new usr/src/cnd/ i conv/ Makefile

R R R R

1544 Sat May 28 21:32:37 2011

new usr/src/cnd/ i conv/ Makefile
30 Need iconv

R R R R R

#

This file and its contents are supplied under the terms of the

Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

#

A full copy of the text of the CDDL should have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunos.org/license/ CODL.

#

#

Copyright 2011 Nexenta Systems, Inc. Al rights reserved.

#

PROG=i conv

SHFI LES=i conv_l i st
include ../ Mkefile.cnd

OBJS = iconv.o charmap.o parser.tab.o scanner.o
SRCS = $(OBJIS: % 0=% c)

C99MODE= $(C99_ENABLE)

LDLI BS += -1l gen

LDLI BS += -l avl

YFLAGS -d -b parse
$(RELEASE_BUI LD) CPPFLAGS += DNDEBUG

CLEANFI LES = $(0BJS) parser.tab.c parser.tab.h
CLOBBERFI LES = $(PROG) $(POFI LE)

PI FI LES = $(OBIS: % 0=%)

POFI LE = iconv_cnd. po

all: $(PROG $(SHFILES)
ROOTLI Bl CONV = $(ROOT) / usr/libliconv
ROOTLI BI CONVSH = $(SHFI LES: %=$(ROOTLI Bl CONV) / %9
$(ROOTLI BI CONVSH) : = FI LEMODE = 0555
install: all $(ROOTPROG) $(ROOTLIBI CONV) $(ROOTLI Bl CONVSH)
$(PROG: $(0BJIS)
$(LINK. c) $(0BIS) -0 $@ $(LDLIBS)
$(POST_PROCESS)
$(0BIS): parser.tab. h

parser.tab.c parser.tab.h: parser.y
$(YACO) $(YFLAGS) parser.y

lint: $(SRCS)
$(LINT. c) $(CPPFLAGS) $(SRCS)

cl ean:
$(RV $(CLEANFI LES)

$(POFI LE) : $(Pl FI LES)
$(RM $@

$(RM nessages. po

new usr/src/cnd/ i conv/ Makefile

62
63
64

$(XGETTEXT) -s $(PI FI LES)
$(SED) -e '/donmin/d messages.po > $@
$(RM $(PIFILES) nessages. po

66 $(ROOTLI Bl CONV) :

67

$(INS. dir)

69 $(ROOTLI BI CONV)/ % %

70

S(INS. file)

72 . KEEP_STATE:

74 include .

./ Makefile.targ

new usr/src/cnd/ i conv/charnmap. c 1

R R R R

11277 Sat May 28 21:32:37 2011
new usr/src/cnd/ i conv/ char map. ¢
30 Need iconv

R R R R R

This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this

source. A copy of the CDDL is also available via the Internet at
http://wwm illunmos. org/license/ CDDL.

13 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

16 /*
17 * CHARMAP file handling for iconv.
18 =/

20 #include <stdio. h>
21 #include <stdlib.h>
22 #include <string. h>
23 #include <errno. h>
24 #include <limts.h>
25 #include <unistd. h>
26 #include <alloca. h>
27 #include <sys/avl.h>
28 #include <stddef.h>
29 #include <unistd. h>
30 #i nclude "charnap. h"
31 #include "parser.tab.h"
32 #include <assert.h>

34 enum cmap_pass cmap_pass;

35 static avl _tree_t crmap_sym

36 static avl _tree_t cmap_nbs;

38 typedef struct charmap {

39 const char *nane;

40 struct charmap *alias_of;

41 avl _node_t avl _sym

42 avl _node_t avl _nbs;

43 int warned;

44 int nbs_len;

45 int tonbs_|en;

46 char nbs[MB_LEN MAX + 1]; /* input */
47 char tonbs[MB_LEN MAX + 1] /* output */

48 } charmap_t;

50 static void add_charmap_i npl _fr(char *sym char *nbs, int nbs_len, int nodups);
51 static void add_charmap_i npl _to(char *sym char *nbs, int nbs_len, int nodups);

53 /*

54 * Array of POSI X specific portable characters.
55 */

56 static const struct {

57 char *nane;

58 int ch;

59 } portable_chars[] = {

60 { TNUL", N0’ },

61 { "alert", "\a' },

new usr/src/cnd/ i conv/ char map. ¢

62 "backspace",

63 "tab",

64 "carriage-return",
65 "new i ne",

66 "vertical -tab",

67 “formfeed",

68 "space",

69 "excl amati on- mar k",
70 "quot ati on- mar k",

71 "nunber - si gn

72 "dol | ar-si gn"

73 " percent - si gn",

74 "anper sand",

75 "apostrophe",

76 "| ef t - par ent hesi s",
77 "right-parenthesis",
78 "asterisk",

79 "pl us-sign",

80 "conma",

81 "hyphen- m nus",

82 "hyphen",

83 “"full-stop",

84 "period",

85 "sl ash",

86 "sol i dus",

87 “zero",

88 "one",

89 "two",

90 "three",

91 "four",

92 “five",

93 "six",

94 "seven",

95 "eight"

96 "ni ne",

97 "col on",

98 "sem col on",

99 "| ess-than-sign",
100 "equal s-sign",
101 "greater-than-sign",
102 "questi on-mar k",
103 "conmerci al - ,
104 "| ef t - squar e- bracket ",
105 "backsl ash",
106 "reverse-solidus"
107 "right- squar e- bracket "
108 “circunflex"
109 "¢ircunfl ex-accent "
110 "l owline",
111 "under score",

112 "grave-accent"

113 “left-brace",

114 "left-curly-bracket",
115 "verti cal -1ine",
116 "right-brace"

117 "ri ght curl y- bracket "
118 "tilde

119 "A, ’A’ 1,

120 " B", "B},

121 "c', 'C 1},

122 "D', 'D 1},

123 "E', 'E },

124 "F', "F },

125 "G, 'G },

126 "H', "H },

127 B I

——

e —

o o o o

A=c e

VL

‘_‘ff“:@

new usr/src/cnd/ i conv/ char map. ¢

128 "Jt, 'y},

129 "K', 'K },

130 "L, L},

131 "M, 'M },

132 "N, "N },

133 "o, 'O},

134 P, P},

135 Q. 'qQ },

136 "R', "R },

137 "s', 'S},

138 T, 'T },

139 "u, "uU b,

140 V',V

141 "W, "W},

142 "X, X},

143 "Y', 'Y},

144 "zZ', 'Z },

145 "a", 'a },

146 "b", 'b" },

147 "c", "¢},

148 "d", 'd },

149 "e", ‘e },

150 LT A

151 g g

152 “h", "h},

153 ity),

154 R

155 "k, "k},

156 L B

157 "nf, 'm o},

158 "n", 'n },

159 "o", ‘0 },

160 "p", 'p’ },

161 "q", 'q },

162 rt,ort),

163 "s", 's’ },

164 tt, Tt}

165 "u", u o},

166 vtV),

167 "W, 'w

168 X", X},

169 "y, 'y b,

170 “z", 'z},

171 NULL, O }

172 };

174 static int

175 cmap_conpare_syn(const void *nl, const void *n2)
176 {

177 const charmap_t *cl = nl;
178 const charmap_t *c2 = n2;
179 int rv;

181 rv = strcnp(cl->name, c2->nane);
182 return ((rv <0) ?2 -1: (rv>0) ?21: 0);
183 }

185 /*

186 * In order for partial match searches to work,
187 * we need these sorted by nbs contents.
188 */

189 static int

190 cmap_conpare_nbs(const void *nl, const void *n2)
191 {

192 const charmap_t *cl = ni;
193 const charmap_t *c2 = n2;

new usr/src/cnd/ i conv/ char map. ¢

194 int len, rv;

196 len = cl1->nbs_I en;

197 if (len < c2->nbs_len)

198 len = c2->nbs_| en;

199 rv = mencnp(cl->nbs, c2->nbs, |en);

200 if (rv <0)

201 return (-1);

202 if (rv >0)

203 return (1);

204 /* they match through Iength */

205 if (cl->nbs_len < c2->nbs_len)

206 return (-1);

207 if (c2->nmbs_len < cl->nbs_| en)

208 return (1);

209 return (0);

210 }

212 void

213 ?harmap_i nit(char *to_map, char *from.map)

214

215 avl _create(&nmap_sym cnmap_conpare_sym sizeof (charmap_t),
216 of f setof (charmap_t, avl_syn));

218 avl _create(&map_nbs, cnap_conpare_nbs, sizeof (charmap_t),
219 of fsetof (charmap_t, avl_nbs));

221 cmap_pass = CMAP_PASS_FROM

222 reset _scanner (from map);

223 (void) yyparse();

224 add_char map_posi x() ;

226 cmap_pass = CVAP_PASS_ TGO,

227 reset _scanner (to_map);

228 (void) yyparse();

229 }

231 void

232 char map_dunp()

233 {

234 charmap_t *cm

235 int i;

237 cm = avl _first(&nmap_nbs);

238 while (cm!= NULL) {

239 (void) printf("name=\"9%\"\n", cm >nane);

241 (void) printf("\tinmbs=\"");

242 for (I =0; i <cm>nbs_len; i++)

243 (void) printf("\\x%2x", cm>nbs[i] & OxFF);
244 (void) printf("\"\n");

246 (void) printf("\tombs=\"");

247 for (I =0; i <cm>tonbs_len; i++)

248 (void) printf("\\x%2x", cm>tonbs[i] & OxFF);
249 (void) printf("\"\n");

251 cm = AVL_NEXT(&cnap_nbs, cm;

252 }

253 }

255 [*

256 * W parse two charmap files: First the "front map, where we build
257 * cmap_nbs and cnap_sym which we' ||l later use to translate the input
258 * stream (nbs encodings) to synbols. Second, we parse the "to" map,
259 * where we fill in the tonbs nenbers of entries in cmap_sym (which

new usr/src/cnd/ i conv/ char map. ¢

260 * nust alread exist) used later to wite the output encoding.
261 */

262 static void

263 add_charmap_i npl (char *sym char *nbs, int nbs_len, int nodups)
264 {

266 /*

267 * Wil e parsing both the "front and "to" cmaps,

268 * require both the synmbol and encodi ng.

269 */

270 if (sym== NULL || nbs == NULL) {

271 errf(_("invalid charmap entry"));

272 return;

273 }

275 switch (cmap_pass) {

276 case CMAP_PASS_FROM

277 add_charmap_i nmpl _fr(sym nbs, nbs_|len, nodups);
278 br eak;

279 case CVAP_| PASS TO

280 add_char map_i npl _to(sym nbs, mbs_|len, nodups);
281 br eak;

282 defaul t:

283 assert(0);

284 br eak;

285 }

286 }

288 static void

289 add_charmap_i npl _fr(char *sym char *nbs, int nbs_|len, int nodups)

290 {

291 char map_t *m *n, *s;

292 avl _i ndex_t where_sym where_nbs;

294 if ((n=cal|oc(1 si zeof (* n))) == NULL) {

295 errf(_("out of mermory"));

296 return;

297

298 n->nanme = sym

300 assert(0 < nbs_len & & nbs_| en <= MB_LEN_MAX);
301 (void) nentpy(n->nbs, nbs, nbs_len);

302 n->nbs_l en = nbs_| en;

304 m = avl _find(&map_nbs, n, &where_nbs);

305 s = avl _find(&map_sym n, &where_sym;

307 I*

308 * |f we found the synbol, this is a dup.

309 */

310 if (s !'= NULL)

311 if (nodups) {

312 warn(_("%: duplicate character synbol"
313 }

314 free(n);

315 return;

316 1

318 /*

319 * |f we found the nbs, the new one is an ali as,
320 * which we'll add _only_ to the synmbol AVL.
321 */

322 if (m!= NULL)

323 /* The new one is an alias of the original. */
324 n->alias_of = m

325 avl _insert (& map_sym n, where_sym;

)

sym;

new usr/src/cnd/ i conv/ char map. ¢

326 return;

327 1

329 avl _insert(&map_sym n, where_syn);
330 avl _i nsert (& map_nbs, n, where_nbs);
331 }

333 static void
334 add_charmap_i npl _to(char *sym char *nbs, int nbs_|len, int nodups)
335 {

336 char map_t srch = {0};

337 char map_t *m

338 avl _i ndex_t wher e;

340 assert (0 < nbs_len & nbs_l en <= MB_LEN MAX);
342 srch. name = sym

344 m = avl _find(&map_sym &srch, &where);

345 if (m== NULL)

346 if (sflag == 0)

347 warn(_("%: synbol not found"), sym;
348 return;

349 }

350 if (m>alias_of != NULL) {

351 m = m >alias_of;

353 /* don’t warn for dups with aliases */
354 if (m>tonbs_len !=0)

355 return;

356 }

358 if (m>tonbs_len != 0)

359 if (nodups) {

360 warn(_("%: duplicate encoding for"), sym;
361 }

362 return;

363 }

365 (void) mencpy(m >tonbs, nbs, nbs_len);

366 m >tonbs_l en = nbs_len;

367 }

369 void

370 add_charmap(char *sym char *nbs)

371 {

372 /* mbs[0] is the length */

373 int nmbs_len = *nbs++;

374 assert(0 < nbs_len & & nbs_| en <= MB_LEN _MAX);
375 add_charmap_i npl (sym nbs, nbs_len, 1);

376 }

379 void

380 add_charmap_range(char *ssym char *esym char *nbs)
381 {

382 int I's, le;

383 int si;

384 int sn en;

385 int

386 int rrbs len;

387 char tnbs[IVB LEN_MAX+1] ;

388 char *nmb_| ast;

390 static const char *digits = "0123456789";

new usr/src/cnd/ i conv/ char map. ¢

392 /* mbs[0] is the length */

393 mbs_l en = *nbs++;

394 assert (0 < nbs_len & nbs_| en <= MB_LEN_MAX);
395 (v0| d) mencpy(tnbs, nbs, mbs_|en);

396 nb_| ast-tnbs+nbs|en—1,

398 ls = en(ssym;

399 le = strlen(esym;

401 if (((si = strespn(ssym digits)) == 0) || (si ==1s) ||
402 (strncnp(ssym esym si) !=0) |]

403 (strspn(ssym+ si, digits) !'=(ls - si)) ||
404 (strspn(esym + si, digits) I:(Ie— si)) ||
405 ((sn = atol (ssym+ si)) > ((en = atoi(esym+ si))))) {
406 errf(_("mal formed charmap range"));

407 return;

408 }

410 ssyn{si] = O;

411 for (i =sn; i <=-en; i++) {

412 char *nn;

413 (void) asprintf(&n, "%%*u", ssym |Is - si, i);
414 if (nn == NULL)

415 errf(_("out of nmenory"));

416 return;

417 }

419 add_charmap_i npl (nn, tnbs, nbs_len, 1);
420 (*nb_l ast) ++;

421

422 free(ssym;

423 free(esym;

424 }

426 void

427 add_charmap_char (char *nane, int c)

428 {

429 char nmbs[MB_LEN_MAX+1] ;

431 mbs[0] = c;

432 mbs[1] = "\0’;

433 add_char map_i rrpl (name, nbs, 1, 0);

434 }

436 /*

437 * PCOSI X insists that certain entries be present,
438 * orginal charmap file.

439 */

440 void

441 add_char map_posi x(voi d)

442 {

443 char i;

445 for (i = 0; portable_chars[i].nane; i++)

446 add_char map_char (portabl e_chars[i].

447)
448 }

450 static charmap_t *
451 find_nbs(const char *nbs, int |en)

452 {

453 charmap_t srch = {0};
454 charmap_t *cm

456 while (len > 0) {

457 (void) mencpy(srch.nbs, nbs, len);

even when not in the

nane, portable_chars[i].ch);

new usr/src/cnd/ i conv/ char map. ¢

458 srch.nbs_len = len;

459 cm = avl _find(&map_nbs, &srch, NULL);
460 if (cm!= NULL)

461 br eak;

462 len--;

463 }

465 return (cm;

466 }

468 | *

469 * Return true if this sequence matches the initial part
470 * of any sequence known in this charmap.

471 */

472 static bool ean_t

473 find_nbs_partial (const char *nbs, int |en)

474 {

475 charmap_t srch = {0};

476 charmap_t *cm

477 avl _i ndex_t where;

479 (void) mencpy(srch.nmbs, nbs, |en);

480 srch.nmbs_len = | en;

481 cm = avl _find(&map_nbs, &srch, &where);

482 if (cm!= NULL) {

483 /* full match - not expected, but OK */
484 return (B_TRUE);

485 }

486 cm = avl nearest(&cmap nmbs, where, AVL_AFTER);
487 if (cm!= NULL && 0 == mermr’rp(cm>r’rbs nbs, len))
488 return (B_TRUE);

490 return (B_FALSE);

491 }

493 [*

494 * Do like iconv(3), but with charmaps.

495 */

496 size_t

497 cm.iconv(const char **iptr, size_t *ileft, char **optr, size_t
498 {

499 charmap_t *cm

500 int nmbs_|en;

502 /* lgnore state reset requests. */

503 if (iptr == NULL || *iptr == NULL)

504 return (0);

506 |f(oleft<IVBLENNA>O{

507 errno = E2BI G

508 return ((size_t)-1);

509 }

511 while (*ileft > 0 & *oleft >= MB_LEN MAX) {
512 nbs_| en = MB_LEN_MAX;

513 if (mbs_len > *iTeft)

514 nbs_len = *ileft;

515 cm = find_nbs(*iptr, nbs_len);

516 if (cm== NULL)

517 if (mbs_len < MB_LEN MAX &&
518 find_nbs_partial (*iptr, nbs_len)) {
519 7* inconpl ete sequence */
520 errno = EINVAL;

521 } else {

522 errno = ElLSEQ

523 }

*ol eft)

new usr/src/cnd/ i conv/ char map. ¢

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542

544
545
546
547
548
549

551
552 }

}

return ((size_t)-1);

assert(cm>nbs_len > 0);
if (cm>tonbs_len == 0)
if (sflag == 0 & cm>warned == 0) {
cm >war ned = 1;
fprintf(stderr, gettext(
"To-map does not encode <%>\n"),
cm >nane) ;

i}f (cflag == 0) {
errno = El LSEQ
return ((size_t)-1);

}
/* just skip this input seq. */
*iptr += cm>nbs_|en;

*ileft -= cm>nbs_|en;
cont i nue;

}

*iptr += cm>nbs_|en;

*ileft -= cm>nbs_| en;

(voi d) mencpy(*optr, cm>tonmbs, cm >tonbs_|en);
*optr += cm>tonbs_|en;
*oleft -= cm>tonbs_| en;

return (0);

new usr/src/cnd/ i conv/ char map. h

R R R R

1534 Sat May 28 21:32:38 2011
new usr/src/cnd/ i conv/ char map. h
30 Need iconv

R R R R R

1/*

2 * This file and its contents are supplied under the terms of the

3 * Conmon Devel opnent and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terns of version
5 * 1.0 of the CDDL.

6 *

7 * Afull copy of the text of the CDDL shoul d have acconpanied this

8 * source. A copy is of the CODL is also available via the Internet
9 * at http://ww.illunos.org/license/ CDDL.

10 */

12 /*

13 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

16 /*
17 * CHARMAP file handling for iconv.
18 =/

20 /* Common header files. */
21 #include <stdio. h>

22 #include <stdlib. h>

23 #include <stdarg. h>

24 #include <sys/types. h>

25 #include <libintl.h>

27 enum cmap_pass {

28 CMAP_PASS_FROM
29 CMAP_PASS _TO };
31 extern int comchar;
32 extern int esc_char;
33 extern int nb_cur_nax;
34 extern int nb_cur_min;
35 extern int last_kw

36 extern int verbose;

37 extern int yydebug;

38 extern int |ineno;

39 extern int debug;

40 extern int warnings;
41 extern int cflag;

42 extern int sflag;

44 int yyparse(void);

45 voi d yyerror(const char *);
46 void errf(const char *, ...);
47 void warn(const char *, ...);

49 voi d reset_scanner(const char *);
50 void scan_to_eol (void);

52 /* charmap.c - CHARMAP handling */

53 void init_charnap(void);

54 void add_charmap(char *, char *);

55 voi d add_char map_posi x(voi d) ;

56 void add_charnmap_range(char *, char *, char *);

58 void charmap_init(char *to, char *fr);
59 size_t cm.iconv(const char **iptr, size_t *ileft, char **optr, size_t *oleft);
60 voi d charmap_dunp(void);

new usr/src/cnmd/ i conv/ char map. h

62 #define _(x) gett ext (x)
63 #define INTERR errf(_("internal

fault (%:%)"),

_FILE ,

__LINE_)

new usr/src/cnd/iconv/iconv.c

R R R R

5971 Sat May 28 21:32:39 2011
new usr/src/cnd/iconv/iconv.c
30 Need iconv

R R R R R

1/*

2 * This file and its contents are supplied under the terms of the

3 * Conmon Devel opnent and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terns of version
5 * 1.0 of the CDDL.

6 *

7 * Afull copy of the text of the CDDL shoul d have acconpanied this

8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illunos.org/license/ CDDL.

10 */

12 /*

13 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

16 /*
17 * iconv(1l) command.
18 =/

20 #include <stdio. h>

21 #include <stdlib.h>
22 #include <string. h>
23 #include <errno. h>

24 #include <limts.h>
25 #include <iconv. h>

26 #include <libintl.h>
27 #include <l angi nfo. h>
28 #include <l ocal e. h>
29 #include "charnmap. h"

31 #include <assert. h>
33 const char *progname = "iconv";

35 char *fromcs;
36 char *to_cs;

37 int debug;

38 int cflag; /* skip invalid characters */
39 int sflag; /* silent */

40 int Iflag; /* list conversions */

42 void iconv_file(FILE *, const char *);
43 void |ist_codesets(void);

45 jconv_t ich; /* iconv(3c) lib handle */
46 size_t (*pconv)(const char **iptr, size_t *ileft,

47 char **optr, size_t *oleft);

49 size_t

50 lib_iconv(const char **iptr, size_t *ileft, char **optr, size_t *oleft)
51 {

52 return (iconv(ich, iptr, ileft, optr, oleft));

53 }

55 void

56 usage(void)

57

58 (v0|d) fprintf(stderr, gettext(

59 usage: % [-cs] [-f fromcodeset] [-t to-codeset]
60 "[file ...]\n"), prognane);

61 (voi d) fprlntf(stderr gettext("\t%-l\n") prognane) ;

new usr/src/cnd/iconv/iconv.c

62 exit(1);

63 }

65 int

66 main(int argc, char **argv)

67 {

68 FILE *fp;

69 char *fslash, *tslash;

70 int c;

72 (void) setlocal e(LC_ALL, "");

74 #if 1defined(TEXT_DOMAI N)
75 #define TEXT_DOVATN " SYS_TEST"

76 #endi f
77 (voi d) textdomai n(TEXT_DOVAIN) ;
79 while ((c = getopt(argc, argv, "cdlsf:t:")) I'= EOF) {
80 switch (c) {
81 case 'c’':
82 cfl ag++;
83 break;
84 case 'd’:
85 debug++;
86 br eak;
87 case '|’:
88 | flag++;
89 br eak;
90 case 's’:
91 sfl ag++;
92 break;
93 case 'f’:
94 fromcs = optarg;
95 br eak;
96 case 't’:
97 to_cs = optarg;
98 br eak;
99 case ' ?':
100 usage();
101 }
102 }
104 if (Iflag) {
105 iIf (fromecs !'= NULL || to_cs !'= NULL || optind != argc)
106 usage();
107 |ist_codesets();
108 exit(0);
109 }
111 if (fromcs == NULL)
112 fromcs = nl _Il angi nf o(CODESET) ;
113 if (to_cs == NULL)
114 to_cs = nl _l angi nf o(CODESET) ;
116 /*
117 * |f either "from or "to" contains a slash,
118 * then we’re using charmaps.
119 */
120 fslash = strchr(fromecs, '/");
121 tslash = strchr(to_cs, '/");
122 if (fslash = NULL || tslash !'= NULL) {
123 charmap_init(to_cs, fromcs);
124 pconv = cm.iconv;
125 1 f (debug)
126 char map_dunp() ;
127 } else {

new usr/src/cnd/iconv/iconv.c

128 ich = iconv_open(to_cs, fromcs);

129 if (ich == ((1conv_t)-1))

130 (void) fprintf(stderr, gettext("iconv_open failed\n"));
131 exit(1);

132

133 pconv = |ib_iconyv;

134 }

136 if (optind == argc || optind == argc— 1 &&

137 0 == strcnp(argv[optind] "-")) {

138 iconv_file(stdin, "stdin n");

139 exit(0);

140 }

142 for (; optl nd < argc; optind++)

143 fp = fopen(ar gvloptind], "r");

144 if (fp == NULL)

145 perror(argv[optl nd]);

146 exit(1);

147 }

148 iconv_file(fp, argv[optind]);

149 (void) fclose(fp);

150 1

151 exit(0);

152 }

154 /| *

155 * Conversion buffer sizes:

156 *

157 * The input buffer has roomto prepend one nbs character if needed for
158 * handling a left-over at the end of a previous conversion buffer.
159 *

160 * Conversions may grow or shrink data, so using a |arger output buffer
161 * to reduce the likelihood of |eftover input buffer data in each pass.
162 */

163 #define |1 BUFSIZ (MB_LEN MAX + BUFSI 2)

164 #define OBUFSIZ (2 * BUFSI 2)

166 void

167 iconv_file(FILE *fp, const char *fnane)

168 {

169 static char ibuf[IBUFSIZ];

170 static char obuf[OBUFSI Z] ;

171 const char *iptr;

172 char *optr;

173 of f64_t offset;

174 size_t ileft, oleft, ocnt;

175 int iconv_errno;

176 int nr, nw rc;

178 of fset = 0;

179 ileft = 0;

180 iptr = ibuf + MB_LEN _MAX;

182 while ((nr = fread(ibuf+MB_LEN MAX, 1, BUFSIZ, fp)) > 0) {
184 assert (i ptr <= ibuf+MB_LEN MAX);

185 assert(ileft <= MB_ LEN_MAX) ;

186 ileft += nr;

187 of fset += nr;

189 optr = obuf;

190 ol eft = OBUFSI Z;

192 i conv_agai n:

193 rc = (*pconv) (& ptr, &left, &optr, &oleft);

new usr/src/cnd/iconv/iconv.c

194

196
197
198
199
200
201
202
203
204
205

207
208

210
211

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

258
259

iconv_errno = errno;

ocnt = OBUFSIZ - ol eft;
if (ocnt > 0) {
nw = fwite(obuf, 1, ocnt, stdout);
if (nw!= ocnt)
perror("fwite");
) exit(1);

}

optr = obuf;

ol eft = OBUFSI Z;

if (rc == (size_t)-1) {
switch (iconv_errno) {

case E2BI G /* no roomin output buffer */
got o i conv_agai n;

case ElI NVAL: /* inconpl ete sequence on input */
if (debug)
(void) fprintf(stderr,
_("I'nconpl ete sequence in % at offset %Ild\n"),
fnane, offset - ileft);
}

/*

* Copy the reminder to the space reserved

* at the start of the input buffer.

*

/

asser (Ieft > 0);

f (ileft <= MB_LEN {
char *p = ibuf +MB_LEN MAX-ileft;
(void) mencpy(p, iptr, ileft);
iptr = p;
continue; /* read again */

;*

* Shoul d not see ileft > MB_LEN MAX,

* pbut if we do, handle as EILSEQ

*

/

/* FALLTHROUGH */

case ElILSEQ /* invalid sequence on input */
if (!sflag) {
(void) fprintf(stderr,
_("I'llegal sequence in % at offset Ald\n")|
fnanme, offset - eft);

(voi d) fprintf(stderr

_("bad seq: \\x%02x\\ x%02x\\ x%02x\ n"),
iptr[0] & Oxff,
iptr[1] & Oxff,
iptr[2] & Oxff);

assert(ileft > 0);
/* skip one */

assert(oleft > 0);

if (lcflag) {
*optr++ = ' ?';
oleft--;

goto iconv_again;

defaul t:
(void) fprintf(stderr,

new usr/src/cnd/iconv/iconv.c

260
261
262
263
264
265

267
268
269
270

272
273
274
275
276
277
278
279
280
281
282
283
284
285

287
288
289
290
291
292

_("iconv error

(%) infile $s at of fset

strerror(errno),
perror("iconv");

br eak;

}

/* normal iconv return
ileft = 0;

*/

iptr = ibuf + MB_LEN MAX;

}

* End of file
* Flush any shift encodings.

r = NULL;

ft = 0;

r = obuf;

ft = OBUFSI Z;
(*pconv) (& ptr, & left, &optr,
ocnt = OBUFSIZ - ol eft;

if (ocnt > 0)

) (void) fwite(obuf, 1,

*/
i pt
ile
opt
ole

}

/*

* scan the /usr/lib/iconv directory...
* A script for this seens appropriate.
*

/

voi d
|'i st _codeset s(voi d)

293 {

294
295

(void) systen("/usr/lib/iconv/i
}

&ol eft);

ocnt, stdout);

conv_list");

f nane,

of f set

% | d\ n"
ile

)P
ft);

new usr/src/cnd/iconv/iconv_|list.sh

R R R R

1418 Sat May 28 21:32:40 2011

new usr/src/cnd/iconv/iconv_|list.sh
30 Need iconv

R R R R R

e
RPOWOONOUTAWN

[
o hw

18

#!/ bi n/ ksh

#

This file and its contents are supplied under the terms of the

Comnmon Devel opnent and Distribution License ("CDDL"), version 1.0
You nay only use this file in accordance with the ternms of version
1.0 of the CDDL.

#

A full copy of the text of the CDDL should have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunps.org/license/ CODL

#

#

Copyright 2011 Nexenta Systems, Inc. Al rights reserved

List all iconv(1l) codesets

cd /usr/lib/iconv || exit 1

typeset -A al

/usr/bin/ls | while read f

do
case "$f" in
geni convt bl . so)
*.soy
| FS=" %
set ${f % so}
al I [$1]=" "
al | [$2] ="
*.t)"
I FS="."
set ${f%t}
al I [$1]=" "
al I [$2] =" "
*) Yj
esac
done
/usr/bin/ls geniconvtbl/binarytabl es
while read f
do
case "$f" in
*. bt)
| FS=" %
set ${f% bt}
al I [$1]=" "
all [$2] ="
*)
esac’
done
Only store aliases for names we’'ve seen

| FS=" "

new usr/src/cnd/iconv/iconv_|list.sh

while read a c
do

case "$a" in
\ #*)
”)
if ["$c" -a "${all[$c]}"] ; then
f all [$c]="%{al | [$c]} $a"
i
esac’
done < "alias"
cat <<ECF
The following are all supported code set nanmes. Conversions

bet ween sone frontode-tocode pairs m ght not be avail abl e
Sone of these code set names have aliases, which are shown
after the canonical nane

ECF
for i in"${tall[@}"
do
echo "$i ${all[$i]}"
done

new usr/src/cnd/iconv/ parser.y 1

R R R R

1939 Sat May 28 21:32:40 2011
new usr/src/cnd/iconv/ parser.y
30 Need iconv
IR E SR EE RS RS E R E SRR R R R R R R R R SRR EEEEREEREEEEEEEERSE]

A
/*

* This file and its contents are supplied under the terns of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunmps.org/license/ CDDL.

* Ok Ok ok kR ¥ O

13 /*
14 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*/

17 [*
18 * POCsSI X i conv charmap grammar.
19 */

21 #include <wchar. h>
22 #include <stdio.h>
23 #include <limts.h>
24 #include "charnap. h"

26 %

27 %nion {

28 char *t oken;
29 int num

30 char nmbs[MB_LEN MAX + 2]; /* NB: [0] is length! */
31}

33 % oken T_CODE_SET

34 % oken T_MB_CUR_MAX

35 % oken T_MB_CUR_ M N

36 % oken T_COM CHAR

37 % oken T_ESC_CHAR

38 % oken T_LT

39 % oken T_GT

40 % oken T_NL

41 % oken T_SEM

42 % oken T_COMVA

43 % oken T_ELLIPSI S

44 % oken T_RPAREN

45 % oken T_LPAREN

46 % oken T_QUOTE

47 % oken T_NULL

48 % oken T_END

49 % oken T_CHARVAP

50 % oken T_W DTH

51 % oken T_W DTH_DEFAULT
52 % oken <nbs> T_CHAR
53 % oken <token> T_NAME
54 % oken <nun® T_NUMBER
55 % oken <token> T_SYMBOL
57 %%

59 goal : setting_list charmap
60 | charmap

61 ;

new usr/src/cnd/iconv/parser.y

63
64
65

67

68
69

114

string

charli st

setting_list

setting

char map

charmap_| i st

charmap_entry

T_QUOTE charlist T_QUOTE
T_QUOTE T_QUOTE

charlist T_CHAR
T_CHAR

setting_list setting
setting
T_COM CHAR T_CHAR T_NL
com char = $2[1];
T_ESC CHAR T_CHAR T_NL
esc_char = $2[1];
T_MB_CUR _MAX T_NUMBER T_NL
nb_cur_max = $2;
T_MB_CUR M N T_NUMBER T_NL
nb_cur_nmin = $2;
T_CODE_SET string T_NL

/* ignore */

T CHARMAP T NL charmap_list T_END T _CHARVAP T_NL
charmap_list charmap_entry

charmap_entry

T_SYMBOL T_CHAR

add_char map($1, $2);
scan_to_eol ();

}
T_SYMBOL T_ELLIPSIS T_SYMBOL T_CHAR

add_char map_range($1, $3, $4);
scan_to_eol ();

new usr/src/cnd/ i conv/ scanner. c

R R R R

11780 Sat May 28 21:32:41 2011
new usr/src/cnd/ i conv/ scanner. c
30 Need iconv

R R R R R

This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://wwm illunmos. org/license/ CDDL.

13 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

16 /*

17 * This file contains the "scanner", which tokenizes charmap files

18 * for iconv for processing by the higher |evel granmar processor.
*/

21 #include <stdio. h>

22 #include <stdlib. h>

23 #include <ctype. h>

24 #include <limts.h>

25 #include <string.h>

26 #include <wi dec. h>

27 #include <sys/types. h>
28 #include <assert.h>

29 #include "charnmap. h"

30 #include "parser.tab.h"

32 int comchar = "#;
33 int esc_char = "\\’
34 int nmb_cur_min = 1;
35 int nmb_cur_max = 1;
36 int lineno = 1;

37 int war ni ngs = 0;
38 static int next |l i ne;

39 static FILE *input = stdin;
40 static const char *filename = "<stdin>";
41 static int instring = 0;
42 static int escaped = 0;
44 | *

45 * Token space ... grows on demand.

46 =/

47 static char *token = NULL;

48 static int tokidx;

49 static int toksz = 0;

50 static int hadtok =

53 * The | ast keyword seen.
54 * for "copy" and also collating synbols and el enents.

56 int | ast _kw = 0;
57 static int category = T_END,

59 static struct token {
60 int id;
61 const char *nane;

This is useful to trigger the special |exer rules

new usr/src/cnd/ i conv/ scanner. c

62 } keywords[] = {
T_COML

"comrent _char" },

64 { T_ESC_CHAR, "escape_char" },

65 { T_END, "END' 1},

67 /*

68 * These are keywords used in the charmap file. Note that

69 * Solaris orginally used angle brackets to wap sone of them
70 * but we renpved that to sinplify our parser. The first of these
71 * itens are "global items."

72 */

73 { T_CHARVAP, " CHARMAP" },

74 { T_WDTH, "W DTH" },

75 { T_W DTH_DEFAULT, "W DTH_DEFAULT" },

77 { -1, NULL },

78 };

80 /*

83 static struct token symwords[] = {
I CHAR,

90 };

"comrent _char" },
C CHAR, "escape_char" },
CODE_SET, "code_set nama" 1,
"mb_cur _max" },
 CUR_M N, “mb_cur_min" },

92 static int categories[] = {
93 T_CHARVAP

94 0
95 };

97 void

98 reset_scanner(const char *fnane)

100 if (fname == NULL)

filename = "<stdin>";
input = stdin;

103 } else {

112 com char

if (input !'= stdin)
(v0| d) fclose(lnput)

if ((input = fopen(fnane, " ")) == NULL) {
perror (fnane);
exit(1);

}
filenane = fnaneg;

113 esc_char = ’\\: |

114 instring

120 category = T_END;

121 }

123 #define hex(x) \

124 (isdigit(x) ? (x - '0")

((islower(x) ? (x - 'a)

125 #define isodigit(x) ((x >="O) && (x <='T7"))

127 static int

81 * These special words are only used in a charmap file, enclosed in <>.
*/

(x - "A)) + 10))

new usr/src/cnd/ i conv/ scanner. c

128 scanc(voi d)

129 {

130 int c;

132 c = getc(input);

133 lineno = nextline;

134 if (c =="\n) {

135 nextl i ne++;

136 }

137 return (c);

138 }

140 static void

141 unscanc(int c)

142 {

143 if (c =="\n")

144 nextline--;

145 }

146 if (ungetc(c, input) < 0)

147 yyerror(_("ungetc failed"));
148 }

149 }

151 static int

152 scan_hex_byte(voi d)

153 {

154 int cl, c2;

155 int V;

157 cl = scanc();

158 if (lisxdigit(cl)) {

159 yyerror(_("mal forned hex digit"));
160 return (0);

161

162 c2 = scanc();

163 if (lisxdigit(c2)) {

164 yyerror(_("mal forned hex digit"));
165 return (0);

166

167 = ((hex(cl) << 4) | hex(c2));
168 return (v);

169 }

171 static int

172 scan_dec_byt e(voi d)

173 {

174 int cl, c2, c3;

175 int b;

177 cl = scanc();

178 if (lisdigit(cl)) {

179 yyerror(_("nmal forned deci mal
180 return (0);

181 }

182 b = cl -0

183 c2 = scanc();

184 if ('|sd|g|t(c2)) {

185 yyerror(_("mal forned deci nal
186 return (0);

187 }

188 b *= 10;

189 b += (c2 - '0");

190 c3 = scanc();

191 if (lisdigit(c3)) {

192 unscanc(c3);

193 } else {

new usr/src/cnd/ i conv/scanner. c

194
195
196
197
198

200
201

b *= 10;
b += (c3 - '0");

}
return (b);

}

static int
scan_oct _byt e(voi d)

202 {

203
204

206

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

231
232

int cl, c2, c3;
int b;

b = 0;

cl = scanc();

if ('|sod|g|t(cl)
yyerror(_(" malformad oct al
return (0);

}
b=c1-"'0;
c

i

if ('|sod|§;|)t(02)) {
yyerror(_("nmal forned oct al
) return (0);
b *= 8;
b += (c2 - '0);
c3 = scanc();
if ('|sod|g|t(03)) {
unscanc(c3);
} else{
* = 8
b += (c3 -'0);

}
return (b);

}

voi d
add_t ok(int c)

233 {

234
235
236
237
238
239
240
241
242

244
245
246

248
249
250

251

253
254
255
256
257

if ((tokidx + 1) >= toksz) {
toksz += 64;
if ((token = realloc(token

digit"));

digit"));

toksz))

yyerror(_("out of nenory"));

tokidx = 0;
toksz = 0;
return;

}

t oken[t oki dx++] = (char)c;
token[t oki dx] = O;
}

static int
get _byte(void)
{

int CH

if ((c = scanc()) != esc_char) {
unscanc(c);
return (EOF);

}c

= scanc();

switch (c) {

NULL) {

new usr/src/cnd/ i conv/ scanner. c

260 case 'd’:

261 case 'D:

262 return (scan_dec_byte());
263 case 'Xx':

264 case 'X:

265 return (scan_hex_byte());
266 case '0':

267 case '1':

268 case '2':

269 case '3':

270 case '4':

271 case '5':

272 case '6’:

273 case '7':

274 /* put the character back so we can get it */
275 unscanc(c);

276 return (scan oct _byte());
277 defaul t:

278 unscanc(c);

279 unscanc(esc_char);

280 return (ECF);

281 }

282 }

284 int

285 get_escaped(int c)

286

287 switch (c) {

288 case 'n’:

289 return ("\n");

290 case 'r’:

291 return ("\r’);

292 case 't’':

293 return ("\t');

294 case 'f’:

295 return ("\f");

296 case 'V’

297 return ("\v');

298 case 'b’:

299 return ("\b');

300 case 'a’:

301 return ("\a');

302 defaul t:

303 return (c);

304 }

305 }

307 int

308 get_wi de(void)

309 {

310 /* NB: yylval.nmbs[0] is the length */
311 char *nbs = &yyl val . nbs[1] ;

312 int mbi = 0O;

313 int c;

315 nbs[nbi] = 0O;

316 if (mb_cur_max > MB_LEN MAX) {
317 yyerror(_("max multibyte character size too big"));
318 return (T_NULL);

319 }

320 for (;;) {

321 if ((c = get_byte()) == EOF)
322 br eak;

323 if (mbi == nmb_cur_max) {
324 unscanc(c);

325 yyerror (("Iength > nb_cur_max"));

new usr/src/cnd/ i conv/scanner. c

326 return (T_NULL);

327 }

328 nmbs[nmbi ++] = c;

329 nbs[nbi] = 0O;

330

332 /* result in yylval.nbs */

333 nbs[-1] = nbi;

334 return (T_CHAR);

335

337 int

338 get_synbol (voi d)

339 {

340 int c;

342 V\/nile((c=scanc()) 1= EOF) {

343 if (escaped) {

344 escaped = 0;

345 if(c——'\n)

346 ntinue;

347 add tok(get _escaped(c));

348 conti nue;

349

350 iIf (c == esc_char) {

351 escaped = 1;

352 cont i nue;

358 }

354 if (c =="\n") { /* well that’'s strange! */
355 yyerror(_("untermni nated synbolic nanme"));
356 cont i nue;

357 }

358 i1f (c ==">") { /* end of synbol */

360 /*

361 * This restarts the token fromthe beginni ng
362 * the next tinme we scan a character. (This
363 * token is conplete.)

364 */

366 if (token == NULL)

367 yyerror(_("m ssing synbolic name"));
368 return (T_NULL);

369 }

370 tokidx = 0;

372 /*

373 * A few synbol s are handl ed as keywords outside
374 * of the nornal categories.

375 */

376 if (category == T_END) {

377 int i;

378 for (i = 0; symwrds[i].name != 0; i++) {
379 if (strcnp(token, symwords[i].name)
380 0

381 | ast _kw = symmords[i].
382 return (last_kw);

383 }

384 }

385

386 /* its an undefined synbol */

387 yylval .t oken = strdup(token);

388 token = NULL;

389 toksz = 0;

390 tokidx = 0;

391 return (T_SYMBQL);

new usr/src/cnd/ i conv/ scanner. c

392
393
394

396
397
398 }

} l\dd_tok(c);

yyerror(_(" unt erm nated synbolic nane"));
return (ECF

401 static int
402 consune_t oken(voi d)

403 {
404
405

407
408
409

411
412
413
414
415
416
417

419
420
421
422
423
424

426

428
429
430
431

433
434
435
436
437
438

440
441

443
444
445
446
447
448
449
450

452
453
454
455
456
457

int len = tokidx;
int i;
tokidx = 0;

if (token == NULL)
return (T_NULL);

/*

* this one is speC| al, because we don’t want it to alter the
* last_kw field
*/

if (strcnp(token, " ") == 0) {
return (T_ ELLI PSI S)
}

/* search for reserved words first */
for (i = 0; keywords[i].nane; i++) {
|nt i
if (strcnp(keywords[i].nane, token) !'= 0) {
cont i nue;
}

| ast _kw = keywords[i].id;
/* clear the top level category if we're done with it */
D) {

if (last_kw ==
category = T_END;

}

/* set the top level category if we're changing */
for (j = 0; categories[j]; j++) {
if (categories[]j] != last_kw)
conti nue;
category = Iast_kw,

}

return (keywords[i].id);

}

/* maybe its a numeric constant? */
if (isdigit(*token) || (*token =="'-' && isdigit(token[1]))) {
char *eptr;
yylval . num = strtol (token, &eptr, 10);
1f (*eptr = 0)
yyerror(_("nmal fornmed nunber"));
return (T_NUVBER);

-

/*

* A single lone character is treated as a character literal.
* To avoid duplication of effort, we stick in the charmap.

*

/
if (len == 1) {
yylval .mbs[0] = 1; /* length */

new usr/src/cnd/ i conv/ scanner. c

458
459
460
461

463
464
465
466
467
468
469

471
472

yyl val . mbs[1] = token []
yylval .nbs[2] ="'\0O
return (T_CHAR);

}

/* anything else is treated as a synbolic nane */
yyl val . t oken = strdup(token);

token = NULL;

toksz = 0;

toki dx = 0;

return (T_NAME);

voi d
scan_t o_eol (voi d)

473 {

474
475
476
477
478
479
480
481
482
483

int
whi | e ((c = scanc()) I="\n") {
if (c == EOF
/* end of file w thout newline! */
errf(_("mssing newine"));
return;

}

}
assert(c == '\n");

485 in

486

t
yyl ex(voi d)

487 {

488
490

492
493
494
495

497
498
499

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

int c;
while ((c = scanc()) != EOF) {

/* special handling for quoted string */
if (instring) {
if (escaped) {
escaped = 0;

[* if nevwlne just eat and forget it
\n")

if (

COY‘II i nue;

if (strchr("xXd01234567", c)) {
unscanc(c);
unscanc(esc_char);
return (get_wide());

1, /* length */

}
yyl val . nbs[0]
1] g\et _escaped(c);
O

yyl val . nbs[
yyl val . nbs[2]
return (T_CHAR);

if (c == esc_char) {
escaped =
cont I nue;

}
switch (c) {
case '<':
return (get_synbol ());
case '>:
/* oops! should generate syntax error
return (T_GT);
case '"':
instring = 0;

return (T_QUOTE);

*/

*/

new usr/src/cnd/ i conv/ scanner. c

524
525
526
527
528
529
530

532
533
534
535
536
537
538
539
540
541
542
543

545
546
547
548
549
550

552
553
554

556
551
558
559
560

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

582
583
584
585
586
587
588
589

defaul t:
yylval .nbs[0] = 1; /* length */
yylval . nbs[1] = c;
yylval .nbs[2] ="'\0";
return (T_CHAR);
}
}
/* escaped characters first */
if (escaped)
escaped = O;
if (c =="\n
/* eat the newline */
conti nue;
}
hadt ok = 1;
if (tokidx) {

/* an escape m d-token is nonsense */
return (T_NULL);
}

/* nuneric escapes are treated as w de characters */
if (strchr("xXd01234567", c)) {

unscanc(c);

unscanc(esc_char);

return (get_wide());

}
add_t ok(get _escaped(c));
conti nue;
}
/* if it is the escape charter itself note it */
if (c == esc_char)
escaped = 1;
cont i nue;
}

/* renove fromthe comment char to end of I|ine */
if (c == comchar) {
whi l e (c '— "\n’
f ((c = scanc()) == EOF)
/* end of file w thout new ine! */
return (EOF);
}

}
assert(c == '\n');
if (!hadtok) {

/*

* |f there were no tokens on this |ine,
* then just pretend it didn't exist at all.
&/

conti nue;

}

hadt ok =

return (T NL)
}

if (strchr(" \t\n;()<>\"", c) && (tokidx !'=0)) {
/*
* These are all token delinmters. |If there
* is a token already in progress, we need to
* process it.
*
/

unscanc(c);
return (consune_token());

10

new usr/src/cnd/ i conv/scanner. c

590 }

592 switch (c) {

593 case '\n

594 i f (! hadt ok) {

595

596 * If the line was conpletely devoid of tokens,
597 * then just ignore it.
598 */

599 cont i nue;

600 }

601 /* we're starting a new line, reset the token state */
602 hadt ok = O;

603 return (T_NL);

604 case ',

605 hadt ok = 1;

606 return (T_COWA);

607 case ';':

608 hadt ok = 1;

609 return (T_SEM);

610 case ' (':

611 hadtok = 1;

612 return (T_LPAREN);
613 case ')’:

614 hadt ok = 1;

615 return (T_RPAREN);
616 case '>':

617 hadt ok =

618 return (T GT)

619 case '<':

620 I+ synbol start! */
621 hadt ok = 1;

622 return (get _synbol ());
623 case ' '’

624 case '\t’

625 /* whi t espace, just ignore it */
626 conti nue;

627 case '"':

628 hadt ok = 1;

629 instring =

630 return (T_ QJOTE)

631 defaul t:

632 hadt ok = 1;

633 add_t ok(c);

634 conti nue;

635 }

636 }

637 return (EOF);

638 }

640 void

641 yyerror(const char *nsg)
642

643 (void) fprintf(stderr,
644 filenare, |ineno,
645 exit(1);

646 }

648 void

649 errf(const char *fnt, ...)

650 {

651 char *neg;

653 va_list va;

654 va_start(va, fnt);

655 (void) vasprintf(&rsg,

_("9%: %l: error: %\n"),
nsg) ;

fnt, va);

new usr/src/cnd/ i conv/ scanner. c

656 va_end(va);

658 (void) fprintf(stderr, _("%: %l: error: %\n"),
659 filename, |ineno, nsgQ);

660 free(nsg);

661 exit(1);

662 }

664 void

665 warn(const char *fnt, ...)

666 {

667 char *neg;

669 va_list va;

670 va_start(va, fnt);

671 (void) vasprintf(&rsg, fnt, va);

672 va_end(va);

674 (void) fprintf(stderr, _("%: %: warning: %\n"),
675 filenanme, lineno, nsQ);

676 free(nsg);

677 war ni ngs++;

678 }

