
new/usr/src/cmd/mandoc/Makefile.common 1

**
 1094 Wed Jul 30 20:55:06 2014
new/usr/src/cmd/mandoc/Makefile.common
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2012 Nexenta Systems, Inc. All rights reserved.
14 # Copyright 2014 Garrett D’Amore <garrett@damore.org>
15 #

17 PROGS= mandoc mandoc_preconv
18 mandoc_OBJS = arch.o att.o chars.o eqn.o eqn_html.o eqn_term.o \
19 html.o lib.o main.o man.o man_hash.o man_html.o \
20 man_macro.o man_term.o man_validate.o mandoc.o mdoc.o \
21 mdoc_argv.o mdoc_hash.o mdoc_html.o mdoc_macro.o \
22 mdoc_man.o mdoc_term.o mdoc_validate.o msec.o out.o \
23 read.o roff.o st.o tbl.o tbl_data.o tbl_html.o \
24 tbl_layout.o tbl_opts.o tbl_term.o term.o term_ascii.o \
25 term_ps.o tree.o vol.o

27 preconv_OBJS = preconv.o

29 CFLAGS += $(CC_VERBOSE)

31 CPPFLAGS += -DHAVE_CONFIG_H -DUSE_WCHAR \
32 -DOSNAME="\"illumos\""
32 -DOSNAME="\"illumos\"" \
33 -DVERSION="\"1.12.1\""

new/usr/src/cmd/mandoc/arch.in 1

**
 3308 Wed Jul 30 20:55:06 2014
new/usr/src/cmd/mandoc/arch.in
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: arch.in,v 1.14 2013/09/16 22:12:57 schwarze Exp $ */
1 /* $Id: arch.in,v 1.12 2012/01/28 14:02:17 joerg Exp $ */
2 /*
3 * Copyright (c) 2009 Kristaps Dzonsons <kristaps@bsd.lv>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */

18 /*
19 * This file defines the architecture token of the .Dt prologue macro.
20 * All architectures that your system supports (or the manuals of your
21 * system) should be included here. The right-hand-side is the
22 * formatted output.
23 *
24 * Be sure to escape strings.
25 *
26 * REMEMBER TO ADD NEW ARCHITECTURES TO MDOC.7!
27 */

29 LINE("acorn26", "Acorn26")
30 LINE("acorn32", "Acorn32")
31 LINE("algor", "Algor")
32 LINE("alpha", "Alpha")
33 LINE("amd64", "AMD64")
34 LINE("amiga", "Amiga")
35 LINE("amigappc", "AmigaPPC")
36 LINE("arc", "ARC")
37 LINE("arm", "ARM")
38 LINE("arm26", "ARM26")
39 LINE("arm32", "ARM32")
40 LINE("armish", "ARMISH")
41 LINE("armv7", "ARMv7")
42 LINE("aviion", "AViiON")
43 LINE("atari", "ATARI")
43 LINE("beagle", "Beagle")
44 LINE("bebox", "BeBox")
45 LINE("cats", "cats")
46 LINE("cesfic", "CESFIC")
47 LINE("cobalt", "Cobalt")
48 LINE("dreamcast", "Dreamcast")
49 LINE("emips", "EMIPS")
50 LINE("evbarm", "evbARM")
51 LINE("evbmips", "evbMIPS")
52 LINE("evbppc", "evbPPC")
53 LINE("evbsh3", "evbSH3")
54 LINE("ews4800mips", "EWS4800MIPS")
55 LINE("hp300", "HP300")
56 LINE("hp700", "HP700")
57 LINE("hpcarm", "HPCARM")

new/usr/src/cmd/mandoc/arch.in 2

58 LINE("hpcmips", "HPCMIPS")
59 LINE("hpcsh", "HPCSH")
60 LINE("hppa", "HPPA")
61 LINE("hppa64", "HPPA64")
62 LINE("ia64", "ia64")
63 LINE("i386", "i386")
64 LINE("ibmnws", "IBMNWS")
65 LINE("iyonix", "Iyonix")
66 LINE("landisk", "LANDISK")
67 LINE("loongson", "Loongson")
68 LINE("luna68k", "Luna68k")
69 LINE("luna88k", "Luna88k")
70 LINE("m68k", "m68k")
71 LINE("mac68k", "Mac68k")
72 LINE("macppc", "MacPPC")
73 LINE("mips", "MIPS")
74 LINE("mips64", "MIPS64")
75 LINE("mipsco", "MIPSCo")
76 LINE("mmeye", "mmEye")
77 LINE("mvme68k", "MVME68k")
78 LINE("mvme88k", "MVME88k")
79 LINE("mvmeppc", "MVMEPPC")
80 LINE("netwinder", "NetWinder")
81 LINE("news68k", "NeWS68k")
82 LINE("newsmips", "NeWSMIPS")
83 LINE("next68k", "NeXT68k")
84 LINE("octeon", "OCTEON")
85 LINE("ofppc", "OFPPC")
86 LINE("palm", "Palm")
87 LINE("pc532", "PC532")
88 LINE("playstation2", "PlayStation2")
89 LINE("pmax", "PMAX")
90 LINE("pmppc", "pmPPC")
91 LINE("powerpc", "PowerPC")
92 LINE("prep", "PReP")
93 LINE("rs6000", "RS6000")
94 LINE("sandpoint", "Sandpoint")
95 LINE("sbmips", "SBMIPS")
96 LINE("sgi", "SGI")
97 LINE("sgimips", "SGIMIPS")
98 LINE("sh3", "SH3")
99 LINE("shark", "Shark")
100 LINE("socppc", "SOCPPC")
101 LINE("solbourne", "Solbourne")
102 LINE("sparc", "SPARC")
103 LINE("sparc64", "SPARC64")
104 LINE("sun2", "Sun2")
105 LINE("sun3", "Sun3")
106 LINE("tahoe", "Tahoe")
107 LINE("vax", "VAX")
108 LINE("x68k", "X68k")
109 LINE("x86", "x86")
110 LINE("x86_64", "x86_64")
111 LINE("xen", "Xen")
112 LINE("zaurus", "Zaurus")

new/usr/src/cmd/mandoc/chars.c 1

**
 3565 Wed Jul 30 20:55:06 2014
new/usr/src/cmd/mandoc/chars.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: chars.c,v 1.54 2013/06/20 22:39:30 schwarze Exp $ */
1 /* $Id: chars.c,v 1.52 2011/11/08 00:15:23 kristaps Exp $ */
2 /*
3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2011 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <assert.h>
23 #include <ctype.h>
24 #include <stdlib.h>
25 #include <string.h>

27 #include "mandoc.h"
28 #include "libmandoc.h"

30 #define PRINT_HI 126
31 #define PRINT_LO 32

33 struct ln {
34 struct ln *next;
35 const char *code;
36 const char *ascii;
37 int unicode;
38 };

40 #define LINES_MAX 329
40 #define LINES_MAX 328

42 #define CHAR(in, ch, code) \
43 { NULL, (in), (ch), (code) },

45 #define CHAR_TBL_START static struct ln lines[LINES_MAX] = {
46 #define CHAR_TBL_END };

48 #include "chars.in"

50 struct mchars {
51 struct ln **htab;
52 };

______unchanged_portion_omitted_

65 struct mchars *
66 mchars_alloc(void)
67 {

new/usr/src/cmd/mandoc/chars.c 2

68 struct mchars *tab;
69 struct ln **htab;
70 struct ln *pp;
71 int i, hash;

73 /*
74 * Constructs a very basic chaining hashtable. The hash routine
75 * is simply the integral value of the first character.
76 * Subsequent entries are chained in the order they’re processed.
77 */

79 tab = mandoc_malloc(sizeof(struct mchars));
80 htab = mandoc_calloc(PRINT_HI - PRINT_LO + 1, sizeof(struct ln *));
80 htab = mandoc_calloc(PRINT_HI - PRINT_LO + 1, sizeof(struct ln **));

82 for (i = 0; i < LINES_MAX; i++) {
83 hash = (int)lines[i].code[0] - PRINT_LO;

85 if (NULL == (pp = htab[hash])) {
86 htab[hash] = &lines[i];
87 continue;
88 }

90 for (; pp->next; pp = pp->next)
91 /* Scan ahead. */ ;
92 pp->next = &lines[i];
93 }

95 tab->htab = htab;
96 return(tab);
97 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/chars.in 1

**
 10052 Wed Jul 30 20:55:06 2014
new/usr/src/cmd/mandoc/chars.in
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: chars.in,v 1.43 2013/06/20 22:39:30 schwarze Exp $ */
1 /* $Id: chars.in,v 1.42 2011/10/02 10:02:26 kristaps Exp $ */
2 /*
3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */

18 /*
19 * The ASCII translation tables.
20 *
21 * The left-hand side corresponds to the input sequence (\x, \(xx, *(xx
22 * and so on) whose length is listed second element. The right-hand
23 * side is what’s produced by the front-end, with the fourth element
24 * being its length.
25 *
26 * XXX - C-escape strings!
27 * XXX - update LINES_MAX if adding more!
28 */

30 /* Non-breaking, non-collapsing space uses unit separator. */
31 static const char ascii_nbrsp[2] = { ASCII_NBRSP, ’\0’ };

33 CHAR_TBL_START

35 /* Spacing. */
36 CHAR("c", "", 0)
37 CHAR("0", " ", 8194)
38 CHAR(" ", ascii_nbrsp, 160)
39 CHAR("~", ascii_nbrsp, 160)
40 CHAR("%", "", 0)
41 CHAR("&", "", 0)
42 CHAR("^", "", 0)
43 CHAR("|", "", 0)
44 CHAR("}", "", 0)
45 CHAR("t", "", 0)

47 /* Accents. */
48 CHAR("a\"", "\"", 779)
49 CHAR("a-", "-", 175)
50 CHAR("a.", ".", 729)
51 CHAR("a^", "^", 770)
52 CHAR("\’", "\’", 769)
53 CHAR("aa", "\’", 769)
54 CHAR("ga", "‘", 768)
55 CHAR("‘", "‘", 768)
56 CHAR("ab", "‘", 774)
57 CHAR("ac", ",", 807)
58 CHAR("ad", "\"", 776)

new/usr/src/cmd/mandoc/chars.in 2

59 CHAR("ah", "v", 711)
60 CHAR("ao", "o", 730)
61 CHAR("a~", "~", 771)
62 CHAR("ho", ",", 808)
63 CHAR("ha", "^", 94)
64 CHAR("ti", "~", 126)

66 /* Quotes. */
67 CHAR("Bq", ",,", 8222)
68 CHAR("bq", ",", 8218)
69 CHAR("lq", "‘‘", 8220)
70 CHAR("rq", "\’\’", 8221)
71 CHAR("oq", "‘", 8216)
72 CHAR("cq", "\’", 8217)
73 CHAR("aq", "\’", 39)
74 CHAR("dq", "\"", 34)
75 CHAR("Fo", "<<", 171)
76 CHAR("Fc", ">>", 187)
77 CHAR("fo", "<", 8249)
78 CHAR("fc", ">", 8250)

80 /* Brackets. */
81 CHAR("lB", "[", 91)
82 CHAR("rB", "]", 93)
83 CHAR("lC", "{", 123)
84 CHAR("rC", "}", 125)
85 CHAR("la", "<", 60)
86 CHAR("ra", ">", 62)
87 CHAR("bv", "|", 9130)
88 CHAR("braceex", "|", 9130)
89 CHAR("bracketlefttp", "|", 9121)
90 CHAR("bracketleftbp", "|", 9123)
91 CHAR("bracketleftex", "|", 9122)
92 CHAR("bracketrighttp", "|", 9124)
93 CHAR("bracketrightbp", "|", 9126)
94 CHAR("bracketrightex", "|", 9125)
95 CHAR("lt", ",-", 9127)
96 CHAR("bracelefttp", ",-", 9127)
97 CHAR("lk", "{", 9128)
98 CHAR("braceleftmid", "{", 9128)
99 CHAR("lb", ",-", 9129)
100 CHAR("braceleftbp", "‘-", 9129)
101 CHAR("braceleftex", "|", 9130)
102 CHAR("rt", "-.", 9131)
103 CHAR("bracerighttp", "-.", 9131)
104 CHAR("rk", "}", 9132)
105 CHAR("bracerightmid", "}", 9132)
106 CHAR("rb", "-\’", 9133)
107 CHAR("bracerightbp", "-\’", 9133)
108 CHAR("bracerightex", "|", 9130)
109 CHAR("parenlefttp", "/", 9115)
110 CHAR("parenleftbp", "\\", 9117)
111 CHAR("parenleftex", "|", 9116)
112 CHAR("parenrighttp", "\\", 9118)
113 CHAR("parenrightbp", "/", 9120)
114 CHAR("parenrightex", "|", 9119)

116 /* Greek characters. */
117 CHAR("*A", "A", 913)
118 CHAR("*B", "B", 914)
119 CHAR("*G", "|", 915)
120 CHAR("*D", "/\\", 916)
121 CHAR("*E", "E", 917)
122 CHAR("*Z", "Z", 918)
123 CHAR("*Y", "H", 919)
124 CHAR("*H", "O", 920)

new/usr/src/cmd/mandoc/chars.in 3

125 CHAR("*I", "I", 921)
126 CHAR("*K", "K", 922)
127 CHAR("*L", "/\\", 923)
128 CHAR("*M", "M", 924)
129 CHAR("*N", "N", 925)
130 CHAR("*C", "H", 926)
131 CHAR("*O", "O", 927)
132 CHAR("*P", "TT", 928)
133 CHAR("*R", "P", 929)
134 CHAR("*S", ">", 931)
135 CHAR("*T", "T", 932)
136 CHAR("*U", "Y", 933)
137 CHAR("*F", "O_", 934)
138 CHAR("*X", "X", 935)
139 CHAR("*Q", "Y", 936)
140 CHAR("*W", "O", 937)
141 CHAR("*a", "a", 945)
142 CHAR("*b", "B", 946)
143 CHAR("*g", "y", 947)
144 CHAR("*d", "d", 948)
145 CHAR("*e", "e", 949)
146 CHAR("*z", "C", 950)
147 CHAR("*y", "n", 951)
148 CHAR("*h", "0", 952)
149 CHAR("*i", "i", 953)
150 CHAR("*k", "k", 954)
151 CHAR("*l", "\\", 955)
152 CHAR("*m", "u", 956)
153 CHAR("*n", "v", 957)
154 CHAR("*c", "E", 958)
155 CHAR("*o", "o", 959)
156 CHAR("*p", "n", 960)
157 CHAR("*r", "p", 961)
158 CHAR("*s", "o", 963)
159 CHAR("*t", "t", 964)
160 CHAR("*u", "u", 965)
161 CHAR("*f", "o", 981)
162 CHAR("*x", "x", 967)
163 CHAR("*q", "u", 968)
164 CHAR("*w", "w", 969)
165 CHAR("+h", "0", 977)
166 CHAR("+f", "o", 966)
167 CHAR("+p", "w", 982)
168 CHAR("+e", "e", 1013)
169 CHAR("ts", "s", 962)

171 /* Accented letters. */
172 CHAR(",C", "C", 199)
173 CHAR(",c", "c", 231)
174 CHAR("/L", "L", 321)
175 CHAR("/O", "O", 216)
176 CHAR("/l", "l", 322)
177 CHAR("/o", "o", 248)
178 CHAR("oA", "A", 197)
179 CHAR("oa", "a", 229)
180 CHAR(":A", "A", 196)
181 CHAR(":E", "E", 203)
182 CHAR(":I", "I", 207)
183 CHAR(":O", "O", 214)
184 CHAR(":U", "U", 220)
185 CHAR(":a", "a", 228)
186 CHAR(":e", "e", 235)
187 CHAR(":i", "i", 239)
188 CHAR(":o", "o", 246)
189 CHAR(":u", "u", 252)
190 CHAR(":y", "y", 255)

new/usr/src/cmd/mandoc/chars.in 4

191 CHAR("\’A", "A", 193)
192 CHAR("\’E", "E", 201)
193 CHAR("\’I", "I", 205)
194 CHAR("\’O", "O", 211)
195 CHAR("\’U", "U", 218)
196 CHAR("\’a", "a", 225)
197 CHAR("\’e", "e", 233)
198 CHAR("\’i", "i", 237)
199 CHAR("\’o", "o", 243)
200 CHAR("\’u", "u", 250)
201 CHAR("^A", "A", 194)
202 CHAR("^E", "E", 202)
203 CHAR("^I", "I", 206)
204 CHAR("^O", "O", 212)
205 CHAR("^U", "U", 219)
206 CHAR("^a", "a", 226)
207 CHAR("^e", "e", 234)
208 CHAR("^i", "i", 238)
209 CHAR("^o", "o", 244)
210 CHAR("^u", "u", 251)
211 CHAR("‘A", "A", 192)
212 CHAR("‘E", "E", 200)
213 CHAR("‘I", "I", 204)
214 CHAR("‘O", "O", 210)
215 CHAR("‘U", "U", 217)
216 CHAR("‘a", "a", 224)
217 CHAR("‘e", "e", 232)
218 CHAR("‘i", "i", 236)
219 CHAR("‘o", "o", 242)
220 CHAR("‘u", "u", 249)
221 CHAR("~A", "A", 195)
222 CHAR("~N", "N", 209)
223 CHAR("~O", "O", 213)
224 CHAR("~a", "a", 227)
225 CHAR("~n", "n", 241)
226 CHAR("~o", "o", 245)

228 /* Arrows and lines. */
229 CHAR("<-", "<-", 8592)
230 CHAR("->", "->", 8594)
231 CHAR("<>", "<>", 8596)
232 CHAR("da", "v", 8595)
233 CHAR("ua", "^", 8593)
234 CHAR("va", "^v", 8597)
235 CHAR("lA", "<=", 8656)
236 CHAR("rA", "=>", 8658)
237 CHAR("hA", "<=>", 8660)
238 CHAR("dA", "v", 8659)
239 CHAR("uA", "^", 8657)
240 CHAR("vA", "^=v", 8661)

242 /* Logic. */
243 CHAR("AN", "^", 8743)
244 CHAR("OR", "v", 8744)
245 CHAR("no", "~", 172)
246 CHAR("tno", "~", 172)
247 CHAR("te", "3", 8707)
248 CHAR("fa", "V", 8704)
249 CHAR("st", "-)", 8715)
250 CHAR("tf", ".:.", 8756)
251 CHAR("3d", ".:.", 8756)
252 CHAR("or", "|", 124)

254 /* Mathematicals. */
255 CHAR("pl", "+", 43)
256 CHAR("mi", "-", 8722)

new/usr/src/cmd/mandoc/chars.in 5

257 CHAR("-", "-", 45)
258 CHAR("-+", "-+", 8723)
259 CHAR("+-", "+-", 177)
260 CHAR("t+-", "+-", 177)
261 CHAR("pc", ".", 183)
262 CHAR("md", ".", 8901)
263 CHAR("mu", "x", 215)
264 CHAR("tmu", "x", 215)
265 CHAR("c*", "x", 8855)
266 CHAR("c+", "+", 8853)
267 CHAR("di", "-:-", 247)
268 CHAR("tdi", "-:-", 247)
269 CHAR("f/", "/", 8260)
270 CHAR("**", "*", 8727)
271 CHAR("<=", "<=", 8804)
272 CHAR(">=", ">=", 8805)
273 CHAR("<<", "<<", 8810)
274 CHAR(">>", ">>", 8811)
275 CHAR("eq", "=", 61)
276 CHAR("!=", "!=", 8800)
277 CHAR("==", "==", 8801)
278 CHAR("ne", "!==", 8802)
279 CHAR("=~", "=~", 8773)
280 CHAR("-~", "-~", 8771)
281 CHAR("ap", "~", 8764)
282 CHAR("~~", "~~", 8776)
283 CHAR("~=", "~=", 8780)
284 CHAR("pt", "oc", 8733)
285 CHAR("es", "{}", 8709)
286 CHAR("mo", "E", 8712)
287 CHAR("nm", "!E", 8713)
288 CHAR("sb", "(=", 8834)
289 CHAR("nb", "(!=", 8836)
290 CHAR("sp", "=)", 8835)
291 CHAR("nc", "!=)", 8837)
292 CHAR("ib", "(=", 8838)
293 CHAR("ip", "=)", 8839)
294 CHAR("ca", "(^)", 8745)
295 CHAR("cu", "U", 8746)
296 CHAR("/_", "/_", 8736)
297 CHAR("pp", "_|_", 8869)
298 CHAR("is", "I", 8747)
299 CHAR("integral", "I", 8747)
300 CHAR("sum", "E", 8721)
301 CHAR("product", "TT", 8719)
302 CHAR("coproduct", "U", 8720)
303 CHAR("gr", "V", 8711)
304 CHAR("sr", "\\/", 8730)
305 CHAR("sqrt", "\\/", 8730)
306 CHAR("lc", "|~", 8968)
307 CHAR("rc", "~|", 8969)
308 CHAR("lf", "|_", 8970)
309 CHAR("rf", "_|", 8971)
310 CHAR("if", "oo", 8734)
311 CHAR("Ah", "N", 8501)
312 CHAR("Im", "I", 8465)
313 CHAR("Re", "R", 8476)
314 CHAR("pd", "a", 8706)
315 CHAR("-h", "/h", 8463)
316 CHAR("12", "1/2", 189)
317 CHAR("14", "1/4", 188)
318 CHAR("34", "3/4", 190)

320 /* Ligatures. */
321 CHAR("ff", "ff", 64256)
322 CHAR("fi", "fi", 64257)

new/usr/src/cmd/mandoc/chars.in 6

323 CHAR("fl", "fl", 64258)
324 CHAR("Fi", "ffi", 64259)
325 CHAR("Fl", "ffl", 64260)
326 CHAR("AE", "AE", 198)
327 CHAR("ae", "ae", 230)
328 CHAR("OE", "OE", 338)
329 CHAR("oe", "oe", 339)
330 CHAR("ss", "ss", 223)
331 CHAR("IJ", "IJ", 306)
332 CHAR("ij", "ij", 307)

334 /* Special letters. */
335 CHAR("-D", "D", 208)
336 CHAR("Sd", "o", 240)
337 CHAR("TP", "b", 222)
338 CHAR("Tp", "b", 254)
339 CHAR(".i", "i", 305)
340 CHAR(".j", "j", 567)

342 /* Currency. */
343 CHAR("Do", "$", 36)
344 CHAR("ct", "c", 162)
345 CHAR("Eu", "EUR", 8364)
346 CHAR("eu", "EUR", 8364)
347 CHAR("Ye", "Y", 165)
348 CHAR("Po", "L", 163)
349 CHAR("Cs", "x", 164)
350 CHAR("Fn", "f", 402)

352 /* Lines. */
353 CHAR("ba", "|", 124)
354 CHAR("br", "|", 9474)
355 CHAR("ul", "_", 95)
356 CHAR("rl", "-", 8254)
357 CHAR("bb", "|", 166)
358 CHAR("sl", "/", 47)
359 CHAR("rs", "\\", 92)

361 /* Text markers. */
362 CHAR("ci", "o", 9675)
363 CHAR("bu", "o", 8226)
364 CHAR("dd", "=", 8225)
365 CHAR("dg", "-", 8224)
366 CHAR("lz", "<>", 9674)
367 CHAR("sq", "[]", 9633)
368 CHAR("ps", "9|", 182)
369 CHAR("sc", "S", 167)
370 CHAR("lh", "<=", 9756)
371 CHAR("rh", "=>", 9758)
372 CHAR("at", "@", 64)
373 CHAR("sh", "#", 35)
374 CHAR("CR", "_|", 8629)
375 CHAR("OK", "\\/", 10003)

377 /* Legal symbols. */
378 CHAR("co", "(C)", 169)
379 CHAR("rg", "(R)", 174)
380 CHAR("tm", "tm", 8482)

382 /* Punctuation. */
383 CHAR(".", ".", 46)
384 CHAR("r!", "i", 161)
385 CHAR("r?", "c", 191)
386 CHAR("em", "--", 8212)
387 CHAR("en", "-", 8211)
388 CHAR("hy", "-", 8208)

new/usr/src/cmd/mandoc/chars.in 7

389 CHAR("e", "\\", 92)

391 /* Units. */
392 CHAR("de", "o", 176)
393 CHAR("%0", "%o", 8240)
394 CHAR("fm", "\’", 8242)
395 CHAR("sd", "\"", 8243)
396 CHAR("mc", "mu", 181)

398 CHAR_TBL_END

new/usr/src/cmd/mandoc/config.h 1

**
 1243 Wed Jul 30 20:55:06 2014
new/usr/src/cmd/mandoc/config.h
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 #ifndef MANDOC_CONFIG_H
2 #define MANDOC_CONFIG_H

4 #if defined(__linux__) || defined(__MINT__)
5 # define _GNU_SOURCE /* strptime(), getsubopt() */
6 #endif

8 #include <stdio.h>

10 #define VERSION "1.12.3"
11 #define HAVE_STRPTIME
12 #define HAVE_GETSUBOPT
13 #define HAVE_STRLCAT
14 #define HAVE_STRLCPY
15 #define HAVE_MMAP

17 #include <sys/types.h>

19 #if !defined(__BEGIN_DECLS)
20 # ifdef __cplusplus
21 # define __BEGIN_DECLS extern "C" {
22 # else
23 # define __BEGIN_DECLS
24 # endif
25 #endif
26 #if !defined(__END_DECLS)
27 # ifdef __cplusplus
28 # define __END_DECLS }
29 # else
30 # define __END_DECLS
31 # endif
32 #endif

34 #ifndef HAVE_BETOH64
35 # if defined(__APPLE__)
36 # define betoh64(x) OSSwapBigToHostInt64(x)
32 #if defined(__APPLE__)
33 # define htobe32(x) OSSwapHostToBigInt32(x)
34 # define betoh32(x) OSSwapBigToHostInt32(x)
37 # define htobe64(x) OSSwapHostToBigInt64(x)
38 # elif defined(__sun)
39 # define betoh64(x) BE_64(x)
40 # define htobe64(x) BE_64(x)
41 # else
36 # define betoh64(x) OSSwapBigToHostInt64(x)
37 #elif defined(__linux__)
38 # define betoh32(x) be32toh(x)
42 # define betoh64(x) be64toh(x)
43 # endif
44 #endif

46 #ifndef HAVE_STRLCAT
47 extern size_t strlcat(char *, const char *, size_t);
48 #endif
49 #ifndef HAVE_STRLCPY
50 extern size_t strlcpy(char *, const char *, size_t);
51 #endif
52 #ifndef HAVE_GETSUBOPT
53 extern int getsubopt(char **, char * const *, char **);

new/usr/src/cmd/mandoc/config.h 2

54 extern char *suboptarg;
55 #endif
56 #ifndef HAVE_FGETLN
57 extern char *fgetln(FILE *, size_t *);
58 #endif

60 #endif /* MANDOC_CONFIG_H */

new/usr/src/cmd/mandoc/html.c 1

**
 15031 Wed Jul 30 20:55:06 2014
new/usr/src/cmd/mandoc/html.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: html.c,v 1.152 2013/08/08 20:07:47 schwarze Exp $ */
1 /* $Id: html.c,v 1.150 2011/10/05 21:35:17 kristaps Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2011, 2012, 2013 Ingo Schwarze <schwarze@openbsd.org>
4 * Copyright (c) 2011 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <sys/types.h>

24 #include <assert.h>
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include <stdio.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <unistd.h>

33 #include "mandoc.h"
34 #include "libmandoc.h"
35 #include "out.h"
36 #include "html.h"
37 #include "main.h"

39 struct htmldata {
40 const char *name;
41 int flags;
42 #define HTML_CLRLINE (1 << 0)
43 #define HTML_NOSTACK (1 << 1)
44 #define HTML_AUTOCLOSE (1 << 2) /* Tag has auto-closure. */
45 };

______unchanged_portion_omitted_

223 static void
224 print_metaf(struct html *h, enum mandoc_esc deco)
225 {
226 enum htmlfont font;

228 switch (deco) {
229 case (ESCAPE_FONTPREV):
230 font = h->metal;
231 break;
232 case (ESCAPE_FONTITALIC):

new/usr/src/cmd/mandoc/html.c 2

233 font = HTMLFONT_ITALIC;
234 break;
235 case (ESCAPE_FONTBOLD):
236 font = HTMLFONT_BOLD;
237 break;
238 case (ESCAPE_FONTBI):
239 font = HTMLFONT_BI;
240 break;
241 case (ESCAPE_FONT):
242 /* FALLTHROUGH */
243 case (ESCAPE_FONTROMAN):
244 font = HTMLFONT_NONE;
245 break;
246 default:
247 abort();
248 /* NOTREACHED */
249 }

251 if (h->metaf) {
252 print_tagq(h, h->metaf);
253 h->metaf = NULL;
254 }

256 h->metal = h->metac;
257 h->metac = font;

259 switch (font) {
260 case (HTMLFONT_ITALIC):
261 h->metaf = print_otag(h, TAG_I, 0, NULL);
262 break;
263 case (HTMLFONT_BOLD):
264 h->metaf = print_otag(h, TAG_B, 0, NULL);
265 break;
266 case (HTMLFONT_BI):
267 h->metaf = print_otag(h, TAG_B, 0, NULL);
256 if (HTMLFONT_NONE != font)
257 h->metaf = HTMLFONT_BOLD == font ?
258 print_otag(h, TAG_B, 0, NULL) :
268 print_otag(h, TAG_I, 0, NULL);
269 break;
270 default:
271 break;
272 }
273 }

275 int
276 html_strlen(const char *cp)
277 {
278 size_t rsz;
279 int skip, sz;
265 int ssz, sz;
266 const char *seq, *p;

281 /*
282 * Account for escaped sequences within string length
283 * calculations. This follows the logic in term_strlen() as we
284 * must calculate the width of produced strings.
285 * Assume that characters are always width of "1". This is
286 * hacky, but it gets the job done for approximation of widths.
287 */

289 sz = 0;
290 skip = 0;
291 while (1) {
292 rsz = strcspn(cp, "\\");
293 if (rsz) {

new/usr/src/cmd/mandoc/html.c 3

294 cp += rsz;
295 if (skip) {
296 skip = 0;
297 rsz--;
298 }
299 sz += rsz;
300 }
301 if (’\0’ == *cp)
302 break;
303 cp++;
304 switch (mandoc_escape(&cp, NULL, NULL)) {
277 while (NULL != (p = strchr(cp, ’\\’))) {
278 sz += (int)(p - cp);
279 ++cp;
280 switch (mandoc_escape(&cp, &seq, &ssz)) {
305 case (ESCAPE_ERROR):
306 return(sz);
307 case (ESCAPE_UNICODE):
308 /* FALLTHROUGH */
309 case (ESCAPE_NUMBERED):
310 /* FALLTHROUGH */
311 case (ESCAPE_SPECIAL):
312 if (skip)
313 skip = 0;
314 else
315 sz++;
316 break;
317 case (ESCAPE_SKIPCHAR):
318 skip = 1;
319 break;
320 default:
321 break;
322 }
323 }
324 return(sz);

295 assert(sz >= 0);
296 return(sz + strlen(cp));
325 }

327 static int
328 print_encode(struct html *h, const char *p, int norecurse)
329 {
330 size_t sz;
331 int c, len, nospace;
332 const char *seq;
333 enum mandoc_esc esc;
334 static const char rejs[6] = { ’\\’, ’<’, ’>’, ’&’, ASCII_HYPH, ’\0’ };

336 nospace = 0;

338 while (’\0’ != *p) {
339 if (HTML_SKIPCHAR & h->flags && ’\\’ != *p) {
340 h->flags &= ~HTML_SKIPCHAR;
341 p++;
342 continue;
343 }

345 sz = strcspn(p, rejs);

347 fwrite(p, 1, sz, stdout);
348 p += (int)sz;

350 if (’\0’ == *p)
351 break;

new/usr/src/cmd/mandoc/html.c 4

353 switch (*p++) {
354 case (’<’):
355 printf("<");
356 continue;
357 case (’>’):
358 printf(">");
359 continue;
360 case (’&’):
361 printf("&");
362 continue;
363 case (ASCII_HYPH):
364 putchar(’-’);
365 continue;
366 default:
367 break;
368 }

370 esc = mandoc_escape(&p, &seq, &len);
371 if (ESCAPE_ERROR == esc)
372 break;

374 switch (esc) {
375 case (ESCAPE_FONT):
376 /* FALLTHROUGH */
377 case (ESCAPE_FONTPREV):
378 /* FALLTHROUGH */
379 case (ESCAPE_FONTBOLD):
380 /* FALLTHROUGH */
381 case (ESCAPE_FONTITALIC):
382 /* FALLTHROUGH */
383 case (ESCAPE_FONTBI):
384 /* FALLTHROUGH */
385 case (ESCAPE_FONTROMAN):
386 if (0 == norecurse)
387 print_metaf(h, esc);
388 continue;
389 case (ESCAPE_SKIPCHAR):
390 h->flags |= HTML_SKIPCHAR;
391 continue;
392 default:
393 break;
394 }

396 if (h->flags & HTML_SKIPCHAR) {
397 h->flags &= ~HTML_SKIPCHAR;
398 continue;
399 }

401 switch (esc) {
402 case (ESCAPE_UNICODE):
403 /* Skip passed "u" header. */
404 c = mchars_num2uc(seq + 1, len - 1);
405 if (’\0’ != c)
406 printf("&#x%x;", c);
407 break;
408 case (ESCAPE_NUMBERED):
409 c = mchars_num2char(seq, len);
410 if (’\0’ != c)
411 putchar(c);
412 break;
413 case (ESCAPE_SPECIAL):
414 c = mchars_spec2cp(h->symtab, seq, len);
415 if (c > 0)
416 printf("&#%d;", c);
417 else if (-1 == c && 1 == len)
418 putchar((int)*seq);

new/usr/src/cmd/mandoc/html.c 5

419 break;
359 case (ESCAPE_FONT):
360 /* FALLTHROUGH */
361 case (ESCAPE_FONTPREV):
362 /* FALLTHROUGH */
363 case (ESCAPE_FONTBOLD):
364 /* FALLTHROUGH */
365 case (ESCAPE_FONTITALIC):
366 /* FALLTHROUGH */
367 case (ESCAPE_FONTROMAN):
368 if (norecurse)
369 break;
370 print_metaf(h, esc);
371 break;
420 case (ESCAPE_NOSPACE):
421 if (’\0’ == *p)
422 nospace = 1;
423 break;
424 default:
425 break;
426 }
427 }

429 return(nospace);
430 }

______unchanged_portion_omitted_

547 void
548 print_text(struct html *h, const char *word)
549 {

551 if (! (HTML_NOSPACE & h->flags)) {
552 /* Manage keeps! */
553 if (! (HTML_KEEP & h->flags)) {
554 if (HTML_PREKEEP & h->flags)
555 h->flags |= HTML_KEEP;
556 putchar(’ ’);
557 } else
558 printf(" ");
559 }

561 assert(NULL == h->metaf);
562 switch (h->metac) {
563 case (HTMLFONT_ITALIC):
564 h->metaf = print_otag(h, TAG_I, 0, NULL);
565 break;
566 case (HTMLFONT_BOLD):
567 h->metaf = print_otag(h, TAG_B, 0, NULL);
568 break;
569 case (HTMLFONT_BI):
570 h->metaf = print_otag(h, TAG_B, 0, NULL);
514 if (HTMLFONT_NONE != h->metac)
515 h->metaf = HTMLFONT_BOLD == h->metac ?
516 print_otag(h, TAG_B, 0, NULL) :
571 print_otag(h, TAG_I, 0, NULL);
572 break;
573 default:
574 break;
575 }

577 assert(word);
578 if (! print_encode(h, word, 0)) {
579 if (! (h->flags & HTML_NONOSPACE))
580 h->flags &= ~HTML_NOSPACE;
581 } else
582 h->flags |= HTML_NOSPACE;

new/usr/src/cmd/mandoc/html.c 6

584 if (h->metaf) {
585 print_tagq(h, h->metaf);
586 h->metaf = NULL;
587 }

589 h->flags &= ~HTML_IGNDELIM;
590 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/html.h 1

**
 4241 Wed Jul 30 20:55:07 2014
new/usr/src/cmd/mandoc/html.h
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: html.h,v 1.49 2013/08/08 20:07:47 schwarze Exp $ */
1 /* $Id: html.h,v 1.47 2011/10/05 21:35:17 kristaps Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17 #ifndef HTML_H
18 #define HTML_H

20 __BEGIN_DECLS

22 enum htmltag {
23 TAG_HTML,
24 TAG_HEAD,
25 TAG_BODY,
26 TAG_META,
27 TAG_TITLE,
28 TAG_DIV,
29 TAG_H1,
30 TAG_H2,
31 TAG_SPAN,
32 TAG_LINK,
33 TAG_BR,
34 TAG_A,
35 TAG_TABLE,
36 TAG_TBODY,
37 TAG_COL,
38 TAG_TR,
39 TAG_TD,
40 TAG_LI,
41 TAG_UL,
42 TAG_OL,
43 TAG_DL,
44 TAG_DT,
45 TAG_DD,
46 TAG_BLOCKQUOTE,
47 TAG_P,
48 TAG_PRE,
49 TAG_B,
50 TAG_I,
51 TAG_CODE,
52 TAG_SMALL,
53 TAG_MAX
54 };

______unchanged_portion_omitted_

74 enum htmlfont {
75 HTMLFONT_NONE = 0,

new/usr/src/cmd/mandoc/html.h 2

76 HTMLFONT_BOLD,
77 HTMLFONT_ITALIC,
78 HTMLFONT_BI,
79 HTMLFONT_MAX
80 };

______unchanged_portion_omitted_

113 struct html {
114 int flags;
115 #define HTML_NOSPACE (1 << 0) /* suppress next space */
116 #define HTML_IGNDELIM (1 << 1)
117 #define HTML_KEEP (1 << 2)
118 #define HTML_PREKEEP (1 << 3)
119 #define HTML_NONOSPACE (1 << 4) /* never add spaces */
120 #define HTML_LITERAL (1 << 5) /* literal (e.g., <PRE>) context */
121 #define HTML_SKIPCHAR (1 << 6) /* skip the next character */
122 struct tagq tags; /* stack of open tags */
123 struct rofftbl tbl; /* current table */
124 struct tag *tblt; /* current open table scope */
125 struct mchars *symtab; /* character-escapes */
126 char *base_man; /* base for manpage href */
127 char *base_includes; /* base for include href */
128 char *style; /* style-sheet URI */
129 char buf[BUFSIZ]; /* see bufcat and friends */
130 size_t buflen;
131 struct tag *metaf; /* current open font scope */
132 enum htmlfont metal; /* last used font */
133 enum htmlfont metac; /* current font mode */
134 enum htmltype type; /* output media type */
135 int oflags; /* output options */
136 #define HTML_FRAGMENT (1 << 0) /* don’t emit HTML/HEAD/BODY */
137 };

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/lib.in 1

**
 4877 Wed Jul 30 20:55:07 2014
new/usr/src/cmd/mandoc/lib.in
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2014 Garrett D’Amore <garrett@damore.org>
13 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
14 */

16 /*
17 * Note that we don’t document "legacy" libraries that have moved into
18 * libc. While there will be section 3lib man pages for them, they
19 * won’t be referenced in other man pages.
17 * TBD
20 */
21 LINE("libadm", "General Administrative Library (libadm, \\-ladm)")
22 LINE("libbsdmalloc", "BSD Memory Allocation Library (libbsdmalloc, -lbsdmallo
23 LINE("libbsm", "Security and Auditing Library (libbsm, \\lbsm)")
24 LINE("libc", "Standard C Library (libc, \\-lc)")
25 LINE("libc_db", "Threads Debugging Library (libc_db, \\-lc_db)")
26 LINE("libcfgadm", "Configuration Adminstration Library (libcfgadm, \\-lcfg
27 LINE("libcommputil", "Communication Protocol Parser Utilities Library (libpco
28 LINE("libcontract", "Contract Management Library (libcontract, \\-lcontract)
29 LINE("libcpc", "CPU Performance Counters Library (libcpc, \\-lcpc)")
30 LINE("libcurses", "Curses Library (libcurses, \\-lcurses)")
31 LINE("libdat", "Direct Access Transport Library (libdat, \\-ldat)")
32 LINE("libdevid", "Device ID Library (libdevid, \\-ldevid)")
33 LINE("libdevinfo", "Device Information Library (libdevinfo, \\-ldevinfo)")
34 LINE("libdlpi", "Data Link Provider Interface (DLPI) Library (libdlp, \\
35 LINE("libdns_sd", "DNS Service Discovery Library (libdns_sd, \\-ldns_sd)")
36 LINE("libelf", "ELF Access Library (libelf, \\-lelf)")
37 LINE("libexacct", "Extended Accounting File Access Library (libexacct, \\-
38 LINE("libfcoe", "FCoE Port Management Library (libfcoe, \\-lfcoe)")
39 LINE("libfstyp", "File System Type Identification Library (libfstyp, \\-l
40 LINE("libgen", "String Pattern Matching Library (libgen, \\-lgen)")
41 LINE("libgss", "Generic Security Services Library (libgss, \\-lgss)")
42 LINE("libiscsit", "iSCSI Management Library (libiscsit, \\-liscsit)")
43 LINE("libkstat", "Kernel Statistics Library (libkstat, \\-lkstat)")
44 LINE("libkvm", "Kernel VM Library (libkvm, \\-lkvm)")
45 LINE("libldap", "LDAP Library (libldap, \\-lldap)")
46 LINE("liblgrp", "Locality Group Library (liblgrp, -llgrp)")
47 LINE("libm", "Mathematical Library (libm, -lm)")
48 LINE("libmail", "User Mailbox Library (libmail, -lmail)")
49 LINE("libmalloc", "Memory Allocation Library (libmalloc, -lmalloc)")
50 LINE("libmd", "Message Digest Library (libmd, -lmd)")
51 LINE("libmp", "Multiple Precision Library (libmp, -lmp)")
52 LINE("libmpapi", "Common Multipath Management Library (libmpapi, -lMPAPI)
53 LINE("libnsl", "Network Services Library (libnsl, \\-lnsl)")
54 LINE("libnvpair", "Name-Value Pair Library (libnvpair, \\-lnvpair)")
55 LINE("libpam", "PAM (Pluggable Authentication Module) Library (libpam,
56 LINE("libpicl", "PICL Library (libpicl, \\-lpicl)")
57 LINE("libpicltree", "PICL Plug-In Library (libpicltree, \\-lpicltree)")

new/usr/src/cmd/mandoc/lib.in 2

58 LINE("libpkcs11", "PKCS#11 Cryptographic Framework Library (libpkcs11, \\-
59 LINE("libpool", "Pool Configuration Manipulation Library (libpool, \\-lp
60 LINE("libproc", "Process Control Library (libproc, \\-lproc)")
61 LINE("libproject", "Project Database Access Library (libproject, \\-lprojec
62 LINE("libresolv", "Resolver Library (libresolv, \\-lresolv \\-lsocket \\-l
63 LINE("librpc", "RPC Service Library (librpcsvc, \\-lrpc)")
64 LINE("librsm", "Remote Shared Memory Interface Library (librsm, \\-lrsm
65 LINE("libsasl", "Simple Authentication and Security Library (libsasl, \\
66 LINE("libscf", "Service Configuration Facility Library (libscf, \\-lscf
67 LINE("libsec", "File Access Control Library (libsec, \\-lsec)")
68 LINE("libsecdb", "Security Attributes Database Library (libsecdb, \\-lsec
69 LINE("libsip", "Session Initiation Protocol Library (libsip, \\-lsip)")
70 LINE("libslp", "Service Location Protocol Library (libslp, \\-lslp)")
71 LINE("libsocket", "Sockets Library (libsocket, \\-lsocket)")
72 LINE("libstmf", "SCSI Target Mode Framework Library (libstmf, \\-lstmf)"
73 LINE("libsysevet", "System Event Inteface Library (libsysevent, \\-lsyseven
74 LINE("libtecla", "Interactive Command Line Input Library (libtecla, \\-lt
75 LINE("libtnfctl", "TNF Probe Control Library (libtnfctl, \\-ltnfctl)")
76 LINE("libtsol", "Trusted Extensions Library (libtsol, \\-ltsol)")
77 LINE("libuuid", "UUID Library (libuuid, \\-luuid)")
78 LINE("libvolmgt", "Volume Management Library (libvolmgt, \\-lvolmgt)")
79 LINE("libxcurses", "X/Open Curses Library (libxcurses, \\-lxcurses)")
80 LINE("libxnet", "X/Open Networking Library (libxnet, \\-lxnet)")

new/usr/src/cmd/mandoc/libman.h 1

**
 3112 Wed Jul 30 20:55:07 2014
new/usr/src/cmd/mandoc/libman.h
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: libman.h,v 1.56 2012/11/17 00:26:33 schwarze Exp $ */
1 /* $Id: libman.h,v 1.55 2011/11/07 01:24:40 schwarze Exp $ */
2 /*
3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17 #ifndef LIBMAN_H
18 #define LIBMAN_H

20 enum man_next {
21 MAN_NEXT_SIBLING = 0,
22 MAN_NEXT_CHILD
23 };

______unchanged_portion_omitted_

42 #define MACRO_PROT_ARGS struct man *man, \
42 #define MACRO_PROT_ARGS struct man *m, \
43 enum mant tok, \
44 int line, \
45 int ppos, \
46 int *pos, \
47 char *buf

49 struct man_macro {
50 int (*fp)(MACRO_PROT_ARGS);
51 int flags;
52 #define MAN_SCOPED (1 << 0)
53 #define MAN_EXPLICIT (1 << 1) /* See blk_imp(). */
54 #define MAN_FSCOPED (1 << 2) /* See blk_imp(). */
55 #define MAN_NSCOPED (1 << 3) /* See in_line_eoln(). */
56 #define MAN_NOCLOSE (1 << 4) /* See blk_exp(). */
57 #define MAN_BSCOPE (1 << 5) /* Break BLINE scope. */
58 };

60 extern const struct man_macro *const man_macros;

62 __BEGIN_DECLS

64 #define man_pmsg(man, l, p, t) \
65 mandoc_msg((t), (man)->parse, (l), (p), NULL)
66 #define man_nmsg(man, n, t) \
67 mandoc_msg((t), (man)->parse, (n)->line, (n)->pos, NULL)
64 #define man_pmsg(m, l, p, t) \
65 mandoc_msg((t), (m)->parse, (l), (p), NULL)
66 #define man_nmsg(m, n, t) \
67 mandoc_msg((t), (m)->parse, (n)->line, (n)->pos, NULL)
68 int man_word_alloc(struct man *, int, int, const char *);
69 int man_block_alloc(struct man *, int, int, enum mant);

new/usr/src/cmd/mandoc/libman.h 2

70 int man_head_alloc(struct man *, int, int, enum mant);
71 int man_tail_alloc(struct man *, int, int, enum mant);
72 int man_body_alloc(struct man *, int, int, enum mant);
73 int man_elem_alloc(struct man *, int, int, enum mant);
74 void man_node_delete(struct man *, struct man_node *);
75 void man_hash_init(void);
76 enum mant man_hash_find(const char *);
77 int man_macroend(struct man *);
78 int man_valid_post(struct man *);
79 int man_valid_pre(struct man *, struct man_node *);
80 int man_unscope(struct man *,
81 const struct man_node *, enum mandocerr);

83 __END_DECLS

85 #endif /*!LIBMAN_H*/

new/usr/src/cmd/mandoc/libmandoc.h 1

**
 3355 Wed Jul 30 20:55:07 2014
new/usr/src/cmd/mandoc/libmandoc.h
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: libmandoc.h,v 1.35 2013/12/15 21:23:52 schwarze Exp $ */
1 /* $Id: libmandoc.h,v 1.29 2011/12/02 01:37:14 schwarze Exp $ */
2 /*
3 * Copyright (c) 2009, 2010, 2011, 2012 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2013 Ingo Schwarze <schwarze@openbsd.org>
3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifndef LIBMANDOC_H
19 #define LIBMANDOC_H

21 enum rofferr {
22 ROFF_CONT, /* continue processing line */
23 ROFF_RERUN, /* re-run roff interpreter with offset */
24 ROFF_APPEND, /* re-run main parser, appending next line */
25 ROFF_REPARSE, /* re-run main parser on the result */
26 ROFF_SO, /* include another file */
27 ROFF_IGN, /* ignore current line */
28 ROFF_TBL, /* a table row was successfully parsed */
29 ROFF_EQN, /* an equation was successfully parsed */
30 ROFF_ERR /* badness: puke and stop */
31 };

32 enum regs {
33 REG_nS = 0, /* nS register */
34 REG__MAX
35 };

33 __BEGIN_DECLS

35 struct roff;
36 struct mdoc;
37 struct man;

39 void mandoc_msg(enum mandocerr, struct mparse *,
40 int, int, const char *);
41 void mandoc_vmsg(enum mandocerr, struct mparse *,
42 int, int, const char *, ...);
43 char *mandoc_getarg(struct mparse *, char **, int, int *);
44 char *mandoc_normdate(struct mparse *, char *, int, int);
45 int mandoc_eos(const char *, size_t, int);
50 int mandoc_getcontrol(const char *, int *);
46 int mandoc_strntoi(const char *, size_t, int);
47 const char *mandoc_a2msec(const char*);

49 void mdoc_free(struct mdoc *);
50 struct mdoc *mdoc_alloc(struct roff *, struct mparse *, char *);
55 struct mdoc *mdoc_alloc(struct roff *, struct mparse *);

new/usr/src/cmd/mandoc/libmandoc.h 2

51 void mdoc_reset(struct mdoc *);
52 int mdoc_parseln(struct mdoc *, int, char *, int);
53 int mdoc_endparse(struct mdoc *);
54 int mdoc_addspan(struct mdoc *, const struct tbl_span *);
55 int mdoc_addeqn(struct mdoc *, const struct eqn *);

57 void man_free(struct man *);
58 struct man *man_alloc(struct roff *, struct mparse *);
59 void man_reset(struct man *);
60 int man_parseln(struct man *, int, char *, int);
61 int man_endparse(struct man *);
62 int man_addspan(struct man *, const struct tbl_span *);
63 int man_addeqn(struct man *, const struct eqn *);

65 void roff_free(struct roff *);
66 struct roff *roff_alloc(enum mparset, struct mparse *);
71 struct roff *roff_alloc(struct mparse *);
67 void roff_reset(struct roff *);
68 enum rofferr roff_parseln(struct roff *, int,
69 char **, size_t *, int, int *);
70 void roff_endparse(struct roff *);
71 void roff_setreg(struct roff *, const char *, int, char sign);
72 int roff_getreg(const struct roff *, const char *);
76 int roff_regisset(const struct roff *, enum regs);
77 unsigned int roff_regget(const struct roff *, enum regs);
78 void roff_regunset(struct roff *, enum regs);
73 char *roff_strdup(const struct roff *, const char *);
74 int roff_getcontrol(const struct roff *,
75 const char *, int *);
76 #if 0
77 char roff_eqndelim(const struct roff *);
78 void roff_openeqn(struct roff *, const char *,
79 int, int, const char *);
80 int roff_closeeqn(struct roff *);
81 #endif

83 const struct tbl_span *roff_span(const struct roff *);
84 const struct eqn *roff_eqn(const struct roff *);

86 __END_DECLS

88 #endif /*!LIBMANDOC_H*/

new/usr/src/cmd/mandoc/libmdoc.h 1

**
 5162 Wed Jul 30 20:55:07 2014
new/usr/src/cmd/mandoc/libmdoc.h
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: libmdoc.h,v 1.82 2013/10/21 23:47:58 schwarze Exp $ */
1 /* $Id: libmdoc.h,v 1.78 2011/12/02 01:37:14 schwarze Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2013 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifndef LIBMDOC_H
19 #define LIBMDOC_H

21 enum mdoc_next {
22 MDOC_NEXT_SIBLING = 0,
23 MDOC_NEXT_CHILD
24 };

26 struct mdoc {
27 struct mparse *parse; /* parse pointer */
28 char *defos; /* default argument for .Os */
29 int flags; /* parse flags */
30 #define MDOC_HALT (1 << 0) /* error in parse: halt */
31 #define MDOC_LITERAL (1 << 1) /* in a literal scope */
32 #define MDOC_PBODY (1 << 2) /* in the document body */
33 #define MDOC_NEWLINE (1 << 3) /* first macro/text in a line */
34 #define MDOC_PHRASELIT (1 << 4) /* literal within a partila phrase */
35 #define MDOC_PPHRASE (1 << 5) /* within a partial phrase */
36 #define MDOC_FREECOL (1 << 6) /* ‘It’ invocation should close */
37 #define MDOC_SYNOPSIS (1 << 7) /* SYNOPSIS-style formatting */
38 #define MDOC_KEEP (1 << 8) /* in a word keep */
39 #define MDOC_SMOFF (1 << 9) /* spacing is off */
40 enum mdoc_next next; /* where to put the next node */
41 struct mdoc_node *last; /* the last node parsed */
42 struct mdoc_node *first; /* the first node parsed */
43 struct mdoc_meta meta; /* document meta-data */
44 enum mdoc_sec lastnamed;
45 enum mdoc_sec lastsec;
46 struct roff *roff;
47 };

49 #define MACRO_PROT_ARGS struct mdoc *mdoc, \
45 #define MACRO_PROT_ARGS struct mdoc *m, \
50 enum mdoct tok, \
51 int line, \
52 int ppos, \
53 int *pos, \
54 char *buf

56 struct mdoc_macro {
57 int (*fp)(MACRO_PROT_ARGS);

new/usr/src/cmd/mandoc/libmdoc.h 2

58 int flags;
59 #define MDOC_CALLABLE (1 << 0)
60 #define MDOC_PARSED (1 << 1)
61 #define MDOC_EXPLICIT (1 << 2)
62 #define MDOC_PROLOGUE (1 << 3)
63 #define MDOC_IGNDELIM (1 << 4)
64 #define MDOC_JOIN (1 << 5)
60 /* Reserved words in arguments treated as text. */
65 };

______unchanged_portion_omitted_

102 extern const struct mdoc_macro *const mdoc_macros;

104 __BEGIN_DECLS

106 #define mdoc_pmsg(mdoc, l, p, t) \
107 mandoc_msg((t), (mdoc)->parse, (l), (p), NULL)
108 #define mdoc_nmsg(mdoc, n, t) \
109 mandoc_msg((t), (mdoc)->parse, (n)->line, (n)->pos, NULL)
102 #define mdoc_pmsg(m, l, p, t) \
103 mandoc_msg((t), (m)->parse, (l), (p), NULL)
104 #define mdoc_nmsg(m, n, t) \
105 mandoc_msg((t), (m)->parse, (n)->line, (n)->pos, NULL)
110 int mdoc_macro(MACRO_PROT_ARGS);
111 int mdoc_word_alloc(struct mdoc *,
112 int, int, const char *);
113 void mdoc_word_append(struct mdoc *, const char *);
114 int mdoc_elem_alloc(struct mdoc *, int, int,
115 enum mdoct, struct mdoc_arg *);
116 int mdoc_block_alloc(struct mdoc *, int, int,
117 enum mdoct, struct mdoc_arg *);
118 int mdoc_head_alloc(struct mdoc *, int, int, enum mdoct);
119 int mdoc_tail_alloc(struct mdoc *, int, int, enum mdoct);
120 int mdoc_body_alloc(struct mdoc *, int, int, enum mdoct);
121 int mdoc_endbody_alloc(struct mdoc *, int, int, enum mdoct,
122 struct mdoc_node *, enum mdoc_endbody);
116 int mdoc_endbody_alloc(struct mdoc *m, int line, int pos,
117 enum mdoct tok, struct mdoc_node *body,
118 enum mdoc_endbody end);
123 void mdoc_node_delete(struct mdoc *, struct mdoc_node *);
124 int mdoc_node_relink(struct mdoc *, struct mdoc_node *);
125 void mdoc_hash_init(void);
126 enum mdoct mdoc_hash_find(const char *);
127 const char *mdoc_a2att(const char *);
128 const char *mdoc_a2lib(const char *);
129 const char *mdoc_a2st(const char *);
130 const char *mdoc_a2arch(const char *);
131 const char *mdoc_a2vol(const char *);
132 int mdoc_valid_pre(struct mdoc *, struct mdoc_node *);
133 int mdoc_valid_post(struct mdoc *);
134 enum margverr mdoc_argv(struct mdoc *, int, enum mdoct,
135 struct mdoc_arg **, int *, char *);
136 void mdoc_argv_free(struct mdoc_arg *);
137 enum margserr mdoc_args(struct mdoc *, int,
138 int *, char *, enum mdoct, char **);
139 enum margserr mdoc_zargs(struct mdoc *, int,
140 int *, char *, char **);
141 int mdoc_macroend(struct mdoc *);
142 enum mdelim mdoc_isdelim(const char *);

144 __END_DECLS

146 #endif /*!LIBMDOC_H*/

new/usr/src/cmd/mandoc/libroff.h 1

**
 2647 Wed Jul 30 20:55:07 2014
new/usr/src/cmd/mandoc/libroff.h
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: libroff.h,v 1.28 2013/05/31 21:37:17 schwarze Exp $ */
1 /* $Id: libroff.h,v 1.27 2011/07/25 15:37:00 kristaps Exp $ */
2 /*
3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17 #ifndef LIBROFF_H
18 #define LIBROFF_H

20 __BEGIN_DECLS

22 enum tbl_part {
23 TBL_PART_OPTS, /* in options (first line) */
24 TBL_PART_LAYOUT, /* describing layout */
25 TBL_PART_DATA, /* creating data rows */
26 TBL_PART_CDATA /* continue previous row */
27 };

29 struct tbl_node {
30 struct mparse *parse; /* parse point */
31 int pos; /* invocation column */
32 int line; /* invocation line */
33 enum tbl_part part;
34 struct tbl_opts opts;
34 struct tbl opts;
35 struct tbl_row *first_row;
36 struct tbl_row *last_row;
37 struct tbl_span *first_span;
38 struct tbl_span *current_span;
39 struct tbl_span *last_span;
40 struct tbl_head *first_head;
41 struct tbl_head *last_head;
42 struct tbl_node *next;
43 };

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/main.c 1

**
 9264 Wed Jul 30 20:55:07 2014
new/usr/src/cmd/mandoc/main.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: main.c,v 1.167 2012/11/19 17:22:26 schwarze Exp $ */
1 /* $Id: main.c,v 1.165 2011/10/06 22:29:12 kristaps Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2010, 2011, 2012 Ingo Schwarze <schwarze@openbsd.org>
4 * Copyright (c) 2010, 2011 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <assert.h>
23 #include <stdio.h>
24 #include <stdint.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <unistd.h>

29 #include "mandoc.h"
30 #include "main.h"
31 #include "mdoc.h"
32 #include "man.h"

34 #if !defined(__GNUC__) || (__GNUC__ < 2)
35 # if !defined(lint)
36 # define __attribute__(x)
37 # endif
38 #endif /* !defined(__GNUC__) || (__GNUC__ < 2) */

40 typedef void (*out_mdoc)(void *, const struct mdoc *);
41 typedef void (*out_man)(void *, const struct man *);
42 typedef void (*out_free)(void *);

44 enum outt {
45 OUTT_ASCII = 0, /* -Tascii */
46 OUTT_LOCALE, /* -Tlocale */
47 OUTT_UTF8, /* -Tutf8 */
48 OUTT_TREE, /* -Ttree */
49 OUTT_MAN, /* -Tman */
50 OUTT_HTML, /* -Thtml */
51 OUTT_XHTML, /* -Txhtml */
52 OUTT_LINT, /* -Tlint */
53 OUTT_PS, /* -Tps */
54 OUTT_PDF /* -Tpdf */
55 };

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/main.c 2

69 static int moptions(enum mparset *, char *);
70 static void mmsg(enum mandocerr, enum mandoclevel,
71 const char *, int, int, const char *);
72 static void parse(struct curparse *, int,
73 const char *, enum mandoclevel *);
74 static int toptions(struct curparse *, char *);
75 static void usage(void) __attribute__((noreturn));
76 static void version(void) __attribute__((noreturn));
77 static int woptions(struct curparse *, char *);

79 static const char *progname;

81 int
82 main(int argc, char *argv[])
83 {
84 int c;
85 struct curparse curp;
86 enum mparset type;
87 enum mandoclevel rc;
88 char *defos;

90 progname = strrchr(argv[0], ’/’);
91 if (progname == NULL)
92 progname = argv[0];
93 else
94 ++progname;

96 memset(&curp, 0, sizeof(struct curparse));

98 type = MPARSE_AUTO;
99 curp.outtype = OUTT_ASCII;
100 curp.wlevel = MANDOCLEVEL_FATAL;
101 defos = NULL;

103 /* LINTED */
104 while (-1 != (c = getopt(argc, argv, "I:m:O:T:VW:")))
102 while (-1 != (c = getopt(argc, argv, "m:O:T:VW:")))
105 switch (c) {
106 case (’I’):
107 if (strncmp(optarg, "os=", 3)) {
108 fprintf(stderr, "-I%s: Bad argument\n",
109 optarg);
110 return((int)MANDOCLEVEL_BADARG);
111 }
112 if (defos) {
113 fprintf(stderr, "-I%s: Duplicate argument\n",
114 optarg);
115 return((int)MANDOCLEVEL_BADARG);
116 }
117 defos = mandoc_strdup(optarg + 3);
118 break;
119 case (’m’):
120 if (! moptions(&type, optarg))
121 return((int)MANDOCLEVEL_BADARG);
122 break;
123 case (’O’):
124 (void)strlcat(curp.outopts, optarg, BUFSIZ);
125 (void)strlcat(curp.outopts, ",", BUFSIZ);
126 break;
127 case (’T’):
128 if (! toptions(&curp, optarg))
129 return((int)MANDOCLEVEL_BADARG);
130 break;
131 case (’W’):
132 if (! woptions(&curp, optarg))
133 return((int)MANDOCLEVEL_BADARG);

new/usr/src/cmd/mandoc/main.c 3

134 break;
135 case (’V’):
136 version();
137 /* NOTREACHED */
138 default:
139 usage();
140 /* NOTREACHED */
141 }

143 curp.mp = mparse_alloc(type, curp.wlevel, mmsg, &curp, defos);
128 curp.mp = mparse_alloc(type, curp.wlevel, mmsg, &curp);

145 /*
146 * Conditionally start up the lookaside buffer before parsing.
147 */
148 if (OUTT_MAN == curp.outtype)
149 mparse_keep(curp.mp);

151 argc -= optind;
152 argv += optind;

154 rc = MANDOCLEVEL_OK;

156 if (NULL == *argv)
157 parse(&curp, STDIN_FILENO, "<stdin>", &rc);

159 while (*argv) {
160 parse(&curp, -1, *argv, &rc);
161 if (MANDOCLEVEL_OK != rc && curp.wstop)
162 break;
163 ++argv;
164 }

166 if (curp.outfree)
167 (*curp.outfree)(curp.outdata);
168 if (curp.mp)
169 mparse_free(curp.mp);
170 free(defos);

172 return((int)rc);
173 }

______unchanged_portion_omitted_

183 static void
184 usage(void)
185 {

187 fprintf(stderr, "usage: %s "
188 "[-V] "
189 "[-Ios=name] "
173 "[-foption] "
190 "[-mformat] "
191 "[-Ooption] "
192 "[-Toutput] "
193 "[-Wlevel]\n"
194 "\t [file ...]\n",
177 "[-Wlevel] "
178 "[file...]\n",
195 progname);

197 exit((int)MANDOCLEVEL_BADARG);
198 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/man.c 1

**
 14223 Wed Jul 30 20:55:07 2014
new/usr/src/cmd/mandoc/man.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: man.c,v 1.121 2013/11/10 22:54:40 schwarze Exp $ */
1 /* $Id: man.c,v 1.115 2012/01/03 15:16:24 kristaps Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17 #ifdef HAVE_CONFIG_H
18 #include "config.h"
19 #endif

21 #include <sys/types.h>

23 #include <assert.h>
24 #include <stdarg.h>
25 #include <stdlib.h>
26 #include <stdio.h>
27 #include <string.h>

29 #include "man.h"
30 #include "mandoc.h"
31 #include "libman.h"
32 #include "libmandoc.h"

34 const char *const __man_macronames[MAN_MAX] = {
35 "br", "TH", "SH", "SS",
36 "TP", "LP", "PP", "P",
37 "IP", "HP", "SM", "SB",
38 "BI", "IB", "BR", "RB",
39 "R", "B", "I", "IR",
40 "RI", "na", "sp", "nf",
41 "fi", "RE", "RS", "DT",
42 "UC", "PD", "AT", "in",
43 "ft", "OP", "EX", "EE",
44 "UR", "UE"
43 "ft", "OP"
45 };

47 const char * const *man_macronames = __man_macronames;

49 static struct man_node *man_node_alloc(struct man *, int, int,
50 enum man_type, enum mant);
51 static int man_node_append(struct man *,
52 struct man_node *);
53 static void man_node_free(struct man_node *);
54 static void man_node_unlink(struct man *,
55 struct man_node *);
56 static int man_ptext(struct man *, int, char *, int);
57 static int man_pmacro(struct man *, int, char *, int);

new/usr/src/cmd/mandoc/man.c 2

58 static void man_free1(struct man *);
59 static void man_alloc1(struct man *);
60 static int man_descope(struct man *, int, int);

63 const struct man_node *
64 man_node(const struct man *man)
63 man_node(const struct man *m)
65 {

67 assert(! (MAN_HALT & man->flags));
68 return(man->first);
66 assert(! (MAN_HALT & m->flags));
67 return(m->first);
69 }

72 const struct man_meta *
73 man_meta(const struct man *man)
72 man_meta(const struct man *m)
74 {

76 assert(! (MAN_HALT & man->flags));
77 return(&man->meta);
75 assert(! (MAN_HALT & m->flags));
76 return(&m->meta);
78 }

______unchanged_portion_omitted_

115 int
116 man_endparse(struct man *man)
115 man_endparse(struct man *m)
117 {

119 assert(! (MAN_HALT & man->flags));
120 if (man_macroend(man))
118 assert(! (MAN_HALT & m->flags));
119 if (man_macroend(m))
121 return(1);
122 man->flags |= MAN_HALT;
121 m->flags |= MAN_HALT;
123 return(0);
124 }

127 int
128 man_parseln(struct man *man, int ln, char *buf, int offs)
127 man_parseln(struct man *m, int ln, char *buf, int offs)
129 {

131 man->flags |= MAN_NEWLINE;
130 m->flags |= MAN_NEWLINE;

133 assert(! (MAN_HALT & man->flags));
132 assert(! (MAN_HALT & m->flags));

135 return (roff_getcontrol(man->roff, buf, &offs) ?
136 man_pmacro(man, ln, buf, offs) :
137 man_ptext(man, ln, buf, offs));
134 return (mandoc_getcontrol(buf, &offs) ?
135 man_pmacro(m, ln, buf, offs) :
136 man_ptext(m, ln, buf, offs));
138 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/man.c 3

160 static void
161 man_alloc1(struct man *man)
160 man_alloc1(struct man *m)
162 {

164 memset(&man->meta, 0, sizeof(struct man_meta));
165 man->flags = 0;
166 man->last = mandoc_calloc(1, sizeof(struct man_node));
167 man->first = man->last;
168 man->last->type = MAN_ROOT;
169 man->last->tok = MAN_MAX;
170 man->next = MAN_NEXT_CHILD;
163 memset(&m->meta, 0, sizeof(struct man_meta));
164 m->flags = 0;
165 m->last = mandoc_calloc(1, sizeof(struct man_node));
166 m->first = m->last;
167 m->last->type = MAN_ROOT;
168 m->last->tok = MAN_MAX;
169 m->next = MAN_NEXT_CHILD;
171 }

______unchanged_portion_omitted_

237 static struct man_node *
238 man_node_alloc(struct man *man, int line, int pos,
237 man_node_alloc(struct man *m, int line, int pos,
239 enum man_type type, enum mant tok)
240 {
241 struct man_node *p;

243 p = mandoc_calloc(1, sizeof(struct man_node));
244 p->line = line;
245 p->pos = pos;
246 p->type = type;
247 p->tok = tok;

249 if (MAN_NEWLINE & man->flags)
248 if (MAN_NEWLINE & m->flags)
250 p->flags |= MAN_LINE;
251 man->flags &= ~MAN_NEWLINE;
250 m->flags &= ~MAN_NEWLINE;
252 return(p);
253 }

256 int
257 man_elem_alloc(struct man *man, int line, int pos, enum mant tok)
256 man_elem_alloc(struct man *m, int line, int pos, enum mant tok)
258 {
259 struct man_node *p;

261 p = man_node_alloc(man, line, pos, MAN_ELEM, tok);
262 if (! man_node_append(man, p))
260 p = man_node_alloc(m, line, pos, MAN_ELEM, tok);
261 if (! man_node_append(m, p))
263 return(0);
264 man->next = MAN_NEXT_CHILD;
263 m->next = MAN_NEXT_CHILD;
265 return(1);
266 }

269 int
270 man_tail_alloc(struct man *man, int line, int pos, enum mant tok)
269 man_tail_alloc(struct man *m, int line, int pos, enum mant tok)

new/usr/src/cmd/mandoc/man.c 4

271 {
272 struct man_node *p;

274 p = man_node_alloc(man, line, pos, MAN_TAIL, tok);
275 if (! man_node_append(man, p))
273 p = man_node_alloc(m, line, pos, MAN_TAIL, tok);
274 if (! man_node_append(m, p))
276 return(0);
277 man->next = MAN_NEXT_CHILD;
276 m->next = MAN_NEXT_CHILD;
278 return(1);
279 }

282 int
283 man_head_alloc(struct man *man, int line, int pos, enum mant tok)
282 man_head_alloc(struct man *m, int line, int pos, enum mant tok)
284 {
285 struct man_node *p;

287 p = man_node_alloc(man, line, pos, MAN_HEAD, tok);
288 if (! man_node_append(man, p))
286 p = man_node_alloc(m, line, pos, MAN_HEAD, tok);
287 if (! man_node_append(m, p))
289 return(0);
290 man->next = MAN_NEXT_CHILD;
289 m->next = MAN_NEXT_CHILD;
291 return(1);
292 }

295 int
296 man_body_alloc(struct man *man, int line, int pos, enum mant tok)
295 man_body_alloc(struct man *m, int line, int pos, enum mant tok)
297 {
298 struct man_node *p;

300 p = man_node_alloc(man, line, pos, MAN_BODY, tok);
301 if (! man_node_append(man, p))
299 p = man_node_alloc(m, line, pos, MAN_BODY, tok);
300 if (! man_node_append(m, p))
302 return(0);
303 man->next = MAN_NEXT_CHILD;
302 m->next = MAN_NEXT_CHILD;
304 return(1);
305 }

308 int
309 man_block_alloc(struct man *man, int line, int pos, enum mant tok)
308 man_block_alloc(struct man *m, int line, int pos, enum mant tok)
310 {
311 struct man_node *p;

313 p = man_node_alloc(man, line, pos, MAN_BLOCK, tok);
314 if (! man_node_append(man, p))
312 p = man_node_alloc(m, line, pos, MAN_BLOCK, tok);
313 if (! man_node_append(m, p))
315 return(0);
316 man->next = MAN_NEXT_CHILD;
315 m->next = MAN_NEXT_CHILD;
317 return(1);
318 }

320 int
321 man_word_alloc(struct man *man, int line, int pos, const char *word)

new/usr/src/cmd/mandoc/man.c 5

320 man_word_alloc(struct man *m, int line, int pos, const char *word)
322 {
323 struct man_node *n;

325 n = man_node_alloc(man, line, pos, MAN_TEXT, MAN_MAX);
326 n->string = roff_strdup(man->roff, word);
324 n = man_node_alloc(m, line, pos, MAN_TEXT, MAN_MAX);
325 n->string = roff_strdup(m->roff, word);

328 if (! man_node_append(man, n))
327 if (! man_node_append(m, n))
329 return(0);

331 man->next = MAN_NEXT_SIBLING;
330 m->next = MAN_NEXT_SIBLING;
332 return(1);
333 }

______unchanged_portion_omitted_

350 void
351 man_node_delete(struct man *man, struct man_node *p)
350 man_node_delete(struct man *m, struct man_node *p)
352 {

354 while (p->child)
355 man_node_delete(man, p->child);
354 man_node_delete(m, p->child);

357 man_node_unlink(man, p);
356 man_node_unlink(m, p);
358 man_node_free(p);
359 }

361 int
362 man_addeqn(struct man *man, const struct eqn *ep)
361 man_addeqn(struct man *m, const struct eqn *ep)
363 {
364 struct man_node *n;

366 assert(! (MAN_HALT & man->flags));
365 assert(! (MAN_HALT & m->flags));

368 n = man_node_alloc(man, ep->ln, ep->pos, MAN_EQN, MAN_MAX);
367 n = man_node_alloc(m, ep->ln, ep->pos, MAN_EQN, MAN_MAX);
369 n->eqn = ep;

371 if (! man_node_append(man, n))
370 if (! man_node_append(m, n))
372 return(0);

374 man->next = MAN_NEXT_SIBLING;
375 return(man_descope(man, ep->ln, ep->pos));
373 m->next = MAN_NEXT_SIBLING;
374 return(man_descope(m, ep->ln, ep->pos));
376 }

378 int
379 man_addspan(struct man *man, const struct tbl_span *sp)
378 man_addspan(struct man *m, const struct tbl_span *sp)
380 {
381 struct man_node *n;

383 assert(! (MAN_HALT & man->flags));
382 assert(! (MAN_HALT & m->flags));

new/usr/src/cmd/mandoc/man.c 6

385 n = man_node_alloc(man, sp->line, 0, MAN_TBL, MAN_MAX);
384 n = man_node_alloc(m, sp->line, 0, MAN_TBL, MAN_MAX);
386 n->span = sp;

388 if (! man_node_append(man, n))
387 if (! man_node_append(m, n))
389 return(0);

391 man->next = MAN_NEXT_SIBLING;
392 return(man_descope(man, sp->line, 0));
390 m->next = MAN_NEXT_SIBLING;
391 return(man_descope(m, sp->line, 0));
393 }

395 static int
396 man_descope(struct man *man, int line, int offs)
395 man_descope(struct man *m, int line, int offs)
397 {
398 /*
399 * Co-ordinate what happens with having a next-line scope open:
400 * first close out the element scope (if applicable), then close
401 * out the block scope (also if applicable).
402 */

404 if (MAN_ELINE & man->flags) {
405 man->flags &= ~MAN_ELINE;
406 if (! man_unscope(man, man->last->parent, MANDOCERR_MAX))
403 if (MAN_ELINE & m->flags) {
404 m->flags &= ~MAN_ELINE;
405 if (! man_unscope(m, m->last->parent, MANDOCERR_MAX))
407 return(0);
408 }

410 if (! (MAN_BLINE & man->flags))
409 if (! (MAN_BLINE & m->flags))
411 return(1);
412 man->flags &= ~MAN_BLINE;
411 m->flags &= ~MAN_BLINE;

414 if (! man_unscope(man, man->last->parent, MANDOCERR_MAX))
413 if (! man_unscope(m, m->last->parent, MANDOCERR_MAX))
415 return(0);
416 return(man_body_alloc(man, line, offs, man->last->tok));
415 return(man_body_alloc(m, line, offs, m->last->tok));
417 }

419 static int
420 man_ptext(struct man *man, int line, char *buf, int offs)
419 man_ptext(struct man *m, int line, char *buf, int offs)
421 {
422 int i;

424 /* Literal free-form text whitespace is preserved. */

426 if (MAN_LITERAL & man->flags) {
427 if (! man_word_alloc(man, line, offs, buf + offs))
425 if (MAN_LITERAL & m->flags) {
426 if (! man_word_alloc(m, line, offs, buf + offs))
428 return(0);
429 return(man_descope(man, line, offs));
428 return(man_descope(m, line, offs));
430 }

431 /* Pump blank lines directly into the backend. */

432 for (i = offs; ’ ’ == buf[i]; i++)

new/usr/src/cmd/mandoc/man.c 7

433 /* Skip leading whitespace. */ ;

435 /*
436 * Blank lines are ignored right after headings
437 * but add a single vertical space elsewhere.
438 */

440 if (’\0’ == buf[i]) {
441 /* Allocate a blank entry. */
442 if (MAN_SH != man->last->tok &&
443 MAN_SS != man->last->tok) {
444 if (! man_elem_alloc(man, line, offs, MAN_sp))
438 if (! man_word_alloc(m, line, offs, ""))
445 return(0);
446 man->next = MAN_NEXT_SIBLING;
440 return(man_descope(m, line, offs));
447 }
448 return(1);
449 }

451 /*
452 * Warn if the last un-escaped character is whitespace. Then
453 * strip away the remaining spaces (tabs stay!).
454 */

456 i = (int)strlen(buf);
457 assert(i);

459 if (’ ’ == buf[i - 1] || ’\t’ == buf[i - 1]) {
460 if (i > 1 && ’\\’ != buf[i - 2])
461 man_pmsg(man, line, i - 1, MANDOCERR_EOLNSPACE);
453 man_pmsg(m, line, i - 1, MANDOCERR_EOLNSPACE);

463 for (--i; i && ’ ’ == buf[i]; i--)
464 /* Spin back to non-space. */ ;

466 /* Jump ahead of escaped whitespace. */
467 i += ’\\’ == buf[i] ? 2 : 1;

469 buf[i] = ’\0’;
470 }

472 if (! man_word_alloc(man, line, offs, buf + offs))
464 if (! man_word_alloc(m, line, offs, buf + offs))
473 return(0);

475 /*
476 * End-of-sentence check. If the last character is an unescaped
477 * EOS character, then flag the node as being the end of a
478 * sentence. The front-end will know how to interpret this.
479 */

481 assert(i);
482 if (mandoc_eos(buf, (size_t)i, 0))
483 man->last->flags |= MAN_EOS;
475 m->last->flags |= MAN_EOS;

485 return(man_descope(man, line, offs));
477 return(man_descope(m, line, offs));
486 }

488 static int
489 man_pmacro(struct man *man, int ln, char *buf, int offs)
481 man_pmacro(struct man *m, int ln, char *buf, int offs)
490 {
491 int i, ppos;

new/usr/src/cmd/mandoc/man.c 8

492 enum mant tok;
493 char mac[5];
494 struct man_node *n;

496 if (’"’ == buf[offs]) {
497 man_pmsg(man, ln, offs, MANDOCERR_BADCOMMENT);
489 man_pmsg(m, ln, offs, MANDOCERR_BADCOMMENT);
498 return(1);
499 } else if (’\0’ == buf[offs])
500 return(1);

502 ppos = offs;

504 /*
505 * Copy the first word into a nil-terminated buffer.
506 * Stop copying when a tab, space, or eoln is encountered.
507 */

509 i = 0;
510 while (i < 4 && ’\0’ != buf[offs] &&
511 ’ ’ != buf[offs] && ’\t’ != buf[offs])
512 mac[i++] = buf[offs++];

514 mac[i] = ’\0’;

516 tok = (i > 0 && i < 4) ? man_hash_find(mac) : MAN_MAX;

518 if (MAN_MAX == tok) {
519 mandoc_vmsg(MANDOCERR_MACRO, man->parse, ln,
511 mandoc_vmsg(MANDOCERR_MACRO, m->parse, ln,
520 ppos, "%s", buf + ppos - 1);
521 return(1);
522 }

524 /* The macro is sane. Jump to the next word. */

526 while (buf[offs] && ’ ’ == buf[offs])
527 offs++;

529 /*
530 * Trailing whitespace. Note that tabs are allowed to be passed
531 * into the parser as "text", so we only warn about spaces here.
532 */

534 if (’\0’ == buf[offs] && ’ ’ == buf[offs - 1])
535 man_pmsg(man, ln, offs - 1, MANDOCERR_EOLNSPACE);
527 man_pmsg(m, ln, offs - 1, MANDOCERR_EOLNSPACE);

537 /*
538 * Remove prior ELINE macro, as it’s being clobbered by a new
539 * macro. Note that NSCOPED macros do not close out ELINE
540 * macros---they don’t print text---so we let those slip by.
541 */

543 if (! (MAN_NSCOPED & man_macros[tok].flags) &&
544 man->flags & MAN_ELINE) {
545 n = man->last;
536 m->flags & MAN_ELINE) {
537 n = m->last;
546 assert(MAN_TEXT != n->type);

548 /* Remove repeated NSCOPED macros causing ELINE. */

550 if (MAN_NSCOPED & man_macros[n->tok].flags)
551 n = n->parent;

new/usr/src/cmd/mandoc/man.c 9

553 mandoc_vmsg(MANDOCERR_LINESCOPE, man->parse, n->line,
545 mandoc_vmsg(MANDOCERR_LINESCOPE, m->parse, n->line,
554 n->pos, "%s breaks %s", man_macronames[tok],
555 man_macronames[n->tok]);

557 man_node_delete(man, n);
558 man->flags &= ~MAN_ELINE;
549 man_node_delete(m, n);
550 m->flags &= ~MAN_ELINE;
559 }

561 /*
562 * Remove prior BLINE macro that is being clobbered.
563 */
564 if ((man->flags & MAN_BLINE) &&
556 if ((m->flags & MAN_BLINE) &&
565 (MAN_BSCOPE & man_macros[tok].flags)) {
566 n = man->last;
558 n = m->last;

568 /* Might be a text node like 8 in
569 * .TP 8
570 * .SH foo
571 */
572 if (MAN_TEXT == n->type)
573 n = n->parent;

575 /* Remove element that didn’t end BLINE, if any. */
576 if (! (MAN_BSCOPE & man_macros[n->tok].flags))
577 n = n->parent;

579 assert(MAN_HEAD == n->type);
580 n = n->parent;
581 assert(MAN_BLOCK == n->type);
582 assert(MAN_SCOPED & man_macros[n->tok].flags);

584 mandoc_vmsg(MANDOCERR_LINESCOPE, man->parse, n->line,
576 mandoc_vmsg(MANDOCERR_LINESCOPE, m->parse, n->line,
585 n->pos, "%s breaks %s", man_macronames[tok],
586 man_macronames[n->tok]);

588 man_node_delete(man, n);
589 man->flags &= ~MAN_BLINE;
580 man_node_delete(m, n);
581 m->flags &= ~MAN_BLINE;
590 }

592 /*
593 * Save the fact that we’re in the next-line for a block. In
594 * this way, embedded roff instructions can "remember" state
595 * when they exit.
596 */

598 if (MAN_BLINE & man->flags)
599 man->flags |= MAN_BPLINE;
590 if (MAN_BLINE & m->flags)
591 m->flags |= MAN_BPLINE;

601 /* Call to handler... */

603 assert(man_macros[tok].fp);
604 if (! (*man_macros[tok].fp)(man, tok, ln, ppos, &offs, buf))
596 if (! (*man_macros[tok].fp)(m, tok, ln, ppos, &offs, buf))
605 goto err;

607 /*

new/usr/src/cmd/mandoc/man.c 10

608 * We weren’t in a block-line scope when entering the
609 * above-parsed macro, so return.
610 */

612 if (! (MAN_BPLINE & man->flags)) {
613 man->flags &= ~MAN_ILINE;
604 if (! (MAN_BPLINE & m->flags)) {
605 m->flags &= ~MAN_ILINE;
614 return(1);
615 }
616 man->flags &= ~MAN_BPLINE;
608 m->flags &= ~MAN_BPLINE;

618 /*
619 * If we’re in a block scope, then allow this macro to slip by
620 * without closing scope around it.
621 */

623 if (MAN_ILINE & man->flags) {
624 man->flags &= ~MAN_ILINE;
615 if (MAN_ILINE & m->flags) {
616 m->flags &= ~MAN_ILINE;
625 return(1);
626 }

628 /*
629 * If we’ve opened a new next-line element scope, then return
630 * now, as the next line will close out the block scope.
631 */

633 if (MAN_ELINE & man->flags)
625 if (MAN_ELINE & m->flags)
634 return(1);

636 /* Close out the block scope opened in the prior line. */

638 assert(MAN_BLINE & man->flags);
639 man->flags &= ~MAN_BLINE;
630 assert(MAN_BLINE & m->flags);
631 m->flags &= ~MAN_BLINE;

641 if (! man_unscope(man, man->last->parent, MANDOCERR_MAX))
633 if (! man_unscope(m, m->last->parent, MANDOCERR_MAX))
642 return(0);
643 return(man_body_alloc(man, ln, ppos, man->last->tok));
635 return(man_body_alloc(m, ln, ppos, m->last->tok));

645 err: /* Error out. */

647 man->flags |= MAN_HALT;
639 m->flags |= MAN_HALT;
648 return(0);
649 }

651 /*
652 * Unlink a node from its context. If "man" is provided, the last parse
644 * Unlink a node from its context. If "m" is provided, the last parse
653 * point will also be adjusted accordingly.
654 */
655 static void
656 man_node_unlink(struct man *man, struct man_node *n)
648 man_node_unlink(struct man *m, struct man_node *n)
657 {

659 /* Adjust siblings. */

new/usr/src/cmd/mandoc/man.c 11

661 if (n->prev)
662 n->prev->next = n->next;
663 if (n->next)
664 n->next->prev = n->prev;

666 /* Adjust parent. */

668 if (n->parent) {
669 n->parent->nchild--;
670 if (n->parent->child == n)
671 n->parent->child = n->prev ? n->prev : n->next;
672 }

674 /* Adjust parse point, if applicable. */

676 if (man && man->last == n) {
668 if (m && m->last == n) {
677 /*XXX: this can occur when bailing from validation. */
678 /*assert(NULL == n->next);*/
679 if (n->prev) {
680 man->last = n->prev;
681 man->next = MAN_NEXT_SIBLING;
672 m->last = n->prev;
673 m->next = MAN_NEXT_SIBLING;
682 } else {
683 man->last = n->parent;
684 man->next = MAN_NEXT_CHILD;
675 m->last = n->parent;
676 m->next = MAN_NEXT_CHILD;
685 }
686 }

688 if (man && man->first == n)
689 man->first = NULL;
680 if (m && m->first == n)
681 m->first = NULL;
690 }

692 const struct mparse *
693 man_mparse(const struct man *man)
685 man_mparse(const struct man *m)
694 {

696 assert(man && man->parse);
697 return(man->parse);
688 assert(m && m->parse);
689 return(m->parse);
698 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/man.h 1

**
 2731 Wed Jul 30 20:55:08 2014
new/usr/src/cmd/mandoc/man.h
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: man.h,v 1.62 2013/10/17 20:54:58 schwarze Exp $ */
1 /* $Id: man.h,v 1.60 2012/01/03 15:16:24 kristaps Exp $ */
2 /*
3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17 #ifndef MAN_H
18 #define MAN_H

20 enum mant {
21 MAN_br = 0,
22 MAN_TH,
23 MAN_SH,
24 MAN_SS,
25 MAN_TP,
26 MAN_LP,
27 MAN_PP,
28 MAN_P,
29 MAN_IP,
30 MAN_HP,
31 MAN_SM,
32 MAN_SB,
33 MAN_BI,
34 MAN_IB,
35 MAN_BR,
36 MAN_RB,
37 MAN_R,
38 MAN_B,
39 MAN_I,
40 MAN_IR,
41 MAN_RI,
42 MAN_na,
43 MAN_sp,
44 MAN_nf,
45 MAN_fi,
46 MAN_RE,
47 MAN_RS,
48 MAN_DT,
49 MAN_UC,
50 MAN_PD,
51 MAN_AT,
52 MAN_in,
53 MAN_ft,
54 MAN_OP,
55 MAN_EX,
56 MAN_EE,
57 MAN_UR,
58 MAN_UE,

new/usr/src/cmd/mandoc/man.h 2

59 MAN_MAX
60 };

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/man_html.c 1

**
 14617 Wed Jul 30 20:55:08 2014
new/usr/src/cmd/mandoc/man_html.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: man_html.c,v 1.90 2013/10/17 20:54:58 schwarze Exp $ */
1 /* $Id: man_html.c,v 1.86 2012/01/03 15:16:24 kristaps Exp $ */
2 /*
3 * Copyright (c) 2008-2012 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2013 Ingo Schwarze <schwarze@openbsd.org>
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <sys/types.h>

24 #include <assert.h>
25 #include <ctype.h>
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <string.h>

30 #include "mandoc.h"
31 #include "out.h"
32 #include "html.h"
33 #include "man.h"
34 #include "main.h"

36 /* TODO: preserve ident widths. */
37 /* FIXME: have PD set the default vspace width. */

39 #define INDENT 5

41 #define MAN_ARGS const struct man_meta *man, \
40 #define MAN_ARGS const struct man_meta *m, \
42 const struct man_node *n, \
43 struct mhtml *mh, \
44 struct html *h

46 struct mhtml {
47 int fl;
48 #define MANH_LITERAL (1 << 0) /* literal context */
49 };

______unchanged_portion_omitted_

56 static void print_bvspace(struct html *,
57 const struct man_node *);
58 static void print_man(MAN_ARGS);
59 static void print_man_head(MAN_ARGS);
60 static void print_man_nodelist(MAN_ARGS);

new/usr/src/cmd/mandoc/man_html.c 2

61 static void print_man_node(MAN_ARGS);
62 static int a2width(const struct man_node *,
63 struct roffsu *);
64 static int man_B_pre(MAN_ARGS);
65 static int man_HP_pre(MAN_ARGS);
66 static int man_IP_pre(MAN_ARGS);
67 static int man_I_pre(MAN_ARGS);
68 static int man_OP_pre(MAN_ARGS);
69 static int man_PP_pre(MAN_ARGS);
70 static int man_RS_pre(MAN_ARGS);
71 static int man_SH_pre(MAN_ARGS);
72 static int man_SM_pre(MAN_ARGS);
73 static int man_SS_pre(MAN_ARGS);
74 static int man_UR_pre(MAN_ARGS);
75 static int man_alt_pre(MAN_ARGS);
76 static int man_br_pre(MAN_ARGS);
77 static int man_ign_pre(MAN_ARGS);
78 static int man_in_pre(MAN_ARGS);
79 static int man_literal_pre(MAN_ARGS);
80 static void man_root_post(MAN_ARGS);
81 static void man_root_pre(MAN_ARGS);

83 static const struct htmlman mans[MAN_MAX] = {
84 { man_br_pre, NULL }, /* br */
85 { NULL, NULL }, /* TH */
86 { man_SH_pre, NULL }, /* SH */
87 { man_SS_pre, NULL }, /* SS */
88 { man_IP_pre, NULL }, /* TP */
89 { man_PP_pre, NULL }, /* LP */
90 { man_PP_pre, NULL }, /* PP */
91 { man_PP_pre, NULL }, /* P */
92 { man_IP_pre, NULL }, /* IP */
93 { man_HP_pre, NULL }, /* HP */
94 { man_SM_pre, NULL }, /* SM */
95 { man_SM_pre, NULL }, /* SB */
96 { man_alt_pre, NULL }, /* BI */
97 { man_alt_pre, NULL }, /* IB */
98 { man_alt_pre, NULL }, /* BR */
99 { man_alt_pre, NULL }, /* RB */
100 { NULL, NULL }, /* R */
101 { man_B_pre, NULL }, /* B */
102 { man_I_pre, NULL }, /* I */
103 { man_alt_pre, NULL }, /* IR */
104 { man_alt_pre, NULL }, /* RI */
105 { man_ign_pre, NULL }, /* na */
106 { man_br_pre, NULL }, /* sp */
107 { man_literal_pre, NULL }, /* nf */
108 { man_literal_pre, NULL }, /* fi */
109 { NULL, NULL }, /* RE */
110 { man_RS_pre, NULL }, /* RS */
111 { man_ign_pre, NULL }, /* DT */
112 { man_ign_pre, NULL }, /* UC */
113 { man_ign_pre, NULL }, /* PD */
114 { man_ign_pre, NULL }, /* AT */
115 { man_in_pre, NULL }, /* in */
116 { man_ign_pre, NULL }, /* ft */
117 { man_OP_pre, NULL }, /* OP */
118 { man_literal_pre, NULL }, /* EX */
119 { man_literal_pre, NULL }, /* EE */
120 { man_UR_pre, NULL }, /* UR */
121 { NULL, NULL }, /* UE */
122 };

______unchanged_portion_omitted_

147 void
148 html_man(void *arg, const struct man *man)

new/usr/src/cmd/mandoc/man_html.c 3

142 html_man(void *arg, const struct man *m)
149 {
150 struct mhtml mh;

152 memset(&mh, 0, sizeof(struct mhtml));
153 print_man(man_meta(man), man_node(man), &mh, (struct html *)arg);
147 print_man(man_meta(m), man_node(m), &mh, (struct html *)arg);
154 putchar(’\n’);
155 }

157 static void
158 print_man(MAN_ARGS)
159 {
160 struct tag *t, *tt;
161 struct htmlpair tag;

163 PAIR_CLASS_INIT(&tag, "mandoc");

165 if (! (HTML_FRAGMENT & h->oflags)) {
166 print_gen_decls(h);
167 t = print_otag(h, TAG_HTML, 0, NULL);
168 tt = print_otag(h, TAG_HEAD, 0, NULL);
169 print_man_head(man, n, mh, h);
163 print_man_head(m, n, mh, h);
170 print_tagq(h, tt);
171 print_otag(h, TAG_BODY, 0, NULL);
172 print_otag(h, TAG_DIV, 1, &tag);
173 } else
174 t = print_otag(h, TAG_DIV, 1, &tag);

176 print_man_nodelist(man, n, mh, h);
170 print_man_nodelist(m, n, mh, h);
177 print_tagq(h, t);
178 }

181 /* ARGSUSED */
182 static void
183 print_man_head(MAN_ARGS)
184 {

186 print_gen_head(h);
187 assert(man->title);
188 assert(man->msec);
189 bufcat_fmt(h, "%s(%s)", man->title, man->msec);
181 assert(m->title);
182 assert(m->msec);
183 bufcat_fmt(h, "%s(%s)", m->title, m->msec);
190 print_otag(h, TAG_TITLE, 0, NULL);
191 print_text(h, h->buf);
192 }

195 static void
196 print_man_nodelist(MAN_ARGS)
197 {

199 print_man_node(man, n, mh, h);
193 print_man_node(m, n, mh, h);
200 if (n->next)
201 print_man_nodelist(man, n->next, mh, h);
195 print_man_nodelist(m, n->next, mh, h);
202 }

205 static void

new/usr/src/cmd/mandoc/man_html.c 4

206 print_man_node(MAN_ARGS)
207 {
208 int child;
209 struct tag *t;

211 child = 1;
212 t = h->tags.head;

214 switch (n->type) {
215 case (MAN_ROOT):
216 man_root_pre(man, n, mh, h);
210 man_root_pre(m, n, mh, h);
217 break;
218 case (MAN_TEXT):
219 /*
220 * If we have a blank line, output a vertical space.
221 * If we have a space as the first character, break
222 * before printing the line’s data.
223 */
224 if (’\0’ == *n->string) {
225 print_otag(h, TAG_P, 0, NULL);
226 return;
227 }

229 if (’ ’ == *n->string && MAN_LINE & n->flags)
230 print_otag(h, TAG_BR, 0, NULL);
231 else if (MANH_LITERAL & mh->fl && n->prev)
232 print_otag(h, TAG_BR, 0, NULL);

234 print_text(h, n->string);
235 return;
236 case (MAN_EQN):
237 print_eqn(h, n->eqn);
238 break;
239 case (MAN_TBL):
240 /*
241 * This will take care of initialising all of the table
242 * state data for the first table, then tearing it down
243 * for the last one.
244 */
245 print_tbl(h, n->span);
246 return;
247 default:
248 /*
249 * Close out scope of font prior to opening a macro
250 * scope.
251 */
252 if (HTMLFONT_NONE != h->metac) {
253 h->metal = h->metac;
254 h->metac = HTMLFONT_NONE;
255 }

257 /*
258 * Close out the current table, if it’s open, and unset
259 * the "meta" table state. This will be reopened on the
260 * next table element.
261 */
262 if (h->tblt) {
263 print_tblclose(h);
264 t = h->tags.head;
265 }
266 if (mans[n->tok].pre)
267 child = (*mans[n->tok].pre)(man, n, mh, h);
261 child = (*mans[n->tok].pre)(m, n, mh, h);
268 break;
269 }

new/usr/src/cmd/mandoc/man_html.c 5

271 if (child && n->child)
272 print_man_nodelist(man, n->child, mh, h);
266 print_man_nodelist(m, n->child, mh, h);

274 /* This will automatically close out any font scope. */
275 print_stagq(h, t);

277 switch (n->type) {
278 case (MAN_ROOT):
279 man_root_post(man, n, mh, h);
273 man_root_post(m, n, mh, h);
280 break;
281 case (MAN_EQN):
282 break;
283 default:
284 if (mans[n->tok].post)
285 (*mans[n->tok].post)(man, n, mh, h);
279 (*mans[n->tok].post)(m, n, mh, h);
286 break;
287 }
288 }

______unchanged_portion_omitted_

304 /* ARGSUSED */
305 static void
306 man_root_pre(MAN_ARGS)
307 {
308 struct htmlpair tag[3];
309 struct tag *t, *tt;
310 char b[BUFSIZ], title[BUFSIZ];

312 b[0] = 0;
313 if (man->vol)
314 (void)strlcat(b, man->vol, BUFSIZ);
307 if (m->vol)
308 (void)strlcat(b, m->vol, BUFSIZ);

316 assert(man->title);
317 assert(man->msec);
318 snprintf(title, BUFSIZ - 1, "%s(%s)", man->title, man->msec);
310 assert(m->title);
311 assert(m->msec);
312 snprintf(title, BUFSIZ - 1, "%s(%s)", m->title, m->msec);

320 PAIR_SUMMARY_INIT(&tag[0], "Document Header");
321 PAIR_CLASS_INIT(&tag[1], "head");
322 PAIR_INIT(&tag[2], ATTR_WIDTH, "100%");
323 t = print_otag(h, TAG_TABLE, 3, tag);
324 PAIR_INIT(&tag[0], ATTR_WIDTH, "30%");
325 print_otag(h, TAG_COL, 1, tag);
326 print_otag(h, TAG_COL, 1, tag);
327 print_otag(h, TAG_COL, 1, tag);

329 print_otag(h, TAG_TBODY, 0, NULL);

331 tt = print_otag(h, TAG_TR, 0, NULL);

333 PAIR_CLASS_INIT(&tag[0], "head-ltitle");
334 print_otag(h, TAG_TD, 1, tag);
335 print_text(h, title);
336 print_stagq(h, tt);

338 PAIR_CLASS_INIT(&tag[0], "head-vol");
339 PAIR_INIT(&tag[1], ATTR_ALIGN, "center");

new/usr/src/cmd/mandoc/man_html.c 6

340 print_otag(h, TAG_TD, 2, tag);
341 print_text(h, b);
342 print_stagq(h, tt);

344 PAIR_CLASS_INIT(&tag[0], "head-rtitle");
345 PAIR_INIT(&tag[1], ATTR_ALIGN, "right");
346 print_otag(h, TAG_TD, 2, tag);
347 print_text(h, title);
348 print_tagq(h, t);
349 }

352 /* ARGSUSED */
353 static void
354 man_root_post(MAN_ARGS)
355 {
356 struct htmlpair tag[3];
357 struct tag *t, *tt;

359 PAIR_SUMMARY_INIT(&tag[0], "Document Footer");
360 PAIR_CLASS_INIT(&tag[1], "foot");
361 PAIR_INIT(&tag[2], ATTR_WIDTH, "100%");
362 t = print_otag(h, TAG_TABLE, 3, tag);
363 PAIR_INIT(&tag[0], ATTR_WIDTH, "50%");
364 print_otag(h, TAG_COL, 1, tag);
365 print_otag(h, TAG_COL, 1, tag);

367 tt = print_otag(h, TAG_TR, 0, NULL);

369 PAIR_CLASS_INIT(&tag[0], "foot-date");
370 print_otag(h, TAG_TD, 1, tag);

372 assert(man->date);
373 print_text(h, man->date);
366 assert(m->date);
367 print_text(h, m->date);
374 print_stagq(h, tt);

376 PAIR_CLASS_INIT(&tag[0], "foot-os");
377 PAIR_INIT(&tag[1], ATTR_ALIGN, "right");
378 print_otag(h, TAG_TD, 2, tag);

380 if (man->source)
381 print_text(h, man->source);
374 if (m->source)
375 print_text(h, m->source);
382 print_tagq(h, t);
383 }

______unchanged_portion_omitted_

431 /* ARGSUSED */
432 static int
433 man_alt_pre(MAN_ARGS)
434 {
435 const struct man_node *nn;
436 int i, savelit;
437 enum htmltag fp;
438 struct tag *t;

440 if ((savelit = mh->fl & MANH_LITERAL))
441 print_otag(h, TAG_BR, 0, NULL);

443 mh->fl &= ~MANH_LITERAL;

445 for (i = 0, nn = n->child; nn; nn = nn->next, i++) {
446 t = NULL;

new/usr/src/cmd/mandoc/man_html.c 7

447 switch (n->tok) {
448 case (MAN_BI):
449 fp = i % 2 ? TAG_I : TAG_B;
450 break;
451 case (MAN_IB):
452 fp = i % 2 ? TAG_B : TAG_I;
453 break;
454 case (MAN_RI):
455 fp = i % 2 ? TAG_I : TAG_MAX;
456 break;
457 case (MAN_IR):
458 fp = i % 2 ? TAG_MAX : TAG_I;
459 break;
460 case (MAN_BR):
461 fp = i % 2 ? TAG_MAX : TAG_B;
462 break;
463 case (MAN_RB):
464 fp = i % 2 ? TAG_B : TAG_MAX;
465 break;
466 default:
467 abort();
468 /* NOTREACHED */
469 }

471 if (i)
472 h->flags |= HTML_NOSPACE;

474 if (TAG_MAX != fp)
475 t = print_otag(h, fp, 0, NULL);

477 print_man_node(man, nn, mh, h);
471 print_man_node(m, nn, mh, h);

479 if (t)
480 print_tagq(h, t);
481 }

483 if (savelit)
484 mh->fl |= MANH_LITERAL;

486 return(0);
487 }

______unchanged_portion_omitted_

531 /* ARGSUSED */
532 static int
533 man_IP_pre(MAN_ARGS)
534 {
535 const struct man_node *nn;

537 if (MAN_BODY == n->type) {
538 print_otag(h, TAG_DD, 0, NULL);
539 return(1);
540 } else if (MAN_HEAD != n->type) {
541 print_otag(h, TAG_DL, 0, NULL);
542 return(1);
543 }

545 /* FIXME: width specification. */

547 print_otag(h, TAG_DT, 0, NULL);

549 /* For IP, only print the first header element. */

551 if (MAN_IP == n->tok && n->child)
552 print_man_node(man, n->child, mh, h);

new/usr/src/cmd/mandoc/man_html.c 8

546 print_man_node(m, n->child, mh, h);

554 /* For TP, only print next-line header elements. */

556 if (MAN_TP == n->tok)
557 for (nn = n->child; nn; nn = nn->next)
558 if (nn->line > n->line)
559 print_man_node(man, nn, mh, h);
553 print_man_node(m, nn, mh, h);

561 return(0);
562 }

______unchanged_portion_omitted_

642 /* ARGSUSED */
643 static int
644 man_literal_pre(MAN_ARGS)
645 {

647 if (MAN_fi == n->tok || MAN_EE == n->tok) {
641 if (MAN_nf != n->tok) {
648 print_otag(h, TAG_BR, 0, NULL);
649 mh->fl &= ~MANH_LITERAL;
650 } else
651 mh->fl |= MANH_LITERAL;

653 return(0);
654 }

______unchanged_portion_omitted_

673 /* ARGSUSED */
674 static int
675 man_RS_pre(MAN_ARGS)
676 {
677 struct htmlpair tag;
678 struct roffsu su;

680 if (MAN_HEAD == n->type)
681 return(0);
682 else if (MAN_BODY == n->type)
683 return(1);

685 SCALE_HS_INIT(&su, INDENT);
686 if (n->head->child)
687 a2width(n->head->child, &su);

689 bufinit(h);
690 bufcat_su(h, "margin-left", &su);
691 PAIR_STYLE_INIT(&tag, h);
692 print_otag(h, TAG_DIV, 1, &tag);
693 return(1);
694 }

696 /* ARGSUSED */
697 static int
698 man_UR_pre(MAN_ARGS)
699 {
700 struct htmlpair tag[2];

702 n = n->child;
703 assert(MAN_HEAD == n->type);
704 if (n->nchild) {
705 assert(MAN_TEXT == n->child->type);
706 PAIR_CLASS_INIT(&tag[0], "link-ext");
707 PAIR_HREF_INIT(&tag[1], n->child->string);
708 print_otag(h, TAG_A, 2, tag);

new/usr/src/cmd/mandoc/man_html.c 9

709 }

711 assert(MAN_BODY == n->next->type);
712 if (n->next->nchild)
713 n = n->next;

715 print_man_nodelist(man, n->child, mh, h);

717 return(0);
718 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/man_macro.c 1

**
 11898 Wed Jul 30 20:55:08 2014
new/usr/src/cmd/mandoc/man_macro.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: man_macro.c,v 1.79 2013/12/25 00:50:05 schwarze Exp $ */
1 /* $Id: man_macro.c,v 1.71 2012/01/03 15:16:24 kristaps Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2012, 2013 Ingo Schwarze <schwarze@openbsd.org>
5 * Copyright (c) 2013 Franco Fichtner <franco@lastsummer.de>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.

10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19 #ifdef HAVE_CONFIG_H
20 #include "config.h"
21 #endif

23 #include <assert.h>
24 #include <ctype.h>
25 #include <stdlib.h>
26 #include <string.h>

28 #include "man.h"
29 #include "mandoc.h"
30 #include "libmandoc.h"
31 #include "libman.h"

33 enum rew {
34 REW_REWIND,
35 REW_NOHALT,
36 REW_HALT
37 };

39 static int blk_close(MACRO_PROT_ARGS);
40 static int blk_exp(MACRO_PROT_ARGS);
41 static int blk_imp(MACRO_PROT_ARGS);
42 static int in_line_eoln(MACRO_PROT_ARGS);
43 static int man_args(struct man *, int,
44 int *, char *, char **);

46 static int rew_scope(enum man_type,
47 struct man *, enum mant);
48 static enum rew rew_dohalt(enum mant, enum man_type,
49 const struct man_node *);
50 static enum rew rew_block(enum mant, enum man_type,
51 const struct man_node *);
52 static void rew_warn(struct man *,
53 struct man_node *, enum mandocerr);

55 const struct man_macro __man_macros[MAN_MAX] = {
56 { in_line_eoln, MAN_NSCOPED }, /* br */
57 { in_line_eoln, MAN_BSCOPE }, /* TH */
58 { blk_imp, MAN_BSCOPE | MAN_SCOPED }, /* SH */

new/usr/src/cmd/mandoc/man_macro.c 2

59 { blk_imp, MAN_BSCOPE | MAN_SCOPED }, /* SS */
60 { blk_imp, MAN_BSCOPE | MAN_SCOPED | MAN_FSCOPED }, /* TP */
61 { blk_imp, MAN_BSCOPE }, /* LP */
62 { blk_imp, MAN_BSCOPE }, /* PP */
63 { blk_imp, MAN_BSCOPE }, /* P */
64 { blk_imp, MAN_BSCOPE }, /* IP */
65 { blk_imp, MAN_BSCOPE }, /* HP */
66 { in_line_eoln, MAN_SCOPED }, /* SM */
67 { in_line_eoln, MAN_SCOPED }, /* SB */
68 { in_line_eoln, 0 }, /* BI */
69 { in_line_eoln, 0 }, /* IB */
70 { in_line_eoln, 0 }, /* BR */
71 { in_line_eoln, 0 }, /* RB */
72 { in_line_eoln, MAN_SCOPED }, /* R */
73 { in_line_eoln, MAN_SCOPED }, /* B */
74 { in_line_eoln, MAN_SCOPED }, /* I */
75 { in_line_eoln, 0 }, /* IR */
76 { in_line_eoln, 0 }, /* RI */
77 { in_line_eoln, MAN_NSCOPED }, /* na */
78 { in_line_eoln, MAN_NSCOPED }, /* sp */
79 { in_line_eoln, MAN_BSCOPE }, /* nf */
80 { in_line_eoln, MAN_BSCOPE }, /* fi */
81 { blk_close, 0 }, /* RE */
82 { blk_exp, MAN_BSCOPE | MAN_EXPLICIT }, /* RS */
80 { blk_exp, MAN_EXPLICIT }, /* RS */
83 { in_line_eoln, 0 }, /* DT */
84 { in_line_eoln, 0 }, /* UC */
85 { in_line_eoln, 0 }, /* PD */
86 { in_line_eoln, 0 }, /* AT */
87 { in_line_eoln, 0 }, /* in */
88 { in_line_eoln, 0 }, /* ft */
89 { in_line_eoln, 0 }, /* OP */
90 { in_line_eoln, MAN_BSCOPE }, /* EX */
91 { in_line_eoln, MAN_BSCOPE }, /* EE */
92 { blk_exp, MAN_BSCOPE | MAN_EXPLICIT }, /* UR */
93 { blk_close, 0 }, /* UE */
94 };

96 const struct man_macro * const man_macros = __man_macros;

99 /*
100 * Warn when "n" is an explicit non-roff macro.
101 */
102 static void
103 rew_warn(struct man *man, struct man_node *n, enum mandocerr er)
97 rew_warn(struct man *m, struct man_node *n, enum mandocerr er)
104 {

106 if (er == MANDOCERR_MAX || MAN_BLOCK != n->type)
107 return;
108 if (MAN_VALID & n->flags)
109 return;
110 if (! (MAN_EXPLICIT & man_macros[n->tok].flags))
111 return;

113 assert(er < MANDOCERR_FATAL);
114 man_nmsg(man, n, er);
108 man_nmsg(m, n, er);
115 }

118 /*
119 * Rewind scope. If a code "er" != MANDOCERR_MAX has been provided, it
120 * will be used if an explicit block scope is being closed out.
121 */

new/usr/src/cmd/mandoc/man_macro.c 3

122 int
123 man_unscope(struct man *man, const struct man_node *to,
117 man_unscope(struct man *m, const struct man_node *to,
124 enum mandocerr er)
125 {
126 struct man_node *n;

128 assert(to);

130 man->next = MAN_NEXT_SIBLING;
124 m->next = MAN_NEXT_SIBLING;

132 /* LINTED */
133 while (man->last != to) {
127 while (m->last != to) {
134 /*
135 * Save the parent here, because we may delete the
136 * man->last node in the post-validation phase and reset
137 * it to man->last->parent, causing a step in the closing
130 * m->last node in the post-validation phase and reset
131 * it to m->last->parent, causing a step in the closing
138 * out to be lost.
139 */
140 n = man->last->parent;
141 rew_warn(man, man->last, er);
142 if (! man_valid_post(man))
134 n = m->last->parent;
135 rew_warn(m, m->last, er);
136 if (! man_valid_post(m))
143 return(0);
144 man->last = n;
145 assert(man->last);
138 m->last = n;
139 assert(m->last);
146 }

148 rew_warn(man, man->last, er);
149 if (! man_valid_post(man))
142 rew_warn(m, m->last, er);
143 if (! man_valid_post(m))
150 return(0);

152 return(1);
153 }

______unchanged_portion_omitted_

167 /*
168 * There are three scope levels: scoped to the root (all), scoped to the
169 * section (all less sections), and scoped to subsections (all less
170 * sections and subsections).
171 */
172 static enum rew
173 rew_dohalt(enum mant tok, enum man_type type, const struct man_node *n)
174 {
175 enum rew c;

177 /* We cannot progress beyond the root ever. */
178 if (MAN_ROOT == n->type)
179 return(REW_HALT);

181 assert(n->parent);

183 /* Normal nodes shouldn’t go to the level of the root. */
184 if (MAN_ROOT == n->parent->type)
185 return(REW_REWIND);

new/usr/src/cmd/mandoc/man_macro.c 4

187 /* Already-validated nodes should be closed out. */
188 if (MAN_VALID & n->flags)
189 return(REW_NOHALT);

191 /* First: rewind to ourselves. */
192 if (type == n->type && tok == n->tok) {
193 if (MAN_EXPLICIT & man_macros[n->tok].flags)
194 return(REW_HALT);
195 else
186 if (type == n->type && tok == n->tok)
196 return(REW_REWIND);
197 }

199 /*
200 * Next follow the implicit scope-smashings as defined by man.7:
201 * section, sub-section, etc.
202 */

204 switch (tok) {
205 case (MAN_SH):
206 break;
207 case (MAN_SS):
208 /* Rewind to a section, if a block. */
209 if (REW_NOHALT != (c = rew_block(MAN_SH, type, n)))
210 return(c);
211 break;
212 case (MAN_RS):
213 /* Preserve empty paragraphs before RS. */
214 if (0 == n->nchild && (MAN_P == n->tok ||
215 MAN_PP == n->tok || MAN_LP == n->tok))
216 return(REW_HALT);
217 /* Rewind to a subsection, if a block. */
218 if (REW_NOHALT != (c = rew_block(MAN_SS, type, n)))
219 return(c);
220 /* Rewind to a section, if a block. */
221 if (REW_NOHALT != (c = rew_block(MAN_SH, type, n)))
222 return(c);
223 break;
224 default:
225 /* Rewind to an offsetter, if a block. */
226 if (REW_NOHALT != (c = rew_block(MAN_RS, type, n)))
227 return(c);
228 /* Rewind to a subsection, if a block. */
229 if (REW_NOHALT != (c = rew_block(MAN_SS, type, n)))
230 return(c);
231 /* Rewind to a section, if a block. */
232 if (REW_NOHALT != (c = rew_block(MAN_SH, type, n)))
233 return(c);
234 break;
235 }

237 return(REW_NOHALT);
238 }

241 /*
242 * Rewinding entails ascending the parse tree until a coherent point,
243 * for example, the ‘SH’ macro will close out any intervening ‘SS’
244 * scopes. When a scope is closed, it must be validated and actioned.
245 */
246 static int
247 rew_scope(enum man_type type, struct man *man, enum mant tok)
233 rew_scope(enum man_type type, struct man *m, enum mant tok)
248 {
249 struct man_node *n;

new/usr/src/cmd/mandoc/man_macro.c 5

250 enum rew c;

252 /* LINTED */
253 for (n = man->last; n; n = n->parent) {
239 for (n = m->last; n; n = n->parent) {
254 /*
255 * Whether we should stop immediately (REW_HALT), stop
256 * and rewind until this point (REW_REWIND), or keep
257 * rewinding (REW_NOHALT).
258 */
259 c = rew_dohalt(tok, type, n);
260 if (REW_HALT == c)
261 return(1);
262 if (REW_REWIND == c)
263 break;
264 }

266 /*
267 * Rewind until the current point. Warn if we’re a roff
268 * instruction that’s mowing over explicit scopes.
269 */
270 assert(n);

272 return(man_unscope(man, n, MANDOCERR_MAX));
258 return(man_unscope(m, n, MANDOCERR_MAX));
273 }

276 /*
277 * Close out a generic explicit macro.
278 */
279 /* ARGSUSED */
280 int
281 blk_close(MACRO_PROT_ARGS)
282 {
283 enum mant ntok;
284 const struct man_node *nn;

286 switch (tok) {
287 case (MAN_RE):
288 ntok = MAN_RS;
289 break;
290 case (MAN_UE):
291 ntok = MAN_UR;
292 break;
293 default:
294 abort();
295 /* NOTREACHED */
296 }

298 for (nn = man->last->parent; nn; nn = nn->parent)
299 if (ntok == nn->tok && MAN_BLOCK == nn->type)
281 for (nn = m->last->parent; nn; nn = nn->parent)
282 if (ntok == nn->tok)
300 break;

302 if (NULL == nn) {
303 man_pmsg(man, line, ppos, MANDOCERR_NOSCOPE);
304 if (! rew_scope(MAN_BLOCK, man, MAN_PP))
285 if (NULL == nn)
286 man_pmsg(m, line, ppos, MANDOCERR_NOSCOPE);

288 if (! rew_scope(MAN_BODY, m, ntok))
305 return(0);
306 } else
307 man_unscope(man, nn, MANDOCERR_MAX);

new/usr/src/cmd/mandoc/man_macro.c 6

290 if (! rew_scope(MAN_BLOCK, m, ntok))
291 return(0);

309 return(1);
310 }

313 /* ARGSUSED */
314 int
315 blk_exp(MACRO_PROT_ARGS)
316 {
317 struct man_node *n;
318 int la;
319 char *p;

321 /* Close out prior implicit scopes. */
304 /*
305 * Close out prior scopes. "Regular" explicit macros cannot be
306 * nested, but we allow roff macros to be placed just about
307 * anywhere.
308 */

323 if (! rew_scope(MAN_BLOCK, man, tok))
310 if (! man_block_alloc(m, line, ppos, tok))
324 return(0);

326 if (! man_block_alloc(man, line, ppos, tok))
312 if (! man_head_alloc(m, line, ppos, tok))
327 return(0);
328 if (! man_head_alloc(man, line, ppos, tok))
329 return(0);

331 for (;;) {
332 la = *pos;
333 if (! man_args(man, line, pos, buf, &p))
317 if (! man_args(m, line, pos, buf, &p))
334 break;
335 if (! man_word_alloc(man, line, la, p))
319 if (! man_word_alloc(m, line, la, p))
336 return(0);
337 }

339 assert(man);
323 assert(m);
340 assert(tok != MAN_MAX);

342 for (n = man->last; n; n = n->parent) {
343 if (n->tok != tok)
344 continue;
345 assert(MAN_HEAD == n->type);
346 man_unscope(man, n, MANDOCERR_MAX);
347 break;
348 }

350 return(man_body_alloc(man, line, ppos, tok));
326 if (! rew_scope(MAN_HEAD, m, tok))
327 return(0);
328 return(man_body_alloc(m, line, ppos, tok));
351 }

355 /*
356 * Parse an implicit-block macro. These contain a MAN_HEAD and a
357 * MAN_BODY contained within a MAN_BLOCK. Rules for closing out other
358 * scopes, such as ‘SH’ closing out an ‘SS’, are defined in the rew

new/usr/src/cmd/mandoc/man_macro.c 7

359 * routines.
360 */
361 /* ARGSUSED */
362 int
363 blk_imp(MACRO_PROT_ARGS)
364 {
365 int la;
366 char *p;
367 struct man_node *n;

369 /* Close out prior scopes. */

371 if (! rew_scope(MAN_BODY, man, tok))
349 if (! rew_scope(MAN_BODY, m, tok))
372 return(0);
373 if (! rew_scope(MAN_BLOCK, man, tok))
351 if (! rew_scope(MAN_BLOCK, m, tok))
374 return(0);

376 /* Allocate new block & head scope. */

378 if (! man_block_alloc(man, line, ppos, tok))
356 if (! man_block_alloc(m, line, ppos, tok))
379 return(0);
380 if (! man_head_alloc(man, line, ppos, tok))
358 if (! man_head_alloc(m, line, ppos, tok))
381 return(0);

383 n = man->last;
361 n = m->last;

385 /* Add line arguments. */

387 for (;;) {
388 la = *pos;
389 if (! man_args(man, line, pos, buf, &p))
367 if (! man_args(m, line, pos, buf, &p))
390 break;
391 if (! man_word_alloc(man, line, la, p))
369 if (! man_word_alloc(m, line, la, p))
392 return(0);
393 }

395 /* Close out head and open body (unless MAN_SCOPE). */

397 if (MAN_SCOPED & man_macros[tok].flags) {
398 /* If we’re forcing scope (‘TP’), keep it open. */
399 if (MAN_FSCOPED & man_macros[tok].flags) {
400 man->flags |= MAN_BLINE;
378 m->flags |= MAN_BLINE;
401 return(1);
402 } else if (n == man->last) {
403 man->flags |= MAN_BLINE;
380 } else if (n == m->last) {
381 m->flags |= MAN_BLINE;
404 return(1);
405 }
406 }

408 if (! rew_scope(MAN_HEAD, man, tok))
386 if (! rew_scope(MAN_HEAD, m, tok))
409 return(0);
410 return(man_body_alloc(man, line, ppos, tok));
388 return(man_body_alloc(m, line, ppos, tok));
411 }

new/usr/src/cmd/mandoc/man_macro.c 8

414 /* ARGSUSED */
415 int
416 in_line_eoln(MACRO_PROT_ARGS)
417 {
418 int la;
419 char *p;
420 struct man_node *n;

422 if (! man_elem_alloc(man, line, ppos, tok))
400 if (! man_elem_alloc(m, line, ppos, tok))
423 return(0);

425 n = man->last;
403 n = m->last;

427 for (;;) {
428 la = *pos;
429 if (! man_args(man, line, pos, buf, &p))
407 if (! man_args(m, line, pos, buf, &p))
430 break;
431 if (! man_word_alloc(man, line, la, p))
409 if (! man_word_alloc(m, line, la, p))
432 return(0);
433 }

435 /*
436 * Append MAN_EOS in case the last snipped argument
437 * ends with a dot, e.g. ‘.IR syslog (3).’
438 */

440 if (n != man->last &&
441 mandoc_eos(man->last->string, strlen(man->last->string), 0))
442 man->last->flags |= MAN_EOS;

444 /*
445 * If no arguments are specified and this is MAN_SCOPED (i.e.,
446 * next-line scoped), then set our mode to indicate that we’re
447 * waiting for terms to load into our context.
448 */

450 if (n == man->last && MAN_SCOPED & man_macros[tok].flags) {
419 if (n == m->last && MAN_SCOPED & man_macros[tok].flags) {
451 assert(! (MAN_NSCOPED & man_macros[tok].flags));
452 man->flags |= MAN_ELINE;
421 m->flags |= MAN_ELINE;
453 return(1);
454 }

456 /* Set ignorable context, if applicable. */

458 if (MAN_NSCOPED & man_macros[tok].flags) {
459 assert(! (MAN_SCOPED & man_macros[tok].flags));
460 man->flags |= MAN_ILINE;
429 m->flags |= MAN_ILINE;
461 }

463 assert(MAN_ROOT != man->last->type);
464 man->next = MAN_NEXT_SIBLING;
432 assert(MAN_ROOT != m->last->type);
433 m->next = MAN_NEXT_SIBLING;
465
466 /*
467 * Rewind our element scope. Note that when TH is pruned, we’ll
468 * be back at the root, so make sure that we don’t clobber as
469 * its sibling.

new/usr/src/cmd/mandoc/man_macro.c 9

470 */

472 for (; man->last; man->last = man->last->parent) {
473 if (man->last == n)
441 for (; m->last; m->last = m->last->parent) {
442 if (m->last == n)
474 break;
475 if (man->last->type == MAN_ROOT)
444 if (m->last->type == MAN_ROOT)
476 break;
477 if (! man_valid_post(man))
446 if (! man_valid_post(m))
478 return(0);
479 }

481 assert(man->last);
450 assert(m->last);

483 /*
484 * Same here regarding whether we’re back at the root.
485 */

487 if (man->last->type != MAN_ROOT && ! man_valid_post(man))
456 if (m->last->type != MAN_ROOT && ! man_valid_post(m))
488 return(0);

490 return(1);
491 }

494 int
495 man_macroend(struct man *man)
464 man_macroend(struct man *m)
496 {

498 return(man_unscope(man, man->first, MANDOCERR_SCOPEEXIT));
467 return(man_unscope(m, m->first, MANDOCERR_SCOPEEXIT));
499 }

501 static int
502 man_args(struct man *man, int line, int *pos, char *buf, char **v)
471 man_args(struct man *m, int line, int *pos, char *buf, char **v)
503 {
504 char *start;

506 assert(*pos);
507 *v = start = buf + *pos;
508 assert(’ ’ != *start);

510 if (’\0’ == *start)
511 return(0);

513 *v = mandoc_getarg(man->parse, v, line, pos);
482 *v = mandoc_getarg(m->parse, v, line, pos);
514 return(1);
515 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/man_term.c 1

**
 23118 Wed Jul 30 20:55:08 2014
new/usr/src/cmd/mandoc/man_term.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: man_term.c,v 1.139 2013/12/22 23:34:13 schwarze Exp $ */
1 /* $Id: man_term.c,v 1.127 2012/01/03 15:16:24 kristaps Exp $ */
2 /*
3 * Copyright (c) 2008-2012 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2010, 2011, 2012, 2013 Ingo Schwarze <schwarze@openbsd.org>
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2010, 2011 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <sys/types.h>

24 #include <assert.h>
25 #include <ctype.h>
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <string.h>

30 #include "mandoc.h"
31 #include "out.h"
32 #include "man.h"
33 #include "term.h"
34 #include "main.h"

36 #define MAXMARGINS 64 /* maximum number of indented scopes */

38 /* FIXME: have PD set the default vspace width. */

38 struct mtermp {
39 int fl;
40 #define MANT_LITERAL (1 << 0)
41 size_t lmargin[MAXMARGINS]; /* margins (incl. visible page) *
42 int lmargincur; /* index of current margin */
43 int lmarginsz; /* actual number of nested margins */
44 size_t offset; /* default offset to visible page */
45 int pardist; /* vert. space before par., unit: [v] */
46 };

48 #define DECL_ARGS struct termp *p, \
49 struct mtermp *mt, \
50 const struct man_node *n, \
51 const struct man_meta *meta
52 const struct man_meta *m

53 struct termact {

new/usr/src/cmd/mandoc/man_term.c 2

54 int (*pre)(DECL_ARGS);
55 void (*post)(DECL_ARGS);
56 int flags;
57 #define MAN_NOTEXT (1 << 0) /* Never has text children. */
58 };

60 static int a2width(const struct termp *, const char *);
61 static size_t a2height(const struct termp *, const char *);

63 static void print_man_nodelist(DECL_ARGS);
64 static void print_man_node(DECL_ARGS);
65 static void print_man_head(struct termp *, const void *);
66 static void print_man_foot(struct termp *, const void *);
67 static void print_bvspace(struct termp *,
68 const struct man_node *, int);
69 const struct man_node *);

70 static int pre_B(DECL_ARGS);
71 static int pre_HP(DECL_ARGS);
72 static int pre_I(DECL_ARGS);
73 static int pre_IP(DECL_ARGS);
74 static int pre_OP(DECL_ARGS);
75 static int pre_PD(DECL_ARGS);
76 static int pre_PP(DECL_ARGS);
77 static int pre_RS(DECL_ARGS);
78 static int pre_SH(DECL_ARGS);
79 static int pre_SS(DECL_ARGS);
80 static int pre_TP(DECL_ARGS);
81 static int pre_UR(DECL_ARGS);
82 static int pre_alternate(DECL_ARGS);
83 static int pre_ft(DECL_ARGS);
84 static int pre_ign(DECL_ARGS);
85 static int pre_in(DECL_ARGS);
86 static int pre_literal(DECL_ARGS);
87 static int pre_sp(DECL_ARGS);

89 static void post_IP(DECL_ARGS);
90 static void post_HP(DECL_ARGS);
91 static void post_RS(DECL_ARGS);
92 static void post_SH(DECL_ARGS);
93 static void post_SS(DECL_ARGS);
94 static void post_TP(DECL_ARGS);
95 static void post_UR(DECL_ARGS);

97 static const struct termact termacts[MAN_MAX] = {
98 { pre_sp, NULL, MAN_NOTEXT }, /* br */
99 { NULL, NULL, 0 }, /* TH */
100 { pre_SH, post_SH, 0 }, /* SH */
101 { pre_SS, post_SS, 0 }, /* SS */
102 { pre_TP, post_TP, 0 }, /* TP */
103 { pre_PP, NULL, 0 }, /* LP */
104 { pre_PP, NULL, 0 }, /* PP */
105 { pre_PP, NULL, 0 }, /* P */
106 { pre_IP, post_IP, 0 }, /* IP */
107 { pre_HP, post_HP, 0 }, /* HP */
108 { NULL, NULL, 0 }, /* SM */
109 { pre_B, NULL, 0 }, /* SB */
110 { pre_alternate, NULL, 0 }, /* BI */
111 { pre_alternate, NULL, 0 }, /* IB */
112 { pre_alternate, NULL, 0 }, /* BR */
113 { pre_alternate, NULL, 0 }, /* RB */
114 { NULL, NULL, 0 }, /* R */
115 { pre_B, NULL, 0 }, /* B */
116 { pre_I, NULL, 0 }, /* I */
117 { pre_alternate, NULL, 0 }, /* IR */
118 { pre_alternate, NULL, 0 }, /* RI */

new/usr/src/cmd/mandoc/man_term.c 3

119 { pre_ign, NULL, MAN_NOTEXT }, /* na */
120 { pre_sp, NULL, MAN_NOTEXT }, /* sp */
121 { pre_literal, NULL, 0 }, /* nf */
122 { pre_literal, NULL, 0 }, /* fi */
123 { NULL, NULL, 0 }, /* RE */
124 { pre_RS, post_RS, 0 }, /* RS */
125 { pre_ign, NULL, 0 }, /* DT */
126 { pre_ign, NULL, 0 }, /* UC */
127 { pre_PD, NULL, MAN_NOTEXT }, /* PD */
125 { pre_ign, NULL, 0 }, /* PD */
128 { pre_ign, NULL, 0 }, /* AT */
129 { pre_in, NULL, MAN_NOTEXT }, /* in */
130 { pre_ft, NULL, MAN_NOTEXT }, /* ft */
131 { pre_OP, NULL, 0 }, /* OP */
132 { pre_literal, NULL, 0 }, /* EX */
133 { pre_literal, NULL, 0 }, /* EE */
134 { pre_UR, post_UR, 0 }, /* UR */
135 { NULL, NULL, 0 }, /* UE */
136 };

140 void
141 terminal_man(void *arg, const struct man *man)
142 {
143 struct termp *p;
144 const struct man_node *n;
145 const struct man_meta *meta;
139 const struct man_meta *m;
146 struct mtermp mt;

148 p = (struct termp *)arg;

150 if (0 == p->defindent)
151 p->defindent = 7;

153 p->overstep = 0;
154 p->maxrmargin = p->defrmargin;
155 p->tabwidth = term_len(p, 5);

157 if (NULL == p->symtab)
158 p->symtab = mchars_alloc();

160 n = man_node(man);
161 meta = man_meta(man);
155 m = man_meta(man);

163 term_begin(p, print_man_head, print_man_foot, meta);
157 term_begin(p, print_man_head, print_man_foot, m);
164 p->flags |= TERMP_NOSPACE;

166 memset(&mt, 0, sizeof(struct mtermp));

168 mt.lmargin[mt.lmargincur] = term_len(p, p->defindent);
169 mt.offset = term_len(p, p->defindent);
170 mt.pardist = 1;

172 if (n->child)
173 print_man_nodelist(p, &mt, n->child, meta);
166 print_man_nodelist(p, &mt, n->child, m);

175 term_end(p);
176 }

______unchanged_portion_omitted_

202 /*

new/usr/src/cmd/mandoc/man_term.c 4

203 * Printing leading vertical space before a block.
204 * This is used for the paragraph macros.
205 * The rules are pretty simple, since there’s very little nesting going
206 * on here. Basically, if we’re the first within another block (SS/SH),
207 * then don’t emit vertical space. If we are (RS), then do. If not the
208 * first, print it.
209 */
210 static void
211 print_bvspace(struct termp *p, const struct man_node *n, int pardist)
204 print_bvspace(struct termp *p, const struct man_node *n)
212 {
213 int i;

215 term_newln(p);

217 if (n->body && n->body->child)
218 if (MAN_TBL == n->body->child->type)
219 return;

221 if (MAN_ROOT == n->parent->type || MAN_RS != n->parent->tok)
222 if (NULL == n->prev)
223 return;

225 for (i = 0; i < pardist; i++)
226 term_vspace(p);
227 }

______unchanged_portion_omitted_

248 /* ARGSUSED */
249 static int
250 pre_literal(DECL_ARGS)
251 {

253 term_newln(p);

255 if (MAN_nf == n->tok || MAN_EX == n->tok)
246 if (MAN_nf == n->tok)
256 mt->fl |= MANT_LITERAL;
257 else
258 mt->fl &= ~MANT_LITERAL;

260 /*
261 * Unlike .IP and .TP, .HP does not have a HEAD.
262 * So in case a second call to term_flushln() is needed,
263 * indentation has to be set up explicitly.
264 */
265 if (MAN_HP == n->parent->tok && p->rmargin < p->maxrmargin) {
266 p->offset = p->rmargin;
267 p->rmargin = p->maxrmargin;
268 p->trailspace = 0;
269 p->flags &= ~TERMP_NOBREAK;
259 p->flags &= ~(TERMP_NOBREAK | TERMP_TWOSPACE);
270 p->flags |= TERMP_NOSPACE;
271 }

273 return(0);
274 }

276 /* ARGSUSED */
277 static int
278 pre_PD(DECL_ARGS)
279 {

281 n = n->child;
282 if (0 == n) {

new/usr/src/cmd/mandoc/man_term.c 5

283 mt->pardist = 1;
284 return(0);
285 }
286 assert(MAN_TEXT == n->type);
287 mt->pardist = atoi(n->string);
288 return(0);
289 }

291 /* ARGSUSED */
292 static int
293 pre_alternate(DECL_ARGS)
294 {
295 enum termfont font[2];
296 const struct man_node *nn;
297 int savelit, i;

299 switch (n->tok) {
300 case (MAN_RB):
301 font[0] = TERMFONT_NONE;
302 font[1] = TERMFONT_BOLD;
303 break;
304 case (MAN_RI):
305 font[0] = TERMFONT_NONE;
306 font[1] = TERMFONT_UNDER;
307 break;
308 case (MAN_BR):
309 font[0] = TERMFONT_BOLD;
310 font[1] = TERMFONT_NONE;
311 break;
312 case (MAN_BI):
313 font[0] = TERMFONT_BOLD;
314 font[1] = TERMFONT_UNDER;
315 break;
316 case (MAN_IR):
317 font[0] = TERMFONT_UNDER;
318 font[1] = TERMFONT_NONE;
319 break;
320 case (MAN_IB):
321 font[0] = TERMFONT_UNDER;
322 font[1] = TERMFONT_BOLD;
323 break;
324 default:
325 abort();
326 }

328 savelit = MANT_LITERAL & mt->fl;
329 mt->fl &= ~MANT_LITERAL;

331 for (i = 0, nn = n->child; nn; nn = nn->next, i = 1 - i) {
332 term_fontrepl(p, font[i]);
333 if (savelit && NULL == nn->next)
334 mt->fl |= MANT_LITERAL;
335 print_man_node(p, mt, nn, meta);
310 print_man_node(p, mt, nn, m);
336 if (nn->next)
337 p->flags |= TERMP_NOSPACE;
338 }

340 return(0);
341 }

______unchanged_portion_omitted_

462 /* ARGSUSED */
463 static int
464 pre_sp(DECL_ARGS)

new/usr/src/cmd/mandoc/man_term.c 6

465 {
466 char *s;
467 size_t i, len;
468 int neg;

470 if ((NULL == n->prev && n->parent)) {
471 switch (n->parent->tok) {
472 case (MAN_SH):
473 /* FALLTHROUGH */
474 case (MAN_SS):
475 /* FALLTHROUGH */
476 case (MAN_PP):
477 /* FALLTHROUGH */
478 case (MAN_LP):
479 /* FALLTHROUGH */
480 case (MAN_P):
481 /* FALLTHROUGH */
444 if (MAN_SS == n->parent->tok)
482 return(0);
483 default:
484 break;
446 if (MAN_SH == n->parent->tok)
447 return(0);
485 }
486 }

488 neg = 0;
489 switch (n->tok) {
490 case (MAN_br):
491 len = 0;
492 break;
493 default:
494 if (NULL == n->child) {
495 len = 1;
455 len = n->child ? a2height(p, n->child->string) : 1;
496 break;
497 }
498 s = n->child->string;
499 if (’-’ == *s) {
500 neg = 1;
501 s++;
502 }
503 len = a2height(p, s);
504 break;
505 }

507 if (0 == len)
508 term_newln(p);
509 else if (neg)
510 p->skipvsp += len;
511 else
512 for (i = 0; i < len; i++)
513 term_vspace(p);

515 return(0);
516 }

519 /* ARGSUSED */
520 static int
521 pre_HP(DECL_ARGS)
522 {
523 size_t len, one;
524 int ival;
525 const struct man_node *nn;

new/usr/src/cmd/mandoc/man_term.c 7

527 switch (n->type) {
528 case (MAN_BLOCK):
529 print_bvspace(p, n, mt->pardist);
478 print_bvspace(p, n);
530 return(1);
531 case (MAN_BODY):
481 p->flags |= TERMP_NOBREAK;
482 p->flags |= TERMP_TWOSPACE;
532 break;
533 default:
534 return(0);
535 }

537 if (! (MANT_LITERAL & mt->fl)) {
538 p->flags |= TERMP_NOBREAK;
539 p->trailspace = 2;
540 }

542 len = mt->lmargin[mt->lmargincur];
543 ival = -1;

545 /* Calculate offset. */

547 if (NULL != (nn = n->parent->head->child))
548 if ((ival = a2width(p, nn->string)) >= 0)
549 len = (size_t)ival;

551 one = term_len(p, 1);
552 if (len < one)
553 len = one;

555 p->offset = mt->offset;
556 p->rmargin = mt->offset + len;

558 if (ival >= 0)
559 mt->lmargin[mt->lmargincur] = (size_t)ival;

561 return(1);
562 }

565 /* ARGSUSED */
566 static void
567 post_HP(DECL_ARGS)
568 {

570 switch (n->type) {
517 case (MAN_BLOCK):
518 term_flushln(p);
519 break;
571 case (MAN_BODY):
572 term_newln(p);
521 term_flushln(p);
573 p->flags &= ~TERMP_NOBREAK;
574 p->trailspace = 0;
523 p->flags &= ~TERMP_TWOSPACE;
575 p->offset = mt->offset;
576 p->rmargin = p->maxrmargin;
577 break;
578 default:
579 break;
580 }
581 }

584 /* ARGSUSED */

new/usr/src/cmd/mandoc/man_term.c 8

585 static int
586 pre_PP(DECL_ARGS)
587 {

589 switch (n->type) {
590 case (MAN_BLOCK):
591 mt->lmargin[mt->lmargincur] = term_len(p, p->defindent);
592 print_bvspace(p, n, mt->pardist);
541 print_bvspace(p, n);
593 break;
594 default:
595 p->offset = mt->offset;
596 break;
597 }

599 return(MAN_HEAD != n->type);
600 }

603 /* ARGSUSED */
604 static int
605 pre_IP(DECL_ARGS)
606 {
607 const struct man_node *nn;
608 size_t len;
609 int savelit, ival;

611 switch (n->type) {
612 case (MAN_BODY):
613 p->flags |= TERMP_NOSPACE;
614 break;
615 case (MAN_HEAD):
616 p->flags |= TERMP_NOBREAK;
617 p->trailspace = 1;
618 break;
619 case (MAN_BLOCK):
620 print_bvspace(p, n, mt->pardist);
568 print_bvspace(p, n);
621 /* FALLTHROUGH */
622 default:
623 return(1);
624 }

626 len = mt->lmargin[mt->lmargincur];
627 ival = -1;

629 /* Calculate the offset from the optional second argument. */
630 if (NULL != (nn = n->parent->head->child))
631 if (NULL != (nn = nn->next))
632 if ((ival = a2width(p, nn->string)) >= 0)
633 len = (size_t)ival;

635 switch (n->type) {
636 case (MAN_HEAD):
637 /* Handle zero-width lengths. */
638 if (0 == len)
639 len = term_len(p, 1);

641 p->offset = mt->offset;
642 p->rmargin = mt->offset + len;
643 if (ival < 0)
644 break;

646 /* Set the saved left-margin. */
647 mt->lmargin[mt->lmargincur] = (size_t)ival;

new/usr/src/cmd/mandoc/man_term.c 9

649 savelit = MANT_LITERAL & mt->fl;
650 mt->fl &= ~MANT_LITERAL;

652 if (n->child)
653 print_man_node(p, mt, n->child, meta);
601 print_man_node(p, mt, n->child, m);

655 if (savelit)
656 mt->fl |= MANT_LITERAL;

658 return(0);
659 case (MAN_BODY):
660 p->offset = mt->offset + len;
661 p->rmargin = p->maxrmargin;
662 break;
663 default:
664 break;
665 }

667 return(1);
668 }

671 /* ARGSUSED */
672 static void
673 post_IP(DECL_ARGS)
674 {

676 switch (n->type) {
677 case (MAN_HEAD):
678 term_flushln(p);
679 p->flags &= ~TERMP_NOBREAK;
680 p->trailspace = 0;
681 p->rmargin = p->maxrmargin;
682 break;
683 case (MAN_BODY):
684 term_newln(p);
685 p->offset = mt->offset;
686 break;
687 default:
688 break;
689 }
690 }

693 /* ARGSUSED */
694 static int
695 pre_TP(DECL_ARGS)
696 {
697 const struct man_node *nn;
698 size_t len;
699 int savelit, ival;

701 switch (n->type) {
702 case (MAN_HEAD):
703 p->flags |= TERMP_NOBREAK;
704 p->trailspace = 1;
705 break;
706 case (MAN_BODY):
707 p->flags |= TERMP_NOSPACE;
708 break;
709 case (MAN_BLOCK):
710 print_bvspace(p, n, mt->pardist);
655 print_bvspace(p, n);
711 /* FALLTHROUGH */
712 default:

new/usr/src/cmd/mandoc/man_term.c 10

713 return(1);
714 }

716 len = (size_t)mt->lmargin[mt->lmargincur];
717 ival = -1;

719 /* Calculate offset. */

721 if (NULL != (nn = n->parent->head->child))
722 if (nn->string && nn->parent->line == nn->line)
723 if ((ival = a2width(p, nn->string)) >= 0)
724 len = (size_t)ival;

726 switch (n->type) {
727 case (MAN_HEAD):
728 /* Handle zero-length properly. */
729 if (0 == len)
730 len = term_len(p, 1);

732 p->offset = mt->offset;
733 p->rmargin = mt->offset + len;

735 savelit = MANT_LITERAL & mt->fl;
736 mt->fl &= ~MANT_LITERAL;

738 /* Don’t print same-line elements. */
739 for (nn = n->child; nn; nn = nn->next)
740 if (nn->line > n->line)
741 print_man_node(p, mt, nn, meta);
686 print_man_node(p, mt, nn, m);

743 if (savelit)
744 mt->fl |= MANT_LITERAL;
745 if (ival >= 0)
746 mt->lmargin[mt->lmargincur] = (size_t)ival;

748 return(0);
749 case (MAN_BODY):
750 p->offset = mt->offset + len;
751 p->rmargin = p->maxrmargin;
752 p->trailspace = 0;
753 p->flags &= ~TERMP_NOBREAK;
754 break;
755 default:
756 break;
757 }

759 return(1);
760 }

763 /* ARGSUSED */
764 static void
765 post_TP(DECL_ARGS)
766 {

768 switch (n->type) {
769 case (MAN_HEAD):
770 term_flushln(p);
714 p->flags &= ~TERMP_NOBREAK;
715 p->flags &= ~TERMP_TWOSPACE;
716 p->rmargin = p->maxrmargin;
771 break;
772 case (MAN_BODY):
773 term_newln(p);
774 p->offset = mt->offset;

new/usr/src/cmd/mandoc/man_term.c 11

775 break;
776 default:
777 break;
778 }
779 }

782 /* ARGSUSED */
783 static int
784 pre_SS(DECL_ARGS)
785 {
786 int i;

788 switch (n->type) {
789 case (MAN_BLOCK):
790 mt->fl &= ~MANT_LITERAL;
791 mt->lmargin[mt->lmargincur] = term_len(p, p->defindent);
792 mt->offset = term_len(p, p->defindent);
793 /* If following a prior empty ‘SS’, no vspace. */
794 if (n->prev && MAN_SS == n->prev->tok)
795 if (NULL == n->prev->body->child)
796 break;
797 if (NULL == n->prev)
798 break;
799 for (i = 0; i < mt->pardist; i++)
800 term_vspace(p);
801 break;
802 case (MAN_HEAD):
803 term_fontrepl(p, TERMFONT_BOLD);
804 p->offset = term_len(p, 3);
747 p->offset = term_len(p, p->defindent/2);
805 break;
806 case (MAN_BODY):
807 p->offset = mt->offset;
808 break;
809 default:
810 break;
811 }

813 return(1);
814 }

______unchanged_portion_omitted_

835 /* ARGSUSED */
836 static int
837 pre_SH(DECL_ARGS)
838 {
839 int i;

841 switch (n->type) {
842 case (MAN_BLOCK):
843 mt->fl &= ~MANT_LITERAL;
844 mt->lmargin[mt->lmargincur] = term_len(p, p->defindent);
845 mt->offset = term_len(p, p->defindent);
846 /* If following a prior empty ‘SH’, no vspace. */
847 if (n->prev && MAN_SH == n->prev->tok)
848 if (NULL == n->prev->body->child)
849 break;
850 /* If the first macro, no vspae. */
851 if (NULL == n->prev)
852 break;
853 for (i = 0; i < mt->pardist; i++)
854 term_vspace(p);
855 break;
856 case (MAN_HEAD):

new/usr/src/cmd/mandoc/man_term.c 12

857 term_fontrepl(p, TERMFONT_BOLD);
858 p->offset = 0;
859 break;
860 case (MAN_BODY):
861 p->offset = mt->offset;
862 break;
863 default:
864 break;
865 }

867 return(1);
868 }

______unchanged_portion_omitted_

952 /* ARGSUSED */
953 static int
954 pre_UR(DECL_ARGS)
955 {

957 return (MAN_HEAD != n->type);
958 }

960 /* ARGSUSED */
961 static void
962 post_UR(DECL_ARGS)
963 {

965 if (MAN_BLOCK != n->type)
966 return;

968 term_word(p, "<");
969 p->flags |= TERMP_NOSPACE;

971 if (NULL != n->child->child)
972 print_man_node(p, mt, n->child->child, meta);

974 p->flags |= TERMP_NOSPACE;
975 term_word(p, ">");
976 }

978 static void
979 print_man_node(DECL_ARGS)
980 {
981 size_t rm, rmax;
982 int c;

984 switch (n->type) {
985 case(MAN_TEXT):
986 /*
987 * If we have a blank line, output a vertical space.
988 * If we have a space as the first character, break
989 * before printing the line’s data.
990 */
991 if (’\0’ == *n->string) {
992 term_vspace(p);
993 return;
994 } else if (’ ’ == *n->string && MAN_LINE & n->flags)
995 term_newln(p);

997 term_word(p, n->string);
998 goto out;

914 /*
915 * If we’re in a literal context, make sure that words
916 * togehter on the same line stay together. This is a
917 * POST-printing call, so we check the NEXT word. Since

new/usr/src/cmd/mandoc/man_term.c 13

918 * -man doesn’t have nested macros, we don’t need to be
919 * more specific than this.
920 */
921 if (MANT_LITERAL & mt->fl && ! (TERMP_NOBREAK & p->flags) &&
922 (NULL == n->next ||
923 n->next->line > n->line)) {
924 rm = p->rmargin;
925 rmax = p->maxrmargin;
926 p->rmargin = p->maxrmargin = TERM_MAXMARGIN;
927 p->flags |= TERMP_NOSPACE;
928 term_flushln(p);
929 p->rmargin = rm;
930 p->maxrmargin = rmax;
931 }

933 if (MAN_EOS & n->flags)
934 p->flags |= TERMP_SENTENCE;
935 return;
1000 case (MAN_EQN):
1001 term_eqn(p, n->eqn);
1002 return;
1003 case (MAN_TBL):
1004 /*
1005 * Tables are preceded by a newline. Then process a
1006 * table line, which will cause line termination,
1007 */
1008 if (TBL_SPAN_FIRST & n->span->flags)
1009 term_newln(p);
1010 term_tbl(p, n->span);
1011 return;
1012 default:
1013 break;
1014 }

1016 if (! (MAN_NOTEXT & termacts[n->tok].flags))
1017 term_fontrepl(p, TERMFONT_NONE);

1019 c = 1;
1020 if (termacts[n->tok].pre)
1021 c = (*termacts[n->tok].pre)(p, mt, n, meta);
957 c = (*termacts[n->tok].pre)(p, mt, n, m);

1023 if (c && n->child)
1024 print_man_nodelist(p, mt, n->child, meta);
960 print_man_nodelist(p, mt, n->child, m);

1026 if (termacts[n->tok].post)
1027 (*termacts[n->tok].post)(p, mt, n, meta);
963 (*termacts[n->tok].post)(p, mt, n, m);
1028 if (! (MAN_NOTEXT & termacts[n->tok].flags))
1029 term_fontrepl(p, TERMFONT_NONE);

1031 out:
1032 /*
1033 * If we’re in a literal context, make sure that words
1034 * together on the same line stay together. This is a
1035 * POST-printing call, so we check the NEXT word. Since
1036 * -man doesn’t have nested macros, we don’t need to be
1037 * more specific than this.
1038 */
1039 if (MANT_LITERAL & mt->fl && ! (TERMP_NOBREAK & p->flags) &&
1040 (NULL == n->next || n->next->line > n->line)) {
1041 rm = p->rmargin;
1042 rmax = p->maxrmargin;
1043 p->rmargin = p->maxrmargin = TERM_MAXMARGIN;
1044 p->flags |= TERMP_NOSPACE;

new/usr/src/cmd/mandoc/man_term.c 14

1045 if (NULL != n->string && ’\0’ != *n->string)
1046 term_flushln(p);
1047 else
1048 term_newln(p);
1049 if (rm < rmax && n->parent->tok == MAN_HP) {
1050 p->offset = rm;
1051 p->rmargin = rmax;
1052 } else
1053 p->rmargin = rm;
1054 p->maxrmargin = rmax;
1055 }
1056 if (MAN_EOS & n->flags)
1057 p->flags |= TERMP_SENTENCE;
1058 }

1061 static void
1062 print_man_nodelist(DECL_ARGS)
1063 {

1065 print_man_node(p, mt, n, meta);
976 print_man_node(p, mt, n, m);
1066 if (! n->next)
1067 return;
1068 print_man_nodelist(p, mt, n->next, meta);
979 print_man_nodelist(p, mt, n->next, m);
1069 }

1072 static void
1073 print_man_foot(struct termp *p, const void *arg)
1074 {
1075 char title[BUFSIZ];
1076 size_t datelen;
1077 const struct man_meta *meta;

1079 meta = (const struct man_meta *)arg;
1080 assert(meta->title);
1081 assert(meta->msec);
1082 assert(meta->date);

1084 term_fontrepl(p, TERMFONT_NONE);

1086 term_vspace(p);

1088 /*
1089 * Temporary, undocumented option to imitate mdoc(7) output.
1090 * In the bottom right corner, use the source instead of
1091 * the title.
1092 */

1094 if (! p->mdocstyle) {
1095 term_vspace(p);
1096 term_vspace(p);
1097 snprintf(title, BUFSIZ, "%s(%s)", meta->title, meta->msec);
1098 } else if (meta->source) {
1099 strlcpy(title, meta->source, BUFSIZ);
1100 } else {
1101 title[0] = ’\0’;
1102 }
1103 datelen = term_strlen(p, meta->date);

1105 /* Bottom left corner: manual source. */

1107 p->flags |= TERMP_NOSPACE | TERMP_NOBREAK;
1108 p->trailspace = 1;

new/usr/src/cmd/mandoc/man_term.c 15

1109 p->offset = 0;
1110 p->rmargin = (p->maxrmargin - datelen + term_len(p, 1)) / 2;

1112 if (meta->source)
1113 term_word(p, meta->source);
1114 term_flushln(p);

1116 /* At the bottom in the middle: manual date. */

1118 p->flags |= TERMP_NOSPACE;
1119 p->offset = p->rmargin;
1120 p->rmargin = p->maxrmargin - term_strlen(p, title);
1121 if (p->offset + datelen >= p->rmargin)
1122 p->rmargin = p->offset + datelen;

1124 term_word(p, meta->date);
1125 term_flushln(p);

1127 /* Bottom right corner: manual title and section. */

1129 p->flags &= ~TERMP_NOBREAK;
1130 p->flags |= TERMP_NOSPACE;
1131 p->trailspace = 0;
1132 p->offset = p->rmargin;
1133 p->rmargin = p->maxrmargin;

1135 term_word(p, title);
1136 term_flushln(p);
1137 }

1140 static void
1141 print_man_head(struct termp *p, const void *arg)
1142 {
1143 char buf[BUFSIZ], title[BUFSIZ];
1144 size_t buflen, titlen;
1145 const struct man_meta *meta;
1054 const struct man_meta *m;

1147 meta = (const struct man_meta *)arg;
1148 assert(meta->title);
1149 assert(meta->msec);
1056 m = (const struct man_meta *)arg;
1057 assert(m->title);
1058 assert(m->msec);

1151 if (meta->vol)
1152 strlcpy(buf, meta->vol, BUFSIZ);
1060 if (m->vol)
1061 strlcpy(buf, m->vol, BUFSIZ);
1153 else
1154 buf[0] = ’\0’;
1155 buflen = term_strlen(p, buf);

1157 /* Top left corner: manual title and section. */

1159 snprintf(title, BUFSIZ, "%s(%s)", meta->title, meta->msec);
1068 snprintf(title, BUFSIZ, "%s(%s)", m->title, m->msec);
1160 titlen = term_strlen(p, title);

1162 p->flags |= TERMP_NOBREAK | TERMP_NOSPACE;
1163 p->trailspace = 1;
1164 p->offset = 0;
1165 p->rmargin = 2 * (titlen+1) + buflen < p->maxrmargin ?
1166 (p->maxrmargin -
1167 term_strlen(p, buf) + term_len(p, 1)) / 2 :

new/usr/src/cmd/mandoc/man_term.c 16

1168 p->maxrmargin - buflen;

1170 term_word(p, title);
1171 term_flushln(p);

1173 /* At the top in the middle: manual volume. */

1175 p->flags |= TERMP_NOSPACE;
1176 p->offset = p->rmargin;
1177 p->rmargin = p->offset + buflen + titlen < p->maxrmargin ?
1178 p->maxrmargin - titlen : p->maxrmargin;

1180 term_word(p, buf);
1181 term_flushln(p);

1183 /* Top right corner: title and section, again. */

1185 p->flags &= ~TERMP_NOBREAK;
1186 p->trailspace = 0;
1187 if (p->rmargin + titlen <= p->maxrmargin) {
1188 p->flags |= TERMP_NOSPACE;
1189 p->offset = p->rmargin;
1190 p->rmargin = p->maxrmargin;
1191 term_word(p, title);
1192 term_flushln(p);
1193 }

1195 p->flags &= ~TERMP_NOSPACE;
1196 p->offset = 0;
1197 p->rmargin = p->maxrmargin;

1199 /*
1200 * Groff prints three blank lines before the content.
1201 * Do the same, except in the temporary, undocumented
1202 * mode imitating mdoc(7) output.
1203 */

1205 term_vspace(p);
1206 if (! p->mdocstyle) {
1207 term_vspace(p);
1208 term_vspace(p);
1209 }
1210 }
______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/man_validate.c 1

**
 12357 Wed Jul 30 20:55:08 2014
new/usr/src/cmd/mandoc/man_validate.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: man_validate.c,v 1.86 2013/10/17 20:54:58 schwarze Exp $ */
1 /* $Id: man_validate.c,v 1.80 2012/01/03 15:16:24 kristaps Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2010, 2012, 2013 Ingo Schwarze <schwarze@openbsd.org>
4 * Copyright (c) 2010 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <sys/types.h>

24 #include <assert.h>
25 #include <ctype.h>
26 #include <errno.h>
27 #include <limits.h>
28 #include <stdarg.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <time.h>

33 #include "man.h"
34 #include "mandoc.h"
35 #include "libman.h"
36 #include "libmandoc.h"

38 #define CHKARGS struct man *man, struct man_node *n
38 #define CHKARGS struct man *m, struct man_node *n

40 typedef int (*v_check)(CHKARGS);

42 struct man_valid {
43 v_check *pres;
44 v_check *posts;
45 };

47 static int check_eq0(CHKARGS);
48 static int check_eq2(CHKARGS);
49 static int check_le1(CHKARGS);
50 static int check_ge2(CHKARGS);
51 static int check_le5(CHKARGS);
52 static int check_head1(CHKARGS);
53 static int check_par(CHKARGS);
54 static int check_part(CHKARGS);
55 static int check_root(CHKARGS);
56 static void check_text(CHKARGS);

new/usr/src/cmd/mandoc/man_validate.c 2

58 static int post_AT(CHKARGS);
59 static int post_IP(CHKARGS);
60 static int post_vs(CHKARGS);
61 static int post_fi(CHKARGS);
62 static int post_ft(CHKARGS);
63 static int post_nf(CHKARGS);
64 static int post_sec(CHKARGS);
65 static int post_TH(CHKARGS);
66 static int post_UC(CHKARGS);
67 static int pre_sec(CHKARGS);

69 static v_check posts_at[] = { post_AT, NULL };
70 static v_check posts_br[] = { post_vs, check_eq0, NULL };
71 static v_check posts_eq0[] = { check_eq0, NULL };
72 static v_check posts_eq2[] = { check_eq2, NULL };
73 static v_check posts_fi[] = { check_eq0, post_fi, NULL };
74 static v_check posts_ft[] = { post_ft, NULL };
75 static v_check posts_ip[] = { post_IP, NULL };
76 static v_check posts_le1[] = { check_le1, NULL };
77 static v_check posts_nf[] = { check_eq0, post_nf, NULL };
78 static v_check posts_par[] = { check_par, NULL };
79 static v_check posts_part[] = { check_part, NULL };
80 static v_check posts_sec[] = { post_sec, NULL };
81 static v_check posts_sp[] = { post_vs, check_le1, NULL };
82 static v_check posts_th[] = { check_ge2, check_le5, post_TH, NULL };
83 static v_check posts_uc[] = { post_UC, NULL };
84 static v_check posts_ur[] = { check_head1, check_part, NULL };
85 static v_check pres_sec[] = { pre_sec, NULL };

87 static const struct man_valid man_valids[MAN_MAX] = {
88 { NULL, posts_br }, /* br */
89 { NULL, posts_th }, /* TH */
90 { pres_sec, posts_sec }, /* SH */
91 { pres_sec, posts_sec }, /* SS */
92 { NULL, NULL }, /* TP */
93 { NULL, posts_par }, /* LP */
94 { NULL, posts_par }, /* PP */
95 { NULL, posts_par }, /* P */
96 { NULL, posts_ip }, /* IP */
91 { NULL, NULL }, /* IP */
97 { NULL, NULL }, /* HP */
98 { NULL, NULL }, /* SM */
99 { NULL, NULL }, /* SB */
100 { NULL, NULL }, /* BI */
101 { NULL, NULL }, /* IB */
102 { NULL, NULL }, /* BR */
103 { NULL, NULL }, /* RB */
104 { NULL, NULL }, /* R */
105 { NULL, NULL }, /* B */
106 { NULL, NULL }, /* I */
107 { NULL, NULL }, /* IR */
108 { NULL, NULL }, /* RI */
109 { NULL, posts_eq0 }, /* na */
110 { NULL, posts_sp }, /* sp */
111 { NULL, posts_nf }, /* nf */
112 { NULL, posts_fi }, /* fi */
113 { NULL, NULL }, /* RE */
114 { NULL, posts_part }, /* RS */
115 { NULL, NULL }, /* DT */
116 { NULL, posts_uc }, /* UC */
117 { NULL, posts_le1 }, /* PD */
112 { NULL, NULL }, /* PD */
118 { NULL, posts_at }, /* AT */
119 { NULL, NULL }, /* in */
120 { NULL, posts_ft }, /* ft */

new/usr/src/cmd/mandoc/man_validate.c 3

121 { NULL, posts_eq2 }, /* OP */
122 { NULL, posts_nf }, /* EX */
123 { NULL, posts_fi }, /* EE */
124 { NULL, posts_ur }, /* UR */
125 { NULL, NULL }, /* UE */
126 };

129 int
130 man_valid_pre(struct man *man, struct man_node *n)
121 man_valid_pre(struct man *m, struct man_node *n)
131 {
132 v_check *cp;

134 switch (n->type) {
135 case (MAN_TEXT):
136 /* FALLTHROUGH */
137 case (MAN_ROOT):
138 /* FALLTHROUGH */
139 case (MAN_EQN):
140 /* FALLTHROUGH */
141 case (MAN_TBL):
142 return(1);
143 default:
144 break;
145 }

147 if (NULL == (cp = man_valids[n->tok].pres))
148 return(1);
149 for (; *cp; cp++)
150 if (! (*cp)(man, n))
141 if (! (*cp)(m, n))
151 return(0);
152 return(1);
153 }

156 int
157 man_valid_post(struct man *man)
148 man_valid_post(struct man *m)
158 {
159 v_check *cp;

161 if (MAN_VALID & man->last->flags)
152 if (MAN_VALID & m->last->flags)
162 return(1);
163 man->last->flags |= MAN_VALID;
154 m->last->flags |= MAN_VALID;

165 switch (man->last->type) {
156 switch (m->last->type) {
166 case (MAN_TEXT):
167 check_text(man, man->last);
158 check_text(m, m->last);
168 return(1);
169 case (MAN_ROOT):
170 return(check_root(man, man->last));
161 return(check_root(m, m->last));
171 case (MAN_EQN):
172 /* FALLTHROUGH */
173 case (MAN_TBL):
174 return(1);
175 default:
176 break;
177 }

new/usr/src/cmd/mandoc/man_validate.c 4

179 if (NULL == (cp = man_valids[man->last->tok].posts))
170 if (NULL == (cp = man_valids[m->last->tok].posts))
180 return(1);
181 for (; *cp; cp++)
182 if (! (*cp)(man, man->last))
173 if (! (*cp)(m, m->last))
183 return(0);

185 return(1);
186 }

189 static int
190 check_root(CHKARGS)
191 {

193 if (MAN_BLINE & man->flags)
194 man_nmsg(man, n, MANDOCERR_SCOPEEXIT);
195 else if (MAN_ELINE & man->flags)
196 man_nmsg(man, n, MANDOCERR_SCOPEEXIT);
184 if (MAN_BLINE & m->flags)
185 man_nmsg(m, n, MANDOCERR_SCOPEEXIT);
186 else if (MAN_ELINE & m->flags)
187 man_nmsg(m, n, MANDOCERR_SCOPEEXIT);

198 man->flags &= ~MAN_BLINE;
199 man->flags &= ~MAN_ELINE;
189 m->flags &= ~MAN_BLINE;
190 m->flags &= ~MAN_ELINE;

201 if (NULL == man->first->child) {
202 man_nmsg(man, n, MANDOCERR_NODOCBODY);
192 if (NULL == m->first->child) {
193 man_nmsg(m, n, MANDOCERR_NODOCBODY);
203 return(0);
204 } else if (NULL == man->meta.title) {
205 man_nmsg(man, n, MANDOCERR_NOTITLE);
195 } else if (NULL == m->meta.title) {
196 man_nmsg(m, n, MANDOCERR_NOTITLE);

207 /*
208 * If a title hasn’t been set, do so now (by
209 * implication, date and section also aren’t set).
210 */

212 man->meta.title = mandoc_strdup("unknown");
213 man->meta.msec = mandoc_strdup("1");
214 man->meta.date = mandoc_normdate
215 (man->parse, NULL, n->line, n->pos);
203 m->meta.title = mandoc_strdup("unknown");
204 m->meta.msec = mandoc_strdup("1");
205 m->meta.date = mandoc_normdate
206 (m->parse, NULL, n->line, n->pos);
216 }

218 return(1);
219 }

221 static void
222 check_text(CHKARGS)
223 {
224 char *cp, *p;

226 if (MAN_LITERAL & man->flags)
217 if (MAN_LITERAL & m->flags)
227 return;

new/usr/src/cmd/mandoc/man_validate.c 5

229 cp = n->string;
230 for (p = cp; NULL != (p = strchr(p, ’\t’)); p++)
231 man_pmsg(man, n->line, (int)(p - cp), MANDOCERR_BADTAB);
222 man_pmsg(m, n->line, (int)(p - cp), MANDOCERR_BADTAB);
232 }

234 #define INEQ_DEFINE(x, ineq, name) \
235 static int \
236 check_##name(CHKARGS) \
237 { \
238 if (n->nchild ineq (x)) \
239 return(1); \
240 mandoc_vmsg(MANDOCERR_ARGCOUNT, man->parse, n->line, n->pos, \
231 mandoc_vmsg(MANDOCERR_ARGCOUNT, m->parse, n->line, n->pos, \
241 "line arguments %s %d (have %d)", \
242 #ineq, (x), n->nchild); \
243 return(1); \
244 }

246 INEQ_DEFINE(0, ==, eq0)
247 INEQ_DEFINE(2, ==, eq2)
248 INEQ_DEFINE(1, <=, le1)
249 INEQ_DEFINE(2, >=, ge2)
250 INEQ_DEFINE(5, <=, le5)

252 static int
253 check_head1(CHKARGS)
254 {

256 if (MAN_HEAD == n->type && 1 != n->nchild)
257 mandoc_vmsg(MANDOCERR_ARGCOUNT, man->parse, n->line,
258 n->pos, "line arguments eq 1 (have %d)", n->nchild);

260 return(1);
261 }

263 static int
264 post_ft(CHKARGS)
265 {
266 char *cp;
267 int ok;

269 if (0 == n->nchild)
270 return(1);

272 ok = 0;
273 cp = n->child->string;
274 switch (*cp) {
275 case (’1’):
276 /* FALLTHROUGH */
277 case (’2’):
278 /* FALLTHROUGH */
279 case (’3’):
280 /* FALLTHROUGH */
281 case (’4’):
282 /* FALLTHROUGH */
283 case (’I’):
284 /* FALLTHROUGH */
285 case (’P’):
286 /* FALLTHROUGH */
287 case (’R’):
288 if (’\0’ == cp[1])
289 ok = 1;
290 break;
291 case (’B’):

new/usr/src/cmd/mandoc/man_validate.c 6

292 if (’\0’ == cp[1] || (’I’ == cp[1] && ’\0’ == cp[2]))
293 ok = 1;
294 break;
295 case (’C’):
296 if (’W’ == cp[1] && ’\0’ == cp[2])
297 ok = 1;
298 break;
299 default:
300 break;
301 }

303 if (0 == ok) {
304 mandoc_vmsg
305 (MANDOCERR_BADFONT, man->parse,
285 (MANDOCERR_BADFONT, m->parse,
306 n->line, n->pos, "%s", cp);
307 *cp = ’\0’;
308 }

310 if (1 < n->nchild)
311 mandoc_vmsg
312 (MANDOCERR_ARGCOUNT, man->parse, n->line,
292 (MANDOCERR_ARGCOUNT, m->parse, n->line,
313 n->pos, "want one child (have %d)",
314 n->nchild);

316 return(1);
317 }

319 static int
320 pre_sec(CHKARGS)
321 {

323 if (MAN_BLOCK == n->type)
324 man->flags &= ~MAN_LITERAL;
304 m->flags &= ~MAN_LITERAL;
325 return(1);
326 }

328 static int
329 post_sec(CHKARGS)
330 {

332 if (! (MAN_HEAD == n->type && 0 == n->nchild))
333 return(1);

335 man_nmsg(man, n, MANDOCERR_SYNTARGCOUNT);
315 man_nmsg(m, n, MANDOCERR_SYNTARGCOUNT);
336 return(0);
337 }

339 static int
340 check_part(CHKARGS)
341 {

343 if (MAN_BODY == n->type && 0 == n->nchild)
344 mandoc_msg(MANDOCERR_ARGCWARN, man->parse, n->line,
324 mandoc_msg(MANDOCERR_ARGCWARN, m->parse, n->line,
345 n->pos, "want children (have none)");

347 return(1);
348 }

351 static int
352 check_par(CHKARGS)

new/usr/src/cmd/mandoc/man_validate.c 7

353 {

355 switch (n->type) {
356 case (MAN_BLOCK):
357 if (0 == n->body->nchild)
358 man_node_delete(man, n);
338 man_node_delete(m, n);
359 break;
360 case (MAN_BODY):
361 if (0 == n->nchild)
362 man_nmsg(man, n, MANDOCERR_IGNPAR);
342 man_nmsg(m, n, MANDOCERR_IGNPAR);
363 break;
364 case (MAN_HEAD):
365 if (n->nchild)
366 man_nmsg(man, n, MANDOCERR_ARGSLOST);
346 man_nmsg(m, n, MANDOCERR_ARGSLOST);
367 break;
368 default:
369 break;
370 }

372 return(1);
373 }

375 static int
376 post_IP(CHKARGS)
377 {

379 switch (n->type) {
380 case (MAN_BLOCK):
381 if (0 == n->head->nchild && 0 == n->body->nchild)
382 man_node_delete(man, n);
383 break;
384 case (MAN_BODY):
385 if (0 == n->parent->head->nchild && 0 == n->nchild)
386 man_nmsg(man, n, MANDOCERR_IGNPAR);
387 break;
388 default:
389 break;
390 }
391 return(1);
392 }

394 static int
395 post_TH(CHKARGS)
396 {
397 const char *p;
398 int line, pos;

400 free(man->meta.title);
401 free(man->meta.vol);
402 free(man->meta.source);
403 free(man->meta.msec);
404 free(man->meta.date);
362 if (m->meta.title)
363 free(m->meta.title);
364 if (m->meta.vol)
365 free(m->meta.vol);
366 if (m->meta.source)
367 free(m->meta.source);
368 if (m->meta.msec)
369 free(m->meta.msec);
370 if (m->meta.date)
371 free(m->meta.date);

new/usr/src/cmd/mandoc/man_validate.c 8

406 line = n->line;
407 pos = n->pos;
408 man->meta.title = man->meta.vol = man->meta.date =
409 man->meta.msec = man->meta.source = NULL;
375 m->meta.title = m->meta.vol = m->meta.date =
376 m->meta.msec = m->meta.source = NULL;

411 /* ->TITLE<- MSEC DATE SOURCE VOL */

413 n = n->child;
414 if (n && n->string) {
415 for (p = n->string; ’\0’ != *p; p++) {
416 /* Only warn about this once... */
417 if (isalpha((unsigned char)*p) &&
418 ! isupper((unsigned char)*p)) {
419 man_nmsg(man, n, MANDOCERR_UPPERCASE);
386 man_nmsg(m, n, MANDOCERR_UPPERCASE);
420 break;
421 }
422 }
423 man->meta.title = mandoc_strdup(n->string);
390 m->meta.title = mandoc_strdup(n->string);
424 } else
425 man->meta.title = mandoc_strdup("");
392 m->meta.title = mandoc_strdup("");

427 /* TITLE ->MSEC<- DATE SOURCE VOL */

429 if (n)
430 n = n->next;
431 if (n && n->string)
432 man->meta.msec = mandoc_strdup(n->string);
399 m->meta.msec = mandoc_strdup(n->string);
433 else
434 man->meta.msec = mandoc_strdup("");
401 m->meta.msec = mandoc_strdup("");

436 /* TITLE MSEC ->DATE<- SOURCE VOL */

438 if (n)
439 n = n->next;
440 if (n && n->string && ’\0’ != n->string[0]) {
441 pos = n->pos;
442 man->meta.date = mandoc_normdate
443 (man->parse, n->string, line, pos);
409 m->meta.date = mandoc_normdate
410 (m->parse, n->string, line, pos);
444 } else
445 man->meta.date = mandoc_strdup("");
412 m->meta.date = mandoc_strdup("");

447 /* TITLE MSEC DATE ->SOURCE<- VOL */

449 if (n && (n = n->next))
450 man->meta.source = mandoc_strdup(n->string);
417 m->meta.source = mandoc_strdup(n->string);

452 /* TITLE MSEC DATE SOURCE ->VOL<- */
453 /* If missing, use the default VOL name for MSEC. */

455 if (n && (n = n->next))
456 man->meta.vol = mandoc_strdup(n->string);
457 else if (’\0’ != man->meta.msec[0] &&
458 (NULL != (p = mandoc_a2msec(man->meta.msec))))
459 man->meta.vol = mandoc_strdup(p);
423 m->meta.vol = mandoc_strdup(n->string);

new/usr/src/cmd/mandoc/man_validate.c 9

424 else if (’\0’ != m->meta.msec[0] &&
425 (NULL != (p = mandoc_a2msec(m->meta.msec))))
426 m->meta.vol = mandoc_strdup(p);

461 /*
462 * Remove the ‘TH’ node after we’ve processed it for our
463 * meta-data.
464 */
465 man_node_delete(man, man->last);
432 man_node_delete(m, m->last);
466 return(1);
467 }

469 static int
470 post_nf(CHKARGS)
471 {

473 if (MAN_LITERAL & man->flags)
474 man_nmsg(man, n, MANDOCERR_SCOPEREP);
440 if (MAN_LITERAL & m->flags)
441 man_nmsg(m, n, MANDOCERR_SCOPEREP);

476 man->flags |= MAN_LITERAL;
443 m->flags |= MAN_LITERAL;
477 return(1);
478 }

480 static int
481 post_fi(CHKARGS)
482 {

484 if (! (MAN_LITERAL & man->flags))
485 man_nmsg(man, n, MANDOCERR_WNOSCOPE);
451 if (! (MAN_LITERAL & m->flags))
452 man_nmsg(m, n, MANDOCERR_WNOSCOPE);

487 man->flags &= ~MAN_LITERAL;
454 m->flags &= ~MAN_LITERAL;
488 return(1);
489 }

491 static int
492 post_UC(CHKARGS)
493 {
494 static const char * const bsd_versions[] = {
495 "3rd Berkeley Distribution",
496 "4th Berkeley Distribution",
497 "4.2 Berkeley Distribution",
498 "4.3 Berkeley Distribution",
499 "4.4 Berkeley Distribution",
500 };

502 const char *p, *s;

504 n = n->child;

506 if (NULL == n || MAN_TEXT != n->type)
507 p = bsd_versions[0];
508 else {
509 s = n->string;
510 if (0 == strcmp(s, "3"))
511 p = bsd_versions[0];
512 else if (0 == strcmp(s, "4"))
513 p = bsd_versions[1];
514 else if (0 == strcmp(s, "5"))
515 p = bsd_versions[2];

new/usr/src/cmd/mandoc/man_validate.c 10

516 else if (0 == strcmp(s, "6"))
517 p = bsd_versions[3];
518 else if (0 == strcmp(s, "7"))
519 p = bsd_versions[4];
520 else
521 p = bsd_versions[0];
522 }

524 free(man->meta.source);
525 man->meta.source = mandoc_strdup(p);
491 if (m->meta.source)
492 free(m->meta.source);

494 m->meta.source = mandoc_strdup(p);
526 return(1);
527 }

529 static int
530 post_AT(CHKARGS)
531 {
532 static const char * const unix_versions[] = {
533 "7th Edition",
534 "System III",
535 "System V",
536 "System V Release 2",
537 };

539 const char *p, *s;
540 struct man_node *nn;

542 n = n->child;

544 if (NULL == n || MAN_TEXT != n->type)
545 p = unix_versions[0];
546 else {
547 s = n->string;
548 if (0 == strcmp(s, "3"))
549 p = unix_versions[0];
550 else if (0 == strcmp(s, "4"))
551 p = unix_versions[1];
552 else if (0 == strcmp(s, "5")) {
553 nn = n->next;
554 if (nn && MAN_TEXT == nn->type && nn->string[0])
555 p = unix_versions[3];
556 else
557 p = unix_versions[2];
558 } else
559 p = unix_versions[0];
560 }

562 free(man->meta.source);
563 man->meta.source = mandoc_strdup(p);
531 if (m->meta.source)
532 free(m->meta.source);

534 m->meta.source = mandoc_strdup(p);
564 return(1);
565 }

567 static int
568 post_vs(CHKARGS)
569 {

571 if (NULL != n->prev)
572 return(1);

new/usr/src/cmd/mandoc/man_validate.c 11

574 switch (n->parent->tok) {
575 case (MAN_SH):
576 /* FALLTHROUGH */
577 case (MAN_SS):
578 man_nmsg(man, n, MANDOCERR_IGNPAR);
579 /* FALLTHROUGH */
580 case (MAN_MAX):
581 /*
582 * Don’t warn about this because it occurs in pod2man
583 * and would cause considerable (unfixable) warnage.
543 * Don’t warn about this because it occurs in pod2man and would
544 * cause considerable (unfixable) warnage.
584 */
585 man_node_delete(man, n);
586 break;
587 default:
588 break;
589 }
546 if (NULL == n->prev && MAN_ROOT == n->parent->type)
547 man_node_delete(m, n);

591 return(1);
592 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/mandoc.c 1

**
 12616 Wed Jul 30 20:55:08 2014
new/usr/src/cmd/mandoc/mandoc.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: mandoc.c,v 1.74 2013/12/30 18:30:32 schwarze Exp $ */
1 /* $Id: mandoc.c,v 1.62 2011/12/03 16:08:51 schwarze Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2011, 2012, 2013 Ingo Schwarze <schwarze@openbsd.org>
4 * Copyright (c) 2011 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <sys/types.h>

24 #include <assert.h>
25 #include <ctype.h>
26 #include <errno.h>
27 #include <limits.h>
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <string.h>
31 #include <time.h>

33 #include "mandoc.h"
34 #include "libmandoc.h"

36 #define DATESIZE 32

38 static int a2time(time_t *, const char *, const char *);
39 static char *time2a(time_t);
40 static int numescape(const char *);

42 enum mandoc_esc
43 mandoc_escape(const char **end, const char **start, int *sz)
42 /*
43 * Pass over recursive numerical expressions. This context of this
44 * function is important: it’s only called within character-terminating
45 * escapes (e.g., \s[xxxyyy]), so all we need to do is handle initial
46 * recursion: we don’t care about what’s in these blocks.
47 * This returns the number of characters skipped or -1 if an error
48 * occurs (the caller should bail).
49 */
50 static int
51 numescape(const char *start)
44 {
45 const char *local_start;
46 int local_sz;

new/usr/src/cmd/mandoc/mandoc.c 2

47 char term;
48 enum mandoc_esc gly;
53 int i;
54 size_t sz;
55 const char *cp;

57 i = 0;

59 /* The expression consists of a subexpression. */

61 if (’\\’ == start[i]) {
62 cp = &start[++i];
50 /*
51 * When the caller doesn’t provide return storage,
52 * use local storage.
64 * Read past the end of the subexpression.
65 * Bail immediately on errors.
53 */
67 if (ESCAPE_ERROR == mandoc_escape(&cp, NULL, NULL))
68 return(-1);
69 return(i + cp - &start[i]);
70 }

55 if (NULL == start)
56 start = &local_start;
57 if (NULL == sz)
58 sz = &local_sz;
72 if (’(’ != start[i++])
73 return(0);

60 /*
61 * Beyond the backslash, at least one input character
62 * is part of the escape sequence. With one exception
63 * (see below), that character won’t be returned.
76 * A parenthesised subexpression. Read until the closing
77 * parenthesis, making sure to handle any nested subexpressions
78 * that might ruin our parse.
64 */

81 while (’)’ != start[i]) {
82 sz = strcspn(&start[i], ")\\");
83 i += (int)sz;

85 if (’\0’ == start[i])
86 return(-1);
87 else if (’\\’ != start[i])
88 continue;

90 cp = &start[++i];
91 if (ESCAPE_ERROR == mandoc_escape(&cp, NULL, NULL))
92 return(-1);
93 i += cp - &start[i];
94 }

96 /* Read past the terminating ’)’. */
97 return(++i);
98 }

100 enum mandoc_esc
101 mandoc_escape(const char **end, const char **start, int *sz)
102 {
103 char c, term, numeric;
104 int i, lim, ssz, rlim;
105 const char *cp, *rstart;
106 enum mandoc_esc gly;

new/usr/src/cmd/mandoc/mandoc.c 3

108 cp = *end;
109 rstart = cp;
110 if (start)
111 *start = rstart;
112 i = lim = 0;
66 gly = ESCAPE_ERROR;
67 *start = ++*end;
68 *sz = 0;
69 term = ’\0’;
114 term = numeric = ’\0’;

71 switch ((*start)[-1]) {
116 switch ((c = cp[i++])) {
72 /*
73 * First the glyphs. There are several different forms of
74 * these, but each eventually returns a substring of the glyph
75 * name.
76 */
77 case (’(’):
78 gly = ESCAPE_SPECIAL;
79 *sz = 2;
124 lim = 2;
80 break;
81 case (’[’):
82 gly = ESCAPE_SPECIAL;
83 /*
84 * Unicode escapes are defined in groff as \[uXXXX] to
85 * \[u10FFFF], where the contained value must be a valid
86 * Unicode codepoint. Here, however, only check whether
87 * it’s not a zero-width escape.
88 */
89 if (’u’ == (*start)[0] && ’]’ != (*start)[1])
134 if (’u’ == cp[i] && ’]’ != cp[i + 1])
90 gly = ESCAPE_UNICODE;
91 term = ’]’;
92 break;
93 case (’C’):
94 if (’\’’ != **start)
139 if (’\’’ != cp[i])
95 return(ESCAPE_ERROR);
96 *start = ++*end;
97 if (’u’ == (*start)[0] && ’\’’ != (*start)[1])
98 gly = ESCAPE_UNICODE;
99 else
100 gly = ESCAPE_SPECIAL;
101 term = ’\’’;
102 break;

104 /*
105 * Escapes taking no arguments at all.
106 */
107 case (’d’):
108 /* FALLTHROUGH */
109 case (’u’):
110 return(ESCAPE_IGNORE);

112 /*
113 * The \z escape is supposed to output the following
114 * character without advancing the cursor position.
115 * Since we are mostly dealing with terminal mode,
116 * let us just skip the next character.
117 */
118 case (’z’):
119 return(ESCAPE_SKIPCHAR);

121 /*

new/usr/src/cmd/mandoc/mandoc.c 4

122 * Handle all triggers matching \X(xy, \Xx, and \X[xxxx], where
123 * ’X’ is the trigger. These have opaque sub-strings.
124 */
125 case (’F’):
126 /* FALLTHROUGH */
127 case (’g’):
128 /* FALLTHROUGH */
129 case (’k’):
130 /* FALLTHROUGH */
131 case (’M’):
132 /* FALLTHROUGH */
133 case (’m’):
134 /* FALLTHROUGH */
135 case (’n’):
136 /* FALLTHROUGH */
137 case (’V’):
138 /* FALLTHROUGH */
139 case (’Y’):
140 gly = ESCAPE_IGNORE;
141 /* FALLTHROUGH */
142 case (’f’):
143 if (ESCAPE_ERROR == gly)
144 gly = ESCAPE_FONT;
145 switch (**start) {

170 rstart= &cp[i];
171 if (start)
172 *start = rstart;

174 switch (cp[i++]) {
146 case (’(’):
147 *start = ++*end;
148 *sz = 2;
176 lim = 2;
149 break;
150 case (’[’):
151 *start = ++*end;
152 term = ’]’;
153 break;
154 default:
155 *sz = 1;
182 lim = 1;
183 i--;
156 break;
157 }
158 break;

160 /*
161 * These escapes are of the form \X’Y’, where ’X’ is the trigger
162 * and ’Y’ is any string. These have opaque sub-strings.
163 */
164 case (’A’):
165 /* FALLTHROUGH */
166 case (’b’):
167 /* FALLTHROUGH */
168 case (’B’):
169 /* FALLTHROUGH */
170 case (’D’):
171 /* FALLTHROUGH */
172 case (’o’):
173 /* FALLTHROUGH */
174 case (’R’):
175 /* FALLTHROUGH */
176 case (’w’):
177 /* FALLTHROUGH */
178 case (’X’):

new/usr/src/cmd/mandoc/mandoc.c 5

179 /* FALLTHROUGH */
180 case (’Z’):
181 if (’\’’ != **start)
205 if (’\’’ != cp[i++])
182 return(ESCAPE_ERROR);
183 gly = ESCAPE_IGNORE;
184 *start = ++*end;
185 term = ’\’’;
186 break;

188 /*
189 * These escapes are of the form \X’N’, where ’X’ is the trigger
190 * and ’N’ resolves to a numerical expression.
191 */
215 case (’B’):
216 /* FALLTHROUGH */
192 case (’h’):
193 /* FALLTHROUGH */
194 case (’H’):
195 /* FALLTHROUGH */
196 case (’L’):
197 /* FALLTHROUGH */
198 case (’l’):
224 gly = ESCAPE_NUMBERED;
199 /* FALLTHROUGH */
200 case (’S’):
201 /* FALLTHROUGH */
202 case (’v’):
203 /* FALLTHROUGH */
230 case (’w’):
231 /* FALLTHROUGH */
204 case (’x’):
205 if (’\’’ != **start)
206 return(ESCAPE_ERROR);
233 if (ESCAPE_ERROR == gly)
207 gly = ESCAPE_IGNORE;
208 *start = ++*end;
209 term = ’\’’;
235 if (’\’’ != cp[i++])
236 return(ESCAPE_ERROR);
237 term = numeric = ’\’’;
210 break;

212 /*
213 * Special handling for the numbered character escape.
214 * XXX Do any other escapes need similar handling?
215 */
216 case (’N’):
217 if (’\0’ == **start)
245 if (’\0’ == cp[i])
218 return(ESCAPE_ERROR);
219 (*end)++;
220 if (isdigit((unsigned char)**start)) {
221 *sz = 1;
247 *end = &cp[++i];
248 if (isdigit((unsigned char)cp[i-1]))
222 return(ESCAPE_IGNORE);
223 }
224 (*start)++;
225 while (isdigit((unsigned char)**end))
226 (*end)++;
227 *sz = *end - *start;
252 if (start)
253 *start = &cp[i];
254 if (sz)
255 *sz = *end - &cp[i];

new/usr/src/cmd/mandoc/mandoc.c 6

228 if (’\0’ != **end)
229 (*end)++;
230 return(ESCAPE_NUMBERED);

232 /*
233 * Sizes get a special category of their own.
234 */
235 case (’s’):
236 gly = ESCAPE_IGNORE;

266 rstart = &cp[i];
267 if (start)
268 *start = rstart;

238 /* See +/- counts as a sign. */
239 if (’+’ == **end || ’-’ == **end || ASCII_HYPH == **end)
240 (*end)++;
271 c = cp[i];
272 if (’+’ == c || ’-’ == c || ASCII_HYPH == c)
273 ++i;

242 switch (**end) {
275 switch (cp[i++]) {
243 case (’(’):
244 *start = ++*end;
245 *sz = 2;
277 lim = 2;
246 break;
247 case (’[’):
248 *start = ++*end;
249 term = ’]’;
280 term = numeric = ’]’;
250 break;
251 case (’\’’):
252 *start = ++*end;
253 term = ’\’’;
283 term = numeric = ’\’’;
254 break;
255 default:
256 *sz = 1;
286 lim = 1;
287 i--;
257 break;
258 }

291 /* See +/- counts as a sign. */
292 c = cp[i];
293 if (’+’ == c || ’-’ == c || ASCII_HYPH == c)
294 ++i;

260 break;

262 /*
263 * Anything else is assumed to be a glyph.
264 * In this case, pass back the character after the backslash.
265 */
266 default:
267 gly = ESCAPE_SPECIAL;
268 *start = --*end;
269 *sz = 1;
303 lim = 1;
304 i--;
270 break;
271 }

273 assert(ESCAPE_ERROR != gly);

new/usr/src/cmd/mandoc/mandoc.c 7

310 rstart = &cp[i];
311 if (start)
312 *start = rstart;

275 /*
276 * Read up to the terminating character,
277 * paying attention to nested escapes.
315 * If a terminating block has been specified, we need to
316 * handle the case of recursion, which could have their
317 * own terminating blocks that mess up our parse. This, by the
318 * way, means that the "start" and "size" values will be
319 * effectively meaningless.
278 */

322 ssz = 0;
323 if (numeric && -1 == (ssz = numescape(&cp[i])))
324 return(ESCAPE_ERROR);

326 i += ssz;
327 rlim = -1;

329 /*
330 * We have a character terminator. Try to read up to that
331 * character. If we can’t (i.e., we hit the nil), then return
332 * an error; if we can, calculate our length, read past the
333 * terminating character, and exit.
334 */

280 if (’\0’ != term) {
281 while (**end != term) {
282 switch (**end) {
283 case (’\0’):
337 *end = strchr(&cp[i], term);
338 if (’\0’ == *end)
284 return(ESCAPE_ERROR);
285 case (’\\’):

341 rlim = *end - &cp[i];
342 if (sz)
343 *sz = rlim;
286 (*end)++;
287 if (ESCAPE_ERROR ==
288 mandoc_escape(end, NULL, NULL))
289 return(ESCAPE_ERROR);
290 break;
291 default:
292 (*end)++;
293 break;
345 goto out;
294 }
295 }
296 *sz = (*end)++ - *start;
297 } else {
298 assert(*sz > 0);
299 if ((size_t)*sz > strlen(*start))

348 assert(lim > 0);

350 /*
351 * We have a numeric limit. If the string is shorter than that,
352 * stop and return an error. Else adjust our endpoint, length,
353 * and return the current glyph.
354 */

356 if ((size_t)lim > strlen(&cp[i]))

new/usr/src/cmd/mandoc/mandoc.c 8

300 return(ESCAPE_ERROR);
301 *end += *sz;
302 }

359 rlim = lim;
360 if (sz)
361 *sz = rlim;

363 *end = &cp[i] + lim;

365 out:
366 assert(rlim >= 0 && rstart);

304 /* Run post-processors. */

306 switch (gly) {
307 case (ESCAPE_FONT):
308 if (2 == *sz) {
309 if (’C’ == **start) {
310 /*
311 * Treat constant-width font modes
312 * just like regular font modes.
373 * Pretend that the constant-width font modes are the
374 * same as the regular font modes.
313 */
314 (*start)++;
315 (*sz)--;
316 } else {
317 if (’B’ == (*start)[0] && ’I’ == (*start)[1])
318 gly = ESCAPE_FONTBI;
376 if (2 == rlim && ’C’ == *rstart)
377 rstart++;
378 else if (1 != rlim)
319 break;
320 }
321 } else if (1 != *sz)
322 break;

324 switch (**start) {
381 switch (*rstart) {
325 case (’3’):
326 /* FALLTHROUGH */
327 case (’B’):
328 gly = ESCAPE_FONTBOLD;
329 break;
330 case (’2’):
331 /* FALLTHROUGH */
332 case (’I’):
333 gly = ESCAPE_FONTITALIC;
334 break;
335 case (’P’):
336 gly = ESCAPE_FONTPREV;
337 break;
338 case (’1’):
339 /* FALLTHROUGH */
340 case (’R’):
341 gly = ESCAPE_FONTROMAN;
342 break;
343 }
344 break;
345 case (ESCAPE_SPECIAL):
346 if (1 == *sz && ’c’ == **start)
403 if (1 != rlim)
404 break;
405 if (’c’ == *rstart)
347 gly = ESCAPE_NOSPACE;

new/usr/src/cmd/mandoc/mandoc.c 9

348 break;
349 default:
350 break;
351 }

353 return(gly);
354 }

______unchanged_portion_omitted_

424 /*
425 * Parse a quoted or unquoted roff-style request or macro argument.
426 * Return a pointer to the parsed argument, which is either the original
427 * pointer or advanced by one byte in case the argument is quoted.
428 * NUL-terminate the argument in place.
487 * Null-terminate the argument in place.
429 * Collapse pairs of quotes inside quoted arguments.
430 * Advance the argument pointer to the next argument,
431 * or to the NUL byte terminating the argument line.
490 * or to the null byte terminating the argument line.
432 */
433 char *
434 mandoc_getarg(struct mparse *parse, char **cpp, int ln, int *pos)
435 {
436 char *start, *cp;
437 int quoted, pairs, white;

439 /* Quoting can only start with a new word. */
440 start = *cpp;
441 quoted = 0;
442 if (’"’ == *start) {
443 quoted = 1;
444 start++;
445 }

447 pairs = 0;
448 white = 0;
449 for (cp = start; ’\0’ != *cp; cp++) {

451 /*
452 * Move the following text left
453 * after quoted quotes and after "\\" and "\t".
454 */
509 /* Move left after quoted quotes and escaped backslashes. */
455 if (pairs)
456 cp[-pairs] = cp[0];

458 if (’\\’ == cp[0]) {
459 /*
460 * In copy mode, translate double to single
461 * backslashes and backslash-t to literal tabs.
462 */
463 switch (cp[1]) {
464 case (’t’):
465 cp[0] = ’\t’;
466 /* FALLTHROUGH */
467 case (’\\’):
513 if (’\\’ == cp[1]) {
514 /* Poor man’s copy mode. */
468 pairs++;
469 cp++;
470 break;
471 case (’ ’):
517 } else if (0 == quoted && ’ ’ == cp[1])
472 /* Skip escaped blanks. */
473 if (0 == quoted)
474 cp++;

new/usr/src/cmd/mandoc/mandoc.c 10

475 break;
476 default:
477 break;
478 }
479 } else if (0 == quoted) {
480 if (’ ’ == cp[0]) {
481 /* Unescaped blanks end unquoted args. */
482 white = 1;
483 break;
484 }
485 } else if (’"’ == cp[0]) {
486 if (’"’ == cp[1]) {
487 /* Quoted quotes collapse. */
488 pairs++;
489 cp++;
490 } else {
491 /* Unquoted quotes end quoted args. */
492 quoted = 2;
493 break;
494 }
495 }
496 }

498 /* Quoted argument without a closing quote. */
499 if (1 == quoted)
500 mandoc_msg(MANDOCERR_BADQUOTE, parse, ln, *pos, NULL);

502 /* NUL-terminate this argument and move to the next one. */
543 /* Null-terminate this argument and move to the next one. */
503 if (pairs)
504 cp[-pairs] = ’\0’;
505 if (’\0’ != *cp) {
506 *cp++ = ’\0’;
507 while (’ ’ == *cp)
508 cp++;
509 }
510 *pos += (int)(cp - start) + (quoted ? 1 : 0);
511 *cpp = cp;

513 if (’\0’ == *cp && (white || ’ ’ == cp[-1]))
514 mandoc_msg(MANDOCERR_EOLNSPACE, parse, ln, *pos, NULL);

516 return(start);
517 }

______unchanged_portion_omitted_

680 /*
681 * Find out whether a line is a macro line or not. If it is, adjust the
682 * current position and return one; if it isn’t, return zero and don’t
683 * change the current position.
684 */
685 int
686 mandoc_getcontrol(const char *cp, int *ppos)
687 {
688 int pos;

690 pos = *ppos;

692 if (’\\’ == cp[pos] && ’.’ == cp[pos + 1])
693 pos += 2;
694 else if (’.’ == cp[pos] || ’\’’ == cp[pos])
695 pos++;
696 else
697 return(0);

699 while (’ ’ == cp[pos] || ’\t’ == cp[pos])

new/usr/src/cmd/mandoc/mandoc.c 11

700 pos++;

702 *ppos = pos;
703 return(1);
704 }

639 /*
640 * Convert a string to a long that may not be <0.
641 * If the string is invalid, or is less than 0, return -1.
642 */
643 int
644 mandoc_strntoi(const char *p, size_t sz, int base)
645 {
646 char buf[32];
647 char *ep;
648 long v;

650 if (sz > 31)
651 return(-1);

653 memcpy(buf, p, sz);
654 buf[(int)sz] = ’\0’;

656 errno = 0;
657 v = strtol(buf, &ep, base);

659 if (buf[0] == ’\0’ || *ep != ’\0’)
660 return(-1);

662 if (v > INT_MAX)
663 v = INT_MAX;
664 if (v < INT_MIN)
665 v = INT_MIN;

667 return((int)v);
668 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/mandoc.h 1

**
 14191 Wed Jul 30 20:55:09 2014
new/usr/src/cmd/mandoc/mandoc.h
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: mandoc.h,v 1.112 2013/12/30 18:30:32 schwarze Exp $ */
1 /* $Id: mandoc.h,v 1.99 2012/02/16 20:51:31 joerg Exp $ */
2 /*
3 * Copyright (c) 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2012, 2013 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifndef MANDOC_H
19 #define MANDOC_H

21 #define ASCII_NBRSP 31 /* non-breaking space */
22 #define ASCII_HYPH 30 /* breakable hyphen */

24 /*
25 * Status level. This refers to both internal status (i.e., whilst
26 * running, when warnings/errors are reported) and an indicator of a
27 * threshold of when to halt (when said internal state exceeds the
28 * threshold).
29 */
30 enum mandoclevel {
31 MANDOCLEVEL_OK = 0,
32 MANDOCLEVEL_RESERVED,
33 MANDOCLEVEL_WARNING, /* warnings: syntax, whitespace, etc. */
34 MANDOCLEVEL_ERROR, /* input has been thrown away */
35 MANDOCLEVEL_FATAL, /* input is borked */
36 MANDOCLEVEL_BADARG, /* bad argument in invocation */
37 MANDOCLEVEL_SYSERR, /* system error */
38 MANDOCLEVEL_MAX
39 };

41 /*
42 * All possible things that can go wrong within a parse, be it libroff,
43 * libmdoc, or libman.
44 */
45 enum mandocerr {
46 MANDOCERR_OK,

48 MANDOCERR_WARNING, /* ===== start of warnings ===== */

50 /* related to the prologue */
51 MANDOCERR_NOTITLE, /* no title in document */
52 MANDOCERR_UPPERCASE, /* document title should be all caps */
53 MANDOCERR_BADMSEC, /* unknown manual section */
54 MANDOCERR_BADVOLARCH, /* unknown manual volume or arch */
55 MANDOCERR_NODATE, /* date missing, using today’s date */
56 MANDOCERR_BADDATE, /* cannot parse date, using it verbatim */
57 MANDOCERR_PROLOGOOO, /* prologue macros out of order */
58 MANDOCERR_PROLOGREP, /* duplicate prologue macro */

new/usr/src/cmd/mandoc/mandoc.h 2

59 MANDOCERR_BADPROLOG, /* macro not allowed in prologue */
60 MANDOCERR_BADBODY, /* macro not allowed in body */

62 /* related to document structure */
63 MANDOCERR_SO, /* .so is fragile, better use ln(1) */
64 MANDOCERR_NAMESECFIRST, /* NAME section must come first */
65 MANDOCERR_BADNAMESEC, /* bad NAME section contents */
64 MANDOCERR_NONAME, /* manual name not yet set */
66 MANDOCERR_SECOOO, /* sections out of conventional order */
67 MANDOCERR_SECREP, /* duplicate section name */
68 MANDOCERR_SECMSEC, /* section header suited to sections ... */
67 MANDOCERR_SECMSEC, /* section not in conventional manual section */

70 /* related to macros and nesting */
71 MANDOCERR_MACROOBS, /* skipping obsolete macro */
72 MANDOCERR_IGNPAR, /* skipping paragraph macro */
73 MANDOCERR_MOVEPAR, /* moving paragraph macro out of list */
74 MANDOCERR_IGNNS, /* skipping no-space macro */
75 MANDOCERR_SCOPENEST, /* blocks badly nested */
76 MANDOCERR_CHILD, /* child violates parent syntax */
77 MANDOCERR_NESTEDDISP, /* nested displays are not portable */
78 MANDOCERR_SCOPEREP, /* already in literal mode */
79 MANDOCERR_LINESCOPE, /* line scope broken */

81 /* related to missing macro arguments */
82 MANDOCERR_MACROEMPTY, /* skipping empty macro */
83 MANDOCERR_ARGCWARN, /* argument count wrong */
84 MANDOCERR_DISPTYPE, /* missing display type */
85 MANDOCERR_LISTFIRST, /* list type must come first */
86 MANDOCERR_NOWIDTHARG, /* tag lists require a width argument */
87 MANDOCERR_FONTTYPE, /* missing font type */
88 MANDOCERR_WNOSCOPE, /* skipping end of block that is not open */

90 /* related to bad macro arguments */
91 MANDOCERR_IGNARGV, /* skipping argument */
92 MANDOCERR_ARGVREP, /* duplicate argument */
93 MANDOCERR_DISPREP, /* duplicate display type */
94 MANDOCERR_LISTREP, /* duplicate list type */
95 MANDOCERR_BADATT, /* unknown AT&T UNIX version */
96 MANDOCERR_BADBOOL, /* bad Boolean value */
97 MANDOCERR_BADFONT, /* unknown font */
98 MANDOCERR_BADSTANDARD, /* unknown standard specifier */
99 MANDOCERR_BADWIDTH, /* bad width argument */

101 /* related to plain text */
102 MANDOCERR_NOBLANKLN, /* blank line in non-literal context */
103 MANDOCERR_BADTAB, /* tab in non-literal context */
104 MANDOCERR_EOLNSPACE, /* end of line whitespace */
105 MANDOCERR_BADCOMMENT, /* bad comment style */
106 MANDOCERR_BADESCAPE, /* unknown escape sequence */
107 MANDOCERR_BADQUOTE, /* unterminated quoted string */

109 /* related to equations */
110 MANDOCERR_EQNQUOTE, /* unexpected literal in equation */

112 MANDOCERR_ERROR, /* ===== start of errors ===== */

114 /* related to equations */
115 MANDOCERR_EQNNSCOPE, /* unexpected equation scope closure*/
116 MANDOCERR_EQNSCOPE, /* equation scope open on exit */
117 MANDOCERR_EQNBADSCOPE, /* overlapping equation scopes */
118 MANDOCERR_EQNEOF, /* unexpected end of equation */
119 MANDOCERR_EQNSYNT, /* equation syntax error */

121 /* related to tables */
122 MANDOCERR_TBL, /* bad table syntax */

new/usr/src/cmd/mandoc/mandoc.h 3

123 MANDOCERR_TBLOPT, /* bad table option */
124 MANDOCERR_TBLLAYOUT, /* bad table layout */
125 MANDOCERR_TBLNOLAYOUT, /* no table layout cells specified */
126 MANDOCERR_TBLNODATA, /* no table data cells specified */
127 MANDOCERR_TBLIGNDATA, /* ignore data in cell */
128 MANDOCERR_TBLBLOCK, /* data block still open */
129 MANDOCERR_TBLEXTRADAT, /* ignoring extra data cells */

131 MANDOCERR_ROFFLOOP, /* input stack limit exceeded, infinite loop? */
132 MANDOCERR_BADCHAR, /* skipping bad character */
133 MANDOCERR_NAMESC, /* escaped character not allowed in a name */
134 MANDOCERR_NONAME, /* manual name not yet set */
135 MANDOCERR_NOTEXT, /* skipping text before the first section header */
136 MANDOCERR_MACRO, /* skipping unknown macro */
137 MANDOCERR_REQUEST, /* NOT IMPLEMENTED: skipping request */
138 MANDOCERR_ARGCOUNT, /* argument count wrong */
139 MANDOCERR_STRAYTA, /* skipping column outside column list */
140 MANDOCERR_NOSCOPE, /* skipping end of block that is not open */
141 MANDOCERR_SCOPEBROKEN, /* missing end of block */
142 MANDOCERR_SCOPEEXIT, /* scope open on exit */
143 MANDOCERR_UNAME, /* uname(3) system call failed */
144 /* FIXME: merge following with MANDOCERR_ARGCOUNT */
145 MANDOCERR_NOARGS, /* macro requires line argument(s) */
146 MANDOCERR_NOBODY, /* macro requires body argument(s) */
147 MANDOCERR_NOARGV, /* macro requires argument(s) */
148 MANDOCERR_NUMERIC, /* request requires a numeric argument */
149 MANDOCERR_LISTTYPE, /* missing list type */
150 MANDOCERR_ARGSLOST, /* line argument(s) will be lost */
151 MANDOCERR_BODYLOST, /* body argument(s) will be lost */

153 MANDOCERR_FATAL, /* ===== start of fatal errors ===== */

155 MANDOCERR_NOTMANUAL, /* manual isn’t really a manual */
156 MANDOCERR_COLUMNS, /* column syntax is inconsistent */
157 MANDOCERR_BADDISP, /* NOT IMPLEMENTED: .Bd -file */
158 MANDOCERR_SYNTARGVCOUNT, /* argument count wrong, violates syntax */
159 MANDOCERR_SYNTCHILD, /* child violates parent syntax */
160 MANDOCERR_SYNTARGCOUNT, /* argument count wrong, violates syntax */
161 MANDOCERR_SOPATH, /* NOT IMPLEMENTED: .so with absolute path or ".." */
162 MANDOCERR_NODOCBODY, /* no document body */
163 MANDOCERR_NODOCPROLOG, /* no document prologue */
164 MANDOCERR_MEM, /* static buffer exhausted */
165 MANDOCERR_MAX
166 };

168 struct tbl_opts {
163 struct tbl {
169 char tab; /* cell-separator */
170 char decimal; /* decimal point */
171 int linesize;
172 int opts;
173 #define TBL_OPT_CENTRE (1 << 0)
174 #define TBL_OPT_EXPAND (1 << 1)
175 #define TBL_OPT_BOX (1 << 2)
176 #define TBL_OPT_DBOX (1 << 3)
177 #define TBL_OPT_ALLBOX (1 << 4)
178 #define TBL_OPT_NOKEEP (1 << 5)
179 #define TBL_OPT_NOSPACE (1 << 6)
180 int cols; /* number of columns */
181 };

178 enum tbl_headt {
179 TBL_HEAD_DATA, /* plug in data from tbl_dat */
180 TBL_HEAD_VERT, /* vertical spacer */
181 TBL_HEAD_DVERT /* double-vertical spacer */
182 };

new/usr/src/cmd/mandoc/mandoc.h 4

183 /*
184 * The head of a table specifies all of its columns. When formatting a
185 * tbl_span, iterate over these and plug in data from the tbl_span when
186 * appropriate, using tbl_cell as a guide to placement.
187 */
188 struct tbl_head {
190 enum tbl_headt pos;
189 int ident; /* 0 <= unique id < cols */
190 int vert; /* width of preceding vertical line */
191 struct tbl_head *next;
192 struct tbl_head *prev;
193 };

195 enum tbl_cellt {
196 TBL_CELL_CENTRE, /* c, C */
197 TBL_CELL_RIGHT, /* r, R */
198 TBL_CELL_LEFT, /* l, L */
199 TBL_CELL_NUMBER, /* n, N */
200 TBL_CELL_SPAN, /* s, S */
201 TBL_CELL_LONG, /* a, A */
202 TBL_CELL_DOWN, /* ^ */
203 TBL_CELL_HORIZ, /* _, - */
204 TBL_CELL_DHORIZ, /* = */
206 TBL_CELL_VERT, /* | */
207 TBL_CELL_DVERT, /* || */
205 TBL_CELL_MAX
206 };

208 /*
209 * A cell in a layout row.
210 */
211 struct tbl_cell {
212 struct tbl_cell *next;
213 int vert; /* width of preceding vertical line */
214 enum tbl_cellt pos;
215 size_t spacing;
216 int flags;
217 #define TBL_CELL_TALIGN (1 << 0) /* t, T */
218 #define TBL_CELL_BALIGN (1 << 1) /* d, D */
219 #define TBL_CELL_BOLD (1 << 2) /* fB, B, b */
220 #define TBL_CELL_ITALIC (1 << 3) /* fI, I, i */
221 #define TBL_CELL_EQUAL (1 << 4) /* e, E */
222 #define TBL_CELL_UP (1 << 5) /* u, U */
223 #define TBL_CELL_WIGN (1 << 6) /* z, Z */
224 struct tbl_head *head;
225 };

______unchanged_portion_omitted_

263 /*
264 * A row of data in a table.
265 */
266 struct tbl_span {
267 struct tbl_opts *opts;
269 struct tbl *tbl;
268 struct tbl_head *head;
269 struct tbl_row *layout; /* layout row */
270 struct tbl_dat *first;
271 struct tbl_dat *last;
272 int line; /* parse line */
273 int flags;
274 #define TBL_SPAN_FIRST (1 << 0)
275 #define TBL_SPAN_LAST (1 << 1)
276 enum tbl_spant pos;
277 struct tbl_span *next;
278 };

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/mandoc.h 5

376 enum mandoc_esc {
377 ESCAPE_ERROR = 0, /* bail! unparsable escape */
378 ESCAPE_IGNORE, /* escape to be ignored */
379 ESCAPE_SPECIAL, /* a regular special character */
380 ESCAPE_FONT, /* a generic font mode */
381 ESCAPE_FONTBOLD, /* bold font mode */
382 ESCAPE_FONTITALIC, /* italic font mode */
383 ESCAPE_FONTBI, /* bold italic font mode */
384 ESCAPE_FONTROMAN, /* roman font mode */
385 ESCAPE_FONTPREV, /* previous font mode */
386 ESCAPE_NUMBERED, /* a numbered glyph */
387 ESCAPE_UNICODE, /* a unicode codepoint */
388 ESCAPE_NOSPACE, /* suppress space if the last on a line */
389 ESCAPE_SKIPCHAR /* skip the next character */
389 ESCAPE_NOSPACE /* suppress space if the last on a line */
390 };

392 typedef void (*mandocmsg)(enum mandocerr, enum mandoclevel,
393 const char *, int, int, const char *);

395 struct mparse;
396 struct mchars;
397 struct mdoc;
398 struct man;

400 __BEGIN_DECLS

402 void *mandoc_calloc(size_t, size_t);
403 enum mandoc_esc mandoc_escape(const char **, const char **, int *);
404 void *mandoc_malloc(size_t);
405 void *mandoc_realloc(void *, size_t);
406 char *mandoc_strdup(const char *);
407 char *mandoc_strndup(const char *, size_t);
408 struct mchars *mchars_alloc(void);
409 void mchars_free(struct mchars *);
410 char mchars_num2char(const char *, size_t);
411 int mchars_num2uc(const char *, size_t);
412 int mchars_spec2cp(const struct mchars *,
413 const char *, size_t);
414 const char *mchars_spec2str(const struct mchars *,
415 const char *, size_t, size_t *);
416 struct mparse *mparse_alloc(enum mparset, enum mandoclevel,
417 mandocmsg, void *, char *);
416 struct mparse *mparse_alloc(enum mparset,
417 enum mandoclevel, mandocmsg, void *);
418 void mparse_free(struct mparse *);
419 void mparse_keep(struct mparse *);
420 enum mandoclevel mparse_readfd(struct mparse *, int, const char *);
421 enum mandoclevel mparse_readmem(struct mparse *, const void *, size_t,
422 const char *);
423 void mparse_reset(struct mparse *);
424 void mparse_result(struct mparse *,
425 struct mdoc **, struct man **);
426 const char *mparse_getkeep(const struct mparse *);
427 const char *mparse_strerror(enum mandocerr);
428 const char *mparse_strlevel(enum mandoclevel);

430 __END_DECLS

432 #endif /*!MANDOC_H*/

new/usr/src/cmd/mandoc/mdoc.c 1

**
 21593 Wed Jul 30 20:55:09 2014
new/usr/src/cmd/mandoc/mdoc.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: mdoc.c,v 1.206 2013/12/24 19:11:46 schwarze Exp $ */
1 /* $Id: mdoc.c,v 1.196 2011/09/30 00:13:28 schwarze Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2010, 2012, 2013 Ingo Schwarze <schwarze@openbsd.org>
4 * Copyright (c) 2010 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <sys/types.h>

24 #include <assert.h>
25 #include <stdarg.h>
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <time.h>

31 #include "mdoc.h"
32 #include "mandoc.h"
33 #include "libmdoc.h"
34 #include "libmandoc.h"

36 const char *const __mdoc_macronames[MDOC_MAX] = {
37 "Ap", "Dd", "Dt", "Os",
38 "Sh", "Ss", "Pp", "D1",
39 "Dl", "Bd", "Ed", "Bl",
40 "El", "It", "Ad", "An",
41 "Ar", "Cd", "Cm", "Dv",
42 "Er", "Ev", "Ex", "Fa",
43 "Fd", "Fl", "Fn", "Ft",
44 "Ic", "In", "Li", "Nd",
45 "Nm", "Op", "Ot", "Pa",
46 "Rv", "St", "Va", "Vt",
47 /* LINTED */
48 "Xr", "%A", "%B", "%D",
49 /* LINTED */
50 "%I", "%J", "%N", "%O",
51 /* LINTED */
52 "%P", "%R", "%T", "%V",
53 "Ac", "Ao", "Aq", "At",
54 "Bc", "Bf", "Bo", "Bq",
55 "Bsx", "Bx", "Db", "Dc",
56 "Do", "Dq", "Ec", "Ef",
57 "Em", "Eo", "Fx", "Ms",

new/usr/src/cmd/mandoc/mdoc.c 2

58 "No", "Ns", "Nx", "Ox",
59 "Pc", "Pf", "Po", "Pq",
60 "Qc", "Ql", "Qo", "Qq",
61 "Re", "Rs", "Sc", "So",
62 "Sq", "Sm", "Sx", "Sy",
63 "Tn", "Ux", "Xc", "Xo",
64 "Fo", "Fc", "Oo", "Oc",
65 "Bk", "Ek", "Bt", "Hf",
66 "Fr", "Ud", "Lb", "Lp",
67 "Lk", "Mt", "Brq", "Bro",
68 /* LINTED */
69 "Brc", "%C", "Es", "En",
70 /* LINTED */
71 "Dx", "%Q", "br", "sp",
72 /* LINTED */
73 "%U", "Ta"
74 };

76 const char *const __mdoc_argnames[MDOC_ARG_MAX] = {
77 "split", "nosplit", "ragged",
78 "unfilled", "literal", "file",
79 "offset", "bullet", "dash",
80 "hyphen", "item", "enum",
81 "tag", "diag", "hang",
82 "ohang", "inset", "column",
83 "width", "compact", "std",
84 "filled", "words", "emphasis",
85 "symbolic", "nested", "centered"
86 };

88 const char * const *mdoc_macronames = __mdoc_macronames;
89 const char * const *mdoc_argnames = __mdoc_argnames;

91 static void mdoc_node_free(struct mdoc_node *);
92 static void mdoc_node_unlink(struct mdoc *,
93 struct mdoc_node *);
94 static void mdoc_free1(struct mdoc *);
95 static void mdoc_alloc1(struct mdoc *);
96 static struct mdoc_node *node_alloc(struct mdoc *, int, int,
97 enum mdoct, enum mdoc_type);
98 static int node_append(struct mdoc *,
99 struct mdoc_node *);
100 #if 0
101 static int mdoc_preptext(struct mdoc *, int, char *, int);
102 #endif
103 static int mdoc_ptext(struct mdoc *, int, char *, int);
104 static int mdoc_pmacro(struct mdoc *, int, char *, int);

106 const struct mdoc_node *
107 mdoc_node(const struct mdoc *mdoc)
107 mdoc_node(const struct mdoc *m)
108 {

110 assert(! (MDOC_HALT & mdoc->flags));
111 return(mdoc->first);
110 assert(! (MDOC_HALT & m->flags));
111 return(m->first);
112 }

115 const struct mdoc_meta *
116 mdoc_meta(const struct mdoc *mdoc)
116 mdoc_meta(const struct mdoc *m)
117 {

119 assert(! (MDOC_HALT & mdoc->flags));

new/usr/src/cmd/mandoc/mdoc.c 3

120 return(&mdoc->meta);
119 assert(! (MDOC_HALT & m->flags));
120 return(&m->meta);
121 }

______unchanged_portion_omitted_

196 /*
197 * Allocate volatile and non-volatile parse resources.
198 */
199 struct mdoc *
200 mdoc_alloc(struct roff *roff, struct mparse *parse, char *defos)
200 mdoc_alloc(struct roff *roff, struct mparse *parse)
201 {
202 struct mdoc *p;

204 p = mandoc_calloc(1, sizeof(struct mdoc));

206 p->parse = parse;
207 p->defos = defos;
208 p->roff = roff;

210 mdoc_hash_init();
211 mdoc_alloc1(p);
212 return(p);
213 }

216 /*
217 * Climb back up the parse tree, validating open scopes. Mostly calls
218 * through to macro_end() in macro.c.
219 */
220 int
221 mdoc_endparse(struct mdoc *mdoc)
220 mdoc_endparse(struct mdoc *m)
222 {

224 assert(! (MDOC_HALT & mdoc->flags));
225 if (mdoc_macroend(mdoc))
223 assert(! (MDOC_HALT & m->flags));
224 if (mdoc_macroend(m))
226 return(1);
227 mdoc->flags |= MDOC_HALT;
226 m->flags |= MDOC_HALT;
228 return(0);
229 }

231 int
232 mdoc_addeqn(struct mdoc *mdoc, const struct eqn *ep)
231 mdoc_addeqn(struct mdoc *m, const struct eqn *ep)
233 {
234 struct mdoc_node *n;

236 assert(! (MDOC_HALT & mdoc->flags));
235 assert(! (MDOC_HALT & m->flags));

238 /* No text before an initial macro. */

240 if (SEC_NONE == mdoc->lastnamed) {
241 mdoc_pmsg(mdoc, ep->ln, ep->pos, MANDOCERR_NOTEXT);
239 if (SEC_NONE == m->lastnamed) {
240 mdoc_pmsg(m, ep->ln, ep->pos, MANDOCERR_NOTEXT);
242 return(1);
243 }

245 n = node_alloc(mdoc, ep->ln, ep->pos, MDOC_MAX, MDOC_EQN);

new/usr/src/cmd/mandoc/mdoc.c 4

244 n = node_alloc(m, ep->ln, ep->pos, MDOC_MAX, MDOC_EQN);
246 n->eqn = ep;

248 if (! node_append(mdoc, n))
247 if (! node_append(m, n))
249 return(0);

251 mdoc->next = MDOC_NEXT_SIBLING;
250 m->next = MDOC_NEXT_SIBLING;
252 return(1);
253 }

255 int
256 mdoc_addspan(struct mdoc *mdoc, const struct tbl_span *sp)
255 mdoc_addspan(struct mdoc *m, const struct tbl_span *sp)
257 {
258 struct mdoc_node *n;

260 assert(! (MDOC_HALT & mdoc->flags));
259 assert(! (MDOC_HALT & m->flags));

262 /* No text before an initial macro. */

264 if (SEC_NONE == mdoc->lastnamed) {
265 mdoc_pmsg(mdoc, sp->line, 0, MANDOCERR_NOTEXT);
263 if (SEC_NONE == m->lastnamed) {
264 mdoc_pmsg(m, sp->line, 0, MANDOCERR_NOTEXT);
266 return(1);
267 }

269 n = node_alloc(mdoc, sp->line, 0, MDOC_MAX, MDOC_TBL);
268 n = node_alloc(m, sp->line, 0, MDOC_MAX, MDOC_TBL);
270 n->span = sp;

272 if (! node_append(mdoc, n))
271 if (! node_append(m, n))
273 return(0);

275 mdoc->next = MDOC_NEXT_SIBLING;
274 m->next = MDOC_NEXT_SIBLING;
276 return(1);
277 }

280 /*
281 * Main parse routine. Parses a single line -- really just hands off to
282 * the macro (mdoc_pmacro()) or text parser (mdoc_ptext()).
283 */
284 int
285 mdoc_parseln(struct mdoc *mdoc, int ln, char *buf, int offs)
284 mdoc_parseln(struct mdoc *m, int ln, char *buf, int offs)
286 {

288 assert(! (MDOC_HALT & mdoc->flags));
287 assert(! (MDOC_HALT & m->flags));

290 mdoc->flags |= MDOC_NEWLINE;
289 m->flags |= MDOC_NEWLINE;

292 /*
293 * Let the roff nS register switch SYNOPSIS mode early,
294 * such that the parser knows at all times
295 * whether this mode is on or off.
296 * Note that this mode is also switched by the Sh macro.
297 */
298 if (roff_getreg(mdoc->roff, "nS"))

new/usr/src/cmd/mandoc/mdoc.c 5

299 mdoc->flags |= MDOC_SYNOPSIS;
297 if (roff_regisset(m->roff, REG_nS)) {
298 if (roff_regget(m->roff, REG_nS))
299 m->flags |= MDOC_SYNOPSIS;
300 else
301 mdoc->flags &= ~MDOC_SYNOPSIS;
301 m->flags &= ~MDOC_SYNOPSIS;
302 }

303 return(roff_getcontrol(mdoc->roff, buf, &offs) ?
304 mdoc_pmacro(mdoc, ln, buf, offs) :
305 mdoc_ptext(mdoc, ln, buf, offs));
304 return(mandoc_getcontrol(buf, &offs) ?
305 mdoc_pmacro(m, ln, buf, offs) :
306 mdoc_ptext(m, ln, buf, offs));
306 }

308 int
309 mdoc_macro(MACRO_PROT_ARGS)
310 {
311 assert(tok < MDOC_MAX);

313 /* If we’re in the body, deny prologue calls. */

315 if (MDOC_PROLOGUE & mdoc_macros[tok].flags &&
316 MDOC_PBODY & mdoc->flags) {
317 mdoc_pmsg(mdoc, line, ppos, MANDOCERR_BADBODY);
317 MDOC_PBODY & m->flags) {
318 mdoc_pmsg(m, line, ppos, MANDOCERR_BADBODY);
318 return(1);
319 }

321 /* If we’re in the prologue, deny "body" macros. */

323 if (! (MDOC_PROLOGUE & mdoc_macros[tok].flags) &&
324 ! (MDOC_PBODY & mdoc->flags)) {
325 mdoc_pmsg(mdoc, line, ppos, MANDOCERR_BADPROLOG);
326 if (NULL == mdoc->meta.msec)
327 mdoc->meta.msec = mandoc_strdup("1");
328 if (NULL == mdoc->meta.title)
329 mdoc->meta.title = mandoc_strdup("UNKNOWN");
330 if (NULL == mdoc->meta.vol)
331 mdoc->meta.vol = mandoc_strdup("LOCAL");
332 if (NULL == mdoc->meta.os)
333 mdoc->meta.os = mandoc_strdup("LOCAL");
334 if (NULL == mdoc->meta.date)
335 mdoc->meta.date = mandoc_normdate
336 (mdoc->parse, NULL, line, ppos);
337 mdoc->flags |= MDOC_PBODY;
325 ! (MDOC_PBODY & m->flags)) {
326 mdoc_pmsg(m, line, ppos, MANDOCERR_BADPROLOG);
327 if (NULL == m->meta.msec)
328 m->meta.msec = mandoc_strdup("1");
329 if (NULL == m->meta.title)
330 m->meta.title = mandoc_strdup("UNKNOWN");
331 if (NULL == m->meta.vol)
332 m->meta.vol = mandoc_strdup("LOCAL");
333 if (NULL == m->meta.os)
334 m->meta.os = mandoc_strdup("LOCAL");
335 if (NULL == m->meta.date)
336 m->meta.date = mandoc_normdate
337 (m->parse, NULL, line, ppos);
338 m->flags |= MDOC_PBODY;
338 }

340 return((*mdoc_macros[tok].fp)(mdoc, tok, line, ppos, pos, buf));

new/usr/src/cmd/mandoc/mdoc.c 6

341 return((*mdoc_macros[tok].fp)(m, tok, line, ppos, pos, buf));
341 }

344 static int
345 node_append(struct mdoc *mdoc, struct mdoc_node *p)
346 {

348 assert(mdoc->last);
349 assert(mdoc->first);
350 assert(MDOC_ROOT != p->type);

352 switch (mdoc->next) {
353 case (MDOC_NEXT_SIBLING):
354 mdoc->last->next = p;
355 p->prev = mdoc->last;
356 p->parent = mdoc->last->parent;
357 break;
358 case (MDOC_NEXT_CHILD):
359 mdoc->last->child = p;
360 p->parent = mdoc->last;
361 break;
362 default:
363 abort();
364 /* NOTREACHED */
365 }

367 p->parent->nchild++;

369 /*
370 * Copy over the normalised-data pointer of our parent. Not
371 * everybody has one, but copying a null pointer is fine.
372 */

374 switch (p->type) {
375 case (MDOC_BODY):
376 if (ENDBODY_NOT != p->end)
377 break;
378 /* FALLTHROUGH */
379 case (MDOC_TAIL):
380 /* FALLTHROUGH */
381 case (MDOC_HEAD):
382 p->norm = p->parent->norm;
383 break;
384 default:
385 break;
386 }

388 if (! mdoc_valid_pre(mdoc, p))
389 return(0);

391 switch (p->type) {
392 case (MDOC_HEAD):
393 assert(MDOC_BLOCK == p->parent->type);
394 p->parent->head = p;
395 break;
396 case (MDOC_TAIL):
397 assert(MDOC_BLOCK == p->parent->type);
398 p->parent->tail = p;
399 break;
400 case (MDOC_BODY):
401 if (p->end)
402 break;
403 assert(MDOC_BLOCK == p->parent->type);
404 p->parent->body = p;
405 break;

new/usr/src/cmd/mandoc/mdoc.c 7

406 default:
407 break;
408 }

410 mdoc->last = p;

412 switch (p->type) {
413 case (MDOC_TBL):
414 /* FALLTHROUGH */
415 case (MDOC_TEXT):
416 if (! mdoc_valid_post(mdoc))
417 return(0);
418 break;
419 default:
420 break;
421 }

423 return(1);
424 }

427 static struct mdoc_node *
428 node_alloc(struct mdoc *mdoc, int line, int pos,
427 node_alloc(struct mdoc *m, int line, int pos,
429 enum mdoct tok, enum mdoc_type type)
430 {
431 struct mdoc_node *p;

433 p = mandoc_calloc(1, sizeof(struct mdoc_node));
434 p->sec = mdoc->lastsec;
433 p->sec = m->lastsec;
435 p->line = line;
436 p->pos = pos;
437 p->lastline = line;
438 p->tok = tok;
439 p->type = type;

441 /* Flag analysis. */

443 if (MDOC_SYNOPSIS & mdoc->flags)
441 if (MDOC_SYNOPSIS & m->flags)
444 p->flags |= MDOC_SYNPRETTY;
445 else
446 p->flags &= ~MDOC_SYNPRETTY;
447 if (MDOC_NEWLINE & mdoc->flags)
445 if (MDOC_NEWLINE & m->flags)
448 p->flags |= MDOC_LINE;
449 mdoc->flags &= ~MDOC_NEWLINE;
447 m->flags &= ~MDOC_NEWLINE;

451 return(p);
452 }

455 int
456 mdoc_tail_alloc(struct mdoc *mdoc, int line, int pos, enum mdoct tok)
454 mdoc_tail_alloc(struct mdoc *m, int line, int pos, enum mdoct tok)
457 {
458 struct mdoc_node *p;

460 p = node_alloc(mdoc, line, pos, tok, MDOC_TAIL);
461 if (! node_append(mdoc, p))
458 p = node_alloc(m, line, pos, tok, MDOC_TAIL);
459 if (! node_append(m, p))
462 return(0);
463 mdoc->next = MDOC_NEXT_CHILD;

new/usr/src/cmd/mandoc/mdoc.c 8

461 m->next = MDOC_NEXT_CHILD;
464 return(1);
465 }

468 int
469 mdoc_head_alloc(struct mdoc *mdoc, int line, int pos, enum mdoct tok)
467 mdoc_head_alloc(struct mdoc *m, int line, int pos, enum mdoct tok)
470 {
471 struct mdoc_node *p;

473 assert(mdoc->first);
474 assert(mdoc->last);
471 assert(m->first);
472 assert(m->last);

476 p = node_alloc(mdoc, line, pos, tok, MDOC_HEAD);
477 if (! node_append(mdoc, p))
474 p = node_alloc(m, line, pos, tok, MDOC_HEAD);
475 if (! node_append(m, p))
478 return(0);
479 mdoc->next = MDOC_NEXT_CHILD;
477 m->next = MDOC_NEXT_CHILD;
480 return(1);
481 }

484 int
485 mdoc_body_alloc(struct mdoc *mdoc, int line, int pos, enum mdoct tok)
483 mdoc_body_alloc(struct mdoc *m, int line, int pos, enum mdoct tok)
486 {
487 struct mdoc_node *p;

489 p = node_alloc(mdoc, line, pos, tok, MDOC_BODY);
490 if (! node_append(mdoc, p))
487 p = node_alloc(m, line, pos, tok, MDOC_BODY);
488 if (! node_append(m, p))
491 return(0);
492 mdoc->next = MDOC_NEXT_CHILD;
490 m->next = MDOC_NEXT_CHILD;
493 return(1);
494 }

497 int
498 mdoc_endbody_alloc(struct mdoc *mdoc, int line, int pos, enum mdoct tok,
496 mdoc_endbody_alloc(struct mdoc *m, int line, int pos, enum mdoct tok,
499 struct mdoc_node *body, enum mdoc_endbody end)
500 {
501 struct mdoc_node *p;

503 p = node_alloc(mdoc, line, pos, tok, MDOC_BODY);
501 p = node_alloc(m, line, pos, tok, MDOC_BODY);
504 p->pending = body;
505 p->norm = body->norm;
506 p->end = end;
507 if (! node_append(mdoc, p))
504 if (! node_append(m, p))
508 return(0);
509 mdoc->next = MDOC_NEXT_SIBLING;
506 m->next = MDOC_NEXT_SIBLING;
510 return(1);
511 }

514 int

new/usr/src/cmd/mandoc/mdoc.c 9

515 mdoc_block_alloc(struct mdoc *mdoc, int line, int pos,
512 mdoc_block_alloc(struct mdoc *m, int line, int pos,
516 enum mdoct tok, struct mdoc_arg *args)
517 {
518 struct mdoc_node *p;

520 p = node_alloc(mdoc, line, pos, tok, MDOC_BLOCK);
517 p = node_alloc(m, line, pos, tok, MDOC_BLOCK);
521 p->args = args;
522 if (p->args)
523 (args->refcnt)++;

525 switch (tok) {
526 case (MDOC_Bd):
527 /* FALLTHROUGH */
528 case (MDOC_Bf):
529 /* FALLTHROUGH */
530 case (MDOC_Bl):
531 /* FALLTHROUGH */
532 case (MDOC_Rs):
533 p->norm = mandoc_calloc(1, sizeof(union mdoc_data));
534 break;
535 default:
536 break;
537 }

539 if (! node_append(mdoc, p))
536 if (! node_append(m, p))
540 return(0);
541 mdoc->next = MDOC_NEXT_CHILD;
538 m->next = MDOC_NEXT_CHILD;
542 return(1);
543 }

546 int
547 mdoc_elem_alloc(struct mdoc *mdoc, int line, int pos,
544 mdoc_elem_alloc(struct mdoc *m, int line, int pos,
548 enum mdoct tok, struct mdoc_arg *args)
549 {
550 struct mdoc_node *p;

552 p = node_alloc(mdoc, line, pos, tok, MDOC_ELEM);
549 p = node_alloc(m, line, pos, tok, MDOC_ELEM);
553 p->args = args;
554 if (p->args)
555 (args->refcnt)++;

557 switch (tok) {
558 case (MDOC_An):
559 p->norm = mandoc_calloc(1, sizeof(union mdoc_data));
560 break;
561 default:
562 break;
563 }

565 if (! node_append(mdoc, p))
562 if (! node_append(m, p))
566 return(0);
567 mdoc->next = MDOC_NEXT_CHILD;
564 m->next = MDOC_NEXT_CHILD;
568 return(1);
569 }

571 int
572 mdoc_word_alloc(struct mdoc *mdoc, int line, int pos, const char *p)

new/usr/src/cmd/mandoc/mdoc.c 10

569 mdoc_word_alloc(struct mdoc *m, int line, int pos, const char *p)
573 {
574 struct mdoc_node *n;

576 n = node_alloc(mdoc, line, pos, MDOC_MAX, MDOC_TEXT);
577 n->string = roff_strdup(mdoc->roff, p);
573 n = node_alloc(m, line, pos, MDOC_MAX, MDOC_TEXT);
574 n->string = roff_strdup(m->roff, p);

579 if (! node_append(mdoc, n))
576 if (! node_append(m, n))
580 return(0);

582 mdoc->next = MDOC_NEXT_SIBLING;
579 m->next = MDOC_NEXT_SIBLING;
583 return(1);
584 }

586 void
587 mdoc_word_append(struct mdoc *mdoc, const char *p)
588 {
589 struct mdoc_node *n;
590 char *addstr, *newstr;

592 n = mdoc->last;
593 addstr = roff_strdup(mdoc->roff, p);
594 if (-1 == asprintf(&newstr, "%s %s", n->string, addstr)) {
595 perror(NULL);
596 exit((int)MANDOCLEVEL_SYSERR);
597 }
598 free(addstr);
599 free(n->string);
600 n->string = newstr;
601 mdoc->next = MDOC_NEXT_SIBLING;
602 }

604 static void
605 mdoc_node_free(struct mdoc_node *p)
606 {

608 if (MDOC_BLOCK == p->type || MDOC_ELEM == p->type)
609 free(p->norm);
610 if (p->string)
611 free(p->string);
612 if (p->args)
613 mdoc_argv_free(p->args);
614 free(p);
615 }

618 static void
619 mdoc_node_unlink(struct mdoc *mdoc, struct mdoc_node *n)
599 mdoc_node_unlink(struct mdoc *m, struct mdoc_node *n)
620 {

622 /* Adjust siblings. */

624 if (n->prev)
625 n->prev->next = n->next;
626 if (n->next)
627 n->next->prev = n->prev;

629 /* Adjust parent. */

631 if (n->parent) {
632 n->parent->nchild--;

new/usr/src/cmd/mandoc/mdoc.c 11

633 if (n->parent->child == n)
634 n->parent->child = n->prev ? n->prev : n->next;
635 if (n->parent->last == n)
636 n->parent->last = n->prev ? n->prev : NULL;
637 }

639 /* Adjust parse point, if applicable. */

641 if (mdoc && mdoc->last == n) {
621 if (m && m->last == n) {
642 if (n->prev) {
643 mdoc->last = n->prev;
644 mdoc->next = MDOC_NEXT_SIBLING;
623 m->last = n->prev;
624 m->next = MDOC_NEXT_SIBLING;
645 } else {
646 mdoc->last = n->parent;
647 mdoc->next = MDOC_NEXT_CHILD;
626 m->last = n->parent;
627 m->next = MDOC_NEXT_CHILD;
648 }
649 }

651 if (mdoc && mdoc->first == n)
652 mdoc->first = NULL;
631 if (m && m->first == n)
632 m->first = NULL;
653 }

656 void
657 mdoc_node_delete(struct mdoc *mdoc, struct mdoc_node *p)
637 mdoc_node_delete(struct mdoc *m, struct mdoc_node *p)
658 {

660 while (p->child) {
661 assert(p->nchild);
662 mdoc_node_delete(mdoc, p->child);
642 mdoc_node_delete(m, p->child);
663 }
664 assert(0 == p->nchild);

666 mdoc_node_unlink(mdoc, p);
646 mdoc_node_unlink(m, p);
667 mdoc_node_free(p);
668 }

670 int
671 mdoc_node_relink(struct mdoc *mdoc, struct mdoc_node *p)
672 {

674 mdoc_node_unlink(mdoc, p);
675 return(node_append(mdoc, p));
676 }

678 #if 0
679 /*
680 * Pre-treat a text line.
681 * Text lines can consist of equations, which must be handled apart from
682 * the regular text.
683 * Thus, use this function to step through a line checking if it has any
684 * equations embedded in it.
685 * This must handle multiple equations AND equations that do not end at
686 * the end-of-line, i.e., will re-enter in the next roff parse.
687 */
688 static int

new/usr/src/cmd/mandoc/mdoc.c 12

689 mdoc_preptext(struct mdoc *mdoc, int line, char *buf, int offs)
661 mdoc_preptext(struct mdoc *m, int line, char *buf, int offs)
690 {
691 char *start, *end;
692 char delim;

694 while (’\0’ != buf[offs]) {
695 /* Mark starting position if eqn is set. */
696 start = NULL;
697 if (’\0’ != (delim = roff_eqndelim(mdoc->roff)))
669 if (’\0’ != (delim = roff_eqndelim(m->roff)))
698 if (NULL != (start = strchr(buf + offs, delim)))
699 *start++ = ’\0’;

701 /* Parse text as normal. */
702 if (! mdoc_ptext(mdoc, line, buf, offs))
674 if (! mdoc_ptext(m, line, buf, offs))
703 return(0);

705 /* Continue only if an equation exists. */
706 if (NULL == start)
707 break;

709 /* Read past the end of the equation. */
710 offs += start - (buf + offs);
711 assert(start == &buf[offs]);
712 if (NULL != (end = strchr(buf + offs, delim))) {
713 *end++ = ’\0’;
714 while (’ ’ == *end)
715 end++;
716 }

718 /* Parse the equation itself. */
719 roff_openeqn(mdoc->roff, NULL, line, offs, buf);
691 roff_openeqn(m->roff, NULL, line, offs, buf);

721 /* Process a finished equation? */
722 if (roff_closeeqn(mdoc->roff))
723 if (! mdoc_addeqn(mdoc, roff_eqn(mdoc->roff)))
694 if (roff_closeeqn(m->roff))
695 if (! mdoc_addeqn(m, roff_eqn(m->roff)))
724 return(0);
725 offs += (end - (buf + offs));
726 }

728 return(1);
729 }
730 #endif

732 /*
733 * Parse free-form text, that is, a line that does not begin with the
734 * control character.
735 */
736 static int
737 mdoc_ptext(struct mdoc *mdoc, int line, char *buf, int offs)
709 mdoc_ptext(struct mdoc *m, int line, char *buf, int offs)
738 {
739 char *c, *ws, *end;
740 struct mdoc_node *n;

742 /* No text before an initial macro. */

744 if (SEC_NONE == mdoc->lastnamed) {
745 mdoc_pmsg(mdoc, line, offs, MANDOCERR_NOTEXT);
716 if (SEC_NONE == m->lastnamed) {
717 mdoc_pmsg(m, line, offs, MANDOCERR_NOTEXT);

new/usr/src/cmd/mandoc/mdoc.c 13

746 return(1);
747 }

749 assert(mdoc->last);
750 n = mdoc->last;
721 assert(m->last);
722 n = m->last;

752 /*
753 * Divert directly to list processing if we’re encountering a
754 * columnar MDOC_BLOCK with or without a prior MDOC_BLOCK entry
755 * (a MDOC_BODY means it’s already open, in which case we should
756 * process within its context in the normal way).
757 */

759 if (MDOC_Bl == n->tok && MDOC_BODY == n->type &&
760 LIST_column == n->norm->Bl.type) {
761 /* ‘Bl’ is open without any children. */
762 mdoc->flags |= MDOC_FREECOL;
763 return(mdoc_macro(mdoc, MDOC_It, line, offs, &offs, buf));
734 m->flags |= MDOC_FREECOL;
735 return(mdoc_macro(m, MDOC_It, line, offs, &offs, buf));
764 }

766 if (MDOC_It == n->tok && MDOC_BLOCK == n->type &&
767 NULL != n->parent &&
768 MDOC_Bl == n->parent->tok &&
769 LIST_column == n->parent->norm->Bl.type) {
770 /* ‘Bl’ has block-level ‘It’ children. */
771 mdoc->flags |= MDOC_FREECOL;
772 return(mdoc_macro(mdoc, MDOC_It, line, offs, &offs, buf));
743 m->flags |= MDOC_FREECOL;
744 return(mdoc_macro(m, MDOC_It, line, offs, &offs, buf));
773 }

775 /*
776 * Search for the beginning of unescaped trailing whitespace (ws)
777 * and for the first character not to be output (end).
778 */

780 /* FIXME: replace with strcspn(). */
781 ws = NULL;
782 for (c = end = buf + offs; *c; c++) {
783 switch (*c) {
784 case ’ ’:
785 if (NULL == ws)
786 ws = c;
787 continue;
788 case ’\t’:
789 /*
790 * Always warn about trailing tabs,
791 * even outside literal context,
792 * where they should be put on the next line.
793 */
794 if (NULL == ws)
795 ws = c;
796 /*
797 * Strip trailing tabs in literal context only;
798 * outside, they affect the next line.
799 */
800 if (MDOC_LITERAL & mdoc->flags)
772 if (MDOC_LITERAL & m->flags)
801 continue;
802 break;
803 case ’\\’:
804 /* Skip the escaped character, too, if any. */

new/usr/src/cmd/mandoc/mdoc.c 14

805 if (c[1])
806 c++;
807 /* FALLTHROUGH */
808 default:
809 ws = NULL;
810 break;
811 }
812 end = c + 1;
813 }
814 *end = ’\0’;

816 if (ws)
817 mdoc_pmsg(mdoc, line, (int)(ws-buf), MANDOCERR_EOLNSPACE);
789 mdoc_pmsg(m, line, (int)(ws-buf), MANDOCERR_EOLNSPACE);

819 if (’\0’ == buf[offs] && ! (MDOC_LITERAL & mdoc->flags)) {
820 mdoc_pmsg(mdoc, line, (int)(c-buf), MANDOCERR_NOBLANKLN);
791 if (’\0’ == buf[offs] && ! (MDOC_LITERAL & m->flags)) {
792 mdoc_pmsg(m, line, (int)(c-buf), MANDOCERR_NOBLANKLN);

822 /*
823 * Insert a ‘sp’ in the case of a blank line. Technically,
824 * blank lines aren’t allowed, but enough manuals assume this
825 * behaviour that we want to work around it.
826 */
827 if (! mdoc_elem_alloc(mdoc, line, offs, MDOC_sp, NULL))
799 if (! mdoc_elem_alloc(m, line, offs, MDOC_sp, NULL))
828 return(0);

830 mdoc->next = MDOC_NEXT_SIBLING;

832 return(mdoc_valid_post(mdoc));
802 m->next = MDOC_NEXT_SIBLING;
803 return(1);
833 }

835 if (! mdoc_word_alloc(mdoc, line, offs, buf+offs))
806 if (! mdoc_word_alloc(m, line, offs, buf+offs))
836 return(0);

838 if (MDOC_LITERAL & mdoc->flags)
809 if (MDOC_LITERAL & m->flags)
839 return(1);

841 /*
842 * End-of-sentence check. If the last character is an unescaped
843 * EOS character, then flag the node as being the end of a
844 * sentence. The front-end will know how to interpret this.
845 */

847 assert(buf < end);

849 if (mandoc_eos(buf+offs, (size_t)(end-buf-offs), 0))
850 mdoc->last->flags |= MDOC_EOS;
821 m->last->flags |= MDOC_EOS;

852 return(1);
853 }

856 /*
857 * Parse a macro line, that is, a line beginning with the control
858 * character.
859 */
860 static int
861 mdoc_pmacro(struct mdoc *mdoc, int ln, char *buf, int offs)

new/usr/src/cmd/mandoc/mdoc.c 15

832 mdoc_pmacro(struct mdoc *m, int ln, char *buf, int offs)
862 {
863 enum mdoct tok;
864 int i, sv;
865 char mac[5];
866 struct mdoc_node *n;

868 /* Empty post-control lines are ignored. */

870 if (’"’ == buf[offs]) {
871 mdoc_pmsg(mdoc, ln, offs, MANDOCERR_BADCOMMENT);
842 mdoc_pmsg(m, ln, offs, MANDOCERR_BADCOMMENT);
872 return(1);
873 } else if (’\0’ == buf[offs])
874 return(1);

876 sv = offs;

878 /*
879 * Copy the first word into a nil-terminated buffer.
880 * Stop copying when a tab, space, or eoln is encountered.
881 */

883 i = 0;
884 while (i < 4 && ’\0’ != buf[offs] &&
885 ’ ’ != buf[offs] && ’\t’ != buf[offs])
886 mac[i++] = buf[offs++];

888 mac[i] = ’\0’;

890 tok = (i > 1 || i < 4) ? mdoc_hash_find(mac) : MDOC_MAX;

892 if (MDOC_MAX == tok) {
893 mandoc_vmsg(MANDOCERR_MACRO, mdoc->parse,
864 mandoc_vmsg(MANDOCERR_MACRO, m->parse,
894 ln, sv, "%s", buf + sv - 1);
895 return(1);
896 }

898 /* Disregard the first trailing tab, if applicable. */

900 if (’\t’ == buf[offs])
901 offs++;

903 /* Jump to the next non-whitespace word. */

905 while (buf[offs] && ’ ’ == buf[offs])
906 offs++;

908 /*
909 * Trailing whitespace. Note that tabs are allowed to be passed
910 * into the parser as "text", so we only warn about spaces here.
911 */

913 if (’\0’ == buf[offs] && ’ ’ == buf[offs - 1])
914 mdoc_pmsg(mdoc, ln, offs - 1, MANDOCERR_EOLNSPACE);
885 mdoc_pmsg(m, ln, offs - 1, MANDOCERR_EOLNSPACE);

916 /*
917 * If an initial macro or a list invocation, divert directly
918 * into macro processing.
919 */

921 if (NULL == mdoc->last || MDOC_It == tok || MDOC_El == tok) {
922 if (! mdoc_macro(mdoc, tok, ln, sv, &offs, buf))
892 if (NULL == m->last || MDOC_It == tok || MDOC_El == tok) {

new/usr/src/cmd/mandoc/mdoc.c 16

893 if (! mdoc_macro(m, tok, ln, sv, &offs, buf))
923 goto err;
924 return(1);
925 }

927 n = mdoc->last;
928 assert(mdoc->last);
898 n = m->last;
899 assert(m->last);

930 /*
931 * If the first macro of a ‘Bl -column’, open an ‘It’ block
932 * context around the parsed macro.
933 */

935 if (MDOC_Bl == n->tok && MDOC_BODY == n->type &&
936 LIST_column == n->norm->Bl.type) {
937 mdoc->flags |= MDOC_FREECOL;
938 if (! mdoc_macro(mdoc, MDOC_It, ln, sv, &sv, buf))
908 m->flags |= MDOC_FREECOL;
909 if (! mdoc_macro(m, MDOC_It, ln, sv, &sv, buf))
939 goto err;
940 return(1);
941 }

943 /*
944 * If we’re following a block-level ‘It’ within a ‘Bl -column’
945 * context (perhaps opened in the above block or in ptext()),
946 * then open an ‘It’ block context around the parsed macro.
947 */

949 if (MDOC_It == n->tok && MDOC_BLOCK == n->type &&
950 NULL != n->parent &&
951 MDOC_Bl == n->parent->tok &&
952 LIST_column == n->parent->norm->Bl.type) {
953 mdoc->flags |= MDOC_FREECOL;
954 if (! mdoc_macro(mdoc, MDOC_It, ln, sv, &sv, buf))
924 m->flags |= MDOC_FREECOL;
925 if (! mdoc_macro(m, MDOC_It, ln, sv, &sv, buf))
955 goto err;
956 return(1);
957 }

959 /* Normal processing of a macro. */

961 if (! mdoc_macro(mdoc, tok, ln, sv, &offs, buf))
932 if (! mdoc_macro(m, tok, ln, sv, &offs, buf))
962 goto err;

964 return(1);

966 err: /* Error out. */

968 mdoc->flags |= MDOC_HALT;
939 m->flags |= MDOC_HALT;
969 return(0);
970 }

972 enum mdelim
973 mdoc_isdelim(const char *p)
974 {

976 if (’\0’ == p[0])
977 return(DELIM_NONE);

979 if (’\0’ == p[1])

new/usr/src/cmd/mandoc/mdoc.c 17

980 switch (p[0]) {
981 case(’(’):
982 /* FALLTHROUGH */
983 case(’[’):
984 return(DELIM_OPEN);
985 case(’|’):
986 return(DELIM_MIDDLE);
987 case(’.’):
988 /* FALLTHROUGH */
989 case(’,’):
990 /* FALLTHROUGH */
991 case(’;’):
992 /* FALLTHROUGH */
993 case(’:’):
994 /* FALLTHROUGH */
995 case(’?’):
996 /* FALLTHROUGH */
997 case(’!’):
998 /* FALLTHROUGH */
999 case(’)’):

1000 /* FALLTHROUGH */
1001 case(’]’):
1002 return(DELIM_CLOSE);
1003 default:
1004 return(DELIM_NONE);
1005 }

1007 if (’\\’ != p[0])
1008 return(DELIM_NONE);

1010 if (0 == strcmp(p + 1, "."))
1011 return(DELIM_CLOSE);
1012 if (0 == strcmp(p + 1, "fR|\\fP"))
983 if (0 == strcmp(p + 1, "*(Ba"))
1013 return(DELIM_MIDDLE);

1015 return(DELIM_NONE);
1016 }
______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/mdoc.h 1

**
 8568 Wed Jul 30 20:55:09 2014
new/usr/src/cmd/mandoc/mdoc.h
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: mdoc.h,v 1.125 2013/12/24 19:11:45 schwarze Exp $ */
1 /* $Id: mdoc.h,v 1.122 2011/03/22 14:05:45 kristaps Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17 #ifndef MDOC_H
18 #define MDOC_H

20 enum mdoct {
21 MDOC_Ap = 0,
22 MDOC_Dd,
23 MDOC_Dt,
24 MDOC_Os,
25 MDOC_Sh,
26 MDOC_Ss,
27 MDOC_Pp,
28 MDOC_D1,
29 MDOC_Dl,
30 MDOC_Bd,
31 MDOC_Ed,
32 MDOC_Bl,
33 MDOC_El,
34 MDOC_It,
35 MDOC_Ad,
36 MDOC_An,
37 MDOC_Ar,
38 MDOC_Cd,
39 MDOC_Cm,
40 MDOC_Dv,
41 MDOC_Er,
42 MDOC_Ev,
43 MDOC_Ex,
44 MDOC_Fa,
45 MDOC_Fd,
46 MDOC_Fl,
47 MDOC_Fn,
48 MDOC_Ft,
49 MDOC_Ic,
50 MDOC_In,
51 MDOC_Li,
52 MDOC_Nd,
53 MDOC_Nm,
54 MDOC_Op,
55 MDOC_Ot,
56 MDOC_Pa,
57 MDOC_Rv,
58 MDOC_St,

new/usr/src/cmd/mandoc/mdoc.h 2

59 MDOC_Va,
60 MDOC_Vt,
61 MDOC_Xr,
62 MDOC__A,
63 MDOC__B,
64 MDOC__D,
65 MDOC__I,
66 MDOC__J,
67 MDOC__N,
68 MDOC__O,
69 MDOC__P,
70 MDOC__R,
71 MDOC__T,
72 MDOC__V,
73 MDOC_Ac,
74 MDOC_Ao,
75 MDOC_Aq,
76 MDOC_At,
77 MDOC_Bc,
78 MDOC_Bf,
79 MDOC_Bo,
80 MDOC_Bq,
81 MDOC_Bsx,
82 MDOC_Bx,
83 MDOC_Db,
84 MDOC_Dc,
85 MDOC_Do,
86 MDOC_Dq,
87 MDOC_Ec,
88 MDOC_Ef,
89 MDOC_Em,
90 MDOC_Eo,
91 MDOC_Fx,
92 MDOC_Ms,
93 MDOC_No,
94 MDOC_Ns,
95 MDOC_Nx,
96 MDOC_Ox,
97 MDOC_Pc,
98 MDOC_Pf,
99 MDOC_Po,
100 MDOC_Pq,
101 MDOC_Qc,
102 MDOC_Ql,
103 MDOC_Qo,
104 MDOC_Qq,
105 MDOC_Re,
106 MDOC_Rs,
107 MDOC_Sc,
108 MDOC_So,
109 MDOC_Sq,
110 MDOC_Sm,
111 MDOC_Sx,
112 MDOC_Sy,
113 MDOC_Tn,
114 MDOC_Ux,
115 MDOC_Xc,
116 MDOC_Xo,
117 MDOC_Fo,
118 MDOC_Fc,
119 MDOC_Oo,
120 MDOC_Oc,
121 MDOC_Bk,
122 MDOC_Ek,
123 MDOC_Bt,
124 MDOC_Hf,

new/usr/src/cmd/mandoc/mdoc.h 3

125 MDOC_Fr,
126 MDOC_Ud,
127 MDOC_Lb,
128 MDOC_Lp,
129 MDOC_Lk,
130 MDOC_Mt,
131 MDOC_Brq,
132 MDOC_Bro,
133 MDOC_Brc,
134 MDOC__C,
135 MDOC_Es,
136 MDOC_En,
137 MDOC_Dx,
138 MDOC__Q,
139 MDOC_br,
140 MDOC_sp,
141 MDOC__U,
142 MDOC_Ta,
143 MDOC_MAX
144 };

______unchanged_portion_omitted_

307 struct mdoc_bl {
308 const char *width; /* -width */
309 const char *offs; /* -offset */
310 enum mdoc_list type; /* -tag, -enum, etc. */
311 int comp; /* -compact */
312 size_t ncols; /* -column arg count */
313 const char **cols; /* -column val ptr */
314 int count; /* -enum counter */
315 };

______unchanged_portion_omitted_

342 /*
343 * Single node in tree-linked AST.
344 */
345 struct mdoc_node {
346 struct mdoc_node *parent; /* parent AST node */
347 struct mdoc_node *child; /* first child AST node */
348 struct mdoc_node *last; /* last child AST node */
349 struct mdoc_node *next; /* sibling AST node */
350 struct mdoc_node *prev; /* prior sibling AST node */
351 int nchild; /* number children */
352 int line; /* parse line */
353 int pos; /* parse column */
354 int lastline; /* the node ends on this line */
355 enum mdoct tok; /* tok or MDOC__MAX if none */
356 int flags;
357 #define MDOC_VALID (1 << 0) /* has been validated */
358 #define MDOC_EOS (1 << 2) /* at sentence boundary */
359 #define MDOC_LINE (1 << 3) /* first macro/text on line */
360 #define MDOC_SYNPRETTY (1 << 4) /* SYNOPSIS-style formatting */
361 #define MDOC_ENDED (1 << 5) /* rendering has been ended */
362 #define MDOC_DELIMO (1 << 6)
363 #define MDOC_DELIMC (1 << 7)
364 enum mdoc_type type; /* AST node type */
365 enum mdoc_sec sec; /* current named section */
366 union mdoc_data *norm; /* normalised args */
367 const void *prev_font; /* before entering this node */
368 /* FIXME: these can be union’d to shave a few bytes. */
369 struct mdoc_arg *args; /* BLOCK/ELEM */
370 struct mdoc_node *pending; /* BLOCK */
371 struct mdoc_node *head; /* BLOCK */
372 struct mdoc_node *body; /* BLOCK */
373 struct mdoc_node *tail; /* BLOCK */
374 char *string; /* TEXT */

new/usr/src/cmd/mandoc/mdoc.h 4

375 const struct tbl_span *span; /* TBL */
376 const struct eqn *eqn; /* EQN */
377 enum mdoc_endbody end; /* BODY */
378 };

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/mdoc_argv.c 1

**
 16856 Wed Jul 30 20:55:09 2014
new/usr/src/cmd/mandoc/mdoc_argv.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: mdoc_argv.c,v 1.89 2013/12/25 00:50:05 schwarze Exp $ */
1 /* $Id: mdoc_argv.c,v 1.82 2012/03/23 05:50:24 kristaps Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2012 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <sys/types.h>

24 #include <assert.h>
25 #include <stdlib.h>
26 #include <stdio.h>
27 #include <string.h>

29 #include "mdoc.h"
30 #include "mandoc.h"
31 #include "libmdoc.h"
32 #include "libmandoc.h"

34 #define MULTI_STEP 5 /* pre-allocate argument values */
35 #define DELIMSZ 6 /* max possible size of a delimiter */

37 enum argsflag {
38 ARGSFL_NONE = 0,
39 ARGSFL_DELIM, /* handle delimiters of [[::delim::][]+]+ */
40 ARGSFL_TABSEP /* handle tab/‘Ta’ separated phrases */
41 };

43 enum argvflag {
44 ARGV_NONE, /* no args to flag (e.g., -split) */
45 ARGV_SINGLE, /* one arg to flag (e.g., -file xxx) */
46 ARGV_MULTI /* multiple args (e.g., -column xxx yyy) */
45 ARGV_MULTI, /* multiple args (e.g., -column xxx yyy) */
46 ARGV_OPT_SINGLE /* optional arg (e.g., -offset [xxx]) */
47 };

______unchanged_portion_omitted_

54 static void argn_free(struct mdoc_arg *, int);
55 static enum margserr args(struct mdoc *, int, int *,
56 char *, enum argsflag, char **);
57 static int args_checkpunct(const char *, int);
58 static int argv_multi(struct mdoc *, int,
59 struct mdoc_argv *, int *, char *);
60 static int argv_opt_single(struct mdoc *, int,

new/usr/src/cmd/mandoc/mdoc_argv.c 2

61 struct mdoc_argv *, int *, char *);
60 static int argv_single(struct mdoc *, int,
61 struct mdoc_argv *, int *, char *);

63 static const enum argvflag argvflags[MDOC_ARG_MAX] = {
64 ARGV_NONE, /* MDOC_Split */
65 ARGV_NONE, /* MDOC_Nosplit */
66 ARGV_NONE, /* MDOC_Ragged */
67 ARGV_NONE, /* MDOC_Unfilled */
68 ARGV_NONE, /* MDOC_Literal */
69 ARGV_SINGLE, /* MDOC_File */
70 ARGV_SINGLE, /* MDOC_Offset */
72 ARGV_OPT_SINGLE, /* MDOC_Offset */
71 ARGV_NONE, /* MDOC_Bullet */
72 ARGV_NONE, /* MDOC_Dash */
73 ARGV_NONE, /* MDOC_Hyphen */
74 ARGV_NONE, /* MDOC_Item */
75 ARGV_NONE, /* MDOC_Enum */
76 ARGV_NONE, /* MDOC_Tag */
77 ARGV_NONE, /* MDOC_Diag */
78 ARGV_NONE, /* MDOC_Hang */
79 ARGV_NONE, /* MDOC_Ohang */
80 ARGV_NONE, /* MDOC_Inset */
81 ARGV_MULTI, /* MDOC_Column */
82 ARGV_SINGLE, /* MDOC_Width */
84 ARGV_OPT_SINGLE, /* MDOC_Width */
83 ARGV_NONE, /* MDOC_Compact */
84 ARGV_NONE, /* MDOC_Std */
85 ARGV_NONE, /* MDOC_Filled */
86 ARGV_NONE, /* MDOC_Words */
87 ARGV_NONE, /* MDOC_Emphasis */
88 ARGV_NONE, /* MDOC_Symbolic */
89 ARGV_NONE /* MDOC_Symbolic */
90 };

______unchanged_portion_omitted_

146 static const struct mdocarg mdocargs[MDOC_MAX] = {
147 { ARGSFL_DELIM, NULL }, /* Ap */
149 { ARGSFL_NONE, NULL }, /* Ap */
148 { ARGSFL_NONE, NULL }, /* Dd */
149 { ARGSFL_NONE, NULL }, /* Dt */
150 { ARGSFL_NONE, NULL }, /* Os */
151 { ARGSFL_NONE, NULL }, /* Sh */
152 { ARGSFL_NONE, NULL }, /* Ss */
153 { ARGSFL_NONE, NULL }, /* Pp */
154 { ARGSFL_DELIM, NULL }, /* D1 */
155 { ARGSFL_DELIM, NULL }, /* Dl */
156 { ARGSFL_NONE, args_Bd }, /* Bd */
157 { ARGSFL_NONE, NULL }, /* Ed */
158 { ARGSFL_NONE, args_Bl }, /* Bl */
159 { ARGSFL_NONE, NULL }, /* El */
160 { ARGSFL_NONE, NULL }, /* It */
161 { ARGSFL_DELIM, NULL }, /* Ad */
162 { ARGSFL_DELIM, args_An }, /* An */
163 { ARGSFL_DELIM, NULL }, /* Ar */
164 { ARGSFL_DELIM, NULL }, /* Cd */
166 { ARGSFL_NONE, NULL }, /* Cd */
165 { ARGSFL_DELIM, NULL }, /* Cm */
166 { ARGSFL_DELIM, NULL }, /* Dv */
167 { ARGSFL_DELIM, NULL }, /* Er */
168 { ARGSFL_DELIM, NULL }, /* Ev */
169 { ARGSFL_NONE, args_Ex }, /* Ex */
170 { ARGSFL_DELIM, NULL }, /* Fa */
171 { ARGSFL_NONE, NULL }, /* Fd */
172 { ARGSFL_DELIM, NULL }, /* Fl */
173 { ARGSFL_DELIM, NULL }, /* Fn */

new/usr/src/cmd/mandoc/mdoc_argv.c 3

174 { ARGSFL_DELIM, NULL }, /* Ft */
175 { ARGSFL_DELIM, NULL }, /* Ic */
176 { ARGSFL_DELIM, NULL }, /* In */
178 { ARGSFL_NONE, NULL }, /* In */
177 { ARGSFL_DELIM, NULL }, /* Li */
178 { ARGSFL_NONE, NULL }, /* Nd */
179 { ARGSFL_DELIM, NULL }, /* Nm */
180 { ARGSFL_DELIM, NULL }, /* Op */
181 { ARGSFL_NONE, NULL }, /* Ot */
182 { ARGSFL_DELIM, NULL }, /* Pa */
183 { ARGSFL_NONE, args_Ex }, /* Rv */
184 { ARGSFL_DELIM, NULL }, /* St */
185 { ARGSFL_DELIM, NULL }, /* Va */
186 { ARGSFL_DELIM, NULL }, /* Vt */
187 { ARGSFL_DELIM, NULL }, /* Xr */
188 { ARGSFL_NONE, NULL }, /* %A */
189 { ARGSFL_NONE, NULL }, /* %B */
190 { ARGSFL_NONE, NULL }, /* %D */
191 { ARGSFL_NONE, NULL }, /* %I */
192 { ARGSFL_NONE, NULL }, /* %J */
193 { ARGSFL_NONE, NULL }, /* %N */
194 { ARGSFL_NONE, NULL }, /* %O */
195 { ARGSFL_NONE, NULL }, /* %P */
196 { ARGSFL_NONE, NULL }, /* %R */
197 { ARGSFL_NONE, NULL }, /* %T */
198 { ARGSFL_NONE, NULL }, /* %V */
199 { ARGSFL_DELIM, NULL }, /* Ac */
200 { ARGSFL_NONE, NULL }, /* Ao */
201 { ARGSFL_DELIM, NULL }, /* Aq */
202 { ARGSFL_DELIM, NULL }, /* At */
203 { ARGSFL_DELIM, NULL }, /* Bc */
204 { ARGSFL_NONE, args_Bf }, /* Bf */
205 { ARGSFL_NONE, NULL }, /* Bo */
206 { ARGSFL_DELIM, NULL }, /* Bq */
207 { ARGSFL_DELIM, NULL }, /* Bsx */
208 { ARGSFL_DELIM, NULL }, /* Bx */
209 { ARGSFL_NONE, NULL }, /* Db */
210 { ARGSFL_DELIM, NULL }, /* Dc */
211 { ARGSFL_NONE, NULL }, /* Do */
212 { ARGSFL_DELIM, NULL }, /* Dq */
213 { ARGSFL_DELIM, NULL }, /* Ec */
214 { ARGSFL_NONE, NULL }, /* Ef */
215 { ARGSFL_DELIM, NULL }, /* Em */
216 { ARGSFL_NONE, NULL }, /* Eo */
217 { ARGSFL_DELIM, NULL }, /* Fx */
218 { ARGSFL_DELIM, NULL }, /* Ms */
219 { ARGSFL_DELIM, NULL }, /* No */
220 { ARGSFL_DELIM, NULL }, /* Ns */
221 { ARGSFL_DELIM, NULL }, /* Nx */
222 { ARGSFL_DELIM, NULL }, /* Ox */
223 { ARGSFL_DELIM, NULL }, /* Pc */
224 { ARGSFL_DELIM, NULL }, /* Pf */
225 { ARGSFL_NONE, NULL }, /* Po */
226 { ARGSFL_DELIM, NULL }, /* Pq */
227 { ARGSFL_DELIM, NULL }, /* Qc */
228 { ARGSFL_DELIM, NULL }, /* Ql */
229 { ARGSFL_NONE, NULL }, /* Qo */
230 { ARGSFL_DELIM, NULL }, /* Qq */
231 { ARGSFL_NONE, NULL }, /* Re */
232 { ARGSFL_NONE, NULL }, /* Rs */
233 { ARGSFL_DELIM, NULL }, /* Sc */
234 { ARGSFL_NONE, NULL }, /* So */
235 { ARGSFL_DELIM, NULL }, /* Sq */
236 { ARGSFL_NONE, NULL }, /* Sm */
237 { ARGSFL_DELIM, NULL }, /* Sx */
238 { ARGSFL_DELIM, NULL }, /* Sy */

new/usr/src/cmd/mandoc/mdoc_argv.c 4

239 { ARGSFL_DELIM, NULL }, /* Tn */
240 { ARGSFL_DELIM, NULL }, /* Ux */
241 { ARGSFL_DELIM, NULL }, /* Xc */
242 { ARGSFL_NONE, NULL }, /* Xo */
243 { ARGSFL_NONE, NULL }, /* Fo */
244 { ARGSFL_DELIM, NULL }, /* Fc */
246 { ARGSFL_NONE, NULL }, /* Fc */
245 { ARGSFL_NONE, NULL }, /* Oo */
246 { ARGSFL_DELIM, NULL }, /* Oc */
247 { ARGSFL_NONE, args_Bk }, /* Bk */
248 { ARGSFL_NONE, NULL }, /* Ek */
249 { ARGSFL_NONE, NULL }, /* Bt */
250 { ARGSFL_NONE, NULL }, /* Hf */
251 { ARGSFL_NONE, NULL }, /* Fr */
252 { ARGSFL_NONE, NULL }, /* Ud */
253 { ARGSFL_DELIM, NULL }, /* Lb */
255 { ARGSFL_NONE, NULL }, /* Lb */
254 { ARGSFL_NONE, NULL }, /* Lp */
255 { ARGSFL_DELIM, NULL }, /* Lk */
256 { ARGSFL_DELIM, NULL }, /* Mt */
257 { ARGSFL_DELIM, NULL }, /* Brq */
258 { ARGSFL_NONE, NULL }, /* Bro */
259 { ARGSFL_DELIM, NULL }, /* Brc */
260 { ARGSFL_NONE, NULL }, /* %C */
261 { ARGSFL_NONE, NULL }, /* Es */
262 { ARGSFL_NONE, NULL }, /* En */
263 { ARGSFL_DELIM, NULL }, /* Dx */
265 { ARGSFL_NONE, NULL }, /* Dx */
264 { ARGSFL_NONE, NULL }, /* %Q */
265 { ARGSFL_NONE, NULL }, /* br */
266 { ARGSFL_NONE, NULL }, /* sp */
267 { ARGSFL_NONE, NULL }, /* %U */
268 { ARGSFL_NONE, NULL }, /* Ta */
269 };

272 /*
273 * Parse an argument from line text. This comes in the form of -key
274 * [value0...], which may either have a single mandatory value, at least
275 * one mandatory value, an optional single value, or no value.
276 */
277 enum margverr
278 mdoc_argv(struct mdoc *mdoc, int line, enum mdoct tok,
280 mdoc_argv(struct mdoc *m, int line, enum mdoct tok,
279 struct mdoc_arg **v, int *pos, char *buf)
280 {
281 char *p, sv;
282 struct mdoc_argv tmp;
283 struct mdoc_arg *arg;
284 const enum mdocargt *ap;

286 if (’\0’ == buf[*pos])
287 return(ARGV_EOLN);
288 else if (NULL == (ap = mdocargs[tok].argvs))
289 return(ARGV_WORD);
290 else if (’-’ != buf[*pos])
291 return(ARGV_WORD);

293 /* Seek to the first unescaped space. */

295 p = &buf[++(*pos)];

297 assert(*pos > 0);

299 for (; buf[*pos] ; (*pos)++)
300 if (’ ’ == buf[*pos] && ’\\’ != buf[*pos - 1])

new/usr/src/cmd/mandoc/mdoc_argv.c 5

301 break;

303 /*
304 * We want to nil-terminate the word to look it up (it’s easier
305 * that way). But we may not have a flag, in which case we need
306 * to restore the line as-is. So keep around the stray byte,
307 * which we’ll reset upon exiting (if necessary).
308 */

310 if (’\0’ != (sv = buf[*pos]))
311 buf[(*pos)++] = ’\0’;

313 /*
314 * Now look up the word as a flag. Use temporary storage that
315 * we’ll copy into the node’s flags, if necessary.
316 */

318 memset(&tmp, 0, sizeof(struct mdoc_argv));

320 tmp.line = line;
321 tmp.pos = *pos;
322 tmp.arg = MDOC_ARG_MAX;

324 while (MDOC_ARG_MAX != (tmp.arg = *ap++))
325 if (0 == strcmp(p, mdoc_argnames[tmp.arg]))
326 break;

328 if (MDOC_ARG_MAX == tmp.arg) {
329 /*
330 * The flag was not found.
331 * Restore saved zeroed byte and return as a word.
332 */
333 if (sv)
334 buf[*pos - 1] = sv;
335 return(ARGV_WORD);
336 }

338 /* Read to the next word (the argument). */

340 while (buf[*pos] && ’ ’ == buf[*pos])
341 (*pos)++;

343 switch (argvflags[tmp.arg]) {
344 case (ARGV_SINGLE):
345 if (! argv_single(mdoc, line, &tmp, pos, buf))
347 if (! argv_single(m, line, &tmp, pos, buf))
346 return(ARGV_ERROR);
347 break;
348 case (ARGV_MULTI):
349 if (! argv_multi(mdoc, line, &tmp, pos, buf))
351 if (! argv_multi(m, line, &tmp, pos, buf))
350 return(ARGV_ERROR);
351 break;
354 case (ARGV_OPT_SINGLE):
355 if (! argv_opt_single(m, line, &tmp, pos, buf))
356 return(ARGV_ERROR);
357 break;
352 case (ARGV_NONE):
353 break;
354 }

356 if (NULL == (arg = *v))
357 arg = *v = mandoc_calloc(1, sizeof(struct mdoc_arg));

359 arg->argc++;
360 arg->argv = mandoc_realloc

new/usr/src/cmd/mandoc/mdoc_argv.c 6

361 (arg->argv, arg->argc * sizeof(struct mdoc_argv));

363 memcpy(&arg->argv[(int)arg->argc - 1],
364 &tmp, sizeof(struct mdoc_argv));

366 return(ARGV_ARG);
367 }

______unchanged_portion_omitted_

409 enum margserr
410 mdoc_zargs(struct mdoc *mdoc, int line, int *pos, char *buf, char **v)
416 mdoc_zargs(struct mdoc *m, int line, int *pos, char *buf, char **v)
411 {

413 return(args(mdoc, line, pos, buf, ARGSFL_NONE, v));
419 return(args(m, line, pos, buf, ARGSFL_NONE, v));
414 }

416 enum margserr
417 mdoc_args(struct mdoc *mdoc, int line, int *pos,
423 mdoc_args(struct mdoc *m, int line, int *pos,
418 char *buf, enum mdoct tok, char **v)
419 {
420 enum argsflag fl;
421 struct mdoc_node *n;

423 fl = mdocargs[tok].flags;

425 if (MDOC_It != tok)
426 return(args(mdoc, line, pos, buf, fl, v));
432 return(args(m, line, pos, buf, fl, v));

428 /*
429 * We know that we’re in an ‘It’, so it’s reasonable to expect
430 * us to be sitting in a ‘Bl’. Someday this may not be the case
431 * (if we allow random ‘It’s sitting out there), so provide a
432 * safe fall-back into the default behaviour.
433 */

435 for (n = mdoc->last; n; n = n->parent)
441 for (n = m->last; n; n = n->parent)
436 if (MDOC_Bl == n->tok)
437 if (LIST_column == n->norm->Bl.type) {
438 fl = ARGSFL_TABSEP;
439 break;
440 }

442 return(args(mdoc, line, pos, buf, fl, v));
448 return(args(m, line, pos, buf, fl, v));
443 }

445 static enum margserr
446 args(struct mdoc *mdoc, int line, int *pos,
452 args(struct mdoc *m, int line, int *pos,
447 char *buf, enum argsflag fl, char **v)
448 {
449 char *p, *pp;
450 int pairs;
451 enum margserr rc;

453 if (’\0’ == buf[*pos]) {
454 if (MDOC_PPHRASE & mdoc->flags)
459 if (MDOC_PPHRASE & m->flags)
455 return(ARGS_EOLN);
456 /*
457 * If we’re not in a partial phrase and the flag for

new/usr/src/cmd/mandoc/mdoc_argv.c 7

458 * being a phrase literal is still set, the punctuation
459 * is unterminated.
460 */
461 if (MDOC_PHRASELIT & mdoc->flags)
462 mdoc_pmsg(mdoc, line, *pos, MANDOCERR_BADQUOTE);
466 if (MDOC_PHRASELIT & m->flags)
467 mdoc_pmsg(m, line, *pos, MANDOCERR_BADQUOTE);

464 mdoc->flags &= ~MDOC_PHRASELIT;
469 m->flags &= ~MDOC_PHRASELIT;
465 return(ARGS_EOLN);
466 }

468 *v = &buf[*pos];

470 if (ARGSFL_DELIM == fl)
471 if (args_checkpunct(buf, *pos))
472 return(ARGS_PUNCT);

474 /*
475 * First handle TABSEP items, restricted to ‘Bl -column’. This
476 * ignores conventional token parsing and instead uses tabs or
477 * ‘Ta’ macros to separate phrases. Phrases are parsed again
478 * for arguments at a later phase.
479 */

481 if (ARGSFL_TABSEP == fl) {
482 /* Scan ahead to tab (can’t be escaped). */
483 p = strchr(*v, ’\t’);
484 pp = NULL;

486 /* Scan ahead to unescaped ‘Ta’. */
487 if (! (MDOC_PHRASELIT & mdoc->flags))
492 if (! (MDOC_PHRASELIT & m->flags))
488 for (pp = *v; ; pp++) {
489 if (NULL == (pp = strstr(pp, "Ta")))
490 break;
491 if (pp > *v && ’ ’ != *(pp - 1))
492 continue;
493 if (’ ’ == *(pp + 2) || ’\0’ == *(pp + 2))
494 break;
495 }

497 /* By default, assume a phrase. */
498 rc = ARGS_PHRASE;

500 /*
501 * Adjust new-buffer position to be beyond delimiter
502 * mark (e.g., Ta -> end + 2).
503 */
504 if (p && pp) {
505 *pos += pp < p ? 2 : 1;
506 rc = pp < p ? ARGS_PHRASE : ARGS_PPHRASE;
507 p = pp < p ? pp : p;
508 } else if (p && ! pp) {
509 rc = ARGS_PPHRASE;
510 *pos += 1;
511 } else if (pp && ! p) {
512 p = pp;
513 *pos += 2;
514 } else {
515 rc = ARGS_PEND;
516 p = strchr(*v, 0);
517 }

519 /* Whitespace check for eoln case... */

new/usr/src/cmd/mandoc/mdoc_argv.c 8

520 if (’\0’ == *p && ’ ’ == *(p - 1))
521 mdoc_pmsg(mdoc, line, *pos, MANDOCERR_EOLNSPACE);
526 mdoc_pmsg(m, line, *pos, MANDOCERR_EOLNSPACE);

523 *pos += (int)(p - *v);

525 /* Strip delimiter’s preceding whitespace. */
526 pp = p - 1;
527 while (pp > *v && ’ ’ == *pp) {
528 if (pp > *v && ’\\’ == *(pp - 1))
529 break;
530 pp--;
531 }
532 *(pp + 1) = 0;

534 /* Strip delimiter’s proceeding whitespace. */
535 for (pp = &buf[*pos]; ’ ’ == *pp; pp++, (*pos)++)
536 /* Skip ahead. */ ;

538 return(rc);
539 }

541 /*
542 * Process a quoted literal. A quote begins with a double-quote
543 * and ends with a double-quote NOT preceded by a double-quote.
544 * NUL-terminate the literal in place.
545 * Collapse pairs of quotes inside quoted literals.
546 * Whitespace is NOT involved in literal termination.
547 */

549 if (MDOC_PHRASELIT & mdoc->flags || ’\"’ == buf[*pos]) {
550 if (! (MDOC_PHRASELIT & mdoc->flags))
552 if (MDOC_PHRASELIT & m->flags || ’\"’ == buf[*pos]) {
553 if (! (MDOC_PHRASELIT & m->flags))
551 *v = &buf[++(*pos)];

553 if (MDOC_PPHRASE & mdoc->flags)
554 mdoc->flags |= MDOC_PHRASELIT;
556 if (MDOC_PPHRASE & m->flags)
557 m->flags |= MDOC_PHRASELIT;

556 pairs = 0;
557 for (; buf[*pos]; (*pos)++) {
558 /* Move following text left after quoted quotes. */
559 if (pairs)
560 buf[*pos - pairs] = buf[*pos];
561 if (’\"’ != buf[*pos])
562 continue;
563 /* Unquoted quotes end quoted args. */
564 if (’\"’ != buf[*pos + 1])
565 break;
566 /* Quoted quotes collapse. */
567 pairs++;
568 (*pos)++;
569 }
570 if (pairs)
571 buf[*pos - pairs] = ’\0’;

573 if (’\0’ == buf[*pos]) {
574 if (MDOC_PPHRASE & mdoc->flags)
568 if (MDOC_PPHRASE & m->flags)
575 return(ARGS_QWORD);
576 mdoc_pmsg(mdoc, line, *pos, MANDOCERR_BADQUOTE);
570 mdoc_pmsg(m, line, *pos, MANDOCERR_BADQUOTE);
577 return(ARGS_QWORD);
578 }

new/usr/src/cmd/mandoc/mdoc_argv.c 9

580 mdoc->flags &= ~MDOC_PHRASELIT;
574 m->flags &= ~MDOC_PHRASELIT;
581 buf[(*pos)++] = ’\0’;

583 if (’\0’ == buf[*pos])
584 return(ARGS_QWORD);

586 while (’ ’ == buf[*pos])
587 (*pos)++;

589 if (’\0’ == buf[*pos])
590 mdoc_pmsg(mdoc, line, *pos, MANDOCERR_EOLNSPACE);
584 mdoc_pmsg(m, line, *pos, MANDOCERR_EOLNSPACE);

592 return(ARGS_QWORD);
593 }

595 p = &buf[*pos];
596 *v = mandoc_getarg(mdoc->parse, &p, line, pos);
590 *v = mandoc_getarg(m->parse, &p, line, pos);

598 return(ARGS_WORD);
599 }

______unchanged_portion_omitted_

651 static int
652 argv_multi(struct mdoc *mdoc, int line,
646 argv_multi(struct mdoc *m, int line,
653 struct mdoc_argv *v, int *pos, char *buf)
654 {
655 enum margserr ac;
656 char *p;

658 for (v->sz = 0; ; v->sz++) {
659 if (’-’ == buf[*pos])
660 break;
661 ac = args(mdoc, line, pos, buf, ARGSFL_NONE, &p);
655 ac = args(m, line, pos, buf, ARGSFL_NONE, &p);
662 if (ARGS_ERROR == ac)
663 return(0);
664 else if (ARGS_EOLN == ac)
665 break;

667 if (0 == v->sz % MULTI_STEP)
668 v->value = mandoc_realloc(v->value,
669 (v->sz + MULTI_STEP) * sizeof(char *));

671 v->value[(int)v->sz] = mandoc_strdup(p);
672 }

674 return(1);
675 }

677 static int
678 argv_single(struct mdoc *mdoc, int line,
672 argv_opt_single(struct mdoc *m, int line,
679 struct mdoc_argv *v, int *pos, char *buf)
680 {
681 enum margserr ac;
682 char *p;

684 ac = args(mdoc, line, pos, buf, ARGSFL_NONE, &p);
678 if (’-’ == buf[*pos])
679 return(1);

new/usr/src/cmd/mandoc/mdoc_argv.c 10

681 ac = args(m, line, pos, buf, ARGSFL_NONE, &p);
685 if (ARGS_ERROR == ac)
686 return(0);
687 if (ARGS_EOLN == ac)
688 return(1);

690 v->sz = 1;
688 v->value = mandoc_malloc(sizeof(char *));
689 v->value[0] = mandoc_strdup(p);

691 return(1);
692 }

694 static int
695 argv_single(struct mdoc *m, int line,
696 struct mdoc_argv *v, int *pos, char *buf)
697 {
698 int ppos;
699 enum margserr ac;
700 char *p;

702 ppos = *pos;

704 ac = args(m, line, pos, buf, ARGSFL_NONE, &p);
705 if (ARGS_EOLN == ac) {
706 mdoc_pmsg(m, line, ppos, MANDOCERR_SYNTARGVCOUNT);
707 return(0);
708 } else if (ARGS_ERROR == ac)
709 return(0);

711 v->sz = 1;
691 v->value = mandoc_malloc(sizeof(char *));
692 v->value[0] = mandoc_strdup(p);

694 return(1);
695 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/mdoc_html.c 1

**
 43931 Wed Jul 30 20:55:09 2014
new/usr/src/cmd/mandoc/mdoc_html.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: mdoc_html.c,v 1.186 2013/12/24 20:45:27 schwarze Exp $ */
1 /* $Id: mdoc_html.c,v 1.182 2011/11/03 20:37:00 schwarze Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17 #ifdef HAVE_CONFIG_H
18 #include "config.h"
19 #endif

21 #include <sys/types.h>

23 #include <assert.h>
24 #include <ctype.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <unistd.h>

30 #include "mandoc.h"
31 #include "out.h"
32 #include "html.h"
33 #include "mdoc.h"
34 #include "main.h"

36 #define INDENT 5

38 #define MDOC_ARGS const struct mdoc_meta *meta, \
38 #define MDOC_ARGS const struct mdoc_meta *m, \
39 const struct mdoc_node *n, \
40 struct html *h

42 #ifndef MIN
43 #define MIN(a,b) ((/*CONSTCOND*/(a)<(b))?(a):(b))
44 #endif

46 struct htmlmdoc {
47 int (*pre)(MDOC_ARGS);
48 void (*post)(MDOC_ARGS);
49 };

______unchanged_portion_omitted_

262 void
263 html_mdoc(void *arg, const struct mdoc *mdoc)
263 html_mdoc(void *arg, const struct mdoc *m)
264 {

266 print_mdoc(mdoc_meta(mdoc), mdoc_node(mdoc),

new/usr/src/cmd/mandoc/mdoc_html.c 2

267 (struct html *)arg);
266 print_mdoc(mdoc_meta(m), mdoc_node(m), (struct html *)arg);
268 putchar(’\n’);
269 }

______unchanged_portion_omitted_

353 static void
354 print_mdoc(MDOC_ARGS)
355 {
356 struct tag *t, *tt;
357 struct htmlpair tag;

359 PAIR_CLASS_INIT(&tag, "mandoc");

361 if (! (HTML_FRAGMENT & h->oflags)) {
362 print_gen_decls(h);
363 t = print_otag(h, TAG_HTML, 0, NULL);
364 tt = print_otag(h, TAG_HEAD, 0, NULL);
365 print_mdoc_head(meta, n, h);
364 print_mdoc_head(m, n, h);
366 print_tagq(h, tt);
367 print_otag(h, TAG_BODY, 0, NULL);
368 print_otag(h, TAG_DIV, 1, &tag);
369 } else
370 t = print_otag(h, TAG_DIV, 1, &tag);

372 print_mdoc_nodelist(meta, n, h);
371 print_mdoc_nodelist(m, n, h);
373 print_tagq(h, t);
374 }

377 /* ARGSUSED */
378 static void
379 print_mdoc_head(MDOC_ARGS)
380 {

382 print_gen_head(h);
383 bufinit(h);
384 bufcat_fmt(h, "%s(%s)", meta->title, meta->msec);
383 bufcat_fmt(h, "%s(%s)", m->title, m->msec);

386 if (meta->arch)
387 bufcat_fmt(h, " (%s)", meta->arch);
385 if (m->arch)
386 bufcat_fmt(h, " (%s)", m->arch);

389 print_otag(h, TAG_TITLE, 0, NULL);
390 print_text(h, h->buf);
391 }

394 static void
395 print_mdoc_nodelist(MDOC_ARGS)
396 {

398 print_mdoc_node(meta, n, h);
397 print_mdoc_node(m, n, h);
399 if (n->next)
400 print_mdoc_nodelist(meta, n->next, h);
399 print_mdoc_nodelist(m, n->next, h);
401 }

404 static void

new/usr/src/cmd/mandoc/mdoc_html.c 3

405 print_mdoc_node(MDOC_ARGS)
406 {
407 int child;
408 struct tag *t;

410 child = 1;
411 t = h->tags.head;

413 switch (n->type) {
414 case (MDOC_ROOT):
415 child = mdoc_root_pre(meta, n, h);
414 child = mdoc_root_pre(m, n, h);
416 break;
417 case (MDOC_TEXT):
418 /* No tables in this mode... */
419 assert(NULL == h->tblt);

421 /*
422 * Make sure that if we’re in a literal mode already
423 * (i.e., within a <PRE>) don’t print the newline.
424 */
425 if (’ ’ == *n->string && MDOC_LINE & n->flags)
426 if (! (HTML_LITERAL & h->flags))
427 print_otag(h, TAG_BR, 0, NULL);
428 if (MDOC_DELIMC & n->flags)
429 h->flags |= HTML_NOSPACE;
430 print_text(h, n->string);
431 if (MDOC_DELIMO & n->flags)
432 h->flags |= HTML_NOSPACE;
433 return;
434 case (MDOC_EQN):
435 print_eqn(h, n->eqn);
436 break;
437 case (MDOC_TBL):
438 /*
439 * This will take care of initialising all of the table
440 * state data for the first table, then tearing it down
441 * for the last one.
442 */
443 print_tbl(h, n->span);
444 return;
445 default:
446 /*
447 * Close out the current table, if it’s open, and unset
448 * the "meta" table state. This will be reopened on the
449 * next table element.
450 */
451 if (h->tblt) {
452 print_tblclose(h);
453 t = h->tags.head;
454 }

456 assert(NULL == h->tblt);
457 if (mdocs[n->tok].pre && ENDBODY_NOT == n->end)
458 child = (*mdocs[n->tok].pre)(meta, n, h);
457 child = (*mdocs[n->tok].pre)(m, n, h);
459 break;
460 }

462 if (HTML_KEEP & h->flags) {
463 if (n->prev ? (n->prev->lastline != n->line) :
464 (n->parent && n->parent->line != n->line)) {
462 if (n->prev && n->prev->line != n->line) {
465 h->flags &= ~HTML_KEEP;
466 h->flags |= HTML_PREKEEP;
465 } else if (NULL == n->prev) {

new/usr/src/cmd/mandoc/mdoc_html.c 4

466 if (n->parent && n->parent->line != n->line) {
467 h->flags &= ~HTML_KEEP;
468 h->flags |= HTML_PREKEEP;
467 }
468 }
471 }

470 if (child && n->child)
471 print_mdoc_nodelist(meta, n->child, h);
474 print_mdoc_nodelist(m, n->child, h);

473 print_stagq(h, t);

475 switch (n->type) {
476 case (MDOC_ROOT):
477 mdoc_root_post(meta, n, h);
480 mdoc_root_post(m, n, h);
478 break;
479 case (MDOC_EQN):
480 break;
481 default:
482 if (mdocs[n->tok].post && ENDBODY_NOT == n->end)
483 (*mdocs[n->tok].post)(meta, n, h);
486 (*mdocs[n->tok].post)(m, n, h);
484 break;
485 }
486 }

488 /* ARGSUSED */
489 static void
490 mdoc_root_post(MDOC_ARGS)
491 {
492 struct htmlpair tag[3];
493 struct tag *t, *tt;

495 PAIR_SUMMARY_INIT(&tag[0], "Document Footer");
496 PAIR_CLASS_INIT(&tag[1], "foot");
497 PAIR_INIT(&tag[2], ATTR_WIDTH, "100%");
498 t = print_otag(h, TAG_TABLE, 3, tag);
499 PAIR_INIT(&tag[0], ATTR_WIDTH, "50%");
500 print_otag(h, TAG_COL, 1, tag);
501 print_otag(h, TAG_COL, 1, tag);

503 print_otag(h, TAG_TBODY, 0, NULL);

505 tt = print_otag(h, TAG_TR, 0, NULL);

507 PAIR_CLASS_INIT(&tag[0], "foot-date");
508 print_otag(h, TAG_TD, 1, tag);
509 print_text(h, meta->date);
512 print_text(h, m->date);
510 print_stagq(h, tt);

512 PAIR_CLASS_INIT(&tag[0], "foot-os");
513 PAIR_INIT(&tag[1], ATTR_ALIGN, "right");
514 print_otag(h, TAG_TD, 2, tag);
515 print_text(h, meta->os);
518 print_text(h, m->os);
516 print_tagq(h, t);
517 }

520 /* ARGSUSED */
521 static int
522 mdoc_root_pre(MDOC_ARGS)
523 {

new/usr/src/cmd/mandoc/mdoc_html.c 5

524 struct htmlpair tag[3];
525 struct tag *t, *tt;
526 char b[BUFSIZ], title[BUFSIZ];

528 strlcpy(b, meta->vol, BUFSIZ);
531 strlcpy(b, m->vol, BUFSIZ);

530 if (meta->arch) {
533 if (m->arch) {
531 strlcat(b, " (", BUFSIZ);
532 strlcat(b, meta->arch, BUFSIZ);
535 strlcat(b, m->arch, BUFSIZ);
533 strlcat(b, ")", BUFSIZ);
534 }

536 snprintf(title, BUFSIZ - 1, "%s(%s)", meta->title, meta->msec);
539 snprintf(title, BUFSIZ - 1, "%s(%s)", m->title, m->msec);

538 PAIR_SUMMARY_INIT(&tag[0], "Document Header");
539 PAIR_CLASS_INIT(&tag[1], "head");
540 PAIR_INIT(&tag[2], ATTR_WIDTH, "100%");
541 t = print_otag(h, TAG_TABLE, 3, tag);
542 PAIR_INIT(&tag[0], ATTR_WIDTH, "30%");
543 print_otag(h, TAG_COL, 1, tag);
544 print_otag(h, TAG_COL, 1, tag);
545 print_otag(h, TAG_COL, 1, tag);

547 print_otag(h, TAG_TBODY, 0, NULL);

549 tt = print_otag(h, TAG_TR, 0, NULL);

551 PAIR_CLASS_INIT(&tag[0], "head-ltitle");
552 print_otag(h, TAG_TD, 1, tag);
553 print_text(h, title);
554 print_stagq(h, tt);

556 PAIR_CLASS_INIT(&tag[0], "head-vol");
557 PAIR_INIT(&tag[1], ATTR_ALIGN, "center");
558 print_otag(h, TAG_TD, 2, tag);
559 print_text(h, b);
560 print_stagq(h, tt);

562 PAIR_CLASS_INIT(&tag[0], "head-rtitle");
563 PAIR_INIT(&tag[1], ATTR_ALIGN, "right");
564 print_otag(h, TAG_TD, 2, tag);
565 print_text(h, title);
566 print_tagq(h, t);
567 return(1);
568 }

______unchanged_portion_omitted_

677 static int
678 mdoc_nm_pre(MDOC_ARGS)
679 {
680 struct htmlpair tag;
681 struct roffsu su;
682 int len;

684 switch (n->type) {
685 case (MDOC_ELEM):
686 synopsis_pre(h, n);
687 PAIR_CLASS_INIT(&tag, "name");
688 print_otag(h, TAG_B, 1, &tag);
689 if (NULL == n->child && meta->name)
690 print_text(h, meta->name);

new/usr/src/cmd/mandoc/mdoc_html.c 6

692 if (NULL == n->child && m->name)
693 print_text(h, m->name);
691 return(1);
692 case (MDOC_HEAD):
693 print_otag(h, TAG_TD, 0, NULL);
694 if (NULL == n->child && meta->name)
695 print_text(h, meta->name);
697 if (NULL == n->child && m->name)
698 print_text(h, m->name);
696 return(1);
697 case (MDOC_BODY):
698 print_otag(h, TAG_TD, 0, NULL);
699 return(1);
700 default:
701 break;
702 }

704 synopsis_pre(h, n);
705 PAIR_CLASS_INIT(&tag, "synopsis");
706 print_otag(h, TAG_TABLE, 1, &tag);

708 for (len = 0, n = n->child; n; n = n->next)
709 if (MDOC_TEXT == n->type)
710 len += html_strlen(n->string);

712 if (0 == len && meta->name)
713 len = html_strlen(meta->name);
715 if (0 == len && m->name)
716 len = html_strlen(m->name);

715 SCALE_HS_INIT(&su, (double)len);
716 bufinit(h);
717 bufcat_su(h, "width", &su);
718 PAIR_STYLE_INIT(&tag, h);
719 print_otag(h, TAG_COL, 1, &tag);
720 print_otag(h, TAG_COL, 0, NULL);
721 print_otag(h, TAG_TBODY, 0, NULL);
722 print_otag(h, TAG_TR, 0, NULL);
723 return(1);
724 }

______unchanged_portion_omitted_

972 /* ARGSUSED */
973 static int
974 mdoc_bl_pre(MDOC_ARGS)
975 {
976 int i;
977 struct htmlpair tag[3];
978 struct roffsu su;
979 char buf[BUFSIZ];

984 bufinit(h);

981 if (MDOC_BODY == n->type) {
982 if (LIST_column == n->norm->Bl.type)
983 print_otag(h, TAG_TBODY, 0, NULL);
984 return(1);
985 }

987 if (MDOC_HEAD == n->type) {
988 if (LIST_column != n->norm->Bl.type)
989 return(0);

991 /*
992 * For each column, print out the <COL> tag with our
993 * suggested width. The last column gets min-width, as

new/usr/src/cmd/mandoc/mdoc_html.c 7

994 * in terminal mode it auto-sizes to the width of the
995 * screen and we want to preserve that behaviour.
996 */

998 for (i = 0; i < (int)n->norm->Bl.ncols; i++) {
999 bufinit(h);
1000 a2width(n->norm->Bl.cols[i], &su);
1001 if (i < (int)n->norm->Bl.ncols - 1)
1002 bufcat_su(h, "width", &su);
1003 else
1004 bufcat_su(h, "min-width", &su);
1005 PAIR_STYLE_INIT(&tag[0], h);
1006 print_otag(h, TAG_COL, 1, tag);
1007 }

1009 return(0);
1010 }

1012 SCALE_VS_INIT(&su, 0);
1013 bufinit(h);
1014 bufcat_su(h, "margin-top", &su);
1015 bufcat_su(h, "margin-bottom", &su);
1016 PAIR_STYLE_INIT(&tag[0], h);

1018 assert(lists[n->norm->Bl.type]);
1019 strlcpy(buf, "list ", BUFSIZ);
1020 strlcat(buf, lists[n->norm->Bl.type], BUFSIZ);
1021 PAIR_INIT(&tag[1], ATTR_CLASS, buf);

1023 /* Set the block’s left-hand margin. */

1025 if (n->norm->Bl.offs) {
1026 a2offs(n->norm->Bl.offs, &su);
1027 bufcat_su(h, "margin-left", &su);
1028 }

1030 switch (n->norm->Bl.type) {
1031 case(LIST_bullet):
1032 /* FALLTHROUGH */
1033 case(LIST_dash):
1034 /* FALLTHROUGH */
1035 case(LIST_hyphen):
1036 /* FALLTHROUGH */
1037 case(LIST_item):
1038 print_otag(h, TAG_UL, 2, tag);
1039 break;
1040 case(LIST_enum):
1041 print_otag(h, TAG_OL, 2, tag);
1042 break;
1043 case(LIST_diag):
1044 /* FALLTHROUGH */
1045 case(LIST_hang):
1046 /* FALLTHROUGH */
1047 case(LIST_inset):
1048 /* FALLTHROUGH */
1049 case(LIST_ohang):
1050 /* FALLTHROUGH */
1051 case(LIST_tag):
1052 print_otag(h, TAG_DL, 2, tag);
1053 break;
1054 case(LIST_column):
1055 print_otag(h, TAG_TABLE, 2, tag);
1056 break;
1057 default:
1058 abort();
1059 /* NOTREACHED */

new/usr/src/cmd/mandoc/mdoc_html.c 8

1060 }

1062 return(1);
1063 }
______unchanged_portion_omitted_

1174 /* ARGSUSED */
1175 static int
1176 mdoc_bd_pre(MDOC_ARGS)
1177 {
1178 struct htmlpair tag[2];
1179 int comp, sv;
1180 const struct mdoc_node *nn;
1181 struct roffsu su;

1183 if (MDOC_HEAD == n->type)
1184 return(0);

1186 if (MDOC_BLOCK == n->type) {
1187 comp = n->norm->Bd.comp;
1188 for (nn = n; nn && ! comp; nn = nn->parent) {
1189 if (MDOC_BLOCK != nn->type)
1190 continue;
1191 if (MDOC_Ss == nn->tok || MDOC_Sh == nn->tok)
1192 comp = 1;
1193 if (nn->prev)
1194 break;
1195 }
1196 if (! comp)
1197 print_otag(h, TAG_P, 0, NULL);
1198 return(1);
1199 }

1201 SCALE_HS_INIT(&su, 0);
1202 if (n->norm->Bd.offs)
1203 a2offs(n->norm->Bd.offs, &su);
1204
1205 bufinit(h);
1206 bufcat_su(h, "margin-left", &su);
1207 PAIR_STYLE_INIT(&tag[0], h);

1209 if (DISP_unfilled != n->norm->Bd.type &&
1210 DISP_literal != n->norm->Bd.type) {
1211 PAIR_CLASS_INIT(&tag[1], "display");
1212 print_otag(h, TAG_DIV, 2, tag);
1213 return(1);
1214 }

1216 PAIR_CLASS_INIT(&tag[1], "lit display");
1217 print_otag(h, TAG_PRE, 2, tag);

1219 /* This can be recursive: save & set our literal state. */

1221 sv = h->flags & HTML_LITERAL;
1222 h->flags |= HTML_LITERAL;

1224 for (nn = n->child; nn; nn = nn->next) {
1225 print_mdoc_node(meta, nn, h);
1228 print_mdoc_node(m, nn, h);
1226 /*
1227 * If the printed node flushes its own line, then we
1228 * needn’t do it here as well. This is hacky, but the
1229 * notion of selective eoln whitespace is pretty dumb
1230 * anyway, so don’t sweat it.
1231 */

new/usr/src/cmd/mandoc/mdoc_html.c 9

1232 switch (nn->tok) {
1233 case (MDOC_Sm):
1234 /* FALLTHROUGH */
1235 case (MDOC_br):
1236 /* FALLTHROUGH */
1237 case (MDOC_sp):
1238 /* FALLTHROUGH */
1239 case (MDOC_Bl):
1240 /* FALLTHROUGH */
1241 case (MDOC_D1):
1242 /* FALLTHROUGH */
1243 case (MDOC_Dl):
1244 /* FALLTHROUGH */
1245 case (MDOC_Lp):
1246 /* FALLTHROUGH */
1247 case (MDOC_Pp):
1248 continue;
1249 default:
1250 break;
1251 }
1252 if (nn->next && nn->next->line == nn->line)
1253 continue;
1254 else if (nn->next)
1255 print_text(h, "\n");

1257 h->flags |= HTML_NOSPACE;
1258 }

1260 if (0 == sv)
1261 h->flags &= ~HTML_LITERAL;

1263 return(0);
1264 }
______unchanged_portion_omitted_

2222 /* ARGSUSED */
2223 static void
2224 mdoc_quote_post(MDOC_ARGS)
2225 {

2227 if (MDOC_BODY != n->type)
2228 return;

2230 h->flags |= HTML_NOSPACE;

2232 switch (n->tok) {
2233 case (MDOC_Ao):
2234 /* FALLTHROUGH */
2235 case (MDOC_Aq):
2236 print_text(h, "\\(ra");
2237 break;
2238 case (MDOC_Bro):
2239 /* FALLTHROUGH */
2240 case (MDOC_Brq):
2241 print_text(h, "\\(rC");
2242 break;
2243 case (MDOC_Oo):
2244 /* FALLTHROUGH */
2245 case (MDOC_Op):
2246 /* FALLTHROUGH */
2247 case (MDOC_Bo):
2248 /* FALLTHROUGH */
2249 case (MDOC_Bq):
2250 print_text(h, "\\(rB");
2251 break;

new/usr/src/cmd/mandoc/mdoc_html.c 10

2252 case (MDOC_Eo):
2253 break;
2254 case (MDOC_Qo):
2255 /* FALLTHROUGH */
2256 case (MDOC_Qq):
2257 /* FALLTHROUGH */
2258 case (MDOC_Do):
2259 /* FALLTHROUGH */
2260 case (MDOC_Dq):
2261 print_text(h, "\\(rq");
2262 break;
2263 case (MDOC_Po):
2264 /* FALLTHROUGH */
2265 case (MDOC_Pq):
2266 print_text(h, ")");
2267 break;
2268 case (MDOC_Ql):
2269 /* FALLTHROUGH */
2270 case (MDOC_So):
2271 /* FALLTHROUGH */
2272 case (MDOC_Sq):
2273 print_text(h, "\\(cq");
2276 print_text(h, "\\(aq");
2274 break;
2275 default:
2276 abort();
2277 /* NOTREACHED */
2278 }
2279 }
______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/mdoc_macro.c 1

**
 45476 Wed Jul 30 20:55:09 2014
new/usr/src/cmd/mandoc/mdoc_macro.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: mdoc_macro.c,v 1.125 2013/12/24 20:45:27 schwarze Exp $ */
1 /* $Id: mdoc_macro.c,v 1.115 2012/01/05 00:43:51 schwarze Exp $ */
2 /*
3 * Copyright (c) 2008-2012 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2010, 2012, 2013 Ingo Schwarze <schwarze@openbsd.org>
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2010 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <assert.h>
23 #include <ctype.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <string.h>
27 #include <time.h>

29 #include "mdoc.h"
30 #include "mandoc.h"
31 #include "libmdoc.h"
32 #include "libmandoc.h"

34 enum rew { /* see rew_dohalt() */
35 REWIND_NONE,
36 REWIND_THIS,
37 REWIND_MORE,
38 REWIND_FORCE,
39 REWIND_LATER,
40 REWIND_ERROR
41 };

43 static int blk_full(MACRO_PROT_ARGS);
44 static int blk_exp_close(MACRO_PROT_ARGS);
45 static int blk_part_exp(MACRO_PROT_ARGS);
46 static int blk_part_imp(MACRO_PROT_ARGS);
47 static int ctx_synopsis(MACRO_PROT_ARGS);
48 static int in_line_eoln(MACRO_PROT_ARGS);
49 static int in_line_argn(MACRO_PROT_ARGS);
50 static int in_line(MACRO_PROT_ARGS);
51 static int obsolete(MACRO_PROT_ARGS);
52 static int phrase_ta(MACRO_PROT_ARGS);

54 static int dword(struct mdoc *, int, int, const char *,
55 enum mdelim, int);
54 static int dword(struct mdoc *, int, int,

new/usr/src/cmd/mandoc/mdoc_macro.c 2

55 const char *, enum mdelim);
56 static int append_delims(struct mdoc *,
57 int, int *, char *);
58 static enum mdoct lookup(enum mdoct, const char *);
59 static enum mdoct lookup_raw(const char *);
60 static int make_pending(struct mdoc_node *, enum mdoct,
61 struct mdoc *, int, int);
62 static int phrase(struct mdoc *, int, int, char *);
63 static enum mdoct rew_alt(enum mdoct);
64 static enum rew rew_dohalt(enum mdoct, enum mdoc_type,
65 const struct mdoc_node *);
66 static int rew_elem(struct mdoc *, enum mdoct);
67 static int rew_last(struct mdoc *,
68 const struct mdoc_node *);
69 static int rew_sub(enum mdoc_type, struct mdoc *,
70 enum mdoct, int, int);

72 const struct mdoc_macro __mdoc_macros[MDOC_MAX] = {
73 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* Ap */
73 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED }, /* Ap */
74 { in_line_eoln, MDOC_PROLOGUE }, /* Dd */
75 { in_line_eoln, MDOC_PROLOGUE }, /* Dt */
76 { in_line_eoln, MDOC_PROLOGUE }, /* Os */
77 { blk_full, MDOC_PARSED | MDOC_JOIN }, /* Sh */
78 { blk_full, MDOC_PARSED | MDOC_JOIN }, /* Ss */
77 { blk_full, MDOC_PARSED }, /* Sh */
78 { blk_full, MDOC_PARSED }, /* Ss */
79 { in_line_eoln, 0 }, /* Pp */
80 { blk_part_imp, MDOC_PARSED | MDOC_JOIN }, /* D1 */
81 { blk_part_imp, MDOC_PARSED | MDOC_JOIN }, /* Dl */
80 { blk_part_imp, MDOC_PARSED }, /* D1 */
81 { blk_part_imp, MDOC_PARSED }, /* Dl */
82 { blk_full, MDOC_EXPLICIT }, /* Bd */
83 { blk_exp_close, MDOC_EXPLICIT | MDOC_JOIN }, /* Ed */
83 { blk_exp_close, MDOC_EXPLICIT }, /* Ed */
84 { blk_full, MDOC_EXPLICIT }, /* Bl */
85 { blk_exp_close, MDOC_EXPLICIT | MDOC_JOIN }, /* El */
86 { blk_full, MDOC_PARSED | MDOC_JOIN }, /* It */
85 { blk_exp_close, MDOC_EXPLICIT }, /* El */
86 { blk_full, MDOC_PARSED }, /* It */
87 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Ad */
88 { in_line, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* An */
88 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* An */
89 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Ar */
90 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Cd */
91 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Cm */
92 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Dv */
93 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Er */
94 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Ev */
95 { in_line_eoln, 0 }, /* Ex */
96 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Fa */
97 { in_line_eoln, 0 }, /* Fd */
98 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Fl */
99 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Fn */
100 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Ft */
101 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Ic */
102 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED }, /* In */
103 { in_line, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* Li */
104 { blk_full, MDOC_JOIN }, /* Nd */
103 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Li */
104 { blk_full, 0 }, /* Nd */
105 { ctx_synopsis, MDOC_CALLABLE | MDOC_PARSED }, /* Nm */
106 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED }, /* Op */
107 { obsolete, 0 }, /* Ot */
108 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Pa */
109 { in_line_eoln, 0 }, /* Rv */

new/usr/src/cmd/mandoc/mdoc_macro.c 3

110 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED }, /* St */
111 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Va */
112 { ctx_synopsis, MDOC_CALLABLE | MDOC_PARSED }, /* Vt */
113 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED }, /* Xr */
114 { in_line_eoln, MDOC_JOIN }, /* %A */
115 { in_line_eoln, MDOC_JOIN }, /* %B */
116 { in_line_eoln, MDOC_JOIN }, /* %D */
117 { in_line_eoln, MDOC_JOIN }, /* %I */
118 { in_line_eoln, MDOC_JOIN }, /* %J */
114 { in_line_eoln, 0 }, /* %A */
115 { in_line_eoln, 0 }, /* %B */
116 { in_line_eoln, 0 }, /* %D */
117 { in_line_eoln, 0 }, /* %I */
118 { in_line_eoln, 0 }, /* %J */
119 { in_line_eoln, 0 }, /* %N */
120 { in_line_eoln, MDOC_JOIN }, /* %O */
120 { in_line_eoln, 0 }, /* %O */
121 { in_line_eoln, 0 }, /* %P */
122 { in_line_eoln, MDOC_JOIN }, /* %R */
123 { in_line_eoln, MDOC_JOIN }, /* %T */
122 { in_line_eoln, 0 }, /* %R */
123 { in_line_eoln, 0 }, /* %T */
124 { in_line_eoln, 0 }, /* %V */
125 { blk_exp_close, MDOC_CALLABLE | MDOC_PARSED |
126 MDOC_EXPLICIT | MDOC_JOIN }, /* Ac */
127 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED |
128 MDOC_EXPLICIT | MDOC_JOIN }, /* Ao */
129 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* Aq */
125 { blk_exp_close, MDOC_EXPLICIT | MDOC_CALLABLE | MDOC_PARSED }, /* Ac */
126 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED | MDOC_EXPLICIT }, /* Ao */
127 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED }, /* Aq */
130 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED }, /* At */
131 { blk_exp_close, MDOC_CALLABLE | MDOC_PARSED |
132 MDOC_EXPLICIT | MDOC_JOIN }, /* Bc */
129 { blk_exp_close, MDOC_EXPLICIT | MDOC_CALLABLE | MDOC_PARSED }, /* Bc */
133 { blk_full, MDOC_EXPLICIT }, /* Bf */
134 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED |
135 MDOC_EXPLICIT | MDOC_JOIN }, /* Bo */
136 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* Bq */
131 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED | MDOC_EXPLICIT }, /* Bo */
132 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED }, /* Bq */
137 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED }, /* Bsx */
138 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED }, /* Bx */
139 { in_line_eoln, 0 }, /* Db */
140 { blk_exp_close, MDOC_CALLABLE | MDOC_PARSED |
141 MDOC_EXPLICIT | MDOC_JOIN }, /* Dc */
142 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED |
143 MDOC_EXPLICIT | MDOC_JOIN }, /* Do */
144 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* Dq */
145 { blk_exp_close, MDOC_CALLABLE | MDOC_PARSED | MDOC_EXPLICIT }, /* Ec */
146 { blk_exp_close, MDOC_EXPLICIT | MDOC_JOIN }, /* Ef */
147 { in_line, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* Em */
136 { blk_exp_close, MDOC_EXPLICIT | MDOC_CALLABLE | MDOC_PARSED }, /* Dc */
137 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED | MDOC_EXPLICIT }, /* Do */
138 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED }, /* Dq */
139 { blk_exp_close, MDOC_EXPLICIT | MDOC_CALLABLE | MDOC_PARSED }, /* Ec */
140 { blk_exp_close, MDOC_EXPLICIT }, /* Ef */
141 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Em */
148 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED | MDOC_EXPLICIT }, /* Eo */
149 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED }, /* Fx */
150 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Ms */
151 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED |
152 MDOC_IGNDELIM | MDOC_JOIN }, /* No */
153 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED |
154 MDOC_IGNDELIM | MDOC_JOIN }, /* Ns */
145 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED | MDOC_IGNDELIM }, /* No */

new/usr/src/cmd/mandoc/mdoc_macro.c 4

146 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED | MDOC_IGNDELIM }, /* Ns */
155 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED }, /* Nx */
156 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED }, /* Ox */
157 { blk_exp_close, MDOC_CALLABLE | MDOC_PARSED |
158 MDOC_EXPLICIT | MDOC_JOIN }, /* Pc */
149 { blk_exp_close, MDOC_EXPLICIT | MDOC_CALLABLE | MDOC_PARSED }, /* Pc */
159 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED | MDOC_IGNDELIM }, /* Pf */
160 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED |
161 MDOC_EXPLICIT | MDOC_JOIN }, /* Po */
162 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* Pq */
163 { blk_exp_close, MDOC_CALLABLE | MDOC_PARSED |
164 MDOC_EXPLICIT | MDOC_JOIN }, /* Qc */
165 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* Ql */
166 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED |
167 MDOC_EXPLICIT | MDOC_JOIN }, /* Qo */
168 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* Qq */
169 { blk_exp_close, MDOC_EXPLICIT | MDOC_JOIN }, /* Re */
151 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED | MDOC_EXPLICIT }, /* Po */
152 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED }, /* Pq */
153 { blk_exp_close, MDOC_EXPLICIT | MDOC_CALLABLE | MDOC_PARSED }, /* Qc */
154 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED }, /* Ql */
155 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED | MDOC_EXPLICIT }, /* Qo */
156 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED }, /* Qq */
157 { blk_exp_close, MDOC_EXPLICIT }, /* Re */
170 { blk_full, MDOC_EXPLICIT }, /* Rs */
171 { blk_exp_close, MDOC_CALLABLE | MDOC_PARSED |
172 MDOC_EXPLICIT | MDOC_JOIN }, /* Sc */
173 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED |
174 MDOC_EXPLICIT | MDOC_JOIN }, /* So */
175 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* Sq */
159 { blk_exp_close, MDOC_EXPLICIT | MDOC_CALLABLE | MDOC_PARSED }, /* Sc */
160 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED | MDOC_EXPLICIT }, /* So */
161 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED }, /* Sq */
176 { in_line_eoln, 0 }, /* Sm */
177 { in_line, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* Sx */
178 { in_line, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* Sy */
163 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Sx */
164 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Sy */
179 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Tn */
180 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* Ux */
166 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED }, /* Ux */
181 { blk_exp_close, MDOC_EXPLICIT | MDOC_CALLABLE | MDOC_PARSED }, /* Xc */
182 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED | MDOC_EXPLICIT }, /* Xo */
183 { blk_full, MDOC_EXPLICIT | MDOC_CALLABLE }, /* Fo */
184 { blk_exp_close, MDOC_CALLABLE | MDOC_PARSED |
185 MDOC_EXPLICIT | MDOC_JOIN }, /* Fc */
186 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED |
187 MDOC_EXPLICIT | MDOC_JOIN }, /* Oo */
188 { blk_exp_close, MDOC_CALLABLE | MDOC_PARSED |
189 MDOC_EXPLICIT | MDOC_JOIN }, /* Oc */
170 { blk_exp_close, MDOC_EXPLICIT | MDOC_CALLABLE | MDOC_PARSED }, /* Fc */
171 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED | MDOC_EXPLICIT }, /* Oo */
172 { blk_exp_close, MDOC_EXPLICIT | MDOC_CALLABLE | MDOC_PARSED }, /* Oc */
190 { blk_full, MDOC_EXPLICIT }, /* Bk */
191 { blk_exp_close, MDOC_EXPLICIT | MDOC_JOIN }, /* Ek */
174 { blk_exp_close, MDOC_EXPLICIT }, /* Ek */
192 { in_line_eoln, 0 }, /* Bt */
193 { in_line_eoln, 0 }, /* Hf */
194 { obsolete, 0 }, /* Fr */
195 { in_line_eoln, 0 }, /* Ud */
196 { in_line, 0 }, /* Lb */
197 { in_line_eoln, 0 }, /* Lp */
198 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Lk */
199 { in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Mt */
200 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* Brq */
201 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED |

new/usr/src/cmd/mandoc/mdoc_macro.c 5

202 MDOC_EXPLICIT | MDOC_JOIN }, /* Bro */
203 { blk_exp_close, MDOC_CALLABLE | MDOC_PARSED |
204 MDOC_EXPLICIT | MDOC_JOIN }, /* Brc */
205 { in_line_eoln, MDOC_JOIN }, /* %C */
183 { blk_part_imp, MDOC_CALLABLE | MDOC_PARSED }, /* Brq */
184 { blk_part_exp, MDOC_CALLABLE | MDOC_PARSED | MDOC_EXPLICIT }, /* Bro */
185 { blk_exp_close, MDOC_EXPLICIT | MDOC_CALLABLE | MDOC_PARSED }, /* Brc *
186 { in_line_eoln, 0 }, /* %C */
206 { obsolete, 0 }, /* Es */
207 { obsolete, 0 }, /* En */
208 { in_line_argn, MDOC_CALLABLE | MDOC_PARSED }, /* Dx */
209 { in_line_eoln, MDOC_JOIN }, /* %Q */
190 { in_line_eoln, 0 }, /* %Q */
210 { in_line_eoln, 0 }, /* br */
211 { in_line_eoln, 0 }, /* sp */
212 { in_line_eoln, 0 }, /* %U */
213 { phrase_ta, MDOC_CALLABLE | MDOC_PARSED | MDOC_JOIN }, /* Ta */
194 { phrase_ta, MDOC_CALLABLE | MDOC_PARSED }, /* Ta */
214 };

216 const struct mdoc_macro * const mdoc_macros = __mdoc_macros;

219 /*
220 * This is called at the end of parsing. It must traverse up the tree,
221 * closing out open [implicit] scopes. Obviously, open explicit scopes
222 * are errors.
223 */
224 int
225 mdoc_macroend(struct mdoc *mdoc)
206 mdoc_macroend(struct mdoc *m)
226 {
227 struct mdoc_node *n;

229 /* Scan for open explicit scopes. */

231 n = MDOC_VALID & mdoc->last->flags ?
232 mdoc->last->parent : mdoc->last;
212 n = MDOC_VALID & m->last->flags ? m->last->parent : m->last;

234 for (; n; n = n->parent)
235 if (MDOC_BLOCK == n->type &&
236 MDOC_EXPLICIT & mdoc_macros[n->tok].flags)
237 mdoc_nmsg(mdoc, n, MANDOCERR_SCOPEEXIT);
217 mdoc_nmsg(m, n, MANDOCERR_SCOPEEXIT);

239 /* Rewind to the first. */

241 return(rew_last(mdoc, mdoc->first));
221 return(rew_last(m, m->first));
242 }

______unchanged_portion_omitted_

274 static int
275 rew_last(struct mdoc *mdoc, const struct mdoc_node *to)
276 {
277 struct mdoc_node *n, *np;

279 assert(to);
280 mdoc->next = MDOC_NEXT_SIBLING;

282 /* LINTED */
283 while (mdoc->last != to) {
284 /*
285 * Save the parent here, because we may delete the

new/usr/src/cmd/mandoc/mdoc_macro.c 6

286 * mdoc->last node in the post-validation phase and reset
287 * it to mdoc->last->parent, causing a step in the closing
266 * m->last node in the post-validation phase and reset
267 * it to m->last->parent, causing a step in the closing
288 * out to be lost.
289 */
290 np = mdoc->last->parent;
291 if (! mdoc_valid_post(mdoc))
292 return(0);
293 n = mdoc->last;
294 mdoc->last = np;
295 assert(mdoc->last);
296 mdoc->last->last = n;
297 }

299 return(mdoc_valid_post(mdoc));
300 }

______unchanged_portion_omitted_

475 /*
476 * We are trying to close a block identified by tok,
477 * but the child block *broken is still open.
478 * Thus, postpone closing the tok block
479 * until the rew_sub call closing *broken.
480 */
481 static int
482 make_pending(struct mdoc_node *broken, enum mdoct tok,
483 struct mdoc *mdoc, int line, int ppos)
463 struct mdoc *m, int line, int ppos)
484 {
485 struct mdoc_node *breaker;

487 /*
488 * Iterate backwards, searching for the block matching tok,
489 * that is, the block breaking the *broken block.
490 */
491 for (breaker = broken->parent; breaker; breaker = breaker->parent) {

493 /*
494 * If the *broken block had already been broken before
495 * and we encounter its breaker, make the tok block
496 * pending on the inner breaker.
497 * Graphically, "[A breaker=[B broken=[C->B B] tok=A] C]"
498 * becomes "[A broken=[B [C->B B] tok=A] C]"
499 * and finally "[A [B->A [C->B B] A] C]".
500 */
501 if (breaker == broken->pending) {
502 broken = breaker;
503 continue;
504 }

506 if (REWIND_THIS != rew_dohalt(tok, MDOC_BLOCK, breaker))
507 continue;
508 if (MDOC_BODY == broken->type)
509 broken = broken->parent;

511 /*
512 * Found the breaker.
513 * If another, outer breaker is already pending on
514 * the *broken block, we must not clobber the link
515 * to the outer breaker, but make it pending on the
516 * new, now inner breaker.
517 * Graphically, "[A breaker=[B broken=[C->A A] tok=B] C]"
518 * becomes "[A breaker=[B->A broken=[C A] tok=B] C]"
519 * and finally "[A [B->A [C->B A] B] C]".

new/usr/src/cmd/mandoc/mdoc_macro.c 7

520 */
521 if (broken->pending) {
522 struct mdoc_node *taker;

524 /*
525 * If the breaker had also been broken before,
526 * it cannot take on the outer breaker itself,
527 * but must hand it on to its own breakers.
528 * Graphically, this is the following situation:
529 * "[A [B breaker=[C->B B] broken=[D->A A] tok=C] D]"
530 * "[A taker=[B->A breaker=[C->B B] [D->C A] C] D]"
531 */
532 taker = breaker;
533 while (taker->pending)
534 taker = taker->pending;
535 taker->pending = broken->pending;
536 }
537 broken->pending = breaker;
538 mandoc_vmsg(MANDOCERR_SCOPENEST, mdoc->parse, line, ppos,
518 mandoc_vmsg(MANDOCERR_SCOPENEST, m->parse, line, ppos,
539 "%s breaks %s", mdoc_macronames[tok],
540 mdoc_macronames[broken->tok]);
541 return(1);
542 }

544 /*
545 * Found no matching block for tok.
546 * Are you trying to close a block that is not open?
547 */
548 return(0);
549 }

552 static int
553 rew_sub(enum mdoc_type t, struct mdoc *mdoc,
533 rew_sub(enum mdoc_type t, struct mdoc *m,
554 enum mdoct tok, int line, int ppos)
555 {
556 struct mdoc_node *n;

558 n = mdoc->last;
538 n = m->last;
559 while (n) {
560 switch (rew_dohalt(tok, t, n)) {
561 case (REWIND_NONE):
562 return(1);
563 case (REWIND_THIS):
564 n->lastline = line -
565 (MDOC_NEWLINE & mdoc->flags &&
566 ! (MDOC_EXPLICIT & mdoc_macros[tok].flags));
567 break;
568 case (REWIND_FORCE):
569 mandoc_vmsg(MANDOCERR_SCOPEBROKEN, mdoc->parse,
546 mandoc_vmsg(MANDOCERR_SCOPEBROKEN, m->parse,
570 line, ppos, "%s breaks %s",
571 mdoc_macronames[tok],
572 mdoc_macronames[n->tok]);
573 /* FALLTHROUGH */
574 case (REWIND_MORE):
575 n->lastline = line -
576 (MDOC_NEWLINE & mdoc->flags ? 1 : 0);
577 n = n->parent;
578 continue;
579 case (REWIND_LATER):
580 if (make_pending(n, tok, mdoc, line, ppos) ||
555 if (make_pending(n, tok, m, line, ppos) ||

new/usr/src/cmd/mandoc/mdoc_macro.c 8

581 MDOC_BLOCK != t)
582 return(1);
583 /* FALLTHROUGH */
584 case (REWIND_ERROR):
585 mdoc_pmsg(mdoc, line, ppos, MANDOCERR_NOSCOPE);
560 mdoc_pmsg(m, line, ppos, MANDOCERR_NOSCOPE);
586 return(1);
587 }
588 break;
589 }

591 assert(n);
592 if (! rew_last(mdoc, n))
567 if (! rew_last(m, n))
593 return(0);

595 /*
596 * The current block extends an enclosing block.
597 * Now that the current block ends, close the enclosing block, too.
598 */
599 while (NULL != (n = n->pending)) {
600 if (! rew_last(mdoc, n))
575 if (! rew_last(m, n))
601 return(0);
602 if (MDOC_HEAD == n->type &&
603 ! mdoc_body_alloc(mdoc, n->line, n->pos, n->tok))
578 ! mdoc_body_alloc(m, n->line, n->pos, n->tok))
604 return(0);
605 }

607 return(1);
608 }

610 /*
611 * Allocate a word and check whether it’s punctuation or not.
612 * Punctuation consists of those tokens found in mdoc_isdelim().
613 */
614 static int
615 dword(struct mdoc *mdoc, int line, int col, const char *p,
616 enum mdelim d, int may_append)
590 dword(struct mdoc *m, int line,
591 int col, const char *p, enum mdelim d)
617 {
618
619 if (DELIM_MAX == d)
620 d = mdoc_isdelim(p);

622 if (may_append &&
623 ! ((MDOC_SYNOPSIS | MDOC_KEEP | MDOC_SMOFF) & mdoc->flags) &&
624 DELIM_NONE == d && MDOC_TEXT == mdoc->last->type &&
625 DELIM_NONE == mdoc_isdelim(mdoc->last->string)) {
626 mdoc_word_append(mdoc, p);
627 return(1);
628 }

630 if (! mdoc_word_alloc(mdoc, line, col, p))
597 if (! mdoc_word_alloc(m, line, col, p))
631 return(0);

633 if (DELIM_OPEN == d)
634 mdoc->last->flags |= MDOC_DELIMO;
601 m->last->flags |= MDOC_DELIMO;

636 /*
637 * Closing delimiters only suppress the preceding space
638 * when they follow something, not when they start a new

new/usr/src/cmd/mandoc/mdoc_macro.c 9

639 * block or element, and not when they follow ‘No’.
640 *
641 * XXX Explicitly special-casing MDOC_No here feels
642 * like a layering violation. Find a better way
643 * and solve this in the code related to ‘No’!
644 */

646 else if (DELIM_CLOSE == d && mdoc->last->prev &&
647 mdoc->last->prev->tok != MDOC_No &&
648 mdoc->last->parent->tok != MDOC_Fd)
649 mdoc->last->flags |= MDOC_DELIMC;
613 else if (DELIM_CLOSE == d && m->last->prev &&
614 m->last->prev->tok != MDOC_No)
615 m->last->flags |= MDOC_DELIMC;

651 return(1);
652 }

654 static int
655 append_delims(struct mdoc *mdoc, int line, int *pos, char *buf)
621 append_delims(struct mdoc *m, int line, int *pos, char *buf)
656 {
657 int la;
658 enum margserr ac;
659 char *p;

661 if (’\0’ == buf[*pos])
662 return(1);

664 for (;;) {
665 la = *pos;
666 ac = mdoc_zargs(mdoc, line, pos, buf, &p);
632 ac = mdoc_zargs(m, line, pos, buf, &p);

668 if (ARGS_ERROR == ac)
669 return(0);
670 else if (ARGS_EOLN == ac)
671 break;

673 dword(mdoc, line, la, p, DELIM_MAX, 1);
639 dword(m, line, la, p, DELIM_MAX);

675 /*
676 * If we encounter end-of-sentence symbols, then trigger
677 * the double-space.
678 *
679 * XXX: it’s easy to allow this to propagate outward to
680 * the last symbol, such that ‘.)’ will cause the
681 * correct double-spacing. However, (1) groff isn’t
682 * smart enough to do this and (2) it would require
683 * knowing which symbols break this behaviour, for
684 * example, ‘. ;’ shouldn’t propagate the double-space.
685 */
686 if (mandoc_eos(p, strlen(p), 0))
687 mdoc->last->flags |= MDOC_EOS;
653 m->last->flags |= MDOC_EOS;
688 }

690 return(1);
691 }

694 /*
695 * Close out block partial/full explicit.
696 */
697 static int

new/usr/src/cmd/mandoc/mdoc_macro.c 10

698 blk_exp_close(MACRO_PROT_ARGS)
699 {
700 struct mdoc_node *body; /* Our own body. */
701 struct mdoc_node *later; /* A sub-block starting later. */
702 struct mdoc_node *n; /* For searching backwards. */

704 int j, lastarg, maxargs, flushed, nl;
705 enum margserr ac;
706 enum mdoct atok, ntok;
707 char *p;

709 nl = MDOC_NEWLINE & mdoc->flags;
675 nl = MDOC_NEWLINE & m->flags;

711 switch (tok) {
712 case (MDOC_Ec):
713 maxargs = 1;
714 break;
715 case (MDOC_Ek):
716 mdoc->flags &= ~MDOC_KEEP;
717 default:
718 maxargs = 0;
719 break;
720 }

722 /*
723 * Search backwards for beginnings of blocks,
724 * both of our own and of pending sub-blocks.
725 */
726 atok = rew_alt(tok);
727 body = later = NULL;
728 for (n = mdoc->last; n; n = n->parent) {
692 for (n = m->last; n; n = n->parent) {
729 if (MDOC_VALID & n->flags)
730 continue;

732 /* Remember the start of our own body. */
733 if (MDOC_BODY == n->type && atok == n->tok) {
734 if (ENDBODY_NOT == n->end)
735 body = n;
736 continue;
737 }

739 if (MDOC_BLOCK != n->type || MDOC_Nm == n->tok)
740 continue;
741 if (atok == n->tok) {
742 assert(body);

744 /*
745 * Found the start of our own block.
746 * When there is no pending sub block,
747 * just proceed to closing out.
748 */
749 if (NULL == later)
750 break;

752 /*
753 * When there is a pending sub block,
754 * postpone closing out the current block
755 * until the rew_sub() closing out the sub-block.
756 */
757 make_pending(later, tok, mdoc, line, ppos);
721 make_pending(later, tok, m, line, ppos);

759 /*
760 * Mark the place where the formatting - but not

new/usr/src/cmd/mandoc/mdoc_macro.c 11

761 * the scope - of the current block ends.
762 */
763 if (! mdoc_endbody_alloc(mdoc, line, ppos,
727 if (! mdoc_endbody_alloc(m, line, ppos,
764 atok, body, ENDBODY_SPACE))
765 return(0);
766 break;
767 }

769 /*
770 * When finding an open sub block, remember the last
771 * open explicit block, or, in case there are only
772 * implicit ones, the first open implicit block.
773 */
774 if (later &&
775 MDOC_EXPLICIT & mdoc_macros[later->tok].flags)
776 continue;
777 if (MDOC_It != n->tok)
741 if (MDOC_CALLABLE & mdoc_macros[n->tok].flags)
778 later = n;
779 }

781 if (! (MDOC_CALLABLE & mdoc_macros[tok].flags)) {
782 /* FIXME: do this in validate */
783 if (buf[*pos])
784 mdoc_pmsg(mdoc, line, ppos, MANDOCERR_ARGSLOST);
748 mdoc_pmsg(m, line, ppos, MANDOCERR_ARGSLOST);

786 if (! rew_sub(MDOC_BODY, mdoc, tok, line, ppos))
750 if (! rew_sub(MDOC_BODY, m, tok, line, ppos))
787 return(0);
788 return(rew_sub(MDOC_BLOCK, mdoc, tok, line, ppos));
752 return(rew_sub(MDOC_BLOCK, m, tok, line, ppos));
789 }

791 if (! rew_sub(MDOC_BODY, mdoc, tok, line, ppos))
755 if (! rew_sub(MDOC_BODY, m, tok, line, ppos))
792 return(0);

794 if (NULL == later && maxargs > 0)
795 if (! mdoc_tail_alloc(mdoc, line, ppos, rew_alt(tok)))
759 if (! mdoc_tail_alloc(m, line, ppos, rew_alt(tok)))
796 return(0);

798 for (flushed = j = 0; ; j++) {
799 lastarg = *pos;

801 if (j == maxargs && ! flushed) {
802 if (! rew_sub(MDOC_BLOCK, mdoc, tok, line, ppos))
766 if (! rew_sub(MDOC_BLOCK, m, tok, line, ppos))
803 return(0);
804 flushed = 1;
805 }

807 ac = mdoc_args(mdoc, line, pos, buf, tok, &p);
771 ac = mdoc_args(m, line, pos, buf, tok, &p);

809 if (ARGS_ERROR == ac)
810 return(0);
811 if (ARGS_PUNCT == ac)
812 break;
813 if (ARGS_EOLN == ac)
814 break;

816 ntok = ARGS_QWORD == ac ? MDOC_MAX : lookup(tok, p);

new/usr/src/cmd/mandoc/mdoc_macro.c 12

818 if (MDOC_MAX == ntok) {
819 if (! dword(mdoc, line, lastarg, p, DELIM_MAX,
820 MDOC_JOIN & mdoc_macros[tok].flags))
783 if (! dword(m, line, lastarg, p, DELIM_MAX))
821 return(0);
822 continue;
823 }

825 if (! flushed) {
826 if (! rew_sub(MDOC_BLOCK, mdoc, tok, line, ppos))
789 if (! rew_sub(MDOC_BLOCK, m, tok, line, ppos))
827 return(0);
828 flushed = 1;
829 }

831 mdoc->flags &= ~MDOC_NEWLINE;

833 if (! mdoc_macro(mdoc, ntok, line, lastarg, pos, buf))
793 if (! mdoc_macro(m, ntok, line, lastarg, pos, buf))
834 return(0);
835 break;
836 }

838 if (! flushed && ! rew_sub(MDOC_BLOCK, mdoc, tok, line, ppos))
798 if (! flushed && ! rew_sub(MDOC_BLOCK, m, tok, line, ppos))
839 return(0);

841 if (! nl)
842 return(1);
843 return(append_delims(mdoc, line, pos, buf));
803 return(append_delims(m, line, pos, buf));
844 }

847 static int
848 in_line(MACRO_PROT_ARGS)
849 {
850 int la, scope, cnt, nc, nl;
851 enum margverr av;
852 enum mdoct ntok;
853 enum margserr ac;
854 enum mdelim d;
855 struct mdoc_arg *arg;
856 char *p;

858 nl = MDOC_NEWLINE & mdoc->flags;
818 nl = MDOC_NEWLINE & m->flags;

860 /*
861 * Whether we allow ignored elements (those without content,
862 * usually because of reserved words) to squeak by.
863 */

865 switch (tok) {
866 case (MDOC_An):
867 /* FALLTHROUGH */
868 case (MDOC_Ar):
869 /* FALLTHROUGH */
870 case (MDOC_Fl):
871 /* FALLTHROUGH */
872 case (MDOC_Mt):
873 /* FALLTHROUGH */
874 case (MDOC_Nm):
875 /* FALLTHROUGH */
876 case (MDOC_Pa):
877 nc = 1;

new/usr/src/cmd/mandoc/mdoc_macro.c 13

878 break;
879 default:
880 nc = 0;
881 break;
882 }

884 for (arg = NULL;;) {
885 la = *pos;
886 av = mdoc_argv(mdoc, line, tok, &arg, pos, buf);
846 av = mdoc_argv(m, line, tok, &arg, pos, buf);

888 if (ARGV_WORD == av) {
889 *pos = la;
890 break;
891 }
892 if (ARGV_EOLN == av)
893 break;
894 if (ARGV_ARG == av)
895 continue;

897 mdoc_argv_free(arg);
898 return(0);
899 }

901 for (cnt = scope = 0;;) {
902 la = *pos;
903 ac = mdoc_args(mdoc, line, pos, buf, tok, &p);
863 ac = mdoc_args(m, line, pos, buf, tok, &p);

905 if (ARGS_ERROR == ac)
906 return(0);
907 if (ARGS_EOLN == ac)
908 break;
909 if (ARGS_PUNCT == ac)
910 break;

912 ntok = ARGS_QWORD == ac ? MDOC_MAX : lookup(tok, p);

914 /*
915 * In this case, we’ve located a submacro and must
916 * execute it. Close out scope, if open. If no
917 * elements have been generated, either create one (nc)
918 * or raise a warning.
919 */

921 if (MDOC_MAX != ntok) {
922 if (scope && ! rew_elem(mdoc, tok))
882 if (scope && ! rew_elem(m, tok))
923 return(0);
924 if (nc && 0 == cnt) {
925 if (! mdoc_elem_alloc(mdoc, line,
926 ppos, tok, arg))
885 if (! mdoc_elem_alloc(m, line, ppos, tok, arg))
927 return(0);
928 if (! rew_last(mdoc, mdoc->last))
887 if (! rew_last(m, m->last))
929 return(0);
930 } else if (! nc && 0 == cnt) {
931 mdoc_argv_free(arg);
932 mdoc_pmsg(mdoc, line, ppos,
933 MANDOCERR_MACROEMPTY);
891 mdoc_pmsg(m, line, ppos, MANDOCERR_MACROEMPTY);
934 }

936 if (! mdoc_macro(mdoc, ntok, line, la, pos, buf))
894 if (! mdoc_macro(m, ntok, line, la, pos, buf))

new/usr/src/cmd/mandoc/mdoc_macro.c 14

937 return(0);
938 if (! nl)
939 return(1);
940 return(append_delims(mdoc, line, pos, buf));
898 return(append_delims(m, line, pos, buf));
941 }

943 /*
944 * Non-quote-enclosed punctuation. Set up our scope, if
945 * a word; rewind the scope, if a delimiter; then append
946 * the word.
947 */

949 d = ARGS_QWORD == ac ? DELIM_NONE : mdoc_isdelim(p);

951 if (DELIM_NONE != d) {
952 /*
953 * If we encounter closing punctuation, no word
954 * has been omitted, no scope is open, and we’re
955 * allowed to have an empty element, then start
956 * a new scope. ‘Ar’, ‘Fl’, and ‘Li’, only do
957 * this once per invocation. There may be more
958 * of these (all of them?).
959 */
960 if (0 == cnt && (nc || MDOC_Li == tok) &&
961 DELIM_CLOSE == d && ! scope) {
962 if (! mdoc_elem_alloc(mdoc, line,
963 ppos, tok, arg))
920 if (! mdoc_elem_alloc(m, line, ppos, tok, arg))
964 return(0);
965 if (MDOC_Ar == tok || MDOC_Li == tok ||
966 MDOC_Fl == tok)
967 cnt++;
968 scope = 1;
969 }
970 /*
971 * Close out our scope, if one is open, before
972 * any punctuation.
973 */
974 if (scope && ! rew_elem(mdoc, tok))
931 if (scope && ! rew_elem(m, tok))
975 return(0);
976 scope = 0;
977 } else if (! scope) {
978 if (! mdoc_elem_alloc(mdoc, line, ppos, tok, arg))
935 if (! mdoc_elem_alloc(m, line, ppos, tok, arg))
979 return(0);
980 scope = 1;
981 }

983 if (DELIM_NONE == d)
984 cnt++;

986 if (! dword(mdoc, line, la, p, d,
987 MDOC_JOIN & mdoc_macros[tok].flags))
943 if (! dword(m, line, la, p, d))
988 return(0);

990 /*
991 * ‘Fl’ macros have their scope re-opened with each new
992 * word so that the ‘-’ can be added to each one without
993 * having to parse out spaces.
994 */
995 if (scope && MDOC_Fl == tok) {
996 if (! rew_elem(mdoc, tok))
952 if (! rew_elem(m, tok))

new/usr/src/cmd/mandoc/mdoc_macro.c 15

997 return(0);
998 scope = 0;
999 }

1000 }

1002 if (scope && ! rew_elem(mdoc, tok))
958 if (scope && ! rew_elem(m, tok))
1003 return(0);

1005 /*
1006 * If no elements have been collected and we’re allowed to have
1007 * empties (nc), open a scope and close it out. Otherwise,
1008 * raise a warning.
1009 */

1011 if (nc && 0 == cnt) {
1012 if (! mdoc_elem_alloc(mdoc, line, ppos, tok, arg))
968 if (! mdoc_elem_alloc(m, line, ppos, tok, arg))
1013 return(0);
1014 if (! rew_last(mdoc, mdoc->last))
970 if (! rew_last(m, m->last))
1015 return(0);
1016 } else if (! nc && 0 == cnt) {
1017 mdoc_argv_free(arg);
1018 mdoc_pmsg(mdoc, line, ppos, MANDOCERR_MACROEMPTY);
974 mdoc_pmsg(m, line, ppos, MANDOCERR_MACROEMPTY);
1019 }

1021 if (! nl)
1022 return(1);
1023 return(append_delims(mdoc, line, pos, buf));
979 return(append_delims(m, line, pos, buf));
1024 }

1027 static int
1028 blk_full(MACRO_PROT_ARGS)
1029 {
1030 int la, nl, nparsed;
1031 struct mdoc_arg *arg;
1032 struct mdoc_node *head; /* save of head macro */
1033 struct mdoc_node *body; /* save of body macro */
1034 struct mdoc_node *n;
1035 enum mdoc_type mtt;
1036 enum mdoct ntok;
1037 enum margserr ac, lac;
1038 enum margverr av;
1039 char *p;

1041 nl = MDOC_NEWLINE & mdoc->flags;
997 nl = MDOC_NEWLINE & m->flags;

1043 /* Close out prior implicit scope. */

1045 if (! (MDOC_EXPLICIT & mdoc_macros[tok].flags)) {
1046 if (! rew_sub(MDOC_BODY, mdoc, tok, line, ppos))
1002 if (! rew_sub(MDOC_BODY, m, tok, line, ppos))
1047 return(0);
1048 if (! rew_sub(MDOC_BLOCK, mdoc, tok, line, ppos))
1004 if (! rew_sub(MDOC_BLOCK, m, tok, line, ppos))
1049 return(0);
1050 }

1052 /*
1053 * This routine accommodates implicitly- and explicitly-scoped
1054 * macro openings. Implicit ones first close out prior scope

new/usr/src/cmd/mandoc/mdoc_macro.c 16

1055 * (seen above). Delay opening the head until necessary to
1056 * allow leading punctuation to print. Special consideration
1057 * for ‘It -column’, which has phrase-part syntax instead of
1058 * regular child nodes.
1059 */

1061 for (arg = NULL;;) {
1062 la = *pos;
1063 av = mdoc_argv(mdoc, line, tok, &arg, pos, buf);
1019 av = mdoc_argv(m, line, tok, &arg, pos, buf);

1065 if (ARGV_WORD == av) {
1066 *pos = la;
1067 break;
1068 }

1070 if (ARGV_EOLN == av)
1071 break;
1072 if (ARGV_ARG == av)
1073 continue;

1075 mdoc_argv_free(arg);
1076 return(0);
1077 }

1079 if (! mdoc_block_alloc(mdoc, line, ppos, tok, arg))
1035 if (! mdoc_block_alloc(m, line, ppos, tok, arg))
1080 return(0);

1082 head = body = NULL;

1084 /*
1085 * Exception: Heads of ‘It’ macros in ‘-diag’ lists are not
1086 * parsed, even though ‘It’ macros in general are parsed.
1087 */
1088 nparsed = MDOC_It == tok &&
1089 MDOC_Bl == mdoc->last->parent->tok &&
1090 LIST_diag == mdoc->last->parent->norm->Bl.type;
1045 MDOC_Bl == m->last->parent->tok &&
1046 LIST_diag == m->last->parent->norm->Bl.type;

1092 /*
1093 * The ‘Nd’ macro has all arguments in its body: it’s a hybrid
1094 * of block partial-explicit and full-implicit. Stupid.
1095 */

1097 if (MDOC_Nd == tok) {
1098 if (! mdoc_head_alloc(mdoc, line, ppos, tok))
1054 if (! mdoc_head_alloc(m, line, ppos, tok))
1099 return(0);
1100 head = mdoc->last;
1101 if (! rew_sub(MDOC_HEAD, mdoc, tok, line, ppos))
1056 head = m->last;
1057 if (! rew_sub(MDOC_HEAD, m, tok, line, ppos))
1102 return(0);
1103 if (! mdoc_body_alloc(mdoc, line, ppos, tok))
1059 if (! mdoc_body_alloc(m, line, ppos, tok))
1104 return(0);
1105 body = mdoc->last;
1061 body = m->last;
1106 }

1108 if (MDOC_Bk == tok)
1109 mdoc->flags |= MDOC_KEEP;

1111 ac = ARGS_ERROR;

new/usr/src/cmd/mandoc/mdoc_macro.c 17

1113 for (; ;) {
1114 la = *pos;
1115 /* Initialise last-phrase-type with ARGS_PEND. */
1116 lac = ARGS_ERROR == ac ? ARGS_PEND : ac;
1117 ac = mdoc_args(mdoc, line, pos, buf, tok, &p);
1070 ac = mdoc_args(m, line, pos, buf, tok, &p);

1119 if (ARGS_PUNCT == ac)
1120 break;

1122 if (ARGS_ERROR == ac)
1123 return(0);

1125 if (ARGS_EOLN == ac) {
1126 if (ARGS_PPHRASE != lac && ARGS_PHRASE != lac)
1127 break;
1128 /*
1129 * This is necessary: if the last token on a
1130 * line is a ‘Ta’ or tab, then we’ll get
1131 * ARGS_EOLN, so we must be smart enough to
1132 * reopen our scope if the last parse was a
1133 * phrase or partial phrase.
1134 */
1135 if (! rew_sub(MDOC_BODY, mdoc, tok, line, ppos))
1088 if (! rew_sub(MDOC_BODY, m, tok, line, ppos))
1136 return(0);
1137 if (! mdoc_body_alloc(mdoc, line, ppos, tok))
1090 if (! mdoc_body_alloc(m, line, ppos, tok))
1138 return(0);
1139 body = mdoc->last;
1092 body = m->last;
1140 break;
1141 }

1143 /*
1144 * Emit leading punctuation (i.e., punctuation before
1145 * the MDOC_HEAD) for non-phrase types.
1146 */

1148 if (NULL == head &&
1149 ARGS_PEND != ac &&
1150 ARGS_PHRASE != ac &&
1151 ARGS_PPHRASE != ac &&
1152 ARGS_QWORD != ac &&
1153 DELIM_OPEN == mdoc_isdelim(p)) {
1154 if (! dword(mdoc, line, la, p, DELIM_OPEN, 0))
1107 if (! dword(m, line, la, p, DELIM_OPEN))
1155 return(0);
1156 continue;
1157 }

1159 /* Open a head if one hasn’t been opened. */

1161 if (NULL == head) {
1162 if (! mdoc_head_alloc(mdoc, line, ppos, tok))
1115 if (! mdoc_head_alloc(m, line, ppos, tok))
1163 return(0);
1164 head = mdoc->last;
1117 head = m->last;
1165 }

1167 if (ARGS_PHRASE == ac ||
1168 ARGS_PEND == ac ||
1169 ARGS_PPHRASE == ac) {
1170 /*

new/usr/src/cmd/mandoc/mdoc_macro.c 18

1171 * If we haven’t opened a body yet, rewind the
1172 * head; if we have, rewind that instead.
1173 */

1175 mtt = body ? MDOC_BODY : MDOC_HEAD;
1176 if (! rew_sub(mtt, mdoc, tok, line, ppos))
1129 if (! rew_sub(mtt, m, tok, line, ppos))
1177 return(0);
1178
1179 /* Then allocate our body context. */

1181 if (! mdoc_body_alloc(mdoc, line, ppos, tok))
1134 if (! mdoc_body_alloc(m, line, ppos, tok))
1182 return(0);
1183 body = mdoc->last;
1136 body = m->last;

1185 /*
1186 * Process phrases: set whether we’re in a
1187 * partial-phrase (this effects line handling)
1188 * then call down into the phrase parser.
1189 */

1191 if (ARGS_PPHRASE == ac)
1192 mdoc->flags |= MDOC_PPHRASE;
1145 m->flags |= MDOC_PPHRASE;
1193 if (ARGS_PEND == ac && ARGS_PPHRASE == lac)
1194 mdoc->flags |= MDOC_PPHRASE;
1147 m->flags |= MDOC_PPHRASE;

1196 if (! phrase(mdoc, line, la, buf))
1149 if (! phrase(m, line, la, buf))
1197 return(0);

1199 mdoc->flags &= ~MDOC_PPHRASE;
1152 m->flags &= ~MDOC_PPHRASE;
1200 continue;
1201 }

1203 ntok = nparsed || ARGS_QWORD == ac ?
1204 MDOC_MAX : lookup(tok, p);

1206 if (MDOC_MAX == ntok) {
1207 if (! dword(mdoc, line, la, p, DELIM_MAX,
1208 MDOC_JOIN & mdoc_macros[tok].flags))
1160 if (! dword(m, line, la, p, DELIM_MAX))
1209 return(0);
1210 continue;
1211 }

1213 if (! mdoc_macro(mdoc, ntok, line, la, pos, buf))
1165 if (! mdoc_macro(m, ntok, line, la, pos, buf))
1214 return(0);
1215 break;
1216 }

1218 if (NULL == head) {
1219 if (! mdoc_head_alloc(mdoc, line, ppos, tok))
1171 if (! mdoc_head_alloc(m, line, ppos, tok))
1220 return(0);
1221 head = mdoc->last;
1173 head = m->last;
1222 }
1223
1224 if (nl && ! append_delims(mdoc, line, pos, buf))
1176 if (nl && ! append_delims(m, line, pos, buf))

new/usr/src/cmd/mandoc/mdoc_macro.c 19

1225 return(0);

1227 /* If we’ve already opened our body, exit now. */

1229 if (NULL != body)
1230 goto out;

1232 /*
1233 * If there is an open (i.e., unvalidated) sub-block requiring
1234 * explicit close-out, postpone switching the current block from
1235 * head to body until the rew_sub() call closing out that
1236 * sub-block.
1237 */
1238 for (n = mdoc->last; n && n != head; n = n->parent) {
1190 for (n = m->last; n && n != head; n = n->parent) {
1239 if (MDOC_BLOCK == n->type &&
1240 MDOC_EXPLICIT & mdoc_macros[n->tok].flags &&
1241 ! (MDOC_VALID & n->flags)) {
1242 n->pending = head;
1243 return(1);
1244 }
1245 }

1247 /* Close out scopes to remain in a consistent state. */

1249 if (! rew_sub(MDOC_HEAD, mdoc, tok, line, ppos))
1201 if (! rew_sub(MDOC_HEAD, m, tok, line, ppos))
1250 return(0);
1251 if (! mdoc_body_alloc(mdoc, line, ppos, tok))
1203 if (! mdoc_body_alloc(m, line, ppos, tok))
1252 return(0);

1254 out:
1255 if (! (MDOC_FREECOL & mdoc->flags))
1207 if (! (MDOC_FREECOL & m->flags))
1256 return(1);

1258 if (! rew_sub(MDOC_BODY, mdoc, tok, line, ppos))
1210 if (! rew_sub(MDOC_BODY, m, tok, line, ppos))
1259 return(0);
1260 if (! rew_sub(MDOC_BLOCK, mdoc, tok, line, ppos))
1212 if (! rew_sub(MDOC_BLOCK, m, tok, line, ppos))
1261 return(0);

1263 mdoc->flags &= ~MDOC_FREECOL;
1215 m->flags &= ~MDOC_FREECOL;
1264 return(1);
1265 }

1268 static int
1269 blk_part_imp(MACRO_PROT_ARGS)
1270 {
1271 int la, nl;
1272 enum mdoct ntok;
1273 enum margserr ac;
1274 char *p;
1275 struct mdoc_node *blk; /* saved block context */
1276 struct mdoc_node *body; /* saved body context */
1277 struct mdoc_node *n;

1279 nl = MDOC_NEWLINE & mdoc->flags;
1231 nl = MDOC_NEWLINE & m->flags;

1281 /*
1282 * A macro that spans to the end of the line. This is generally

new/usr/src/cmd/mandoc/mdoc_macro.c 20

1283 * (but not necessarily) called as the first macro. The block
1284 * has a head as the immediate child, which is always empty,
1285 * followed by zero or more opening punctuation nodes, then the
1286 * body (which may be empty, depending on the macro), then zero
1287 * or more closing punctuation nodes.
1288 */

1290 if (! mdoc_block_alloc(mdoc, line, ppos, tok, NULL))
1242 if (! mdoc_block_alloc(m, line, ppos, tok, NULL))
1291 return(0);

1293 blk = mdoc->last;
1245 blk = m->last;

1295 if (! mdoc_head_alloc(mdoc, line, ppos, tok))
1247 if (! mdoc_head_alloc(m, line, ppos, tok))
1296 return(0);
1297 if (! rew_sub(MDOC_HEAD, mdoc, tok, line, ppos))
1249 if (! rew_sub(MDOC_HEAD, m, tok, line, ppos))
1298 return(0);

1300 /*
1301 * Open the body scope "on-demand", that is, after we’ve
1302 * processed all our the leading delimiters (open parenthesis,
1303 * etc.).
1304 */

1306 for (body = NULL; ;) {
1307 la = *pos;
1308 ac = mdoc_args(mdoc, line, pos, buf, tok, &p);
1260 ac = mdoc_args(m, line, pos, buf, tok, &p);

1310 if (ARGS_ERROR == ac)
1311 return(0);
1312 if (ARGS_EOLN == ac)
1313 break;
1314 if (ARGS_PUNCT == ac)
1315 break;

1317 if (NULL == body && ARGS_QWORD != ac &&
1318 DELIM_OPEN == mdoc_isdelim(p)) {
1319 if (! dword(mdoc, line, la, p, DELIM_OPEN, 0))
1271 if (! dword(m, line, la, p, DELIM_OPEN))
1320 return(0);
1321 continue;
1322 }

1324 if (NULL == body) {
1325 if (! mdoc_body_alloc(mdoc, line, ppos, tok))
1277 if (! mdoc_body_alloc(m, line, ppos, tok))
1326 return(0);
1327 body = mdoc->last;
1279 body = m->last;
1328 }

1330 ntok = ARGS_QWORD == ac ? MDOC_MAX : lookup(tok, p);

1332 if (MDOC_MAX == ntok) {
1333 if (! dword(mdoc, line, la, p, DELIM_MAX,
1334 MDOC_JOIN & mdoc_macros[tok].flags))
1285 if (! dword(m, line, la, p, DELIM_MAX))
1335 return(0);
1336 continue;
1337 }

1339 if (! mdoc_macro(mdoc, ntok, line, la, pos, buf))

new/usr/src/cmd/mandoc/mdoc_macro.c 21

1290 if (! mdoc_macro(m, ntok, line, la, pos, buf))
1340 return(0);
1341 break;
1342 }

1344 /* Clean-ups to leave in a consistent state. */

1346 if (NULL == body) {
1347 if (! mdoc_body_alloc(mdoc, line, ppos, tok))
1298 if (! mdoc_body_alloc(m, line, ppos, tok))
1348 return(0);
1349 body = mdoc->last;
1300 body = m->last;
1350 }

1352 for (n = body->child; n && n->next; n = n->next)
1353 /* Do nothing. */ ;
1354
1355 /*
1356 * End of sentence spacing: if the last node is a text node and
1357 * has a trailing period, then mark it as being end-of-sentence.
1358 */

1360 if (n && MDOC_TEXT == n->type && n->string)
1361 if (mandoc_eos(n->string, strlen(n->string), 1))
1362 n->flags |= MDOC_EOS;

1364 /* Up-propagate the end-of-space flag. */

1366 if (n && (MDOC_EOS & n->flags)) {
1367 body->flags |= MDOC_EOS;
1368 body->parent->flags |= MDOC_EOS;
1369 }

1371 /*
1372 * If there is an open sub-block requiring explicit close-out,
1373 * postpone closing out the current block
1374 * until the rew_sub() call closing out the sub-block.
1375 */
1376 for (n = mdoc->last; n && n != body && n != blk->parent;
1377 n = n->parent) {
1327 for (n = m->last; n && n != body && n != blk->parent; n = n->parent) {
1378 if (MDOC_BLOCK == n->type &&
1379 MDOC_EXPLICIT & mdoc_macros[n->tok].flags &&
1380 ! (MDOC_VALID & n->flags)) {
1381 make_pending(n, tok, mdoc, line, ppos);
1382 if (! mdoc_endbody_alloc(mdoc, line, ppos,
1331 make_pending(n, tok, m, line, ppos);
1332 if (! mdoc_endbody_alloc(m, line, ppos,
1383 tok, body, ENDBODY_NOSPACE))
1384 return(0);
1385 return(1);
1386 }
1387 }

1389 /*
1390 * If we can’t rewind to our body, then our scope has already
1391 * been closed by another macro (like ‘Oc’ closing ‘Op’). This
1392 * is ugly behaviour nodding its head to OpenBSD’s overwhelming
1393 * crufty use of ‘Op’ breakage.
1394 */
1395 if (n != body)
1396 mandoc_vmsg(MANDOCERR_SCOPENEST, mdoc->parse, line, ppos,
1346 mandoc_vmsg(MANDOCERR_SCOPENEST, m->parse, line, ppos,
1397 "%s broken", mdoc_macronames[tok]);

new/usr/src/cmd/mandoc/mdoc_macro.c 22

1399 if (n && ! rew_sub(MDOC_BODY, mdoc, tok, line, ppos))
1349 if (n && ! rew_sub(MDOC_BODY, m, tok, line, ppos))
1400 return(0);

1402 /* Standard appending of delimiters. */

1404 if (nl && ! append_delims(mdoc, line, pos, buf))
1354 if (nl && ! append_delims(m, line, pos, buf))
1405 return(0);

1407 /* Rewind scope, if applicable. */

1409 if (n && ! rew_sub(MDOC_BLOCK, mdoc, tok, line, ppos))
1359 if (n && ! rew_sub(MDOC_BLOCK, m, tok, line, ppos))
1410 return(0);

1412 /* Move trailing .Ns out of scope. */

1414 for (n = body->child; n && n->next; n = n->next)
1415 /* Do nothing. */ ;
1416 if (n && MDOC_Ns == n->tok)
1417 mdoc_node_relink(mdoc, n);

1419 return(1);
1420 }

1423 static int
1424 blk_part_exp(MACRO_PROT_ARGS)
1425 {
1426 int la, nl;
1427 enum margserr ac;
1428 struct mdoc_node *head; /* keep track of head */
1429 struct mdoc_node *body; /* keep track of body */
1430 char *p;
1431 enum mdoct ntok;

1433 nl = MDOC_NEWLINE & mdoc->flags;
1376 nl = MDOC_NEWLINE & m->flags;

1435 /*
1436 * The opening of an explicit macro having zero or more leading
1437 * punctuation nodes; a head with optional single element (the
1438 * case of ‘Eo’); and a body that may be empty.
1439 */

1441 if (! mdoc_block_alloc(mdoc, line, ppos, tok, NULL))
1384 if (! mdoc_block_alloc(m, line, ppos, tok, NULL))
1442 return(0);

1444 for (head = body = NULL; ;) {
1445 la = *pos;
1446 ac = mdoc_args(mdoc, line, pos, buf, tok, &p);
1389 ac = mdoc_args(m, line, pos, buf, tok, &p);

1448 if (ARGS_ERROR == ac)
1449 return(0);
1450 if (ARGS_PUNCT == ac)
1451 break;
1452 if (ARGS_EOLN == ac)
1453 break;

1455 /* Flush out leading punctuation. */

1457 if (NULL == head && ARGS_QWORD != ac &&
1458 DELIM_OPEN == mdoc_isdelim(p)) {

new/usr/src/cmd/mandoc/mdoc_macro.c 23

1459 assert(NULL == body);
1460 if (! dword(mdoc, line, la, p, DELIM_OPEN, 0))
1403 if (! dword(m, line, la, p, DELIM_OPEN))
1461 return(0);
1462 continue;
1463 }

1465 if (NULL == head) {
1466 assert(NULL == body);
1467 if (! mdoc_head_alloc(mdoc, line, ppos, tok))
1410 if (! mdoc_head_alloc(m, line, ppos, tok))
1468 return(0);
1469 head = mdoc->last;
1412 head = m->last;
1470 }

1472 /*
1473 * ‘Eo’ gobbles any data into the head, but most other
1474 * macros just immediately close out and begin the body.
1475 */

1477 if (NULL == body) {
1478 assert(head);
1479 /* No check whether it’s a macro! */
1480 if (MDOC_Eo == tok)
1481 if (! dword(mdoc, line, la, p, DELIM_MAX, 0))
1424 if (! dword(m, line, la, p, DELIM_MAX))
1482 return(0);

1484 if (! rew_sub(MDOC_HEAD, mdoc, tok, line, ppos))
1427 if (! rew_sub(MDOC_HEAD, m, tok, line, ppos))
1485 return(0);
1486 if (! mdoc_body_alloc(mdoc, line, ppos, tok))
1429 if (! mdoc_body_alloc(m, line, ppos, tok))
1487 return(0);
1488 body = mdoc->last;
1431 body = m->last;

1490 if (MDOC_Eo == tok)
1491 continue;
1492 }

1494 assert(NULL != head && NULL != body);

1496 ntok = ARGS_QWORD == ac ? MDOC_MAX : lookup(tok, p);

1498 if (MDOC_MAX == ntok) {
1499 if (! dword(mdoc, line, la, p, DELIM_MAX,
1500 MDOC_JOIN & mdoc_macros[tok].flags))
1442 if (! dword(m, line, la, p, DELIM_MAX))
1501 return(0);
1502 continue;
1503 }

1505 if (! mdoc_macro(mdoc, ntok, line, la, pos, buf))
1447 if (! mdoc_macro(m, ntok, line, la, pos, buf))
1506 return(0);
1507 break;
1508 }

1510 /* Clean-up to leave in a consistent state. */

1512 if (NULL == head)
1513 if (! mdoc_head_alloc(mdoc, line, ppos, tok))
1455 if (! mdoc_head_alloc(m, line, ppos, tok))
1514 return(0);

new/usr/src/cmd/mandoc/mdoc_macro.c 24

1516 if (NULL == body) {
1517 if (! rew_sub(MDOC_HEAD, mdoc, tok, line, ppos))
1459 if (! rew_sub(MDOC_HEAD, m, tok, line, ppos))
1518 return(0);
1519 if (! mdoc_body_alloc(mdoc, line, ppos, tok))
1461 if (! mdoc_body_alloc(m, line, ppos, tok))
1520 return(0);
1521 }

1523 /* Standard appending of delimiters. */

1525 if (! nl)
1526 return(1);
1527 return(append_delims(mdoc, line, pos, buf));
1469 return(append_delims(m, line, pos, buf));
1528 }

1531 /* ARGSUSED */
1532 static int
1533 in_line_argn(MACRO_PROT_ARGS)
1534 {
1535 int la, flushed, j, maxargs, nl;
1536 enum margserr ac;
1537 enum margverr av;
1538 struct mdoc_arg *arg;
1539 char *p;
1540 enum mdoct ntok;

1542 nl = MDOC_NEWLINE & mdoc->flags;
1484 nl = MDOC_NEWLINE & m->flags;

1544 /*
1545 * A line macro that has a fixed number of arguments (maxargs).
1546 * Only open the scope once the first non-leading-punctuation is
1547 * found (unless MDOC_IGNDELIM is noted, like in ‘Pf’), then
1548 * keep it open until the maximum number of arguments are
1549 * exhausted.
1550 */

1552 switch (tok) {
1553 case (MDOC_Ap):
1554 /* FALLTHROUGH */
1555 case (MDOC_No):
1556 /* FALLTHROUGH */
1557 case (MDOC_Ns):
1558 /* FALLTHROUGH */
1559 case (MDOC_Ux):
1560 maxargs = 0;
1561 break;
1562 case (MDOC_Bx):
1563 /* FALLTHROUGH */
1564 case (MDOC_Xr):
1565 maxargs = 2;
1566 break;
1567 default:
1568 maxargs = 1;
1569 break;
1570 }

1572 for (arg = NULL; ;) {
1573 la = *pos;
1574 av = mdoc_argv(mdoc, line, tok, &arg, pos, buf);
1516 av = mdoc_argv(m, line, tok, &arg, pos, buf);

new/usr/src/cmd/mandoc/mdoc_macro.c 25

1576 if (ARGV_WORD == av) {
1577 *pos = la;
1578 break;
1579 }

1581 if (ARGV_EOLN == av)
1582 break;
1583 if (ARGV_ARG == av)
1584 continue;

1586 mdoc_argv_free(arg);
1587 return(0);
1588 }

1590 for (flushed = j = 0; ;) {
1591 la = *pos;
1592 ac = mdoc_args(mdoc, line, pos, buf, tok, &p);
1534 ac = mdoc_args(m, line, pos, buf, tok, &p);

1594 if (ARGS_ERROR == ac)
1595 return(0);
1596 if (ARGS_PUNCT == ac)
1597 break;
1598 if (ARGS_EOLN == ac)
1599 break;

1601 if (! (MDOC_IGNDELIM & mdoc_macros[tok].flags) &&
1602 ARGS_QWORD != ac && 0 == j &&
1603 DELIM_OPEN == mdoc_isdelim(p)) {
1604 if (! dword(mdoc, line, la, p, DELIM_OPEN, 0))
1546 if (! dword(m, line, la, p, DELIM_OPEN))
1605 return(0);
1606 continue;
1607 } else if (0 == j)
1608 if (! mdoc_elem_alloc(mdoc, line, la, tok, arg))
1550 if (! mdoc_elem_alloc(m, line, la, tok, arg))
1609 return(0);

1611 if (j == maxargs && ! flushed) {
1612 if (! rew_elem(mdoc, tok))
1554 if (! rew_elem(m, tok))
1613 return(0);
1614 flushed = 1;
1615 }

1617 ntok = ARGS_QWORD == ac ? MDOC_MAX : lookup(tok, p);

1619 if (MDOC_MAX != ntok) {
1620 if (! flushed && ! rew_elem(mdoc, tok))
1562 if (! flushed && ! rew_elem(m, tok))
1621 return(0);
1622 flushed = 1;
1623 if (! mdoc_macro(mdoc, ntok, line, la, pos, buf))
1565 if (! mdoc_macro(m, ntok, line, la, pos, buf))
1624 return(0);
1625 j++;
1626 break;
1627 }

1629 if (! (MDOC_IGNDELIM & mdoc_macros[tok].flags) &&
1630 ARGS_QWORD != ac &&
1631 ! flushed &&
1632 DELIM_NONE != mdoc_isdelim(p)) {
1633 if (! rew_elem(mdoc, tok))
1575 if (! rew_elem(m, tok))
1634 return(0);

new/usr/src/cmd/mandoc/mdoc_macro.c 26

1635 flushed = 1;
1636 }

1638 if (! dword(mdoc, line, la, p, DELIM_MAX,
1639 MDOC_JOIN & mdoc_macros[tok].flags))
1580 if (! dword(m, line, la, p, DELIM_MAX))
1640 return(0);
1641 j++;
1642 }

1644 if (0 == j && ! mdoc_elem_alloc(mdoc, line, la, tok, arg))
1585 if (0 == j && ! mdoc_elem_alloc(m, line, la, tok, arg))
1645 return(0);

1647 /* Close out in a consistent state. */

1649 if (! flushed && ! rew_elem(mdoc, tok))
1590 if (! flushed && ! rew_elem(m, tok))
1650 return(0);
1651 if (! nl)
1652 return(1);
1653 return(append_delims(mdoc, line, pos, buf));
1594 return(append_delims(m, line, pos, buf));
1654 }

1657 static int
1658 in_line_eoln(MACRO_PROT_ARGS)
1659 {
1660 int la;
1661 enum margserr ac;
1662 enum margverr av;
1663 struct mdoc_arg *arg;
1664 char *p;
1665 enum mdoct ntok;

1667 assert(! (MDOC_PARSED & mdoc_macros[tok].flags));

1669 if (tok == MDOC_Pp)
1670 rew_sub(MDOC_BLOCK, mdoc, MDOC_Nm, line, ppos);
1611 rew_sub(MDOC_BLOCK, m, MDOC_Nm, line, ppos);

1672 /* Parse macro arguments. */

1674 for (arg = NULL; ;) {
1675 la = *pos;
1676 av = mdoc_argv(mdoc, line, tok, &arg, pos, buf);
1617 av = mdoc_argv(m, line, tok, &arg, pos, buf);

1678 if (ARGV_WORD == av) {
1679 *pos = la;
1680 break;
1681 }
1682 if (ARGV_EOLN == av)
1683 break;
1684 if (ARGV_ARG == av)
1685 continue;

1687 mdoc_argv_free(arg);
1688 return(0);
1689 }

1691 /* Open element scope. */

1693 if (! mdoc_elem_alloc(mdoc, line, ppos, tok, arg))
1634 if (! mdoc_elem_alloc(m, line, ppos, tok, arg))

new/usr/src/cmd/mandoc/mdoc_macro.c 27

1694 return(0);

1696 /* Parse argument terms. */

1698 for (;;) {
1699 la = *pos;
1700 ac = mdoc_args(mdoc, line, pos, buf, tok, &p);
1641 ac = mdoc_args(m, line, pos, buf, tok, &p);

1702 if (ARGS_ERROR == ac)
1703 return(0);
1704 if (ARGS_EOLN == ac)
1705 break;

1707 ntok = ARGS_QWORD == ac ? MDOC_MAX : lookup(tok, p);

1709 if (MDOC_MAX == ntok) {
1710 if (! dword(mdoc, line, la, p, DELIM_MAX,
1711 MDOC_JOIN & mdoc_macros[tok].flags))
1651 if (! dword(m, line, la, p, DELIM_MAX))
1712 return(0);
1713 continue;
1714 }

1716 if (! rew_elem(mdoc, tok))
1656 if (! rew_elem(m, tok))
1717 return(0);
1718 return(mdoc_macro(mdoc, ntok, line, la, pos, buf));
1658 return(mdoc_macro(m, ntok, line, la, pos, buf));
1719 }

1721 /* Close out (no delimiters). */

1723 return(rew_elem(mdoc, tok));
1663 return(rew_elem(m, tok));
1724 }

1727 /* ARGSUSED */
1728 static int
1729 ctx_synopsis(MACRO_PROT_ARGS)
1730 {
1731 int nl;

1733 nl = MDOC_NEWLINE & mdoc->flags;
1673 nl = MDOC_NEWLINE & m->flags;

1735 /* If we’re not in the SYNOPSIS, go straight to in-line. */
1736 if (! (MDOC_SYNOPSIS & mdoc->flags))
1737 return(in_line(mdoc, tok, line, ppos, pos, buf));
1676 if (! (MDOC_SYNOPSIS & m->flags))
1677 return(in_line(m, tok, line, ppos, pos, buf));

1739 /* If we’re a nested call, same place. */
1740 if (! nl)
1741 return(in_line(mdoc, tok, line, ppos, pos, buf));
1681 return(in_line(m, tok, line, ppos, pos, buf));

1743 /*
1744 * XXX: this will open a block scope; however, if later we end
1745 * up formatting the block scope, then child nodes will inherit
1746 * the formatting. Be careful.
1747 */
1748 if (MDOC_Nm == tok)
1749 return(blk_full(mdoc, tok, line, ppos, pos, buf));
1689 return(blk_full(m, tok, line, ppos, pos, buf));

new/usr/src/cmd/mandoc/mdoc_macro.c 28

1750 assert(MDOC_Vt == tok);
1751 return(blk_part_imp(mdoc, tok, line, ppos, pos, buf));
1691 return(blk_part_imp(m, tok, line, ppos, pos, buf));
1752 }

1755 /* ARGSUSED */
1756 static int
1757 obsolete(MACRO_PROT_ARGS)
1758 {

1760 mdoc_pmsg(mdoc, line, ppos, MANDOCERR_MACROOBS);
1700 mdoc_pmsg(m, line, ppos, MANDOCERR_MACROOBS);
1761 return(1);
1762 }

1765 /*
1766 * Phrases occur within ‘Bl -column’ entries, separated by ‘Ta’ or tabs.
1767 * They’re unusual because they’re basically free-form text until a
1768 * macro is encountered.
1769 */
1770 static int
1771 phrase(struct mdoc *mdoc, int line, int ppos, char *buf)
1711 phrase(struct mdoc *m, int line, int ppos, char *buf)
1772 {
1773 int la, pos;
1774 enum margserr ac;
1775 enum mdoct ntok;
1776 char *p;

1778 for (pos = ppos; ;) {
1779 la = pos;

1781 ac = mdoc_zargs(mdoc, line, &pos, buf, &p);
1721 ac = mdoc_zargs(m, line, &pos, buf, &p);

1783 if (ARGS_ERROR == ac)
1784 return(0);
1785 if (ARGS_EOLN == ac)
1786 break;

1788 ntok = ARGS_QWORD == ac ? MDOC_MAX : lookup_raw(p);

1790 if (MDOC_MAX == ntok) {
1791 if (! dword(mdoc, line, la, p, DELIM_MAX, 1))
1731 if (! dword(m, line, la, p, DELIM_MAX))
1792 return(0);
1793 continue;
1794 }

1796 if (! mdoc_macro(mdoc, ntok, line, la, &pos, buf))
1736 if (! mdoc_macro(m, ntok, line, la, &pos, buf))
1797 return(0);
1798 return(append_delims(mdoc, line, &pos, buf));
1738 return(append_delims(m, line, &pos, buf));
1799 }

1801 return(1);
1802 }

1805 /* ARGSUSED */
1806 static int
1807 phrase_ta(MACRO_PROT_ARGS)
1808 {

new/usr/src/cmd/mandoc/mdoc_macro.c 29

1809 struct mdoc_node *n;
1810 int la;
1811 enum mdoct ntok;
1812 enum margserr ac;
1813 char *p;

1815 /* Make sure we are in a column list or ignore this macro. */
1816 n = mdoc->last;
1817 while (NULL != n && MDOC_Bl != n->tok)
1818 n = n->parent;
1819 if (NULL == n || LIST_column != n->norm->Bl.type) {
1820 mdoc_pmsg(mdoc, line, ppos, MANDOCERR_STRAYTA);
1821 return(1);
1822 }
1754 /*
1755 * FIXME: this is overly restrictive: if the ‘Ta’ is unexpected,
1756 * it should simply error out with ARGSLOST.
1757 */

1824 /* Advance to the next column. */
1825 if (! rew_sub(MDOC_BODY, mdoc, MDOC_It, line, ppos))
1759 if (! rew_sub(MDOC_BODY, m, MDOC_It, line, ppos))
1826 return(0);
1827 if (! mdoc_body_alloc(mdoc, line, ppos, MDOC_It))
1761 if (! mdoc_body_alloc(m, line, ppos, MDOC_It))
1828 return(0);

1830 for (;;) {
1831 la = *pos;
1832 ac = mdoc_zargs(mdoc, line, pos, buf, &p);
1766 ac = mdoc_zargs(m, line, pos, buf, &p);

1834 if (ARGS_ERROR == ac)
1835 return(0);
1836 if (ARGS_EOLN == ac)
1837 break;

1839 ntok = ARGS_QWORD == ac ? MDOC_MAX : lookup_raw(p);

1841 if (MDOC_MAX == ntok) {
1842 if (! dword(mdoc, line, la, p, DELIM_MAX,
1843 MDOC_JOIN & mdoc_macros[tok].flags))
1776 if (! dword(m, line, la, p, DELIM_MAX))
1844 return(0);
1845 continue;
1846 }

1848 if (! mdoc_macro(mdoc, ntok, line, la, pos, buf))
1781 if (! mdoc_macro(m, ntok, line, la, pos, buf))
1849 return(0);
1850 return(append_delims(mdoc, line, pos, buf));
1783 return(append_delims(m, line, pos, buf));
1851 }

1853 return(1);
1854 }
______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/mdoc_man.c 1

**
 33223 Wed Jul 30 20:55:10 2014
new/usr/src/cmd/mandoc/mdoc_man.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: mdoc_man.c,v 1.57 2013/12/25 22:00:45 schwarze Exp $ */
1 /* $Id: mdoc_man.c,v 1.9 2011/10/24 21:47:59 schwarze Exp $ */
2 /*
3 * Copyright (c) 2011, 2012, 2013 Ingo Schwarze <schwarze@openbsd.org>
3 * Copyright (c) 2011 Ingo Schwarze <schwarze@openbsd.org>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17 #ifdef HAVE_CONFIG_H
18 #include "config.h"
19 #endif

21 #include <assert.h>
22 #include <stdio.h>
23 #include <string.h>

25 #include "mandoc.h"
26 #include "out.h"
27 #include "man.h"
28 #include "mdoc.h"
29 #include "main.h"

31 #define DECL_ARGS const struct mdoc_meta *meta, \
32 const struct mdoc_node *n
29 #define DECL_ARGS const struct mdoc_meta *m, \
30 const struct mdoc_node *n, \
31 struct mman *mm

33 struct mman {
34 int need_space; /* next word needs prior ws */
35 int need_nl; /* next word needs prior nl */
36 };

34 struct manact {
35 int (*cond)(DECL_ARGS); /* DON’T run actions */
36 int (*pre)(DECL_ARGS); /* pre-node action */
37 void (*post)(DECL_ARGS); /* post-node action */
38 const char *prefix; /* pre-node string constant */
39 const char *suffix; /* post-node string constant */
40 };

42 static int cond_body(DECL_ARGS);
43 static int cond_head(DECL_ARGS);
44 static void font_push(char);
45 static void font_pop(void);
46 static void mid_it(void);
47 static void post__t(DECL_ARGS);
48 static void post_bd(DECL_ARGS);
49 static void post_bf(DECL_ARGS);

new/usr/src/cmd/mandoc/mdoc_man.c 2

50 static void post_bk(DECL_ARGS);
51 static void post_bl(DECL_ARGS);
52 static void post_dl(DECL_ARGS);
53 static void post_enc(DECL_ARGS);
54 static void post_eo(DECL_ARGS);
55 static void post_fa(DECL_ARGS);
56 static void post_fd(DECL_ARGS);
57 static void post_fl(DECL_ARGS);
58 static void post_fn(DECL_ARGS);
59 static void post_fo(DECL_ARGS);
60 static void post_font(DECL_ARGS);
61 static void post_in(DECL_ARGS);
62 static void post_it(DECL_ARGS);
63 static void post_lb(DECL_ARGS);
64 static void post_nm(DECL_ARGS);
65 static void post_percent(DECL_ARGS);
66 static void post_pf(DECL_ARGS);
67 static void post_sect(DECL_ARGS);
68 static void post_sp(DECL_ARGS);
69 static void post_vt(DECL_ARGS);
70 static int pre__t(DECL_ARGS);
71 static int pre_an(DECL_ARGS);
72 static int pre_ap(DECL_ARGS);
73 static int pre_bd(DECL_ARGS);
74 static int pre_bf(DECL_ARGS);
75 static int pre_bk(DECL_ARGS);
76 static int pre_bl(DECL_ARGS);
77 static int pre_br(DECL_ARGS);
78 static int pre_bx(DECL_ARGS);
79 static int pre_dl(DECL_ARGS);
80 static int pre_enc(DECL_ARGS);
81 static int pre_em(DECL_ARGS);
82 static int pre_fa(DECL_ARGS);
83 static int pre_fd(DECL_ARGS);
84 static int pre_fl(DECL_ARGS);
85 static int pre_fn(DECL_ARGS);
86 static int pre_fo(DECL_ARGS);
87 static int pre_ft(DECL_ARGS);
88 static int pre_in(DECL_ARGS);
89 static int pre_it(DECL_ARGS);
90 static int pre_lk(DECL_ARGS);
91 static int pre_li(DECL_ARGS);
92 static int pre_nm(DECL_ARGS);
93 static int pre_no(DECL_ARGS);
94 static int pre_ns(DECL_ARGS);
95 static int pre_pp(DECL_ARGS);
96 static int pre_rs(DECL_ARGS);
97 static int pre_sm(DECL_ARGS);
98 static int pre_sp(DECL_ARGS);
99 static int pre_sect(DECL_ARGS);
100 static int pre_sy(DECL_ARGS);
101 static void pre_syn(const struct mdoc_node *);
102 static int pre_vt(DECL_ARGS);
103 static int pre_ux(DECL_ARGS);
104 static int pre_xr(DECL_ARGS);
105 static void print_word(const char *);
106 static void print_line(const char *, int);
107 static void print_block(const char *, int);
108 static void print_offs(const char *);
109 static void print_width(const char *,
110 const struct mdoc_node *, size_t);
111 static void print_count(int *);
70 static void print_word(struct mman *, const char *);
112 static void print_node(DECL_ARGS);

114 static const struct manact manacts[MDOC_MAX + 1] = {

new/usr/src/cmd/mandoc/mdoc_man.c 3

115 { NULL, pre_ap, NULL, NULL, NULL }, /* Ap */
116 { NULL, NULL, NULL, NULL, NULL }, /* Dd */
117 { NULL, NULL, NULL, NULL, NULL }, /* Dt */
118 { NULL, NULL, NULL, NULL, NULL }, /* Os */
119 { NULL, pre_sect, post_sect, ".SH", NULL }, /* Sh */
120 { NULL, pre_sect, post_sect, ".SS", NULL }, /* Ss */
121 { NULL, pre_pp, NULL, NULL, NULL }, /* Pp */
122 { cond_body, pre_dl, post_dl, NULL, NULL }, /* D1 */
123 { cond_body, pre_dl, post_dl, NULL, NULL }, /* Dl */
124 { cond_body, pre_bd, post_bd, NULL, NULL }, /* Bd */
125 { NULL, NULL, NULL, NULL, NULL }, /* Ed */
126 { cond_body, pre_bl, post_bl, NULL, NULL }, /* Bl */
85 { NULL, NULL, NULL, NULL, NULL }, /* Bl */
127 { NULL, NULL, NULL, NULL, NULL }, /* El */
128 { NULL, pre_it, post_it, NULL, NULL }, /* It */
129 { NULL, pre_em, post_font, NULL, NULL }, /* Ad */
130 { NULL, pre_an, NULL, NULL, NULL }, /* An */
131 { NULL, pre_em, post_font, NULL, NULL }, /* Ar */
132 { NULL, pre_sy, post_font, NULL, NULL }, /* Cd */
133 { NULL, pre_sy, post_font, NULL, NULL }, /* Cm */
134 { NULL, pre_li, post_font, NULL, NULL }, /* Dv */
135 { NULL, pre_li, post_font, NULL, NULL }, /* Er */
136 { NULL, pre_li, post_font, NULL, NULL }, /* Ev */
87 { NULL, pre_it, NULL, NULL, NULL }, /* _It */
88 { NULL, pre_enc, post_enc, "\\fI", "\\fP" }, /* Ad */
89 { NULL, NULL, NULL, NULL, NULL }, /* _An */
90 { NULL, pre_enc, post_enc, "\\fI", "\\fP" }, /* Ar */
91 { NULL, pre_enc, post_enc, "\\fB", "\\fP" }, /* Cd */
92 { NULL, pre_enc, post_enc, "\\fB", "\\fP" }, /* Cm */
93 { NULL, pre_enc, post_enc, "\\fR", "\\fP" }, /* Dv */
94 { NULL, pre_enc, post_enc, "\\fR", "\\fP" }, /* Er */
95 { NULL, pre_enc, post_enc, "\\fR", "\\fP" }, /* Ev */
137 { NULL, pre_enc, post_enc, "The \\fB",
138 "\\fP\nutility exits 0 on success, and >0 if an error occurs."
139 }, /* Ex */
140 { NULL, pre_fa, post_fa, NULL, NULL }, /* Fa */
141 { NULL, pre_fd, post_fd, NULL, NULL }, /* Fd */
142 { NULL, pre_fl, post_fl, NULL, NULL }, /* Fl */
143 { NULL, pre_fn, post_fn, NULL, NULL }, /* Fn */
144 { NULL, pre_ft, post_font, NULL, NULL }, /* Ft */
145 { NULL, pre_sy, post_font, NULL, NULL }, /* Ic */
146 { NULL, pre_in, post_in, NULL, NULL }, /* In */
147 { NULL, pre_li, post_font, NULL, NULL }, /* Li */
99 { NULL, NULL, NULL, NULL, NULL }, /* _Fa */
100 { NULL, NULL, NULL, NULL, NULL }, /* _Fd */
101 { NULL, pre_enc, post_enc, "\\fB-", "\\fP" }, /* Fl */
102 { NULL, NULL, NULL, NULL, NULL }, /* _Fn */
103 { NULL, NULL, NULL, NULL, NULL }, /* _Ft */
104 { NULL, pre_enc, post_enc, "\\fB", "\\fP" }, /* Ic */
105 { NULL, NULL, NULL, NULL, NULL }, /* _In */
106 { NULL, pre_enc, post_enc, "\\fR", "\\fP" }, /* Li */
148 { cond_head, pre_enc, NULL, "\\- ", NULL }, /* Nd */
149 { NULL, pre_nm, post_nm, NULL, NULL }, /* Nm */
150 { cond_body, pre_enc, post_enc, "[", "]" }, /* Op */
151 { NULL, NULL, NULL, NULL, NULL }, /* Ot */
152 { NULL, pre_em, post_font, NULL, NULL }, /* Pa */
111 { NULL, pre_enc, post_enc, "\\fI", "\\fP" }, /* Pa */
153 { NULL, pre_enc, post_enc, "The \\fB",
154 "\\fP\nfunction returns the value 0 if successful;\n"
155 "otherwise the value -1 is returned and the global\n"
156 "variable \\fIerrno\\fP is set to indicate the error."
157 }, /* Rv */
158 { NULL, NULL, NULL, NULL, NULL }, /* St */
159 { NULL, pre_em, post_font, NULL, NULL }, /* Va */
160 { NULL, pre_vt, post_vt, NULL, NULL }, /* Vt */
118 { NULL, NULL, NULL, NULL, NULL }, /* _Va */

new/usr/src/cmd/mandoc/mdoc_man.c 4

119 { NULL, NULL, NULL, NULL, NULL }, /* _Vt */
161 { NULL, pre_xr, NULL, NULL, NULL }, /* Xr */
162 { NULL, NULL, post_percent, NULL, NULL }, /* %A */
163 { NULL, pre_em, post_percent, NULL, NULL }, /* %B */
164 { NULL, NULL, post_percent, NULL, NULL }, /* %D */
165 { NULL, pre_em, post_percent, NULL, NULL }, /* %I */
166 { NULL, pre_em, post_percent, NULL, NULL }, /* %J */
167 { NULL, NULL, post_percent, NULL, NULL }, /* %N */
168 { NULL, NULL, post_percent, NULL, NULL }, /* %O */
169 { NULL, NULL, post_percent, NULL, NULL }, /* %P */
170 { NULL, NULL, post_percent, NULL, NULL }, /* %R */
171 { NULL, pre__t, post__t, NULL, NULL }, /* %T */
172 { NULL, NULL, post_percent, NULL, NULL }, /* %V */
121 { NULL, NULL, post_percent, NULL, NULL }, /* _%A */
122 { NULL, NULL, NULL, NULL, NULL }, /* _%B */
123 { NULL, NULL, post_percent, NULL, NULL }, /* _%D */
124 { NULL, NULL, NULL, NULL, NULL }, /* _%I */
125 { NULL, pre_enc, post_percent, "\\fI", "\\fP" }, /* %J */
126 { NULL, NULL, NULL, NULL, NULL }, /* _%N */
127 { NULL, NULL, NULL, NULL, NULL }, /* _%O */
128 { NULL, NULL, NULL, NULL, NULL }, /* _%P */
129 { NULL, NULL, NULL, NULL, NULL }, /* _%R */
130 { NULL, pre_enc, post_percent, "\"", "\"" }, /* %T */
131 { NULL, NULL, NULL, NULL, NULL }, /* _%V */
173 { NULL, NULL, NULL, NULL, NULL }, /* Ac */
174 { cond_body, pre_enc, post_enc, "<", ">" }, /* Ao */
175 { cond_body, pre_enc, post_enc, "<", ">" }, /* Aq */
176 { NULL, NULL, NULL, NULL, NULL }, /* At */
177 { NULL, NULL, NULL, NULL, NULL }, /* Bc */
178 { NULL, pre_bf, post_bf, NULL, NULL }, /* Bf */
137 { NULL, NULL, NULL, NULL, NULL }, /* _Bf */
179 { cond_body, pre_enc, post_enc, "[", "]" }, /* Bo */
180 { cond_body, pre_enc, post_enc, "[", "]" }, /* Bq */
181 { NULL, pre_ux, NULL, "BSD/OS", NULL }, /* Bsx */
182 { NULL, pre_bx, NULL, NULL, NULL }, /* Bx */
183 { NULL, NULL, NULL, NULL, NULL }, /* Db */
184 { NULL, NULL, NULL, NULL, NULL }, /* Dc */
185 { cond_body, pre_enc, post_enc, "\\(lq", "\\(rq" }, /* Do */
186 { cond_body, pre_enc, post_enc, "\\(lq", "\\(rq" }, /* Dq */
187 { NULL, NULL, NULL, NULL, NULL }, /* Ec */
188 { NULL, NULL, NULL, NULL, NULL }, /* Ef */
189 { NULL, pre_em, post_font, NULL, NULL }, /* Em */
190 { NULL, NULL, post_eo, NULL, NULL }, /* Eo */
144 { cond_body, pre_enc, post_enc, "‘‘", "’’" }, /* Do */
145 { cond_body, pre_enc, post_enc, "‘‘", "’’" }, /* Dq */
146 { NULL, NULL, NULL, NULL, NULL }, /* _Ec */
147 { NULL, NULL, NULL, NULL, NULL }, /* _Ef */
148 { NULL, pre_enc, post_enc, "\\fI", "\\fP" }, /* Em */
149 { NULL, NULL, NULL, NULL, NULL }, /* _Eo */
191 { NULL, pre_ux, NULL, "FreeBSD", NULL }, /* Fx */
192 { NULL, pre_sy, post_font, NULL, NULL }, /* Ms */
193 { NULL, pre_no, NULL, NULL, NULL }, /* No */
151 { NULL, pre_enc, post_enc, "\\fB", "\\fP" }, /* Ms */
152 { NULL, NULL, NULL, NULL, NULL }, /* No */
194 { NULL, pre_ns, NULL, NULL, NULL }, /* Ns */
195 { NULL, pre_ux, NULL, "NetBSD", NULL }, /* Nx */
196 { NULL, pre_ux, NULL, "OpenBSD", NULL }, /* Ox */
197 { NULL, NULL, NULL, NULL, NULL }, /* Pc */
198 { NULL, NULL, post_pf, NULL, NULL }, /* Pf */
199 { cond_body, pre_enc, post_enc, "(", ")" }, /* Po */
200 { cond_body, pre_enc, post_enc, "(", ")" }, /* Pq */
201 { NULL, NULL, NULL, NULL, NULL }, /* Qc */
202 { cond_body, pre_enc, post_enc, "\\(oq", "\\(cq" }, /* Ql */
161 { cond_body, pre_enc, post_enc, "‘", "’" }, /* Ql */
203 { cond_body, pre_enc, post_enc, "\"", "\"" }, /* Qo */
204 { cond_body, pre_enc, post_enc, "\"", "\"" }, /* Qq */

new/usr/src/cmd/mandoc/mdoc_man.c 5

205 { NULL, NULL, NULL, NULL, NULL }, /* Re */
206 { cond_body, pre_rs, NULL, NULL, NULL }, /* Rs */
165 { cond_body, pre_pp, NULL, NULL, NULL }, /* Rs */
207 { NULL, NULL, NULL, NULL, NULL }, /* Sc */
208 { cond_body, pre_enc, post_enc, "\\(oq", "\\(cq" }, /* So */
209 { cond_body, pre_enc, post_enc, "\\(oq", "\\(cq" }, /* Sq */
210 { NULL, pre_sm, NULL, NULL, NULL }, /* Sm */
211 { NULL, pre_em, post_font, NULL, NULL }, /* Sx */
212 { NULL, pre_sy, post_font, NULL, NULL }, /* Sy */
213 { NULL, pre_li, post_font, NULL, NULL }, /* Tn */
167 { cond_body, pre_enc, post_enc, "‘", "’" }, /* So */
168 { cond_body, pre_enc, post_enc, "‘", "’" }, /* Sq */
169 { NULL, NULL, NULL, NULL, NULL }, /* _Sm */
170 { NULL, pre_enc, post_enc, "\\fI", "\\fP" }, /* Sx */
171 { NULL, pre_enc, post_enc, "\\fB", "\\fP" }, /* Sy */
172 { NULL, pre_enc, post_enc, "\\fR", "\\fP" }, /* Tn */
214 { NULL, pre_ux, NULL, "UNIX", NULL }, /* Ux */
215 { NULL, NULL, NULL, NULL, NULL }, /* Xc */
216 { NULL, NULL, NULL, NULL, NULL }, /* Xo */
217 { NULL, pre_fo, post_fo, NULL, NULL }, /* Fo */
218 { NULL, NULL, NULL, NULL, NULL }, /* Fc */
174 { NULL, NULL, NULL, NULL, NULL }, /* _Xc */
175 { NULL, NULL, NULL, NULL, NULL }, /* _Xo */
176 { NULL, NULL, NULL, NULL, NULL }, /* _Fo */
177 { NULL, NULL, NULL, NULL, NULL }, /* _Fc */
219 { cond_body, pre_enc, post_enc, "[", "]" }, /* Oo */
220 { NULL, NULL, NULL, NULL, NULL }, /* Oc */
221 { NULL, pre_bk, post_bk, NULL, NULL }, /* Bk */
222 { NULL, NULL, NULL, NULL, NULL }, /* Ek */
180 { NULL, NULL, NULL, NULL, NULL }, /* _Bk */
181 { NULL, NULL, NULL, NULL, NULL }, /* _Ek */
223 { NULL, pre_ux, NULL, "is currently in beta test.", NULL }, /* Bt */
224 { NULL, NULL, NULL, NULL, NULL }, /* Hf */
225 { NULL, NULL, NULL, NULL, NULL }, /* Fr */
226 { NULL, pre_ux, NULL, "currently under development.", NULL }, /* Ud */
227 { NULL, NULL, post_lb, NULL, NULL }, /* Lb */
186 { NULL, NULL, NULL, NULL, NULL }, /* _Lb */
228 { NULL, pre_pp, NULL, NULL, NULL }, /* Lp */
229 { NULL, pre_lk, NULL, NULL, NULL }, /* Lk */
230 { NULL, pre_em, post_font, NULL, NULL }, /* Mt */
188 { NULL, NULL, NULL, NULL, NULL }, /* _Lk */
189 { NULL, NULL, NULL, NULL, NULL }, /* _Mt */
231 { cond_body, pre_enc, post_enc, "{", "}" }, /* Brq */
232 { cond_body, pre_enc, post_enc, "{", "}" }, /* Bro */
233 { NULL, NULL, NULL, NULL, NULL }, /* Brc */
234 { NULL, NULL, post_percent, NULL, NULL }, /* %C */
235 { NULL, NULL, NULL, NULL, NULL }, /* Es */
236 { NULL, NULL, NULL, NULL, NULL }, /* En */
193 { NULL, NULL, NULL, NULL, NULL }, /* _%C */
194 { NULL, NULL, NULL, NULL, NULL }, /* _Es */
195 { NULL, NULL, NULL, NULL, NULL }, /* _En */
237 { NULL, pre_ux, NULL, "DragonFly", NULL }, /* Dx */
238 { NULL, NULL, post_percent, NULL, NULL }, /* %Q */
197 { NULL, NULL, NULL, NULL, NULL }, /* _%Q */
239 { NULL, pre_br, NULL, NULL, NULL }, /* br */
240 { NULL, pre_sp, post_sp, NULL, NULL }, /* sp */
241 { NULL, NULL, post_percent, NULL, NULL }, /* %U */
242 { NULL, NULL, NULL, NULL, NULL }, /* Ta */
200 { NULL, NULL, NULL, NULL, NULL }, /* _%U */
201 { NULL, NULL, NULL, NULL, NULL }, /* _Ta */
243 { NULL, NULL, NULL, NULL, NULL }, /* ROOT */
244 };

246 static int outflags;
247 #define MMAN_spc (1 << 0) /* blank character before next word */
248 #define MMAN_spc_force (1 << 1) /* even before trailing punctuation */

new/usr/src/cmd/mandoc/mdoc_man.c 6

249 #define MMAN_nl (1 << 2) /* break man(7) code line */
250 #define MMAN_br (1 << 3) /* break output line */
251 #define MMAN_sp (1 << 4) /* insert a blank output line */
252 #define MMAN_PP (1 << 5) /* reset indentation etc. */
253 #define MMAN_Sm (1 << 6) /* horizontal spacing mode */
254 #define MMAN_Bk (1 << 7) /* word keep mode */
255 #define MMAN_Bk_susp (1 << 8) /* suspend this (after a macro) */
256 #define MMAN_An_split (1 << 9) /* author mode is "split" */
257 #define MMAN_An_nosplit (1 << 10) /* author mode is "nosplit" */
258 #define MMAN_PD (1 << 11) /* inter-paragraph spacing disabled */
259 #define MMAN_nbrword (1 << 12) /* do not break the next word */

261 #define BL_STACK_MAX 32

263 static size_t Bl_stack[BL_STACK_MAX]; /* offsets [chars] */
264 static int Bl_stack_post[BL_STACK_MAX]; /* add final .RE */
265 static int Bl_stack_len; /* number of nested Bl blocks */
266 static int TPremain; /* characters before tag is full */

268 static struct {
269 char *head;
270 char *tail;
271 size_t size;
272 } fontqueue;

274 static void
275 font_push(char newfont)
206 print_word(struct mman *mm, const char *s)
276 {

278 if (fontqueue.head + fontqueue.size <= ++fontqueue.tail) {
279 fontqueue.size += 8;
280 fontqueue.head = mandoc_realloc(fontqueue.head,
281 fontqueue.size);
282 }
283 *fontqueue.tail = newfont;
284 print_word("");
285 printf("\\f");
286 putchar(newfont);
287 outflags &= ~MMAN_spc;
288 }

290 static void
291 font_pop(void)
292 {

294 if (fontqueue.tail > fontqueue.head)
295 fontqueue.tail--;
296 outflags &= ~MMAN_spc;
297 print_word("");
298 printf("\\f");
299 putchar(*fontqueue.tail);
300 }

302 static void
303 print_word(const char *s)
304 {

306 if ((MMAN_PP | MMAN_sp | MMAN_br | MMAN_nl) & outflags) {
209 if (mm->need_nl) {
307 /*
308 * If we need a newline, print it now and start afresh.
309 */
310 if (MMAN_PP & outflags) {
311 if (MMAN_sp & outflags) {
312 if (MMAN_PD & outflags) {

new/usr/src/cmd/mandoc/mdoc_man.c 7

313 printf("\n.PD");
314 outflags &= ~MMAN_PD;
315 }
316 } else if (! (MMAN_PD & outflags)) {
317 printf("\n.PD 0");
318 outflags |= MMAN_PD;
319 }
320 printf("\n.PP\n");
321 } else if (MMAN_sp & outflags)
322 printf("\n.sp\n");
323 else if (MMAN_br & outflags)
324 printf("\n.br\n");
325 else if (MMAN_nl & outflags)
326 putchar(’\n’);
327 outflags &= ~(MMAN_PP|MMAN_sp|MMAN_br|MMAN_nl|MMAN_spc);
328 if (1 == TPremain)
329 printf(".br\n");
330 TPremain = 0;
331 } else if (MMAN_spc & outflags) {
214 mm->need_space = 0;
215 mm->need_nl = 0;
216 } else if (mm->need_space && ’\0’ != s[0])
332 /*
333 * If we need a space, only print it if
334 * (1) it is forced by ‘No’ or
335 * (2) what follows is not terminating punctuation or
336 * (3) what follows is longer than one character.
218 * If we need a space, only print it before
219 * (1) a nonzero length word;
220 * (2) a word that is non-punctuation; and
221 * (3) if punctuation, non-terminating puncutation.
337 */
338 if (MMAN_spc_force & outflags || ’\0’ == s[0] ||
339 NULL == strchr(".,:;)]?!", s[0]) || ’\0’ != s[1]) {
340 if (MMAN_Bk & outflags &&
341 ! (MMAN_Bk_susp & outflags))
342 putchar(’\\’);
223 if (NULL == strchr(".,:;)]?!", s[0]) || ’\0’ != s[1])
343 putchar(’ ’);
344 if (TPremain)
345 TPremain--;
346 }
347 }

349 /*
350 * Reassign needing space if we’re not following opening
351 * punctuation.
352 */
353 if (MMAN_Sm & outflags && (’\0’ == s[0] ||
354 ((’(’ != s[0] && ’[’ != s[0]) || ’\0’ != s[1])))
355 outflags |= MMAN_spc;
356 else
357 outflags &= ~MMAN_spc;
358 outflags &= ~(MMAN_spc_force | MMAN_Bk_susp);
230 mm->need_space =
231 (’(’ != s[0] && ’[’ != s[0]) || ’\0’ != s[1];

360 for (; *s; s++) {
361 switch (*s) {
362 case (ASCII_NBRSP):
363 printf("\\ ");
236 printf("\\~");
364 break;
365 case (ASCII_HYPH):
366 putchar(’-’);
367 break;

new/usr/src/cmd/mandoc/mdoc_man.c 8

368 case (’ ’):
369 if (MMAN_nbrword & outflags) {
370 printf("\\ ");
371 break;
372 }
373 /* FALLTHROUGH */
374 default:
375 putchar((unsigned char)*s);
376 break;
377 }
378 if (TPremain)
379 TPremain--;
380 }
381 outflags &= ~MMAN_nbrword;
382 }

384 static void
385 print_line(const char *s, int newflags)
386 {

388 outflags &= ~MMAN_br;
389 outflags |= MMAN_nl;
390 print_word(s);
391 outflags |= newflags;
392 }

394 static void
395 print_block(const char *s, int newflags)
396 {

398 outflags &= ~MMAN_PP;
399 if (MMAN_sp & outflags) {
400 outflags &= ~(MMAN_sp | MMAN_br);
401 if (MMAN_PD & outflags) {
402 print_line(".PD", 0);
403 outflags &= ~MMAN_PD;
404 }
405 } else if (! (MMAN_PD & outflags))
406 print_line(".PD 0", MMAN_PD);
407 outflags |= MMAN_nl;
408 print_word(s);
409 outflags |= MMAN_Bk_susp | newflags;
410 }

412 static void
413 print_offs(const char *v)
414 {
415 char buf[24];
416 struct roffsu su;
417 size_t sz;

419 print_line(".RS", MMAN_Bk_susp);

421 /* Convert v into a number (of characters). */
422 if (NULL == v || ’\0’ == *v || 0 == strcmp(v, "left"))
423 sz = 0;
424 else if (0 == strcmp(v, "indent"))
425 sz = 6;
426 else if (0 == strcmp(v, "indent-two"))
427 sz = 12;
428 else if (a2roffsu(v, &su, SCALE_MAX)) {
429 if (SCALE_EN == su.unit)
430 sz = su.scale;
431 else {
432 /*
433 * XXX

new/usr/src/cmd/mandoc/mdoc_man.c 9

434 * If we are inside an enclosing list,
435 * there is no easy way to add the two
436 * indentations because they are provided
437 * in terms of different units.
438 */
439 print_word(v);
440 outflags |= MMAN_nl;
441 return;
442 }
443 } else
444 sz = strlen(v);

446 /*
447 * We are inside an enclosing list.
448 * Add the two indentations.
449 */
450 if (Bl_stack_len)
451 sz += Bl_stack[Bl_stack_len - 1];

453 snprintf(buf, sizeof(buf), "%zun", sz);
454 print_word(buf);
455 outflags |= MMAN_nl;
456 }

458 /*
459 * Set up the indentation for a list item; used from pre_it().
460 */
461 void
462 print_width(const char *v, const struct mdoc_node *child, size_t defsz)
463 {
464 char buf[24];
465 struct roffsu su;
466 size_t sz, chsz;
467 int numeric, remain;

469 numeric = 1;
470 remain = 0;

472 /* Convert v into a number (of characters). */
473 if (NULL == v)
474 sz = defsz;
475 else if (a2roffsu(v, &su, SCALE_MAX)) {
476 if (SCALE_EN == su.unit)
477 sz = su.scale;
478 else {
479 sz = 0;
480 numeric = 0;
481 }
482 } else
483 sz = strlen(v);

485 /* XXX Rough estimation, might have multiple parts. */
486 chsz = (NULL != child && MDOC_TEXT == child->type) ?
487 strlen(child->string) : 0;

489 /* Maybe we are inside an enclosing list? */
490 mid_it();

492 /*
493 * Save our own indentation,
494 * such that child lists can use it.
495 */
496 Bl_stack[Bl_stack_len++] = sz + 2;

498 /* Set up the current list. */
499 if (defsz && chsz > sz)

new/usr/src/cmd/mandoc/mdoc_man.c 10

500 print_block(".HP", 0);
501 else {
502 print_block(".TP", 0);
503 remain = sz + 2;
504 }
505 if (numeric) {
506 snprintf(buf, sizeof(buf), "%zun", sz + 2);
507 print_word(buf);
508 } else
509 print_word(v);
510 TPremain = remain;
511 }

513 void
514 print_count(int *count)
515 {
516 char buf[12];

518 snprintf(buf, sizeof(buf), "%d.", ++*count);
519 print_word(buf);
520 }

522 void
523 man_man(void *arg, const struct man *man)
524 {

526 /*
527 * Dump the keep buffer.
528 * We’re guaranteed by now that this exists (is non-NULL).
529 * Flush stdout afterward, just in case.
530 */
531 fputs(mparse_getkeep(man_mparse(man)), stdout);
532 fflush(stdout);
533 }

535 void
536 man_mdoc(void *arg, const struct mdoc *mdoc)
537 {
538 const struct mdoc_meta *meta;
264 const struct mdoc_meta *m;
539 const struct mdoc_node *n;
266 struct mman mm;

541 meta = mdoc_meta(mdoc);
268 m = mdoc_meta(mdoc);
542 n = mdoc_node(mdoc);

544 printf(".TH \"%s\" \"%s\" \"%s\" \"%s\" \"%s\"\n",
545 meta->title, meta->msec, meta->date,
546 meta->os, meta->vol);
271 printf(".TH \"%s\" \"%s\" \"%s\" \"%s\" \"%s\"",
272 m->title, m->msec, m->date, m->os, m->vol);

548 /* Disable hyphenation and if nroff, disable justification. */
549 printf(".nh\n.if n .ad l");
274 memset(&mm, 0, sizeof(struct mman));

551 outflags = MMAN_nl | MMAN_Sm;
552 if (0 == fontqueue.size) {
553 fontqueue.size = 8;
554 fontqueue.head = fontqueue.tail = mandoc_malloc(8);
555 *fontqueue.tail = ’R’;
556 }
557 print_node(meta, n);
276 mm.need_nl = 1;
277 print_node(m, n, &mm);

new/usr/src/cmd/mandoc/mdoc_man.c 11

558 putchar(’\n’);
559 }

561 static void
562 print_node(DECL_ARGS)
563 {
564 const struct mdoc_node *sub;
284 const struct mdoc_node *prev, *sub;
565 const struct manact *act;
566 int cond, do_sub;

568 /*
569 * Break the line if we were parsed subsequent the current node.
570 * This makes the page structure be more consistent.
571 */
572 if (MMAN_spc & outflags && MDOC_LINE & n->flags)
573 outflags |= MMAN_nl;
292 prev = n->prev ? n->prev : n->parent;
293 if (prev && prev->line < n->line)
294 mm->need_nl = 1;

575 act = NULL;
576 cond = 0;
577 do_sub = 1;

579 if (MDOC_TEXT == n->type) {
580 /*
581 * Make sure that we don’t happen to start with a
582 * control character at the start of a line.
583 */
584 if (MMAN_nl & outflags && (’.’ == *n->string ||
305 if (mm->need_nl && (’.’ == *n->string ||
585 ’\’’ == *n->string)) {
586 print_word("");
587 printf("\\&");
588 outflags &= ~MMAN_spc;
307 print_word(mm, "\\&");
308 mm->need_space = 0;
589 }
590 print_word(n->string);
310 print_word(mm, n->string);
591 } else {
592 /*
593 * Conditionally run the pre-node action handler for a
594 * node.
595 */
596 act = manacts + n->tok;
597 cond = NULL == act->cond || (*act->cond)(meta, n);
317 cond = NULL == act->cond || (*act->cond)(m, n, mm);
598 if (cond && act->pre)
599 do_sub = (*act->pre)(meta, n);
319 do_sub = (*act->pre)(m, n, mm);
600 }

602 /*
603 * Conditionally run all child nodes.
604 * Note that this iterates over children instead of using
605 * recursion. This prevents unnecessary depth in the stack.
606 */
607 if (do_sub)
608 for (sub = n->child; sub; sub = sub->next)
609 print_node(meta, sub);
329 print_node(m, sub, mm);

611 /*
612 * Lastly, conditionally run the post-node handler.

new/usr/src/cmd/mandoc/mdoc_man.c 12

613 */
614 if (cond && act->post)
615 (*act->post)(meta, n);
335 (*act->post)(m, n, mm);
616 }

______unchanged_portion_omitted_

352 /*
353 * Output a font encoding before a node, e.g., \fR.
354 * This obviously has no trailing space.
355 */
632 static int
633 pre_enc(DECL_ARGS)
634 {
635 const char *prefix;

637 prefix = manacts[n->tok].prefix;
638 if (NULL == prefix)
639 return(1);
640 print_word(prefix);
641 outflags &= ~MMAN_spc;
364 print_word(mm, prefix);
365 mm->need_space = 0;
642 return(1);
643 }

369 /*
370 * Output a font encoding subsequent a node, e.g., \fP.
371 */
645 static void
646 post_enc(DECL_ARGS)
647 {
648 const char *suffix;

650 suffix = manacts[n->tok].suffix;
651 if (NULL == suffix)
652 return;
653 outflags &= ~MMAN_spc;
654 print_word(suffix);
380 mm->need_space = 0;
381 print_word(mm, suffix);
655 }

384 /*
385 * Used in listings (percent = %A, e.g.).
386 * FIXME: this is incomplete.
387 * It doesn’t print a nice ", and" for lists.
388 */
657 static void
658 post_font(DECL_ARGS)
659 {

661 font_pop();
662 }

664 static void
665 post_percent(DECL_ARGS)
666 {

668 if (pre_em == manacts[n->tok].pre)
669 font_pop();
670 if (n->next) {
671 print_word(",");
672 if (n->prev && n->prev->tok == n->tok &&
673 n->next->tok == n->tok)
674 print_word("and");

new/usr/src/cmd/mandoc/mdoc_man.c 13

675 } else {
676 print_word(".");
677 outflags |= MMAN_nl;
393 post_enc(m, n, mm);
394 if (n->next)
395 print_word(mm, ",");
396 else {
397 print_word(mm, ".");
398 mm->need_nl = 1;
678 }
679 }

681 static int
682 pre__t(DECL_ARGS)
683 {

685 if (n->parent && MDOC_Rs == n->parent->tok &&
686 n->parent->norm->Rs.quote_T) {
687 print_word("");
688 putchar(’\"’);
689 outflags &= ~MMAN_spc;
690 } else
691 font_push(’I’);
692 return(1);
693 }

695 static void
696 post__t(DECL_ARGS)
697 {

699 if (n->parent && MDOC_Rs == n->parent->tok &&
700 n->parent->norm->Rs.quote_T) {
701 outflags &= ~MMAN_spc;
702 print_word("");
703 putchar(’\"’);
704 } else
705 font_pop();
706 post_percent(meta, n);
707 }

709 /*
710 * Print before a section header.
711 */
712 static int
713 pre_sect(DECL_ARGS)
714 {

716 if (MDOC_HEAD == n->type) {
717 outflags |= MMAN_sp;
718 print_block(manacts[n->tok].prefix, 0);
719 print_word("");
720 putchar(’\"’);
721 outflags &= ~MMAN_spc;
722 }
409 if (MDOC_HEAD != n->type)
723 return(1);
411 mm->need_nl = 1;
412 print_word(mm, manacts[n->tok].prefix);
413 print_word(mm, "\"");
414 mm->need_space = 0;
415 return(1);
724 }

726 /*
727 * Print subsequent a section header.
728 */

new/usr/src/cmd/mandoc/mdoc_man.c 14

729 static void
730 post_sect(DECL_ARGS)
731 {

733 if (MDOC_HEAD != n->type)
734 return;
735 outflags &= ~MMAN_spc;
736 print_word("");
737 putchar(’\"’);
738 outflags |= MMAN_nl;
739 if (MDOC_Sh == n->tok && SEC_AUTHORS == n->sec)
740 outflags &= ~(MMAN_An_split | MMAN_An_nosplit);
427 mm->need_space = 0;
428 print_word(mm, "\"");
429 mm->need_nl = 1;
741 }

743 /* See mdoc_term.c, synopsis_pre() for comments. */
744 static void
745 pre_syn(const struct mdoc_node *n)
746 {

748 if (NULL == n->prev || ! (MDOC_SYNPRETTY & n->flags))
749 return;

751 if (n->prev->tok == n->tok &&
752 MDOC_Ft != n->tok &&
753 MDOC_Fo != n->tok &&
754 MDOC_Fn != n->tok) {
755 outflags |= MMAN_br;
756 return;
757 }

759 switch (n->prev->tok) {
760 case (MDOC_Fd):
761 /* FALLTHROUGH */
762 case (MDOC_Fn):
763 /* FALLTHROUGH */
764 case (MDOC_Fo):
765 /* FALLTHROUGH */
766 case (MDOC_In):
767 /* FALLTHROUGH */
768 case (MDOC_Vt):
769 outflags |= MMAN_sp;
770 break;
771 case (MDOC_Ft):
772 if (MDOC_Fn != n->tok && MDOC_Fo != n->tok) {
773 outflags |= MMAN_sp;
774 break;
775 }
776 /* FALLTHROUGH */
777 default:
778 outflags |= MMAN_br;
779 break;
780 }
781 }

783 static int
784 pre_an(DECL_ARGS)
785 {

787 switch (n->norm->An.auth) {
788 case (AUTH_split):
789 outflags &= ~MMAN_An_nosplit;
790 outflags |= MMAN_An_split;
791 return(0);

new/usr/src/cmd/mandoc/mdoc_man.c 15

792 case (AUTH_nosplit):
793 outflags &= ~MMAN_An_split;
794 outflags |= MMAN_An_nosplit;
795 return(0);
796 default:
797 if (MMAN_An_split & outflags)
798 outflags |= MMAN_br;
799 else if (SEC_AUTHORS == n->sec &&
800 ! (MMAN_An_nosplit & outflags))
801 outflags |= MMAN_An_split;
802 return(1);
803 }
804 }

806 static int
807 pre_ap(DECL_ARGS)
808 {

810 outflags &= ~MMAN_spc;
811 print_word("’");
812 outflags &= ~MMAN_spc;
436 mm->need_space = 0;
437 print_word(mm, "’");
438 mm->need_space = 0;
813 return(0);
814 }

816 static int
817 pre_bd(DECL_ARGS)
818 {

820 outflags &= ~(MMAN_PP | MMAN_sp | MMAN_br);

822 if (DISP_unfilled == n->norm->Bd.type ||
823 DISP_literal == n->norm->Bd.type)
824 print_line(".nf", 0);
825 if (0 == n->norm->Bd.comp && NULL != n->parent->prev)
826 outflags |= MMAN_sp;
827 print_offs(n->norm->Bd.offs);
447 DISP_literal == n->norm->Bd.type) {
448 mm->need_nl = 1;
449 print_word(mm, ".nf");
450 }
451 mm->need_nl = 1;
828 return(1);
829 }

831 static void
832 post_bd(DECL_ARGS)
833 {

835 /* Close out this display. */
836 print_line(".RE", MMAN_nl);
837 if (DISP_unfilled == n->norm->Bd.type ||
838 DISP_literal == n->norm->Bd.type)
839 print_line(".fi", MMAN_nl);

841 /* Maybe we are inside an enclosing list? */
842 if (NULL != n->parent->next)
843 mid_it();
844 }

846 static int
847 pre_bf(DECL_ARGS)
848 {

new/usr/src/cmd/mandoc/mdoc_man.c 16

850 switch (n->type) {
851 case (MDOC_BLOCK):
852 return(1);
853 case (MDOC_BODY):
854 break;
855 default:
856 return(0);
460 DISP_literal == n->norm->Bd.type) {
461 mm->need_nl = 1;
462 print_word(mm, ".fi");
857 }
858 switch (n->norm->Bf.font) {
859 case (FONT_Em):
860 font_push(’I’);
861 break;
862 case (FONT_Sy):
863 font_push(’B’);
864 break;
865 default:
866 font_push(’R’);
867 break;
868 }
869 return(1);
464 mm->need_nl = 1;
870 }

872 static void
873 post_bf(DECL_ARGS)
874 {

876 if (MDOC_BODY == n->type)
877 font_pop();
878 }

880 static int
881 pre_bk(DECL_ARGS)
882 {

884 switch (n->type) {
885 case (MDOC_BLOCK):
886 return(1);
887 case (MDOC_BODY):
888 outflags |= MMAN_Bk;
889 return(1);
890 default:
891 return(0);
892 }
893 }

895 static void
896 post_bk(DECL_ARGS)
897 {

899 if (MDOC_BODY == n->type)
900 outflags &= ~MMAN_Bk;
901 }

903 static int
904 pre_bl(DECL_ARGS)
905 {
906 size_t icol;

908 /*
909 * print_offs() will increase the -offset to account for
910 * a possible enclosing .It, but any enclosed .It blocks
911 * just nest and do not add up their indentation.

new/usr/src/cmd/mandoc/mdoc_man.c 17

912 */
913 if (n->norm->Bl.offs) {
914 print_offs(n->norm->Bl.offs);
915 Bl_stack[Bl_stack_len++] = 0;
916 }

918 switch (n->norm->Bl.type) {
919 case (LIST_enum):
920 n->norm->Bl.count = 0;
921 return(1);
922 case (LIST_column):
923 break;
924 default:
925 return(1);
926 }

928 print_line(".TS", MMAN_nl);
929 for (icol = 0; icol < n->norm->Bl.ncols; icol++)
930 print_word("l");
931 print_word(".");
932 outflags |= MMAN_nl;
933 return(1);
934 }

936 static void
937 post_bl(DECL_ARGS)
938 {

940 switch (n->norm->Bl.type) {
941 case (LIST_column):
942 print_line(".TE", 0);
943 break;
944 case (LIST_enum):
945 n->norm->Bl.count = 0;
946 break;
947 default:
948 break;
949 }

951 if (n->norm->Bl.offs) {
952 print_line(".RE", MMAN_nl);
953 assert(Bl_stack_len);
954 Bl_stack_len--;
955 assert(0 == Bl_stack[Bl_stack_len]);
956 } else {
957 outflags |= MMAN_PP | MMAN_nl;
958 outflags &= ~(MMAN_sp | MMAN_br);
959 }

961 /* Maybe we are inside an enclosing list? */
962 if (NULL != n->parent->next)
963 mid_it();

965 }

967 static int
968 pre_br(DECL_ARGS)
969 {

971 outflags |= MMAN_br;
471 mm->need_nl = 1;
472 print_word(mm, ".br");
473 mm->need_nl = 1;
972 return(0);
973 }

new/usr/src/cmd/mandoc/mdoc_man.c 18

975 static int
976 pre_bx(DECL_ARGS)
977 {

979 n = n->child;
980 if (n) {
981 print_word(n->string);
982 outflags &= ~MMAN_spc;
483 print_word(mm, n->string);
484 mm->need_space = 0;
983 n = n->next;
984 }
985 print_word("BSD");
487 print_word(mm, "BSD");
986 if (NULL == n)
987 return(0);
988 outflags &= ~MMAN_spc;
989 print_word("-");
990 outflags &= ~MMAN_spc;
991 print_word(n->string);
490 mm->need_space = 0;
491 print_word(mm, "-");
492 mm->need_space = 0;
493 print_word(mm, n->string);
992 return(0);
993 }

995 static int
996 pre_dl(DECL_ARGS)
997 {

999 print_offs("6n");
501 mm->need_nl = 1;
502 print_word(mm, ".RS 6n");
503 mm->need_nl = 1;
1000 return(1);
1001 }

1003 static void
1004 post_dl(DECL_ARGS)
1005 {

1007 print_line(".RE", MMAN_nl);

1009 /* Maybe we are inside an enclosing list? */
1010 if (NULL != n->parent->next)
1011 mid_it();
511 mm->need_nl = 1;
512 print_word(mm, ".RE");
513 mm->need_nl = 1;
1012 }

1014 static int
1015 pre_em(DECL_ARGS)
1016 {

1018 font_push(’I’);
1019 return(1);
1020 }

1022 static void
1023 post_eo(DECL_ARGS)
1024 {

1026 if (MDOC_HEAD == n->type || MDOC_BODY == n->type)
1027 outflags &= ~MMAN_spc;

new/usr/src/cmd/mandoc/mdoc_man.c 19

1028 }

1030 static int
1031 pre_fa(DECL_ARGS)
1032 {
1033 int am_Fa;

1035 am_Fa = MDOC_Fa == n->tok;

1037 if (am_Fa)
1038 n = n->child;

1040 while (NULL != n) {
1041 font_push(’I’);
1042 if (am_Fa || MDOC_SYNPRETTY & n->flags)
1043 outflags |= MMAN_nbrword;
1044 print_node(meta, n);
1045 font_pop();
1046 if (NULL != (n = n->next))
1047 print_word(",");
1048 }
1049 return(0);
1050 }

1052 static void
1053 post_fa(DECL_ARGS)
1054 {

1056 if (NULL != n->next && MDOC_Fa == n->next->tok)
1057 print_word(",");
1058 }

1060 static int
1061 pre_fd(DECL_ARGS)
1062 {

1064 pre_syn(n);
1065 font_push(’B’);
1066 return(1);
1067 }

1069 static void
1070 post_fd(DECL_ARGS)
1071 {

1073 font_pop();
1074 outflags |= MMAN_br;
1075 }

1077 static int
1078 pre_fl(DECL_ARGS)
1079 {

1081 font_push(’B’);
1082 print_word("\\-");
1083 outflags &= ~MMAN_spc;
1084 return(1);
1085 }

1087 static void
1088 post_fl(DECL_ARGS)
1089 {

1091 font_pop();
1092 if (0 == n->nchild && NULL != n->next &&
1093 n->next->line == n->line)

new/usr/src/cmd/mandoc/mdoc_man.c 20

1094 outflags &= ~MMAN_spc;
1095 }

1097 static int
1098 pre_fn(DECL_ARGS)
1099 {

1101 pre_syn(n);

1103 n = n->child;
1104 if (NULL == n)
1105 return(0);

1107 if (MDOC_SYNPRETTY & n->flags)
1108 print_block(".HP 4n", MMAN_nl);

1110 font_push(’B’);
1111 print_node(meta, n);
1112 font_pop();
1113 outflags &= ~MMAN_spc;
1114 print_word("(");
1115 outflags &= ~MMAN_spc;

1117 n = n->next;
1118 if (NULL != n)
1119 pre_fa(meta, n);
1120 return(0);
1121 }

1123 static void
1124 post_fn(DECL_ARGS)
1125 {

1127 print_word(")");
1128 if (MDOC_SYNPRETTY & n->flags) {
1129 print_word(";");
1130 outflags |= MMAN_PP;
1131 }
1132 }

1134 static int
1135 pre_fo(DECL_ARGS)
1136 {

1138 switch (n->type) {
1139 case (MDOC_BLOCK):
1140 pre_syn(n);
1141 break;
1142 case (MDOC_HEAD):
1143 if (MDOC_SYNPRETTY & n->flags)
1144 print_block(".HP 4n", MMAN_nl);
1145 font_push(’B’);
1146 break;
1147 case (MDOC_BODY):
1148 outflags &= ~MMAN_spc;
1149 print_word("(");
1150 outflags &= ~MMAN_spc;
1151 break;
1152 default:
1153 break;
1154 }
1155 return(1);
1156 }

1158 static void
1159 post_fo(DECL_ARGS)

new/usr/src/cmd/mandoc/mdoc_man.c 21

1160 {

1162 switch (n->type) {
1163 case (MDOC_HEAD):
1164 font_pop();
1165 break;
1166 case (MDOC_BODY):
1167 post_fn(meta, n);
1168 break;
1169 default:
1170 break;
1171 }
1172 }

1174 static int
1175 pre_ft(DECL_ARGS)
1176 {

1178 pre_syn(n);
1179 font_push(’I’);
1180 return(1);
1181 }

1183 static int
1184 pre_in(DECL_ARGS)
1185 {

1187 if (MDOC_SYNPRETTY & n->flags) {
1188 pre_syn(n);
1189 font_push(’B’);
1190 print_word("#include <");
1191 outflags &= ~MMAN_spc;
1192 } else {
1193 print_word("<");
1194 outflags &= ~MMAN_spc;
1195 font_push(’I’);
1196 }
1197 return(1);
1198 }

1200 static void
1201 post_in(DECL_ARGS)
1202 {

1204 if (MDOC_SYNPRETTY & n->flags) {
1205 outflags &= ~MMAN_spc;
1206 print_word(">");
1207 font_pop();
1208 outflags |= MMAN_br;
1209 } else {
1210 font_pop();
1211 outflags &= ~MMAN_spc;
1212 print_word(">");
1213 }
1214 }

1216 static int
1217 pre_it(DECL_ARGS)
1218 {
1219 const struct mdoc_node *bln;

1221 switch (n->type) {
1222 case (MDOC_HEAD):
1223 outflags |= MMAN_PP | MMAN_nl;
1224 bln = n->parent->parent;
1225 if (0 == bln->norm->Bl.comp ||

new/usr/src/cmd/mandoc/mdoc_man.c 22

1226 (NULL == n->parent->prev &&
1227 NULL == bln->parent->prev))
1228 outflags |= MMAN_sp;
1229 outflags &= ~MMAN_br;
521 if (MDOC_HEAD == n->type) {
522 mm->need_nl = 1;
523 print_word(mm, ".TP");
524 bln = n->parent->parent->prev;
1230 switch (bln->norm->Bl.type) {
1231 case (LIST_item):
1232 return(0);
1233 case (LIST_inset):
1234 /* FALLTHROUGH */
1235 case (LIST_diag):
1236 /* FALLTHROUGH */
1237 case (LIST_ohang):
1238 if (bln->norm->Bl.type == LIST_diag)
1239 print_line(".B \"", 0);
1240 else
1241 print_line(".R \"", 0);
1242 outflags &= ~MMAN_spc;
1243 return(1);
1244 case (LIST_bullet):
1245 /* FALLTHROUGH */
1246 case (LIST_dash):
1247 /* FALLTHROUGH */
1248 case (LIST_hyphen):
1249 print_width(bln->norm->Bl.width, NULL, 0);
1250 TPremain = 0;
1251 outflags |= MMAN_nl;
1252 font_push(’B’);
1253 if (LIST_bullet == bln->norm->Bl.type)
1254 print_word("o");
1255 else
1256 print_word("-");
1257 font_pop();
527 print_word(mm, "4n");
528 mm->need_nl = 1;
529 print_word(mm, "\\fBo\\fP");
1258 break;
1259 case (LIST_enum):
1260 print_width(bln->norm->Bl.width, NULL, 0);
1261 TPremain = 0;
1262 outflags |= MMAN_nl;
1263 print_count(&bln->norm->Bl.count);
1264 break;
1265 case (LIST_hang):
1266 print_width(bln->norm->Bl.width, n->child, 6);
1267 TPremain = 0;
1268 break;
1269 case (LIST_tag):
1270 print_width(bln->norm->Bl.width, n->child, 0);
1271 putchar(’\n’);
1272 outflags &= ~MMAN_spc;
1273 return(1);
1274 default:
1275 return(1);
1276 }
1277 outflags |= MMAN_nl;
1278 default:
532 if (bln->norm->Bl.width)
533 print_word(mm, bln->norm->Bl.width);

1279 break;
1280 }
1281 return(1);
1282 }

new/usr/src/cmd/mandoc/mdoc_man.c 23

1284 /*
1285 * This function is called after closing out an indented block.
1286 * If we are inside an enclosing list, restore its indentation.
1287 */
1288 static void
1289 mid_it(void)
1290 {
1291 char buf[24];

1293 /* Nothing to do outside a list. */
1294 if (0 == Bl_stack_len || 0 == Bl_stack[Bl_stack_len - 1])
1295 return;

1297 /* The indentation has already been set up. */
1298 if (Bl_stack_post[Bl_stack_len - 1])
1299 return;

1301 /* Restore the indentation of the enclosing list. */
1302 print_line(".RS", MMAN_Bk_susp);
1303 snprintf(buf, sizeof(buf), "%zun", Bl_stack[Bl_stack_len - 1]);
1304 print_word(buf);

1306 /* Remeber to close out this .RS block later. */
1307 Bl_stack_post[Bl_stack_len - 1] = 1;
1308 }

1310 static void
1311 post_it(DECL_ARGS)
1312 {
1313 const struct mdoc_node *bln;

1315 bln = n->parent->parent;

1317 switch (n->type) {
1318 case (MDOC_HEAD):
1319 switch (bln->norm->Bl.type) {
1320 case (LIST_diag):
1321 outflags &= ~MMAN_spc;
1322 print_word("\\ ");
1323 break;
1324 case (LIST_ohang):
1325 outflags |= MMAN_br;
1326 break;
1327 default:
1328 break;
536 mm->need_nl = 1;
1329 }
1330 break;
1331 case (MDOC_BODY):
1332 switch (bln->norm->Bl.type) {
1333 case (LIST_bullet):
1334 /* FALLTHROUGH */
1335 case (LIST_dash):
1336 /* FALLTHROUGH */
1337 case (LIST_hyphen):
1338 /* FALLTHROUGH */
1339 case (LIST_enum):
1340 /* FALLTHROUGH */
1341 case (LIST_hang):
1342 /* FALLTHROUGH */
1343 case (LIST_tag):
1344 assert(Bl_stack_len);
1345 Bl_stack[--Bl_stack_len] = 0;

1347 /*

new/usr/src/cmd/mandoc/mdoc_man.c 24

1348 * Our indentation had to be restored
1349 * after a child display or child list.
1350 * Close out that indentation block now.
1351 */
1352 if (Bl_stack_post[Bl_stack_len]) {
1353 print_line(".RE", MMAN_nl);
1354 Bl_stack_post[Bl_stack_len] = 0;
1355 }
1356 break;
1357 case (LIST_column):
1358 if (NULL != n->next) {
1359 putchar(’\t’);
1360 outflags &= ~MMAN_spc;
1361 }
1362 break;
1363 default:
1364 break;
1365 }
1366 break;
1367 default:
1368 break;
1369 }
1370 }

1372 static void
1373 post_lb(DECL_ARGS)
1374 {

1376 if (SEC_LIBRARY == n->sec)
1377 outflags |= MMAN_br;
1378 }

1380 static int
1381 pre_lk(DECL_ARGS)
1382 {
1383 const struct mdoc_node *link, *descr;

1385 if (NULL == (link = n->child))
1386 return(0);

1388 if (NULL != (descr = link->next)) {
1389 font_push(’I’);
1390 while (NULL != descr) {
1391 print_word(descr->string);
1392 descr = descr->next;
1393 }
1394 print_word(":");
1395 font_pop();
1396 }

1398 font_push(’B’);
1399 print_word(link->string);
1400 font_pop();
1401 return(0);
1402 }

1404 static int
1405 pre_li(DECL_ARGS)
1406 {

1408 font_push(’R’);
1409 return(1);
1410 }

1412 static int
1413 pre_nm(DECL_ARGS)

new/usr/src/cmd/mandoc/mdoc_man.c 25

1414 {
1415 char *name;

1417 if (MDOC_BLOCK == n->type) {
1418 outflags |= MMAN_Bk;
1419 pre_syn(n);
1420 }
1421 if (MDOC_ELEM != n->type && MDOC_HEAD != n->type)
1422 return(1);
1423 name = n->child ? n->child->string : meta->name;
1424 if (NULL == name)
1425 return(0);
1426 if (MDOC_HEAD == n->type) {
1427 if (NULL == n->parent->prev)
1428 outflags |= MMAN_sp;
1429 print_block(".HP", 0);
1430 printf(" %zun", strlen(name) + 1);
1431 outflags |= MMAN_nl;
1432 }
1433 font_push(’B’);
547 print_word(mm, "\\fB");
548 mm->need_space = 0;
1434 if (NULL == n->child)
1435 print_word(meta->name);
550 print_word(mm, m->name);
1436 return(1);
1437 }

1439 static void
1440 post_nm(DECL_ARGS)
1441 {

1443 switch (n->type) {
1444 case (MDOC_BLOCK):
1445 outflags &= ~MMAN_Bk;
1446 break;
1447 case (MDOC_HEAD):
1448 /* FALLTHROUGH */
1449 case (MDOC_ELEM):
1450 font_pop();
1451 break;
1452 default:
1453 break;
1454 }
558 if (MDOC_ELEM != n->type && MDOC_HEAD != n->type)
559 return;
560 mm->need_space = 0;
561 print_word(mm, "\\fP");
1455 }

1457 static int
1458 pre_no(DECL_ARGS)
1459 {

1461 outflags |= MMAN_spc_force;
1462 return(1);
1463 }

1465 static int
1466 pre_ns(DECL_ARGS)
1467 {

1469 outflags &= ~MMAN_spc;
568 mm->need_space = 0;
1470 return(0);
1471 }

new/usr/src/cmd/mandoc/mdoc_man.c 26

1473 static void
1474 post_pf(DECL_ARGS)
1475 {

1477 outflags &= ~MMAN_spc;
576 mm->need_space = 0;
1478 }

1480 static int
1481 pre_pp(DECL_ARGS)
1482 {

1484 if (MDOC_It != n->parent->tok)
1485 outflags |= MMAN_PP;
1486 outflags |= MMAN_sp | MMAN_nl;
1487 outflags &= ~MMAN_br;
1488 return(0);
1489 }

1491 static int
1492 pre_rs(DECL_ARGS)
1493 {

1495 if (SEC_SEE_ALSO == n->sec) {
1496 outflags |= MMAN_PP | MMAN_sp | MMAN_nl;
1497 outflags &= ~MMAN_br;
1498 }
583 mm->need_nl = 1;
584 if (MDOC_It == n->parent->tok)
585 print_word(mm, ".sp");
586 else
587 print_word(mm, ".PP");
588 mm->need_nl = 1;
1499 return(1);
1500 }

1502 static int
1503 pre_sm(DECL_ARGS)
1504 {

1506 assert(n->child && MDOC_TEXT == n->child->type);
1507 if (0 == strcmp("on", n->child->string))
1508 outflags |= MMAN_Sm | MMAN_spc;
1509 else
1510 outflags &= ~MMAN_Sm;
1511 return(0);
1512 }

1514 static int
1515 pre_sp(DECL_ARGS)
1516 {

1518 if (MMAN_PP & outflags) {
1519 outflags &= ~MMAN_PP;
1520 print_line(".PP", 0);
1521 } else
1522 print_line(".sp", 0);
596 mm->need_nl = 1;
597 print_word(mm, ".sp");
1523 return(1);
1524 }

1526 static void
1527 post_sp(DECL_ARGS)
1528 {

new/usr/src/cmd/mandoc/mdoc_man.c 27

1530 outflags |= MMAN_nl;
605 mm->need_nl = 1;
1531 }

1533 static int
1534 pre_sy(DECL_ARGS)
1535 {

1537 font_push(’B’);
1538 return(1);
1539 }

1541 static int
1542 pre_vt(DECL_ARGS)
1543 {

1545 if (MDOC_SYNPRETTY & n->flags) {
1546 switch (n->type) {
1547 case (MDOC_BLOCK):
1548 pre_syn(n);
1549 return(1);
1550 case (MDOC_BODY):
1551 break;
1552 default:
1553 return(0);
1554 }
1555 }
1556 font_push(’I’);
1557 return(1);
1558 }

1560 static void
1561 post_vt(DECL_ARGS)
1562 {

1564 if (MDOC_SYNPRETTY & n->flags && MDOC_BODY != n->type)
1565 return;
1566 font_pop();
1567 }

1569 static int
1570 pre_xr(DECL_ARGS)
1571 {

1573 n = n->child;
1574 if (NULL == n)
1575 return(0);
1576 print_node(meta, n);
615 print_node(m, n, mm);
1577 n = n->next;
1578 if (NULL == n)
1579 return(0);
1580 outflags &= ~MMAN_spc;
1581 print_word("(");
1582 print_node(meta, n);
1583 print_word(")");
619 mm->need_space = 0;
620 print_word(mm, "(");
621 print_node(m, n, mm);
622 print_word(mm, ")");
1584 return(0);
1585 }

1587 static int
1588 pre_ux(DECL_ARGS)

new/usr/src/cmd/mandoc/mdoc_man.c 28

1589 {

1591 print_word(manacts[n->tok].prefix);
630 print_word(mm, manacts[n->tok].prefix);
1592 if (NULL == n->child)
1593 return(0);
1594 outflags &= ~MMAN_spc;
1595 print_word("\\ ");
1596 outflags &= ~MMAN_spc;
633 mm->need_space = 0;
634 print_word(mm, "\\~");
635 mm->need_space = 0;
1597 return(1);
1598 }
______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/mdoc_term.c 1

**
 45416 Wed Jul 30 20:55:10 2014
new/usr/src/cmd/mandoc/mdoc_term.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: mdoc_term.c,v 1.258 2013/12/25 21:24:12 schwarze Exp $ */
1 /* $Id: mdoc_term.c,v 1.238 2011/11/13 13:15:14 schwarze Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2010, 2012, 2013 Ingo Schwarze <schwarze@openbsd.org>
5 * Copyright (c) 2013 Franco Fichtner <franco@lastsummer.de>
4 * Copyright (c) 2010 Ingo Schwarze <schwarze@openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.

10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19 #ifdef HAVE_CONFIG_H
20 #include "config.h"
21 #endif

23 #include <sys/types.h>

25 #include <assert.h>
26 #include <ctype.h>
27 #include <stdint.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <string.h>

32 #include "mandoc.h"
33 #include "out.h"
34 #include "term.h"
35 #include "mdoc.h"
36 #include "main.h"

38 struct termpair {
39 struct termpair *ppair;
40 int count;
41 };

43 #define DECL_ARGS struct termp *p, \
44 struct termpair *pair, \
45 const struct mdoc_meta *meta, \
46 struct mdoc_node *n
44 const struct mdoc_meta *m, \
45 const struct mdoc_node *n

48 struct termact {
49 int (*pre)(DECL_ARGS);
50 void (*post)(DECL_ARGS);
51 };

53 static size_t a2width(const struct termp *, const char *);
54 static size_t a2height(const struct termp *, const char *);
55 static size_t a2offs(const struct termp *, const char *);

new/usr/src/cmd/mandoc/mdoc_term.c 2

57 static void print_bvspace(struct termp *,
58 const struct mdoc_node *,
59 const struct mdoc_node *);
60 static void print_mdoc_node(DECL_ARGS);
61 static void print_mdoc_nodelist(DECL_ARGS);
62 static void print_mdoc_head(struct termp *, const void *);
63 static void print_mdoc_foot(struct termp *, const void *);
64 static void synopsis_pre(struct termp *,
65 const struct mdoc_node *);

67 static void termp____post(DECL_ARGS);
68 static void termp__t_post(DECL_ARGS);
69 static void termp_an_post(DECL_ARGS);
70 static void termp_bd_post(DECL_ARGS);
71 static void termp_bk_post(DECL_ARGS);
72 static void termp_bl_post(DECL_ARGS);
73 static void termp_fd_post(DECL_ARGS);
72 static void termp_d1_post(DECL_ARGS);
74 static void termp_fo_post(DECL_ARGS);
75 static void termp_in_post(DECL_ARGS);
76 static void termp_it_post(DECL_ARGS);
77 static void termp_lb_post(DECL_ARGS);
78 static void termp_nm_post(DECL_ARGS);
79 static void termp_pf_post(DECL_ARGS);
80 static void termp_quote_post(DECL_ARGS);
81 static void termp_sh_post(DECL_ARGS);
82 static void termp_ss_post(DECL_ARGS);

84 static int termp__a_pre(DECL_ARGS);
85 static int termp__t_pre(DECL_ARGS);
86 static int termp_an_pre(DECL_ARGS);
87 static int termp_ap_pre(DECL_ARGS);
88 static int termp_bd_pre(DECL_ARGS);
89 static int termp_bf_pre(DECL_ARGS);
90 static int termp_bk_pre(DECL_ARGS);
91 static int termp_bl_pre(DECL_ARGS);
92 static int termp_bold_pre(DECL_ARGS);
93 static int termp_bt_pre(DECL_ARGS);
94 static int termp_bx_pre(DECL_ARGS);
95 static int termp_cd_pre(DECL_ARGS);
96 static int termp_d1_pre(DECL_ARGS);
97 static int termp_ex_pre(DECL_ARGS);
98 static int termp_fa_pre(DECL_ARGS);
99 static int termp_fd_pre(DECL_ARGS);
100 static int termp_fl_pre(DECL_ARGS);
101 static int termp_fn_pre(DECL_ARGS);
102 static int termp_fo_pre(DECL_ARGS);
103 static int termp_ft_pre(DECL_ARGS);
103 static int termp_igndelim_pre(DECL_ARGS);
104 static int termp_in_pre(DECL_ARGS);
105 static int termp_it_pre(DECL_ARGS);
106 static int termp_li_pre(DECL_ARGS);
107 static int termp_lk_pre(DECL_ARGS);
108 static int termp_nd_pre(DECL_ARGS);
109 static int termp_nm_pre(DECL_ARGS);
110 static int termp_ns_pre(DECL_ARGS);
111 static int termp_quote_pre(DECL_ARGS);
112 static int termp_rs_pre(DECL_ARGS);
113 static int termp_rv_pre(DECL_ARGS);
114 static int termp_sh_pre(DECL_ARGS);
115 static int termp_sm_pre(DECL_ARGS);
116 static int termp_sp_pre(DECL_ARGS);
117 static int termp_ss_pre(DECL_ARGS);
118 static int termp_under_pre(DECL_ARGS);
119 static int termp_ud_pre(DECL_ARGS);

new/usr/src/cmd/mandoc/mdoc_term.c 3

120 static int termp_vt_pre(DECL_ARGS);
121 static int termp_xr_pre(DECL_ARGS);
122 static int termp_xx_pre(DECL_ARGS);

124 static const struct termact termacts[MDOC_MAX] = {
125 { termp_ap_pre, NULL }, /* Ap */
126 { NULL, NULL }, /* Dd */
127 { NULL, NULL }, /* Dt */
128 { NULL, NULL }, /* Os */
129 { termp_sh_pre, termp_sh_post }, /* Sh */
130 { termp_ss_pre, termp_ss_post }, /* Ss */
131 { termp_sp_pre, NULL }, /* Pp */
132 { termp_d1_pre, termp_bl_post }, /* D1 */
133 { termp_d1_pre, termp_bl_post }, /* Dl */
132 { termp_d1_pre, termp_d1_post }, /* D1 */
133 { termp_d1_pre, termp_d1_post }, /* Dl */
134 { termp_bd_pre, termp_bd_post }, /* Bd */
135 { NULL, NULL }, /* Ed */
136 { termp_bl_pre, termp_bl_post }, /* Bl */
137 { NULL, NULL }, /* El */
138 { termp_it_pre, termp_it_post }, /* It */
139 { termp_under_pre, NULL }, /* Ad */
140 { termp_an_pre, termp_an_post }, /* An */
141 { termp_under_pre, NULL }, /* Ar */
142 { termp_cd_pre, NULL }, /* Cd */
143 { termp_bold_pre, NULL }, /* Cm */
144 { NULL, NULL }, /* Dv */
145 { NULL, NULL }, /* Er */
146 { NULL, NULL }, /* Ev */
147 { termp_ex_pre, NULL }, /* Ex */
148 { termp_fa_pre, NULL }, /* Fa */
149 { termp_fd_pre, termp_fd_post }, /* Fd */
149 { termp_fd_pre, NULL }, /* Fd */
150 { termp_fl_pre, NULL }, /* Fl */
151 { termp_fn_pre, NULL }, /* Fn */
152 { termp_ft_pre, NULL }, /* Ft */
153 { termp_bold_pre, NULL }, /* Ic */
154 { termp_in_pre, termp_in_post }, /* In */
155 { termp_li_pre, NULL }, /* Li */
156 { termp_nd_pre, NULL }, /* Nd */
157 { termp_nm_pre, termp_nm_post }, /* Nm */
158 { termp_quote_pre, termp_quote_post }, /* Op */
159 { NULL, NULL }, /* Ot */
160 { termp_under_pre, NULL }, /* Pa */
161 { termp_rv_pre, NULL }, /* Rv */
162 { NULL, NULL }, /* St */
163 { termp_under_pre, NULL }, /* Va */
164 { termp_vt_pre, NULL }, /* Vt */
165 { termp_xr_pre, NULL }, /* Xr */
166 { termp__a_pre, termp____post }, /* %A */
167 { termp_under_pre, termp____post }, /* %B */
168 { NULL, termp____post }, /* %D */
169 { termp_under_pre, termp____post }, /* %I */
170 { termp_under_pre, termp____post }, /* %J */
171 { NULL, termp____post }, /* %N */
172 { NULL, termp____post }, /* %O */
173 { NULL, termp____post }, /* %P */
174 { NULL, termp____post }, /* %R */
175 { termp__t_pre, termp__t_post }, /* %T */
176 { NULL, termp____post }, /* %V */
177 { NULL, NULL }, /* Ac */
178 { termp_quote_pre, termp_quote_post }, /* Ao */
179 { termp_quote_pre, termp_quote_post }, /* Aq */
180 { NULL, NULL }, /* At */
181 { NULL, NULL }, /* Bc */
182 { termp_bf_pre, NULL }, /* Bf */

new/usr/src/cmd/mandoc/mdoc_term.c 4

183 { termp_quote_pre, termp_quote_post }, /* Bo */
184 { termp_quote_pre, termp_quote_post }, /* Bq */
185 { termp_xx_pre, NULL }, /* Bsx */
186 { termp_bx_pre, NULL }, /* Bx */
187 { NULL, NULL }, /* Db */
188 { NULL, NULL }, /* Dc */
189 { termp_quote_pre, termp_quote_post }, /* Do */
190 { termp_quote_pre, termp_quote_post }, /* Dq */
191 { NULL, NULL }, /* Ec */ /* FIXME: no space */
192 { NULL, NULL }, /* Ef */
193 { termp_under_pre, NULL }, /* Em */
194 { termp_quote_pre, termp_quote_post }, /* Eo */
195 { termp_xx_pre, NULL }, /* Fx */
196 { termp_bold_pre, NULL }, /* Ms */
197 { NULL, NULL }, /* No */
197 { termp_igndelim_pre, NULL }, /* No */
198 { termp_ns_pre, NULL }, /* Ns */
199 { termp_xx_pre, NULL }, /* Nx */
200 { termp_xx_pre, NULL }, /* Ox */
201 { NULL, NULL }, /* Pc */
202 { NULL, termp_pf_post }, /* Pf */
202 { termp_igndelim_pre, termp_pf_post }, /* Pf */
203 { termp_quote_pre, termp_quote_post }, /* Po */
204 { termp_quote_pre, termp_quote_post }, /* Pq */
205 { NULL, NULL }, /* Qc */
206 { termp_quote_pre, termp_quote_post }, /* Ql */
207 { termp_quote_pre, termp_quote_post }, /* Qo */
208 { termp_quote_pre, termp_quote_post }, /* Qq */
209 { NULL, NULL }, /* Re */
210 { termp_rs_pre, NULL }, /* Rs */
211 { NULL, NULL }, /* Sc */
212 { termp_quote_pre, termp_quote_post }, /* So */
213 { termp_quote_pre, termp_quote_post }, /* Sq */
214 { termp_sm_pre, NULL }, /* Sm */
215 { termp_under_pre, NULL }, /* Sx */
216 { termp_bold_pre, NULL }, /* Sy */
217 { NULL, NULL }, /* Tn */
218 { termp_xx_pre, NULL }, /* Ux */
219 { NULL, NULL }, /* Xc */
220 { NULL, NULL }, /* Xo */
221 { termp_fo_pre, termp_fo_post }, /* Fo */
222 { NULL, NULL }, /* Fc */
223 { termp_quote_pre, termp_quote_post }, /* Oo */
224 { NULL, NULL }, /* Oc */
225 { termp_bk_pre, termp_bk_post }, /* Bk */
226 { NULL, NULL }, /* Ek */
227 { termp_bt_pre, NULL }, /* Bt */
228 { NULL, NULL }, /* Hf */
229 { NULL, NULL }, /* Fr */
230 { termp_ud_pre, NULL }, /* Ud */
231 { NULL, termp_lb_post }, /* Lb */
232 { termp_sp_pre, NULL }, /* Lp */
233 { termp_lk_pre, NULL }, /* Lk */
234 { termp_under_pre, NULL }, /* Mt */
235 { termp_quote_pre, termp_quote_post }, /* Brq */
236 { termp_quote_pre, termp_quote_post }, /* Bro */
237 { NULL, NULL }, /* Brc */
238 { NULL, termp____post }, /* %C */
239 { NULL, NULL }, /* Es */ /* TODO */
240 { NULL, NULL }, /* En */ /* TODO */
241 { termp_xx_pre, NULL }, /* Dx */
242 { NULL, termp____post }, /* %Q */
243 { termp_sp_pre, NULL }, /* br */
244 { termp_sp_pre, NULL }, /* sp */
245 { NULL, termp____post }, /* %U */
245 { termp_under_pre, termp____post }, /* %U */

new/usr/src/cmd/mandoc/mdoc_term.c 5

246 { NULL, NULL }, /* Ta */
247 };

250 void
251 terminal_mdoc(void *arg, const struct mdoc *mdoc)
252 {
253 const struct mdoc_node *n;
254 const struct mdoc_meta *meta;
254 const struct mdoc_meta *m;
255 struct termp *p;

257 p = (struct termp *)arg;

259 if (0 == p->defindent)
260 p->defindent = 5;

262 p->overstep = 0;
263 p->maxrmargin = p->defrmargin;
264 p->tabwidth = term_len(p, 5);

266 if (NULL == p->symtab)
267 p->symtab = mchars_alloc();

269 n = mdoc_node(mdoc);
270 meta = mdoc_meta(mdoc);
270 m = mdoc_meta(mdoc);

272 term_begin(p, print_mdoc_head, print_mdoc_foot, meta);
272 term_begin(p, print_mdoc_head, print_mdoc_foot, m);

274 if (n->child)
275 print_mdoc_nodelist(p, NULL, meta, n->child);
275 print_mdoc_nodelist(p, NULL, m, n->child);

277 term_end(p);
278 }

281 static void
282 print_mdoc_nodelist(DECL_ARGS)
283 {

285 print_mdoc_node(p, pair, meta, n);
285 print_mdoc_node(p, pair, m, n);
286 if (n->next)
287 print_mdoc_nodelist(p, pair, meta, n->next);
287 print_mdoc_nodelist(p, pair, m, n->next);
288 }

291 /* ARGSUSED */
292 static void
293 print_mdoc_node(DECL_ARGS)
294 {
295 int chld;
296 const void *font;
296 struct termpair npair;
297 size_t offset, rmargin;

299 chld = 1;
300 offset = p->offset;
301 rmargin = p->rmargin;
302 n->prev_font = term_fontq(p);
303 font = term_fontq(p);

new/usr/src/cmd/mandoc/mdoc_term.c 6

304 memset(&npair, 0, sizeof(struct termpair));
305 npair.ppair = pair;

307 /*
308 * Keeps only work until the end of a line. If a keep was
309 * invoked in a prior line, revert it to PREKEEP.
311 *
312 * Also let SYNPRETTY sections behave as if they were wrapped
313 * in a ‘Bk’ block.
310 */

312 if (TERMP_KEEP & p->flags) {
313 if (n->prev ? (n->prev->lastline != n->line) :
314 (n->parent && n->parent->line != n->line)) {
316 if (TERMP_KEEP & p->flags || MDOC_SYNPRETTY & n->flags) {
317 if (n->prev && n->prev->line != n->line) {
315 p->flags &= ~TERMP_KEEP;
316 p->flags |= TERMP_PREKEEP;
320 } else if (NULL == n->prev) {
321 if (n->parent && n->parent->line != n->line) {
322 p->flags &= ~TERMP_KEEP;
323 p->flags |= TERMP_PREKEEP;
317 }
318 }
326 }

320 /*
329 * Since SYNPRETTY sections aren’t "turned off" with ‘Ek’,
330 * we have to intuit whether we should disable formatting.
331 */

333 if (! (MDOC_SYNPRETTY & n->flags) &&
334 ((n->prev && MDOC_SYNPRETTY & n->prev->flags) ||
335 (n->parent && MDOC_SYNPRETTY & n->parent->flags)))
336 p->flags &= ~(TERMP_KEEP | TERMP_PREKEEP);

338 /*
321 * After the keep flags have been set up, we may now
322 * produce output. Note that some pre-handlers do so.
323 */

325 switch (n->type) {
326 case (MDOC_TEXT):
327 if (’ ’ == *n->string && MDOC_LINE & n->flags)
328 term_newln(p);
329 if (MDOC_DELIMC & n->flags)
330 p->flags |= TERMP_NOSPACE;
331 term_word(p, n->string);
332 if (MDOC_DELIMO & n->flags)
333 p->flags |= TERMP_NOSPACE;
334 break;
335 case (MDOC_EQN):
336 term_eqn(p, n->eqn);
337 break;
338 case (MDOC_TBL):
339 term_tbl(p, n->span);
340 break;
341 default:
342 if (termacts[n->tok].pre && ENDBODY_NOT == n->end)
343 chld = (*termacts[n->tok].pre)
344 (p, &npair, meta, n);
362 (p, &npair, m, n);
345 break;
346 }

348 if (chld && n->child)

new/usr/src/cmd/mandoc/mdoc_term.c 7

349 print_mdoc_nodelist(p, &npair, meta, n->child);
367 print_mdoc_nodelist(p, &npair, m, n->child);

351 term_fontpopq(p,
352 (ENDBODY_NOT == n->end ? n : n->pending)->prev_font);
369 term_fontpopq(p, font);

354 switch (n->type) {
355 case (MDOC_TEXT):
356 break;
357 case (MDOC_TBL):
358 break;
359 case (MDOC_EQN):
360 break;
361 default:
362 if (! termacts[n->tok].post || MDOC_ENDED & n->flags)
363 break;
364 (void)(*termacts[n->tok].post)(p, &npair, meta, n);
381 (void)(*termacts[n->tok].post)(p, &npair, m, n);

366 /*
367 * Explicit end tokens not only call the post
368 * handler, but also tell the respective block
369 * that it must not call the post handler again.
370 */
371 if (ENDBODY_NOT != n->end)
372 n->pending->flags |= MDOC_ENDED;

374 /*
375 * End of line terminating an implicit block
376 * while an explicit block is still open.
377 * Continue the explicit block without spacing.
378 */
379 if (ENDBODY_NOSPACE == n->end)
380 p->flags |= TERMP_NOSPACE;
381 break;
382 }

384 if (MDOC_EOS & n->flags)
385 p->flags |= TERMP_SENTENCE;

387 p->offset = offset;
388 p->rmargin = rmargin;
389 }

392 static void
393 print_mdoc_foot(struct termp *p, const void *arg)
394 {
395 const struct mdoc_meta *meta;
412 const struct mdoc_meta *m;

397 meta = (const struct mdoc_meta *)arg;
414 m = (const struct mdoc_meta *)arg;

399 term_fontrepl(p, TERMFONT_NONE);

401 /*
402 * Output the footer in new-groff style, that is, three columns
403 * with the middle being the manual date and flanking columns
404 * being the operating system:
405 *
406 * SYSTEM DATE SYSTEM
407 */

409 term_vspace(p);

new/usr/src/cmd/mandoc/mdoc_term.c 8

411 p->offset = 0;
412 p->rmargin = (p->maxrmargin -
413 term_strlen(p, meta->date) + term_len(p, 1)) / 2;
414 p->trailspace = 1;
430 term_strlen(p, m->date) + term_len(p, 1)) / 2;
415 p->flags |= TERMP_NOSPACE | TERMP_NOBREAK;

417 term_word(p, meta->os);
433 term_word(p, m->os);
418 term_flushln(p);

420 p->offset = p->rmargin;
421 p->rmargin = p->maxrmargin - term_strlen(p, meta->os);
437 p->rmargin = p->maxrmargin - term_strlen(p, m->os);
422 p->flags |= TERMP_NOSPACE;

424 term_word(p, meta->date);
440 term_word(p, m->date);
425 term_flushln(p);

427 p->offset = p->rmargin;
428 p->rmargin = p->maxrmargin;
429 p->trailspace = 0;
430 p->flags &= ~TERMP_NOBREAK;
431 p->flags |= TERMP_NOSPACE;

433 term_word(p, meta->os);
448 term_word(p, m->os);
434 term_flushln(p);

436 p->offset = 0;
437 p->rmargin = p->maxrmargin;
438 p->flags = 0;
439 }

442 static void
443 print_mdoc_head(struct termp *p, const void *arg)
444 {
445 char buf[BUFSIZ], title[BUFSIZ];
446 size_t buflen, titlen;
447 const struct mdoc_meta *meta;
462 const struct mdoc_meta *m;

449 meta = (const struct mdoc_meta *)arg;
464 m = (const struct mdoc_meta *)arg;

451 /*
452 * The header is strange. It has three components, which are
453 * really two with the first duplicated. It goes like this:
454 *
455 * IDENTIFIER TITLE IDENTIFIER
456 *
457 * The IDENTIFIER is NAME(SECTION), which is the command-name
458 * (if given, or "unknown" if not) followed by the manual page
459 * section. These are given in ‘Dt’. The TITLE is a free-form
460 * string depending on the manual volume. If not specified, it
461 * switches on the manual section.
462 */

464 p->offset = 0;
465 p->rmargin = p->maxrmargin;

467 assert(meta->vol);
468 strlcpy(buf, meta->vol, BUFSIZ);

new/usr/src/cmd/mandoc/mdoc_term.c 9

482 assert(m->vol);
483 strlcpy(buf, m->vol, BUFSIZ);
469 buflen = term_strlen(p, buf);

471 if (meta->arch) {
486 if (m->arch) {
472 strlcat(buf, " (", BUFSIZ);
473 strlcat(buf, meta->arch, BUFSIZ);
488 strlcat(buf, m->arch, BUFSIZ);
474 strlcat(buf, ")", BUFSIZ);
475 }

477 snprintf(title, BUFSIZ, "%s(%s)", meta->title, meta->msec);
492 snprintf(title, BUFSIZ, "%s(%s)", m->title, m->msec);
478 titlen = term_strlen(p, title);

480 p->flags |= TERMP_NOBREAK | TERMP_NOSPACE;
481 p->trailspace = 1;
482 p->offset = 0;
483 p->rmargin = 2 * (titlen+1) + buflen < p->maxrmargin ?
484 (p->maxrmargin -
485 term_strlen(p, buf) + term_len(p, 1)) / 2 :
486 p->maxrmargin - buflen;

488 term_word(p, title);
489 term_flushln(p);

491 p->flags |= TERMP_NOSPACE;
492 p->offset = p->rmargin;
493 p->rmargin = p->offset + buflen + titlen < p->maxrmargin ?
494 p->maxrmargin - titlen : p->maxrmargin;

496 term_word(p, buf);
497 term_flushln(p);

499 p->flags &= ~TERMP_NOBREAK;
500 p->trailspace = 0;
501 if (p->rmargin + titlen <= p->maxrmargin) {
502 p->flags |= TERMP_NOSPACE;
503 p->offset = p->rmargin;
504 p->rmargin = p->maxrmargin;
505 term_word(p, title);
506 term_flushln(p);
507 }

509 p->flags &= ~TERMP_NOSPACE;
510 p->offset = 0;
511 p->rmargin = p->maxrmargin;
512 }

______unchanged_portion_omitted_

616 /* ARGSUSED */
617 static int
618 termp_it_pre(DECL_ARGS)
619 {
620 const struct mdoc_node *bl, *nn;
621 char buf[7];
622 int i;
623 size_t width, offset, ncols, dcol;
624 enum mdoc_list type;

626 if (MDOC_BLOCK == n->type) {
627 print_bvspace(p, n->parent->parent, n);
628 return(1);
629 }

new/usr/src/cmd/mandoc/mdoc_term.c 10

631 bl = n->parent->parent->parent;
632 type = bl->norm->Bl.type;

634 /*
635 * First calculate width and offset. This is pretty easy unless
636 * we’re a -column list, in which case all prior columns must
637 * be accounted for.
638 */

640 width = offset = 0;

642 if (bl->norm->Bl.offs)
643 offset = a2offs(p, bl->norm->Bl.offs);

645 switch (type) {
646 case (LIST_column):
647 if (MDOC_HEAD == n->type)
648 break;

650 /*
651 * Imitate groff’s column handling:
652 * - For each earlier column, add its width.
653 * - For less than 5 columns, add four more blanks per
654 * column.
655 * - For exactly 5 columns, add three more blank per
656 * column.
657 * - For more than 5 columns, add only one column.
658 */
659 ncols = bl->norm->Bl.ncols;

661 /* LINTED */
662 dcol = ncols < 5 ? term_len(p, 4) :
663 ncols == 5 ? term_len(p, 3) : term_len(p, 1);

665 /*
666 * Calculate the offset by applying all prior MDOC_BODY,
667 * so we stop at the MDOC_HEAD (NULL == nn->prev).
668 */

670 for (i = 0, nn = n->prev;
671 nn->prev && i < (int)ncols;
672 nn = nn->prev, i++)
673 offset += dcol + a2width
674 (p, bl->norm->Bl.cols[i]);

676 /*
677 * When exceeding the declared number of columns, leave
678 * the remaining widths at 0. This will later be
679 * adjusted to the default width of 10, or, for the last
680 * column, stretched to the right margin.
681 */
682 if (i >= (int)ncols)
683 break;

685 /*
686 * Use the declared column widths, extended as explained
687 * in the preceding paragraph.
688 */
689 width = a2width(p, bl->norm->Bl.cols[i]) + dcol;
690 break;
691 default:
692 if (NULL == bl->norm->Bl.width)
693 break;

695 /*

new/usr/src/cmd/mandoc/mdoc_term.c 11

696 * Note: buffer the width by 2, which is groff’s magic
697 * number for buffering single arguments. See the above
698 * handling for column for how this changes.
699 */
700 assert(bl->norm->Bl.width);
701 width = a2width(p, bl->norm->Bl.width) + term_len(p, 2);
702 break;
703 }

705 /*
706 * List-type can override the width in the case of fixed-head
707 * values (bullet, dash/hyphen, enum). Tags need a non-zero
708 * offset.
709 */

711 switch (type) {
712 case (LIST_bullet):
713 /* FALLTHROUGH */
714 case (LIST_dash):
715 /* FALLTHROUGH */
716 case (LIST_hyphen):
717 /* FALLTHROUGH */
730 if (width < term_len(p, 4))
731 width = term_len(p, 4);
732 break;
718 case (LIST_enum):
719 if (width < term_len(p, 2))
720 width = term_len(p, 2);
734 if (width < term_len(p, 5))
735 width = term_len(p, 5);
721 break;
722 case (LIST_hang):
723 if (0 == width)
724 width = term_len(p, 8);
725 break;
726 case (LIST_column):
727 /* FALLTHROUGH */
728 case (LIST_tag):
729 if (0 == width)
730 width = term_len(p, 10);
731 break;
732 default:
733 break;
734 }

736 /*
737 * Whitespace control. Inset bodies need an initial space,
738 * while diagonal bodies need two.
739 */

741 p->flags |= TERMP_NOSPACE;

743 switch (type) {
744 case (LIST_diag):
745 if (MDOC_BODY == n->type)
746 term_word(p, "\\ \\ ");
747 break;
748 case (LIST_inset):
749 if (MDOC_BODY == n->type)
750 term_word(p, "\\ ");
751 break;
752 default:
753 break;
754 }

756 p->flags |= TERMP_NOSPACE;

new/usr/src/cmd/mandoc/mdoc_term.c 12

758 switch (type) {
759 case (LIST_diag):
760 if (MDOC_HEAD == n->type)
761 term_fontpush(p, TERMFONT_BOLD);
762 break;
763 default:
764 break;
765 }

767 /*
768 * Pad and break control. This is the tricky part. These flags
769 * are documented in term_flushln() in term.c. Note that we’re
770 * going to unset all of these flags in termp_it_post() when we
771 * exit.
772 */

774 switch (type) {
775 case (LIST_enum):
776 /*
777 * Weird special case.
778 * Very narrow enum lists actually hang.
779 */
780 if (width == term_len(p, 2))
781 p->flags |= TERMP_HANG;
782 /* FALLTHROUGH */
783 case (LIST_bullet):
784 /* FALLTHROUGH */
785 case (LIST_dash):
786 /* FALLTHROUGH */
794 case (LIST_enum):
795 /* FALLTHROUGH */
787 case (LIST_hyphen):
788 if (MDOC_HEAD != n->type)
789 break;
797 if (MDOC_HEAD == n->type)
790 p->flags |= TERMP_NOBREAK;
791 p->trailspace = 1;
792 break;
793 case (LIST_hang):
794 if (MDOC_HEAD != n->type)
801 if (MDOC_HEAD == n->type)
802 p->flags |= TERMP_NOBREAK;
803 else
795 break;

797 /*
798 * This is ugly. If ‘-hang’ is specified and the body
799 * is a ‘Bl’ or ‘Bd’, then we want basically to nullify
800 * the "overstep" effect in term_flushln() and treat
801 * this as a ‘-ohang’ list instead.
802 */
803 if (n->next->child &&
804 (MDOC_Bl == n->next->child->tok ||
805 MDOC_Bd == n->next->child->tok))
815 p->flags &= ~TERMP_NOBREAK;
816 else
817 p->flags |= TERMP_HANG;
806 break;

808 p->flags |= TERMP_NOBREAK | TERMP_HANG;
809 p->trailspace = 1;
810 break;
811 case (LIST_tag):
820 if (MDOC_HEAD == n->type)
821 p->flags |= TERMP_NOBREAK | TERMP_TWOSPACE;

new/usr/src/cmd/mandoc/mdoc_term.c 13

812 if (MDOC_HEAD != n->type)
813 break;

815 p->flags |= TERMP_NOBREAK;
816 p->trailspace = 2;

818 if (NULL == n->next || NULL == n->next->child)
819 p->flags |= TERMP_DANGLE;
820 break;
821 case (LIST_column):
822 if (MDOC_HEAD == n->type)
823 break;

825 if (NULL == n->next) {
832 if (NULL == n->next)
826 p->flags &= ~TERMP_NOBREAK;
827 p->trailspace = 0;
828 } else {
834 else
829 p->flags |= TERMP_NOBREAK;
830 p->trailspace = 1;
831 }

833 break;
834 case (LIST_diag):
835 if (MDOC_HEAD != n->type)
836 break;
839 if (MDOC_HEAD == n->type)
837 p->flags |= TERMP_NOBREAK;
838 p->trailspace = 1;
839 break;
840 default:
841 break;
842 }

844 /*
845 * Margin control. Set-head-width lists have their right
846 * margins shortened. The body for these lists has the offset
847 * necessarily lengthened. Everybody gets the offset.
848 */

850 p->offset += offset;

852 switch (type) {
853 case (LIST_hang):
854 /*
855 * Same stipulation as above, regarding ‘-hang’. We
856 * don’t want to recalculate rmargin and offsets when
857 * using ‘Bd’ or ‘Bl’ within ‘-hang’ overstep lists.
858 */
859 if (MDOC_HEAD == n->type && n->next->child &&
860 (MDOC_Bl == n->next->child->tok ||
861 MDOC_Bd == n->next->child->tok))
862 break;
863 /* FALLTHROUGH */
864 case (LIST_bullet):
865 /* FALLTHROUGH */
866 case (LIST_dash):
867 /* FALLTHROUGH */
868 case (LIST_enum):
869 /* FALLTHROUGH */
870 case (LIST_hyphen):
871 /* FALLTHROUGH */
872 case (LIST_tag):
873 assert(width);

new/usr/src/cmd/mandoc/mdoc_term.c 14

874 if (MDOC_HEAD == n->type)
875 p->rmargin = p->offset + width;
876 else
877 p->offset += width;
878 break;
879 case (LIST_column):
880 assert(width);
881 p->rmargin = p->offset + width;
882 /*
883 * XXX - this behaviour is not documented: the
884 * right-most column is filled to the right margin.
885 */
886 if (MDOC_HEAD == n->type)
887 break;
888 if (NULL == n->next && p->rmargin < p->maxrmargin)
889 p->rmargin = p->maxrmargin;
890 break;
891 default:
892 break;
893 }

895 /*
896 * The dash, hyphen, bullet and enum lists all have a special
897 * HEAD character (temporarily bold, in some cases).
898 */

900 if (MDOC_HEAD == n->type)
901 switch (type) {
902 case (LIST_bullet):
903 term_fontpush(p, TERMFONT_BOLD);
904 term_word(p, "\\[bu]");
905 term_fontpop(p);
906 break;
907 case (LIST_dash):
908 /* FALLTHROUGH */
909 case (LIST_hyphen):
910 term_fontpush(p, TERMFONT_BOLD);
911 term_word(p, "\\(hy");
912 term_fontpop(p);
913 break;
914 case (LIST_enum):
915 (pair->ppair->ppair->count)++;
916 snprintf(buf, sizeof(buf), "%d.",
917 pair->ppair->ppair->count);
918 term_word(p, buf);
919 break;
920 default:
921 break;
922 }

924 /*
925 * If we’re not going to process our children, indicate so here.
926 */

928 switch (type) {
929 case (LIST_bullet):
930 /* FALLTHROUGH */
931 case (LIST_item):
932 /* FALLTHROUGH */
933 case (LIST_dash):
934 /* FALLTHROUGH */
935 case (LIST_hyphen):
936 /* FALLTHROUGH */
937 case (LIST_enum):
938 if (MDOC_HEAD == n->type)
939 return(0);

new/usr/src/cmd/mandoc/mdoc_term.c 15

940 break;
941 case (LIST_column):
942 if (MDOC_HEAD == n->type)
943 return(0);
944 break;
945 default:
946 break;
947 }

949 return(1);
950 }

953 /* ARGSUSED */
954 static void
955 termp_it_post(DECL_ARGS)
956 {
957 enum mdoc_list type;

959 if (MDOC_BLOCK == n->type)
960 return;

962 type = n->parent->parent->parent->norm->Bl.type;

964 switch (type) {
965 case (LIST_item):
966 /* FALLTHROUGH */
967 case (LIST_diag):
968 /* FALLTHROUGH */
969 case (LIST_inset):
970 if (MDOC_BODY == n->type)
971 term_newln(p);
972 break;
973 case (LIST_column):
974 if (MDOC_BODY == n->type)
975 term_flushln(p);
976 break;
977 default:
978 term_newln(p);
979 break;
980 }

982 /*
983 * Now that our output is flushed, we can reset our tags. Since
984 * only ‘It’ sets these flags, we’re free to assume that nobody
985 * has munged them in the meanwhile.
986 */

988 p->flags &= ~TERMP_DANGLE;
989 p->flags &= ~TERMP_NOBREAK;
992 p->flags &= ~TERMP_TWOSPACE;
990 p->flags &= ~TERMP_HANG;
991 p->trailspace = 0;
992 }

995 /* ARGSUSED */
996 static int
997 termp_nm_pre(DECL_ARGS)
998 {

1000 if (MDOC_BLOCK == n->type) {
1001 p->flags |= TERMP_PREKEEP;
1002 if (MDOC_BLOCK == n->type)
1002 return(1);
1003 }

new/usr/src/cmd/mandoc/mdoc_term.c 16

1005 if (MDOC_BODY == n->type) {
1006 if (NULL == n->child)
1007 return(0);
1008 p->flags |= TERMP_NOSPACE;
1009 p->offset += term_len(p, 1) +
1010 (NULL == n->prev->child ?
1011 term_strlen(p, meta->name) :
1010 (NULL == n->prev->child ? term_strlen(p, m->name) :
1012 MDOC_TEXT == n->prev->child->type ?
1013 term_strlen(p, n->prev->child->string) :
1014 term_len(p, 5));
1015 return(1);
1016 }

1018 if (NULL == n->child && NULL == meta->name)
1017 if (NULL == n->child && NULL == m->name)
1019 return(0);

1021 if (MDOC_HEAD == n->type)
1022 synopsis_pre(p, n->parent);

1024 if (MDOC_HEAD == n->type && n->next->child) {
1025 p->flags |= TERMP_NOSPACE | TERMP_NOBREAK;
1026 p->trailspace = 1;
1027 p->rmargin = p->offset + term_len(p, 1);
1028 if (NULL == n->child) {
1029 p->rmargin += term_strlen(p, meta->name);
1027 p->rmargin += term_strlen(p, m->name);
1030 } else if (MDOC_TEXT == n->child->type) {
1031 p->rmargin += term_strlen(p, n->child->string);
1032 if (n->child->next)
1033 p->flags |= TERMP_HANG;
1034 } else {
1035 p->rmargin += term_len(p, 5);
1036 p->flags |= TERMP_HANG;
1037 }
1038 }

1040 term_fontpush(p, TERMFONT_BOLD);
1041 if (NULL == n->child)
1042 term_word(p, meta->name);
1040 term_word(p, m->name);
1043 return(1);
1044 }

1047 /* ARGSUSED */
1048 static void
1049 termp_nm_post(DECL_ARGS)
1050 {

1052 if (MDOC_BLOCK == n->type) {
1053 p->flags &= ~(TERMP_KEEP | TERMP_PREKEEP);
1054 } else if (MDOC_HEAD == n->type && n->next->child) {
1050 if (MDOC_HEAD == n->type && n->next->child) {
1055 term_flushln(p);
1056 p->flags &= ~(TERMP_NOBREAK | TERMP_HANG);
1057 p->trailspace = 0;
1058 } else if (MDOC_BODY == n->type && n->child)
1059 term_flushln(p);
1060 }
______unchanged_portion_omitted_

1377 static int

new/usr/src/cmd/mandoc/mdoc_term.c 17

1378 termp_vt_pre(DECL_ARGS)
1379 {

1381 if (MDOC_ELEM == n->type) {
1382 synopsis_pre(p, n);
1383 return(termp_under_pre(p, pair, meta, n));
1378 return(termp_under_pre(p, pair, m, n));
1384 } else if (MDOC_BLOCK == n->type) {
1385 synopsis_pre(p, n);
1386 return(1);
1387 } else if (MDOC_HEAD == n->type)
1388 return(0);

1390 return(termp_under_pre(p, pair, meta, n));
1385 return(termp_under_pre(p, pair, m, n));
1391 }
______unchanged_portion_omitted_

1404 /* ARGSUSED */
1405 static int
1406 termp_fd_pre(DECL_ARGS)
1407 {

1409 synopsis_pre(p, n);
1410 return(termp_bold_pre(p, pair, meta, n));
1405 return(termp_bold_pre(p, pair, m, n));
1411 }

1414 /* ARGSUSED */
1415 static void
1416 termp_fd_post(DECL_ARGS)
1417 {

1419 term_newln(p);
1420 }

1423 /* ARGSUSED */
1424 static int
1425 termp_sh_pre(DECL_ARGS)
1426 {

1428 /* No vspace between consecutive ‘Sh’ calls. */

1430 switch (n->type) {
1431 case (MDOC_BLOCK):
1432 if (n->prev && MDOC_Sh == n->prev->tok)
1433 if (NULL == n->prev->body->child)
1434 break;
1435 term_vspace(p);
1436 break;
1437 case (MDOC_HEAD):
1438 term_fontpush(p, TERMFONT_BOLD);
1439 break;
1440 case (MDOC_BODY):
1441 p->offset = term_len(p, p->defindent);
1442 if (SEC_AUTHORS == n->sec)
1443 p->flags &= ~(TERMP_SPLIT|TERMP_NOSPLIT);
1444 break;
1445 default:
1446 break;
1447 }
1448 return(1);
1449 }
______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/mdoc_term.c 18

1516 /* ARGSUSED */
1501 static void
1502 termp_d1_post(DECL_ARGS)
1503 {

1505 if (MDOC_BLOCK != n->type)
1506 return;
1507 term_newln(p);
1508 }

1511 /* ARGSUSED */
1517 static int
1518 termp_ft_pre(DECL_ARGS)
1519 {

1521 /* NB: MDOC_LINE does not effect this! */
1522 synopsis_pre(p, n);
1523 term_fontpush(p, TERMFONT_UNDER);
1524 return(1);
1525 }

1528 /* ARGSUSED */
1529 static int
1530 termp_fn_pre(DECL_ARGS)
1531 {
1532 size_t rmargin = 0;
1533 int pretty;

1535 pretty = MDOC_SYNPRETTY & n->flags;

1537 synopsis_pre(p, n);

1539 if (NULL == (n = n->child))
1540 return(0);

1542 if (pretty) {
1543 rmargin = p->rmargin;
1544 p->rmargin = p->offset + term_len(p, 4);
1545 p->flags |= TERMP_NOBREAK | TERMP_HANG;
1546 }

1548 assert(MDOC_TEXT == n->type);
1549 term_fontpush(p, TERMFONT_BOLD);
1550 term_word(p, n->string);
1551 term_fontpop(p);

1553 if (pretty) {
1554 term_flushln(p);
1555 p->flags &= ~(TERMP_NOBREAK | TERMP_HANG);
1556 p->offset = p->rmargin;
1557 p->rmargin = rmargin;
1558 }

1560 p->flags |= TERMP_NOSPACE;
1561 term_word(p, "(");
1562 p->flags |= TERMP_NOSPACE;

1564 for (n = n->next; n; n = n->next) {
1565 assert(MDOC_TEXT == n->type);
1566 term_fontpush(p, TERMFONT_UNDER);
1567 if (pretty)
1568 p->flags |= TERMP_NBRWORD;

new/usr/src/cmd/mandoc/mdoc_term.c 19

1569 term_word(p, n->string);
1570 term_fontpop(p);

1572 if (n->next) {
1573 p->flags |= TERMP_NOSPACE;
1574 term_word(p, ",");
1575 }
1576 }

1578 p->flags |= TERMP_NOSPACE;
1579 term_word(p, ")");

1581 if (pretty) {
1582 p->flags |= TERMP_NOSPACE;
1583 term_word(p, ";");
1584 term_flushln(p);
1585 }

1587 return(0);
1588 }

1591 /* ARGSUSED */
1592 static int
1593 termp_fa_pre(DECL_ARGS)
1594 {
1595 const struct mdoc_node *nn;

1597 if (n->parent->tok != MDOC_Fo) {
1598 term_fontpush(p, TERMFONT_UNDER);
1599 return(1);
1600 }

1602 for (nn = n->child; nn; nn = nn->next) {
1603 term_fontpush(p, TERMFONT_UNDER);
1604 p->flags |= TERMP_NBRWORD;
1605 term_word(p, nn->string);
1606 term_fontpop(p);

1608 if (nn->next || (n->next && n->next->tok == MDOC_Fa)) {
1585 if (nn->next) {
1609 p->flags |= TERMP_NOSPACE;
1610 term_word(p, ",");
1611 }
1612 }

1591 if (n->child && n->next && n->next->tok == MDOC_Fa) {
1592 p->flags |= TERMP_NOSPACE;
1593 term_word(p, ",");
1594 }

1614 return(0);
1615 }

1618 /* ARGSUSED */
1619 static int
1620 termp_bd_pre(DECL_ARGS)
1621 {
1622 size_t tabwidth, rm, rmax;
1623 struct mdoc_node *nn;
1605 const struct mdoc_node *nn;

1625 if (MDOC_BLOCK == n->type) {
1626 print_bvspace(p, n, n);
1627 return(1);

new/usr/src/cmd/mandoc/mdoc_term.c 20

1628 } else if (MDOC_HEAD == n->type)
1629 return(0);

1631 if (n->norm->Bd.offs)
1632 p->offset += a2offs(p, n->norm->Bd.offs);

1634 /*
1635 * If -ragged or -filled are specified, the block does nothing
1636 * but change the indentation. If -unfilled or -literal are
1637 * specified, text is printed exactly as entered in the display:
1638 * for macro lines, a newline is appended to the line. Blank
1639 * lines are allowed.
1640 */
1641
1642 if (DISP_literal != n->norm->Bd.type &&
1643 DISP_unfilled != n->norm->Bd.type)
1644 return(1);

1646 tabwidth = p->tabwidth;
1647 if (DISP_literal == n->norm->Bd.type)
1648 p->tabwidth = term_len(p, 8);

1650 rm = p->rmargin;
1651 rmax = p->maxrmargin;
1652 p->rmargin = p->maxrmargin = TERM_MAXMARGIN;

1654 for (nn = n->child; nn; nn = nn->next) {
1655 print_mdoc_node(p, pair, meta, nn);
1637 print_mdoc_node(p, pair, m, nn);
1656 /*
1657 * If the printed node flushes its own line, then we
1658 * needn’t do it here as well. This is hacky, but the
1659 * notion of selective eoln whitespace is pretty dumb
1660 * anyway, so don’t sweat it.
1661 */
1662 switch (nn->tok) {
1663 case (MDOC_Sm):
1664 /* FALLTHROUGH */
1665 case (MDOC_br):
1666 /* FALLTHROUGH */
1667 case (MDOC_sp):
1668 /* FALLTHROUGH */
1669 case (MDOC_Bl):
1670 /* FALLTHROUGH */
1671 case (MDOC_D1):
1672 /* FALLTHROUGH */
1673 case (MDOC_Dl):
1674 /* FALLTHROUGH */
1675 case (MDOC_Lp):
1676 /* FALLTHROUGH */
1677 case (MDOC_Pp):
1678 continue;
1679 default:
1680 break;
1681 }
1682 if (nn->next && nn->next->line == nn->line)
1683 continue;
1684 term_flushln(p);
1685 p->flags |= TERMP_NOSPACE;
1686 }

1688 p->tabwidth = tabwidth;
1689 p->rmargin = rm;
1690 p->maxrmargin = rmax;
1691 return(0);
1692 }
______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/mdoc_term.c 21

1744 /* ARGSUSED */
1745 static int
1746 termp_xx_pre(DECL_ARGS)
1747 {
1748 const char *pp;
1749 int flags;

1751 pp = NULL;
1752 switch (n->tok) {
1753 case (MDOC_Bsx):
1754 pp = "BSD/OS";
1755 break;
1756 case (MDOC_Dx):
1757 pp = "DragonFly";
1758 break;
1759 case (MDOC_Fx):
1760 pp = "FreeBSD";
1761 break;
1762 case (MDOC_Nx):
1763 pp = "NetBSD";
1764 break;
1765 case (MDOC_Ox):
1766 pp = "OpenBSD";
1767 break;
1768 case (MDOC_Ux):
1769 pp = "UNIX";
1770 break;
1771 default:
1772 abort();
1773 /* NOTREACHED */
1754 break;
1774 }

1776 term_word(p, pp);
1777 if (n->child) {
1778 flags = p->flags;
1779 p->flags |= TERMP_KEEP;
1780 term_word(p, n->child->string);
1781 p->flags = flags;
1782 }
1783 return(0);
1784 }

1787 /* ARGSUSED */
1769 static int
1770 termp_igndelim_pre(DECL_ARGS)
1771 {

1773 p->flags |= TERMP_IGNDELIM;
1774 return(1);
1775 }

1778 /* ARGSUSED */
1788 static void
1789 termp_pf_post(DECL_ARGS)
1790 {

1792 p->flags |= TERMP_NOSPACE;
1793 }
______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/mdoc_term.c 22

1904 /* ARGSUSED */
1905 static int
1906 termp_quote_pre(DECL_ARGS)
1907 {

1909 if (MDOC_BODY != n->type && MDOC_ELEM != n->type)
1910 return(1);

1912 switch (n->tok) {
1913 case (MDOC_Ao):
1914 /* FALLTHROUGH */
1915 case (MDOC_Aq):
1916 term_word(p, "<");
1917 break;
1918 case (MDOC_Bro):
1919 /* FALLTHROUGH */
1920 case (MDOC_Brq):
1921 term_word(p, "{");
1922 break;
1923 case (MDOC_Oo):
1924 /* FALLTHROUGH */
1925 case (MDOC_Op):
1926 /* FALLTHROUGH */
1927 case (MDOC_Bo):
1928 /* FALLTHROUGH */
1929 case (MDOC_Bq):
1930 term_word(p, "[");
1931 break;
1932 case (MDOC_Do):
1933 /* FALLTHROUGH */
1934 case (MDOC_Dq):
1935 term_word(p, "\\(lq");
1926 term_word(p, "‘‘");
1936 break;
1937 case (MDOC_Eo):
1938 break;
1939 case (MDOC_Po):
1940 /* FALLTHROUGH */
1941 case (MDOC_Pq):
1942 term_word(p, "(");
1943 break;
1944 case (MDOC__T):
1945 /* FALLTHROUGH */
1946 case (MDOC_Qo):
1947 /* FALLTHROUGH */
1948 case (MDOC_Qq):
1949 term_word(p, "\"");
1950 break;
1951 case (MDOC_Ql):
1952 /* FALLTHROUGH */
1953 case (MDOC_So):
1954 /* FALLTHROUGH */
1955 case (MDOC_Sq):
1956 term_word(p, "\\(oq");
1947 term_word(p, "‘");
1957 break;
1958 default:
1959 abort();
1960 /* NOTREACHED */
1961 }

1963 p->flags |= TERMP_NOSPACE;
1964 return(1);
1965 }

new/usr/src/cmd/mandoc/mdoc_term.c 23

1968 /* ARGSUSED */
1969 static void
1970 termp_quote_post(DECL_ARGS)
1971 {

1973 if (MDOC_BODY != n->type && MDOC_ELEM != n->type)
1974 return;

1976 p->flags |= TERMP_NOSPACE;

1978 switch (n->tok) {
1979 case (MDOC_Ao):
1980 /* FALLTHROUGH */
1981 case (MDOC_Aq):
1982 term_word(p, ">");
1983 break;
1984 case (MDOC_Bro):
1985 /* FALLTHROUGH */
1986 case (MDOC_Brq):
1987 term_word(p, "}");
1988 break;
1989 case (MDOC_Oo):
1990 /* FALLTHROUGH */
1991 case (MDOC_Op):
1992 /* FALLTHROUGH */
1993 case (MDOC_Bo):
1994 /* FALLTHROUGH */
1995 case (MDOC_Bq):
1996 term_word(p, "]");
1997 break;
1998 case (MDOC_Do):
1999 /* FALLTHROUGH */
2000 case (MDOC_Dq):
2001 term_word(p, "\\(rq");
1992 term_word(p, "’’");
2002 break;
2003 case (MDOC_Eo):
2004 break;
2005 case (MDOC_Po):
2006 /* FALLTHROUGH */
2007 case (MDOC_Pq):
2008 term_word(p, ")");
2009 break;
2010 case (MDOC__T):
2011 /* FALLTHROUGH */
2012 case (MDOC_Qo):
2013 /* FALLTHROUGH */
2014 case (MDOC_Qq):
2015 term_word(p, "\"");
2016 break;
2017 case (MDOC_Ql):
2018 /* FALLTHROUGH */
2019 case (MDOC_So):
2020 /* FALLTHROUGH */
2021 case (MDOC_Sq):
2022 term_word(p, "\\(cq");
2013 term_word(p, "’");
2023 break;
2024 default:
2025 abort();
2026 /* NOTREACHED */
2027 }
2028 }

2031 /* ARGSUSED */

new/usr/src/cmd/mandoc/mdoc_term.c 24

2032 static int
2033 termp_fo_pre(DECL_ARGS)
2034 {
2035 size_t rmargin = 0;
2036 int pretty;

2038 pretty = MDOC_SYNPRETTY & n->flags;

2040 if (MDOC_BLOCK == n->type) {
2041 synopsis_pre(p, n);
2042 return(1);
2043 } else if (MDOC_BODY == n->type) {
2044 if (pretty) {
2045 rmargin = p->rmargin;
2046 p->rmargin = p->offset + term_len(p, 4);
2047 p->flags |= TERMP_NOBREAK | TERMP_HANG;
2048 }
2049 p->flags |= TERMP_NOSPACE;
2050 term_word(p, "(");
2051 p->flags |= TERMP_NOSPACE;
2052 if (pretty) {
2053 term_flushln(p);
2054 p->flags &= ~(TERMP_NOBREAK | TERMP_HANG);
2055 p->offset = p->rmargin;
2056 p->rmargin = rmargin;
2057 }
2058 return(1);
2059 }

2061 if (NULL == n->child)
2062 return(0);

2064 /* XXX: we drop non-initial arguments as per groff. */

2066 assert(n->child->string);
2067 term_fontpush(p, TERMFONT_BOLD);
2068 term_word(p, n->child->string);
2069 return(0);
2070 }

2073 /* ARGSUSED */
2074 static void
2075 termp_fo_post(DECL_ARGS)
2076 {

2078 if (MDOC_BODY != n->type)
2079 return;

2081 p->flags |= TERMP_NOSPACE;
2082 term_word(p, ")");

2084 if (MDOC_SYNPRETTY & n->flags) {
2085 p->flags |= TERMP_NOSPACE;
2086 term_word(p, ";");
2087 term_flushln(p);
2088 }
2089 }

2092 /* ARGSUSED */
2093 static int
2094 termp_bf_pre(DECL_ARGS)
2095 {

2097 if (MDOC_HEAD == n->type)

new/usr/src/cmd/mandoc/mdoc_term.c 25

2098 return(0);
2099 else if (MDOC_BODY != n->type)
2074 else if (MDOC_BLOCK != n->type)
2100 return(1);

2102 if (FONT_Em == n->norm->Bf.font)
2103 term_fontpush(p, TERMFONT_UNDER);
2104 else if (FONT_Sy == n->norm->Bf.font)
2105 term_fontpush(p, TERMFONT_BOLD);
2106 else
2107 term_fontpush(p, TERMFONT_NONE);

2109 return(1);
2110 }
______unchanged_portion_omitted_

2181 /* ARGSUSED */
2182 static int
2183 termp_lk_pre(DECL_ARGS)
2184 {
2185 const struct mdoc_node *link, *descr;
2160 const struct mdoc_node *nn, *sv;

2187 if (NULL == (link = n->child))
2188 return(0);

2190 if (NULL != (descr = link->next)) {
2191 term_fontpush(p, TERMFONT_UNDER);
2192 while (NULL != descr) {
2193 term_word(p, descr->string);
2194 descr = descr->next;
2195 }

2164 nn = sv = n->child;

2166 if (NULL == nn || NULL == nn->next)
2167 return(1);

2169 for (nn = nn->next; nn; nn = nn->next)
2170 term_word(p, nn->string);

2172 term_fontpop(p);

2196 p->flags |= TERMP_NOSPACE;
2197 term_word(p, ":");
2198 term_fontpop(p);
2199 }

2201 term_fontpush(p, TERMFONT_BOLD);
2202 term_word(p, link->string);
2178 term_word(p, sv->string);
2203 term_fontpop(p);

2205 return(0);
2206 }
______unchanged_portion_omitted_

2241 /* ARGSUSED */
2242 static void
2243 termp__t_post(DECL_ARGS)
2244 {

2246 /*
2247 * If we’re in an ‘Rs’ and there’s a journal present, then quote
2248 * us instead of underlining us (for disambiguation).

new/usr/src/cmd/mandoc/mdoc_term.c 26

2249 */
2250 if (n->parent && MDOC_Rs == n->parent->tok &&
2251 n->parent->norm->Rs.quote_T)
2252 termp_quote_post(p, pair, meta, n);
2228 termp_quote_post(p, pair, m, n);

2254 termp____post(p, pair, meta, n);
2230 termp____post(p, pair, m, n);
2255 }

2257 /* ARGSUSED */
2258 static int
2259 termp__t_pre(DECL_ARGS)
2260 {

2262 /*
2263 * If we’re in an ‘Rs’ and there’s a journal present, then quote
2264 * us instead of underlining us (for disambiguation).
2265 */
2266 if (n->parent && MDOC_Rs == n->parent->tok &&
2267 n->parent->norm->Rs.quote_T)
2268 return(termp_quote_pre(p, pair, meta, n));
2244 return(termp_quote_pre(p, pair, m, n));

2270 term_fontpush(p, TERMFONT_UNDER);
2271 return(1);
2272 }
______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/mdoc_validate.c 1

**
 55544 Wed Jul 30 20:55:10 2014
new/usr/src/cmd/mandoc/mdoc_validate.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: mdoc_validate.c,v 1.198 2013/12/15 21:23:52 schwarze Exp $ */
1 /* $Id: mdoc_validate.c,v 1.182 2012/03/23 05:50:25 kristaps Exp $ */
2 /*
3 * Copyright (c) 2008-2012 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2010, 2011, 2012, 2013 Ingo Schwarze <schwarze@openbsd.org>
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2010, 2011 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #ifndef OSNAME
23 #include <sys/utsname.h>
24 #endif

26 #include <sys/types.h>

28 #include <assert.h>
29 #include <ctype.h>
30 #include <limits.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <time.h>

36 #include "mdoc.h"
37 #include "mandoc.h"
38 #include "libmdoc.h"
39 #include "libmandoc.h"

41 /* FIXME: .Bl -diag can’t have non-text children in HEAD. */

43 #define PRE_ARGS struct mdoc *mdoc, struct mdoc_node *n
44 #define POST_ARGS struct mdoc *mdoc

46 #define NUMSIZ 32
47 #define DATESIZE 32

49 enum check_ineq {
50 CHECK_LT,
51 CHECK_GT,
52 CHECK_EQ
53 };

______unchanged_portion_omitted_

68 static int check_count(struct mdoc *, enum mdoc_type,

new/usr/src/cmd/mandoc/mdoc_validate.c 2

69 enum check_lvl, enum check_ineq, int);
70 static int check_parent(PRE_ARGS, enum mdoct, enum mdoc_type);
71 static void check_text(struct mdoc *, int, int, char *);
72 static void check_argv(struct mdoc *,
73 struct mdoc_node *, struct mdoc_argv *);
74 static void check_args(struct mdoc *, struct mdoc_node *);
75 static int concat(char *, const struct mdoc_node *, size_t);
76 static enum mdoc_sec a2sec(const char *);
77 static size_t macro2len(enum mdoct);

79 static int ebool(POST_ARGS);
80 static int berr_ge1(POST_ARGS);
81 static int bwarn_ge1(POST_ARGS);
82 static int ewarn_eq0(POST_ARGS);
83 static int ewarn_eq1(POST_ARGS);
84 static int ewarn_ge1(POST_ARGS);
85 static int ewarn_le1(POST_ARGS);
86 static int hwarn_eq0(POST_ARGS);
87 static int hwarn_eq1(POST_ARGS);
88 static int hwarn_ge1(POST_ARGS);
89 static int hwarn_le1(POST_ARGS);

91 static int post_an(POST_ARGS);
92 static int post_at(POST_ARGS);
93 static int post_bf(POST_ARGS);
94 static int post_bl(POST_ARGS);
95 static int post_bl_block(POST_ARGS);
96 static int post_bl_block_width(POST_ARGS);
97 static int post_bl_block_tag(POST_ARGS);
98 static int post_bl_head(POST_ARGS);
99 static int post_bx(POST_ARGS);
100 static int post_defaults(POST_ARGS);
101 static int post_dd(POST_ARGS);
102 static int post_dt(POST_ARGS);
102 static int post_defaults(POST_ARGS);
103 static int post_literal(POST_ARGS);
103 static int post_eoln(POST_ARGS);
104 static int post_hyph(POST_ARGS);
105 static int post_ignpar(POST_ARGS);
106 static int post_it(POST_ARGS);
107 static int post_lb(POST_ARGS);
108 static int post_literal(POST_ARGS);
109 static int post_nm(POST_ARGS);
110 static int post_ns(POST_ARGS);
111 static int post_os(POST_ARGS);
112 static int post_par(POST_ARGS);
110 static int post_ignpar(POST_ARGS);
113 static int post_prol(POST_ARGS);
114 static int post_root(POST_ARGS);
115 static int post_rs(POST_ARGS);
116 static int post_sh(POST_ARGS);
117 static int post_sh_body(POST_ARGS);
118 static int post_sh_head(POST_ARGS);
119 static int post_st(POST_ARGS);
120 static int post_std(POST_ARGS);
121 static int post_vt(POST_ARGS);
122 static int pre_an(PRE_ARGS);
123 static int pre_bd(PRE_ARGS);
124 static int pre_bl(PRE_ARGS);
125 static int pre_dd(PRE_ARGS);
126 static int pre_display(PRE_ARGS);
127 static int pre_dt(PRE_ARGS);
128 static int pre_it(PRE_ARGS);
129 static int pre_literal(PRE_ARGS);
130 static int pre_os(PRE_ARGS);
131 static int pre_par(PRE_ARGS);

new/usr/src/cmd/mandoc/mdoc_validate.c 3

132 static int pre_sh(PRE_ARGS);
133 static int pre_ss(PRE_ARGS);
134 static int pre_std(PRE_ARGS);

136 static v_post posts_an[] = { post_an, NULL };
137 static v_post posts_at[] = { post_at, post_defaults, NULL };
138 static v_post posts_bd[] = { post_literal, hwarn_eq0, bwarn_ge1, NULL };
139 static v_post posts_bf[] = { hwarn_le1, post_bf, NULL };
140 static v_post posts_bk[] = { hwarn_eq0, bwarn_ge1, NULL };
141 static v_post posts_bl[] = { bwarn_ge1, post_bl, NULL };
142 static v_post posts_bx[] = { post_bx, NULL };
143 static v_post posts_bool[] = { ebool, NULL };
144 static v_post posts_eoln[] = { post_eoln, NULL };
145 static v_post posts_defaults[] = { post_defaults, NULL };
146 static v_post posts_d1[] = { bwarn_ge1, post_hyph, NULL };
147 static v_post posts_dd[] = { post_dd, post_prol, NULL };
148 static v_post posts_dl[] = { post_literal, bwarn_ge1, NULL };
149 static v_post posts_dt[] = { post_dt, post_prol, NULL };
150 static v_post posts_fo[] = { hwarn_eq1, bwarn_ge1, NULL };
151 static v_post posts_hyph[] = { post_hyph, NULL };
152 static v_post posts_hyphtext[] = { ewarn_ge1, post_hyph, NULL };
153 static v_post posts_it[] = { post_it, NULL };
154 static v_post posts_lb[] = { post_lb, NULL };
155 static v_post posts_nd[] = { berr_ge1, post_hyph, NULL };
150 static v_post posts_nd[] = { berr_ge1, NULL };
156 static v_post posts_nm[] = { post_nm, NULL };
157 static v_post posts_notext[] = { ewarn_eq0, NULL };
158 static v_post posts_ns[] = { post_ns, NULL };
159 static v_post posts_os[] = { post_os, post_prol, NULL };
160 static v_post posts_pp[] = { post_par, ewarn_eq0, NULL };
161 static v_post posts_rs[] = { post_rs, NULL };
162 static v_post posts_sh[] = { post_ignpar,hwarn_ge1,post_sh,post_hyph,NULL };
163 static v_post posts_sp[] = { post_par, ewarn_le1, NULL };
164 static v_post posts_ss[] = { post_ignpar, hwarn_ge1, post_hyph, NULL };
156 static v_post posts_sh[] = { post_ignpar, hwarn_ge1, post_sh, NULL };
157 static v_post posts_sp[] = { ewarn_le1, NULL };
158 static v_post posts_ss[] = { post_ignpar, hwarn_ge1, NULL };
165 static v_post posts_st[] = { post_st, NULL };
166 static v_post posts_std[] = { post_std, NULL };
167 static v_post posts_text[] = { ewarn_ge1, NULL };
168 static v_post posts_text1[] = { ewarn_eq1, NULL };
169 static v_post posts_vt[] = { post_vt, NULL };
164 static v_post posts_wline[] = { bwarn_ge1, NULL };
170 static v_pre pres_an[] = { pre_an, NULL };
171 static v_pre pres_bd[] = { pre_display, pre_bd, pre_literal, pre_par, NULL }
172 static v_pre pres_bl[] = { pre_bl, pre_par, NULL };
173 static v_pre pres_d1[] = { pre_display, NULL };
174 static v_pre pres_dl[] = { pre_literal, pre_display, NULL };
175 static v_pre pres_dd[] = { pre_dd, NULL };
176 static v_pre pres_dt[] = { pre_dt, NULL };
172 static v_pre pres_er[] = { NULL, NULL };
173 static v_pre pres_fd[] = { NULL, NULL };
177 static v_pre pres_it[] = { pre_it, pre_par, NULL };
178 static v_pre pres_os[] = { pre_os, NULL };
179 static v_pre pres_pp[] = { pre_par, NULL };
180 static v_pre pres_sh[] = { pre_sh, NULL };
181 static v_pre pres_ss[] = { pre_ss, NULL };
182 static v_pre pres_std[] = { pre_std, NULL };

184 static const struct valids mdoc_valids[MDOC_MAX] = {
185 { NULL, NULL }, /* Ap */
186 { pres_dd, posts_dd }, /* Dd */
187 { pres_dt, posts_dt }, /* Dt */
188 { pres_os, posts_os }, /* Os */
189 { pres_sh, posts_sh }, /* Sh */
190 { pres_ss, posts_ss }, /* Ss */

new/usr/src/cmd/mandoc/mdoc_validate.c 4

191 { pres_pp, posts_pp }, /* Pp */
192 { pres_d1, posts_d1 }, /* D1 */
188 { pres_pp, posts_notext }, /* Pp */
189 { pres_d1, posts_wline }, /* D1 */
193 { pres_dl, posts_dl }, /* Dl */
194 { pres_bd, posts_bd }, /* Bd */
195 { NULL, NULL }, /* Ed */
196 { pres_bl, posts_bl }, /* Bl */
197 { NULL, NULL }, /* El */
198 { pres_it, posts_it }, /* It */
199 { NULL, NULL }, /* Ad */
200 { pres_an, posts_an }, /* An */
201 { NULL, posts_defaults }, /* Ar */
202 { NULL, NULL }, /* Cd */
203 { NULL, NULL }, /* Cm */
204 { NULL, NULL }, /* Dv */
205 { NULL, NULL }, /* Er */
202 { pres_er, NULL }, /* Er */
206 { NULL, NULL }, /* Ev */
207 { pres_std, posts_std }, /* Ex */
208 { NULL, NULL }, /* Fa */
209 { NULL, posts_text }, /* Fd */
206 { pres_fd, posts_text }, /* Fd */
210 { NULL, NULL }, /* Fl */
211 { NULL, NULL }, /* Fn */
212 { NULL, NULL }, /* Ft */
213 { NULL, NULL }, /* Ic */
214 { NULL, posts_text1 }, /* In */
215 { NULL, posts_defaults }, /* Li */
216 { NULL, posts_nd }, /* Nd */
217 { NULL, posts_nm }, /* Nm */
218 { NULL, NULL }, /* Op */
219 { NULL, NULL }, /* Ot */
220 { NULL, posts_defaults }, /* Pa */
221 { pres_std, posts_std }, /* Rv */
222 { NULL, posts_st }, /* St */
223 { NULL, NULL }, /* Va */
224 { NULL, posts_vt }, /* Vt */
225 { NULL, posts_text }, /* Xr */
226 { NULL, posts_text }, /* %A */
227 { NULL, posts_hyphtext }, /* %B */ /* FIXME: can be used o
224 { NULL, posts_text }, /* %B */ /* FIXME: can be used o
228 { NULL, posts_text }, /* %D */
229 { NULL, posts_text }, /* %I */
230 { NULL, posts_text }, /* %J */
231 { NULL, posts_hyphtext }, /* %N */
232 { NULL, posts_hyphtext }, /* %O */
228 { NULL, posts_text }, /* %N */
229 { NULL, posts_text }, /* %O */
233 { NULL, posts_text }, /* %P */
234 { NULL, posts_hyphtext }, /* %R */
235 { NULL, posts_hyphtext }, /* %T */ /* FIXME: can be used o
231 { NULL, posts_text }, /* %R */
232 { NULL, posts_text }, /* %T */ /* FIXME: can be used o
236 { NULL, posts_text }, /* %V */
237 { NULL, NULL }, /* Ac */
238 { NULL, NULL }, /* Ao */
239 { NULL, NULL }, /* Aq */
240 { NULL, posts_at }, /* At */
241 { NULL, NULL }, /* Bc */
242 { NULL, posts_bf }, /* Bf */
243 { NULL, NULL }, /* Bo */
244 { NULL, NULL }, /* Bq */
245 { NULL, NULL }, /* Bsx */
246 { NULL, posts_bx }, /* Bx */
247 { NULL, posts_bool }, /* Db */

new/usr/src/cmd/mandoc/mdoc_validate.c 5

248 { NULL, NULL }, /* Dc */
249 { NULL, NULL }, /* Do */
250 { NULL, NULL }, /* Dq */
251 { NULL, NULL }, /* Ec */
252 { NULL, NULL }, /* Ef */
253 { NULL, NULL }, /* Em */
254 { NULL, NULL }, /* Eo */
255 { NULL, NULL }, /* Fx */
256 { NULL, NULL }, /* Ms */
257 { NULL, posts_notext }, /* No */
258 { NULL, posts_ns }, /* Ns */
259 { NULL, NULL }, /* Nx */
260 { NULL, NULL }, /* Ox */
261 { NULL, NULL }, /* Pc */
262 { NULL, posts_text1 }, /* Pf */
263 { NULL, NULL }, /* Po */
264 { NULL, NULL }, /* Pq */
265 { NULL, NULL }, /* Qc */
266 { NULL, NULL }, /* Ql */
267 { NULL, NULL }, /* Qo */
268 { NULL, NULL }, /* Qq */
269 { NULL, NULL }, /* Re */
270 { NULL, posts_rs }, /* Rs */
271 { NULL, NULL }, /* Sc */
272 { NULL, NULL }, /* So */
273 { NULL, NULL }, /* Sq */
274 { NULL, posts_bool }, /* Sm */
275 { NULL, posts_hyph }, /* Sx */
272 { NULL, NULL }, /* Sx */
276 { NULL, NULL }, /* Sy */
277 { NULL, NULL }, /* Tn */
278 { NULL, NULL }, /* Ux */
279 { NULL, NULL }, /* Xc */
280 { NULL, NULL }, /* Xo */
281 { NULL, posts_fo }, /* Fo */
282 { NULL, NULL }, /* Fc */
283 { NULL, NULL }, /* Oo */
284 { NULL, NULL }, /* Oc */
285 { NULL, posts_bk }, /* Bk */
286 { NULL, NULL }, /* Ek */
287 { NULL, posts_eoln }, /* Bt */
288 { NULL, NULL }, /* Hf */
289 { NULL, NULL }, /* Fr */
290 { NULL, posts_eoln }, /* Ud */
291 { NULL, posts_lb }, /* Lb */
292 { pres_pp, posts_pp }, /* Lp */
289 { NULL, posts_notext }, /* Lp */
293 { NULL, NULL }, /* Lk */
294 { NULL, posts_defaults }, /* Mt */
295 { NULL, NULL }, /* Brq */
296 { NULL, NULL }, /* Bro */
297 { NULL, NULL }, /* Brc */
298 { NULL, posts_text }, /* %C */
299 { NULL, NULL }, /* Es */
300 { NULL, NULL }, /* En */
301 { NULL, NULL }, /* Dx */
302 { NULL, posts_text }, /* %Q */
303 { NULL, posts_pp }, /* br */
304 { NULL, posts_sp }, /* sp */
300 { NULL, posts_notext }, /* br */
301 { pres_pp, posts_sp }, /* sp */
305 { NULL, posts_text1 }, /* %U */
306 { NULL, NULL }, /* Ta */
307 };

309 #define RSORD_MAX 14 /* Number of ‘Rs’ blocks. */

new/usr/src/cmd/mandoc/mdoc_validate.c 6

311 static const enum mdoct rsord[RSORD_MAX] = {
312 MDOC__A,
313 MDOC__T,
314 MDOC__B,
315 MDOC__I,
316 MDOC__J,
317 MDOC__R,
318 MDOC__N,
319 MDOC__V,
320 MDOC__U,
321 MDOC__P,
322 MDOC__Q,
323 MDOC__C,
324 MDOC__D,
325 MDOC__O
320 MDOC__O,
321 MDOC__C,
322 MDOC__U
326 };

______unchanged_portion_omitted_

419 static int
420 check_count(struct mdoc *mdoc, enum mdoc_type type,
417 check_count(struct mdoc *m, enum mdoc_type type,
421 enum check_lvl lvl, enum check_ineq ineq, int val)
422 {
423 const char *p;
424 enum mandocerr t;

426 if (mdoc->last->type != type)
423 if (m->last->type != type)
427 return(1);
428
429 switch (ineq) {
430 case (CHECK_LT):
431 p = "less than ";
432 if (mdoc->last->nchild < val)
429 if (m->last->nchild < val)
433 return(1);
434 break;
435 case (CHECK_GT):
436 p = "more than ";
437 if (mdoc->last->nchild > val)
434 if (m->last->nchild > val)
438 return(1);
439 break;
440 case (CHECK_EQ):
441 p = "";
442 if (val == mdoc->last->nchild)
439 if (val == m->last->nchild)
443 return(1);
444 break;
445 default:
446 abort();
447 /* NOTREACHED */
448 }

450 t = lvl == CHECK_WARN ? MANDOCERR_ARGCWARN : MANDOCERR_ARGCOUNT;
451 mandoc_vmsg(t, mdoc->parse, mdoc->last->line, mdoc->last->pos,
448 mandoc_vmsg(t, m->parse, m->last->line, m->last->pos,
452 "want %s%d children (have %d)",
453 p, val, mdoc->last->nchild);
450 p, val, m->last->nchild);
454 return(1);
455 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/mdoc_validate.c 7

518 static void
519 check_args(struct mdoc *mdoc, struct mdoc_node *n)
516 check_args(struct mdoc *m, struct mdoc_node *n)
520 {
521 int i;

523 if (NULL == n->args)
524 return;

526 assert(n->args->argc);
527 for (i = 0; i < (int)n->args->argc; i++)
528 check_argv(mdoc, n, &n->args->argv[i]);
525 check_argv(m, n, &n->args->argv[i]);
529 }

531 static void
532 check_argv(struct mdoc *mdoc, struct mdoc_node *n, struct mdoc_argv *v)
529 check_argv(struct mdoc *m, struct mdoc_node *n, struct mdoc_argv *v)
533 {
534 int i;

536 for (i = 0; i < (int)v->sz; i++)
537 check_text(mdoc, v->line, v->pos, v->value[i]);
534 check_text(m, v->line, v->pos, v->value[i]);

539 /* FIXME: move to post_std(). */

541 if (MDOC_Std == v->arg)
542 if (! (v->sz || mdoc->meta.name))
543 mdoc_nmsg(mdoc, n, MANDOCERR_NONAME);
539 if (! (v->sz || m->meta.name))
540 mdoc_nmsg(m, n, MANDOCERR_NONAME);
544 }

546 static void
547 check_text(struct mdoc *mdoc, int ln, int pos, char *p)
544 check_text(struct mdoc *m, int ln, int pos, char *p)
548 {
549 char *cp;

551 if (MDOC_LITERAL & mdoc->flags)
548 if (MDOC_LITERAL & m->flags)
552 return;

554 for (cp = p; NULL != (p = strchr(p, ’\t’)); p++)
555 mdoc_pmsg(mdoc, ln, pos + (int)(p - cp), MANDOCERR_BADTAB);
552 mdoc_pmsg(m, ln, pos + (int)(p - cp), MANDOCERR_BADTAB);
556 }

______unchanged_portion_omitted_

594 static int
595 pre_bl(PRE_ARGS)
596 {
597 int i, comp, dup;
598 const char *offs, *width;
599 enum mdoc_list lt;
600 struct mdoc_node *np;

602 if (MDOC_BLOCK != n->type) {
603 if (ENDBODY_NOT != n->end) {
604 assert(n->pending);
605 np = n->pending->parent;
606 } else
607 np = n->parent;

new/usr/src/cmd/mandoc/mdoc_validate.c 8

609 assert(np);
610 assert(MDOC_BLOCK == np->type);
611 assert(MDOC_Bl == np->tok);
612 return(1);
613 }

615 /*
616 * First figure out which kind of list to use: bind ourselves to
617 * the first mentioned list type and warn about any remaining
618 * ones. If we find no list type, we default to LIST_item.
619 */

621 /* LINTED */
622 for (i = 0; n->args && i < (int)n->args->argc; i++) {
623 lt = LIST__NONE;
624 dup = comp = 0;
625 width = offs = NULL;
626 switch (n->args->argv[i].arg) {
627 /* Set list types. */
628 case (MDOC_Bullet):
629 lt = LIST_bullet;
630 break;
631 case (MDOC_Dash):
632 lt = LIST_dash;
633 break;
634 case (MDOC_Enum):
635 lt = LIST_enum;
636 break;
637 case (MDOC_Hyphen):
638 lt = LIST_hyphen;
639 break;
640 case (MDOC_Item):
641 lt = LIST_item;
642 break;
643 case (MDOC_Tag):
644 lt = LIST_tag;
645 break;
646 case (MDOC_Diag):
647 lt = LIST_diag;
648 break;
649 case (MDOC_Hang):
650 lt = LIST_hang;
651 break;
652 case (MDOC_Ohang):
653 lt = LIST_ohang;
654 break;
655 case (MDOC_Inset):
656 lt = LIST_inset;
657 break;
658 case (MDOC_Column):
659 lt = LIST_column;
660 break;
661 /* Set list arguments. */
662 case (MDOC_Compact):
663 dup = n->norm->Bl.comp;
664 comp = 1;
665 break;
666 case (MDOC_Width):
667 /* NB: this can be empty! */
668 if (n->args->argv[i].sz) {
669 width = n->args->argv[i].value[0];
670 dup = (NULL != n->norm->Bl.width);
671 break;
672 }
673 mdoc_nmsg(mdoc, n, MANDOCERR_IGNARGV);

new/usr/src/cmd/mandoc/mdoc_validate.c 9

674 break;
675 case (MDOC_Offset):
676 /* NB: this can be empty! */
677 if (n->args->argv[i].sz) {
678 offs = n->args->argv[i].value[0];
679 dup = (NULL != n->norm->Bl.offs);
680 break;
681 }
682 mdoc_nmsg(mdoc, n, MANDOCERR_IGNARGV);
683 break;
684 default:
685 continue;
686 }

688 /* Check: duplicate auxiliary arguments. */

690 if (dup)
691 mdoc_nmsg(mdoc, n, MANDOCERR_ARGVREP);

693 if (comp && ! dup)
694 n->norm->Bl.comp = comp;
695 if (offs && ! dup)
696 n->norm->Bl.offs = offs;
697 if (width && ! dup)
698 n->norm->Bl.width = width;

700 /* Check: multiple list types. */

702 if (LIST__NONE != lt && n->norm->Bl.type != LIST__NONE)
703 mdoc_nmsg(mdoc, n, MANDOCERR_LISTREP);

705 /* Assign list type. */

707 if (LIST__NONE != lt && n->norm->Bl.type == LIST__NONE) {
708 n->norm->Bl.type = lt;
709 /* Set column information, too. */
710 if (LIST_column == lt) {
711 n->norm->Bl.ncols =
712 n->args->argv[i].sz;
713 n->norm->Bl.cols = (void *)
714 n->args->argv[i].value;
715 }
716 }

718 /* The list type should come first. */

720 if (n->norm->Bl.type == LIST__NONE)
721 if (n->norm->Bl.width ||
722 n->norm->Bl.offs ||
723 n->norm->Bl.comp)
724 mdoc_nmsg(mdoc, n, MANDOCERR_LISTFIRST);

726 continue;
727 }

729 /* Allow lists to default to LIST_item. */

731 if (LIST__NONE == n->norm->Bl.type) {
732 mdoc_nmsg(mdoc, n, MANDOCERR_LISTTYPE);
733 n->norm->Bl.type = LIST_item;
734 }

736 /*
737 * Validate the width field. Some list types don’t need width
738 * types and should be warned about them. Others should have it
739 * and must also be warned. Yet others have a default and need

new/usr/src/cmd/mandoc/mdoc_validate.c 10

740 * no warning.
736 * and must also be warned.
741 */

743 switch (n->norm->Bl.type) {
744 case (LIST_tag):
745 if (NULL == n->norm->Bl.width)
741 if (n->norm->Bl.width)
742 break;
746 mdoc_nmsg(mdoc, n, MANDOCERR_NOWIDTHARG);
747 break;
748 case (LIST_column):
749 /* FALLTHROUGH */
750 case (LIST_diag):
751 /* FALLTHROUGH */
752 case (LIST_ohang):
753 /* FALLTHROUGH */
754 case (LIST_inset):
755 /* FALLTHROUGH */
756 case (LIST_item):
757 if (n->norm->Bl.width)
758 mdoc_nmsg(mdoc, n, MANDOCERR_IGNARGV);
759 break;
760 case (LIST_bullet):
761 /* FALLTHROUGH */
762 case (LIST_dash):
763 /* FALLTHROUGH */
764 case (LIST_hyphen):
765 if (NULL == n->norm->Bl.width)
766 n->norm->Bl.width = "2n";
767 break;
768 case (LIST_enum):
769 if (NULL == n->norm->Bl.width)
770 n->norm->Bl.width = "3n";
771 break;
772 default:
773 break;
774 }

776 return(1);
777 }

______unchanged_portion_omitted_

886 static int
887 pre_sh(PRE_ARGS)
888 {

890 if (MDOC_BLOCK != n->type)
891 return(1);

878 roff_regunset(mdoc->roff, REG_nS);
892 return(check_parent(mdoc, n, MDOC_MAX, MDOC_ROOT));
893 }

______unchanged_portion_omitted_

1121 static int
1122 post_nm(POST_ARGS)
1123 {
1124 char buf[BUFSIZ];
1125 int c;

1127 if (NULL != mdoc->meta.name)
1114 /* If no child specified, make sure we have the meta name. */

new/usr/src/cmd/mandoc/mdoc_validate.c 11

1116 if (NULL == mdoc->last->child && NULL == mdoc->meta.name) {
1117 mdoc_nmsg(mdoc, mdoc->last, MANDOCERR_NONAME);
1128 return(1);
1119 } else if (mdoc->meta.name)
1120 return(1);

1130 /* Try to use our children for setting the meta name. */
1122 /* If no meta name, set it from the child. */

1132 if (NULL != mdoc->last->child) {
1133 buf[0] = ’\0’;
1134 c = concat(buf, mdoc->last->child, BUFSIZ);
1135 } else
1136 c = 0;

1138 switch (c) {
1139 case (-1):
1125 if (-1 == (c = concat(buf, mdoc->last->child, BUFSIZ))) {
1140 mdoc_nmsg(mdoc, mdoc->last->child, MANDOCERR_MEM);
1141 return(0);
1142 case (0):
1143 mdoc_nmsg(mdoc, mdoc->last, MANDOCERR_NONAME);
1144 mdoc->meta.name = mandoc_strdup("UNKNOWN");
1145 break;
1146 default:
1147 mdoc->meta.name = mandoc_strdup(buf);
1148 break;
1149 }

1130 assert(c);
1131 mdoc->meta.name = mandoc_strdup(buf);
1150 return(1);
1151 }
______unchanged_portion_omitted_

1352 static int
1353 post_bl_block(POST_ARGS)
1354 {
1355 struct mdoc_node *n, *ni, *nc;
1337 struct mdoc_node *n;

1357 /*
1358 * These are fairly complicated, so we’ve broken them into two
1359 * functions. post_bl_block_tag() is called when a -tag is
1360 * specified, but no -width (it must be guessed). The second
1361 * when a -width is specified (macro indicators must be
1362 * rewritten into real lengths).
1363 */

1365 n = mdoc->last;

1367 if (LIST_tag == n->norm->Bl.type &&
1368 NULL == n->norm->Bl.width) {
1369 if (! post_bl_block_tag(mdoc))
1370 return(0);
1371 assert(n->norm->Bl.width);
1372 } else if (NULL != n->norm->Bl.width) {
1373 if (! post_bl_block_width(mdoc))
1374 return(0);
1375 assert(n->norm->Bl.width);
1376 }

1378 for (ni = n->body->child; ni; ni = ni->next) {
1379 if (NULL == ni->body)
1380 continue;
1381 nc = ni->body->last;

new/usr/src/cmd/mandoc/mdoc_validate.c 12

1382 while (NULL != nc) {
1383 switch (nc->tok) {
1384 case (MDOC_Pp):
1385 /* FALLTHROUGH */
1386 case (MDOC_Lp):
1387 /* FALLTHROUGH */
1388 case (MDOC_br):
1389 break;
1390 default:
1391 nc = NULL;
1392 continue;
1393 }
1394 if (NULL == ni->next) {
1395 mdoc_nmsg(mdoc, nc, MANDOCERR_MOVEPAR);
1396 if (! mdoc_node_relink(mdoc, nc))
1397 return(0);
1398 } else if (0 == n->norm->Bl.comp &&
1399 LIST_column != n->norm->Bl.type) {
1400 mdoc_nmsg(mdoc, nc, MANDOCERR_IGNPAR);
1401 mdoc_node_delete(mdoc, nc);
1402 } else
1403 break;
1404 nc = ni->body->last;
1405 }
1406 }
1407 return(1);

1359 assert(n->norm->Bl.width);
1360 return(1);
1408 }
______unchanged_portion_omitted_

1591 static int
1592 post_bl(POST_ARGS)
1593 {
1594 struct mdoc_node *nparent, *nprev; /* of the Bl block */
1595 struct mdoc_node *nblock, *nbody; /* of the Bl */
1596 struct mdoc_node *nchild, *nnext; /* of the Bl body */
1547 struct mdoc_node *n;

1598 nbody = mdoc->last;
1599 switch (nbody->type) {
1600 case (MDOC_BLOCK):
1601 return(post_bl_block(mdoc));
1602 case (MDOC_HEAD):
1549 if (MDOC_HEAD == mdoc->last->type)
1603 return(post_bl_head(mdoc));
1604 case (MDOC_BODY):
1605 break;
1606 default:
1551 if (MDOC_BLOCK == mdoc->last->type)
1552 return(post_bl_block(mdoc));
1553 if (MDOC_BODY != mdoc->last->type)
1607 return(1);
1608 }

1610 nchild = nbody->child;
1611 while (NULL != nchild) {
1612 if (MDOC_It == nchild->tok || MDOC_Sm == nchild->tok) {
1613 nchild = nchild->next;
1556 for (n = mdoc->last->child; n; n = n->next) {
1557 switch (n->tok) {
1558 case (MDOC_Lp):
1559 /* FALLTHROUGH */
1560 case (MDOC_Pp):
1561 mdoc_nmsg(mdoc, n, MANDOCERR_CHILD);

new/usr/src/cmd/mandoc/mdoc_validate.c 13

1562 /* FALLTHROUGH */
1563 case (MDOC_It):
1564 /* FALLTHROUGH */
1565 case (MDOC_Sm):
1614 continue;
1567 default:
1568 break;
1615 }

1617 mdoc_nmsg(mdoc, nchild, MANDOCERR_CHILD);

1619 /*
1620 * Move the node out of the Bl block.
1621 * First, collect all required node pointers.
1622 */

1624 nblock = nbody->parent;
1625 nprev = nblock->prev;
1626 nparent = nblock->parent;
1627 nnext = nchild->next;

1629 /*
1630 * Unlink this child.
1631 */

1633 assert(NULL == nchild->prev);
1634 if (0 == --nbody->nchild) {
1635 nbody->child = NULL;
1636 nbody->last = NULL;
1637 assert(NULL == nnext);
1638 } else {
1639 nbody->child = nnext;
1640 nnext->prev = NULL;
1571 mdoc_nmsg(mdoc, n, MANDOCERR_SYNTCHILD);
1572 return(0);
1641 }

1643 /*
1644 * Relink this child.
1645 */

1647 nchild->parent = nparent;
1648 nchild->prev = nprev;
1649 nchild->next = nblock;

1651 nblock->prev = nchild;
1652 nparent->nchild++;
1653 if (NULL == nprev)
1654 nparent->child = nchild;
1655 else
1656 nprev->next = nchild;

1658 nchild = nnext;
1659 }

1661 return(1);
1662 }

1664 static int
1665 ebool(struct mdoc *mdoc)
1666 {

1668 if (NULL == mdoc->last->child) {
1669 mdoc_nmsg(mdoc, mdoc->last, MANDOCERR_MACROEMPTY);
1670 mdoc_node_delete(mdoc, mdoc->last);
1671 return(1);

new/usr/src/cmd/mandoc/mdoc_validate.c 14

1672 }
1673 check_count(mdoc, MDOC_ELEM, CHECK_WARN, CHECK_EQ, 1);

1675 assert(MDOC_TEXT == mdoc->last->child->type);

1677 if (0 == strcmp(mdoc->last->child->string, "on")) {
1678 if (MDOC_Sm == mdoc->last->tok)
1679 mdoc->flags &= ~MDOC_SMOFF;
1591 if (0 == strcmp(mdoc->last->child->string, "on"))
1680 return(1);
1681 }
1682 if (0 == strcmp(mdoc->last->child->string, "off")) {
1683 if (MDOC_Sm == mdoc->last->tok)
1684 mdoc->flags |= MDOC_SMOFF;
1593 if (0 == strcmp(mdoc->last->child->string, "off"))
1685 return(1);
1686 }

1688 mdoc_nmsg(mdoc, mdoc->last, MANDOCERR_BADBOOL);
1689 return(1);
1690 }
______unchanged_portion_omitted_

1866 /*
1867 * For some arguments of some macros,
1868 * convert all breakable hyphens into ASCII_HYPH.
1869 */
1870 static int
1871 post_hyph(POST_ARGS)
1872 {
1873 struct mdoc_node *n, *nch;
1874 char *cp;

1876 n = mdoc->last;
1877 switch (n->type) {
1878 case (MDOC_HEAD):
1879 if (MDOC_Sh == n->tok || MDOC_Ss == n->tok)
1880 break;
1881 return(1);
1882 case (MDOC_BODY):
1883 if (MDOC_D1 == n->tok || MDOC_Nd == n->tok)
1884 break;
1885 return(1);
1886 case (MDOC_ELEM):
1887 break;
1888 default:
1889 return(1);
1890 }

1892 for (nch = n->child; nch; nch = nch->next) {
1893 if (MDOC_TEXT != nch->type)
1894 continue;
1895 cp = nch->string;
1896 if (3 > strnlen(cp, 3))
1897 continue;
1898 while (’\0’ != *(++cp))
1899 if (’-’ == *cp &&
1900 isalpha((unsigned char)cp[-1]) &&
1901 isalpha((unsigned char)cp[1]))
1902 *cp = ASCII_HYPH;
1903 }
1904 return(1);
1905 }

1907 static int
1908 post_ns(POST_ARGS)

new/usr/src/cmd/mandoc/mdoc_validate.c 15

1909 {

1911 if (MDOC_LINE & mdoc->last->flags)
1912 mdoc_nmsg(mdoc, mdoc->last, MANDOCERR_IGNNS);
1913 return(1);
1914 }
______unchanged_portion_omitted_

1963 static int
1964 post_sh_head(POST_ARGS)
1965 {
1966 char buf[BUFSIZ];
1967 struct mdoc_node *n;
1968 enum mdoc_sec sec;
1969 int c;

1971 /*
1972 * Process a new section. Sections are either "named" or
1973 * "custom". Custom sections are user-defined, while named ones
1974 * follow a conventional order and may only appear in certain
1975 * manual sections.
1976 */

1978 sec = SEC_CUSTOM;
1979 buf[0] = ’\0’;
1980 if (-1 == (c = concat(buf, mdoc->last->child, BUFSIZ))) {
1981 mdoc_nmsg(mdoc, mdoc->last->child, MANDOCERR_MEM);
1982 return(0);
1983 } else if (1 == c)
1984 sec = a2sec(buf);

1986 /* The NAME should be first. */

1988 if (SEC_NAME != sec && SEC_NONE == mdoc->lastnamed)
1989 mdoc_nmsg(mdoc, mdoc->last, MANDOCERR_NAMESECFIRST);

1991 /* The SYNOPSIS gets special attention in other areas. */

1993 if (SEC_SYNOPSIS == sec) {
1994 roff_setreg(mdoc->roff, "nS", 1, ’=’);
1860 if (SEC_SYNOPSIS == sec)
1995 mdoc->flags |= MDOC_SYNOPSIS;
1996 } else {
1997 roff_setreg(mdoc->roff, "nS", 0, ’=’);
1862 else
1998 mdoc->flags &= ~MDOC_SYNOPSIS;
1999 }

2001 /* Mark our last section. */

2003 mdoc->lastsec = sec;

2005 /*
2006 * Set the section attribute for the current HEAD, for its
2007 * parent BLOCK, and for the HEAD children; the latter can
2008 * only be TEXT nodes, so no recursion is needed.
2009 * For other blocks and elements, including .Sh BODY, this is
2010 * done when allocating the node data structures, but for .Sh
2011 * BLOCK and HEAD, the section is still unknown at that time.
2012 */

2014 mdoc->last->parent->sec = sec;
2015 mdoc->last->sec = sec;
2016 for (n = mdoc->last->child; n; n = n->next)
2017 n->sec = sec;

new/usr/src/cmd/mandoc/mdoc_validate.c 16

2019 /* We don’t care about custom sections after this. */

2021 if (SEC_CUSTOM == sec)
2022 return(1);

2024 /*
2025 * Check whether our non-custom section is being repeated or is
2026 * out of order.
2027 */

2029 if (sec == mdoc->lastnamed)
2030 mdoc_nmsg(mdoc, mdoc->last, MANDOCERR_SECREP);

2032 if (sec < mdoc->lastnamed)
2033 mdoc_nmsg(mdoc, mdoc->last, MANDOCERR_SECOOO);

2035 /* Mark the last named section. */

2037 mdoc->lastnamed = sec;

2039 /* Check particular section/manual conventions. */

2041 assert(mdoc->meta.msec);

2043 switch (sec) {
2044 case (SEC_RETURN_VALUES):
2045 /* FALLTHROUGH */
2046 case (SEC_ERRORS):
2047 /* FALLTHROUGH */
2048 case (SEC_LIBRARY):
2049 if (*mdoc->meta.msec == ’2’)
2050 break;
2051 if (*mdoc->meta.msec == ’3’)
2052 break;
2053 if (*mdoc->meta.msec == ’9’)
2054 break;
2055 mandoc_msg(MANDOCERR_SECMSEC, mdoc->parse,
2056 mdoc->last->line, mdoc->last->pos, buf);
1919 mdoc_nmsg(mdoc, mdoc->last, MANDOCERR_SECMSEC);
2057 break;
2058 default:
2059 break;
2060 }

2062 return(1);
2063 }
______unchanged_portion_omitted_

2088 static int
2089 pre_par(PRE_ARGS)
2090 {

2092 if (NULL == mdoc->last)
2093 return(1);
2094 if (MDOC_ELEM != n->type && MDOC_BLOCK != n->type)
2095 return(1);

2097 /*
2098 * Don’t allow prior ‘Lp’ or ‘Pp’ prior to a paragraph-type
2099 * block: ‘Lp’, ‘Pp’, or non-compact ‘Bd’ or ‘Bl’.
2100 */

2102 if (MDOC_Pp != mdoc->last->tok &&
2103 MDOC_Lp != mdoc->last->tok &&
2104 MDOC_br != mdoc->last->tok)
1965 if (MDOC_Pp != mdoc->last->tok && MDOC_Lp != mdoc->last->tok)

new/usr/src/cmd/mandoc/mdoc_validate.c 17

2105 return(1);
2106 if (MDOC_Bl == n->tok && n->norm->Bl.comp)
2107 return(1);
2108 if (MDOC_Bd == n->tok && n->norm->Bd.comp)
2109 return(1);
2110 if (MDOC_It == n->tok && n->parent->norm->Bl.comp)
2111 return(1);

2113 mdoc_nmsg(mdoc, mdoc->last, MANDOCERR_IGNPAR);
2114 mdoc_node_delete(mdoc, mdoc->last);
2115 return(1);
2116 }

2118 static int
2119 post_par(POST_ARGS)
2120 {

2122 if (MDOC_ELEM != mdoc->last->type &&
2123 MDOC_BLOCK != mdoc->last->type)
2124 return(1);

2126 if (NULL == mdoc->last->prev) {
2127 if (MDOC_Sh != mdoc->last->parent->tok &&
2128 MDOC_Ss != mdoc->last->parent->tok)
2129 return(1);
2130 } else {
2131 if (MDOC_Pp != mdoc->last->prev->tok &&
2132 MDOC_Lp != mdoc->last->prev->tok &&
2133 (MDOC_br != mdoc->last->tok ||
2134 (MDOC_sp != mdoc->last->prev->tok &&
2135 MDOC_br != mdoc->last->prev->tok)))
2136 return(1);
2137 }

2139 mdoc_nmsg(mdoc, mdoc->last, MANDOCERR_IGNPAR);
2140 mdoc_node_delete(mdoc, mdoc->last);
2141 return(1);
2142 }

2144 static int
2145 pre_literal(PRE_ARGS)
2146 {

2148 if (MDOC_BODY != n->type)
2149 return(1);

2151 /*
2152 * The ‘Dl’ (note "el" not "one") and ‘Bd -literal’ and ‘Bd
2153 * -unfilled’ macros set MDOC_LITERAL on entrance to the body.
2154 */

2156 switch (n->tok) {
2157 case (MDOC_Dl):
2158 mdoc->flags |= MDOC_LITERAL;
2159 break;
2160 case (MDOC_Bd):
2161 if (DISP_literal == n->norm->Bd.type)
2162 mdoc->flags |= MDOC_LITERAL;
2163 if (DISP_unfilled == n->norm->Bd.type)
2164 mdoc->flags |= MDOC_LITERAL;
2165 break;
2166 default:
2167 abort();
2168 /* NOTREACHED */
2169 }
2170

new/usr/src/cmd/mandoc/mdoc_validate.c 18

2171 return(1);
2172 }
______unchanged_portion_omitted_

2204 static int
2205 post_dt(POST_ARGS)
2206 {
2207 struct mdoc_node *nn, *n;
2208 const char *cp;
2209 char *p;

2211 n = mdoc->last;

2213 if (mdoc->meta.title)
2214 free(mdoc->meta.title);
2215 if (mdoc->meta.vol)
2216 free(mdoc->meta.vol);
2217 if (mdoc->meta.arch)
2218 free(mdoc->meta.arch);

2220 mdoc->meta.title = mdoc->meta.vol = mdoc->meta.arch = NULL;

2222 /* First make all characters uppercase. */

2224 if (NULL != (nn = n->child))
2225 for (p = nn->string; *p; p++) {
2226 if (toupper((unsigned char)*p) == *p)
2227 continue;

2229 /*
2230 * FIXME: don’t be lazy: have this make all
2231 * characters be uppercase and just warn once.
2232 */
2233 mdoc_nmsg(mdoc, nn, MANDOCERR_UPPERCASE);
2234 break;
2235 }

2237 /* Handles: ‘.Dt’
2238 * --> title = unknown, volume = local, msec = 0, arch = NULL
2239 */

2241 if (NULL == (nn = n->child)) {
2242 /* XXX: make these macro values. */
2243 /* FIXME: warn about missing values. */
2244 mdoc->meta.title = mandoc_strdup("UNKNOWN");
2245 mdoc->meta.vol = mandoc_strdup("LOCAL");
2246 mdoc->meta.msec = mandoc_strdup("1");
2247 return(1);
2248 }

2250 /* Handles: ‘.Dt TITLE’
2251 * --> title = TITLE, volume = local, msec = 0, arch = NULL
2252 */

2254 mdoc->meta.title = mandoc_strdup
2255 (’\0’ == nn->string[0] ? "UNKNOWN" : nn->string);

2257 if (NULL == (nn = nn->next)) {
2258 /* FIXME: warn about missing msec. */
2259 /* XXX: make this a macro value. */
2260 mdoc->meta.vol = mandoc_strdup("LOCAL");
2261 mdoc->meta.msec = mandoc_strdup("1");
2262 return(1);
2263 }

2265 /* Handles: ‘.Dt TITLE SEC’

new/usr/src/cmd/mandoc/mdoc_validate.c 19

2266 * --> title = TITLE, volume = SEC is msec ?
2267 * format(msec) : SEC,
2268 * msec = SEC is msec ? atoi(msec) : 0,
2269 * arch = NULL
2270 */

2272 cp = mandoc_a2msec(nn->string);
2273 if (cp) {
2274 mdoc->meta.vol = mandoc_strdup(cp);
2275 mdoc->meta.msec = mandoc_strdup(nn->string);
2276 } else {
2277 mdoc_nmsg(mdoc, n, MANDOCERR_BADMSEC);
2278 mdoc->meta.vol = mandoc_strdup(nn->string);
2279 mdoc->meta.msec = mandoc_strdup(nn->string);
2280 }

2282 if (NULL == (nn = nn->next))
2283 return(1);

2285 /* Handles: ‘.Dt TITLE SEC VOL’
2286 * --> title = TITLE, volume = VOL is vol ?
2287 * format(VOL) :
2288 * VOL is arch ? format(arch) :
2289 * VOL
2290 */

2292 cp = mdoc_a2vol(nn->string);
2293 if (cp) {
2294 free(mdoc->meta.vol);
2295 mdoc->meta.vol = mandoc_strdup(cp);
2296 } else {
2132 /* FIXME: warn about bad arch. */
2297 cp = mdoc_a2arch(nn->string);
2298 if (NULL == cp) {
2299 mdoc_nmsg(mdoc, nn, MANDOCERR_BADVOLARCH);
2300 free(mdoc->meta.vol);
2301 mdoc->meta.vol = mandoc_strdup(nn->string);
2302 } else
2303 mdoc->meta.arch = mandoc_strdup(cp);
2304 }

2306 /* Ignore any subsequent parameters... */
2307 /* FIXME: warn about subsequent parameters. */

2309 return(1);
2310 }
______unchanged_portion_omitted_

2347 static int
2348 post_os(POST_ARGS)
2349 {
2350 struct mdoc_node *n;
2351 char buf[BUFSIZ];
2352 int c;
2353 #ifndef OSNAME
2354 struct utsname utsname;
2355 #endif

2357 n = mdoc->last;

2359 /*
2360 * Set the operating system by way of the ‘Os’ macro.
2361 * The order of precedence is:
2362 * 1. the argument of the ‘Os’ macro, unless empty
2363 * 2. the -Ios=foo command line argument, if provided
2364 * 3. -DOSNAME="\"foo\"", if provided during compilation

new/usr/src/cmd/mandoc/mdoc_validate.c 20

2365 * 4. "sysname release" from uname(3)
2195 * Set the operating system by way of the ‘Os’ macro. Note that
2196 * if an argument isn’t provided and -DOSNAME="\"foo\"" is
2197 * provided during compilation, this value will be used instead
2198 * of filling in "sysname release" from uname().
2366 */

2201 if (mdoc->meta.os)
2368 free(mdoc->meta.os);

2370 buf[0] = ’\0’;
2371 if (-1 == (c = concat(buf, n->child, BUFSIZ))) {
2372 mdoc_nmsg(mdoc, n->child, MANDOCERR_MEM);
2373 return(0);
2374 }

2376 assert(c);

2212 /* XXX: yes, these can all be dynamically-adjusted buffers, but
2213 * it’s really not worth the extra hackery.
2214 */

2378 if (’\0’ == buf[0]) {
2379 if (mdoc->defos) {
2380 mdoc->meta.os = mandoc_strdup(mdoc->defos);
2381 return(1);
2382 }
2383 #ifdef OSNAME
2384 if (strlcat(buf, OSNAME, BUFSIZ) >= BUFSIZ) {
2385 mdoc_nmsg(mdoc, n, MANDOCERR_MEM);
2386 return(0);
2387 }
2388 #else /*!OSNAME */
2389 if (-1 == uname(&utsname)) {
2390 mdoc_nmsg(mdoc, n, MANDOCERR_UNAME);
2391 mdoc->meta.os = mandoc_strdup("UNKNOWN");
2392 return(post_prol(mdoc));
2393 }

2395 if (strlcat(buf, utsname.sysname, BUFSIZ) >= BUFSIZ) {
2396 mdoc_nmsg(mdoc, n, MANDOCERR_MEM);
2397 return(0);
2398 }
2399 if (strlcat(buf, " ", BUFSIZ) >= BUFSIZ) {
2400 mdoc_nmsg(mdoc, n, MANDOCERR_MEM);
2401 return(0);
2402 }
2403 if (strlcat(buf, utsname.release, BUFSIZ) >= BUFSIZ) {
2404 mdoc_nmsg(mdoc, n, MANDOCERR_MEM);
2405 return(0);
2406 }
2407 #endif /*!OSNAME*/
2408 }

2410 mdoc->meta.os = mandoc_strdup(buf);
2411 return(1);
2412 }
______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/msec.in 1

**
 5106 Wed Jul 30 20:55:10 2014
new/usr/src/cmd/mandoc/msec.in
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
14 */

16 LINE("1", "User Commands")
17 LINE("1B", "BSD Compatibility Package Commands")
17 LINE("1B", "illumos/BSD Compatibility Package Commands")
18 LINE("1b", "illumos/BSD Compatibility Package Commands")
18 LINE("1C", "Communication Commands")
20 LINE("1c", "Communication Commands")
21 LINE("1F", "FMLI Commands")
22 LINE("1f", "FMLI Commands")
23 LINE("1G", "Graphics and CAD Commands")
24 LINE("1g", "Graphics and CAD Commands")
19 LINE("1HAS", "User Commands")
26 LINE("1has", "User Commands")
20 LINE("1M", "Maintenance Commands")
28 LINE("1m", "Maintenance Commands")
21 LINE("1S", "illumos Specific Commands")
30 LINE("1s", "illumos Specific Commands")
22 LINE("2", "System Calls")
23 LINE("3", "Introduction to Library Functions")
24 LINE("3BSDMALLOC", "BSD Memory Allocation Library")
33 LINE("3AIO", "Asynchronous I/O Library Functions")
34 LINE("3aio", "Asynchronous I/O Library Functions")
25 LINE("3BSM", "Security and Auditing Library Functions")
36 LINE("3bsm", "Security and Auditing Library Functions")
26 LINE("3C", "Standard C Library Functions")
27 LINE("3C++", "C++ Library Functions")
38 LINE("3c", "Standard C Library Functions")
28 LINE("3C_DB", "Threads Debugging Library Functions")
40 LINE("3C_db", "Threads Debugging Library Functions")
29 LINE("3CFGADM", "Configuration Administration Library Functions")
30 LINE("3COMMPUTIL", "Communication Protocol Parser Utilities Library Functio
42 LINE("3cfgadm", "Configuration Administration Library Functions")
43 LINE("3COMPPUTIL", "Communication Protocol Parser Utilities Library Functio
44 LINE("3compputil", "Communication Protocol Parser Utilities Library Functio
31 LINE("3CONTRACT", "Contract Management Library Functions")
46 LINE("3contract", "Contract Management Library Functions")
32 LINE("3CPC", "CPU Performance Counters Library Functions")
48 LINE("3cpc", "CPU Performance Counters Library Functions")
33 LINE("3CURSES", "Curses Library Functions")
50 LINE("3curses", "Curses Library Functions")
34 LINE("3DAT", "Direct Access Transport Library Functions")
52 LINE("3dat", "Direct Access Transport Library Functions")
35 LINE("3DEVID", "Device ID Library Functions")
54 LINE("3devid", "Device ID Library Functions")
36 LINE("3DEVINFO", "Device Information Library Functions")

new/usr/src/cmd/mandoc/msec.in 2

56 LINE("3devinfo", "Device Information Library Functions")
57 LINE("3DL", "Dynamic Linking Library Functions")
58 LINE("3dl", "Dynamic Linking Library Functions")
37 LINE("3DLPI", "Data Link Provider Interface Library Functions")
60 LINE("3dlpi", "Data Link Provider Interface Library Functions")
61 LINE("3DMI", "DMI Library Functions")
62 LINE("3dmi", "DMI Library Functions")
38 LINE("3DNS_SD", "DNS Service Discovery Library Functions")
64 LINE("3dns_sd", "DNS Service Discovery Library Functions")
39 LINE("3DOOR", "Door Library Functions")
66 LINE("3door", "Door Library Functions")
40 LINE("3ELF", "ELF Library Functions")
68 LINE("3elf", "ELF Library Functions")
41 LINE("3EXACCT", "Extended Accounting File Access Library Functions")
70 LINE("3exacct", "Extended Accounting File Access Library Functions")
42 LINE("3EXT", "Extended Library Functions")
72 LINE("3ext", "Extended Library Functions")
43 LINE("3FCOE", "FCoE Port Management Library Functions")
74 LINE("3fcoe", "FCoE Port Management Library Functions")
44 LINE("3FSTYP", "File System Type Identification Library Functions")
76 LINE("3fstyp", "File System Type Identification Library Functions")
45 LINE("3GEN", "String Pattern-Matching Library Functions")
78 LINE("3gen", "String Pattern-Matching Library Functions")
46 LINE("3GSS", "Generic Security Services API Library Functions")
80 LINE("3gss", "Generic Security Services API Library Functions")
47 LINE("3HEAD", "Headers")
82 LINE("3head", "Headers")
48 LINE("3ISCSIT", "iSCSI Management Library Functions")
84 LINE("3iscsit", "iSCSI Management Library Functions")
49 LINE("3KRB", "Kerberos Library Functions")
50 LINE("3KRB5", "MIT Kerberos 5 Library Functions")
86 LINE("3krb", "Kerberos Library Functions")
51 LINE("3KSTAT", "Kernel Statistics Library Functions")
88 LINE("3kstat", "Kernel Statistics Library Functions")
52 LINE("3KVM", "Kernel VM Library Functions")
90 LINE("3kvm", "Kernel VM Library Functions")
53 LINE("3LDAP", "LDAP Library Functions")
92 LINE("3ldap", "LDAP Library Functions")
54 LINE("3LGRP", "Locality Group Library Functions")
94 LINE("3lgrp", "Locality Group Library Functions")
55 LINE("3LIB", "Interface Libraries")
96 LINE("3lib", "Interface Libraries")
97 LINE("3LIBUCB", "illumos/BSD Compatibility Interface Libraries")
98 LINE("3libucb", "illumos/BSD Compatibility Interface Libraries")
56 LINE("3M", "Mathematical Library Functions")
100 LINE("3m", "Mathematical Library Functions")
57 LINE("3MAIL", "User Mailbox Library Functions")
102 LINE("3mail", "User Mailbox Library Functions")
58 LINE("3MALLOC", "Memory Allocation Library Functions")
104 LINE("3malloc", "Memory Allocation Library Functions")
59 LINE("3MP", "Multiple Precision Library Functions")
106 LINE("3mp", "Multiple Precision Library Functions")
60 LINE("3MPAPI", "Common Multipath Management Library Functions")
108 LINE("3mpapi", "Common Multipath Management Library Functions")
61 LINE("3NSL", "Networking Services Library Functions")
110 LINE("3nsl", "Networking Services Library Functions")
62 LINE("3NVPAIR", "Name-value Pair Library Functions")
112 LINE("3nvpair", "Name-value Pair Library Functions")
63 LINE("3PAM", "PAM Library Functions")
114 LINE("3pam", "PAM Library Functions")
64 LINE("3PAPI", "PAPI Library Functions")
116 LINE("3papi", "PAPI Library Functions")
65 LINE("3PERL", "Perl Library Functions")
118 LINE("3perl", "Perl Library Functions")
66 LINE("3PICL", "PICL Library Functions")
120 LINE("3picl", "PICL Library Functions")

new/usr/src/cmd/mandoc/msec.in 3

67 LINE("3PICLTREE", "PICL Plug-In Library Functions")
122 LINE("3picltree", "PICL Plug-In Library Functions")
123 LINE("3PLOT", "Graphics Interface Library Functions")
124 LINE("3plot", "Graphics Interface Library Functions")
68 LINE("3POOL", "Pool Configuration Manipulation Library Functions")
126 LINE("3pool", "Pool Configuration Manipulation Library Functions")
69 LINE("3PROC", "Process Control Library Functions")
128 LINE("3proc", "Process Control Library Functions")
70 LINE("3PROJECT", "Project Database Access Library Functions")
130 LINE("3project", "Project Database Access Library Functions")
71 LINE("3RAC", "Remote Asynchronous Calls Library Functions")
132 LINE("3rac", "Remote Asynchronous Calls Library Functions")
72 LINE("3RESOLV", "Resolver Library Functions")
134 LINE("3resolv", "Resolver Library Functions")
73 LINE("3RPC", "RPC Library Functions")
136 LINE("3rpc", "RPC Library Functions")
74 LINE("3RSM", "Remote Shared Memory Library Functions")
138 LINE("3rsm", "Remote Shared Memory Library Functions")
75 LINE("3RT", "Realtime Library Functions")
140 LINE("3rt", "Realtime Library Functions")
76 LINE("3SASL", "Simple Authentication Security Layer Library Functions"
142 LINE("3sasl", "Simple Authentication Security Layer Library Functions"
77 LINE("3SCF", "Service Configuration Facility Library Functions")
144 LINE("3scf", "Service Configuration Facility Library Functions")
145 LINE("3SCHED", "LWP Scheduling Library Functions")
146 LINE("3sched", "LWP Scheduling Library Functions")
78 LINE("3SEC", "File Access Control Library Functions")
148 LINE("3sec", "File Access Control Library Functions")
79 LINE("3SECDB", "Security Attributes Database Library Functions")
150 LINE("3secdb", "Security Attributes Database Library Functions")
80 LINE("3SIP", "Session Initiation Protocol Library Functions")
152 LINE("3sip", "Session Initiation Protocol Library Functions")
81 LINE("3SLP", "Service Location Protocol Library Functions")
154 LINE("3slp", "Service Location Protocol Library Functions")
155 LINE("3SNMP", "SNMP Library Functions")
156 LINE("3snmp", "SNMP Library Functions")
82 LINE("3SOCKET", "Sockets Library Functions")
158 LINE("3socket", "Sockets Library Functions")
83 LINE("3STMF", "SCSI Target Mode Framework Library Functions")
160 LINE("3stmf", "SCSI Target Mode Framework Library Functions")
84 LINE("3SYSEVENT", "System Event Library Functions")
162 LINE("3sysevent", "System Event Library Functions")
85 LINE("3TECLA", "Interactive Command-line Input Library Functions")
164 LINE("3tecla", "Interactive Command-line Input Library Functions")
165 LINE("3THR", "Threads Library Functions")
166 LINE("3thr", "Threads Library Functions")
86 LINE("3TNF", "TNF Library Functions")
168 LINE("3tnf", "TNF Library Functions")
87 LINE("3TSOL", "Trusted Extensions Library Functions")
170 LINE("3tsol", "Trusted Extensions Library Functions")
171 LINE("3UCB", "illumos/BSD Compatibility Library Functions")
172 LINE("3ucb", "illumos/BSD Compatibility Library Functions")
88 LINE("3UUID", "Universally Unique Identifier Library Functions")
174 LINE("3uuid", "Universally Unique Identifier Library Functions")
89 LINE("3VOLMGT", "Volume Management Library Functions")
176 LINE("3volmgt", "Volume Management Library Functions")
90 LINE("3XCURSES", "X/Open Curses Library Functions")
178 LINE("3xcurses", "X/Open Curses Library Functions")
179 LINE("3XFN", "XFN Interface Library Functions")
180 LINE("3xfn", "XFN Interface Library Functions")
91 LINE("3XNET", "X/Open Networking Services Library Functions")
182 LINE("3xnet", "X/Open Networking Services Library Functions")
183 LINE("3B", "illumos/BSD Compatibility Library Functions")
184 LINE("3b", "illumos/BSD Compatibility Library Functions")
185 LINE("3E", "C Library Functions")
186 LINE("3e", "C Library Functions")

new/usr/src/cmd/mandoc/msec.in 4

92 LINE("3F", "Fortran Library Routines")
188 LINE("3f", "Fortran Library Routines")
189 LINE("3G", "C Library Functions")
190 LINE("3g", "C Library Functions")
191 LINE("3K", "Kernel VM Library Functions")
192 LINE("3k", "Kernel VM Library Functions")
193 LINE("3L", "Lightweight Processes Library")
194 LINE("3l", "Lightweight Processes Library")
195 LINE("3N", "Network Functions")
196 LINE("3n", "Network Functions")
197 LINE("3R", "Realtime Library")
198 LINE("3r", "Realtime Library")
199 LINE("3S", "Standard I/O Functions")
200 LINE("3s", "Standard I/O Functions")
201 LINE("3T", "Threads Library")
202 LINE("3t", "Threads Library")
203 LINE("3W", "C Library Functions")
204 LINE("3w", "C Library Functions")
93 LINE("3X", "Miscellaneous Library Functions")
206 LINE("3x", "Miscellaneous Library Functions")
207 LINE("3XC", "X/Open Curses Library Functions")
208 LINE("3xc", "X/Open Curses Library Functions")
209 LINE("3XN", "X/Open Networking Services Library Functions")
210 LINE("3xn", "X/Open Networking Services Library Functions")
94 LINE("4", "File Formats")
212 LINE("4B", "illumos/BSD Compatibility Package File Formats")
213 LINE("4b", "illumos/BSD Compatibility Package File Formats")
95 LINE("5", "Standards, Environments, and Macros")
96 LINE("6", "Games and Demos")
97 LINE("7", "Device and Network Interfaces")
217 LINE("7B", "illumos/BSD Compatibility Special Files")
218 LINE("7b", "illumos/BSD Compatibility Special Files")
98 LINE("7D", "Devices")
220 LINE("7d", "Devices")
99 LINE("7FS", "File Systems")
222 LINE("7fs", "File Systems")
100 LINE("7I", "Ioctl Requests")
224 LINE("7i", "Ioctl Requests")
101 LINE("7IPP", "IP Quality of Service Modules")
226 LINE("7ipp", "IP Quality of Service Modules")
102 LINE("7M", "STREAMS Modules")
228 LINE("7m", "STREAMS Modules")
103 LINE("7P", "Protocols")
230 LINE("7p", "Protocols")
104 LINE("8", "Maintenance Procedures")
232 LINE("8C", "Maintenance Procedures")
233 LINE("8c", "Maintenance Procedures")
234 LINE("8S", "Maintenance Procedures")
235 LINE("8s", "Maintenance Procedures")
105 LINE("9", "Device Driver Interfaces")
106 LINE("9E", "Driver Entry Points")
238 LINE("9e", "Driver Entry Points")
107 LINE("9F", "Kernel Functions for Drivers")
240 LINE("9f", "Kernel Functions for Drivers")
108 LINE("9P", "Kernel Properties for Drivers")
242 LINE("9p", "Kernel Properties for Drivers")
109 LINE("9S", "Data Structures for Drivers")
244 LINE("9s", "Data Structures for Drivers")

new/usr/src/cmd/mandoc/out.c 1

**
 6210 Wed Jul 30 20:55:11 2014
new/usr/src/cmd/mandoc/out.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: out.c,v 1.46 2013/10/05 20:30:05 schwarze Exp $ */
1 /* $Id: out.c,v 1.43 2011/09/20 23:05:49 schwarze Exp $ */
2 /*
3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2011 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <sys/types.h>

24 #include <assert.h>
25 #include <ctype.h>
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <time.h>

31 #include "mandoc.h"
32 #include "out.h"

34 static void tblcalc_data(struct rofftbl *, struct roffcol *,
35 const struct tbl_opts *, const struct tbl_dat *);
35 const struct tbl *, const struct tbl_dat *);
36 static void tblcalc_literal(struct rofftbl *, struct roffcol *,
37 const struct tbl_dat *);
38 static void tblcalc_number(struct rofftbl *, struct roffcol *,
39 const struct tbl_opts *, const struct tbl_dat *);
39 const struct tbl *, const struct tbl_dat *);

41 /*
42 * Convert a ‘scaling unit’ to a consistent form, or fail. Scaling
43 * units are documented in groff.7, mdoc.7, man.7.
44 */
45 int
46 a2roffsu(const char *src, struct roffsu *dst, enum roffscale def)
47 {
48 char buf[BUFSIZ], hasd;
49 int i;
50 enum roffscale unit;

52 if (’\0’ == *src)
53 return(0);

55 i = hasd = 0;

new/usr/src/cmd/mandoc/out.c 2

57 switch (*src) {
58 case (’+’):
59 src++;
60 break;
61 case (’-’):
62 buf[i++] = *src++;
63 break;
64 default:
65 break;
66 }

68 if (’\0’ == *src)
69 return(0);

71 while (i < BUFSIZ) {
72 if (! isdigit((unsigned char)*src)) {
73 if (’.’ != *src)
74 break;
75 else if (hasd)
76 break;
77 else
78 hasd = 1;
79 }
80 buf[i++] = *src++;
81 }

83 if (BUFSIZ == i || (*src && *(src + 1)))
84 return(0);

86 buf[i] = ’\0’;

88 switch (*src) {
89 case (’c’):
90 unit = SCALE_CM;
91 break;
92 case (’i’):
93 unit = SCALE_IN;
94 break;
95 case (’P’):
96 unit = SCALE_PC;
97 break;
98 case (’p’):
99 unit = SCALE_PT;
100 break;
101 case (’f’):
102 unit = SCALE_FS;
103 break;
104 case (’v’):
105 unit = SCALE_VS;
106 break;
107 case (’m’):
108 unit = SCALE_EM;
109 break;
110 case (’\0’):
111 if (SCALE_MAX == def)
112 return(0);
113 unit = SCALE_BU;
114 break;
115 case (’u’):
116 unit = SCALE_BU;
117 break;
118 case (’M’):
119 unit = SCALE_MM;
120 break;
121 case (’n’):
122 unit = SCALE_EN;

new/usr/src/cmd/mandoc/out.c 3

123 break;
124 default:
125 return(0);
126 }

128 /* FIXME: do this in the caller. */
129 if ((dst->scale = atof(buf)) < 0)
130 dst->scale = 0;
131 dst->unit = unit;
132 return(1);
133 }

135 /*
136 * Calculate the abstract widths and decimal positions of columns in a
137 * table. This routine allocates the columns structures then runs over
138 * all rows and cells in the table. The function pointers in "tbl" are
139 * used for the actual width calculations.
140 */
141 void
142 tblcalc(struct rofftbl *tbl, const struct tbl_span *sp)
143 {
144 const struct tbl_dat *dp;
145 const struct tbl_head *hp;
145 struct roffcol *col;
146 int spans;

148 /*
149 * Allocate the master column specifiers. These will hold the
150 * widths and decimal positions for all cells in the column. It
151 * must be freed and nullified by the caller.
152 */

154 assert(NULL == tbl->cols);
155 tbl->cols = mandoc_calloc
156 ((size_t)sp->opts->cols, sizeof(struct roffcol));
157 ((size_t)sp->tbl->cols, sizeof(struct roffcol));

159 hp = sp->head;

158 for (; sp; sp = sp->next) {
159 if (TBL_SPAN_DATA != sp->pos)
160 continue;
161 spans = 1;
162 /*
163 * Account for the data cells in the layout, matching it
164 * to data cells in the data section.
165 */
166 for (dp = sp->first; dp; dp = dp->next) {
167 /* Do not used spanned cells in the calculation. */
168 if (0 < --spans)
169 continue;
170 spans = dp->spans;
171 if (1 < spans)
172 continue;
173 assert(dp->layout);
174 col = &tbl->cols[dp->layout->head->ident];
175 tblcalc_data(tbl, col, sp->opts, dp);
178 tblcalc_data(tbl, col, sp->tbl, dp);
176 }
177 }

182 /*
183 * Calculate width of the spanners. These get one space for a
184 * vertical line, two for a double-vertical line.
185 */

new/usr/src/cmd/mandoc/out.c 4

187 for (; hp; hp = hp->next) {
188 col = &tbl->cols[hp->ident];
189 switch (hp->pos) {
190 case (TBL_HEAD_VERT):
191 col->width = (*tbl->len)(1, tbl->arg);
192 break;
193 case (TBL_HEAD_DVERT):
194 col->width = (*tbl->len)(2, tbl->arg);
195 break;
196 default:
197 break;
198 }
199 }
178 }

180 static void
181 tblcalc_data(struct rofftbl *tbl, struct roffcol *col,
182 const struct tbl_opts *opts, const struct tbl_dat *dp)
204 const struct tbl *tp, const struct tbl_dat *dp)
183 {
184 size_t sz;

186 /* Branch down into data sub-types. */

188 switch (dp->layout->pos) {
189 case (TBL_CELL_HORIZ):
190 /* FALLTHROUGH */
191 case (TBL_CELL_DHORIZ):
192 sz = (*tbl->len)(1, tbl->arg);
193 if (col->width < sz)
194 col->width = sz;
195 break;
196 case (TBL_CELL_LONG):
197 /* FALLTHROUGH */
198 case (TBL_CELL_CENTRE):
199 /* FALLTHROUGH */
200 case (TBL_CELL_LEFT):
201 /* FALLTHROUGH */
202 case (TBL_CELL_RIGHT):
203 tblcalc_literal(tbl, col, dp);
204 break;
205 case (TBL_CELL_NUMBER):
206 tblcalc_number(tbl, col, opts, dp);
228 tblcalc_number(tbl, col, tp, dp);
207 break;
208 case (TBL_CELL_DOWN):
209 break;
210 default:
211 abort();
212 /* NOTREACHED */
213 }
214 }

______unchanged_portion_omitted_

230 static void
231 tblcalc_number(struct rofftbl *tbl, struct roffcol *col,
232 const struct tbl_opts *opts, const struct tbl_dat *dp)
254 const struct tbl *tp, const struct tbl_dat *dp)
233 {
234 int i;
235 size_t sz, psz, ssz, d;
236 const char *str;
237 char *cp;
238 char buf[2];

240 /*

new/usr/src/cmd/mandoc/out.c 5

241 * First calculate number width and decimal place (last + 1 for
242 * non-decimal numbers). If the stored decimal is subsequent to
243 * ours, make our size longer by that difference
244 * (right-"shifting"); similarly, if ours is subsequent the
245 * stored, then extend the stored size by the difference.
246 * Finally, re-assign the stored values.
247 */

249 str = dp->string ? dp->string : "";
250 sz = (*tbl->slen)(str, tbl->arg);

252 /* FIXME: TBL_DATA_HORIZ et al.? */

254 buf[0] = opts->decimal;
276 buf[0] = tp->decimal;
255 buf[1] = ’\0’;

257 psz = (*tbl->slen)(buf, tbl->arg);

259 if (NULL != (cp = strrchr(str, opts->decimal))) {
281 if (NULL != (cp = strrchr(str, tp->decimal))) {
260 buf[1] = ’\0’;
261 for (ssz = 0, i = 0; cp != &str[i]; i++) {
262 buf[0] = str[i];
263 ssz += (*tbl->slen)(buf, tbl->arg);
264 }
265 d = ssz + psz;
266 } else
267 d = sz + psz;

269 /* Adjust the settings for this column. */

271 if (col->decimal > d) {
272 sz += col->decimal - d;
273 d = col->decimal;
274 } else
275 col->width += d - col->decimal;

277 if (sz > col->width)
278 col->width = sz;
279 if (d > col->decimal)
280 col->decimal = d;
281 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/preconv.c 1

**
 10314 Wed Jul 30 20:55:11 2014
new/usr/src/cmd/mandoc/preconv.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: preconv.c,v 1.6 2013/06/02 03:52:21 schwarze Exp $ */
1 /* $Id: preconv.c,v 1.5 2011/07/24 18:15:14 kristaps Exp $ */
2 /*
3 * Copyright (c) 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17 #ifdef HAVE_CONFIG_H
18 #include "config.h"
19 #endif

21 #ifdef HAVE_MMAP
22 #include <sys/stat.h>
23 #include <sys/mman.h>
24 #endif

26 #include <assert.h>
27 #include <fcntl.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <unistd.h>

33 /*
34 * The read_whole_file() and resize_buf() functions are copied from
35 * read.c, including all dependency code.
35 * read.c, including all dependency code (MAP_FILE, etc.).
36 */

38 #ifndef MAP_FILE
39 #define MAP_FILE 0
40 #endif

38 enum enc {
39 ENC_UTF_8, /* UTF-8 */
40 ENC_US_ASCII, /* US-ASCII */
41 ENC_LATIN_1, /* Latin-1 */
42 ENC__MAX
43 };

______unchanged_portion_omitted_

241 static int
242 read_whole_file(const char *f, int fd,
243 struct buf *fb, int *with_mmap)
244 {
245 size_t off;
246 ssize_t ssz;

248 #ifdef HAVE_MMAP

new/usr/src/cmd/mandoc/preconv.c 2

249 struct stat st;
250 if (-1 == fstat(fd, &st)) {
251 perror(f);
252 return(0);
253 }

255 /*
256 * If we’re a regular file, try just reading in the whole entry
257 * via mmap(). This is faster than reading it into blocks, and
258 * since each file is only a few bytes to begin with, I’m not
259 * concerned that this is going to tank any machines.
260 */

262 if (S_ISREG(st.st_mode) && st.st_size >= (1U << 31)) {
263 fprintf(stderr, "%s: input too large\n", f);
264 return(0);
265 }
266
267 if (S_ISREG(st.st_mode)) {
268 *with_mmap = 1;
269 fb->sz = (size_t)st.st_size;
270 fb->buf = mmap(NULL, fb->sz, PROT_READ, MAP_SHARED, fd, 0);
274 fb->buf = mmap(NULL, fb->sz, PROT_READ,
275 MAP_FILE|MAP_SHARED, fd, 0);
271 if (fb->buf != MAP_FAILED)
272 return(1);
273 }
274 #endif

276 /*
277 * If this isn’t a regular file (like, say, stdin), then we must
278 * go the old way and just read things in bit by bit.
279 */

281 *with_mmap = 0;
282 off = 0;
283 fb->sz = 0;
284 fb->buf = NULL;
285 for (;;) {
286 if (off == fb->sz && fb->sz == (1U << 31)) {
287 fprintf(stderr, "%s: input too large\n", f);
288 break;
289 }
290
291 if (off == fb->sz)
292 resize_buf(fb, 65536);

294 ssz = read(fd, fb->buf + (int)off, fb->sz - off);
295 if (ssz == 0) {
296 fb->sz = off;
297 return(1);
298 }
299 if (ssz == -1) {
300 perror(f);
301 break;
302 }
303 off += (size_t)ssz;
304 }

306 free(fb->buf);
307 fb->buf = NULL;
308 return(0);
309 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/predefs.in 1

**
 2099 Wed Jul 30 20:55:11 2014
new/usr/src/cmd/mandoc/predefs.in
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: predefs.in,v 1.4 2012/07/18 10:39:19 schwarze Exp $ */
1 /* $Id: predefs.in,v 1.3 2011/07/31 11:36:49 schwarze Exp $ */
2 /*
3 * Copyright (c) 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */

18 /*
19 * The predefined-string translation tables. Each corresponds to a
20 * predefined strings from (e.g.) tmac/mdoc/doc-nroff. The left-hand
21 * side corresponds to the input sequence (*x, *(xx and so on). The
22 * right-hand side is what’s produced by libroff.
23 *
24 * XXX - C-escape strings!
25 * XXX - update PREDEF_MAX in roff.c if adding more!
26 */

28 PREDEF("Am", "&")
29 PREDEF("Ba", "\\fR|\\fP")
29 PREDEF("Ba", "|")
30 PREDEF("Ge", "\\(>=")
31 PREDEF("Gt", ">")
32 PREDEF("If", "infinity")
33 PREDEF("Le", "\\(<=")
34 PREDEF("Lq", "\\(lq")
35 PREDEF("Lt", "<")
36 PREDEF("Na", "NaN")
37 PREDEF("Ne", "\\(!=")
38 PREDEF("Pi", "pi")
39 PREDEF("Pm", "\\(+-")
40 PREDEF("Rq", "\\(rq")
41 PREDEF("left-bracket", "[")
42 PREDEF("left-parenthesis", "(")
43 PREDEF("lp", "(")
44 PREDEF("left-singlequote", "\\(oq")
45 PREDEF("q", "\\(dq")
46 PREDEF("quote-left", "\\(oq")
47 PREDEF("quote-right", "\\(cq")
48 PREDEF("R", "\\(rg")
49 PREDEF("right-bracket", "]")
50 PREDEF("right-parenthesis", ")")
51 PREDEF("rp", ")")
52 PREDEF("right-singlequote", "\\(cq")
53 PREDEF("Tm", "(Tm)")
54 PREDEF("Px", "POSIX")
55 PREDEF("Ai", "ANSI")
56 PREDEF("\’", "\\\’")
57 PREDEF("aa", "\\(aa")

new/usr/src/cmd/mandoc/predefs.in 2

58 PREDEF("ga", "\\(ga")
59 PREDEF("‘", "\\‘")
60 PREDEF("lq", "\\(lq")
61 PREDEF("rq", "\\(rq")
62 PREDEF("ua", "\\(ua")
63 PREDEF("va", "\\(va")
64 PREDEF("<=", "\\(<=")
65 PREDEF(">=", "\\(>=")

new/usr/src/cmd/mandoc/read.c 1

**
 19844 Wed Jul 30 20:55:11 2014
new/usr/src/cmd/mandoc/read.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: read.c,v 1.39 2013/09/16 00:25:07 schwarze Exp $ */
1 /* $Id: read.c,v 1.28 2012/02/16 20:51:31 joerg Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2010, 2011, 2012, 2013 Ingo Schwarze <schwarze@openbsd.org>
4 * Copyright (c) 2010, 2011 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #ifdef HAVE_MMAP
23 # include <sys/stat.h>
24 # include <sys/mman.h>
25 #endif

27 #include <assert.h>
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include <stdarg.h>
31 #include <stdint.h>
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include <unistd.h>

37 #include "mandoc.h"
38 #include "libmandoc.h"
39 #include "mdoc.h"
40 #include "man.h"
41 #include "main.h"

43 #ifndef MAP_FILE
44 #define MAP_FILE 0
45 #endif

43 #define REPARSE_LIMIT 1000

45 struct buf {
46 char *buf; /* binary input buffer */
47 size_t sz; /* size of binary buffer */
48 };

50 struct mparse {
51 enum mandoclevel file_status; /* status of current parse */
52 enum mandoclevel wlevel; /* ignore messages below this */
53 int line; /* line number in the file */

new/usr/src/cmd/mandoc/read.c 2

54 enum mparset inttype; /* which parser to use */
55 struct man *pman; /* persistent man parser */
56 struct mdoc *pmdoc; /* persistent mdoc parser */
57 struct man *man; /* man parser */
58 struct mdoc *mdoc; /* mdoc parser */
59 struct roff *roff; /* roff parser (!NULL) */
60 int reparse_count; /* finite interp. stack */
61 mandocmsg mmsg; /* warning/error message handler */
62 void *arg; /* argument to mmsg */
63 const char *file;
64 struct buf *secondary;
65 char *defos; /* default operating system */
66 };

68 static void resize_buf(struct buf *, size_t);
69 static void mparse_buf_r(struct mparse *, struct buf, int);
73 static void mparse_readfd_r(struct mparse *, int, const char *, int);
70 static void pset(const char *, int, struct mparse *);
71 static int read_whole_file(const char *, int, struct buf *, int *);
72 static void mparse_end(struct mparse *);
73 static void mparse_parse_buffer(struct mparse *, struct buf,
74 const char *);

76 static const enum mandocerr mandoclimits[MANDOCLEVEL_MAX] = {
77 MANDOCERR_OK,
78 MANDOCERR_WARNING,
79 MANDOCERR_WARNING,
80 MANDOCERR_ERROR,
81 MANDOCERR_FATAL,
82 MANDOCERR_MAX,
83 MANDOCERR_MAX
84 };

86 static const char * const mandocerrs[MANDOCERR_MAX] = {
87 "ok",

89 "generic warning",

91 /* related to the prologue */
92 "no title in document",
93 "document title should be all caps",
94 "unknown manual section",
95 "unknown manual volume or arch",
96 "date missing, using today’s date",
97 "cannot parse date, using it verbatim",
98 "prologue macros out of order",
99 "duplicate prologue macro",
100 "macro not allowed in prologue",
101 "macro not allowed in body",

103 /* related to document structure */
104 ".so is fragile, better use ln(1)",
105 "NAME section must come first",
106 "bad NAME section contents",
108 "manual name not yet set",
107 "sections out of conventional order",
108 "duplicate section name",
109 "section header suited to sections 2, 3, and 9 only",
111 "section not in conventional manual section",

111 /* related to macros and nesting */
112 "skipping obsolete macro",
113 "skipping paragraph macro",
114 "moving paragraph macro out of list",
115 "skipping no-space macro",
116 "blocks badly nested",

new/usr/src/cmd/mandoc/read.c 3

117 "child violates parent syntax",
118 "nested displays are not portable",
119 "already in literal mode",
120 "line scope broken",

122 /* related to missing macro arguments */
123 "skipping empty macro",
124 "argument count wrong",
125 "missing display type",
126 "list type must come first",
127 "tag lists require a width argument",
128 "missing font type",
129 "skipping end of block that is not open",

131 /* related to bad macro arguments */
132 "skipping argument",
133 "duplicate argument",
134 "duplicate display type",
135 "duplicate list type",
136 "unknown AT&T UNIX version",
137 "bad Boolean value",
138 "unknown font",
139 "unknown standard specifier",
140 "bad width argument",

142 /* related to plain text */
143 "blank line in non-literal context",
144 "tab in non-literal context",
145 "end of line whitespace",
146 "bad comment style",
147 "bad escape sequence",
148 "unterminated quoted string",

150 /* related to equations */
151 "unexpected literal in equation",
152
153 "generic error",

155 /* related to equations */
156 "unexpected equation scope closure",
157 "equation scope open on exit",
158 "overlapping equation scopes",
159 "unexpected end of equation",
160 "equation syntax error",

162 /* related to tables */
163 "bad table syntax",
164 "bad table option",
165 "bad table layout",
166 "no table layout cells specified",
167 "no table data cells specified",
168 "ignore data in cell",
169 "data block still open",
170 "ignoring extra data cells",

172 "input stack limit exceeded, infinite loop?",
173 "skipping bad character",
174 "escaped character not allowed in a name",
175 "manual name not yet set",
176 "skipping text before the first section header",
177 "skipping unknown macro",
178 "NOT IMPLEMENTED, please use groff: skipping request",
179 "argument count wrong",
180 "skipping column outside column list",
181 "skipping end of block that is not open",
182 "missing end of block",

new/usr/src/cmd/mandoc/read.c 4

183 "scope open on exit",
184 "uname(3) system call failed",
185 "macro requires line argument(s)",
186 "macro requires body argument(s)",
187 "macro requires argument(s)",
188 "request requires a numeric argument",
189 "missing list type",
190 "line argument(s) will be lost",
191 "body argument(s) will be lost",

193 "generic fatal error",

195 "not a manual",
196 "column syntax is inconsistent",
197 "NOT IMPLEMENTED: .Bd -file",
198 "argument count wrong, violates syntax",
199 "child violates parent syntax",
200 "argument count wrong, violates syntax",
201 "NOT IMPLEMENTED: .so with absolute path or \"..\"",
202 "no document body",
203 "no document prologue",
204 "static buffer exhausted",
205 };

______unchanged_portion_omitted_

225 static void
226 pset(const char *buf, int pos, struct mparse *curp)
227 {
228 int i;

230 /*
231 * Try to intuit which kind of manual parser should be used. If
232 * passed in by command-line (-man, -mdoc), then use that
233 * explicitly. If passed as -mandoc, then try to guess from the
234 * line: either skip dot-lines, use -mdoc when finding ‘.Dt’, or
235 * default to -man, which is more lenient.
236 *
237 * Separate out pmdoc/pman from mdoc/man: the first persists
238 * through all parsers, while the latter is used per-parse.
239 */

241 if (’.’ == buf[0] || ’\’’ == buf[0]) {
242 for (i = 1; buf[i]; i++)
243 if (’ ’ != buf[i] && ’\t’ != buf[i])
244 break;
245 if (’\0’ == buf[i])
246 return;
247 }

249 switch (curp->inttype) {
250 case (MPARSE_MDOC):
251 if (NULL == curp->pmdoc)
252 curp->pmdoc = mdoc_alloc(curp->roff, curp,
253 curp->defos);
250 curp->pmdoc = mdoc_alloc(curp->roff, curp);
254 assert(curp->pmdoc);
255 curp->mdoc = curp->pmdoc;
256 return;
257 case (MPARSE_MAN):
258 if (NULL == curp->pman)
259 curp->pman = man_alloc(curp->roff, curp);
260 assert(curp->pman);
261 curp->man = curp->pman;
262 return;
263 default:
264 break;

new/usr/src/cmd/mandoc/read.c 5

265 }

267 if (pos >= 3 && 0 == memcmp(buf, ".Dd", 3)) {
268 if (NULL == curp->pmdoc)
269 curp->pmdoc = mdoc_alloc(curp->roff, curp,
270 curp->defos);
266 curp->pmdoc = mdoc_alloc(curp->roff, curp);
271 assert(curp->pmdoc);
272 curp->mdoc = curp->pmdoc;
273 return;
274 }

276 if (NULL == curp->pman)
277 curp->pman = man_alloc(curp->roff, curp);
278 assert(curp->pman);
279 curp->man = curp->pman;
280 }

282 /*
283 * Main parse routine for an opened file. This is called for each
284 * opened file and simply loops around the full input file, possibly
285 * nesting (i.e., with ‘so’).
286 */
287 static void
288 mparse_buf_r(struct mparse *curp, struct buf blk, int start)
289 {
290 const struct tbl_span *span;
291 struct buf ln;
292 enum rofferr rr;
293 int i, of, rc;
294 int pos; /* byte number in the ln buffer */
295 int lnn; /* line number in the real file */
296 unsigned char c;

298 memset(&ln, 0, sizeof(struct buf));

300 lnn = curp->line;
301 pos = 0;

303 for (i = 0; i < (int)blk.sz;) {
304 if (0 == pos && ’\0’ == blk.buf[i])
305 break;

307 if (start) {
308 curp->line = lnn;
309 curp->reparse_count = 0;
310 }

312 while (i < (int)blk.sz && (start || ’\0’ != blk.buf[i])) {

314 /*
315 * When finding an unescaped newline character,
316 * leave the character loop to process the line.
317 * Skip a preceding carriage return, if any.
318 */

320 if (’\r’ == blk.buf[i] && i + 1 < (int)blk.sz &&
321 ’\n’ == blk.buf[i + 1])
322 ++i;
323 if (’\n’ == blk.buf[i]) {
324 ++i;
325 ++lnn;
326 break;
327 }

329 /*

new/usr/src/cmd/mandoc/read.c 6

330 * Make sure we have space for at least
331 * one backslash and one other character
332 * and the trailing NUL byte.
333 */

335 if (pos + 2 >= (int)ln.sz)
336 resize_buf(&ln, 256);

338 /*
339 * Warn about bogus characters. If you’re using
340 * non-ASCII encoding, you’re screwing your
341 * readers. Since I’d rather this not happen,
342 * I’ll be helpful and replace these characters
343 * with "?", so we don’t display gibberish.
344 * Note to manual writers: use special characters.
345 */

347 c = (unsigned char) blk.buf[i];

349 if (! (isascii(c) &&
350 (isgraph(c) || isblank(c)))) {
351 mandoc_msg(MANDOCERR_BADCHAR, curp,
352 curp->line, pos, NULL);
353 i++;
341 if (pos >= (int)ln.sz)
342 resize_buf(&ln, 256);
354 ln.buf[pos++] = ’?’;
355 continue;
356 }

358 /* Trailing backslash = a plain char. */

360 if (’\\’ != blk.buf[i] || i + 1 == (int)blk.sz) {
350 if (pos >= (int)ln.sz)
351 resize_buf(&ln, 256);
361 ln.buf[pos++] = blk.buf[i++];
362 continue;
363 }

365 /*
366 * Found escape and at least one other character.
367 * When it’s a newline character, skip it.
368 * When there is a carriage return in between,
369 * skip that one as well.
370 */

372 if (’\r’ == blk.buf[i + 1] && i + 2 < (int)blk.sz &&
373 ’\n’ == blk.buf[i + 2])
374 ++i;
375 if (’\n’ == blk.buf[i + 1]) {
376 i += 2;
377 ++lnn;
378 continue;
379 }

381 if (’"’ == blk.buf[i + 1] || ’#’ == blk.buf[i + 1]) {
382 i += 2;
383 /* Comment, skip to end of line */
384 for (; i < (int)blk.sz; ++i) {
385 if (’\n’ == blk.buf[i]) {
386 ++i;
387 ++lnn;
388 break;
389 }
390 }

new/usr/src/cmd/mandoc/read.c 7

392 /* Backout trailing whitespaces */
393 for (; pos > 0; --pos) {
394 if (ln.buf[pos - 1] != ’ ’)
395 break;
396 if (pos > 2 && ln.buf[pos - 2] == ’\\’)
397 break;
398 }
399 break;
400 }

402 /* Catch escaped bogus characters. */

404 c = (unsigned char) blk.buf[i+1];

406 if (! (isascii(c) &&
407 (isgraph(c) || isblank(c)))) {
408 mandoc_msg(MANDOCERR_BADCHAR, curp,
409 curp->line, pos, NULL);
410 i += 2;
411 ln.buf[pos++] = ’?’;
412 continue;
413 }

415 /* Some other escape sequence, copy & cont. */

395 if (pos + 1 >= (int)ln.sz)
396 resize_buf(&ln, 256);

417 ln.buf[pos++] = blk.buf[i++];
418 ln.buf[pos++] = blk.buf[i++];
419 }

421 if (pos >= (int)ln.sz)
422 resize_buf(&ln, 256);

424 ln.buf[pos] = ’\0’;

426 /*
427 * A significant amount of complexity is contained by
428 * the roff preprocessor. It’s line-oriented but can be
429 * expressed on one line, so we need at times to
430 * readjust our starting point and re-run it. The roff
431 * preprocessor can also readjust the buffers with new
432 * data, so we pass them in wholesale.
433 */

435 of = 0;

437 /*
438 * Maintain a lookaside buffer of all parsed lines. We
439 * only do this if mparse_keep() has been invoked (the
440 * buffer may be accessed with mparse_getkeep()).
441 */

443 if (curp->secondary) {
444 curp->secondary->buf =
445 mandoc_realloc
446 (curp->secondary->buf,
447 curp->secondary->sz + pos + 2);
448 memcpy(curp->secondary->buf +
449 curp->secondary->sz,
450 ln.buf, pos);
451 curp->secondary->sz += pos;
452 curp->secondary->buf
453 [curp->secondary->sz] = ’\n’;
454 curp->secondary->sz++;

new/usr/src/cmd/mandoc/read.c 8

455 curp->secondary->buf
456 [curp->secondary->sz] = ’\0’;
457 }
458 rerun:
459 rr = roff_parseln
460 (curp->roff, curp->line,
461 &ln.buf, &ln.sz, of, &of);

463 switch (rr) {
464 case (ROFF_REPARSE):
465 if (REPARSE_LIMIT >= ++curp->reparse_count)
466 mparse_buf_r(curp, ln, 0);
467 else
468 mandoc_msg(MANDOCERR_ROFFLOOP, curp,
469 curp->line, pos, NULL);
470 pos = 0;
471 continue;
472 case (ROFF_APPEND):
473 pos = (int)strlen(ln.buf);
474 continue;
475 case (ROFF_RERUN):
476 goto rerun;
477 case (ROFF_IGN):
478 pos = 0;
479 continue;
480 case (ROFF_ERR):
481 assert(MANDOCLEVEL_FATAL <= curp->file_status);
482 break;
483 case (ROFF_SO):
484 /*
485 * We remove ‘so’ clauses from our lookaside
486 * buffer because we’re going to descend into
487 * the file recursively.
488 */
489 if (curp->secondary)
490 curp->secondary->sz -= pos + 1;
491 mparse_readfd(curp, -1, ln.buf + of);
472 mparse_readfd_r(curp, -1, ln.buf + of, 1);
492 if (MANDOCLEVEL_FATAL <= curp->file_status)
493 break;
494 pos = 0;
495 continue;
496 default:
497 break;
498 }

500 /*
501 * If we encounter errors in the recursive parse, make
502 * sure we don’t continue parsing.
503 */

505 if (MANDOCLEVEL_FATAL <= curp->file_status)
506 break;

508 /*
509 * If input parsers have not been allocated, do so now.
510 * We keep these instanced between parsers, but set them
511 * locally per parse routine since we can use different
512 * parsers with each one.
513 */

515 if (! (curp->man || curp->mdoc))
516 pset(ln.buf + of, pos - of, curp);

518 /*
519 * Lastly, push down into the parsers themselves. One

new/usr/src/cmd/mandoc/read.c 9

520 * of these will have already been set in the pset()
521 * routine.
522 * If libroff returns ROFF_TBL, then add it to the
523 * currently open parse. Since we only get here if
524 * there does exist data (see tbl_data.c), we’re
525 * guaranteed that something’s been allocated.
526 * Do the same for ROFF_EQN.
527 */

529 rc = -1;

531 if (ROFF_TBL == rr)
532 while (NULL != (span = roff_span(curp->roff))) {
533 rc = curp->man ?
534 man_addspan(curp->man, span) :
535 mdoc_addspan(curp->mdoc, span);
536 if (0 == rc)
537 break;
538 }
539 else if (ROFF_EQN == rr)
540 rc = curp->mdoc ?
541 mdoc_addeqn(curp->mdoc,
542 roff_eqn(curp->roff)) :
543 man_addeqn(curp->man,
544 roff_eqn(curp->roff));
545 else if (curp->man || curp->mdoc)
546 rc = curp->man ?
547 man_parseln(curp->man,
548 curp->line, ln.buf, of) :
549 mdoc_parseln(curp->mdoc,
550 curp->line, ln.buf, of);

552 if (0 == rc) {
553 assert(MANDOCLEVEL_FATAL <= curp->file_status);
554 break;
555 }

557 /* Temporary buffers typically are not full. */

559 if (0 == start && ’\0’ == blk.buf[i])
560 break;

562 /* Start the next input line. */

564 pos = 0;
565 }

567 free(ln.buf);
568 }

570 static int
571 read_whole_file(const char *file, int fd, struct buf *fb, int *with_mmap)
572 {
573 size_t off;
574 ssize_t ssz;

576 #ifdef HAVE_MMAP
577 struct stat st;
578 if (-1 == fstat(fd, &st)) {
579 perror(file);
580 return(0);
581 }

583 /*
584 * If we’re a regular file, try just reading in the whole entry
585 * via mmap(). This is faster than reading it into blocks, and

new/usr/src/cmd/mandoc/read.c 10

586 * since each file is only a few bytes to begin with, I’m not
587 * concerned that this is going to tank any machines.
588 */

590 if (S_ISREG(st.st_mode)) {
591 if (st.st_size >= (1U << 31)) {
592 fprintf(stderr, "%s: input too large\n", file);
593 return(0);
594 }
595 *with_mmap = 1;
596 fb->sz = (size_t)st.st_size;
597 fb->buf = mmap(NULL, fb->sz, PROT_READ, MAP_SHARED, fd, 0);
578 fb->buf = mmap(NULL, fb->sz, PROT_READ,
579 MAP_FILE|MAP_SHARED, fd, 0);
598 if (fb->buf != MAP_FAILED)
599 return(1);
600 }
601 #endif

603 /*
604 * If this isn’t a regular file (like, say, stdin), then we must
605 * go the old way and just read things in bit by bit.
606 */

608 *with_mmap = 0;
609 off = 0;
610 fb->sz = 0;
611 fb->buf = NULL;
612 for (;;) {
613 if (off == fb->sz) {
614 if (fb->sz == (1U << 31)) {
615 fprintf(stderr, "%s: input too large\n", file);
616 break;
617 }
618 resize_buf(fb, 65536);
619 }
620 ssz = read(fd, fb->buf + (int)off, fb->sz - off);
621 if (ssz == 0) {
622 fb->sz = off;
623 return(1);
624 }
625 if (ssz == -1) {
626 perror(file);
627 break;
628 }
629 off += (size_t)ssz;
630 }

632 free(fb->buf);
633 fb->buf = NULL;
634 return(0);
635 }

______unchanged_portion_omitted_

663 static void
664 mparse_parse_buffer(struct mparse *curp, struct buf blk, const char *file)
646 mparse_parse_buffer(struct mparse *curp, struct buf blk, const char *file,
647 int re)
665 {
666 const char *svfile;
667 static int recursion_depth;

669 if (64 < recursion_depth) {
670 mandoc_msg(MANDOCERR_ROFFLOOP, curp, curp->line, 0, NULL);
671 return;
672 }

new/usr/src/cmd/mandoc/read.c 11

674 /* Line number is per-file. */
675 svfile = curp->file;
676 curp->file = file;
677 curp->line = 1;
678 recursion_depth++;

680 mparse_buf_r(curp, blk, 1);

682 if (0 == --recursion_depth && MANDOCLEVEL_FATAL > curp->file_status)
658 if (0 == re && MANDOCLEVEL_FATAL > curp->file_status)
683 mparse_end(curp);

685 curp->file = svfile;
686 }

688 enum mandoclevel
689 mparse_readmem(struct mparse *curp, const void *buf, size_t len,
690 const char *file)
691 {
692 struct buf blk;

694 blk.buf = UNCONST(buf);
695 blk.sz = len;

697 mparse_parse_buffer(curp, blk, file);
673 mparse_parse_buffer(curp, blk, file, 0);
698 return(curp->file_status);
699 }

701 enum mandoclevel
702 mparse_readfd(struct mparse *curp, int fd, const char *file)
677 static void
678 mparse_readfd_r(struct mparse *curp, int fd, const char *file, int re)
703 {
704 struct buf blk;
705 int with_mmap;

707 if (-1 == fd)
708 if (-1 == (fd = open(file, O_RDONLY, 0))) {
709 perror(file);
710 curp->file_status = MANDOCLEVEL_SYSERR;
711 goto out;
687 return;
712 }
713 /*
714 * Run for each opened file; may be called more than once for
715 * each full parse sequence if the opened file is nested (i.e.,
716 * from ‘so’). Simply sucks in the whole file and moves into
717 * the parse phase for the file.
718 */

720 if (! read_whole_file(file, fd, &blk, &with_mmap)) {
721 curp->file_status = MANDOCLEVEL_SYSERR;
722 goto out;
698 return;
723 }

725 mparse_parse_buffer(curp, blk, file);
701 mparse_parse_buffer(curp, blk, file, re);

727 #ifdef HAVE_MMAP
728 if (with_mmap)
729 munmap(blk.buf, blk.sz);
730 else
731 #endif

new/usr/src/cmd/mandoc/read.c 12

732 free(blk.buf);

734 if (STDIN_FILENO != fd && -1 == close(fd))
735 perror(file);
736 out:
712 }

714 enum mandoclevel
715 mparse_readfd(struct mparse *curp, int fd, const char *file)
716 {

718 mparse_readfd_r(curp, fd, file, 0);
737 return(curp->file_status);
738 }

740 struct mparse *
741 mparse_alloc(enum mparset inttype, enum mandoclevel wlevel,
742 mandocmsg mmsg, void *arg, char *defos)
723 mparse_alloc(enum mparset inttype, enum mandoclevel wlevel, mandocmsg mmsg, void
743 {
744 struct mparse *curp;

746 assert(wlevel <= MANDOCLEVEL_FATAL);

748 curp = mandoc_calloc(1, sizeof(struct mparse));

750 curp->wlevel = wlevel;
751 curp->mmsg = mmsg;
752 curp->arg = arg;
753 curp->inttype = inttype;
754 curp->defos = defos;

756 curp->roff = roff_alloc(inttype, curp);
736 curp->roff = roff_alloc(curp);
757 return(curp);
758 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/roff.c 1

**
 43919 Wed Jul 30 20:55:11 2014
new/usr/src/cmd/mandoc/roff.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: roff.c,v 1.189 2013/12/30 18:44:06 schwarze Exp $ */
1 /* $Id: roff.c,v 1.172 2011/10/24 21:41:45 schwarze Exp $ */
2 /*
3 * Copyright (c) 2010, 2011, 2012 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2010, 2011, 2012, 2013 Ingo Schwarze <schwarze@openbsd.org>
3 * Copyright (c) 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2010, 2011 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <assert.h>
23 #include <ctype.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>

28 #include "mandoc.h"
29 #include "libroff.h"
30 #include "libmandoc.h"

32 /* Maximum number of nested if-else conditionals. */
33 #define RSTACK_MAX 128

35 /* Maximum number of string expansions per line, to break infinite loops. */
36 #define EXPAND_LIMIT 1000

38 enum rofft {
39 ROFF_ad,
40 ROFF_am,
41 ROFF_ami,
42 ROFF_am1,
43 ROFF_cc,
44 ROFF_de,
45 ROFF_dei,
46 ROFF_de1,
47 ROFF_ds,
48 ROFF_el,
49 ROFF_fam,
50 ROFF_hw,
51 ROFF_hy,
52 ROFF_ie,
53 ROFF_if,
54 ROFF_ig,
55 ROFF_it,
56 ROFF_ne,

new/usr/src/cmd/mandoc/roff.c 2

57 ROFF_nh,
58 ROFF_nr,
59 ROFF_ns,
60 ROFF_ps,
61 ROFF_rm,
62 ROFF_so,
63 ROFF_ta,
64 ROFF_tr,
65 ROFF_Dd,
66 ROFF_TH,
67 ROFF_TS,
68 ROFF_TE,
69 ROFF_T_,
70 ROFF_EQ,
71 ROFF_EN,
72 ROFF_cblock,
73 ROFF_ccond,
74 ROFF_USERDEF,
75 ROFF_MAX
76 };

78 enum roffrule {
79 ROFFRULE_DENY,
80 ROFFRULE_ALLOW
73 ROFFRULE_ALLOW,
74 ROFFRULE_DENY
81 };

83 /*
78 * A single register entity. If "set" is zero, the value of the
79 * register should be the default one, which is per-register.
80 * Registers are assumed to be unsigned ints for now.
81 */
82 struct reg {
83 int set; /* whether set or not */
84 unsigned int u; /* unsigned integer */
85 };

87 /*
84 * An incredibly-simple string buffer.
85 */
86 struct roffstr {
87 char *p; /* nil-terminated buffer */
88 size_t sz; /* saved strlen(p) */
89 };

______unchanged_portion_omitted_

100 /*
101 * A single number register as part of a singly-linked list.
102 */
103 struct roffreg {
104 struct roffstr key;
105 int val;
106 struct roffreg *next;
107 };

109 struct roff {
110 enum mparset parsetype; /* requested parse type */
111 struct mparse *parse; /* parse point */
112 struct roffnode *last; /* leaf of stack */
113 enum roffrule rstack[RSTACK_MAX]; /* stack of !‘ie’ rules */
114 char control; /* control character */
115 int rstackpos; /* position in rstack */
116 struct roffreg *regtab; /* number registers */
109 struct reg regs[REG__MAX];
117 struct roffkv *strtab; /* user-defined strings & macros */

new/usr/src/cmd/mandoc/roff.c 3

118 struct roffkv *xmbtab; /* multi-byte trans table (‘tr’) */
119 struct roffstr *xtab; /* single-byte trans table (‘tr’) */
120 const char *current_string; /* value of last called user macro */
121 struct tbl_node *first_tbl; /* first table parsed */
122 struct tbl_node *last_tbl; /* last table parsed */
123 struct tbl_node *tbl; /* current table being parsed */
124 struct eqn_node *last_eqn; /* last equation parsed */
125 struct eqn_node *first_eqn; /* first equation parsed */
126 struct eqn_node *eqn; /* current equation being parsed */
127 };

______unchanged_portion_omitted_

166 #define PREDEF(__name, __str) \
167 { (__name), (__str) },

169 static enum rofft roffhash_find(const char *, size_t);
170 static void roffhash_init(void);
171 static void roffnode_cleanscope(struct roff *);
172 static void roffnode_pop(struct roff *);
173 static void roffnode_push(struct roff *, enum rofft,
174 const char *, int, int);
175 static enum rofferr roff_block(ROFF_ARGS);
176 static enum rofferr roff_block_text(ROFF_ARGS);
177 static enum rofferr roff_block_sub(ROFF_ARGS);
178 static enum rofferr roff_cblock(ROFF_ARGS);
179 static enum rofferr roff_cc(ROFF_ARGS);
180 static enum rofferr roff_ccond(ROFF_ARGS);
181 static enum rofferr roff_cond(ROFF_ARGS);
182 static enum rofferr roff_cond_text(ROFF_ARGS);
183 static enum rofferr roff_cond_sub(ROFF_ARGS);
184 static enum rofferr roff_ds(ROFF_ARGS);
185 static enum roffrule roff_evalcond(const char *, int *);
186 static void roff_free1(struct roff *);
187 static void roff_freereg(struct roffreg *);
188 static void roff_freestr(struct roffkv *);
189 static char *roff_getname(struct roff *, char **, int, int);
190 static int roff_getnum(const char *, int *, int *);
191 static int roff_getop(const char *, int *, char *);
192 static int roff_getregn(const struct roff *,
193 const char *, size_t);
194 static const char *roff_getstrn(const struct roff *,
195 const char *, size_t);
196 static enum rofferr roff_it(ROFF_ARGS);
197 static enum rofferr roff_line_ignore(ROFF_ARGS);
198 static enum rofferr roff_nr(ROFF_ARGS);
199 static void roff_openeqn(struct roff *, const char *,
200 int, int, const char *);
201 static enum rofft roff_parse(struct roff *, const char *, int *);
202 static enum rofferr roff_parsetext(char **, size_t *, int, int *);
188 static enum rofferr roff_parsetext(char *);
203 static enum rofferr roff_res(struct roff *,
204 char **, size_t *, int, int);
205 static enum rofferr roff_rm(ROFF_ARGS);
206 static void roff_setstr(struct roff *,
207 const char *, const char *, int);
208 static void roff_setstrn(struct roffkv **, const char *,
209 size_t, const char *, size_t, int);
210 static enum rofferr roff_so(ROFF_ARGS);
211 static enum rofferr roff_tr(ROFF_ARGS);
212 static enum rofferr roff_Dd(ROFF_ARGS);
213 static enum rofferr roff_TH(ROFF_ARGS);
214 static enum rofferr roff_TE(ROFF_ARGS);
215 static enum rofferr roff_TS(ROFF_ARGS);
216 static enum rofferr roff_EQ(ROFF_ARGS);
217 static enum rofferr roff_EN(ROFF_ARGS);
218 static enum rofferr roff_T_(ROFF_ARGS);

new/usr/src/cmd/mandoc/roff.c 4

219 static enum rofferr roff_userdef(ROFF_ARGS);

221 /* See roffhash_find() */

223 #define ASCII_HI 126
224 #define ASCII_LO 33
225 #define HASHWIDTH (ASCII_HI - ASCII_LO + 1)

227 static struct roffmac *hash[HASHWIDTH];

229 static struct roffmac roffs[ROFF_MAX] = {
230 { "ad", roff_line_ignore, NULL, NULL, 0, NULL },
231 { "am", roff_block, roff_block_text, roff_block_sub, 0, NULL },
232 { "ami", roff_block, roff_block_text, roff_block_sub, 0, NULL },
233 { "am1", roff_block, roff_block_text, roff_block_sub, 0, NULL },
234 { "cc", roff_cc, NULL, NULL, 0, NULL },
235 { "de", roff_block, roff_block_text, roff_block_sub, 0, NULL },
236 { "dei", roff_block, roff_block_text, roff_block_sub, 0, NULL },
237 { "de1", roff_block, roff_block_text, roff_block_sub, 0, NULL },
238 { "ds", roff_ds, NULL, NULL, 0, NULL },
239 { "el", roff_cond, roff_cond_text, roff_cond_sub, ROFFMAC_STRUCT, NULL }
240 { "fam", roff_line_ignore, NULL, NULL, 0, NULL },
241 { "hw", roff_line_ignore, NULL, NULL, 0, NULL },
242 { "hy", roff_line_ignore, NULL, NULL, 0, NULL },
243 { "ie", roff_cond, roff_cond_text, roff_cond_sub, ROFFMAC_STRUCT, NULL }
244 { "if", roff_cond, roff_cond_text, roff_cond_sub, ROFFMAC_STRUCT, NULL }
245 { "ig", roff_block, roff_block_text, roff_block_sub, 0, NULL },
246 { "it", roff_it, NULL, NULL, 0, NULL },
227 { "it", roff_line_ignore, NULL, NULL, 0, NULL },
247 { "ne", roff_line_ignore, NULL, NULL, 0, NULL },
248 { "nh", roff_line_ignore, NULL, NULL, 0, NULL },
249 { "nr", roff_nr, NULL, NULL, 0, NULL },
250 { "ns", roff_line_ignore, NULL, NULL, 0, NULL },
251 { "ps", roff_line_ignore, NULL, NULL, 0, NULL },
252 { "rm", roff_rm, NULL, NULL, 0, NULL },
253 { "so", roff_so, NULL, NULL, 0, NULL },
254 { "ta", roff_line_ignore, NULL, NULL, 0, NULL },
255 { "tr", roff_tr, NULL, NULL, 0, NULL },
256 { "Dd", roff_Dd, NULL, NULL, 0, NULL },
257 { "TH", roff_TH, NULL, NULL, 0, NULL },
258 { "TS", roff_TS, NULL, NULL, 0, NULL },
259 { "TE", roff_TE, NULL, NULL, 0, NULL },
260 { "T&", roff_T_, NULL, NULL, 0, NULL },
261 { "EQ", roff_EQ, NULL, NULL, 0, NULL },
262 { "EN", roff_EN, NULL, NULL, 0, NULL },
263 { ".", roff_cblock, NULL, NULL, 0, NULL },
264 { "\\}", roff_ccond, NULL, NULL, 0, NULL },
265 { NULL, roff_userdef, NULL, NULL, 0, NULL },
266 };

268 const char *const __mdoc_reserved[] = {
269 "Ac", "Ad", "An", "Ao", "Ap", "Aq", "Ar", "At",
270 "Bc", "Bd", "Bf", "Bk", "Bl", "Bo", "Bq",
271 "Brc", "Bro", "Brq", "Bsx", "Bt", "Bx",
272 "Cd", "Cm", "Db", "Dc", "Dd", "Dl", "Do", "Dq",
273 "Ds", "Dt", "Dv", "Dx", "D1",
274 "Ec", "Ed", "Ef", "Ek", "El", "Em", "em",
275 "En", "Eo", "Eq", "Er", "Es", "Ev", "Ex",
276 "Fa", "Fc", "Fd", "Fl", "Fn", "Fo", "Fr", "Ft", "Fx",
277 "Hf", "Ic", "In", "It", "Lb", "Li", "Lk", "Lp", "LP",
278 "Me", "Ms", "Mt", "Nd", "Nm", "No", "Ns", "Nx",
279 "Oc", "Oo", "Op", "Os", "Ot", "Ox",
280 "Pa", "Pc", "Pf", "Po", "Pp", "PP", "pp", "Pq",
281 "Qc", "Ql", "Qo", "Qq", "Or", "Rd", "Re", "Rs", "Rv",
282 "Sc", "Sf", "Sh", "SH", "Sm", "So", "Sq",
283 "Ss", "St", "Sx", "Sy",

new/usr/src/cmd/mandoc/roff.c 5

284 "Ta", "Tn", "Ud", "Ux", "Va", "Vt", "Xc", "Xo", "Xr",
285 "%A", "%B", "%D", "%I", "%J", "%N", "%O",
286 "%P", "%Q", "%R", "%T", "%U", "%V",
287 NULL
288 };

290 const char *const __man_reserved[] = {
291 "AT", "B", "BI", "BR", "BT", "DE", "DS", "DT",
292 "EE", "EN", "EQ", "EX", "HF", "HP", "I", "IB", "IP", "IR",
293 "LP", "ME", "MT", "OP", "P", "PD", "PP", "PT",
294 "R", "RB", "RE", "RI", "RS", "SB", "SH", "SM", "SS", "SY",
295 "TE", "TH", "TP", "TQ", "TS", "T&", "UC", "UE", "UR", "YS",
296 NULL
297 };

299 /* Array of injected predefined strings. */
300 #define PREDEFS_MAX 38
301 static const struct predef predefs[PREDEFS_MAX] = {
302 #include "predefs.in"
303 };

305 /* See roffhash_find() */
306 #define ROFF_HASH(p) (p[0] - ASCII_LO)

308 static int roffit_lines; /* number of lines to delay */
309 static char *roffit_macro; /* nil-terminated macro line */

311 static void
312 roffhash_init(void)
313 {
314 struct roffmac *n;
315 int buc, i;

317 for (i = 0; i < (int)ROFF_USERDEF; i++) {
318 assert(roffs[i].name[0] >= ASCII_LO);
319 assert(roffs[i].name[0] <= ASCII_HI);

321 buc = ROFF_HASH(roffs[i].name);

323 if (NULL != (n = hash[buc])) {
324 for (; n->next; n = n->next)
325 /* Do nothing. */ ;
326 n->next = &roffs[i];
327 } else
328 hash[buc] = &roffs[i];
329 }
330 }

______unchanged_portion_omitted_

406 static void
407 roff_free1(struct roff *r)
408 {
409 struct tbl_node *tbl;
354 struct tbl_node *t;
410 struct eqn_node *e;
411 int i;

413 while (NULL != (tbl = r->first_tbl)) {
414 r->first_tbl = tbl->next;
415 tbl_free(tbl);
358 while (NULL != (t = r->first_tbl)) {
359 r->first_tbl = t->next;
360 tbl_free(t);
416 }

new/usr/src/cmd/mandoc/roff.c 6

418 r->first_tbl = r->last_tbl = r->tbl = NULL;

420 while (NULL != (e = r->first_eqn)) {
421 r->first_eqn = e->next;
422 eqn_free(e);
423 }

425 r->first_eqn = r->last_eqn = r->eqn = NULL;

427 while (r->last)
428 roffnode_pop(r);

430 roff_freestr(r->strtab);
431 roff_freestr(r->xmbtab);

433 r->strtab = r->xmbtab = NULL;

435 roff_freereg(r->regtab);

437 r->regtab = NULL;

439 if (r->xtab)
440 for (i = 0; i < 128; i++)
441 free(r->xtab[i].p);

443 free(r->xtab);
444 r->xtab = NULL;
445 }

447 void
448 roff_reset(struct roff *r)
449 {
450 int i;

452 roff_free1(r);

454 r->control = 0;
395 memset(&r->regs, 0, sizeof(struct reg) * REG__MAX);

456 for (i = 0; i < PREDEFS_MAX; i++)
457 roff_setstr(r, predefs[i].name, predefs[i].str, 0);
458 }

______unchanged_portion_omitted_

470 struct roff *
471 roff_alloc(enum mparset type, struct mparse *parse)
412 roff_alloc(struct mparse *parse)
472 {
473 struct roff *r;
474 int i;

476 r = mandoc_calloc(1, sizeof(struct roff));
477 r->parsetype = type;
478 r->parse = parse;
479 r->rstackpos = -1;
480
481 roffhash_init();

483 for (i = 0; i < PREDEFS_MAX; i++)
484 roff_setstr(r, predefs[i].name, predefs[i].str, 0);

486 return(r);
487 }

489 /*

new/usr/src/cmd/mandoc/roff.c 7

490 * In the current line, expand user-defined strings ("*")
491 * and references to number registers ("\n").
492 * Also check the syntax of other escape sequences.
430 * Pre-filter each and every line for reserved words (one beginning with
431 * ‘*’, e.g., ‘*(ab’). These must be handled before the actual line
432 * is processed.
433 * This also checks the syntax of regular escapes.
493 */
494 static enum rofferr
495 roff_res(struct roff *r, char **bufp, size_t *szp, int ln, int pos)
496 {
497 char ubuf[12]; /* buffer to print the number */
438 enum mandoc_esc esc;
498 const char *stesc; /* start of an escape sequence (’\\’) */
499 const char *stnam; /* start of the name, after "[(*" */
500 const char *cp; /* end of the name, e.g. before ’]’ */
501 const char *res; /* the string to be substituted */
502 char *nbuf; /* new buffer to copy bufp to */
503 size_t nsz; /* size of the new buffer */
504 size_t maxl; /* expected length of the escape name */
505 size_t naml; /* actual length of the escape name */
506 int expand_count; /* to avoid infinite loops */
443 int i, maxl, expand_count;
444 size_t nsz;
445 char *n;

508 expand_count = 0;

510 again:
511 cp = *bufp + pos;
512 while (NULL != (cp = strchr(cp, ’\\’))) {
513 stesc = cp++;

515 /*
516 * The second character must be an asterisk or an n.
455 * The second character must be an asterisk.
517 * If it isn’t, skip it anyway: It is escaped,
518 * so it can’t start another escape sequence.
519 */

521 if (’\0’ == *cp)
522 return(ROFF_CONT);

524 switch (*cp) {
525 case (’*’):
526 res = NULL;
527 break;
528 case (’n’):
529 res = ubuf;
530 break;
531 default:
532 if (ESCAPE_ERROR != mandoc_escape(&cp, NULL, NULL))
463 if (’*’ != *cp) {
464 res = cp;
465 esc = mandoc_escape(&cp, NULL, NULL);
466 if (ESCAPE_ERROR != esc)
533 continue;
468 cp = res;
534 mandoc_msg
535 (MANDOCERR_BADESCAPE, r->parse,
536 ln, (int)(stesc - *bufp), NULL);
537 return(ROFF_CONT);
538 }

540 cp++;

new/usr/src/cmd/mandoc/roff.c 8

542 /*
543 * The third character decides the length
544 * of the name of the string or register.
479 * of the name of the string.
545 * Save a pointer to the name.
546 */

548 switch (*cp) {
549 case (’\0’):
550 return(ROFF_CONT);
551 case (’(’):
552 cp++;
553 maxl = 2;
554 break;
555 case (’[’):
556 cp++;
557 maxl = 0;
558 break;
559 default:
560 maxl = 1;
561 break;
562 }
563 stnam = cp;

565 /* Advance to the end of the name. */

567 for (naml = 0; 0 == maxl || naml < maxl; naml++, cp++) {
502 for (i = 0; 0 == maxl || i < maxl; i++, cp++) {
568 if (’\0’ == *cp) {
569 mandoc_msg
570 (MANDOCERR_BADESCAPE,
571 r->parse, ln,
572 (int)(stesc - *bufp), NULL);
573 return(ROFF_CONT);
574 }
575 if (0 == maxl && ’]’ == *cp)
576 break;
577 }

579 /*
580 * Retrieve the replacement string; if it is
581 * undefined, resume searching for escapes.
582 */

584 if (NULL == res)
585 res = roff_getstrn(r, stnam, naml);
586 else
587 snprintf(ubuf, sizeof(ubuf), "%d",
588 roff_getregn(r, stnam, naml));
519 res = roff_getstrn(r, stnam, (size_t)i);

590 if (NULL == res) {
591 mandoc_msg
592 (MANDOCERR_BADESCAPE, r->parse,
593 ln, (int)(stesc - *bufp), NULL);
594 res = "";
595 }

597 /* Replace the escape sequence by the string. */

599 pos = stesc - *bufp;

601 nsz = *szp + strlen(res) + 1;
602 nbuf = mandoc_malloc(nsz);
533 n = mandoc_malloc(nsz);

new/usr/src/cmd/mandoc/roff.c 9

604 strlcpy(nbuf, *bufp, (size_t)(stesc - *bufp + 1));
605 strlcat(nbuf, res, nsz);
606 strlcat(nbuf, cp + (maxl ? 0 : 1), nsz);
535 strlcpy(n, *bufp, (size_t)(stesc - *bufp + 1));
536 strlcat(n, res, nsz);
537 strlcat(n, cp + (maxl ? 0 : 1), nsz);

608 free(*bufp);

610 *bufp = nbuf;
541 *bufp = n;
611 *szp = nsz;

613 if (EXPAND_LIMIT >= ++expand_count)
614 goto again;

616 /* Just leave the string unexpanded. */
617 mandoc_msg(MANDOCERR_ROFFLOOP, r->parse, ln, pos, NULL);
618 return(ROFF_IGN);
619 }
620 return(ROFF_CONT);
621 }

623 /*
624 * Process text streams:
625 * Convert all breakable hyphens into ASCII_HYPH.
626 * Decrement and spring input line trap.
555 * Process text streams: convert all breakable hyphens into ASCII_HYPH.
627 */
628 static enum rofferr
629 roff_parsetext(char **bufp, size_t *szp, int pos, int *offs)
558 roff_parsetext(char *p)
630 {
631 size_t sz;
632 const char *start;
633 char *p;
634 int isz;
635 enum mandoc_esc esc;

637 start = p = *bufp + pos;
564 start = p;

639 while (’\0’ != *p) {
640 sz = strcspn(p, "-\\");
641 p += sz;

643 if (’\0’ == *p)
644 break;

646 if (’\\’ == *p) {
647 /* Skip over escapes. */
648 p++;
649 esc = mandoc_escape((const char **)&p, NULL, NULL);
576 esc = mandoc_escape
577 ((const char **)&p, NULL, NULL);
650 if (ESCAPE_ERROR == esc)
651 break;
652 continue;
653 } else if (p == start) {
654 p++;
655 continue;
656 }

658 if (isalpha((unsigned char)p[-1]) &&
659 isalpha((unsigned char)p[1]))
660 *p = ASCII_HYPH;

new/usr/src/cmd/mandoc/roff.c 10

661 p++;
662 }

664 /* Spring the input line trap. */
665 if (1 == roffit_lines) {
666 isz = asprintf(&p, "%s\n.%s", *bufp, roffit_macro);
667 if (-1 == isz) {
668 perror(NULL);
669 exit((int)MANDOCLEVEL_SYSERR);
670 }
671 free(*bufp);
672 *bufp = p;
673 *szp = isz + 1;
674 *offs = 0;
675 free(roffit_macro);
676 roffit_lines = 0;
677 return(ROFF_REPARSE);
678 } else if (1 < roffit_lines)
679 --roffit_lines;
680 return(ROFF_CONT);
681 }

683 enum rofferr
684 roff_parseln(struct roff *r, int ln, char **bufp,
685 size_t *szp, int pos, int *offs)
686 {
687 enum rofft t;
688 enum rofferr e;
689 int ppos, ctl;

691 /*
692 * Run the reserved-word filter only if we have some reserved
693 * words to fill in.
694 */

696 e = roff_res(r, bufp, szp, ln, pos);
697 if (ROFF_IGN == e)
698 return(e);
699 assert(ROFF_CONT == e);

701 ppos = pos;
702 ctl = roff_getcontrol(r, *bufp, &pos);
614 ctl = mandoc_getcontrol(*bufp, &pos);

704 /*
705 * First, if a scope is open and we’re not a macro, pass the
706 * text through the macro’s filter. If a scope isn’t open and
707 * we’re not a macro, just let it through.
708 * Finally, if there’s an equation scope open, divert it into it
709 * no matter our state.
710 */

712 if (r->last && ! ctl) {
713 t = r->last->tok;
714 assert(roffs[t].text);
715 e = (*roffs[t].text)
716 (r, t, bufp, szp, ln, pos, pos, offs);
717 assert(ROFF_IGN == e || ROFF_CONT == e);
718 if (ROFF_CONT != e)
719 return(e);
720 }
721 if (r->eqn)
722 return(eqn_read(&r->eqn, ln, *bufp, ppos, offs));
723 if (! ctl) {
633 return(eqn_read(&r->eqn, ln, *bufp, pos, offs));
724 if (r->tbl)

new/usr/src/cmd/mandoc/roff.c 11

725 return(tbl_read(r->tbl, ln, *bufp, pos));
726 return(roff_parsetext(bufp, szp, pos, offs));
727 }
636 return(roff_parsetext(*bufp + pos));
637 } else if (! ctl) {
638 if (r->eqn)
639 return(eqn_read(&r->eqn, ln, *bufp, pos, offs));
640 if (r->tbl)
641 return(tbl_read(r->tbl, ln, *bufp, pos));
642 return(roff_parsetext(*bufp + pos));
643 } else if (r->eqn)
644 return(eqn_read(&r->eqn, ln, *bufp, ppos, offs));

729 /*
730 * If a scope is open, go to the child handler for that macro,
731 * as it may want to preprocess before doing anything with it.
732 * Don’t do so if an equation is open.
733 */

735 if (r->last) {
736 t = r->last->tok;
737 assert(roffs[t].sub);
738 return((*roffs[t].sub)
739 (r, t, bufp, szp,
740 ln, ppos, pos, offs));
741 }

743 /*
744 * Lastly, as we’ve no scope open, try to look up and execute
745 * the new macro. If no macro is found, simply return and let
746 * the compilers handle it.
747 */

749 if (ROFF_MAX == (t = roff_parse(r, *bufp, &pos)))
750 return(ROFF_CONT);

752 assert(roffs[t].proc);
753 return((*roffs[t].proc)
754 (r, t, bufp, szp,
755 ln, ppos, pos, offs));
756 }

______unchanged_portion_omitted_

859 static void
860 roffnode_cleanscope(struct roff *r)
861 {

863 while (r->last) {
864 if (--r->last->endspan != 0)
781 if (--r->last->endspan < 0)
865 break;
866 roffnode_pop(r);
867 }
868 }

______unchanged_portion_omitted_

1060 /* ARGSUSED */
1061 static enum rofferr
1062 roff_cond_sub(ROFF_ARGS)
1063 {
1064 enum rofft t;
1065 enum roffrule rr;
1066 char *ep;

new/usr/src/cmd/mandoc/roff.c 12

1068 rr = r->last->rule;
1069 roffnode_cleanscope(r);
1070 t = roff_parse(r, *bufp, &pos);

1072 /*
1073 * Fully handle known macros when they are structurally
1074 * required or when the conditional evaluated to true.
989 * If the macro is unknown, first check if it contains a closing
990 * delimiter ‘\}’. If it does, close out our scope and return
991 * the currently-scoped rule (ignore or continue). Else, drop
992 * into the currently-scoped rule.
1075 */

1077 if ((ROFF_MAX != t) &&
1078 (ROFF_ccond == t || ROFFRULE_ALLOW == rr ||
1079 ROFFMAC_STRUCT & roffs[t].flags)) {
1080 assert(roffs[t].proc);
1081 return((*roffs[t].proc)(r, t, bufp, szp,
1082 ln, ppos, pos, offs));
1083 }

1085 /* Always check for the closing delimiter ‘\}’. */

995 if (ROFF_MAX == (t = roff_parse(r, *bufp, &pos))) {
1087 ep = &(*bufp)[pos];
1088 while (NULL != (ep = strchr(ep, ’\\’))) {
1089 if (’}’ != *(++ep))
997 for (; NULL != (ep = strchr(ep, ’\\’)); ep++) {
998 ep++;
999 if (’}’ != *ep)
1090 continue;

1092 /*
1003 * Make the \} go away.
1004 * This is a little haphazard, as it’s not quite
1005 * clear how nroff does this.
1093 * If we’re at the end of line, then just chop
1094 * off the \} and resize the buffer.
1095 * If we aren’t, then convert it to spaces.
1008 * If we aren’t, then conver it to spaces.
1096 */

1098 if (’\0’ == *(ep + 1)) {
1099 *--ep = ’\0’;
1100 *szp -= 2;
1101 } else
1102 *(ep - 1) = *ep = ’ ’;

1104 roff_ccond(r, ROFF_ccond, bufp, szp,
1105 ln, pos, pos + 2, offs);
1106 break;
1107 }
1108 return(ROFFRULE_DENY == rr ? ROFF_IGN : ROFF_CONT);
1022 }

1024 /*
1025 * A denied conditional must evaluate its children if and only
1026 * if they’re either structurally required (such as loops and
1027 * conditionals) or a closing macro.
1028 */

1030 if (ROFFRULE_DENY == rr)
1031 if (! (ROFFMAC_STRUCT & roffs[t].flags))
1032 if (ROFF_ccond != t)
1033 return(ROFF_IGN);

new/usr/src/cmd/mandoc/roff.c 13

1035 assert(roffs[t].proc);
1036 return((*roffs[t].proc)(r, t, bufp, szp,
1037 ln, ppos, pos, offs));
1109 }
______unchanged_portion_omitted_

1133 static int
1134 roff_getnum(const char *v, int *pos, int *res)
1135 {
1136 int p, n;

1138 p = *pos;
1139 n = v[p] == ’-’;
1140 if (n)
1141 p++;

1143 for (*res = 0; isdigit((unsigned char)v[p]); p++)
1144 *res += 10 * *res + v[p] - ’0’;
1145 if (p == *pos + n)
1146 return 0;

1148 if (n)
1149 *res = -*res;

1151 *pos = p;
1152 return 1;
1153 }

1155 static int
1156 roff_getop(const char *v, int *pos, char *res)
1157 {
1158 int e;

1160 *res = v[*pos];
1161 e = v[*pos + 1] == ’=’;

1163 switch (*res) {
1164 case ’=’:
1165 break;
1166 case ’>’:
1167 if (e)
1168 *res = ’g’;
1169 break;
1170 case ’<’:
1171 if (e)
1172 *res = ’l’;
1173 break;
1174 default:
1175 return(0);
1176 }

1178 *pos += 1 + e;

1180 return(*res);
1181 }

1183 static enum roffrule
1184 roff_evalcond(const char *v, int *pos)
1185 {
1186 int not, lh, rh;
1187 char op;

1189 switch (v[*pos]) {
1190 case (’n’):
1191 (*pos)++;
1192 return(ROFFRULE_ALLOW);

new/usr/src/cmd/mandoc/roff.c 14

1193 case (’e’):
1194 /* FALLTHROUGH */
1195 case (’o’):
1196 /* FALLTHROUGH */
1197 case (’t’):
1198 (*pos)++;
1199 return(ROFFRULE_DENY);
1200 case (’!’):
1201 (*pos)++;
1202 not = 1;
1203 break;
1204 default:
1205 not = 0;
1206 break;
1207 }

1209 if (!roff_getnum(v, pos, &lh))
1210 return ROFFRULE_DENY;
1211 if (!roff_getop(v, pos, &op)) {
1212 if (lh < 0)
1213 lh = 0;
1214 goto out;
1215 }
1216 if (!roff_getnum(v, pos, &rh))
1217 return ROFFRULE_DENY;
1218 switch (op) {
1219 case ’g’:
1220 lh = lh >= rh;
1221 break;
1222 case ’l’:
1223 lh = lh <= rh;
1224 break;
1225 case ’=’:
1226 lh = lh == rh;
1227 break;
1228 case ’>’:
1229 lh = lh > rh;
1230 break;
1231 case ’<’:
1232 lh = lh < rh;
1233 break;
1234 default:
1235 return ROFFRULE_DENY;
1236 }
1237 out:
1238 if (not)
1239 lh = !lh;
1240 return lh ? ROFFRULE_ALLOW : ROFFRULE_DENY;
1081 while (v[*pos] && ’ ’ != v[*pos])
1082 (*pos)++;
1083 return(ROFFRULE_DENY);
1241 }

1243 /* ARGSUSED */
1244 static enum rofferr
1245 roff_line_ignore(ROFF_ARGS)
1246 {

1091 if (ROFF_it == tok)
1092 mandoc_msg(MANDOCERR_REQUEST, r->parse, ln, ppos, "it");

1248 return(ROFF_IGN);
1249 }

1251 /* ARGSUSED */
1252 static enum rofferr

new/usr/src/cmd/mandoc/roff.c 15

1253 roff_cond(ROFF_ARGS)
1254 {
1101 int sv;
1102 enum roffrule rule;

1256 roffnode_push(r, tok, NULL, ln, ppos);

1258 /*
1259 * An ‘.el’ has no conditional body: it will consume the value
1260 * of the current rstack entry set in prior ‘ie’ calls or
1261 * defaults to DENY.
1262 *
1263 * If we’re not an ‘el’, however, then evaluate the conditional.
1264 */

1266 r->last->rule = ROFF_el == tok ?
1112 rule = ROFF_el == tok ?
1267 (r->rstackpos < 0 ?
1268 ROFFRULE_DENY : r->rstack[r->rstackpos--]) :
1269 roff_evalcond(*bufp, &pos);

1117 sv = pos;
1118 while (’ ’ == (*bufp)[pos])
1119 pos++;

1271 /*
1122 * Roff is weird. If we have just white-space after the
1123 * conditional, it’s considered the BODY and we exit without
1124 * really doing anything. Warn about this. It’s probably
1125 * wrong.
1126 */

1128 if (’\0’ == (*bufp)[pos] && sv != pos) {
1129 mandoc_msg(MANDOCERR_NOARGS, r->parse, ln, ppos, NULL);
1130 return(ROFF_IGN);
1131 }

1133 roffnode_push(r, tok, NULL, ln, ppos);

1135 r->last->rule = rule;

1137 /*
1272 * An if-else will put the NEGATION of the current evaluated
1273 * conditional into the stack of rules.
1274 */

1276 if (ROFF_ie == tok) {
1277 if (r->rstackpos == RSTACK_MAX - 1) {
1278 mandoc_msg(MANDOCERR_MEM,
1279 r->parse, ln, ppos, NULL);
1280 return(ROFF_ERR);
1281 }
1282 r->rstack[++r->rstackpos] =
1283 ROFFRULE_DENY == r->last->rule ?
1284 ROFFRULE_ALLOW : ROFFRULE_DENY;
1285 }

1287 /* If the parent has false as its rule, then so do we. */

1289 if (r->last->parent && ROFFRULE_DENY == r->last->parent->rule)
1290 r->last->rule = ROFFRULE_DENY;

1292 /*
1293 * Determine scope.
1294 * If there is nothing on the line after the conditional,
1295 * not even whitespace, use next-line scope.

new/usr/src/cmd/mandoc/roff.c 16

1159 * Determine scope. If we’re invoked with "\{" trailing the
1160 * conditional, then we’re in a multiline scope. Else our scope
1161 * expires on the next line.
1296 */

1298 if (’\0’ == (*bufp)[pos]) {
1299 r->last->endspan = 2;
1300 goto out;
1301 }
1164 r->last->endspan = 1;

1303 while (’ ’ == (*bufp)[pos])
1304 pos++;

1306 /* An opening brace requests multiline scope. */

1308 if (’\\’ == (*bufp)[pos] && ’{’ == (*bufp)[pos + 1]) {
1309 r->last->endspan = -1;
1310 pos += 2;
1311 goto out;
1312 }

1314 /*
1315 * Anything else following the conditional causes
1316 * single-line scope. Warn if the scope contains
1317 * nothing but trailing whitespace.
1172 * If there are no arguments on the line, the next-line scope is
1173 * assumed.
1318 */

1320 if (’\0’ == (*bufp)[pos])
1321 mandoc_msg(MANDOCERR_NOARGS, r->parse, ln, ppos, NULL);
1177 return(ROFF_IGN);

1323 r->last->endspan = 1;
1179 /* Otherwise re-run the roff parser after recalculating. */

1325 out:
1326 *offs = pos;
1327 return(ROFF_RERUN);
1328 }
______unchanged_portion_omitted_

1361 void
1362 roff_setreg(struct roff *r, const char *name, int val, char sign)
1363 {
1364 struct roffreg *reg;

1366 /* Search for an existing register with the same name. */
1367 reg = r->regtab;

1369 while (reg && strcmp(name, reg->key.p))
1370 reg = reg->next;

1372 if (NULL == reg) {
1373 /* Create a new register. */
1374 reg = mandoc_malloc(sizeof(struct roffreg));
1375 reg->key.p = mandoc_strdup(name);
1376 reg->key.sz = strlen(name);
1377 reg->val = 0;
1378 reg->next = r->regtab;
1379 r->regtab = reg;
1380 }

1382 if (’+’ == sign)
1383 reg->val += val;

new/usr/src/cmd/mandoc/roff.c 17

1384 else if (’-’ == sign)
1385 reg->val -= val;
1386 else
1387 reg->val = val;
1388 }

1390 int
1391 roff_getreg(const struct roff *r, const char *name)
1217 roff_regisset(const struct roff *r, enum regs reg)
1392 {
1393 struct roffreg *reg;

1395 for (reg = r->regtab; reg; reg = reg->next)
1396 if (0 == strcmp(name, reg->key.p))
1397 return(reg->val);

1399 return(0);
1220 return(r->regs[(int)reg].set);
1400 }

1402 static int
1403 roff_getregn(const struct roff *r, const char *name, size_t len)
1223 unsigned int
1224 roff_regget(const struct roff *r, enum regs reg)
1404 {
1405 struct roffreg *reg;

1407 for (reg = r->regtab; reg; reg = reg->next)
1408 if (len == reg->key.sz &&
1409 0 == strncmp(name, reg->key.p, len))
1410 return(reg->val);

1412 return(0);
1227 return(r->regs[(int)reg].u);
1413 }

1415 static void
1416 roff_freereg(struct roffreg *reg)
1230 void
1231 roff_regunset(struct roff *r, enum regs reg)
1417 {
1418 struct roffreg *old_reg;

1420 while (NULL != reg) {
1421 free(reg->key.p);
1422 old_reg = reg;
1423 reg = reg->next;
1424 free(old_reg);
1425 }
1234 r->regs[(int)reg].set = 0;
1426 }

1428 /* ARGSUSED */
1429 static enum rofferr
1430 roff_nr(ROFF_ARGS)
1431 {
1432 const char *key;
1433 char *val;
1434 size_t sz;
1435 int iv;
1436 char sign;

1438 val = *bufp + pos;
1439 key = roff_getname(r, &val, ln, pos);

1441 sign = *val;

new/usr/src/cmd/mandoc/roff.c 18

1442 if (’+’ == sign || ’-’ == sign)
1443 val++;
1248 if (0 == strcmp(key, "nS")) {
1249 r->regs[(int)REG_nS].set = 1;
1250 if ((iv = mandoc_strntoi(val, strlen(val), 10)) >= 0)
1251 r->regs[(int)REG_nS].u = (unsigned)iv;
1252 else
1253 r->regs[(int)REG_nS].u = 0u;
1254 }

1445 sz = strspn(val, "0123456789");
1446 iv = sz ? mandoc_strntoi(val, sz, 10) : 0;

1448 roff_setreg(r, key, iv, sign);

1450 return(ROFF_IGN);
1451 }
______unchanged_portion_omitted_

1469 /* ARGSUSED */
1470 static enum rofferr
1471 roff_it(ROFF_ARGS)
1472 {
1473 char *cp;
1474 size_t len;
1475 int iv;

1477 /* Parse the number of lines. */
1478 cp = *bufp + pos;
1479 len = strcspn(cp, " \t");
1480 cp[len] = ’\0’;
1481 if ((iv = mandoc_strntoi(cp, len, 10)) <= 0) {
1482 mandoc_msg(MANDOCERR_NUMERIC, r->parse,
1483 ln, ppos, *bufp + 1);
1484 return(ROFF_IGN);
1485 }
1486 cp += len + 1;

1488 /* Arm the input line trap. */
1489 roffit_lines = iv;
1490 roffit_macro = mandoc_strdup(cp);
1491 return(ROFF_IGN);
1492 }

1494 /* ARGSUSED */
1495 static enum rofferr
1496 roff_Dd(ROFF_ARGS)
1497 {
1498 const char *const *cp;

1500 if (MPARSE_MDOC != r->parsetype)
1501 for (cp = __mdoc_reserved; *cp; cp++)
1502 roff_setstr(r, *cp, NULL, 0);

1504 return(ROFF_CONT);
1505 }

1507 /* ARGSUSED */
1508 static enum rofferr
1509 roff_TH(ROFF_ARGS)
1510 {
1511 const char *const *cp;

1513 if (MPARSE_MDOC != r->parsetype)
1514 for (cp = __man_reserved; *cp; cp++)
1515 roff_setstr(r, *cp, NULL, 0);

new/usr/src/cmd/mandoc/roff.c 19

1517 return(ROFF_CONT);
1518 }

1520 /* ARGSUSED */
1521 static enum rofferr
1522 roff_TE(ROFF_ARGS)
1523 {

1525 if (NULL == r->tbl)
1526 mandoc_msg(MANDOCERR_NOSCOPE, r->parse, ln, ppos, NULL);
1527 else
1528 tbl_end(&r->tbl);

1530 return(ROFF_IGN);
1531 }
______unchanged_portion_omitted_

1596 /* ARGSUSED */
1597 static enum rofferr
1598 roff_TS(ROFF_ARGS)
1599 {
1600 struct tbl_node *tbl;
1355 struct tbl_node *t;

1602 if (r->tbl) {
1603 mandoc_msg(MANDOCERR_SCOPEBROKEN, r->parse, ln, ppos, NULL);
1604 tbl_end(&r->tbl);
1605 }

1607 tbl = tbl_alloc(ppos, ln, r->parse);
1362 t = tbl_alloc(ppos, ln, r->parse);

1609 if (r->last_tbl)
1610 r->last_tbl->next = tbl;
1365 r->last_tbl->next = t;
1611 else
1612 r->first_tbl = r->last_tbl = tbl;
1367 r->first_tbl = r->last_tbl = t;

1614 r->tbl = r->last_tbl = tbl;
1369 r->tbl = r->last_tbl = t;
1615 return(ROFF_IGN);
1616 }

1618 /* ARGSUSED */
1619 static enum rofferr
1620 roff_cc(ROFF_ARGS)
1621 {
1622 const char *p;

1624 p = *bufp + pos;

1626 if (’\0’ == *p || ’.’ == (r->control = *p++))
1627 r->control = 0;

1629 if (’\0’ != *p)
1630 mandoc_msg(MANDOCERR_ARGCOUNT, r->parse, ln, ppos, NULL);

1632 return(ROFF_IGN);
1633 }

1635 /* ARGSUSED */
1636 static enum rofferr
1637 roff_tr(ROFF_ARGS)
1638 {

new/usr/src/cmd/mandoc/roff.c 20

1639 const char *p, *first, *second;
1640 size_t fsz, ssz;
1641 enum mandoc_esc esc;

1643 p = *bufp + pos;

1645 if (’\0’ == *p) {
1646 mandoc_msg(MANDOCERR_ARGCOUNT, r->parse, ln, ppos, NULL);
1647 return(ROFF_IGN);
1648 }

1650 while (’\0’ != *p) {
1651 fsz = ssz = 1;

1653 first = p++;
1654 if (’\\’ == *first) {
1655 esc = mandoc_escape(&p, NULL, NULL);
1656 if (ESCAPE_ERROR == esc) {
1657 mandoc_msg
1658 (MANDOCERR_BADESCAPE, r->parse,
1659 ln, (int)(p - *bufp), NULL);
1660 return(ROFF_IGN);
1661 }
1662 fsz = (size_t)(p - first);
1663 }

1665 second = p++;
1666 if (’\\’ == *second) {
1667 esc = mandoc_escape(&p, NULL, NULL);
1668 if (ESCAPE_ERROR == esc) {
1669 mandoc_msg
1670 (MANDOCERR_BADESCAPE, r->parse,
1671 ln, (int)(p - *bufp), NULL);
1672 return(ROFF_IGN);
1673 }
1674 ssz = (size_t)(p - second);
1675 } else if (’\0’ == *second) {
1676 mandoc_msg(MANDOCERR_ARGCOUNT, r->parse,
1677 ln, (int)(p - *bufp), NULL);
1678 second = " ";
1679 p--;
1680 }

1682 if (fsz > 1) {
1683 roff_setstrn(&r->xmbtab, first,
1684 fsz, second, ssz, 0);
1685 continue;
1686 }

1688 if (NULL == r->xtab)
1689 r->xtab = mandoc_calloc
1690 (128, sizeof(struct roffstr));

1692 free(r->xtab[(int)*first].p);
1693 r->xtab[(int)*first].p = mandoc_strndup(second, ssz);
1694 r->xtab[(int)*first].sz = ssz;
1695 }

1697 return(ROFF_IGN);
1698 }
______unchanged_portion_omitted_

1725 /* ARGSUSED */
1726 static enum rofferr
1727 roff_userdef(ROFF_ARGS)
1728 {

new/usr/src/cmd/mandoc/roff.c 21

1729 const char *arg[9];
1730 char *cp, *n1, *n2;
1731 int i;

1733 /*
1734 * Collect pointers to macro argument strings
1735 * and NUL-terminate them.
1473 * and null-terminate them.
1736 */
1737 cp = *bufp + pos;
1738 for (i = 0; i < 9; i++)
1739 arg[i] = ’\0’ == *cp ? "" :
1740 mandoc_getarg(r->parse, &cp, ln, &pos);

1742 /*
1743 * Expand macro arguments.
1744 */
1745 *szp = 0;
1746 n1 = cp = mandoc_strdup(r->current_string);
1747 while (NULL != (cp = strstr(cp, "\\$"))) {
1748 i = cp[2] - ’1’;
1749 if (0 > i || 8 < i) {
1750 /* Not an argument invocation. */
1751 cp += 2;
1752 continue;
1753 }

1755 *szp = strlen(n1) - 3 + strlen(arg[i]) + 1;
1756 n2 = mandoc_malloc(*szp);

1758 strlcpy(n2, n1, (size_t)(cp - n1 + 1));
1759 strlcat(n2, arg[i], *szp);
1760 strlcat(n2, cp + 3, *szp);

1762 cp = n2 + (cp - n1);
1763 free(n1);
1764 n1 = n2;
1765 }

1767 /*
1768 * Replace the macro invocation
1769 * by the expanded macro.
1770 */
1771 free(*bufp);
1772 *bufp = n1;
1773 if (0 == *szp)
1774 *szp = strlen(*bufp) + 1;

1776 return(*szp > 1 && ’\n’ == (*bufp)[(int)*szp - 2] ?
1777 ROFF_REPARSE : ROFF_APPEND);
1778 }
______unchanged_portion_omitted_

1940 /*
1941 * Duplicate an input string, making the appropriate character
1942 * conversations (as stipulated by ‘tr’) along the way.
1943 * Returns a heap-allocated string with all the replacements made.
1944 */
1945 char *
1946 roff_strdup(const struct roff *r, const char *p)
1947 {
1948 const struct roffkv *cp;
1949 char *res;
1950 const char *pp;
1951 size_t ssz, sz;
1952 enum mandoc_esc esc;

new/usr/src/cmd/mandoc/roff.c 22

1954 if (NULL == r->xmbtab && NULL == r->xtab)
1955 return(mandoc_strdup(p));
1956 else if (’\0’ == *p)
1957 return(mandoc_strdup(""));

1959 /*
1960 * Step through each character looking for term matches
1961 * (remember that a ‘tr’ can be invoked with an escape, which is
1962 * a glyph but the escape is multi-character).
1963 * We only do this if the character hash has been initialised
1964 * and the string is >0 length.
1965 */

1967 res = NULL;
1968 ssz = 0;

1970 while (’\0’ != *p) {
1971 if (’\\’ != *p && r->xtab && r->xtab[(int)*p].p) {
1972 sz = r->xtab[(int)*p].sz;
1973 res = mandoc_realloc(res, ssz + sz + 1);
1974 memcpy(res + ssz, r->xtab[(int)*p].p, sz);
1975 ssz += sz;
1976 p++;
1977 continue;
1978 } else if (’\\’ != *p) {
1979 res = mandoc_realloc(res, ssz + 2);
1980 res[ssz++] = *p++;
1981 continue;
1982 }

1984 /* Search for term matches. */
1985 for (cp = r->xmbtab; cp; cp = cp->next)
1986 if (0 == strncmp(p, cp->key.p, cp->key.sz))
1987 break;

1989 if (NULL != cp) {
1990 /*
1991 * A match has been found.
1992 * Append the match to the array and move
1993 * forward by its keysize.
1994 */
1995 res = mandoc_realloc
1996 (res, ssz + cp->val.sz + 1);
1997 memcpy(res + ssz, cp->val.p, cp->val.sz);
1998 ssz += cp->val.sz;
1999 p += (int)cp->key.sz;
2000 continue;
2001 }

2003 /*
2004 * Handle escapes carefully: we need to copy
2005 * over just the escape itself, or else we might
2006 * do replacements within the escape itself.
2007 * Make sure to pass along the bogus string.
2008 */
2009 pp = p++;
2010 esc = mandoc_escape(&p, NULL, NULL);
2011 if (ESCAPE_ERROR == esc) {
2012 sz = strlen(pp);
2013 res = mandoc_realloc(res, ssz + sz + 1);
2014 memcpy(res + ssz, pp, sz);
2015 break;
2016 }
2017 /*
2018 * We bail out on bad escapes.

new/usr/src/cmd/mandoc/roff.c 23

2019 * No need to warn: we already did so when
2020 * roff_res() was called.
2021 */
2022 sz = (int)(p - pp);
2023 res = mandoc_realloc(res, ssz + sz + 1);
2024 memcpy(res + ssz, pp, sz);
2025 ssz += sz;
2026 }

2028 res[(int)ssz] = ’\0’;
2029 return(res);
2030 }

2032 /*
2033 * Find out whether a line is a macro line or not.
2034 * If it is, adjust the current position and return one; if it isn’t,
2035 * return zero and don’t change the current position.
2036 * If the control character has been set with ‘.cc’, then let that grain
2037 * precedence.
2038 * This is slighly contrary to groff, where using the non-breaking
2039 * control character when ‘cc’ has been invoked will cause the
2040 * non-breaking macro contents to be printed verbatim.
2041 */
2042 int
2043 roff_getcontrol(const struct roff *r, const char *cp, int *ppos)
2044 {
2045 int pos;

2047 pos = *ppos;

2049 if (0 != r->control && cp[pos] == r->control)
2050 pos++;
2051 else if (0 != r->control)
2052 return(0);
2053 else if (’\\’ == cp[pos] && ’.’ == cp[pos + 1])
2054 pos += 2;
2055 else if (’.’ == cp[pos] || ’\’’ == cp[pos])
2056 pos++;
2057 else
2058 return(0);

2060 while (’ ’ == cp[pos] || ’\t’ == cp[pos])
2061 pos++;

2063 *ppos = pos;
2064 return(1);
2065 }
______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/st.in 1

**
 4887 Wed Jul 30 20:55:11 2014
new/usr/src/cmd/mandoc/st.in
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: st.in,v 1.22 2013/12/25 14:09:32 schwarze Exp $ */
1 /* $Id: st.in,v 1.19 2012/02/26 21:47:09 schwarze Exp $ */
2 /*
3 * Copyright (c) 2009, 2010 Kristaps Dzonsons <kristaps@bsd.lv>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */

18 /*
19 * This file defines the .St macro arguments. If you add a new
20 * standard, make sure that the left-and side corresponds to the .St
21 * argument (like .St -p1003.1) and the right-hand side corresponds to
22 * the formatted output string.
23 *
24 * Be sure to escape strings.
25 * The non-breaking blanks prevent ending an output line right before
26 * a number. Groff prevent line breaks at the same places.
27 *
28 * REMEMBER TO ADD NEW STANDARDS TO MDOC.7!
29 */

31 LINE("-p1003.1-88", "IEEE Std 1003.1-1988 (\\(lqPOSIX.1\\(rq)")
32 LINE("-p1003.1-90", "IEEE Std 1003.1-1990 (\\(lqPOSIX.1\\(rq)")
33 LINE("-p1003.1-96", "ISO/IEC 9945-1:1996 (\\(lqPOSIX.1\\(rq)")
34 LINE("-p1003.1-2001", "IEEE Std 1003.1-2001 (\\(lqPOSIX.1\\(rq)")
35 LINE("-p1003.1-2004", "IEEE Std 1003.1-2004 (\\(lqPOSIX.1\\(rq)")
36 LINE("-p1003.1-2008", "IEEE Std 1003.1-2008 (\\(lqPOSIX.1\\(rq)")
37 LINE("-p1003.1", "IEEE Std 1003.1 (\\(lqPOSIX.1\\(rq)")
38 LINE("-p1003.1b", "IEEE Std 1003.1b (\\(lqPOSIX.1b\\(rq)")
39 LINE("-p1003.1b-93", "IEEE Std 1003.1b-1993 (\\(lqPOSIX.1b\\(rq)")
40 LINE("-p1003.1c-95", "IEEE Std 1003.1c-1995 (\\(lqPOSIX.1c\\(rq)")
41 LINE("-p1003.1d-99", "IEEE Std 1003.1d-1999 (\\(lqPOSIX.1d\\(rq)")
42 LINE("-p1003.1g-2000", "IEEE Std 1003.1g-2000 (\\(lqPOSIX.1g\\(rq)")
43 LINE("-p1003.1i-95", "IEEE Std 1003.1i-1995 (\\(lqPOSIX.1i\\(rq)")
44 LINE("-p1003.1j-2000", "IEEE Std 1003.1j-2000 (\\(lqPOSIX.1j\\(rq)")
45 LINE("-p1003.1q-2000", "IEEE Std 1003.1q-2000 (\\(lqPOSIX.1q\\(rq)")
46 LINE("-p1003.2", "IEEE Std 1003.2 (\\(lqPOSIX.2\\(rq)")
38 LINE("-p1003.1b", "IEEE Std 1003.1b (\\(lqPOSIX.1\\(rq)")
39 LINE("-p1003.1b-93", "IEEE Std 1003.1b-1993 (\\(lqPOSIX.1\\(rq)")
40 LINE("-p1003.1c-95", "IEEE Std 1003.1c-1995 (\\(lqPOSIX.1\\(rq)")
41 LINE("-p1003.1g-2000", "IEEE Std 1003.1g-2000 (\\(lqPOSIX.1\\(rq)")
42 LINE("-p1003.1i-95", "IEEE Std 1003.1i-1995 (\\(lqPOSIX.1\\(rq)")
47 LINE("-p1003.2-92", "IEEE Std 1003.2-1992 (\\(lqPOSIX.2\\(rq)")
48 LINE("-p1003.2a-92", "IEEE Std 1003.2a-1992 (\\(lqPOSIX.2\\(rq)")
49 LINE("-p1387.2", "IEEE Std 1387.2 (\\(lqPOSIX.7.2\\(rq)")
50 LINE("-p1387.2-95", "IEEE Std 1387.2-1995 (\\(lqPOSIX.7.2\\(rq)")
46 LINE("-p1003.2", "IEEE Std 1003.2 (\\(lqPOSIX.2\\(rq)")
47 LINE("-p1387.2", "IEEE Std 1387.2 (\\(lqPOSIX.7.2\\(rq)")
51 LINE("-isoC", "ISO/IEC 9899:1990 (\\(lqISO\\~C90\\(rq)")

new/usr/src/cmd/mandoc/st.in 2

52 LINE("-isoC-90", "ISO/IEC 9899:1990 (\\(lqISO\\~C90\\(rq)")
53 LINE("-isoC-amd1", "ISO/IEC 9899/AMD1:1995 (\\(lqISO\\~C90, Amendment 1\\(r
54 LINE("-isoC-tcor1", "ISO/IEC 9899/TCOR1:1994 (\\(lqISO\\~C90, Technical Corr
55 LINE("-isoC-tcor2", "ISO/IEC 9899/TCOR2:1995 (\\(lqISO\\~C90, Technical Corr
56 LINE("-isoC-99", "ISO/IEC 9899:1999 (\\(lqISO\\~C99\\(rq)")
57 LINE("-isoC-2011", "ISO/IEC 9899:2011 (\\(lqISO\\~C11\\(rq)")
58 LINE("-iso9945-1-90", "ISO/IEC 9945-1:1990 (\\(lqPOSIX.1\\(rq)")
59 LINE("-iso9945-1-96", "ISO/IEC 9945-1:1996 (\\(lqPOSIX.1\\(rq)")
60 LINE("-iso9945-2-93", "ISO/IEC 9945-2:1993 (\\(lqPOSIX.2\\(rq)")
61 LINE("-ansiC", "ANSI X3.159-1989 (\\(lqANSI\\~C89\\(rq)")
62 LINE("-ansiC-89", "ANSI X3.159-1989 (\\(lqANSI\\~C89\\(rq)")
63 LINE("-ansiC-99", "ANSI/ISO/IEC 9899-1999 (\\(lqANSI\\~C99\\(rq)")
64 LINE("-ieee754", "IEEE Std 754-1985")
65 LINE("-iso8802-3", "ISO 8802-3: 1989")
66 LINE("-iso8601", "ISO 8601")
67 LINE("-ieee1275-94", "IEEE Std 1275-1994 (\\(lqOpen Firmware\\(rq)")
68 LINE("-xpg3", "X/Open Portability Guide Issue\\~3 (\\(lqXPG3\\(rq)")
69 LINE("-xpg4", "X/Open Portability Guide Issue\\~4 (\\(lqXPG4\\(rq)")
70 LINE("-xpg4.2", "X/Open Portability Guide Issue\\~4, Version\\~2 (\\(lqX
71 LINE("-xpg4.3", "X/Open Portability Guide Issue\\~4, Version\\~3 (\\(lqX
72 LINE("-xbd5", "X/Open Base Definitions Issue\\~5 (\\(lqXBD5\\(rq)")
73 LINE("-xcu5", "X/Open Commands and Utilities Issue\\~5 (\\(lqXCU5\\(rq
74 LINE("-xsh4.2", "X/Open System Interfaces and Headers Issue\\~4, Version
75 LINE("-xsh5", "X/Open System Interfaces and Headers Issue\\~5 (\\(lqXS
76 LINE("-xns5", "X/Open Networking Services Issue\\~5 (\\(lqXNS5\\(rq)")
77 LINE("-xns5.2", "X/Open Networking Services Issue\\~5.2 (\\(lqXNS5.2\\(r
78 LINE("-xns5.2d2.0", "X/Open Networking Services Issue\\~5.2 Draft\\~2.0 (\\(
79 LINE("-xcurses4.2", "X/Open Curses Issue\\~4, Version\\~2 (\\(lqXCURSES4.2\\
80 LINE("-susv2", "Version\\~2 of the Single UNIX Specification (\\(lqSUSv
81 LINE("-susv3", "Version\\~3 of the Single UNIX Specification (\\(lqSUSv
76 LINE("-susv2", "Version\\~2 of the Single UNIX Specification")
77 LINE("-susv3", "Version\\~3 of the Single UNIX Specification")
82 LINE("-svid4", "System\\~V Interface Definition, Fourth Edition (\\(lqS

new/usr/src/cmd/mandoc/tbl.c 1

**
 4085 Wed Jul 30 20:55:12 2014
new/usr/src/cmd/mandoc/tbl.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: tbl.c,v 1.27 2013/05/31 22:08:09 schwarze Exp $ */
1 /* $Id: tbl.c,v 1.26 2011/07/25 15:37:00 kristaps Exp $ */
2 /*
3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2011 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <assert.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <time.h>

28 #include "mandoc.h"
29 #include "libmandoc.h"
30 #include "libroff.h"

32 enum rofferr
33 tbl_read(struct tbl_node *tbl, int ln, const char *p, int offs)
34 {
35 int len;
36 const char *cp;

38 cp = &p[offs];
39 len = (int)strlen(cp);

41 /*
42 * If we’re in the options section and we don’t have a
43 * terminating semicolon, assume we’ve moved directly into the
44 * layout section. No need to report a warning: this is,
45 * apparently, standard behaviour.
46 */

48 if (TBL_PART_OPTS == tbl->part && len)
49 if (’;’ != cp[len - 1])
50 tbl->part = TBL_PART_LAYOUT;

52 /* Now process each logical section of the table. */

54 switch (tbl->part) {
55 case (TBL_PART_OPTS):
56 return(tbl_option(tbl, ln, p) ? ROFF_IGN : ROFF_ERR);
57 case (TBL_PART_LAYOUT):
58 return(tbl_layout(tbl, ln, p) ? ROFF_IGN : ROFF_ERR);

new/usr/src/cmd/mandoc/tbl.c 2

59 case (TBL_PART_CDATA):
60 return(tbl_cdata(tbl, ln, p) ? ROFF_TBL : ROFF_IGN);
61 default:
62 break;
63 }

65 /*
66 * This only returns zero if the line is empty, so we ignore it
67 * and continue on.
68 */
69 return(tbl_data(tbl, ln, p) ? ROFF_TBL : ROFF_IGN);
70 }

72 struct tbl_node *
73 tbl_alloc(int pos, int line, struct mparse *parse)
74 {
75 struct tbl_node *tbl;
75 struct tbl_node *p;

77 tbl = mandoc_calloc(1, sizeof(struct tbl_node));
78 tbl->line = line;
79 tbl->pos = pos;
80 tbl->parse = parse;
81 tbl->part = TBL_PART_OPTS;
82 tbl->opts.tab = ’\t’;
83 tbl->opts.linesize = 12;
84 tbl->opts.decimal = ’.’;
85 return(tbl);
77 p = mandoc_calloc(1, sizeof(struct tbl_node));
78 p->line = line;
79 p->pos = pos;
80 p->parse = parse;
81 p->part = TBL_PART_OPTS;
82 p->opts.tab = ’\t’;
83 p->opts.linesize = 12;
84 p->opts.decimal = ’.’;
85 return(p);
86 }

88 void
89 tbl_free(struct tbl_node *tbl)
89 tbl_free(struct tbl_node *p)
90 {
91 struct tbl_row *rp;
92 struct tbl_cell *cp;
93 struct tbl_span *sp;
94 struct tbl_dat *dp;
95 struct tbl_head *hp;

97 while (NULL != (rp = tbl->first_row)) {
98 tbl->first_row = rp->next;
97 while (NULL != (rp = p->first_row)) {
98 p->first_row = rp->next;
99 while (rp->first) {
100 cp = rp->first;
101 rp->first = cp->next;
102 free(cp);
103 }
104 free(rp);
105 }

107 while (NULL != (sp = tbl->first_span)) {
108 tbl->first_span = sp->next;
107 while (NULL != (sp = p->first_span)) {
108 p->first_span = sp->next;
109 while (sp->first) {

new/usr/src/cmd/mandoc/tbl.c 3

110 dp = sp->first;
111 sp->first = dp->next;
112 if (dp->string)
113 free(dp->string);
114 free(dp);
115 }
116 free(sp);
117 }

119 while (NULL != (hp = tbl->first_head)) {
120 tbl->first_head = hp->next;
119 while (NULL != (hp = p->first_head)) {
120 p->first_head = hp->next;
121 free(hp);
122 }

124 free(tbl);
124 free(p);
125 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/tbl_data.c 1

**
 6344 Wed Jul 30 20:55:12 2014
new/usr/src/cmd/mandoc/tbl_data.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: tbl_data.c,v 1.27 2013/06/01 04:56:50 schwarze Exp $ */
1 /* $Id: tbl_data.c,v 1.24 2011/03/20 16:02:05 kristaps Exp $ */
2 /*
3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2011 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <assert.h>
23 #include <ctype.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <time.h>

28 #include "mandoc.h"
29 #include "libmandoc.h"
30 #include "libroff.h"

32 static int data(struct tbl_node *, struct tbl_span *,
33 int, const char *, int *);
34 static struct tbl_span *newspan(struct tbl_node *, int,
35 struct tbl_row *);

37 static int
38 data(struct tbl_node *tbl, struct tbl_span *dp,
39 int ln, const char *p, int *pos)
40 {
41 struct tbl_dat *dat;
42 struct tbl_cell *cp;
43 int sv, spans;

45 cp = NULL;
46 if (dp->last && dp->last->layout)
47 cp = dp->last->layout->next;
48 else if (NULL == dp->last)
49 cp = dp->layout->first;

51 /*
52 * Skip over spanners, since
52 * Skip over spanners and vertical lines to data formats, since
53 * we want to match data with data layout cells in the header.
54 */

56 while (cp && TBL_CELL_SPAN == cp->pos)
56 while (cp && (TBL_CELL_VERT == cp->pos ||

new/usr/src/cmd/mandoc/tbl_data.c 2

57 TBL_CELL_DVERT == cp->pos ||
58 TBL_CELL_SPAN == cp->pos))
57 cp = cp->next;

59 /*
60 * Stop processing when we reach the end of the available layout
61 * cells. This means that we have extra input.
62 */

64 if (NULL == cp) {
65 mandoc_msg(MANDOCERR_TBLEXTRADAT,
66 tbl->parse, ln, *pos, NULL);
67 /* Skip to the end... */
68 while (p[*pos])
69 (*pos)++;
70 return(1);
71 }

73 dat = mandoc_calloc(1, sizeof(struct tbl_dat));
74 dat->layout = cp;
75 dat->pos = TBL_DATA_NONE;

77 assert(TBL_CELL_SPAN != cp->pos);

79 for (spans = 0, cp = cp->next; cp; cp = cp->next)
80 if (TBL_CELL_SPAN == cp->pos)
81 spans++;
82 else
83 break;
84
85 dat->spans = spans;

87 if (dp->last) {
88 dp->last->next = dat;
89 dp->last = dat;
90 } else
91 dp->last = dp->first = dat;

93 sv = *pos;
94 while (p[*pos] && p[*pos] != tbl->opts.tab)
95 (*pos)++;

97 /*
98 * Check for a continued-data scope opening. This consists of a
99 * trailing ‘T{’ at the end of the line. Subsequent lines,
100 * until a standalone ‘T}’, are included in our cell.
101 */

103 if (*pos - sv == 2 && ’T’ == p[sv] && ’{’ == p[sv + 1]) {
104 tbl->part = TBL_PART_CDATA;
105 return(1);
107 return(0);
106 }

108 assert(*pos - sv >= 0);

110 dat->string = mandoc_malloc((size_t)(*pos - sv + 1));
111 memcpy(dat->string, &p[sv], (size_t)(*pos - sv));
112 dat->string[*pos - sv] = ’\0’;

114 if (p[*pos])
115 (*pos)++;

117 if (! strcmp(dat->string, "_"))
118 dat->pos = TBL_DATA_HORIZ;
119 else if (! strcmp(dat->string, "="))

new/usr/src/cmd/mandoc/tbl_data.c 3

120 dat->pos = TBL_DATA_DHORIZ;
121 else if (! strcmp(dat->string, "_"))
122 dat->pos = TBL_DATA_NHORIZ;
123 else if (! strcmp(dat->string, "\\="))
124 dat->pos = TBL_DATA_NDHORIZ;
125 else
126 dat->pos = TBL_DATA_DATA;

128 if (TBL_CELL_HORIZ == dat->layout->pos ||
129 TBL_CELL_DHORIZ == dat->layout->pos ||
130 TBL_CELL_DOWN == dat->layout->pos)
131 if (TBL_DATA_DATA == dat->pos && ’\0’ != *dat->string)
132 mandoc_msg(MANDOCERR_TBLIGNDATA,
133 tbl->parse, ln, sv, NULL);

135 return(1);
136 }

______unchanged_portion_omitted_

181 static struct tbl_span *
182 newspan(struct tbl_node *tbl, int line, struct tbl_row *rp)
183 {
184 struct tbl_span *dp;

186 dp = mandoc_calloc(1, sizeof(struct tbl_span));
187 dp->line = line;
188 dp->opts = &tbl->opts;
190 dp->tbl = &tbl->opts;
189 dp->layout = rp;
190 dp->head = tbl->first_head;

192 if (tbl->last_span) {
193 tbl->last_span->next = dp;
194 tbl->last_span = dp;
195 } else {
196 tbl->last_span = tbl->first_span = dp;
197 tbl->current_span = NULL;
198 dp->flags |= TBL_SPAN_FIRST;
199 }

201 return(dp);
202 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/tbl_html.c 1

**
 3160 Wed Jul 30 20:55:12 2014
new/usr/src/cmd/mandoc/tbl_html.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: tbl_html.c,v 1.10 2012/05/27 17:54:54 schwarze Exp $ */
1 /* $Id: tbl_html.c,v 1.9 2011/09/18 14:14:15 schwarze Exp $ */
2 /*
3 * Copyright (c) 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17 #ifdef HAVE_CONFIG_H
18 #include "config.h"
19 #endif

21 #include <assert.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <string.h>

26 #include "mandoc.h"
27 #include "out.h"
28 #include "html.h"

30 static void html_tblopen(struct html *, const struct tbl_span *);
31 static size_t html_tbl_len(size_t, void *);
32 static size_t html_tbl_strlen(const char *, void *);

34 /* ARGSUSED */
35 static size_t
36 html_tbl_len(size_t sz, void *arg)
37 {
38
39 return(sz);
40 }

______unchanged_portion_omitted_

89 void
90 print_tbl(struct html *h, const struct tbl_span *sp)
91 {
92 const struct tbl_head *hp;
93 const struct tbl_dat *dp;
94 struct htmlpair tag;
95 struct tag *tt;

97 /* Inhibit printing of spaces: we do padding ourselves. */

99 if (NULL == h->tblt)
100 html_tblopen(h, sp);

102 assert(h->tblt);

104 h->flags |= HTML_NONOSPACE;

new/usr/src/cmd/mandoc/tbl_html.c 2

105 h->flags |= HTML_NOSPACE;

107 tt = print_otag(h, TAG_TR, 0, NULL);

109 switch (sp->pos) {
110 case (TBL_SPAN_HORIZ):
111 /* FALLTHROUGH */
112 case (TBL_SPAN_DHORIZ):
113 PAIR_INIT(&tag, ATTR_COLSPAN, "0");
114 print_otag(h, TAG_TD, 1, &tag);
115 break;
116 default:
117 dp = sp->first;
118 for (hp = sp->head; hp; hp = hp->next) {
119 print_stagq(h, tt);
120 print_otag(h, TAG_TD, 0, NULL);

122 switch (hp->pos) {
123 case (TBL_HEAD_VERT):
124 /* FALLTHROUGH */
125 case (TBL_HEAD_DVERT):
126 continue;
127 case (TBL_HEAD_DATA):
122 if (NULL == dp)
123 break;
124 if (TBL_CELL_DOWN != dp->layout->pos)
125 if (dp->string)
126 print_text(h, dp->string);
127 dp = dp->next;
134 break;
128 }
136 }
129 break;
130 }

132 print_tagq(h, tt);

134 h->flags &= ~HTML_NONOSPACE;

136 if (TBL_SPAN_LAST & sp->flags) {
137 assert(h->tbl.cols);
138 free(h->tbl.cols);
139 h->tbl.cols = NULL;
140 print_tblclose(h);
141 }

143 }
______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/tbl_layout.c 1

**
 8025 Wed Jul 30 20:55:12 2014
new/usr/src/cmd/mandoc/tbl_layout.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: tbl_layout.c,v 1.23 2012/05/27 17:54:54 schwarze Exp $ */
1 /* $Id: tbl_layout.c,v 1.22 2011/09/18 14:14:15 schwarze Exp $ */
2 /*
3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2012 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <assert.h>
23 #include <ctype.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <time.h>

28 #include "mandoc.h"
29 #include "libmandoc.h"
30 #include "libroff.h"

32 struct tbl_phrase {
33 char name;
34 enum tbl_cellt key;
35 };

37 /*
38 * FIXME: we can make this parse a lot nicer by, when an error is
39 * encountered in a layout key, bailing to the next key (i.e. to the
40 * next whitespace then continuing).
41 */

43 #define KEYS_MAX 11

45 static const struct tbl_phrase keys[KEYS_MAX] = {
46 { ’c’, TBL_CELL_CENTRE },
47 { ’r’, TBL_CELL_RIGHT },
48 { ’l’, TBL_CELL_LEFT },
49 { ’n’, TBL_CELL_NUMBER },
50 { ’s’, TBL_CELL_SPAN },
51 { ’a’, TBL_CELL_LONG },
52 { ’^’, TBL_CELL_DOWN },
53 { ’-’, TBL_CELL_HORIZ },
54 { ’_’, TBL_CELL_HORIZ },
55 { ’=’, TBL_CELL_DHORIZ }
54 { ’=’, TBL_CELL_DHORIZ },
55 { ’|’, TBL_CELL_VERT }
56 };

new/usr/src/cmd/mandoc/tbl_layout.c 2

58 static int mods(struct tbl_node *, struct tbl_cell *,
59 int, const char *, int *);
60 static int cell(struct tbl_node *, struct tbl_row *,
61 int, const char *, int *);
62 static void row(struct tbl_node *, int, const char *, int *);
63 static struct tbl_cell *cell_alloc(struct tbl_node *, struct tbl_row *,
64 enum tbl_cellt, int vert);
63 static struct tbl_cell *cell_alloc(struct tbl_node *,
64 struct tbl_row *, enum tbl_cellt);
65 static void head_adjust(const struct tbl_cell *,
66 struct tbl_head *);

66 static int
67 mods(struct tbl_node *tbl, struct tbl_cell *cp,
68 int ln, const char *p, int *pos)
69 {
70 char buf[5];
71 int i;

73 /* Not all types accept modifiers. */

75 switch (cp->pos) {
76 case (TBL_CELL_DOWN):
77 /* FALLTHROUGH */
78 case (TBL_CELL_HORIZ):
79 /* FALLTHROUGH */
80 case (TBL_CELL_DHORIZ):
83 /* FALLTHROUGH */
84 case (TBL_CELL_VERT):
85 /* FALLTHROUGH */
86 case (TBL_CELL_DVERT):
81 return(1);
82 default:
83 break;
84 }

86 mod:
87 /*
88 * XXX: since, at least for now, modifiers are non-conflicting
89 * (are separable by value, regardless of position), we let
90 * modifiers come in any order. The existing tbl doesn’t let
91 * this happen.
92 */
93 switch (p[*pos]) {
94 case (’\0’):
95 /* FALLTHROUGH */
96 case (’ ’):
97 /* FALLTHROUGH */
98 case (’\t’):
99 /* FALLTHROUGH */
100 case (’,’):
101 /* FALLTHROUGH */
102 case (’.’):
103 return(1);
104 default:
105 break;
106 }

108 /* Throw away parenthesised expression. */

110 if (’(’ == p[*pos]) {
111 (*pos)++;
112 while (p[*pos] && ’)’ != p[*pos])
113 (*pos)++;
114 if (’)’ == p[*pos]) {

new/usr/src/cmd/mandoc/tbl_layout.c 3

115 (*pos)++;
116 goto mod;
117 }
118 mandoc_msg(MANDOCERR_TBLLAYOUT,
119 tbl->parse, ln, *pos, NULL);
120 return(0);
121 }

123 /* Parse numerical spacing from modifier string. */

125 if (isdigit((unsigned char)p[*pos])) {
126 for (i = 0; i < 4; i++) {
127 if (! isdigit((unsigned char)p[*pos + i]))
128 break;
129 buf[i] = p[*pos + i];
130 }
131 buf[i] = ’\0’;

133 /* No greater than 4 digits. */

135 if (4 == i) {
136 mandoc_msg(MANDOCERR_TBLLAYOUT, tbl->parse,
137 ln, *pos, NULL);
138 return(0);
139 }

141 *pos += i;
142 cp->spacing = (size_t)atoi(buf);

144 goto mod;
145 /* NOTREACHED */
146 }

148 /* TODO: GNU has many more extensions. */

150 switch (tolower((unsigned char)p[(*pos)++])) {
151 case (’z’):
152 cp->flags |= TBL_CELL_WIGN;
153 goto mod;
154 case (’u’):
155 cp->flags |= TBL_CELL_UP;
156 goto mod;
157 case (’e’):
158 cp->flags |= TBL_CELL_EQUAL;
159 goto mod;
160 case (’t’):
161 cp->flags |= TBL_CELL_TALIGN;
162 goto mod;
163 case (’d’):
164 cp->flags |= TBL_CELL_BALIGN;
165 goto mod;
166 case (’w’): /* XXX for now, ignore minimal column width */
167 goto mod;
168 case (’f’):
169 break;
170 case (’r’):
171 /* FALLTHROUGH */
172 case (’b’):
173 /* FALLTHROUGH */
174 case (’i’):
175 (*pos)--;
176 break;
177 default:
178 mandoc_msg(MANDOCERR_TBLLAYOUT, tbl->parse,
179 ln, *pos - 1, NULL);
180 return(0);

new/usr/src/cmd/mandoc/tbl_layout.c 4

181 }

183 switch (tolower((unsigned char)p[(*pos)++])) {
184 case (’3’):
185 /* FALLTHROUGH */
186 case (’b’):
187 cp->flags |= TBL_CELL_BOLD;
188 goto mod;
189 case (’2’):
190 /* FALLTHROUGH */
191 case (’i’):
192 cp->flags |= TBL_CELL_ITALIC;
193 goto mod;
194 case (’1’):
195 /* FALLTHROUGH */
196 case (’r’):
197 goto mod;
198 default:
199 break;
200 }

202 mandoc_msg(MANDOCERR_TBLLAYOUT, tbl->parse,
203 ln, *pos - 1, NULL);
204 return(0);
205 }

207 static int
208 cell(struct tbl_node *tbl, struct tbl_row *rp,
209 int ln, const char *p, int *pos)
210 {
211 int vert, i;
217 int i;
212 enum tbl_cellt c;

214 /* Handle vertical lines. */
220 /* Parse the column position (‘r’, ‘R’, ‘|’, ...). */

216 for (vert = 0; ’|’ == p[*pos]; ++*pos)
217 vert++;
218 while (’ ’ == p[*pos])
219 (*pos)++;

221 /* Parse the column position (‘c’, ‘l’, ‘r’, ...). */

223 for (i = 0; i < KEYS_MAX; i++)
224 if (tolower((unsigned char)p[*pos]) == keys[i].name)
225 break;

227 if (KEYS_MAX == i) {
228 mandoc_msg(MANDOCERR_TBLLAYOUT, tbl->parse,
229 ln, *pos, NULL);
230 return(0);
231 }

233 c = keys[i].key;

235 /*
236 * If a span cell is found first, raise a warning and abort the
237 * parse. If a span cell is found and the last layout element
238 * isn’t a "normal" layout, bail.
239 *
240 * FIXME: recover from this somehow?
241 */

243 if (TBL_CELL_SPAN == c) {
244 if (NULL == rp->first) {

new/usr/src/cmd/mandoc/tbl_layout.c 5

245 mandoc_msg(MANDOCERR_TBLLAYOUT, tbl->parse,
246 ln, *pos, NULL);
247 return(0);
248 } else if (rp->last)
249 switch (rp->last->pos) {
249 case (TBL_CELL_VERT):
250 case (TBL_CELL_DVERT):
250 case (TBL_CELL_HORIZ):
251 case (TBL_CELL_DHORIZ):
252 mandoc_msg(MANDOCERR_TBLLAYOUT, tbl->parse,
253 ln, *pos, NULL);
254 return(0);
255 default:
256 break;
257 }
258 }

260 /*
261 * If a vertical spanner is found, we may not be in the first
262 * row.
263 */

265 if (TBL_CELL_DOWN == c && rp == tbl->first_row) {
266 mandoc_msg(MANDOCERR_TBLLAYOUT, tbl->parse, ln, *pos, NULL);
267 return(0);
268 }

270 (*pos)++;

273 /* Extra check for the double-vertical. */

275 if (TBL_CELL_VERT == c && ’|’ == p[*pos]) {
276 (*pos)++;
277 c = TBL_CELL_DVERT;
278 }
279
272 /* Disallow adjacent spacers. */

274 if (vert > 2) {
282 if (rp->last && (TBL_CELL_VERT == c || TBL_CELL_DVERT == c) &&
283 (TBL_CELL_VERT == rp->last->pos ||
284 TBL_CELL_DVERT == rp->last->pos)) {
275 mandoc_msg(MANDOCERR_TBLLAYOUT, tbl->parse, ln, *pos - 1, NULL);
276 return(0);
277 }

279 /* Allocate cell then parse its modifiers. */

281 return(mods(tbl, cell_alloc(tbl, rp, c, vert), ln, p, pos));
291 return(mods(tbl, cell_alloc(tbl, rp, c), ln, p, pos));
282 }

285 static void
286 row(struct tbl_node *tbl, int ln, const char *p, int *pos)
287 {
288 struct tbl_row *rp;

290 row: /*
291 * EBNF describing this section:
292 *
293 * row ::= row_list [:space:]* [.]?[\n]
294 * row_list ::= [:space:]* row_elem row_tail
295 * row_tail ::= [:space:]*[,] row_list |
296 * epsilon
297 * row_elem ::= [\t\]*[:alpha:]+

new/usr/src/cmd/mandoc/tbl_layout.c 6

298 */

300 rp = mandoc_calloc(1, sizeof(struct tbl_row));
301 if (tbl->last_row)
311 if (tbl->last_row) {
302 tbl->last_row->next = rp;
303 else
304 tbl->first_row = rp;
305 tbl->last_row = rp;
314 } else
315 tbl->last_row = tbl->first_row = rp;

307 cell:
308 while (isspace((unsigned char)p[*pos]))
309 (*pos)++;

311 /* Safely exit layout context. */

313 if (’.’ == p[*pos]) {
314 tbl->part = TBL_PART_DATA;
315 if (NULL == tbl->first_row)
316 mandoc_msg(MANDOCERR_TBLNOLAYOUT, tbl->parse,
317 ln, *pos, NULL);
318 (*pos)++;
319 return;
320 }

322 /* End (and possibly restart) a row. */

324 if (’,’ == p[*pos]) {
325 (*pos)++;
326 goto row;
327 } else if (’\0’ == p[*pos])
328 return;

330 if (! cell(tbl, rp, ln, p, pos))
331 return;

333 goto cell;
334 /* NOTREACHED */
335 }

______unchanged_portion_omitted_

349 static struct tbl_cell *
350 cell_alloc(struct tbl_node *tbl, struct tbl_row *rp, enum tbl_cellt pos,
351 int vert)
360 cell_alloc(struct tbl_node *tbl, struct tbl_row *rp, enum tbl_cellt pos)
352 {
353 struct tbl_cell *p, *pp;
354 struct tbl_head *h, *hp;

356 p = mandoc_calloc(1, sizeof(struct tbl_cell));

358 if (NULL != (pp = rp->last)) {
359 pp->next = p;
360 h = pp->head->next;
361 } else {
362 rp->first = p;
363 h = tbl->first_head;
364 }
368 rp->last->next = p;
365 rp->last = p;
370 } else
371 rp->last = rp->first = p;

367 p->pos = pos;

new/usr/src/cmd/mandoc/tbl_layout.c 7

368 p->vert = vert;

370 /* Re-use header. */
375 /*
376 * This is a little bit complicated. Here we determine the
377 * header the corresponds to a cell. We add headers dynamically
378 * when need be or re-use them, otherwise. As an example, given
379 * the following:
380 *
381 * 1 c || l
382 * 2 | c | l
383 * 3 l l
384 * 3 || c | l |.
385 *
386 * We first add the new headers (as there are none) in (1); then
387 * in (2) we insert the first spanner (as it doesn’t match up
388 * with the header); then we re-use the prior data headers,
389 * skipping over the spanners; then we re-use everything and add
390 * a last spanner. Note that VERT headers are made into DVERT
391 * ones.
392 */

394 h = pp ? pp->head->next : tbl->first_head;

372 if (h) {
397 /* Re-use data header. */
398 if (TBL_HEAD_DATA == h->pos &&
399 (TBL_CELL_VERT != p->pos &&
400 TBL_CELL_DVERT != p->pos)) {
373 p->head = h;
374 return(p);
375 }

405 /* Re-use spanner header. */
406 if (TBL_HEAD_DATA != h->pos &&
407 (TBL_CELL_VERT == p->pos ||
408 TBL_CELL_DVERT == p->pos)) {
409 head_adjust(p, h);
410 p->head = h;
411 return(p);
412 }

414 /* Right-shift headers with a new spanner. */
415 if (TBL_HEAD_DATA == h->pos &&
416 (TBL_CELL_VERT == p->pos ||
417 TBL_CELL_DVERT == p->pos)) {
377 hp = mandoc_calloc(1, sizeof(struct tbl_head));
378 hp->ident = tbl->opts.cols++;
379 hp->vert = vert;
420 hp->prev = h->prev;
421 if (h->prev)
422 h->prev->next = hp;
423 if (h == tbl->first_head)
424 tbl->first_head = hp;
425 h->prev = hp;
426 hp->next = h;
427 head_adjust(p, hp);
428 p->head = hp;
429 return(p);
430 }

432 if (NULL != (h = h->next)) {
433 head_adjust(p, h);
434 p->head = h;
435 return(p);
436 }

new/usr/src/cmd/mandoc/tbl_layout.c 8

438 /* Fall through to default case... */
439 }

441 hp = mandoc_calloc(1, sizeof(struct tbl_head));
442 hp->ident = tbl->opts.cols++;

381 if (tbl->last_head) {
382 hp->prev = tbl->last_head;
383 tbl->last_head->next = hp;
384 } else
385 tbl->first_head = hp;
386 tbl->last_head = hp;
448 } else
449 tbl->last_head = tbl->first_head = hp;

451 head_adjust(p, hp);
388 p->head = hp;
389 return(p);
390 }

456 static void
457 head_adjust(const struct tbl_cell *cellp, struct tbl_head *head)
458 {
459 if (TBL_CELL_VERT != cellp->pos &&
460 TBL_CELL_DVERT != cellp->pos) {
461 head->pos = TBL_HEAD_DATA;
462 return;
463 }

465 if (TBL_CELL_VERT == cellp->pos)
466 if (TBL_HEAD_DVERT != head->pos)
467 head->pos = TBL_HEAD_VERT;

469 if (TBL_CELL_DVERT == cellp->pos)
470 head->pos = TBL_HEAD_DVERT;
471 }

new/usr/src/cmd/mandoc/tbl_term.c 1

**
 9576 Wed Jul 30 20:55:12 2014
new/usr/src/cmd/mandoc/tbl_term.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: tbl_term.c,v 1.25 2013/05/31 21:37:17 schwarze Exp $ */
1 /* $Id: tbl_term.c,v 1.21 2011/09/20 23:05:49 schwarze Exp $ */
2 /*
3 * Copyright (c) 2009, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2011, 2012 Ingo Schwarze <schwarze@openbsd.org>
4 * Copyright (c) 2011 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <assert.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>

27 #include "mandoc.h"
28 #include "out.h"
29 #include "term.h"

31 static size_t term_tbl_len(size_t, void *);
32 static size_t term_tbl_strlen(const char *, void *);
33 static void tbl_char(struct termp *, char, size_t);
34 static void tbl_data(struct termp *, const struct tbl_opts *,
34 static void tbl_data(struct termp *, const struct tbl *,
35 const struct tbl_dat *,
36 const struct roffcol *);
37 static size_t tbl_rulewidth(struct termp *, const struct tbl_head *);
38 static void tbl_hframe(struct termp *, const struct tbl_span *, int);
39 static void tbl_literal(struct termp *, const struct tbl_dat *,
40 const struct roffcol *);
41 static void tbl_number(struct termp *, const struct tbl_opts *,
41 static void tbl_number(struct termp *, const struct tbl *,
42 const struct tbl_dat *,
43 const struct roffcol *);
44 static void tbl_hrule(struct termp *, const struct tbl_span *);
45 static void tbl_vrule(struct termp *, const struct tbl_head *);

48 static size_t
49 term_tbl_strlen(const char *p, void *arg)
50 {

52 return(term_strlen((const struct termp *)arg, p));
53 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/tbl_term.c 2

62 void
63 term_tbl(struct termp *tp, const struct tbl_span *sp)
64 {
65 const struct tbl_head *hp;
66 const struct tbl_dat *dp;
67 struct roffcol *col;
68 int spans;
69 size_t rmargin, maxrmargin;

71 rmargin = tp->rmargin;
72 maxrmargin = tp->maxrmargin;

74 tp->rmargin = tp->maxrmargin = TERM_MAXMARGIN;

76 /* Inhibit printing of spaces: we do padding ourselves. */

78 tp->flags |= TERMP_NONOSPACE;
79 tp->flags |= TERMP_NOSPACE;

81 /*
82 * The first time we’re invoked for a given table block,
83 * calculate the table widths and decimal positions.
84 */

86 if (TBL_SPAN_FIRST & sp->flags) {
87 term_flushln(tp);

89 tp->tbl.len = term_tbl_len;
90 tp->tbl.slen = term_tbl_strlen;
91 tp->tbl.arg = tp;

93 tblcalc(&tp->tbl, sp);
94 }

96 /* Horizontal frame at the start of boxed tables. */

98 if (TBL_SPAN_FIRST & sp->flags) {
99 if (TBL_OPT_DBOX & sp->opts->opts)
99 if (TBL_OPT_DBOX & sp->tbl->opts)
100 tbl_hframe(tp, sp, 1);
101 if (TBL_OPT_DBOX & sp->opts->opts ||
102 TBL_OPT_BOX & sp->opts->opts)
101 if (TBL_OPT_DBOX & sp->tbl->opts ||
102 TBL_OPT_BOX & sp->tbl->opts)
103 tbl_hframe(tp, sp, 0);
104 }

106 /* Vertical frame at the start of each row. */

108 if (TBL_OPT_BOX & sp->opts->opts || TBL_OPT_DBOX & sp->opts->opts)
108 if (TBL_OPT_BOX & sp->tbl->opts || TBL_OPT_DBOX & sp->tbl->opts)
109 term_word(tp, TBL_SPAN_HORIZ == sp->pos ||
110 TBL_SPAN_DHORIZ == sp->pos ? "+" : "|");

112 /*
113 * Now print the actual data itself depending on the span type.
114 * Spanner spans get a horizontal rule; data spanners have their
115 * data printed by matching data to header.
116 */

118 switch (sp->pos) {
119 case (TBL_SPAN_HORIZ):
120 /* FALLTHROUGH */
121 case (TBL_SPAN_DHORIZ):
122 tbl_hrule(tp, sp);
123 break;

new/usr/src/cmd/mandoc/tbl_term.c 3

124 case (TBL_SPAN_DATA):
125 /* Iterate over template headers. */
126 dp = sp->first;
127 spans = 0;
128 for (hp = sp->head; hp; hp = hp->next) {

130 /*
131 * If the current data header is invoked during
132 * a spanner ("spans" > 0), don’t emit anything
133 * at all.
134 */
134 switch (hp->pos) {
135 case (TBL_HEAD_VERT):
136 /* FALLTHROUGH */
137 case (TBL_HEAD_DVERT):
138 if (spans <= 0)
139 tbl_vrule(tp, hp);
140 continue;
141 case (TBL_HEAD_DATA):
142 break;
143 }

136 if (--spans >= 0)
137 continue;

139 /* Separate columns. */
148 /*
149 * All cells get a leading blank, except the
150 * first one and those after double rulers.
151 */

141 if (NULL != hp->prev)
142 tbl_vrule(tp, hp);
153 if (hp->prev && TBL_HEAD_DVERT != hp->prev->pos)
154 tbl_char(tp, ASCII_NBRSP, 1);

144 col = &tp->tbl.cols[hp->ident];
145 tbl_data(tp, sp->opts, dp, col);
157 tbl_data(tp, sp->tbl, dp, col);

159 /* No trailing blanks. */

161 if (NULL == hp->next)
162 break;

147 /*
165 * Add another blank between cells,
166 * or two when there is no vertical ruler.
167 */

169 tbl_char(tp, ASCII_NBRSP,
170 TBL_HEAD_VERT == hp->next->pos ||
171 TBL_HEAD_DVERT == hp->next->pos ? 1 : 2);

173 /*
148 * Go to the next data cell and assign the
149 * number of subsequent spans, if applicable.
150 */

152 if (dp) {
153 spans = dp->spans;
154 dp = dp->next;
155 }
156 }
157 break;
158 }

new/usr/src/cmd/mandoc/tbl_term.c 4

160 /* Vertical frame at the end of each row. */

162 if (TBL_OPT_BOX & sp->opts->opts || TBL_OPT_DBOX & sp->opts->opts)
188 if (TBL_OPT_BOX & sp->tbl->opts || TBL_OPT_DBOX & sp->tbl->opts)
163 term_word(tp, TBL_SPAN_HORIZ == sp->pos ||
164 TBL_SPAN_DHORIZ == sp->pos ? "+" : " |");
165 term_flushln(tp);

167 /*
168 * If we’re the last row, clean up after ourselves: clear the
169 * existing table configuration and set it to NULL.
170 */

172 if (TBL_SPAN_LAST & sp->flags) {
173 if (TBL_OPT_DBOX & sp->opts->opts ||
174 TBL_OPT_BOX & sp->opts->opts) {
199 if (TBL_OPT_DBOX & sp->tbl->opts ||
200 TBL_OPT_BOX & sp->tbl->opts)
175 tbl_hframe(tp, sp, 0);
176 tp->skipvsp = 1;
177 }
178 if (TBL_OPT_DBOX & sp->opts->opts) {
202 if (TBL_OPT_DBOX & sp->tbl->opts)
179 tbl_hframe(tp, sp, 1);
180 tp->skipvsp = 2;
181 }
182 assert(tp->tbl.cols);
183 free(tp->tbl.cols);
184 tp->tbl.cols = NULL;
185 }

187 tp->flags &= ~TERMP_NONOSPACE;
188 tp->rmargin = rmargin;
189 tp->maxrmargin = maxrmargin;

191 }

193 /*
194 * Horizontal rules extend across the entire table.
195 * Calculate the width by iterating over columns.
196 */
197 static size_t
198 tbl_rulewidth(struct termp *tp, const struct tbl_head *hp)
199 {
200 size_t width;

202 width = tp->tbl.cols[hp->ident].width;

225 if (TBL_HEAD_DATA == hp->pos) {
204 /* Account for leading blanks. */
205 if (hp->prev)
206 width += 2 - hp->vert;

208 /* Account for trailing blank. */
227 if (hp->prev && TBL_HEAD_DVERT != hp->prev->pos)
209 width++;

229 /* Account for trailing blanks. */
230 width++;
231 if (hp->next &&
232 TBL_HEAD_VERT != hp->next->pos &&
233 TBL_HEAD_DVERT != hp->next->pos)
234 width++;
235 }
211 return(width);

new/usr/src/cmd/mandoc/tbl_term.c 5

212 }

214 /*
215 * Rules inside the table can be single or double
216 * and have crossings with vertical rules marked with pluses.
217 */
218 static void
219 tbl_hrule(struct termp *tp, const struct tbl_span *sp)
220 {
221 const struct tbl_head *hp;
222 char c;

224 c = ’-’;
225 if (TBL_SPAN_DHORIZ == sp->pos)
226 c = ’=’;

228 for (hp = sp->head; hp; hp = hp->next) {
229 if (hp->prev && hp->vert)
230 tbl_char(tp, ’+’, hp->vert);
231 tbl_char(tp, c, tbl_rulewidth(tp, hp));
232 }
253 for (hp = sp->head; hp; hp = hp->next)
254 tbl_char(tp,
255 TBL_HEAD_DATA == hp->pos ? c : ’+’,
256 tbl_rulewidth(tp, hp));
233 }

235 /*
236 * Rules above and below the table are always single
237 * and have an additional plus at the beginning and end.
238 * For double frames, this function is called twice,
239 * and the outer one does not have crossings.
240 */
241 static void
242 tbl_hframe(struct termp *tp, const struct tbl_span *sp, int outer)
243 {
244 const struct tbl_head *hp;

246 term_word(tp, "+");
247 for (hp = sp->head; hp; hp = hp->next) {
248 if (hp->prev && hp->vert)
249 tbl_char(tp, (outer ? ’-’ : ’+’), hp->vert);
250 tbl_char(tp, ’-’, tbl_rulewidth(tp, hp));
251 }
271 for (hp = sp->head; hp; hp = hp->next)
272 tbl_char(tp,
273 outer || TBL_HEAD_DATA == hp->pos ? ’-’ : ’+’,
274 tbl_rulewidth(tp, hp));
252 term_word(tp, "+");
253 term_flushln(tp);
254 }

256 static void
257 tbl_data(struct termp *tp, const struct tbl_opts *opts,
280 tbl_data(struct termp *tp, const struct tbl *tbl,
258 const struct tbl_dat *dp,
259 const struct roffcol *col)
260 {

262 if (NULL == dp) {
263 tbl_char(tp, ASCII_NBRSP, col->width);
264 return;
265 }
266 assert(dp->layout);

268 switch (dp->pos) {

new/usr/src/cmd/mandoc/tbl_term.c 6

269 case (TBL_DATA_NONE):
270 tbl_char(tp, ASCII_NBRSP, col->width);
271 return;
272 case (TBL_DATA_HORIZ):
273 /* FALLTHROUGH */
274 case (TBL_DATA_NHORIZ):
275 tbl_char(tp, ’-’, col->width);
276 return;
277 case (TBL_DATA_NDHORIZ):
278 /* FALLTHROUGH */
279 case (TBL_DATA_DHORIZ):
280 tbl_char(tp, ’=’, col->width);
281 return;
282 default:
283 break;
284 }
285
286 switch (dp->layout->pos) {
287 case (TBL_CELL_HORIZ):
288 tbl_char(tp, ’-’, col->width);
289 break;
290 case (TBL_CELL_DHORIZ):
291 tbl_char(tp, ’=’, col->width);
292 break;
293 case (TBL_CELL_LONG):
294 /* FALLTHROUGH */
295 case (TBL_CELL_CENTRE):
296 /* FALLTHROUGH */
297 case (TBL_CELL_LEFT):
298 /* FALLTHROUGH */
299 case (TBL_CELL_RIGHT):
300 tbl_literal(tp, dp, col);
301 break;
302 case (TBL_CELL_NUMBER):
303 tbl_number(tp, opts, dp, col);
326 tbl_number(tp, tbl, dp, col);
304 break;
305 case (TBL_CELL_DOWN):
306 tbl_char(tp, ASCII_NBRSP, col->width);
307 break;
308 default:
309 abort();
310 /* NOTREACHED */
311 }
312 }

314 static void
315 tbl_vrule(struct termp *tp, const struct tbl_head *hp)
316 {

318 tbl_char(tp, ASCII_NBRSP, 1);
319 if (0 < hp->vert)
320 tbl_char(tp, ’|’, hp->vert);
321 if (2 > hp->vert)
322 tbl_char(tp, ASCII_NBRSP, 2 - hp->vert);
341 switch (hp->pos) {
342 case (TBL_HEAD_VERT):
343 term_word(tp, "|");
344 break;
345 case (TBL_HEAD_DVERT):
346 term_word(tp, "||");
347 break;
348 default:
349 break;
350 }
323 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/tbl_term.c 7

340 static void
341 tbl_literal(struct termp *tp, const struct tbl_dat *dp,
342 const struct roffcol *col)
343 {
344 struct tbl_head *hp;
345 size_t width, len, padl, padr;
346 int spans;
372 size_t len, padl, padr;

348 assert(dp->string);
349 len = term_strlen(tp, dp->string);

351 hp = dp->layout->head->next;
352 width = col->width;
353 for (spans = dp->spans; spans--; hp = hp->next)
354 width += tp->tbl.cols[hp->ident].width + 3;

356 padr = width > len ? width - len : 0;
376 padr = col->width > len ? col->width - len : 0;
357 padl = 0;

359 switch (dp->layout->pos) {
360 case (TBL_CELL_LONG):
361 padl = term_len(tp, 1);
362 padr = padr > padl ? padr - padl : 0;
363 break;
364 case (TBL_CELL_CENTRE):
365 if (2 > padr)
366 break;
367 padl = padr / 2;
368 padr -= padl;
369 break;
370 case (TBL_CELL_RIGHT):
371 padl = padr;
372 padr = 0;
373 break;
374 default:
375 break;
376 }

378 tbl_char(tp, ASCII_NBRSP, padl);
379 term_word(tp, dp->string);
380 tbl_char(tp, ASCII_NBRSP, padr);
381 }

383 static void
384 tbl_number(struct termp *tp, const struct tbl_opts *opts,
404 tbl_number(struct termp *tp, const struct tbl *tbl,
385 const struct tbl_dat *dp,
386 const struct roffcol *col)
387 {
388 char *cp;
389 char buf[2];
390 size_t sz, psz, ssz, d, padl;
391 int i;

393 /*
394 * See calc_data_number(). Left-pad by taking the offset of our
395 * and the maximum decimal; right-pad by the remaining amount.
396 */

398 assert(dp->string);

400 sz = term_strlen(tp, dp->string);

new/usr/src/cmd/mandoc/tbl_term.c 8

402 buf[0] = opts->decimal;
422 buf[0] = tbl->decimal;
403 buf[1] = ’\0’;

405 psz = term_strlen(tp, buf);

407 if (NULL != (cp = strrchr(dp->string, opts->decimal))) {
427 if (NULL != (cp = strrchr(dp->string, tbl->decimal))) {
408 buf[1] = ’\0’;
409 for (ssz = 0, i = 0; cp != &dp->string[i]; i++) {
410 buf[0] = dp->string[i];
411 ssz += term_strlen(tp, buf);
412 }
413 d = ssz + psz;
414 } else
415 d = sz + psz;

417 padl = col->decimal - d;

419 tbl_char(tp, ASCII_NBRSP, padl);
420 term_word(tp, dp->string);
421 if (col->width > sz + padl)
422 tbl_char(tp, ASCII_NBRSP, col->width - sz - padl);
423 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/term.c 1

**
 16799 Wed Jul 30 20:55:12 2014
new/usr/src/cmd/mandoc/term.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: term.c,v 1.214 2013/12/25 00:39:31 schwarze Exp $ */
1 /* $Id: term.c,v 1.201 2011/09/21 09:57:13 schwarze Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2010, 2011, 2012, 2013 Ingo Schwarze <schwarze@openbsd.org>
4 * Copyright (c) 2010, 2011 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <sys/types.h>

24 #include <assert.h>
25 #include <ctype.h>
26 #include <stdint.h>
27 #include <stdio.h>
28 #include <stdlib.h>
29 #include <string.h>

31 #include "mandoc.h"
32 #include "out.h"
33 #include "term.h"
34 #include "main.h"

36 static size_t cond_width(const struct termp *, int, int *);
37 static void adjbuf(struct termp *p, size_t);
36 static void adjbuf(struct termp *p, int);
38 static void bufferc(struct termp *, char);
39 static void encode(struct termp *, const char *, size_t);
40 static void encode1(struct termp *, int);

42 void
43 term_free(struct termp *p)
44 {

46 if (p->buf)
47 free(p->buf);
48 if (p->symtab)
49 mchars_free(p->symtab);

51 free(p);
52 }

______unchanged_portion_omitted_

74 /*
75 * Flush a line of text. A "line" is loosely defined as being something

new/usr/src/cmd/mandoc/term.c 2

76 * that should be followed by a newline, regardless of whether it’s
77 * broken apart by newlines getting there. A line can also be a
78 * fragment of a columnar list (‘Bl -tag’ or ‘Bl -column’), which does
79 * not have a trailing newline.
80 *
81 * The following flags may be specified:
82 *
83 * - TERMP_NOBREAK: this is the most important and is used when making
84 * columns. In short: don’t print a newline and instead expect the
85 * next call to do the padding up to the start of the next column.
86 * p->trailspace may be set to 0, 1, or 2, depending on how many
87 * space characters are required at the end of the column.
88 *
86 * - TERMP_TWOSPACE: make sure there is room for at least two space
87 * characters of padding. Otherwise, rather break the line.
88 *
89 * - TERMP_DANGLE: don’t newline when TERMP_NOBREAK is specified and
90 * the line is overrun, and don’t pad-right if it’s underrun.
91 *
92 * - TERMP_HANG: like TERMP_DANGLE, but doesn’t newline when
93 * overrunning, instead save the position and continue at that point
94 * when the next invocation.
95 *
96 * In-line line breaking:
97 *
98 * If TERMP_NOBREAK is specified and the line overruns the right
99 * margin, it will break and pad-right to the right margin after
100 * writing. If maxrmargin is violated, it will break and continue
101 * writing from the right-margin, which will lead to the above scenario
102 * upon exit. Otherwise, the line will break at the right margin.
103 */
104 void
105 term_flushln(struct termp *p)
106 {
107 size_t i; /* current input position in p->buf */
108 int ntab; /* number of tabs to prepend */
107 int i; /* current input position in p->buf */
109 size_t vis; /* current visual position on output */
110 size_t vbl; /* number of blanks to prepend to output */
111 size_t vend; /* end of word visual position on output */
112 size_t bp; /* visual right border position */
113 size_t dv; /* temporary for visual pos calculations */
114 size_t j; /* temporary loop index for p->buf */
115 size_t jhy; /* last hyph before overflow w/r/t j */
113 int j; /* temporary loop index for p->buf */
114 int jhy; /* last hyph before overflow w/r/t j */
116 size_t maxvis; /* output position of visible boundary */
117 size_t mmax; /* used in calculating bp */

119 /*
120 * First, establish the maximum columns of "visible" content.
121 * This is usually the difference between the right-margin and
122 * an indentation, but can be, for tagged lists or columns, a
123 * small set of values.
124 *
125 * The following unsigned-signed subtractions look strange,
126 * but they are actually correct. If the int p->overstep
127 * is negative, it gets sign extended. Subtracting that
128 * very large size_t effectively adds a small number to dv.
129 */
130 assert (p->rmargin >= p->offset);
131 dv = p->rmargin - p->offset;
132 maxvis = (int)dv > p->overstep ? dv - (size_t)p->overstep : 0;
133 dv = p->maxrmargin - p->offset;
134 mmax = (int)dv > p->overstep ? dv - (size_t)p->overstep : 0;

new/usr/src/cmd/mandoc/term.c 3

136 bp = TERMP_NOBREAK & p->flags ? mmax : maxvis;

138 /*
139 * Calculate the required amount of padding.
140 */
141 vbl = p->offset + p->overstep > p->viscol ?
142 p->offset + p->overstep - p->viscol : 0;

144 vis = vend = 0;
145 i = 0;

147 while (i < p->col) {
148 /*
149 * Handle literal tab characters: collapse all
150 * subsequent tabs into a single huge set of spaces.
151 */
152 ntab = 0;
153 while (i < p->col && ’\t’ == p->buf[i]) {
154 vend = (vis / p->tabwidth + 1) * p->tabwidth;
155 vbl += vend - vis;
156 vis = vend;
157 ntab++;
158 i++;
159 }

161 /*
162 * Count up visible word characters. Control sequences
163 * (starting with the CSI) aren’t counted. A space
164 * generates a non-printing word, which is valid (the
165 * space is printed according to regular spacing rules).
166 */

168 for (j = i, jhy = 0; j < p->col; j++) {
169 if (’ ’ == p->buf[j] || ’\t’ == p->buf[j])
161 if ((j && ’ ’ == p->buf[j]) || ’\t’ == p->buf[j])
170 break;

172 /* Back over the the last printed character. */
173 if (8 == p->buf[j]) {
174 assert(j);
175 vend -= (*p->width)(p, p->buf[j - 1]);
176 continue;
177 }

179 /* Regular word. */
180 /* Break at the hyphen point if we overrun. */
181 if (vend > vis && vend < bp &&
182 ASCII_HYPH == p->buf[j])
183 jhy = j;

185 vend += (*p->width)(p, p->buf[j]);
186 }

188 /*
189 * Find out whether we would exceed the right margin.
190 * If so, break to the next line.
191 */
192 if (vend > bp && 0 == jhy && vis > 0) {
193 vend -= vis;
194 (*p->endline)(p);
195 p->viscol = 0;
196 if (TERMP_NOBREAK & p->flags) {
197 vbl = p->rmargin;
198 vend += p->rmargin - p->offset;
199 } else
200 vbl = p->offset;

new/usr/src/cmd/mandoc/term.c 4

202 /* use pending tabs on the new line */
194 /* Remove the p->overstep width. */

204 if (0 < ntab)
205 vbl += ntab * p->tabwidth;

207 /*
208 * Remove the p->overstep width.
209 * Again, if p->overstep is negative,
210 * sign extension does the right thing.
211 */

213 bp += (size_t)p->overstep;
214 p->overstep = 0;
215 }

217 /* Write out the [remaining] word. */
218 for (; i < p->col; i++) {
219 if (vend > bp && jhy > 0 && i > jhy)
220 break;
221 if (’\t’ == p->buf[i])
222 break;
223 if (’ ’ == p->buf[i]) {
224 j = i;
225 while (’ ’ == p->buf[i])
226 i++;
227 dv = (i - j) * (*p->width)(p, ’ ’);
210 dv = (size_t)(i - j) * (*p->width)(p, ’ ’);
228 vbl += dv;
229 vend += dv;
230 break;
231 }
232 if (ASCII_NBRSP == p->buf[i]) {
233 vbl += (*p->width)(p, ’ ’);
234 continue;
235 }

237 /*
238 * Now we definitely know there will be
239 * printable characters to output,
240 * so write preceding white space now.
241 */
242 if (vbl) {
243 (*p->advance)(p, vbl);
244 p->viscol += vbl;
245 vbl = 0;
246 }

248 if (ASCII_HYPH == p->buf[i]) {
249 (*p->letter)(p, ’-’);
250 p->viscol += (*p->width)(p, ’-’);
251 continue;
252 }

254 (*p->letter)(p, p->buf[i]);
255 if (8 == p->buf[i])
256 p->viscol -= (*p->width)(p, p->buf[i-1]);
257 else
258 p->viscol += (*p->width)(p, p->buf[i]);
259 }
260 vis = vend;
261 }

263 /*
264 * If there was trailing white space, it was not printed;

new/usr/src/cmd/mandoc/term.c 5

265 * so reset the cursor position accordingly.
266 */
267 if (vis)
268 vis -= vbl;

270 p->col = 0;
271 p->overstep = 0;

273 if (! (TERMP_NOBREAK & p->flags)) {
274 p->viscol = 0;
275 (*p->endline)(p);
276 return;
277 }

279 if (TERMP_HANG & p->flags) {
280 p->overstep = (int)(vis - maxvis +
281 p->trailspace * (*p->width)(p, ’ ’));
263 /* We need one blank after the tag. */
264 p->overstep = (int)(vis - maxvis + (*p->width)(p, ’ ’));

283 /*
267 * Behave exactly the same way as groff:
284 * If we have overstepped the margin, temporarily move
285 * it to the right and flag the rest of the line to be
286 * shorter.
287 * If there is a request to keep the columns together,
288 * allow negative overstep when the column is not full.
271 * If we landed right at the margin, be happy.
272 * If we are one step before the margin, temporarily
273 * move it one step LEFT and flag the rest of the line
274 * to be longer.
289 */
290 if (p->trailspace && p->overstep < 0)
276 if (p->overstep < -1)
291 p->overstep = 0;
292 return;

294 } else if (TERMP_DANGLE & p->flags)
295 return;

297 /* If the column was overrun, break the line. */
298 if (maxvis < vis + p->trailspace * (*p->width)(p, ’ ’)) {
284 if (maxvis <= vis +
285 ((TERMP_TWOSPACE & p->flags) ? (*p->width)(p, ’ ’) : 0)) {
299 (*p->endline)(p);
300 p->viscol = 0;
301 }
302 }

______unchanged_portion_omitted_

320 /*
321 * Asserts a vertical space (a full, empty line-break between lines).
322 * Note that if used twice, this will cause two blank spaces and so on.
323 * All data in the output buffer is flushed prior to the newline
324 * assertion.
325 */
326 void
327 term_vspace(struct termp *p)
328 {

330 term_newln(p);
331 p->viscol = 0;
332 if (0 < p->skipvsp)
333 p->skipvsp--;
334 else

new/usr/src/cmd/mandoc/term.c 6

335 (*p->endline)(p);
336 }

______unchanged_portion_omitted_

384 void
385 term_fontpopq(struct termp *p, const void *key)
386 {

388 while (p->fonti >= 0 && key < (void *)(p->fontq + p->fonti))
372 while (p->fonti >= 0 && key != &p->fontq[p->fonti])
389 p->fonti--;
390 assert(p->fonti >= 0);
391 }

______unchanged_portion_omitted_

402 /*
403 * Handle pwords, partial words, which may be either a single word or a
404 * phrase that cannot be broken down (such as a literal string). This
405 * handles word styling.
406 */
407 void
408 term_word(struct termp *p, const char *word)
409 {
410 const char nbrsp[2] = { ASCII_NBRSP, 0 };
411 const char *seq, *cp;
412 char c;
413 int sz, uc;
414 size_t ssz;
415 enum mandoc_esc esc;

417 if (! (TERMP_NOSPACE & p->flags)) {
418 if (! (TERMP_KEEP & p->flags)) {
402 if (TERMP_PREKEEP & p->flags)
403 p->flags |= TERMP_KEEP;
419 bufferc(p, ’ ’);
420 if (TERMP_SENTENCE & p->flags)
421 bufferc(p, ’ ’);
422 } else
423 bufferc(p, ASCII_NBRSP);
424 }
425 if (TERMP_PREKEEP & p->flags)
426 p->flags |= TERMP_KEEP;

428 if (! (p->flags & TERMP_NONOSPACE))
429 p->flags &= ~TERMP_NOSPACE;
430 else
431 p->flags |= TERMP_NOSPACE;

433 p->flags &= ~TERMP_SENTENCE;
416 p->flags &= ~(TERMP_SENTENCE | TERMP_IGNDELIM);

435 while (’\0’ != *word) {
436 if (’\\’ != *word) {
437 if (TERMP_SKIPCHAR & p->flags) {
438 p->flags &= ~TERMP_SKIPCHAR;
439 word++;
440 continue;
441 }
442 if (TERMP_NBRWORD & p->flags) {
443 if (’ ’ == *word) {
444 encode(p, nbrsp, 1);
445 word++;
446 continue;
447 }
448 ssz = strcspn(word, "\\ ");

new/usr/src/cmd/mandoc/term.c 7

449 } else
450 ssz = strcspn(word, "\\");
419 if ((ssz = strcspn(word, "\\")) > 0)
451 encode(p, word, ssz);

452 word += (int)ssz;
423 if (’\\’ != *word)
453 continue;
454 }

456 word++;
457 esc = mandoc_escape(&word, &seq, &sz);
458 if (ESCAPE_ERROR == esc)
459 break;

461 if (TERMENC_ASCII != p->enc)
462 switch (esc) {
463 case (ESCAPE_UNICODE):
464 uc = mchars_num2uc(seq + 1, sz - 1);
465 if (’\0’ == uc)
466 break;
467 encode1(p, uc);
468 continue;
469 case (ESCAPE_SPECIAL):
470 uc = mchars_spec2cp(p->symtab, seq, sz);
471 if (uc <= 0)
472 break;
473 encode1(p, uc);
474 continue;
475 default:
476 break;
477 }

479 switch (esc) {
480 case (ESCAPE_UNICODE):
481 encode1(p, ’?’);
482 break;
483 case (ESCAPE_NUMBERED):
484 c = mchars_num2char(seq, sz);
485 if (’\0’ != c)
486 encode(p, &c, 1);
487 break;
488 case (ESCAPE_SPECIAL):
489 cp = mchars_spec2str(p->symtab, seq, sz, &ssz);
490 if (NULL != cp)
491 encode(p, cp, ssz);
492 else if (1 == ssz)
493 encode(p, seq, sz);
494 break;
495 case (ESCAPE_FONTBOLD):
496 term_fontrepl(p, TERMFONT_BOLD);
497 break;
498 case (ESCAPE_FONTITALIC):
499 term_fontrepl(p, TERMFONT_UNDER);
500 break;
501 case (ESCAPE_FONTBI):
502 term_fontrepl(p, TERMFONT_BI);
503 break;
504 case (ESCAPE_FONT):
505 /* FALLTHROUGH */
506 case (ESCAPE_FONTROMAN):
507 term_fontrepl(p, TERMFONT_NONE);
508 break;
509 case (ESCAPE_FONTPREV):
510 term_fontlast(p);
511 break;

new/usr/src/cmd/mandoc/term.c 8

512 case (ESCAPE_NOSPACE):
513 if (TERMP_SKIPCHAR & p->flags)
514 p->flags &= ~TERMP_SKIPCHAR;
515 else if (’\0’ == *word)
480 if (’\0’ == *word)
516 p->flags |= TERMP_NOSPACE;
517 break;
518 case (ESCAPE_SKIPCHAR):
519 p->flags |= TERMP_SKIPCHAR;
520 break;
521 default:
522 break;
523 }
524 }
525 p->flags &= ~TERMP_NBRWORD;
526 }

528 static void
529 adjbuf(struct termp *p, size_t sz)
490 adjbuf(struct termp *p, int sz)
530 {

532 if (0 == p->maxcols)
533 p->maxcols = 1024;
534 while (sz >= p->maxcols)
535 p->maxcols <<= 2;

537 p->buf = mandoc_realloc(p->buf, sizeof(int) * p->maxcols);
498 p->buf = mandoc_realloc
499 (p->buf, sizeof(int) * (size_t)p->maxcols);
538 }

______unchanged_portion_omitted_

550 /*
551 * See encode().
552 * Do this for a single (probably unicode) value.
553 * Does not check for non-decorated glyphs.
554 */
555 static void
556 encode1(struct termp *p, int c)
557 {
558 enum termfont f;

560 if (TERMP_SKIPCHAR & p->flags) {
561 p->flags &= ~TERMP_SKIPCHAR;
562 return;
563 }
522 if (p->col + 4 >= p->maxcols)
523 adjbuf(p, p->col + 4);

565 if (p->col + 6 >= p->maxcols)
566 adjbuf(p, p->col + 6);

568 f = term_fonttop(p);

570 if (TERMFONT_UNDER == f || TERMFONT_BI == f) {
527 if (TERMFONT_NONE == f) {
528 p->buf[p->col++] = c;
529 return;
530 } else if (TERMFONT_UNDER == f) {
571 p->buf[p->col++] = ’_’;
572 p->buf[p->col++] = 8;
573 }
574 if (TERMFONT_BOLD == f || TERMFONT_BI == f) {
575 if (ASCII_HYPH == c)
576 p->buf[p->col++] = ’-’;

new/usr/src/cmd/mandoc/term.c 9

577 else
532 } else
578 p->buf[p->col++] = c;

579 p->buf[p->col++] = 8;
580 }
581 p->buf[p->col++] = c;
582 }

584 static void
585 encode(struct termp *p, const char *word, size_t sz)
586 {
587 size_t i;
542 enum termfont f;
543 int i, len;

589 if (TERMP_SKIPCHAR & p->flags) {
590 p->flags &= ~TERMP_SKIPCHAR;
591 return;
592 }
545 /* LINTED */
546 len = sz;

594 /*
595 * Encode and buffer a string of characters. If the current
596 * font mode is unset, buffer directly, else encode then buffer
597 * character by character.
598 */

600 if (TERMFONT_NONE == term_fonttop(p)) {
601 if (p->col + sz >= p->maxcols)
602 adjbuf(p, p->col + sz);
603 for (i = 0; i < sz; i++)
554 if (TERMFONT_NONE == (f = term_fonttop(p))) {
555 if (p->col + len >= p->maxcols)
556 adjbuf(p, p->col + len);
557 for (i = 0; i < len; i++)
604 p->buf[p->col++] = word[i];
605 return;
606 }

608 /* Pre-buffer, assuming worst-case. */

610 if (p->col + 1 + (sz * 5) >= p->maxcols)
611 adjbuf(p, p->col + 1 + (sz * 5));
564 if (p->col + 1 + (len * 3) >= p->maxcols)
565 adjbuf(p, p->col + 1 + (len * 3));

613 for (i = 0; i < sz; i++) {
614 if (ASCII_HYPH == word[i] ||
615 isgraph((unsigned char)word[i]))
616 encode1(p, word[i]);
567 for (i = 0; i < len; i++) {
568 if (ASCII_HYPH != word[i] &&
569 ! isgraph((unsigned char)word[i])) {
570 p->buf[p->col++] = word[i];
571 continue;
572 }

574 if (TERMFONT_UNDER == f)
575 p->buf[p->col++] = ’_’;
576 else if (ASCII_HYPH == word[i])
577 p->buf[p->col++] = ’-’;
617 else
618 p->buf[p->col++] = word[i];

new/usr/src/cmd/mandoc/term.c 10

581 p->buf[p->col++] = 8;
582 p->buf[p->col++] = word[i];
619 }
620 }

______unchanged_portion_omitted_

629 static size_t
630 cond_width(const struct termp *p, int c, int *skip)
631 {

633 if (*skip) {
634 (*skip) = 0;
635 return(0);
636 } else
637 return((*p->width)(p, c));
638 }

640 size_t
641 term_strlen(const struct termp *p, const char *cp)
642 {
643 size_t sz, rsz, i;
644 int ssz, skip, c;
598 int ssz, c;
645 const char *seq, *rhs;
646 enum mandoc_esc esc;
647 static const char rej[] = { ’\\’, ASCII_HYPH, ASCII_NBRSP, ’\0’ };

649 /*
650 * Account for escaped sequences within string length
651 * calculations. This follows the logic in term_word() as we
652 * must calculate the width of produced strings.
653 */

655 sz = 0;
656 skip = 0;
657 while (’\0’ != *cp) {
658 rsz = strcspn(cp, rej);
659 for (i = 0; i < rsz; i++)
660 sz += cond_width(p, *cp++, &skip);
613 sz += (*p->width)(p, *cp++);

662 c = 0;
663 switch (*cp) {
664 case (’\\’):
665 cp++;
666 esc = mandoc_escape(&cp, &seq, &ssz);
667 if (ESCAPE_ERROR == esc)
668 return(sz);

670 if (TERMENC_ASCII != p->enc)
671 switch (esc) {
672 case (ESCAPE_UNICODE):
673 c = mchars_num2uc
674 (seq + 1, ssz - 1);
675 if (’\0’ == c)
676 break;
677 sz += cond_width(p, c, &skip);
630 sz += (*p->width)(p, c);
678 continue;
679 case (ESCAPE_SPECIAL):
680 c = mchars_spec2cp
681 (p->symtab, seq, ssz);
682 if (c <= 0)
683 break;
684 sz += cond_width(p, c, &skip);
637 sz += (*p->width)(p, c);

new/usr/src/cmd/mandoc/term.c 11

685 continue;
686 default:
687 break;
688 }

690 rhs = NULL;

692 switch (esc) {
693 case (ESCAPE_UNICODE):
694 sz += cond_width(p, ’?’, &skip);
647 sz += (*p->width)(p, ’?’);
695 break;
696 case (ESCAPE_NUMBERED):
697 c = mchars_num2char(seq, ssz);
698 if (’\0’ != c)
699 sz += cond_width(p, c, &skip);
652 sz += (*p->width)(p, c);
700 break;
701 case (ESCAPE_SPECIAL):
702 rhs = mchars_spec2str
703 (p->symtab, seq, ssz, &rsz);

705 if (ssz != 1 || rhs)
706 break;

708 rhs = seq;
709 rsz = ssz;
710 break;
711 case (ESCAPE_SKIPCHAR):
712 skip = 1;
713 break;
714 default:
715 break;
716 }

718 if (NULL == rhs)
719 break;

721 if (skip) {
722 skip = 0;
723 break;
724 }

726 for (i = 0; i < rsz; i++)
727 sz += (*p->width)(p, *rhs++);
728 break;
729 case (ASCII_NBRSP):
730 sz += cond_width(p, ’ ’, &skip);
675 sz += (*p->width)(p, ’ ’);
731 cp++;
732 break;
733 case (ASCII_HYPH):
734 sz += cond_width(p, ’-’, &skip);
679 sz += (*p->width)(p, ’-’);
735 cp++;
736 break;
737 default:
738 break;
739 }
740 }

742 return(sz);
743 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/term.h 1

**
 4745 Wed Jul 30 20:55:12 2014
new/usr/src/cmd/mandoc/term.h
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: term.h,v 1.97 2013/12/25 00:39:31 schwarze Exp $ */
1 /* $Id: term.h,v 1.90 2011/12/04 23:10:52 schwarze Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2011, 2012, 2013 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifndef TERM_H
19 #define TERM_H

21 __BEGIN_DECLS

23 struct termp;

25 enum termenc {
26 TERMENC_ASCII,
27 TERMENC_LOCALE,
28 TERMENC_UTF8
29 };

______unchanged_portion_omitted_

37 enum termfont {
38 TERMFONT_NONE = 0,
39 TERMFONT_BOLD,
40 TERMFONT_UNDER,
41 TERMFONT_BI,
42 TERMFONT__MAX
43 };

______unchanged_portion_omitted_

54 struct termp {
55 enum termtype type;
56 struct rofftbl tbl; /* table configuration */
57 int mdocstyle; /* imitate mdoc(7) output */
58 size_t defindent; /* Default indent for text. */
59 size_t defrmargin; /* Right margin of the device. */
60 size_t rmargin; /* Current right margin. */
61 size_t maxrmargin; /* Max right margin. */
62 size_t maxcols; /* Max size of buf. */
60 int maxcols; /* Max size of buf. */
63 size_t offset; /* Margin offest. */
64 size_t tabwidth; /* Distance of tab positions. */
65 size_t col; /* Bytes in buf. */
63 int col; /* Bytes in buf. */
66 size_t viscol; /* Chars on current line. */
67 size_t trailspace; /* See termp_flushln(). */
68 int overstep; /* See termp_flushln(). */
69 int skipvsp; /* Vertical space to skip. */

new/usr/src/cmd/mandoc/term.h 2

70 int flags;
71 #define TERMP_SENTENCE (1 << 1) /* Space before a sentence. */
72 #define TERMP_NOSPACE (1 << 2) /* No space before words. */
73 #define TERMP_NONOSPACE (1 << 3) /* No space (no autounset). */
74 #define TERMP_NBRWORD (1 << 4) /* Make next word nonbreaking. */
75 #define TERMP_KEEP (1 << 5) /* Keep words together. */
76 #define TERMP_PREKEEP (1 << 6) /* ...starting with the next one. */
77 #define TERMP_SKIPCHAR (1 << 7) /* Skip the next character. */
78 #define TERMP_NOBREAK (1 << 8) /* See term_flushln(). */
79 #define TERMP_DANGLE (1 << 9) /* See term_flushln(). */
80 #define TERMP_HANG (1 << 10) /* See term_flushln(). */
69 #define TERMP_NOBREAK (1 << 4) /* See term_flushln(). */
70 #define TERMP_IGNDELIM (1 << 6) /* Delims like regulars. */
71 #define TERMP_NONOSPACE (1 << 7) /* No space (no autounset). */
72 #define TERMP_DANGLE (1 << 8) /* See term_flushln(). */
73 #define TERMP_HANG (1 << 9) /* See term_flushln(). */
74 #define TERMP_TWOSPACE (1 << 10) /* See term_flushln(). */
81 #define TERMP_NOSPLIT (1 << 11) /* See termp_an_pre/post(). */
82 #define TERMP_SPLIT (1 << 12) /* See termp_an_pre/post(). */
83 #define TERMP_ANPREC (1 << 13) /* See termp_an_pre(). */
78 #define TERMP_KEEP (1 << 14) /* Keep words together. */
79 #define TERMP_PREKEEP (1 << 15) /* ...starting with the next one. */
84 int *buf; /* Output buffer. */
85 enum termenc enc; /* Type of encoding. */
86 struct mchars *symtab; /* Encoded-symbol table. */
87 enum termfont fontl; /* Last font set. */
88 enum termfont fontq[10]; /* Symmetric fonts. */
89 int fonti; /* Index of font stack. */
90 term_margin headf; /* invoked to print head */
91 term_margin footf; /* invoked to print foot */
92 void (*letter)(struct termp *, int);
93 void (*begin)(struct termp *);
94 void (*end)(struct termp *);
95 void (*endline)(struct termp *);
96 void (*advance)(struct termp *, size_t);
97 size_t (*width)(const struct termp *, int);
98 double (*hspan)(const struct termp *,
99 const struct roffsu *);
100 const void *argf; /* arg for headf/footf */
101 struct termp_ps *ps;
102 };

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/term_ascii.c 1

**
 5394 Wed Jul 30 20:55:13 2014
new/usr/src/cmd/mandoc/term_ascii.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: term_ascii.c,v 1.21 2013/06/01 14:27:20 schwarze Exp $ */
1 /* $Id: term_ascii.c,v 1.20 2011/12/04 23:10:52 schwarze Exp $ */
2 /*
3 * Copyright (c) 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17 #ifdef HAVE_CONFIG_H
18 #include "config.h"
19 #endif

21 #include <sys/types.h>

23 #include <assert.h>
24 #ifdef USE_WCHAR
25 # include <locale.h>
26 #endif
27 #include <stdint.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <unistd.h>
31 #ifdef USE_WCHAR
32 # include <wchar.h>
33 #endif

35 #include "mandoc.h"
36 #include "out.h"
37 #include "term.h"
38 #include "main.h"

40 /*
41 * Sadly, this doesn’t seem to be defined on systems even when they
42 * support it. For the time being, remove it and let those compiling
43 * the software decide for themselves what to use.
44 */
45 #if 0
46 #if ! defined(__STDC_ISO_10646__)
47 # undef USE_WCHAR
48 #endif
49 #endif

51 static struct termp *ascii_init(enum termenc, char *);
52 static double ascii_hspan(const struct termp *,
53 const struct roffsu *);
54 static size_t ascii_width(const struct termp *, int);
55 static void ascii_advance(struct termp *, size_t);
56 static void ascii_begin(struct termp *);
57 static void ascii_end(struct termp *);
58 static void ascii_endline(struct termp *);

new/usr/src/cmd/mandoc/term_ascii.c 2

59 static void ascii_letter(struct termp *, int);

61 #ifdef USE_WCHAR
62 static void locale_advance(struct termp *, size_t);
63 static void locale_endline(struct termp *);
64 static void locale_letter(struct termp *, int);
65 static size_t locale_width(const struct termp *, int);
66 #endif

68 static struct termp *
69 ascii_init(enum termenc enc, char *outopts)
70 {
71 const char *toks[4];
72 char *v;
73 struct termp *p;

75 p = mandoc_calloc(1, sizeof(struct termp));
76 p->enc = enc;

77 p->tabwidth = 5;
78 p->defrmargin = 78;

80 p->begin = ascii_begin;
81 p->end = ascii_end;
82 p->hspan = ascii_hspan;
83 p->type = TERMTYPE_CHAR;

85 p->enc = TERMENC_ASCII;
86 p->advance = ascii_advance;
87 p->endline = ascii_endline;
88 p->letter = ascii_letter;
89 p->width = ascii_width;

91 #ifdef USE_WCHAR
92 if (TERMENC_ASCII != enc) {
93 v = TERMENC_LOCALE == enc ?
94 setlocale(LC_ALL, "") :
95 setlocale(LC_CTYPE, "en_US.UTF-8");
96 setlocale(LC_CTYPE, "UTF-8");
96 if (NULL != v && MB_CUR_MAX > 1) {
97 p->enc = enc;
98 p->advance = locale_advance;
99 p->endline = locale_endline;
100 p->letter = locale_letter;
101 p->width = locale_width;
102 }
103 }
104 #endif

106 toks[0] = "indent";
107 toks[1] = "width";
108 toks[2] = "mdoc";
109 toks[3] = NULL;

111 while (outopts && *outopts)
112 switch (getsubopt(&outopts, UNCONST(toks), &v)) {
113 case (0):
114 p->defindent = (size_t)atoi(v);
115 break;
116 case (1):
117 p->defrmargin = (size_t)atoi(v);
118 break;
119 case (2):
120 /*
121 * Temporary, undocumented mode
122 * to imitate mdoc(7) output style.

new/usr/src/cmd/mandoc/term_ascii.c 3

123 */
124 p->mdocstyle = 1;
125 p->defindent = 5;
126 break;
127 default:
128 break;
129 }

131 /* Enforce a lower boundary. */
132 if (p->defrmargin < 58)
133 p->defrmargin = 58;

135 return(p);
136 }

______unchanged_portion_omitted_

new/usr/src/cmd/mandoc/tree.c 1

**
 6575 Wed Jul 30 20:55:13 2014
new/usr/src/cmd/mandoc/tree.c
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 /* $Id: tree.c,v 1.50 2013/12/24 19:11:46 schwarze Exp $ */
1 /* $Id: tree.c,v 1.47 2011/09/18 14:14:15 schwarze Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2013 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *

10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif

22 #include <assert.h>
23 #include <limits.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <time.h>

28 #include "mandoc.h"
29 #include "mdoc.h"
30 #include "man.h"
31 #include "main.h"

33 static void print_box(const struct eqn_box *, int);
34 static void print_man(const struct man_node *, int);
35 static void print_mdoc(const struct mdoc_node *, int);
36 static void print_span(const struct tbl_span *, int);

39 /* ARGSUSED */
40 void
41 tree_mdoc(void *arg, const struct mdoc *mdoc)
42 {

44 print_mdoc(mdoc_node(mdoc), 0);
45 }

______unchanged_portion_omitted_

57 static void
58 print_mdoc(const struct mdoc_node *n, int indent)
59 {
60 const char *p, *t;
61 int i, j;
62 size_t argc;
61 size_t argc, sz;
62 char **params;
63 struct mdoc_argv *argv;

new/usr/src/cmd/mandoc/tree.c 2

65 argv = NULL;
66 argc = 0;
66 argc = sz = 0;
67 params = NULL;
67 t = p = NULL;

69 switch (n->type) {
70 case (MDOC_ROOT):
71 t = "root";
72 break;
73 case (MDOC_BLOCK):
74 t = "block";
75 break;
76 case (MDOC_HEAD):
77 t = "block-head";
78 break;
79 case (MDOC_BODY):
80 if (n->end)
81 t = "body-end";
82 else
83 t = "block-body";
84 break;
85 case (MDOC_TAIL):
86 t = "block-tail";
87 break;
88 case (MDOC_ELEM):
89 t = "elem";
90 break;
91 case (MDOC_TEXT):
92 t = "text";
93 break;
94 case (MDOC_TBL):
95 /* FALLTHROUGH */
96 case (MDOC_EQN):
97 break;
98 default:
99 abort();
100 /* NOTREACHED */
101 }

103 switch (n->type) {
104 case (MDOC_TEXT):
105 p = n->string;
106 break;
107 case (MDOC_BODY):
108 p = mdoc_macronames[n->tok];
109 break;
110 case (MDOC_HEAD):
111 p = mdoc_macronames[n->tok];
112 break;
113 case (MDOC_TAIL):
114 p = mdoc_macronames[n->tok];
115 break;
116 case (MDOC_ELEM):
117 p = mdoc_macronames[n->tok];
118 if (n->args) {
119 argv = n->args->argv;
120 argc = n->args->argc;
121 }
122 break;
123 case (MDOC_BLOCK):
124 p = mdoc_macronames[n->tok];
125 if (n->args) {
126 argv = n->args->argv;
127 argc = n->args->argc;
128 }

new/usr/src/cmd/mandoc/tree.c 3

129 break;
130 case (MDOC_TBL):
131 /* FALLTHROUGH */
132 case (MDOC_EQN):
133 break;
134 case (MDOC_ROOT):
135 p = "root";
136 break;
137 default:
138 abort();
139 /* NOTREACHED */
140 }

142 if (n->span) {
143 assert(NULL == p && NULL == t);
144 print_span(n->span, indent);
145 } else if (n->eqn) {
146 assert(NULL == p && NULL == t);
147 print_box(n->eqn->root, indent);
148 } else {
149 for (i = 0; i < indent; i++)
150 putchar(’\t’);

152 printf("%s (%s)", p, t);

154 for (i = 0; i < (int)argc; i++) {
155 printf(" -%s", mdoc_argnames[argv[i].arg]);
156 if (argv[i].sz > 0)
157 printf(" [");
158 for (j = 0; j < (int)argv[i].sz; j++)
159 printf(" [%s]", argv[i].value[j]);
160 if (argv[i].sz > 0)
161 printf("]");
162 }

164 putchar(’ ’);
165 if (MDOC_LINE & n->flags)
166 putchar(’*’);
167 printf("%d:%d", n->line, n->pos);
168 if (n->lastline != n->line)
169 printf("-%d", n->lastline);
170 putchar(’\n’);
165 for (i = 0; i < (int)sz; i++)
166 printf(" [%s]", params[i]);

168 printf(" %d:%d\n", n->line, n->pos);
171 }

173 if (n->child)
174 print_mdoc(n->child, indent + 1);
175 if (n->next)
176 print_mdoc(n->next, indent);
177 }

______unchanged_portion_omitted_

new/usr/src/man/Makefile.man 1

**
 1605 Wed Jul 30 20:55:13 2014
new/usr/src/man/Makefile.man
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet
9 # at http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011, Richard Lowe
14 # Copyright 2014 Nexenta Systems, Inc. All rights reserved.
15 #

17 MANDOC= $(ONBLD_TOOLS)/bin/${MACH}/mandoc
18 ROOTMAN= $(ROOT)/usr/share/man
19 ROOTHASMAN= $(ROOT)/usr/has/man
20 FILEMODE= 0444

22 # The manual section being built, client Makefiles must set this to, for e.g.
23 # "3perl", with case matching that of the section name as installed.
24 #
25 # MANSECT=

27 MANCHECKS= $(MANFILES:%=%.check)
28 ROOTMANFILES= $(MANFILES:%=$(ROOTMAN)/man$(MANSECT)/%)
29 ROOTMANLINKS= $(MANLINKS:%=$(ROOTMAN)/man$(MANSECT)/%)

31 $(ROOTMAN)/man$(MANSECT)/% $(ROOTHASMAN)/man$(MANSECT)/%: %
32 $(INS.file)

34 #
35 # Note that new mandoc adds some checks for lots of extra whitespace.
36 # We don’t want to check our legacy pages for that. There are thousands
37 # and thousands of them in our man pages. Please still check them
38 # manually when editing (git pbchk will do so for you.)
39 #
40 $(MANCHECKS):
41 @$(EGREP) -q "^.TH" $(@:%.check=%) || \
42 ($(ECHO) "checking $(@:%.check=%)"; \
43 $(MANDOC) -Tlint $(@:%.check=%))
35 @$(ECHO) "checking $(@:%.check=%)"; \
36 $(MANDOC) -Tlint $(@:%.check=%)

45 $(MANLINKS):
46 $(RM) $@; $(SYMLINK) $(LINKSRC) $@

48 $(ROOTMANLINKS): $(MANLINKS)
49 $(RM) $@; $(CP) -RP $(@F) $(@D)

51 all:

53 check: $(MANCHECKS)

55 clean:

57 clobber:

new/usr/src/man/Makefile.man 2

58 $(RM) $(MANLINKS)

60 .PARALLEL:

62 FRC:

new/usr/src/man/man1/man.1 1

**
 9377 Wed Jul 30 20:55:13 2014
new/usr/src/man/man1/man.1
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 .\" Copyright 2014 Garrett D’Amore <garrett@damore.org>
2 .\" Copyright (c) 2008, Sun Microsystems, Inc. All Rights Reserved.
3 .\" Copyright (c) 1980 Regents of the University of California.
4 .\" The Berkeley software License Agreement specifies the terms and conditions
5 .\" for redistribution.
6 .Dd Jul 18, 2014
7 .Dt MAN 1
8 .Os
9 .Sh NAME

10 .Nm man
11 .Nd find and display reference manual pages
12 .Sh SYNOPSIS
13 .Nm
14 .Op Fl
15 .Op Fl adFlrt
16 .Op Fl T Ar macro-package
17 .Op Fl M Ar path
18 .Op Fl s Ar section
19 .Ar name ...
20 .Nm
21 .Op Fl M Ar path
22 .Op Fl s Ar section
23 .Fl k
24 .Ar keyword
25 .Ar ...
26 .Nm
27 .Op Fl M Ar path
28 .Op Fl s Ar section
29 .Fl f
30 .Ar
31 .Nm
32 .Op Fl M Ar path
33 .Fl w
34 .Sh DESCRIPTION
35 The
36 .Nm
37 command displays information from the reference manuals. It
38 displays complete manual pages that you select by
39 .Ar name ,
40 or one-line summaries selected either by
41 .Ar keyword
42 .Pq Fl k ,
43 or by the name of an associated file
44 .Pq Fl f .
45 If no manual page is located,
46 .Nm
47 prints an error message.
48 .Ss "Source Format"
49 Reference Manual pages are marked up with either
50 .Xr man 5 ,
51 or
52 .Xr mdoc 5
53 language tags. The
54 .Nm
55 command recognizes the type of markup and
56 processes the file accordingly.
57 .
58 .Ss "Location of Manual Pages"
59 .

new/usr/src/man/man1/man.1 2

60 The online Reference Manual page directories are conventionally located in
61 .Pa /usr/share/man .
62 Each directory corresponds to a
63 section of the manual. Since these directories are optionally installed, they
64 might not reside on your host. You might have to mount
65 .Pa /usr/share/man
66 from a host on which they do reside.
67 The
68 .Nm
69 command reformats a page whenever it is requested.
70 .Pp
71 If the standard output is not a terminal, or if the
72 .Fl
73 flag is given,
74 .Nm
75 pipes its output through
76 .Xr cat 1 .
77 Otherwise,
78 .Nm
79 pipes its output through a pager such as
80 .Xr more 1
81 to handle paging and underlining on the screen.
82 .Sh OPTIONS
83 The following options are supported:
84 .Bl -tag -width indent
85 .It Fl a
86 Shows all manual pages matching
87 .Ar name
88 within the
89 .Ev MANPATH
90 search path. Manual pages are displayed in the order found.
91 .It Fl d
92 Debugs. Displays what a section-specifier evaluates to, method used for
93 searching, and paths searched by
94 .Nm .
95 .It Fl f Ar file ...
96 Attempts to locate manual pages related to any of the given
97 .Ar file
98 names. It strips the leading path name components from each
99 .Ar file ,
100 and then prints one-line summaries containing the resulting basename or names.
101 This option also uses the
102 .Pa whatis
103 database.
104 .It Fl F
105 This option is present for backwards compatibility and is documented
106 here for reference only. It performs no function.
107 .It Fl k Ar keyword ...
108 Prints out one-line summaries from the
109 .Pa whatis
110 database (table of contents) that contain any of the given
111 .Ar keyword .
112 The
113 .Pa whatis
114 database is created using the
115 .Fl w
116 option.
117 .It Fl l
118 Lists all manual pages found matching
119 .Ar name
120 within the search path.
121 .It Fl M Ar path
122 Specifies an alternate search path for manual pages. The
123 .Ar path
124 is a colon-separated list of directories that contain manual page directory
125 subtrees. For example, if

new/usr/src/man/man1/man.1 3

126 .Ar path
127 is
128 .Pa /usr/share/man:/usr/local/man ,
129 .Nm
130 searches for
131 .Ar name
132 in the standard location, and then
133 .Pa /usr/local/man .
134 When used with the
135 .Fl k ,
136 .Fl f ,
137 or
138 .Fl w
139 options, the
140 .Fl M
141 option must appear first. Each directory in the
142 .Ar path
143 is assumed to contain subdirectories of the form
144 .Pa man* ,
145 one for each section. This option overrides the
146 .Ev MANPATH
147 environment variable.
148 .It Fl r
149 Reformats the manual page, checking for formatting errors, but does not
150 display it.
151 .It Fl s Ar section
152 Specifies sections of the manual for
153 .Nm
154 to search. The directories searched for
155 .Ar name
156 are limited to those specified by
157 .Ar section .
158 .Ar section
159 can be a numerical digit, perhaps followed by one or more letters
160 to match the desired section of the manual, for example,
161 .Li "3libucb".
162 Also,
163 .Ar section
164 can be a word, for example,
165 .Li local ,
166 .Li new ,
167 .Li old ,
168 .Li public .
169 .Ar section
170 can also be a letter. To specify multiple sections,
171 separate each section with a comma. This option overrides the
172 .Ev MANPATH
173 environment variable and the
174 .Pa man.cf
175 file. See
176 .Sx Search Path
177 below for an explanation of how
178 .Nm
179 conducts its search.
180 .It Fl t
181 Arranges for the specified manual pages to be sent to the default
182 printer as PostScript.
183 .It Fl T Ar macro-package
184 This option is present for backwards compatibility and is documented
185 here for reference only. It performs no function.
186 .It Fl w
187 Updates the
188 .Nm whatis
189 database.
190 .El
191 .Sh OPERANDS

new/usr/src/man/man1/man.1 4

192 The following operand is supported:
193 .Bl -tag -width indent
194 .It Ar name
195 The name of a standard utility or a keyword.
196 .El
197 .Sh USAGE
198 The usage of
199 .Nm
200 is described below:
201 .
202 .Ss "Manual Page Sections"
203 .
204 Entries in the reference manuals are organized into
205 .Em sections .
206 A section
207 name consists of a major section name, typically a single digit, optionally
208 followed by a subsection name, typically one or more letters. An unadorned
209 major section name, for example,
210 .Qq 9 ,
211 does not act as an abbreviation for
212 the subsections of that name, such as
213 .Qq 9e ,
214 .Qq 9f ,
215 or
216 .Qq 9s .
217 That is, each subsection must be searched separately by
218 .Nm
219 .Fl s .
220 Each section contains descriptions apropos to a particular reference category,
221 with subsections refining these distinctions. See the
222 .Em intro
223 manual pages for an explanation of the classification used in this release.
224 .
225 .Ss "Search Path"
226 .
227 Before searching for a given
228 .Ar name ,
229 .Nm
230 constructs a list of candidate directories and sections.
231 It searches for
232 .Ar name
233 in the directories specified by the
234 .Ev MANPATH
235 environment variable.
236 .Lp
237 In the absence of
238 .Ev MANPATH ,
239 .Nm
240 constructs its search path based upon the
241 .Ev PATH
242 environment variable, primarily by substituting
243 .Li man
244 for the last component of the
245 .Ev PATH
246 element. Special provisions are added
247 to account for unique characteristics of directories such as
248 .Pa /sbin ,
249 .Pa /usr/ucb ,
250 .Pa /usr/xpg4/bin ,
251 and others. If the file argument contains
252 a
253 .Qq /
254 character, the
255 .Em dirname
256 portion of the argument is used in place of
257 .Ev PATH

new/usr/src/man/man1/man.1 5

258 elements to construct the search path.
259 .Lp
260 Within the manual page directories,
261 .Nm
262 confines its search to the
263 sections specified in the following order:
264 .Bl -bullet
265 .It
266 .Ar sections
267 specified on the command line with the
268 .Fl s
269 option
270 .It
271 .Ar sections
272 embedded in the
273 .Ev MANPATH
274 environment variable
275 .It
276 .Ar sections
277 specified in the
278 .Pa man.cf
279 file for each directory specified in the
280 .Ev MANPATH
281 environment variable
282 .El
283 If none of the above exist,
284 .Nm
285 searches each directory in the manual
286 page path, and displays the first matching manual page found.
287 .Lp
288 The
289 .Pa man.cf
290 file has the following format:
291 .Lp
292 .Dl Pf MANSECTS= Ar section , Ns Op Ar section...
293 .Lp
294 Lines beginning with
295 .Sq Li #
296 and blank lines are considered comments, and are
297 ignored. Each directory specified in
298 .Ev MANPATH
299 can contain a manual page
300 configuration file, specifying the default search order for that directory.
301 .Sh "Referring to Other Manual Pages"
302 If the first line of the manual page is a reference to another manual
303 page entry fitting the pattern:
304 .Lp
305 .Dl \&.so man*/\fIsourcefile\fR
306 .Lp
307 .Nm
308 processes the indicated file in place of the current one. The
309 reference must be expressed as a path name relative to the root of the manual
310 page directory subtree.
311 .Lp
312 When the second or any subsequent line starts with \fB\&.so\fR, \fBman\fR
313 ignores it; \fBtroff\fR(1) or \fBnroff\fR(1) processes the request in the usual
314 manner.
315 .Sh ENVIRONMENT VARIABLES
316 See
317 .Xr environ 5
318 for descriptions of the following environment variables
319 that affect the execution of
320 .Nm man :
321 .Ev LANG ,
322 .Ev LC_ALL ,
323 .Ev LC_CTYPE ,

new/usr/src/man/man1/man.1 6

324 .Ev LC_MESSAGES ,
325 and
326 .Ev NLSPATH .
327 .Bl -tag -width indent
328 .It Ev MANPATH
329 A colon-separated list of directories; each directory can be followed by a
330 comma-separated list of sections. If set, its value overrides
331 \fB/usr/share/man\fR as the default directory search path, and the \fBman.cf\fR
332 file as the default section search path. The \fB-M\fR and \fB-s\fR flags, in
333 turn, override these values.)
334 .It Ev PAGER
335 A program to use for interactively delivering
336 output to the screen. If not set,
337 .Sq Nm more Fl s
338 is used. See
339 .Xr more 1 .
340 .El
341 .Sh FILES
342 .Bl -tag -width indent
343 .It Pa /usr/share/man
344 Root of the standard manual page directory subtree
345 .It Pa /usr/share/man/man?/*
346 Unformatted manual entries
347 .It Pa /usr/share/man/whatis
348 Table of contents and keyword database
349 .It Pa man.cf
350 Default search order by section
351 .El
352 .Sh EXIT STATUS
353 .Ex -std man
354 .Sh EXAMPLES
355 .
356 .Ss Example 1: Creating a PostScript Version of a man page
357 .
358 The following example spools the
359 .Xr pipe 2
360 man page in PostScript to the default printer:
361 .Pp
362 .Dl % man -t -s 2 pipe
363 .Pp
364 Note that
365 .Xr mandoc 1
366 can be used to obtain the PostScript content directly.
367 .Ss Example 2: Creating a Text Version of a man page
368 The following example creates the
369 .Xr pipe 2
370 man page in ASCII text:
371 .Pp
372 .Dl % man pipe.2 | col -x -b > pipe.text
373 .Sh CODE SET INDEPENDENCE
374 Enabled.
375 .Sh INTERFACE STABILITY
376 .Sy Committed .
376 .Nm Committed .
377 .Sh SEE ALSO
378 .Xr apropos 1 ,
379 .Xr cat 1 ,
380 .Xr col 1 ,
381 .Xr mandoc 1 ,
382 .Xr more 1 ,
383 .Xr whatis 1 ,
384 .Xr environ 5 ,
385 .Xr man 5 ,
386 .Xr mdoc 5
387 .Sh NOTES
388 The

new/usr/src/man/man1/man.1 7

389 .Fl f
390 and
391 .Fl k
392 options use the
393 .Nm whatis
394 database, which is
395 created with the
396 .Fl w
397 option.
398 .Sh BUGS
399 The manual is supposed to be reproducible either on a phototypesetter or on an
400 ASCII terminal. However, on a terminal some information (indicated by
401 font changes, for instance) is lost.

new/usr/src/man/man1/mandoc.1 1

**
 14742 Wed Jul 30 20:55:13 2014
new/usr/src/man/man1/mandoc.1
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 .\"
2 .\" Permission to use, copy, modify, and distribute this software for any
3 .\" purpose with or without fee is hereby granted, provided that the above
4 .\" copyright notice and this permission notice appear in all copies.
5 .\"
6 .\" THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
7 .\" WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
8 .\" MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
9 .\" ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

10 .\" WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
11 .\" ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
12 .\" OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
13 .\"
14 .\"
15 .\" Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@bsd.lv>
16 .\" Copyright 2012 Nexenta Systems, Inc. All rights reserved.
17 .\" Copyright 2014 Garrett D’Amore <garrett@damore.org>
18 .\"
19 .Dd Jul 30, 2014
19 .Dd Jul 16, 2014
20 .Dt MANDOC 1
21 .Os
22 .Sh NAME
23 .Nm mandoc
24 .Nd format and display UNIX manuals
25 .Sh SYNOPSIS
26 .Nm mandoc
27 .Op Fl V
28 .Op Fl m Ns Ar format
29 .Op Fl O Ns Ar option
30 .Op Fl T Ns Ar output
31 .Op Fl W Ns Ar level
32 .Op Ar
33 .Sh DESCRIPTION
34 The
35 .Nm
36 utility formats
37 .Ux
38 manual pages for display.
39 .Pp
40 By default,
41 .Nm
42 reads
43 .Xr mdoc 5
44 or
45 .Xr man 5
46 text from stdin, implying
47 .Fl m Ns Cm andoc ,
48 and produces
49 .Fl T Ns Cm ascii
50 output.
51 .Pp
52 The arguments are as follows:
53 .Bl -tag -width Ds
54 .It Fl m Ns Ar format
55 Input format.
56 See
57 .Sx Input Formats
58 for available formats.

new/usr/src/man/man1/mandoc.1 2

59 Defaults to
60 .Fl m Ns Cm andoc .
61 .It Fl O Ns Ar option
62 Comma-separated output options.
63 .It Fl T Ns Ar output
64 Output format.
65 See
66 .Sx Output Formats
67 for available formats.
68 Defaults to
69 .Fl T Ns Cm ascii .
70 .It Fl V
71 Print version and exit.
72 .It Fl W Ns Ar level
73 Specify the minimum message
74 .Ar level
75 to be reported on the standard error output and to affect the exit status.
76 The
77 .Ar level
78 can be
79 .Cm warning ,
80 .Cm error ,
81 or
82 .Cm fatal .
83 The default is
84 .Fl W Ns Cm fatal ;
85 .Fl W Ns Cm all
86 is an alias for
87 .Fl W Ns Cm warning .
88 See
89 .Sx EXIT STATUS
90 and
91 .Sx DIAGNOSTICS
92 for details.
93 .Pp
94 The special option
95 .Fl W Ns Cm stop
96 tells
97 .Nm
98 to exit after parsing a file that causes warnings or errors of at least
99 the requested level.
100 No formatted output will be produced from that file.
101 If both a
102 .Ar level
103 and
104 .Cm stop
105 are requested, they can be joined with a comma, for example
106 .Fl W Ns Cm error , Ns Cm stop .
107 .It Ar file
108 Read input from zero or more files.
109 If unspecified, reads from stdin.
110 If multiple files are specified,
111 .Nm
112 will halt with the first failed parse.
113 .El
114 .Ss Input Formats
115 The
116 .Nm
117 utility accepts
118 .Xr mdoc 5
119 and
120 .Xr man 5
121 input with
122 .Fl m Ns Cm doc
123 and
124 .Fl m Ns Cm an ,

new/usr/src/man/man1/mandoc.1 3

125 respectively.
126 The
127 .Xr mdoc 5
128 format is
129 .Em strongly
130 recommended;
131 .Xr man 5
132 should only be used for legacy manuals.
133 .Pp
134 A third option,
135 .Fl m Ns Cm andoc ,
136 which is also the default, determines encoding on-the-fly: if the first
137 non-comment macro is
138 .Sq \&Dd
139 or
140 .Sq \&Dt ,
141 the
142 .Xr mdoc 5
143 parser is used; otherwise, the
144 .Xr man 5
145 parser is used.
146 .Pp
147 If multiple
148 files are specified with
149 .Fl m Ns Cm andoc ,
150 each has its file-type determined this way.
151 If multiple files are
152 specified and
153 .Fl m Ns Cm doc
154 or
155 .Fl m Ns Cm an
156 is specified, then this format is used exclusively.
157 .Ss Output Formats
158 The
159 .Nm
160 utility accepts the following
161 .Fl T
162 arguments, which correspond to output modes:
163 .Bl -tag -width "-Tlocale"
164 .It Fl T Ns Cm ascii
165 Produce 7-bit ASCII output.
166 This is the default.
167 See
168 .Sx ASCII Output .
169 .It Fl T Ns Cm html
170 Produce strict CSS1/HTML-4.01 output.
171 See
172 .Sx HTML Output .
173 .It Fl T Ns Cm lint
174 Parse only: produce no output.
175 Implies
176 .Fl W Ns Cm warning .
177 .It Fl T Ns Cm locale
178 Encode output using the current locale.
179 See
180 .Sx Locale Output .
181 .It Fl T Ns Cm man
182 Produce
183 .Xr man 5
184 format output.
185 See
186 .Sx Man Output .
187 .It Fl T Ns Cm pdf
188 Produce PDF output.
189 See
190 .Sx PDF Output .

new/usr/src/man/man1/mandoc.1 4

191 .It Fl T Ns Cm ps
192 Produce PostScript output.
193 See
194 .Sx PostScript Output .
195 .It Fl T Ns Cm tree
196 Produce an indented parse tree.
197 .It Fl T Ns Cm utf8
198 Encode output in the UTF\-8 multi-byte format.
199 See
200 .Sx UTF\-8 Output .
201 .It Fl T Ns Cm xhtml
202 Produce strict CSS1/XHTML-1.0 output.
203 See
204 .Sx XHTML Output .
205 .El
206 .Pp
207 If multiple input files are specified, these will be processed by the
208 corresponding filter in-order.
209 .Ss ASCII Output
210 Output produced by
211 .Fl T Ns Cm ascii ,
212 which is the default, is rendered in standard 7-bit ASCII documented in
213 .Xr ascii 5 .
214 .Pp
215 Font styles are applied by using back-spaced encoding such that an
216 underlined character
217 .Sq c
218 is rendered as
219 .Sq _ Ns \e[bs] Ns c ,
220 where
221 .Sq \e[bs]
222 is the back-space character number 8.
223 Emboldened characters are rendered as
224 .Sq c Ns \e[bs] Ns c .
225 .Pp
226 The special characters documented in
227 .Xr mandoc_char 5
228 are rendered best-effort in an ASCII equivalent.
229 If no equivalent is found,
230 .Sq \&?
231 is used instead.
232 .Pp
233 Output width is limited to 78 visible columns unless literal input lines
234 exceed this limit.
235 .Pp
236 The following
237 .Fl O
238 arguments are accepted:
239 .Bl -tag -width Ds
240 .It Cm indent Ns = Ns Ar indent
241 The left margin for normal text is set to
242 .Ar indent
243 blank characters instead of the default of five for
244 .Xr mdoc 5
245 and seven for
246 .Xr man 5 .
247 Increasing this is not recommended; it may result in degraded formatting,
248 for example overfull lines or ugly line breaks.
249 .It Cm width Ns = Ns Ar width
250 The output width is set to
251 .Ar width ,
252 which will normalise to \(>=60.
253 .El
254 .Ss HTML Output
255 Output produced by
256 .Fl T Ns Cm html

new/usr/src/man/man1/mandoc.1 5

257 conforms to HTML-4.01 strict.
258 .Pp
259 The
260 .Pa example.style.css
261 file documents style-sheet classes available for customising output.
262 If a style-sheet is not specified with
263 .Fl O Ns Ar style ,
264 .Fl T Ns Cm html
265 defaults to simple output readable in any graphical or text-based web
266 browser.
267 .Pp
268 Special characters are rendered in decimal-encoded UTF\-8.
269 .Pp
270 The following
271 .Fl O
272 arguments are accepted:
273 .Bl -tag -width Ds
274 .It Cm fragment
275 Omit the
276 .Aq !DOCTYPE
277 declaration and the
278 .Aq html ,
279 .Aq head ,
280 and
281 .Aq body
282 elements and only emit the subtree below the
283 .Aq body
284 element.
285 The
286 .Cm style
287 argument will be ignored.
288 This is useful when embedding manual content within existing documents.
289 .It Cm includes Ns = Ns Ar fmt
290 The string
291 .Ar fmt ,
292 for example,
293 .Ar ../src/%I.html ,
294 is used as a template for linked header files (usually via the
295 .Sq \&In
296 macro).
297 Instances of
298 .Sq \&%I
299 are replaced with the include filename.
300 The default is not to present a
301 hyperlink.
302 .It Cm man Ns = Ns Ar fmt
303 The string
304 .Ar fmt ,
305 for example,
306 .Ar ../html%S/%N.%S.html ,
307 is used as a template for linked manuals (usually via the
308 .Sq \&Xr
309 macro).
310 Instances of
311 .Sq \&%N
312 and
313 .Sq %S
314 are replaced with the linked manual’s name and section, respectively.
315 If no section is included, section 1 is assumed.
316 The default is not to
317 present a hyperlink.
318 .It Cm style Ns = Ns Ar style.css
319 The file
320 .Ar style.css
321 is used for an external style-sheet.
322 This must be a valid absolute or

new/usr/src/man/man1/mandoc.1 6

323 relative URI.
324 .El
325 .Ss Locale Output
326 Locale-depending output encoding is triggered with
327 .Fl T Ns Cm locale .
328 This option is not available on all systems: systems without locale
329 support, or those whose internal representation is not natively UCS-4,
330 will fall back to
331 .Fl T Ns Cm ascii .
332 See
333 .Sx ASCII Output
334 for font style specification and available command-line arguments.
335 .Ss Man Output
336 Translate input format into
337 .Xr man 5
338 output format.
339 This is useful for distributing manual sources to legacy systems
340 lacking
341 .Xr mdoc 5
342 formatters.
343 .Pp
344 If
345 .Xr mdoc 5
346 is passed as input, it is translated into
347 .Xr man 5 .
348 If the input format is
349 .Xr man 5 ,
350 the input is copied to the output, expanding any
351 .Xr mandoc_roff 5
352 .Sq so
353 requests.
354 The parser is also run, and as usual, the
355 .Fl W
356 level controls which
357 .Sx DIAGNOSTICS
358 are displayed before copying the input to the output.
359 .Ss PDF Output
360 PDF-1.1 output may be generated by
361 .Fl T Ns Cm pdf .
362 See
363 .Sx PostScript Output
364 for
365 .Fl O
366 arguments and defaults.
367 .Ss PostScript Output
368 PostScript
369 .Qq Adobe-3.0
370 Level-2 pages may be generated by
371 .Fl T Ns Cm ps .
372 Output pages default to letter sized and are rendered in the Times font
373 family, 11-point.
374 Margins are calculated as 1/9 the page length and width.
375 Line-height is 1.4m.
376 .Pp
377 Special characters are rendered as in
378 .Sx ASCII Output .
379 .Pp
380 The following
381 .Fl O
382 arguments are accepted:
383 .Bl -tag -width Ds
384 .It Cm paper Ns = Ns Ar name
385 The paper size
386 .Ar name
387 may be one of
388 .Ar a3 ,

new/usr/src/man/man1/mandoc.1 7

389 .Ar a4 ,
390 .Ar a5 ,
391 .Ar legal ,
392 or
393 .Ar letter .
394 You may also manually specify dimensions as
395 .Ar NNxNN ,
396 width by height in millimetres.
397 If an unknown value is encountered,
398 .Ar letter
399 is used.
400 .El
401 .Ss UTF\-8 Output
402 Use
403 .Fl T Ns Cm utf8
404 to force a UTF\-8 locale.
405 See
406 .Sx Locale Output
407 for details and options.
408 .Ss XHTML Output
409 Output produced by
410 .Fl T Ns Cm xhtml
411 conforms to XHTML-1.0 strict.
412 .Pp
413 See
414 .Sx HTML Output
415 for details; beyond generating XHTML tags instead of HTML tags, these
416 output modes are identical.
417 .Sh EXIT STATUS
418 The
419 .Nm
420 utility exits with one of the following values, controlled by the message
421 .Ar level
422 associated with the
423 .Fl W
424 option:
425 .Pp
426 .Bl -tag -width Ds -compact
427 .It 0
428 No warnings or errors occurred, or those that did were ignored because
429 they were lower than the requested
430 .Ar level .
431 .It 2
432 At least one warning occurred, but no error, and
433 .Fl W Ns Cm warning
434 was specified.
435 .It 3
436 At least one parsing error occurred, but no fatal error, and
437 .Fl W Ns Cm error
438 or
439 .Fl W Ns Cm warning
440 was specified.
441 .It 4
442 A fatal parsing error occurred.
443 .It 5
444 Invalid command line arguments were specified.
445 No input files have been read.
446 .It 6
447 An operating system error occurred, for example memory exhaustion or an
448 error accessing input files.
449 Such errors cause
450 .Nm
451 to exit at once, possibly in the middle of parsing or formatting a file.
452 .El
453 .Pp
454 Note that selecting

new/usr/src/man/man1/mandoc.1 8

455 .Fl T Ns Cm lint
456 output mode implies
457 .Fl W Ns Cm warning .
458 .Sh EXAMPLES
459 To page manuals to the terminal:
460 .Pp
461 .Dl $ mandoc \-Wall,stop mandoc.1 2*(Gt&1 | less
462 .Dl $ mandoc mandoc.1 mdoc.5 | less
463 .Pp
464 To produce HTML manuals with
465 .Ar style.css
466 as the style-sheet:
467 .Pp
468 .Dl $ mandoc \-Thtml -Ostyle=style.css mdoc.5 *(Gt mdoc.5.html
469 .Pp
470 To check over a large set of manuals:
471 .Pp
472 .Dl $ mandoc \-Tlint ‘find /usr/src -name \e*\e.[1-9]‘
473 .Pp
474 To produce a series of PostScript manuals for A4 paper:
475 .Pp
476 .Dl $ mandoc \-Tps \-Opaper=a4 mdoc.5 man.5 *(Gt manuals.ps
477 .Pp
478 Convert a modern
479 .Xr mdoc 5
480 manual to the older
481 .Xr man 5
482 format, for use on systems lacking an
483 .Xr mdoc 5
484 parser:
485 .Pp
486 .Dl $ mandoc \-Tman foo.mdoc *(Gt foo.man
487 .Sh DIAGNOSTICS
488 Standard error messages reporting parsing errors are prefixed by
489 .Pp
490 .Sm off
491 .D1 Ar file : line : column : \ level :
492 .Sm on
493 .Pp
494 where the fields have the following meanings:
495 .Bl -tag -width "column"
496 .It Ar file
497 The name of the input file causing the message.
498 .It Ar line
499 The line number in that input file.
500 Line numbering starts at 1.
501 .It Ar column
502 The column number in that input file.
503 Column numbering starts at 1.
504 If the issue is caused by a word, the column number usually
505 points to the first character of the word.
506 .It Ar level
507 The message level, printed in capital letters.
508 .El
509 .Pp
510 Message levels have the following meanings:
511 .Bl -tag -width "warning"
512 .It Cm fatal
513 The parser is unable to parse a given input file at all.
514 No formatted output is produced from that input file.
515 .It Cm error
516 An input file contains syntax that cannot be safely interpreted,
517 either because it is invalid or because
518 .Nm
519 does not implement it yet.
520 By discarding part of the input or inserting missing tokens,

new/usr/src/man/man1/mandoc.1 9

521 the parser is able to continue, and the error does not prevent
522 generation of formatted output, but typically, preparing that
523 output involves information loss, broken document structure
524 or unintended formatting.
525 .It Cm warning
526 An input file uses obsolete, discouraged or non-portable syntax.
527 All the same, the meaning of the input is unambiguous and a correct
528 rendering can be produced.
529 Documents causing warnings may render poorly when using other
530 formatting tools instead of
531 .Nm .
532 .El
533 .Pp
534 Messages of the
535 .Cm warning
536 and
537 .Cm error
538 levels are hidden unless their level, or a lower level, is requested using a
539 .Fl W
540 option or
541 .Fl T Ns Cm lint
542 output mode.
543 .Pp
544 The
545 .Nm
546 utility may also print messages related to invalid command line arguments
547 or operating system errors, for example when memory is exhausted or
548 input files cannot be read.
549 Such messages do not carry the prefix described above.
550 .Sh COMPATIBILITY
551 This section summarises
552 .Nm
553 compatibility with GNU troff.
554 Each input and output format is separately noted.
555 .Ss ASCII Compatibility
556 .Bl -bullet -compact
557 .It
558 Unrenderable unicode codepoints specified with
559 .Sq \e[uNNNN]
560 escapes are printed as
561 .Sq \&?
562 in mandoc.
563 In GNU troff, these raise an error.
564 .It
565 The
566 .Sq \&Bd \-literal
567 and
568 .Sq \&Bd \-unfilled
569 macros of
570 .Xr mdoc 5
571 in
572 .Fl T Ns Cm ascii
573 are synonyms, as are \-filled and \-ragged.
574 .It
575 In historic GNU troff, the
576 .Sq \&Pa
577 .Xr mdoc 5
578 macro does not underline when scoped under an
579 .Sq \&It
580 in the FILES section.
581 This behaves correctly in
582 .Nm .
583 .It
584 A list or display following the
585 .Sq \&Ss
586 .Xr mdoc 5

new/usr/src/man/man1/mandoc.1 10

587 macro in
588 .Fl T Ns Cm ascii
589 does not assert a prior vertical break, just as it doesn’t with
590 .Sq \&Sh .
591 .It
592 The
593 .Sq \&na
594 .Xr man 5
595 macro in
596 .Fl T Ns Cm ascii
597 has no effect.
598 .It
599 Words aren’t hyphenated.
600 .El
601 .Ss HTML/XHTML Compatibility
602 .Bl -bullet -compact
603 .It
604 The
605 .Sq \efP
606 escape will revert the font to the previous
607 .Sq \ef
608 escape, not to the last rendered decoration, which is now dictated by
609 CSS instead of hard-coded.
610 It also will not span past the current scope,
611 for the same reason.
612 Note that in
613 .Sx ASCII Output
614 mode, this will work fine.
615 .It
616 The
617 .Xr mdoc 5
618 .Sq \&Bl \-hang
619 and
620 .Sq \&Bl \-tag
621 list types render similarly (no break following overreached left-hand
622 side) due to the expressive constraints of HTML.
623 .It
624 The
625 .Xr man 5
626 .Sq IP
627 and
628 .Sq TP
629 lists render similarly.
630 .El
631 .Sh INTERFACE STABILITY
632 The
633 .Nm
634 utility is
635 .Sy Committed ,
635 .Nm Committed ,
636 but the details of specific output formats other than ASCII are
637 .Nm Uncommitted .
638 .Sh SEE ALSO
639 .Xr eqn 5 ,
640 .Xr man 5 ,
641 .Xr mandoc_char 5 ,
642 .Xr mdoc 5 ,
643 .Xr mandoc_roff 5 ,
644 .Xr tbl 5
645 .Sh AUTHORS
646 The
647 .Nm
648 utility was written by
649 .An Kristaps Dzonsons ,
650 .Mt kristaps@bsd.lv .
651 .Sh CAVEATS

new/usr/src/man/man1/mandoc.1 11

652 In
653 .Fl T Ns Cm html
654 and
655 .Fl T Ns Cm xhtml ,
656 the maximum size of an element attribute is determined by
657 .Dv BUFSIZ ,
658 which is usually 1024 bytes.
659 Be aware of this when setting long link
660 formats such as
661 .Fl O Ns Cm style Ns = Ns Ar really/long/link .
662 .Pp
663 Nesting elements within next-line element scopes of
664 .Fl m Ns Cm an ,
665 such as
666 .Sq br
667 within an empty
668 .Sq B ,
669 will confuse
670 .Fl T Ns Cm html
671 and
672 .Fl T Ns Cm xhtml
673 and cause them to forget the formatting of the prior next-line scope.
674 .Pp
675 The
676 .Sq \(aq
677 control character is an alias for the standard macro control character
678 and does not emit a line-break as stipulated in GNU troff.

new/usr/src/man/man5/man.5 1

**
 8753 Wed Jul 30 20:55:13 2014
new/usr/src/man/man5/man.5
5051 import mdocml-1.12.3
Reviewed by: Yuri Pankov <yuri.pankov@nexenta.com>
Approved by: TBD
**

1 .\" Copryight 2014 Garrett D’Amore <garrett@damore.org>
2 .\" Copyright (c) 1995, Sun Microsystems, Inc.
3 .\" The contents of this file are subject to the terms of the Common Development
4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
5 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
6 .Dd "Jul 30, 2014"
6 .Dd "Jul 19, 2014"
7 .Dt MAN 5
8 .Os
9 .Sh NAME

10 .Nm man
11 .Nd macros to format Reference Manual pages
12 .Sh SYNOPSIS
13 .Nm mandoc
14 .Fl T Ar man
15 .Ar
16 .Nm nroff
17 .Fl man
18 .Ar
19 .Nm troff
20 .Fl man
21 .Ar
22 .Sh DESCRIPTION
23 These macros are used to lay out the reference pages in this manual. Note: if
24 .Ar file
25 contains format input for a preprocessor, the commands shown
26 above must be piped through the appropriate preprocessor. This is handled
27 automatically by the
28 .Xr man 1
29 command. See the
30 .Sx Conventions
31 section.
32 .Lp
33 Any text argument
34 .Ar t
35 may be zero to six words. Quotes may be used to
36 include SPACE characters in a
37 .Qq word .
38 If
39 .Ar text
40 is empty, the special
41 treatment is applied to the next input line with text to be printed. In this
42 way
43 .Nm \&.I
44 may be used to italicize a whole line, or
45 .Nm \&.SB
46 may be used to make small bold letters.
47 .Lp
48 A prevailing indent distance is remembered between successive indented
49 paragraphs, and is reset to default value upon reaching a non-indented
50 paragraph. Default units for indents
51 .Nm i
52 are ens.
53 .Lp
54 Type font and size are reset to default values before each paragraph, and after
55 processing font and size setting macros.
56 .Pp
57 These strings are predefined by
58 .Nm -man :

new/usr/src/man/man5/man.5 2

59 .Bl -tag -width Ds
60 .It Nm \e*R
61 .Sq \(rg ,
62 .Sq (Reg)
63 in
64 .Nm nroff .
65 .It Nm \e*S
66 Change to default type size.
67 .El
68 .Sh "Requests"
69 * n.t.l. = next text line; p.i. = prevailing indent
70 .Bl -column ".TH n s d f m" "Cause " "t=n.t.l.*" "Explanation " -offset Ds
71 .It Sy Request Sy Cause Sy "If No" Sy Explanation
72 .It "" Sy Break Sy "Argument" ""
73 .It Nm \&.B Ar "t" no Ar t Ns =n.t.l.* Text is in bold font.
74 .It Nm \&.BI Ar t no Ar t Ns =n.t.l. Join words, alternating bold and
75 .It Nm \&.BR Ar t no Ar t Ns =n.t.l. Join words, alternating bold and
76 .It Nm \&.DT no Li \&.5i 1i... Restore default tabs.
77 .It Nm \&.HP Ar i yes Ar i Ns =p.i.* "Begin paragraph with hanging in
78 .It Nm \&.I Ar t no Ar t Ns =n.t.l. Text is italic.
79 .It Nm \&.IB Ar t no Ar t Ns =n.t.l. Join words, altenrating italic a
80 .It Nm \&.IP Ar x Ar i yes Ar x Ns ="" Same as
81 .Nm \&.TP
82 with tag
83 .Ar x .
84 .It Nm \&.IR Ar t no Ar t Ns =n.t.l. Join words, alternating italic a
85 .It Nm \&.IX Ar t no - Index macro, not used (obsolete).
86 .It Nm \&.LP yes - Begin left-aligned paragraph. Set prevailing ind
87 .It Nm \&.P yes - Same as
88 .Nm \&.LP .
89 .It Nm \&.PD Ar d no Ar d Ns =.4v Set vertical distance between pa
90 .It Nm \&.PP yes - Same as
91 .Nm \&.LP .
92 .It Nm \&.RE yes - End of relative indent. Restores prevailing inde
93 .It Nm \&.RB Ar t no Ar t Ns =n.t.l. Join words, alternating roman an
94 .It Nm \&.RI Ar t no Ar t Ns =n.t.l. Join words, alternating roman an
95 .It Nm \&.RS Ar i yes Ar i Ns =p.i. Start relative indent, increase
96 Sets prevailing indent to .5i for nested indents.
97 .It Nm \&.SB Ar t no - Reduce size of text by 1 point, make tex
98 .It Nm \&.SH Ar t yes - Section Heading.
99 .It Nm \&.SM Ar t no Ar t Ns =n.t.l. Reduce size of text by 1 point.
100 .It Nm \&.SS Ar t yes Ar t Ns =n.t.l. Section Subheading.
101 .It Nm \&.TH Ar n s d f m yes - Begin reference page Ar n , No o
102 .It Nm \&.TP Ar i yes Ar i Ns =p.i. Begin indented paragraph, with t
103 .Ar i .
104 .It Nm \&.TX Ar t p no - Resolve the title abbreviation Ar t ; No
105 .El
106 .Ss "Conventions"
107 When formatting a manual page,
108 .Nm
109 examines the first line to determine
110 whether it requires special processing. For example a first line consisting of:
111 .Lp
112 .Dl \&’\e" t
113 .Lp
114 indicates that the manual page must be run through the
115 .Xr tbl 1
116 preprocessor.
117 .Lp
118 A typical manual page for a command or function is laid out as follows:
119 .Bl -tag -width ".SH RETURN VALUES"
120 .
121 .It Nm \&.TH Ar title Op "1-9"
122 .
123 The name of the command or function, which serves as the title of the manual
124 page. This is followed by the number of the section in which it appears.

new/usr/src/man/man5/man.5 3

125 .
126 .It Nm SH NAME
127 .
128 The name, or list of names, by which the command is called, followed by a dash
129 and then a one-line summary of the action performed. All in roman font, this
130 section contains no
131 .Xr troff 1
132 commands or escapes, and no macro requests.
133 It is used to generate the database used by the
134 .Xr whatis 1
135 command.
136 .
137 .It Nm SH SYNOPSIS
138 .Bl -tag -width "Functions:"
139 .It Sy Commands:
140 The syntax of the command and its arguments, as typed on the command line.
141 When in boldface, a word must be typed exactly as printed. When in italics, a
142 word can be replaced with an argument that you supply. References to bold or
143 italicized items are not capitalized in other sections, even when they begin a
144 sentence.
145 .Lp
146 Syntactic symbols appear in roman face:
147 .Bl -tag -width " "
148 .It Op " "
149 An argument, when surrounded by brackets is optional.
150 .It |
151 Arguments separated by a vertical bar are exclusive. You can supply only one
152 item from such a list.
153 .It \&.\|.\|.
154 Arguments followed by an ellipsis can be repeated. When an ellipsis follows a
155 bracketed set, the expression within the brackets can be repeated.
156 .El
157 .It Sy Functions:
158 If required, the data declaration, or
159 .Li #include
160 directive, is shown first,
161 followed by the function declaration. Otherwise, the function declaration is
162 shown.
163 .El
164 .
165 .It Nm \&.SH DESCRIPTION
166 .
167 A narrative overview of the command or function’s external behavior. This
168 includes how it interacts with files or data, and how it handles the standard
169 input, standard output and standard error. Internals and implementation details
170 are normally omitted. This section attempts to provide a succinct overview in
171 answer to the question, "what does it do?"
172 .Lp
173 Literal text from the synopsis appears in constant width, as do literal
174 filenames and references to items that appear elsewhere in the reference
175 manuals. Arguments are italicized.
176 .Lp
177 If a command interprets either subcommands or an input grammar, its command
178 interface or input grammar is normally described in a
179 .Nm USAGE
180 section, which follows the
181 .Nm OPTIONS
182 section. The
183 .Nm DESCRIPTION
184 section only
185 describes the behavior of the command itself, not that of subcommands.
186 .
187 .It Nm \&.SH OPTIONS
188 .
189 The list of options along with a description of how each affects the command’s
190 operation.

new/usr/src/man/man5/man.5 4

191 .
192 .It Nm \&.SH RETURN VALUES
193 .
194 A list of the values the library routine will return to the calling program
195 and the conditions that cause these values to be returned.
196 .
197 .It Nm \&.SH EXIT STATUS
198 .
199 A list of the values the utility will return to the calling program or shell,
200 and the conditions that cause these values to be returned.
201 .
202 .It Nm \&.SH FILES
203 .
204 A list of files associated with the command or function.
205 .
206 .It Nm \&.SH SEE ALSO
207 .
208 A comma-separated list of related manual pages, followed by references to other
209 published materials.
210 .
211 .It Nm \&.SH DIAGNOSTICS
212 .
213 A list of diagnostic messages and an explanation of each.
214 .
215 .It Nm \&.SH BUGS
216 .
217 A description of limitations, known defects, and possible problems associated
218 with the command or function.
219 .El
220 .Sh FILES
221 .Pa /usr/share/man/whatis
222 .Sh NOTES
223 The
224 .Nm
225 package should not be used for new documentation. The
226 .Xr mdoc 5 ,
227 package is preferred, as it uses semantic markup rather than physical markup.
228 .Sh CODE SET INDEPENDENCE
229 When processed with
230 .Xr mandoc 1 ,
231 this package is Code Set Independent. However, when processed with
232 legacy tools such as
233 .Xr nroff 1
234 and
235 .Xr troff 1 ,
236 the use of multi-byte characters may not be supported.
237 .Sh INTERFACE STABILITY
238 .Sy Obsolete Committed .
238 .Nm Obsolete Committed .
239 The
240 .Xr mdoc 5
241 package should be used instead.
242 .Sh SEE ALSO
243 .Xr eqn 1 ,
244 .Xr man 1 ,
245 .Xr mandoc 1 ,
246 .Xr nroff 1 ,
247 .Xr troff 1 ,
248 .Xr tbl 1 ,
249 .Xr whatis 1 ,
250 .Xr mdoc 5 ,
251 .Rs
252 .%A Dale Dougherty and Tim O’Reilly
253 .%B Unix Text Processing
254 .Re

