  * where we fill in the tombs members of entries in cmap_sym, (which



new/usr/src/cmd/iconv/charmap.c 5

260  * must alread exist) used later to write the output encoding.
261  */
262 static void
263 add_charmap_impl(char *sym, char *mbs, int mbs_len, int nodups)
264 {

266 /*
267  * While parsing both the "from" and "to" cmaps,
268  * require both the symbol and encoding.
269  */
270 if (sym == NULL || mbs == NULL) {
271 errf(_("invalid charmap entry"));
272 return;
273 }

275 switch (cmap_pass) {
276 case CMAP_PASS_FROM:
277 add_charmap_impl_fr(sym, mbs, mbs_len, nodups);
278 break;
279 case CMAP_PASS_TO:
280 add_charmap_impl_to(sym, mbs, mbs_len, nodups);
281 break;
282 default:
283 assert(0);
284 break;
285 }
286 }

288 static void
289 add_charmap_impl_fr(char *sym, char *mbs, int mbs_len, int nodups)
290 {
291 charmap_t *m, *n, *s;
292 avl_index_t where_sym, where_mbs;

294 if ((n = calloc(1, sizeof (*n))) == NULL) {
295 errf(_("out of memory"));
296 return;
297 }
298 n->name = sym;

300 assert(0 < mbs_len && mbs_len <= MB_LEN_MAX);
301 (void) memcpy(n->mbs, mbs, mbs_len);
302 n->mbs_len = mbs_len;

304 m = avl_find(&cmap_mbs, n, &where_mbs);
305 s = avl_find(&cmap_sym, n, &where_sym);

307 /*
308  * If we found the symbol, this is a dup.
309  */
310 if (s != NULL) {
311 if (nodups) {
312 warn(_("%s: duplicate character symbol"), sym);
313 }
314 free(n);
315 return;
316 }

318 /*
319  * If we found the mbs, the new one is an alias,
320  * which we’ll add _only_ to the symbol AVL.
321  */
322 if (m != NULL) {
323 /* The new one is an alias of the original. */
324 n->alias_of = m;
325 avl_insert(&cmap_sym, n, where_sym);

new/usr/src/cmd/iconv/charmap.c 6

326 return;
327 }

329 avl_insert(&cmap_sym, n, where_sym);
330 avl_insert(&cmap_mbs, n, where_mbs);
331 }

333 static void
334 add_charmap_impl_to(char *sym, char *mbs, int mbs_len, int nodups)
335 {
336 charmap_t srch = {0};
337 charmap_t *m;
338 avl_index_t where;

340 assert(0 < mbs_len && mbs_len <= MB_LEN_MAX);

342 srch.name = sym;

344 m = avl_find(&cmap_sym, &srch, &where);
345 if (m == NULL) {
346 if (sflag == 0)
347 warn(_("%s: symbol not found"), sym);
348 return;
349 }
350 if (m->alias_of != NULL) {
351 m = m->alias_of;

353 /* don’t warn for dups with aliases */
354 if (m->tombs_len != 0)
355 return;
356 }

358 if (m->tombs_len != 0) {
359 if (nodups) {
360 warn(_("%s: duplicate encoding for"), sym);
361 }
362 return;
363 }

365 (void) memcpy(m->tombs, mbs, mbs_len);
366 m->tombs_len = mbs_len;
367 }

369 void
370 add_charmap(char *sym, char *mbs)
371 {
372 /* mbs[0] is the length */
373 int mbs_len = *mbs++;
374 assert(0 < mbs_len && mbs_len <= MB_LEN_MAX);
375 add_charmap_impl(sym, mbs, mbs_len, 1);
376 }

379 void
380 add_charmap_range(char *ssym, char *esym, char *mbs)
381 {
382 int ls, le;
383 int si;
384 int sn, en;
385 int i;
386 int mbs_len;
387 char tmbs[MB_LEN_MAX+1];
388 char *mb_last;

390 static const char *digits = "0123456789";



new/usr/src/cmd/iconv/charmap.c 7

392 /* mbs[0] is the length */
393 mbs_len = *mbs++;
394 assert(0 < mbs_len && mbs_len <= MB_LEN_MAX);
395 (void) memcpy(tmbs, mbs, mbs_len);
396 mb_last = tmbs + mbs_len - 1;

398 ls = strlen(ssym);
399 le = strlen(esym);

401 if (((si = strcspn(ssym, digits)) == 0) || (si == ls) ||
402     (strncmp(ssym, esym, si) != 0) ||
403     (strspn(ssym + si, digits) != (ls - si)) ||
404     (strspn(esym + si, digits) != (le - si)) ||
405     ((sn = atoi(ssym + si)) > ((en = atoi(esym + si))))) {
406 errf(_("malformed charmap range"));
407 return;
408 }

410 ssym[si] = 0;
411 for (i = sn; i <= en; i++) {
412 char *nn;
413 (void) asprintf(&nn, "%s%0*u", ssym, ls - si, i);
414 if (nn == NULL) {
415 errf(_("out of memory"));
416 return;
417 }

419 add_charmap_impl(nn, tmbs, mbs_len, 1);
420 (*mb_last)++;
421 }
422 free(ssym);
423 free(esym);
424 }

426 void
427 add_charmap_char(char *name, int c)
428 {
429 char mbs[MB_LEN_MAX+1];

431 mbs[0] = c;
432 mbs[1] = ’\0’;
433 add_charmap_impl(name, mbs, 1, 0);
434 }

436 /*
437  * POSIX insists that certain entries be present, even when not in the
438  * orginal charmap file.
439  */
440 void
441 add_charmap_posix(void)
442 {
443 char i;

445 for (i = 0; portable_chars[i].name; i++) {
446 add_charmap_char(portable_chars[i].name, portable_chars[i].ch);
447 }
448 }

450 static charmap_t *
451 find_mbs(const char *mbs, int len)
452 {
453 charmap_t srch = {0};
454 charmap_t *cm;

456 while (len > 0) {
457 (void) memcpy(srch.mbs, mbs, len);

new/usr/src/cmd/iconv/charmap.c 8

458 srch.mbs_len = len;
459 cm = avl_find(&cmap_mbs, &srch, NULL);
460 if (cm != NULL)
461 break;
462 len--;
463 }

465 return (cm);
466 }

468 /*
469  * Return true if this sequence matches the initial part
470  * of any sequence known in this charmap.
471  */
472 static boolean_t
473 find_mbs_partial(const char *mbs, int len)
474 {
475 charmap_t srch = {0};
476 charmap_t *cm;
477 avl_index_t where;

479 (void) memcpy(srch.mbs, mbs, len);
480 srch.mbs_len = len;
481 cm = avl_find(&cmap_mbs, &srch, &where);
482 if (cm != NULL) {
483 /* full match - not expected, but OK */
484 return (B_TRUE);
485 }
486 cm = avl_nearest(&cmap_mbs, where, AVL_AFTER);
487 if (cm != NULL && 0 == memcmp(cm->mbs, mbs, len))
488 return (B_TRUE);

490 return (B_FALSE);
491 }

493 /*
494  * Do like iconv(3), but with charmaps.
495  */
496 size_t
497 cm_iconv(const char **iptr, size_t *ileft, char **optr, size_t *oleft)
498 {
499 charmap_t *cm;
500 int mbs_len;

502 /* Ignore state reset requests. */
503 if (iptr == NULL || *iptr == NULL)
504 return (0);

506 if (*oleft < MB_LEN_MAX) {
507 errno = E2BIG;
508 return ((size_t)-1);
509 }

511 while (*ileft > 0 && *oleft >= MB_LEN_MAX) {
512 mbs_len = MB_LEN_MAX;
513 if (mbs_len > *ileft)
514 mbs_len = *ileft;
515 cm = find_mbs(*iptr, mbs_len);
516 if (cm == NULL) {
517 if (mbs_len < MB_LEN_MAX &&
518     find_mbs_partial(*iptr, mbs_len)) {
519 /* incomplete sequence */
520 errno = EINVAL;
521 } else {
522 errno = EILSEQ;
523 }



new/usr/src/cmd/iconv/charmap.c 9

524 return ((size_t)-1);
525 }
526 assert(cm->mbs_len > 0);
527 if (cm->tombs_len == 0) {
528 if (sflag == 0 && cm->warned == 0) {
529 cm->warned = 1;
530 fprintf(stderr, gettext(
531     "To-map does not encode <%s>\n"),
532     cm->name);
533 }
534 if (cflag == 0) {
535 errno = EILSEQ;
536 return ((size_t)-1);
537 }
538 /* just skip this input seq. */
539 *iptr  += cm->mbs_len;
540 *ileft -= cm->mbs_len;
541 continue;
542 }

544 *iptr  += cm->mbs_len;
545 *ileft -= cm->mbs_len;
546 (void) memcpy(*optr, cm->tombs, cm->tombs_len);
547 *optr  += cm->tombs_len;
548 *oleft -= cm->tombs_len;
549 }

551 return (0);
552 }



new/usr/src/cmd/iconv/charmap.h 1

**********************************************************
    1534 Sat May 28 21:32:38 2011
new/usr/src/cmd/iconv/charmap.h
30 Need iconv
**********************************************************

1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy is of the CDDL is also available via the Internet
9  * at http://www.illumos.org/license/CDDL.

10  */

12 /*
13  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
14  */

16 /*
17  * CHARMAP file handling for iconv.
18  */

20 /* Common header files. */
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <stdarg.h>
24 #include <sys/types.h>
25 #include <libintl.h>

27 enum cmap_pass {
28 CMAP_PASS_FROM,
29 CMAP_PASS_TO };

31 extern int com_char;
32 extern int esc_char;
33 extern int mb_cur_max;
34 extern int mb_cur_min;
35 extern int last_kw;
36 extern int verbose;
37 extern int yydebug;
38 extern int lineno;
39 extern int debug;
40 extern int warnings;
41 extern int cflag;
42 extern int sflag;

44 int yyparse(void);
45 void yyerror(const char *);
46 void errf(const char *, ...);
47 void warn(const char *, ...);

49 void reset_scanner(const char *);
50 void scan_to_eol(void);

52 /* charmap.c - CHARMAP handling */
53 void init_charmap(void);
54 void add_charmap(char *, char *);
55 void add_charmap_posix(void);
56 void add_charmap_range(char *, char *, char *);

58 void charmap_init(char *to, char *fr);
59 size_t cm_iconv(const char **iptr, size_t *ileft, char **optr, size_t *oleft);
60 void charmap_dump(void);

new/usr/src/cmd/iconv/charmap.h 2

62 #define _(x) gettext(x)
63 #define INTERR errf(_("internal fault (%s:%d)"), __FILE__, __LINE__)



new/usr/src/cmd/iconv/iconv.c 1

**********************************************************
    5971 Sat May 28 21:32:39 2011
new/usr/src/cmd/iconv/iconv.c
30 Need iconv
**********************************************************

1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.

10  */

12 /*
13  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
14  */

16 /*
17  * iconv(1) command.
18  */

20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <string.h>
23 #include <errno.h>
24 #include <limits.h>
25 #include <iconv.h>
26 #include <libintl.h>
27 #include <langinfo.h>
28 #include <locale.h>
29 #include "charmap.h"

31 #include <assert.h>

33 const char *progname = "iconv";

35 char *from_cs;
36 char *to_cs;
37 int debug;
38 int cflag; /* skip invalid characters */
39 int sflag; /* silent */
40 int lflag; /* list conversions */

42 void iconv_file(FILE *, const char *);
43 void list_codesets(void);

45 iconv_t ich; /* iconv(3c) lib handle */
46 size_t (*pconv)(const char **iptr, size_t *ileft,
47 char **optr, size_t *oleft);

49 size_t
50 lib_iconv(const char **iptr, size_t *ileft, char **optr, size_t *oleft)
51 {
52 return (iconv(ich, iptr, ileft, optr, oleft));
53 }

55 void
56 usage(void)
57 {
58 (void) fprintf(stderr, gettext(
59     "usage: %s [-cs] [-f from-codeset] [-t to-codeset] "
60     "[file ...]\n"), progname);
61 (void) fprintf(stderr, gettext("\t%s -l\n"), progname);

new/usr/src/cmd/iconv/iconv.c 2

62 exit(1);
63 }

65 int
66 main(int argc, char **argv)
67 {
68 FILE *fp;
69 char *fslash, *tslash;
70 int c;

72 (void) setlocale(LC_ALL, "");

74 #if !defined(TEXT_DOMAIN)
75 #define TEXT_DOMAIN "SYS_TEST"
76 #endif
77 (void) textdomain(TEXT_DOMAIN);

79 while ((c = getopt(argc, argv, "cdlsf:t:")) != EOF) {
80 switch (c) {
81 case ’c’:
82 cflag++;
83 break;
84 case ’d’:
85 debug++;
86 break;
87 case ’l’:
88 lflag++;
89 break;
90 case ’s’:
91 sflag++;
92 break;
93 case ’f’:
94 from_cs = optarg;
95 break;
96 case ’t’:
97 to_cs = optarg;
98 break;
99 case ’?’:
100 usage();
101 }
102 }

104 if (lflag) {
105 if (from_cs != NULL || to_cs != NULL || optind != argc)
106 usage();
107 list_codesets();
108 exit(0);
109 }

111 if (from_cs == NULL)
112 from_cs = nl_langinfo(CODESET);
113 if (to_cs == NULL)
114 to_cs = nl_langinfo(CODESET);

116 /*
117  * If either "from" or "to" contains a slash,
118  * then we’re using charmaps.
119  */
120 fslash = strchr(from_cs, ’/’);
121 tslash = strchr(to_cs, ’/’);
122 if (fslash != NULL || tslash != NULL) {
123 charmap_init(to_cs, from_cs);
124 pconv = cm_iconv;
125 if (debug)
126 charmap_dump();
127 } else {



new/usr/src/cmd/iconv/iconv.c 3

128 ich = iconv_open(to_cs, from_cs);
129 if (ich == ((iconv_t)-1)) {
130 (void) fprintf(stderr, gettext("iconv_open failed\n"));
131 exit(1);
132 }
133 pconv = lib_iconv;
134 }

136 if (optind == argc || optind == argc - 1 &&
137     0 == strcmp(argv[optind], "-")) {
138 iconv_file(stdin, "stdin");
139 exit(0);
140 }

142 for (; optind < argc; optind++) {
143 fp = fopen(argv[optind], "r");
144 if (fp == NULL) {
145 perror(argv[optind]);
146 exit(1);
147 }
148 iconv_file(fp, argv[optind]);
149 (void) fclose(fp);
150 }
151 exit(0);
152 }

154 /*
155  * Conversion buffer sizes:
156  *
157  * The input buffer has room to prepend one mbs character if needed for
158  * handling a left-over at the end of a previous conversion buffer.
159  *
160  * Conversions may grow or shrink data, so using a larger output buffer
161  * to reduce the likelihood of leftover input buffer data in each pass.
162  */
163 #define IBUFSIZ (MB_LEN_MAX + BUFSIZ)
164 #define OBUFSIZ (2 * BUFSIZ)

166 void
167 iconv_file(FILE *fp, const char *fname)
168 {
169 static char ibuf[IBUFSIZ];
170 static char obuf[OBUFSIZ];
171 const char *iptr;
172 char *optr;
173 off64_t offset;
174 size_t ileft, oleft, ocnt;
175 int iconv_errno;
176 int nr, nw, rc;

178 offset = 0;
179 ileft = 0;
180 iptr = ibuf + MB_LEN_MAX;

182 while ((nr = fread(ibuf+MB_LEN_MAX, 1, BUFSIZ, fp)) > 0) {

184 assert(iptr <= ibuf+MB_LEN_MAX);
185 assert(ileft <= MB_LEN_MAX);
186 ileft += nr;
187 offset += nr;

189 optr = obuf;
190 oleft = OBUFSIZ;

192 iconv_again:
193 rc = (*pconv)(&iptr, &ileft, &optr, &oleft);

new/usr/src/cmd/iconv/iconv.c 4

194 iconv_errno = errno;

196 ocnt = OBUFSIZ - oleft;
197 if (ocnt > 0) {
198 nw = fwrite(obuf, 1, ocnt, stdout);
199 if (nw != ocnt) {
200 perror("fwrite");
201 exit(1);
202 }
203 }
204 optr = obuf;
205 oleft = OBUFSIZ;

207 if (rc == (size_t)-1) {
208 switch (iconv_errno) {

210 case E2BIG: /* no room in output buffer */
211 goto iconv_again;

213 case EINVAL: /* incomplete sequence on input */
214 if (debug) {
215 (void) fprintf(stderr,
216 _("Incomplete sequence in %s at offset %lld\n"),
217     fname, offset - ileft);
218 }
219 /*
220  * Copy the reminder to the space reserved
221  * at the start of the input buffer.
222  */
223 assert(ileft > 0);
224 if (ileft <= MB_LEN_MAX) {
225 char *p = ibuf+MB_LEN_MAX-ileft;
226 (void) memcpy(p, iptr, ileft);
227 iptr = p;
228 continue; /* read again */
229 }
230 /*
231  * Should not see ileft > MB_LEN_MAX,
232  * but if we do, handle as EILSEQ.
233  */
234 /* FALLTHROUGH */

236 case EILSEQ: /* invalid sequence on input */
237 if (!sflag) {
238 (void) fprintf(stderr,
239 _("Illegal sequence in %s at offset %lld\n"),
240     fname, offset - ileft);
241 (void) fprintf(stderr,
242 _("bad seq: \\x%02x\\x%02x\\x%02x\n"),
243     iptr[0] & 0xff,
244     iptr[1] & 0xff,
245     iptr[2] & 0xff);
246 }
247 assert(ileft > 0);
248 /* skip one */
249 iptr++;
250 ileft--;
251 assert(oleft > 0);
252 if (!cflag) {
253 *optr++ = ’?’;
254 oleft--;
255 }
256 goto iconv_again;

258 default:
259 (void) fprintf(stderr,



new/usr/src/cmd/iconv/iconv.c 5

260 _("iconv error (%s) in file $s at offset %lld\n"),
261     strerror(errno), fname, offset - ileft);
262 perror("iconv");
263 break;
264 }
265 }

267 /* normal iconv return */
268 ileft = 0;
269 iptr = ibuf + MB_LEN_MAX;
270 }

272 /*
273  * End of file
274  * Flush any shift encodings.
275  */
276 iptr = NULL;
277 ileft = 0;
278 optr = obuf;
279 oleft = OBUFSIZ;
280 (*pconv)(&iptr, &ileft, &optr, &oleft);
281 ocnt = OBUFSIZ - oleft;
282 if (ocnt > 0) {
283 (void) fwrite(obuf, 1, ocnt, stdout);
284 }
285 }

287 /*
288  * scan the /usr/lib/iconv directory...
289  * A script for this seems appropriate.
290  */
291 void
292 list_codesets(void)
293 {
294 (void) system("/usr/lib/iconv/iconv_list");
295 }



new/usr/src/cmd/iconv/iconv_list.sh 1

**********************************************************
    1418 Sat May 28 21:32:40 2011
new/usr/src/cmd/iconv/iconv_list.sh
30 Need iconv
**********************************************************

1 #!/bin/ksh
2 #
3 # This file and its contents are supplied under the terms of the
4 # Common Development and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terms of version
6 # 1.0 of the CDDL.
7 #
8 # A full copy of the text of the CDDL should have accompanied this
9 # source.  A copy of the CDDL is also available via the Internet at

10 # http://www.illumos.org/license/CDDL.
11 #

13 #
14 # Copyright 2011 Nexenta Systems, Inc.  All rights reserved.

16 # List all iconv(1) codesets

18 cd /usr/lib/iconv || exit 1

20 typeset -A all

22 /usr/bin/ls | while read f
23 do
24     case "$f" in
25     geniconvtbl.so)
26 ;;
27     *.so)
28 IFS="%"
29 set ${f%.so}
30 all[$1]=" "
31 all[$2]=" "
32 ;;
33     *.t)
34 IFS="."
35 set ${f%.t}
36 all[$1]=" "
37 all[$2]=" "
38 ;;
39     *)
40     ;;
41     esac
42 done

44 /usr/bin/ls geniconvtbl/binarytables |
45 while read f
46 do
47     case "$f" in
48     *.bt)
49 IFS="%"
50 set ${f%.bt}
51 all[$1]=" "
52 all[$2]=" "
53 ;;
54     *)
55     ;;
56     esac
57 done

59 # Only store aliases for names we’ve seen

61 IFS=" "

new/usr/src/cmd/iconv/iconv_list.sh 2

62 while read a c
63 do
64     case "$a" in
65     \#*)
66 ;;
67     *)
68 if [ "$c" -a "${all[$c]}" ] ; then
69 all[$c]="${all[$c]} $a"
70 fi
71 ;;
72     esac
73 done < "alias"

75 cat <<EOF
76 The following are all supported code set names.  Conversions
77 between some fromcode-tocode pairs might not be available.
78 Some of these code set names have aliases, which are shown
79 after the canonical name.

81 EOF

83 for i in "${!all[@]}"
84 do
85 echo "$i ${all[$i]}"
86 done



new/usr/src/cmd/iconv/parser.y 1

**********************************************************
    1939 Sat May 28 21:32:40 2011
new/usr/src/cmd/iconv/parser.y
30 Need iconv
**********************************************************

1 %{
2 /*
3  * This file and its contents are supplied under the terms of the
4  * Common Development and Distribution License ("CDDL"), version 1.0.
5  * You may only use this file in accordance with the terms of version
6  * 1.0 of the CDDL.
7  *
8  * A full copy of the text of the CDDL should have accompanied this
9  * source.  A copy of the CDDL is also available via the Internet at

10  * http://www.illumos.org/license/CDDL.
11  */

13 /*
14  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
15  */

17 /*
18  * POSIX iconv charmap grammar.
19  */

21 #include <wchar.h>
22 #include <stdio.h>
23 #include <limits.h>
24 #include "charmap.h"

26 %}
27 %union {
28 char *token;
29 int num;
30 char mbs[MB_LEN_MAX + 2]; /* NB: [0] is length! */
31 }

33 %token T_CODE_SET
34 %token T_MB_CUR_MAX
35 %token T_MB_CUR_MIN
36 %token T_COM_CHAR
37 %token T_ESC_CHAR
38 %token T_LT
39 %token T_GT
40 %token T_NL
41 %token T_SEMI
42 %token T_COMMA
43 %token T_ELLIPSIS
44 %token T_RPAREN
45 %token T_LPAREN
46 %token T_QUOTE
47 %token T_NULL
48 %token T_END
49 %token T_CHARMAP
50 %token T_WIDTH
51 %token T_WIDTH_DEFAULT
52 %token <mbs> T_CHAR
53 %token <token> T_NAME
54 %token <num> T_NUMBER
55 %token <token> T_SYMBOL

57 %%

59 goal : setting_list charmap
60 | charmap
61 ;

new/usr/src/cmd/iconv/parser.y 2

63 string : T_QUOTE charlist T_QUOTE
64 | T_QUOTE T_QUOTE
65 ;

67 charlist : charlist T_CHAR
68 | T_CHAR
69 ;

71 setting_list : setting_list setting
72 | setting
73 ;

75 setting : T_COM_CHAR T_CHAR T_NL
76 {
77 com_char = $2[1];
78 }
79 | T_ESC_CHAR T_CHAR T_NL
80 {
81 esc_char = $2[1];
82 }
83 | T_MB_CUR_MAX T_NUMBER T_NL
84 {
85 mb_cur_max = $2;
86 }
87 | T_MB_CUR_MIN T_NUMBER T_NL
88 {
89 mb_cur_min = $2;
90 }
91 | T_CODE_SET string T_NL
92 {
93 /* ignore */
94 }
95 ;

97 charmap : T_CHARMAP T_NL charmap_list T_END T_CHARMAP T_NL

99 charmap_list : charmap_list charmap_entry
100 | charmap_entry
101 ;

103 charmap_entry : T_SYMBOL T_CHAR
104 {
105 add_charmap($1, $2);
106 scan_to_eol();
107 }
108 | T_SYMBOL T_ELLIPSIS T_SYMBOL T_CHAR
109 {
110 add_charmap_range($1, $3, $4);
111 scan_to_eol();
112 }
113 | T_NL
114 ;



new/usr/src/cmd/iconv/scanner.c 1

**********************************************************
   11780 Sat May 28 21:32:41 2011
new/usr/src/cmd/iconv/scanner.c
30 Need iconv
**********************************************************

1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.

10  */

12 /*
13  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
14  */

16 /*
17  * This file contains the "scanner", which tokenizes charmap files
18  * for iconv for processing by the higher level grammar processor.
19  */

21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <ctype.h>
24 #include <limits.h>
25 #include <string.h>
26 #include <widec.h>
27 #include <sys/types.h>
28 #include <assert.h>
29 #include "charmap.h"
30 #include "parser.tab.h"

32 int com_char = ’#’;
33 int esc_char = ’\\’;
34 int mb_cur_min = 1;
35 int mb_cur_max = 1;
36 int lineno = 1;
37 int warnings = 0;
38 static int nextline;
39 static FILE *input = stdin;
40 static const char *filename = "<stdin>";
41 static int instring = 0;
42 static int escaped = 0;

44 /*
45  * Token space ... grows on demand.
46  */
47 static char *token = NULL;
48 static int tokidx;
49 static int toksz = 0;
50 static int hadtok = 0;

52 /*
53  * The last keyword seen.  This is useful to trigger the special lexer rules
54  * for "copy" and also collating symbols and elements.
55  */
56 int last_kw = 0;
57 static int category = T_END;

59 static struct token {
60 int id;
61 const char *name;

new/usr/src/cmd/iconv/scanner.c 2

62 } keywords[] = {
63 { T_COM_CHAR, "comment_char" },
64 { T_ESC_CHAR, "escape_char" },
65 { T_END, "END" },

67 /*
68  * These are keywords used in the charmap file.  Note that
69  * Solaris orginally used angle brackets to wrap some of them,
70  * but we removed that to simplify our parser.  The first of these
71  * items are "global items."
72  */
73 { T_CHARMAP, "CHARMAP" },
74 { T_WIDTH, "WIDTH" },
75 { T_WIDTH_DEFAULT, "WIDTH_DEFAULT" },

77 { -1, NULL },
78 };

80 /*
81  * These special words are only used in a charmap file, enclosed in <>.
82  */
83 static struct token symwords[] = {
84 { T_COM_CHAR, "comment_char" },
85 { T_ESC_CHAR, "escape_char" },
86 { T_CODE_SET, "code_set_name" },
87 { T_MB_CUR_MAX, "mb_cur_max" },
88 { T_MB_CUR_MIN, "mb_cur_min" },
89 { -1, NULL },
90 };

92 static int categories[] = {
93 T_CHARMAP,
94 0
95 };

97 void
98 reset_scanner(const char *fname)
99 {
100 if (fname == NULL) {
101 filename = "<stdin>";
102 input = stdin;
103 } else {
104 if (input != stdin)
105 (void) fclose(input);
106 if ((input = fopen(fname, "r")) == NULL) {
107 perror(fname);
108 exit(1);
109 }
110 filename = fname;
111 }
112 com_char = ’#’;
113 esc_char = ’\\’;
114 instring = 0;
115 escaped = 0;
116 lineno = 1;
117 nextline = 1;
118 tokidx = 0;
119 last_kw = 0;
120 category = T_END;
121 }

123 #define hex(x) \
124 (isdigit(x) ? (x - ’0’) : ((islower(x) ? (x - ’a’) : (x - ’A’)) + 10))
125 #define isodigit(x) ((x >= ’0’) && (x <= ’7’))

127 static int



new/usr/src/cmd/iconv/scanner.c 3

128 scanc(void)
129 {
130 int c;

132 c = getc(input);
133 lineno = nextline;
134 if (c == ’\n’) {
135 nextline++;
136 }
137 return (c);
138 }

140 static void
141 unscanc(int c)
142 {
143 if (c == ’\n’) {
144 nextline--;
145 }
146 if (ungetc(c, input) < 0) {
147 yyerror(_("ungetc failed"));
148 }
149 }

151 static int
152 scan_hex_byte(void)
153 {
154 int c1, c2;
155 int v;

157 c1 = scanc();
158 if (!isxdigit(c1)) {
159 yyerror(_("malformed hex digit"));
160 return (0);
161 }
162 c2 = scanc();
163 if (!isxdigit(c2)) {
164 yyerror(_("malformed hex digit"));
165 return (0);
166 }
167 v = ((hex(c1) << 4) | hex(c2));
168 return (v);
169 }

171 static int
172 scan_dec_byte(void)
173 {
174 int c1, c2, c3;
175 int b;

177 c1 = scanc();
178 if (!isdigit(c1)) {
179 yyerror(_("malformed decimal digit"));
180 return (0);
181 }
182 b = c1 - ’0’;
183 c2 = scanc();
184 if (!isdigit(c2)) {
185 yyerror(_("malformed decimal digit"));
186 return (0);
187 }
188 b *= 10;
189 b += (c2 - ’0’);
190 c3 = scanc();
191 if (!isdigit(c3)) {
192 unscanc(c3);
193 } else {

new/usr/src/cmd/iconv/scanner.c 4

194 b *= 10;
195 b += (c3 - ’0’);
196 }
197 return (b);
198 }

200 static int
201 scan_oct_byte(void)
202 {
203 int c1, c2, c3;
204 int b;

206 b = 0;

208 c1 = scanc();
209 if (!isodigit(c1)) {
210 yyerror(_("malformed octal digit"));
211 return (0);
212 }
213 b = c1 - ’0’;
214 c2 = scanc();
215 if (!isodigit(c2)) {
216 yyerror(_("malformed octal digit"));
217 return (0);
218 }
219 b *= 8;
220 b += (c2 - ’0’);
221 c3 = scanc();
222 if (!isodigit(c3)) {
223 unscanc(c3);
224 } else {
225 b *= 8;
226 b += (c3 - ’0’);
227 }
228 return (b);
229 }

231 void
232 add_tok(int c)
233 {
234 if ((tokidx + 1) >= toksz) {
235 toksz += 64;
236 if ((token = realloc(token, toksz)) == NULL) {
237 yyerror(_("out of memory"));
238 tokidx = 0;
239 toksz = 0;
240 return;
241 }
242 }

244 token[tokidx++] = (char)c;
245 token[tokidx] = 0;
246 }

248 static int
249 get_byte(void)
250 {
251 int c;

253 if ((c = scanc()) != esc_char) {
254 unscanc(c);
255 return (EOF);
256 }
257 c = scanc();

259 switch (c) {



new/usr/src/cmd/iconv/scanner.c 5

260 case ’d’:
261 case ’D’:
262 return (scan_dec_byte());
263 case ’x’:
264 case ’X’:
265 return (scan_hex_byte());
266 case ’0’:
267 case ’1’:
268 case ’2’:
269 case ’3’:
270 case ’4’:
271 case ’5’:
272 case ’6’:
273 case ’7’:
274 /* put the character back so we can get it */
275 unscanc(c);
276 return (scan_oct_byte());
277 default:
278 unscanc(c);
279 unscanc(esc_char);
280 return (EOF);
281 }
282 }

284 int
285 get_escaped(int c)
286 {
287 switch (c) {
288 case ’n’:
289 return (’\n’);
290 case ’r’:
291 return (’\r’);
292 case ’t’:
293 return (’\t’);
294 case ’f’:
295 return (’\f’);
296 case ’v’:
297 return (’\v’);
298 case ’b’:
299 return (’\b’);
300 case ’a’:
301 return (’\a’);
302 default:
303 return (c);
304 }
305 }

307 int
308 get_wide(void)
309 {
310 /* NB: yylval.mbs[0] is the length */
311 char *mbs = &yylval.mbs[1];
312 int mbi = 0;
313 int c;

315 mbs[mbi] = 0;
316 if (mb_cur_max > MB_LEN_MAX) {
317 yyerror(_("max multibyte character size too big"));
318 return (T_NULL);
319 }
320 for (;;) {
321 if ((c = get_byte()) == EOF)
322 break;
323 if (mbi == mb_cur_max) {
324 unscanc(c);
325 yyerror(_("length > mb_cur_max"));

new/usr/src/cmd/iconv/scanner.c 6

326 return (T_NULL);
327 }
328 mbs[mbi++] = c;
329 mbs[mbi] = 0;
330 }

332 /* result in yylval.mbs */
333 mbs[-1] = mbi;
334 return (T_CHAR);
335 }

337 int
338 get_symbol(void)
339 {
340 int c;

342 while ((c = scanc()) != EOF) {
343 if (escaped) {
344 escaped = 0;
345 if (c == ’\n’)
346 continue;
347 add_tok(get_escaped(c));
348 continue;
349 }
350 if (c == esc_char) {
351 escaped = 1;
352 continue;
353 }
354 if (c == ’\n’) { /* well that’s strange! */
355 yyerror(_("unterminated symbolic name"));
356 continue;
357 }
358 if (c == ’>’) { /* end of symbol */

360 /*
361  * This restarts the token from the beginning
362  * the next time we scan a character.  (This
363  * token is complete.)
364  */

366 if (token == NULL) {
367 yyerror(_("missing symbolic name"));
368 return (T_NULL);
369 }
370 tokidx = 0;

372 /*
373  * A few symbols are handled as keywords outside
374  * of the normal categories.
375  */
376 if (category == T_END) {
377 int i;
378 for (i = 0; symwords[i].name != 0; i++) {
379 if (strcmp(token, symwords[i].name) ==
380     0) {
381 last_kw = symwords[i].id;
382 return (last_kw);
383 }
384 }
385 }
386 /* its an undefined symbol */
387 yylval.token = strdup(token);
388 token = NULL;
389 toksz = 0;
390 tokidx = 0;
391 return (T_SYMBOL);



new/usr/src/cmd/iconv/scanner.c 7

392 }
393 add_tok(c);
394 }

396 yyerror(_("unterminated symbolic name"));
397 return (EOF);
398 }

401 static int
402 consume_token(void)
403 {
404 int len = tokidx;
405 int i;

407 tokidx = 0;
408 if (token == NULL)
409 return (T_NULL);

411 /*
412  * this one is special, because we don’t want it to alter the
413  * last_kw field.
414  */
415 if (strcmp(token, "...") == 0) {
416 return (T_ELLIPSIS);
417 }

419 /* search for reserved words first */
420 for (i = 0; keywords[i].name; i++) {
421 int j;
422 if (strcmp(keywords[i].name, token) != 0) {
423 continue;
424 }

426 last_kw = keywords[i].id;

428 /* clear the top level category if we’re done with it */
429 if (last_kw == T_END) {
430 category = T_END;
431 }

433 /* set the top level category if we’re changing */
434 for (j = 0; categories[j]; j++) {
435 if (categories[j] != last_kw)
436 continue;
437 category = last_kw;
438 }

440 return (keywords[i].id);
441 }

443 /* maybe its a numeric constant? */
444 if (isdigit(*token) || (*token == ’-’ && isdigit(token[1]))) {
445 char *eptr;
446 yylval.num = strtol(token, &eptr, 10);
447 if (*eptr != 0)
448 yyerror(_("malformed number"));
449 return (T_NUMBER);
450 }

452 /*
453  * A single lone character is treated as a character literal.
454  * To avoid duplication of effort, we stick in the charmap.
455  */
456 if (len == 1) {
457 yylval.mbs[0] = 1; /* length */

new/usr/src/cmd/iconv/scanner.c 8

458 yylval.mbs[1] = token[0];
459 yylval.mbs[2] = ’\0’;
460 return (T_CHAR);
461 }

463 /* anything else is treated as a symbolic name */
464 yylval.token = strdup(token);
465 token = NULL;
466 toksz = 0;
467 tokidx = 0;
468 return (T_NAME);
469 }

471 void
472 scan_to_eol(void)
473 {
474 int c;
475 while ((c = scanc()) != ’\n’) {
476 if (c == EOF) {
477 /* end of file without newline! */
478 errf(_("missing newline"));
479 return;
480 }
481 }
482 assert(c == ’\n’);
483 }

485 int
486 yylex(void)
487 {
488 int c;

490 while ((c = scanc()) != EOF) {

492 /* special handling for quoted string */
493 if (instring) {
494 if (escaped) {
495 escaped = 0;

497 /* if newline, just eat and forget it */
498 if (c == ’\n’)
499 continue;

501 if (strchr("xXd01234567", c)) {
502 unscanc(c);
503 unscanc(esc_char);
504 return (get_wide());
505 }
506 yylval.mbs[0] = 1; /* length */
507 yylval.mbs[1] = get_escaped(c);
508 yylval.mbs[2] = ’\0’;
509 return (T_CHAR);
510 }
511 if (c == esc_char) {
512 escaped = 1;
513 continue;
514 }
515 switch (c) {
516 case ’<’:
517 return (get_symbol());
518 case ’>’:
519 /* oops! should generate syntax error  */
520 return (T_GT);
521 case ’"’:
522 instring = 0;
523 return (T_QUOTE);



new/usr/src/cmd/iconv/scanner.c 9

524 default:
525 yylval.mbs[0] = 1; /* length */
526 yylval.mbs[1] = c;
527 yylval.mbs[2] = ’\0’;
528 return (T_CHAR);
529 }
530 }

532 /* escaped characters first */
533 if (escaped) {
534 escaped = 0;
535 if (c == ’\n’) {
536 /* eat the newline */
537 continue;
538 }
539 hadtok = 1;
540 if (tokidx) {
541 /* an escape mid-token is nonsense */
542 return (T_NULL);
543 }

545 /* numeric escapes are treated as wide characters */
546 if (strchr("xXd01234567", c)) {
547 unscanc(c);
548 unscanc(esc_char);
549 return (get_wide());
550 }

552 add_tok(get_escaped(c));
553 continue;
554 }

556 /* if it is the escape charter itself note it */
557 if (c == esc_char) {
558 escaped = 1;
559 continue;
560 }

562 /* remove from the comment char to end of line */
563 if (c == com_char) {
564 while (c != ’\n’) {
565 if ((c = scanc()) == EOF) {
566 /* end of file without newline! */
567 return (EOF);
568 }
569 }
570 assert(c == ’\n’);
571 if (!hadtok) {
572 /*
573  * If there were no tokens on this line,
574  * then just pretend it didn’t exist at all.
575  */
576 continue;
577 }
578 hadtok = 0;
579 return (T_NL);
580 }

582 if (strchr(" \t\n;()<>,\"", c) && (tokidx != 0)) {
583 /*
584  * These are all token delimiters.  If there
585  * is a token already in progress, we need to
586  * process it.
587  */
588 unscanc(c);
589 return (consume_token());

new/usr/src/cmd/iconv/scanner.c 10

590 }

592 switch (c) {
593 case ’\n’:
594 if (!hadtok) {
595 /*
596  * If the line was completely devoid of tokens,
597  * then just ignore it.
598  */
599 continue;
600 }
601 /* we’re starting a new line, reset the token state */
602 hadtok = 0;
603 return (T_NL);
604 case ’,’:
605 hadtok = 1;
606 return (T_COMMA);
607 case ’;’:
608 hadtok = 1;
609 return (T_SEMI);
610 case ’(’:
611 hadtok = 1;
612 return (T_LPAREN);
613 case ’)’:
614 hadtok = 1;
615 return (T_RPAREN);
616 case ’>’:
617 hadtok = 1;
618 return (T_GT);
619 case ’<’:
620 /* symbol start! */
621 hadtok = 1;
622 return (get_symbol());
623 case ’ ’:
624 case ’\t’:
625 /* whitespace, just ignore it */
626 continue;
627 case ’"’:
628 hadtok = 1;
629 instring = 1;
630 return (T_QUOTE);
631 default:
632 hadtok = 1;
633 add_tok(c);
634 continue;
635 }
636 }
637 return (EOF);
638 }

640 void
641 yyerror(const char *msg)
642 {
643 (void) fprintf(stderr, _("%s: %d: error: %s\n"),
644     filename, lineno, msg);
645 exit(1);
646 }

648 void
649 errf(const char *fmt, ...)
650 {
651 char *msg;

653 va_list va;
654 va_start(va, fmt);
655 (void) vasprintf(&msg, fmt, va);



new/usr/src/cmd/iconv/scanner.c 11

656 va_end(va);

658 (void) fprintf(stderr, _("%s: %d: error: %s\n"),
659     filename, lineno, msg);
660 free(msg);
661 exit(1);
662 }

664 void
665 warn(const char *fmt, ...)
666 {
667 char *msg;

669 va_list va;
670 va_start(va, fmt);
671 (void) vasprintf(&msg, fmt, va);
672 va_end(va);

674 (void) fprintf(stderr, _("%s: %d: warning: %s\n"),
675     filename, lineno, msg);
676 free(msg);
677 warnings++;
678 }


