new usr/ src/ cnd/ mandoc/ Makefi | e. conmon

R R R R

1094 Wed Jul 30 20:55:06 2014
new usr/ src/ cnd/ mandoc/ Makef i | e. cormon
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You nay only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL should have acconpanied this

8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2012 Nexenta Systens, Inc. Al rights reserved.

14 # Copyright 2014 Garrett D Anore <garrett @anore. org>

15 #

17 PROGS= mandoc mandoc_preconv

18 mandoc_OBJS = arch.o att.o chars.o eqn.o eqn_htm .o egn_termo

19 htm .o lib.o main.o man. o man_hash. o man_htnl . o

20 man_macro. o man_term o nan_val i date. o nmandoc. o ndoc. o
21 nmdoc_ar gv. o ndoc_hash. o ndoc_htnl .o ndoc_nacro. o

22 ndoc_nan. o ndoc_term o ndoc_val idate.o nsec.o out.o
23 read.o roff.o st.o tbl.o thl_data.o thl_htni.o

24 tbl _layout.o tbhl _opts.o tbl _termo termo termascii.o
25 termps.o tree.o vol.o

27 preconv_0OBJS = preconv.o

29 CFLAGS += $(CC_VERBOSE)

31 CPPFLAGS += - DHAVE_CONFI G_H - DUSE_WCHAR \

32 - DOSNAME="\"i | | umps\ " "

32 - DOSNAME="\"i | l umps\"" '\

33 -DVERSI ON="\"1.12. 1\""

new usr/ src/ cnd/ mandoc/ arch.in

R R R R

3308 Wed Jul 30 20:55:06 2014
new usr/ src/ cnd/ mandoc/ arch.in
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

new usr/src/ cnd/ mandoc/ arch.in

1/* $ld: arch.in,v 1.14 2013/09/16 22:12:57 schwarze Exp $ */

1/* $Id: arch.in,v 1.12 2012/01/28 14:02:17 joerg Exp $ */

2 /*

3 * Copyright (c) 2009 Kristaps Dzonsons <kristaps@sd.|v>

4 *

5 * Permission to use, copy, nodify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this perm ssion notice appear in all copies.

8 *

9 * THE SOFTWARE IS PROVIDED "AS |'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
10 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

11 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
12 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PRCFI TS, WHETHER I N AN
14 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI OUS ACTI ON, ARI SI NG OQUT OF
15 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI S SOFTWARE.

16 */

18 /*

19 * This file defines the architecture token of the .Dt prol ogue nmacro.
20 * Al architectures that your system supports (or the manuals of your
21 * systenm) should be included here. The right-hand-side is the

22 * formatted output.

23 *

24 * Be sure to escape strings.

25 *

26 * REMEMBER TO ADD NEW ARCHI TECTURES TO MDCC. 7!

27 */

29 LI NE("acorn26", "Acorn26")

30 LI NE("acorn32", " Acorn32")

31 LI NE("al gor", "Al gor")

32 LI NE("al pha", " Al pha")

33 LI NE("and64", " AMD64")

34 LI NE("ami ga", " Ami ga")

35 LI NE("ami gappc”, " Am gaPPC")

36 LINE("arc", "ARC")

37 LINE("arnt, " ARM')

38 LI NE("arnR6", " ARMR6")

39 LI NE("arnB2", " ARMB2")

40 LI NE("arm sh", " ARM SH'")

41 LI NE("arnmv7", "ARM/T")

42 LINE("aviion", "AVi i ON'")

43 LINE("atari", "ATARI ")

43 LI NE(" beagl e", "Beagl e")

44 L1 NE(" bebox", " BeBox")

45 LINE("cats", "cats")

46 LINE("cesfic", " CESFI C")

47 LINE("cobalt", " Cobal t")

48 LI NE("dreantast", "Dreantast")

49 LI NE("em ps", "EM PS")

50 LI NE("evbarni, " evbARM')

51 LI NE("evbm ps", "evbM PS")

52 LI NE("evbppc", " evbPPC")

53 LI NE("evbsh3", "evbSH3")

54 LI NE("ews4800mi ps", " EWs4800M PS")

55 LI NE("hp300", " HP300")

56 LI NE("hp700", "HP700")

57 LI NE("hpcarni, " HPCARM')

58 LI NE("hpcmi ps”, "HPCM PS")
59 LI NE("hpcsh", " HPCSH")

60 LI NE("hppa", " HPPA")

61 LI NE("hppa64", " HPPAG4")
62 LI NE("ia64", "i a64")

63 LI NE("i386", "i386")

64 LINE("i brmws", "1 BMNWS")
65 LI NE("iyonix", "lyoni x")
66 LI NE("I andi sk", " LANDI SK")
67 LI NE("I oongson", "Loongson")
68 LI NE("|una68k", "Luna68k")
69 LI NE("Iluna88k", "Luna88k")
70 LI NE(" mB8Kk", "mB8k")

71 LI NE(" mac68k", " Mac68k")
72 LI NE(" macppc”, " MacPPC")
73 LINE("m ps", "M PS")

74 LI NE("m ps64", "M PS64")
75 LI NE("m psco”, "M PSCo")
76 LI NE(" meye", "mrEye")

77 LI NE(" nvme68k", " MVMEB8BK")
78 LI NE(" mvme88k", " MVMEB8K")
79 LI NE(" mvmeppc", " M\WMEPPC")
80 LI NE("netw nder", "Net W nder")
81 LI NE("news68k", " NeWB68k")
82 LI NE("newsmi ps", " NeWSM PS")
83 LI NE("next 68k", " NeXT68k")
84 LI NE("octeon", " OCTEON")
85 LI NE("of ppc", " OFPPC")
86 LI NE("pal nt', "Pal ni')

87 LI NE("pc532", " PC532")

88 LI NE("pl aystation2",
89 LI NE("prax",

90 LI NE(" prppc",

91 LI NE(" power pc",
92 LI NE("prep",

93 LI NE("rs6000",

94 LI NE("sandpoint",
95 LI NE("sbmi ps",

96 LINE("sgi",

97 LI NE("sgim ps",
98 LI NE("sh3",

99 LI NE("shark",

100 LI NE("socppc",
101 LI NE("sol bourne",
102 LI NE("sparc",

103 LI NE("sparc64",
104 LI NE("sun2",

105 LI NE("sun3",

106 LI NE("tahoe",

107 LI NE("vax",

108 LI NE("x68k",

109 LI NE("x86",

110 LI NE("x86_64",
111 LI NE("xen",

112 LI NE("zaurus",

"PlayStation2")
" PMAX"
"pnPPC")

" Power PC")
"PReP")
"RS6000")

" Sandpoi nt")
" SBM PS")
"S@ ")

"SA M PS")

" SH3")

" Shar k")

" SOCPPC")

" Sol bour ne")
" SPARC")

" SPARC64")
"Sun2")
"Sun3")
"Tahoe")
"VAX")

" X68k")
"x86")
"x86_64")

" Xen™")

" Zaurus")

new usr/ src/ cnd/ mandoc/ chars. c

R R R R

3565 Wed Jul 30 20:55:06 2014
new usr/ src/cnd/ mandoc/ chars. ¢
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: chars.c,v 1.54 2013/ 06/20 22:39: 30 schwarze Exp $ */

1/* $Id: chars.c,v 1.52 2011/11/08 00: 15: 23 kristaps Exp $ */

2 /*

3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>

4 * Copyright (c) 2011 Ingo Schwarze <schwarze@penbsd. or g>

5 *

6 * Permission to use, copy, nodify, and distribute this software for any

7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this perm ssion notice appear in all copies.

g *

10 * THE SOFTWARE IS PROVIDED "AS |I'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

12 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
15 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SI NG QUT OF
16 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI' S SOFTWARE.

17 */

18 #i f def HAVE CONFI G_H

19 #include "config. h™

20 #endif

22 #include <assert.h>
23 #include <ctype. h>

24 #include <stdlib. h>
25 #include <string. h>

27 #include "nandoc. h"

28 #include "libmandoc. h"

30 #define PRI NT_HI 126

31 #define PRINT_LO 32

33 struct In {

34 struct In *next ;

35 const char *code;

36 const char *ascii;

37 int uni code;

38 };

40 #define LI NES_MAX 329

40 #define LI NES_MAX 328

42 #define CHAR(in, ch, code) \

43 { NULL, (in), (ch), (code) },
45 #define CHAR TBL_START static struct In lines[LI NES_MAX] = {
46 #define CHAR TBL_END 1

48 #include "chars.in"

50 struct nthars {

51 struct In **ht ab;

52 };

_hnchanged_port ion_omtted_

65 struct ncthars *
66 ncthars_all oc(void)
67 {

new usr/ src/ cnd/ mandoc/ chars. c

68 struct nchars *t ab;

69 struct In **ht ab;

70 struct In *pp;

71 int i, hash;

73 /*

74 * Constructs a very basic chaining hashtable. The hash routine
75 * is simply the integral value of the first character.

76 * Subsequent entries are chained in the order they' re processed.
77 */

79 tab = mandoc_nal | oc(si zeof (struct nthars));

80 htab = mandoc_cal | oc(PRINT_H - PRINT_LO + 1, sizeof(struct In
80 htab = mandoc_cal |l oc(PRINT_H - PRINT_LO + 1, sizeof(struct In *
82 for (i = 0; i < LINES_MAX; i++)

83 hash = (int)lines[i]. code[0] - PRINT_LO

85 if (NULL == (pp = htab[hash])) {

86 ht ab[hash] &ines[i];

87 cont i nue;

88 }

90 for (; pp->next; pp = pp->next)

91 /* Scan ahead. */ ;

92 pp->next = & ines[i];

93 }

95 tab->htab = htab;

96 return(tab);

97

__unchanged_portion_onitted_

new usr/src/ cnd/ mandoc/ chars.in

R R R R

10052 Wed Jul 30 20:55:06 2014
new usr/ src/ cnd/ mandoc/ chars.in
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

O©CONOUIDWNREE

/| *
/*
/*

R

* Ok Ok ok kO % ok k% 3k

/

$ld: chars.in,v 1.43 2013/ 06/20 22:39:30 schwarze Exp $ */
$Id: chars.in,v 1.42 2011/10/02 10: 02: 26 kristaps Exp $ */

Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>

Perm ssion to use, copy, nodify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permi ssion notice appear in all copies.

THE SOFTWARE |'S PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
W TH REGARD TO THI' S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS. | N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SI NG QUT OF
OR I N CONNECTI ON W TH THE USE OR PERFORMANCE OF THI' S SOFTWARE.

The ASCI| translation tables.

The |l eft-hand side corresponds to the input sequence (\x, \(xx, *(xx
and so on) whose length is |isted second el ement. The right-hand
side is what’'s produced by the front-end, with the fourth el enent
being its |ength.

XXX - C-escape strings!
XXX - update LINES_MAX if adding nore!

/* Non- br eaki ng, non-collapsing space uses unit separator. */
static const char ascii_nbrsp[2] = { ASCII_NBRSP, '\0' };

CHAR_TBL_START

/* Spacing. */

R("c", 0)
CHAR(" 0", ", 8194)
CHAR(" ", asci i _nbrsp, 160)
CHAR(" ~", ascii_nbrsp, 160)
CHAR(" %, "y 0)
CHAR(" &", ", 0)
CHAR(""", " 0)
CHAR("| ", " 0)
CHAR("}", , 0)
CHAR("t", , 0)

/* Accents. */

CHAR("a\"", 779)
CHAR("a- ", 175)
CHAR("a. ", o 729)
CHAR(" 2" wn 770}
CHAR("\" ", RN 769)
CHAR(. o 769)
CHAR(" ga" 768)
CHARC" 0 768}
CHAR(" ab", 774)
CHAR(" ac", .o 807)

CHAR("ad", el , 776)

new usr/src/ cnd/ mandoc/ chars.in

124

CHAR(" ah"
CHAR(" a0" |
CHAR("a~",
CHAR(" ho" ,
CHAR(" ha"
CHAR("ti ",

/* Quotes. */
CHAR(" Bq",

CHAR(" bq",
CHAR(" I q",
CHAR("rq",
CHAR(" oq",
CHAR("cq",
CHAR("aq",
CHAR(" dq,
CHAR(" Fo",
CHAR(" Fc",
CHAR("f 0",
CHAR("fc",

/* Brackets. */
CHAR("I B",

CHAR("r B",

CHAR("I C",
CHAR("rC",

CHAR("I a",
CHAR("ra",

CHAR(" bv",

CHAR(" br aceex",
CHAR("bracket | ef tt
CHAR("bracket |l eftb
CHAR(" br acket | ef t ex"
CHAR(" bracketrighttp",
CHAR(" br acket ri ght bp",
CHAR(" br acketri ght ex",
CHAR(" It ",

CHAR(" br acel efttp",
CHAR(" I k",
CHAR("bracel ef t m d",
CHAR(" [b",

CHAR(" br acel ef t bp",
CHAR(" br acel ef t ex",
CHAR("rt",

CHAR(" braceri ghttp",
CHAR("rk",

CHAR(" braceri ghtm d",
CHAR("rb",

CHAR(" braceri ght bp",
CHAR(" br aceri ght ex",
CHAR(" parenl efttp",
CHAR(" par enl ef t bp",
CHAR(" par enl ef t ex",
CHAR(" parenri ghttp",
CHAR(" par enri ght bp",
CHAR(" par enri ght ex",

P
p

-~

/* Greek characters. *
CHAR(" * A",
CHAR("*B",
CHAR("*G',
CHAR("*D",
CHAR("*E",
CHAR("*Z",
CHAR("*Y",
CHAR("*H",

new usr/src/ cnd/ mandoc/ chars.in 3 new usr/src/ cnd/ mandoc/ chars.in
125 CHAR("*I1", B 921) 191 CHAR("\' A", A 193)
126 CHAR("*K", "K', 922) 192 CHAR("\' E", "E", 201)
127 CHAR("*L", AR 923) 193 CHAR("\' 1", ", 205)
128 CHAR("*M', "M, 924) 194 CHAR("\' O, "o, 211)
129 CHAR("*N'. "N, 925) 195 CHAR("\"’ U‘ U, 218)
130 CHAR("*C', "H, 926) 196 CHAR(\'a", "a", 225)
131 CHAR("*O', "o, 927) 197 "\'e", "e", 233)
132 CHAR("*P", "TT, 928) 198 R(\Vity, ity 237)
133 CHAR("*R'. "P, 929) 199 CHAR("\' 0" "o", 243)
134 CHAR("*S", "> 931) 200 CHAR("\'u" "ut, 250)
135 CHAR("*T", T, 932) 201 CHAR(""A", "A", 194)
136 CHAR("*U', "y, 933) 202 CHAR(""E", "E", 202)
137 CHAR("*F", "o, 934) 203 CHAR("A"I™, " 206)
138 CHAR("* X", "X, 935) 204 CHAR(""O', "o, 212)
139 CHAR("*Q', "Y', 936) 205 CHAR("~U', "U, 219)
140 CHAR("*W, "o, 937) 206 CHAR(""a", "a, 226)
141 CHAR("*a", "a", 945) 207 CHAR(""e", "e", 234)
142 CHAR("*b", "B", 946) 208 CHAR(""i", it 238)
143 CHAR("*g", "y, 947) 209 CHAR(""o0", "o", 244)
144 CHAR("*d", nd, 948) 210 CHAR(""u", "u", 251)
145 CHAR("*e", "e", 949) 211 CHAR("‘ A", "AY, 192)
146 CHAR("*z", "C, 950) 212 CHAR("'E", "E", 200)
147 CHAR("*y", "n", 951) 213 CHAR("“I", B 204)
148 CHAR("*h", "o, 952) 214 CHAR("* O', "o, 210)
149 CHAR("*i", it 953) 215 CHAR("' U', "yU, 217)
150 CHAR("*k", "k, 954) 216 CHAR("‘a", "a", 224)
151 CHAR("*I", "\ 955) 217 CHAR(e, "e", 232)
152 CHAR("*ni', "u, 956) 218 CHAR("“i ", i, 236)
153 CHAR("*n", v 957) 219 CHAR("to", "o", 242)
154 CHAR("*c", "E", 958) 220 CHAR("‘u", "u", 249)
155 CHAR("*o0", "o", 959) 221 CHAR("~A", A 195)
156 CHAR("*p", "n", 960) 222 CHAR("~N", "N, 209)
157 CHAR("*r", "p", 961) 223 CHAR("~O', "o, 213)
158 CHAR("*s", "o", 963) 224 CHAR("~a", "a", 227)
159 CHAR("*t", "t 964) 225 CHAR("~n", "n", 241)
160 CHAR("*u", "u", 965) 226 CHAR("~0", "o", 245)
161 CHAR("*f", "o", 981)
162 CHAR("*x", "X, 967) 228 /* Arrows and lines. */
163 CHAR("*q", "ut, 968) 229 CHAR("<-", vt 8592)
164 CHAR("*WwW', W 969) 230 CHAR("->", s 8594)
165 CHAR("+h", "o, 977) 231 CHAR("<>", et 8596)
166 CHAR("+f", "o", 966) 232 CHAR("da", vt 8595)
167 CHAR("+p", "W, 982) 233 CHAR("ua", BEA 8593)
168 CHAR("+e", "e", 1013) 234 CHAR("va", A 8597)
169 CHAR("ts", "s", 962) 235 CHAR("I A", 8656)
236 CHAR("rA", 8658)
171 /* Accent ed letters. */ 237 CHAR("hA", 8660)
172 CHAR(" ", 199) 238 CHAR("dA", 8659)
173 CHAR(" , "t 231) 239 CHAR("UuA", 8657)
174 CHAR("/L", "L, 321) 240 CHAR("VA", , 8661)
175 CHAR("/ O, "o, 216)
176 CHAR("/I1™", B 322) 242 |* Logic. */
177 CHAR("/ 0", "o", 248) 243 CHAR("AN', 8743)
178 CHAR("o0A", "A 197) 244 CHAR("OR', 8744)
179 CHAR("oa". "a", 229) 245 CHAR("no", 172)
180 CHAR(" , A 196) 246 CHAR("tno", 172)
181 CHAR(" E s "E", 203) 247 CHAR("te", 8707)
182 CHAR(": 1", e 207) 248 CHAR("fa", 8704)
183 CHAR(": O, "o, 214) 249 CHAR("st", 8715)
184 CHAR(" U, U, 220) 250 CHAR("tf", 8756)
185 CHAR(":a", "a", 228) 251 CHAR("3d", 8756)
186 CHAR(":e", "e", 235) 252 CHAR("or", 124)
187 CHAR(" |", it 239)
188 CHAR(": 0", "o", 246) 254 |/* Nathematicals. */
189 CHAR(":u", "u, 252) 255 CHAR("pl ", LS 43)
190 CHAR(":y", "y, 255) 256 CHAR("mi ", 8722)

new usr/src/ cnd/ mandoc/ chars.in

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

286
287
288

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

320
321
322

R(
285 CHA

R(
289 CHA

CHAR("-",
CHAR(" - +"
CHAR(" +- "
CHAR("t +-*
CHAR(" pc”
CHAR(" "
CHAR(" nu",
CHAR("t mu",
CHAR(" c*",
CHAR(" c+"
CHAR("di ",
CHAR("t di ",
CHAR(" f /"
CHAR(" **"
CHAR(" <="
CHAR(" >="
CHAR(" <<"
CHAR(" >>"

CHAR("integral ",

CHAR(" sum

CHAR(" pr oduct

CHAR(" copr oduct ",

CHAR("gr",
CHAR("sr",

CHAR(" pd"
CHAR("- h"

/* Ligatures.
CHAR("ff",
CHAR("fi",

*

-~

~~ L

=—

~c—~ll~—= |l ~—~—m—~0 1|
G m
PN -

<gam-

—_—) ———
- .-

45)
8723)
177)
177)
183)
8901)
215)
215)
8855)
8853)
247)
247)
8260)
8727)
8804)
8805)
8810)
8811)
61)
8800)
8801)
8802)
8773)
8771)
8764)
8776)
8780)
8733)
8709)
8712)
8713)
8834)
8836)
8835)
8837)
8838)
8839)
8745)
8746)
8736)
8869)
8747)
8747)
8721)
8719)
8720)
8711)
8730)
8730)
8968)
8969)
8970)
8971)
8734)
8501)
8465)
8476)
8706)
8463)
189)
188)
190)

64256)
64257)

new usr/src/ cnd/ mandoc/ chars.in

323
324
325
326
327
328
329
330
331
332

334
335
336
337
338
339
340

342
343
344
345
346
347
348
349
350

352
353
354
355
356
357
358
359

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

377
378
379
380

382
383
384
385
386
387
388

CHAR("f "
CHAR("Fi "
CHAR("FI "
CHAR(" AE"
CHAR(" ae"
CHAR(" OE"
CHAR(" oe"

/* Special letters. */

/* Currency. */

CHAR(" eu"
CHAR(" Ye"
CHAR(" Po"
CHAR(" Cs"
CHAR(" Fn"

/* Lines.
CHAR(" ba"
CHAR(" br"
CHAR("ul "
CHAR("r | "
CHAR(" bb"
CHAR("sl "
CHAR("rs"

: v

/* Text markers. */

CHAR("ci "
CHAR(" bu"

CHAR(" dd",

CHAR(" dg"
CHAR("I z"
CHAR("sq"
CHAR(" ps"
CHAR("sc"
CHAR("1 h"
CHAR("rh"
CHAR("at "
CHAR("sh"
CHAR(" CR'
CHAR(" K"

/* Legal

CHAR("co"
CHAR("rg"
CHAR("t nt'

synbol s. */

, Q!
, RGE

' "t

/* Punctuation. */

CHAR(

64258)
64259)
64260)
198)
230)
338)
339)
223)
306)
307)

46)

8212)
8211)
8208)

new usr/src/ cnd/ mandoc/ chars.in

389 CHAR("e", NN 92)
391 /* Units. */

392 CHAR("de", "o, 176)
393 CHAR(" %", “op" 8240)
394 CHAR("fni, S 8242)
395 CHAR("sd", e 8243)
396 CHAR("nc", L TL 181)

398 CHAR TBL_END

new usr/ src/ cnd/ mandoc/ config. h

R R R R

1243 Wed Jul 30 20:55:06 2014
new usr/src/ cnd/ mandoc/ config. h
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD
LR R R EEEEEEEEE SRS RS RS SRS RS RS E R EE R R RREERREREEEEEEEEEESEESESE]
#i f ndef MANDOC_CONFI G_H
#def i ne MANDOC_CONFI G_H

#if defined(__linux_) || defined(__MNT_)
define _GNU _SOURCE /* strptinme(), getsubopt() */
#endi f

oOuUTh N

8 #include <stdio. h>

10 #define VERSION "1.12. 3"
11 #define HAVE_STRPTI ME
12 #defi ne HAVE_GETSUBOPT
13 #define HAVE_STRLCAT

14 #define HAVE_STRLCPY

15 #define HAVE_MVAP

17 #include <sys/types. h>
19 #if !defined(__BEGQ N_DECLS)

20 # ifdef __cplusplus

21 # define __BEG N_DECLS extern "C' {
22 # else

23 # define __BEG N_DECLS

24 # endif

25 #endi f

26 #if !defined(__END_DECLS)

27 # ifdef __cplusplus

28 # define __END_DECLS }
29 # else

30 # define __END_DECLS

31 # endif

32 #endif

34 #ifndef HAVE BETOH64

35 # if defined(__APPLE)

36 # define bet oh64(x) OSSwapBi gToHost | nt 64(x)
32 #if defined(__APPLE

33 # define htobe32(x) OSSwapHost ToBi gl nt 32(x)
34 # define betoh32(x) OSSwapBi gToHost | nt 32(x)

37 # define htobe64(x) OSSwapHost ToBi gl nt 64(x)
38 # elif defined(__sun)

39 # define betoh64(x) BE_64(x)

40 # define htobe64(x) BE_64(x)

41 # else

36 #

define betoh64(x) OSSwapBi gToHost | nt 64(x)
37 #elif defined(__linux__)

38 # define betoh32(x) be32toh(x)

42 # define betoh64(x) be64toh(x)

43 # endif

44 #endi f

46 #ifndef HAVE_STRLCAT

47 extern size_t strlcat(char *, const char *, size_|
48 #endi f

49 #ifndef HAVE_STRLCPY

50 extern size_t strlcpy(char *, const char *, size_|
51 #endif

52 #ifndef HAVE_GETSUBOPT
53 extern int get subopt (char **, char * const *,

t);

t);

char **);

new usr/ src/ cnd/ mandoc/ config. h

54 extern char
55 #endi f
56 #ifndef HAVE_FGETLN
57 extern char
58 #endi f

*subopt ar g;

60 #endif /* MANDOC CONFI G H */

*fgetln(FILE *,

size_t *);

new usr/src/ cnd/ mandoc/ htm . c

R R R R

15031 Wed Jul 30 20:55:06 2014
new usr/ src/ cnd/ mandoc/ htnl . ¢
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: html.c,v 1.152 2013/08/08 20:07: 47 schwarze Exp $ */

1/* $ld: htm.c,v 1.150 2011/ 10/ 05 21: 35:17 kristaps Exp $ */

2 /*

3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
4 * Copyright (c) 2011, 2012, 2013 Ingo Schwarze <schwarze@penbsd. org>

4 * Copyright (c) 2011 Ingo Schwarze <schwarze@penbsd. or g>

5 *

6 * Permssion to use, copy, nodify, and distribute this software for any

7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this perm ssion notice appear in all copies.

9 *

10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES CF

12 * MERCHANTABI LI TY AND FI TNESS. | N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN

15 * ACTION OF CONTRACT, NEGLI GENCE OR OTHER TORTI OQUS ACTI ON, ARI SING OUT OF

16 * OR I N CONNECTION W TH THE USE OR PERFORVANCE OF THI S SOFTWARE.
17 =/

18 #ifdef HAVE_CONFI G H

19 #include "config.h"

20 #endif

22 #include <sys/types. h>

24 #include <assert.h>
25 #include <ctype. h>
26 #include <stdarg. h>
27 #include <stdio.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <string. h>
31 #include <unistd. h>

33 #incl ude "mandoc. h"

34 #include "libmandoc. h"
35 #include "out.h"

36 #include "htm . h"

37 #include "main. h"

39 struct htnidata {

40 const char *nane;

41 int flags;

42 #define HTML_CLRLI NE (1 << 0)

43 #define HTM__NOSTACK (1 << 1)

44 ;#defi ne HTML_AUTOCLOSE (1 << 2) /* Tag has auto-closure. */
45 };

____unchanged_portion_onitted_

223 static void
224 print_netaf(struct htm *h, enum mandoc_esc deco)

225 {

226 enum ht nl f ont font;
228 switch (deco) {

229 case (ESCAPE_FONTPREV):
230 font = h->netal;
231 br eak;

232 case (ESCAPE_FONTI TALI C) :

new usr/src/ cnd/ mandoc/ htm . c

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

251
252
253
254

256
257

259
260
261
262
263
264
265
266
267
256
257
258
268
269
270
271
272
273

275
276
277
278
279
265
266

281
282
283
284
285
286
287

289
290
291
292
293

font = HTMLFONT_I TALI C,
break;
case (ESCAPE_FONTBCOLD) :
font = HTMLFONT_BOLD;
br eak;
case (ESCAPE_FONTBI):
font = HTMLFONT_BI ;
br eak;
case (ESCAPE_FONT) :
/* FALLTHROUGH */
case (ESCAPE_FONTROMAN) :
font = HTM_LFONT_NONE;
br eak;
defaul t:
abort();
/ * NOTREACHED */
}

if (h->metaf) {
print_tagq(h, h->nmetaf);
h->netaf = NULL;

}

h- >net al
h->net ac

h- >net ac;
font;

switch (font) {
case (HTMLFONT_I TALI O):
h->netaf = print_otag(h, TAG.I, 0, NULL);
br eak;
case (HTMLFONT_BOLD):
h->metaf = print_otag(h, TAG B, 0, NULL);
br eak;
case (HTMLFONT_BI):
h->metaf = print_otag(h, TAG B, 0, NULL);
if (HTMLFONT_NONE != font)
h->netaf = HTMLFONT_BOLD == font ?
print_otag(h, TAG B, 0, NULL)
print_otag(h, TAG.I, 0O, NULL);
br eak;
defaul t:
br eak;

}

i nt
htm _strlen(const char *cp)
{

size_t rsz;

int skip, sz;
int ssz, sz;
const char *seq, *p;

/*

* Account for escaped sequences within string | ength

* calculations. This follows the logic in termstrlen() as we
* nust calculate the width of produced strings.

* Assune that characters are always width of "1". This is

* hacky, but it gets the job done for approximation of wi dths.
*

sz = 0;

skip = 0;

while (1) {
rsz = strcspn(cp, "\\");
if (rsz) {

new usr/src/ cnd/ mandoc/ htm . c

294 += rsz;

295 |f (skip) {

296 skip = 0;
297 rsz--;
298

299 Sz += rsz;

300 }

301 if ("\0 == *cp)

302 br eak;

303 cp++;

304 switch (mandoc_ escape(&cp NULL, NULL)) {
277 while (NULL !'= (p = strchr(cp, V1)) |
278 sz += (int)(p - cp);

279 ++cp;

280 switch (nmandoc_escape(&cp, &seq, &ssz)) {
305 case (ESCAPE_ERROR):

306 return(sz);

307 case (ESCAPE_UNI CODE)

308 /* FALLTHROUGH */
309 case (ESCAPE_NUVBERED) :
310 /* FALLTHROUGH */
311 case (ESCAPE_SPECI AL):

312 if (skip)

313 skip =
314 el se

315 SZ++;

316 br eak;

317 case (ESCAPE_ SKI PCHAR) :
318 skip = 1;

319 br eak;

320 defaul t:

321 break;

322 }

323

324 return(sz);

295 assert(sz >= 0);

296 return(sz + strlen(cp));

325 }

327 static int

328 print_encode(struct htm *h, const char *p,

329 {

330 size_t Sz;

331 int c, len, nospace;

332 const char *seq;

333 enum mandoc_esc esc;

334 static const char rejs[6] = { "\\', "<, ">
336 nospace = 0;

338 while ("\0" 1= * {

339 if (HTM._SKI PCHAR & h->flags && "\\’
340 h->fl ags & ~HTM__SKI PCHAR;
341 p++;

342 conti nue;

343 }

345 sz = strcspn(p, rejs);

347 fwite(p, 1, sz, stdout);

348 p += (int)sz;

350 if ("\0 == *p)

351 break;

i nt norecurse)

. &

1= *p)

ASCI |

{

_HYPH,

"o

}

new usr/src/ cnd/ mandoc/ htm . c

353 switch (*p++) {

354 case ('<'):

355 printf("&t;");

356 conti nue;

357 case ('>'):

358 printf(">");

359 continue;

360 case ('&):

361 printf("&np;");

362 conti nue;

363 case (ASCI | _HYPH):

364 putchar(’'-");

365 conti nue;

366 defaul t:

367 break;

368 }

370 esc = mandoc escape(&p &seq, & en);
371 i f (ESCAPE_ERROR == esc)

372 br eak;

374 switch (esc) {

375 case (ESCAPE_FONT):

376 /* FALLTHROUGH */

377 case (ESCAPE_FONTPREV):

378 /* FALLTHROUGH */

379 case (ESCAPE_FONTBOLD):

380 /* FALLTHROUGH */

381 case (ESCAPE_FONTI TALI C)

382 /* FALLTHROUGH *

383 case (ESCAPE_FONTBI):

384 /* FALLTHROUGH */

385 case (ESCAPE FO\I‘I’RCMAN)

386 f (0 == norecurse)

387 print_metaf (h, esc);
388 cont i nue;

389 case (ESCAPE_SKI PCHAR) :

390 h->flags | = HTM._SKI PCHAR;
391 conti nue;

392 defaul t:

393 br eak;

394 }

396 if (h->flags & HTM._SKI PCHAR) {

397 h->flags & ~HTM__SKI PCHAR;
398 conti nue;

399 }

401 switch (esc) {

402 case (ESCAPE_UNI CODE) :

403 /* Skip passed "u" header. */
404 ¢ = nchars_nunRuc(seq + 1, len - 1);
405 if ("\0 !I=c¢

406 printf("&#x%;", c);
407 br eak;

408 case (ESCAPE_NUMBERED) :

409 ¢ = ncthars_nunRchar (seq, |en);
410 if ("\0 !=c¢)

411 put char (c);

412 bre

413 case (ESCAPE SPECl AL):

414 ¢ = ncthars_spec2cp(h->syntab, seq, len);
415 if (c >0

416 printf("&#%l;", c);
417 elseif (-1 ==c && 1 == len)

418 putchar ((int)*seq);

new usr/src/ cnd/ mandoc/ htm . c

419 br eak;

359 case (ESCAPE_FONT):

360 /* FALLTHROUGH */
361 case (ESCAPE_FONTPREV):
362 /* FALLTHROUGH */
363 case (ESCAPE_FONTBOLD):
364 /* FALLTHROUGH */
365 case (ESCAPE_FONTI TALI C):
366 /* FALLTHROUGH */
367 case (ESCAPE_FONTROVAN) :
368 if (norecurse)
369 br eak;
370 print_netaf(h, esc);
371 break;

420 case (ESCAPE_NOSPACE) :
421 if (\0 == *p)
422 nospace = 1;
423 break;

424 defaul t:

425 br eak;

426 }

427 1

429 return(nospace);

430 }

____unchanged_portion_onitted_

547 void
548 print_text(struct htm *h, const char *word)
549 {

551 if (! (HTML_NOSPACE & h->flags)) {

552 /* Manage keeps! */

553 if (! (HTM_KEEP & h->flags)) {

554 i f (HTM._PREKEEP & h->fl ags)
555 h->flags | = HTM__KEEP;
556 putchar(’ ');

557 } else

558 printf(" ");

559 1

561 assert (NULL == h->netaf);

562 switch (h->nmetac) {

563 case (HTMLFONT | TALIC):

564 h->netaf = print_otag(h, TAG.I, 0, NULL);
565 br eak;

566 case (HTMLFONT_BOLD):

567 h->metaf = print_otag(h, TAG B, 0, NULL);
568 br eak;

569 case (HTMLFONT_BI):

570 h->netaf = print_otag(h, TAG B, 0, NULL);
514 i f (HTMLFONT_NONE ! = h- >met ac)

515 h->netaf = HTMLFONT_BOLD == h->netac ?
516 print_otag(h, TAG B, 0, NULL)
571 print_otag(h, TAG.I, 0, NULL);

572 br eak;

573 defaul t:

574 br eak;

575 }

577 assert(word);

578 if (! print_encode(h, word, 0)) {

579 if (! (h->flags & HTM._NONGSPACE))
580 h->fl ags & ~HTM._NGOSPACE;

581 } else

582 h->flags | = HTM._NGSPACE;

new usr/src/ cnd/ mandoc/ htm . c
584 if (h->metaf) {
585 print_tagq(h, h->netaf);
586 h->netaf = NULL;
587 }
589 h->flags & ~HTM__I| GNDELI M
590 }

____unchanged_portion_onmitted_

new usr/src/ cnd/ mandoc/ htm . h 1

R R R R

4241 \Wed Jul 30 20:55:07 2014
new usr/ src/ cnd/ mandoc/ htmi . h
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $Id: html.h,v 1.49 2013/08/08 20:07: 47 schwarze Exp $ */

1/* $Id: htnml.h,v 1.47 2011/10/05 21:35:17 kristaps Exp $ */

2 /*

3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
4 *

5 * Permission to use, copy, nodify, and distribute this software for any

6 * purpose with or without fee is hereby granted, provided that the above

7 * copyright notice and this perm ssion notice appear in all copies.

8 *

9 * THE SOFTWARE IS PROVIDED "AS |'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
10 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

11 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
12 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PRCFI TS, WHETHER I N AN

14 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI OUS ACTI ON, ARI SI NG OQUT OF

15 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI S SOFTWARE.
16 */

17 #ifndef HTM._H

18 #define HTM._H

20 __BEG N_DECLS

22 enum htmtag {
23 TAG HTM.,
24 TAG_HEAD,
25 TAG_BCDY,
26 TAG_META,
27 TAG TI TLE,
28 TAG DIV,
29 TAG H1,

30 TAG_H2,

31 TAG_SPAN,
32 TAG_LI NK,
33 TAG BR,

34 TAG_A,

35 TAG _TABLE,
36 TAG_TBODY,
37 TAG_COL,
38 TAG_TR,

39 TAG_TD,

40 TAG LI,

41 TAG_UL,

42 TAG 4.,

43 TAG DL,

44 TAG DT,

45 TAG_DD,

46 TAG_BLOCKQUOTE,
47 TAG_P,

48 TAG_PRE,
49 TAG B,

50 TAG |,

51 TAG_CCDE,
52 TAG SMALL,
53 TAG_MAX
54 }

L nchanged_portion_onmitted_

74 enum htm font {
75 HTMLFONT_NONE = 0,

new

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137 };
__unchanged_portion_omtted_

usr/ src/ cnd/ mandoc/ htni . h

HTM_FONT_BOLD,
HTM_FONT_| TALI G,
HTM_FONT_BI
HTM_FONT_MAX

_hnchanged_port ion_omtted_

struct htnml {
int f
#def i ne HTM._NOSPACE (1
#define HTML_IGNDELIM (1
#defi ne HTM__KEEP (1
#def i ne HTM._PREKEEP (1 <<
#defi ne HTML_NONOSPACE (1
#define HTM._LI TERAL (1

(1

b) /* suppress next space */
1)

2)

3)

4) /* never add spaces */

5) /* literal (e.g., <PRE>) context */

#def i ne HTM__SKI PCHAR << 6) /* skip the next character */
struct tagq tags; /* stack of open tags */
struct roffthl tbl; /* current table */
struct tag *tblt; /* current open table scope */
struct nthars *syntab; /* character-escapes */
char *base_man; /* base for nmanpage href */
char *pbase_i ncludes; /* base for include href */
char *style; /* style-sheet URI */
char buf [BUFSI Z]; /* see bufcat and friends */
size_t bufl en;
struct tag *nmetaf; /* current open font scope */
enum ht nl f ont netal; /* last used font */
enum htm font netac; /* current font node */
enum html type type; /* output nmedia type */

int of | ag
#def i ne HTM._FRAGVENT (1 <<

s; /* output options */
0) /* don't emt HTM./HEAD/ BODY */

new usr/src/cnd/ mandoc/lib.in

R R R R

4877 \Wed Jul

Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

30 20:55:07 2014
new usr/src/cnmd/ mandoc/lib.in
5051 inport ndocnmi-1.12.3

Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»

* This file and its contents are supplied under the terns of the

Conmmon Devel opment and Distribution License ("CDDL"), version 1.0.
You nmay only use this file in accordance with the ternms of version

A full copy of the text of the CDDL should have acconpanied this
A copy of the CDDL is also available via the Internet at

*

*

* 1.0 of the CDDL.

*

*

* source.

* http://ww.illunps.org/license/ CODL.
*/

/*

* Copyright 2014 Garrett D Anpbre <garrett @anore. or g>
* Copyright 2012 Nexenta Systens, Inc. Al rights reserved.
*

/

Note that we don’t document "legacy" libraries that have noved into

*
*
* |ibc.
*
*

While there will be section 3lib man pages for them they

won’'t be referenced in other man pages.

TBD

*

LI NE(" | i badnt,

LI NE("Ii bbsdmal | oc",

LI NE(" | | bbsnt',
LI NEC"1i be",
LINE(" 1 i bc_db"
LI NE(" | | bcFgadnt

LI NE(" I i bcommputil",
LI NE("Ii bcontract",

LI NE("1i bcpc",
LI NE("Ii bcurses",
LI NE("1i bdat",

LI NE("1i bdevi d",
LI NE("1i bdevi nfo",

LINEC" 1 i bdl pi *,
LINE(" 1 i bdns_sd",
LINE(" | i bel f7,

LI NE("Ii bexacct",
LI NE("I'i bf coe",
LI NE(" i bf styp",
LI NE("1i bgen",

LI NE("Ii bgss",

LI NE(" i bi scsit"
LI NE("Ii bkstat",
LI NE("1i bkvni',

LI NE("1i bl dap",
LI NE("1'i bl grp",

LI NEC" 1§ bnf',
LINEC" | i brrai 1 ",
LINE(" I i bral | oc”
LI NEC" i brd"

LI NE(" 1 i bnp" |

LI NE(" | | bnpapi ",
LINE(" i bns| ",

LI NE("1i bnvpair",
LI NE(" | i bpant,
LI NE(" i bpicl”,

LINE("Ii bpicltree",

l'i badm \\-ladm")
i bbsdmal | oc, -1 bsdmall o
i

"General Adm nistrative Library (
|
I'bbsm \\lbsm")

"BSD Menory Allocation Library (
"Security and Auditing Library (
"Standard C Library (libc, \\-lc)"
"Threads Debuggi ng Library (libc_db, \\-lc_db)")
"Configuration Adminstration Library (libcfgadm \\-lcfg
" Communi cation Protocol Parser Uilities Library (libpco
"Contract Managenent Library (libcontract, \\-Ilcontract)
"CPU Performance Counters Library (libcpc, \\-lcpc)")
"Curses Library (libcurses, \\-lcurses)")
"Direct Access Transport Library (Ilibdat,
"Device I D Library (libdevid, \\-ldevid)")
"Device Information Library (libdevinfo, \\-ldevinfo)")
"Data Link Provider Interface (DLPI) Library (libdlp, \\
"DNS Service Discovery Library (libdns_sd, \\-ldns_sd)")
"ELF Access Library (libelf, \\-lelf)")

"Ext ended Accounting File Access Library (li bexacct, \\ -
"FCoE Port Managenent Library (libfcoe, \\-Ifcoe)")
"File System Type Identification Library (Ilbfstyp, -1
"String Pattern Matching Library (libgen, \\-Igen)"
"Generic Security Services Library (libgss, \\-lgss)")
"i SCSI Managenent Library (libiscsit, \\-liscsit)")
"Kernel Statistics Library (libkstat, \\-lkstat)")
"Kernel VM Library (libkvm \\-lkvm")

"LDAP Library (libldap, \\-Ildap)")

\\-ldat)")

"Local ity Group Library (liblgrp, -1lgrp)")
"Mat hematical Library (libm -Im")
"User Mailbox Library (libnail, -Inail
"Menory Allocation Library (libmalloc, -Imalloc)")
"Message Digest Library (libnd, -1nd)"
i

i
"Mul tiple Precision Library (li)")
"Common Mul ti path Managenent Li brary (11 bpapi ,
"Network Services Library (libnsl, \\-Insl)")
"Name- Val ue Pair Library (Iibnvpair, \\-Invpair)"

"PAM (Pl uggabl e Aut hentication Mdul e) Library (Iibpam
"PICL Library (libpicl, \\-lIpicl)")

"PICL Plug-In Library (libpicltree, \\-Ipicltree)")

-1 MPAPI)

new usr/src/cnd/ mandoc/lib.in

LI NE("I i bpkcs11®,

LI NE(" | i bpool ",
LI NE(" | i bproc”

LI NE("1i bproject"”,
LI NE("1i bresol v,

LI NE(" i brpc",
LI NE("Iibrsni,
LI NE("Ii bsasl ",
LI NE("1i bscf",
LI NE("1i bsec",
LI NE(" i bsecdb”,

LI NE("Ii bsip",
LI NE("1i bsl p",
LI NE("Ii bsocket",

LINE(" | i bstnf",

LI NE("1i bsysevet"

LINE(" | i bt ecl a",

LINE("Iibtnfctl®,

LINE("1i btsol ",
LI NE(" | i buui d",

LI NE("1i bvol mgt ",
LI NE("Ii bxcurses",

LI NE(" 1 i bxnet ",

2
"PKCS#11 Cryptographic Framework Library (libpkecsll, \\-
"Pool Configuration Mnipulation Library (Ilbpool \\-Ip
"Process Control Library (libproc, \\-Iproc)")
"Project Database Access Library (libproject, \\-Iprojec
"Resol ver Library (libresolv, \\-Iresolv \\-Isocket \\-I|

"RPC Service Library (librpcsve, \\-Irpc)")

"Renote Shared Menory Interface Library (librsm \\-lrsm
"Si npl e Aut hentication and Security Library (libsasl, \\
"Service Configuration Facility Library (libscf, \\-Iscf
"File Access Control Library (libsec, \\-Isec)")
"Security Attributes Database Library (libsecdb, \\-Isec
"Session Initiation Protocol Library (libsip, \\-Isip)")
"Service Location Protocol Library (libslp, \\-Islp)")
"Sockets Library (libsocket, \\-Isocket)")

"SCSI Target Mdde Franmework Library (libstnf, \\-Istnf)"
"System Event Inteface Library (libsysevent, \\-Isyseven
"Interactive Conmand Line Input Library (libtecla, \\-It
"TNF Probe Control Library (libtnfctl, \\-Itnfctl)")

"Trusted Extensions Library (libtsol, \\-Itsol)")
"UUID Library (libuuid, \\-luuid)")

"Vol ume Managenent Library (libvolnmgt, \\-lvolngt)")
"X/ Open Curses Library (libxcurses, \\-Ixcurses)")

"X/ Open Networking Library (libxnet, \\-Ixnet)")

new usr/ src/ cnd/ mandoc/ | i bman. h 1

R R R R

3112 Wed Jul 30 20:55:07 2014
new usr/ src/ cnd/ mandoc/ | i bman. h
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $Id: libman.h,v 1.56 2012/11/17 00: 26: 33 schwarze Exp $ */

1/* $Id: libman.h,v 1.55 2011/11/07 01:24: 40 schwarze Exp $ */

2 /*

3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>

4 *

5 * Permission to use, copy, nodify, and distribute this software for any

6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this perm ssion notice appear in all copies.

8 *

9 * THE SOFTWARE IS PROVIDED "AS |'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
10 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

11 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
12 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PRCFI TS, WHETHER I N AN
14 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI OUS ACTI ON, ARI SI NG OQUT OF
15 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI S SOFTWARE.

16 */

17 #ifndef LIBVAN_H
18 #define LI BVAN_H

20 enum man_next {

21 MAN_NEXT_SI BLI NG = 0,
22 MAN_NEXT_CHI LD

23 };

__unchanged_portion_onitted_

42 #define MACRO PROT_ARGS
42 #define MACRO PROT_ARGS

struct man *man, \
struct man *m \

43 enum mant tok, \
44 int line, \

45 int ppos, \

46 int *pos, \

a7 char *buf

49 struct nman_macro {

50 int (*f p) (MACRO_PROT_ARGS) ;

51 int fl ags;

52 #define MAN_SCOPED (1 << 0)

53 #define MAN EXPLICIT (1 << 1) [* See bl k_inp(). */

54 #define MAN_FSCOPED (1 << 2) /* See bl k_inp(). */

55 #defi ne MAN_NSCOPED (1 << 3) /* See in_line_eoln(). */
56 #define MAN_NOCLOSE (1 << 4) /* See bl k_exp(). */

57 ;#defi ne MAN_BSCOPE (1 << 5) /* Break BLINE scope. */
58 };

60 extern const struct man_nacro *const nman_macros;

62 _ BEG N_DECLS

64 #define man_pnmsg(man, |, p, t) \

65 mandoc_nsg((t), (man)->parse, (l), (p), NULL)

66 #define man_nnmsg(man, n, t) \

67 mandoc_msg((t), (man)->parse, (n)->line, (n)->pos, NULL)
64 #define man_pnmsg(m |, p, t) \

65 mandoc_nsg((t), (m->parse, (1), (p), NULL)

66 #define man_nmsg(m n, t) \

67 mandoc_msg((t), (m->parse, (n)->line, (n)->pos, NULL)
68 int man_word_al l oc(struct man *, int, int, const char *);
69 int man_bl ock_al | oc(struct man *, int, int, enum nant);

new usr/ src/ cnd/ mandoc/ | i bman. h

i nt man_head_al | oc(struct man *,
i nt man_tail _alloc(struct man *,
i nt man_body_al | oc(struct nman *,
int man_el em al | oc(struct nman *,
voi d man_node_del et e(struct nman *
voi d man_hash_i nit(void);
enum mant man_hash_find(const char *);
i nt man_macroend(struct man *);
i nt man_val i d_post (struct man *)
i nt man_val i d_pre(struct man *,
int man_unscope(struct man *,
const struct man_node
__END_DECLS
#endi f /*1 LI BMAN_H*/

int, int, enum mant)
int, int, enum mant)
int, int, enum mant)
int, int, enum nant)

, struct man_node *);

struct man_node *);

*, enum nmandocerr);

new usr/ src/ cnd/ mandoc/ | i bmandoc. h 1

R R R R

3355 Wed Jul 30 20:55:07 2014
new usr/ src/ cnd/ mandoc/ | i bmandoc. h
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $Id: Iibmandoc. h,v 1.35 2013/12/15 21: 23: 52 schwarze Exp $ */

1/* $Id: libmandoc. h,v 1.29 2011/12/02 01: 37: 14 schwarze Exp $ */

2 /*

3 * Copyright (c) 2009, 2010, 2011, 2012 Kristaps Dzonsons <kristaps@sd.|v>
4 * Copyright (c) 2013 Ingo Schwarze <schwarze@penbsd. or g>

3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>

5 *

6 * Permssion to use, copy, nodify, and distribute this software for any

7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this perm ssion notice appear in all copies.

9 *

10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES CF

12 * MERCHANTABI LI TY AND FI TNESS. | N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN

15 * ACTION OF CONTRACT, NEGLI GENCE OR OTHER TORTI OQUS ACTI ON, ARI SING OUT OF

16 * OR IN CONNECTION WTH THE USE OR PERFORVANCE OF THI S SOFTWARE.
17 */

18 #ifndef LI BMANDOC H

19 #define LI BMANDOC H

21 enum rofferr {

22 ROFF_CONT, /* continue processing line */

23 ROFF_RERUN, /* re-run roff interpreter with of fset */
24 ROFF_APPEND, /* re-run nain parser, appending next line */
25 ROFF_REPARSE, /* re-run main parser on the result */
26 ROFF_SO, /* include another file */

27 ROFF_IGN, /* ignore current line */

28 ROFF_TBL, /* a table row was successfully parsed */
29 ROFF_EQN, /* an equation was successful ly parsed */
30 ROFF_ERR /* badness: puke and stop */

31}

32 enum regs {

33 REG nS = 0, /* nS register */

34 REG_ MAX

35 };

33 _ BEG N_DECLS

35 struct roff;
36 struct ndoc;
37 struct man;

39 void mandoc_nsg(enum mandocerr, struct nparse *,

40 int, int, const char *);

41 void mandoc_vnmsg(enum mandocerr, struct nparse *,

42 int, int, const char *, ...);

43 char *mandoc_get arg(struct nparse *, char **, int, int *);
44 char *mandoc_nor ndat e(struct nparse *, char *, int, int);
45 int mandoc_eos(const char *, size_t, int);

50 int mandoc_get control (const char *, int *);

46 int mandoc_strntoi (const char *, size_t, int);

47 const char *mandoc_a2nsec(const char*);

49 void mdoc_free(struct ndoc *);

50 struct ndoc *nmdoc_al | oc(struct roff *, struct nparse *, char *);

55 struct ndoc *nmdoc_al | oc(struct roff *, struct nparse *);

new usr/ src/ cnd/ mandoc/ | i bmandoc. h

voi d ndoc_reset (struct ndoc *);
int mdoc_par sel n(struct ndoc *, int, char *, int);
int ndoc_endpar se(struct ndoc *);
i nt ndoc_addspan(struct ndoc *, const struct tbl_span *);
int ndoc_addeqn(struct ndoc *, const struct eqn *);
voi d man_free(struct man *);
struct man *man_al | oc(struct roff *, struct nparse *);
voi d man_reset (struct man *);
int man_par sel n(struct man *, int, char *, int);
int man_endpar se(struct man *);
int man_addspan(struct man *, const struct thl_span *);
i nt man_addeqn(struct man *, const struct eqgn *);
voi d roff_free(struct roff *);
struct roff *rof f _al |l oc(enum nparset, struct nparse *);
struct roff *roff_alloc(struct nparse *)
voi d roff_reset(struct roff *);
enumrofferr rof f_parsel n(struct roff *, int,

char **, size_t *, int, int *);
voi d rof f _endparse(struct roff *);
voi d roff_setreg(struct roff *, const char *, int, char sign);
i nt roff_getreg(const struct roff *, const char *);
int rof f_regisset(const struct roff *, enumregs);
unsi gned i nt rof f _regget (const struct roff *, enumregs);
voi d rof f _regunset (struct roff *, enumregs);
char *rof f _strdup(const struct roff *, const char *);
int rof f _getcontrol (const struct roff *,

const char *, int *);
#if 0
char rof f _eqndel i m(const struct roff *);
voi d rof f _openeqgn(struct roff *, const char *,

int, int, const char *);
int rof f _cl oseegn(struct roff *);
#endi f
const struct thl_span *rof f _span(const struct roff *);
const struct egn *rof f_eqn(const struct roff *);
__END_DECLS
#endi f /*! LI BVANDOC_H*/

new usr/ src/ cnd/ mandoc/ | i bndoc. h

R R R R

5162 Wed Jul 30 20:55:07 2014
new usr/ src/ cnd/ mandoc/ | i bndoc. h
5051 inport ndocnmi-1.12.3

Revi ewed by: Yuri

Pankov <yuri.pankov@exenta. conm>

Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

/| *
/*
/*

O©CONOUIDWNREE

® Ok Sk ok bk Ok % Ok b

Per m ssion to use,

MERCHANTABI LI TY AND FI TNESS.
ANY SPECI AL, DI RECT,

$Id: librdoc. h,v 1.82 2013/10/21 23:47:58 schwarze Exp $ */
$Id: libndoc. h,v 1.78 2011/12/02 01: 37: 14 schwarze Exp $ */

Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
Copyright (c) 2013 Ingo Schwarze <schwarze@penbsd. or g>

copy,

16 * ORI N CONNECTION W TH THE USE OR PERFORVMANCE OF THI S SOFTWARE.

17 */

18 #i fndef LI BVMDOC_H
19 #define LI BMDOC_H

21 enum

24 };

26 struct

30 #defi
31 #defi
32 #defi
33 #defi
34 #defi
35 #defi
36 #defi
37 #defi
38 #defi
39 #defi

49 #defi
45 #defi

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne

56 struct

ndoc_next {
MDOC_NEXT_SI BLING = 0,
MDOC_NEXT_CHI LD

nmodi fy, and distribute this software for
purpose with or without fee is hereby granted, provided that the above

copyright notice and this perm ssion notice appear in all copies.

any

THE SOFTWARE |'S PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
W TH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

I'N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
I NDI RECT, OR CONSEQUENTI AL DAMAGES CR ANY DAMAGES
WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
ACTI ON OF CONTRACT, NEGL.I GENCE OR OTHER TORTI QUS ACTI ON, ARI SING OQUT OF

ndoc {

struct nparse *parse; /* parse pointer */

char *defos; /* default argunent for .GCs */

int flags; /* parse flags */

MDOC_HALT (1 << 0) /* error in parse: halt */

MDOC_LI TERAL (1 << 1) /*in aliteral scope */
MDOC_PBODY (1 << 2) /* in the docunment body */
MDOC_NEW.I NE (1 << 3) /* first macro/text in a line */
MDOC_PHRASELIT (1 << 4) /* literal within a partila phrase */
MDOC_PPHRASE (1 << 5) /* within a partial phrase */
MDOC_FREECOL (1 << 6) /* ‘It invocation should close */
MDOC_SYNOPSI S (1 << 7) |I* SYNOPSIS-style formatting */
MDOC_KEEP (1 <<8) /* in a wrd keep */

MDOC_SMOFF 1 << 9) /* spacing is off */

enum ndoc_next next; /* where to put the next node */

struct ndoc_node *|ast;
struct ndoc_node *first;

/* the |l ast node parsed */
/* the first node parsed */

struct ndoc_neta neta; /* docunent neta-data */
enum ndoc_sec | ast naned;

enum ndoc_sec | ast sec;

struct roff *roff;

MACRO PROT_ARGS struct ndoc *ndoc, \
MACRO PROT_ARGS struct ndoc *m \
enum ndoct tok, \
int line, \
int ppos, \
int *pos, \
char *buf

mdoc_macro {
int (*f p) (MACRO_PROT_ARGS) ;

new usr/ src/ cnd/ mandoc/ | i bndoc. h

142

144

146

int

#defi ne MDOC_CALLABLE (
#def i ne MDOC_PARSED (
#define MDOC_EXPLICI T (
#defi ne MDOC_PROLOGUE (
#def i ne MDOC_| GNDELI M (

(

#define MDOC_JO N
/* Reserved words in arguments treated as text. */

extern
__BEG N_DECLS
#def i ne
#def i ne
#def i ne
#def i ne

voi d

i nt

voi d

enum ndoct
const char
const char
const char
const char
const char
int

int

enum mar gverr

voi d
enum nargserr

enum nargserr

int
enum ndel i m

END_DECLS

* ok kb ok

<< 5

_hnchanged_port ion_omtted_

const struct ndoc_nmacro *const ndoc_macr os;

nmdoc_pnsg(ndoc, |, p, t) \
mandoc_nsg((t), (oc) >parse (1), (p), NULL)
mdoc_nmsg(ndoc, n, t)
mandoc_msg((t), (rrdoc) >parse, (n)->line, (n)->pos, NULL)
mdoc_pmsg(m 1, p, t) \
mandoc_nsg((t), (m->parse, (1), (p), NULL)
mdoc_nmsg(m n, t) \
mandoc_meg((t), (m->parse, (n)->line, (n)->pos, NULL)
nmdoc rracro(l\/ACRO PROT_ARGS) ;
mdoc_word_al l oc(struct ndoc *,

int, int, const char *);
ndoc_word_append(struct mdoc *, const char *);
nmdoc_el em al | oc(struct ndoc *, int, int,

enum ndoct, struct ndoc_arg *)
nmdoc_bl ock aIIoc(struct ndoc *, int, int,

enum ndoct, struct ndoc_arg *);
ndoc_head alloc(struct nmdoc *, int, int, enum ndoct);
mdoc_tail _all oc(struct ndoc *, int, int, enum ndoct);
mdoc_body_al | oc(struct ndoc *, int, int, enum ndoct);
mdoc_endbody_al | oc(struct ndoc *, int, int, enum ndoct,

struct ndoc_node *, enum ndoc endbody)
ndoc_endbody_al | oc(struct ndoc *m int |ine,
enum ndoct tok, struct mioc_node *body
enum r’rdoc_endbody end) ;
nmdoc_node_del ete(struct ndoc *, struct ndoc_node *);
nmdoc_node_rel i nk(struct ndoc *, struct ndoc_node *);
nmdoc_hash_i ni t (voi d);
mdoc_hash_find(const char *);
mdoc_a2att(const char *);
nmdoc_a2l i b(const char *);
nmdoc_a2st (const char *);
mdoc_a2ar ch(const char *);
mdoc_a2vol (const char *);
nmdoc_val i d_pre(struct ndoc *, struct ndoc_node *);
nmdoc_val i d_post (struct ndoc *);
mdoc_argv(struct ndoc *, int, enum ndoct,
struct nmdoc_arg **, int *, char *);
nmdoc_argv_free(struct ndoc_arg *);
mdoc_ar gs(struct ndoc *, int,
int *, char *, enum ndoct,
mdoc_zargs(struct ndoc *, int,
int *, char *, char **);
nmdoc_macr oend(struct ndoc *);
nmdoc_i sdel i m(const char *);

int pos,

char **);

#endif /*!LI BVDOC_H*/

new

* ok kK

new
5051
Revi

Appr

* %k k

1

[
-
*

O©CO~NOUTDAWN

usr/src/ cnd/ mandoc/ libroff.h

B R

2647 Wed Jul 30 20:55:07 2014

usr/src/ cmd/ mandoc/ li broff. h

i nport ndocm -1.12.3

ewed by: Yuri Pankov <yuri.pankov@exenta.con»

oved by: TBD

LR EEEEEEE SRS S S SRS E SRR E SRR E R ERERREEREEREREEEEEESEESESE]

/* $Id: libroff.h,v 1.28 2013/05/31 21:37:17 schwarze Exp $ */
$Id: libroff.h,v 1.27 2011/07/25 15:37:00 kristaps Exp $ */

Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>

~

B T

Perm ssion to use, copy, nodify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permi ssion notice appear in all copies.

W TH REGARD TO THI' S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARl SI NG OUT OF
* OR I N CONNECTI ON W TH THE USE OR PERFORVANCE OF THI S SOFTWARE.

*

/
#i f ndef LI BROFF_H
#def i ne LI BROFF_H

__BEGI N_DECLS

enum tbl _part {
TBL_PART_OPTS, /* in options (first line) */
TBL_PART_LAYQUT, /* describing | ayout */
TBL_PART_DATA, /* creating data rows */

TBL_PART_CDATA /* continue previous row */
I
struct thl_node {
struct nparse *parse; /* parse point */
int pos; /* invocation colum */
int line; /* invocation line */
enum t bl _part part;
struct tbl _opts opts;
struct thl opts;

struct tbl _row *first_row
struct tbl _row *last_row,
struct tbl_span *first_span;
struct tbl_span *current_span;
struct tbl_span *Ilast_span;
struct tbl_head *first_head;
struct tbl_head *Iast_head;
struct tbl_node *next;

b
__unchanged_portion_onitted_

THE SOFTWARE | S PROVI DED "AS |'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES

new usr/ src/ cnd/ mandoc/ mai n. ¢ 1

R R R R

9264 Wed Jul 30 20:55:07 2014
new usr/ src/ cnd/ mandoc/ mai n. ¢
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: main.c,v 1.167 2012/11/19 17:22:26 schwarze Exp $ */

1/* $Id: nmain.c,v 1.165 2011/10/06 22:29:12 kristaps Exp $ */

2 /*

3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
4 * Copyright (c) 2010, 2011, 2012 Ingo Schwarze <schwarze@penbsd. org>

4 * Copyright (c) 2010, 2011 Ingo Schwarze <schwarze@penbsd. org>

5 *

6 * Permssion to use, copy, nodify, and distribute this software for any

7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this perm ssion notice appear in all copies.

9 *

10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES CF

12 * MERCHANTABI LI TY AND FI TNESS. | N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN

15 * ACTION OF CONTRACT, NEGLI GENCE OR OTHER TORTI OQUS ACTI ON, ARI SING OUT OF

16 * OR I N CONNECTION W TH THE USE OR PERFORVANCE OF THI S SOFTWARE.
17 =/

18 #ifdef HAVE_CONFI G H

19 #include "config.h"

20 #endif

22 #include <assert. h>
23 #include <stdio. h>
24 #include <stdint.h>
25 #include <stdlib.h>
26 #include <string. h>
27 #include <unistd. h>

29 #incl ude "mandoc. h"
30 #include "nain.h"
31 #include "ndoc. h"
32 #include "man. h"

34 #if !defined(__GNUC_) || (__GNUC__ < 2)

35 # if ldefined(lint)

36 # define __attribute_ (x)

37 # endif

38 #endif /* !defined(__GNUC__) || (__GNUC__ < 2) */

40 typedef void
41 typedef void
42 typedef void

(*out _ndoc) (void *, const struct ndoc *);
(*out_man) (void *, const struct man *);
(*out_free)(void *);

44 enum outt {

45 QUTT_ASCI| =0, /* -Tascii */
46 QUTT_LOCALE, /* -Tlocale */
47 QUTT_UTFS8, [* -Tutf8 */
48 QUTT_TREE, /* -Ttree */
49 QUTT_MAN, /[* -Trman */
50 OQUTT_HTM., [* -Thtrd */
51 QUTT_XHTM., [* -Txhtml */
52 QUTT_LI NT, [* -Tlint */
53 QUTT_PS, [* -Tps */
54 QUTT_PDF [* -Tpdf */
55

b
____unchanged_portion_onitted_

new usr/ src/ cnd/ mandoc/ mai n. ¢

69 static int nopti ons(enum nparset *, char *);
70 static void mrsg(enum mandocerr, enum mandocl evel ,
71 const char *, int, int, const char *);
72 static void parse(struct curparse *, int,
73 const char *, enum mandocl evel *);
74 static int toptions(struct curparse *, char *);
75 static void usage(void) __attribute__((noreturn));
76 static void version(void) __attribute__((noreturn));
77 static int wopt i ons(struct curparse *, char *);
79 static const char *prognane;
81 int
82 main(int argc, char *argv[])
83 {
84 int c;
85 struct curparse curp;
86 enum npar set type;
87 enum mandocl evel rc;
88 char *def os;
90 progname = strrchr(argv[0], '/');
91 1 f (progname == NULL)
92 prognanme = argv[O0];
93 el se
94 ++pr ognane;
96 menset (&curp, 0, sizeof(struct curparse));
98 type = MPARSE_AUTG
99 curp.outtype = OQUTT_ASCI | ;
100 curp.w evel = MANDOCLEVEL_FATAL;
101 def os = NULL;
103 /* LINTED */
104 while (-1 !'= (c = getopt(argc, argv, "I:mOT:VW")))
102 while (-1 !'= (c = getopt(argc, argv, "mQOT:VW")))
105 switch (c) {
106 case ('1"):
107 if (strncnp(optarg, "os=", 3)) {
108 fprintf(stderr, "-1%: Bad argunment\n",
109 optarg);
110 return((int)MANDOCLEVEL_BADARQG ;
111 }
112 if (defos) {
113 fprintf(stderr, "-1%: Duplicate argunent\n",
114 optarg);
115 return((int)MANDOCLEVEL_BADARQG ;
116
117 defos = mandoc_strdup(optarg + 3);
118 br eak;
119 case ('m):
120 if (! noptions(&ype, optarg))
121 return((int) MANDOCLEVEL_BADARG) ;
122 br eak;
123 case g):
124 (void)strlcat(curp.outopts, optarg, BUFSIZ);
125 (void)strlcat(curp.outopts, ",", BUFSIZ);
126 br eak;
127 case ('T):
128 if (! toptions(&urp, optarg))
129 return((int) MANDOCLEVEL_BADARQG) ;
130 br eak;
131 case ("W):
132 if (! woptions(&urp, optarg))
133 return((int) MANDOCLEVEL_BADARQG) ;

new usr/ src/ cnd/ mandoc/ mai n. ¢

134
135
136
137
138
139
140
141

143
128

145
146
147
148
149

151
152

154

156
157

159
160
161
162
163
164

166
167
168
169
170

172

173 }

br eak;
case ('V):

version();

/* NOTREACHED */
defaul t:

usage();

/* NOTREACHED */

curp.np = nparse_all oc(type, curp.w evel, nmmsg, &curp, defos);
curp.nmp = nparse_al l oc(type, curp.w evel, msg, &curp);

/*
* Conditionally start up the |ookaside buffer before parsing.
*
/
if (OQUTT_MAN == curp.outtype)
npar se_keep(curp. np);

argc -= optind;
argv += optind;

rc = MANDOCLEVEL_CX;

if (NULL == *argv)
parse(&curp, STDI N_FILENO "<stdin>", &c);

while (*argv) {
parse(&curp, -1, *argv, &c);
1f (MANDOCLEVEL_OK !'= rc && curp.wstop)
br eak;
++ar gv;

}

if (curp.outfree)
(*curp.outfree)(curp.outdata);
if (curp.np)
nmpar se_free(curp.n);
free(defos);

return((int)rc);

__unchanged_portion_omtted_

183 static void
184 usage(voi d)
185 {

187
188
189
173
190
191
192
193
194
177
178
195

197

198 }

fprintf(stderr,

"[file...]\n",
prognane) ;

exi t ((i nt) MANDOCLEVEL_BADARG) ;

__unchanged_portion_omtted_

new usr/ src/ cnd/ mandoc/ man. ¢

R R R R

14223 Wed Jul 30 20:55:07 2014
new usr/ src/ cnd/ mandoc/ man. ¢
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: man.c,v 1.121 2013/11/10 22:54:40 schwarze Exp $ */
1/* $Id: man.c,v 1.115 2012/01/03 15:16: 24 kristaps Exp $ */
2 /*
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
4 *
5 * Pernission to use, copy, nodify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this perm ssion notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS |'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
10 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF
11 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
12 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PRCFI TS, WHETHER I N AN
14 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI OUS ACTI ON, ARI SI NG OQUT OF
15 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI S SOFTWARE.
16 */
17 #i fdef HAVE_CONFI G H
18 #include "config. h"
19 #endif
21 #include <sys/types. h>
23 #include <assert. h>
24 #include <stdarg. h>
25 #include <stdlib.h>
26 #include <stdio. h>
27 #include <string. h>
29 #include "man. h"
30 #include "mandoc. h"
31 #include "libnman. h"
32 #include "libmandoc. h"
34 const char *const __man_nacronanmes][MAN_MAX] = {
35 "br", "TH', "SH', " SS*,
36 "TP", "LP", "PP", P,
37 "1 P, "HP", "SM', "SB",
38 "BI", "I B", "BR", "RB",
39 "R, B, "t "IR',
40 "R, na sp , "nf",
41 "fit, , RS, "DT",
42 "uc', " PD' "AT", "in",
43 "frr, "OoP", "EX", "EE",
44 "UR', " UE"
43 "ft" " OP"
45 };
47 const char * const *nan_macronames = __nan_macr onames;
49 static struct man_node *man_node_al |l oc(struct nman *, int, int,
50 enum man_type, enum nmant);
51 static int man_node_append(struct man *,
52 struct man_node *);
53 static void man_node_free(struct man_node *);
54 static void man_node_unl i nk(struct man *,
55 struct man_node *);
56 static int man_ptext (struct man *, int, char *, int);
57 static int man_pnacro(struct man *, int, char *, int);

new usr/ src/ cnd/ mandoc/ man. ¢

58 static
59 static
60 static

voi d man_freel(struct man *);
voi d man_al | oc1(struct nman *)
int man_descope(struct man *, int, int);

63 const struct man_node *
64 man_node(const struct nman *nan)

63 man_node(const struct man *m
{

assert(! (MAN_HALT & nan->flags));
return(man->first);

assert(! (MAN_ HALT&m>fIags))
return(m>first);

72 const struct man_neta *
73 man_neta(const struct nman *nman)
72 man_neta(const struct man *m

assert(! (MAN_HALT & nan->flags));
retur n(&rran >net a) ;

assert(! (MAN_ HALT & m >fl ags));
return(&m>net a);

__unchanged_portion_onitted_

115 int

116 man_endpar se(struct man *man)
115 man_endparse(struct man *m

117 {

119
120
118
119
121
122
121
123
124 }

127 int

assert(! (MAN_HALT & nan->flags));
if (man_nacroend(man))
assert(! (MAN_HALT & m>fl ags));
if (man_macroend(m)
return(l);
man->flags | = MAN_HALT;
m>flags | = MAN_HALT;
return(0);

128 man_parsel n(struct man *man, int In, char *buf, int offs)
127 man_parsel n(struct man *m i nt I'n, char *buf, i nt of fs)

129 {

131
130

133
132

135
136
137
134
135
136
138 }

man- >f |l ags | = MAN_NEWLI NE;
m >flags | = MAN_NEWLI NE;

assert(! (MAN_HALT & man->flags));

assert(! (MAN_HALT & m>flags));

return (roff_getcontrol (man->roff, buf, &offs) ?

man_pnmacro(man, |n, buf, offs)
man_pt ext (man, | n, buf, offs))

return (mandoc_getcontrol (buf, &offs) ?
man_pmacro(m I n, buf, offs)
man_ptext(m In, buf, offs));

__unchanged_portion_onitted_

new usr/ src/ cnd/ mandoc/ man. ¢

160 static void

161 man_al l oc1(struct man *man)
160 man_al | oc1l(struct man *m
162 {

164
165
166
167
168
169
170
163
164
165
166
167
168
169

171 }
____unchanged_portion_onitted_

menset (&man- >neta, 0, sizeof(struct man_neta));
man->fl ags = 0;

man- >l ast = mandoc_cal | oc(1, sizeof(struct man_node));
man->first = man->| ast;

man- >| ast - >t ype = MAN_ROOT;

man- >| ast - >t ok = MAN_MAX;

man->next = MAN_NEXT_CHI LD;

menset (&m >nmeta, 0, sizeof(struct man_neta));

m >flags = 0;

m >l ast = mandoc_cal | oc(1, sizeof (struct man_node));
m>first = m>last;

m >| ast - >type = MAN_ROOT;

m >| ast - >t ok = MAN_MAX;

m >next = MAN_NEXT_CHI LD;

237 static struct man_node *
238 man_node_al | oc(struct man *man, int line, int pos,
237 man_node_al | oc(struct man *m int line, int pos,

239
240
241

243
244
245
246
247

249
248
250
251
250
252
253

256
257
256

259

261
262
260
261
263
264
263
265
266

269
270
269

{

}

int

enum man_t ype type, enum mant tok)
struct man_node *p;

p = mandoc_cal l oc(1, sizeof(struct nan_node));
p->line = line;

p- >pos = pos;

p->type = type,;

p->tok = tok;

if (MAN_NEWLINE & man->fl ags)
if (MAN_NEWLINE & m>fl ags)

p->flags | = MAN_LI NE;
man- >f | ags & ~MAN_NEWLI NE;
m >f| ags & ~MAN_NEW.I NE;
return(p);

man_el em al l oc(struct man *man, int line, int pos, enum nant tok)
man_el em alloc(struct man *m int line, int pos, enum nant tok)
258 {

}

int

struct man_node *p;

p = man_node_al l oc(man, |ine, pos, MAN_ELEM tok);
i1f (! man_node_append(rman, p))
p = man_node_al loc(m line, pos, MAN_ELEM tok);
1f (! man_node_append(m p))
return(0);
man- >next = MAN_NEXT_CHI LD;
m >next = MAN_NEXT_CHI LD;
return(1);

man_tail_alloc(struct man *man, int line, int pos, enum nant tok)
man_tail _alloc(struct man *m int line, int pos, enum nmant tok)

new usr/ src/ cnd/ mandoc/ man. ¢

MAN_TAI L, tok);

271 {

272 struct man_node *p;

274 p = man_node_al | oc(man, |ine, pos, MAN TAIL, tok);
275 i1f (! man_node_append(rman, p))
273 p = man_node_al l oc(m |ine, pos,
274 i1f (! man_node_append(m p))
276 return(0);

277 man- >next = MAN_NEXT_CHI LD;

276 m >next = MAN_NEXT_CHI LD;

278 return(1l);

279 }

282 int

283 man_head_al | oc(struct man *man, int line,
282 man_head_al |l oc(struct man *m int line, i

int pos, enum mant tok)
nt pos, enum mant tok)

284 {

285 struct man_node *p;

287 p = man_node_al | oc(man, |ine, pos, MAN HEAD, tok);
288 1f (! man_node_append(man, p))

286 p = man_node_all oc(m |ine, pos, MAN_HEAD, tok);
287 i1f (! man_node_append(m p))

289 return(0);

290 man- >next = MAN_NEXT_CHI LD;

289 m >next = MAN_NEXT_CHI LD;

291 return(1);

292 }

295 int

296 man_body_al | oc(struct man *man, int line,
295 man_body_al |l oc(struct man *m int line, i

int pos, enum nant tok)
nt pos, enum mant tok)

297 {

298 struct man_node *p;

300 p = man_node_al | oc(man, |ine, pos, MAN BODY, tok);
301 1f (! man_node_append(man, p))

299 p = man_node_all oc(m |ine, pos, MAN_BODY, tok);
300 if (! man_node_append(m p))

302 return(0);

303 man- >next = MAN_NEXT_CHI LD;

302 m >next = MAN _NEXT_CHI LD;

304 return(l);

305 }

308 int

309 man_bl ock_al l oc(struct man *man, int line, int pos, enum nant tok)

308 man_bl ock_al l oc(struct man *m int line,

int pos, enum nant tok)

310 {

311 struct man_node *p;

313 p = man_node_al l oc(man, |ine, pos, MAN BLOCK, tok);
314 1f (! man_node_append(man, p))

312 p = man_node_alloc(m |ine, pos, MAN BLOCK, tok);
313 i1f (! man_node_append(m p))

315 return(0);

316 man- >next = MAN_NEXT_CHI LD;

315 m >next = MAN_NEXT_CHI LD;

317 return(1);

318 }

320 int

321 man_word_al l oc(struct man *man, int line,

int pos, const char *word)

new usr/ src/ cnd/ mandoc/ man. ¢

320 man_word_al l oc(struct man *m int line, int pos, const char *word)
322 {
323 struct man_node *n;
325 n = man_node_al | oc(man, |ine, pos, MAN TEXT, MAN_MAX);
326 n->string = rof f_strdup(man->roff, word);
324 n = man_node_al loc(m line, pos, MAN_TEXT, MAN_MNAX);
325 n->string = rof f_strdup(m>roff, word);
328 if (! man_node_append(man, n))
327 if (! man_node_append(m n))
329 return(0);
331 man- >next = MAN_NEXT_SI BLI NG
330 m >next = MAN_NEXT_SI BLI NG
332 return(l);
333 }
__unchanged_portion_onitted_
350 void
351 man_node_del ete(struct nman *nan, struct man_node *p)
350 man_node_del ete(struct nman *m struct nman_node *p)
352 {
354 whi l e (p->child)
355 man_node_del et e(man, p->child);
354 man_node_del ete(m p->child);
357 man_node_unl i nk(man, p);
356 man_node_unl i nk(m p);
358 man_node_free(p);
359 }
361 int
362 man_addeqgn(struct man *man, const struct eqn *ep)
361 nman_addegn(struct man *m const struct eqn *ep)
363 {
364 struct man_node *n;
366 assert(! (MAN_HALT & nan->fl ags));
365 assert(! (MAN_HALT & m>flags));
368 n = man_node_al | oc(man, ep->ln, ep->pos, MAN_EQN, MAN_MAX);
367 n = man_node_al l oc(m ep->In, ep->pos, MAN_EQN, MAN_MAX);
369 n->eqn = ep;
371 if (! man_node_append(man, n))
370 if (! man_node_append(m n))
372 return(0);
374 man- >next = MAN_NEXT_SI BLI NG
375 return(man_descope(man, ep->ln, ep->pos));
373 m >next = MAN_NEXT_SI BLI NG,
374 return(nman_descope(m ep->ln, ep->pos));
376 }
378 int
379 man_addspan(struct man *nman, const struct tbl_span *sp)
378 man_addspan(struct man *m const struct tbl_span *sp)
380 {
381 struct man_node *n;
383 assert(! (MAN_HALT & nan->flags));
382 assert(! (MAN_HALT & m>flags));

new usr/ src/ cnd/ mandoc/ man. ¢

385
384
386

388
387
389

391
392
390
391
393

}

man_node_al | oc(man, sp->line, 0, MAN_TBL, MAN_MAX);
man_node_al l oc(m sp->line, 0, MAN_TBL, MAN_MAX);
->span = sp;

n
n
n

f (! man_node_append(man, n))
f (! man_node_append(m n))
return(0);

man- >next = MAN_NEXT_SI BLI NG
return(man_descope(man, sp->line, 0));
m >next = MAN_NEXT_SI BLI NG,
return(man_descope(m sp->line, 0));

395 static int

396 man_descope(struct man *man, int line, int offs)
395 man_descope(struct man *m int line, int offs)
397 {

398
399
400
401
402

404
405
406
403
404
405
407
408

410
409
411
412
411

414
413
415
416
415
417

}

/
Co-ordi nate what happens with having a next-line scope open:
first close out the el ement scope (if applicable), then close
out the bl ock scope (also if applicable).

/

* ok ok ok

if (MAN_ELINE & nan->flags) {
man->f | ags &= ~MAN_ELI NE;
if (! man_unscope(man, man->| ast->parent, MANDOCERR MAX))
if (MAN_ELINE & m >flags)
m >fl ags & ~MAN_ELI NE;
if (! man_unscope(m m >l ast->parent, MANDOCERR MAX))
return(0);

f (! (MAN_BLINE & man->fl ags))

f (! (MAN_BLINE & m>flags))
return(1);

man- >f | ags & ~MAN_BLI NE;

m >f| ags & ~MAN_BLI NE;

if (! man_unscope(nman, man->l ast->parent, MANDOCERR MAX))

if (! man_unscope(m m >l ast->parent, MANDOCERR MAX))
return(0);

return(man_body_al | oc(man, line, offs, nman->last->tok));

return(man_body_all oc(m line, offs, m>last->tok));

419 static int
420 man_ptext(struct man *man, int line, char *buf, int offs)

421
422

424

426
427
425
426
428
429
428
430

431
432

419 man_ptext(struct man *m int line, char *buf, int offs)
{

int i;
/* Literal free-formtext whitespace is preserved. */

if (MAN_LITERAL & man->fl ags)
if (! man_word_alloc(man, line, offs, buf + offs))
if (MAN_LITERAL & m >fl ags)
if (! man_word_alloc(m line, offs, buf + offs))
return(0);
return(man_descope(man, line, offs));
return(man_descope(m line, offs));

}
/* Punp blank lines directly into the backend. */

for (i = offs; * ' == buf[i]; i++)

new usr/ src/ cnd/ mandoc/ man. ¢

433 /* Skip | eadi ng whitespace. */ ;

435 /*

436 * Blank lines are ignored right after headings

437 * but add a single vertical space el sewhere.

438 */

440 if ("\0" == buf[i]) {

441 /* Allocate a blank entry. */

442 if (MAN_SH != man->| ast->tok &&

443 MAN_SS ! = man- >l ast - >t ok) {

444 i f ! man_elemalloc(man, line, offs, MAN sp))
438 if (! man_word_allToc(m line, offs, ""

445 return(0);

446 man->next = MAN_NEXT_SI BLI NG

440 return(man_descope(m line, offs));

447

448 return(l);

449 }

451 /*

452 * Warn if the last un-escaped character is whitespace. Then
453 * strip away the renmnining spaces (tabs stay!).

454 */

456 i = (int)strlen(buf);

457 assert(i);

459 if (' ==buf[i - 1] || "\t’ == buf[i - 1]) {

460 if (i >18&8%°\\’ !=bf[- 2])

461 man_pnsg(man, line, i - 1, MANDOCERR_EOLNSPACE) ;
453 man_pnsg(m line, i - 1, MANDOCERR_EOLNSPACE);
463 for (--i; i && ' ' == buf[i]; i--)

464 /* Spin back to non-space. */ ;

466 /* Junp ahead of escaped whi t espace. */

467 i +="\\" == buf[i] 1;

469 buf[i] = "\0";

470 }

472 if (! man_word_alloc(man, line, offs, buf + offs))

464 if (! man_word_alloc(m line, offs, buf + offs))

473 return(0);

475 I*

476 * End-of -sentence check. |If the last character is an unescaped
477 * ECS character, then flag the node as being the end of a
478 * sentence. The front-end will know how to interpret this.
479 */

481 assert(i);

482 if (mandoc_eos(buf, (size_t)i, 0))

483 man->| ast->fl ags | = MAN_EGS;

475 m >l ast->fl ags | = MAN_ECS;

485 return(nman_descope(man, line, offs));

477 return(man_descope(m line, offs));

486 }

488 static int

489 nman_pmacro(struct man *man, int In, char *buf, int offs)

481 man_pnmacro(struct man *m int In, char *buf, int offs)

490 {

491 int i, ppos;

new usr/ src/ cnd/ mandoc/ man. ¢

492
493
494

496
497
489
498
499
500

502

504
505
506
507

509
510
511
512

514
516

518
519
511
520
521
522

524

526
527

529
530
531
532

534
535
527

537
538
539
540
541

543
544
545
536
537
546

548

550
551

enum mant t ok;
char mac[5] ;
struct man_node *n;

if (" == buf[offs]) {

man_pnsg(man, | n, offs, MANDOCERR BADCOMVENT) ;
man_pmsg(m I n, offs, MANDOCERR _BADCOMVENT) ;

return(1);

} else if ("\0" == buf[offs])
return(l);

ppos = offs;

/*

* Copy the first word into a nil-termnated buffer.

* Stop copying when a tab, space, or eoln is encountered.
*/

i =0;
while (i <4 & '\0" != buf[offs] &&
' 1= buf[offs] && '\t' != buf[offs])
mac[i++] = buf[of fs++];
mac[i] ='\0";

tok = (i >0 & i < 4) ? man_hash_find(mac) : MAN_MAX;

if (MAN_MAX == tok) {
mandoc _vnsg(MANDOCERR_MACRO, man- >parse, |n,
mandoc_vnsg(MANDOCERR _ NACRO. m >parse, |n,
ppos, "%", buf + ppos - 1);

return(l);
}
/* The macro is sane. Junp to the next word. */
whil e (buf[offs] && ' ' == buf[offs])
of f s++;
/*

* Trailing whitespace. Note that tabs are allowed to be passed
* into the parser as "text", so we only warn about spaces here.
*/

if ("\0'" == buf[offs] & ' ' == buf[offs - 1])
man_pnsg(man, In, offs - 1, MANDOCERR _EOLNSPACE);
man_pnsg(m In, offs - 1, MANDOCERR EOLNSPACE);

/*

* Renpve prior ELINE macro, as it’'s being clobbered by a new
* macro. Note that NSCOPED nmacros do not close out ELINE

* macros---they don't print text---so we let those slip by.
*/

if (! (MAN_NSCOPED & man_nmacros[tok].flags) &&
man- >f |l ags & MAN_ELI NE) {
n = man->| ast;
m >flags & MAN_ELI NE) {
n = m>| ast;
assert (MAN_TEXT != n->type);

/* Renpbve repeated NSCOPED macros causing ELINE. */

if (MAN_NSCOPED & man_macr os[n->t ok] . fl ags)
n = n->parent;

new usr/ src/ cnd/ mandoc/ man. ¢

553
545
554
555

557
558
549
550
559

561
562
563
564
556
565
566
558

568
569
570
571
572
573

575
576
577

579
580
581
582

584
576
585
586

588
589
580
581
590

592
593
594
595
596

598
599
590
591

601
603
604
596
605

607

mandoc_vnsg(MANDOCERR LI NESCOPE, man->parse, n->line,

mandoc_vnmsg(MANDOCERR LI NESCOPE, m >parse, n->line,
n->pos, "% breaks %", man_nacronanes[tok],
man_macr onanmes|[n- >t ok]) ;

man_node_del et e(man, n);
man->f | ags & ~MAN_ELI NE;
man_node_del ete(m n);
m >fl ags & ~MAN_ELI NE;

}

/*

* Renpve prior BLINE macro that is being clobbered.
*

/

(man->fl ags & MAN BLI NE) &&

(m>flags & MAN_BLINE) &&

(MAN_BSCOPE & nman_macros[tok].flags)) {
= man- >| ast;

= m>| ast;

if(
if(

535

/* Mght be a text node like 8 in
* TP 8

* _SH foo
*/
if (MAN_TEXT == n->type)
n = n->parent;

/* Renove element that didn’t end BLINE, if any. */
if (! (MAN_BSCOPE & man_macros[n->tok].flags))
n = n->parent;

assert (MAN_HEAD == n->type);

n = n->parent;

assert (MAN_BLOCK == n->type);

assert (MAN_SCOPED & man_nacros[n->t ok] . fl ags);

mandoc_vnsg(MANDOCERR LI NESCOPE, nan->parse, n->line,

mandoc_vnsg(MANDOCERR LI NESCOPE, m >parse, n->line,
n->pos, "% breaks %", man_macronanmes[tok],
man_nacr onanes[n- >t ok]) ;

man_node_del et e(man, n);
man- >f | ags &= ~MAN_BLI NE;
man_node_del ete(m n);

m >fl ags & ~MAN_BLI NE;

}

/*

* Save the fact that we're in the next-line for a block. In
* this way, enbedded roff instructions can "renmenber" state
* when they exit.

*/

if (MAN_BLINE & nan->fl ags)
man->f | ags | = MAN_BPLI NE;
if (MAN BLINE & m >fl ags)
m >flags | = MAN_BPLI NE;

/* Call to handler... */

assert (man_nmacros[tok].fp);

if (! (*man_macros[tok].fp

if (! (*man_macros[tok].fp
goto err;

(man, tok, In, ppos, &offs, buf))
(m

)
) tok, In, ppos, &offs, buf))

| *

new usr/ src/ cnd/ mandoc/ man. ¢

then return

the | ast parse

608 * W& weren't in a block-1ine scope when entering the
609 * above-parsed nacro, so return.

610 */

612 if (! (MAN_BPLINE & man->flags)) {

613 man- >f |l ags & ~MAN_I LI NE;

604 if (! (MAN_BPLINE & m>flags)) {

605 m >fl ags & ~MANLI LI NE;

614 return(1);

615 }

616 man- >f | ags &= ~MAN_BPLI NE;

608 m >fl ags & ~MAN_BPLI NE;

618 /*

619 * If we're in a block scope, then allow this macro to slip by
620 * without closing scope around it.

621 */

623 if (MAN_ILINE & man->flags) {

624 man->f | ags & ~MAN_I LI NE;

615 if (MANLILINE & m >fl ags)

616 m >flags & ~MAN_| LI NE;

625 return(l);

626 }

628 /*

629 * If we’ve opened a new next-1line el enment scope,

630 * now, as the next line will close out the block scope.
631

633 if (MAN_ELI NE & man->fl ags)

625 if (MANELINE & m >fl ags)

634 return(1);

636 /* Cl ose out the block scope opened in the prior line. */
638 assert (MAN_BLI NE & nman->fl ags);

639 man- >f | ags &= ~MAN_BLI NE;

630 assert (MAN_BLI NE & m >fl ags) ;

631 m >fl ags & ~MAN BLI NE;

641 if (! man_unscope(man, man->| ast->parent, MANDOCERR MAX))
633 if (! man_unscope(m m >l ast->parent, MANDOCERR MAX))
642 return(0);

643 return(man_body_al | oc(man, |n, ppos, man->|ast->tok));
635 return(man_body_al l oc(m I n, ppos, m>last->tok));

645 err: /* Error out. */

647 man->fl ags | = MAN_HALT;

639 m>flags | = MAN_HALT;

648 return(0);

649 }

651 /*

652 * Unlink a node fromits context. |If "man" is provided,

644 * Unlink a node fromits context. |If "ni is provided, the |ast parse
653 * point will also be adjusted accordingly.

654 */

655 static void

656 man_node_unlink(struct nman *nman, struct nman_node *n)

648 man_node_unlink(struct man *m struct nan_node *n)

657 {

659 /* Adjust siblings. */

10

new usr/ src/ cnd/ mandoc/ man. ¢

661
662
663
664

666

668
669
670
671
672

674

676
668
677
678
679
680
681
672
673
682
683
684
675
676
685
686

688
689
680
681
690

692
693
685

696
697
688
689

}

if (n->prev)

n->prev->next = n->next;
if (n->next)

n->next->prev = n->prev;

/* Adjust parent. */

if (n->parent) {
n- >par ent - >nchi |l d- - ;
if (n->parent->child == n)
n->parent->child = n->prev ? n->prev : n->next;

}
/* Adjust parse point, if applicable. */
if (man & man->last == n) {
if (m&& m>last == n)
[*XXX: this can occur when bailing fromvalidation. */
/*assert (NULL == n->next);*/
if (n->prev) {
man- >l ast = n->prev;
man- >next = MAN_NEXT_SI BLI NG
m >l ast = n->prev;
m >next = MAN_NEXT_SI BLI NG
} else {
man- >l ast = n->parent;
man- >next = MAN_NEXT_CHI LD;

m >l ast = n->parent;
m >next = MAN_NEXT_CHI LD;

}
}
if (man & man->first == n)
man->first = NULL;
if (m& m>first == n)

m>first = NULL;

const struct nparse *

man_npar se(const struct man *man)
man_npar se(const struct man *m
694 {

698 }
____unchanged_portion_onitted_

assert (man && man->parse);
ret ur n(man- >par se) ;
assert(m & m >parse);
return(m >parse);

11

new usr/

src/ cnd/ mandoc/ man. h

R R R R

2731 Wed Jul 30 20:55:08 2014

new usr/

src/ cnd/ mandoc/ man. h

5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/*

[
—~—
*

B T

O©CO~NOUTDAWN

15 =
16 */
17 #i f

$ld: man.h,v 1.62 2013/10/17 20: 54: 58 schwarze Exp $ */
$Id: man.h,v 1.60 2012/01/03 15: 16: 24 kristaps Exp $ */

Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>

Perm ssion to use, copy, nodify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permi ssion notice appear in all copies.

THE SOFTWARE |'S PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
W TH REGARD TO THI' S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS. | N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SI NG QUT OF
OR I N CONNECTI ON W TH THE USE OR PERFORMANCE OF THI' S SOFTWARE.

ndef MAN H

18 #define MAN_H

20 enum mant {

MAN br = 0,
MAN_TH,

$3333333
MsAR8~533

new usr/ src/ cnd/ mandoc/ man. h

59 MAN_MAX
60 };

__unchanged_portion_onitted_

new usr/ src/ cnd/ mandoc/ man_htni . c 1

R R R R

14617 Wed Jul 30 20:55:08 2014
new usr/ src/ cnd/ mandoc/ man_htmi . ¢
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $Id: man_htm .c,v 1.90 2013/10/17 20: 54:58 schwarze Exp $ */

1/* $Id: man_htm .c,v 1.86 2012/01/03 15:16:24 kristaps Exp $ */

2 /*

3 * Copyright (c) 2008-2012 Kristaps Dzonsons <kristaps@sd.|v>

4 * Copyright (c) 2013 Ingo Schwarze <schwarze@penbsd. or g>

3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
5 *

6 * Permssion to use, copy, nodify, and distribute this software for any

7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this perm ssion notice appear in all copies.

9 *

10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES CF

12 * MERCHANTABI LI TY AND FI TNESS. | N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
15 * ACTION OF CONTRACT, NEGLI GENCE OR OTHER TORTI OQUS ACTI ON, ARI SING OUT OF

16 * OR I N CONNECTION W TH THE USE OR PERFORVANCE OF THI S SOFTWARE.
17 =/

18 #ifdef HAVE_CONFI G H

19 #include "config.h"

20 #endif

22 #include <sys/types. h>

24 #include <assert.h>
25 #include <ctype. h>
26 #include <stdio. h>
27 #include <stdlib. h>
28 #include <string. h>

30 #include "nandoc. h"
31 #include "out.h"

32 #include "htnl.h"
33 #include "man. h"

34 #include "nain.h"

36 /* TODO preserve ident widths. */
37 /* FIXME: have PD set the default vspace width. */

39 #define | NDENT 5

41 #define MAN_ARGS const struct man_neta *man, \
40 #define MAN_ARGS const struct man_neta *m \
42 const struct man_node *n, \
43 struct mhtm *nmh,

44 struct htm *h

46 struct nhtnl {

47 int fl;

48 #define MANH LI TERAL (1 <<0) /* literal context */
49 };

____unchanged_portion_onitted_

56 static void print_bvspace(struct htm *,
57 const struct man_node *);
58 static void print _man(MAN_ARGS) ;

59 static void print _man_head(MAN_ARGS) ;

60 static void print_man_nodel i st (MAN_ARGS) ;

new usr/ src/ cnd/ mandoc/ man_ht m

.C

61 static void print_man_node(MAN_ARGS) ;
62 static int a2w dth(const struct nan_node *,
63 struct roffsu *);
64 static int man_B_pre(MAN_ARGS) ;
65 static int man_HP_pr e(MAN_ARGS) ;
66 static int man_| P_pre(MAN_ARGS) ;
67 static int man_| _pre(MAN_ARGS) ;
68 static int man_OP_pr e(MAN_ARGS) ;
69 static int man_PP_pr e(MAN_ARGS) ;
70 static int man_RS_pr e(MAN_ARGS) ;
71 static int man_SH pr e(MAN_ARGS) ;
72 static int man_SM pr e(MAN_ARGS) ;
73 static int man_SS_pr e(MAN_ARGS) ;
74 static int man_UR _pr e(MAN_ARGS) ;
75 static int man_al t _pre(MAN_ARGS) ;
76 static int man_br _pre(MAN_ARGS) ;
77 static int man_i gn_pr e(MAN_ARGS) ;
78 static int man_i n_pr e(MAN_ARGS) ;
79 static int man_literal _pre(MAN_ARGS);
80 static void man_r oot _post (MAN_ARGS) ;
81 static void man_r oot _pr e(MAN_ARGS) ;
83 static const struct htm man mans[MAN MAX] = {
84 man_br_pre, NULL }, /* br */

85 NULL, NULL }, /* TH */

86 man_SH pre, NULL }, /* SH */

87 man_SS pre, NULL }, /* SS */

88 man_| P_pre, NULL }, /* TP */

89 man_PP_pre, NULL }, /* LP */

90 man_PP_pre, NULL }, /* PP */

91 man_PP_pre, NULL }, /* P */

92 man_| P_pre, NULL }, /* IP */

93 man_HP_pre, NULL }, /* HP */

94 man_SM pre, NULL }, /* SM*/

95 man_SM pre, NULL }, /* SB */

96 man_alt_pre, NULL }, /* Bl */

97 man_alt_pre, NULL }, /* IB */

98 man_alt_pre, NULL }, /* BR */

99 man_alt_pre, NULL }, /* RB */

100 NULL, NULL }, /* R */

101 man_B_pre, NULL }, /* B */

102 man_| _pre, NULL }, /* | */

103 man_alt_pre, NULL }, /* IR */

104 man_alt_pre, NULL }, /* R */

105 man_i gn_pre, NULL }, /* na */

106 man_br_pre, NULL }, /* sp */

107 man_literal _pre, NULL }, /* nf */

108 man_literal _pre, NULL }, /* fi */

109 NULL, NULL }, /* RE */

110 man_RS pre, NULL }, /* RS */

111 man_i gn_pre, NULL }, /* DT */

112 man_i gn_pre, NULL }, /* UC */

113 man_i gn_pre, NULL }, /* PD */

114 man_i gn_pre, NULL }, /* AT */

115 man_in_pre, NULL }, /* in */

116 man_ign_pre, NULL }, /* ft */

117 man_OP_pre, NULL }, /* OP */

118 man_literal _pre, NULL }, /* EX */

119 man_literal _pre, NULL }, /* EE */

120 man_UR pre, NULL }, /* UR */

121 NULL, NULL }, /* UE */

122 };

____unchanged_portion_onitted

147 void
148 htnml _man(void *arg, const

struct man *man)

new usr/ src/ cnd/ mandoc/ man_htm . c

142 htnl _man(void *arg, const struct man *m
149 {

150

152
153
147
154
155

157
158

160
161

163

165
166
167
168
169
163
170
171
172
173
174

176
170
177
178

181
182
183
184

186
187
188
189
181
182
183
190
191
192

195
196
197

199
193
200
201
195
202

}

struct nmhtmi mh;
nenset (&vh, 0, sizeof(struct mhtm));

print_man(man_net a(man), man node(nan) &mh, (struct htm *)arg);

print nan(nan meta(m), man_node(n), &nh, (struct html *)arg);
putchar(’\n’);

static void
pri nt _man(MAN_ARGS)
159 {

}

| *

struct tag *t, *tt;
struct htmlpair tag;

PAI R_CLASS_| NI T(& ag, "mandoc");

if (! (HTM_FRAGVENT & h->ofl ags)) {
print_gen_decl s(h);
t = print_otag(h, TAG HTM., 0, NULL);
tt = print_otag(h, TAG HEAD, 0, NULL);
print_man_head(man, n, nh, h);
print_man_head(m n, nh, h);
print_tagq(h, tt);
print_otag(h, TAG BCODY, 0, NULL);
print_otag(h, TAGDIV, 1, &ag);

} else
t = print_otag(h, TAG DV, 1, &ag);

print_man_nodel i st (man, n, mh, h);
print_man_nodelist(m n, mh, h);
print_tagq(h, t);

ARGSUSED */

static void
print _man_head(MAN_ARGS)

{

print_gen_head(h);

assert(man->title);

assert (man- >nsec) ;

bufcat_fnt(h, " 0/s(%;) ", man->title, man->nsec);
assert(m>title);

assert(m >nsec);

bufcat _fnt(h, "%(%)", m>title, m>nsec);
print_otag(h, TAG TITLE, 0, NULL);
print_text(h, h->buf);

static void
print_man_nodel i st (MAN_ARGS)

{

print_man_node(nan, n, nh, h);

print_man_node(m n, nh, h);

1 f (n->next)
print_man_nodel i st (man, n->next, mnh, h);
print_man_nodel i st(m n->next, mh, h);

static void

new usr/ src/ cnd/ mandoc/ man_htm . ¢

206 print_man_node(MAN_ARGS)

207 {

208
209

211
212

214
215
216
210
217
218
219
220
221
222
223
224
225
226
227

229
230
231
232

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

257
258
259
260
261
262
263
264
265
266
267
261
268
269

int child;
struct tag *t;
child = 1;

t = h->tags. head;

switch (n- >type) {

case (MAN_ROQT) :
rmn_root_pre(rmn, n, mh, h);
man_root_pre(m n, mh, h);
br eak;

case (MAN_TEXT):

/?
* |f we have a blank line, output a vertical space.
* |f we have a space as the first character, break
* before printing the line’ s data.
*
if ('\0 == *n->string) {
print_otag(h, TAG P, 0, NULL);
return;
}
if (" ' == *n->string & MAN_LI NE & n->fl ags)

print_otag(h, TAG BR 0, NULL);
else if (IVANH LI TERAL & nmh->fl &&n>prev)
print_otag(h, TAG BR 0, NULL);

print_text(h, n->string);
return;
case (MAN_EQN):
print_eqn(h, n->eqn);
br eak;
case (IVAN_TBL):
/*

* This will take care of initialising all of the table
* state data for the first table, then tearing it down
* for the last one.

*

print_tbl (h, n->span);
return;
defaul t:
/*
* Cl ose out scope of font prior to opening a macro
* scope.
*
/

if (HTMLFONT_NONE != h->netac) {
h->nmetal = h->netac;
h->met ac = HTMLFONT_NONE;

*

* Close out the current table, if it’s open, and unset
* the "meta" table state. This will be reopened on the
* next table elenent.

*/

}
/

if (h->tblt) {
print_tblclose(h);
t = h->tags. head;

if (mans[n->tok].pre)
child (*mans[n->t ok] . pre) (man
child (*mans[n->tok].pre)(m

, n, mh, h);
n, mh, h);

break;

new usr/ src/ cnd/ mandoc/ man_htm . c

271 if (child & n->child)

272 print_man_nodel i st (man, n->child, nmh, h);
266 print_man_nodelist(m n->child, rrh h),
274 /* This will automatically close out any font scope.
275 print_stagq(h, t);

277 switch (n- >type) {

278 case (MAN_ROOT) :

279 man root _post(man, n, nh, h);

273 man_root _post(m n, nh, h);

280 br eak;

281 case (MAN_EQN):

282 break;

283 defaul t:

284 if (mans[n->tok].post)

285 (*mans[n- >t ok] . post) (nman, n, nh,
279 (*mans[n->tok] . post)(m n, nh,
286 br eak;

287 }

288 }

__unchanged_portion_onitted_

304 /* ARGSUSED */
305 static void
306 man_r oot _pre(MAN_ARGS)

307 {

308 struct htnpair tag[3]

309 struct tag *t,

310 char b[BUFSI Z], title[BUFSIZ];

312 b[0] = O;

313 if (man->vol)

314 (v0| d)strlcat(b, man->vol, BUFSIZ);
307 if (m>vol)

308 (void)strlcat(b, m>vol, BUFSIZ);

316 assert(man->title);

317 assert (man- >nsec) ;

318 snprintf(title, BUFSI Z - 1, "%(%)", man->title,
310 assert(m>title);

311 assert (m >nsec) ;

312 snprintf(title, BUFSIZ - 1, "9%(%)", m>title,
320 PAI R_SUMMARY_I NI T(& ag[0], "Docunent Header");
321 PAIR_CLASS | NI T(& ag[1], "head");

322 PAI RIN T(&ag[2], ATTR WDTH, "100%);

323 t = print_otag(h, TAG TABLE, 3, tag);

324 PAIR_INIT(& ag[0], ATTR WDTH, "30%);

325 print_otag(h, TAG > COL, 1, tag);

326 print_otag(h, TAG CO., 1, tag);

327 print_otag(h, TAG COL, 1, tag);

329 print_otag(h, TAG TBODY, 0, NULL);

331 tt = print_otag(h, TAG TR 0, NULL);

333 PAIR_CLASS INIT(& ag[0], "head-Ititle");

334 print_otag(h, TAG TD, 1, tag);

335 print “text(h, title);

336 print_stagq(h, tt);

338 PAI R CLASS | NI T(& ag[0], "head-vol");

339 PAIRINIT(& ag[1], ATTR ALIGN, "center");

new usr/ src/ cnd/ mandoc/ man_htm . c

340 print_ot ag(h TAG TD, 2, tag);

341 print “text(h)

342 print_st agq(h tt)

344 PAIR CLASS INIT(& ag[0], "head-rtitle");
345 PAIRINIT(&ag[1], ATTR ALIGN, "right");
346 print_otag(h, TAG TD, 2, tag);

347 print_text(h, title);

348 print_tagq(h, t);

349 }

352 /* ARGSUSED */
353 static void
354 man_r oot _post (MAN_ARGS)

355 {

356 struct htnmpair tag[3];

357 struct tag *t, *t,

359 PAI R_SUMVARY_I NI T(& ag[0], "Docunent Footer");
360 PAIR_CLASS I NI T(& ag[1], "foot ") ;

361 PAI R_INIT(& ag[2], ATTR WDTH, "100%);
362 = print_otag(h, TAG TABLE, 3, tag);
363 PAI R_INIT(& ag[0], ATTR WDTH, "50%);
364 print_otag(h, TAG > COL, 1, tag);

365 print_otag(h, TAG CO., 1, tag);

367 tt = print_otag(h, TAG TR 0, NULL);
369 PAIR_CLASS I NI T(& ag[0], "foot-date");
370 print_otag(h, TAG TD, 1, tag);

372 assert (man->date);

373 print_text(h, nman->date);

366 assert (m >date);

367 print_text(h, m>date);

374 print_stagq(h, tt);

376 PAIR CLASS INIT(& ag[0], "foot-o0s");
377 PAIRINIT(& ag[1], ATTR ALIGN, "right");
378 print_otag(h, TAG 5 TD, 2, tag);

380 if (man->source)

381 print_text(h, man->source);

374 if (m>source)

375 print_text(h, m>source);

382 print_tagq(h, t);

383 }

__unchanged_portion_onitted_

431 /* ARGSUSED */
432 static int
433 man_al t _pr e(MAN_ARGS)

434 {

435 const struct man_node *nn;

436 int i, savelit;

437 enum htnl tag fp;

438 struct tag *t,

440 if ((savelit = mh->fl & MANH LI TERAL))

441 print_otag(h, TAG BR, 0, NULL);

443 mh->fl &= ~MANH_LI TERAL;

445 for (i =0, nn = n->child; nn; nn = nn->next,
446 t = NULL;

i ++)

new usr/ src/ cnd/ mandoc/ man_htm . c

447 switch (n->tok) {
448 case (MAN BI):
449 fp=i %2 ? TAGI| : TAGB;
450 br eak;
451 case (MANLIB):
452 fp=i %2 ? TAGB : TAG |;
453 br eak;
454 case (MANLRI):
455 fp=i %2 ? TAGI TAG_NVAX;
456 br eak;
457 case (MAN_IR):
458 fp=i %2 ? TAGMX : TAG I;
459 br eak;
460 case (MAN | BR)
461 fp=i %2 ? TAG MAX : TAG B;
462 break
463 case (MAN RB) :
464 fp=1i %2 ? TAG B : TAG MAX;
465 br eak;
466 defaul t:
467 abort();
468 /* NOTREACHED */
469 }
471 if (i)
472 h->f1 ags | = HTM__NGOSPACE;
474 if (TAGMAX != fp)
475 t = print_otag(h, fp, 0, NULL);
477 print_man_node(man, nn, mh, h);
471 print_man_node(m nn, mh, h);
479 if (t)
480 print_tagq(h, t);
481 1
483 if (savelit)
484 mh->f1 | = MANH_LI TERAL;
486 return(0);
487 }
__unchanged_portion_onitted_
531 /* ARGSUSED */
532 static int
533 man_| P_pr e(MAN_ARGS)
534 {
535 const struct nman_node *nn;
537 if (MAN_BODY == n->type) {
538 print_otag(h, TAG DD, 0, NULL);
539 return(l);
540 } else if (MAN_HEAD != n->type) {
541 print_otag(h, TAG DL, 0, NULL);
542 return(l);
543 1
545 /* FI XME: width specification. */
547 print_otag(h, TAG DT, 0, NULL);
549 /* For IP, only print the first header el enent.
551 if (MANLIP == n->tok && n->child)
552 print_man_node(nan, n->child, mh, h);

*/

new usr/ src/ cnd/ mandoc/ man_htm . ¢

546 print_man_node(m n->child, nh, h);

554 /* For TP, only print next-line header elenents.
556 if (MANC TP == n->t ok)

557 for (nn = n->child; nn; nn = nn->next)
558 if (nn- >I|ne>n->line)

559 print_man_node(nan, nn,
553 print_man_node(m nn,
561 return(0);

562 }

__unchanged_portion_omtted_

642 /* ARGSUSED */
643 static int
644 man_literal _pre(MAN_ARGS)

645 {

647 if (MANLfi == n->tok || MAN_EE == n->tok) {
641 if (MAN_nf !'= n->tok) {

648 print_otag(h, TAG BR, 0, NULL);

649 mh->fT & ~MANH_LT TERAL;

650 } else

651 nmh->fl | = MANH_LI TERAL;

653 return(0);

654 }

__unchanged_portion_omtted_

673 /* ARGSUSED */
674 static int
675 man_RS_pr e(MAN_ARGS)

676 {

677 struct htmpair tag;

678 struct roffsu su;

680 if (MAN_HEAD == n->type)

681 return(0);

682 else if (MAN_BODY == n->type)

683 return(l);

685 SCALE_HS I NI T(&su, | NDENT);

686 if (n->head->child)

687 a2w dt h(n- >head- >child, &su);

689 bufinit(h);

690 buf cat su(h margin-left", &su);

691 PAI R_STYLE_I NI T(& ag, h);

692 print_otag(h, TAGDV, 1, &tag);

693 return(l);

694 }

696 /* ARGSUSED */

697 static int

698 man_UR_pr e(MAN_ARGS)

699 {

700 struct htm pair tag[2];

702 n = n->child;

703 assert (MAN_ HEAD == n- >type);

704 if (n->nchild) {

705 assert (MAN_TEXT == n->chi I d- >t ype);
706 PAI R_CLASS | NI T(&t ag[0], "link-ext"
707 PAI R_HREF_TNI T(& ag[1], n->chil d- >stri ng);

708 print_otag(h, TAGA,

2,

tag);

mh,
mh, h);

h);

new usr/ src/ cnd/ mandoc/ man_htm . c

709 }

711 assert (MAN_BODY == n- >next - >t ype);

712 if (n->next->nchild)

713 n = n->next;

715 print_man_nodel i st (man, n->child, nh, h);
717 return(0);

718 }

____unchanged_portion_onitted_

new usr/ src/ cnd/ mandoc/ man_macro. ¢ 1

R R R R

11898 Wed Jul 30 20:55:08 2014
new usr/ src/ cnd/ mandoc/ man_nacr o. ¢
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: man_macro.c,v 1.79 2013/12/25 00: 50: 05 schwarze Exp $ */

1/* $Id: man_macro.c,v 1.71 2012/01/03 15: 16:24 kristaps Exp $ */

2 /*

3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
4 * Copyright (c) 2012, 2013 Ingo Schwarze <schwarze@penbsd. org>

5 * Copyright (c) 2013 Franco Fichtner <franco@ astsummer.de>

6 *

7 * Permssion to use, copy, nodify, and distribute this software for any

8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this perm ssion notice appear in all copies.

10 =

11 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
12 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES COF

13 * MERCHANTABI LI TY AND FI TNESS. | N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
14 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
15 * WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
16 * ACTION OF CONTRACT, NEGLI GENCE OR OTHER TORTI OQUS ACTI ON, ARI SING OUT OF

17 * OR I N CONNECTION W TH THE USE OR PERFORVANCE OF THI S SOFTWARE.
18 =/

19 #ifdef HAVE_CONFI G H

20 #include "config.h"

21 #endif

23 #include <assert. h>
24 #include <ctype. h>

25 #include <stdlib.h>
26 #include <string.h>

28 #include "man. h"

29 #include "mandoc. h"

30 #include "libnmandoc. h"
31 #include "libnman. h"

33 enum rew {

34 REW REW ND,

35 REW NOHALT

36 REW HALT

37 };

39 static int bl k_cl ose(MACRO_PROT_ARGS) ;

40 static int bl k_exp(MACRO_PROT_ARGS) ;

41 static int bl k_i mp(MACRO_PROT_ARGS) ;

42 static int in_l'i ne_eol n(MACRO_PROT_ARGS) ;

43 static int man_args(struct man *, int,

44 int *, char *, char **);

46 static int rew_scope(enum nan_t ype,

47 struct man *, enum mant);

48 static enumrew rew_dohal t (enum mant, enum nan_t ype,
49 const struct nman_node *);
50 static enumrew rew_bl ock(enum nmant, enum man_type,
51 const struct man_node *);

52 static void rew warn(struct man *,

53 struct man_node *, enum nandocerr);
55 const struct man_macro __man_macr os[MAN_MAX] = {

56 { in_line_eoln, MAN NSCOPED }, /* br */

57 { in_line_eoln, MAN BSCOPE }, /* TH */

58 { blk_inp, MAN_BSCOPE | MAN_SCOPED }, /* SH */

new usr/ src/ cnd/ mandoc/ man_nacr o. ¢

59 bl k_i np, MAN BSCOPE | MAN SCOPED }, /* SS */
60 bl k_i np, MAN_BSCOPE | MAN SCOPED | MAN FSCOPED }, /* TP */
61 bl k_i np, MAN_BSCOPE }, /* LP */

62 bl k_i mp, MAN_BSCOPE }, /* PP */

63 bl k_i mp, MAN_BSCOPE }, /* P */

64 bl k_i mp, MAN_BSCOPE }, /* IP */

65 bl ki np, MAN BSCOPE }, /* HP */

66 in_line_eoln, MAN _SCOPED }, /* SM */

67 in_line_eoln, MAN SCOPED }, /* SB */

68 in_line_eoln, 0}, /* Bl */

69 in_line_eoln, 0}, /* IB?*/

70 in_line_eoln, 0}, /* BR*/

71 in_line_eoln, 0}, /* RB*/

72 in_line_eoln, MAN SCOPED }, /* R */

73 in_line_eoln, MAN SCOPED }, /* B */

74 in_line_eoln, MAN_SCOPED }, /* | */

75 in_line_eoln, 0}, /* IR¥*/

76 in_line_eoln, 0}, /* R */

77 in_line_eoln, MAN _NSCOPED }, /* na */

78 in_line_eoln, MAN NSCOPED }, /* sp */

79 in_line_eoln, MAN BSCOPE }, /* nf */

80 in_line_eoln, MAN BSCOPE }, /* fi */

81 bl k_close, 0}, /* RE */

82 bl k_exp, MAN BSCOPE | MAN EXPLICIT }, /* RS */
80 bl k_exp, MAN EXPLICIT }, /* RS */

83 in_line_eoln, 0}, /* DT */

84 in_line_eoln, 0}, /* UC?*/

85 in_line_eoln, 0}, /* PD*/

86 in_line_eoln, 0}, /* AT */

87 in_line_eoln, 0}, /* in*/

88 in_line_eoln, 0}, /* ft */

89 in_line_eoln, 0}, /* OP */

90 in_line_eoln, MAN BSCOPE }, /* EX */

91 in_line_eoln, MAN BSCOPE }, /* EE */

92 bl k_exp, MAN BSCOPE | MAN EXPLICIT }, /* UR */
93 bl k_close, 0}, /* UE */

94 };

96 const struct man_naecro * const man_macros = __naen_macr os;
99 /*

100 * Warn when "n" is an explicit non-roff macro.

101 */

102 static void

103 rew warn(struct man *man, struct man_node *n, enum mandocerr er)
97 rew_warn(struct man *m struct man_node *n, enum mandocerr er)
104 {

106 if (er == MANDOCERR_MAX || MAN_BLOCK != n->type)
107 return;

108 if (MAN_VALID & n->fl ags)

109 return;

110 if (! (MAN_LEXPLICIT & nan_macros[n->tok].flags))
111 return;

113 assert(er < MANDOCERR FATAL);

114 man_nnmsg(man, n, er);

108 man_nnmsg(m n, er);

115 }

118 /*

119 * Rewind scope. |If a code "er" != MANDOCERR MAX has been provided,

120 * will be used if an explicit block scope is being closed out.
121 */

it

new usr/ src/ cnd/ mandoc/ man_nacr o. ¢

122 int
123 man_unscope(struct man *man, const struct

man_node *to,

117 man_unscope(struct man *m const struct man_node *to,

124 enum mandocerr er)

125 {

126 struct man_node *n;

128 assert(to);

130 man- >next = MAN_NEXT_SI BLI NG

124 m >next = MAN_NEXT_SIBLI NG

132 /* LI NTED */

133 while (man->last != to) {

127 while (m>last !=to) {

134 /*

135 *

136 *

137 * it to man->| ast->parent,
130 *

131 * it to m>last->parent,
138 * out to be |ost.

139 *

140 man- >| ast - >parent;

n

141 r

142 i ! man_val i d_post (man)

134 n = m>| ast->parent;
r
i

135 ew warn(m m>last, er);
136 if ! man_valid post(n))
143 ret urn(0);

144 man- >l ast = n;

145 assert (man->| ast)

138 m >l ast = n;

139 assert(m>l ast);

146 }

148 rew_war n(man, nman->| ast, er);
149 if (! man_valid_post(nan))

142 rew warn(m m>last, er);

143 if (! man_valid_post(m)

150 return(0);

152 return(l);

153 }

__unchanged_portion_onitted_

167 /*

/
ew_war n(man, man->last, er);
it

Save the parent here, because we nay delete the
man- >l ast node in the post-validation phase and reset

causing a step in the closing

m >l ast node in the post-validation phase and reset

causing a step in the closing

)

168 * There are three scope levels: scoped to the root (all), scoped to the
169 * section (all less sections), and scoped to subsections (all Iess

170 * sections and subsections).
171 */
172 static enumrew

173 rew_dohal t (enum nant tok, enum man_type type, const struct man_node *n)

174 {

175 enum r ew c;

177 /* We cannot progress beyond the root ever. */

178 if (MAN_ROOT == n->type)

179 return(REW HALT) ;

181 assert(n->parent);

183 /* Nor mal nodes shouldn’t go to the level of the root. */
184 if (MAN_ROOT == n->parent->type)

185 ret urn(REW REW ND) ;

new usr/ src/ cnd/ mandoc/ man_nacr o. ¢

187 /* Already-validated nodes should be closed out. */

188 if (MAN_VALID & n->flags)

189 ret ur n(REW NOHALT) ;

191 /* First: rewind to ourselves. */

192 if (type == n->type && tok == n->tok) {

193 if (MAN_EXPLICIT & man_nacros[n->tok].fl ags)

194 retur n(REW HALT) ;

195 el se

186 if (type == n->type & tok == n->tok)

196 ret ur n(REW REW ND) ;

197 }

199 /*

200 * Next follow the inplicit scope-smashings as defined by nan.7:
201 * section, sub-section, etc.

202 */

204 switch (tok) {

205 case (MAN_SH):

206 break;

207 case (MAN_SS):

208 /* Rewind to a section, if a block. */

209 if (REWNCHALT != (c = rew_bl ock(MAN_SH, type, n)))
210 return(c);

211 br eak;

212 case (MAN_RS):

213 /* Preserve enpty paragraphs before RS. */

214 if (0 ==n->nchild & (MAN_P == n->tok ||

215 MAN PP == n->tok || MAN LP == n->tok))

216 “return(REWHALT);

217 /* Rewind to a subsectlon if a block. */

218 if (REWNCHALT !'= (c = rew_bl ock(MAN_SS, type, n)))
219 return(c);

220 /* Rewind to a section, if a block. */

221 if (REWNCHALT != (¢ = rew_bl ock(MAN_SH, type, n)))
222 return(c);

223 break;

224 defaul t:

225 /* Rewind to an offsetter, if a block. */

226 if (REWNOCHALT != (c = rew_bl ock(MAN_RS, type, n)))
227 return(c);

228 /* Rewind to a subsection, if a block. */

229 if (REWNCHALT != (¢ = rew_bl ock(MAN_SS, type, n)))
230 return(c);

231 /* Rewind to a section, if a block. */

232 if (REWNOHALT !'= (c = rew_bl ock(MAN_SH, type, n)))
233 return(c);

234 br eak;

235 }

237 ret ur n(REW NCHALT) ;

238 }

241 | *

242 * Rewinding entails ascending the p
243 * for exanple, the ‘SH nacro will
244 * scopes. Wien a scope is closed,
245 */

246 static int

247 rew_scope(enum man_type type, struct
233 rew_scope(enum man_type type, struct
248 {

249 struct man_node *n;

arse tree until a coherent point,
cl ose out any intervening ‘SS
it nust be validated and actioned.

man *man, enum nmant tok)
man *m enum mant tok)

new usr/ src/ cnd/ mandoc/ man_nacr o. ¢

new usr/ src/ cnd/ mandoc/ man_nacr o. ¢

250 enum r ew c;

252 /* LINTED */

253 for (n = man->last; n; n = n->parent) {

239 for (n = m>last; n; n = n->parent) {

254 /*

255 * Whet her we shoul d stop immediately (REWHALT), stop
256 * and rewind until this point (REWREWND), or keep
257 * rewi nding (REW.NCHALT) .

258 */

259 ¢ = rew_dohal t(tok, type, n);

260 if (REWHALT == ¢)

261 return(l);

262 if (REWREWND == c)

263 break;

264 }

266 /*

267 * Rewind until the current point. Warn if we're a roff
268 * instruction that’'s now ng over explicit scopes.
269 *

270 assert(n);

272 return(man_unscope(man, n, MANDOCERR _MAX)) ;

258 return(man_unscope(m n, MANDOCERR MAX));

273 }

276 [*

277 * Close out a generic explicit macro.

278 */

279 /* ARGSUSED */

280 int

281 bl k_cl ose(MACRO_PROT_ARGS)

282 {

283 enum mant nt ok;

284 const struct man_node *nn;

286 switch (tok) {

287 case (MAN_RE):

288 nt ok = MAN_RS;

289 br eak;

290 case (MAN_UE):

291 nt ok = MAN_UR;

292 br eak

293 defaul t:

294 abort();

295 /* NOTREACHED */

296 }

298 for (nn = man->| ast->parent; nn; nn = nn->parent)
299 if (ntok == nn->tok &% MAN_BLOCK == nn->type)
281 for (nn = m>last->parent; nn; nn = nn->parent)
282 if (ntok == nn->tok)

300 br eak;

302 if (NULL == nn) {

303 man_pnsg(nmen, |ine, ppos, MANDOCERR NOSCOPE) ;
304 if (! rew scope(MAN BLOCK, nan, MAN_PP))
285 if (NULL == nn)

286 man_prmsg(m |ine, ppos, MANDOCERR NOSCOPE);
288 if (! rew_scope(MAN BCDY, m ntok))

305 return(0);

306 } else

307 man_unscope(man, nn, MANDOCERR_MAX) ;

290 if (! rew_scope(MAN BLOCK, m ntok))

291 return(0);

309 return(1);

310 }

313 /* ARGSUSED */

314 int

315 bl k_exp(MACRO_PROT_ARGS)

316 {

317 struct man_node *n;

318 int | a;

319 char *p;

321 /* Close out prior inplicit scopes. */

304 /*

305 * Close out prior scopes. "Regular" explicit macros cannot be
306 * nested, but we allow roff macros to be placed just about
307 * anywhere.

308 */

323 if (! rew.scope(MAN BLOCK, man, tok))

310 if (! man_block_alloc(m Iine, ppos, tok))

324 return(0);

326 if (! man_bl ock_alloc(man, |ine, ppos, tok))

312 if (! man_head_alloc(m line, ppos, tok))

327 return(0);

328 if (! man_head_all oc(man, |ine, ppos, tok))

329 return(0);

331 for () {

332 la = *pos;

333 if (! man_args(man, line, pos, buf, &p))
317 if (! man_args(m line, pos, buf, &p))
334 br eak;

335 if (! man_word_alloc(man, line, la, p))
319 if (! mn_word_alloc(m line, la, p))
336 return(0);

337 }

339 assert (man);

323 assert(m;

340 assert(tok != MAN_MAX);

342 for (n = man->last; n; n = n->parent) {

343 if (n->tok !'= tok)

344 conti nue;

345 assert (MAN_HEAD == n->type);

346 man_unscope(man, n, MANDOCERR MAX) ;

347 br eak;

348 }

350 return(man_body_al | oc(man, |ine, ppos, tok));

326 if (! rew.scope(MAN HEAD, m tok))

327 return(0);

328 return(man_body_all oc(m |ine, ppos, tok));

351 }

355 /*

356 * Parse an inplicit-block macro. These contain a MAN HEAD and a
357 * MAN_BODY contained within a MAN_BLOCK. Rules for closing out other
358 * scopes, such as ‘SH closing out an ‘SS, are defined in the rew

new usr/ src/ cnd/ mandoc/ man_nacr o. ¢ 7 new usr/ src/ cnd/ mandoc/ man_nacr o. ¢
359 * routines.
360 */ 414 | * ARGSUSED */
361 /* ARGSUSED */ 415 int
362 int 416 i n_|l i ne_eol n(MACRO_PROT_ARGS)
363 bl k_i mp(MACRO_PROT_ARGS) 417 {
364 { 418 int | a;
365 int | a; 419 char *p;
366 char *p; 420 struct man_node *n;
367 struct man_node *n;
422 if (! man_elem.alloc(man, |ine, ppos, tok))
369 /* O ose out prior scopes. */ 400 if (! man_elemalloc(m line, ppos, tok))
423 return(0);
371 if (! rew _scope(MAN BCDY, nan, tok))
349 if (! rew.scope(MAN BODY, m tok)) 425 n = man->| ast ;
372 return(0); 403 n = m>| ast;
373 if (! rew_scope(MAN BLOCK, nan, tok))
351 if (! rew_scope(MAN BLOCK, m tok)) 427 for (;;) {
374 return(0); 428 la = *pos;
429 if (! man_args(man, line, pos, buf, &p))
376 /* Allocate new bl ock & head scope. */ 407 if (! man_args(m line, pos, buf, &p))
430 br eak;
378 if (! man_bl ock_alloc(man, |ine, ppos, tok)) 431 if (! man_word_alloc(man, line, la, p))
356 if (! man_block_alloc(m line, ppos, tok)) 409 if (! mn_wrd_alloc(m line, la, p))
379 return(0); 432 return(0);
380 fo(! rran_head_al | oc(man, line, ppos, tok)) 433 }
358 f (! man_head_alloc(m line, ppos, tok))
381 return(0); 435 I*
436 * Append MAN_EGCS in case the last snipped argunent
383 n = man->| ast; 437 * ends with a dot, e.g. ‘.IR syslog (3).’
361 n = m>last; 438 */
385 /* Add line argunents. */ 440 if (n!= man->last &&
441 mandoc_eos(man- >l ast->stri ng strlen(man->l ast->string), 0))
387 for (;;) { 442 man->| ast->fl ags | = MAN_EGCS;
388 la = *pos;
389 if (! man_args(man, line, pos, buf, &p)) 444 /*
367 if (! man_args(m line, pos, buf, &p)) 445 * If no argunents are specified and this is MAN_SCOPED (i.e
390 br eak; 446 * next-line scoped), then set our node to indicate that we're
391 if (! man_word_alloc(man, line, la, p)) 447 * waiting for terns to load into our context.
369 if (! mn_wrd_alloc(m line, la, p)) 448 */
392 return(0);
393 } 450 if (n == man->l ast &% MAN_SCOPED & man_macros[tok].flags) {
419 if (n == m>last & MAN SCOPED & man_nmacros[tok].flags) {
395 /* O ose out head and open body (unless MAN SCOPE). */ 451 assert(I (MAN_NSCOPED & man_nacros[tok].flags));
452 man->flags | = MAN_ELI NE;
397 if (MAN_SCOPED & man_nacros[tok].flags) { 421 m>flags | = MAN_ELI NE;
398 /* If we're forcing scope (‘TP'), keep it open. */ 453 return(1);
399 if (MAN_FSCOPED & man_nacros[tok].flags) { 454 }
400 man->fl ags | = MAN_BLI NE;
378 m >fl ags | = MAN_BLI NE; 456 /* Set ignorable context, if applicable. */
401 return(l);
402 } else if (n == man->l ast) { 458 if (MAN_NSCOPED & man_nacros[tok].flags) {
403 man->fl ags | = MAN_BLI NE; 459 assert(! (MAN_SCOPED & man_nacros[tok].flags));
380 } elseif (n == m>last) { 460 man->flags | = MAN_I LI NE;
381 m >fl ags | = MAN_BLI NE; 429 m>flags | = MANLI LI NE;
404 return(l); 461 }
405 }
406 } 463 assert (MAN_ROOT ! = man- >l ast - >type);
464 man- >next = MAN_NEXT_SI BLI NG
408 if (! rew.scope(MAN HEAD, man, tok)) 432 assert (MAN_ROOT | = m>| ast->type);
386 if (! rew.scope(MAN HEAD, m tok)) 433 m >next = MAN_NEXT_SI BLI NG
409 return(0); 465
410 return(man_body_al | oc(man, |ine, ppos, tok)); 466 /*
388 return(man_body_all oc(m |ine, ppos, tok)); 467 * Rewi nd our elenent scope. Note that when TH is pruned, we’ll
411 } 468 * be back at the root, so nake sure that we don’t clobber as
469 * its sibling.

new usr/ src/ cnd/ mandoc/ man_nacr o. ¢

470 */

472 for (; man->last; nan->last = man->l ast->parent) {
473 if (man->last == n)

441 for (; m>last; m>last = m>last->parent) {

442 if (m>ast == n)

474 br eak;

475 if (man->l ast->type == MAN_ROOT)

444 if (m>last->type == MAN_ROOT)

476 break;

477 if (! man_valid_post(man))

446 if (! man_valid_post(m)

478 return(0);

479 }

481 assert (man->l ast);

450 assert(m >l ast);

483 /*

484 * Sane here regardi ng whether we're back at the root.
485 */

487 if (man->last->type = MAN ROOT && ! nman_valid_post (nan))
456 if (m>ast->type != MAN_ROOT && ! nman_valid_post(m)
488 return(0);

490 return(1);

491 }

494 int

495 man_nacroend(struct man *nan)
464 man_nacroend(struct man *m)

496 {

498 return(man_unscope(man, man->first, MANDOCERR SCOPEEXIT));
467 return(man_unscope(m m>first, MANDOCERR SCOPEEXIT));

499 }

501 static int
502 man_args(struct man *man, int line, int *pos, char *buf, char **v)
471 man_args(struct man *m int line, int *pos, char *buf, char **v)

503 {

504 char *start;

506 assert(*pos);

507 *v = start = buf + *pos;

508 assert(’ ' 1= *start);

510 if ('\0 == *start)

511 return(0);

513 *v = mandoc_get ar g(man- >parse, v, line, pos);
482 *v = mandoc_getarg(m >parse, v, line, pos);
514 return(l);

515 }

____unchanged_portion_onitted_

new usr/ src/ cnd/ mandoc/ man_term c

R R R R

23118 Wed Jul

30 20:55:08 2014

new usr/ src/ cnd/ mandoc/ man_term c

5051

Revi ewed by: Yuri

i nport ndocm -1.12.3

Pankov <yuri.pankov@exenta. conm>

Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1

[
-
*

OCONOUITRWDAWN

/* $ld: man_termec,v 1.139 2013/12/22 23:34:13 schwarze Exp $ */
$Id: man_termc,v 1.127 2012/01/03 15: 16: 24 kristaps Exp $ */

~

B 2

Copyright (c)
Copyright (c)
Copyri ght (c)
Copyright (c)

2008-2012 Kristaps Dzonsons <kristaps@sd.|v>

2010, 2011, 2012, 2013 Ingo Schwarze <schwarze@penbsd. or g>
2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
2010, 2011 Ingo Schwarze <schwarze@penbsd. or g>

Perm ssion to use, copy, nodify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this pernission notice appear in all copies.

THE SOFTWARE | S PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
W TH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS. | N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARl SI NG QUT OF
* OR I N CONNECTI ON WTH THE USE OR PERFORMANCE OF THI S SOFTWARE.
*
/
#i f def HAVE_CONFI G_H
#i nclude "config. h"
#endi f

#i ncl ude <sys/types. h>

#i ncl ude <assert. h>
#i ncl ude <ctype. h>
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

#i ncl ude "mandoc. h"
#i ncl ude "out.h"

#i ncl ude "man. h"

#i nclude "term h"
#i ncl ude "main. h"
#def i ne MAXVARG NS 64 /*

maxi mum nunber of indented scopes */

/* FI XME: have PD set the default vspace width. */

struct nternp {
int fl;
#defi ne MANT LI TERAL (1 << 0)
size_t | margi n[MAXMARG NS]; /* margins (incl. visible page)
int | margi ncur; /* index of current nargin *
int | marginsz; /* actual number of nested margins */
size_t of fset; /* default offset to visible page */
int pardist; /* vert. space before par., unit: [v] */
b
#defi ne DECL_ARGS struct ternp *p, \

struct mternp *nt, \

const struct man_node *n, \
const struct man_neta *neta
const struct man_neta *m

struct termact {

new usr/ src/ cnd/ mandoc/ man_term c

#def i
}s

stati
stati

stati
stati
stati
stati
stati

stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati

stati
stati
stati
stati
stati
stati
stati

stati

ne

O

OO0O00000000000O000O00O000 OO0 00

0O0O0O0000

O

int (*
voi d (*
int

MAN_NOTEXT (

int
size_t

voi d
voi d

pre) (DECL_ARGS) ;

post) (DECL_. ARGS)

flags;

1 << 0) /* Never has text children. */

a2wi dt h(const struct ternp *,
a2hei ght (const struct ternp *,

const char *);
const char *);

print_man_nodel i st (DECL_ARGS) ;
print_man _node(DECL_ARGS) ;
print_man_head(struct ternp *
print_man_foot(struct ternp *
print_bvspace(struct ternp *,
const struct nan_node *,
const struct man_node *);

const void *);
const void *);

int);

pre_B(DECL_ARGS) ;
pre_HP(DECL_ARGS,) ;
pre_I| (DECL_ARGS) ;

pre_I P(DECL_ARGS) ;
pre_OP(DECL_ARGS) ;
pre_PD(DECL_ARGS) ;
pre_PP(DECL_ARGS) ;
pre_RS(DECL_ARGS) ;
pre_SH(DECL_ARGS) ;
pre_SS(DECL_ARGS) ;
pre_TP(DECL_ARGS) ;
pre_UR(DECL_ARGS) ;
pre_al ternate(DECL _ARGS);
pre_ft (DECL_ARGS) ;
pre_i gn(DECL AR(B)
pre_i n(DECL_ARGS) ;
pre_literal (DECL_. ARGS)
pre_sp(DECL_ARGS) ;

post _|
post

| P(DECL_ARGS) ;
_HP(DECL_ARGS) ;
post _RS(DECL_ARGS) ;
post _SH(DECL_ARGS) ;
post _SS(DECL_ARGS) ;
post _TP(DECL_ARGS) ;
post _UR(DECL_ARGS) ;

const struct termact ternmacts[VAN MAX] = {

pre_sp, NULL, MAN_NOTEXT }, /* br */
NULL, NULL, O }, /* TH */

pre_SH, post_SH, 0}, /* SH */
pre_SS, post_SS, 0}, /* SS */
pre_TP, post_TP, 0 }, /* TP */
pre_PP, NULL, 0}, /* LP */

pre PP, NULL, O}, /* PP */
pre_PP, NULL, 0}, /* P */

pre_IP, post_IP, O}, /* IP*/
re_HP, post_HP, O}, /* HP */
NULL, NULL, O}, /* SM*/

pre B, NULL, 0}, /* SB */
pre_alternate, NULL, O}, /* Bl */
pre_alternate, NULL, O}, /* IB */
pre_alternate, NULL, O }, /* BR */
pre_alternate, NULL, O}, /* RB */
NULL, NULL, O}, /* R*/

pre_B, NULL, O } /* B */

pre I, NULL, O}, /* | */
pre_alternate, NULL, O}, /* IR */
pre_alternate, NULL, O}, /* R */

new usr/ src/ cnd/ mandoc/ man_termc 3 new usr/ src/ cnd/ mandoc/ man_termc
119 pre_ign, NULL, MAN_NOTEXT }, /* na */ 203 * Printing leading vertical space before a bl ock.
120 pre_sp, NULL, MAN _NOTEXT }, /* sp */ 204 * This is used for the paragraph nacros.
121 pre_literal, NULL, 0}, /* nf */ 205 * The rules are pretty sinple, since there’s very little nesting going
122 pre_literal, NULL, 0}, /* fi */ 206 * on here. Basically, if we're the first within another block (SS/ SH),
123 NULL, NULL, 0}, /* RE */ 207 * then don't emt vertical space. |f we are (RS), then do. |f not the
124 pre_RS, post_RS, 0}, /* RS */ 208 * first, print it.
125 pre_ign, NULL, O }, /* DT */ 209 */
126 pre_ign, NULL, O}, /* UC */ 210 static void
127 pre_PD, NULL, MAN_NOTEXT }, /* PD */ 211 print_bvspace(struct ternp *p, const struct nman_node *n, int pardist)
125 pre_ign, NULL, O}, /* PD */ 204 print_bvspace(struct ternp *p, const struct man_node *n)
128 pre_ign, NULL, O }, /* AT */ 212 {
129 pre_in, NULL, MAN NOTEXT }, /* in */ 213 int iE
130 pre_ft, NULL, MAN_NOTEXT }, /* ft */
131 pre_OP, NULL, 0}, /* OP */ 215 termnew n(p);
132 pre_literal, NULL, O}, /* EX */
133 pre_literal, NULL, 0}, /* EE */ 217 if (n->body && n->body->child)
134 pre_UR, post_UR 0}, /* UR*/ 218 if (MAN_TBL == n->body->chil d->type)
135 NULL, NULL, O}, /* UE */ 219 return;
136 };
221 if (MAN_ROOT == n->parent->type || MAN_RS != n->parent->tok)
222 if (NULL == n->prev)
223 return;
140 void
141 terminal _man(void *arg, const struct man *nan) 225 for (i =0; i < pardist; i++)
142 { 226 termvspace(p);
143 struct ternp *p; 227 }
144 const struct nan_node *n; ____unchanged_portion_onitted_
145 const struct man_neta *neta;
139 const struct man_neta *m
146 struct nternp nt; 248 /* ARGSUSED */
249 static int
148 p = (struct ternp *)arg; 250 pre_literal (DECL_ARGS)
251 {
150 if (0 == p->defindent)
151 p- >defindent = 7; 253 termnew n(p);
153 p->overstep = O; 255 if (MAN.nf == n->tok || MAN_EX == n->tok)
154 p- >maxr mar gi n = p->defrmargin; 246 if (MAN_nf == n->tok)
155 p->tabwidth = termlen(p, 5); 256 mt->f1 | = MANT_LI TERAL;
257 el se
157 if (NULL == p->syntab) 258 mt->fl & ~MANT_LI TERAL;
158 p->syntab = nthars_alloc();
260 /*
160 n = man_node(man); 261 * Unlike .1P and . TP, .HP does not have a HEAD.
161 nmeta = man_net a(man) ; 262 * So in case a second call to termflushln() is needed,
155 m = man_net a(man) ; 263 * indentation has to be set up explicitly.
264 */
163 term begi n(p, print_man_head, print_man_foot, neta); 265 if (MAN_HP == n->parent->tok && p->rnmargin < p->maxrmargin) {
157 termbegin(p, print_nman_head, print_man_foot, m; 266 p->of fset = p->rnargin;
164 p->flags | = TERWP_NGCSPACE; 267 p->rmargi n = p->nexrmargin;
268 p->trail space = 0;
166 menmset (&, 0, sizeof(struct nternp)); 269 p->fl ags & ~TERMP_NOBREAK;
259 p->flags & ~(TERVP_NOBREAK | TERWP_TWOSPACE) ;
168 nt.lmargin[nt.lmargincur] = termlen(p, p->defindent); 270 p->flags | = TERMP_NGCSPACE;
169 nt.offset = termlen(p, p->defindent); 271 }
170 nt.pardist = 1;
273 return(0);
172 if (n->child) 274 }
173 print_man_nodelist(p, &, n->child, neta);
166 print_man_nodel i st(p, &, n->child, m; 276 /* ARGSUSED */
277 static int
175 termend(p); 278 pre_PD(DECL_ARGS)
176 } 279 {
____unchanged_portion_onitted_
281 n = n->child;
202 /* 282 if (0 ==n) {

new usr/ src/ cnd/ mandoc/ man_term c

283 nt ->pardi st = 1;

284 return(0);

285 }

286 assert (MAN_TEXT == n->type);
287 nt - >pardi st = atoi (n >str| ng)
288 return(0);

289 }

291 /* ARGSUSED */
292 static int
293 pre_al t er nat e(DECL_ARGS)

294 {

295 enum t er nf ont font[2];

296 const struct nan_node *nn;

297 int savelit, i;
299 switch (n- >tok) {

300 case (MAN_RB):

301 font O] = TERMFONT_NONE;

302 font[1] = TERMFONT_BOLD,

303 br eak;

304 case (MAN_RI):

305 font[0] = TERMFONT_NONE;

306 font[1] = TERVFONT_UNDER;

307 br eak;

308 case (MAN_BR):

309 font[0] = TERVMFONT_BOLD;

310 font[1] = TERMFONT_NONE;

311 br eak;

312 case (MAN_BI):

313 font[0] = TERVMFONT BOLD;

314 font[1] = TERMFONT_UNDER;

315 br eak;

316 case (MANLIR):

317 font[0] = TERMFONT_UNDER;

318 font[1] = TERMFONT_NONE;

319 br eak;

320 case (MAN_IB):

321 font[0] = TERMFONT_UNDER;

322 font[1] = TERMFONT_BOLD,

323 br eak;

324 defaul t:

325 abort();

326 1

328 savel it = MANT_LI TERAL & nt->fl;

329 nt->f1 & ~MANT_LI TERAL;

331 for (i =0, nn =n->child; nn; nn = nn->next,
332 termfontrepl (p, font[i]);

333 if (savelit & & NULL == nn->next)
334 m->fl | = MANT_LI TERAL;
335 print_man_node(p, nt, nn, neta);
310 print_man_node(p, nt, nn, m;
336 i1 f (nn->next)

337 p->fl ags | = TERMP_NOSPACE;
338 1

340 return(0);

341 }

__unchanged_portion_onitted_

462 /* ARGSUSED */
463 static int
464 pre_sp(DECL_ARGS)

new usr/ src/ cnd/ mandoc/ man_term c

465 {

466 char *s;

467 size_t i, len;
468 int neg;

470 if ((NULL == n->prev & n->parent)) {
471 svmtch (n- >parent >t ok) {
472 case (MANS

473 /¥ FALLTHROUGH */
474 case (MAN_SS):

475 | * FALLTHRCUGH */

476 case (MAN_PP):

477 /* FALLTHROUGH */
478 case (MAN_LP):

479 /* FALLTHROUGH */

480 case (MAN_P):

481 /* FALLTHROUGH */
444 if (MAN_SS == n->parent - >t ok)
482 return(0);

483 defaul t:

484 br eak;

446 if (MAN_SH == n->parent - >t ok)
447 return(0);

485 }

486 }

488 neg =

489 swtch (n >t ok) {

490 case (MAN br):

491 len = 0;

492 br eak;

493 defaul t:

494 if (NULL == n- >child) {
495 I en 1;

455 I en = n->chi I d ? a2hei ght (p,
496 br eak;

497 }

498 s = n->child->string;
499 if (- == s){

500 neg

501 S++,

502 }

503 I en = a2hei ght(p, s);
504 br eak;

505 }

507 if (0 ==1len)

508 termnew n(p);

509 else if (neg)

510 p- >ski pvsp += len;

511 el se

512 for (i =0; i <len; i++)
513 term vspace(p)

515 return(0);
516 }

519 /* ARGSUSED */

520 static int

521 pre_ HP(DECL_ARGS)

522 {

523 size_t | en, one;
524 int ival;

525 const struct man_node *nn;

n->chi | d->string)

new usr/ src/ cnd/ mandoc/ man_term c

527 switch (n->type) {

528 case (MAN_BLOCK) :

529 print_bvspace(p, n, nt->pardist);
478 print_bvspace(p, n);

530 return(1);

531 case (MAN_BODY) :

481 p->flags | = TERMP_NOBREAK;

482 p->flags | = TERVP_TWOSPACE;

532 br eak;

533 defaul t:

534 return(0);

535 }

537 if (! (MANT_LITERAL & nt->fl)) {

538 p->fTags | = TERMP_NOBREAK;

539 p->trail space = 2;

540 }

542 len = nt->l margin[nt->l margincur];

543 ival = -1;

545 /* Calculate offset. */

547 if (NULL !'= (nn = n->parent->head->child))
548 if ((ival = a2width(p, nn->string)) >= 0)
549 len = (size_t)ival;

551 one = termlen(p, 1);

552 if (len < one)

553 len = one;

555 p->of fset = nt->of fset;

556 p->rmargin = nt->offset + len;

558 if (ival >=0)

559 nt->l margi n[nt->l margi ncur] = (size_t)ival;
561 return(1);

562 }

565 /* ARGSUSED */
566 static void
567 post_HP(DECL_ARGS)

568 {

570 switch (n->type) {

517 case (MAN_BLOCK) :

518 term flushln(p);

519 br eak;

571 case (MAN_BQODY):

572 term new n(p);

521 term flushln(p);

573 p->flags & ~TERMP_NOBREAK;
574 p->trail space = O;

523 p->fl ags &= ~TERWP_TWOSPACE;
575 p->of fset = nt->of fset;

576 p->rmargi n = p->naxrmargin;
577 br eak;

578 defaul t:

579 br eak;

580

581 }

584 /* ARGSUSED */

new usr/ src/ cnd/ mandoc/ man_term c

585 static int
586 pre_PP(DECL_ARGS)

587 {

589 switch (n->type) {

590 case (MAN_BLOCK) :

591 nt->lmargin[nt->margincur] = termlen(p, p->defindent);
592 print_bvspace(p, n, nt->pardist);
541 print_bvspace(p, n);

593 br eak;

594 defaul t:

595 p->of fset = nt->of fset;

596 br eak;

597 }

599 return(MAN_HEAD ! = n->type);

600 }

603 /* ARGSUSED */

604 static int

605 pre_| P(DECL_ARGS)

606 {

607 const struct nan_node *nn;

608 size_t | en;

609 int savelit, ival;
611 switch (n->type)

612 case (MAN_BQODY):

613 p->fl ags | = TERMP_NGSPACE;

614 br eak;

615 case (MAN_HEAD) :

616 p->flags | = TERVP_NOBREAK;

617 p->trail space = 1;

618 br eak;

619 case (MAN_BLOCK) :

620 print_bvspace(p, n, nt->pardist);
568 print_bvspace(p, n);

621 /* FALLTHROUGH */

622 defaul t:

623 return(l);

624 }

626 len = nt->l margin[nt->l margincur];

627 ival = -1;

629 /* Calculate the offset fromthe optional second argunent. */
630 if (NULL !'= (nn = n->parent->head->child))
631 if (NULL !'= (nn = nn->next))

632 if ((ival = a2width(p, nn->string)) >= 0)
633 len = (size_t)ival;
635 switch (n->type) {

636 case (MAN_HEAD):

637 /* Handl e zero-wi dth | engths. */
638 if (0 ==1len)

639 len = termlen(p, 1);

641 p->of f set = nt->of f set;

642 p->margin = m->of fset + len;

643 1f (ival < 0)

644 br eak;

646 /* Set the saved left-margin. */
647 nt->l margi n[nmt->l margi ncur] = (size_t)ival;

new usr/ src/ cnd/ mandoc/ man_term c

649 savelit = MANT_LI TERAL & nt->fl;
650 nmt->fl & ~MANT_LI TERAL;

652 if (n->child)

653 print_man_node(p, nt, n->child,
601 print_man_node(p, nt, n->child,
655 if (savelit)

656 nmt->f1 | = MANT_LI TERAL;
658 return(0);

659 case (MAN_BODY):

660 p->of fset = m >of fset + len;
661 p->rmargin = p->maxrmargin;

662 br eak;

663 defaul t:

664 br eak;

665 }

667 return(1);

668 }

671 /* ARGSUSED */

672 static void

673 post _| P(DECL_ARGS)

674 {

676 switch (n- >type) {

677 case (MAN_HEAD):

678 termfl ushl n(p);

679 p->flags & ~TERVP_NOBREAK;
680 p->trail space = O;

681 p->rmargi n = p->maxrmargin;

682 br eak;

683 case (MAN_BODY):

684 term.new n(p);

685 p->of f set = nt->of f set;

686 break;

687 defaul t:

688 br eak;

689 }

690 }

693 /* ARGSUSED */

694 static int

695 pre TP(DECL_ARGS)

696 {

697 const struct man_node *nn;

698 size_t | en;

699 int savelit, ival;
701 switch (n->type) {

702 case (MAN_HEAD):

703 p->fl ags | = TERVMP_NOBREAK;

704 p->trail space = 1;

705 br eak;

706 case (MANiBCDY):

707 p->fl ags | = TERMP_NOSPACE;

708 br eak;

709 case (MAN_BLOCK):

710 print_bvspace(p, n, nt->pardist);
655 print_bvspace(p, n);

711 /* FALLTHROUGH */

712 defaul t:

neta);

new usr/ src/ cnd/ mandoc/ man_term c

713
714

716
717

719

721
722
723
724

726
727
728
729
730

732
733

735
736

738
739
740
741
686

743
744
745
746

748
749
750
751
752
753
754
755
756
757

759
760

763
764
765

768
769
770
714
715
716
771
772
773
774

/*

return(1);

}

len = (size_t)nt->l margin[nt->lmargincur];
ival = -1;

/* Calculate offset. */

if (NULL !'= (nn = n->parent->head->child))
if (nn->string & & nn->parent->line == nn->line)
if ((tval = a2width(p, nn->string)) >= 0)
len = (size_t)ival;

switch (n->type) {
case (MAN_HEAD) :
/* Handl e zero-length properly. */
if (0 ==1len)
len = termlen(p, 1);

p->of fset = nt->of fset;
p->rmargin = nt->offset + len;

savelit = MANT_LITERAL & nt->fl;
nt->fl & ~MANT_LI TERAL;

/* Don't print sanme-line elenments. */
for (nn = n->child; nn; nn = nn->next)
if (nn->line > n->line)
print_man_node(p, nt, nn, neta);
print_man_node(p, nt, nn, ;

if (savelit)
nt->f1 | = MANT_LI TERAL;
if (ival >= 0)

nt->l margi n[nt->lmargincur] = (size_t)ival;

return(0);
case (MAN_BQODY):
p->of fset = m >of fset + len;
p->rmargin = p->maxrmargin;
p- >tra||space = 0;
p->fl ags & ~TERMP_NOBREAK;
br eak;
defaul t:
br eak;
}

return(1);

ARGSUSED */

static void
post _TP(DECL_ARGS)
766 {

switch (n->type) {

case (MAN_HEAD):
term flushln(p);
p->flags & ~TER|\/P NOBREAK;
p->fl ags & ~TERMP_TWOSPACE;
p->rmargin = p->naxrmargin;
br eak;

case (MAN_BODY) :
term newl n(p)
p->of fset = nt->of fset;

10

new usr/ src/ cnd/ mandoc/ man_term c

775 br eak;
776 defaul t:

777 br eak;
778 }

779 }

782 |* ARGSUSED */
783 static int
784 pre_SS(DECL_ARGS)

785 {

786 int i;

788 switch (n->type) {

789 case (MAN_BLOCK) :

790 nt->fl & ~MANT_LI TERAL;

791 nt->l margi n[nt->l margi ncur] = termlen(p, p->defindent);
792 nt->of fset = termlen(p, p->defindent);
793 /* If following a prior errpty‘SS‘, no vspace.
794 if (n->prev && I\/AN_SS == n->prev- >t ok)
795 if (NULL == n->prev->body->chil d)
796 br eak;

797 if (NULL == n->prev)

798 break

799 for (i =0; i < m->pardist; i++)

800 term_vspace(p);

801 br eak;

802 case (MAN_HEAD) :

803 termfontrepl (p, TERVMFONT BG_D)

804 p->offset = termlen(p, 3

747 p->offset = termlen(p, p- Sdef i ndent/ 2);
805 br eak;

806 case (MAN_BODY):

807 p->of f set = nt->of f set;

808 br eak;

809 defaul t:

810 br eak;

811 }

813 return(1);

814 }

__unchanged_portion_omtted_

835 /* ARGSUSED */
836 static int
837 pre_SH(DECL_ARGS)

838 {

839 int i;

841 switch (n->type) {

842 case (MAN_BLOCK) :

843 nt->fl & ~MANT_LI TERAL;

844 nt-> margi n[nmt-> nargincur] = termlen(p, p->defindent);
845 nt->of fset = term.len(p, p->defindent);

846 /* If following a prior enpty ‘SH, no vspace.
847 if (n->prev & MAN_SH == n->prev- >t ok)

848 if (NULL == n->prev->body->child)

849 br eak;

850 /* If the first nacro, no vspae. */

851 if (NULL == n->prev)

852 br eak;

853 for (i =0; i < nm->pardist; i++)

854 term.vspace(p);

855 br eak;

856 case (MAN_HEAD) :

11

new usr/ src/ cnd/ mandoc/ man_term c

857 termfontrepl (p, TERVFONT_BOLD);
858 p->of fset = 0O;

859 br eak;

860 case (NAN_B(.DY):

861 p->of f set = nt->of f set;
862 br eak;

863 defaul t:

864 br eak;

865 }

867 return(1);

868 }

__unchanged_portion_omtted_

952 /* ARGSUSED */
953 static int

954 pr e_UR(DECL_ARGS)
955 {

957 return (MAN_HEAD ! = n->type);
958 }

960 /* ARGSUSED */
961 static void
962 post _UR(DECL_ARGS)

963 {

965 if (MAN_BLOCK != n->type)

966 return;

968 termword(p, "<");

969 p->flags |_ TERMP_NOSPACE;

971 if (NULL !'= n->child->child)

972 print_man_node(p, nt, n->child->child, neta);
974 p->fl ags | = TERWP_NCSPACE;

975 termword(p, ">");

976 }

978 static void
979 print_nman_node(DECL_ARGS)

980 {

981 size_t rm rmax;

982 int c;

984 switch (n->type) {

985 case(MAN_TEXT) :

986 /*

987 * |f we have a blank line, output a vertical

988 * |f we have a space as the first character,

989 * before printing the line' s data.

990 *

991 if ("\0 == *n->string) {

992 termvspace(p);

993 return;

994 } elseif (7 ' == *n->string & MAN_LI NE & n->fl ags)
995 termnew n(p);

997 termword(p, n->string);

998 goto out;

914 /*

915 * |f we're in aliteral context, nmake sure that words
916 * togehter on the sane line stay together. is i
917 * POST-printing call, so we check the NEXT word.

12

new usr/ src/ cnd/ mandoc/ man_term c

918
919
920
921
922
923
924
925
926
927
928
929
930
931

933

934

935
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014

1016
1017

1019
1020
1021

957

1023
1024
960

1026
1027

963
1028
1029

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

out :

* -man doesn’'t have nested macros, we don’t need to be
* nmore specific than this.
*/

if (MANT_LITERAL & nt->fl && ! (TERVP_NOBREAK & p->fl ags)

NULL == n->next
n->next->line > n->line)) {

rm= p->rmargin;

rmax = p->maxrmargin;

p->rmargin = p->maxrnmargi n = TERM MAXMARG N;

p->fl ags | = TERMP_NGOSPACE;

term flushl n(p);

p->rmargin = rm

p- >maxrmargin = rmax;

}

if (MAN_ECS & n->fl ags)
p->flags | = TERMP_SENTENCE;
return;
case (MAN_EQN):
termeqn(p, n->eqn);
return;
case (MAN_TBL):
/*

* Tables are preceded by a newline. Then process a
* table line, which will cause line term nation,
*/

if (TBL_SPAN_FI RST & n->span->fl ags)
termnew n(p);
termthbl (p, n->span);
return;
defaul t:

}

if (! (MAN_NOTEXT & termacts[n->tok].flags))
term fontrepl (p, TERVFONT_NONE);

break;

-0

=1;
f (termacts[n->tok].pre
¢ = (*termacts[n->tok].pre)(p, nt, n, neta);
c = (*termacts[n->tok].pre)(p, nt, n, m;

if (c & n->child)
print_nman_nodelist(p, nt, n->child, neta);
print_man_nodelist(p, nt, n->child, m;

if (termacts[n->tok].post)
(*terrmcts[n >t ok] . post) (p, nmt, n, rreta);
(*termacts[n->tok].post)(p, nt, n,

if (! (MAN_NOTEXT & termacts[n->tok]. flags))
termfontrepl (p, TERVFONT_NONE);

*

* |f we're in a literal context, make sure that words

* together on the sane |line stay together. This is a

* POST-printing call, so we check the NEXT word. Since
* -man doesn’t have nested macros, we don’t need to be
*

*

f

nore specific than this.

(MANT LITERAL & nt->fl && ! (TERVP_NOBREAK & p->flags) &&
(NULL == n->next || n->next->line > n->line)) {

rm= p—>rmargi n;

rmax = p- >mixrmargi n;

p->rmargin = p->maxrmargi n = TERM_ MAXMARG N,

p->fl ags | = TERVMP_NGOSPACE;

13

new usr/ src/ cnd/ mandoc/ man_term c

1045 if (NULL !'= n->string & '\0' != *n->string)

1046 term flushl n(p);

1047 el se

1048 termnew n(p);

1049 if (rm< rmax && n->parent->tok == MAN_HP) {

1050 p->offset = rm

1051 p->rmargin = rnex;

1052 } else

1053 p->rmargin = rm

1054 p- >maxrmargin = rmax;

1055 1

1056 if (MAN_ECS & n->fl ags)

1057 p->flags | = TERVP_SENTENCE;

1058 }

1061 static void

1062 print_man_nodel i st (DECL_ARGCS)

1063 {

1065 print_man_node(p, nt, n, neta);
976 print_man_node(p, m, n, m;

1066 1f (! n->next)

1067 return;

1068 print_man_nodel i st(p, nt, n->next, neta);
979 print_man_nodelist(p, nt, n->next, m;

1069 }

1072 static void

1073 print_man_foot(struct ternmp *p, const void *arg)

1074 {

1075 char title[BUFSI Z];

1076 size_t dat el en;

1077 const struct man_neta *neta;

1079 nmeta = (const struct nman_neta *)arg;

1080 assert(nmeta->title);

1081 assert (et a->nsec);

1082 assert (neta->date);

1084 termfontrepl (p, TERMFONT_NONE);

1086 term vspace(p);

1088 /*

1089 * Tenporary, undocunented option to imitate ndoc(7) output.
1090 * In the bottomright corner, use the source instead of
1091 * the title.

1092 */

1094 if (! p->ndocstyle) {

1095 termvspace(p);

1096 termvspace(p);

1097 snprintf(tit I e, BUFSIZ, "% (%)", neta->title, neta->nsec);
1098 } else if (neta- >source)

1099 strlcpy(title, meta->source, BUFSIZ);

1100 } else {

1101 title[O] ="'\0";

1102 }

1103 datelen = termstrlen(p, nmeta->date);

1105 /* Bottom|eft corner: manual source. */

1107 p->flags | = TERVP_NOSPACE | TERMP_NOBREAK:

1108 p->trail space = 1;

new usr/ src/ cnd/ mandoc/ man_termc

1109 p->of fset = 0;

1110 p->rmargin = (p->maxrmargin - datelen + termlen(p, 1)) / 2;
1112 if (meta->source)

1113 termword(p, meta->source);

1114 term flushl n(p);

1116 /* At the bottomin the mddle: nanual date. */
1118 p->flags | = TERVMP_NOSPACE;

1119 p->of fset = p->rmargin;

1120 p->rmargin = p->maxrnmargin - termstrlen(p, title);
1121 I1f (p->offset + datelen >= p->rmargin)

1122 p->rmargin = p->of fset + datelen;

1124 termword(p, neta->date);

1125 termflushln(p);

1127 /* Bottomright corner: manual title and section. */
1129 p->flags & ~TERMP_NOBREAK;

1130 p->flags | = TERWP_NOSPACE;

1131 p->trail space = 0;

1132 p->of fset = p->rmargin;

1133 p->rmargin = p->mexrnargin;

1135 termword(p, title);

1136 termflushln(p);

1137 }

1140 static void

1141 print_man_head(struct ternp *p, const void *arg)

1142 {

1143 char buf [BUFSI Z], title[BUFSI Z];

1144 size_t buflen, titlen;

1145 const struct man_neta *neta;

1054 const struct man_neta *m

1147 meta = (const struct man_neta *)arg;

1148 assert(neta->title);

1149 assert (et a->nsec) ;

1056 m = (const struct man_neta *)arg;

1057 assert(m>title);

1058 assert (m >nsec) ;

1151 if (meta->vol)

1152 strlcpy(buf, neta->vol, BUFSIZ);

1060 if (m>vol)

1061 strlcpy(buf, m>vol, BUFSIZ);

1153 el se

1154 buf[0] = '\0";

1155 buflen = termstrlen(p, buf);

1157 /* Top left corner: manual title and section. */
1159 snprintf(title, BUFSIZ, "%(%)", neta->title, neta->nsec);
1068 snprintf(title, BUFSIZ, "%(%)", m>title, m>nsec);
1160 titlen = termstrlen(p, title);

1162 p->flags | = TERVP_NOBREAK | TERMP_NOSPACE;

1163 p->trail space = 1;

1164 p->of fset = 0;

1165 p->margin = 2 * (titlen+l) + buflen < p->naxrnargin ?
1166 (p->maxrmargin -

1167 termstrlen(p, buf) + termlen(p, 1)) / 2 :

new usr/ src/ cnd/ mandoc/ man_termc

1168 p->maxrmargi n - buflen;

1170 termword(p, title);

1171 termflushln(p);

1173 /* At the top in the mddle: manual volume. */
1175 p->flags | = TERVP_NOSPACE;

1176 p->of fset = p->rmargin;

1177 p->margin = p->offset + buflen + titlen < p->naxrmargin ?
1178 p->maxrmargin - titlen : p->maxrmargin;

1180 termword(p, buf);

1181 term flushln(p);

1183 /* Top right corner: title and section, again. */
1185 p->flags & ~TERWP_NOBREAK;

1186 p->trail space = 0;

1187 I1f (p->nmargin + titlen <= p->maxrnargin) {

1188 p->flags | = TERVMP_NOSPACE;

1189 p->of fset = p->rmargin;

1190 p->rmargin = p->maxrmargin;

1191 termword(p, title);

1192 term flushln(p);

1193 }

1195 p->fl ags & ~TERMP_NOSPACE;

1196 p->of fset = 0;

1197 p->rmargi n = p->maxrnargin;

1199 /*

1200 * Goff prints three blank lines before the content.
1201 * Do the sane, except in the tenporary, undocunented
1202 * node imtating ndoc(7) output.

1203 */

1205 termvspace(p);

1206 if (! p->ndocstyle) {

1207 termvspace(p);

1208 termvspace(p);

1209

1210 }

__unchanged_portion_onitted_

new usr/ src/ cnd/ mandoc/ man_val i date. c 1 new usr/ src/ cnd/ mandoc/ man_val i date. c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
12357 Wed Jul 30 20:55:08 2014 58 static int post _AT(CHKARGS) ;
new usr/src/ cnd/ mandoc/ man_val i date. c 59 static int post _| P(CHKARGS) ;
5051 inport ndocnmi-1.12.3 60 static int post _vs(CHKARGS) ;
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con» 61 static int post _fi (CHKARGS) ;
Approved by: TBD 62 static int post _f t (CHKARGS) ;
LR R R EEEEEEEEE SRS RS RS SRS RS RS E R EE R R RREERREREEEEEEEEEESEESESE] 63 St at| Cc Int post_nf(cl_"(AR(S)
1/* $ld: nman_validate.c,v 1.86 2013/ 10/17 20:54:58 schwarze Exp $ */ 64 static int post_sec(CHKARGS);
1/* $Id: nman_validate.c,v 1.80 2012/01/03 15:16: 24 kristaps Exp $ */ 65 static int post _TH(CHKARGS) ;
2 /* 66 static int post _UC(CHKARGS) ;
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v> 67 static int pre_sec(CHKARGS) ;
4 * Copyright (c) 2010, 2012, 2013 Ingo Schwarze <schwarze@penbsd. org>
4 * Copyright (c) 2010 Ingo Schwarze <schwarze@penbsd. or g> 69 static v_check posts_at[] = { post_AT, NULL };
5 * 70 static v_check posts_br[] = { post_vs, check_eqO, NULL };
6 * Permssion to use, copy, nodify, and distribute this software for any 71 static v_check posts_eqO[] = { check_eqO, NULL };
7 * purpose with or without fee is hereby granted, provided that the above 72 static v_check posts_eq2[] = { check_eq2, NULL };
8 * copyright notice and this perm ssion notice appear in all copies. 73 static v_check posts_fi[] = { check_eqO, post_fi, NULL };
9 * 74 static v_check posts_ft[] = { post_ft, NULL };
10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES 75 static v_check posts_ip[] = { post _ IP NULL };
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES CF 76 static v_check posts_lel[] { check i el, NULL };
12 * MERCHANTABI LI TY AND FI TNESS. | N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR 77 static v_check posts_nf[] = { check_eq0, post_nf, NULL };
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES 78 static v_check posts_par|[] { check_par, NULL };
14 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN 79 static v_check posts part[] = { check part, NULL };
15 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SING OQUT OF 80 static v_check posts_sec[] = { post_sec, NULL }s
16 * OR I N CONNECTION W TH THE USE OR PERFORMANCE OF THI S SOFTWARE. 81 static v_check posts_sp[] = { post _vs, check Iel NULL };
17 */ 82 static v_check posts_th[] = { check_ge2, check_| Ie5 post _TH, NULL };
18 #ifdef HAVE_CONFI G H 83 static v_check posts_uc[] = { post_UC, NULL };
19 #include "config.h" 84 static v_check posts_ur[] = { check_head1l, check _part, NULL };
20 #endif 85 static v_check pres_sec[] = { pre_sec, NULL };
22 #include <sys/types. h> 87 static const struct man_valid nan _valids[MAN_MAX] = {
88 NULL, posts_br™}, /* br
24 #include <assert.h> 89 NULL, posts_th '}, /* TH */
25 #include <ctype. h> 90 pres_sec, posts_sec }, /* SH */
26 #include <errno. h> 91 pres_sec, posts_sec }, /* SS */
27 #include <limts. h> 92 NULL, NULL }, /* TP */
28 #include <stdarg. h> 93 NULL, posts_par }, /* LP */
29 #include <stdlib.h> 94 NULL, posts_par }, /* PP */
30 #include <string. h> 95 NULL, posts_par }, /* P */
31 #include <tine.h> 96 NULL, posts_ip }, /* IP */
91 NULL, NULL }, /* IP */
33 #include "man. h" 97 NULL, NULL }, /* HP */
34 #include "mandoc. h" 98 NULL, NULL }, /* SM*/
35 #include "libnan. h" 99 NULL, NULL }, /* SB */
36 #include "libnmandoc. h" 100 NULL, NULL }, /* Bl */
101 NULL, NULL }, /* IB */
38 #define CHKARGS struct man *man, struct man_node *n 102 NULL, NULL }, /* BR */
38 #defi ne CHKARGS struct man *m struct nan_node *n 103 NULL, NULL }, /* RB */
104 NULL, NULL }, /* R */
40 typedef int (*v_check) (CHKARGS) ; 105 NULL, NULL }, /* B */
106 NULL, NULL }, /=* 1 */
42 struct nman_valid { 107 NULL, NULL }, /* IR */
43 v_check *pres; 108 NULL, NULL }, /* R */
44 v_check *posts; 109 NULL, posts_eqO }, /* na */
45 }; 110 NULL, posts_sp }, /* sp */
111 NULL, posts_nf }, /* nf */
47 static int check_eq0(CHKARGS) ; 112 NULL, posts_fi }, /* fi */
48 static int check_eq2(CHKARGS) ; 113 NULL, NULL }, /* RE */
49 static int check_| e1(CHKARGS) ; 114 NULL, posts_part }, /* RS */
50 static int check_ge2(CHKARGS) ; 115 NULL, NULL }, /* DT */
51 static int check_| e5(CHKARGS) ; 116 NULL, posts_uc }, /* UC */
52 static int check headl(G-IKARGS) 117 NULL, posts_lel }, /* PD */
53 static int check_par (CHKARGS) ; 112 NULL, NULL }, /* PD */
54 static int check part(CHKARGS) 118 NULL, posts_at }, /* AT */
55 static int check_r oot (CHKARGS) ; 119 NULL, NULL }, /* in */
56 static void check_t ext (CHKARGS) ; 120 NULL, posts_ft }, /* ft */

new usr/src/ cnd/ mandoc/ man_val i date. c

121
122
123
124
125
126 };

129 int

130 man_val i
121 man_val i
131 {

132

134
135
136
137
138
139
140
141
142
143
144
145

147
148
149
150
141
151
152
153 }

156 int

157 man_val i

148 man_val i
{

159

161
152
162
163
154

165
156
166
167
158
168
169
170
161
171
172
173
174
175
176
177

{ NULL, posts_eq2 }, /* OP */
{ NULL, posts_nf }, /* EX */
{ NULL, posts_fi }, /* EE */
{ NULL, posts_ur }, /* UR */
{ NULL, NULL }, /* UE */

d_pre(struct nman *nman, struct man_node *n)
d_pre(struct man *m struct nman_node *n)

v_check *cp;

switch (n->type) {
case (MAN_TEXT):
/* FALLTHROUGH */
case (MAN_ROOT) :
/* FALLTHROUGH */
case (MAN_EQN):
/* FALLTHROUGH */
case (MAN_TBL):
return(l);
defaul t:
br eak;

if (NULL == (cp = man_valids[n->tok].pres))
return(1);
for (; *cp; cp++)
if (! (*cp)(man, n))
if (! (*cp)(m n))
return(0);
return(1);

d_post (struct man *nan)
d_post(struct man *m

v_check *cp;

if (MAN_VALID & man->| ast - >f| ags)

if (MAN_VALID & m >l ast->fl ags)
return(1);

man- >l ast - >fl ags | = MAN_VALI D;

m >l ast->flags | = MAN_VALI D;

switch (man->| ast->type) {
switch (m>last->type) {
case (MAN_TEXT):
check_t ext (man, nan->|ast);
check_text(m m>last);
return(1);
case (MAN_ROOT) :
return(check_root (man, man->last));
return(check_root(m m>last));
case (MAN_EQN):
/* FALLTHROUGH */
case (MAN_TBL):
return(1);
defaul t:
br eak;

new usr/src/ cnd/ mandoc/ man_val i date. c

179
170
180
181
182
173
183

185
186 }

if (NULL == (cp = man_val i ds[man->| ast - >t ok] . posts))

if (NULL == (cp = man_val i ds[m >l ast->t ok] . posts))

return(1);
for (; *cp; cp++
if (! (*cp)(man, man->last))
if (! (*cp)(m m>last))
return(0);

return(1);

189 static int
190 check_r oot (CHKARGS)

191 {

193
194
195
196
184
185
186
187

198
199
189
190

201
202
192
193
203
204
205
195
196

207
208
209
210

212
213
214
215
203
204
205
206
216

218
219 }

if (MAN_BLINE & man->fl ags)

man_nnmsg(man, n, MANDOCERR_ SCOPEEXI T) ;

else if (MAN_ELINE & man->fl ags)

man_nmsg(man, n, MANDOCERR _SCOPEEXI T) ;

if (MAN_BLINE & m >fl ags)

man_nnsg(m n, MANDOCERR_SCOPEEXI T);
else if (MAN_ELINE & m >fl ags)

man_nnsg(m n, MANDOCERR_SCOPEEXI T) ;

man- >f | ags &= ~MAN_BLI NE;
man- >f | ags & ~MAN_ELI NE;
m >f| ags & ~MAN_BLI NE;
m >fl ags & ~MAN_ELI NE;

if (NULL == man->first->child) {

man_nnmsg(man, n, MANDOCERR NODOCBODY) ;

if (NULL == m>first->child) {
man_nnmsg(m n, MANDOCERR_NODOCBQODY) ;
return(0);

} else if (NULL == nan->neta.title) {
man_nnmsg(man, n, MANDOCERR NOTI TLE);

} else if (NULL == m>neta.title) {
man_nnsg(m n, MANDOCERR_NOTI TLE);

*
* |f atitle hasn't been set, do so now (by
* inplication, date and section also aren’t
*/

man->neta. title = mandoc_strdup(”unknown");

man- >nmet a. nsec = mandoc_strdup(”1");
man- >nmet a. dat e = mandoc_nor ndat e
(man- >parse, NULL, n->line,

n->pos) ;

m>neta.title = mandoc_strdup("”unknown");

m >net a. neec = nmandoc_strdup("1");
m >net a. dat e = mandoc_nor ndat e

(m >parse, NULL, n->line, n-

}

return(1);

221 static void
222 check_t ext (CHKARGS)

223 {
224

226
217
227

char *cp, *p;

if (MAN_LI TERAL & man->fl ags)
if (MAN_LITERAL & m >fl ags)
return;

>pos) ;

set).

new usr/src/ cnd/ mandoc/ man_val i date. c

229 cp = n->string;

230 for (p =cp; NULL !'= (p = strchr(p, '\t')); p++)
231 man_pnsg(man, n->line, (in

222 man_pnmsg(m n->line, (| nt)

232 }

234 #define | NEQ DEFI NE(x, ineq, nane) \
235 static int \
236 check_##name(CHKARGS) \

237 { \

238 if (n->nchild ineq (X)) \

239 return(1);

240 mandoc vmsg(MAND@ERR ARGCOUNT, man->parse, n->line,
231 mandoc_vmsg(MANDOCERR_ARGCOUNT, nt >parse, n->line,
241 "line arguments % % (have %d)"
242 #ineq, (x), n->nchild); \

243 return(1); \

244 }

246 | NEQ DEFI NE(0, ==, eq0)

247 | NEQ DEFI NE(2, ==,
248 | NEQ DEFINE(1, <=, |el)
249 | NEQ DEFI NE(2, >=,
250 | NEQ DEFI NE(5, <=, |e5)

252 static int
253 check_headl(CHKARGS)

254 {

256 if (MAN_HEAD == n->type && 1 != n->nchild)

257 mandoc_vmsg(MANDOCERR_ARGCOUNT, nan- >parse
258 n->pos, "line argurments eq 1 (have %d)"
260 return(1);

261 }

263 static int
264 post _ft (CHKARGS)

265 {

266 char *cp;

267 int ok;

269 if (0 == n->nchild)

270 return(1);

272 ok = 0;

273 cp = n->child->string;
274 switch (cp)

275 case ('1'):

276 /* FALLTHROUGH */
277 case ('2’) :

278 /* FALLTHROUGH */
279 case ('3):

280 /* FALLTHROUGH */
281 case ('4'):

282 /* FALLTHROUGH */
283 case ('I1):

284 /* FALLTHROUGH */
285 case ('P):

286 /* FALLTHROUGH */
287 case ('R):

288 if ("\0 == cp[l])
289 ok = 1;
290 break;

291 case ('B):

"[) (p - cp), MANDOCERR BADTAB) ;
(p - cp), MANDOCERR_BADTAB) ;

n->pos, \

n- >pos, \

n->lin
n- >nch| Id);

new usr/ src/ cnd/ mandoc/ man_val i date. c

292 if ("\0" ==cp[1] || (1" ==cp[1l] && '\0 == cp[2]))
293 ok = 1;

294 br eak;

295 case ('C):

296 if ("W ==cp[l] && '\0" == cp[2])

297 ok = 1;

298 br eak;

299 defaul t:

300 br eak;

301

303 if (0 == ok) {

304 mandoc_vnsg

305 (MANDOCERR_BADFONT, man- >par se,

285 (MANDOCERR_BADFONT, m >par se,

306 n->line, n->pos, "%", cp);

307 *cp = "\0;

308 }

310 if (1 < n->nchild)

311 mandoc_vnsg

312 (MANDOCERR_ARGCOUNT, nan->parse, n->line,
292 (NANDOCERR ARGCOUNT, m >parse, n->line,
313 n->pos, "want one child (have %) ",
314 n->nchil d);

316 return(1l);

317 }

319 static int
320 pre_sec(CHKARGS)

321 {

323 if (MAN_BLOCK == n->type)

324 man- >f | ags &= ~MAN_LI TERAL;
304 m >fl ags & ~MAN_LTTERAL;
325 return(1);

326 }

328 static int
329 post _sec(CHKARGS)

330 {

332 if (! (MAN_HEAD == n->type & & 0 == n->nchild))
333 return(l);

335 man_nnsg(man, n, MANDOCERR SYNTARGCOUNT) ;

315 man_nnsg(m n, MANDOCERR_SYNTARGCOUNT) ;

336 return(0);

337 }

339 static int
340 check_part (CHKARGS)

341 {

343 if (MAN_BODY == n->type && 0 == n->nchild)

344 mandoc rrsg(l\/ANDCX:ERR ARGCWARN, nan->parse, n->line,
324 mandoc_nsg(MANDOCERR _ ARGCWARN, m >par se, n- >l i ne,
345 n->pos, "“want children (have none)");
347 return(1);

348 }

351 static int
352 check_par (CHKARGS)

new usr/ src/ cnd/ mandoc/ man_val i date. c 7 new usr/ src/ cnd/ mandoc/ man_val i date. c
353 { 406 line = n->line;
407 pos = n->pos;
355 switch (n->type) { 408 man->nmeta.title = man->nmeta. vol = nman->neta.date =
356 case (MAN_BLOCK) : 409 man- >nmet a. nsec = man- >neta. source = NULL;
357 if (0 == n->body->nchild) 375 m>neta.title = m>nmeta.vol = m>neta.date =
358 man_node_del et e(man, n); 376 m >nmet a. nsec = m >neta. source = NULL;
338 man_node_del ete(m n);
359 br eak; 411 /* ->TITLE<- MSEC DATE SOURCE VOL */
360 case (MAN_BQODY):
361 if (0 == n->nchild) 413 n = n->child;
362 man_nnsg(man, n, MANDOCERR_| GNPAR) ; 414 if (n & n->string) {
342 man_nmsg(m n, MANDOCERR | GNPAR) ; 415 for (p = n->string; '\0 != *p; pt++) {
363 br eak; 416 /* Only warn about this once... */
364 case (MAN_HEAD) : 417 if (isalpha((unsigned char)*p) &&
365 if (n->nchild) 418 ! i supper((unsigned char)*p)) {
366 man_nnsg(man, n, MANDOCERR ARGSLOST) ; 419 man_nnmsg(man, n, MANDOCERR UPPERCASE) ;
346 man_nnmsg(m n, MANDOCERR_ARGSLOST); 386 man_nnmsg(m n, MANDOCERR_UPPERCASE) ;
367 br eak; 420 br eak;
368 defaul t: 421 }
369 br eak; 422 }
370 } 423 man->neta. title = mandoc_strdup(n->string);
390 m>neta.title = mandoc_strdup(n->string);
372 return(1); 424 } else
373 } 425 man->neta.title = mandoc_strdup("");
392 m>neta.title = mandoc_strdup("");
375 static int
376 post _I| P(CHKARGS) 427 /* TITLE ->MSEC<- DATE SOURCE VOL */
377 {
429 if (n)
379 switch (n->type) { 430 n = n->next;
380 case (MAN_BLOCK) : 431 if (n & n->string)
381 if (0 == n->head->nchild && 0 == n->body->nchi | d) 432 man- >met a. nsec = mandoc_st rdup(n->string);
382 man_node_del et e(man, n); 399 m >net a. neec = mandoc_strdup(n->string);
383 br eak; 433 el se
384 case (MAN_BODY) : 434 man- >nmet a. nsec = mandoc_strdup("");
385 if (0 == n->parent->head->nchild & 0 == n->nchild) 401 m >net a. nsec = mandoc_strdup("");
386 man_nnsg(man, n, MANDOCERR | GNPAR) ;
387 br eak; 436 /* TITLE MSEC - >DATE<- SOURCE VOL */
388 defaul t:
389 br eak; 438 if (n)
390 } 439 n = n->next;
391 return(1); 440 if (n & n->string & '\0" != n->string[0]) {
392 } 441 pos = n->pos;
442 man- >nmet a. dat e = mandoc_nor ndat e
394 static int 443 (man- >parse, n->string, line, pos);
395 post _TH(CHKARGS) 409 m >net a. dat e = nandoc_nor ndat e
396 { 410 (m >parse, n->string, line, pos);
397 const char *p; 444 } else
398 int line, pos; 445 man- >net a. dat e = mandoc_strdup("");
412 m >net a. date = mandoc_strdup("");
400 free(man->nmeta.title);
401 free(man->neta. vol) ; 447 /* TITLE MSEC DATE - >SOURCE<- VOL */
402 free(man->net a. source) ;
403 free(man- >nmet a. msec) ; 449 if (n & (n = n->next))
404 free(man->nmet a. date); 450 man- >net a. source = mandoc_strdup(n->string);
362 if (m>nmeta.title) 417 m >net a. sour ce = mandoc_st rdup(n->string);
363 free(m>neta.title);
364 if (m>neta.vol) 452 /* TITLE MSEC DATE SOQURCE ->VOL<- */
365 free(m>neta.vol); 453 /* |f mssing, use the default VOL nane for MSEC. */
366 if (m>neta.source)
367 free(m >neta. source); 455 if (n & (n = n->next))
368 if (m>nmeta. nsec) 456 man- >net a. vol = mandoc_strdup(n->string);
369 free(m >neta. nsec); 457 else if ("\0" != man->neta.nsec[0] &&
370 if (m>neta. date) 458 (NULL !'= (p = mandoc_a2nmsec(man->neta. nsec))))
371 free(m >neta. date); 459 man- >nmet a. vol = mandoc_strdup(p);
423 m >net a. vol = mandoc_strdup(n->string);

new usr/src/ cnd/ mandoc/ man_val i date. c

424 else if ("\0" !'= m>neta.nmsec[0] &&

425 (NULL !'= (p = mandoc_a2nmsec(m >neta. nsec))))
426 m >net a. vol = mandoc_strdup(p);

461 /*

462 * Renove the ‘TH node after we've processed it for our
463 * met a- dat a.

464 */

465 man_node_del et e(man, man- >l ast);

432 man_node_del ete(m m >l ast);

466 return(1);

467 }

469 static int
470 post _nf (CHKARGS)

471 {

473 if (MAN_LITERAL & man->fl ags)

474 man_nnmsg(man, n, MANDOCERR SCOPEREP) ;
440 if (MAN_LITERAL & m >fl ags)

441 man_nmsg(m n, MANDOCERR_SCOPEREP) ;
476 man->flags | = MAN_LI TERAL;

443 m>flags | = MAN_LT TERAL;

477 return(1);

478 }

480 static int
481 post _fi (CHKARGS)

482 {

484 if (! (MAN_LITERAL & man->flags))

485 man_nnmsg(man, n, MANDOCERR WNOSCOPE) ;
451 if (! (MAN_LITERAL & m >flags))

452 man_nmeg(m n, MANDOCERR_WNOSCOPE) ;
487 man- >f | ags & ~MAN_LI TERAL;

454 m >fl ags & ~MAN_LIT TERAL;

488 return(1l);

489 }

491 static int
492 post _UC(CHKARGS)

493 {

494 st atl c const char * const bsd_versions[] = {
495 "3rd Berkeley Distribution",

496 "4t h Berkel ey Distribution",

497 "4.2 Berkeley Distribution",

498 "4.3 Berkeley Distribution",

499 "4.4 Berkeley Distribution",

500 I

502 const char *p, *s;

504 n = n->child;

506 if (NULL == n || MAN_TEXT != n->type)
507 p = bsd_versions[O0];

508 el se {

509 S = n->string;

510 if (0 == strcnp(s, "3"))

511 p = bsd_ver sions[0] ;
512 else if (O == strcnp(s, "4"))
513 bsd versi ons[1];
514 else if (O == strcnp(s 5))

515 = bsd_versions[2];

new usr/src/ cnd/ mandoc/ man_val i date. c

516 else if (O == strcnp(s, "6"))
517 bsd_versi ons[3]
518 else if (O == strenp(s, 7))
519 p = bsd_versions[4];
520 el se

521 p = bsd_versions[O0];
522 1

524 free(nman- >nmet a. source

525 man- >nmet a. source = nandoc _strdup(p);
491 if (m>nmeta.source)

492 free(m >net a. source);

494 m >net a. sour ce = mandoc_strdup(p);
526 return(l);

527 }

529 static int
530 post _AT(CHKARGS)

531 {

532 static const char * const unix_versions[] = {
533 "7th Edition",

534 "SystemIII",

535 "System V',

536 "System V Rel ease 2",

537 };

539 const char *p, *s;

540 struct man_node *nn;

542 n = n->child;

544 if (NULL == n || MAN_TEXT != n->type)

545 p = uni x_versions[0];

546 else {

547 = n- >str| ng;

548 |f (0 == strcnp(s "3"))

549 p = uni x_versions[0];

550 else if (0 == strcnp(s "4"))

551 = un| x_versions[1];

552 else if (O == stremp(s, "5")) {

553 nn = n->next;

554 if (nn && I\/AN_TEXT == nn->type && nn->string[0])
555 p = unix_versions[3];
556 el se

557 p = uni x_versions[2];
558 } else

559 p = unix_versions[0];

560 }

562 free(man- >net a. source);

563 man- >nmet a. sour ce = mandoc_strdup(p);

531 if (m>neta.source)

532 free(m >nmet a. source);

534 m >net a. sour ce = mandoc_strdup(p);

564 return(l);

565 }

567 static int
568 post _vs(CHKARGS)

569 {
571 if (NULL !'= n->prev)
572 return(l);

10

new usr/src/ cnd/ mandoc/ man_val i date. c 11

574
5145]
576
577
578
579
580
581
582
583
543
544
584
585
586
587
588
589
546
547

591

592 }

switch (n->parent->tok) {
case (MAN_SH):
/* FALLTHROUGH */
case (MAN_SS):
man_nnmsg(man, n, MANDOCERR | GNPAR) ;
/* FALLTHROUGH */
case (I\/A;\I_Mf-\X):
*

* Don't warn about this because it occurs in pod2nan

* and woul d cause consi derabl e (unfixabl e) warnage.
* Don’t warn about this because it occurs in pod2man and woul d
* cause considerabl e (unfixable) warnage.

*

man_node_del et e(man, n);
br eak;

defaul t:
br eak;

}
if (NULL == n->prev & MAN _ROOT == n->parent->type)
man_node_del ete(m n);

return(1);

____unchanged_portion_onitted_

new usr/ src/ cnd/ mandoc/ mandoc. ¢ 1

R R R R

12616 Wed Jul 30 20:55:08 2014
new usr/ src/ cnd/ mandoc/ mandoc. ¢
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: mandoc.c,v 1.74 2013/12/30 18:30:32 schwarze Exp $ */

1/* $Id: mandoc.c,v 1.62 2011/12/03 16:08:51 schwarze Exp $ */

2 /*

3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
4 * Copyright (c) 2011, 2012, 2013 Ingo Schwarze <schwarze@penbsd. org>

4 * Copyright (c) 2011 Ingo Schwarze <schwarze@penbsd. or g>

5 *

6 * Permission to use, copy, nodify, and distribute this software for any

7 * purpose with or without fee is hereby granted, provided that the above

8 * copyright notice and this perm ssion notice appear in all copies.

9 *

10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHORS DI SCLAI M ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES COF

12 * MERCHANTABI LI TY AND FI TNESS. | N NO EVENT SHALL THE AUTHORS BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN

15 * ACTION OF CONTRACT, NEGLI GENCE OR OTHER TORTI OQUS ACTI ON, ARI SING OUT OF

16 * OR I N CONNECTION W TH THE USE OR PERFORVANCE OF THI S SOFTWARE.
17 =/

18 #ifdef HAVE_CONFI G H

19 #include "config.h"

20 #endif

22 #include <sys/types. h>

24 #include <assert.h>
25 #include <ctype. h>
26 #include <errno. h>
27 #include <limts.h>
28 #include <stdlib. h>
29 #include <stdio.h>
30 #include <string. h>
31 #include <tine.h>

33 #incl ude "mandoc. h"
34 #include "libmandoc. h"

36 #define DATESI ZE 32

38 static int a2time(time_t *, const char *, const char *);
39 static char *tinme2a(tine_t);
40 static int nunescape(const char *);

42 enum nmandoc_esc
43 mandoc_escape(const char **end, const char **start, int *sz)
*

43 * Pass over recursive nunerical expressions. This context of this

44 * function is inportant: it’s only called within character-term nating
45 * escapes (e.g., \s[xxxyyy]), so all we need to do is handle initial
46 * recursion: we don't care about what’s in these bl ocks.

47 * This returns the nunber of characters skipped or -1 if an error

48 * occurs (the caller should bail).

49 */

50 static int
51 nunescape(const char *start)

45 const char *| ocal _start;
46 int l ocal _sz;

new usr/ src/ cnd/ mandoc/ mandoc. ¢

47 char term

48 enum mandoc_esc gly;

53 int I

54 size_t sz;

55 const char *cp;

57 i =0;

59 /* The expression consists of a subexpression. */

61 if ("\\' == start[i]) {

62 cp = &start[++i];

50 /*

51 * When the caller doesn't provide return storage,

52 * use |l ocal storage.

64 * Read past the end of the subexpression.

65 * Bail 1mmediately on errors.

53 */

67 if (ESCAPE_ERROR == mandoc_escape(&cp, NULL, NULL))
68 return(-1);

69 return(i + cp - &start[i]);

70 }

55 if (NULL == start)

56 start = & ocal _start;

57 if (NULL == sz)

58 sz = &l ocal _sz;

72 if (P !'=start[i++])

73 return(0);

60 /*

61 * Beyond t he backsl ash, at |east one input character
62 * is part of the escape sequence. Wth one exception
63 * (see below), that character won't be returned.

76 * A parent hesi sed subexpression. Read until the closing
77 * parent hesis, nmaking sure to handl e any nested subexpressions
78 * that mght ruin our parse.

64 */

81 while (') !'=start[i]) {

82 sz = strespn(&start[i], ")\\");

83 i += (int)sz;

85 if ("\0 == start[i])

86 return(-1);

87 elseif ("\\' !=start[i])

88 conti nue;

90 cp = &start[++i];

91 if (ESCAPE_ERROR == mandoc_escape(&cp, NULL, NULL))
92 return(-1);

93 i +=cp - &start[i];

94 }

96 /* Read past the termnating ')’ . */

97 return(++i);

98 }

100 enum nmandoc_esc
101 mandoc_escape(const char **end, const char **start, int *sz)

103 char c, term nuneric;
104 int i, lim ssz, rlim
105 const char *cp, *rstart;

106 enum mandoc_esc gly;

new usr/ src/ cnd/ mandoc/ mandoc. ¢ 3 new usr/ src/ cnd/ mandoc/ mandoc. ¢
108 cp = *end; 122 * Handle all triggers matching \X(xy, \Xx, and \ X xxxx], where
109 rstart = cp; 123 * 'X is the trigger. These have opaque sub-stri ngs.
110 if (start) 124 */
111 *start = rstart; 125 case ('F):
112 i =lim= 0; 126 /* FALLTHROUGH */
66 gly = ESCAPE_ERROR; 127 case ('g'):
67 *start = ++*end; 128 /* FALLTHROUGH */
68 *sz = O 129 case ('k'):
69 term='\0'; 130 /* FALLTHROUGH */
114 term= nuneric = '\0"; 131 case ('"M):
132 /* FALLTHROUGH */
71 swtch((start)[-1]) { 133 case ('m):
116 switch ((c = cp[i++])) { 134 /* FALLTHROUGH */
72 I* 135 case ('n’):
73 * First the glyphs. There are several different forns of 136 /* FALLTHROUGH */
74 * these, but each eventually returns a substring of the glyph 137 case (’\f):
75 * name. 138 /* FALLTHROUGH */
76 */ 139 case ('Y'):
77 case (' () 140 gly = ESCAPE_| GNORE;
78 gly = ESCAPE_SPECI AL; 141 /* FALLTHROUGH */
79 *sz = 2; 142 case ('f’
124 lim= 2; 143 it (ESCAPE_ERROR == gl y)
80 br eak; 144 gly = ESCAPE_FONT;
81 case ('[): 145 switch (**start) {
82 gly = ESCAPE_SPECI AL;
83 = 170 rstart= &epl[i];
84 * Uni code escapes are defined in groff as \[uXXXX] to 171 if (start)
85 * \[ulOFFFF], where the contained value nust be a valid 172 *start = rstart;
86 * Uni code codepoint. Here, however, only check whether
87 * it’s not a zero-w dth escape. 174 switch (cp[l ++]) {
88 */ 146 case (’
89 if ("u == (*start)[0] && ']’ != (*start)[1]) 147 *start = ++*end;
134 if (Cu ==cp[i] & ']’ !=cp[i + 1]) 148 *sz = 2;
90 gly = ESCAPE_UN CODE; 176 lim= 2;
91 term="1"; 149 break;
92 br eak; 150 case ('["):
93 case ('C): 151 *start = ++*end;
94 if ("\' 1= **start) 152 term="]";
139 if ("\' I=cp[i]) 153 br eak;
95 r et ur n(ESCAPE_ERROR) ; 154 defaul t:
96 *start = ++*end; 155 *sz = 1;
97 if ("u == (*start)[0] && "\'’ = (*start)[1]) 182 lim=1;
98 gly = ESCAPE_UNI CCDE; 183 i--;
99 el se 156 break;
100 gl y = ESCAPE_SPECI AL; 157 }
101 term="\""; 158 br eak;
102 br eak;
160 I*
104 /* 161 * These escapes are of the form\X Y , where 'X is the trigger
105 * Escapes taking no argunents at all. 162 * and 'Y is any string. These have opaque sub-strings.
106 */ 163 */
107 case ('d): 164 case (‘A‘):
108 /* FALLTHROUGH */ 165 /* FALLTHROUCH */
109 case ('u’): 166 case ('b'):
110 ret ur n(ESCAPE_| GNORE) ; 167 /* FALLTHROUGH */
168 case ('B):
112 I* 169 /* FALLTHROUGH */
113 * The \z escape is supposed to output the follow ng 170 case ('D):
114 * character w thout advancing the cursor position. 171 /* FALLTHROUGH */
115 * Since we are nostly dealing with term nal node, 172 case ('0'):
116 * let us just skip the next character. 173 /* FALLTHROUGH */
117 */ 174 case ('R):
118 case ('z'): 175 /* FALLTHROUGH */
119 r et ur n(ESCAPE_SKI PCHAR) ; 176 case ('wW):
177 /* FALLTHROUGH */
121 /* 178 case ('X):

new usr/ src/ cnd/ mandoc/ mandoc. ¢

179
180
181
205
182
183
184
185
186

188
189
190
191
215
216
192
193
194
195
196
197
198
224
199
200
201
202
203
230
231
204
205
206
233
207
208
209
235
236
237
210

212
213
214
215
216
217
245
218
219
220
221
247
248
222
223
224
225
226
227
252
253
254
255

/* FALLTHROUGH */

case ('Z'):
if ("\7 1= **start)
if ("\'r t=cp[i+])

r et ur n(ESCAPE_ERROR) ;
gly = ESCAPE_| GNORE;

*start = ++*end;

term= '\"’ ;

br eak;

/*
* These escapes are of the form\X N, where 'X is the trigger
* and "N resolves to a nunerical expression.

*/
case (’

/* FALLTHROUGH */
case ('h

/* FALLTHROUGH */
case (’

/* FALLTHROUGH */
case ('L

/* FALLTHROUGH */
case ('I"):

gly = ESCAPE_NUVBERED;

/* FALLTHROJG—I */
case ('S):

/* FALLTHROUGH */
case ('v'):

* FALLTHROUGH */
case (‘W):

/* FALLTHROUGH */
case ('x'):

if ("\' 1= **start)

r et ur n(ESCAPE_ERROR) ;
if (ESCAPE_ERROR == gly)
gly = ESCAPE | GNORE:
*start = ++*end;
term="\"";
if "\ = cp[i++

return(ESC‘APE ERROR) ;
term= nuneric =’
br eak;

/*

* Special handling for the nunmbered character escape.
* XXX Do any other escapes need simlar handling?
*/

case ('N):
if ('\0 == **start)
if ("\0 ==cp[i])
return(ESCAPE ERROR) ;
(*end) ++;

if (isdigit((unsigned char)**start)) {

*sz = 1;

*end = &cp[++i];

if (|sd|g|t((un5|gned char)cp[l—l]))
ret ur n(ESCAPE_| GNORE) ;

L}

*start) ++;

whil e (isdigit((unsigned char)**end))
(*end) ++;

*sz = *end - *start;

if (start)
*start = &eplil];

if (sz)

*sz = *end - &cp[i];

new usr/ src/ cnd/ mandoc/ mandoc. ¢

228
229
230

232
233
234
235
236

266
267
268

238
239
240
271
272
273

242
275
243
244
245
277
246
247
248
249
280
250
251
252
253
283
254
255
256
286
287
257
258

291
292
293
294

262
263
264
265
266
267
268
269
303
304
270
271

if ("\0 !=**end)
(*end) ++;
r et ur n(ESCAPE_NUVBERED) ;

/*
* Sizes get a special category
*/

case ('s’):
gly = ESCAPE_| GNORE;

rstart = &cpl[i];
if (start)

of their own.

*start = rstart;

/* See +/- counts as a
if ("+ ==**end || "-’
(*end) ++;

c =cp[i];

if (+ =c|| '-" ==
++i

switch (**end) {

swtch(cp[|++]){

case (' (’

sign. */
== **end || ASCl|_HYPH == **end)

¢ || ASCII_HYPH == c)

*start = ++*end;

*sz = 2;

lim= 2;

br eak;
case ('["):

*start = ++*end;

term="1";
term= nuneric
br eak;

case ("\'"):

*start = ++*end;

term= ’\"'
term= nuneric
br eak;
defaul t:
*sz = 1;
!im: 1;
i=-;
break;
}
/* See +/- counts as a
c =cp[i];
if C+ ==c || - ==
++i ;
br eak;

/*
* Anything else is assumed to
* |In this case, pass back the
*/

defaul t:
gly = ESCAPE_SPECI AL;
*start = --*end;
*sz = 1;
! im=1;
l==3
br eak;
}

assert (ESCAPE_ERROR ! = gly);

= 7\77¢

sign. */

¢ || ASCII_HYPH == c)

be a gl yph.
character after the backsl ash.

new usr/ src/ cnd/ mandoc/ mandoc. ¢

310
311
312

275
276
277
315
316
317
318
319
278

322
323
324

326
327

329
330
331
332
333
334

280
281
282
283
337
338
284
285

341
342
343
286
287
288
289
290
291
292
293
345
294
295
296
297
298
299

348

350
351
352
353
354

356

rstart = &cp[i];
if (start)
*start = rstart;

/*
* Read up to the term nating character,
* paying attention to nested escapes.
* |f a term nating block has been specified, we need to
* handl e the case of recursion, which could have their
* own term nating blocks that nmess up our parse. This, by the
* way, nmeans that the "start" and "size" values will be
* effectively neaningl ess.
*/
ssz = 0;
if (nunErlc &% -1 == (ssz = nunescape(&cp[i])))
r et ur n(ESCAPE_ERROR) ;
i += ssz;
rlim=-1;
/*
* W have a character termnator. Try to read up to that
* character. If we can't (i.e., we hit the nil), then return
* an error; if we can, calculate our |ength, read past the
* terminating character, and exit.
*

/

if ("\0 !'=term {
while (**end !'= term
switch (**end) {
case ('\0"):
*end = strchr(&cp[i], term;
if ("\0 == *end)

r et ur n(ESCAPE_ERROR) ;
case ("\\"):

rlim= *end - &cp[i];
if (sz)
*sz =rlim
(*end) ++;
i f (ESCAPE_ERROR ==
mandoc escape(end NULL, NULL))
return(ESCAPE_ERRG?)
br eak;
defaul t:
(*end) ++;
br eak;
goto out;

}
*sz = (*end)++ - *start;
} else {
assert(*sz > 0);
if ((size_t)*sz > strlen(*start))

assert(lim> 0);

/*

* W have a nuneric limt. |If the string is shorter than that,
* stop and return an error. Else adjust our endpoint, |ength,
* and return the current glyph.

*/

if ((size_t)lim> strlen(&p[i]))

new usr/ src/ cnd/ mandoc/ mandoc. ¢

300
301
302

359
360
361

363

365
366

304

306
307
308
309
310
311
312
373
374
313
314
315
316
317
318
376
377
378
319
320
321
322

324
381
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
403
404
405
347

out :

r et ur n(ESCAPE_ERROR) ;
*end += *sz;

}

rlim=1im
if (sz)
*sz =rlim

*end = &cpl[i] + 1im

assert(rlim>= 0 && rstart);
/* Run post-processors. */

switch (gly) {
case (ESCAPE FO\IT)
if (2 == *sz) {
|f ('C == **start) {
/'k

* Treat constant-wi dth font nodes

* just like regular font npdes.
* Pretend that the constant-wi dth font nbdes are the
* sanme as the reg/ul ar font nodes.

*

(*start) ++;

*sz)--;
} else {
if ("B == (*start)[0] && "I’ == (*start)[1])
gly = ESCAPE_FONTBI ;
if (2==rlim& & 'C == *rstart)
rstart ++;
elseif (1 !'=rlim
br eak;

}
} elseif (1 != *sz)
br eak;

switch (**start) {
sw’tch(rstart) {

case ('3
1* FALLTHROUGH */

case ('B):
gly = ESCAPE_FONTBOLD;
br eak;

case (' 2
/* FALLTHROUGH */

case ('1"):
gl y = ESCAPE_FONTI TALI C,
br eak;

case ('P):
gly = ESCAPE_FONTPREV;
br eak;

case ('1'):
/* FALLTHROUGH */

case ('R):
gly = ESCAPE_FONTROVAN;
br eak;

}

bre

ak;
case (ESCAPE SPECI AL):

if (1 == *sz &&’ == **start)
if (1!=rlim

br eak;
if (¢ == *rstart)

gly = ESCAPE_NOSPACE:

new usr/ src/ cnd/ mandoc/ mandoc. ¢ 9 new usr/ src/ cnd/ mandoc/ mandoc. ¢
348 br eak; 475 br eak;
349 defaul t: 476 defaul t:
350 br eak; 477 br eak;
351 } 478 }
479 } else if (0 == quoted) {
353 return(gly); 480 if ("' ==c¢p[0])
354 } 481 /* Unescaped bl anks end unquoted args. */
____unchanged_portion_onmitted_ 482 white = 1;
483 br eak;
424 | * 484 }
425 * Parse a quoted or unquoted roff-style request or macro argunent. 485 } elseif (""" ==cp[0]) {
426 * Return a pointer to the parsed argunent, which is either the original 486 if (" == cp[l]) {
427 * pointer or advanced by one byte in case the argunment is quoted. 487 /* Quoted quotes col | apse. */
428 * NUL-termi nate the argunment in place. 488 pai rs++;
487 * Null-terminate the argunment in place. 489 cp++;
429 * Col | apse pairs of quotes inside quoted argunents. 490 } else {
430 * Advance the argunent pointer to the next argunent, 491 /* Unquot ed quotes end quoted args. */
431 * or to the NUL byte termnating the argunment |ine. 492 quoted = 2;
490 * or to the null byte term nating the argunment |ine. 493 br eak;
432 */ 494 }
433 char * 495 }
434 mandoc_get arg(struct nparse *parse, char **cpp, int In, int *pos) 496 }
435 {
436 char *start, *cp; 498 /* Quoted argunent wi thout a closing quote. */
437 int quoted, pairs, white; 499 if (1 == quoted)
500 mandoc_nsg(MANDOCERR _BADQUOTE, parse, |n, *pos, NULL);
439 /* Quoting can only start with a new word. */
440 start = *cpp; 502 /* NUL-terminate this argument and nove to the next one. */
441 quoted = O; 543 /* Null-term nate this argunment and nove to the next one. */
442 if (""" == *start) { 503 if (pairs)
443 quoted = 1; 504 cp[-pairs] ='\0";
444 start ++; 505 if ("\0 1= *cp) {
445 } 506 *cp++ = '\0;
507 while (° ' == *cp)
447 pairs = 0; 508 cpt+;
448 white = 0; 509 }
449 for (cp = start; '\0" != *cp; cp++) { 510 *pos += (int)(cp - start) + (quoted ? 1 : 0);
511 *cpp = cp;
451 /*
452 * Move the following text left 513 if ("\0 == *cp & (white || ' ' == cp[-1]))
453 */after quoted quotes and after "\\" and "\t". 514 mandoc_nsg(MANDOCERR_ECOLNSPACE, parse, In, *pos, NULL);
454 *
509 /* Move |left after quoted quotes and escaped backsl ashes. */ 516 return(start);
455 if (pairs) 517 }
456 cp[-pairs] = cp[0]; __unchanged_portion_onitted_
458 if ("\\' ==cp[0]) { 680 /*
459 B 681 * Find out whether a line is a macro line or not. If it is, adjust the
460 * In copy node, translate double to single 682 * current position and return one; if it isn't, return zero and don’t
461 * backsl ashes and backsl ash-t to literal tabs. 683 * change the current position.
462 */ 684 */
463 switch (cp[1]) { 685 int
464 case ('t’): 686 mandoc_getcontrol (const char *cp, int *ppos)
465 cp[0] ="\t’; 687 {
466 /* FALLTHROUGH */ 688 int pos;
467 case ("\\"):
513 if ("\\" ==cp[1]) { 690 pos = *ppos;
514 /* Poor man’s copy node. */
468 pai rs++; 692 if ("\\" == cp[pos] && '.' == cp[pos + 1])
469 cpt+; 693 pos += 2;
470 br eak; 694 else if ('.” == cp[pos] || '\'" == cp[pos])
471 case (' '): 695 pos++;
517 } else if (0 == quoted & ' ' == cp[1]) 696 el se
472 /* Skip escaped bl anks. */ 697 return(0);
473 if (0 == quoted)
474 cp++; 699 while (* * == cp[pos] || '\t’' == cp[pos])

new usr/ src/ cnd/ mandoc/ mandoc. ¢

700 pos++;

702 *ppos = pos;

703 return(1);

704 }

639 /*

640 * Convert a string to a long that may not be <O.
641 * |f the string is invalid, or is less than O, return -1.
642 *

643 int

644 mandoc_strntoi (const char *p, size_t sz, int base)
645 {

646 char buf[32];

647 char *ep;

648 | ong v;

650 if (sz > 31)

651 return(-1);

653 nmencpy(buf, p, sz)

654 buf[(1 nt)sz] = 0

656 errno = O;

657 v = strtol (buf, &ep, base);

659 if (buf[O] =="\0" || *ep !="\0")

660 return(-1);

662 if (v > INT_MAX)

663 v = | NT_MAX;

664 if (v <INT_MN

665 v = INT_MN,

667 return((int)v);

668 }

__unchanged_portion_onitted_

11

new usr/ src/ cnd/ mandoc/ mandoc. h 1 new usr/ src/ cnd/ mandoc/ mandoc. h
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 '\/ANmERR BAWRO_%‘ /* macr o not al | OV\Bd |n prol ogue */
14191 Wed Jul 30 20:55:09 2014 60 MANDOCERR_BADBCDY, /* macro not allowed in body */
new usr/ src/ cnd/ mandoc/ mandoc. h
5051 inport ndocnmi-1.12.3 62 /* related to docunent structure */
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con» 63 MANDOCERR SO, /* .so is fragile, better use In(1l) */
Approved by: TBD 64 MANDOCERR_NAMESECFI RST, /* NAME section nust cone first */
LR R R EEEEEEEEE SRS RS RS SRS RS RS E R EE R R RREERREREEEEEEEEEESEESESE] 65 'vANw:ERR BAD\‘A’VESEC’ /* bad NA'\E sectlon COntentS */
1/* $ld: mandoc. h,v 1.112 2013/12/30 18:30:32 schwarze Exp $ */ 64 MANDOCERR_NONAME, /* manual name not yet set */
1/* $Id: mandoc. h,v 1.99 2012/02/16 20:51:31 joerg Exp $ */ 66 MANDOCERR_SECOQO, /* sections out of conventional order */
2 /* 67 MANDOCERR_SECREP, /* duplicate section nane */
3 * Copyright (c) 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v> 68 MANDOCERR_SECMSEC, /* section header suited to sections ... */
4 * Copyright (c) 2012, 2013 Ingo Schwarze <schwarze@penbsd. or g> 67 MANDOCERR_SECMSEC, /* section not in conventional manual section */
5 *
6 * Permission to use, copy, nodify, and distribute this software for any 70 /* related to macros and nesting */
7 * purpose with or without fee is hereby granted, provided that the above 71 MANDOCERR_MACROOBS, /* ski ppi ng obsol ete macro */
8 * copyright notice and this perm ssion notice appear in all copies. 72 MANDOCERR_| GNPAR, I+ ski ppi ng paragraph macro */
9 = 73 MANDOCERR_MOVEPAR, /* noving paragraph macro out of list */
10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES 74 MANDOCERR_| GNNS, /* ski ppi ng no-space nacro */
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF 75 MANDOCERR_SCOPENEST, /* bl ocks badly nested */
12 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR 76 MANDOCERR_CHI LD, /* child viol ates parent syntax */
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES 77 MANDOCERR_NESTEDDI SP, /* nested displays are not portable */
14 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN 78 MANDOCERR_SCOPEREP, /* al ready in literal node */
15 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SI NG QUT OF 79 MANDOCERR_LI NESCOPE, /* |ine scope broken */
16 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI' S SOFTWARE.
17 */ 81 /* related to missing macro argunents */
18 #i f ndef MANDOC_H 82 MANDOCERR_MACROEMPTY, /* ski pping enpty nacro */
19 #define MANDOC_H 83 MANDOCERR_ARGCWARN, /* argument count wong */
84 MANDOCERR_DI SPTYPE, /* missing display type */
21 #define ASCl|_NBRSP 31 /* non-breaking space */ 85 MANDOCERR LI STFIRST, /* |ist type nust cone first */
22 #define ASCl | _HYPH 30 /* breakabl e hyphen */ 86 MANDOCERR_NOW DTHARG, /* tag lists require a width argument */
87 MANDOCERR_FONTTYPE, /* nissing font type */
24 | * 88 MANDOCERR_WNOSCOPE, /* ski pping end of block that is not open */
25 * Status level. This refers to both internal status (i.e., whilst
26 * running, when warnings/errors are reported) and an indicator of a 90 /* related to bad nacro argunments */
27 * threshold of when to halt (when said internal state exceeds the 91 MANDOCERR_| GNARGV, /* ski ppi ng argunent */
28 * threshold). 92 MANDOCERR_ARGVREP, /* duplicate argunment */
29 */ 93 MANDOCERR DI SPREP, /* duplicate display type */
30 enum mandocl evel { 94 MANDOCERR LI STREP, /* duplicate |ist type */
31 MANDOCLEVEL_X = 0, 95 MANDOCERR_BADATT, /* unknown AT&T UNI X version */
32 MANDOCLEVEL _ RESERVED, 96 MANDOCERR_BADBOOL, /* bad Bool ean val ue */
33 MANDOCLEVEL_WARNI NG, /* warni ngs: syntax, whitespace, etc. */ 97 MANDOCERR_BADFONT, /* unknown font */
34 MANDOCLEVEL_ERROR, /* input has been thrown away */ 98 MANDOCERR _BADSTANDARD, /* unknown standard specifier */
35 MANDOCLEVEL_FATAL, /* input is borked */ 99 MANDOCERR_BADW DTH, /* bad wi dth argunent */
36 MANDOCLEVEL_BADARG, /* bad argunent in invocation */
37 MANDOCLEVEL _SYSERR, /* systemerror */ 101 /* related to plain text */
38 MANDOCLEVEL _MAX 102 MANDOCERR_NOBLANKLN, /* blank line in non-literal context */
39 }; 103 MANDOCERR _BADTAB, /* tab in non-literal context */
104 MANDOCERR_EQLNSPACE, /* end of |ine whitespace */
41 | * 105 MANDOCERR_BADCOMMENT, /* bad comment style */
42 * Al possible things that can go wong within a parse, be it libroff, 106 MANDOCERR _BADESCAPE, /* unknown escape sequence */
43 * |ibndoc, or |ibman. 107 MANDOCERR_BADQUOTE, /* unterm nated quoted string */
44 */
45 enum mandocerr { 109 /* related to equations */
46 MANDOCERR_CK, 110 MANDOCERR_EQNQUOTE, /* unexpected literal in equation */
48 MANDOCERR_WARNI NG, /* ===== start of warnings ===== */ 112 MANDOCERR_ERROR, /* ===== start of errors ===== */
50 /* related to the prol ogue */ 114 /* related to equations */
51 MANDOCERR _NOTI TLE, /* no title in docunment */ 115 MANDOCERR_EQNNSCCOPE, /* unexpected equation scope cl osure*/
52 MANDOCERR_UPPERCASE, /* docunent title should be all caps */ 116 MANDOCERR _EQNSCOPE, /* equation scope open on exit */
53 MANDOCERR_BADMSEC, /* unknown maenual section */ 117 MANDOCERR_EQNBADSCOPE, /* overl appi ng equation scopes */
54 MANDOCERR_BADVOLARCH, /* unknown manual vol ume or arch */ 118 MANDOCERR_EQNECF, /* unexpected end of equation */
55 MANDOCERR_NCDATE, /* date m ssing, using today' s date */ 119 MANDOCERR_EQNSYNT, /* equation syntax error */
56 MANDOCERR_BADDATE, /* cannot parse date, using it verbatim*/
57 MANDOCERR_PROLOGOOO, /* prol ogue macros out of order */ 121 /* related to tables */
58 MANDOCERR_PROLOGREP, /* duplicate prol ogue macro */ 122 MANDOCERR _TBL, /* bad table syntax */

new usr/ src/ cnd/ mandoc/ mandoc. h

123
124
125
126
127
128
129

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

153

155
156
157
158
159
160
161
162
163
164
165
166

168
163
169
170
171
172
173
174
175
176
177
178
179
180
181

178
179
180
181
182

I

struct
struct

#def i
#def i
#def i
#def i
#def i
#def i
#def i

enum

s

ne
ne
ne
ne
ne
ne
ne

MANDOCERR _TBLOPT, /* bad table option */
MANDOCERR_TBLLAYQUT, /* bad table |ayout */
MANDOCERR_TBLNOLAYQUT, /* no table |ayout cells specified */
MANDOCERR_TBLNODATA, /* no table data cells specified */
MANDOCERR_TBLI GNDATA, /* ignore data in cell */
MANDOCERR_TBLBLOCK, /* data bl ock still open */
MANDOCERR_TBLEXTRADAT, /* ignoring extra data cells */
MANDOCERR_ROFFLOCP, /* input stack limt exceeded,
MANDOCERR_BADCHAR, /* ski ppi ng bad character */
MANDOCERR_NAMESC, /* escaped character not allowed in a nane */
MANDOCERR_NONAME, /* nmanual name not yet set */

MANDOCERR_NOTEXT, /* ski pping text before the first section header */
MANDOCERR_MACRO, /* ski ppi ng unknown macro */

MANDOCERR_REQUEST, /* NOT | MPLEMENTED: ski ppi ng request */
MANDOCERR_ARGCOUNT, /* argument count wong */

MANDOCERR_STRAYTA, /* ski ppi ng col um outside colum list */
MANDOCERR_NOSCOPE, /* ski pping end of block that is not open */
MANDOCERR_SCOPEBROKEN, /* missing end of block */
MANDOCERR_SCOPEEXI T, /* scope open on exit */

MANDOCERR_UNAME, /* unane(3) system caII failed */

/* FIXMVE: nerge follow ng wth MANDOCERR _ARGCOUNT */

/* macro requires |i ne”argunent (s) */

/* macro requires body argunrent(s) */

/* macro requires argunent(s) *

MANDOCERR_NUMERI C, /* request requires a nuneric argument */
MANDOCERR_LI STTYPE, /* nissing list type */

infinite | oop? */

MANDOCERR_ARGSLOST, /* line argument(s) will be lost */
MANDOCERR_BODYLOST, /* body argument(s) will be lost */
MANDOCERR_FATAL, /* ===== start of fatal errors ===== */
MANDOCERR _NOTMANUAL, /* manual isn't really a manual */

MANDOCERR_COLUMNS, /* colum syntax is inconsistent */
MANDOCERR_BADDI SP, /* NOT | MPLEMENTED: .Bd -file */
MANDOCERR_SYNTARGVCOUNT, /* argunent count wong, violates syntax */
MANDOCERR_SYNTCHI LD, /* child violates parent syntax */
MANDOCERR_SYNTARGCOUNT, /* argunment count w ong, violates syntax */
MANDOCERR_SOPATH, /* NOT | MPLEMENTED: .so with absolute path or
MANDOCERR_NCDOCBQODY, /* no docunent body */

MANDOCERR_NODOCPROLOG, /* no docunent prol ogue */

MANDOCERR_MEM /* static buffer exhausted */

NAND&ERR_I\/AX

thl _opts {

tbl

char tab; /* cell-separator */
char deci mal; /* decimal point */
int I'i nesi ze;

int opts;

TBL_OPT_CENTRE (1 << 0)

TBL_OPT_EXPAND (1 << 1)

TBL_OPT_BOX (1 << 2)

TBL_OPT_DBOX (1 << 3)

TBL_OPT_ALLBOX (1 << 4)

TBL_OPT_NOKEEP (1 << 5)

TBL_OPT_NOSPACE (1 << 6)

int cols; /* nunber of colums */
tbl _headt {

TBL_HEAD DATA, /* plug in data fromtbhl_dat */
TBL_HEAD VERT, /* vertical spacer */

TBL_HEAD DVERT /* doubl e-vertical spacer */

*/

new usr/ src/ cnd/ mandoc/ mandoc. h

183 /*
184 * The head of a table specifies all of its colums. Wen fornatting a
185 * tbl_span, iterate over these and plug in data fromthe tbl_span when
186 * appropriate, using tbhl_cell as a guide to placenent.
187 */
188 struct tbhl_head {
190 enum t bl _headt pos;
189 int ident; /* 0 <= unique id < cols */
190 int vert; /* width of preceding vertical line */
191 struct tbhl_head *next;
192 struct thl_head *prev;
193 };
195 enum thl _cellt {
196 TBL_CELL_CENTRE, /* ¢, C*/
197 TBL_CELL_RIGHT, /* r, R*/
198 TBL_CELL_LEFT I* 1, L */
199 TBL_CELL_NUMBER, /* n, N */
200 TBL_CELL_SPAN, /* s, S */
201 TBL_CELL_LONG, /* a, A */
202 TBL_CELL_DOWN, /* ~ */
203 TBL_CELL_HORI Z, /* _, */
204 TBL_CELL_DHORI Z, /* = */
206 TBL_CELL_VERT, /* | */
207 TBL_CELL_DVERT, /* || */
205 TBL_CELL_MAX
206 };
208 /*
209 * Acell in a layout row.
210 */
211 struct thl_cell
212 struct tbl_cell *next;
213 int vert; /* width of preceding vertical line */
214 enum thbl _cellt pos;
215 size_t spaci ng;
216 int flags;
217 #define TBL_CELL_TALIGN (1 << 0) /* t, T */
218 #define TBL_CELL_BALIGN (1 << 1) /* d, D */
219 #define TBL_CELL_BOLD (1 <<2) /* B, B, b */
220 #define TBL_CELL_ITALIC (1 << 3) /[* fI, I, i */
221 #define TBL CELL_EQUAL (1 << 4) /* e E*/
222 #define TBL_CELL_UP (1 << 5) /[*u, U*/
223 #define TBL_CELL_W GN (1 << 86) /I* 2z, Z*/
224 struct thl_head *head;
225 }
__unchanged_portion_onitted_
263 /[*
264 * Arow of data in a table.
265 */
266 struct thl_span {
267 struct tbl_opts *opts;
269 struct tbhl *thl;
268 struct tbhl_head *head;
269 struct tbl _row *layout; /* |ayout row */
270 struct tbhl_dat *first;
271 struct thl_dat *| ast;
272 int line;, /* parse line */
273 int fl ags;
274 #define TBL_SPAN FIRST (1 << 0)
275 #define TBL_SPAN_LAST (1 << 1)
276 enum t bl _spant pos;
277 struct thl_span *next;
278 };

__unchanged_portion_omtted_

new usr/ src/ cnd/ mandoc/ mandoc. h

376 enum mandoc_esc {

377 ESCAPE_ERROR = 0, /* bail! unparsable escape */

378 ESCAPE_| GNORE, /* escape to be ignored */

379 ESCAPE_SPECI AL, /* a regul ar special character */

380 ESCAPE_FONT, /* a generic font node */

381 ESCAPE_FONTBOLD, /* bold font node */

382 ESCAPE_FONTI TALIC, /* italic font node */

383 ESCAPE_FONTBI, /* bold italic font node */

384 ESCAPE_FONTROVAN, /* roman font node */

385 ESCAPE_FONTPREV, /* previous font node */

386 ESCAPE_NUMBERED, /* a nunbered glyph */

387 ESCAPE_UNI CODE, /* a uni code codepoint */

388 ESCAPE_NOSPACE, /* suppress space if the last on a line */
389 ESCAPE_SKI PCHAR /* skip the next character */

389) ESCAPE_NOSPACE /* suppress space if the last on a line */
390 };

392 typedef void (*mandocnsg) (enum mandocerr, enum nandocl evel ,

393 const char *, int, int, const char *);
395 struct nparse;

396 struct nthars;

397 struct ndoc;

398 struct man;

400 __BEGQ N_DECLS

402 void *mandoc_cal | oc(size_t, size_t);

403 enum mandoc_esc mandoc_escape(const char **, const char **, int *);
404 void *mandoc_mal | oc(size_t);

405 void *mandoc_real | oc(void *, size_t);

406 char *mandoc_strdup(const char *);

407 char *mandoc_strndup(const char *, size_t);

408 struct nthars *mchars_al | oc(void);

409 void nchars_free(struct ncthars *);

410 char nchars_nun2char (const char *, size_t);

411 int nchar s_nunRuc(const char *, size_t);

412 int nchars_spec2cp(const struct nthars *,

413 const char *, size_t);

414 const char *mchars_spec2str(const struct nthars *,

415 const char *, size_t, size_t *);

416 struct nparse *nmpar se_al | oc(enum npar set, enum nandocl evel ,
417 mandocnmsg, void *, char *);

416 struct nparse *npar se_al | oc(enum npar set,

417 enum mandocl evel , mandocnsg, void *);
418 void mpar se_free(struct nparse *);

419 void nmpar se_keep(struct nparse *);

420 enum mandocl evel nparse_readfd(struct nparse *, int, const char *);
421 enum mandocl evel nparse_readnmen(struct nparse *, const void *, size_t,
422 const char *)

423 void npar se_reset (struct nparse *);

424 void nparse_resul t(struct nparse *,

425 struct nmdoc **, struct nman **);

426 const char *nmpar se_get keep(const struct nparse *);

427 const char *npar se_strerror (enum nandocerr);

428 const char *nmpar se_strl evel (enum nandocl evel) ;

430 __END DECLS

432

#endi f /*! MANDOC_H*/

new usr/ src/ cnd/ mandoc/ ndoc. ¢

new usr/ src/ cnd/ mandoc/ ndoc. ¢

Khhkkhkhhhhhhhhhhhhkhhhhhkhhkhhhkhhkhhhhhkhkhdhkhkhhkhkhkhkhkhhkk ok k k% 58 "NO", "NS", "M(", "O(",
21593 Wed Jul 30 20:55:09 2014 59 "Pc", "Pf", "Po", "Pq",

new usr/ src/ cnd/ mandoc/ ndoc. ¢ 60 Qe "Qr, "Qo", "Q,

5051 inmport ndocm -1.12.3 61 "Re", "Rs", "Sc", "So",

Revi ewed by: Yuri Pankov <yuri.pankov@exenta.conp 62 "Sq", "snt', " Sx", " Sy",

Approved by: TBD 63 "Tn", "UX", " Xe", " Xo",

LR R R EEEEEEEEE SRS RS RS SRS RS RS E R EE R R RREERREREEEEEEEEEESEESESE] 64 "FO", "FC", "())"' "(x"’
1/* $ld: ndoc.c,v 1.206 2013/12/24 19:11: 46 schwarze Exp $ */ 65 "Bk", "Ek", "Bt", "Hf ",
1/* $ld: ndoc.c,v 1.196 2011/09/30 00: 13: 28 schwarze Exp $ */ 66 "Fr", "ud”, "Lb", "Lp",

2 /* 67 "Lk", "M, "Brq" "Bro",

3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v> 68 /* LI NTED */

4 * Copyright (c) 2010, 2012, 2013 Ingo Schwarze <schwarze@penbsd. org> 69 "Brc", ", "Es", "En",

4 * Copyright (c) 2010 Ingo Schwarze <schwarze@penbsd. or g> 70 /* LI NTED */

5 * 71 "Dx", ", "br", "sp",

6 * Permssion to use, copy, nodify, and distribute this software for any 72 /* LINTED */

7 * purpose with or without fee is hereby granted, provided that the above 73 "R, "Ta"

8 * copyright notice and this perm ssion notice appear in all copies. 74 };

9 *
10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES 76 char *const __ndoc_ar gnanes[MDOC_ARG MAX]

11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES CF 77 "split", "nosplit", "ragged",
12 * MERCHANTABI LI TY AND FI TNESS. | N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR 78 "unfilled", "literal ", "file",
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DANMAGES 79 "of fset", "bul let", "dash",
14 * WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN 80 "hyphen", "itent, "enunt',
15 * ACTION OF CONTRACT, NEGLI GENCE OR OTHER TORTI OQUS ACTI ON, ARI SING OUT OF 81 "tag", "di ag", "hang",
16 * OR I N CONNECTION W TH THE USE OR PERFORVANCE OF THI S SOFTWARE. 82 "ohang", "inset", "col um",
17 */ 83 "wi dt h", "conpact ", "std",

18 #ifdef HAVE_CONFI G H 84 “filled", “wor ds", "enphasi s",
19 #include "config.h" 85 "synbolic", "nested", "centered"
20 #endi f 86 1
22 #include <sys/types. h> 88 const char * const *ndoc_nacronanes = __ndoc_macronanes;

89 const char * const *ndoc_argnanes = __ndoc_ar gnanes;

24 #include <assert.h>
25 #include <stdarg. h> 91 static void ndoc_node_free(struct ndoc_node *);
26 #include <stdio.h> 92 static void mdoc_node_unl i nk(struct ndoc *,
27 #include <stdlib. h> 93 struct ndoc_node *);
28 #include <string. h> 94 static void ndoc_freel(struct ndoc *);
29 #include <tine. h> 95 static void ndoc_al | oc1(struct ndoc *);

96 static struct ndoc_node *node_al |l oc(struct ndoc *, int, int,

31 #include "ndoc. h" 97 enum ndoct, enum ndoc_type);
32 #include "nmandoc. h" 98 static int node_append(struct ndoc *,
33 #include "libndoc. h" 99 struct ndoc_node *);
34 #include "libmandoc. h" 100 #if O
101 static int nmdoc_preptext(struct ndoc *, int, char *, int);
36 const char *const __ndoc_nacronanes[MDOC_MAX] = { 102 #endi f
37 " Ap", "Dd", "Dt", "Cs", 103 static int ndoc_ptext (struct ndoc *, int, char *, int);
38 " sh", "Ss", "Pp", “D1", 104 static int mdoc_pmacro(struct ndoc *, int, char *, int);
39 "o, "Bd", "Ed", "Bl ",
40 = "I, "Ad", "An", 106 const struct ndoc_node *
41 At "cd, "Cnt, "Dv", 107 nmdoc_node(const struct ndoc *ndoc)
42 "Er", "Bv", "Ex", "Fa", 107 nmdoc_node(const struct ndoc *m
43 " Fd", "FLT, "Fn", "FtY, 108 {
44 "lc", "In", "L, "Nd",
45 " Nni', "Op", "o, "Pa", 110 assert(! (MDOC_HALT & ndoc->flags));
46 "Rv", "Stt, "Va", "Wt 111 return(ndoc->first);
47 /* LINTED */ 110 assert(! (MDOC_HALT & m >flags));
48 "X, "OA", "B, "D, 111 return(m>first);
49 /* LINTED */ 112 }
50 "R, "o, "o, "0,
51 /* LINTED */
52 "o, "UR, "o, LY 115 const struct ndoc_neta *
53 "Ac", "A0", "AgQ", "AL", 116 ndoc_neta(const struct ndoc *ndoc)
54 "Bc", "Bf", " Bo", "Bqg", 116 ndoc_neta(const struct ndoc *m
55 "Bsx", "Bx", "Db", "Dc", 117 {
56 "Do", "Dg", "Ec", "Ef",
57 "En', "E0", "Fx", "M, 119 assert(! (MDOC_HALT & ndoc->fl ags));

new usr/ src/ cnd/ mandoc/ ndoc. ¢

120 return(&moc->neta);

119 assert(! (MDOC_HALT & m>flags));
120 return(&m >neta);

121 }

____unchanged_portion_onitted_

196 /*

197 * Allocate volatile and non-vol atile parse resources.
198 */

199 struct ndoc *

200 ndoc_al l oc(struct roff *roff, struct nparse *parse, char *defos)

200 ndoc_al l oc(struct roff *roff, struct nparse *parse)

201 {

202 struct ndoc *p;
204 p = mandoc_cal | oc(1, sizeof(struct ndoc));
206 p- >par se = parse;
207 p- >def os = def os;
208 p->roff = roff;
210 mdoc_hash_init();
211 nmdoc_al | oc1(p);

212 return(p);

213 }

216 /

218
219
220 int

221 ndoc_endparse(struct ndoc *ndoc)
220 ndoc_endparse(struct ndoc *m

through to nacro_end() in nmacro.c.
*/

222 {

224 assert(! (MDOC_HALT & ndoc->flags));
225 if (mdoc_macroend(ndoc))

223 assert(! (MDOC_HALT & m>flags));
224 if (mdoc_macroend(m)

226 return(1);

227 mdoc- >fl ags | = MDOC_HALT;

226 m >flags | = MDOC_HALT;

228 return(0);

229 }

231 int

232 ndoc_addeqgn(struct ndoc *ndoc, const struct eqn *ep)
231 ndoc_addegn(struct ndoc *m const struct egn *ep)

217 * Cdinb back up the parse tree, validating open scopes.
* r

Mostly calls

233 {

234 struct ndoc_node *n;

236 assert(! (MDOC_HALT & ndoc->flags));

235 assert(! (MDOC_HALT & m>flags));

238 /* No text before an initial macro. */

240 if (SEC_NONE == ndoc- >l ast naned) {

241 mdoc_pnsg(ndoc, ep->ln, ep->pos, MANDOCERR NOTEXT) ;
239 if (SEC_NONE == m >| ast naned) {

240 nmdoc_pnsg(m ep->ln, ep->pos, MANDOCERR NOTEXT);
242 return(1);

243 }

245 n = node_al |l oc(ndoc, ep->ln, ep->pos, MDOC _MAX, MDOC_EQN);

new usr/ src/ cnd/ mandoc/ ndoc. ¢

244 n = node_all oc(m ep->In, ep->pos, MDOC _MAX, NDOC_EQN);
246 n->eqn = ep;

248 if (! node_append(ndoc, n))

247 if (! node_append(m n))

249 return(0);

251 nmdoc- >next = MDOC_NEXT_SI BLI NG

250 m >next = MDOC_NEXT_SI BLI NG

252 return(1);

253 }

255 int

256 ndoc_addspan(struct ndoc *ndoc, const struct

tbl _span *sp)

255 ndoc_addspan(struct ndoc *m const struct tbl_span *sp)

257 {

258 struct ndoc_node *n;

260 assert(! (MDOC_HALT & ndoc->flags));

259 assert(! (MDOC_HALT & m >flags));

262 /* No text before an initial macro. */

264 if (SEC_NONE == ndoc- >l ast naned)

265 ndoc_pnsg(ndoc, sp->line, 0, MANDOCERR_NOTEXT);
263 if (SEC_NONE == m >| ast naned)

264 mdoc_pnsg(m sp->line, 0, MANDOCERR NOTEXT);
266 return(1);

267 }

269 n = node_al | oc(ndoc, sp->line, 0, MDOC_MAX, MDOC TBL);
268 n = node_alloc(m sp->line, 0, MDOC_MAX, MDOC TBL);
270 n->span = sp;

272 if (! node_append(ndoc, n))

271 if (! node_append(m n))

273 return(0);

275 mdoc- >next = MDOC_NEXT_SI BLI NG

274 m >next = MDOC_NEXT_SI BLI NG

276 return(1);

277 }

280 /

282
283
284 int
285 ndoc_parsel n(struct ndoc *ndoc, int In, char

*

281 * Main parse routine. Parses a single |line
* th
*

-- really just

e macro (nmdoc_prmacro()) or text parser (ndoc_ptext()).

*pbuf, int offs)

284 ndoc_parsel n(struct ndoc *m int In, char *buf, int offs)

hands off to

286 {

288 assert(! (MDOC_HALT & ndoc->flags));

287 assert(! (MDOC_HALT & m>flags));

290 nmdoc- >f |l ags | = MDOC_NEWLI NE;

289 m >flags | = MDOC_NEW.I NE;

292 /*

293 * Let the roff nS register switch SYNOPSI S node early,
294 * such that the parser knows at all tines

295 * whether this node is on or off.

296 * Note that this npde is also switched by the Sh macro.
297 */

298 if (roff_getreg(ndoc->roff, "nS"))

new usr/ src/ cnd/ mandoc/ ndoc. ¢

299
297
298
299
300
301
301
302

303
304
305
304
305
306
306

308
309

311
313

315
316
317
317
318
318
319

321

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
325
326
327
328
329
330
331
332
333
334
335
336
337
338
338

340

}

int

nmdoc- >f | ags | = MDOC_SYNCPSI S;
if (roff_regisset(m>roff, REGnS)) {

if (roff regget(m>roff REG nS))
| m>fiags | = NDOCSYNCPSI S,
el se

mdoc- >f | ags &= ~MDOC_SYNOPSI S;
) m >f |l ags & ~MDOC_SYNOPSI S;

return(roff_getcontrol (nmdoc->roff, buf, &offs) ?
ndoc_pmacro(ndoc, I n, buf, offs)
ndoc_pt ext (nmdoc, In, buf, offs));
ret urn(mandoc_get control (buf, &offs) ?
nmdoc pmacro(m I'n, buf, offs)
ndoc_ptext(m In, buf, offs));

ndoc_macr o(MACRO_PROT_ARGS)
310 {

assert (tok < MDOC_MAX);
/* 1f we're in the body, deny prologue calls. */

if (MDOC_PROLOGUE & ndoc_macros[tok].flags &&
MDOC_PBODY & ndoc- >fl ags) {
nmdoc pmsg(mioc line, ppos, MANDOCERR BADBCDY);
MDOC_PBODY & m >flags) {
mdoc_pnsg(m | ine, ppos, MANDOCERR BADBCDY);
return(1);

}
/* If we're in the prol ogue, deny "body" macros. */

if (! (MDOC_PROLOGUE & ndoc_macros[tok].flags) &&

! (MDOC_PBODY & ndoc->flags)) {
mdoc_pnsg(ndoc, |ine, ppos, MANDOCERR BADPROLOG);
if (NULL == ndoc->neta. nsec)

ndoc- >nmet a. msec = mandoc_strdup("1");
if (NULL == ndoc- >net a. t|tle)

ndo oc- >meta.title = mandoc_strdup(" UNKNOMW') ;
if (NULL == ndoc->neta.vol)

rrdoc— >met a. vol = mandoc_strdup("LOCAL") ;
if (NULL == ndoc->net a. 0s)

ndoc- >net a. os = mandoc_st rdup("LOCAL");
if (NULL == ndoc->net a. dat e)

ndoc- >net a. date = mandoc_nor ndat e

(mdoc- >parse, NULL, |ine, ppos);
nmdoc- >f | ags | = MDOC_PBODY;

! "(MDOC_PBCDY & m>flags)) {
nmdoc_pnsg(m |ine, ppos, MANDOCERR BADPROLOG) ;
if (NULL == m >net a. msec)

m >nmet a. nsec = nmandoc_strdup("1");
if (NULL == m>neta.title)

m>nmeta.title = mandoc_strdup(" UNKNOMNN') ;
if (NULL == m >neta.vol)

m >net a. vol = mandoc_st rdup("LOCAL");
if (NULL == m >meta. 0s)

m >nmeta. os = nmandoc_strdup("LOCAL");
if (NULL == m >neta. date)

m >net a. dat e = mandoc_nor ndat e

(m >parse, NULL, line, ppos);
m >f |l ags | = MDOC_PBODY;
}

return((*nmdoc_nacros[tok].fp)(ndoc, tok, line, ppos, pos, buf));

new usr/ src/ cnd/ mandoc/ ndoc. ¢

341 return((*ndoc_nacros[tok].fp)(m tok, line, ppos, pos, buf));
341

344 static int

345 node_append(struct ndoc *ndoc, struct ndoc_node *p)
346 {

348 assert (ndoc->| ast);

349 assert(ndoc->first);

350 assert (MDOC_ROOT ! = p->type);

352 switch (nmdoc->next) {

353 case (MDOC_NEXT_SI BLI NG :

354 mdoc- >l ast - >next = p;

355 p->prev = ndoc->| ast;

356 p- >parent = ndoc->| ast->parent;

357 br eak;

358 case (MDOC_NEXT_CHILD):

359 nmdoc- >l ast->child = p;

360 p- >parent = ndoc->| ast;

361 br eak;

362 defaul t:

363 abort();

364 /* NOTREACHED */

365 }

367 p- >par ent - >nchi | d++;

369 /*

370 * Copy over the normalised-data pointer of our parent. Not
371 * everybody has one, but copying a null pointer is fine.
372 */

374 switch (p- >type) {

375 case (MDCC_B

376 if (ENDBGDY NOT ! = p->end)

377 br eak;

378 /* FALLTHROUGH */

379 case (MDOC_TAIL):

380 /* FALLTHROUCH */

381 case (MDOC_HEAD) :

382 p- >norm = p->parent->norm

383 br eak;

384 def aul t

385 br eak;

386 }

388 if (! mdoc_valid_pre(ndoc, p))

389 return(0);

391 switch (p->type) {

392 case (MDOC_HEAD) :

393 assert (MDOC_BLOCK == p->parent->type);
394 p- >par ent - >head = p;

395 br eak;

396 case (MDOC_TAIL):

397 assert (MDOC_BLOCK == p->parent->type);
398 p->parent->tail = p;

399 br eak;

400 case (MDOC_ BODY)

401 if (p->end)

402 br eak;

403 assert (MDOC_BLOCK == p->parent->type);
404 p- >par ent - >body = p;

405 br eak;

new usr/ src/ cnd/ mandoc/ ndoc. ¢

406
407
408

410

412
413
414
415
416
417
418
419
420
421

423
424

427
428
427

430
431

433
434
433
435
436
437
438
439

441

443
441
444
445
446
447
445
448
449
447

451
452

455
456
454

defaul t:

}
ndoc- >l ast = p;

br eak;

switch (p->type)
case (MDOC TBL):
/* FALLTHROUGH */
case (MDOC_TEXT):
if (! nmdoc_valid_post(ndoc))
return(0);
br eak;
defaul t:

}

return(1);

br eak;

static struct ndoc_node *

node_al |
node_al |

{

int
ndoc_t ai
ndoc_t ai

457 {

458

460
461
458
459
462
463

oc(struct ndoc *ndoc, int line, int pos,
oc(struct ndoc *m int line, int pos,
enum ndoct tok, enum ndoc_type type)

struct ndoc_node *p;
p = mandoc_cal | oc(1, sizeof (struct ndoc_node));

p->sec = ndoc- >l ast sec;
p- >sec = m >| ast sec;

p->line = line;
p- >pos = pos;
p->lastline = line;

p->tok = tok;
p->type = type;

-

/* Flag analysis. *

if (MDOC_SYNOPSI S & ndoc->fl ags)
if (MDOC_SYNOPSIS & m >fl ags)
p->flags | = MDOC_SYNPRETTY;
el se
p->flags & ~MDOC_SYNPRETTY;
if (MDOC_NEWLI NE & ndoc->fl ags)
if (MDOC_NEWLINE & m >fl ags)
p->flags | = MDOC_LI NE;
mdoc- >f | ags &= ~NMDOC_NEWLI NE;
m >fl ags & ~MDOC_NEWLI NE;

return(p);

| _alloc(struct ndoc *ndoc, int line, int pos, enum ndoct tok)
| _alloc(struct ndoc *m int line, int pos, enum ndoct tok)

struct ndoc_node *p;

p = node_al |l oc(ndoc, line, pos, tok, MDOC TAIL);
if (! node_append(ndoc, p))
p = node_alloc(m line, pos, tok, MDOC TAIL);
1f (! node_append(m p))
return(0);
ndoc- >next = MDOC_NEXT_CHI LD;

new usr/ src/ cnd/ mandoc/ ndoc. ¢

enum ndoct t ok)

int pos, enum ndoct tok)

MDOC_HEAD) ;

enum ndoct t ok)

int pos, enum ndoct tok)

MDOC_BODY) ;

line, int pos, enum ndoct tok,

enum ndoct t ok,

struct ndoc_node *body, enum ndoc_endbody end)

MDOC_BODY) ;

461 m >next = MDOC_NEXT_CHI LD;

464 return(1);

465 }

468 int

469 ndoc_head_al | oc(struct ndoc *ndoc, int line, int pos,
467 ?doc_head_al loc(struct nmdoc *m int |ine,

470

471 struct ndoc_node *p;

473 assert (ndoc->first);

474 assert (ndoc->| ast);

471 assert(m>first);

472 assert(m >l ast);

476 p = node_al | oc(ndoc, line, pos, tok, MDOC_HEAD);
477 1f (! node_append(ndoc, p))

474 p = node_alloc(m Iline, pos, tok,

475 i1f (! node_append(m p))

478 return(0);

479 mdoc- >next = MDOC_NEXT_CHI LD;

477 m >next = MDOC_NEXT_CHI LD;

480 return(1);

481 }

484 int

485 ndoc_body_al | oc(struct ndoc *ndoc, int line, int pos,
483 ndoc_body_al | oc(struct nmdoc *m int |ine,

486 {

487 struct ndoc_node *p;

489 p = node_al | oc(ndoc, line, pos, tok, MDOC_BODY);
490 1f (! node_append(ndoc, p))

487 p = node_alloc(m Iline, pos, tok,

488 if (! node_append(m p))

491 return(0);

492 mdoc- >next = MDOC_NEXT_CHI LD;

490 m >next = MDOC_NEXT_CHI LD;

493 return(l);

494 }

497 int

498 ndoc_endbody_al | oc(struct ndoc *ndoc, int

496 ndoc_endbody_al | oc(struct ndoc *m int line, int pos,
499

500 {

501 struct ndoc_node *p;

503 p = node_al |l oc(ndoc, |ine, pos, tok, MDOC BODY);
501 p = node_alloc(m line, pos, tok,

504 p->pendi ng = body;

505 p->norm = body->norm

506 p->end = end;

507 if (! node_append(ndoc, p))

504 if (! node_append(m p))

508 return(0);

509 mdoc- >next = MDOC_NEXT_SI BLI NG

506 m >next = MDOC_NEXT_SI BLI NG

510 return(1);

511 }

514 int

new usr/ src/ cnd/ mandoc/ ndoc. ¢

515 ndoc_bl ock_al | oc(struct ndoc *nmdoc, int line, int pos,

512 ndoc_bl ock_al | oc(struct ndoc *m int line, int pos,

new usr/ src/ cnd/ mandoc/ ndoc. ¢

569 ndoc_word_al | oc(struct ndoc *m int

line, int pos, const char *p)

516 (enum ndoct tok, struct ndoc_arg *args)
517

518 struct ndoc_node *p;

520 p = node_al |l oc(ndoc, line, pos, tok, MDOC BLOCK);
517 p = node_alloc(m line, pos, tok, MDOC BLOCK);
521 p->args = args;

522 1 f (p->args)

523 (args->refcnt) ++;

525 switch (tok) {

526 case (MDOC_Bd):

527 /* FALLTHROUGH */

528 case (MDOC Bf):

529 /* FALLTHROUGH */

530 case (MDOC_Bl):

531 /* FALLTHROUGH */

532 case (MDOC_Rs):

533 p->norm = mandoc_cal | oc(1, sizeof (union ndoc_data));
534 br eak;

535 defaul t:

536 br eak;

537 }

539 if (! node_append(ndoc, p))

536 if (! node_append(m p))

540 return(0);

541 ndoc- >next = MDOC_NEXT_CHI LD;

538 m >next = MDOC_NEXT_CHI LD;

542 return(l);

543 }

546 int

547 ndoc_el em al | oc(struct ndoc *ndoc, int line, int pos,
544 ndoc_el em al l oc(struct ndoc *m int line, int pos,

548 enum ndoct tok, struct ndoc_arg *args)
549 {

550 struct ndoc_node *p;

552 p = node_al |l oc(ndoc, |ine, pos, tok, MDOC ELEM;
549 p = node_alloc(m line, pos, tok, MDOC _ELEM ;
553 p->args = args;

554 I1f (p->args)

555 (args->refcnt) ++;

557 switch (tok) {

558 case (MDOC_An):

559 p->norm = mandoc_cal | oc(1, sizeof (union ndoc_data));
560 br eak;

561 defaul t:

562 br eak;

563 }

565 if (! node_append(ndoc, p))

562 if (! node_append(m p))

566 return(0);

567 mdoc- >next = MDOC_NEXT_CHI LD;

564 m >next = MDOC_NEXT_CHI LD;

568 return(l);

569 }

571 int

572 nmdoc_word_al | oc(struct ndoc *ndoc, int line, int pos, const char *p)

573 {

574 struct ndoc_node *n;

576 n = node_al | oc(ndoc, |ine, pos, MDOC_MAX, MDOC TEXT);
577 n->string = rof f_strdup(nmdoc->roff, p);

573 n = node_alloc(m line, pos, MDOC_MAX, MDOC TEXT);
574 n->string = roff_strdup(m>roff, p);

579 if (! node_append(ndoc, n))

576 if (! node_append(m n))

580 return(0);

582 mdoc- >next = MDOC_NEXT_SI BLI NG

579 m >next = MDOC_NEXT_SI BLI NG

583 return(l);

584 }

586 void

587 ndoc_wor d_append(struct ndoc *ndoc, const char *p)
588 {

589 struct ndoc_node *n;

590 char *addstr, *newstr;

592 n = ndoc- >| ast;

593 addstr = roff_strdup(nmdoc->roff, p);

594 if (-1 == asprintf(&ewstr, "% %", n->string, addstr)) {
595 perror (NULL) ;

596 exi t ((int) MANDOCLEVEL_SYSERR) ;

597

598 free(addstr);

599 free(n->string);

600 n->string = newstr;

601 ndoc- >next = MDOC_NEXT_SI BLI NG

602 }

604 static void

605 ndoc_node_free(struct ndoc_node *p)

606 {

608 if (MDOC_BLOCK == p->type || MDOC_ELEM == p->type)
609 free(p->norm;

610 if (p->string)

611 free(p->string);

612 if (p->args)

613 ndoc_ar gv_free(p->args);

614 free(p);

615 }

618 static void

619 ndoc_node_unl i nk(struct ndoc *ndoc, struct ndoc_node *n)
599 ndoc_node_unlink(struct ndoc *m struct ndoc_node *n)
620 {

622 /* Adjust siblings. */

624 if (n->prev)

625 n- >prev->next = n->next;

626 if (n->next)

627 n->next->prev = n->prev;

629 /* Adjust parent. */

631 if (n->parent) {

632 n- >par ent - >nchi |l d- -;

10

new usr/ src/ cnd/ mandoc/ ndoc. ¢ 11 new usr/ src/ cnd/ mandoc/ ndoc. ¢ 12

633 if (n->parent->child == n) 689 ndoc_preptext(struct ndoc *ndoc, int line, char *buf, int offs)
634 n->parent->child = n->prev ? n->prev : n->next; 661 ndoc_preptext(struct ndoc *m int line, char *buf, int offs)
635 if (n->parent->last == n) 690 {
636 n->parent->last = n->prev ? n->prev : NULL; 691 char *start, *end;
637 } 692 char delim
639 /* Adjust parse point, if applicable. */ 694 while ("\0" != buf[offs]) {
695 /* Mark starting position if eqn is set. */
641 if (mdoc && ndoc->last == n) { 696 start = NULL;
621 if (m& m>last == n) { 697 if (\0 !'= (delim= roff_eqndelin{ndoc->roff)))
642 if (n->prev) { 669 if (\0 !=(delim= roff_eqndelinm(m>roff)))
643 ndoc- >l ast = n->prey; 698 if (NULL !'= (start = strchr(buf + offs, delim))
644 ndoc- >next = MDOC_NEXT_SI BLI NG 699 *start++ = '\0;
623 m >l ast = n->prev;
624 m >next = MDOC_NEXT_SI BLI NG 701 /* Parse text as normal. */
645 } else { 702 if (! ndoc_ptext(ndoc, line, buf, offs))
646 ndoc- >l ast = n->parent; 674 if (! ndoc_ptext(m line, buf, offs))
647 ndoc- >next = MDOC_NEXT_CHI LD; 703 return(0);
626 m >l ast = n->parent;
627 m >next = MDOC_NEXT_CHI LD; 705 /* Continue only if an equation exists. */
648 } 706 if (NULL == start)
649 } 707 break;
651 if (nmdoc && ndoc->first == n) 709 /* Read past the end of the equation. */
652 nmdoc- >first = NULL; 710 offs += start - (buf + offs);
631 if (m& m>first == n) 711 assert(start == &buf[offs]);
632 m >first = NULL; 712 if (NULL != (end = strchr(buf + offs, delim)) {
653 } 713 *end++ = "\ 0" ;
714 while (* ' == *end)
715 end++;
656 void 716 }
657 ndoc_node_del et e(struct ndoc *ndoc, struct ndoc_node *p)
637 ndoc_node_del ete(struct ndoc *m struct ndoc_node *p) 718 /* Parse the equation itself. */
658 { 719 rof f _openegn(ndoc->roff, NULL, |line, offs, buf);
691 rof f _openegn(m >rof f, NULL, line, offs, buf);
660 while (p->child) {
661 assert (p->nchild); 721 /* Process a finished equation? */
662 nmdoc_node_del et e(ndoc, p->child); 722 if (roff_closeeqn(ndoc->roff))
642 mdoc_node_del ete(m p->child); 723 if (! mdoc_addeqgn(ndoc, roff_eqn(nmdoc->roff)))
663 } 694 if (roff_closeeqn(m>roff))
664 assert (0 == p->nchild); 695 if (! ndoc_addeqn(m roff_eqn(m>roff)))
724 return(0);
666 mdoc_node_unl i nk(mdoc, p); 725 offs += (end - (buf + offs));
646 mdoc_node_unl i nk(m p); 726 }
667 nmdoc_node_free(p);
668 } 728 return(1);
729 }
670 int 730 #endi f
671 ndoc_node_relink(struct ndoc *ndoc, struct ndoc_node *p)
672 { 732 | *
733 * Parse free-formtext, that is, a line that does not begin with the
674 mdoc_node_unl i nk(mdoc, p); 734 * control character.
675 return(node_append(ndoc, p)); 735 */
676 } 736 static int
737 ndoc_ptext(struct ndoc *ndoc, int line, char *buf, int offs)
678 #if 0O 709 ndoc_ptext(struct ndoc *m int line, char *buf, int offs)
679 /* 738 {
680 * Pre-treat a text line. 739 char *c, *ws, *end;
681 * Text |lines can consist of equations, which nust be handl ed apart from 740 struct ndoc_node *n;
682 * the regular text.
683 * Thus, use this function to step through a line checking if it has any 742 /* No text before an initial macro. */
684 * equations enbedded in it.
685 * This nmust handle nultiple equati ons AND equations that do not end at 744 if (SEC_NONE == ndoc- >l ast naned) {
686 * the end-of-line, i.e., will re-enter in the next roff parse. 745 mdoc_pnsg(ndoc, |ine, offs, MANDOCERR NOTEXT);
687 */ 716 if (SEC_NONE == m >| ast nanmed)
688 static int 717 ndoc_pnsg(m line, offs, MANDOCERR NOTEXT);

new usr/ src/ cnd/ mandoc/ ndoc. ¢

746
747

749
750
721
722

752
753
754
755
756
757

759
760
761
762
763
734
735
764

766
767
768
769
770
771
772
743
744
773

775
776
777
778

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
772
801
802
803
804

return(1);

}

assert (ndoc->| ast);
n = ndoc- >| ast;
assert(m >l ast);

n = m>| ast;

/*

* Divert directly to list processing if we're encountering a

* columar MDOC BLOCK with or without a prior MDOC BLOCK entry
* (a MDOC_BODY neans it's already open, in which case we should
* process within its context in the normal way).

*

if (MDOC_Bl == n->tok &% MDOC_BODY == n->type &&
LI ST_col utmm == n->norm >Bl . type) {
/* “Bl’ is open without any children. */

nmdoc- >fl ags | = MDOC_FREECCOL;

return(nmdoc_nacro(ndoc, MDOC It, line, offs, &ffs, buf));

m >fl ags | = MDOC_FREECOL;
return(nmdoc_macro(m MDOC_ It, line, offs, &offs, buf));
}

if (MDOC_It == n->tok &% MDOC_BLOCK == n->type &&
NULL != n- >parent &&

MDOC Bl == n->parent->tok &%
LI ST col um == n- >parent->norm>BI type) {
/* *Bl’ has Dblock-level ‘It children. */

nmdoc- >f | ags | = MDOC_FREECOL;

ret urn(mdoc_macro(ndoc, MDOC It, line, offs, &offs, buf));

m >fl ags | = MDOC_FREECOL;
ret urn(mdoc_nacro(m NDCtIt line, offs, &offs, buf));
}

/*

* Search for the beginning of unescaped trailing whitespace (ws)
* and for the first character not to be output (end).

*/

/* FIXNE replace with strcspn(). */

ws = NULL;

for (c = end = buf + offs; *c; c++) {
switch (*c) {

case '
if (NULL == ws)
ws = C;
conti nue;
case '\t':
/*
* Always warn about trailing tabs,
* even outside literal context,
* where they should be put on the next Iine.
*
/
if (NULL == ws)
ws = ¢;
/*
* Strip trailing tabs in literal context only;
* outside, they affect the next line.
*
/
if (MDOC_LI TERAL & ndoc- >fl ags)
if (MDOC_LITERAL & m >fl ags)
continue;
break;
case '\\':

/* Skip the escaped character, too, if any. */

13

new usr/ src/ cnd/ mandoc/ ndoc. ¢

805
806
807
808
809
810
811
812
813
814

816
817
789

819
820
791
792

822
823
824
825
826
827
799
828

830

832
802
803
833

835
806
836

838
809
839

841
842
843
844
845

847

849
850
821

852
853 }

856 /
857
858
859

if (c[1])
CH++;
/* FALLTHRCIJGH */
defaul t:
ws = NULL;
break;

end = ¢ + 1;
}
*end = '\0";

if (ws)
nmdoc_pnsg(ndoc, |ine,

(int)(ws-buf), MANDOCERR EOLNSPACE) ;
mdoc_pnsg(m line, (int)(ws-buf),

MANDOCERR _ECLNSPACE) ;
if ("\0 == buf[offs] & & ! (MDOC_LI TERAL & ndoc->flags)) {
nmdoc_pnsg(ndoc, line, (int)(c-buf), MANDOCERR _NOBLANKLN);
== buf[offs] & ! (MDOC_LI TERAL & m >fl ags))
mdoc_pmsg(m line, (int)(c-buf), MANDOCERR NOBLANKLN);

/

if (C\0

Insert a ‘sp’ in the case of a blank line. Technically,
blank lines aren’t allowed, but enough nanuals assune this
behavi our that we want to work around it.

(! nmdoc_el em all oc(ndoc, line, offs, MDOC sp, NULL))
(! mdoc_elemalloc(m line, offs, MDOC_sp, NULL))
return(0);

*
*
*
*
*/
f
f

nmdoc- >next = MDOC_NEXT_SI BLI NG

return(ndoc_val i d_post (ndoc));
m >next = MDOC_NEXT_SI BLI NG,
return(1);

if (! mdoc_word_alloc(ndoc, line, offs, buf+offs))
if (! ndoc_word_alloc(m line, offs, buf+offs))
return(0);

if (MDOC_LI TERAL & ndoc->fl ags)
if (MDOC_LITERAL & m >fl ags)
return(l);

/*

* End-of -sentence check. If the |ast character is an unescaped
* ECS character, then flag the node as being the end of a

* sentence. The front-end will know how to interpret this.

*/

assert (buf < end);

if (mandoc_eos(buf+offs, (size_t)(end-buf-offs), 0))
ndoc- >l ast - >f| ags | = MDOC_ECS;
m >l ast->flags | = MDOC_ECS;

return(1);

*

* Parse a nmacro line, that is, a line beginning with the control
* character.

*/

860 static int

861 ndoc_pmacro(struct ndoc *ndoc, int In, char *buf,

int offs)

14

new usr/ src/ cnd/ mandoc/ ndoc. ¢

832 ndoc_pnacro(struct ndoc *m int In, char *buf, int offs)
86

863 enum ndoct t ok;

864 int i, sv;

865 char mac| 5] ;

866 struct ndoc_node *n;

868 /* Enpty post-control lines are ignored. */

870 if (" == buf[offs]) {

871 mdoc_pnsg(ndoc, |In, offs, MANDOCERR BADCOMVENT) ;
842 ndoc pmsg(m In, offs, MANDOCERR ,_BADCOMVENT) ;

872 return(

873 } elseif ("\0" == buf[offs])

874 return(l)

876 sv = offs;

878 /*

879 * Copy the first word into a nil-termnated buffer.

880 * Stop copying when a tab, space, or eoln is encountered.
881 */

883 i =0;

884 while (i <4 & '\0" != buf[offs] &&

885 "' 1= buf[offs] && '\t' != buf[offs])

886 mac[i ++] = buf[of fs++];

888 mac[i] = "\0";

890 tok = (i >1]] i <4) ? mdoc_hash_find(mac) : MDOC_MAX;
892 if (MDOC_MAX == tok) {

893 mandoc_vnsg(MANDOCERR _MACRO, ndoc- >par se,

864 mandoc_vsg(MANDOCERR | NACRO m>parse

894 In, sv, "%", buf + sv - 1);

895 return(l);

896 }

898 /* Disregard the first trailing tab, if applicable. */

900 if ("\t' == buf[offs])

901 of f s++;

903 /* Junp to the next non-whitespace word. */

905 while (buf[offs] &&° == buf[offs])

906 of f s++;

908 /*

909 * Trailing whitespace. Note that tabs are allowed to be passed
910 * into the parser as "text", so we only warn about spaces here.
911 *

913 if ("\0" == buf[offs] & ' ' == buf[offs - 1])

914 mdoc_pnsg(nmdoc, In, offs - 1, MANDOCERR EOLNSPACE) ;
885 mdoc_prmsg(m In, offs - 1, MANDOCERR EQLNSPACE);
916 /*

917 * If an initial macro or a list invocation, divert directly
918 * into nacro processing.

919 */

921 if (NULL == ndoc->last || MDOC It == tok || MDOC El == tok) {
922 if (! nmdoc_macro(ndoc, tok, In, sv, &offs, buf))

892 if (NULL == m>last || MDC It == tok || MDOC_El == tok) {

15

new usr/ src/ cnd/ mandoc/ ndoc. ¢

893 if (! mdoc_macro(m tok, In, sv, &offs, buf))

923 goto err;

924 return(1);

925 }

927 n = ndoc- >l ast;

928 assert (ndoc- >l ast);

898 n = m>last;

899 assert(m >l ast);

930 I*

931 * |f the first macro of a ‘Bl -colum’, open an ‘I1t’ block
932 * context around the parsed macro.

933 */

935 if (MDOC_BI == n->tok & MDOC BODY == n->type &&

936 LI ST_col umm == n->norm >Bl . type) {

937 mdoc- >f | ags | = MDOC_FREECCL;

938 if (! mdoc_macro(nmdoc, MDOC It, In, sv, &sv, buf))
908 m>flags | = MDOC_FREECOL;

909 if (! mdoc_macro(m MDOC It, In, sv, &v, buf))
939 goto err;

940 return(l);

941 }

943 /*

944 * If we're following a block-level ‘It’ within a ‘Bl -colum’
945 * context (perhaps opened in the above block or in ptext()),
946 */then open an ‘It’ block context around the parsed macro.
947 *

949 if (MDOC It == n->tok &% MDOC BLOCK == n->type &&

950 NULL != n->parent &&

951 MDOC_Bl == n->parent->tok &&

952 LI ST_col um == n->parent->norm >Bl . type) {
953 mdoc- >f | ags = MDOC_FREECOL;

954 if (! ndoc_macro(ndoc, IVDCCIt In, sv, &v, buf))
924 m>f| ags | = MDOC_FREECOL;

925 if (! mdoc_macro(m MDOC It, In, sv, &sv, buf))
955 goto err;

956 return(l);

957 }

959 /* Normal processing of a macro. */

961 if (! ndoc_macro(ndoc, tok, In, sv, &ffs, buf))

932 if (! ndoc_macro(m tok, In, sv, &offs, buf))

962 goto err;

964 return(1);

966 err: /* Error out. */

968 ndoc- >f | ags | = MDOC_HALT;

939 m >f| ags | = MDOC_HALT;

969 return(0);

970 }

972 enum ndel i m
973 ndoc_i sdel i m const char *p)

974 {

976 if ("\0" == p[0])

977 ret urn(DELI M_NONE) ;
979 if ("\0 == p[1])

16

new usr/ src/ cnd/ mandoc/ ndoc. ¢

980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005

1007
1008

1010
1011
1012

983
1013

1015
1016 }

switch (p[0]) {
case('('):

/* FALLTHROUGH */
case('[):
return(DELI M_OPEN) ;
case('|’):
return(DELI M_M DDLE) ;
case(’.’):
* FALLTHROUGH */
case(’,’
FALLTHROUGH */

case(’;’
FALLTHROUGH */

case(’:

case(’?’
FALLTHROUGH */
case(’'!’

/
):
/*
):
/*
):
/* FALLTHROUGH */
)
):
/*

FALLTHROUGH */
case(’)’):

/* FALLTHROUGH */
case(']’):

return(DELI M CLCSE) ;
defaul t:
) ret ur n(DELI M_NONE) ;

if ("\\" 1=p[0])
return(DELI M_NONE) ;

if (0 ==strcnmp(p +1, "."))
ret urn(DELI M_CLCSE) ;
if (0 ==strcenp(p + 1, "fRI\\fP"))
if (0 ==strcnp(p + 1, "*(Ba"))
return(DELI MM DDLE) ;

ret urn(DELI M_NONE) ;

__unchanged_portion_onitted_

17

new usr/ src/ cnd/ mandoc/ ndoc. h 1 new usr/ src/ cnd/ mandoc/ ndoc. h

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 vaa,
8568 Wed Jul 30 20:55:09 2014 60 MDOC_Mt ,
new usr/ src/ cnmd/ mandoc/ ndoc. h 61 MDOC_Xr ,
5051 inport ndocnmi-1.12.3 62 MDOC__A,
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con» 63 MDOC__B,
Approved by: TBD 64 MDOC__D,
LR R R EEEEEEEEE SRS RS RS SRS RS RS E R EE R R RREERREREEEEEEEEEESEESESE] 65 m I’
1/* $Id: ndoc. h,v 1.125 2013/12/24 19:11: 45 schwarze Exp $ */ 66 MDOC__J,
1/* $1d: ndoc. h,v 1.122 2011/ 03/ 22 14:05: 45 kristaps Exp $ */ 67 MDOC__ N,
2 /* 68 MDOC__ O,
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v> 69 MDOC__P,
4 * 70 MDOC__R
5 * Permission to use, copy, nodify, and distribute this software for any 71 MDOC__T,
6 * purpose with or without fee is hereby granted, provided that the above 72 MDOC__V,
7 * copyright notice and this perm ssion notice appear in all copies. 73 MDOC_Ac,
8 * 74 MDOC_Ao,
9 * THE SOFTWARE IS PROVIDED "AS |'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES 75 MDOC_Aq,
10 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF 76 MDOC_At,
11 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR 77 MDOC_Bc,
12 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES 78 MDOC_Bf,
13 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PRCFI TS, WHETHER I N AN 79 MDOC _Bo,
14 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI OUS ACTI ON, ARI SI NG OQUT OF 80 MDOC_Bq,
15 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI S SOFTWARE. 81 MDOC_Bsx,
16 */ 82 MDOC_Bx,
17 #i fndef MDOC_H 83 MDOC_Db,
18 #define MDOC_H 84 MDOC_Dc,
85 MDOC_Do,
20 enum ndoct { 86 MDOC_Dq,
21 MDOC Ap = O, 87 MDOC_Ec,
22 MDOC_Dd, 88 MDOC_Ef,
23 MDOC_Dxt , 89 MDOC_Em
24 MDOC_Cs, 90 MDOC_Eo,
25 MDOC_Sh, 91 MDOC_Fx,
26 MDCOC_Ss, 92 MDOC_Ms,
27 MDOC_Pp, 93 MDOC_No,
28 MDOC_D1, 94 MDOC_Ns,
29 MDOC D, 95 MDOC_Nx,
30 MDOC_Bd, 96 MDOC_Ox,
31 MDOC_Ed, 97 MDOC_Pc,
32 MDOC_BI 98 MDOC_Pf ,
33 MDOC _El , 99 MDOC _Po,
34 MDOC It 100 MDOC _Pq,
35 MDOC_Ad, 101 MDOC_Qc,
36 MDOC_An, 102 MDOC_Q
37 MDOC _Ar, 103 MDOC_Qo,
38 MDOC_Cd, 104 MDOC_Qq,
39 MDOC_Cm 105 MDOC_Re,
40 MDOC_Dv, 106 MDOC_Rs,
41 MDOC_Er, 107 MDOC_Sc,
42 MDCC _Ev, 108 MDOC_So,
43 MDOC_EX, 109 MDOC_Sq,
44 MDOC_Fa, 110 MDOC_Sm
45 MDOC _Fd, 111 MDOC_Sx,
46 MDOC _FI , 112 MDCOC_Sy,
47 MDOC_Fn, 113 MDOC_Tn,
48 MDOC_Ft , 114 MDOC_Ux,
49 MDOC | ¢, 115 MDOC_Xc,
50 MDCC | n, 116 MDOC_Xo,
51 MDOC Li , 117 MDOC _Fo,
52 MDOC_Nd, 118 MDOC_Fc,
53 MDOC_Nm 119 MDOC_Qo,
54 MDOC_Op, 120 MDOC _Cx,
55 MDOC_Cx, 121 MDOC_Bk,
56 MDOC_Pa, 122 MDOC_EKk,
57 MDOC_Rv, 123 MDOC_Bt ,

new usr/ src/ cnd/ mandoc/ ndoc. h

125 MDOC_Fr ,
126 MDOC_Ud,
127 MDOC_Lb,
128 MDCOC_Lp,
129 MDOC_Lk,
130 MDOC_M
131 MDOC_Br q,
132 MDOC_Br o,
133 MDOC _Br c,
134 MDOC__C,
135 MDOC_Es,
136 MDOC_En,
137 MDOC_Dx,
138 MDOC__Q
139 MDOC_br
140 MDOC_sp,
141 MDOC__ U,
142 MDOC_Ta,
143 MDOC_MAX
144 };

__unchanged_portion_omtted_

307 struct ndoc_bl {

308 const char *width; /* -width */
309 const char *offs; /* -offset */
310 enum ndoc_| i st type; /* -tag, -enum etc. */
311 int conp; /* -conpact */
312 size_t ncols; /* -colum arg count */
313 const char **cols; /* -colum val ptr */
314 int count; /* -enum counter */
315 };

__unchanged_portion_onitted_
342 | *
343 * Single node in tree-linked AST.
344 */

345 struct ndoc_node {
346 struct ndoc_node *parent; /* parent AST node */

347 struct ndoc_node *child; /* first child AST node */

348 struct ndoc_node *last; /* last child AST node */

349 struct ndoc_node *next; /* sibling AST node */

350 struct ndoc_node *prev; /* prior sibling AST node */

351 int nchild; /* nunber children */

352 int line; /* parse line */

353 int pos; /* parse colum */

354 int lastline; /* the node ends on this line */
355 enum ndoct tok; /* tok or MDOC__MAX if none */

356 int fl ags;

357 #define MDOC_VALI D (1 << 0) /* has been validated */
358 #defi ne MDOC_EGCS (1 << 2) /* at sentence boundary */
359 #define MDOC_LI NE (1 << 3) /* first macro/text on line */
360 #define MDOC_SYNPRETTY (1 << 4) /* SYNOPSIS-style formatting */
(1
(1
(1

361 #defi ne MDOC_ENDED << 5) /* rendering has been ended */

362 #define MDOC_DELI MO << 6)

363 #define MDOC_DELI MC << 7

364 enum ndoc_t ype type; /* AST node type */

365 enum ndoc_sec sec; /* current nanmed section */

366 uni on ndoc_data *norm /* normalised args */

367 const void *prev_font; /* before entering this node */
368 /* FIXME: these can be union’d to shave a few bytes. */
369 struct nmdoc_arg *args; /* BLOCK/ ELEM */

370 struct ndoc_node *pending; /* BLOCK */

371 struct ndoc_node *head; /* BLOCK */

372 struct ndoc_node *body; /* BLOCK */

373 struct ndoc_node *tail; /* BLOCK */

374 char *string; /* TEXT */

new usr/ src/ cnd/ mandoc/ ndoc. h

375 const struct tbl_span *span; /* TBL */
376 const struct eqn *eqn; /* EQN */

377 enum ndoc_endbody end; /* BODY */

378 };

__unchanged_portion_omtted_

new usr/ src/ cnd/ mandoc/ ndoc_argv. c 1

R R R R

16856 Wed Jul 30 20:55:09 2014
new usr/ src/ cnd/ mandoc/ ndoc_argv. c
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $l d: ndoc_argv.c,v 1.89 2013/12/25 00: 50: 05 schwarze Exp $ */

1/* $Id: ndoc_argv.c,v 1.82 2012/03/23 05:50: 24 kristaps Exp $ */

2 /*

3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
4 * Copyright (c) 2012 Ingo Schwarze <schwarze@penbsd. or g>

5 *

6 * Permission to use, copy, nodify, and distribute this software for any

7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this perm ssion notice appear in all copies.

9 *

10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

12 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN

15 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SI NG QUT OF
16 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI' S SOFTWARE.

17 */

18 #if def HAVE CONFI G H
19 #include "config. h™
20 #endif

22 #include <sys/types. h>

24 #include <assert. h>
25 #include <stdlib.h>
26 #include <stdio. h>

27 #include <string. h>

29 #include "ndoc. h"

30 #i nclude "mandoc. h"

31 #include "libndoc. h"
32 #include "libmandoc. h"

34 #define MIULTI _STEP
35 #define DELI MSZ

* pre-allocate argument val ues */

5/
6 /* max possible size of a delinmiter */

37 enum argsflag {

38 ARGSFL_NONE = 0,
39 ARGSFL_DELIM /* handle delimters of [[::delim:][]1+]+ */
40 ARGSFL_TABSEP /* handl e tab/*‘Ta' separated phrases */
41 };
43 enum argvflag {
44 ARGV_NONE, /* no args to flag (e.g., -split) */
45 ARGV_SINGLE, /* one arg to fiag (e.g., -file xxx) */
46 ARGV_MULTI /* nultiple args (e.g., -colum xxx yyy) */
45 ARGV_MULTI, /* multiple args (e.g., -colum xxx yyy) */
46 ARGV_OPT_ SI NGLE /* optional arg (e g., -offset [xxx]) */
47 };
__unchanged_portion_omtted_
54 static void argn_free(struct ndoc_arg *, int);
55 static enum nargserr args(struct ndoc *, int, int *,
56 char *, enum argsflag, char **);
57 static int args_checkpunct (const char *, int);
58 static int argv_mul ti (struct ndoc *, int,
59 struct ndoc_argv *, int *, char *);

60 static int argv_opt _singl e(struct ndoc *, int,

new usr/ src/ cnd/ mandoc/ ndoc_ar gv. ¢

61 struct ndoc_argv *, int
60 static int argv_singl e(struct ndoc *, int,
61 struct ndoc_argv *, int
63 static const enumargvflag argvflags[MDOC_ ARG MAX] = {
64 ARGV_NONE, /* NMDOC_Split */

65 ARGV_NONE, /* NMDOC_Nosplit */

66 ARGV_NONE, /* MDOC_Ragged */

67 ARGV_NONE, /* MDOC_Unfilled */

68 ARGV_NONE, /* MDOC_Literal */

69 ARGV_SI NGLE, /* MDOC File */

70 ARGV_SI NGLE, /* MDOC_Of fset */

72 ARGV_OPT_SINGLE, /* MDOC O fset */

71 ARGV_NONE, /* NMDOC_Bul l et */

72 ARGV_NONE, /* NMDOC_Dash */

73 ARGV_NONE, /* MDOC_Hyphen */

74 ARGV_NONE, /* MDOC_ltem */

75 ARGV_NONE, /* NMDOC_Enum */

76 ARGV_NONE, /* NMDOC_Tag */

77 ARGV_NONE, /* MDOC_Diag */

78 ARGV_NONE, /* MDOC_Hang */

79 ARGV_NONE, /* MDOC_Chang */

80 ARGV_NONE, /* MDOC_I nset */

81 ARGV_MULTI, /* MDOC_Col um */

82 ARGV_SI NGLE, /* MDOC_Wdth */

84 ARGV_OPT_SINGLE, /* MDOC_ Wdth */

83 ARGV_NONE, /* NMDOC_Conpact */

84 ARGV_NONE, /* NMDOC_Std */

85 ARGV_NONE, /* MDOC_Filled */

86 ARGV_NONE, /* MDOC_Words */

87 ARGV_NONE, /* MDOC_Enphasis */

88 ARGV_NONE, /* MDOC_Synbolic */

89 ARGV_NONE /* MDOC_Synbolic */

90 };

_hnchanged_port ion_omtted_

146 static const struct ndocarg rrdocargs[NDOC MAX] = {
147 B2/

ARGSFL_DELIM NULL }, /* Ap
149 ARGSFL_NONE, NULL }, /* Ap */
148 ARGSFL_NONE, NULL }, /* Dd */
149 ARGSFL_NONE, NULL }, /* Dt */
150 ARGSFL_NONE, NULL }, /* Qs */
151 ARGSFL_NONE, NULL }, /* sh */
152 ARGSFL_NONE, NULL }, /* Ss */
153 ARGSFL_NONE, NULL }, /* Pp */
154 ARGSFL_DELIM NULL }, /* D1 */
155 ARGSFL_DELIM NULL }, /* DI */
156 ARGSFL_NONE, args_Bd }, /* Bd */
157 ARGSFL_NONE, NULL}, /* Ed */
158 ARGSFL_NONE, args_Bl }, /* Bl */
159 ARGSFL_NONE, NULL}, /* El */
160 ARGSFL_NONE, NULL }, /* It */
161 ARGSFL_DELIM NULL }, /* Ad */
162 ARGSFL_DELIM args_An }, /* An */
163 ARGSFL_DELIM NULL'}, /* Ar */
164 ARGSFL_DELIM NULL }, /* Cd */
166 ARGSFL_NONE, NULL }, /* cd */
165 ARGSFL_DELIM NULL }, /* Cm*/
166 ARGSFL_DELIM NULL }, /* Dv */
167 ARGSFL_DELIM NULL }, /* Er */
168 ARGSFL_DELIM NULL }, /* Ev */
169 ARGSFL_NONE, args_Ex }, /* Ex */
170 ARGSFL_DELIM NULL }, /* Fa */
171 ARGSFL_NONE, NULL }, /* Fd */
172 ARGSFL DELIM NULL }, /* FI */
173 ARGSFL_DELIM NULL }, /* Fn */

*
’

*
f

char *);

char *);

new usr/ src/ cnd/ mandoc/ ndoc_ar gv. ¢

174
175
176
178
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

ARGSFL_DELIM NULL },
ARGSFL_DELIM NULL },
ARGSFL_DELIM NULL },
ARGSFL_NONE, NULL },
ARGSFL_DELIM NULL },
ARGSFL_NONE, NULL 1},
ARGSFL_DELIM NULL },
ARGSFL_DELIM NULL }.
ARGSFL_NONE, NULL },

ARGSFL_DELIM NULL },
ARGSFL_NONE, ar gs_Ex
ARGSFL_DELIM NULL },
ARGSFL_DELIM NULL }.
ARGSFL_DELIM NULL },
ARGSFL_DELIM NULL },
ARGSFL_NONE, NULL 1},
ARGSFL_NONE, NULL },
ARGSFL_NONE, NULL 1},
ARGSFL_NONE, NULL 1},
ARGSFL_NONE, NULL 1},
ARGSFL_NONE, NULL },
ARGSFL_NONE, NULL 1},
ARGSFL_NONE, NULL 1},
ARGSFL_NONE, NULL 1},
ARGSFL_NONE, NULL },
ARGSFL_NONE, NULL 1},
ARGSFL_DELIM NULL },
ARGSFL_NONE, NULL }

ARGSFL_DELIM NULL
ARGSFL_DELIM NULL
ARGSFL_DELIM NULL
ARGSFL_NONE, ar gs_B
ARGSFL_NONE, NULL},
ARGSFL_DELI M NULL },
ARGSFL_DELIM NULL },
ARGSFL_DELIM NULL },

—
S NN

ARGSFL_NONE, NULL }
ARGSFL_DELIM NULL
ARGSFL_NONE, NULL 1},
ARGSFL_DELIM NULL },
ARGSFL_DELIM NULL },
ARGSFL_NONE, NULL },
ARGSFL_DELIM NULL 1},
ARGSFL_NONE, NULL }
DELI'M NULL
ARGSFL_DELIM NULL
ARGSFL_DELIM NULL
ARGSFL_DELI M NULL
ARGSFL_DELI'M NULL
ARGSFL_DELIM NULL
ARGSFL_DELIM NULL
ARGSFL_DELIM NULL
ARGSFL_NONE, NULL }
ARGSFL_DELI'M NULL
ARGSFL_DELIM NULL
ARGSFL_DELIM NULL },
ARGSFL_NONE, NULL 1},
ARGSFL_DELIM NULL },
ARGSFL_NONE, NULL },
ARGSFL_NONE, NULL },
ARGSFL_DELIM NULL 1},
ARGSFL_NONE, NULL },
ARGSFL_DELIM NULL },
ARGSFL_NONE, NULL 1},

ARGSFL_DELIM NULL },
ARGSFL_DELIM NULL },

-

a
4
=z
L L W T A I

I a */
/* Pa */
}, /% Rv */
1% st */
/* Va */
I* vt ¥/
I* X %/
I* Uh *]
I* 9B */
I* 9 */
I* % */
I* 9% */
I* ON */
/*
/*
/*
/*
/*

/* Bc */

/* Dc */
/* Do */
/* Dg */
I* Ec */
I* Ef %/

* ok k ok k& * o

-~

—~— -
~ kR m e m e — e —

/* Sx */
/* Sy */

new usr/ src/ cnd/ mandoc/ ndoc_ar gv. ¢

239
240
241
242
243
244
246
245
246
247
248
249
250
251
252
253
255
254
255
256
257
258
259
260
261
262
263
265
264
265
266
267
268
269

272
273
274
275
276
277
278
280
279
280
281
282
283
284

286
287
288
289
290
291

299
300

ARGSFL_DELI M NULL
ARGSFL_DELI M NULL
ARGSFL_DELI M NULL
ARGSFL_NONE, NULL
ARGSFL_NONE, NULL
ARGSFL_DELIM NULL
ARGSFL_NONE, NULL
ARGSFL_NONE, NULL
ARGSFL_DELI'M NULL
ARGSFL_NONE, ar gs
ARGSFL_NONE, NULL
ARGSFL_NONE, NULL
ARGSFL_NONE, NULL
ARGSFL_NONE, NULL
ARGSFL_NONE, NULL
ARGSFL_DELI M NULL
ARGSFL_NONE, NULL
ARGSFL_NONE, NULL
ARGSFL_DELI M NULL
ARGSFL_DELI M NULL
ARGSFL_DELI'M NULL
ARGSFL_NONE, NULL
ARGSFL_DELIM NULL
ARGSFL_NONE, NULL
ARGSFL_NONE, NULL
ARGSFL_NONE, NULL
ARGSFL_DELIM NULL
ARGSFL_NONE, NULL
ARGSFL_NONE, NULL
ARGSFL_NONE, NULL
ARGSFL_NONE, NULL
ARGSFL_NONE, NULL
ARGSFL_NONE, NULL

/*
* Parse an argunment fromli

* [valueO...], which may either have a single mandatory val ue,
ptional single value,

* one nandatory value, an o
*/

enum mar gverr
nmdoc_ar gv(struct ndoc *ndoc,
ndoc_argv(struct ndoc *m in
(struct ndoc

char *p,
struct ndoc_argv tnp;
struct nmdoc_arg *ar

const enum ndocar gt
if ("\0 == buf[*pos
retur n(ARGV_|

else if (NULL == (ap =

, I* Tno*/
, oI U
, I* Xe */
[* Xo */
/* Fo */

(SN

—~——— —

N I

* Lb */

b

Yoot Mo
Y, 1* Brg */
}, I* Bro */
}, I* Brc */
[* AC */
,/* Es */
, I* En */
Y, /* Dx */
, [* Dx */
, LT 9 x
, I* br */
, I* sp */
AT VIR

b
}
}
}
}
}
}
}
}oo/* Ta *)

ne text. This comes in the formof -key

int |line, enum ndoct tok,

t |ine, enum ndoc

_arg **v, int *pos,

SV;
g,
*ap;

Ean.
= n;iocar gs[tok].

return(ARGV WORD,

elseif ('-" != buf[*
return(ARGV

/* Seek to the first
p = &uf[++(*pos)];
assert(*pos > 0);

for (; FFfE'pOS]——;b

pos|)
VORD) ;

unescaped space.

(* pos)++)
uf[*pos] && "\\’

t tok,
char *buf)

argvs))

*/

!'= buf[*pos -

or no val ue.

p)

at

| east

new usr/ src/ cnd/ mandoc/ ndoc_ar gv. ¢

301

303
304
305
306
307
308

310
311

313
314
315
316

318

320
321
322

324
325
326

328
329
330
331
332
333
334
335
336

338

340
341

343
344
345
347
346
347
348
349
351
350
351
354
355
356
357
352
353
354

356
357

359
360

br eak;

/*

* W want to nil-termnate the word to look it up (it’'s easier
* that way). But we may not have a flag, in which case we need
* to restore the line as-is. So keep around the stray byte,

* which we' Il reset upon exiting (if necessary).

*

/
if ("\0 != (sv = buf[*pos]))

buf [(*pos)++] = "\0";

/*

* Now | ook up the word as a flag. Use tenporary storage that
* we'll copy into the node's flags, if necessary.

*

/

menset (& np, 0, sizeof (struct ndoc_argv));

tnp.line = line;
tnp. pos = *pos;
tnp.arg = MDOC_ARG_MAX;

while (MDOC_ARG MAX != (tnp.arg = *ap++))
if (0 ==bstrﬁnp(p, ndoc_ar gnanmes[tnp.arg]))
rea

if (NDOC/_ARG_NAX == tnp.arg) {

* The flag was not found.
* Restore saved zeroed byte and return as a word.
*
/
if (sv)
buf [*pos - 1] = sv;
ret ur n(ARGV_WORD) ;

}

/* Read to the next word (the argunent). */

while (buf[*pos] & ' ' == buf[*pos])
(*pos) ++;

switch (argvflags[tnp arg]) {
case (ARGV_SINGLE):
if (! argv_single(nmdoc, line, & np, pos, buf))
if (! argv_single(m line, &np, pos, buf))
ret ur n(ARGV_ERROR) ;
br eak;
case (ARGV_MULTI):
if (! argv_multi(ndoc, line, & np, pos, buf))
if (! argv_mlti(m line, &np, pos, buf))
ret ur n(ARGV_ERROR) ;

br eak;
case (ARGV_OPT_SI NGLE):
if (! argv_opt_single(m line, &np, pos, buf))
ret ur n(ARGV_ERROR) ;

br eak;
case (ARGV_NONE):
br eak;
}
if (NULL == (arg = *Vv))
arg = *v = mandoc_cal |l oc(1, sizeof(struct ndoc_arg));

ar g- >ar gc++;
arg->argv = nmandoc_real | oc

new usr/ src/ cnd/ mandoc/ ndoc_ar gv. ¢

361 (arg->argv, arg->argc * sizeof(struct ndoc_argv));
363 mencpy(&ar g- >argv[(| nt)arg->argc - 1],

364 & np, sizeof (struct mioc _argv));

366 return(ARGV_ARG) ;

367 }

__unchanged_portion_omtted_

409 enum nmar gserr

410 ndoc_zargs(struct ndoc *ndoc, int line, int *pos, char *buf, char **v)

416 ndoc_zargs(struct ndoc *m int line, int *pos, char *buf, char **v)
411 {

413 return(args(ndoc, line, pos, buf, ARGSFL_NONE, V));
419 return(args(m line, pos, buf, ARGSFL NONE, v))
414 }

416 enum nargserr
417 ndoc_args(struct ndoc *ndoc, int line, int *pos,
423 ndoc_args(struct ndoc *m int line, int *pos,

418 char *buf, enum ndoct tok, char **v)

419 {

420 enum ar gsfl ag fl;

421 struct ndoc_node *n;

423 fl = ndocargs[tok].fl ags;

425 if (MDOC_It !'= tok)

426 return(args(ndoc, |ine, pos, buf, fl, v));

432 return(args(m |line, pos, buf, fl, v));

428 /*

429 * We know that we're in an ‘It’, so it’'s reasonable to expect
430 * us to be sitting in a ‘Bl’. Soneday this may not be the case
431 * (if we allowrandom‘It’s sitting out there), so provide a
432 * safe fall-back into the default behaviour.

433 */

435 for (n = ndoc->l ast; n; h=n- >par ent)

441 for (n = m>last; n; n = n->parent)

436 if (NDOCBI ==n>tok)

437 if (LIST coI um == n->norm >Bl . type) {

438 fl ARGSFL_TABSEP;

439 break;

440 }

442 return(args(ndoc, line, pos, buf, fl, v));

448 return(args(m line, pos, buf, fl, v));

443 }

445 static enum nargserr
446 args(struct ndoc *ndoc, int line, int *pos,
452 args(struct ndoc *m int line, int *pos,

447 char *buf, enumargsflag fl, char **v)
448 {

449 char *p, *pp;

450 int pairs;

451 enum mar gserr rc;

453 if ("\0' == buf[*pos])

454 if (MDOC_PPHRASE & mdoc- >fl ags)

459 if (MDOC_PPHRASE & m >fl ags)

455 return(ARGS_EQLN) ;

456 /*

457 * |f we're not in a partial phrase and the flag for

new usr/ src/ cnd/ mandoc/ ndoc_ar gv. ¢

458
459
460
461
462
466
467

464
469
465
466

468

470
471
472

474
475
476
477
478
479

481
482
483
484

486
487
492
488
489
490
491
492
493
494
495

497
498

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

519

*v

B

if (ARGSFL_TABSEP =

* being a phrase literal is still set, the punctuation
* is untermninated.
*/

if (MDOC_PHRASELIT & ndoc->fl ags)

ndoc_pnsg(ndoc, |ine, *pos, MANDOCERR BADQUOTE);
if (MDOC_PHRASELIT & m >fl ags)

ndoc_pnsg(m |ine, *pos, MANDOCERR_BADQUOTE) ;

nmdoc- >f | ags &= ~MDOC_PHRASELI T;
m >f| ags & ~MDOC_PHRASELI T;
return(ARGS_ECLN) ;

= &buf[*pos];
(ARGSFL_DELIM == f|

)
if (args_checkpunct (buf, *pos))
ret ur n(ARGS_PUNCT) ;

First handle TABSEP itens, restricted to ‘Bl -colum’. This
|gnores conventional token parsing and instead uses tabs or
‘Ta' macros to separate phrases.
for arguments at a later phase.

Phrases are parsed again

1)
/* Scan ahead to
p = strchr(v, ’
pp = NULL
/* Scan ahead to unescaped ‘Ta' . */

if (! (MDOC_PHRASELIT & ndoc- >f|ags))
if (! (MXQC PHRASELIT & m>flags))

{
tal)b (can't be escaped). */
t’

\

for (pp = *v: ; pp++) {
if (NULL == (pp strstr(pp, "Ta")))
br eak;
if (pp>*v &' ' 1=*(pp - 1))
) conti nue;
if (" =*(pp +2) || "\O =="*(pp + 2))
) br eak;

/* By default, assune a phrase. */
rc = ARGS_PHRASE;

/*
* Adj ust new buffer position to be beyond delimter
* mark (e.g., Ta -> end + 2).
*
/

if (p & pp) {
pos+—pp<p’)2: 1;

rc = pp < p ? ARGS_PHRASE : ARGS_PPHRASE;
p=pp<p?opp:op;

} elseif (p&&! pp) {
rc ARGS_PPHRASE;
*pos += 1;

} elseif (pp & ! p) {
p = pp;
*pos += 2;

} else {
rc = ARGS_PEND;
p = strchr(*v, 0);

}

/* Wi tespace check for eoln case... */

new usr/ src/ cnd/ mandoc/ ndoc_ar gv. ¢

520
521
526

523

525
526
527
528
529
530
531
532

534
535
536

538
539

541
542
543
544
545
546
547

549
550
552
553
551

553
554
556
557

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

573
574
568
575
576
570
577
578

B

i f (MDOC_PHRASELI T & ndoc->flags || '\"

/

if ('\0' ==*pa&&’ ' ==*(p -

p-1)
ndoc pmsg(mioc line, *pos, MANDOCERR ECLNSPACE) ;

mdoc_pnsg(m |ine, *pos, MANDOCERR ECQLNSPACE) ;
*pos += (int)(p - *v);
/* Strip delirriter s precedi ng whitespace. */
pp =
\Ahlle(pp>*v && ' ' == *pp) {

if (pp > *v & '\\' == *(pp - 1))

br eak;

pp--;
*(pp + 1) =0;
/* Strip delimter’s proceedl ng whitespace. */
for (pp = &uf[*pos]; ' * == *pp; pp++, (*pos)++)

/* Skip ahead x|

return(rc);

Process a quoted literal.

NUL-terminate the literal in place.
Col | apse pairs of quotes inside quoted literals.
Whi tespace is NOT involved in literal term nation.

== buf[*pos]) {
if (! (MDOC_PHRASELIT & ndoc->flags))

if (MDOC_PHRASELIT & m>flags || '\"' == buf[*pos]) {

if (! (ND@ PHRASELIT&m>fIag))
*v = &buf[++(*pos)];

if (MDOC_PPHRASE & ndoc->fl ags)

ndoc- >f | ags | = MDOC_PHRASELI T;
if (MDOC_PPHRASE & m >fl ags)

m >fl ags | = MDOC_PHRASELI T;

pairs = 0;
for (5 buf[*pos]; (*pos)++) {

/* Move fol I owi ng text left after quoted quotes.

if (pairs)
buf [*pos - pairs] = buf[*pos];
if ("\"" !'= buf[*pos])
conti nue;
/* Unquot ed quotes end quoted args. */
if (’\"" I'= buf[*pos + 1])
br eak;
/* Quoted quotes coll apse. */
pai rs++;
) (*pos) ++;
1f (pairs)
buf[*pos - pairs] ='\0";
if ("\0 == buf[*pos]) {

i f (MDOC_PPHRASE & ndoc- >f | ags)
i f (MDOC_PPHRASE & m >fl ags)
return(ARGS_ QNRD)

ndoc_pnsg(ndoc, |ine, *pos, MANDOCERR BADQUOTE);

mdoc_pnsg(m |ine, *pos, MANDOCERR BADQUOTE) ;
return(ARGS_Q/‘IRD):

A quote begins with a doubl e-quote
and ends with a doubl e-quote NOT preceded by a doubl e- quote.

*/

new usr/src/

580
574
581

583
584

586
587

589
590
584

592
593

595
596
590

598
599 }
____unchan

651 static
652 argv_nu
646 argv_nu
653

654 {
655
656

658
659
660
661
655
662
663
664
665

667
668
669

671
672

674
675 }

677 static
678 argv_si
672 argv_op
679

680 {

681

682

684
678
679

cnd/ mandoc/ ndoc_ar gv. ¢

mdoc- >f| ags &= ~NMDOC_PHRASELI T;
m >f| ags & ~MDOC_PHRASELI T;
buf [(*pos)++] = "\0";

if ("\0 == buf[*pos])
ret ur n(ARGS_QWORD) ;

while (° ' == buf[*pos])
(*pos) ++;

if (\0 == buf[*pos])

ndoc_pnsg(ndoc, |ine, *pos, MANDOCERR EOLNSPACE) ;

mdoc_pnmsg(m |ine, *pos, MANDOCERR EOLNSPACE);
ret ur n(ARGS_QAORD) ;

}

p = &buf[*pos];

*v = mandoc_get ar g(ndoc- >par se, &p, line, pos);
*v = mandoc_get arg(m >parse, &p, |ine, pos);

ret ur n(ARGS_WORD) ;
ged_portion_omitted_
struct ndoc *ndoc, int line,

(
(struct ndoc *m int line,
struct ndoc_argv *v, int *pos, char *buf)

int
Iti
Iti

enum mar gserr ac;
*

char p;
for (v->sz = 0; ; v->sz++) {
if (- == buf[*pos])
br eak;
ac = args(ndoc, line, pos, buf, ARGSFL_NONE, &p);
ac = args(m |line, pos, buf, ARGSFL_NONE, &p);
if (ARGS _ERROR == ac)
return(0);
else if (ARGS_EOLN == ac)
break;

if (0 == v->sz % MILTI _STEP)
v->val ue = mandoc_real | oc(v- >val ue,
(v->sz + MULTI _STEP) * sizeof(char *));

v->val ue[(i nt)v->sz] = mandoc_strdup(p);

}

return(1);

int
ngl e(struct ndoc *ndoc, int line,
t _single(struct ndoc *m int line,
struct ndoc_argv *v, int *pos, char *buf)

enum mar gserr ac;
char *p;

ac = args(ndoc, line, pos, buf, ARGSFL_NONE, &p);
if (-’ == buf[*pos])
return(l);

new usr/ src/ cnd/ mandoc/ ndoc_ar gv. ¢

681 ac = args(m line, pos, buf, ARGSFL_NONE, &p);
685 if (ARGS_ERROR == ac)

686 return(0);

687 if (ARGS_ECOLN == ac)

688 return(1);

690 v->sz = 1;

688 v->val ue = mandoc_nal | oc(si zeof (char *));

689 v->val ue[0] = mandoc_strdup(p);

691 return(1);

692 }

694 static int
695 argv_singl e(struct ndoc *m int line,

696 struct ndoc_argv *v, int *pos, char *buf)
697 {

698 int ppos;

699 enum mar gserr ac;

700 char *p;

702 ppos = *pos;

704 ac = args(m line, pos, buf, ARGSFL_NONE, &p);
705 if (ARGS_EOLN == ac) {

706 mdoc_prsg(m |ine, ppos, MANDOCERR SYNTARGVCOUNT) ;
707 return(0);

708 } else if (ARGS_ERROR == ac)

709 return(0);

711 v->sz = 1;

691 v->val ue = mandoc_nal | oc(si zeof (char *));

692 v->val ue[0] = mandoc_strdup(p);

694 return(1);

695 }

____unchanged_portion_onitted_

10

new usr/ src/ cnd/ mandoc/ ndoc_htm . ¢

R R R R

43931 Wed Jul 30 20:55:09 2014
new usr/ src/ cnmd/ mandoc/ ndoc_htm . ¢
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $Id: ndoc_htnml.c,v 1.186 2013/12/24 20:45:27 schwarze Exp $ */

1/* $Id: ndoc_htnml.c,v 1.182 2011/11/03 20:37:00 schwarze Exp $ */

2 /*

3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
4 *

5 * Permission to use, copy, nodify, and distribute this software for any

6 * purpose with or without fee is hereby granted, provided that the above

7 * copyright notice and this perm ssion notice appear in all copies.

8 *

9 * THE SOFTWARE IS PROVIDED "AS |'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
10 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

11 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
12 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PRCFI TS, WHETHER I N AN

14 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI OUS ACTI ON, ARI SI NG OQUT OF
15 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI S SOFTWARE.

16 */

17 #i fdef HAVE_CONFI G H
18 #include "config. h"
19 #endi f

21 #include <sys/types. h>

23 #include <assert. h>
24 #include <ctype. h>
25 #include <stdio. h>
26 #include <stdlib.h>
27 #include <string. h>
28 #include <unistd. h>

30 #i nclude "mandoc. h"
31 #include "out.h"

32 #include "htnl.h"
33 #include "ndoc. h"
34 #include "main. h"

36 #define | NDENT 5

38 #defi ne MDOC_ARGS const struct ndoc_neta *neta, \
38 #define MDOC_ARGS const struct ndoc_neta *m \
39 const struct ndoc_node *n, \
40 struct htm *h

42 #ifndef MN

43 #define M N(a, b) ((/* CONSTCOND*/ (a) <(b)) ?(a): (b))

44 #endi f

46 struct htm ndoc {

a7 int (*pre) (MDOC_ARGS) ;
48 voi d (*post) (MDOC_ARGS) ;
49 }

7’ nchanged_portion_omitted_

262 void

263 htm _ndoc(void *arg, const struct ndoc *ndoc)
263 htm _ndoc(void *arg, const struct ndoc *m
264 {

266 print_ndoc(ndoc_net a(mdoc), ndoc_node(ndoc),

new usr/ src/ cnd/ mandoc/ mdoc_htm . ¢

267 (struct htm *)arg);

266 print_ndoc(ndoc_neta(m, ndoc_node(nm), (struct htnl
268 putchar(’\n’);

269 }

____unchanged_portion_onmitted_

353 static void
354 print_ndoc(MDOC_ARGS)
355 {

356 struct tag *t,o*tt;

357 struct htmlpair tag;

359 PAI R_CLASS | NI T(& ag, "mandoc");

361 if (! (HTM_FRAGVENT & h->ofl ags)) {

362 print_gen_decl s(h);

363 t = print_otag(h, TAG HTM.,, 0, NULL);
364 tt = print_otag(h, TAG HEAD, 0, NULL);
365 print_ndoc_head(neta, n, h);

364 print_nmdoc_head(m n, h);

366 print_tagq(h, tt);

367 print_otag(h, TAG BCODY, 0, NULL);

368 print_otag(h, TAGDYV, 1, &ag);

369 } else

370 t = print_otag(h, TAG DV, 1, &ag);
372 print_ndoc_nodelist(neta, n, h);

371 print_ndoc_nodelist(m n, h);

373 print_tagq(h, t);

374 }

377 /* ARGSUSED */
378 static void
379 print_ndoc_head(MDOC_ARGS)

380 {

382 print_gen_head(h);

383 bufinit(h);

384 bufcat _fnt(h, "%(%)", nmeta->title, neta->nsec);
383 bufcat_fnt(h, "%(%)", m>title, m>nsec);
386 if (meta->arch)

387 bufcat_fnt(h, " (%)", neta->arch);
385 if (m>arch)

386 bufcat_fnt(h, " (%)", m>arch);
389 print_otag(h, TAG TITLE, 0, NULL);

390 print_text(h, h->buf);

391 }

394 static void
395 print_ndoc_nodel i st (MDOC_ARGS)

396 {

398 print_ndoc_node(neta, n, h);

397 print_ndoc_node(m n, h);

399 1 f (n->next)

400 print_mdoc_nodel i st (nmeta, n->next,
399 print_ndoc_nodelist(m n->next, h);
401 }

404 static void

h);

*)arg);

new usr/ src/ cnd/ mandoc/ ndoc_htm . ¢

405 print_ndoc_node(MDOC_ARGS)

406 {

407
408

410
411

413
414
415
414
416
417
418
419

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

456
457
458
457
459
460

462
463
464
462
465
466
465

int child;
struct tag *t;
child = 1;

t = h->tags. head;

switch (n->type) {
case (MDOC_ROQT) :
child = rrdoc_root_pre(rret a, n, h);
child = ndoc_root_pre(m n, h);
br eak;
case (MDOC_ TEXT)
/* No tables in this node... */
assert (NULL == h->thblt);

/*

* Make sure that if we're in a literal node al ready
* (i.e., within a <PRE>) don’t print the newine.

*

if (' == *n->string & MDOC_LI NE & n->fl ags)
if (! (HTML_LITERAL & h->fl ags))
print_otag(h, TAG BR, 0, NULL);
if (MDOC_DELIMC & n->fl ags)
h->f1 ags | = HTM._NOSPACE;
print_text(h, n->string);
1 f (MDOC_DELI MO & n->flags)
h->f1 ags | = HTM._NGCSPACE;
return;
case (MDOC_EQN):
print_eqn(h, n->eqn);
br eak;
case (I\/DOC_TBL):
/*

* This will take care of initialising all of the table
* state data for the first table, then tearing it down
* for the last one.

*/
print_tbl (h, n->span);
return;
defaul t:
/*
* Close out the current table, if it’'s open, and unset
* the "meta" table state. This will be reopened on the
* next table elenent.
*/
if (h->tblt) {
print_tblclose(h);
) t = h->tags. head;

assert (NULL == h->tblt);

if (ndocs[n->tok].pre & ENDBODY_NOT == n->end)
child = (*ndocs[n->tok].pre)(neta, n, h);
child = (*ndocs[n->tok].pre)(m n, h);

break;
}
if (HTM._KEEP & h->fl ags)
if (n->prev ? (n->prev->lastline != n->line)
(n->parent && n->parent->line != n->line)) {
if (n->prev & n->prev->line != n->line) {

h->fl ags & ~HTM._KEEP;
h->f | ags |— HTM__PREKEEP;
} else if (NULL == n->prev) {

new usr/ src/ cnd/ mandoc/ ndoc_htm . ¢

466
467
468
467
468
471

470
471
474

473

475
476
477
480
478
479
480
481
482
483
486
484
485
486 }

488 /*

if (n->parent && n->parent->line != n->line)
h->fl ags & ~HTM._KEEP;
h->flags | = HTM._PREKEEP,

}
}

if (child & n->child)
print_nmdoc_nodel i st (meta, n->child, h);
print_ndoc_nodelist(m n->child, h);

print_stagq(h, t);

switch (n->type) {
case (MDOC_ROQTN) :
nmdoc_r oot _post(nmeta, n, h);
mdoc_r oot _post (m n, ;
br eak;
case (MDOC_EQN) :
br eak;
defaul t:
if (mdocs[n->tok].post &% ENDBODY_NOT == n->end)
(*mdocs[n->t ok] . post) (neta, n, h);
(*ndocs[n->t ok] . post)(m n, h);
br eak;

ARGSUSED */

489 static void
490 ndoc_r oot _post (MDOC_ARGS)

491 {
492
493

495
496
497
498
499
500
501

503
505

507
508
509
512
510

512
513
514
515
518
516
517 }

520 /*

struct htnmpair tag[3];
struct tag *t, *tt;

PAI R_SUMVARY_I NI T(& ag[0], "Docunent Footer");
PAIR_CLASS I NI T(& ag[1], "foot"):
PAI R_INIT(& ag[2], ATTR W DTH, "100%);
= print_otag(h, TAG TABLE, 3, tag);
PAI R INIT(& ag[0], ATTR WDTH, "50%);
prlnt _otag(h, TAG Ca., 1, tag);
print_otag(h, TAG CO., 1, tag);

print_otag(h, TAG TBODY, 0, NULL);
tt = print_otag(h, TAG TR 0, NULL);

PAIR CLASS INIT(& ag[0], "foot-date");
print_otag(h, TAG TD, 1, tag);
print_text(h, neta->date);
print_text(h, m>date);

print_stagq(h, tt);

PAI R_CLASS_I NI T(& ag[0], "foot-0s");
PAIR INIT(& ag[1], ATTR ALIGN, "right");
print_otag(h, TAG TD, 2, tag);
print_text(h, meta->0s);

print_text(h, m>o0s);

print_tagq(h, t);

ARGSUSED */

521 static int
522 ndoc_r oot _pr e(MDOC_ARGS)

523 {

new usr/ src/ cnd/ mandoc/ ndoc_htm . ¢

524
525
526

528
531

530
533
531
532
535
533
534

536
539

538
539
540
541
542
543
544
545

547
549

551
552
553
554

556
557
558
559
560

562
563
564
565
566
567

568 }
__unchanged_portion_omtted_

struct htnmpair tag[3]
struct tag *t,
char bf BUFSI 7], title[BUFSIZ];

strlcpy(b, neta->vol, BUFSIZ);
strlcpy(b, m>vol, BUFSIZ);

if (neta->arch) {

if (m>arch) {
strlicat(b, " (", BUFSIZ);
strlcat(b, meta->arch, BUFSIZ);
strlcat (b, m>arch, BUFSIZ);
strlcat(b, ")", BUFSIZ);

}

snprintf(title, BUFSIZ - 1, "%(%)", neta->title, neta->nsec);
snprintf(title, BUFSIZ - 1, "%(%)", m>title,

PAI R_SUMMARY | NI T(& ag[0], "Document Header");

PAIR_CLASS | NI T(& ag[1], "head"):
PAIR_I NI T(& ag[2] , ATTR W DTH, "100%);
t = print_otag(h, TAG TABLE, 3, tag);
PAIR INIT(& ag[0], ATTR WDTH, "30%);
print_otag(h, TAG Ca., 1, tag);
print_otag(h, TAG CO., 1, tag);
print_otag(h, TAG CO., 1, tag);

print_otag(h, TAG TBODY, 0, NULL);
tt = print_otag(h, TAG TR 0, NULL);

PAI R CLASS | NI T(& ag[0], "head-Ititle");
print_otag(h, TAG TD, 1, tag);
print_text(h, title);

print_stagq(h, tt);

PAI R CLASS | NI T(& ag[0], "head-vol");
PAIR_I NI T(& ag[1], ATTR ALIGN, "center");
print_otag(h, TAG > TD, 2, tag);
print_text(h, b);

print_stagq(h, tt);

PAIR_CLASS INIT(& ag[0], "head-rtitle");
PAIRINIT(& ag[1], ATTR ALIGN, "right"):
print_otag(h, TAG 5 TD, 2, tag);
print_text(h, title);

print_tagq(h, t);

return(1);

677 static int
678 nmdoc_nm pr e(MDOC_ARGS)

679 {

680
681
682

684
685
686
687
688
689
690

struct htmpair tag;
struct roffsu su;
int | en;

switch (n->type) {
case (MDOC_ELEM:
synopsi s_pre(h, n);
PAI R_CLASS | NI T(& ag, "nane");
print_otag(h, TAG B, 1, &ag);
1f (NULL == n->child && neta->nane)
print_text(h, neta->nane);

m >nsec) ;

new usr/ src/ cnd/ mandoc/ nmdoc_htm . ¢

692 if (NULL == n->child & m >nane)
693 print_text(h, m>nane);
691 return(1);

692 case (MDOC_HEAD) :

693 print_otag(h, TAG TD, 0, NULL);
694 1f (NULL == n->child && neta->nane)
695 print_text(h, neta->nane);
697 if (NULL == n->child & m >nane)
698 print_text(h, m>nane);
696 return(l);

697 case (MDOC_BQODY):

698 print_otag(h, TAG TD, 0, NULL);
699 return(1);

700 defaul t:

701 br eak;

702 }

704 synopsi s_pre(h, n);

705 PAIR_CLASS I NI T(& ag, "synopsis");

706 print_otag(h, TAG TABLE, 1, &tag);

708 for (len =0, n =n->child; n; n = n->next)
709 if (MDOC_TEXT __n>typ)

710 len += htm _strlen(n->string);
712 if (0 == len && neta->nane)

713 len = htm _strl en(neta->nane);

715 if (0 ==1len & m >nane)

716 len = htnl _strlen(m >nane);

715 SCALE_HS | NI T(&su, (double)len);

716 bufinit(h);

717 buf cat _su(h, "width", &su);

718 PAIR_STYLE_INI T(& ag, h);

719 print_otag(h, TAG CO., 1, &ag);

720 print_otag(h, TAG COL, 0, NULL);

721 print_otag(h, TAG_ TBCDY o, NULL)

722 print_otag(h, TAG TR, 0, NULL)

723 return(1);

724 }

__unchanged_portion_onitted_

972 /* ARGSUSED */
973 static int
974 ndoc_bl _pr e(MDOC_ARGS)

975 {

976 int

977 struct htnlpair tag[3];

978 struct roffsu

979 char buf [BUFSI Z] ;

984 bufinit(h);

981 if (MDOC_BODY == n->type) {

982 if (LIST_colum == n->norm >Bl.type

983 print_otag(h, TAG TBODY, 0, NULL);

984 return(l);

985 }

987 if (MDOC_HEAD == n->type

988 if (LIST_colum != n->norm >Bl.type)

989 return(0);

991 /*

992 * For each colum, print out the <COL> tag with our
993 * suggested width. The last colum gets min-w dth, as

new usr/ src/ cnd/ mandoc/ ndoc_htni . c

994
995
996

998

999
1000
1001
1002
1003
1004
1005
1006
1007

1009
1010

1012
1013
1014
1015
1016

1018
1019
1020
1021

1023

1025
1026
1027
1028

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059

* in termnal nobde it auto-sizes to the width of the
* screen and we want to preserve that behaviour.

*/
for (i =0; i < (int)n->norm>Bl.ncols; i++) {
bufinit(h);
a2wi dt h(n->norm >Bl . col s[i], &su);
if (i <(int)n->norm>Bl.ncols - 1)
buf cat _su(h, "width", &su);
el se
bufcat_su(h, "mn-width", &su);
PAIR_STYLE INIT(& ag[0], h);
print_otag(h, TAG CO, 1, tag);
}
return(0);
}
SCALE VS | NI T(&su, 0)
bufinit(h);

buf cat _su(h, n'argl n-top", &su);
buf cat _su(h, "margin-bottont, &su)
PAIR STYLE I NIT(& ag[0], h);

assert(lists[n->norm>Bl.type]);

strlcpy(buf, "list ", BUFSIZ);

strlcat(buf, lists[n->norm>Bl.type], BUFSIZ);
PAIR_INIT(& ag[1], ATTR_CLASS, buf);

/* Set the block’s left-hand margin. */

if (n->norm>Bl.offs) {
a2of fs(n->norm >Bl . of fs, &su);
bufcat_su(h, "margin-left", &su);
}

switch (n->norm>Bl.type) {
case(LIST bullet):
/* FALLTHROUGH */
case(LI ST_dash):
/* FALLTHROUCH */
case(LI ST __hyphen):
* FALLTHROUGH */
case(LI ST_| tem:
print_otag(h, TAG UL, 2, tag);
br eak;
case(LlI ST_enun:
print_otag(h, TAG O, 2, tag);
br eak;

case(LI ST_ dl ag)
/¥ FALLTHROUGH */
case(LI ST_hang):
/* FALLTHROUCH */
case(LI ST inset):
/* FALLTHROUGH */
case(LI ST_ohang):
/* FALLTHROUGH */
case(LIST tag):
print_otag(h, TAG DL, 2, tag);
br eak;
case(LI ST_col um):
pri nt _otag(h, TAG TABLE, 2, tag);

abort();
/* NOTREACHED */

new usr/ src/ cnd/ mandoc/ nmdoc_htni . c

1060

1062
1063 }

}

return(1);

__unchanged_portion_omtted_

1174 /*

ARGSUSED */

1175 static int
1176 mdoc_bd_pr e(MDOC_ARGS)

1177 {
1178
1179
1180
1181

1183
1184

1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199

1201
1202
1203
1204
1205
1206
1207

1209
1210
1211
1212
1213
1214

1216
1217

1219

1221
1222

1224
1225
1228
1226
1227
1228
1229
1230
1231

struct htnmpair tag[2];
int conp, sv;
const struct ndoc_node *nn;
struct roffsu su;

if (MDOC_HEAD == n- >type)
return(0);

if (MDOC_BLOCK == n->type) {
conp = n->norm >Bd. conp;
for (nn = n; nn & ! conp; nn = nn->parent) {
if (MDOC_BLOCK ! = nn->type)

contl nue;
if (MDOC_Ss == nn >tok || MDOC_Sh == nn->tok)
conp =
if (nn->prev)
) br eak;
if (! conp)
print_otag(h, TAG P, 0, NULL);
return(l);

}

SCALE _HS_I NI T(&su, 0);
if (n->norm >Bd. of fs)
a2of f s(n->norm >Bd. of fs, &su);

bufinit(h);
buf cat su(h "margin-left", &su);
PAI R_STYLE_I NI T(& ag[0], h);

if (DSP_unfilled !'= n->norm >Bd.type &&
DISP_literal != n->norm >Bd.type) {
PAI R_CLASS | NI T(& ag[1], "display");
print_otag(h, TAG DV, 2, tag);
return(1);

}

PAIR_CLASS_INIT(& ag[1], "lit display");
print_otag(h, TAG PRE, 2, tag);

/* This can be recursive: save & set our literal state. */

= h->flags & HTM__LI TERAL;
h->flags | = HTM__LI TERAL;

(nn = n->child; nn; nn = nn->next) {
print_ndoc_node(neta, nn, h);
print_ndoc_node(m nn, h);
/
needn’t do it here as well. This is hacky, but the
notion of selective eoln whitespace is pretty dunb
anyway, so don’t sweat it.

r
r
*
* If the printed node flushes its own line, then we
*
*
*
*/

new usr/ src/ cnd/ mandoc/ ndoc_htni . c

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255

1257
1258

1260
1261

1263
1264 }

switch (nn- >tok) {
case (MDOC_S

/* FALLTHRCIJGH */
case (MDOC br):

/* FALLTHROUGH */
case (MDOC_sp):
/* FALLTHROUGH */
case (MDOC Bl):

/* FALLTHROUGH */
case (MDOC_D1):

/* FALLTHROUGH */
case (MDOC D):

/* FALLTHROUGH */
case (MDOC_Lp):

/* FALLTHROUGH */
case (MDOC_Pp):

conti nue;

defaul t:
break;

}

if (nn->next && nn->next->line == nn->|ine)
conti nue;

else if (nn->next)
print_text(h, "\n");

h->fl ags | = HTM._NGSPACE;
}

if (0 == sv)
h->fl ags & ~HTM__LI TERAL;

return(0);

__unchanged_portion_omtted_

2222 |*

ARGSUSED */

2223 static void
2224 nmdoc_quot e_post (MDOC_ARGS)

2225 {

2227
2228

2230

2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251

if (MDOC_BODY != n->type)
return;

h->fl ags | = HTM._NOSPACE

switch (n->tok) {
case (MDOC_Ao):
/* FALLTHROUCH */
case (MDOC_Aq):
print_text(h, "\\(ra");
br eak;
case (MDOC_Bro):
/* FALLTHROUGH */
case (MDOC Brq):
print_text(h, "\\(rC");
br eak;
case (MDOC_ Oa)
/* FALLTHROUGH */
case (MDOC_Op):
/* FALLTHROUGH */
case (MDOC_Bo):
/* FALLTHROUGH */
case (MDCC_Bq):
print_text(h, "\\(rB");
br eak;

new usr/ src/ cnd/ mandoc/ ndoc_htni . c

2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2276
2274
2275
2276
2277
2278

2279 }
__unchanged_portion_omtted_

case (MDOC_Eo):

br eak;
case (MDCC Qo)

/* FALLTHROUGH */
case (MDOC _Qq):

/* FALLTHROUGH */
case (MDCC_Do):

/* FALLTHROUGH */
case (MDOC_

Daq) :
print_text(h, "\\(rg");
br eak;

case (MDOC_ Po)

/* FALLTHROUGH */

case (MDOC_Pq):

print_text(h, ")");
br eak;

case (MDOC Q

- Q):
I * "FALLTHROUGH */

case (MDOC_So):

/* FALLTHROUGH */

case (MDOC_Sq):

defaul t:

}

print_text(h, "\\
print_text(h, "\\
br eak;

abort();
/* NOTREACHED */

new usr/ src/ cnd/ mandoc/ nmdoc_nacr o. ¢ 1 new usr/ src/ cnd/ mandoc/ ndoc_nacro. ¢
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 55 COnSt Char *' enum n«dellm‘
45476 Wed Jul 30 20:55:09 2014 56 static int append_del i ms(struct ndoc *,
new usr/ src/ cnd/ mandoc/ ndoc_nacro. ¢ 57 int, int *, char *);
5051 inport ndocnmi-1.12.3 58 static enum ndoct | ookup(enum ndoct, const char *);
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con» 59 static enum ndoct | ookup_raw(const char *);
Approved by: TBD 60 static int make_pendi ng(struct ndoc_node *, enum ndoct,
LR R R EEEEEEEEE SRS RS RS SRS RS RS E R EE R R RREERREREEEEEEEEEESEESESE] 61 Stl’UCt n«doc *’ Int |nt),
1/* $I d: ndoc_macro.c,v 1.125 2013/12/24 20:45:27 schwarze Exp $ */ 62 static int phrase(struct ndoc *, int, int, char *);
1/* $Id: ndoc_macro.c,v 1.115 2012/01/05 00:43: 51 schwarze Exp $ */ 63 static enum ndoct rew_al t (enum ndoct);
2 /* 64 static enumrew rew_dohal t (enum ndoct, enum ndoc_t ype,
3 * Copyright (c) 2008-2012 Kristaps Dzonsons <kristaps@sd.|v> 65 const struct ndoc_node *);
4 * Copyright (c) 2010, 2012, 2013 Ingo Schwarze <schwarze@penbsd. org 66 static int rew_el en{struct ndoc *, enum ndoct);
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kri st aps@)sd I v> 67 static int rew_| ast (struct ndoc *,
4 * Copyright (c) 2010 Ingo Schwarze <schwarze@penbsd. or g> 68 const struct ndoc_node *);
5 * 69 static int rew_sub(enum ndoc_type, struct ndoc *,
6 * Permission to use, copy, nodify, and distribute this software for any 70 enum ndoct, int, int);
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this perm ssion notice appear in all copies. 72 const struct ndoc_nacro mdoc_macr os[MDOC_MAX] = {
9 = 73 in_line argn, MDOC CALLABLE | MDOC_ PARSED | moc Ja N Y, 1% Ap ¥/
10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES 73 in_line_argn, MDOC_CALLABLE | MDOC_PARSED }, /* Ap *
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF 74 in_line_eoln, MDOC_PROLOGUE }, /* Dd */
12 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR 75 in_line_eoln, MDOC_PROLOGUE }, /* Dt */
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES 76 in_line_eoln, MDOC PROLOGLE }, /* G */
14 * WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN 77 bl k_full, MDOC PARSED | MDOC JO N}, /* Sh */
15 * ACTION OF CONTRACT, NEGLI GENCE OR OTHER TORTI OQUS ACTI QN, ARI SING OQUT OF 78 bl k_full, MDOC PARSED | MDOC_ JON }, /* Ss */
16 * ORI N CONNECTION WTH THE USE OR PERFORMANCE OF THI' S SOFTWARE. 77 bl k_full, MDOC PARSED }, /* Sh */
17 =/ 78 bl k_full, MDOC_PARSED }, /* Ss */
18 #ifdef HAVE_CONFI G H 79 in_line_eoln, 0}, /* Pp */
19 #include "config.h" 80 bl k_part _i mp, MDOC_PARSED | MDOC JON }, /* D1 */
20 #endif 81 bl k_part _i np, MDOC_PARSED | MDOC JON }, /* D */
80 bl k_part_inp, MDOC PARSED }, /* D1 */
22 #include <assert.h> 81 bl k_part_inmp, MDOC_PARSED }, /* D */
23 #include <ctype. h> 82 bl k_full, MDOC EXPLICIT }, /* Bd */
24 #include <stdlib. h> 83 bl k_exp_cl ose, MDOC EXPLICIT | MDOC JON}, /* Ed */
25 #include <stdio. h> 83 bl k_exp_cl ose, MDOC EXPLICIT }, /* Ed */
26 #include <string.h> 84 bl k_fulT, I\/DOCEXPLIC|T} /* Bl */
27 #include <tine.h> 85 bl k_ exp_cl ose, MDOC EXPLICIT | MDOC_JON }, /* E */
86 bl k_fulT, NDOCPARSED| MDOC JON }, /* It */
29 #include "ndoc. h" 85 bl k_exp_ cl ose, MDOC EXPLICIT }, /* El */
30 #include "nandoc. h" 86 bl k_f ull, I\/D(I:_PARSED Y,/ 0t ox/
31 #include "libndoc. h" 87 in_line, MDOC CALLABLE MDOC_PARSED }, /* Ad *
32 #include "libmandoc. h" 88 in_line, MDOC_CALLABLE | MDOC_PARSED | MDOC JON }, /* */
88 in_line, MDOC_CALLABLE | MDOC_PARSED }, /* An *
34 enum rew { /* see rew_dohalt() */ 89 in_line, MDOC _CALLABLE | MDOC PARSED }, /* Ar */
35 REW ND_NONE, 90 in_line, MDOC_CALLABLE MDOC_PARSED }, /* Cd */
36 REWND_THI S, 91 in_line, MDOC CALLABLE | MDOC PARSED }, /* Cm*/
37 REW ND_MORE, 92 in_line, MDOC_CALLABLE | MDOC_PARSED }, /* Dv */
38 REW ND_FORCE, 93 in_line, MDOC CALLABLE MDOC_PARSED }, /* Er */
39 REW ND_LATER, 94 in_line, MDOC_CALLABLE MDOC_PARSED }, /* Ev */
40 REW ND_ERROR 95 in_line_eoln, 01}, /* Ex */
41 3}, 96 in_line, MDOC CALLABLE | MDOC PARSED }, /* Fa */
97 inllne_eoln, 0}, /* Fd*/
43 static int bl k_f ul I (MACRO_PROT_ARGS) ; 98 in_line, MDOC CALLABLE MDOC_PARSED }, /* FI */
44 static int bl k_exp_cl ose(MACRO_PROT. AR@) 99 in_|line, MDOC_CALLABLE | MDOC_PARSED }, /* Fn */
45 static int bl k_part _exp(MACRO_PROT_ARGS) ; 100 in_line, MDOC _CALLABLE | MDOC _PARSED }, /* Ft */
46 static int bl k_part _i np(MACRO_PROT_ARGS) ; 101 in_line, MDOC CALLABLE | MDOC PARSED }, /* lc */
47 static int ct x_synopsi s(MACRO_PROT_ARGS) ; 102 in_line_argn, MDOC CALLABLE | MDOC PARSED }, /* In */
48 static int i n_l'i ne_eol n(MACRO_PROT_ARGS) ; 103 in_line, MDOC_CALLABLE | MDOC PARSED | ND@JON} [* Li */
49 static int i n_l i ne_ar gn(MACRO_PROT_ARGS) ; 104 bl k_full, MDOC JON}, /* Nd */
50 static int i n_li ne(MACRO_PROT_ARGS) ; 103 in_Tine, MDOC CALLABLE | MDOC PARSED }, /* Li */
51 static int obsol et e(MACRO_PROT_ARGS) ; 104 bl k_full, 0}, /* Nd */
52 static int phrase_t a(MACRO_PROT_ARGS) ; 105 ctx_ _synopsi s, NDCC_CALLABLE | MDOC_PARSED }, /* Nm*/
106 bl k_part _i np, MDOC_CALLABLE | MDOC_PARSED }, /* Op */
54 static int dword(struct ndoc *, int, int, const char *, 107 obsolete, 0}, /* O */
55 enum ndel im i nt) 108 in_line, MDOC _CALLABLE | MDOC_PARSED }, /* Pa */
54 static int dword(struct ndoc *, int, int, 109 in_line_eoln, 0}, /* R/ */

new usr/ src/ cnd/ mandoc/ nmdoc_nacr o. ¢

110
111
112
113
114
115
116
117
118
114
115
116
117
118
119
120
120
121
122
123
122
123
124
125
126
127
128
129
125
126
127
130
131
132
129
133
134
135
136
131
132
137
138
139
140
141
142
143
144
145
146
147
136
137
138
139
140
141
148
149
150
151
152
153
154
145

in_line_argn, MDOC_CALLABLE |
in_li

ctx_synopsis, MDOC_CALLABLE |
in_line_argn, MDOC_CALLABLE |
in_line_eoln, MDOC JON}, /*
in_line_eoln, MDOC JON Y}, /*
in_line_eoln, MDOC JON}, /*
in_line_eoln, MDOC JON }, /*
in_line_eoln, MDOC JON }, /*
in_line_eoln, 0}, /* %A */
in_line_eoln, 0}, /* 9B */
in_line_eoln, 01}, /* 9O */
in_line_eoln, 01}, /* % */
in_line_eoln, 0}, /* % */
in_line_eoln, 0}, /* 9N */
in_line_eoln, MDOC_JON}, /*
in_line_eoln, 01}, /* %O */
in_line_eoln, 0}, /* 9% */
in_line_eoln, MDOC JON Y}, /*
in_line_eoln, MDOC JON}, /*
in_line_eoln, 01}, /* R */
in_line_eoln, 0}, /* %@ */
in_line_eoln, 0}, /* W */
bl k_exp_cl ose, MDOC_CALLABLE

MDOC_EXPLICI T
bl k_part_exp, MDOC_CALLABLE
MDOC_EXPLI CI T
bl k_part_i np, MDOC_CALLABLE

bl k_exp_cl ose, MDOC EXPLICIT |

bl k_part_exp, MXCC CALLABLE
bl k_part_i np, MDOC_CALLABLE
inTine_argn, MDOC CALLABLE
bl k_exp_cl ose, MDOC_CALLABLE
MDOC_EXPLICI T
bl k_exp_cl ose, MDOC EXPLICIT
bl k_full, I\/D(IZ EXPLICIT }, /*
bl k_part_exp, MDOC CALLABLE
MDOC_EXPLI CI T
bl k_part_i mp, MDOC_CALLABLE
bl k_part_exp, MDOC _CALLABLE
bl k_part_i np, MDOC _CALLABLE
in_Tine_argn, MDOC_CALLABLE
in_line_argn, MDOC_CALLABLE
in_line_eoln, 0}, /* Db */
bl k_exp_cl ose, MDOC_CALLABLE
MDOC_EXPLICI T
bl k_part_exp, MDOC_CALLABLE
MDOC_EXPLICI T
bl k_part_i np, MDOC_CALLABLE
bl k_exp_cl ose, MDOC_CALLABLE
bl k_exp_cl ose, MDOC_EXPLICI T

|
n
n
n
|

MDOC_PARSED }, /* St */

ne, MDOC _CALLABLE | MDOC PARSED }, /* Va */

I\/DCXZPARSED} [* vt */
MDOC _PARSED }, /* Xr */
YA */
w */
9w */
n */
% */

%0 */

R */

| MDOC_PARSED |
| MDOCJONY, /* Ac */
MDOC_PARSED |
MDOC JOIN }, /* Ao */
MDOC_PARSED | MDOC_JOIN }, /* Ag */
MDOG_CALLABLE | MDOC_PARSED }, /* Ac */
MDOC_PARSED | MDOC EXPLICIT }, /* Ao */
MDOC_PARSED }, /* Aq */
MDOC PARSED }, /* At */
MDOG_PARSED |
MDOC JON }, /* Bc */
MDOC_CALLABLE | MDOC_PARSED }, /* Bc */
Bf */
MDOC_PARSED |
MDOC JOIN }, /* Bo */
MDOC_PARSED | MDOC JOIN }, /* Bg */
MDOC_PARSED | MDOC EXPLICIT }, /* Bo */
/

MDOC_PARSED }, /* Bg *
MDOC_PARSED }, /* Bsx */

MDOC_PARSED }, /* Bx */

| MDOC_PARSED |

| MDOCJONY, /* D */

MDOC_PARSED |

MDOC JOIN }, /* Do */

MDOC_PARSED | MDOC_JOIN }, /* Dy */

| MDOC_PARSED | MDOC EXPLICIT }, /* Ec */

| MDOCJON}, /* Ef */

in_Tine, MDOC CALLABLE | MDOC PARSED | MDOC JOIN }, /* Em */

bl k. exp_cl ose, MDOC EXPLICIT
bl k_part_exp, MDOC CALLABLE |
bl k_part _i mp, MDOC_CALLABLE |
bl k_exp_cl ose, MDOC EXPLICIT
k_exp_cl ose, MDOC_EXPLICI T

o

k_part_exp, MDOC_CALLABLE |
I ne_argn, NMDOC _CALLABLE |

i
ine_argn, MDOC CALLABLE |
MDOC _| GNDELI M |
in_line_argn, MDOC _CALLABLE |
MDOC_| GNDELI M |
in_line_argn, MDOC_CALLABLE |

[MDOC_CALLABLE | MDOC_PARSED }, /* Dc */
MDOC_PARSED | MDOC_EXPLICIT }, /* Do */
MDOC_PARSED }, /* Dq */
| MDOC CALLABLE | MDOC PARSED }, /* Ec */

}, /* Ef %/

Tine, IVD(IZ CALLABLE | MDOC_PARSED }, /* Em*/
MDOC_PARSED | MDOC EXPLICIT }, /* Eo */

MDOC_PARSED }, /* Fx */

ne, MDOC _CALLABLE | MDOC PARSED }, /* Ms */

MDOC_PARSED |

MDOC JOIN }, /* No */

MDOC_PARSED |

MDOC JOIN }, /* Ns */

MDOC_PARSED | MDOC | GNDELIM}, /* No */

new usr/ src/ cnd/ mandoc/ ndoc_nacr o. ¢

146
155
156
157
158
149
159
160
161
162
163
164
165
166
167
168
169
151
152
153
154
155
156
157
170
171
172
173
174
175
159
160
161
176
177
178
163
164
179
180
166
181
182
183
184
185
186
187
188
189
170
171
172
190
191
174
192
193
194
195
196
197
198
199
200
201

{
{
{
{
{
{
{
{
{
{

ine_argn, MDOC CALLABLE
i ne_argn, MDOC_CALLABLE
i ne_argn, MDOC_CALLABLE
_exp_cl ose, MDOC_CALLABLE
MDOC_EXPLICI T
exp_cl ose, MDOC_EXPLICI T
ine_argn, MDOC_CALLABLE
_part_exp, MDOC_CALLABLE
MDOC_EXPLI CI T
_part_inmp, MDOC _CALLABLE
bl k_exp_cl ose, MDOC CALLABLE
MDOC_EXPLI CI T
bl k_part _i mp, MDOC_CALLABLE
bl k_part _exp, MDOC_CALLABLE
MDOC_EXPLI CI T
bl k_part_inp, MDOC_CALLABLE
bl k_exp_cl ose, MDOC EXPLICI T
bl k_part_exp, MDOC CALLABLE
bl k_part_i np, MDOC_CALLABLE
bl k_exp_cl ose, MDOC EXPLICI T
bl k_part _i mp, MDOC_CALLABLE
bl k_part _exp, MDOC_CALLABLE
bl k_part_i np, MDOC_CALLABLE
bl k_exp_cl ose, MDOC EXPLICI T
bl k_full,
bl k_exp_cl ose, MDOC _CALLABLE
MDOC_EXPLI CI T
bl k_part_exp, MDOC_CALLABLE
MDOC_EXPLICI T
bl k_part _i mp, MDOC_CALLABLE
bl k_exp_cl ose, MDOC EXPLICI T
bl k_part_exp, MDOC _CALLABLE
bl k_part _i np, MDOC_CALLABLE
ne_eoln, 0}, /* Sm*/

ﬁ_m

T
i
i
“line, MDOC_CALLABLE |
_
i
i
i

i
i

i

i

i

i

i ne_argn, MDOC_CALLABLE
i 2

_exp_cl ose, MDOC_EXPLICIT

i
i
i
i
i
i
i
i
b
bl k_part_exp, MDOC_CALLABLE
bl k_full,

__33333333

xx|

MDOC_EXPLICI T
bl k_part_exp, MDOC_CALLABLE
MDOC_EXPLICI T
bl k_exp_cl ose, MDOC_CALLABLE
MDOC_EXPLICI T
bl k_exp_cl ose, MDOC EXPLICI T
bl k_part_exp, MDOC_CALLABLE
bl k_exp_cl ose, MDOC EXPLICI T
bl k_ful T,
bl k_exp_cl ose, MDOC EXPLICIT
bl k_exp_cl ose, MDOC EXPLICIT
inTine_eoln, 01}, 7* Bt */

in_line_eoln, 0}, /* H */
obsolete, 0}, /* Fr */
in_line_eoln, 0}, /* Ud */
in_line, 0}, /* Lb */
in_line_eoln, 0}, /* Lp */
in_li

in_li

bl k_part_i np, MDOC_CALLABLE
bl k_part_exp, MDOC_CALLABLE

ne, NDOC_CALLABLE | MDOC_PARSED
ne, MDOC_CALLABLE | NMDOC_PARSED

ne, MDOC_CALLABLE | MDOC_PARSED
ne, MDOC_CALLABLE | MDOC_PARSED }, /* Tn */

ne_argn, MDOC CALLABLE |

4

MDOC_PARSED | MDOC | GNDELIM }, /* Ns */
MDOC_PARSED }, /* Nx */
MDOC PARSED }, /* Ox */
MDOG_PARSED |
MDOC JON }, /* Pc */
MDOC_CALLABLE | MDOC_PARSED }, /* Pc */
MDOC PARSED | MDOC | GNDELIM}, /* Pf */
MDOC_PARSED |
MDOC JOIN }, /* Po */
MDOC_PARSED | MDOC JOIN }, /* Pg */
MDOG_PARSED |
MDOC JON}, /* Q */
MDOC_PARSED | MDOC JAIN }, /* Q */
MDOC_PARSED |
MDOC JOIN }, /* Qo */
MDOC_PARSED | MDOC_JAIN }, /* Qq */
MDOC JON }, /* Re */
| MDOC PARSED | MDOC_EXPLICIT }, /* Po */
| MDOC_PARSED }, /* Pq */

MDOC CALLABLE | MDOC PARSED }, /* Q¢ */
MDOC PARSED }, /* Q */
MDOC_PARSED | MDOC EXPLICIT }, /* Qo */
MDOC_PARSED }, /* Qq */
}, /* Re */

ND@EXPLICIT} /* Rs */

| wDoc PARSED |
| MDOCJONY, /* Sc */

MDOC_PARSED |

MDOC JOIN }, /* So */

MDOC_PARSED | MDOC JOIN }, /* Sg */
| MDOG_CALLABLE | MDOC_PARSED }, /* Sc */
| MDOC PARSED | MDOC EXPLICIT }, /* So */
| MDOC_PARSED }, /* Sq */

MDOC JOIN }, /* Sx */
MDOC JOIN }, /* Sy */
/

MDOC_PARSED }, /* Ux
| MDOC_CALLABLE | MDOC_PARSED }, /* Xc */
| MDOC_PARSED | MDOC_EXPLICIT }, /* Xo */

| “NDOC_PARSED | MDOC_JOIN }, /* Ux */
*

_ MDOC_EXPLICI T | MDOC | CALLABLE }, I* Fo */
bl k_exp_cl ose, MDOC CALLABLE |

~MDOC_PARSED |
| MDOCJONY, /* Fc */
| MDOC_PARSED |
| MOCJONY, /* Qo */
| MDOG_PARSED |

| MDOCJANY, /* Cc */

| MDOC_CALLABLE | MDOC PARSED }, /* Fc */
| MDOC PARSED | MDOC EXPLICIT }, /* Qo */

| MDOC_CALLABLE | MDOC PARSED }, /* Cc */

I\/D(I?EXPLICIT} /* Bk */

| MDOC JON}, /* Ek */
}, /% Bk */

ine, MDOC_CALLABLE | MDOC_PARSED }, /* Lk */
ine, MDOC_CALLABLE | MDOC_PARSED }, /* M */

| MDOC_PARSED | MDOC JOIN }, /* Brq */
| MDOC_PARSED |

new usr/ src/ cnd/ mandoc/ nmdoc_nacr o. ¢ 5 new usr/ src/ cnd/ mandoc/ ndoc_nacro. ¢
202 MDOC_EXPLICIT | MDOC JON}, /* Bro */ 286 * ndoc->l ast node in the post-validation phase and reset
203 { bl k_exp_cl ose, MDOC CALLABLE | MDOC _PARSED | 287 * it to ndoc->last->parent, causing a step in the closing
204 MDOC EXPLICIT | MDOC JON 1}, /* Brc */ 266 * m>last node in the post-validation phase and reset
205 in_line_eoln, MDOC JON}, /* %C */ 267 * it to m>last->parent, causing a step in the closing
183 bl k_part_i np, MDOC_CALLABLE | MDOC PARSED }, /* Brq */ 288 * out to be |ost.
184 bl k_part_exp, MDOC_CALLABLE | MDOC_PARSED | MDOC EXPLICIT }, /* Bro */ 289 */
185 bl k_exp_cl ose, MDOC EXPLICI T | MDOC CALLABLE | MDOC_PARSED } /* Brc * 290 p = ndoc->| ast->parent;
186 inTine_eoln, 0}, 7* %uC */ 291 f (! ndoc_valid_post(ndoc))
206 obsol ete, 0 } /* Es */ 292 return(0);
207 obsolete, 0}, /* En */ 293 n = ndoc- >l ast;
208 in_line_argn, MDOC _CALLABLE | MDOC PARSED }, /* Dx */ 294 ndoc- >l ast = np;
209 in_line_eoln, MDOC JON}, /* 9Q *7 295 assert (ndoc- >l ast);
190 in_line_eoln, 0}, /* oQ */ 296 ndoc- >l ast->l ast = n;
210 in_line_eoln, 0}, /* br */ 297 }
211 |nI|ne_eoIn, 0}, /* sp*/
212 in_line_eoln, 0}, /* %J*/ 299 return(ndoc_val i d_post (ndoc));
213 phrase_ta, MDOC_CALLABLE | MDOC_PARSED | MDOC JON }, /* Ta */ 300 }
194 phrase_ta, MDOC_CALLABLE | MDOC _PARSED }, /* Ta */ ____unchanged_portion_onitted_
214 };
216 const struct ndoc_macro * const ndoc_nacros = __ndoc_nacros; 475 | *
476 * W are trying to close a block identified by tok,
477 * but the child block *broken is still open.
219 /* 478 * Thus, postpone closing the tok bl ock
220 * This is called at the end of parsing. |t nust traverse up the tree, 479 * until the rew_sub call closing *broken.
221 * closing out open [inplicit] scopes. bviously, open explicit scopes 480 */
222 * are errors. 481 static int
223 */ 482 nmake_pendi ng(struct ndoc_node *broken, enum ndoct tok,
224 int 483 struct ndoc *mdoc, int line, int ppos)
225 ndoc_macroend(struct ndoc *ndoc) 463 struct ndoc *m int line, int ppos)
206 ndoc_macroend(struct ndoc *m 484 {
226 { 485 struct ndoc_node *breaker;
227 struct ndoc_node *n;
487 /*
229 /* Scan for open explicit scopes. */ 488 * |terate backwards, searching for the bl ock matching tok,
489 * that is, the block breaking the *broken bl ock.
231 n = MDOC_VALID & ndoc->l ast->flags ? 490 *
232 ndoc- >l ast - >parent : ndoc->| ast; 491 for (breaker = broken->parent; breaker; breaker = breaker->parent) {
212 n = MDOC_VALID & m >l ast->flags ? m>last->parent : m>| ast;
493 /*
234 for (; n; n= >parent) 494 * |f the *broken block had already been broken before
235 if (MDOC_BLOCK == n->type && 495 * and we encounter its breaker, make the tok bl ock
236 MDOC_EXPLI CI T & ndoc_macr os[n- >t ok] . f | ags) 496 * pendi ng on the inner breaker.
237 mdoc_nnsg(ndoc, n, MANDOCERR SCOPEEXI T); 497 * Graphically, "[A breaker=[B broken= [C—>B B] tok=A] C"
217 ndoc_nnsg(m n, MANDOCERR_SCOPEEXI T); 498 * beconmes "[A broken=[B [C->B B] tok=A] C"
499 * and finally "[A[B->A[C>B Bl Al C".
239 /* Rewind to the first. */ 500 */
501 if (breaker == broken->pending) {
241 return(rew | ast (ndoc, ndoc->first)); 502 broken = breaker;
221 return(rew_last(m m>first)); 503 conti nue;
242 } 504 }
__unchanged_portion_onitted_
506 if (REWND_THI S != rew dohal t(tok, MDOC_BLOCK, breaker))
507 conti nue;
274 static int 508 if (MDOC_BODY == broken->type)
275 rew_| ast (struct ndoc *ndoc, const struct ndoc_node *to) 509 broken = broken->parent;
276 {
277 struct ndoc_node *n, *np; 511 /*
512 * Found the breaker.
279 assert(to); 513 * |f another, outer breaker is already pending on
280 mdoc- >next = MDOC_NEXT_SI BLI NG 514 * the *broken bl ock, we nmust not clobber the Iink
515 * to the outer breaker, but nake it pending on the
282 /* LINTED */ 516 * new, now i nner br eaker.
283 whil e (ndoc->last !=to) { 517 * & aphi caIIy "[A breaker=[B broken= [C—>A Al tok= B] (ol
284 /* 518 * beconmes "[A breaker=[B->A broken=[C A] ok=B] C"
285 * Save the parent here, because we may delete the 519 * and finally "[A[B->A[CG>B Al Bl ("

new usr/ src/ cnd/ mandoc/ nmdoc_nacr o. ¢ 7 new usr/ src/ cnd/ mandoc/ ndoc_nacr o. ¢
520 */ 581 MDOC BLOCK !'= t)
521 if (broken->pending) { 582 return(1)
522 struct ndoc_node *taker; 583 /* FALLTHROUGH *
584 case (REW ND_ERROR):
524 /* 585 ndoc_pnsg(ndoc, |ine, ppos, MANDOCERR NOSCOPE);
525 * |f the breaker had al so been broken before, 560 ndoc_pnmsg(m |ine, ppos, MANDOCERR NOSCOPE) ;
526 * it cannot take on the outer breaker itself, 586 return(l);
527 * but nust hand it on to its own breakers. 587 }
528 * Gaphi cally, this is the follow ng situation: 588 br eak;
529 * "[A [B breaker=[C->B B] broken=[D->A A] tok=C] D" 589 }
530 * "[A taker=[B->A breaker=[C->B B] [D->C A] C] D"
531 */ 591 assert(n);
532 taker = breaker; 592 if (! rew.|ast(ndoc, n))
533 Wm (taker—>pend| ng) 567 if (! rewlast(m n))
534 taker = taker->pending; 593 return(0);
535 t aker - >pendi ng = broken->pendi ng;
536 } 595 /*
537 br oken- >pendi ng = breaker; 596 * The current bl ock extends an encl osing bl ock.
538 mandoc_vnsg(MANDOCERR _SCOPENEST, ndoc->parse, |ine, ppos, 597 * Now that the current block ends, close the enclosing block, too.
518 mandoc_vnsg(MANDOCERR_SCOPENEST, m >parse, |ine, ppos, 598 */
539 "% breaks %", ndoc_macronanes|tok], 599 while (NULL !'= (n = n->pendi ng)) {
540 mdoc_macr onanes[br oken- >t ok]) ; 600 if (! rewlast(ndoc,
541 return(1); 575 if (! rewlast(m n))
542 } 601 return(0);
602 if (ND@HEAD-—n>typ &&
544 /* 603 ! ndoc_body_al | oc(ndoc, n->line, n->pos, n->tok))
545 * Found no matching bl ock for tok. 578 ! ndoc_body_all oc(m n->line, n->pos, n->tok))
546 * Are you trying to close a block that is not open? 604 return(0);
547 */ 605 }
548 return(0);
549 } 607 return(1);
608 }
552 static int 610 /*
553 rew_sub(enum ndoc_type t, struct ndoc *ndoc, 611 * Allocate a word and check whether it’s punctuation or not.
533 rew_sub(enum ndoc_type t, struct ndoc *m 612 * Punctuation consists of those tokens found in ndoc_isdelin().
554 enum ndoct tok, int line, int ppos) 613 */
555 { 614 static int
556 struct ndoc_node *n; 615 dword(struct ndoc *ndoc, int line, int col, const char *p,
616 enum ndel i m d, int may_append)
558 n = ndoc->| ast; 590 dword(struct ndoc *m int line,
538 n = m>last; 591 int col, const char *p, enum ndelimd)
559 while (n) { 617 {
560 swtch (rew dohalt(tok, t, n)) { 618
561 case (REW ND_NONE) : 619 if (DELI M MAX == d)
562 return(1); 620 d = ndoc_i sdelin(p);
563 case (REW ND_THI S) :
564 n->lastline = line - 622 if (may_append &&
565 (MDOC_NEWLI NE & ndoc->fl ags && 623 ! ((MDOC_SYNOPSI S | MDOC_KEEP | MDOC_SMOFF) & ndoc->fl ags) &&
566 ! (MDOC_EXPLICIT & ndoc_macros[tok].flags)); 624 DELI M_NONE == d && MDOC_TEXT == ndoc- >l ast->type &&
567 br eak; 625 DELI M_NONE == ndoc_i sdel i n{ndoc- >l ast->string)) {
568 case (REW ND_| FCRCE) 626 nmdoc_wor d_append(ndoc, p);
569 mandoc_vnsg(MANDOCERR_SCOPEBROKEN, ndoc- >par se, 627 return(l);
546 mandoc_vrsg(MANDOCERR SCOPEBRCKEN, m >par se, 628 }
570 line, ppos, "% breaks %",
571 nmdoc_macr onanes[t ok] , 630 if (! mdoc_word_alloc(ndoc, line, col, p))
572 nmdoc_macr onanes[n- >t ok]) ; 597 if (! ndoc_word_alloc(m line, col, p))
573 /* FALLTHROUGH */ 631 return(0);
574 case (REW ND_MORE) :
575 n->lastline = line - 633 if (DELIM OPEN == d)
576 (MDOC_NEWLI NE & ndoc->flags ? 1 : 0); 634 nmdoc- >l ast - >fl ags | = MDOC_DELI MO,
577 n = n->parent; 601 m >l ast->fl ags | = MDOC_DELI MO,
578 conti nue;
579 case (REW ND_LATER): 636 /*
580 i f (make_pendi ng(n, tok, mdoc, line, ppos) || 637 * Closing delimters only suppress the precedi ng space
555 i f (make_pending(n, tok, m line, ppos) || 638 * when they follow sonething, not when they start a new

new usr/ src/ cnd/ mandoc/ nmdoc_nacr o. ¢

639
640
641
642
643
644

646
647
648
649
613
614
615

651
652

654
655
621
656
657
658
659

661
662

664
665
666
632

668
669
670
671

673
639

675
676
677
678
679
680
681
682
683
684
685
686
687
653
688

690
691

694
695
696
697

bl ock or el ement, and not when they follow ‘No' .

*
*
* XXX Explicitly special-casing MDOC_No here feels
* like a layering violation. Find a better way
* and solve this in the code related to ‘No'!
*/

else if (DELIMCLOSE == d && ndoc->| ast->prev &&
ndoc- >I ast->prev->tok !'= MDOC No &&
mdoc- >l ast - >par ent - >t ok ! = MDOC_Fd)
nmdoc- >Iast->f|ags | = MDOC_DELI MC;
else if (DELIMCLOSE == d & m >l ast->prev &%
m >| ast >prev->t ok ! = MDOC_No)
m >l ast->fl ags | = MDOC_DELI MC;

return(1);

}

static int

append_del i ms(struct ndoc *ndoc, int line, int *pos, char *buf)
append_del i ms(struct ndoc *m int line, int *pos, char *buf)

{

int | a;
enum nar gserr ac;
char *p;
if ("\0 == buf[*pos])
return(1);
for (535) {
la = *pos;
ac = ndoc_zargs(ndoc, |ine, pos, buf, &p);
ac = ndoc_zargs(m line, pos, buf,)

if (ARGS_ERROR == ac)

return(0);
else if (ARGS_EOLN == ac)
br eak;
dword(ndoc, line, la, p, DELIMMAX 1);

dword(m line, la, p, DELIMMX);

/
If we encounter end-of-sentence synbols, then trigger
t he doubl e- space.

* ok ok ok

* XXX: it's easy to allow this to propagate outward to
* the last synbol, such that ‘.)’ wll cause the

* correct double-spacing. However, (1) groff isn't

* smart enough to do this and (2) it would require

* know ng which synbols break this behaviour, for

* exanple, ‘. ;' shouldn’t propagate the doubl e-space.
*

f

(mandoc_eos(p, strlen(p), 0))
ndoc- >l ast - >f | ags | = MDOC_ECS
m >| ast - >f| ags | = MDOC_EGCS;

}
return(1);
}
/*
* Close out block partial/full explicit.
*/
static int

new usr/ src/ cnd/ mandoc/ ndoc_nacro. ¢ 10

698 bl k_exp_cl ose(MACRO_PROT_ARGS)

699 {

700
701
702

704
705
706
707

709
675

711
712
713
714
715
716
717
718
719
720

722
723
724
725
726
727
728
692
729
730

732
733
734
735
736
737

739
740
741
742

744
745
746
747
748
749
750

752
753
754
755
756
757
721

759
760

struct ndoc_node *body;
struct ndoc_node *| ater;
struct ndoc_node *n;

/* Qur own body. */
/* A sub-block starting later. */
/* For searching backwards. */

int j, lastarg, maxargs, flushed, nl;
enum mar gserr ac;

enum ndoct at ok, ntok;

char *p;

nl = MDOC_NEW.I NE & ndoc- >f| ags;
nl = MDOC_NEW.I NE & m >f| ags;

switch (tok) {

case (MDOC_Ec):
maxargs =
br eak;

case (MDOC_EK):
ndoc- >f| ags &= ~MDOC_KEEP;

1
=

defaul t:
maxargs = O;
br eak;

}

/*

* Search backwards for beginnings of blocks,
* both of our own and of pending sub-bl ocks.

*

atok = rew_ alt(tok);
body = later = NULL;
for (n = ndoc->last; n; n = n->parent) {
for (n = m>last; n; n = n->parent) {
if (MDOC_VALID & n->flags)
conti nue;

/* Renenber the start of our own body. */
if (MDOC_BODY == n->type && atok == n->tok) {
i f (ENDBODY_NOT == n->end)

body = n;
conti nue;
}
if (MDOC_BLOCK !'= n->type || MDOC_Nm == n->t ok)
cont i nue;

if (atok == n- >tok) {
assert (body);

/*

* Found the start of our own bl ock.
* \Wen there is no pending sub bl ock,
* just proceed to closing out.

*

if (NULL == later)
br eak;

/*

* When there is a pending sub bl ock,

* postpone closing out the current block

* until the rew_sub() closing out the sub-bl ock.
*/

make_pendi ng(l ater, tok, ndoc, |ine, ppos);
nmeke_pendi ng(l ater, tok, m line, ppos);
/*

* Mark the place where the formatting - but not

new usr/ src/ cnd/ mandoc/ ndoc_nacro. ¢ 11 new usr/ src/ cnd/ mandoc/ ndoc_nacro. ¢ 12
761 * the scope - of the current block ends. 818 if (MDOC_MAX == ntok) {
762 */ 819 if (! dword(ndoc, line, lastarg, p, DELIM MAX
763 f (! ndoc_endbody_all oc(ndoc, |ine, ppos, 820 MDOC_JO N & ndoc_macros[tok].flags))
727 if (! ndoc_endbody_alloc(m |ine, ppos, 783 if (! dword(m line, lastarg, p, DELI M MAX))
764 at ok, body, ENDBODY_SPACE)) 821 return(0);
765 return(0); 822 conti nue;
766 br eak; 823 }
767 }
825 if (! flushed)
769 /* 826 if (! rew_sub(MDOC BLOCK, ndoc, tok, line, ppos))
770 * When finding an open sub bl ock, renenber the |ast 789 if (! rew_sub(MDOC BLOCK, m tok l'ine, ppos))
771 * open explicit block, or, in case there are only 827 return(0);
772 * inplicit ones, the first open inplicit block. 828 flushed = 1;
773 */ 829
774 if (later &&
775 MDOC_EXPLI CI' T & ndoc_nacros[| at er->t ok] . f | ags) 831 nmdoc- >f | ags &= ~NMDOC_NEWLI NE;
776 conti nue;
777 if (MDOC_It !'= n->tok) 833 if (! nmdoc_macro(ndoc, ntok, line, lastarg, pos, buf))
741 if (MDOC_CALLABLE & ndoc_macros[n->t ok]. fl ags) 793 if (! mdoc_macro(m ntok, line, lastarg, pos, buf))
778 later = n; 834 return(0);
779 } 835 br eak;
836 }
781 if (! (MDOC_CALLABLE & ndoc_macros[tok].flags)) {
782 /* FIXVE: do this in validate */ 838 if (! flushed & ! rew_sub(MDOC_BLOCK, ndoc, tok, line, ppos))
783 if (buf[* pos]) 798 if (! flushed & ! rew_sub(MDOC BLOCK, m tok, l'ine, ppos))
784 ndoc_pnsg(ndoc, |ine, ppos, MANDOCERR ARGSLOCST); 839 return(0);
748 mioc_pmsg(m | ine, ppos, MANDOCERR ARGSLOST);
841 if (! nl)
786 if (! rew_sub(MDOC _BODY, ndoc, tok, |ine, ppos)) 842 return(1);
750 if (! rew.sub(MDOC _BODY, m tok, line, ppos)) 843 return(append_del i ms(ndoc, |ine, pos, buf));
787 return(0); 803 return(append_delinms(m |ine, pos, buf));
788 return(rew_sub(MDOC _BLOCK, ndoc, tok, line, ppos)); 844 }
752) return(rew _sub(MDOC _BLOCK, m tok, line, ppos))
789
847 static int
791 if (! rew_sub(MDOC _BCDY, ndoc, tok, line, ppos)) 848 in_li ne(MACRO_PROT_ARGS)
755 if (! rew_sub(MDOC BODY, m tok, line, ppos)) 849 {
792 return(0); 850 int la, scope, cnt, nc, nl;
851 enum mar gverr av;
794 if (NULL == later && maxargs > 0) 852 enum ndoct nt ok;
795 if (! ndoc_tail_alloc(ndoc, line, ppos, rew alt(tok))) 853 enum mar gserr ac;
759 if (! ndoc_tail _alloc(m line, ppos, rew.alt(tok))) 854 enum ndel i m d;
796 return(0); 855 struct ndoc_arg *arg;
856 char *p;
798 for (flushed =j = 0; ; j++) {
799 lastarg = *pos; 858 nl = MDOC_NEW.I NE & ndoc- >f| ags;
818 nl = MDOC_NEW.I NE & m >f| ags;
801 if (j == maxargs && ! flushed) {
802 if (! rew_sub(MDOC BLOCK, ndoc, tok, line, ppos)) 860 I *
766 if (! rew_sub(MDOC BLOCK, m tok l'i ne, ppos)) 861 * Whet her we allow ignored el enents (those without content,
803 return(0); 862 * usual |y because of reserved words) to squeak by.
804 flushed = 1; 863 */
805
865 switch (tok) {
807 ac = ndoc_args(ndoc, line, pos, buf, tok, &p); 866 case (MDOC_An):
771 ac = ndoc_args(m |ine, pos, buf, tok &p), 867 /* FALLTHROUGH */
868 case (MDOC_Ar):
809 if (ARGS_ERROR == ac) 869 /* FALLTHROUGH */
810 return(0); 870 case (MDOC Fl):
811 if (ARGS_PUNCT == ac) 871 /* FALLTHROUGH */
812 br eak; 872 case (MDOC_M):
813 if (ARGS_EOLN == ac) 873 /* FALLTHROUGH */
814 br eak; 874 case (MDOC_Nm:
875 /* FALLTHROUGH */
816 ntok = ARGS_QAORD == ac ? MDOC_MAX : | ookup(tok, p); 876 case (MDCC_Pa):
877 nc = 1;

new usr/ src/ cnd/ mandoc/ nmdoc_nacr o. ¢ 13

878
879
880
881
882

884
885
886
846

888
889
890
891
892
893
894
895

897
898
899

901
902
903
863

905
906
907
908
909
910

912

914
915
916
917
918
919

921
922
882
923
924
925
926
885
927
928
887
929
930
931
932
933
891
934

936
894

defaul t:

}

br eak;

nc = 0;
br eak;

for (arg = NULL;;) {

}

for (cnt

la = *pos;
av = ndoc_argv(ndoc, line, tok, &arg, pos, buf);
av = ndoc_argv(m |line, tok, &arg, pos, buf);
if (ARGV_WORD == av) {
*pos = | a;
break;
}
if (ARGV_EQLN == av)
br eak;
if (ARGV_ARG == av)
cont i nue;

nmdoc_argv_free(arg);
return(0);

scope = 0;;) {

la = *pos;
ac = ndoc_args(ndoc, line, pos, buf, tok, &p);
ac = ndoc_args(m |line, pos, buf, tok, &p);
if (ARGS_ERROR == ac)

return(0);
if (ARGS_EQOLN == ac)

br eak;
if (ARGS_PUNCT == ac)

break;

ntok = ARGS_QAORD == ac ? MDOC_MAX : | ookup(tok, p);

*

* In this case, we’ve |located a submacro and nust

* execute it. Cose out scope, if open. If no

* el ements have been generated, either create one (nc)
* or raise a warning.

*

/

if (MDOC_MAX != ntok)
if (scope & ! rew el em(ndoc, tok))
if (scope & ! rew elem(m tok))

return(0);
if (nc & 0 == cnt) {
if (! ndoc_elemalloc(ndoc, line,

pos, tok, arg))
if (! ndoc_elemalloc(m line, ppos, tok, arg))
return(0);
if (! rew.|ast(ndoc, ndoc->last))
if I rew last(m m>last))
return(0);
} elseif (! nc & 0 == cnt) {
ndoc_argv_free(arg);
mdoc_pnsg(ndoc, |ine, ppos,
MANDOCERR MACROEMPTY) ;
ndoc_pnsg(m |ine, ppos, MANDOCERR MACRCEMPTY) ;

if (! mdoc_macro(ndoc, ntok, line, la, pos, buf))
if (! ndoc_macro(m ntok, line, la, pos, buf))

new usr/ src/ cnd/ mandoc/ ndoc_nacr o. ¢

937
938
939
940
898
941

943
944
945
946
947

949

951
952
953
954
955
956
957
958
959
960
961
962
963
920
964
965
966
967
968
969
970
971
972
973
974
931
975
976
977
978
935
979
980
981

983
984

986
987
943
988

990
991
992
993
994
995
996
952

return(0);
if (! nl)
return(1);
return(append_del i ms(ndoc, |ine, pos, buf));
return(append_delims(m |ine, pos, buf));
}
/*
* Non- quot e- encl osed punctuation. Set up our scope, if
* a word; rewind the scope, if a delimter; then append
* the word.
*

/
d = ARGS_QMORD == ac ? DELI M_NONE : ndoc_i sdelim(p);
if (DELIMNONE != d) {

/*

* |'f we encounter closing punctuation, no word
* has been onitted, no scope is open, and we're
* allowed to have an enpty el enent, then start
* a new scope. ‘Ar’, ‘FI’, and ‘Li’, only do
* this once per invocation. There may be nore
* of these (all of then?).
*

/

if (0 ==cnt & (nc || MDOC Li == tok) &&
DELIM CLOSE == d && ! scope) {
if (! nmdoc_elemalloc(ndoc, line,
ppos, tok, arg))
if (! ndoc_elemalloc(m Iine, ppos, tok,
return(0);
if (MDOC_Ar == tok || MDOC Li == tok ||
MDOC_Fl ==t ok)
cnt ++;
scope = 1;
}
/*
* Cl ose out our scope, if one is open, before
* any punctuation.
*
/
if (scope & ! rew el en(ndoc, tok))
if (scope & ! rew elem(m tok))
return(0);
scope = O;
} elseif (! scope) {
if (! mdoc_elemalloc(ndoc, |line, ppos, tok, arg))
if (! ndoc_elemalloc(m line, ppos, tok, arg))
return(0);
scope = 1;
}
if (DELI M.NONE == d)
cnt ++;

if (! dword(nmdoc, line, la, p, d,
MDOC_JO N & ndoc_macros[tok]. flags))
if (! dword(m line, la, p, d))
return(0);

‘FI’ macros have their scope re-opened with each new
word so that the ‘-’ can be added to each one without
having to parse out spaces.

N

if (scope & MDOC_FlI == tok) {
if (! rew.elenndoc, tok))
if (! rewelen{m tok))

14

arg))

new usr/ src/ cnd/ mandoc/ nmdoc_nacr o. ¢ 15

997
998
999
1000

1002
958
1003

1005
1006
1007
1008
1009

1011
1012

968
1013
1014

970
1015
1016
1017
1018

974
1019

1021
1022
1023

979
1024

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

1041
997

1043

1045
1046
1002
1047
1048
1004
1049
1050

1052
1053
1054

return(0);
scope = 0;

}

if (scope & ! rew el enm(ndoc, tok))
if (scope & ! rew elen(m tok))
return(0);

If no elenments have been collected and we’'re allowed to have
enpties (nc), open a scope and close it out. O herwise,
raise a warning.
/

EE

if (nc & 0 == cnt)
if (! ndoc_el em al | oc(ndoc, |ine, ppos, tok, arg))
if (! ndoc_elemalloc(m l|ine, ppos, tok, arg))
return(0);
(! rew_last(ndoc, ndoc->last))
(! rewlast(m m>last))
return(0);
} elseif (! nc & 0 == cnt) {
ndoc_argv_free(arg);
nmdoc_pnsg(ndoc, |ine, ppos, MANDOCERR MACRCEMPTY) ;
mdoc_prsg(m |ine, ppos, MANDOCERR MACROEMPTY)

if
if

}

if (! nl)

return(1);

return(append_del i ms(ndoc, |ine, pos, buf));
return(append_delinms(m |ine, pos, buf));

int la, nl, nparsed;

struct ndoc_arg *arg

struct ndoc_node *head; /* save of head macro */
struct ndoc_node *body; /* save of body macro */
struct rrdoc_node *n;

enum ndoc_t ype nt;

enum ndoct nt ok;

enum nar gserr ac, lac;

enum mar gverr av;

char *p;

nl MDOC_NEWLI NE & ndoc- >f | ags;

nl MDOC_NEWLI NE & m >f | ags;

/* Close out prior inplicit scope. */

if (! (MDOC_ EXPLICIT&nIioc _macros[tok].flags)) {
if (7! rew sub(MDOC BODY, ndoc, tok, |ine, ppos))
if (! rew_sub(MDOC_BODY, m tok, l'ine, ppos))
return(0);

if (! rew_sub(MDOC BLOCK, ndoc, tok, |ine, ppos))

if (! rew sub(MDOC BLOCK, m tok line, ppos))
return(0);

* This routine accormpdates inplicitly- and explicitly-scoped
* macro openings. Inplicit ones first close out prior scope

new usr/ src/ cnd/ mandoc/ ndoc_nacr o. ¢ 16
1055 * (seen above). Delay opening the head until necessary to
1056 * all ow | eadi ng punct uation to print. Special consideration
1057 * for ‘It -colum’, which has phrase-part syntax instead of
1058 * regular child nodes.

1059 */

1061 for (arg = NULL;;) {

1062 la = *pos;

1063 av = ndoc_argv(ndoc, line, tok, &arg, pos, buf);
1019 av = ndoc_argv(m |line, tok, &arg, pos, buf);

1065 if (ARGV_WORD == av) {

1066 *pos = la

1067 break;

1068 }

1070 if (ARGV_EOLN == av)

1071 break;

1072 if (ARGV_ARG == av)

1073 conti nue;

1075 mdoc_argv_free(arg);

1076 return(0);

1077 }

1079 if (! ndoc_block_alloc(ndoc, |ine, ppos, tok, arg))

1035 if (! mdoc_block_alloc(m line, ppos, tok, arg))

1080 return(0);

1082 head = body = NULL;

1084 I*

1085 * Exception: Heads of ‘It’ macros in ‘-diag’ lists are not
1086 * parsed, even though ‘It’ macros in general are parsed.
1087 */

1088 nparsed = MDOC It == tok &&

1089 MDOC Bl == rrdoc >| ast - >par ent - >t ok &&

1090 LI ST _di ag == ndoc- >| ast - >par ent - >nor m >Bl . t ype;
1045 MDOC Bl == m >| ast->parent->t ok &&

1046 LI ST_di ag == m >l ast - >par ent - >nor m >Bl . t ype;

1092 /*

1093 * The ‘Nd’ macro has all arguments in its body: it’'s a hybrid
1094 * of block partial-explicit and full-inplicit. Stupid.
1095 */

1097 if (MDOC_Nd == tok) {

1098 if (! nmdoc_head_all oc(ndoc, |ine, ppos, tok))
1054 if (! nmdoc_head_alloc(m Iine, ppos, tok))

1099 return(0);

1100 head = ndoc->| ast;

1101 if (! rew_sub(MDOC_HEAD, ndoc, tok, line, ppos))
1056 head = m >| ast;

1057 if (! rewsub(MDOC_HEAD, m tok, line, ppos))
1102 return(0);

1103 if (! nmdoc_body_ aIIoc(mjoc line, ppos, tok))
1059 if (! nmdoc_body_alloc(m Iine, ppos, tok))

1104 return(0);

1105 body = ndoc- >l ast;

1061 body = m >| ast;

1106 1

1108 if (MDOC_Bk == tok)

1109 mdoc- >f | ags | = MDOC_KEEP;

1111 ac = ARGS_ERROR

new usr/ src/ cnd/ mandoc/ nmdoc_nacr o. ¢ 17 new usr/ src/ cnd/ mandoc/ ndoc_nacr o. ¢
1171 * |f we haven't opened a body yet, rewi nd the
1113 for (; ;) { 1172 * head; if we have, rewi nd that instead.
1114 la = *pos 1173 */
1115 /* Inltlallse | ast - phrase-type with ARGS_PEND. */
1116 lac = ARGS_ERROR == ac ? ARGS_PEND : ac; 1175 ntt = body ? MDOC_BODY : MDOC_HEAD;
1117 ac = ndoc_args(ndoc, l|ine, pos, buf, tok, &p) ; 1176 if (! rewsub(ntt, ndoc, tok, line, ppos))
1070 ac = ndoc_args(m line, pos, buf, tok, &p); 1129 if (! rewsub(ntt, m tok, line, ppos))
1177 return(0);
1119 if (ARGS_PUNCT == ac) 1178
1120 br eak; 1179 /* Then all ocate our body context. */
1122 if (ARGS_ERROR == ac) 1181 if (! mdoc_body_alloc(ndoc, |ine, ppos, tok))
1123 return(0); 1134 if (! ndoc_body_alloc(m Iine, ppos, tok))
1182 return(0);
1125 if (ARGS_EOLN == ac) { 1183 body = ndoc- >l ast ;
1126 if (ARGS_PPHRASE != | ac &% ARGS_PHRASE != | ac) 1136 body = m>| ast;
1127 br eak;
1128 /* 1185 /*
1129 * This is necessary: if the |last token on a 1186 * Process phrases: set whether we're in a
1130 *lineis a ‘Ta or tab, then we’'ll get 1187 * partial -phrase (this effects line handling)
1131 * ARGS_EOLN, so we nust be smart enough to 1188 * then call down into the phrase parser.
1132 * reopen our scope if the |ast parse was a 1189 */
1133 * phrase or partial phrase.
1134 *| 1191 i f (ARGS_PPHRASE == ac)
1135 if (! rew_sub(MDOC BODY, ndoc, tok, line, ppos)) 1192 ndoc- >f | ags | = MDOC_PPHRASE;
1088 if (! rew_sub(MDOC BODY, m tok, line, ppos)) 1145 m >f | ags | = MDOC_PPHRASE;
1136 return(0); 1193 if (ARGS_PEND == ac && ARGS_PPHRASE == | ac)
1137 if (! mdoc_body_alloc(ndoc, |ine, ppos, tok)) 1194 mdoc->fl ags | = MDOC_PPHRASE;
1090 if (! ndoc_body_alloc(m Iine, ppos, tok)) 1147 m >f |l ags [= MDOC_PPHRASE;
1138 return(0);
1139 body = ndoc- >l ast ; 1196 if (! phrase(nmdoc, line, la, buf))
1092 body = m >l ast; 1149 if (! phrase(m line, la, buf))
1140 br eak; 1197 return(0);
1141 }
1199 ndoc- >f | ags &= ~NMDOC_PPHRASE;
1143 /* 1152 m >f | ags & ~NMDOC_PPHRASE;
1144 * Emit |eading punctuation (i.e., punctuation before 1200 conti nue;
1145 * the MDOC_HEAD) for non-phrase types. 1201 }
1146 */
1203 ntok = nparsed || ARGS_QAORD == ac ?
1148 if (NULL == head && 1204 MDOC_MAX : | ookup(tok, p);
1149 ARGS_PEND ! = ac &&
1150 ARGS_PHRASE ! = ac && 1206 if (MDOC_MAX == nt ok)
1151 ARGS_PPHRASE ! = ac && 1207 if (! dword(ndoc, line, la, p, DELIMMAX
1152 ARGS_QNORD ! = ac && 1208 MDOC JO N & ndoc macros[tok] flags))
1153 DELI M_OPEN == ndoc_i sdelin(p)) { 1160 if (! dword(m line, la, p, DELIMMAX))
1154 if (! dword(ndoc, line, la, p, DELIMOPEN, 0)) 1209 return(0);
1107 if (! dword(m line, la, p, DELI M OPEN)) 1210 continue;
1155 return(0); 1211 }
1156 conti nue;
1157 } 1213 if (! mdoc_macro(ndoc, ntok, line, la, pos, buf))
1165 if (! mdoc_macro(m ntok, line, la, pos, buf))
1159 /* Open a head if one hasn’t been opened. */ 1214 return(0);
1215 br eak;
1161 if (NULL == head) { 1216 }
1162 if (! mdoc_head_all oc(ndoc, |ine, ppos, tok))
1115 if (! mdoc_head_alloc(m line, ppos, tok)) 1218 if (NULL == head) {
1163 return(0); 1219 if (! ndoc_head_alloc(ndoc, line, ppos, tok))
1164 head = ndoc- >l ast; 1171 if (! mdoc_head_alloc(m |ine, ppos, tok))
1117 head = m >l ast; 1220 return(0);
1165 } 1221 head = ndoc->| ast;
1173 head = m >l ast;
1167 if (ARGS_PHRASE == ac || 1222 }
1168 ARGS_PEND == ac || 1223
1169 ARGS_PPHRASE == ac) { 1224 if (nl & ! append_delinms(ndoc, |ine, pos, buf))
1170 /* 1176 if (nl & ! append_delinms(m line, pos, buf))

new usr/ src/ cnd/ mandoc/ nmdoc_nacr o. ¢ 19 new usr/ src/ cnd/ mandoc/ ndoc_nacr o. ¢

1225 return(0); 1283 * (but not necessarily) called as the first macro. The bl ock
1284 * has a head as the i mediate child, which is always enpty,

1227 /* 1f we’ve already opened our body, exit now */ 1285 * followed by zero or nore opening punctuati on nodes, then the
1286 * body (which may be enpty, depending on the nacro), then zero

1229 if (NULL != body) 1287 * or nore closing punctuation nodes.

1230 goto out; 1288 */

1232 /* 1290 if (! ndoc_block_alloc(ndoc, |ine, ppos, tok, NULL))

1233 * |f there is an open (i.e., unvalidated) sub-block requiring 1242 if (! ndoc_block_alloc(m Iine, ppos, tok, NULL))

1234 * explicit close-out, postpone switching the current block from 1291 return(0);

1235 * head to body until the rew sub() call closing out that

1236 * sub- bl ock. 1293 bl k = ndoc- >l ast

1237 */ 1245 bl k = m >l ast

1238 for (n = ndoc->last; n & n != head; n = n->parent) {

1190 for (n = m>last; n & n != head; n = n->parent) { 1295 if (! ndoc_head_alloc(ndoc, line, ppos, tok))

1239 if (MDOC_BLOCK == n->type && 1247 if (! ndoc_head_alloc(m Iine, ppos, tok))

1240 MDOC_EXPLI CI T & ndoc_nacros[n->tok] . fl ags && 1296 return(0);

1241 ! (MDOC_VALID & n->flags)) { 1297 if (! rew sub(l\/DOC HEAD, ndoc, tok, line, ppos))

1242 n->pendi ng = head; 1249 if (! rew sub(MDOC_HEAD, m tok line, ppos))

1243 return(l); 1298 return(0);

1244 }

1245 } 1300 /*
1301 * QOpen the body scope "on-demand", that is, after we’ve

1247 /* Cl ose out scopes to remain in a consistent state. */ 1302 * proc;assed all our the leading delimters (open parenthesis,
1303 * etc.

1249 if (! rew_sub(MDOC_HEAD, ndoc, tok, |ine, ppos)) 1304 */

1201 if (! rew sub(MDOC_HEAD, m tok line, ppos))

1250 return(0); 1306 for (body = NULL o) {

1251 if (! rrdoc_body_al | oc(ndoc, line, ppos, tok)) 1307 la = *pos

1203 if (! ndoc_body_alloc(m Iine, ppos, tok)) 1308 ac = ndoc _args(ndoc, line, pos, buf, tok, &p);

1252 return(0); 1260 ac = ndoc_args(m |line, pos, buf, tok, &p);

1254 out: 1310 if (ARGS_ERROR == ac)

1255 if (! (MDOC_FREECOL & ndoc->fl ags)) 1311 return(0);

1207 if (! (MDOC_FREECOL & m >fl ags)) 1312 if (ARGS_EOLN == ac)

1256 return(l); 1313 br eak;
1314 if (ARGS_PUNCT == ac)

1258 if (! rew_sub(MDOC BODY, ndoc, tok, l|ine, ppos)) 1315 br eak;

1210 if (! rew_sub(MDOC _BCDY, m tok, line, ppos))

1259 return(0); 1317 if (NULL == body && ARGS QAORD != ac

1260 if (! rew.sub(NDOC BLOCK, ndoc, tok, line, ppos)) 1318 DELI M OPEN == ndoc_i sdel imp)) {

1212 if (! rew sub(MDOC BLOCK, m tok, l'ine, ppos)) 1319 if (! dword(ndoc, line, la, p, DELIMGOPEN, 0))

1261 return(0); 1271 if (! dword(m line, la, p, DELIMOPEN))
1320 return(0);

1263 ndoc- >f | ags & ~MDOC_FREECOL; 1321 conti nue;

1215 m >f| ags & ~MDOC_FREECOL; 1322 }

1264 return(1);

1265 } 1324 if (NULL == body) {
1325 if (! mdoc_body_alloc(ndoc, |ine, ppos, tok))
1277 if (! ndoc_body_alloc(m Iine, ppos, tok))

1268 static int 1326 return(0);

1269 bl k_part _i np(MACRO_PROT_ARGS) 1327 body = ndoc- >l ast ;

1270 { 1279 body = m>| ast;

1271 int la, nl; 1328 }

1272 enum ndoct nt ok;

1273 enum mar gserr ac; 1330 ntok = ARGS_QAMORD == ac ? MDOC_MAX : | ookup(tok, p);

1274 char *p;

1275 struct ndoc_node *blk; /* saved bl ock context */ 1332 if (MDOC_MAX == ntok) {

1276 struct ndoc_node *body /* saved body context */ 1333 if (! dword(ndoc, line, la, p, DELI M MAX

1277 struct ndoc_node *n; 1334 MDOC_JOI N & nmloc _macros[tok].flags))
1285 if (! dword(m line, la, p, DELIMMAX))

1279 nl = MDOC_NEW.I NE & ndoc- >f| ags; 1335 return(0);

1231 nl = MDOC_NEW.I NE & m >f| ags; 1336 conti nue;
1337 }

1281 /*

1282 * A nmacro that spans to the end of the line. This is generally 1339 if (! nmdoc_macro(ndoc, ntok, line, la, pos, buf))

new usr/ src/ cnd/ mandoc/ ndoc_nacro. ¢ 21 new usr/ src/ cnd/ mandoc/ ndoc_nacro. ¢ 22
1290 if (! mdoc_macro(m ntok, line, la, pos, buf)) 1399 if (n & ! rew_sub(MDOC_BODY, ndoc, tok, line, ppos))
1340 return(0); 1349 if (n & ! rew sub(MDOC_BCDY, m tok l'ine, ppos))
1341 br eak; 1400 return(0);
1342 }
1402 /* Standard appending of delimters. */
1344 /* Clean-ups to leave in a consistent state. */
1404 if (nl & ! append_delinms(ndoc, |ine, pos, buf))
1346 if (NULL == body) { 1354 if (nl & ! append_delins(m line, pos, buf))
1347 if (! ndoc_body_alloc(ndoc, |ine, ppos, tok)) 1405 return(0);
1298 if (! ndoc_body_alloc(m Iine, ppos, tok))
1348 return(0); 1407 /* Rewi nd scope, if applicable. */
1349 body = ndoc- >l ast;
1300 body = m >l ast; 1409 if (n & ! rew_sub(MDOC_BLOCK, ndoc, tok, line, ppos))
1350 } 1359 if (n & ! rew _sub(MDOC _BLOCK, m tok l'ine, ppos))
1410 return(0);
1352 for (n = body->child; n & n->next; n = n->next)
1353 /* Do nothing. */ ; 1412 /* Move trailing .Ns out of scope. */
1354
1355 /* 1414 for (n = body->child; n & n->next; n = n->next)
1356 * End of sentence spacing: if the last node is a text node and 1415 /* Do nothl ing. *
1357 * has a trailing period, then mark it as being end-of - sentence. 1416 if (n & MDOC_Ns == n->tok)
1358 */ 1417 mdoc_node_rel i nk(ndoc, n);
1360 if (n & MDOC_TEXT == n->type && n->string) 1419 return(1);
1361 if (mandoc_ eos(n >string, strlen(n->string), 1)) 1420 }
1362 n->flags | = MDOC_ECS;
1364 /* Up-propagate the end-of-space flag. */ 1423 static int
1424 bl k_part _exp(MACRO_PROT_ARGS)
1366 if (n & (MDOC_ECS & n->flags)) { 1425 {
1367 body->fl ags | = MDOC_ECS; 1426 int Ia nl;
1368 body- >parent->f| ags | = MDOC_ECS; 1427 enum mar gserr
1369 } 1428 struct ndoc_node *head /* keep track of head */
1429 struct ndoc_node *body /* keep track of body */
1371 I* 1430 char *p;
1372 * |f there is an open sub-block requiring explicit close-out, 1431 enum ndoct nt ok;
1373 * post pone closing out the current block
1374 * until the rew_ sub() call closing out the sub-block. 1433 nl = MDOC_NEW.I NE & ndoc- >f| ags;
1375 */ 1376 nl = MDOC_NEW.I NE & m >fl ags;
1376 for (nzmjoc->|ast; n & n !'= body && n != bl k->parent;
1377 n = n->parent) { 1435 /*
1327 for (n = m>last; n & n != body & n != bl k->parent; n = n->parent) { 1436 * The opening of an explicit macro having zero or nore |eading
1378 if (MDOC_BLOCK == n->type && 1437 * punctuation nodes; a head with optional single elenment (the
1379 MDOC_EXPLI CI T & ndoc_macros[n->tok].flags && 1438 * case of 'E0’); and a body that may be enpty.
1380 | (MDOC_VALID & n->fTags)) { 1439 */
1381 nmake pendl ng(n, tok, mdoc, line, ppos);
1382 if (! ndoc endbody_al | oc(nmdoc, |ine, ppos, 1441 if (! ndoc_block_alloc(ndoc, |ine, ppos, tok, NULL))
1331 make pendl ng(n, tok, m line, ppos); 1384 if (! mdoc_block_alloc(m line, ppos, tok, NULL))
1332 if (! mdoc_endbody_alloc(m Iine, ppos, 1442 return(0);
1383 tok, body, ENDBODY_NGOSPACE))
1384 return(0); 1444 (head = body = NULL; ;) {
1385 return(l); 1445 la = *pos
1386 } 1446 ac = ntioc _args(ndoc, line, pos, buf, tok, &p);
1387 } 1389 ac = ndoc_args(m |ine, pos, buf, tok &p)
1389 /* 1448 if (ARGS_ERROR == ac)
1390 * If we can’t rewind to our body, then our scope has already 1449 return(0);
1391 * been cl osed by another nmacro (like ‘Cc’ closing ‘“Op’). This 1450 if (ARGS_PUNCT == ac)
1392 * is ugly behaviour nodding its head to QpenBSD s overwhel m ng 1451 br eak;
1393 * crufty use of ‘Op’ breakage. 1452 if (ARGS_EOLN == ac)
1394 */ 1453 br eak;
1395 if (n!= body)
1396 mandoc_vnsg(MANDOCERR SCOPENEST, ndoc- >parse, |ine, ppos, 1455 /* Flush out |eading punctuation. */
1346 mandoc_vnmsg(MANDOCERR _SCOPENEST, m >parse, |ine, ppos,
1397 "% broken", ndoc_nacronanes[tok]); 1457 if (NULL == head && ARGS QWRD = ac
1458 DELI M_OPEN == ndoc_i sdel imp)) {

new usr/ src/ cnd/ mandoc/ nmdoc_nacr o. ¢ 23 new usr/ src/ cnd/ mandoc/ ndoc_nacro. ¢ 24
1459 assert (NULL == body);
1460 if (! word(mioc line, la, p, DELIMOPEN, 0)) 1516 if (NULL == body) {
1403 if (! dword(m line, la, p, DELIMOPEN)) 1517 if (! rew_sub(MDOC_HEAD, ndoc, tok, line, ppos))
1461 return(0); 1459 if (! rew sub(MDOC_HEAD, m tok, I'i ne, ppos))
1462 conti nue; 1518 return(0);
1463 } 1519 if (! nmdoc_body_alloc(ndoc, |ine, ppos, tok))
1461 if (! nmdoc_body_alloc(m line, ppos, tok))
1465 if (NULL == head) { 1520 return(0);
1466 assert (NULL == body); 1521 }
1467 if (! mdoc_head_all oc(mjoc line, ppos, tok))
1410 if (! rmdoc_head_ alloc(m line, ppos, tok)) 1523 /* Standard appending of delimters. */
1468 return(0);
1469 head = ndoc- >l ast; 1525 if (! nl)
1412 head = m >l ast; 1526 return(1);
1470 } 1527 return(append_del i ms(ndoc, |ine, pos, buf));
1469 return(append_delinms(m |ine, pos, buf));
1472 /* 1528 }
1473 * ‘E0’ gobbles any data into the head, but nost other
1474 * macros just immediately close out and begin the body.
1475 */ 1531 /* ARGSUSED */
1532 static int
1477 if (NULL == body) { 1533 in_l i ne_ar gn(MACRO_PROT_ARGS)
1478 assert (head); 1534 {
1479 /* No check whether it’'s a macro! */ 1535 int la, flushed, j, maxargs, nl;
1480 if (MDOC_Eo == tok) 1536 enum mar gserr ac;
1481 if (! dword(ndoc, line, la, p, DELIMMAX 0)) 1537 enum mar gverr av;
1424 if (! dword(m line, la, p, DELI M MAX)) 1538 struct ndoc_arg *arg,
1482 return(0); 1539 char *p;
1540 enum ndoct nt ok;
1484 if (! rew_sub(MDOC_HEAD, ndoc, tok, l|ine, ppos))
1427 if (! rew_sub(MDOC_HEAD, m tok l'ine, ppos)) 1542 nl = MDOC_NEWL.I NE & ndoc->fl ags;
1485 return(0); 1484 nl = MDOC_NEW.I NE & m >fl ags;
1486 if (! eroc_body_aI | oc(nmdoc, |ine, ppos, tok))
1429 if (! ndoc_body_alloc(m Iine, ppos, tok)) 1544 /*
1487 return(0); 1545 * Aline macro that has a fixed nunber of arguments (maxargs).
1488 body = ndoc- >l ast ; 1546 * Only open the scope once the first non-Ieadi ng- punct uation is
1431 body = m >l ast; 1547 * found (unless MDOC |IGNDELIMis noted, like in ‘Pf'), then
1548 * keep it open until the maxi num nunber of argunents are
1490 if (MDOC_Eo == tok) 1549 * exhaust ed.
1491 conti nue; 1550 */
1492 }
1552 switch (tok) {
1494 assert (NULL != head && NULL != body); 1553 case (MDOC_Ap):
1554 /* FALLTHROUGH */
1496 ntok = ARGS_QAORD == ac ? MDOC_MAX : | ookup(tok, p); 1555 case (MDOC_No):
1556 /* FALLTHROUGH */
1498 if (MDOC_MAX == ntok) { 1557 case (MDOC_Ns):
1499 if (! dword(ndoc, line, la, p, DELI M MNAX 1558 /* FALLTHROUGH */
1500 NDOC JO N & ndoc macros[tok] flags)) 1559 case (MDOC_Wx):
1442 if (! dword(m line, la, p, DELI M MAX)) 1560 maxargs = O;
1501 return(0); 1561 br eak;
1502 continue; 1562 case (MDOC_Bx):
1503 } 1563 /* FALLTHROUCH */
1564 case (MDOC_Xr):
1505 if (! nmdoc_macro(ndoc, ntok, line, la, pos, buf)) 1565 maxargs = 2;
1447 if (! mdoc_macro(m ntok, line, la, pos, buf)) 1566 br eak;
1506 return(0); 1567 defaul t:
1507 br eak; 1568 maxargs = 1;
1508 } 1569 br eak;
1570 1
1510 /* Cean-up to leave in a consistent state. */
1572 for (arg = NULL; ;) {
1512 if (NULL == head) 1573 la = *pos;
1513 if (! nmdoc_head_all oc(ndoc, |ine, ppos, tok)) 1574 av = ndoc_argv(ndoc, line, tok, &arg, pos, buf);
1455 if (! nmdoc_head_alloc(m Iine, ppos, tok)) 1516 av = ndoc_argv(m line, tok, &arg, pos, buf);
1514 return(0);

new usr/ src/ cnd/ mandoc/ nmdoc_nacr o. ¢

1576 if (ARGV_WORD == av) {

1577 *pos = | a;

1578 br eak;

1579 }

1581 if (ARGV_EOLN == av)

1582 br eak;

1583 if (ARGV_ARG == av)

1584 conti nue;

1586 nmdoc_argv_free(arg);

1587 return(0);

1588 }

1590 for (flushed =j =0; ;) {

1591 la = *pos;

1592 ac = mjoc _args(ndoc, line, pos, buf, tok, &p)

1534 ac = ndoc_args(m |ine, pos, buf, tok

1594 if (ARGS_ERROR == ac)

1595 return(O)

1596 if (ARGS_PUNCT == ac)

1597 br eak;

1598 if (ARGS_ EOLN == ac)

1599 br eak;

1601 if (! (MDOC_I GNDELI M & ndoc rmcros[tok] fI ags) &&
1602 ARGSQNRD'—ac&&O &&

1603 DELI M_OPEN == ndoc_i sdel i r'r(p)) {
1604 if (! dword(ndoc, line, la, p, DELIMCPEN, 0))
1546 if (! dword(m line, la, p, DELI M OPEN))
1605 return(0);

1606 conti nue;

1607 } elseif (0 ==j)

1608 if (! nﬁoc el em al | oc(ndoc, line, la, tok, arg))
1550 if (! nmdoc_elemalloc(m line, la, tok, arg))
1609 return(0);

1611 if (j == maxargs && ! flushed) {

1612 if (! rew.elenndoc, tok))

1554 if (! rewelen{m tok))

1613 return(0);

1614 flushed = 1;

1615 }

1617 ntok = ARGS_QAORD == ac ? MDOC_MAX : | ookup(tok, p);
1619 if (MDOC_MAX != ntok) {

1620 if (! flushed & ! rew_el em(ndoc, tok))
1562 if (! flushed & ! rew_elenm{m tok))

1621 return(0);

1622 flushed = 1;

1623 if (! mdoc_macro(ndoc, ntok, line, la, pos, buf))
1565 if (! ndoc_macro(m ntok, line, la, pos, buf))
1624 return(0);

1625 j++

1626 break

1627 }

1629 if (! (MDOC_I GNDELI M & ndoc macros[tok] flags) &&
1630 ARGS_QN\ORD ! = ac

1631 I flushed &&

1632 DELI M_NONE ! = ndoc_i sdelinm(p)) {
1633 if (! rew elen(ndoc, tok))

1575 if (! rewelem(m tok))

1634 return(0);

25

new usr/ src/ cnd/ mandoc/ ndoc_nacro. ¢

1635 flushed =

1636

1638 if (! dword(nmdoc, line, la, p, DELI M MAX
1639 MDOC_JO N & ndoc macros[tok] flags))
1580 if (! dword(m line, la, p, DELI M MAX))
1640 return(0);

1641 j++;

1642 }

1644 if (0 ==] & ! ndoc_elemalloc(ndoc, line, la, tok, arg))
1585 if (0==) & ! ndoc_elemalloc(m line, la, tok, arg))
1645 return(0);

1647 /* Close out in a consistent state. */

1649 if (! flushed & ! rew_ el en{ndoc, tok))

1590 if (! flushed & ! rew_elem(m tok))

1650 return(0);

1651 if (! nl)

1652 return(1);

1653 return(append_del i ms(ndoc, |ine, pos, buf));

1594 return(append_delinms(m |ine, pos, buf));

1654 }

1657 static int

1658 i n_Il i ne_eol n(MACRO_PROT_ARGS)

1659 {

1660 int | a;

1661 enum mar gserr ac;

1662 enum mar gverr av;

1663 struct ndoc_arg *arg,

1664 char *p;

1665 enum ndoct nt ok;

1667 assert(! (MDOC_PARSED & ndoc_nacros[tok].flags));
1669 if (tok == MDOC_Pp)

1670 rew_sub(MDOC_BLCCK, ndoc, MDOC_Nm |ine, ppos);
1611 rew_sub(MDOC_BLOCK, m MDOC_Nm |ine, ppos);
1672 /* Parse macro argunents. */

1674 for (arg = NULL; ;) {

1675 la = *pos;

1676 av = ndoc_argv(ndoc, line, tok, &arg, pos, buf);
1617 av = ndoc_argv(m line, tok, &arg, pos, buf);
1678 if (ARGV_WORD == av) {

1679 *pos = |a;

1680 break;

1681 }

1682 if (ARGV_EQOLN == av)

1683 br eak;

1684 if (ARGV_ARG == av)

1685 conti nue;

1687 nmdoc_argv_free(arg);

1688 return(0);

1689 1

1691 /* Open el enent scope. */

1693 if (! mdoc_elemalloc(ndoc, |line, ppos, tok, arg))
1634 if (! mloc_elemalloc(m line, ppos, tok, arg))

26

new usr/ src/ cnd/ mandoc/ nmdoc_nacr o. ¢

1694 return(0);

1696 /* Parse argunent terns. */

1698 for (;;) {

1699 la = *pos;

1700 ac = ndoc_args(ndoc, line, pos, buf, tok, &p);
1641 ac = ndoc_args(m |line, pos, buf, tok, &p);

1702 if (ARGS_ERROR == ac)

1703 return(0);

1704 if (ARGS_ECLN == ac)

1705 br eak;

1707 ntok = ARGS_QAORD == ac ? MDOC_MAX : | ookup(tok, p);
1709 if (MDOC_MAX == ntok) {

1710 if (! dword(ndoc, line, la, p, DELI M MNAX
1711 MDOC _JO N & ndoc_macros[tok].flags))
1651 if (! dword(m line, la, p, DELI M MAX))
1712 return(0);

1713 conti nue;

1714 }

1716 if (! rewelen(ndoc, tok))

1656 if (! rewelem(m tok))

1717 return(0);

1718 return(ndoc_nacro(ndoc, ntok, line, la, pos, buf));
1658 return(ndoc_macro(m ntok, line, la, pos, buf));
1719 }

1721 /* Close out (no delimters). */

1723 return(rew_el en{ndoc, tok));

1663 return(rew el em(m tok));

1724 }

1727 /* ARGSUSED */

1728 static int

1729 ct x_synopsi s(MACRO_PROT_ARGS)

1730 {

1731 int nl;

1733 nl = MDOC_NEW.I NE & ndoc- >fl ags;

1673 nl = MDOC_NEW.I NE & m >f| ags;

1735 /* 1f we're not in the SYNOPSIS, go straight to in-line. */
1736 if (! (MDOC_SYNOPSIS & ndoc->fl ags))

1737 return(in_line(ndoc, tok, |ine, ppos, pos, buf));
1676 if (! (MDOC_SYNOPSIS & m >flags))

1677 return(in_line(m tok, line, ppos, pos, buf));
1739 /* If we're a nested call, same place. */

1740 if (! nl)

1741 return(in_line(nmdoc, tok, line, ppos, pos, buf));
1681 return(in_line(m tok, line, ppos, pos, buf));
1743 I

1744 * XXX: this will open a block scope; however, if |later we end
1745 * up fornmatting the block scope, then child nodes will inherit
1746 * the formatting. Be careful.

1747 */

1748 if (MDOC_Nm == tok)

1749 return(bl k_full (ndoc, tok, line, ppos, pos, buf));
1689 return(blk_full (m tok, line, ppos, pos, buf));

27

new usr/ src/ cnd/ mandoc/ ndoc_nacro. ¢

1750
1751
1691
1752 }

1755 /*

assert (MDOC_Wt == tok);
return(bl k_part_i np(ndoc, tok, line, ppos, pos, buf));
return(bl k_part_inmp(m tok, line, ppos, pos, buf));

ARGSUSED */

1756 static int
1757 obsol et e(MACRO_PROT_ARGS)

1758 {

1760
1700
1761
1762 }

1765 /*

1766 * Phrases occur within ‘Bl -colum’ entries, separated by ‘Ta’ or tabs.

nmdoc_pns
ndoc_pns

g(ndoc, line, ppos, MANDOCERR MACROOBS);
g(m line, ppos, MANDOCERR MACROOBS) ;

return(1);

1767 * They’'re unusual because they're basically free-formtext until a
1768 * nmacro is encountered.

1769 */

1770 static int
1771 phrase(struct ndoc *ndoc, int line, int ppos, char *buf)
1711 phrase(struct nd i

1772 {
1773
1774
1775
1776

1778
1779

1781
1721

1783
1784
1785
1786

1788

1790
1791
1731
1792
1793
1794

1796
1736
1797
1798
1738
1799

1801
1802 }

1805 /*

int
enum mar

oc *m int line, int ppos, char *buf)

la, pos;
gserr ac;

enum ndoct nt ok;

char

for (pos

}

*p;

= ppos; ;) {
la = pos;

ac = ndoc_zargs(ndoc, |ine, &pos, buf, &p);
= ndoc_zargs(m line, &pos, buf, &p);

if (ARGS_ERROR == ac)
return(0);

if (ARGS_EOLN == ac)
br eak;

ntok = ARGS_QMORD == ac ? MDOC_MAX : | ookup_raw(p);

if (MDOC_MAX == ntok) {
if (! dword(ndoc, line, la, p, DELIMMAX 1))
if (! dword(m line, la, p, DELI M MAX))
return(0);
conti nue;

if (! mdoc_macro(ndoc, ntok, line, la, &pos, buf))

if (! nmdoc_macro(m ntok, line, la, &pos, buf))
return(0);

return(append_del i ms(ndoc, |ine, &pos, buf));

return(append_delinms(m |ine, &pos, buf));

return(1);

ARGSUSED */

1806 static int
1807 phrase_t a(MACRO_PROT_ARGS)

1808 {

28

new usr/ src/ cnd/ mandoc/ nmdoc_nacr o. ¢ 29

1809
1810
1811
1812
1813

1815
1816
1817
1818
1819
1820
1821
1822
1754
1755
1756
1757

1824
1825
1759
1826
1827
1761
1828

1830
1831
1832
1766

1834
1835
1836
1837

1839

1841
1842
1843
1776
1844
1845
1846

1848
1781
1849
1850
1783
1851

1853

1854 }

struct ndoc_node *n;

int | a;
enum ndoct nt ok;
enum mar gserr ac;
char *p;

/* Make sure we are in a colum list or ignore this nacro. */

n = ndoc->| ast;

while (NULL !'= n & MDOC_Bl != n->tok)
n = n->parent;

if (NULL == n || LIST_colum != n->norm >Bl.type) {
nmdoc_pnsg(ndoc, |ine, ppos, MANDOCERR STRAYTA);
return(1);

*

* FIXME: this is overly restrictive: if the ‘Ta’ is unexpected,
* it should sinply error out with ARGSLOST.
*

/* Advance to the next colum. */
if (! rew_sub(MDOC BODY, ndoc, MDOC_It, line, ppos))
if (! rew_sub(MDOC BCDY, m MDOC_It, line, ppos))
return(0);
if (! mdoc_body_alloc(ndoc, |ine, ppos, MDOC It))
if (! ndoc_body_alloc(m Iine, ppos, MDOC. It))
return(0);
for (;:) {
la = *pos;
ac = ndoc_zargs(ndoc, line, pos, buf, &p);
ac = ndoc_zargs(m |ine, pos, buf, &p);
if (ARGS_ERROR == ac)
return(0);
if (ARGS_EOLN == ac)
break;
ntok = ARGS_QAORD == ac ? MDOC_MAX : | ookup_raw(p);
if (MDOC_MAX == ntok) {
if (! dword(ndoc, line, la, p, DELI M MAX
MDOC_JO N & ndoc_macros[tok].flags))
if (! dwrd(m line, la, p, DELI M MAX))
return(0);
conti nue;
}
if (! nmdoc_macro(ndoc, ntok, line, la, pos, buf))
if (! mdoc_macro(m ntok, line, la, pos, buf))
return(0);
return(append_del i ms(ndoc, |ine, pos, buf));
return(append_delinms(m |ine, pos, buf));
}
return(l);

____unchanged_portion_onitted_

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
33223 Wed Jul 30 20:55:10 2014

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

5051 inport ndocnmi-1.12.3

Revi ewed by: Yuri
Approved by: TBD

Pankov <yuri.pankov@exenta. conm>

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $l d: ndoc_man.c,v 1.57 2013/12/25 22:00: 45 schwarze Exp $ */

1/* $Id: ndoc_man.c,v 1.9 2011/10/24 21:47:59 schwarze Exp $ */

2 /*

3 * Copyright (c) 2011, 2012, 2013 Ingo Schwarze <schwarze@penbsd. or g>

3 * Copyright (c) 2011 Ingo Schwarze <schwarze@penbsd. or g>

4 *

5 * Permission to use, copy, nodify, and distribute this software for any

6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this perm ssion notice appear in all copies.

8 *

9 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
10 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

11 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
12 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
14 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SI NG QUT OF
15 * OR I N CONNECTION W TH THE USE OR PERFORVMANCE OF THI S SOFTWARE.

16 */

17 #ifdef HAVE_CONFI G H
18 #include "config.h"

19 #endi f

21 #include <assert.h>

22 #include <stdio. h>

23 #include <string.h>

25 #include "mandoc. h"
P

27 #include "man. h"

28 #include "ndoc. h"

29 #include "main.

26 #include "out.

31 #define DECL_ARGS

32

29 #define DECL_ARGS
30

31

33 struct nmman {
34 int

35 int

36 };

34 struct nmanact {
35 int

36 int

37 voi d
38 const
39 const
40 };

42 static int

43 static int

44 static void
45 static void
46 static void
47 static void
48 static void
49 static void

char
char

he

const struct ndoc_neta *neta, \
const struct ndoc_node *n
const struct ndoc_neta *m \
const struct ndoc_node *n, \
struct mman *nmm

need_space; /* next word needs prior ws */
need_nl; /* next word needs prior nl */

(*cond) (DECL_ARGS); /* DON' T run actions */
(*pre) (DECL_ARGS); /* pre-node action */
(*post) (DECL_ARGS); /* post-node action */
prefix; [pre—node string constant */
suffix; / post-node string constant */

cond_body(DECL_ARGS) ;
cond_head(DECL_ARGS) ;
font _push(char);

f ont _pop(void);
md_it(void);

post __t (DECL_ARGS) ;
post _bd(DECL_ARGS) ;
post _bf (DECL_ARGS) ;

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati

stati
stati
stati

stati

0OO000O00O000O0

oO0o0

voi d
voi d
voi d

voi d
voi d
voi d
voi d
voi d

voi d
voi d
voi d

const struct

post _bk(DECL_ARGS) ;
post _bl (DECL_ARGS) ;
post _dl (DECL_ARGS) ;

post _enc(DECL ARGS)

post _eo(DECL_ARGS) ;
post _f a(DECL_ARGS) ;
post _f d(DECL_ARGS) ;
post _f| (DECL_ARGS) ;
post _f n(DECL_ARGS) ;
post _f o(DECL_ARGS) ;

post _f ont (DECL ARGS)

post _i n(DECL_ARGS) ;
post _i t (DECL_ARGS) ;
post _| b(DECL_ARGS) ;
post _nm(DECL_ARGS) ;

post _per cent (DECL_. ARGS)

post _pf (DECL_ARGS) ;

post _sect (DECL_AR@) ;
post _sp(DECL_ARGS) ;
post _vt (DECL_ARGS) ;

pre__t (DECL_ARGS);
pre_an(DECL_ARCS) ;
pre_ap(DECL_ARGCS) ;
pre_bd(DECL_ARGS) ;
pre_bf (DECL_ARGS) ;
pre_bk(DECL_ARGS) ;
pre_bl (DECL_ARGS) ;
pre_br (DECL_ARGS) ;
pre_bx(DECL_ARGS) ;
pre_dl (DECL_ARGS) ;
pre_enc(DECL_. AR%)
pr e_em DECL_ARGS) ;
pre_fa(DECL_ARGCS) ;
pre_f d(DECL_ARGS) ;
pre_fl (DECL_ARCS) ;
pre_f n(DECL_ARGS) ;
pre_f o(DECL_ARGS) ;
pre_ft (DECL_ARGS);
pre_i n(DECL_ARGS) ;
pre_it (DECL_ARGCS) ;
pre_| k(DECL_ARGS) ;
pre_l i (DECL_ARGS);
pre_nm(DECL_ARCS) ;
pre_no(DECL_ARGS) ;
pre_ns(DECL_ARGS) ;
pre_pp(DECL_ARGS) ;
pre_rs(DECL_ARGS) ;
pre_sm DECL_ARGS) ;
pre_sp(DECL_ARGS) ;

pre_sect (DECL_ARGS) ;

pre_sy(DECL_ARGS) ;

pre_syn(const struct ndoc_node *);

pre_vt (DECL_ARGS) ;
pre_ux(DECL_ARGCS) ;
pre_xr (DECL_ARGS) ;

print_word(const char *);
print_line(const char *
print_bl ock(const char *,
print_of fs(const char *);
print_w dth(const char *,

const struct ndoc_node *,
print_count(int *);

print _word(struct

print_node(DECL_ARGCS) ;

const char *);

manact nmanact s[MDOC_MAX + 1]

size_t);

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢ 3 new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢
115 NULL, pre_ap, NULL, NULL, NULL }, /* Ap */ 119 NULL, NULL, NULL, NULL, NULL }, /* _Wmt */
116 NULL, NULL, NULL, NULL, NULL }, /* Dd */ 161 NULL, pre_xr, NULL NULL NULL} [* Xr *]
117 NULL, NULL, NULL, NULL, NULL }, /* Dt */ 162 NULL, NULL, post _percent, NULL, NULL }, /* %A */
118 NULL, NULL, NULL, NULL, NULL }, /* Cs */ 163 NULL, pre_em post_percent, NULL, NULL }, /* 9B */
119 NULL, pre_sect, post_sect, ".SH', NULL }, /* Sh */ 164 NULL, NULL, post_percent, NULL, NULL }, /* %O */
120 NULL, pre_sect, post_sect, ".SS', NULL }, /* Ss */ 165 NULL, pre_em post_percent, NULL, NULL }, /* 9% */
121 NULL, pre_pp, NULL NULL, NULL} /* Pp */ 166 NULL, pre_em post_percent, NULL, NULL }, /* % */
122 cond_body, pre_dl, post_dl NULL, NULL }, /* D1 */ 167 NULL, NULL, post_percent, NULL, NULL }, /* O */
123 cond_body, pre_dl, post_ dI, NULL, NULL }, /* D =/ 168 NULL, NULL, post_percent, NULL, NULL }, /* %O */
124 cond_body, pre_bd, post_bd, NULL, NULL }, /* Bd */ 169 NULL, NULL, post_percent, NULL, NULL }, /* o */
125 NULL, NULL, NULL, NULL, NULL} /* Ed */ 170 NULL, NULL, post_percent, NULL, NULL }, /* OR */
126 cond_body pre_bl post_bl NULL, NuULL }, /* Bl */ 171 NULL, pre__t, post__t, NULL NULL} [* od */
85 NULL, NULL, NULL, NULL, “NULL }, /* Bl ¥/ 172 NULL, NULL, post_percent, NULL, NULL} 1* o x|
127 NULL, NULL, NULL, NULL, NULL }, /* El */ 121 NULL, NULL, post_percent, NULL, NULL }, /* _%A */
128 NULL, pre it, post it, NULL, NULL }, /* It */ 122 NULL, NULL, NULL, NULL, NULL }, /* 9B */
129 NULL, pre_em post_font, NULL, NULL }, /* Ad */ 123 NULL, NULL, post_percent, NULL, NULL }, /* _9%®O */
130 NULL, pre_an, NULL, NULL, NULL }, /* An */ 124 NULL, NULL, NULL, NULL, NULL }, [* _% */
131 NULL, pre_em post_font, NULL, NULL }, /* Ar */ 125 NULL, pre_enc, post_percent, "\\fl", "\\fP" }, /* 9@ */
132 NULL, pre_sy, post _font, NULL, NULL }, /* Cd */ 126 NULL, NULL, NULL, NOLL, NULL }, /* 9@ */
133 NULL, pre_sy, post_font, NULL, NULL }, /* Om*/ 127 NULL, NULL, NULL, NULL, NULL }, /* %O */
134 NULL, pre_li, post_font, NULL, NULL }, /* Dv */ 128 NULL, NULL, NULL, NULL, NULL }, /* _9&@ */
135 NULL, pre_li, post_font, NULL, NULL }, /* Er */ 129 NULL, NULL, NULL, NULL, NULL }, /* _OR */
136 NULL, pre_li, post_font, NULL, NULL }, /* Ev */ 130 NULL, pre_enc, post_percent, "\"", kB "\"" } [* og */
87 NULL, pre_it, NULL, NULL, NULL }, /* _It */ 131 NULL, NULL, NULL, NULL, NULL }, /* _/ */
88 NULL, pre_enc, post_enc, "\\fl",6 "\\fP" }, /* Ad */ 173 NULL, NULL, NULL, NULL, NULL }, /* Ac */
89 NULL, NULL, NULL, NULL, NULL} /* _An */ 174 cond_body, pre_enc, post_enc, "<", ">" }, [/* Ao */
90 NULL, pre_enc, post_enc, "\\fl", "\\fP" }, /* Ar */ 175 cond_body, pre_enc, post_enc, "<", ">" }, [* Aq */
91 NULL, pre_enc, post_enc, "\\fB", "\\fpP' }, /* Cd */ 176 NULL, NULL, NULCL, NULL, NULL }, /* At */
92 NULL, pre_enc, post_enc, "\\fB", "\\fP" }, /* Cm*/ 177 NULL, NULL, NULL, NULL, NULL }, /* Bc */
93 NULL, pre_enc, post_enc, "\\fR', "\\fP" }, /* Dv */ 178 NULL, pre_bf, post_bf, NULL, NULL }, /* Bf */
94 NULL, pre_enc, post_enc, "\\fR', "\\fP' }, I Er ¥/ 137 NULL, NULL, NULL NULL NULL }, /* _Bf */
95 NULL, pre_enc, post_enc, "\\fR', "\\fP" }, /* Ev */ 179 cond_body, pre_enc, post_enc, "[", "]" }, /* Bo */
137 NULL, pre_enc, post_enc, "The \\fB", 180 cond_body, pre_enc, post_enc, "[", "]" }, /* Bq */
138 "\ P\ nut i Ilty exits 0 on success, and >0 if an error occurs." 181 NULL, pre_ux, NULL, "BSD/OS', NULL }, /* Bsx */
139 Y, /r BEx */ 182 NULL, pre_bx, NULL, NULL, NULL }, 1* Bx */
140 NULL, pre_fa, post_fa, NULL, NULL }, /* Fa */ 183 NULL, NULL, NULL NULL NULL} /* Db */
141 NULL, pre_fd, post_fd, NULL, NULL }, /* Fd */ 184 NULL, NULL, NULL, NULL, NULL }, /* Dc */
142 NULL, pre_fl, post_fl, NULL, NULL }, /* FI */ 185 cond_body, pre_enc, post_enc, "\\(Iq" “\\(rgq" }, /*
143 NULL, pre_fn, post_fn, NULL, NULL }, /* Fn */ 186 cond_body, pre_enc, post_enc, "\\(1qg", "\\(rqg ,
144 NULL, pre_ft, post_ font NULL, NULL }, /* Ft */ 187 NULL, NULL, NULL, NULL, NULL }, /* Ec */
145 NULL, pre_sy, post_font, NULL, NULL }, /* Ic */ 188 NULL, NULL, NULL, NULL, NULL }, /* Ef *
146 NULL, pre_in, post_in, NULL, NULL }, /* In */ 189 NULL, pre_em post_font, NULL, NULL }, /* Em*/
147 NULL, pre_li, post_ font NULL, NULL }, /* Li */ 190 NULL, NULL, post_eo, NULL, NULL} /* Eo */
99 NULL, NULL, NULL NULL, NULL }, /* _Fa */ 144 cond_body, pre_enc, post_enc, "‘‘", "''" }, [* Do */
100 NULL, NULL, NULL, NULL, NULL }, /* _Fd */ 145 cond_body, pre_enc, post_enc, "*‘", "''" }, [* Dg */
101 NULL, pre_enc, post_enc, "\\fB-", "\\fP" }, [* Fl */ 146 NULL, NULL, NUCL, NULL, NULL }, /* _Ec */
102 NULL, NULL, NULL, NULL, NULL }, /* _Fn */ 147 NULL, NULL, NULL, NULL, NULL }, /* Ef */
103 NULL, NULL, NULL, NULL, NULL Y, I* _Fto*/ 148 NULL, pre_enc, post_enc, "\\fl", "\VfP" }, /* Em*/
104 NULL, pre_enc, post_enc, "\\fB", "\VfP" }, /* lc */ 149 NULL, NULL, NULL NULL, NULL }, /* Eo */
105 NULL, NULL, NULL, NOLL, NULL }, /* _In */ 191 NULL, pre_ux, NULL, "FreeBSD', NULL }, /* Fx */
106 NULL, pre_enc, post_enc, \\fR "\\fP* O}, /% L%/ 192 NULL, pre_sy, post_font, I\ULL, NULL }, I* Ms */
148 cond_head, pre_enc, NULL, "\\- " NULL Y, /* Nd */ 193 NULL, pre_no, NULL, NULL, NULL }, /* No */
149 NULL, pre_nm post_nm NULL NULL} /* Nm*/ 151 NULL, pre_enc, post_enc, "\\fB", "\\fpP"' }, /* */
150 cond_body, pre_enc, post_enc, "[", "]" }, /* Op */ 152 NULL, NULL, NULL NULL, NULL }, /* No */
151 NULL, NULL, NUCL, NULL, NULL} [* a */ 194 NULL, pre_ns, NULL, NULL, NULL Y, I* Ns ¥/
152 NULL, pre_em post_font, NULL, NULL }, /* Pa */ 195 NULL, pre_ux, NULL, "NetBSD', NULL }, /* Nx */
111 NULL, pre_enc, post_enc, "\\fI", "\\fP" }, /* Pa */ 196 NULL, pre_ux, NULL, QJenBSD NULL }, /* Ox */
153 NULL, pre_enc, post_enc, "The \\fB", 197 NULL, NULL, NULL NULL, NULL }, /* Pc */
154 "\\fP\nfunction returns the value 0 if successful;\n" 198 NULL, NULL, postfpf NULL, NULL }, /* Pf */
155 "otherwi se the value -1 is returned and the gl obal\n" 199 cond_body, pre_enc, post_enc, "(", ")" }, /* Po */
156 "variable \\flerrno\\fP is set to indicate the error." 200 cond_body, pre_enc, post_enc, "(", ")" }, /* Pq */
157 Y, I* Rv ¥/ 201 NULL, NULL, NULL, NULL NULL} /* Q@ */
158 NULL, NULL, NULL, NULL, NULL }, /* St */ 202 cond_body, pre_enc, post_enc, "\\(oq", "\\(cq" }, /* A
159 NULL, pre_em post_font, NULL, NULL }, /* Va */ 161 cond_body, pre_enc, post_enc, "'", "'" }, /[* Q */
160 NULL, pre_vt, post_vt, NULL NULL} I* vVt */ 203 cond_body, pre_enc, post_enc, "\"", "\"" } /* Qo */
118 NULL, NULL, NULL NULL NULL} /* _Va */ 204 cond_body, pre_enc, post_enc, "\"", "\"" } [/* Q */

new usr/ src/ cnd/ mando

205 NULL,
206 cond_b
165 cond_b
207 NULL,
208 cond_b
209 cond_b
210 NULL,
211 NULL,
212 NULL,
213 NULL,
167 cond_b
168 cond_b
169 NULL,
170 NULL,
171 NULL,
172 NULL,
214 NULL,
215 NULL,
216 NULL,
217 NULL,
218 NULL,
174 NULL,
175 NULL,
176 NULL,
177 NULL,
219 cond_b
220 NULL,
221 NULL,
222 NULL,
180 NULL,
181 NULL,
223 NULL,
224 NULL,
225 NULL,
226 NULL,
227 NULL,
186 NULL,
228 NULL,
229 NULL,
230 NULL,
188 NULL,
189 NULL,
231 cond_b
232 cond_b
233 NULL,
234 NULL,
235 NULL,
236 NULL,
193 NULL,
194 NULL,
195 NULL,
237 NULL,
238 NULL,
197 NULL,
239 NULL,
240 NULL,
241 NULL,
242 NULL,
200 NULL,
201 NULL,
243 NULL,
244 };

246 static int
247 #define MVAN_spc
248 #define MMAN_spc

¢/ mdoc_man. ¢

NULL, NULL, NULL, NULL }, /* Re */

ody, pre_rs, NULL, NULL, NULL }, /* Rs */
ody, pre_pp, NULL, NULL, NULL }, /* Rs */
NULL, NULL, NULL, NULL } /* Sc */

ody, pre_enc, post_enc, "\\(o ", "\\(cq" }, /* So */
ody, pre_enc, post_enc, \\(oq \\(cq" }, /I* Sq */
pre_sm NULL, NULL, NULL }, o Sm */

pre_em post_f ont, NULL, NULL }, /* Sx */
pre_sy, post_font, NULL, NULL }, /* Sy */
pre_li, post_font, NULL, NULL }, /* Tn */
ody, pre_enc, post enc, "*", """ }, /* So */
ody, pre_enc, post_enc, "‘", "'" }, [* Sq */
NULL, NULL, NULL, NULL }, /[* _Sm*/

pre_enc, post_enc, "\\fl", "\\fP" }, /* Sx */
pre_enc, post_enc, '\\fB, "\\fP" }, /* Sy */
pre_enc, post_enc, "\\fR', "\\fP" }, /* Tn */
pre_ux, NULL, "UNIX', NULL }, /* Ux */

NULL, NULL, NULL, NULL , [* Xc */

NULL, NULL, NULL, NULL }, /* Xo */

pre_fo, post_fo, NULL, NULL }, /* Fo */

NULL, NULL, NULL, NULL }, /* Fc */

NULL, NULL, NULL, NULL }, /* _Xc */

NULL, NULL, NULL, NULL }, /* _Xo */

NULL, NULL, NULL, NULL }, /* _Fo */

NULL, NULL, NULL, NULL }, /* _Fc */

ody, pre_enc, post_enc, “"[", "]" }, I* */
NULL, NULL, NULL NULL }, /* O */

pre_bk, post bk, NULL, NULL }, /* Bk */

NULL, NULL, NULL, NULL }, / /

NULL, NULL, NULL, NULL /* _Bk */

NULL, NULL, NULL, NuULL }, /* _Ek */

pre_ux, NULL "is currently in beta test.", NULL }, /* Bt
NULL, NULL NULL, NULL }, /* Hf */

NULL, NULL, NULL, NULL }, /* Fr */

pre_ux, NULL, "currently under devel opnent.", NULL }, /*
NULL, post Ib NULL, NULL }, /* Lb */
NULL, NULL, NULL NULL 1, 1% _Lb */
pre_pp, NULL, NULL, NULL }, /* Lp */
pre_l k, NULL, NULL, NULL }, /* Lk */
pre_em post_font, NULL, NULL }, /* M */
NULL, NULL, NULL, NuULL }, /* _Lk */
NULL, NULL, NULL, NULL }, /* _M */
ody, pre_enc, post_enc, "{", "}" }, /* Brq */
ody, pre_enc, post_enc, "{", "}" }, /* Bro */
NULL, NULL, NULL NULL }, /* Brc */
NULL, post_percent, NULL, NULL }, /* %C */
NULL, NULL, NULL, NULL }, [* Es */
NULL, NULL, NULL, NULL }, /* En */
NULL, NULL, NULL, NULL }, /* _%C */
NULL, NULL, NULL, NULL }, /* _Es */
NULL, NULL, NULL, NULL Y, /* _En */
pre_ux, NULL, "DragonFly", NULL }, /* Dx */
NULL, post _percent, NULL, NULL }, /* 9Q */
NULL, NULL, NULL, NULL Yoo _uQ
pre_br NULL, NULL, NULL }, /* br */
pre_sp, post_sp, NULL, NULL }, /* sp */
NULL, post_percent, NULL NULL }, /* J */
NULL, NULL, NULL, NULL }, [* Ta */
NULL, NULL, NULL, NULL }, /* _%&J */
NULL, NULL, NULL, NULL }, /* _Ta */
NULL, NULL, NULL, NULL }, /* ROOT */

out fl ags;

(1 << 0) [/* blank character before next word */
_force (1 << 1) /* even before trailing punctuation */

*/

ud

*/

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

249
250
251
252
253
254
255
256
257

)
258 #define MVAN_PD <<) i nter-paragraph spacing di sabled */
259 #define MVAN_nbrword <<) do not break the next word */
261 #define BL_STACK MAX 32
263 static size_t Bl _stack[BL_STACK MAX]; /* offsets [chars] */
264 static int Bl “stack_post [BL_STACK_MAX]; /* add final
265 static int Bl _stack_len; /* number of nested Bl bl ocks */
266 static int TPrenmain; [/* characters before tag is full */
268 static struct
269 char *head;
270 char *tail;
271 size_t si ze;
272 } f ont queue;
274 static void
275 font_push(char newfont)
206 print_word(struct nmman *nm const char *s)
276 {
278 if (fontqueue.head + fontqueue.size <= ++fontqueue.tail) {
279 f ont queue. si ze += 8;
280 f ont queue. head = nmandoc_real | oc(font queue. head,
281 font queue. si ze) ;
282
283 *font queue. tail = newfont;
284 print_word("");
285 printf("\\f");
286 put char (newf ont);
287 outflags & ~MVAN_spc;
288 }
290 static void
291 font_pop(void)
292 {
294 if (fontqueue.tail > fontqueue head)
295 font queue. tail --
296 outflags & ~MVAN_spc;
297 print_word("");
298 printf("\\f");
299 put char (*font queue. tail);
300 }
302 static void

#defi ne MVAN_nl

#defi ne MVAN_br

#defi ne MVAN_sp

#def i ne MVAN_PP

#defi ne MMAN_Sm

#def i ne MVAN_Bk

#defi ne MVAN_Bk_susp
#define MVAN_An_spl it
#define MVAN_An_nospl it

break man(7) code line */
break output line */

insert a blank output line */
reset indentation etc. */
hori zontal spacing node */
word keep node */

suspend this (after a nacro)
aut hor node is "split" */

aut hor node is "nosplit" */

AAAAAAAAAAA
PRRRRPRRRRER R
A
N
RPREROO~NDUDWN
~——————————
* Ok ok ok ok ok ok Ok %k o F

303 print_word(const char *s)

304 {

306 if ((MVAN_PP | MVAN sp | MVAN_br | MVAN nl) & outflags) {

209 if (mm>need_nl) {

307 /*

308 * |f we need a newine, print it now and start afresh.
309 */

310 if (MMAN PP & outflags) {

311 if (MMAN_sp & outfl ags)

312 if (MMAN PD & outflags) {

RE */

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

313 printf("\n.PD");

314 outflags & ~MVAN_PD;
315 }

316 } elseif (! (MMAN_PD & outflags)) {
317 printf("\n.PD 0");

318 outflags | = MVAN_PD;

319 }

320 printf("\n.PP\n");

321 } else if (MVAN sp & outfl ags)

322 printf("\n.sp\n");

323 else if (MVAN br & outflags)

324 printf("\n.br\n");

325 else if (MMAN nl & outflags)

326 putchar(’\n");

327 out fl ags &= ~(MVAN_PP| MVAN_sp| MVAN_br | MVAN_nl | MVAN_spc) ;
328 if (1 == TPremain)

329 prlntf(" br\n");

330 TPremain = O;

33 } else if (MVAN spc & outfl ags) {

214 mm >need _space = 0;

215 mm >need_nl = 0;

216 } else if (mm>need_space & '\0’ != s[0])

332 /*

333 * |f we need a space, only print it if

334 * (1) it is forced by ‘No’ or

335 * (2) what follows is not terminating punctuation or
336 * (3) what follows is longer than one character.
218 * | f we need a space, only print it before

219 * (1) a nonzero |ength word;

220 * (2) a word that is non-punctuation; and

221 * (3) if punctuation, non-term nating puncutation.
337 */

338 if (I\/M(-\Nspcforce&outflags|| "\0" == s[0] ||
339 NULL == strchr(".,:;)]?!'", s[0]) || '"\O" !=s[1]) {
340 if (MVAN | Bk&outflags&&

341 I (MVAN_Bk_susp & outfl ags))

342 putchar ("\\");

223 if (NULL == strchr(".,:;)]?'", s[0]) || '\O" != s[1])
343 putchar(’);

344 if (TPremain)

345 TPr enai n- - ;

346 }

347 }

349 /*

350 * Reassign needing space if we're not follow ng opening
351 * punctuation.

352 *

353 if (NNANSm&outhags&&(\O == s[0] ||

354 (C("'=s[0] &&'[* '=s[0]) || '\0 1= s[1])))
355 outflags | = MVAN_spc;

356 el se

357 outflags & ~MVAN_ sp

358 outflags & ~(MVAN_spc_ force | MVAN_Bk_susp) ;

230 mm >need_space =

231 (' !'=s[0] & '[" !'=s[0]) || '\O" !=s[1];
360 for (; *s; s++)

361 switch (*s

362 case (ASCI|_NBRSP):

363 printf("\\ ");

236 printf("\\~");

364 br eak;

365 case (ASCI | _HYPH):

366 putchar(’-");

367 br eak;

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

368 case (' '):

369 if (MMAN_nbrword & outfl ags)
370 printf("\\ ");

371 br eak;

372 }

373 /* FALLTHROUGH */

374 defaul t:

375 put char ((unsi gned char)*s);
376 br eak;

377 }

378 i1 f (TPremain)

379 TPr enmi n- - ;

380 }

381 outflags & ~MVAN_nbr wor d;

382 }

384 static void

385 print_line(const char *s, int newflags)

386 {

388 outflags & ~MVAN br;
389 outflags | = MVAN_nl;
390 print_word(s);

391 outflags | = newfl ags;
392 }

394 static void
395 print_block(const char *s, int newflags)
396 {

398 outflags & ~MVAN_PP;

399 if (NNANsp&outhags) {

400 outflags & ~(MVAN_sp | MVAN br);
401 if (MVAN_ PD&outhags) {
402 print_line(".PD', 0);
403 outflags & ~MW-\N_PD:
404 }

405 } else if (! (MVAN PD&outhags))
406 print_line(".PD 0", MVAN_PD);
407 outflags | = MVAN nl ;

408 print_word(s);

409 outflags | = MMAN Bk_susp | newfl ags;
410 }

412 static void
413 print_offs(const char *v)

{

*/

414 {

415 char buf [24] ;

416 struct roffsu su;

417 size_t sz;

419 print_line(" MVAN_Bk_susp) ;

421 /* Convert v into a nunber (of characters).
422 if (NULL == v || "\0" == *v || 0 == strcnp(v,
423 sz = 0;

424 else if (0 == strcnp(v, "indent"))

425 Sz = 6;

426 else if (0 == strcrrp(v, "indent-two"))

427 sz =

428 else if (a2r ffsu(v &su, SCALE_MAX)) {
429 if (SCALE_EN == su.unit)

430 sz = su.scale;

431 el se {

432

433 * XXX

“left"))

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

434 *

435 * there is no easy way to add the t
436 * indentations because they are pro
437 * in terms of different units.

438 */

439 print_word(v);

440 outflags |= MVANnl ;

441 return;

442

443 } else

444 sz = strlen(v);

446 /*

447 * W are inside an enclosing |ist.

448 * Add the two indentations.

449 */

450 if (Bl _stack_len)

451 sz += Bl _stack[Bl _stack_len - 1];

453 snprintf(buf, sizeof(buf), "%un", sz);
454 print_word(buf);

455 outflags | = MVAN_nl ;

456 }

458 [*

459 * Set up the indentation for a list item used frompre_it(
460 */

461 void

462 print_wi dth(const char *v, const struct ndoc_node *child, si
463 {

464 char buf [24] ;

465 struct roffsu su;

466 size_t sz, chsz;

467 int numeric, remain;

469 nunmeric = 1;
470 remain = 0

472 /* Convert v into a nunmber (of characters). */
473 if (NULL == v)

474 sz = defsz;

475 else if (a2roffsu(v, &su, SCALE_MAX)) {
476 if (SCALE_EN == su.unit)

477 sz = su. scal e;

478 el se {

479 sz = 0;

480 nunmeric = 0;

481

482 } else

483 sz = strlen(v);

485 /* XXX Rough estimation, mght have rmltiple parts.
486 chsz = (NULL !'= child && MDOC_TEXT == child->type) ?
487 strlen(child->string) : O;

489 /* Maybe we are inside an enclosing list? */
490 md_it();

492 /*

493 * Save our own indentation,

494 * such that child lists can use it.
495 */

496 Bl _stack[Bl _stack_l en++] = sz + 2;

498 /* Set up the current list. */
499 if (defsz && chsz > sz)

If we are inside an enclosing |ist,

t
wo
vi ded

).

ze_t defsz)

*/

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

500 print_block(".HP", 0);

501 el se {

502 print_block(".TP", 0);

503 remain = sz + 2;

504 }

505 if (numeric) {

506 snprintf(buf, sizeof(buf), "%un", sz + 2);
507 print_word(buf);

508 } else

509 print_word(v);

510 TPrenmai n = remain;

511 }

513 void

514 print_count(int *count)

515 {

516 char buf [12];

518 snprintf(buf, sizeof(buf), "%l.", ++*count);

519 print_word(buf);

520 }

522 void

523 man_man(void *arg, const struct nman *nan)

524 {

526 /*

527 * Dunp the keep buffer.

528 * We're guaranteed by now that this exists (is non-NULL).
529 * Flush stdout afterward, just in case.

530 */

531 f put s(rrparse get keep(man_npar se(nman)), stdout);
532 fflush(stdout);

533 }

535 void

536 ?an_ndoc(voi d *arg, const struct ndoc *ndoc)

537

538 const struct ndoc_neta *neta;

264 const struct ndoc_neta *m

539 const struct ndoc_node *n;

266 struct nmman mm

541 meta = ndoc_net a(ndoc) ;

268 m = ntioc met a(mdoc) ;

542 n = ndoc_node(ndoc) ;

544 printf(". TH\"%\" \"%\" \"%\" \"9%\" \"u%\"\n",
545 neta->title, neta->nsec, neta->date,
546 net a- >0s, neta->vol);

271 printf(". TH\"%\" \"o%\" \"%\" \"os\" \"os\"",
272 m>title, m>nsec, m>date, m >o0s,
548 /* Disable hyphenation and if nroff, disable justification.
549 printf(".nhb\n.if n .ad I");

274 menmset (&mm 0, sizeof (struct mman));

551 outflags = MVAN.nl | MVAN_Sm

552 if (0 == fontqueue. size) {

553 f ont queue. si ze = 8;

554 f ont queue. head = font queue.tail = mandoc_malloc(8);
555 *font queue.tail = 'R ;

556 }

557 print_node(neta, n);

276 mm need_nl = 1;

277 print_node(m n, &m);

*/

10

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

558 putchar(’\n’);

559 }

561 static void

562 print_node(DECL_ARGS)

563 {

564 const struct ndoc_node *sub;

284 const struct ndoc_node *prev, *sub;

565 const struct manact *act;

566 int cond, do_sub;

568 /*

569 * Break the line if we were parsed subsequent the current node.
570 * This nakes the page structure be nore consistent.

571 */

572 if (MMAN spc & outflags & MDOC LI NE & n->fl ags)

573 outflags | = MVANLnI ;

292 prev = n->prev ? n->prev : n->parent;

293 I1f (prev & prev->line < n->line)

294 mm >need_nl = 1;

575 act = NULL;

576 cond = O;

577 do_sub =

579 if (I\/DOC_TEXT == n->type) {

580 [*

581 * Make sure that we don’t happen to start with a
582 * control character at the start of a line.

583 */

584 if (MVAN nl &outflags &&(== *n->string ||
305 if (mMmm>need_nl && ('.' == *n >str|ng||

585 ’ == *n->string)) {
586 print word("")'

587 printf("\\&");

588 outflags &= ~MW-\N_s GH

307 print_word(mm "\\&");

308 nm >need_space = 0;

589

590 print_word(n->string);

310 print_word(mm n->string);

591 } else {

592 /*

593 * Conditionally run the pre-node action handler for a
594 * node.

595 */

596 act = manacts + n->tok;

597 cond = NULL == act->cond || (*act->cond)(neta, n);
317 cond = NULL == act->cond || (*act->cond)(m n, mm;
598 if (cond & act->pre)

599 do_sub = (*act->pre)(neta, n);

319 do_sub = (*act->pre)(m n, mm;

600 }

602 /*

603 * Conditionally run all child nodes.

604 * Note that this iterates over children instead of using
605 */recursi on. This prevents unnecessary depth in the stack.
606 *

607 if (do_sub)

608 for (sub = n->child; sub; sub = sub->next)

609 print_node(neta, sub);

329 print_node(m sub, mm;

611 I*

612 * Lastly, conditionally run the post-node handler.

11

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢ 12
613 */
614 if (cond & act->post)
615 (*act->post) (nmeta, n);
335 (*act->post)(m n, mm;
616 }
__unchanged_portion_onitted_
352 /[*
353 * Qutput a font encoding before a node, e.g., \fR
354 * This obviously has no trailing space.
355 */
632 static int
633 pre_enc(DECL_ARGS)
634 {
635 const char *prefix;
637 prefix = rranacts[n >t ok] . prefix;
638 1 f (NULL == prefix)
639 return(1);
640 print_word(prefi x);
641 outflags & ~MVAN spc;
364 print_word(mm prefix);
365 mm >need_space = 0;
642 return(1);
643 }
369 /*
370 */Out put a font encodi ng subsequent a node, e.g., \fP.
371 *
645 static void
646 post_enc(DECL_ARGS)
647 {
648 const char *suffix;
650 suf fi x = manact s[n->tok] . suffix;
651 if (NULL == suffix)
652 return;
653 outflags & ~MVAN spc;
654 print_wor d(suffix)
380 mm >need_space = 0;
381 print_word(mm sufflx)
655 }
384 /*
385 * Used in listings (percent = %A, e.g.).
386 * FIXME: this is inconplete.
387 * It doesn't print a nice ", and" for lists.
388 */
657 static void
658 post _font (DECL_ARGS)
659 {
661 font_pop();
662 }
664 static void
665 post _per cent (DECL_ARGS)
666 {
668 if (pre_em == manacts[n->tok].pre)
669 font _pop();
670 if (n->next) {
671 print_word(",");
672 I1f (n->prev & n->prev->tok == n->tok &&
673 n- >next - >t ok == n- >t ok)
674 print_word("and");

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

675 } else {

676 print_word(".");

677 outflags |= M\/F-\N nl;

393 post _enc(m n, nmm;

394 i1f (n->next)

395 print_word(mm ",");

396 el se {

397 print_word(nm ".");

398 mm >need_nl = 1;

678 }

679 }

681 static int

682 pre__t (DECL_ARGS)

683 {

685 if (n->parent & MDOC_Rs == n->parent->tok &&
686 n- >par ent - >nor m >Rs. quote_T) {
687 print_word("");

688 putchar('\"");

689 outflags & ~MVAN_spc;

690 } else

691 font _push(’'1");

692 return(1);

693 }

695 static void

696 post__t (DECL_ARGS)

697 {

699 if (n->parent & MDOC_Rs == n->parent->tok &&
700 n- >parent >norm >Rs. quote_T) {
701 outflags & ~MVAN_spc;

702 print Word("“)'

703 putchar(’'\"");

704 } else

705 font _pop();

706 post _percent(neta, n);

707 }

709 /*

710 * Print before a section header.

711 */

712 static int

713 pre_sect (DECL_ARGS)

714 {

716 if (MDOC_HEAD == n->type) {

717 outflags | = MVAN_sp;

718 print_bl ock(rranacts[n >t ok] . prefix, 0);
719 print_word("");

720 putchar(’\"");

721 outflags & ~MVAN_spc;

722 1

409 if (MDOC_HEAD != n->type)

723 return(l);

411 rrm>need_n| = 1;

412 print_word(mm manacts[n->tok].prefix);
413 print_word(mm "\"");

414 mm >need_space = 0;

415 return(1);

724 }

726 | *

727 * Print subsequent a section header.

728 */

13

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

729
730
731

733
734
735
736
737
738
739
740
427
428
429
741

743

744 static void

745 pre_syn(const struct ndoc_node *n)

746

748 if (NULL == n->prev || ! (MDOC_SYNPRETTY & n->flags))
749 return;

751 if (n->prev->tok == n->tok &&

752 MDOC Ft != n->tok &&
753 MDOC_Fo != n->tok &&
754 MDOC Fn !'= n->tok) {
755 outflags | = MVAN br;

756 return;

757 1

759 switch (n- >prev >t ok) {

760 case (MDOC_F

761 /* FALLTHRQJGH */

762 case (MDOC_Fn):

763 /* FALLTHROUGH */

764 case (MDOC_Fo):

765 /* FALLTHROUGH */

766 case (MDOC_In):

767 /* FALLTHROUGH */

768 case (MDOC_Vt):

769 outflags | = MVAN_sp;

770 br eak;

771 case (MDOC_ Ft)

772 if (MDOC_Fn != n->tok & MDOC _Fo != n->tok)
773 outflags | = MVAN_sp;
774 br eak;

775 }

776 /* FALLTHROUGH */

777 defaul t:

778 outflags | = MVAN br;

779 br eak;

780 }

781 }

783 static int

784 pre_an(DECL_ARGS)

785 {

787 switch (n->norm >An.auth) {

788 case (AUTH split):

789 outflags & ~MVAN _An_nosplit;
790 outflags | = MVAN _An_split;
791 return(0);

static void
post _sect (DECL_ARGS)
{

if (MDOC_HEAD != n->type)
return;

outflags & ~MVAN_spc;

print word("");

putchar("\"");

outflags | = MVAN_nI;

if (MDOC_Sh == n- >t ok & SEC_AUTHORS == n- >sec)
out fl ags & ~(MVAN_An_split | MVAN_An_nosplit);

nm >need_space = O;

print_word(mm "\"");
mm >need_nl = 1;

}

/* See ndoc_termc, synopsis_pre() for comrents. */

14

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

792 case (AUTH nosplit):

793 outflags & ~MVAN An_split;

794 outflags | = MVAN_An_nosplit;

795 return(0);

796 defaul t:

797 if (MMAN An_split & outflags)

798 outflags | = MVAN br;

799 else if (SEC_AUTHORS == n->sec &&
800 ! (MMAN_An_nosplit & outflags))
801 outflags |= MVAN_An_split;
802 return(1);

803 }

804 }

806 static int

807 pre_ap(DECL_ARGS)

808 {

810 outflags & ~MVAN_spc;

811 print_word("" ");

812 outflags &= ~|VMAN_spc

436 mm >need_space = 0,

437 print_word(mm "'");

438 mm >need_space = 0;

813 return(0);

814 }

816 static int

817 pre_bd(DECL_ARGS)

818 {

820 outflags & ~(MVAN_PP | MVAN_sp | MVAN br);
822 if (DISP_unfilled == n->norm >Bd.type ||
823 DISP_literal == n->norm >Bd.type)
824 print_Iine(' .nf") ;

825 if (0 == n->norm >Bd. conp && NULL != n->parent->prev)
826 outflags | = MVAN_sp;

827 print_of fs(n->norm >Bd. of fs) ;

447 DISP literal == n- >norm>Bd.type) {
448 nm>need_n| = 1;

449 print_word(mm ".nf");

450

451 mm >need_nl = 1;

828 return(l);

829 }

831 static void

832 post _bd(DECL_ARGS)

833 {

835 /* O ose out th| s display. */

836 print_line(" MVAN_nl) ;

837 i1f (DSl Punf|||ed == n->norm >Bd. type ||
838 DISP_literal == n->norm >Bd.type)
839 print_line(".fi", MVAN nl);

841 /* Maybe we are inside an enclosing list? */
842 if (NULL != n->parent->next)

843 md_it();

844 }

846 static int

847 pre_bf (DECL_ARGS)

848 {

15

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

850 switch (n- >type) {

851 case (MDOC_BLOCK) :

852 return(1);

853 case (MDOC_BQODY):

854 br eak;

855 defaul t:

856 return(0);

460 DISP literal == n->norm >Bd.type) {
461 mm >need_nl = 1;
462 print_word(mm ".fi");
857 }

858 switch (n->norm>Bf.font) {
859 case (FONT_Em:

860 font _push(’'1");

861 br eak;

862 case (FONT_S)

863 font _push('B);

864 reak;

865 defaul t:

866 font _push('R);

867 br eak;

868 }

869 return(1l);

464 mm >need_nl = 1;

870 }

872 static void
873 post _bf (DECL_ARGS)

874 {

876 if (MDOC_BODY == n->type)
877 font _pop();

878 }

880 static int
881 pre_bk(DECL_ARGS)

882 {

884 switch (n->type) {
885 case (MDOC_BLOCK) :
886 return(l);
887 case (MDOC_BQODY):
888 outflags | = MVAN_BK;
889 return(1);
890 defaul t:

891 return(0);
892 }

893 }

895 static void
896 post _bk(DECL_ARGS)

897 {

899 i f (MDOC_BODY == n->type)
900 outflags & ~MVAN_BK;
901 }

903 static int
904 pre_bl (DECL_ARGS)

905 {

906 size_t icol;

908 /*

909 * print_offs() will increase the -offset to account for
910 * a possible enclosing .1t, but any enclosed .It bl ocks

911 * just nest and do not add up their

i ndent ati on.

16

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

912 */

913 if (n->norm>Bl.offs) {

914 print_offs(n->norm>Bl.offs);
915 Bl _stack[Bl _stack_l en++] = O;
916 }

918 switch (n->norm>Bl.type) {

919 case (LIST_enum:

920 n->norm >Bl . count = O;

921 return(1);

922 case (LIST_col um):

923 br eak;

924 defaul t:

925 return(l);

926 }

928 print_line(".TS", MVANnl);

929 for (icol =0; i col < n->norm >Bl . ncol s; icol ++)
930 print_word("l");

931 print_word(".");

932 outflags | = MMAN nl ;

933 return(1);

934 }

936 static void

937 post _bl (DECL_ARGS)

938 {

940 switch (n->norm>Bl.type) {

941 case (LIST_colum):

942 print_line(" 0);

943 break;

944 case (LIST enur'r)

945 n->norm >Bl . count = O;

946 br eak;

947 defaul t:

948 br eak;

949 }

951 if (n->norm>Bl. offs) {

952 print_line(".RE", MVAN nl);
953 assert (Bl _ stack _len);

954 Bl _stack_Ten--;

955 assert (0 == Bl _stack[Bl _stack_len]);
956 } else {

957 outflags |= MMAN.PP | MVAN nl;
958 outflags & ~(MVAN_sp | MVAN br);
959 1

961 /* Maybe we are inside an enclosing list? */
962 if (NULL != n->parent->next)

963 md_it();

965 }

967 static int

968 pre_br (DECL_ARGS)

969 {

971 outflags | = MVAN br;

471 mm >need_nl = 1;

472 print_word(mm ".br");

473 mm >need_nl = 1;

972 return(0);

973 }

17

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

ri ng);

MDOC_BODY == n->type)

975 static int

976 pre_bx(DECL_ARGS)

977 {

979 n = n->child;

980 if (n) {

981 print_word(n->string);
982 outflags & ~MVAN_spc;
483 print_word(mm n->st
484 mm >need_space = 0;
983 n = n->next;

984 }

985 print_word("BSD");

487 print_word(mm "BSD');

986 if (NOLL == n)

987 return(0);

988 outflags &= ~|VMAN | spc;

989 print_word("-

990 outflags &= ~NMAN_spc,

991 print_word(n- >str|ng);

490 mm >need_space = O;

491 print_word(mm "-");

492 mm >need_space = 0;

493 print_word(mm n->string);
992 return(0);

993 }

995 static int

996 pre_dl (DECL_ARGS)

997 {

999 print_offs(" 6n)

501 mm >need_nl 1

502 print word(rrm .RS 6n");
503 mm >need nl = 1;

1000 return(1);

1001 }

1003 static void

1004 post _dl (DECL_ARGS)

1005 {

1007 print_line(".RE'", MVAN nl);
1009 /* Maybe we are inside an enclosing list? */
1010 if (NULL != n->parent->next)
1011 md_it();

511 m >need _nl = 1;

512 print_word(mm ".RE");

513 mm >need_nl = 1;

1012 }

1014 static int

1015 pre_en(DECL_ARGS)

1016 {

1018 font _push(’'1");

1019 return(l);

1020 }

1022 static void

1023 post _eo(DECL_ARGS)

1024 {

1026 if (MDOC_HEAD == n->type ||
1027 outflags & ~MVAN_spc;

18

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

1028 }

1030 static int

1031 pre_f a(DECL_ARGS)

1032 {

1033 int am Fa;

1035 am Fa = MDOC_Fa == n->t ok;

1037 if (am_Fa)

1038 n = n->child;

1040 while (NULL !'= n) {

1041 font _push('1");

1042 if (amFa || MDOC_SYNPRETTY & n->flags)
1043 outflags | = MVAN_nbrword;
1044 print_node(neta, n);

1045 font _pop()

1046 if (NULL '= (n = n->next))
1047 print_word(",");
1048 }

1049 return(0);

1050 }

1052 static void

1053 post _f a(DECL_ARGS)

1054 {

1056 if (NULL != n->next && MDOC_Fa == n->next->t ok)
1057 print_word(",");

1058 }

1060 static int

1061 pre_f d(DECL_ARGS)

1062 {

1064 pre_syn(n);

1065 font_push(’B);

1066 return(1);

1067 }

1069 static void

1070 post _f d(DECL_ARGS)

1071 {

1073 font_pop();

1074 outflags |= MVAN br;

1075 }

1077 static int

1078 pre_f| (DECL_ARGS)

1079 {

1081 font _push('B");

1082 print_word("\\-");

1083 outflags & ~MVAN_spc;

1084 return(1);

1085 }

1087 static void

1088 post _f| (DECL_ARGS)

1089 {

1091 font _pop();

1092 if (0 == n->nchild & NULL != n->next &&
1093 n->next->line == n->line)

19

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

1094 outflags & ~MVAN_spc;
1095 }

1097 static int
1098 pre_f n(DECL_ARGS)

MVAN_nl) ;

1099 {

1101 pre_syn(n);

1103 n = n->chil d;

1104 if (NULL == n)

1105 return(0);

1107 i f (MDOC_SYNPRETTY & n->fl ags)
1108 print_bl ock(".HP 4n", MVAN_nl);
1110 font_push(’'B);

1111 print_node(neta, n);

1112 font _pop();

1113 out fTags & ~MVAN | spc;

1114 print_word("(");

1115 outflags & ~MVAN_spc;

1117 n = n->next;

1118 if (NULL !'= n)

1119 pre_fa(meta, n);

1120 return(0);

1121 }

1123 static void

1124 post _f n(DECL_ARGS)

1125 {

1127 print_word(")");

1128 1 f (MDOC_. SYNPRETTY & n- >f lags) {
1129 print_word("

1130 outflags | = MVAN PP;
1131 }

1132 }

1134 static int

1135 pre_f o(DECL_ARGS)

1136 {

1138 switch (n->type) {

1139 case (MDOC_BLOCK) :

1140 pre_syn(n);

1141 br eak;

1142 case (MDOC_ HEAD)

1143 if (MDOC_SYNPRETTY & n->fl ags)
1144 print_bl ock(".HP 4n"
1145 font_push(’B);

1146 br eak;

1147 case (MDOC_BQODY):

1148 outflags & ~MVAN_spc;
1149 print_word("(");

1150 outflags & ~MVAN_spc;
1151 br eak;

1152 defaul t:

1153 br eak;

1154 1

1155 return(1);

1156 }

1158 static void
1159 post _f o(DECL_ARGS)

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

1160 {

1162 switch (n->type) {
1163 case (MDOC_HEAD) :
1164 font pop();
1165 reak

1166 case (I\/DOC BCDY)
1167 post _fn(neta, n);
1168 br eak;

1169 defaul t:

1170 br eak;

1171 }

1172 }

1174 static int
1175 pre_ft (DECL_ARGS)

1176 {

1178 pre_syn(n);
1179 font_push('1");
1180 return(1);
1181 }

1183 static int
1184 pre_i n(DECL_ARGS)

1185 {

1187 i f (MDOC_SYNPRETTY & n->flags) {
1188 pre_syn(n);

1189 font _push(’ B’)'

1190 print_word("# nclude <");
1191 outflags & ~MVAN_spc;
1192 } else {

1193 print_word("<");

1194 outflags & ~MVAN_spc;
1195 font _push(’'1");

1196 }

1197 return(1);

1198 }

1200 static void
1201 post _i n(DECL_ARGS)

1202 {

1204 i f (MDOC_SYNPRETTY & n->flags) {
1205 outflags & ~MVAN_spc;
1206 print_word(">");

1207 font _pop();

1208 outflags | = MVAN br;
1209 } else {

1210 font _pop();

1211 outflags & ~MVAN_spc;
1212 print_word(">");

1213 }

1214 }

1216 static int
1217 pre_it(DECL_ARGS)

1218 {

1219 const struct ndoc_node *bl n;

1221 switch (n->type) {

1222 case (MDOC_HEAD) :

1223 outflags | = MVAN_PP | MVAN nl ;
1224 bl n = n->parent->parent;

1225 if (0 == bln->norm >Bl.conp ||

21

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

6);

0);

1226 (NULL == n->parent->prev &%
1227 NULL == bl n- >parent->prev))
1228 out fl ags |— NNAN_sp;
1229 outflags & ~MVAN_b
521 if (MDOC_HEAD == n- >type) {
522 mn>need nl = 1,
523 print_word(mn TP
524 bl n = n->parent - >parent - >prev;
1230 switch (bl n->norm>Bl.type) {
1231 case (LIST_ item:
1232 return(0);
1233 case (LIST_ inset):
1234 /* FALLTHROUGH */
1235 case (LIST_diag):
1236 /* FALLTHROUGH */
1237 case (LI ST __ohang):
1238 f (bl n->norm >Bl . type == LI ST di ag)
1239 print_line("
1240 el se
1241 print_line(".R\"", 0);
1242 outflags & ~MVAN_spc;
1243 return(l);
1244 case (LIST bullet):
1245 /* FALLTHROUGH */
1246 case (LI ST_dash):
1247 /* FALLTHROUGH */
1248 case (LI ST_hyphen):
1249 print_w dt h(bI n->norm >Bl . wi dth, NULL, 0);
1250 TPremain = O;
1251 outfl ags |— MVAN_nl ;
1252 font _push(’'B");
1253 if (LIST_bullet == bln->norm>Bl.type)
1254 print_word("o");
1255 el se
1256 print_word("-");
1257 font _pop();
527 print Word(mm "4n");
528 mm >need_nl = 1;
529 print_word(mm “\\fBo\\fP");
1258 break;
1259 case (LIST_enum:
1260 print_w dth(bl n->norm >Bl . width, NULL, 0);
1261 TPremain = 0;
1262 outflags | = MVAN Nl ;
1263 print_count (&bl n- >nor m >Bl . count);
1264 br eak;
1265 case (LIST hang)
1266 print_w dt h(bI n->norm >Bl . wi dth, n->child,
1267 TPremain = 0;
1268 br eak;
1269 case (LIST_t ag) :
1270 print_w dth(bl n->norm >Bl . w dth, n->child,
1271 putchar(’\n");
1272 outflags & ~MVAN_spc;
1273 return(l);
1274 defaul t:
1275 return(l);
1276 }
1277 outflags | = MMANLnI ;
1278 defaul t:
532 if (bln->norm>Bl.w dth)
533 print_word(mm bl n->norm >Bl.w dth);
1279 br eak;
1280 }
1281 return(1);
1282 }

22

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

1284 /*
1285 * This function is called after closing out an indented bl ock.
1286 * If we are inside an enclosing list, restore its indentation.
1287 */
1288 static void
1289 mid_it(void)
1290 {
1291 char buf [24] ;
1293 /* Nothing to do outside a list. */
1294 if (0 == Bl _stack_len || == Bl _stack[Bl _stack_len - 1])
1295 return;
1297 /* The indentation has already been set up. */
1298 if (Bl _stack_post[Bl _stack_len - 1])
1299 return;
1301 /* Restore the indentation of the enclosing list. */
1302 print_line(".RS", MVAN Bk_susp)
1303 snprintf(buf, sizeof(buf), "%un", Bl _stack[Bl _stack_len - 1]);
1304 print_word(buf);
1306 /* Reneber to close out this .RS block later. */
1307 Bl _stack_post[Bl _stack_len - 1] = 1;
1308 }
1310 static void
1311 post _it (DECL_ARGS)
1312 {
1313 const struct ndoc_node *bl n;
1315 bl n = n->parent->parent;
1317 switch (n->type) {
1318 case (MDOC_HEAD) :
1319 switch (bl n->norm>Bl.type) {
1320 case (LI ST_diag):
1321 outfl ags & ~MVAN_spc;
1322 print_word("\\ ");
1323 reak;
1324 case (LI ST_ohang):
1325 outflags | = MVAN br;
1326 break;
1327 defaul t:
1328 br eak;
536 mm >need_nl = 1;
1329
1330 br eak;
1331 case (MDOC_BQODY):
1332 switch (bl n->norm>Bl.type) {
1333 case (LIST bullet):
1334 /* FALLTHROUGH */
1335 case (LI ST_dash):
1336 /* FALLTHROUGH */
1337 case (LI ST_hyphen):
1338 /* FALLTHROUGH */
1339 case (LI ST_enun):
1340 /* FALLTHROUGH */
1341 case (LIST_hang):
1342 /* FALLTHROUGH */
1343 case (LIST_tag):
1344 assert (Bl _stack_l en);
1345 Bl _stack[--Bl _stack_len] = 0;
1347 /*

23

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370

1372
1373

* Qur indentation had to be restored

* after a child display or child Iist.
* Close out that indentation block now.
*

/
if (Bl _stack_post[Bl _stack_len]) {
print_line(".RE', MVAN nl);
Bl _stack_post[Bl _stack_l en] = 0;

}
br eak;
case (LIST_colum):
if (NULL != n->next) {
putchar('\t’);
outflags & ~MVAN spc;

break;
defaul t:
br eak;

br eak;

defaul t:
br eak;
}

}

static void
post _| b(DECL_ARGS)

1374 {

1376
1377
1378

1380
1381

if (SEC_LIBRARY == n->sec)
outflags | = MVAN br;
}

static int
pre_| k(DECL_ARGS)

1382 {

1383

1385
1386

1388
1389
1390
1391
1392
1393
1394
1395
1396

1398
1399
1400
1401
1402

1404
1405

const struct ndoc_node *link, *descr;

if (NULL == (link = n->child))
return(0);

if (NULL != (descr = link->next)) {
font_push(’'1");
while (NULL != descr)
print_word(descr->string);
descr = descr->next;

Eori nt_word(":");
) font _pop();

font_push(’'B);
print_word(link->string);
font_pop();

return(0);

}

static int
pre_| i (DECL_ARGS)

1406 {

1408
1409
1410

1412
1413

font _push('R);
return(1);

}

static int
pr e_nn(DECL_ARGS)

24

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢ 25

1414 {
1415

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
547
548
1434
1435
550
1436
1437 }

char *nane;

if (MDOC_BLOCK == n- >type) {
outflags | = MVAN_B
pre_syn(n);

}
if (MDOC_ELEM!= n->type & MDOC_HEAD != n->type)
return(1);
name = n->child ? n->child->string : neta->nang;
if (NULL == nane)
return(O)
if (MDOC_HEAD == n- >type)
if (NULL == n->parent->prev)
outflags | = MVAN_sp;
print_block(".HP", 0);
printf(" 9%un", strlen(nanme) + 1);
outflags | = MVAN nl ;

}

font_push(’'B);

print_word(mm "\\fB");

mm >need_space = 0;

if (NULL == n- >ch|Id)
print_wor d(et a- >nane) ;
print_word(mm m >nane);

return(1);

1439 static void

1440 post

1441 {

1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
558
559
560
561
1455 }

_nin(DECL_ARGS)

switch (n >type) {
case (MDOC_BLOCK) :
outflags & ~MVAN Bk;
br eak;
case (MDOC_ HEAD)
/* FALLTHROUGH */
case (MDOC_ELEM :
font _pop();
br eak;
defaul t:
br eak;

}

if (MDOC_ELEM != n->type & MDOC_HEAD != n->type)
return;

mm >need_space = O;

print_word(mm "\\fP");

1457 static int
1458 pre_no(DECL_ARGS)

1459 {

1461
1462
1463 }

outflags | = MMAN spc_force;
return(1);

1465 static int
1466 pre_ns(DECL_ARGS)

1467 {

1469
568
1470
1471 }

outflags & ~MVAN spc;
mm >need_space = 0;
return(0);

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢

1473 static void

1474 post
1475 {

1477
576
1478 }

_ pf (DECL_ARGS)

outflags & ~MVAN_spc;

mm >need_space

1480 static int
1481 pre_pp(DECL_ARGS)

1482 {

1484
1485
1486
1487
1488
1489 }

= 0;

if (MDOC_It != n->parent->tok)
outflags | = MVAN_PP;

outflags | = MMAN sp |

outflags & ~MVAN br;

return(0);

1491 static int
1492 pre_rs(DECL_ARGS)

1493 {

1495
1496
1497
1498
583
584
585
586
587
588
1499
1500 }

MVAN_nl ;

if (SEC_SEE_ALSO == n->sec)

{
outflags |= MVAN PP|

outflags & ~MVAN_br

mm >need_nl = 1;
n- >par ent - >t ok)
print_word(mm

if (MDOCIt ==

el se

print _word(nmm
1;

mm >need_nl =
return(1);

1502 static int
1503 pre_sn(DECL_ARGS)

1504 {

1506
1507
1508
1509
1510
1511
1512 }

MVAN sp | MVAN_nI ;

"osp)

PP");

assert(n->child & MDOC_TEXT

if (0 == strcnp

outfl ag
el se

outfl ag
return(0);

1514 static int
1515 pre_sp(DECL_ARGS)

1516 {

1518
1519
1520
1521
1522
596
597
1523
1524 }

if (MMAN_PP & outflags) {

("on",

== n->chil d->type);

n->chil d->string))
S | = MVAN_Sm |

s & ~MMVAN_Sm

outflags & ~MVAN_PP;

print_lI
} else

ine("

. PP,

print_line(".sp'
mm >need_nl = 1;
TSt

print_word(mm
return(1l);

1526 static void

1527 post
1528 {

_sp(DECL_ARGS)

T0);
0)

MVAN_spc

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢ 27

1530 outflags | = MVAN_ NI ;
605 mm >need_nl = 1,
1531 }

1533 static int
1534 pre_sy(DECL_ARGS)

1535 {

1537 font _push(’'B');
1538 return(1l)

1539 }

1541 static int
1542 pre_vt (DECL_ARGS)

1543 {

1545 i f (MDOC_SYNPRETTY & n->flags) {
1546 switch (n->type) {
1547 case (MDOC_BLOCK) :
1548 pre_syn(n);
1549 return(1l);
1550 case (MDOC_BODY):
1551 br eak;

1552 defaul t:

1553 return(0);
1554 }

A555] }

1556 font_push(’1");

1557 return(1);

1558 }

1560 static void
1561 post _vt (DECL_ARGS)

1562 {

1564 if (MDOC_SYNPRETTY & n->flags & & MDOC_BODY ! = n->type)
1565 return

1566 font _pop();

1567 }

1569 static int
1570 pre_xr (DECL_ARGS)

1571 {

1573 n = n->child

1574 if (NULL == n)

1575 return(0)
1576 print_node(neta, n)
615 print_node(m n, m;
1577 n = n->next;

1578 if (NULL == n)

1579 return(0)
1580 outflags & ~MVAN spc
1581 print_word("(");

1582 print_node(neta, n)
1583 print_word(")");

619 mm >need_space = 0
620 print_word(mm "(");
621 print_node(m n, mm;
622 print_word(mm ")");
1584 return(0);

1585 }

1587 static int
1588 pre_ux(DECL_ARGS)

new usr/ src/ cnd/ mandoc/ ndoc_nan. ¢ 28
1589 {

1591 print_word(manact s[n->t ok] . prefix);
630 print_word(mm nanacts[n->tok].prefix)
1592 iIf (NULL == n->child)

1593 return(0)

1594 outflags & ~MVAN_spc

1595 print_word("\\ ");

1596 outflags & ~MVAN_spc

633 mm >need_space = 0

634 print_word(mm "\\~")

635 mm >need_space = 0

1597 return(l);

1598 }

____unchanged_portion_onitted_

new usr/ src/ cnd/ mandoc/ ndoc_termc

R R R R

45416 Wed Jul 30 20:55:10 2014
new usr/ src/ cnd/ mandoc/ ndoc_term c
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: ndoc_termc,v 1.258 2013/12/25 21:24:12 schwarze Exp $ */

1/* $Id: ndoc_termc,v 1.238 2011/11/13 13:15:14 schwarze Exp $ */

2 /*

3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
4 * Copyright (c) 2010, 2012, 2013 Ingo Schwarze <schwarze@penbsd. org>

5 * Copyright (c) 2013 Franco Fichtner <franco@ astsummer.de>

4 * Copyright (c) 2010 Ingo Schwarze <schwarze@penbsd. or g>

6 *

7 * Permssion to use, copy, nodify, and distribute this software for any

8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this perm ssion notice appear in all copies.

10 *

11 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
12 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

13 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
14 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
15 * WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN

16 * ACTION OF CONTRACT, NEGLI GENCE OR OTHER TORTI OQUS ACTI QN, ARI SING OQUT OF

17 * OR I N CONNECTION WTH THE USE OR PERFORMANCE OF THI' S SOFTWARE.
18 */

19 #ifdef HAVE _CONFI G H

20 #include "config.h"

21 #endif

23 #include <sys/types. h>

25 #include <assert.h>
26 #include <ctype. h>
27 #include <stdint.h>
28 #include <stdio. h>
29 #include <stdlib.h>
30 #include <string. h>

32 #include "nmandoc. h"
33 #include "out.h"

34 #include "termh"
35 #include "ndoc. h"
36 #include "nmin.h"

38 struct ternpair {

39 struct ternpair *ppair;

40 int count;

41 };

43 #define DECL_ARGS struct ternp *p, \

44 struct ternpair *pair, \

45 const struct ndoc_neta *neta, \

46 struct ndoc_node *n

44 const struct ndoc_neta *m \

45 const struct ndoc_node *n

48 struct termact {

49 int *pre) (DECL_ARCS) ;

50 voi d (*post) (DECL_ARGS) ;

51 };

53 static size_t a2w dth(const struct ternp *, const char *);
54 static size_t a2hei ght (const struct ternp *, const char *);

55 static size_t a2of fs(const struct ternp *, const char *);

new usr/ src/ cnd/ mandoc/ ndoc_termc

57 static void print_bvspace(struct ternp *
58 const struct ndoc_node *,
59 const struct ndoc_node *);
60 static void print_ndoc_node(DECL _ARGS);
61 static void print “mdoc_nodel i st (DECL ARGS)
62 static void print “mdoc_head(struct ternp *
63 static void print_ndoc_foot (struct ternp *
64 static void synopsi s_pre(struct ternp *,
65 const struct ndoc_node *);
67 static void ternp___ post (DECL_ARGS);
68 static void ternp__t_post (DECL_ARGS);
69 static void t er np_an_post (DECL_ARGS) ;
70 static void ter np_bd_post (DECL_ARGS) ;
71 static void t er np_bk_post (DECL_ARGS) ;
72 static void ternp_bl _post (DECL_ARGS) ;
73 static void ternp_fd_post (DECL_ARGS) ;
72 static void ternp_dl_post (DECL_ARGS) ;
74 static void ternp_f o_post (DECL_ARGS) ;
75 static void ternp_i n_post (DECL_ARGS) ;
76 static void ternp_it_post (DECL_ARGS);
77 static void ternp_| b_post (DECL_ARGS) ;
78 static void t er np_nm post (DECL_ARGS) ;
79 static void t er np_pf _post (DECL_ARGS) ;
80 static void ter np_quot e_post (DECL_ARGS) ;
81 static void ternp_sh_post (DECL_ARGS) ;
82 static void ternp_ss_post (DECL_ARGS) ;
84 static int ternp__a_pre(DECL_ARGS);
85 static int ternp__t_pre(DECL_ARGS);
86 static int ternp_an_pre(DECL_ARGS) ;
87 static int ternp_ap_pre(DECL_ARGS) ;
88 static int ter np_bd_pre(DECL_ARGS) ;
89 static int ternp_bf _pre(DECL_ARGS) ;
90 static int ternp_bk_pre(DECL_ARGS) ;
91 static int ternp_bl _pre(DECL_ARGS);
92 static int ternp_bol d_pr e(DECL_ARGS) ;
93 static int ternp_bt _pre(DECL_ARGS) ;
94 static int ternp_bx_pre(DECL_ARGS) ;
95 static int ternp_cd_pre(DECL_ARGS) ;
96 static int ternp_dl_pre(DECL_ARGS);
97 static int ternp_ex_pre(DECL_ARGS) ;
98 static int ternp_fa_pre(DECL_ARGS);
99 static int ternp_fd_pre(DECL_ARGS);
100 static int ternp_fl _pre(DECL_ARGS);
101 static int ternp_fn_pre(DECL_ARGS) ;
102 static int ternp_fo_pre(DECL_ARGS);
103 static int ternp_ft_pre(DECL_ARGS);
103 static int ternp_i gndel i m pre(DECL_ARGS) ;
104 static int ternp_i n_pre(DECL_ARGS);
105 static int ternp_it_pre(DECL_ARGS);
106 static int ternp_li_pre(DECL_ARGS);
107 static int ternp_| k_pre(DECL_ARGS) ;
108 static int ter np_nd_pr e(DECL_ARGS) ;
109 static int ternp_nm pre(DECL_ARGS) ;
110 static int ternp_ns_pre(DECL_ARGS) ;
111 static int ternp_quot e_pr e(DECL ARGS)
112 static int ternp_rs_pre(DECL_ARGS);
113 static int ternp_rv_pre(DECL_ARGS);
114 static int ternp_sh_pre(DECL_ARGS) ;
115 static int ternp_sm pre(DECL_ARGS) ;
116 static int ternp_sp_pre(DECL_ARGS) ;
117 static int ternp_ss_pre(DECL_ARGS) ;
118 static int t er np_under _pr e(DECL ARCB)
119 static int ternp_ud_pre(DECL_ARGS) ;

const void *);
const void *);

new usr/ src/ cnd/ mandoc/ ndoc_termc 3 new usr/ src/ cnd/ mandoc/ ndoc_termc
120 static int ternp_vt_pre(DECL_ARGS); 183 ternp_quote_pre, ternp_quote_post }, /* Bo */
121 static int ternp_xr_pre(DECL_ARGS) ; 184 ternp_quote_pre, ternp_quote_post }, /* Bq */
122 static int t er np_xx_pr e(DECL_ARGS) ; 185 termp_xx_pre, NULL }, /* Bsx */
186 ternp_bx_pre, NULL }, /* Bx */
124 static const struct termact termacts[MDOC_MAX] = { 187 NULL, NULL }, /* Db */
125 ternp_ap_pre, NULL }, /* Ap */ 188 NULL, NULL }, /* Dc */
126 NULL, NULL }, /* Dd */ 189 ternp_quote_pre, ternp_quote_post }, /* Do */
127 NULL, NULL }, /* Dt */ 190 ternp_quote_pre, ternp_quote_post }, /* Dg */
128 NULL, NULL }, /* Cs */ 191 NULL, NULL }, /* Ec */ [/* FIXME: no space */
129 ternp_sh_pre, ternp_sh_post }, /* Sh */ 192 NULL, NULL }, /* Ef */
130 ternp_ss_pre, ternp_ss_post }, /* Ss */ 193 ternp_under _pre, NULL }, /* Em*/
131 ternp_sp_pre, NULL }, /* Pp */ 194 ternp_quote_pre, ternp_ quote post }, /* Eo */
132 ternp_dl_pre, ternp_bl_post }, /* D1 */ 195 ternp_xx_pre, NULL }, /* Fx */
133 ternp_dl_pre, ternp_bl _post }, /* D */ 196 ternp_bold_pre, NULL }, /* M */
132 ternp_dl_pre, ternp_dl post }, /* DL */ 197 NULL, NULL }, /* No */
133 ternp_dl_pre, ternp_dl _post }, /* D */ 197 ternp_i gndel i m pre, UI_L }, /I* No */
134 ternp_bd_pre, ternp_bd_post }, /* Bd */ 198 ternp_ns_pre, NULL }, /* Ns */
135 NULL, "NULL }, /* Ed™*/ 199 ternp_xx_pre, NULL }, /* Nx */
136 ternp_bl _pre, ternp_bl _post 200 ternmp_xx_pre, NULL }, /* Ox */
137 NULL, NULL }, /* El */ 201 NULL, NULL }, /* Pc */
138 ternp_it_pre, ternp_it_post /* 202 NULL, ternp_pf_post }, /* Pf */
139 ternp_under _pre, NULL }, /* */ 202 ternp_igndel i mpre, ternp_pf_post }, /* Pf
140 ternp_an_pre, ternp_an_post I* 203 ternp_quote_pre, ternp_quote_post }, /* Po
141 ternp_under _pre, NULL }, /* Ar */ 204 ternp_quote_pre, ternp_quote_post }, /* Pq */
142 termp_cd_pre, NULL }, /* Cd 205 NULL, NULL }, /* Q */
143 ternp_bold_pre, NULL }, /* 206 ternp_quote_pre, ternp_quote_post }, /* Q */
144 NULL, NULL }, /* Dv */ 207 ternp_quote_pre, ternp_quote_post }, /* Qo */
145 NULL, NULL }, /* Er */ 208 ternp_quote_pre, ternp_quote_post }, /* Q */
146 NULL, NULL }, /* Ev */ 209 NULL, NULL }, /* Re */
147 ternp_ex_pre, NULL }, /* Ex */ 210 ternp_rs_pre, NULL }, /* Rs */
148 ternp fa pre, NULL }, /* Fa */ 211 NULL, "NULL }, /* Sc’*/
149 ternp_fd_pre, ternp_fd_post }, /* Fd */ 212 ternp_quote_pre, ternp_quote_post }, /* So */
149 ternp_fd_pre, NULL }, /* Fd */ 213 t er np_quot e_pre ternp_ quote post }, /* Sq */
150 ternp_fl_pre, NULL }, /* Fl */ 214 ternp_smpre, NULL }, /* Sm*/
151 ternmp_fn_pre, NULL }, /* Fn */ 215 ternp_under _pre, NULL }, /* Sx */
152 ternp_ft_pre, NULL }, /* Ft */ 216 ternp_bol d_pre, NULL} /* Sy */
153 ternp_bold_pre, NULL }, /* Ilc */ 217 NULL, NULL }, /* Tn
154 ternp_in_pre, ternp_in_post }, /* In */ 218 ternp_xx_pre, NULL }, /* Ux */
155 ternp_li_pre, NULL }, 7* Li */ 219 NULL, "NULL }, /* Xc */
156 ternp_nd_pre, NULL }, /* Nd */ 220 NULL, NULL }, /* Xo */
157 ternmp_nmpre, ternp_nmpost }, /* Nm*/ 221 ternp_fo_pre, ternp_fo_post }, /* Fo */
158 ternp_quote_pre, ternp_quote_post }, /* Op */ 222 NULL, NULL }, /* Fc */
159 NULL, NULL }, /* O */ 223 ternp_quote_pre, ternp_quote_post }, /¥ Co */
160 ternp_under _pre, NULL }, /* Pa */ 224 NULL, NULL }, /* Cc
161 ternp_rv_pre, NULL }, /* */ 225 ternp_bk_pre, ternp_ bk _post }, /* Bk */
162 NULL, "NUCL }, /* St */ 226 NULL, NULL }, /* Ek */
163 ternp_under _pre, NULL }, /* 227 ternp_bt _pre, NULL }, /* Bt */
164 ternp_vt_pre, NULL }, /* W 228 NULL, "NULL }, /* Hf */
165 ternp_xr_pre, NULL }, /* Xr 229 NULL, NULL }, /* Fr */
166 ternp__a_pre, ternp____post }, 230 ternp_ud_pre, NULL }, /* Ud */
167 ternp_under _pre, ternp___ post }, 231 NULL, ternp_lb_post }, /* Lb */
168 NULL, ternmp___ post }, /* 9% */ 232 ternp_sp_pre, NULL }, /* Lp */
169 ternp_under _pre, ternp___ post }, 233 ternmp_l k_pre, NULL }, /* Lk */
170 ternp_under _pre, ternp___ post }, 234 ternp_under _pre, NULL }, /* M */
171 NULL, ternp___ post }, /* ON */ 235 ternp_quote_pre, ternp_quote_post }, /* Brq */
172 NULL, ternmp___ post }, /* %O */ 236 ternp_quote_pre, ternp_quote_post }, /* Bro */
173 NULL, ternp___ _post }, /* %@ */ 237 NULL, "NULL }, /* Brc *7
174 NULL, ternp___ post }, /* OR */ 238 NULL, ternp___ post }, /* %C */
175 ternp__t_pre, ternp__t_post }, 239 NULL, NULL }, /* Es */ /* TODO */
176 NULL, ternp___ post }, /* %/ */ 240 NULL, NULL }, /* En */ [* TODO */
177 NULL, NULL F, 7* Ac */ 241 ternp_xx_pre, NULL }, /* Dx */
178 ternp_quote_pre, ternp_quote_post 242 NULL, ternmp___ post }, /* 9%Q */
179 ternp_quote_pre, ternp_quote_post * 243 ternp_sp_pre, NULL }, /* br */
180 NULL, NULL }, /* At */ 244 ternp_sp_pre, NULL }, /* sp */
181 NULL, NULL }, /* Bc */ 245 NULL, “ternp post }, /* %J */
182 ternp_bf _pre, NULL }, /* Bf */ 245 ternp_under _pre, ternp post }, /* %) */

new usr/ src/ cnd/ mandoc/ ndoc_termc

print_ndoc_foot, neta);

print _ndoc_f oot,

NULL, neta, n->child);
NULL, m n->child);

n);

pair, nmeta, n->next);
pair, m n->next);

n;

246 { NULL, NULL }, /* Ta */

247 };

250 void

251 term nal _ndoc(void *arg, const struct ndoc *ndoc)
252 {

253 const struct ndoc_node *n;
254 const struct ndoc_neta *neta;
254 const struct ndoc_neta *m
255 struct ternp *p;
257 p = (struct ternp *)arg;

259 if (0 == p->defindent)

260 p- >defi ndent = 5;

262 p- >overstep = O;

263 p- >maxrmar gi n = p->defrmargin;
264 p->tabwidth = termlen(p, 5);
266 if (NULL == p->syntab)

267 p->syntab = nthars_all oc();
269 n = ndoc_node(ndoc) ;

270 nmeta = ndoc_net a(ndoc) ;

270 m = ndoc_net a(ndoc) ;

272 term begi n(p, print_ndoc_head,
272 term begi n(p, print_ndoc_head,
274 if (n->child)

275 print_ndoc_nodel i st (p,
275 print _ndoc_nodel i st (p,
277 termend(p);

278 }

281 static void

282 print_ndoc_nodel i st (DECL_ARGS)

283 {

285 print_ndoc_node(p, pair, neta,
285 print_ndoc_node(p, pair, m n);
286 1f (n->next)

287 pri nt _nmdoc_nodel i st (p,
287 print_ndoc_nodel i st(p,
288 }

291 /* ARGSUSED */

292 static void

293 print_ndoc_node(DECL_ARGS)

294 {

295 int chl d;

296 const void *font;

296 struct ternpair npair;

297 size_t of fset, rmargi
299 chld = 1;

300 of fset = p->offset;

301 rmargin = p->rnargin;

302 n->prev_font = termfontq(p);
303 font —termfontq(p),

new usr/ src/ cnd/ mandoc/ ndoc_termc

304
305

307
308
309
311
312
313
310

312
313
314
316
317
315
316
320
321
322
323
317
318
326

320
329
330
331

333
334
335
336

338
321
322
323

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
362
345
346

348

nenset (&pair, 0, sizeof(struct ternpair));
npair.ppalr = pair;

/

invoked in a prior line, revert it to PREKEEP.

ina ‘Bk’ block.
/

EE

i f (TERVMP_KEEP & p->flags) {
if (n->prev ? (n->prev->lastline != n->line)
(n->parent && n->parent->line != n->line)) {

if (TERW_KEEP & p->flags || MDOC_SYNPRETTY & n->flags) {

if (n->prev & n->prev->line != n->line) {
p->flags & ~TERMP_KEEP;
p->fl ags | = TERVP_PREKEEP;

} else if (NULL == n->prev) {

if (n->parent &% n->parent->line != n->line) {

p->fl ags & ~TERMP_KEEP;
p->flags | = TERWP_PREKEEP;

*

~ oo

* Since SYNPRETTY sections aren’t "turned off" with ‘Ek’,

* we have to intuit whether we should disable formatting.
*/

if (! (MDOC_SYNPRETTY & n->flags) &&
((n->prev && MDOC_SYNPRETTY & n->prev->flags) ||
(n->parent &% MDOC_SYNPRETTY & n->parent->flags)))
p->flags & ~(TERWMP_KEEP | TERMP_PREKEEP);

*

* After the keep flags have been set up, we nmay now
* produce output. Note that sonme pre-handlers do so.
*/

switch (n->type) {
case (IVDOC_TEXT):
if (' ==*n->string & MDOC_LI NE & n->fl ags)
term newl n(p);
if (MDOC_DELIMC & n- >f|ags)
p->flags | = TERMP_NOSPACE;
termword(p, n->string);
if (MDOC_DELIMO & n- >f|ags)
p->flags | = TERMP_NOSPACE;
br eak;
case (MDOC_ EQ\I)
termeqn(p, n->eqn);
br eak;
case (MDOC_ TBL)
termtbl (p, n->span);

br eak;
defaul t:
if (termacts[n >t ok] . pre & & ENDBCDY_NOT == n->end)
chld = (*termacts[n->tok].pre)
(p, &pair, neta, n);
(p, &npair, m nj;
br eak;
}

if (chld & n->child)

Keeps only work until the end of a line. If a keep was

Al so | et SYNPRETTY sections behave as if they were w apped

new usr/ src/ cnd/ mandoc/ ndoc_termc

349
367

351
352
369

354
355
356
357
358
359
360
361
362
363
364
381

366
367
368
369
370
371
372

374
375
376
377
378
379
380
381
382

384
385

387
388
389

392
393

395
412

397
414

399

401
402
403
404
405
406
407

409

print_ndoc_nodel i st(p, &npair, neta, n->child);
print_ndoc_nodelist(p, &pair, m n->child);

term font popq(p,
ENDBODY_NOT == n->end ? n : n->pending)->prev_font);
term font popg(p, font);

switch (n- >type) {
case (MDOC_TEXT):
br eak;
case (I\/DOC_TBL):
br eak;
case (MDOC_EQN)
br eak;
defaul t:
if (! tgr maﬁts[n- >t ok] . post || MDOC_ENDED & n->fl ags)
rea
(void) (*termacts[n->tok].post)(p, &pair, neta, n);
(void)(*termacts[n->tok].post)(p, &pair, m n);

/*

* Explicit end tokens not only call the post

* handl er, but also tell the respective bl ock
* that it nust not call the post handl er again.
*

if (ENDBODY_NOT != n->end)
n- >pendi ng- >f | ags | = MDOC_ENDED;

End of line termnating an inplicit block
while an explicit block is still open.
Continue the explicit block w thout spacing.

* ok ok k%
-

i f (ENDBODY_NOSPACE == n->end)
p->fl ags | = TERMP_NGOSPACE;
br eak;

}

if (MDOC_ECS & n->flags)
p->flags | = TERVP_SENTENCE;

p->of fset = of fset;
p->rmargin = rmargin;

static void
print_ndoc_foot(struct ternp *p, const void *arg)

const struct ndoc_meta *neta;
const struct ndoc_nmeta *m

meta = (const struct ndoc_neta *)arg;
m = (const struct ndoc_neta *)arg;

termfontrepl (p, TERVFONT_NONE);
/

with the niddle being the manual date and flanki ng col utms
bei ng the operating system

SYSTEM DATE SYSTEM
/

T S

termvspace(p);

Qutput the footer in newgroff style, that is, three colums

new usr/ src/ cnd/ mandoc/ ndoc_termc

411 p->of fset = 0;

412 p->rmargin = (p->maxrmargin -

413 termstrlien(p, neta->date) + termlen(p, 1)) / 2;
414 p->trail space = 1;

430 termstrlen(p, m >date) +term|en(p, 1)) I 2;
415 p->flags | = TERVP_NOSPACE | TERVP_NOBREAK

417 termword(p, neta->o0s);

433 termword(p, m >o0s);

418 term flushln(p);

420 p->of f set = p->rmargin;

421 p->rmargin = p->maxrmargin - termstrlen(p, neta->os);
437 p->rmargin = p->maxrmargin - termstrlen(p, m>o0s);
422 p->fl ags | = TERWP_NCSPACE;

424 termword(p, neta->date);

440 termword(p, m >date);

425 termflushln(p);

427 p->of fset = p->rmargin;

428 p->rmargin = p->maxrmargin;

429 p->trail space = 0;

430 p->flags & ~TERMP_NOBREAK;

431 p->fl ags | = TERWP_NGOSPACE;

433 termword(p, neta->o0s);

448 termword(p, m>o0s);

434 termflushln(p);

436 p->of fset = O;

437 p- >r mar gi n=p- >maxr mar gi n;

438 p->flags = 0;

439 }

442 static void
443 print _ndoc_head(struct ternmp *p, const void *arg)

444 {

445 char buf [BUFSI Z], titl e[BUFSIZ];

446 size_t buflen, titlen;

447 const struct ndoc_neta *neta;

462 const struct ndoc_neta *m

449 neta = (const struct ndoc_neta *)arg;

464 m = (const struct ndoc_neta *)arg;

451 /*

452 * The header is strange. It has three conponents, which are
453 * really two with the first duplicated. It goes like this:
454 *

455 * | DENTI FI ER TI TLE | DENTI FI ER
456 *

457 * The | DENTI FI ER is NANE(SECTI ON), which is the command- nane
458 * (if given, or "unknown" if not) followed by the manual page
459 * section. These are given in ‘Di’. The TITLEis a free-form
460 * string depending on the manual volune. |f not specified, it
461 * switches on the nanual section.

462 */

464 p->of fset = 0;

465 p->rmargi n = p->maxrnargin;

467 assert (neta->vol);

468 strlcpy(buf, neta->vol, BUFSIZ);

new usr/ src/ cnd/ mandoc/ ndoc_termc

482 assert(m>vol);

483 strlcpy(buf, m>vol, BUFSIZ);

469 buflen = termstrlen(p, buf);

471 if (meta->arch) {

486 if (m>arch) {

472 stricat(buf, " (", BUFSIZ);

473 strlcat(buf, meta->arch, BUFSIZ);

488 strlcat(buf, m>arch, BUFSIZ);

474 strlcat(buf, ")", BUFSIZ);

475 1

477 snprintf(title, BUFSIZ, "%(%)", nmeta->title, meta->nsec);
492 snprintf(title, BUFSIZ, "%(%)", m>title, m>nsec);
478 titlen = termstrlen(p, title);

480 p->flags | = TERVP_NOBREAK | TERMP_NOSPACE;

481 p->trail space = 1;

482 p->of fset = 0;

483 p->rmargin = 2 * (titlen+l) + buflen < p->maxrmargin ?
484 (p->maxrnargin -

485 termstrlien(p, buf) + termlen(p, 1)) / 2:
486 p->maxrmargin - buflen;

488 termword(p, title);

489 termflushln(p);

491 p->flags | = TERMP_NCSPACE;

492 p->of fset = p->rmargin;

493 p->rmargin = p->offset + buflen + titlen < p->maxrmargin ?
494 p->maxrmargin - titlen : p->maxrmargin;

496 termword(p, buf);

497 termflushln(p);

499 p->flags & ~TERMP_NOBREAK;

500 p->trail space = 0;

501 If (p->margin + titlen <= p->maxrnargin) {

502 p->flags | = TERMP_NOSPACE;

503 p->of fset = p->rmargin;

504 p->rmargi n = p->naxrmargin;

505 termword(p, title);

506 term flushln(p);

507 1

509 p->flags & ~TERMP_NOSPACE;

510 p->of fset = 0;

511 p->rmargin = p->maxrmargin;

512 }

__unchanged_portion_omtted_

616 /* ARGSUSED */
617 static int
618 ternp_it_pre(DECL_ARGS)

619 {

620 const struct ndoc_node *bl, *nn;

621 char buf [7];

622 int i;

623 size_t wi dth, offset, ncols, dcol;
624 enum ndoc_| i st type;

626 if (MDOC_BLOCK == n->type)

627 print_bvspace(p, n->parent->parent, n);

628 return(l);

629 }

new usr/ src/ cnd/ mandoc/ ndoc_termc

631
632

634
635
636
637
638

640

642
643

645
646
647
648

650
651
652
653
654
655
656
657
658
659

661
662
663

665
666
667
668

670
671
672
673
674

676
677
678
679
680
681
682
683

685
686
687
688
689
690
691
692
693

695

bl = n->parent->parent->parent;
type = bl->norm >Bl .type;
/*

* First calculate width and offset. This is pretty easy unless
* we're a -colum list, in which case all prior colums nust

* be accounted for.
*/

width = offset = 0;

if (bl->norm>Bl.offs)
of fset = a2offs(p, bl->norm>Bl.offs);

switch (type)
case (LIST_colum):
i MDOC_HEAD == n- >t ype)

break;
/*
* Imtate groff’s colum handling:
* - For each earlier colum, add its width.
* - For less than 5 colums, add four nore blanks per
* col um.
* - For exactly 5 colums, add three nore blank per
* col um.
* - For nore than 5 colums, add only one colum.
*/
ncols = bl->norm>Bl . ncol s;
/* LINTED */
dcol = ncols <5 ? termlen(p, 4) :
ncols == 5 ? termlen(p, 3) : termlen(p, 1);

*

* Cal culate the offset by applying all prior NMDOC BODY,
* so we stop at the MDOC_HEAD (NULL == nn->prev).
*

/

for (i =0, nn = n->preyv;
nn->prev && i < (int)ncols;
nn = nn->prev, i++)
of fset += dcol + a2wi dth
(p, bl->norm>Bl.cols[i]);

Wien exceedi ng the decl ared nunber of colums, |eave
the renaining widths at 0. This will later be

adj usted to the default width of 10, or, for the |ast
* colum, stretched to the right margin.

* ok ok ok

*

/

if (i >= (int)ncols)
br eak;

/*

* Use the declared colum widths, extended as expl ai ned
* in the preceding paragraph.

*
/
width = a2wi dt h(p, bl->norm >Bl.cols[i]) + dcol;
br eak;
defaul t:
if (NULL == bl ->norm >Bl.w dth)
break;
/*

10

new usr/ src/ cnd/ mandoc/ ndoc_term c 11 new usr/ src/ cnd/ mandoc/ ndoc_term c 12
696 * Note: buffer the width by 2, which is groff’'s magic
697 * nunber for buffering single argunents. See the above 758 switch (type) {
698 * handling for colum for how this changes. 759 case (LIST_diag):
699 */ 760 if (I\/D(IZ HEAD == n- >type)
700 assert (bl ->norm >Bl . wi dt h) ; 761 erm font push(p, TERMFONT_BOLD);
701 width = a2wi dt h(p, bl->norm>Bl.width) + termlen(p, 2); 762 br eak;
702 br eak; 763 defaul t:
703 } 764 br eak;
765 }
705 I
706 * List-type can override the width in the case of fixed-head 767 /*
707 * val ues (bullet, dash/hyphen, enum). Tags need a non-zero 768 * Pad and break control. This is the tricky part. These flags
708 * of fset. 769 * are docunented in termflushin() intermc. Note that we're
709 */ 770 * going to unset all of these flags in ternp_it_post() when we
771 *oexit.
711 switch (type) { 772 */
712 case (LIST bullet):
713 /* FALLTHROUGH */ 774 switch (type) {
714 case (LIST_dash): 775 case (LIST_enum:
715 /* FALLTHROUCH */ 776 /*
716 case (LI ST_hyphen): 777 * Weird special case.
717 /* FALLTHROUGH */ 778 * Very narrow enum | ists actual ly hang.
730 if (Wwdth <termlen(p, 4)) 779 */
731 width = termlen(p, 4); 780 if (wdth == termlen(p, 2))
732 br eak; 781 p->fl ags | = TERMP_HANG,
718 case (LI ST_enun): 782 /* FALLTHROUGH *
719 if (wdth <termlen(p, 2)) 783 case (LIST_bullet):
720 width = termlen(p, 2); 784 /* FALLTHROUCH */
734 if (wdth <termlen(p, 5)) 785 case (LI ST_dash):
735 width = termlen(p, 5); 786 /* FALLTHROUGH */
721 br eak; 794 case (LI ST_enun)
722 case (LIST hang) 795 /* FALLTHROUGH */
723 if (0 ==wdth) 787 case (LI ST_hyphen):
724 width = termlen(p, 8); 788 if (MDOC_HEAD != n->type)
725 br eak; 789 br eak;
726 case (LIST_colum): 797 if (MDOC_ HEAD == n- >type)
727 /* FALLTHROUGH */ 790 p->flags |= TERIVP NOBREAK;
728 case (LIST tag): 791 p->trail space = 1;
729 if (0 ==wdt h) 792 br eak;
730 wi dt h termlen(p, 10); 793 case (LI ST_hang):
731 br eak; 794 if (MDOC_HEAD != n->type)
732 defaul t: 801 if (MDOC_HEAD == n- >type)
733 br eak; 802 p->fl ags | = TERVP_NOBREAK;
734 } 803 el se
795 br eak;
736 I
737 * Wi tespace control. |Inset bodies need an initial space, 797 /*
738 * whil e di agonal bodi es need two. 798 * This is ugly. If ‘-hang’ is specified and the body
739 */ 799 *is a‘Bl’ or ‘Bd’, then we want basically to nullify
800 * the "overstep" effect in termflushin() and treat
741 p->fl ags | = TERWP_NGCSPACE; 801 * this as a ‘-ohang’ |ist instead.
802 */
743 switch (type) { 803 if (n->next->child &&
744 case (LIST_diag): 804 (MDOC_BI == n->next->child->tok ||
745 if (MDOC_BCODY == n- >type) 805 MDOC_Bd == n- >next - >chi | d- >t ok))
746 termword(p, "\\ \\ "); 815 p->fl ags & ~TERVP_NOBREAK;
747 break; 816 el se
748 case (LIST inset): 817 p->flags | = TERMP_HANG
749 if (MDOC_BCODY == n- >type) 806 br eak;
750 termword(p, "\\ ");
751 br eak; 808 p->flags | = TERVP_NOBREAK | TERMP_HANG
752 defaul t: 809 p->trail space = 1;
753 br eak; 810 br eak;
754 } 811 case (LIST_tag):
820 i f (MDOC_HEAD == n- >t ype)
756 p->fl ags | = TERWP_NCSPACE; 821 p->flags | = TERMP_NOBREAK | TERWVP_TWOSPACE;

new usr/ src/ cnd/ mandoc/ ndoc_termc 13 new usr/ src/ cnd/ mandoc/ ndoc_termc
874 if (MDOC_HEAD == n- >type)
812 if (MDOC_HEAD ! = n->type) 875 p->rmargin = p->offset + width;
813 br eak; 876 el se
877 p->of fset += width;
815 p->flags | = TERMP_NOBREAK; 878 br eak;
816 p->trail space = 2; 879 case (LIST_colum):
880 assert (w dth);
818 if (NULL == n->next || NULL == n->next->child) 881 p->rnmargin = p->offset + width;
819 p->flags | = TERMP_DANGLE; 882 /*
820 br eak; 883 * XXX - this behaviour is not docunmented: the
821 case (LIST_ colurm) 884 * right-nost colum is filled to the right margin.
822 if (MDOC_HEAD == n->type) 885 */
823 br eak; 886 if (MDOC_HEAD == n->type)
887 br eak;
825 if (NULL == n->next) { 888 if (NULL == n->next && p->rmargi n < p->naxrmargi n)
832 if (NULL == n->next) 889 p->rmargin = p->maxrnargin;
826 p->flags & ~TERMP_NOBREAK; 890 br eak;
827 p->trail space = 0; 891 defaul t:
828 } else { 892 br eak;
834 el se 893 }
829 p->flags | = TERMP_NOBREAK;
830 p->trail space = 1; 895 /*
831 } 896 * The dash, hyphen, bullet and enumlists all have a special
897 * HEAD character (tenporarily bold, in some cases).
833 br eak; 898 */
834 case (LI ST_diag):
835 if (NDOC_HEAD 1= n->type) 900 if (MDOC_HEAD == n->type)
836 br eak; 901 switch (type) {
839 if (MDOC_ HEAD == n- >t ype) 902 case (LIST_bullet):
837 p->flags | = TERNP NGBREAK 903 term font push(P, TERNFG\IT_BO_D);
838 p->trail space = 1; 904 termword(p, "\\[bu]");
839 br eak; 905 term font pop(p);
840 defaul t: 906 r eak;
841 br eak; 907 case (LIST dash)
842 } 908 /* FALLTHROUGH */
909 case (LI ST_hyphen):
844 /* 910 term fontpush(p, TERMFONT_BOLD);
845 * Margin control. Set-head-width |ists have their right 911 termword(p, "\\(hy");
846 * margins shortened. The body for these |lists has the offset 912 term font pop(p);
847 * necessarily |l engthened. Everybody gets the offset. 913 br eak;
848 */ 914 case (LIST_enum:
915 (‘pai r->ppair->ppair->count) ++;
850 p->of fset += offset; 916 snprintf(buf, sizeof(buf), " %, "
917 pai r->ppair- >ppa| r->count);
852 switch (type) { 918 termword(p, buf);
853 case (LIST_hang): 919 br eak;
854 /* 920 defaul t:
855 * Same stipulation as above, regarding ‘-hang’. W 921 br eak;
856 * don’t want to recalculate rnmargin and of fsets when 922 }
857 * using ‘Bd’” or ‘Bl’ within ‘-hang’ overstep |ists.
858 */ 924 /*
859 if (MDOC_HEAD == n->type && n->next->child && 925 * |If we're not going to process our children, indicate so here.
860 (MDOC_BI == n->next->child->tok || 926 */
861 MDOC_Bd == n->next->chil d->tok))
862 br eak; 928 switch (type) {
863 /* FALLTHROUGH */ 929 case (LIST_bullet):
864 case (LIST_bullet): 930 /* FALLTHROUGH */
865 /* FALLTHROUGH */ 931 case (LIST_ item):
866 case (LI ST _dash): 932 /* FALLTHROUGH */
867 /* FALLTHROUGH */ 933 case (LIST_dash):
868 case (LIST_enum: 934 /* FALLTHROUGH */
869 /* FALLTHROUGH */ 935 case (LI ST_hyphen):
870 case (LI ST_hyphen): 936 /* FALLTHROUGH */
871 /* FALLTHROUGH */ 937 case (LIST_enum:
872 case (LIST_tag): 938 if (MDOC_HEAD == n->type)
873 assert(w dth); 939 return(0);

new usr/ src/ cnd/ mandoc/ ndoc_termc

940 break;

941 case (LIST_colum):

942 i f ~(MDOC_HEAD == n- >t ype)
943 return(0);

944 br eak;

945 defaul t:

946 br eak;

947 }

949 return(1);

950 }

953 /* ARGSUSED */

954 static void

955 ternp_it_post (DECL_ARGS)

956 {

957 enum ndoc_| i st type;

959 if (MDOC_BLOCK == n->type)

960 return;

962 type = n->parent->parent->parent->norm >Bl . type;
964 switch (type) {

965 case (LIST_ itenm):

966 /* FALLTHROUGH */

967 case (LI ST_diag):

968 /* FALLTHROUGH */

969 case (LIST inset):

970 i f~(MDOC_BODY == n->type)
971 termnew n(p);

972 bre

973 case (LIST_ col um) :

974 i f~(MDOC_BODY == n->type)
975 term flushln(p);
976 br eak;

977 defaul t:

978 term.new n(p);

979 br eak;

980 }

982 /*

983 * Now that our output is flushed, we can reset our tags. Since
984 * only ‘It’ sets these flags, we're free to assune that nobody
985 * has nunged themin the neanwhile.
986 */

988 p->fl ags & ~TERVP_DANGLE;

989 p->flags & ~TERMP_NOBREAK;

992 p->fl ags & ~TERMP_TWOSPACE;

990 p->flags & ~TERMP_HANG

991 p->trail space = 0;

992 }

995 /* ARGSUSED */

996 static int

997 ternp_nm pre(DECL_ARGS)

998 {

1000 if (MDOC_BLOCK == n->type) {
1001 p->flags | = TERVWP_PREKEEP;
1002 if (MDOC_BLOCK == n->type)

1002 return(l)

1003 }

15

new usr/src/ cnd/ mandoc/ ndoc_termc

1005
1006
1007
1008
1009
1010
1011
1010
1012
1013
1014
1015
1016

1018
1017
1019

1021
1022

1024
1025
1026
1027
1028
1029
1027
1030
1031
1032
1033
1034
1035
1036
1037
1038

1040
1041
1042
1040
1043
1044 }

1047 /

if (MDOC_BODY == n->type) {
if (ULL == n->child)
return(0);

p->flags | = TERNP_NOSPACE;

p->of fset += termlen(p, 1) +
(NULL == n->prev->child ?
termstrlen(p, net a- >nane)
(NULL == n->prev->child ? term strlen(p, m >nane)
MDOC_TEXT == n->prev->child->type ?
termstrlen(p, n->prev->child->string)
termlen(p, 5));

return(1);

}

if (NULL == n->child & NULL == neta- >nane)
if (NULL == n->child & NULL == m >nane)
return(0);

if (MDOC_HEAD == n->type)
synopsi s_pre(p, n->parent);

if (MDOC_HEAD == n->type && n->next->child) {

p->flags | = TERVMP_NOSPACE | TERMP_NOBREAK

p- >tra||space =1;

p->rmargin = p->offset + termlen(p, 1);

1f (NULL == n->child)
p->rmargin += termstrlen(p, neta->nane);

->rmargin += termstrlen(p, m>nane);

} else if (MDOC_TEXT == n->child->type) {
p->margin += termstrlen(p, n->child->string);
if (n->child->next)

p->flags | = TERVWP_HANG

} else {
p->margin += termlen(p, 5);
p->flags | = TERVP_HANG

}

term font push(p, TERMFONT_BOLD);
if (NULL == n->child)
termword(p, neta->nane);
termword(p, m >nane);
return(1l);

* ARGSUSED */

1048 static void

1049 t
1050 {

1052
1053
1054
1050
1055
1056
1057
1058
1059
1060 }

er np_nm post (DECL_ARGS)

if (MDOC_BLOCK == n->type) {
p->flags & ~(TERNP_KEEP | TERMP_PREKEEP) ;
} else if (ND@ HEAD == n->type && n->next->child) {
i f (MDOC_HEAD == n->type && n->next->child) {
term flushln(p);
p->flags & ~(TERVP_NCBREAK | TERMP_HANG);
p->trail space = O;
} else if (MDOC_BODY == n->type &% n->child)
termflushln(p)

__unchanged_portion_omtted_

1377 static int

new usr/ src/ cnd/ mandoc/ ndoc_termc

1378 ternp_vt_pre(DECL_ARGS)
1379 {
1381 if (MDOC_ELEM == n->type) {
1382 synopsi s pre(p, n);
1383 return(ternp_under_pre(p, pair, meta, n));
1378 return(ternp_| under _pre(p, pair, m n));
1384 } else if (MDOC_BLOCK == n->type)
1385 synopsi s_pre(p, n);
1386 return(1y;
1387 } elseif (NDOC_HEAD == n->type)
1388 return(0);
1390 return(ternp_under_pre(p, pair, neta, n));
1385 return(ternp_under_pre(p, pair, m n));
1391 }
__unchanged_portion_omtted_
1404 /* ARGSUSED */
1405 static int
1406 ternp_fd_pre(DECL_ARGS)
1407 {
1409 synopsi s_pre(p, n);
1410 return(ternp_bol d_pre(p, pair, neta, n));
1405 return(ternp_bol d_pre(p, pair, m n));
1411 }
1414 /* ARGSUSED */
1415 static void
1416 ternp_f d_post (DECL_ARGS)
1417 {
1419 termnew n(p);
1420 }
1423 /* ARGSUSED */
1424 static int
1425 ternp_sh_pre(DECL_ARGS)
1426 {
1428 /* No vspace between consecutive ‘Sh’ calls. */
1430 switch (n->type) {
1431 case (MDOC_BL
1432 if (n- >prev && I\/D(I: Sh == n->prev->tok)
1433 if (NULL == n->prev->body->chil d)
1434 br eak;
1435 termvspace(p);
1436 br eak;
1437 case (MDOC_HEAD) :
1438 term fontpush(p, TERVFONT_BOLD);
1439 br eak;
1440 case (MDOC_BQODY):
1441 p->offset = termlen(p, p->defindent);
1442 1 f (SEC_AUTHORS == n->sec)
1443 p->flags & ~(TERMP_SPLI T| TERMP_NOSPLI T)
1444 break;
1445 defaul t:
1446 br eak;
1447 }
1448 return(1);
1449 }

__unchanged_portion_omtted_

17

new usr/ src/ cnd/ mandoc/ ndoc_termc 18
1516 /* ARGSUSED */

1501 static void

1502 ternp_dl_post (DECL_ARGS)

1503 {

1505 if (MDOC_BLOCK != n->type)

1506 return;

1507 termnew n(p);

1508 }

1511 /* ARGSUSED */

1517 static int

1518 ternp_ft_pre(DECL_ARGS)

1519 {

1521 /* NB: MDOC LI NE does not effect this! */
1522 synopsi s_pre(p, n);

1523 term fontpush(p, TERMFONT_UNDER);

1524 return(1);

1525 }

1528 /* ARGSUSED */

1529 static int

1530 ternp_f n_pre(DECL_ARGS)

1531 {

1532 size_t rmargin = 0O;

1533 int pretty;

1535 pretty = MDOC_SYNPRETTY & n->fl ags;

1537 synopsi s_pre(p, n);

1539 if (NULL == (n = n->child))

1540 return(0);

1542 if (pretty) {

1543 rrrargin:p >rmar gi

1544 p->rmargin = p- >0ffset + termlen(p, 4);
1545 p->flags | = TERMP_NOBREAK | TERMP_HANG
1546 1

1548 assert (MDOC_TEXT == n->type);

1549 term font push(p, TERMFONT_BOLD);

1550 termword(p, n->string);

1551 term fontpop(p);

1553 if (pretty)

1554 term flushl n(p);

1555 p->flags & ~(TERVP_NOBREAK | TERVP_HANG) ;
1556 p->offset = p->rmargin;

1557 p->rmargin = rnmargin;

1558 }

1560 p->flags |= TERNP NOSPACE;

1561 termword(p, "("

1562 p->fl ags |- TERIVP NCSPACE;

1564 for (n = n->next; n; n = n->next) {

1565 assert(l\/DOC TEXT == n->type);

1566 term font push(p, TERMFONT UNDER)
1567 if (pretty)

1568 p->flags | = TERMP_NBRWORD;

new usr/ src/ cnd/ mandoc/ ndoc_termc 19 new usr/ src/ cnd/ mandoc/ ndoc_termc 20
1569 termword(p, n->string); 1628 } else if (MDOC_HEAD == n->type)
1570 term f ont pop(p); 1629 return(0);
1572 if (n->next) { 1631 if (n->norm >Bd. of fs)
1573 p->flags | = TERNP NOSPACE; 1632 p->of f set += a2offs(p, n->norm >Bd.offs);
1574 termword(p, ",");
1575 } 1634 I*
1576 } 1635 * |f -ragged or -filled are specified, the block does nothing
1636 * but change the indentation. |If -unfilled or -literal are
1578 p->flags | = TERVMP_NOSPACE; 1637 * specified, text is printed exactly as entered in the display:
1579 termword(p, ")"); 1638 * for macro lines, a newine is appended to the line. Blank
1639 * lines are all owed.
1581 if (pretty) { 1640 */
1582 p->flags | = TERMP_NOSPACE; 1641
1583 termword(p, ";"); 1642 if (DISP_literal != n->norm >Bd.type &&
1584 term flushln(p); 1643 DI SP_unfilled != n->norm >Bd. type)
1585 } 1644 return(1);
1587 return(0); 1646 tabwi dth = p->t abwi dth;
1588 } 1647 if (DISP_literal == n->norm >Bd.type)
1648 p->tabwidth = termlen(p, 8);
1591 /* ARGSUSED */ 1650 rm= p->rmargin;
1592 static int 1651 rmax = p->nmaxrmargin;
1593 }errrp_f a_pr e(DECL_ARGS) 1652 p->rmargin = p->maxrnargi n = TERM MAXMARG N;
1594
1595 const struct ndoc_node *nn; 1654 for (nn = n->child; nn; nn = nn->next) {
1655 print_nmdoc_node(p, pair, nmeta, nn);
1597 if (n->parent->tok != MDOC Fo) { 1637 print_nmdoc_node(p, pair, m nn);
1598 term fontpush(p, TERVFONT_UNDER); 1656 l*
1599 return(l); 1657 * |f the printed node flushes its own |line, then we
1600 } 1658 * needn’t do it here as well. This is hacky, but the
1659 * notion of selective eoln whitespace is pretty dunb
1602 for (nn = n->child; nn; nn = nn->next) { 1660 * anyway, so don't sweat it.
1603 term font push(p, TERVFONT_UNDER); 1661 */
1604 p->fTags | = TERMP_NBRWORD, 1662 switch (nn->t ok) {
1605 termword(p, nn->string); 1663 case (MDOC_S
1606 term font pop(p); 1664 /* FALLTHROUGH */
1665 case (MDOC_br):
1608 if (nn->next || (n->next && n->next->tok == MDOC Fa)) { 1666 /* FALLTHROUGH */
1585 if (nn->next) { 1667 case (MDOC_sp):
1609 p->flags | = TERMP_NOSPACE; 1668 /* FALLTHROUGH */
1610 termword(p, ","); 1669 case (MDOC Bl):
1611 } 1670 /* FALLTHROUGH */
1612 } 1671 case (MDOC_D1):
1672 /* FALLTHROUGH */
1591 if (n->child & n->next && n->next->tok == MDOC Fa) { 1673 case (MDOC D):
1592 p->flags | = TERIVP NOSPACE; 1674 /* FALLTHROUGH */
1593 termword(p, ","); 1675 case (MDOC_Lp):
1594 } 1676 /* FALLTHROUGH */
1677 case (MDOC_Pp):
1614 return(0); 1678 contli nue;
1615 } 1679 defaul t:
1680 br eak;
1681 }
1618 /* ARGSUSED */ 1682 1 f (nn->next && nn->next->line == nn->line)
1619 static int 1683 cont i nue;
1620 ternp_bd_pre(DECL_ARGS) 1684 term flushln(p);
1621 { 1685 p->flags | = TERVMP_NOSPACE;
1622 size_t tabwi dth, rm rnmax; 1686 }
1623 struct ndoc_node *nn;
1605 const struct ndoc_node *nn; 1688 p->tabwi dth = tabw dth;
1689 p->rmargin = rm
1625 if (MDOC_BLOCK == n->type) { 1690 p->maxrmargin = rmax;
1626 print_bvspace(p, n, n); 1691 return(0);
1627 return(1); 1692 }
__unchanged_portion_omtted_

new usr/ src/ cnd/ mandoc/ ndoc_termc 21 new usr/ src/ cnd/ mandoc/ ndoc_termc
1904 /* ARGSUSED */
1905 static int
1744 |* ARGSUSED */ 1906 ternp_quot e_pre(DECL_ARGS)
1745 static int 1907 {
1746 ternp_xx_pre(DECL_ARGS)
1747 { 1909 if (MDOC_BODY != n->type &% MDOC_ELEM ! = n->type)
1748 const char *pp; 1910 return(1);
1749 int flags;
1912 switch (n->tok) {
1751 pp = NULL; 1913 case (MDOC_Ao):
1752 switch (n->tok) { 1914 /* FALLTHROUGH */
1753 case (MDOC_Bsx): 1915 case (MDOC_Aq):
1754 pp = "BSD/ OS"; 1916 termword(p, "<");
1755 br eak; 1917 br eak;
1756 case (MDOC_Dx): 1918 case (MDOC_ Bro)
1757 pp = "DragonFly"; 1919 /* FALLTHROUCH */
1758 br eak; 1920 case (MDOC Brq):
1759 case (MDOC_ Fx) 1921 termword(p, "{");
1760 pp = "FreeBSD'; 1922 br eak;
1761 br eak; 1923 case (NDOC_OJ):
1762 case (MDOC_Nx): 1924 /* FALLTHROUGH */
1763 pp = "NetBSD'; 1925 case (MDOC_ :
1764 br eak; 1926 /* FALLTHROUGH */
1765 case (MDOC_Ox): 1927 case (MDOC_Bo):
1766 pp = "OpenBSD'; 1928 /* FALLTHROUGH */
1767 br eak; 1929 case (MDOC Bq):
1768 case (MDOC_Wx): 1930 termword(p, "[");
1769 pp = "UNI X"; 1931 br eak;
1770 br eak; 1932 case (ND(I:_DO):
1771 defaul t: 1933 /* FALLTHROUGH */
1772 abort(); 1934 case (MDOC_Dq):
1773 /* NOTREACHED */ 1935 termword(p, "\\(lg");
1754 br eak; 1926 termword(p, "*‘");
1774 } 1936 br eak;
1937 case (MDOC_Eo):
1776 termword(p, pp); 1938 br eak;
1777 if (n->chi I d) { 1939 case (MDOC_Po):
1778 flags = p->flags; 1940 /* FALLTHROUGH */
1779 p->flags | = TERWP_KEEP; 1941 case (MDOC_Pq):
1780 termword(p n->chi | d- >str|ng) 1942 termword(p, "(");
1781 p->flags = flags; 1943 br eak;
1782 } 1944 case (MDOC__ T)'
1783 return(0); 1945 /* FALLTHROUGH */
1784 } 1946 case (MDOC Qo):
1947 /* FALLTHROUCH */
1948 case (MDOC_Qq):
1787 /* ARGSUSED */ 1949 termword(p, "\"");
1769 static int 1950 br eak;
1770 ternp_i gndel i m pre(DECL_ARGS) 1951 case (MDOC_Q):
1771 { 1952 /* FALLTHROUGH */
1953 case (MDOC_So):
1773 p->flags | = TERVP_| GNDELI M 1954 /* “FALLTHROUGH */
1774 return(l); 1955 case (MDOC_Sq):
1775 } 1956 termword(p, "\\(o0q");
1947 termword(p, "‘");
1957 br eak;
1778 /* ARGSUSED */ 1958 defaul t:
1788 static void 1959 abort();
1789 ternp_pf_post (DECL_ARGS) 1960 /* NOTREACHED */
1790 { 1961 }
1792 p->fl ags | = TERWP_NCSPACE; 1963 p->flags | = TERWP_NCSPACE;
1793 } 1964 return(1);
__unchanged_portion_onitted_ 1965 }

new usr/ src/ cnd/ mandoc/ ndoc_termc

1968 /* ARGSUSED */
1969 static void
1970 ternp_quot e_post (DECL_ARGS)

1971 {

1973 if (MDOC_BODY != n->type &% MDOC_ELEM ! = n->type)
1974 return;

1976 p->flags | = TERVP_NOSPACE;
1978 switch (n->tok) {

1979 case (MDOC_Ao):

1980 /* FALLTHROUGH */
1981 case (MDOC_Aq):

1982 termword(p, ">");
1983 br eak;

1984 case (MDOC_ Bro)

1985 /* FALLTHROUGH */
1986 case (MDOC_Brq):

1987 termword(p, "}");
1988 br eak;

1989 case (MDOC_ Oo)

1990 /* FALLTHROUGH */
1991 case (MDOC_p):

1992 /* FALLTHROUGH */
1993 case (MDOC _Bo):

1994 /* FALLTHROUGH */
1995 case (MDCC_Bq):

1996 termword(p, "]");
1997 br eak;

1998 case (MDOC_)

1999 /* FALLTHROUGH */
2000 case (MDOC_Dq):

2001 termword(p, "\\(rqg");
1992 termword(p, "'"");
2002 break;

2003 case (MDCC_Eo):

2004 br eak;

2005 case (MDOC_ Po)

2006 /* FALLTHROUGH */
2007 case (MDOC_Pq):

2008 termword(p, ")");
2009 br eak;

2010 case (I\/DOC_T):

2011 /* FALLTHROUGH */
2012 case (MDOC_Qo):

2013 /* FALLTHROUGH */
2014 case (MDOC_Qq):

2015 termword(p, "\"");
2016 br eak;

2017 case (MDOC Q):

2018 /* FALLTHROUGH */
2019 case (MDOC_So):

2020 /* FALLTHROUGH */
2021 case (MDOC_Sq):

2022 term\mrd(p, "\\(cq");
2013 termword(p, "'");
2023 br eak;

2024 defaul t:

2025 abort();

2026 /* NOTREACHED */
2027

2028 }

2031 /* ARGSUSED */

23

new usr/ src/ cnd/ mandoc/ ndoc_termc

2032 static int
2033 ternp_fo_pre(DECL_ARGS)

2034 {

2035 size_t rmargin = 0O;

2036 int pretty;

2038 pretty = MDOC_SYNPRETTY & n->fl ags;

2040 if (MDOC_BLOCK == n->type) {

2041 synopsi s_pre(p, n);

2042 return(1);

2043 } else if (MDOC_ BODY == n- >type) {

2044 if (pretty) {

2045 rmargin = p->rmargin;

2046 p->rmargin = p->offset + termlen(p, 4);
2047 p->flags | = TERMP_NOBREAK | TERMP_HANG
2048 }

2049 p->flags | = TERMP_NOSPACE;

2050 termword(p, "(");

2051 p->flags | = TERMP_NOSPACE;

2052 1f (pretty) {

2053 term_fl ushl n(p);

2054 p->flags & ~(TERVP_NOBREAK | TERWP_HANG);
2055 p->of fset = p->rmargin;

2056 p->rmargin = rnargin;

2057 }

2058 return(l);

2059 }

2061 if (NULL == n->child)

2062 return(0);

2064 /* XXX: we drop non-initial argunents as per groff. */
2066 assert(n->child->string);

2067 term font push(p, TERMFONT ~BOLD);

2068 termword(p, n->child->string);

2069 return(0);

2070 }

2073 /* ARGSUSED */
2074 static void
2075 ternp_fo_post (DECL_ARGS)

2076 {

2078 if (MDOC_BODY != n->type)

2079 return;

2081 p->flags | = TERVP_NOSPACE;

2082 termword(p, ")");

2084 i f (MDOC_SYNPRETTY & n->flags) {
2085 p->flags | = TERVP_NOSPACE;
2086 termword(p, ";");

2087 termfl ushl n(p)

2088 1

2089 }

2092 /* ARGSUSED */

2093 static int

2094 ternp_bf _pre(DECL_ARGS)
2095 {

2097 if (MDOC_HEAD == n->type)

24

new usr/ src/ cnd/ mandoc/ ndoc_termc

2098 return(0);

2099 else if (MDOC_BODY != n->type)

2074 else if (MDOC_BLOCK != n->type)

2100 return(1);

2102 if (FONT_Em == n->norm >Bf.font)

2103 term font push(p, TERVFONT_UNDER);
2104 else if (FONT_Sy == n->norm >Bf.font)
2105 term fontpush(p, TERVFONT_BOLD);
2106 el se

2107 term font push(p, TERVFONT_NONE) ;
2109 return(1);

2110 }

____unchanged_portion_onitted_

2181 /* ARGSUSED */
2182 static int
2183 ternp_| k_pre(DECL_ARGS)

2184 {

2185 const struct ndoc_node *link, *descr;
2160 const struct ndoc_node *nn, *sv;

2187 if (NULL == (link = n->child))

2188 return(0);

2190 if (NULL != (descr = link->next)) {
2191 term font push(p, TERMFONT_UNDER);
2192 while (NULL != descr) {

2193 termword(p, descr->string);
2194 descr = descr->next;
2195 }

2164 nn = sv = n->child;

2166 if (NULL == nn || NULL == nn->next)
2167 return(1);

2169 for (nn = nn->next; nn; nn = nn->next)
2170 termword(p, nn->string);
2172 term font pop(p);

2196 p->flags | = TERMP_NOSPACE
2197 termword(p, ":");

2198 term font pop(p);

2199 1

2201 term fontpush(p, TERMFONT_BOLD);

2202 termword(p, |ink->string);

2178 termword(p, sv->string);

2203 term fontpop(p);

2205 return(0);

2206 }

____unchanged_portion_onitted_

2241 |* ARGSUSED */
2242 static void
2243 ternp__t_post (DECL_ARGS)

2244 {

2246 /*

2247 If we're in an ‘Rs’ and there’s a journal present,
2248 * us instead of underlining us (for disanbiguation).

25

then quote

new usr/ src/ cnd/ mandoc/ ndoc_termc

2249 */

2250 if (n->parent & MDOC_Rs == n->parent->tok &&
2251 n- >par ent - >nor m >Rs. quot e_T)

2252 ternp_quote_post(p, pair, nmeta, n);

2228 ternp_quote_post(p, pair, m n);

2254 ternp post(p, pair, neta, n);

2230 ternp post(p, pair, m n);

2255 }

2257 /* ARGSUSED */

2258 static int

2259 ternp__t_pre(DECL_ARGS)

2260 {

2262 /*

2263 * |f we're in an ‘Rs’ and there’'s a journal present,
2264 * us instead of underlining us (for disanbiguation).
2265 */

2266 if (n->parent & MDOC_Rs == n->parent->tok &&
2267 n- >par ent - >nor m >Rs. quot e_T)

2268 return(ternp_quote_pre(p, pair, neta, n));
2244 return(ternp_quote_pre(p, pair, m n));
2270 term fontpush(p, TERMFONT_UNDER);

2271 return(1);

2272 }

____unchanged_portion_onitted_

then quote

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

R R R R

55544 Wed Jul

30 20:55:10 2014

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

5051

Revi ewed by: Yuri

i nport ndocm -1.12.3

Pankov <yuri.pankov@exenta. conm>

Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

/* $I d: ndoc_validate.c,v 1.198 2013/12/15 21:23:52 schwarze Exp $ */

1

[
-
*

OCONOUITRWDAWN

68

~

B 2

Copyright (c)
Copyright (c)
Copyri ght (c)
Copyright (c)

2010,
2008,
2010,
Perm ssion to use,

copy, nodify,

copyright notice and this pernission notice appear in a
THE SOFTWARE | S PROVI DED "AS | S"

MERCHANTABI LI TY AND FI TNESS.
ANY SPECI AL, DI RECT,

$Id: ndoc_validate.c,v 1.182 2012/03/23 05:50: 25 kristaps Exp $ */

2008-2012 Kristaps Dzonsons <kristaps@sd.|v>

2011, 2012, 2013 Ingo Schwarze <schwarze@penbsd. or g>
2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.
2011 I ngo Schwarze <schwarze@penbsd. or g>

I v>

and distribute this software for any
purpose with or without fee is hereby granted, provided that the above

copi es.

AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
W TH REGARD TO THI' S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

I'N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
I NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DANMAGES
WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER IN AN
ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI QN, ARI SI NG QUT OF

* ORI N CONNECTI ON W TH THE USE OR PERFORMANCE OF THI S SOFTWARE.

*

/

#i f def HAVE_CONFI G_H
#i nclude "config. h"
#endi f

#i f ndef OSNAME
#i ncl ude <sys/utsnane. h>
#endi f

#i ncl ude <sys/types. h>

#i ncl ude <assert. h>
#i ncl ude <ctype. h>
#include <limts. h>
#i ncl ude <stdio. h>
#i nclude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <tine. h>

#i ncl ude "ndoc. h"

#i ncl ude "mandoc. h"

#i ncl ude "Iibndoc. h"
#i nclude "li bmandoc. h"
/* FIXME: .Bl -diag can’'t have non-text children in HEAD.
#define PRE_ARGS struct ndoc *ndoc, struct ndoc_node *n
#defi ne POST_ARGS struct ndoc *ndoc

#defi ne NUMBI Z 32

#def i ne DATESI ZE 32

*/

enum check_i neq {
CHECK_LT,
CHECK_GT,
CHECK_EQ
_hnchanged_port ion_omtted_
static int check_count (struct ndoc *, enum ndoc_type,

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

stati
stati
stati

stati
stati
stati
stati

stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati

stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati

o000

OO0

OO0 0O0O0O00O0000

OO0 O0000000000000000000000000000000000000O00O0

int
voi d
voi d

voi d
int

enum ndoc_sec

size_t

enum check_I vl ,

check_par ent (PRE_ARGS, enum ndoct,

check_text(struct ndoc *, int, int,
check_argv(struct ndoc *,
struct ndoc_node *, struct

check_args(struct ndoc *,
concat (char *,
a2sec(const char *);

macr 02l en(enum mjoct);

ebool (POST_ARGS) ;

berr_gel(POST_ARGS);
bwar n_gel(POST_ARGS) ;
ewar n_eq0(POST_ARCS) ;
ewar n_eql(POST_ARGCS) ;
ewar n_gel(POST_ARGS) ;
ewar n_| e1(POST_ARGS) ;
hwar n_eq0(POST_ARGS) ;
hwar n_eql1(POST_ARGS) ;
hwar n_gel(POST_ARGS) ;
hwar n_| e1(POST_ARGS) ;

post _an(POST_ARGS) ;

post _at (POST_ARGS) ;

post _bf (POST_ARGCS) ;

post _bl (POST_ARGS) ;

post _bl _bl ock(POST_ARGS) ;
post _bl _bl ock_wi dt h(POST_ARGS) ;
post _bl _bl ock_t ag(POST_ARGS) ;
post _bl _head(POST_ARGS) ;

post _bx(POST_ARGS) ;

post _def aul t s(POST_ARGS) ;
post _dd(POST_ARGCS) ;

post _dt (POST_ARGS) ;

post _def aul t s(POST_ARGS) ;
post _literal (POST_ARGS);
post _eol n(POST_ARGS) ;

post _hyph(POST_ARGS) ;

post _i gnpar (POST. ARGS) ;
post _i t (POST_ARGS) ;
post _| b(POST_ARGS) ;
post _literal (POST_. ARGS)

post _nn{ POST_ARGS) ;

post _ns(POST_ARGS) ;
post _os(POST_ARGS) ;
post _par (POST_ARGS) ;
post _i gnpar (POST_ARGS) ;
post _prol (POST_ARGS) ;
post _r oot (POST_ARGS) ;
post _r s(POST_ARGCS) ;

post _sh(POST_ARGS) ;
post _sh_body(POST. ARGS)
post _sh_head(POST_ARGS) ;
post _st (POST_ARCS) ;
post _st d(POST_ARGS) ;
post _vt (POST_ARGS) ;
pre_an(PRE_ARGS) ;
pre_bd(PRE_ARGS) ;

pre_bl (PRE_ARGS) ;
pre_dd(PRE_ARGS) ;

pre_di spl ay(PRE ARGS)
pre_dt (PRE_ARGS) ;

pre_i t (PRE_ARGS);
pre_literal (PRE_AR@) ;
pre_os(PRE_ARGS) ;
pre_par (PRE_ARGS) ;

enum check_i neq, int);

enum ndoc_t ype);
char *);

ndoc_argv *);

struct ndoc_node *);
const struct ndoc_node *,

Si ze_t);

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
150
156
157
158
159
160
161
162
163
164
156
157
158
165
166
167
168
169
164
170
171
172
173
174
175
176
172
173
177
178
179
180
181
182

184
185
186
187
188
189
190

stati
stati
stati

stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati

stati

o000

D000 O000O00O0

(]

int pre_sh(PRE_ARGS) ;

int pre_ss(PRE_ARGS) ;

int pre_st d(PRE_ARGS) ;

v_post posts_an = post _an, NULL };

Vv_post post s_at = post_at, post_defaults, NULL };
v_post posts_hd = post _literal, hwarn eqo bwarn_gel, NULL };
v_post post s_bf = { hwarn_|lel, post_bf NULL };
v_post post s_bk = { hwarn_eqO, bwar n_gel, NULL };
Vv_post post s_bl = bwar n_gel, post_bl, NULL };
Vv_post post s_bx = post_bx, NULL };

v_post posts_bool [] = { ebool, NULL };

v_post posts_eoln[] = { post eol n, NULL };

V_post posts_defaul ts[] = { post_ def aul ts, NULL };
V_post posts_dil = bwar n_ge1l, post_hyph NULL };
v_post posts_dd = post_dd, post_prol, NULL };
v_post posts_dl = { post_literal, bwarn_gel, NULL };
Vv_post post s_dt = post_dt, post_prol, NULL };
Vv_post posts_fo = hwar n_eql, bwarn_gel, NULL };
Vv_post posts_hyph[] = { post_hyph, NULL };

v_post posts_hyphtext[] = { ewarn_gel, post_hyph, NULL };
V_post posts_it = post_it, NULL };

V_post posts_Ib = post _I b, NULL };

v_post posts_nd = { berr gel post hyph NULL };
v_post posts_nd = { berr_gel, NULL };

v_post posts_nn{] = { post_nm NULL };

V_post posts_notext[] = { ewarn_eqO, NULL };

v_post posts_ns = post _ns, NULL };

v_post posts_os = { post_os, post_prol, NULL };
V_post posts_pp = post _par, ewarn_eq0O, NULL };
v_post posts_rs = { post_rs, NULL };

V_post posts_sh = post _i gnpar, hwar n _gel, post _sh, post _hyph, NULL };
V_post posts_sp = post _par, ewarn_lel, NULL T
v_post posts_ss = { post_ignpar, hvxarn_gel post_hyph, NULL };
V_post posts_sh = post _i gnpar, hwarn_gel, post_sh, NULL };
V_post posts_sp = ewarn_l el, NULL };

V_post posts_ss = post _i gnpar, hwarn_gel, NULL };
v_post post s_st = post _st, NULL };

Vv_post posts_std[] = { post_std, NULL };

v_post posts_text[] = { ewarn_gel, NULL };

v_post posts_text1[] = { ewarn_eql, NULL };

v_post posts_vt[] = { post_vt, NULL };

V_post posts_wWine[] = { bwarn_gel, NULL };

v_pre pres_an[] = { pre_an, NULL };

v_pre pr es_gld = pr e_g: splay, pr e_aEiJLLp; e_literal, pre_par, NULL }
v_pre pres_| = { pre_bl, pre_par, ;

v_pre pres_dil = pre_display, NULL };

v_pre pres_dl = pre_literal, pre_display, NULL };
v_pre pres_dd = pre_dd, NULL };

v_pre pres_dt = { pre_dt, NULL };

v_pre pres_er = NULL, NULL };

v_pre pres_fd = NULL, NULL };

v_pre pres_it = pre_it, pre_par, NULL };

v_pre pres_os = pre_os, NULL };

v_pre pres_pp = pre_par, NULL }

v_pre pres_sh = pre_sh, NULL };

v_pre pres_ss = { pre_ss, NULL };

v_pre pres_std[] = { pre_std, NULL };

const struct valids ndoc_valids[MDOC_MAX] = {

{ NULL, NULL }, I* Ap */

{ pres_dd, posts_dd }, /* Dd */

{ pres_dt, posts_dt }, /* Dt */

{ pres_os, posts_os }, /* Os */

{ pres_sh, posts_sh }, /* Sh */

{ pres_ss, posts_ss }, /* Ss */

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

191
192
188
189
193
194
195
196
197
198
199
200
201
202
203
204
205
202
206
207
208
209
206
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
224
228
229
230
231
232
228
229
233
234
235
231
232
236
237
238
239
240
241
242
243
244
245
246
247

pres_
pres_

pres_|

pres
pres
pres_
NULL,
pres
NULL,
pres_
NULL,
pres

NULL,
pres_
NULL,

DPy posts_pp
dl, posts_d1l

pp, posts_notext },
_dl, posts_wine },
_dl, posts_dl

bd, posts_bd
NULL 3,

_bI posts_bl

NULL },
it, posts_it
NULL },

_an, posts_an
NULL,
NULL,
NULL,
NULL,

NUL

er, NULL },
NULL },

b
}

b
b
h
b
H

pres_std, posts_std },

NULL,
NULL,

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
pres_std, posts_std },
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

NULL },

posts_text },
pres_fd, posts_text },

NULL },
NULL }
NULL },
NULL }.
posts_text1

H

posts_defaults },

posts_nd },
posts_nm },
NULL T,
NULL }

posts_defaults },

posts_st },
NULL T,
posts_vt },
posts_text }

posts_text },
post s_hypht ext },

posts_text
posts_text
posts_t ext
posts_text
posts_hyphte
posts_hyphte
posts_t ext
posts_text
posts_t ext
posts_hyphte
post s_hyphte
posts_t ext
posts_t ext
posts_text
NULL
NULL
NULL
posts_at },
NULL },

posts_bf },
NULL
NULL
NULL
post s_| bx },
posts_bool }

Bt asaar|

—~

el

xt
xt

Xt
Xt

e

e

e —

® Ok ok ok Sk Sk O SE Ok F b Sk SR 3k ok Sk b SR Sk Sk F b 3k O 3 O ok b Sk OF 3k ok Sk ok SR Sk ok F b 3k O 3F O 3k b 3k Ok R ok Sk ok Sk S Ok b % Ok ok ok %k k%

| *
| *

FI XVE:
FI XMVE:

FI XVE:
FI XME:

can
can

can

can

be
be

be
be

used
used

used

used

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

248 NULL, NULL },

249 NULL, NULL },

250 NULL, NULL },

251 NULL, NULL },

252 NULL, NULL },

253 NULL, NULL },

254 NULL, NULL },

255 NULL, NULL },

256 NULL, NULL },

257 NULL, posts_notext },
258 NULL, posts_ns },
259 NULL, NULL },

260 NULL, NULL },

261 NULL, NULL },

262 NULL, posts_textl },
263 NULL, NULL },

264 NULL, NULL },

265 NULL, NULL },

266 NULL, NULL },

267 NULL, NULL },

268 NULL, NULL },

269 NULL, NULL },

270 NULL, posts_rs },
271 NULL, NULL },

272 NULL, NULL },

273 NULL, NULL },

274 NULL, posts_bool },
275 NULL, posts_hyph },
272 NULL, NULL },

276 NULL, NULL },

277 NULL, NULL },

278 NULL, NULL },

279 NULL, NULL },

280 NULL, NULL },

281 NULL, posts_fo },
282 NULL, NULL },

283 NULL, NULL },

284 NULL, NULL },

285 NULL, posts_bk },
286 NULL, NULL },

287 NULL, posts_eoln },
288 NULL, NULL },

289 NULL, NULL },

290 NULL, posts_eoln },
291 NULL, posts_lb },
292 pres_pp, posts_pp },
289 NULL, posts_notext },
293 NULL, NULL },

294 NULL, posts_defaults },
295 NULL, NULL },

296 NULL, NULL },

297 NULL, NULL },

298 NULL, posts_text },
299 NULL, NULL },

300 NULL, NULL },

301 NULL, NULL },

302 NULL, posts_text },
303 NULL, posts_pp },
304 NULL, posts_sp },
300 NULL, posts_notext },
301 pres_pp, posts_sp },
305 NULL, posts_textl },
306 NULL, NULL },

307 };

309 #define RSORD_MAX 14 /* Nunber of ‘Rs’

bl ocks.

e —

*/

I T i T T T T . AT T I A

new

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
320
321
322
326

usr/src/ cnd/ mandoc/ ndoc_val i date. c

static const enum ndoct rsord[RSORD MAX] = {

____unchanged_portion_onitted_

419
420
417

static int
check_count (struct ndoc *ndoc, enum ndoc_type type,
check_count (struct ndoc *m enum ndoc_type type,

421 enum check_l vl Ivl, enum check_ineq ineq, int val)
422 {

423 const char *p;

424 enum mandocerr t;

426 if (mdoc->last->type != type)

423 if (m>last->type ! = type)

427 return(1);

428

429 switch (ineq) {

430 case (CHECK_LT):

431 p = "less than ";

432 i1f (rmdoc->last->nchild < val)

429 if (m>last->nchild < val)

433 return(1l);

434 br eak;

435 case (CHECK_GT):

436 p = "nore than ";

437 1 f (mdoc->last->nchild > val)

434 if (m>last->nchild > val)

438 return(l);

439 br eak;

440 case (CHECK_EQ:

441 p=""

442 i1f (val == ndoc->l ast->nchild)

439 if (val == m >l ast->nchild)

443 return(l);

444 br eak;

445 defaul t:

446 abort();

447 /* NOTREACHED */

448 1

450 t = lvl == CHECK_WARN ? MANDOCERR_ARGCWARN : MANDOCERR_ARGCOUNT;
451 mandoc_vnsg(t, ndoc->parse, ndoc->l ast->line, ndoc->| ast->pos,
448 mandoc_vnsg(t, m >parse, m>| ast->line, m >l ast->pos,
452 "want %%l children (have %)",

453 p, val, ndoc->last->nchild);

450 p, val, m>last->nchild);

454 return(1);

455 }

____unchanged_portion_onitted_

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

518 static void
519 check_args(struct ndoc *ndoc, struct ndoc_node *n)
516 check_args(struct ndoc *m struct ndoc_node *n)

520 {
521

523
524

526
527
528
525
529 }

int i;

if (NULL == n->args)
return;

assert(n->args->argc);

for (i =0; I < (int)n->args->argc; i++)
check_argv(ndoc, n, &n->args->argv[il);
check_argv(m n, &n->args->argv[i]);

531 static void
532 check_argv(struct ndoc *ndoc, struct ndoc_node *n, struct ndoc_argv *v)
529 check_argv(struct ndoc *m struct ndoc_node *n, struct ndoc_argv *v)

533 {
534

536
537
534

539

541
542
543
539
540
544 }

int i;

for (i =0; i < (int)v->sz; i++)
check_t ext (nmdoc, v->line, v->pos, v->value[i]);
check_text(m v->line, v->pos, v->value[i]);

/* FIXVE: nove to post_std(). */

if (MDOC_Std == v->arg)

if (! (v->sz || ndoc->neta. nane))
ndoc_nnsg(nmdoc, n, MANDOCERR_NONAME) ;
if (! (v->sz || m>neta.nane))

ndoc_nnsg(m n, MANDOCERR NONAME) ;

546 static void
547 check_text(struct ndoc *ndoc, int In, int pos, char *p)
544 check_text(struct ndoc *m int In, int pos, char *p)

548 {
549

551
548
552

554
555
552
556 }

char *cp;

if (MDOC_LI TERAL & nudoc- >fl ags)

if (MDOC_LI TERAL & m >fl ags)
return;

for (cp = p; NULL !'= (p = strchr(p, "\t")

mdoc_pnsg(ndoc, In, pos + (int)(p

mdoc_pnsg(m In, pos + (int)(p -

)i ptt)
- cp), MANDOCERR BADTAB);
cp), MANDOCERR BADTAB);

____unchanged_portion_onmitted_

594 static int
595 pre_bl (PRE_ARGS)

596 {
597
598
599
600

602
603
604
605
606
607

int i, conp, dup;
const char *of fs, *w dth;
enum ndoc_| i st It;

struct ndoc_node *np;

if (MDOC_BLOCK != n->type) {
if (ENDBODY_NOT != n->end) {
assert (n->pendi ng);
np = n->pendi ng- >parent;
} else
np = n->parent;

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

609
610
611
612
613

615
616
617
618
619

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673

* ok ok ok ¥

/

/*
for

assert(np);

assert (MDOC_BLOCK == np->type);
assert (MDOC_Bl == np->tok);
return(1);

First figure out which kind of list to use: bind ourselves
the first nentioned |list type and warn about any remaining

ones. If we find no list type, we default to LIST item
LI NTED */
(i =0; n->args & i < (int)n->args->argc; i++) {

It = LI ST__NONE;

dup = conp = 0;

width = offs = NULL;

n

witch (n->args->argv[i].arg) {
/* Set list types. */
case (MDOC Bullet):
It = LIST_bullet;
break;
case (MDOC_Dash):
It = LI ST dash;
br eak;
case (MDOC_Enum):
It = LIST_enum
br eak;
case (MDOC_Hyphen):
I't = LI ST_hyphen;
break;
case (MDOC_Item):
It = LIST item
break;
case (MDOC _Tag):
It = LIST tag;
br eak;
case (MDOC_Di ag):
It = LI ST _diag;
br eak;
case (MDOC_Hang):
It = LI ST_hang;
break;
case (MDOC_(hang):
I't = LI ST_ohang;
br eak;
case (MDOC_Inset):
It = LIST inset;
br eak;
case (MDOC_Col umm):
It = LI ST_col um;
br eak;
/* Set list arguments. */
case (MDOC_Conpact):
dup = n->norm >Bl . conp;
conp = 1;
br eak;
case (MDOC_W dth):
/* NB: this can be enpty! */
if (n->args->argv[i].sz) {
w dth = n->args->argv[i].value[0];
dup = (NULL != n->norm >Bl.wi dth);
br eak;

}
ndoc_nnsg(ndoc, n, MANDOCERR_| GNARGV) ;

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

674
675
676
677
678
679
680
681
682
683
684
685
686

688

690
691

693
694
695
696
697
698

702
703

707
708
709
710
711
712
713
714
715
716

718

720
721
722
723
724

726
727

731
732
733
734

736
737
738
739

br eak;
case (MDOC O fset):
/* NB: this can be enpty! */
if (n->args->argv[i].sz) {
offs = n->args->argv[i].val ue[0];
dup = (NULL !'= n->norm >BIl.offs);

br eak;
}
ndoc_nnsg(ndoc, n, MANDOCERR | GNARGV) ;
break;
defaul t:
conti nue;
}
/* Check: duplicate auxiliary argunents. */
if (dup)

nmdoc_nmnsg(ndoc, n, MANDOCERR_ARGVREP) ;

if (comp && ! dup)
n->norm >Bl . conp = conp;

if (offs & ! dup)
n->norm >Bl . of fs = offs;

if (width & ! dup)
n->norm >Bl . wi dth = width;

/* Check: nultiple list types. */

if (LIST_NONE !=1t &% n->norm >Bl.type != LI ST__NONE)
ndoc_nnsg(ndoc, n, MANDOCERR LI STREP);

/* Assign list type. */

if (LIST__NONE != 1t && n->norm >Bl.type == LI ST__NONE) {
n->norm >Bl . type = It;
/* Set columm information, too. */
if (LIST_colum == 1t) {

n->norm >Bl . ncol s =
n->args->argv([i].sz;

n->norm >Bl .cols = (void *)
n->args->argv[i].val ue;

/* The list type should cone first. */

if (n->norm>Bl.type == LI ST__NONE)
if (n->norm>Bl.wdth ||
n->norm >Bl . of fs ||
n- >nor m >Bl . conp)
ndoc_nnsg(nmdoc, n, MANDOCERR LI STFI RST);

continue;

Allow lists to default to LIST item */

(LI ST__NONE == n->norm>Bl .type) {
ndoc_nnsg(ndoc, n, MANDOCERR LI STTYPE);
n->norm >Bl .type = LIST_item

Validate the width field. Some list types don’t need wi dth
types and shoul d be warned about them Ohers should have it
and nust also be warned. Yet others have a default and need

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

740 * no warning.

736 * and nust al so be warned.

741 */

743 switch (n->norm>Bl.type) {

744 case (LIST_tag):

745 if (NULL == n->norm >Bl . w dth)
741 if (n->norm>Bl.wdth)

742 br eak;

746 mdoc_nmsg(nmdoc, n, MANDOCERR_NOW DTHARQG) ;
747 br eak;

748 case (LIST_colum):

749 /* FALLTHROUGH */

750 case (LIST_diag):

751 /* FALLTHROUGH */

752 case (LI ST_ohang):

753 /* FALLTHROUGH */

754 case (LIST_inset):

755 /* FALLTHROUGH */

756 case (LIST_ item:

757 if (n->norm>Bl.width)

758 mdoc_nmsg(nmdoc, n, MANDOCERR_| GNARGV) ;
759 br eak;

760 case (LIST_bullet):

761 /* FALLTHROUGH */

762 case (LI ST_dash):

763 /* FALLTHROUGH */

764 case (LI ST_hyphen):

765 if (NULL == n->norm >Bl . w dth)
766 n->norm>Bl . width = "2n";
767 br eak;

768 case (LIST_enum:

769 if (NULL == n->norm >BI . wi dth)
770 n->norm >Bl . width = "3n";
771 br eak;

772 defaul t:

773 br eak;

774 }

776 return(1);

777 }

____unchanged_portion_onitted_

886 static int
887 pre_sh(PRE_ARGS)

888 {

890 if (MDOC_BLOCK != n->type)

891 return(1);

878 rof f _regunset (ndoc->rof f, REG nS);

892 return(check_parent (ndoc, n, MDOC_MAX, MDOC_ROQT));
893 }

____unchanged_portion_onmitted_

1121 static int
1122 post _nm(POST_ARGS)

1123 {

1124 char buf [BUFSI Z] ;

1125 int (o

1127 if (NULL != ndoc->neta. nane)

1114 /* 1If no child specified, make sure we have the neta nane.

*/

10

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

1116
1117
1128
1119
1120

1130
1122

1132
1133
1134
1135
1136

1138
1139
1125
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

1130
1131
1150
1151 }

if (NULL == ndoc->l ast->child & NULL == ndoc- >neta. nane) {
mdoc_nnsg(ndoc, ndoc->l ast, MANDOCERR NONAME) ;
return(l);

} elseif (mioc->mat a. nane)
return(1);

/* Try to use our children for setting the meta name. */
/* If no meta name, set it fromthe child. */

if (NULL != ndoc->last->child) {
buf[0] ="'\0";
¢ = concat (buf, ndoc->l ast->child, BUFSIZ);

} else
c = 0;

switch (c) {

case (1)

if (- (c = concat (buf, ndoc->last->child, BUFSIZ))) {
mjoc_nmsg(mdoc, ndoc- >l ast->child, MANDOCCERR_MEM ;
return(0);

case (0):

mdoc_nnsg(ndoc, ndoc->l ast, MANDOCERR NONAME) ;
nmdoc- >nmet a. name = mandoc_strdup(" UNKNOMN') ;
br eak;
defaul t:
nmdoc- >net a. name = mandoc_st rdup(buf);
br eak;

}

assert(c);
mdoc- >net a. name = mandoc_st rdup(buf);
return(l);

__unchanged_portion_omtted_

1352 static int

1353 post_bl
1354
1355
1337

1357
1358
1359
1360
1361
1362
1363

1365

1367
1368
1369
1370
1371
1372
1373
1374
1375
1376

1378
1379
1380
1381

_ bl ock(POST_ARGS)

struct ndoc_node *n, *ni, *nc;
struct ndoc_node *n;

/
These are fairly conplicated, so we've broken theminto two
functions. post_bl_block tag() is called when a -tag is
specified, but no -width (it nust be guessed). The second
when a -width is specified (macro indicators nust be
rewritten into real |engths).

/

* ok % ok kb ¥

n = ndoc->| ast;

if (LIST_tag == n->norm >Bl.type &&
NULL == n->norm >Bl.width) {
if (! post_bl_block_tag(ndoc))
return(0);
assert (n->norm >Bl . wi dth);
} else if (NULL !'= n->norm>Bl.wdth) {
if (! post_bl_block_w dth(ndoc))
return(0);
assert(n->norm >Bi . wi dt h);

}
for (ni = n->body->child; ni; ni = ni->next) {
if (NULL == ni->body)
cont i nue;

nc = ni->body- >l ast;

11

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407

1359
1360
1408 }

while (NULL !'= nc) {

switch (nc->tok) {

case (MDOC_Pp):
/* FALLTHROUGH */
case (MDOC_Lp):

/* FALLTHROUGH */
case (MDOC_ br):

br eak;
defaul t:

nc = NULL

conti nue;

}

if (NULL == ni->next)
mdoc_nmsg(nmdoc, nc, MANDOCERR MOVEPAR) ;
if (! mdoc_node_relink(ndoc, nc))

return(0);
} else if (0 == n->norm >Bl.conp &&
LI ST_col umm ! = n->norm >Bl . type)

{
nmdoc_nmsg(ndoc, nc, MANDOCERR | GNPAR) ;
ndoc node del ete(rrdoc nc);

} else
br eak;
nc = ni->body- >l ast;

}
return(1l);

assert(n->norm >Bl . w dth);
return(1);

__unchanged_portion_onitted_

1591 static int

1592 post

1593 {
1594
1595
1596
1547

1598
1599
1600
1601
1602
1549
1603
1604
1605
1606
L
1552
1553
1607
1608

1610
1611
1612
1613
1556
1557
1558
1559
1560
1561

_bl (POST_ARGS)

struct ndoc_node *nparent, *nprev; /* of the Bl block */
struct ndoc_node *nbl ock, *nbody; /* of the Bl */
struct ndoc_node *nchild, *nnext; /* of the Bl body */

struct ndoc_node *n;

nbody = ndoc- >l ast;
switch (nbody >type) {
case (MDOC_BLOCK) :
return(post_bl _bl ock(ndoc));
case (MDOC_HEAD) :
if (MDOC_HEAD == ndoc- >l ast - >t ype)
return(post_bl _head(ndoc));
case (MDOC_BQODY) :
br eak;
defaul t:
if (MDOC_BLOCK == ndoc->| ast->type)
return(post_bl _bl ock(ndoc));
if (MDOC_BQODY != ndoc->l| ast->type)
} return(1);

nchild = nbody->chil d;
while (NULL != nchild) {
if (MDOC_It == nchild->tok || MDOC_Sm == nchil d->tok) {
nchild = nchil d->next;
for (n = ndoc->last->child; n; n = n->next) {
switch (n->tok) {
case (MDOC_Lp):
/* FALLTHROUGH */
case (MDOC_Pp):
ndoc_nnsg(ndoc, n, MANDOCERR _CHI LD);

new usr/ src/ cnd/ mandoc/ ndoc_val i date. ¢ 13 new usr/ src/ cnd/ mandoc/ ndoc_val i date. ¢ 14
1562 /* FALLTHROUGH */ 1672 }
1563 case (MDOC_It): 1673 check_count (ndoc, MDOC_ELEM CHECK WARN, CHECK EQ 1);
1564 /* FALLTHROUGH */
1565 case (MDOC_Sm): 1675 assert (MDOC_TEXT == ndoc->| ast->chi | d->type);
1614 conti nue;
1567 defaul t: 1677 if (0 == strcnp(ndoc->l ast->child->string, "on")) {
1568 br eak; 1678 if (MDOC_Sm == ndoc- >| ast - >t ok)
1615 } 1679 ndoc- >f | ags & ~MDOC_SMOFF;
1591 if (0 == strcnp(ndoc->l ast->child->string, "on"))
1617 mdoc_nnsg(nmdoc, nchild, MANDOCERR CHI LD); 1680 return(1l);
1681 1
1619 /* 1682 if (0 == strcnp(ndoc- >Iast >child->string, "off")) {
1620 * Move the node out of the Bl bl ock. 1683 if (MDOC_Sm == ndoc- >| ast - >t ok)
1621 * First, collect all required node pointers. 1684 ndoc- >f | ags | = MDOC_SMOFF;
1622 */ 1593 if (0 == strenp(ndoc->last->child->string, "off"))
1685 ret urn(1);
1624 nbl ock = nbody->parent; 1686 }
1625 nprev = nbl ock- >prev;
1626 nparent = nbl ock->parent; 1688 mdoc_nmsg(ndoc, ndoc->l ast, MANDOCERR_BADBOQL) ;
1627 nnext = nchi | d- >next ; 1689 return(l);
1690 }
1629 l* _____unchanged_portion_onitted_
1630 * Unlink this child.
1631 */ 1866 /*
1867 * For sone argunents of some nacros
1633 assert (NULL == nchil d->prev); 1868 * convert all breakabl e hyphens into ASCI | _HYPH.
1634 if (0 == --nbody->nchild) { 1869 */
1635 nbody- >child = NULL; 1870 static int
1636 nbody- >l ast = NULL; 1871 post _hyph(POST_ARGS)
1637 assert (NULL == nnext); 1872 {
1638 } else { 1873 struct ndoc_node *n, *nch;
1639 nbody- >chi | d = nnext 1874 char *cp;
1640 nnext->prev = NULL
1571 nmdoc_nnsg(ndoc, n, MANDCCERR SYNTCHI LD) ; 1876 n = ndoc- >l ast;
1572 return(0); 1877 switch (n->type) {
1641 } 1878 case (MDOC_HEAD) :
1879 if (MDOC_Sh == n->tok || MDOC_Ss == n->tok)
1643 /* 1880 br eak;
1644 * Relink this child. 1881 return(1);
1645 */ 1882 case (MDOC_BQODY) :
1883 if (MDOC_ D1 == n->tok || MDOC_Nd == n->tok)
1647 nchi | d- >parent = nparent; 1884 br eak;
1648 nchi | d- >prev = nprev; 1885 return(1);
1649 nchi | d- >next = nbl ock; 1886 case (MDOC_ELEM:
1887 br eak;
1651 nbl ock->prev = nchil d; 1888 defaul t:
1652 npar ent - >nchi | d++; 1889 return(1);
1653 if (NULL == nprev) 1890 }
1654 nparent->child = nchild;
1655 el se 1892 for (nch = n->child; nch; nch = nch->next) {
1656 nprev->next = nchild; 1893 if (MDOC_TEXT != nch->type)
1894 cont i nue;
1658 nchild = nnext; 1895 cp = nch->string;
1659 } 1896 if (3 >strnlen(cp, 3))
1897 conti nue;
1661 return(1); 1898 while ("\0’ I—*(++cp))
1662 } 1899 if ('-' == *cp &&
1900 i sal pha((un5| gned char)cp[-1]) &&
1664 static int 1901 i sal pha((unsi gned char)cp[1]))
1665 ebool (struct ndoc *ndoc) 1902 *cp = ASCI | _HYPH;
1666 { 1903 1
1904 return(1);
1668 if (NULL == ndoc->l ast->child) { 1905 }
1669 mdoc_nnsg(nmdoc, ndoc->l ast, MANDOCERR NMACRCEMPTY) ;
1670 ndoc_node_del et e(ndoc, ndoc- >l ast); 1907 static int
1671 return(l); 1908 post _ns(POST_ARGS)

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

1909 {

1911 if (MDOC_LINE & ndoc- >l ast->fl ags)

1912 ndoc_nnsg(ndoc, ndoc- >l ast, MANDOCERR_| G\NS) ;
1913 return(1);

1914 }

__unchanged_portion_omtted_

1963 static int
1964 post_sh_head(POST_ARGS)

1965 {

1966 char buf [BUFSI Z] ;

1967 struct ndoc_node *n;

1968 enum ndoc_sec sec;

1969 int c;

1971 /*

1972 * Process a new section. Sections are either "named" or
1973 * "custonl. Custom sections are user-defined, while naned ones
1974 * follow a conventional order and may only appear in certain
1975 * manual sections.

1976 */

1978 sec = SEC _CUSTOM

1979 buf[0] = "\0";

1980 if (-1 == (c = concat (buf, ndoc->last->child, BUFSIZ))) {
1981 mdoc_nnsg(ndoc, ndoc->l ast->child, MANDOCERR MEM) ;
1982 return(0);

1983 } elseif (1 ==¢)

1984 sec = a2sec(buf);

1986 /* The NAME should be first. */

1988 if (SEC_NAME != sec & SEC NONE == ndoc- >| ast naned)

1989 mdoc_nnsg(mdoc, ndoc- >l ast, MANDOCERR NAMESECFI RST) ;
1991 /* The SYNOPSI S gets special attention in other areas. */
1993 if (SEC_SYNOPSIS == sec) {

1994 rof f_setreg(ndoc->roff, "nS", 1, '=);

1860 if (SEC_SYNOPSI S == sec)

1995 nmdoc- >f | ags | = MDOC_SYNCPSI S;

1996 } else {

1997 rof f_setreg(ndoc->roff, "nS", 0, '=);

1862 el se

1998 nmdoc- >f | ags & ~MDOC_SYNOPSI S;

1999 }

2001 /* Mark our |ast section. */

2003 ndoc- >| ast sec = sec;

2005 /*

2006 * Set the section attribute for the current HEAD, for its
2007 * parent BLOCK, and for the HEAD children; the latter can
2008 * only be TEXT nodes, so no recursion is needed.

2009 * For other blocks and el enents, including .Sh BODY, this is
2010 * done when allocating the node data structures, but for .Sh
2011 * BLOCK and HEAD, the section is still unknown at that tine.
2012 */

2014 ndoc- >| ast - >parent - >sec = sec;

2015 ndoc- >| ast - >sec = sec;

2016 for (n = nmdoc->last->child; n; n = n->next)

2017 n->sec = sec;

15

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

2019

2021
2022

2024
2025
2026
2027

2029
2030

2032
2033

2035
2037
2039
2041

2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
1919
2057
2058
2059
2060

2062
2063 }

/* We don’t care about custom sections after this. */

if (SEC_CUSTOM == sec)
return(1);

/*
* Check whet her our non-custom section is being repeated or is

* out of order.
*/

if (sec == ndoc- >l ast naned)

nmdoc_nnsg(ndoc, ndoc->l ast, MANDOCERR_ SECREP) ;

if (sec < ndoc->| ast naned)
mdoc_nnsg(ndoc, ndoc- >l ast,

MANDOCERR SECOQO) ;
/* Mark the |ast naned section. */
nmdoc- >l ast naned = sec;
/* Check particular section/manual conventions. */
assert (ndoc->net a. nsec) ;
switch (sec) {
case (SEC_RETURN VALUES):
/* FALLTHROUGH */
case (SEC ERRORS) :
/*

FALLTHROUGH */
case (SEC LI BRARY)

if (*nmdoc->meta.nmsec == '2")
break;

if (*ndoc->meta.nmsec == '3")
br eak;

if (*nmdoc->meta.nmsec == '9")
break;

mandoc_nsg(MANDOCERR_SECMSEC, ndoc- >par se,
ndoc- >| ast- >l i ne, ndoc->| ast->pos, buf);
mdoc_nnsg(ndoc, ndoc->| ast, MANDOCERR_SECMSEC) ;
br eak;
defaul t:
br eak;
}

return(1);

__unchanged_portion_omtted_

2088 static int
2089 pre_par (PRE_ARGS)

2090 {

2092
2093
2094
2095

2097
2098
2099
2100

2102
2103
2104
1965

if (NULL == ndoc->| ast)
return(1);

if (MDOC_ELEM != n->type &% MDOC BLOCK ! = n->type)
return(l);

n"t allow prior ‘Lp’ or ‘Pp prlor to a paragraph type
bl ock: ‘Lp’, ‘Pp’, or non-conpact ‘Bd’ or
/

B

if (MDOC_Pp != ndoc->| ast->tok &&
MDOC _Lp != ndoc->| ast - >t ok &&
MDOC br != ndoc- >| ast - >t ok)
if (MDOC_Pp != ndoc->l ast->tok &% MDOC Lp != ndoc- >l ast - >t ok)

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

2105 return(1);

2106 if (MDOC_Bl == n->tok && n->norm >Bl.conp)

2107 return(1);

2108 if (MDOC_Bd == n->tok && n->norm >Bd. conp)

2109 return(1);

2110 if (MDOC_It == n->tok && n->parent->norm >Bl.conp)
2111 return(1);

2113 ndoc_nnsg(ndoc, ndoc->l ast, MANDOCERR_| GNPAR) ;
2114 mdoc_node_del et e(ndoc, ndoc->| ast);

2115 return(l);

2116 }

2118 static int

2119 post _par (POST_ARGS)

2120 {

2122 if (MDOC_ELEM ! = ndoc->| ast->type &&

2123 MDOC_BLOCK ! = ndoc- >| ast - >t ype)

2124 return(1);

2126 if (NULL == ndoc->| ast->prev) {

2127 if (MDOC_Sh != ndoc- >l ast->parent->tok &%
2128 MDOC_Ss ! = ndoc- >l ast - >par ent - >t ok)
2129 return(l);

2130 } else {

2131 if (MDOC_Pp != ndoc->l| ast->prev->tok &&
2132 MDOC_Lp != ndoc- >l ast - >prev->t ok &&
2133 (MDOC_br != ndoc->l ast->tok ||

2134 (MDCC_sp != ndoc->| ast->prev->t ok &&
2135 MDOC_br ! = mdoc- >l ast - >prev->tok)))
2136 return(l);

2137 }

2139 mdoc_nnsg(ndoc, ndoc->l ast, MANDOCERR | GNPAR) ;
2140 ndoc_node_del et e(ndoc, ndoc->l ast);

2141 return(1);

2142 }

2144 static int

2145 pre_literal (PRE_ARGS)

2146 {

2148 if (MDOC BODY != n->type)

2149 return(1)

2151 I*

2152 * The ‘DI’ (note "el" not "one") and ‘Bd -literal’ and ‘Bd
2153 * -unfilled nacros set MDOC LI TERAL on entrance to the body.
2154 */

2156 switch (n->tok)

2157 case (MDCC_ Dl):

2158 ndoc->fl ags | = MDOC_LI TERAL

2159 br eak;

2160 case (MDOC_Bd):

2161 if (DISP_literal == n->norm >Bd.type)
2162 ndoc->flags | = MDOC_LI TERAL

2163 if (DISP_unfilled == n->norm >Bd. type)
2164 nmdoc- >fl ags | = MDOC_LI TERAL;

2165 br eak;

2166 defaul t:

2167 abort();

2168 /* NOTREACHED */

2169 1

2170

17

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

2171
2172 }

return(1);

____unchanged_portion_onitted_

2204 static int
2205 post _dt (POST_ARGS)

2206 {
2207
2208
2209

2211

2213
2214
2215
2216
2217
2218

2220
2222

2224
2225
2226
2227

2229
2230
2231
2232
2233
2234
2235

2237
2238
2239

2241
2242
2243
2244
2245
2246
2247
2248

2250
2251
2252

2254
2255

2257
2258
2259
2260
2261
2262
2263

2265

struct ndoc_node *nn, *n;
const char *cp;
char *p;

n = ndoc->| ast;

if (mdoc->neta.title)
free(ndoc->neta.title);

if (ndoc->neta.vol)
free(ndoc->neta. vol);

if (mdoc->neta. arch)
free(ndoc->neta. arch);

ndoc->neta.title = ndoc->nmeta.vol = ndoc->neta.arch = NULL;
/* First make all characters uppercase. */

if (NULL !'= (nn = n->child))
for (p = nn->string; *p; p++) {
if (toupper((unsigned char)*p) == *p)
continue;
/*
* FIXME: don’'t be lazy: have this make all
* characters be uppercase and just warn once.
*

ndoc_nnsg(ndoc, nn, MANDOCERR_UPPERCASE) ;
break;

}
/* Handles: ‘.Dt’

* -->title = unknown, volunme = local, nsec = 0, arch = NULL

*/

if (NULL == (nn = n->child)) {
[* XXX make these macro val ues. */
/* FIXME: warn about ni ssing values. */
nmdoc->neta.title = mandoc_strdup(" UNKNOMW') ;
nmdoc- >nmet a. vol = mandoc_st rdup(" LOCAL") ;
nmdoc- >net a. nsec = mandoc_st rdup(”1");

return(l);
}
/* Handles: ‘.Dt TITLE
* -->title = TITLE, volume = local, nsec = 0, arch = NULL
*/

ndoc->neta.title = mandoc_strdup

"\0" == nn->string[0] ? "UNKNOMW' : nn->string);
if (NULL == (nn = nn->next)) {

/* FIXME: warn about m ssing nsec. */

[* XXX: make this a macro value. */

nmdoc- >nmet a. vol = mandoc_strdup("LOCAL");

nmdoc- >nmet a. msec = mandoc_strdup(”1");

return(1);

}
/* Handles: ‘.Dt TITLE SEC

18

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c

2266
2267
2268
2269
2270

2272
2273
2274
2275
2276
2277
2278
2279
2280

2282
2283

2285
2286
2287
2288
2289
2290

2292
2293
2294
2295
2296
2132
2297
2298
2299
2300
2301
2302
2303
2304

2306
2307

2309
2310 }

* -->title = TITLE, volunme = SECis nsec ?
* format (nsec) : SEC,

* nmsec = SEC is nsec ? atoi(nsec) : O,
* arch = NULL

*

/

cp = mandoc_a2nsec(nn->string);
it (cp) {
ndoc- >net a. vol = mandoc_st rdup(cp);
nmdoc- >nmet a. msec = mandoc strdup(nn >string);
} else {
nmdoc_nnsg(ndoc, n, MANDOCERR BADVMSEC) ;
nmdoc- >net a. vol = mandoc_st rdup(nn->string);
nmdoc- >nmet a. msec = mandoc_strdup(nn->string);

}

if (NULL == (nn = nn->next))
return(1);

/* Handles: ‘.Dt TITLE SEC vOU’

* -->title = TITLE, volume = VOL is vol ?

* format (VOL) :

* VOL is arch ? format(arch)

* (Yo R

*

/

cp = nmdoc_a2vol (nn->string);
if (cp) {
free(ndoc->neta.vol);
mdoc- >neta. vol = mandoc _strdup(cp);
} else {
/* FI XME: warn about bad arch. */
= ndoc_a2ar ch(nn->string);
|f (NULL == cp) {
mdoc_nnsg(ndoc, nn, MANDOCERR BADVOLARCH) ;
free(ndoc- >net a. voI)

mdoc- >met a. vol = mandoc _strdup(nn->string);
} else
nmdoc- >met a. ar ch = mandoc_strdup(cp);
}
/* lgnore any subsequent paraneters... */

/* FIXME: warn about subsequent paraneters. */

return(1);

__unchanged_portion_onitted_

2347 static int
2348 post _os(POST_ARGS)

2349 {

2350 struct ndoc_node *n

2351 char buf [BUFSI Z] ;

2352 int c;

2353 #i fndef OSNAME

2354 struct utsname ut snane;

2355 #endi f

2357 n = ndoc->| ast;

2359 /*

2360 * Set the operating systemby way of the ‘Gs’ nmmcro.
2361 * The order of precedence is:

2362 * 1. the argunent of the ‘GCs’ macro, unless enpty
2363 * 2. the -los=foo conmand |ine argunent, if provided
2364 * 3. -DOSNAME="\"foo\"", if provided during conpilation

new usr/ src/ cnd/ mandoc/ ndoc_val i date. c 20
2365 * 4. "sysnane rel ease" from unane(3)

2195 * Set the operating systemby way of the ‘Gs’ macro. Note that
2196 * if an argunent isn't provided and - DOSNAME="\"foo\"" is
2197 * provided during conpilation, this value will be used instead
2198 * of filling in "sysnanme rel ease" from unanme().

2366 */

2201 i f (ndoc->neta. os)

2368 free(ndoc- >net a. os);

2370 buf[0] = '\ 0’

2371 if (-1 == (¢ = concat (buf, n->child, BUFSIZ))) {

2372 nmdoc_nnsg(ndoc, n->child, MANDOCERR . MVEM ;

2373 return(0);

2374 1

2376 assert(c);

2212 /* XXX: yes, these can all be dynami cally-adjusted buffers, but
2213 * it’s really not worth the extra hackery.

2214 */

2378 if ("\0" == buf[0])

2379 if (nmdoc->defos) {

2380 ndoc- >net a. os = mandoc_st r dup(ndoc- >def 0s) ;
2381 return(l);

2382 }

2383 #ifdef OSNAME

2384 if (strlcat(buf, OSNAME, BUFSIZ) >= BUFSIZ) {

2385 ndoc nrrsg(mjoc n, MANDOCERR_MEM ;

2386 return(0);

2387 }

2388 #el se [*! OSNAME */

2389 if (-1 == uname(&utsnane)) {

2390 nmdoc_nnsg(nmdoc, n, MANDOCERR UNAI\/E)

2391 mdoc->net a. os = mandoc_st rdup(" UNKNO/\N)

2392 return(post_prol (ndoc));

2393 }

2395 if (strlcat(buf, utsnane.sysname, BUFSIZ) >= BUFSIZ) {
2396 ndoc_nnsg(ndoc, n, MANDOCERR_MEM ;

2397 return(0);

2398 }

2399 if (stricat(buf, " ", BUFSIZ) >= BUFSIZ) {

2400 ndoc nrrsg(mdoc, n, MANDOCERR_MEM ;

2401 return(0);

2402 }

2403 1f (strlcat(buf, utsnane.release, BUFSIZ) >= BUFSIZ) {
2404 ndoc_nnsg(ndoc, n, NANDOCERR _ MVEM) ;

2405 return(0);

2406 }

2407 #endif /*! OSNAVE*/

2408 }

2410 ndoc- >net a. os = mandoc_st rdup(buf);

2411 return(1);

2412 }

__unchanged_portion_omtted_

new usr/ src/ cnd/ mandoc/ msec. i n 1 new usr/ src/ cnd/ mandoc/ msec. i n

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 56 LI NE("SdeVI nfO", "mVI ce |nf0l’n’ﬁt|0n LI brary Functlons")
5106 Wed Jul 30 20:55:10 2014 57 LI NE("3DL", "Dynam ¢ Linking Library Functions")
new usr/ src/ cnd/ mandoc/ msec. i n 58 LI NE("3dl", "Dynam ¢ Linking Library Functions")
5051 inport ndocnmi-1.12.3 37 LI NE("3DLPI", "Data Link Provider Interface Library Functions")
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con» 60 LI NE("3dIpi", "Data Link Provider Interface Library Functions")
Approved by: TBD 61 LINE("3DM", "DM Library Functions")
LR R R EEEEEEEEE SRS RS RS SRS RS RS E R EE R R RREERREREEEEEEEEEESEESESE] 62 LI NE("3dm "' "w L| brary FunCtIOHS")
1/* 38 LI NE("3DNS_SD', "DNS Service Discovery Library Functions")
2 * This file and its contents are supplied under the ternms of the 64 LI NE("3dns_sd", "DNS Service Discovery Library Functions")
3 * Common Devel opnent and Distribution License (" "), version 1.0. 39 LI NE(" 3DOCR", "Door Library Functions")
4 * You may only use this file in accordance with the terns of version 66 LI NE("3door", "Door Library Functions")
5 * 1.0 of the CDDL. 40 LI NE(" 3ELF", "ELF Library Functions")
6 * 68 LI NE("3el f", "ELF Library Functions")
7 * Afull copy of the text of the CDDL should have acconpanied this 41 LI NE(" 3EXACCT", "Ext ended Accounting File Access Library Functions")
8 * source. A copy of the CDDL is also available via the Internet at 70 LI NE("3exacct", "Ext ended Accounting File Access Library Functions")
9 * http://www.illunos.org/license/ CDDL. 42 LI NE(" 3EXT", "Ext ended Library Functions")
10 */ 72 LI NE("3ext", "Ext ended Library Functions")
43 LI NE(" 3FCCE", "FCoE Port Managenent Library Functions")
12 /* 74 LI NE("3fcoe", "FCoE Port Managenent Library Functions")
13 * Copyright 2012 Nexenta Systens, Inc. Al rights reserved. 44 LI NE(" 3FSTYP", "File System Type Identification Library Functions")
14 */ 76 LI NE("3fstyp", "File System Type Identification Library Functions")
45 LI NE("3CGEN', "String Pattern-Mtching Library Functions")
16 LINE("1", "User Comrands") 78 LI NE("3gen", "String Pattern-Mtching Library Functions")
17 LI NE("1B", "BSD Conpatibility Package Conmands") 46 LI NE("3GSsS", "Generic Security Services APl Library Functions")
17 LI NE("1B", "illunmos/ BSD Conpati bility Package Commands") 80 LI NE("3gss", "Generic Security Services APl Library Functions")
18 LI NE("1b", "illunmps/ BSD Conpati bility Package Commands") 47 LI NE(" 3HEAD", "Header s")
18 LI NE("1C", " Comruni cati on Comrands") 82 LI NE(" 3head", "Headers")
20 LI NE("21c", " Comruni cati on Comrands") 48 LI NE("3I SCsI T, "i SCSI Managenent Library Functions")
21 LI NE("1F", "FM.I Commands") 84 LINE("3iscsit", "i SCSI Managenent Library Functions")
22 LI NE("1f", "FM.I Commands") 49 LI NE("3KRB", "Kerberos Library Functions")
23 LINE("1G', "Graphi cs and CAD Commands") 50 LI NE("3KRB5", "M T Kerberos 5 Library Functions")
24 LINE("1g", "G aphi cs and CAD Commands") 86 LI NE("3krb", "Kerberos Library Functions")
19 LI NE("1HAS", "User Commands") 51 LI NE("3KSTAT", "Kernel Statistics Library Functions")
26 LI NE("1lhas", "User Commands") 88 LI NE("3kstat", "Kernel Statistics Library Functions")
20 LI NE("1M', "Mai nt enance Commrands") 52 LI NE("3KWM', "Kernel VM Library Functions")
28 LI NE("1nt', "Mai nt enance Commrands") 90 LI NE("3kvni, "Kernel VM Library Functions")
21 LI NE("1S", "illumps Specific Commands") 53 LI NE("3LDAP", "LDAP Library Functions")
30 LINE("1s", "illumps Specific Commands") 92 LI NE("3l dap”, "LDAP Library Functions")
22 LINE("2", "System Cal | s") 54 LI NE(" 3LGRP", "Locality Goup Library Functions")
23 LINE("3", "Introduction to Library Functions") 94 LI NE("3I grp", "Locality Goup Library Functions")
24 LI NE("3BSDVALLCC', "BSD Menory Allocation Library") 55 LI NE("3LIB", "Interface Libraries")
33 LINE("3AI O, "Asynchronous |/0O Library Functions") 96 LINE("3lib", "“Interface Libraries")
34 LI NE("3ai 0", "Asynchronous I/0O Library Functions") 97 LI NE("3LI BUCB", "illunmos/BSD Conpatibility Interface Libraries")
25 LI NE("3BSM', "Security and Auditing Library Functions") 98 LI NE("3li buch", "illunmos/BSD Conpatibility Interface Libraries")
36 LI NE("3bsnt, "Security and Auditing Library Functions") 56 LI NE("3M', "Mat hemati cal Library Functions")
26 LI NE("3C', "Standard C Li brary Functions") 100 LI NE("3nt, " Mat hemati cal Library Functions")
27 LI NE("3C++", "C++ Library Functions") 57 LI NE("3MAIL", “User Mail box Library Functions")
38 LI NE("3c", "Standard C Library Functions") 102 LI NE("3mail", "User Mailbox Library Functions")
28 LINE("3C_DB", "Threads Debuggi ng Li brary Functions") 58 LI NE("3MALLOC', "Menory Allocation Library Functions")
40 LI NE("3C_db", "Threads Debuggi ng Library Functions") 104 LI NE("3mal | oc", "Menory Allocation Library Functions")
29 LI NE("3CFGADM', "Configuration Adm nistration Library Functions") 59 LI NE("3MP", “Mil tiple Precision Library Functions")
30 LI NE("3COMVPUTI L", " Communi cation Protocol Parser Utilities Library Functio 106 LI NE("3nmp", "Mul tiple Precision Library Functions")
42 LI NE("3cfgadni, "Configuration Administration Library Functions") 60 LI NE("3MPAPI ", "Common Ml ti path Managenent Library Functions")
43 LI NE("3COWPPUTI L", " Communi cation Protocol Parser Wilities Library Functio 108 LI NE(" 3npapi ", "Common Ml ti path Managenent Library Functions")
44 LI NE(" 3conpputil ", " Communi cation Protocol Parser Wilities Library Functio 61 LI NE("3NSL", "Net wor ki ng Services Library Functions")
31 LI NE(" 3CONTRACT", "Contract Managenent Library Functions") 110 LI NE("3nsl", "Net wor ki ng Services Library Functions")
46 LI NE("3contract", "Contract Managenent Library Functions") 62 LI NE("3NVPAIR', "Narme-val ue Pair Library Functions")
32 LI NE("3CPC', "CPU Performance Counters Library Functions") 112 LI NE("3nvpair", "Nanme-val ue Pair Library Functions")
48 LI NE("3cpc"”, "CPU Performance Counters Library Functions") 63 LI NE("3PAM', "PAM Li brary Functions")
33 LI NE(" 3CURSES", "Curses Library Functions") 114 LI NE(" 3pant', "PAM Li brary Functions")
50 LI NE("3curses", "Curses Library Functions") 64 LI NE("3PAPI ", "PAPI Library Functions")
34 LI NE(" 3DAT", "Direct Access Transport Library Functions") 116 LI NE(" 3papi ", "PAPI Library Functions")
52 LI NE("3dat", "Direct Access Transport Library Functions") 65 LI NE("3PERL", "Per| Library Functions")
35 LI NE("3DEVI D', "Device ID Library Functions") 118 LI NE("3perl ™, "Per| Library Functions")
54 LI NE(" 3devi d", "Device ID Library Functions") 66 LI NE("3PICL", "PICL Library Functions")
36 LI NE(" 3DEVI NFO', "Device Information Library Functions") 120 LI NE("3picl", "PICL Library Functions")

new usr/ src/ cnd/ mandoc/ nsec. i n new usr/ src/ cnd/ mandoc/ nsec. i n
67 LI NE("3PI CLTREE", "PICL Plug-In Library Functions") 92 LI NE("3F", "Fortran Library Routines")
122 LINE("3picltree", "PICL Plug-In Library Functions") 188 LI NE("3f", "Fortran Library Routines")
123 LI NE("3PLOT", "Graphics Interface Library Functions") 189 LI NE("3G', "C Library Functions")
124 LI NE("3plot", "Graphics Interface Library Functions") 190 LI NE("3g", "C Library Functions")
68 LI NE("3POOL", "Pool Configuration Manipulation Library Functions") 191 LI NE("3K", "Kernel VM Library Functions")
126 LI NE("3pool ", "Pool Configuration Mnipulation Library Functions") 192 LI NE("3k", "Kernel VM Library Functions")
69 LI NE("3PROC', "Process Control Library Functions") 193 LI NE("3L", "Li ght wei ght Processes Library")
128 LI NE("3proc”, "Process Control Library Functions") 194 LI NE("3I", "Li ght wei ght Processes Library")
70 LI NE("3PRQIECT", "Project Database Access Library Functions") 195 LI NE("3N', "Networ k Functions")
130 LI NE("3project", "Proj ect Database Access Library Functions") 196 LI NE("3n", "Net wor k Functions")
71 LI NE("3RAC', "Rermot e Asynchronous Calls Library Functions") 197 LI NE("3R', "Real time Library")
132 LI NE("3rac", "Renote Asynchronous Calls Library Functions") 198 LI NE("3r", "Real time Library")
72 LI NE("3RESOLV", "Resol ver Library Functions") 199 LI NE("3S", "Standard |/ O Functions")
134 LI NE("3resol v", "Resol ver Library Functions") 200 LI NE("3s", "Standard |/ O Functions")
73 LI NE("3RPC', "RPC Li brary Functions") 201 LI NE("3T", "Threads Library")
136 LI NE("3rpc", "RPC Li brary Functions") 202 LINE("3t", "Threads Library")
74 LI NE("3RSM', "Renote Shared Menory Library Functions") 203 LI NE("3W, "C Library Functions")
138 LI NE("3rsni', "Renote Shared Menory Library Functions") 204 LI NE("3w', "C Library Functions")
75 LI NE("3RT", "Real time Library Functions") 93 LI NE("3X", "M scel | aneous Library Functions"”
140 LINE("3rt", "Real time Library Functions") 206 LI NE("3x", "M scel | aneous Library Functions
76 LI NE("3SASL", "Sinpl e Aut hentication Security Layer Library Functions" 207 LI NE("3XC', "X/ Open Curses Library Functions")
142 LI NE("3sasl ", "Sinmple Authentication Security Layer Library Functions" 208 LI NE("3xc", "X/ Open Curses Library Functions")
77 LI NE("3SCF", "Service Configuration Facility Library Functions") 209 LI NE("3XN', "X/ Open Networking Services Library Functions")
144 LI NE("3scf", "Service Configuration Facility Library Functions") 210 LI NE("3xn", "X/ Open Networ ki ng Services Library Functions")
145 LI NE(" 3SCHED", "LWP Schedul i ng Library Functions") 94 LI NE("4", "File Formats")
146 LI NE("3sched", "LWP Schedul i ng Library Functions") 212 LI NE("4B", "illunmos/ BSD Conpatibility Package File Formats")
78 LI NE("3SEC', "File Access Control Library Functions") 213 LI NE("4b", "illunmos/BSD Conpatibility Package File Fornmats")
148 LI NE("3sec", "File Access Control Library Functions") 95 LI NE("5", "Standards, Environments, and Macros")
79 LI NE("3SECDB", "Security Attributes Database Library Functions") 96 LI NE("6", "Ganes and Denpbs"
150 LI NE("3secdb", "Security Attributes Database Library Functions") 97 LINE("T7", "Device and Network |nterfaces")
80 LI NE("3SIP", "Session Initiation Protocol Library Functions") 217 LINE("7B", "illunmos/ BSD Conpatibility Special
152 LI NE("3si p", "Session Initiation Protocol Library Functions") 218 LI NE("7b", "illunmos/BSD Conpatibility Special
81 LI NE("3SLP", "Service Location Protocol Library Functions") 98 LINE("7D", "Devi ces")
154 LI NE("3sl p", "Service Location Protocol Library Functions") 220 LI Ng("7d", "Devi ces")
155 LI NE(" 3SNWP", "SNMP Li brary Functions") 99 LI NE("7FS", "File Systens")
156 LI NE("3snnp", "SNMP Li brary Functions") 222 LINE("7fs", "File Systens")
82 LI NE("3SOCKET", "Sockets Library Functions") 100 LI NE(" 71", "loct|l Requests")
158 LI NE("3socket", "Sockets Library Functions") 224 LINE("7i", "loct|l Requests")
83 LI NE("3STM", "SCSI Target Mdde Franmework Library Functions") 101 LI NE("71PP", "I'P Quality of Service Mdul es")
160 LI NE("3stnf", "SCSI Target Mdde Franmework Library Functions") 226 LI NE("7ipp", "IP Quality of Service Mdul es")
84 LI NE("3SYSEVENT", "System Event Library Functions") 102 LI NE("7M', " STREAMS Modul es™)
162 LI NE("3sysevent", "System Event Library Functions") 228 LI NE("7nt, " STREAMS Mbdul es™)
85 LI NE("3TECLA", "I nteractive Comrand-|ine |Input Library Functions") 103 LI NE("7P", "Protocol s")
164 LI NE("3tecla", "I nteractive Command-|ine |Input Library Functions") 230 LI NE("7p", "Protocol s")
165 LI NE("3THR", "Threads Library Functions") 104 LI NE("8", "Mai nt enance Procedures")
166 LI NE("3thr", "Threads Library Functions") 232 LINE("8C', " Mai nt enance Procedures")
86 LI NE("3TNF", “TNF Li brary Functions") 233 LI NE("8c", " Mai nt enance Procedures")
168 LI NE("3tnf", "TNF Li brary Functions") 234 LI NE("8S", "Mai nt enance Procedures")
87 LI NE("3TSOL", "Trusted Extensions Library Functions") 235 LI NE("8s", " Mai nt enance Procedures")
170 LI NE("3tsol ", "Trusted Extensions Library Functions") 105 LI NE("9", "Device Driver Interfaces")
171 LI NE("3UCB", "illunmps/ BSD Conpatibility Library Functions") 106 LI NE("9E", “Driver Entry Points")
172 LI NE("3uch", "illunmos/BSD Conpatibility Library Functions") 238 LI NE("9e", "Driver Entry Points")
88 LI NE("3UUl D', "Universally Unique ldentifier Library Functions") 107 LI NE("9F", "Kernel Functions for Drivers")
174 LI NE(" 3uui d", "Universal ly Unique ldentifier Library Functions") 240 LI NE("9f", "Kernel Functions for Drivers")
89 LI NE("3VOLMGT", "Vol umre Managenent Library Functions") 108 LI NE("9P", "Kernel Properties for Drivers")
176 LI NE("3vol mgt ", "Vol ume Managenent Library Functions") 242 LI NE("9p", "Kernel Properties for Drivers")
90 LI NE("3XCURSES", "X/ Open Curses Library Functions") 109 LI NE("9S", "Data Structures for Drivers")
178 LI NE("3xcurses", "X/ Open Curses Library Functions") 244 LI NE("9s", "Data Structures for Drivers")
179 LI NE(" 3XFN', "XFN I nterface Library Functions")
180 LI NE("3xfn", "XFN Interface Library Functions")
91 LI NE("3XNET", "X/ Open Networ ki ng Services Library Functions")
182 LI NE("3xnet", "X/ Open Networking Services Library Functions")
183 LI NE("3B", "illunmps/ BSD Conpatibility Library Functions")
184 LI NE("3b", "illunmos/BSD Conpatibility Library Functions")
185 LI NE("3E", "C Library Functions")
186 LI NE("3e", "C Library Functions")

new usr/ src/ cnd/ mandoc/ out . ¢ 1

R R R R

6210 Wed Jul 30 20:55:11 2014
new usr/ src/ cnd/ mandoc/ out . ¢
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: out.c,v 1.46 2013/10/05 20: 30: 05 schwarze Exp $ */

1/* $Id: out.c,v 1.43 2011/09/20 23:05: 49 schwarze Exp $ */

2 /*

3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>

4 * Copyright (c) 2011 Ingo Schwarze <schwarze@penbsd. or g>

5 *

6 * Permission to use, copy, nodify, and distribute this software for any

7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this perm ssion notice appear in all copies.

g *

10 * THE SOFTWARE IS PROVIDED "AS |I'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

12 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
15 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SI NG QUT OF
16 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI' S SOFTWARE.

17 */

18 #ifdef HAVE_CONFI G H
19 #include "config.h"
20 #endif

22 #include <sys/types. h>

24 #include <assert. h>
25 #include <ctype. h>
26 #include <stdio. h>
27 #include <stdlib. h>
28 #include <string. h>
29 #include <tine.h>

31 #include "nmandoc. h"
32 #include "out.h"

34 static void tblcalc_data(struct rofftbl *, struct roffcol *,

35 const struct tbhl_opts *, const struct tbl_dat *);
35 const struct thl *, const struct tbl_dat *);
36 static void tblcalc_literal (struct rofftbl *, struct roffcol *,
37 const struct tbl_dat *);

38 static void t bl cal c_nunber (struct rofftbl *, struct roffcol *,
39 const struct tbhl_opts *, const struct tbl_dat *);
39 const struct thl *, const struct tbl_dat *);
41 | *

42 * Convert a ‘scaling unit’ to a consistent form or fail. Scaling
43 * units are docunmented in groff.7, ndoc.7, man.7.

44 x|

45 int

46 a2rof fsu(const char *src, struct roffsu *dst, enumroffscal e def)
47 {

48 char buf [BUFSI Z] , hasd;

49 int i;

50 enum rof f scal e unit;

52 if ("\0 == *src)

53 return(0);

55 i = hasd = 0;

new usr/ src/ cnd/ mandoc/ out . ¢

switch (*src) {

case ('+'):
Src++;
br eak;
case ('-'):
buf[i ++] = *src++;
br eak;
defaul t:
br eak;
}
if ("\0 == *src)
return(0);

while (i < BUFSIZ2)
if (! isdigit((unsigned char)*src)) {
if (.7 !=*src)

break;
el se if (hasd)
br eak;
el se
hasd = 1;
}
buf[i ++] = *src++;
}
if (BUFSIZ ==1i || (*src && *(src + 1)))
return(0);
buf[i] ='\0";
switch (*src) {
case ('c’):
unit = SCALE_CM
break;
case ('i'):
unit = SCALE_IN;
br eak;
case ('P):
unit = SCALE_PC;
br eak;
case ('p’):
unit = SCALE_PT;
break;
case ('f’):
unit = SCALE_FS;
br eak;
case ('v'):
unit = SCALE_VS;
br eak;
case ('m):
unit = SCALE_EM
br eak;

case ('\0):
if (SCALE_MAX == def)
return(0);
unit = SCALE BU;
br eak;
case ('u'):
unit = SCALE_BUY;
br eak;
case ('M):
unit = SCALE_MM
break;
case ('n'):
unit = SCALE_EN;

new usr/ src/ cnd/ mandoc/ out . ¢

123
124
125
126

128
129
130
131
132
133

135
136
137
138
139
140
141
142
143
144
145
145
146

148
149
150
151
152

154
155
156
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
178
176
177

182
183
184
185

~——
OO * * * * * *
<

br eak;
defaul t:

}

/* FIXME: do this i
if ((dst->scale = a
dst->scal e
dst->unit = unit;
return(1);

return(0);

[=1

Cal cul ate the abstract wi dths and deci mal positions of colums in a
table. This routine allocates the colums structures then runs over

rows and cells in the table. The function pointers in "thl" are

used for the actual width calcul ations.

cal c(struct rofftbl *tbl, const struct tbl_span *sp)

const struct tbl_dat *dp;

const struct tbl_head *hp;

struct roffcol *col ;

int spans;

/*

* Allocate the master colum specifiers. These will hold the
* widths and decinal positions for all cells in the colum. It
* must be freed and nullified by the caller.

*

/

assert (NULL == tbl->cols);

tbl->cols = nandoc_cal | oc
((size_t)sp->opts->cols, sizeof(struct roffcol));
((size_t)sp->tbl->cols, sizeof(struct roffcol));

hp = sp->head,

for (; sp; sp = sp->next)
if (TBL_SPAN DATA != sp->pos)
conti nue;
spans = 1;
/*
* Account for the data cells in the layout, matching it
* to data cells in the data section.
*
/
for (dp = sp >first; dp; dp = dp->next) {
/* not used spanned cells in the calculation. */
if (0 < --spans)
conti nue;
spans = dp->spans;
if (1 < spans)

conti nue;
assert (dp- >l ayout) ;
col &t bl - >col s[dp- >l ayout - >head- >i dent] ;

t bl calc data(tbl, col, sp->opts, dp);
tblcal c_data(tbl, col, sp->thl, dp);

}
}
/*
* Calculate width of the spanners. These get one space for a
* vertical line, two for a double-vertical |ine.
*/

new usr/ src/ cnd/ mandoc/ out . ¢

187
188
189
190
191
192
193
194
195
196
197
198
199
178 }

for (5 hp;
col =

switch

= hp- >next)

hp {
&t bl - >col s[hp- >i

(hp->pos) {

case (TBL_HEAD VERT):
col->width = (*tbl->len)(1, tbhl

break;

case (TBL_HEAD DVERT):
col - >\NI dth = (*tbl->len)(2, thl

180 static void
bl cal c_data(struct rofftbl *tbl, struct roffcol *col,
*opts, const struct tbl_dat *dp)

181 t
182
204
183 {
184

186

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
228
207
208
209
210
211
212
213
214 }

const
const

size_t

struct thl_opts
struct thl *tp,

Sz

dent];

const struct thbl

/* Branch down into data sub-types. */

switch (dp->l ayout->pos) {
case (TBL_CELL_HORI 2):

/* FAL
case (TBL_ CELL
sz = (*
if (co

br eak;
case (TBL_ CELL
/* FAL
case (TBL_CELL
/* FAL
case (TBL_CELL
/* FAL
case (TBL_CELL_
t bl cal

br eak;
case (TBL_CEL L_

t bl cal

t bl cal

bre
case (TBL_ CELL

br eak;
defaul t:

LTHROUGH */
DHORI

Z):
*tbl->len)(1, thl->arg);

| ->width < sz)

col->width = sz;

L
TTHROUGH */
CENTRE) :

LTHROUGH */

_LEFT):
LCTHROUGH */
RIGHT) :

c_literal (tbl, col, dp);

NUNBER) :

c_nunber (tbl, col, opts, dp);
c_nunber(tbl, col, tp, dp);

_DOM) :

abort();
/* NOTREACHED */

}

__unchanged_portion_onitted_

230 static void

231 t
232
254
233 {
234
235
236
237
238

240

bl cal c_nunber (struct

const
const

int

size_t

const char

char

char

/*

->arg);

->arg);

_dat *dp)

rofftbl *tbl, struct roffcol *col,
*opts, const struct tbl_dat *dp)

struct thbl opts
struct thl *tp,

[

sz, psz, ssz,
*str;

*Cm

buf[2];

const struct tbhl

d;

_dat *dp)

new usr/ src/ cnd/ mandoc/ out . ¢

241
242
243
244
245
246
247

249
250

252

254
276
255

257

259
281
260
261
262
263
264
265
266
267

269

271
272
273
274
275

277
278
279
280

281 }

First cal culate nunber width and deci mal place (last + 1 for
non-deci mal nunbers). If the stored decinal is subsequent to
ours, make our size longer by that difference
(right-"shifting"); simlarly, if ours is subsequent the
stored, then extend the stored size by the difference.
Finally, re-assign the stored val ues.

/

* Ok % ok ok ok ¥

str = dp->string ? dp->string :
sz = (*tbl->slen)(str, thl->arg);

/* FIXME: TBL_DATA HORI Z et al.? */

buf[0] = opts->deci mal ;
buf[0] = tp->decimal;
buf[1] = "'\0";

psz = (*tbl->slen)(buf, tbhl->arg);

if (NULL !'= (cp = strrchr(str, opts->decinal))) {
if (NULL ! cp = strrchr(str, tp->decimal))) {
buf[1] = '\0";
for (ssz =0, i =0; cp != &str[i]; i++) {
buf[0] = str[i];
ssz += (*tbl->slen)(buf, tbhl->arg);

d = ssz + psz;
} else
= sz + psz;

/* Adjust the settings for this colum. */

if (col->decinal > d) {
sz += col ->deci mal - d;
d = col - >deci mal ;
} else
col->width += d - col ->deci nal ;

if (sz > col->width)
col->width = sz;
if (d > col->decimal)
col ->deci nal = d;

__unchanged_portion_onitted_

new usr/ src/ cnd/ mandoc/ preconv. ¢ 1

R R R R

10314 Wed Jul 30 20:55:11 2014
new usr/ src/ cnd/ mandoc/ preconv. ¢
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: preconv.c,v 1.6 2013/06/02 03:52: 21 schwarze Exp $ */

1/* $Id: preconv.c,v 1.5 2011/07/24 18:15: 14 kristaps Exp $ */

2 /*

3 * Copyright (c) 2011 Kristaps Dzonsons <kristaps@sd.|v>

4 *

5 * Permission to use, copy, nodify, and distribute this software for any

6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this perm ssion notice appear in all copies.

8 *

9 * THE SOFTWARE IS PROVIDED "AS |'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
10 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

11 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
12 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PRCFI TS, WHETHER I N AN
14 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI OUS ACTI ON, ARI SI NG OQUT OF
15 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI S SOFTWARE.

16 */

17 #i fdef HAVE_CONFI G H
18 #include "config. h"
19 #endi f

21 #ifdef HAVE_MVAP

22 #include <sys/stat.h>
23 #include <sys/man. h>
24 #endif

26 #include <assert.h>
27 #include <fcntl. h>
28 #include <stdio. h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <unistd. h>

33 /*
34 * The read_whole_file() and resize_buf() functions are copied from
35 * read.c, including all dependency code.
35 * read.c, including all dependency code (MAP_FILE, etc.).
*
/

36

38 #ifndef MAP_FILE

39 #define MAP_FILE 0

40 #endi f

38 enum enc {

39 ENC UTF_8, /* UTF-8 */

40 ENC US ASCI I, /* US-ASCII */
41 ENC LATIN 1, /* Latin-1 */
42 ENC__ MAX

43

b
____unchanged_portion_onitted_

241 static int

242 read_whol e_file(const char *f, int fd,

243 struct buf *fb, int *w th_mrap)
244 {

245 size_t of f;

246 ssi ze_t Ssz;

248 #ifdef HAVE_MVAP

new usr/ src/ cnd/ mandoc/ preconv. ¢

249 struct stat st;

250 if (-1 ==fstat(fd, &st)) {

251 perror(f);

252 return(0);

253 }

255 /*

256 * If we're aregular file, try just reading in the whole entry
257 * via mmap(). This is faster than reading it into blocks, and
258 * since each file is only a few bytes to begin with, I’m not
259 * concerned that this is going to tank any nachines.

260 */

262 if (S_ISREG(st.st_node) && st.st_size >= (1U << 31)) {

263 fprintf(stderr, "%: input too large\n", f);

264 return(0);

265 }

266

267 if (S_ISREGst.st_node)) {

268 *with_mmap = 1;

269 fb->sz = (size_t)st.st_size;

270 f b->buf = mmap(NULL, fb->sz, PROT_READ, MAP_SHARED, fd, 0);
274 f b->buf = mmap(NULL, fb->sz, PROT_READ,

275 MAP_FI LE| MAP_SHARED, fd, 0);

271 if (fb->buf !'= MAP_FAI LED)

272 return(l);

273

274 #endi f

276 /*

277 * If thisisn't aregular file (like, say, stdin), then we nust
278 * go the old way and just read things in bit by bit.

279 */

281 *with_mmap = O;

282 off = 0;

283 fb->sz = 0;

284 fb->buf = NULL;

285 for (;;) {

286 if (off == fb->sz && fb->sz == (1U << 31))

287 fprintf(stderr, "%: input too large\n", f);
288 br eak;

289 }

290

291 if (off == fb->s2)

292 resi ze_buf (fb, 65536);

294 ssz = read(fd, fb->buf + (int)off, fb->sz - off);
295 if (ssz ==0

296 fb->sz = off;

297 return(l);

298 }

299 if (ssz ==-1) {

300 perror(f);

301 br eak;

302 }

303 of f += (size_t)ssz;

304 }

306 free(fb->buf);

307 fb->buf = NULL;

308 return(0);

309 }

____unchanged_portion_onitted_

new usr/ src/ cnd/ mandoc/ predefs.in

R R R R

2099 Wed Jul 30 20:55:11 2014
new usr/ src/ cnd/ mandoc/ predefs.in
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: predefs.in,v 1.4 2012/07/18 10:39:19 schwarze Exp $ */
/* $1d: predefs.in,v 1.3 2011/07/31 11:36:49 schwarze Exp $ */
/*

Copyright (c) 2011 Kristaps Dzonsons <kristaps@sd.|v>

Permission to use, copy, nodify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permi ssion notice appear in all copies.

W TH REGARD TO THI' S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS. | N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SI NG QUT OF

*
*
*
*
*
*
* THE SOFTWARE | S PROVI DED "AS |'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
*
*
*
*
*
* ORI N CONNECTI ON W TH THE USE OR PERFORMANCE OF THI'S SOFTWARE.
*

-~

18 /*

19 * The predefined-string translation tables. Each corresponds to a
20 * predefined strings from (e.g.) tmac/ ndoc/doc-nroff. The |eft-hand
21 * side corresponds to the input sequence (*x, *(xx and so on). The
22 * right-hand side is what's produced by libroff.
23 *

24 * XXX - C-escape strings!

25 * XXX - update PREDEF_MAX in roff.c if adding nore!
26 */

28 PREDEF("Ant, "&")

29 PREDEF("Ba", "\\fR/\\fP")

29 PREDEF("Ba", "|")

30 PREDEF("Ge", "\\(>=")

31 PREDEF("G ", ">")

32 PREDEF("I1f", "infinity")

33 PREDEF("Le", "\\(<=")

34 PREDEF("Lq", "\\(lqg")

35 PREDEF("Lt", "<")

36 PREDEF("Na", "NaN')

37 PREDEF(" Ne", "\NA(=E")

38 PREDEF("Pi", "pi")

39 PREDEF("Pnt, "\\(+")

40 PREDEF("Rgq", "\\(rg")

41 PREDEF("|eft-bracket" "[")

42 PREDEF(" Ieft—parenthe5| s", (")

43 PREDEF("Ip", "(")

44 PREDEF("Il eft-singlequote”, "\\(0q")

45 PREDEF("q", "\\(dg")

46 PREDEF("quote Ieft", "\\ (oq")

47 PREDEF(" quote right", "\\(cq")

48 PREDEF("R', "\\(rg")

49 PREDEF("nght bracket", "]")

"
51 PREDEF(" "))

52 PREDEF(" r| ght Si ngl equote", "\\(cq")
53 PREDEF(" T, "(Tm"

54 PREDEF("Px", "POSIX")

55 PREDEF("Ai ", "ANSI")

56 PREDEF("\'", "\\\'")

57 PREDEF("aa", "\\(aa")

new usr/ src/ cnd/ mandoc/ predefs.in

58 PREDEF("ga",
59 PREDEF("‘ ",
60 PREDEF("1q",
61 PREDEF("rq",
62 PREDEF("ua",
63 PREDEF("va",
64 PREDEF("<=",
65 PREDEF(">=",

new usr/ src/ cnd/ mandoc/ read. ¢ 1

R R R R

19844 Wed Jul 30 20:55:11 2014
new usr/ src/ cnd/ mandoc/ read. ¢
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: read.c,v 1.39 2013/09/16 00: 25: 07 schwarze Exp $ */

1/* $Id: read.c,v 1.28 2012/02/16 20:51:31 joerg Exp $ */

2 /*

3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
4 * Copyright (c) 2010, 2011, 2012, 2013 Ingo Schwarze <schwarze@penbsd. org>
4 * Copyright (c) 2010, 2011 Ingo Schwarze <schwarze@penbsd. org>

5 *

6 * Permssion to use, copy, nodify, and distribute this software for any

7 * purpose with or without fee is hereby granted, provided that the above

8 * copyright notice and this perm ssion notice appear in all copies.

9 *

10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES CF

12 * MERCHANTABI LI TY AND FI TNESS. | N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN

15 * ACTION OF CONTRACT, NEGLI GENCE OR OTHER TORTI OQUS ACTI ON, ARI SING OUT OF

16 * OR I N CONNECTION W TH THE USE OR PERFORVANCE OF THI S SOFTWARE.
17 =/

18 #ifdef HAVE_CONFI G H

19 #include "config.h"

20 #endif

22 #ifdef HAVE_MVAP

23 # include <sys/stat.h>
24 # include <sys/mman. h>
25 #endi f

27 #include <assert. h>
28 #include <ctype. h>
29 #include <fcntl. h>
30 #include <stdarg. h>
31 #include <stdint.h>
32 #include <stdio. h>
33 #include <stdlib.h>
34 #include <string. h>
35 #include <unistd. h>

37 #include "mandoc. h"

38 #include "libmandoc. h"
39 #include "ndoc. h"

40 #i nclude "man. h"

41 #include "main. h"

43 #ifndef MAP_FILE

44 #define MAP_FILE 0

45 #endi f

43 #define REPARSE_LIMT 1000

45 struct buf {

46 char *puf; /* binary input buffer */

47 size_t sz; /* size of binary buffer */

48 };

50 struct nparse {

51 enum mandocl evel file_status; /* status of current parse */
52 enum mandocl evel w evel; /* ignore nessages below this */
53 int line; /* line nunber in the file */

new usr/ src/ cnd/ mandoc/ read. ¢

54 enum npar set inttype; /* which parser to use */

55 struct man *pman; /* persistent man parser */

56 struct ndoc *pndoc; /* persistent ndoc parser */

57 struct man *man; /* man parser */

58 struct ndoc *mdoc; /* ndoc parser */

59 struct roff *roff; /* roff parser (!NULL) */

60 int reparse_count; /* finite interp. stack */
61 mandocnsg msg; /* warning/error nmessage handler */
62 voi d *arg; /* argument to nmmsg */

63 const char *file;

64 struct buf *secondary;

65 char *defos; /* default operating system */
66 };

68 static void resi ze_buf (struct buf *, size_t);

69 static void nmpar se_buf _r(struct nparse *, struct buf, int);
73 static void mpar se_readfd_r(struct nparse *, int, const char
70 static void pset (const char *, int, struct nparse *);

71 static int read_whol e_file(const char *, int, struct buf *,
72 static void npar se_end(struct nparse *);

73 static void nmpar se_par se_buffer(struct nparse *, struct buf,
74 const char *);

76 static const enum nandocerr mandocl i m t s[MANDOCLEVEL_MAX] = {
77 MANDOCERR_CK,

78 MANDOCERR_WARNI NG,

79 MANDOCERR_WARNI NG,

80 MANDOCERR_ERROR,

81 MANDOCERR_FATAL,

82 MANDOCERR_MAX,

83 MANDOCERR_MAX

84 };

86 static const char * const mandocer r s[MANDOCERR_MAX] = {

87 "ok",

89 "generic warning",

91 /* related to the prol ogue */

92 "no title in docunent"”,

93 "docunent title should be all caps",

94 "unknown nanual section",

95 "unknown manual vol une or arch",

96 "date m ssing, using today’'s date",

97 "cannot parse date, using it verbatint,

98 "prol ogue nmacros out of order",

99 "duplicate prol ogue nacro",

100 "macro not allowed in prol ogue",

101 "macro not allowed in body",

103 /* related to docunent structure */

104 ".so is fragile, better use In(1)",

105 "NAME section nmust conme first",

106 "bad NAME section contents"”,

108 "“manual nane not yet set",

107 “"sections out of conventional order",

108 "duplicate section nane",

109 "section header suited to sections 2, 3, and 9 only",

111 "section not in conventional nanual section",

111 /* related to macros and nesting */

112 "ski ppi ng obsol ete macro",

113 "ski ppi ng paragraph macro",

114 "movi ng paragraph nacro out of list",

115 "ski ppl ng no-space nacro",

116 "bl ocks badly nested",

*
’

int

int);
*)s

new usr/ src/ cnd/ mandoc/ read. ¢

117
118
119
120

122
123
124
125
126
127
128
129

131
132
133
134
135
136
137
138
139
140

142
143
144
145
146
147
148

150
151
152
153

155
156
157
158
159
160

162
163
164
165
166
167
168
169
170

172
173
174
175
176
177
178
179
180
181
182

“child violates parent syntax",
"nested displays are not portable",
"already in literal node",

"line scope broken",

/* related to missing macro argunents */
"ski ppi ng enpty nacro",

"argument count w ong",

"m ssing display type",

"Iist type nust cone first",

tag lists requi re a wi dt h argunent ",
"missing font type'

"ski ppi ng end of bI ock that is not open",

/* related to bad macro argunents */
"ski ppi ng argument"

"dupl icate argunEnt
"dupl i cate display type",

"duplicate list type",

"unknown AT&T UNI X version",

"bad Bool ean val ue",

"unknown font",

"unknown standard specifier",

"bad wi dth argunent”,

/* related to plain text */

"blank line in non-literal context",
"tab in non-literal context",

"end of |ine whitespace",

"bad comment style",

"bad escape sequence",

"unterm nated quoted string",

/* related to equations */
"unexpected literal in equation",

"generic error"

/* related to equations */
"unexpect ed equation scope closure"
"equation scope open on eX|t”
"over| appi ng equation scopes"

"unexpected end of equati on",

"equation syntax error"”,

/* related to tables */

"bad table syntax",

"bad table option",

"bad table layout"”,

"no table layout cells specified",
"no table data cells specified",
"ignore data in cell™",

"data block still open",

"ignoring extra data cells",

"input stack linmt exceeded, infinite |oop?",
"ski ppi ng bad character",

"escaped character not allowed in a nanme",
"“manual nane not yet set",

"ski ppi ng text before the first section header",
"ski ppi ng unknown nacro",

"NOT | MPLEMENTED, pl ease use groff: skipping request”
"argument count w ong",

"ski ppi ng col um out side colum list",

"ski ppi ng end of block that is not open",

"m ssing end of block",

new usr/ src/ cnd/ mandoc/ read. ¢

183
184
185
186
187
188
189
190
191

193

195
196
197
198
199
200
201
202
203
204
205 }

"scope open on exit",

"unanme(3) systemcall failed",

"macro requires line argunent(s)",
"macro requires body argunent(s)"
"macro requires argunent(s)"”,

"request requires a nuneric argunent",
"mssing list type",

"line argunent(s) will be lost",

"body argunent(s) will be |lost"

"generic fatal error",

"not a manual ",

"colum syntax is inconsistent",

"NOT | MPLEMENTED: .Bd -file",

"argunment count wong, violates syntax",

"child viol ates parent syntax",

"argument count wong, violates syntax",

"NOT | MPLEMENTED: .so with absolute path or \"..\"",
"no docunent body",

"no docunent prol ogue",

"static buffer exhausted",

_hnchanged_port ion_omtted_

225 static void
226 pset(const char *buf, int pos, struct nparse *curp)

227 {
228

230
231
232
233
234
235
236
237
238
239

241
242
243
244
245
246
247

249
250
251
252
253
250
254
255
256
257
258
259
260
261
262
263
264

int i;

*
* Try to intuit which kind of manual parser should be used. |If
* passed in by command-line (-man, -ndoc), then use that

* explicitly. |f passed as -mandoc, then try to guess fromthe
* line: either skip dot-lines, use -ndoc when finding ‘.Dt’, or
* default to -nman, which is nore |enient.

*

*

*

*

Separ ate out pndoc/ pman from ndoc/ man: the first persists
through all parsers, while the latter is used per-parse.

if (.7 == buf[0] || "\'" == buf[O]) {
for (i = 1; buf[l], +4+)
|f(':b [iI] & '\t’ != buf[i])
br eak;
if ("\0 == buf[i])
return;
}
switch (curp->inttype) {
case (MPARSE_MDQC) :

if (NULL == curp->pndoc)
cur p->pndoc = ndoc_al | oc(curp->roff, curp,
cur p- >def 0s) ;
cur p->pndoc = ndoc_al | oc(curp->roff, curp);
assert (cur p->pndoc) ;
cur p->ndoc = cur p- >pndoc;
return;
case (MPARSE_MAN) :
if (NULL == curp->pman)
curp->pman = man_al | oc(curp->roff, curp);
assert (curp->pnman);
curp->man = curp->pnan;
return;
defaul t:
br eak;

new usr/ src/ cnd/ mandoc/ read. ¢

265

267
268
269
270
266
271
272
273
274

276
277
278
279
280

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

300
301

303
304
305

307
308
309
310

312

314
315
316
317
318

320
321
322
323
324
325
326
327

329

}

if (pos >= 3 & 0 == mencnp(buf, ".Dd", 3)) {
if (NULL == curp->pndoc)
cur p->pndoc = ndoc_al | oc(curp->roff,
cur p- >def 0s) ;
cur p- >pndoc = ndoc_al | oc(cur p->roff,
assert (cur p- >pndoc) ;
cur p- >ndoc = cur p- >pndoc;
return;

}

if (NULL == curp->pman)

curp->pman = man_al | oc(curp->roff, curp);
assert (curp->pman);
curp->man = curp->pman;

curp,

curp);

}

/*
* Main parse routine for an opened file. This is called for each
* opened file and sinply loops around the full input file,

* nesting (i.e., with “so’).

*/

static void

npar se_buf _r(struct nparse *curp, struct buf blk, int start)
{

const struct tbl_span
struct buf I n;

enumrofferr rr;

int i, of, r
int pos; /*
int Inn; /*
unsi gned char C;

*span;

C;
byte nunber i
I'ine nunber i

>

nt
n the real fil

menmset (& n, 0, sizeof(struct buf));
Inn = curp->line;
= 0;
i < (int)blk.sz;) {
(0 == pos && '\0’" == blk.buf[i])
br eak;

for (i = 0;
f

if (start) {
curp->line = |nn;
cur p->reparse_count = 0;

}

while (i < (int)blk.sz & (start || '\0' !'= blk.buf[i])) {

| *

possi bly

e I n buffer */

e */

* When finding an unescaped new i ne character,
* | eave the character loop to process the line.

* Skip a preceding carriage return,
*/

if ('\r' ==blk.buf[i] & i + 1 < (int)blk.sz &

"\n’ == blk.buf[i + 1])
+4i ;
if (\n == blk.buf[i]) {
++i
++| nn;
br eak;

if any.

new usr/ src/ cnd/ mandoc/ read. c

330
331
332
333

335
336

338
339
340
341
342
343
344
345

347

349
350
351
352
353
341
342
354
355
356

358

360
350
351
361
362
363

365
366
367
368
369
370

372
373
374
375
376
377
378
379

381
382
383
384
385
386
387
388
389
390

* Make sure we have space for at |east
* one backsl ash and one other character
* and the trailing NUL byte.

*/

if (pos + 2 >= (int)ln.sz)
resi ze_buf (& n, 256);

*
* \Warn about bogus characters. |f you' re using
* non-ASCI | encoding, you' re screw ng your

* readers. Since |I'd rather this not happen,

* |1l be hel pful and replace these characters

* with "?", so we don’t display gibberish.

* Note to manual witers: use special characters.
*

/

¢ = (unsigned char) blk.buf[i];

if (! (isascii(c) &&
(1sgraph(c) || isblank(c)))) {

mandoc_nmsg(MANDOCERR_BADCHAR, curp,
curp->line, pos, NULL);

i ++;

if (pos >= (int)ln.sz)
resize_buf (& n, 256);

I n.buf[pos++] ='7?";

conti nue;

/* Trailing backslash = a plain char. */

if ("\\" !'=blk.buf[i] || i + 1 == (int)blk.sz) {
if (pos >= (int)ln.sz)
resi ze_buf (& n, 256);
I n. buf [pos++] = bl k. buf[i++];
conti nue;

}
/*

* Found escape and at |east one other character.
* When it’s a newine character, skip it.

* When there is a carriage return in between,

*
*

skip that one as well.
/

if ("\r’ == blk.buf[i + 1] & i + 2 < (int)blk.sz &&
"\n == blk.buf[i + 2])
++i
if (\'n == blk.buf[i + 1]) {
i +=2;
++| nn;
conti nue;
}
if (" ==blk.buf[i + 1] || '# == blk.buf[i + 1]) {
i += 2;
/* Comment, skip to end of line */
for (; i < (int)blk.sz; ++i) {
if ("\n == blk.buf[i]) {
++i
++| nn;
br eak;

new usr/ src/ cnd/ mandoc/ read. ¢

392
393
394
395
396
397
398
399
400

402
404

406
407
408
409
410
411
412
413

415

395
396

417
418
419

421
422

424

426
427
428
429
430
431
432
433

435

437
438
439
440
441

443
444
445
446
447
448
449
450
451
452
453
454

/* Backout traili ng whi t espaces */

for (; pos > 0; --pos)
if (In. buf[pos -1 =)
br eak;
if (pos >2 &% In. buf[pos - 2] == "\\")
br eak;

br eak;

}
/* Catch escaped bogus characters. */
¢ = (unsigned char) blk.buf[i+1];
if (! (isascii(c) &&
(1 sgraph(c) | | i sblank(c)))) {

mandoc_nsg(MANDOCERR _BADCHAR, cur p,
curp->line, pos, NULL);

i += 2;
I n. buf [pos++] ='7";
conti nue;
}
/* Some ot her escape sequence, copy & cont. */
if (pos + 1 >= (int)ln.sz)
resi ze_buf (& n, 256);
I n. buf [pos++] = bl k. buf[i++];
I'n. buf [pos++] = bl k. buf [i++];

}

if (pos >= (int)ln.sz)
resi ze_buf (& n, 256);

In. buf[pos] ='\0";

/*

* A significant anount of conplexity is contained by

* the roff preprocessor. 1It’s line-oriented but can be
* expressed on one line, so we need at tinmes to

* readjust our starting point and re-run it. The roff
* preprocessor can al so readjust the buffers with new
* data, so we pass themin whol esal e.

*/

of = 0;

/*

* Maintain a | ookaside buffer of all parsed lines. W
* only do this if nparse_keep() has been invoked (the
* buffer may be accessed with nparse_getkeep()).

*

/

if (curp->secondary)
cur p- >secondary- >buf =
mandoc_real | oc
(cur p- >secondar y- >buf,
cur p- >secondary->sz + pos + 2);
mencpy(cur p- >secondar y- >buf +
cur p- >secondary- >sz,
I n. buf, pos);
cur p- >secondary- >sz += pos;
cur p- >secondar y- >buf
[cur p->secondary->sz] ='\n’;
cur p- >secondar y- >sz++;

new usr/ src/ cnd/ mandoc/ read. ¢

455
456
457
458
459
460
461

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
472
492
493
494
495
496
497
498

500
501
502
503

505
506

508
509
510
511
512
513

515
516

518
519

rerun:

cur p- >secondar y- >buf
[curp->secondary->sz] = '\0";

}

rr = roff_parseln
(curp->roff, curp->line,
& n.buf, & n.sz, of, &of);

switch (rr) {
case (ROFF_REPARSE):
i f (REPARSE_LIM T >= ++cur p->reparse_count)
npar se_buf _r(curp, In, 0);

el se
mandoc_nsg(MANDOCERR_ROFFLOOP, curp,
curp->line, pos, NULL);
pos = 0;
conti nue;

case (ROFF_APPEND) :
pos = (int)strlen(ln.buf);
conti nue;

case (ROFF_RERUN):
goto rerun;

case (ROFF_IGN):
pos = 0;
conti nue;

case (ROFF_ERR):
assert (MANDOCLEVEL_FATAL <= curp->fil e_status);
br eak;

case (RCI/:F_SO):
*

* We renove ‘so’ clauses fromour |ookaside
* buffer because we’'re going to descend into
* the file recursively.
*/
if (curp->secondary)
cur p- >secondary->sz -= pos + 1;
npar se_readfd(curp, -1, In.buf + of);
nparse_readfd_r(curp, -1, In.buf + of, 1);
i f (MANDOCLEVEL_FATAL <= curp->file_status)

break;
pos = 0;
conti nue;
defaul t:
break;
}
/*

* If we encounter errors in the recursive parse, nake
* sure we don’t continue parsing.
*/

if (MANDOCLEVEL_FATAL <= curp->fil e_status)
br eak;

If input parsers have not been allocated, do so now.
We keep these instanced between parsers, but set them
locally per parse routine since we can use different
parsers with each one.
/

* ok kb ko

if (! (curp->man || curp->ndoc))
pset (I n. buf + of, pos - of, curp);
/*
* Lastly, push down into the parsers thenselves. One

new usr/ src/ cnd/ mandoc/ r ead. ¢ 9 new usr/ src/ cnd/ mandoc/ read. ¢
520 * of these will have already been set in the pset() 586 * since each file is only a few bytes to begin with, I’m not
521 * routine. 587 * concerned that this is going to tank any machi nes.
522 * |f libroff returns ROFF_TBL, then add it to the 588 */
523 * currently open parse. Since we only get here if
524 * there does exist data (see thl_data.c), we're 590 if (S_ISREG(st.st_node)) {
525 * guaranteed that sonething’ s been allocated. 591 if (st.st_size >= (1U << 31)) {
526 * Do the sanme for ROFF_EQN. 592 fprintf(stderr, "%: input too large\n", file);
527 */ 593 return(0);
594 }
529 rc = -1; 595 *with_mmap = 1;
596 fb->sz = (size_t)st.st_size;
531 if (ROFF_TBL == rr) 597 fb->buf = mmap(NULL, fb->sz, PROT_READ, MAP_SHARED, fd, 0);
532 while (NULL != (span = roff _span(curp->roff))) { 578 fb->buf = mmap(NULL, fb->sz, PROT_READ,
533 rc = curp->man ? 579 MAP_FI LE| MAP_SHARED, fd, 0);
534 man_addspan(cur p- >man, span) : 598 if (fb->buf != MAP_FAI LED)
535 nmdoc_addspan(cur p- >ndoc, span); 599 return(l);
536 if (0 ==rc) 600
537 br eak; 601 #endif
538 }
539 else if (ROFF_LEQN == rr) 603 I*
540 rc = curp->ndoc ? 604 * |f this isn't a regular fiIe(ke, say, stdin), then we nust
541 ndoc_addeqn(cur p- >ndoc, 605 * go the old way and just read things in bit by bi t
542 rof f eqn(curp >roff)) 606 */
543 man_addeqn(cur p- >mal
544 roff eqn(curp >roff)); 608 *With_mmap =
545 else if (curp->man || curp->ndoc) 609 off = 0;
546 rc = curp->man ? 610 fb->sz = 0;
547 man_par sel n(cur p- >man 611 fb->buf = NULL;
548 curp->l1ine, In. buf, of) : 612 for (;;) {
549 ndoc_par sel n(curp—>m:ioc 613 if (off == fb->sz) {
550 curp->line, In.buf, of); 614 if (fb->sz == (1U << 31)) {
615 fprintf(stderr, "%: input too large\n", file);
552 if (0==rc) { 616 br eak;
553 assert (MANDOCLEVEL_FATAL <= curp->file_status); 617 }
554 break; 618 resi ze_buf (fb, 65536);
555 } 619 }
620 ssz = read(fd, fb->buf + (int)off, fb->sz - off);
557 /* Tenporary buffers typically are not full. */ 621 if (ssz==0
622 fb->sz = of f;
559 if (0 ==start & '\0" == blk.buf[i]) 623 return(l);
560 br eak; 624 }
625 if (ssz == -1) {
562 /* Start the next input line. */ 626 perror(file);
627 break;
564 pos = 0; 628 }
565 } 629 off += (size_t)ssz;
630 }
567 free(ln. buf);
568 } 632 free(fb->buf);
633 fb->buf = NULL;
570 static int 634 return(0);
571 read_whol e_fil e(const char *file, int fd, struct buf *fb, int *w th_mmap) 635 }
572 { __unchanged_portion_onitted_
573 size_t of f;
574 ssi ze_t ssz; 663 static void
664 nparse_parse_buffer(struct nparse *curp, struct buf blk, const char *file)
576 #ifdef HAVE _MVAP 646 nparse_parse_buffer(struct nparse *curp, struct buf blk, const char *file,
577 struct stat ; 647 int re)
578 if (- 1::fstat(fd &st)) { 665 {
579 perror(file); 666 const char *svfile;
580 return(0); 667 static int recursi on_dept h;
581 }
669 if (64 < recursion_depth) {
583 I* 670 mandoc_nmsg(MANDOCERR_ROFFLOOP, curp, curp->line, 0, NULL);
584 * If we're aregular file, try just reading in the whole entry 671 return;
585 * via mmap(). This is faster than reading it into bl ocks, and 672 }

new usr/ src/ cnd/ mandoc/ read. ¢ 11

674 /* Line nunber is per-file. */

675 svfile = curp->file;

676 curp->file = file;

677 curp->line = 1;

678 recursi on_dept h++;

680 npar se_buf _r(curp, blk, 1);

682 if (0 == --recursion_depth &% MANDOCLEVEL_FATAL > curp->file_status)
658 if (0 == re & MANDOCLEVEL_FATAL > curp->fil e_status)
683 npar se_end(curp);

685 curp->file = svfile;

686 }

688 enum mandocl evel

689 nparse_readnmen(struct nparse *curp, const void *buf, size_t len,
690 const char *file)

691 {

692 struct buf blk;

694 bl k. buf = UNCONST(buf);

695 bl k.sz = len;

697 npar se_par se_buffer(curp, blk, file);

673 nmpar se_parse_buffer(curp, blk, file, 0);

698 return(curp->file_status);

699 }

701 enum nandocl evel

702 nparse_readfd(struct nparse *curp, int fd, const char *file)
677 static void

678 nparse_readfd_r(struct nparse *curp, int fd, const char *file, int re)
703 {

704 struct buf bl k;

705 int wi t h_map;

707 if (-1 ==1d)

708 if (-1 == (fd = open(file, ORDOWY, 0))) {

709 perror(file);

710 curp->file_status = MANDOCLEVEL_SYSERR;
711 goto out;

687 return;

712 }

713 /*

714 * Run for each opened file; may be called nore than once for
715 * each full parse sequence if the opened file is nested (i.e.,
716 * from‘so’). Sinply sucks in the whole file and noves into
717 * the parse phase for the file.

718 */

720 if (! read_whole_file(file, fd, &lk, &with_nmap)) {
721 curp->file_status = MANDOCLEVEL_SYSERR;

722 goto out;

698 return;

723 1

725 npar se_parse_buffer(curp, blk, file);

701 mpar se_par se_buffer(curp, blk, file, re);

727 #ifdef HAVE_MVAP

728 if (wth_mmap

729 munmap(bl k. buf, bl k.sz);

730 el se

731 #endi f

new usr/ src/ cnd/ mandoc/ read. ¢

732 free(bl k. buf);

734 if (STDON_FILENO != fd & -1 == cl ose(fd))
735 perror(file);

736 out:

712 }

714 enum nandocl evel

715 nparse_readfd(struct nparse *curp, int fd, const char *file)
716 {

718 mparse_readfd_r(curp, fd, file, 0);

737 return(curp->file_status);

738 }

740 struct nparse *

741

npar se_al | oc(enum nparset inttype, enum nandocl evel w evel,

742 mandocnmsg mrsg, void *arg, char *defos)
723 nparse_al | oc(enum nparset inttype, enum nandocl evel w evel,
743 {

744 struct nparse *curp;

746 assert(w evel <= MANDOCLEVEL_FATAL) ;

748 curp = mandoc_cal | oc(1, sizeof(struct nparse));
750 curp->w evel = w evel;

751 curp->nmmsg = MBY;

752 curp->arg = arg;

753 curp->inttype = inttype;

754 cur p- >def os = def os;

756 curp->roff = roff_alloc(inttype, curp);

736 curp->roff = roff_alloc(curp);

757 return(curp);

758 }

____unchanged_portion_onitted_

mandocnsg nmsg,

12

voi d

new usr/src/ cnd/ mandoc/roff.c

R R R R

43919 Wed Jul 30 20:55:11 2014
new usr/ src/ cnd/ mandoc/roff.c
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: roff.c,v 1.189 2013/12/30 18:44:06 schwarze Exp $ */

1/* $Id: roff.c,v 1.172 2011/ 10/ 24 21:41: 45 schwarze Exp $ */

2 /*

3 * Copyright (c) 2010, 2011, 2012 Kristaps Dzonsons <kristaps@sd.|v>

4 * Copyright (c) 2010, 2011, 2012, 2013 Ingo Schwarze <schwarze@penbsd. org>
3 * Copyright (c) 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>

4 * Copyright (c) 2010, 2011 Ingo Schwarze <schwarze@penbsd. or g>

5 *

6 * Permission to use, copy, nodify, and distribute this software for any

7 * purpose with or without fee is hereby granted, provided that the above

8 * copyright notice and this perm ssion notice appear in all copies.

9 *

10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHORS DI SCLAI M ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

12 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHORS BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN

15 * ACTION OF CONTRACT, NEGLI GENCE OR OTHER TORTI OQUS ACTI QN, ARI SING OQUT OF
16 * ORI N CONNECTION WTH THE USE OR PERFORMANCE OF THI' S SOFTWARE.

17 */

18 #ifdef HAVE_CONFI G H

19 #i

ncl ude "config. h"

20 #endi f

22 #i
23 #i
24 #i
25 #i
26 #i

28 #i
29 #i
30 #i

32 /*

ncl ude <assert. h>
ncl ude <ctype. h>
ncl ude <stdio. h>
ncl ude <stdlib. h>
ncl ude <string. h>

ncl ude "nmandoc. h"
nclude "libroff.h"
ncl ude "Iibmandoc. h"

Maxi mum nunber of nested if-else conditionals. */

33 #defi ne RSTACK_MAX

35 /*

Maxi mum nunber of string expansions per line, to break infinite |loops. */

36 #define EXPAND_LIMT 1000

38 enum rofft {

ROFF_ad,
ROFF_am
ROFF_am ,
ROFF_antl,
ROFF_cc,
ROFF_de,
ROFF_dei ,
ROFF_del,
ROFF_ds,
ROFF_el ,
ROFF_f am
ROFF_hw,
ROFF_hy,
ROFF i e,
ROFF_i f,
ROFF_i g,
ROFF i t,
ROFF_ne,

new

100
101
102
103
104
105
106
107

109
110
111
112
113
114
115
116
109
117

usr/ src/ cnd/ mandoc/ roff. c

ROFF_nh,
ROFF_nr,
ROFF_ns,
ROFF_ps,
ROFF_rm
ROFF_so,
ROFF_t a,
ROFF_tr,
ROFF_Dd,

ROFF_EN,
ROFF_cbl ock,
ROFF_ccond,
ROFF_USERDEF,
ROFF_MAX

enum roffrule {

ROFFRULE_DENY,
ROFFRULE_ALLOW
ROFFRULE_ALLOW
ROFFRULE_DENY
I
/*
* A single register entity. |If "set" is zero, the value of the
* register should be the default one, which is per-register.
* Registers are assuned to be unsigned ints for now.
*/
struct reg {
int set; /* whether set or not */
unsi gned i nt u; /* unsigned integer */
e
/*
* An incredibly-sinple string buffer.
*
struct roffstr {
char *p; /* nil-term nated buffer */
size_t sz; /* saved strlen(p) */

b
____unchanged_portion_onitted_

/*
*/A singl e nunber register as part of a singly-linked list.
*
struct roffreg {
struct roffstr key;
int val ;
struct roffreg *next;
Ik
struct roff {
enum npar set parsetype; /* requested parse type */
struct nparse *parse; /* parse point */
struct roffnode *last; /* |leaf of stack */
enumroffrule rstack[RSTACK_MAX]; /* stack of !‘ie’ rules */
char control; /* control character */
int rstackpos; /* position in rstack */
struct roffreg *regtab; /* nunber registers */
struct reg regs[REG__MAX] ;
struct roffkv *strtab; /* user-defined strings & macros */

new usr/src/ cnd/ mandoc/roff.c

118 struct roffkv *
119 struct roffstr *
120 const char *
121 struct tbl_node *
122 struct tbl_node *
123 struct tbl_node *
124 struct eqn_node *
125 struct eqgn_node *
126 struct egn_node *
127 };

__unchanged_portion_onitted_

166 #define PREDEF(__nane,

167 { (__nane), (__st
169 static enumrofft
170 static void

171 static void

172 static void

173 static void

174

175 static enumrofferr
176 static enumrofferr
177 static enumrofferr
178 static enumrofferr
179 static enumrofferr
180 static enumrofferr
181 static enumrofferr
182 static enumrofferr
183 static enumrofferr
184 static enumrofferr
185 static enumroffrule
186 static void

187 static void

188 static void

189 static char *
190 static int

191 static int

192 static int

193

194 static const char *
195

196 static enumrofferr
197 static enumrofferr
198 static enumrofferr
199 static void

200

201 static enumrofft
202 static enumrofferr
188 static enumrofferr
203 static enumrofferr
204

205 static enumrofferr
206 static void

207

208 static void

209

210 static enumrofferr
211 static enumrofferr
212 static enumrofferr
213 static enumrofferr
214 static enumrofferr
215 static enumrofferr
216 static enumrofferr
217 static enumrofferr
218 static enumrofferr

macro */

xmbtab; /* nulti-byte trans table (‘tr’) */
xtab; /* single-byte trans table (‘tr’) */
current_string; /* value of last called user
first_tbl; /* first table parsed */
last_tbl; /* last table parsed */
tbl; /* current table being parsed */
last_eqn; /* last equation parsed */
first_eqn; /* first equation parsed */
eqn; /* current equation being parsed */
r\
r) }
rof f hash_find(const char *, size_t);
rof f hash_i nit(void);
rof f node_cl eanscope(struct roff *);
rof f node_pop(struct roff *);
rof f node_push(struct roff *, enumrofft,
const char *, int, int);
rof f _bl ock(ROFF_ARCS) ;
rof f _bl ock_t ext (ROFF_ ARGS)
rof f _bl ock_sub(ROFF_ARGS) ;
rof f _chl ock(ROFF_ ARGS)
rof f _cc(ROFF_ARGS) ;
rof f _ccond(ROFF_. ARCB)
rof f _cond(ROFF_ARGS) ;
rof f _cond_t ext (ROFF_ ARGS)
rof f _cond_sub(ROFF_ARGS) ;
rof f _ds(ROFF_ARGS) ;
roff _eval cond(const char *, int *);
roff _freel(struct roff *);
roff _freereg(struct roffreg *);
roff_freestr(struct roffkv *);
rof f_getname(struct roff *, char **, int, int);
rof f _getnum(const char *, int *, int *);
rof f _getop(const char *, int *, char *);
rof f_getregn(const struct roff *,
const char *, size_t);
roff_getstrn(const struct roff *,
const char *, size_t);
rof f _i t (ROFF_ARGS) ;
roff_line |gnore(RO:F ARGS) ;
rof f _nr (ROFF_ARGS) ;
rof f openeqn(struct roff *, const char *,
int, int, const char *);
roff_parse(struct roff *, const char *, int *);
rof f _parsetext(char **, size_t *, int, int *);
rof f _parsetext(char *);
roff _res(struct roff *,
char **, size_t *, int, int);
rof f _r m ROFF_ARGS) ;
rof f _setstr(struct roff *,
const char *, const char *, int);
roff_setstrn(struct roffkv **, const char *,
size_t, const char *, size_t, int);

rof f _so(ROFF_ARGS) ;
rof f _tr(ROFF_ARGS) ;
rof f _Dd(ROFF_ARGS) ;
rof f _TH(ROFF_ARGS) ;
rof f _TE(ROFF_ARGS) ;
rof f _TS(ROFF_ARGS) ;
rof f _EQ(ROFF_ARGS) ;
r of f _EN(ROFF_ARGS) ;
rof f _T_(ROFF_ARGS) ;

new usr/src/ cnd/ mandoc/roff.c

219 static enumrofferr rof f _user def (ROFF_ARGS) ;

221 /* See roffhash_find() */

223 #define ASCI | _HI 126

224 #define ASCI| _LO 33

225 #define HASHW DTH (ASCII_H - ASCII_LO + 1)

227 static struct roffmac *hash[HASHW DTH] ;

229 static struct roffnac rof f s[ROFF_MAX] = {

230 "ad", roff_line_ignore, NULL, NULL, O, NULL },

231 “anm', roff_block, roff_block_text, roff_bl ock sub, 0, NULL },
232 am ", roff_bl ock rof f_bl ock text rof f_bl ock_sub, 0, NULL },
233 aml", roff_bl ock, roff _block_text, roff_block_sub, 0, NULL },
234 "cc", roff_cc, NULL, NULL, O, NULL}

235 "de", roff_bl ock, roff bl ock _text, roff bl ock sub, 0, NULL },
236 "dei", roff_block, rof f_bl ock text rof f_bl ock_sub, 0, NULL 1,
237 "del", roff_block, roff_block_text, roff_block_sub, 0, NULL },
238 "ds", roff_ds, NULL, NULL, O, NULL},

239 "el", roff_cond, roff_cond_text, rof f _cond_sub, ROFFMAC_STRUCT, NULL }
240 fanm', roff_line_ignore, NULL, NULL, O, NULL },

241 "hw', roff_line_ignore, NULL, NULL, 0, NULL },

242 "hy", roff_line_ignore, NULL, NULL, 0, NULL },

243 "ie", roff_cond, roff_cond_text, roff_cond_sub, ROFFMAC STRUCT, NULL }
244 "if", roff_cond, roff_cond_text, roff_cond_sub, ROFFMAC_STRUCT, NULL }
245 "ig", roff_block, roff_block_text, roff_block sub 0, NOLL },
246 "it", roff_it, NULL, NULL, O, NULL}

227 "it", roff_line_ignore, NULL, NULL, O, NULL },

247 "ne", roff_line_ignore, NULL, NULL, 0, NULL },

248 nh", roff_line_ignore, NULL, NULL, O, NULL },

249 nr", roff_nr, NULL, NULL, O, NULL },

250 "ns", roff_line_ignore, NULL, NULL, O, NULL },

251 "ps", roff_line_ignore, NULL, NULL, 0, NULL },

252 rnf, roff_rm NULL, NULL, O, NULL },

253 so", roff_so, NULL, NULL, O, NULL },

254 "ta", roff_line_ignore, NULL, NULL, 0, NULL },

255 “tr, roff_tr, NULL, NULL, O, NULL },

256 "Dd", roff_Dd NULL, NULL, 0, NULL },

257 "TH', roff_TH, NULL, NULL, O, NULL },

258 "TS", rof f_TS, NULL, NULL, 0, NULL },

259 "TE", roff_TE, NULL, NULL, 0, NULL },

260 "T&", rof f_T_, NULL, NULL, O, NULL },

261 EQ', roff _EQ NULL, NULL, 0, NULL },

262 "EN', roff_EN, NULL, NULL, O, NULL },

263 "o, roff cblock NULL, NULL, 0O, NULL },

264 "\\}", roff ccond NULL, NULL, O, NULL },

265 NULL, roff_userdef NULL NULL O, NULL },

266 };

268 const char *const __ndoc_reserved[] = {

269 "Ac", "Ad", "An", "Ao", "Ap", "Aq", "Ar", "At",

270 "Bc", "Bd", "Bf", "Bk", "Bl", "Bo", "BQ",

271 "Brc" "Bro", "Brqgq", "Bsx", "Bt", "Bx",

272 "Cd", "Cnt, "Db", "Dc", "Dd*, "D ", "Do", "Dqg",

273 "bs", "Dt", "Dv", "Dx", "D1",

274 "Ec", "Ed", "Ef", "EK", "EH", "Enf, "enf,

275 "En", "EO", "EQ", "EFr", "ES", "Ev', "EX",

276 "Fa", "Fc", "Fd", "FI", "Fn", "Fo", "Fr", "Ft", "Fx",

277 “H, "lc", "In", "It", "Lb", "Li", "Lk", "Lp", "LP,

278 "M, "Ms", "M", "Nd", "Nnf, "No", "Ns", "Nx",

279 ", "Oo", "Op", "G, "O", "Ox",

280 "Pa", "Pc", "Pf", "Po", "Pp", "PP', "pp", "Pq",

281 "', "@d", "@", "", "a", "Rd", "Re", "Rs", "Rv",

282 "Sc", "Sf", "sh", "SH', "sSnf, "So", "Sq",

283 "Ss", "St", "Sx", "Sy",

new usr/src/ cnd/ mandoc/roff.c

284 "Ta", "Tn", "Ud", "W", "Va", "Wt", "Xc", "Xo", "Xr",

285 AT, "uB", "', "W, "%W", "WN', "%,

286 P, Y, "W, "odt, ", "w,

287 NULL

288 };

290 const char *const _ man_reserved[] = {

201 “AT". “B'. "BI". "BR'. "BT", "DE'. "DS', "DT",

292 "EE" "EN', "EQ, "EX*, "HE', "HP', "I". "IB'. "IP', "IR',
293 “LP*, "ME', "M, "OP', "P', "PD', "PP', "PT",

294 "R', "RB", "RE', "RI", "RS", "SB', "SH', "SM', "SS', "SY',
205 CTER, CTH, CTRY, "TQ, TS, "T&, "uch, "UE', "UR', "YS',
296 NULL

297 };

299 /* Array of injected predefined strings. */
300 #defi ne PREDEFS_MAX 38

301 static const struct predef predefs[PREDEFS_MAX] = {
302 #include "predefs.in"

303 };

305 /* See roffhash_find() */
306 #define ROFF_HASH(p) (p[0] - ASCII_LO

308 static int roffit_lines; [/* nunber of lines to delay */
309 static char *roffit_macro; /* nil-termnated macro |ine */

311 static void
312 roffhash_init(void)

313 {

314 struct roffnmac *n;

315 int buc, i;

317 for (i =0; i < (int)ROFF_USERDEF; i++) {
318 assert(roffs[i].name[0] >= ASCII_LO;
319 assert(roffs[i].name[0] <= ASCII_H);
321 buc = ROFF_HASH(rof fs[i]. nane);

323 if (NULL !'= (n = hash[buc])) {

324 for (; n->next; n = n->next)
325 /* Do nothing. */ ;
326 n->next = & offs[i];

327 } else

328 hash[buc] = & offs[i];

329 }

330 }

____unchanged_portion_onitted_

406 static void

407 rof f _freel(struct roff *r)

408 {

409 struct thl_node *thl;

354 struct tbl_node *t;

410 struct eqn_node *e;

411 int i

413 while (NULL !'= (tbl =r->first_thl)) {

414 r->first_tbl = thl->next;

415 tbl _free(thl);

358 while (NULL !'= (t = r->first_tbl)) {

359 r->first_tbl = t->next;

360 tbl _free(t);

416 1

new usr/src/ cnd/ mandoc/roff.c

418 r->first_tbl = r->last_tbhl = r->tbl = NULL;
420 while (NULL !'= (e = r->first_eqn)) {

421 r->first_eqn = e->next;

422 eqgn_free(e);

423 }

425 r->first_eqn = r->last_eqn = r->eqn = NULL;
427 while (r->last)

428 rof f node_pop(r);

430 roff _freestr(r->strtab);

431 rof f_freestr(r->xnbtab);

433 r->strtab = r->xnbtab = NULL;

435 rof f_freereg(r->regtab);

437 r->regtab = NULL;

439 if (r->xtab)

440 for (i =0; i < 128; i++)

441 free(r->xtab[i].p);

443 free(r->xtab);

444 r->xtab = NULL;

445 }

447 void

448 rof f _reset (struct roff *r)

449 {

450 int i

452 roff_freel(r);

454 r->control = 0;

395 nenset (& ->regs, 0, sizeof(struct reg) * REG _MAX);
456 for (i = 0; i < PREDEFS MAX; i ++)

457 roff_setstr(r, predefs[i].nanme, predefs[i].str, 0);
458 }

____unchanged_portion_onmitted_

470 struct roff *
471 roff_all oc(enum nparset type, struct nparse *parse)
412 rof f_all oc(struct nparse *parse)

472 {

473 struct roff *r;

474 int i;

476 r = mandoc_cal l oc(1, sizeof(struct roff));
477 r->parsetype = type;

478 r->parse = parse;

479 r->rstackpos = -1;

480

481 roffhash_init();

483 for (i = 0; i < PREDEFS_MAX; i ++)

484 roff_setstr(r, predefs[i].nanme, predefs[i].str, 0);
486 return(r);

487 }

489 /*

new usr/ src/ cnd/ mandoc/roff. c 7 new usr/ src/ cnd/ mandoc/roff.c
490 * In the current |ine, expand user- deflned strings ("*") 542 1=
491 * and references to number registers ("\n"). 543 * The third character decides the | ength
492 * Also check the syntax of other escape sequences. 544 * of the nane of the string or register.
430 * Pre-filter each and every line for reserved words (one beginning with 479 * of the nane of the string.
431 * ‘*' e.g., ‘*(ab’). These nust be handl ed before the actual line 545 * Save a pointer to the nanme.
432 * is processed. 546 */
433 * This al so checks the syntax of regular escapes.
493 */ 548 svmtch (*cp) {
494 static enumrofferr 549 se ("\0"):
495 rof f _res(struct roff *r, char **bufp, size_t *szp, int In, int pos) 550 return(RCFF CONT) ;
496 { 551 case ("('):
497 char ubuf[12]; /* buffer to print the nunmber */ 552 cp++;
438 enum mandoc_esc esc; 553 maxl = 2;
498 const char *stesc; /* start of an escape sequence () 554 br eak;
499 const char *stnam /* start of the name, after "[(*" */ 555 case ('["):
500 const char *cp; /* end of the nane, e.g. before ']’ */ 556 cp++;
501 const char *res; /* the string to be substituted */ 557 max|l = 0;
502 char *nbuf; /* new buffer to copy bufp to */ 558 br eak;
503 size_t nsz; /* size of the new buffer */ 559 defaul t:
504 size_t maxl; /* expected |length of the escape nane */ 560 maxl = 1;
505 size_t naml; /* actual length of the escape nane */ 561 br eak;
506 int expand_count; /* to avoid infinite |oops */ 562
443 int i, maxl, expand_count; 563 stnam = cp;
444 size_t nsz;
445 char *n; 565 /* Advance to the end of the nane. */
508 expand_count = O; 567 for (naml = 0; 0 == maxl || nam < maxl; nam ++, cp++)
502 for (i =0; 0 = maxl || | < maxl; i++ cp++) {
510 agai n: 568 if ("\0 == *cp)
511 cp = *bufp + pos; 569 mandoc_nsg
512 while (NULL !'= (cp = strchr(cp, "\\"))) { 570 (MANDOCERR_BADESCAPE,
513 stesc = cp++; 571 r->parse, In,
572 (int)(stesc - *bufp), NULL);
515 /* 573 ret ur n(ROFF_CONT) ;
516 * The second character nust be an asterisk or an n. 574
455 * The second character nust be an asteri sk. 575 if (0 == maxl & ']’ == *cp)
517 * If it isn't, skip it anyway: It is escaped, 576 br eak;
518 * so it can't start another escape sequence. 577 }
519 */
579 /*
521 if ("\0 == *cp) 580 * Retrieve the replacenent string; if it is
522 r et ur n(ROFF_CONT) ; 581 * undefined, resune searching for escapes.
582 */
524 sw’tch (*cp) {
525 ase ('*): 584 if (NULL == res)
526 res = NULL; 585 res = roff_getstrn(r, stnam nanl);
527 br eak; 586 el se
528 case ('n’): 587 snprintf (ubuf, sizeof(ubuf), "o%d",
529 res = ubuf; 588 roff_getregn(r, stnam nam));
530 br eak; 519 res = roff_getstrn(r, stnam (size_t)i);
531 defaul t:
532 i f (ESCAPE_ERROR ! = mandoc_escape(&cp, NULL, NULL)) 590 if (NULL == res) {
463 if ('* 1= *cp) { 591 mandoc_nsg
464 res = cp; 592 (MANDOCERR_BADESCAPE, r - >par se,
465 esc = mandoc_escape(&cp, NULL, NULL); 593 I'n, (int)(stesc - *bufp), NULL);
466 i f (ESCAPE_ERROR ! = esc) 594 res = "";
533 conti nue; 595 }
468 cp = res;
534 mandocfrmg 597 /* Repl ace the escape sequence by the string. */
535 (MANDOCERR_BADESCAPE, r - >par se,
536 In, (int)(stesc - *bufp), NULL); 599 pos = stesc - *bufp;
537 ret ur n(ROFF_CONT) ;
538 } 601 nsz = *szp + strlen(res) + 1;
602 nbuf = mandoc_nal | oc(nsz);
540 cp++; 533 n = mandoc_mal | oc(nsz);

new usr/src/ cnd/ mandoc/roff.c

604
605
606
535
536
537

608

610
541
611

613
614

616
617
618
619
620
621

623
624
625
626
555
627
628
629
558

631
632
633
634
635

637
564

639
640
641

643
644

646
647
648
649
576
577
650
651
652
653
654
655
656

658
659
660

strlcpy(nbuf, *bufp, (size_t)(stesc - *bufp + 1));
strlcat (nbuf, res, nsz);

strlcat(nbuf, cp + (maxl ? 0 : 1), nsz);
strlcpy(n, *bufp, (size_t)(stesc - *bufp + 1));
strlcat(n, res, nsz);

strlicat(n, cp + (maxl ?2 0 : 1), nsz);

free(*bufp);
*buf p = nbuf;
*bufp = n;
*szp = nsz;

if (EXPAND_LIMT >= ++expand_count)
goto again;

/* Just |eave the string unexpanded. */

mandoc_nsg(MANDOCERR_ROFFLOOP, r->parse, In, pos, NULL);

return(ROFF_I GN) ;
}
ret ur n(ROFF_CONT) ;

}
/*
* Process text streamns:
* Convert all breakabl e hyphens into ASCl|_HYPH.
* Decrenent and spring input line trap.
* Process text streams: convert all breakabl e hyphens into ASC|_HYPH.
*

static enumrofferr
rof f _parsetext(char **bufp, size_t *szp, int pos, int *offs)
rof f _parsetext (char *p)

size_t sz;
const char *start;
char *p;

int 1sz;

enum mandoc_esc esc;

start = p = *bufp + pos;
start = p;
while ("\0" != *p)
sz = strcspn(p, "-\\");
p += sz;
if ('\0 =="*p
break;
if ("\\' == *p)
/* Skip over escapes. */
p++;
esc mandoc_escape((const char **)&p, NULL, NULL);

esc = mandoc_escape
((const char **)&p, NULL, NULL);
i f (ESCAPE_ERROR == esc)
break;
conti nue;
} elseif (p == start) {
++;

cont i nue;

}

if (isalpha((unsigned char)p[-1])
i sal pha((unsi gned char)p[1]))
*p = ASCI | _HYPH;

&&

new usr/src/ cnd/ mandoc/roff.c

661
662

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

683
684
685
686
687
688
689

691
692
693
694

696
697
698
699

701
702
614

704
705
706
707
708
709
710

712
713
714
715
716
717
718
719
720
721
722
723
633
724

p++;

}

/* Spring the input line trap. */
if (1 ==roffit_lines)
isz = asprintf(&), "%\n.%", *bufp, roffit_nacro);
if (-1 ==1isz) {
perror (NULL) ;
exi t ((int) MANDOCLEVEL_SYSERR) ;

free(*bufp);
*bufp = p;
*szp = isz + 1;
*offs = 0;
free(roffit_nacro);
roffit_lines = 0O;
r et ur n(ROFF_REPARSE) ;
} else if (1 <roffit_lines)

--roffit_lines;

) r et ur n(ROFF_CONT) ;

enumrofferr

rof f _parsel n(struct roff *r, int In, char **bufp,
size_t *szp, int pos, int *offs)

{

enumrofft t;
enumrofferr e;
int ppos, ctl;

/*

* Run the reserved-word filter only if we have sonme reserved
* words to fill in.

*/

e = roff_res(r, bufp, szp, In, pos);
if (ROFF_IGN == e)

return(e);
assert (ROFF_CONT == e);
ppos = pos;
ctl rof f _getcontrol (r, *bufp, &pos);
ctl mandoc_get control (*bufp, &pos);

/

First, if a scope is open and we're not a macro, pass the
text through the macro’'s filter. |If a scope isn’t open and
we're not a macro, just let it through.

no matter our state.
/

S

if (r->last & ! ctl) {
t = r->last->tok;
assert(roffs[t].text);
e = (*roffs[t].text)
(r, t, bufp, szp, In, pos, pos, offs);
assert (ROFF_IGN == e || ROFF_CONT == e);
if (ROFF_CONT != e)
return(e);

}
if (r->eqn)

return(eqgn_read(& ->eqn, |In, *bufp, ppos, offs));
if (! ctl) {

if (r->thl)

return(eqn_read(& ->eqn, |In, *bufp, pos, offs));

Finally, if there’s an equation scope open, divert it into it

10

new usr/src/ cnd/ mandoc/roff.c 11 new usr/src/ cnd/ mandoc/roff.c

725 return(tbl _read(r->tbl, In, *bufp, pos)); 1068 rr =r->ast->rule;
726 return(roff_parsetext(bufp, szp, pos, offs)); 1069 r of f node_cl eanscope(r);
727 } 1070 t = roff_parse(r, *bufp, &pos);
636 return(roff_parsetext(*bufp + pos));
637 } elseif (! ctl) { 1072 /*
638 if (r->eqgn) 1073 * Fully handl e known macros when they are structurally
639 return(eqn_read(& ->eqn, In, *bufp, pos, offs)); 1074 * required or when the conditional evaluated to true.
640 if (r->thl) 989 * |f the macro is unknown, first check if it contains a closing
641 return(tbl _read(r->tbl, In, *bufp, pos)); 990 * delimter “\}'. If it does, close out our scope and return
642 return(roff_parsetext(*bufp + pos)); 991 * the currently-scoped rule (ignore or continue). Else, drop
643 } else if (r->eqn) 992 * into the currently-scoped rule.
644 return(egn_read(& ->eqn, |In, *bufp, ppos, offs)); 1075 */
729 /* 1077 if ((ROFF_MAX I=1t) &&
730 * |f a scope is open, go to the child handler for that macro, 1078 (ROFF_ccond ==t || ROFFRULE_ALLOW == rr ||
731 * as it may want to preprocess before doing anything with it. 1079 ROFFMAC_STRUCT & roffs[t].flags)) {
732 * Don't do so if an equation is open. 1080 assert(roffs[t].proc);
733 */ 1081 return((*roffs[t].proc)(r, t, bufp, szp,
1082 In, ppos, pos, offs));
735 if (r->last) { 1083 }
736 t = r->last->tok;
737 assert(roffs[t].sub); 1085 /* Always check for the closing delimter “\}'. */
738 return((*roffs[t].sub)
739 (r, t, bufp, szp, 995 if (ROFF_MAX == (t = roff_parse(r, *bufp, &pos))) {
740 I'n, ppos, pos, offs)); 1087 ep = & *bufp)[pos];
741 } 1088 while (NULL !'= (ep = strchr(ep, "\\"))) {
1089 if ("} 1= *(++ep))
743 /* 997 for (; NULL !'= (ep = strchr(ep, *\\")); ep++) {
744 * Lastly, as we’ve no scope open, try to | ook up and execute 998 ep++;
745 * the new macro. |If no macro is found, sinmply return and | et 999 if ('} '=*ep)
746 * the conpilers handle it. 1090 conti nue;
747 */
1092 /*
749 if (ROFF_MAX == (t = roff_parse(r, *bufp, &pos))) 1003 * Make the \} go away.
750 ret ur n(ROFF_CONT) ; 1004 * This is a little haphazard, as it’s not quite
1005 * clear how nroff does this.
752 assert(roffs[t].proc); 1093 * |f we're at the end of line, then just chop
753 return((*roffs[t].proc) 1094 * off the \} and resize the buffer.
754 (r, t, bufp, szp, 1095 * If we aren’t, then convert it to spaces.
755 I'n, ppos, pos, offs)); 1008 * If we aren’t, then conver it to spaces.
756 } 1096 */
____unchanged_portion_onitted_
1098 if (\0 == *(ep + 1)) {
1099 *--ep = '\0";
859 static void 1100 *szp -= 2;
860 rof fnode_cl eanscope(struct roff *r) 1101 } else
861 { 1102 *(ep - 1) = *ep =" ",
863 while (r->last) { 1104 roff _ccond(r, ROFF_ccond, bufp, szp,
864 if (--r->last->endspan != 0) 1105 I'n, pos, pos + 2, offs);
781 if (--r->last->endspan < 0) 1106 br eak;
865 break; 1107 }
866 rof f node_pop(r); 1108 return(ROFFRULE_DENY == rr ? ROFF_I GN : ROFF_CONT);
867 } 1022 }
868 }
____unchanged_portion_onitted_ 1024 /*
1025 * A denied conditional nmust evaluate its children if and only
1026 * if they're either structurally required (such as |oops and
1060 /* ARGSUSED */ 1027 * conditionals) or a closing macro.
1061 static enumrofferr 1028 */
1062 rof f _cond_sub(ROFF_ARGS)
1063 { 1030 i f (ROFFRULE_DENY == rr)
1064 enumrofft t; 1031 if (! (ROFFMAC_STRUCT & roffs[t].flags))
1065 enumroffrule rr; 1032 if (ROFF_ccond !=1t)

1066 char *ep; 1033 return(ROFF_I GN) ;

new usr/src/ cnd/ mandoc/roff.c

1035 assert(roffs[t].proc);

1036 return((*roffs[t]. proc)(r t,
1037

1109 }

__unchanged_portion_omtted_

1133 static int

1134 roff_getnun{const char *v, int *pos,

1135 {

1136 int p, n;

1138 p = *pos;

1139 =v[p] =="-"

1140 if (n)

1141 pt++;

1143 for (*res = 0; isdi gl
1144 *res += 10 *
1145 if (p == *pos + n)
1146 return O;
1148 if (n)

1149 *res = -*res;
1151 *pos = p;

1152 return 1;

1153 }

1155 static int
1156 roff_getop(const char *v, int

1157 {

1158 int e;

1160 *res = v[*pos];

1161 e = v[*pos + 1] =="'=";
1163 swtch (*res) {

1164 case '=":

1165 br eak;

1166 case '>':

1167 if (e)

1168 *res
1169 br eak;

1170 case '<':

1171 if (e)

1172 *res
1173 br eak;

1174 defaul t:

1175 return(0);
1176 }

1178 *pos += 1 + e;

1180 return(*res);

1181 }

1183 static enumroffrule
1184 roff_eval cond(const char *v,

1185 {

1186 int not, |Ih, rh;
1187 char op;

1189 switch (v[pos]) {
1190 case (’

1191 (pos)++
1192

13

bufp, szp,
In ppos, pos, offs));

int *res)

t ((unsi gned char)v[p]) p++)
*res + v[p] -

*pos, char *res)

=
= ,

int *pos)

ret urn(ROFFRULE_ALLOW ;

new usr/src/ cnd/ mandoc/roff.c

1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207

1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1081
1082
1083
1241

1243
1244
1245
1246

1091
1092

1248
1249

1251
1252

case ('e'):
/* FALLTHROUGH */
case ('0’
/* FALLTHROUGH */
case ('t’)
(*pos) ++;
r et ur n(ROFFRULE_DENY) ;
case ('!):
(*pos) ++;
not = 1;
br eak;
defaul t:
not = 0;
break;
}
if (!roff_getnun(v, pos, & h))
return ROFFRULE_DENY;
if (!roff_getop(v, pos, &op)) {
if (Ilh <0
h = 0;
goto out;
}
if (!'roff_getnum(v, pos, &h))
ret urn ROFFRULE_DENY;
switch (op) {
case 'g’:
lh =1h >=rh;
br eak;
case '|:
lh =1h <=rh;
br eak;
case '=":
lh =1h ==rh;
br eak;
case '>':
lh =1h > rh;
br eak;
case '<':
lh =1h < rh;
br eak;
defaul t:
return ROFFRULE_DENY;
}
out :
if (not)
Ih =1lh;
return | h ? ROFFRULE_ALLOW: ROFFRULE_DENY;
while (v[*pos] && ' * = v[*pos])
(*pos) ++;
r et ur n(ROFFRULE_DENY) ;
}
/* ARGSUSED */

static enumrofferr
rof f _I i ne_i gnor e(ROFF_ARGS)

{
if (ROFF_it == tok)
mandoc_nsg(MANDOCERR_REQUEST, r->parse, |In, ppos,
return(ROFF_I GN) ;
}
/* ARGSUSED */

static enumrofferr

new usr/src/ cnd/ mandoc/roff.c

1253 rof f _cond(ROFF_ARGS)

1254 {

1101
1102

1256

1258
1259
1260
1261
1262
1263
1264

1266
1112
1267
1268
1269

1117
1118
1119

1271
1122
1123
1124
1125
1126

1128
1129
1130
1131

1133
1135

1137
1272
1273
1274

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285

1287

1289
1290

1292
1293
1294
1295

int SV;
enumroffrule rul e;

rof f node_push(r, tok, NULL, In, ppos);

/'k
* An ‘.el’ has no conditional body: it will consume the val ue
* of the current rstack entry set in prior ‘ie calls or
* defaults to DENY.
*
* If we're not an ‘el’, however, then evaluate the conditional.
*
/
r->last->rule = ROFF_el == tok ?
rule = ROFF_el == tok ?
(r->rstackpos < 0 ?
ROFFRULE_DENY : r->rstack[r->rstackpos--])
rof f _eval cond(*bufp, &pos);
SV = pos;
while (° ' == (*bufp)[pos])
pos++
/*
* Roff is weird. |If we have just white-space after the
* conditional, it’s considered the BODY and we exit wi thout
* really doing anything. Warn about this. |1t’s probably
* wrong.
*/
if ('\0 ==(bufp)[pos] &% sv !'= pos) {
mandoc_nsg(MANDOCERR _NOARGS, r->parse, |n, ppos, NULL);

) return(ROFF_I GN) ;

rof f node_push(r, tok, NULL, In, ppos);
r->last->rule = rule;

/*

* An if-else will put the NEGATION of the current eval uated
* conditional into the stack of rules.

*/

if (ROFF_ie == tok)
if (r->rstackpos == RSTACK_MAX - 1) {
mandoc n‘sg(MANDOCERR VEM
r->parse, |n, ppos, NULL);
return(ROFF_ERR) ;

}

r->rstack[++r->rstackpos] =
ROFFRULE_DENY == r->l ast->rule ?
ROFFRULE_ALLOW : ROFFRULE_DENY;

/* 1f the parent has false as its rule, then so do we. */
if (r->last->parent &% ROFFRULE_DENY == r->| ast->parent->rule)
r->l ast->rul e = ROFFRULE_DENY;

Det er mi ne scope.
* If there is nothing on the line after the conditional,
* not even whitespace, use next-line scope.

new usr/src/ cnd/ mandoc/roff.c

1159
1160
1161
1296

1298
1299
1300
1301
1164

1303
1304

1306

1308
1309
1310
1311
1312

1314
1315
1316
1317
1172
1173
1318

1320
1321
1177

1323
1179

1325 out:

1326
1327
1328 }

* Determne scope. If we're invoked with "\{" trailing the

* conditional, then we're in a multiline scope. Else our scope
* expires on the next I|ine.

*/

if ('\0" == (*bufp)[pos]) {
r->| ast - >endspan = 2;
goto out;

r->| ast - >endspan = 1;

while (* ' == (*bufp)[pos])
poS++;

/* An opening brace requests nultiline scope. */

if "\ == (*bufp)[pos] && '{’ == (*bufp)[pos + 1]) {
r- >I ast - >endspan = -1;
pos += 2;
goto out;
}
/*
* Anything else follow ng the conditional causes
* single-l1ine scope. Warn if the scope contains
* nothing but trailing whitespace.
* If there are no argunents on the line, the next-line scope is
* assumed.
*

/

if ("\0 == (*bufp)[pos])
mandoc_nmsg(MANDOCERR_NOARGS, r->parse, |In, ppos, NULL);
return(ROFF_I GN);

r->| ast - >endspan = 1;
/* Otherwise re-run the roff parser after recalculating. */

*of fs = pos;
ret ur n(ROFF_RERUN) ;

__unchanged_portion_omtted_

1361 void

1362 roff_setreg(struct roff *r, const char *nane, int val, char sign)

1363 {
1364

1366
1367

1369
1370

1372
1373
1374
1375
1376
1377
1378
1379
1380

1382
1383

struct roffreg *reg;

/* Search for an existing register with the sane nane. */
reg = r->regtab;

while (reg && strcnp(nane, reg->key.p))
reg = reg->next;

if (NULL == reg)
/* Create a new register. */
reg = mandoc_mal | oc(si zeof (struct roffreg));
reg- >key. p = mandoc_st rdup(nane) ;
reg->key.sz = strlen(nane);

reg->val = 0;
reg->next = r->regtab;
r->regtab = reg;

}

if (+ == sign)

reg->val += val;

new usr/src/ cnd/ mandoc/roff.c

1384 else if ('-' == sign)

1385 reg->val -= val;

1386 el se

1387 reg->val = val;

1388 }

1390 int

1391 roff_getreg(const struct roff *r, const char *nane)
1217 roff_regi sset(const struct roff *r, enumregs reg)
1392 {

1393 struct roffreg *reg;

1395 (reg = r—>regtab reg; reg = reg->next)
1396 (0 == strcnp(nane, reg->key.p))
1397 return(reg Sval)

1399 return(0);

1220 return(r->regs[(int)reg].set);

1400 }

1402 static int

1403 rof f_getregn(const struct roff *r, const char *nane, size_t |en)
1223 unsigned int

1224 roff_regget(const struct roff *r, enumregs reg)
1404 {

1405 struct roffreg *reg;

1407 for (reg = r->regtab; reg; reg = reg->next)
1408 if (len == reg->key.sz &&

1409 0 == strncnp(nane, reg->key.p, len))
1410 return(reg->val);

1412 return(0);

1227 return(r->regs[(int)reg].u);

1413 }

1415 static void

1416 roff _freereg(struct roffreg *reg)

1230 voi d

1231 roff_regunset(struct roff *r, enumregs reg)

1417 {

1418 struct roffreg *old_reg;

1420 while (NULL !'= reg) {

1421 free(reg->key.p);

1422 old_reg = reg;

1423 reg = reg->next;

1424 free(old_reg);

1425

1234 r->regs[(int)reg].set = 0;

1426 }

1428 /* ARGSUSED */

1429 static enumrofferr

1430 rof f _nr (ROFF_ARGS)

1431 {

1432 const char *key;

1433 char *val ;

1434 size_t sz;

1435 int iv;

1436 char si gn;

1438 val = *bufp + pos;

1439 key = roff_getname(r, &val, |In, pos);

1441 sign = *val;

new usr/src/ cnd/ mandoc/roff.c

strI en(val), 10)) >= 0)
= (unsi gned) iv;

= Ou;

0;

1442 if ('+ ==sign || '-' == sign)
1443 val ++;
1248 if (0 == strcnp(key, "nS")) {
1249 r->regs[(int)REG nS].set = 1;
1250 if ((iv = mandoc_strntoi (val,
1251 r->regs[(int)REG nS].
1252 el se
1253 r->regs[(int)REG nS].u
1254 }
1445 sz = strspn(val, "0123456789")
1446 iv = sz ? mandoc_strntoi(val, sz, 10)
1448 roff_setreg(r, key, iv, sign);
1450 return(ROFF_I GN) ;
1451 }

__unchanged_portion_onitted_
1469 /* ARGSUSED */

1470 static enumrofferr
1471 rof f _i t (ROFF_ARGS)

<= 0) {
r->parse,
p+1);

cp++)

cp++)

1472 {

1473 char *cp;

1474 size_t | en;

1475 int iv;

1477 /* Parse the nunmber of lines. */

1478 cp = *bufp + pos;

1479 len = strcspn(cp, " \t");

1480 cp[len] ="\0";

1481 if ((iv = mandoc_strntoi (cp, len, 10))
1482 mandoc_nsg(MANDOCERR_NUMERI C,
1483 I'n, ppos, *buf
1484 return(ROFF_I GN) ;

1485

1486 cp += len + 1;

1488 /* Abmthe input line trap. */

1489 roffit I|nes:|v

1490 roffit_macro = mandoc _strdup(cp);

1491 return(ROFF_I G\) ;

1492 }

1494 /* ARGSUSED */

1495 static enumrofferr

1496 rof f _Dd(ROFF_ARGS)

1497 {

1498 const char *const *cp;

1500 if (MPARSE_MDOC ! = r->parsetype)

1501 for (cp = mdoc_r eserved; *cp;
1502 roff_setstr(r, *cp, NULL, 0);
1504 ret ur n(ROFF_CONT) ;

1505 }

1507 /* ARGSUSED */

1508 static enumrofferr

1509 rof f _TH(ROFF_ARGS)

1510 {

1511 const char *const *cp;

1513 if (MPARSE_MDOC ! = r->parsetype)

1514 for (cp = __nman_reserved; *cp;
1515 roff_setstr(r, *cp, NULL, 0);

new usr/ src/ cnd/ mandoc/roff. c 19 new usr/ src/ cnd/ mandoc/roff. c
1639 const char *p, *first, *second;

1517 ret ur n(ROFF_CONT) ; 1640 size_t fsz, ssz;

1518 } 1641 enum mandoc_esc esc;

1520 /* ARGSUSED */ 1643 p = *bufp + pos;

1521 static enumrofferr

1522 rof f_TE(ROFF_ARGS) 1645 if ("\0 == *p) {

1523 { 1646 mandoc_nsg(MANDOCERR_ARGCOUNT, r->parse, I n, ppos, NULL);
1647 return(ROFF_I GN);

1525 if (NULL == r->thl) 1648 }

1526 mandoc_nmsg(MANDOCERR_NOSCOPE, r->parse, In, ppos, NULL);

1527 el se 1650 while ("\0" != *p) {

1528 tbl _end(&->thl); 1651 fsz = ssz = 1;

1530 return(ROFF_I GN) ; 1653 first = p++-

1531 } 1654 if (\\ == *flrst)

__unchanged_portion_omtted_ 1655 esc = mandoc_escape(&p, NULL, NULL);

1656 i f (ESCAPE_ERROR == esc) {

1596 /* ARGSUSED */ 1657 mandoc_nsg

1597 static enumrofferr 1658 (MANDOCERR_BADESCAPE, r - >par se,

1598 rof f _TS(ROFF_ARGS) 1659 In, (int)(p - *bufp), NULL);

1599 { 1660 return(ROFF_I GN) ;

1600 struct tbhl_node *tbl; 1661 }

1355 struct tbl_node *t; 1662 fsz = (size_t)(p - first);
1663 }

1602 if (r->tbl) {

1603 mandoc_nmsg(MANDOCERR_SCOPEBROKEN, r->parse, I n, ppos, NULL); 1665 second = p++;

1604 tbl _end(& ->thl); 1666 if (C\W\' = *second) {

1605 } 1667 esc = mandoc _escape(&, NULL, NULL);
1668 i f (ESCAPE_ERROR == esc) {

1607 tbl = tbl _alloc(ppos, In, r->parse); 1669 rmndoc _nsg

1362 t = tbl_alloc(ppos, In, r->parse); 1670 (MANDOCERR_BADESCAPE, r - >par se,
1671 In, (int)(p - *bufp), NULL);

1609 if (r->last_thl) 1672 return(ROFF_I GN) ;

1610 r->last_thl->next = tbl; 1673 }

1365 r->last_thl->next =t; 1674 = (size_t)(p - second);

1611 el se 1675 } else |f (\ ' == *second) {

1612 r->first_tbl =r->last_thl = thl; 1676 mandoc_nsg(MANDOCERR _ARGCOUNT, r - >par se,

1367 r->first_tbl =r->last_thl =t; 1677 In, (int)(p - *bufp), NULL);
1678 second = " ";

1614 r->tbl =r->last_tbl = thl; 1679 p--;

1369 r->tbl =r->last_tbhl =t; 1680 }

1615 return(ROFF_I GN) ;

1616 } 1682 if (fsz > 1) {
1683 roff_setstrn(& ->xnbtab, first,

1618 /* ARGSUSED */ 1684 fsz, second, ssz, 0);

1619 static enumrofferr 1685 conti nue;

1620 roff_cc(ROFF_ARGS) 1686 }

1621 {

1622 const char *p; 1688 if (NULL == r->xtab)
1689 r->xtab = mandoc_cal |l oc

1624 p = *bufp + pos; 1690 (128, sizeof(struct roffstr));

1626 if ("\0 ==*p || '.” == (r->control = *p++)) 1692 free(r->xtab[(int)*first].p);

1627 r->control = 0; 1693 r->xtab[(int)*first].p = mandoc_strndup(second, ssz);
1694 r->xtab[(int)*first].sz = ssz;

1629 if (C\0" 1= *p) 1695 1

1630 mandoc_nsg(MANDOCERR_ARGCOUNT, r->parse, |In, ppos, NULL);
1697 return(ROFF_I GN) ;

1632 return(ROFF_I GN) ; 1698 }

1633 } __unchanged_portion_onitted_

1635 /* ARGSUSED */ 1725 /* ARGSUSED */

1636 static enumrofferr 1726 static enumrofferr

1637 roff_tr (ROFF_ARGS) 1727 rof f_user def (ROFF_ARGS)

1638 { 1728 {

new usr/ src/ cnd/ mandoc/roff. c 21 new usr/ src/ cnd/ mandoc/roff.c
1729 const char *arg[9];
1730 char *cp, *nl, *n2; 1954 if (NULL == r->xnbtab && NULL == r->xtab)
1731 int i; 1955 return(mandoc_strdup(p));
1956 else if ("\0 == *p
1733 /* 1957 return(mandoc_strdup(""));
1734 * Col l ect pointers to macro argunent strings
1735 * and NUL-term nate them 1959 /*
1473 * and null-term nate them 1960 * Step through each character |ooking for term natches
1736 */ 1961 * (remenber that a ‘tr’ can be invoked with an escape, which is
1737 cp = *bufp + pos; 1962 * a glyph but the escape is nulti-character).
1738 for (i =0; i <9; i+4) 1963 * W only do this if the character hash has been initialised
1739 arg[i] ='\0 == *cp ? "" : 1964 * and the string is >0 |ength.
1740 mandoc_get arg(r- >parse &cp, |In, &pos); 1965 */
1742 /* 1967 res = NULL;
1743 * Expand macro argunents. 1968 ssz = 0;
1744 */
1745 *szp = 0; 1970 while ("\0" !'= *p) {
1746 nl = cp = mandoc_strdup(r->current_string); 1971 if (C\\W I=*p & r->xtab && r->xtab[(int)*p].p) {
1747 whil e (NULL = (cp = strstr(cp, "\\$"))) { 1972 sz = r->xtab[(int)*p].sz;
1748 cp[2 1 1973 res = mandoc_real l oc(res, ssz + sz + 1);
1749 |f (O>| || 8 <i) { 1974 mencpy(res + ssz, r->xtab[(int)*p].p, sz);
1750 /* Not an argunent invocation. */ 1975 SSz += sZ;
1751 cp += 2; 1976 p++;
1752 conti nue; 1977 conti nue;
1753 } 1978 } elseif ("\\' 1= *p)
1979 res = mandoc_realloc(res, ssz + 2);
1755 *szp = strlen(nl) - 3 + strlen(arg[i]) + 1; 1980 res[ssz++] = *p++;
1756 n2 = mandoc_mal | oc(*szp); 1981 conti nue;
1982 }
1758 strlcpy(n2, nl, (size_t)(cp - nl + 1));
1759 strlcat(n2, arg[i], *szp); 1984 /* Search for term matches. */
1760 strlicat(n2, cp + 3, *szp); 1985 for (cp r->xnbt ab; cp; cp = cp->next)
1986 f (0 == strncnp(p, cp->key.p, cp->key.sz))
1762 cp = n2 + (cp - nl); 1987 br eak;
1763 free(nl);
1764 nl = n2; 1989 if (NULL !'= cp) {
1765 } 1990 /*
1991 * A match has been found.
1767 * 1992 * Append the nmatch to the array and nove
1768 * Repl ace the macro invocation 1993 * forward by its keysize.
1769 * by the expanded nacro. 1994 */
1770 */ 1995 res = mandoc_real |l oc
1771 fre e(*buf p); 1996 (res, ssz + cp->val.sz + 1);
1772 *bufp = ni; 1997 nencpy(res + ssz, cp->val.p, cp->val.sz);
1773 if (0 == *szp) 1998 ssz += cp->val . sz
1774 *szp = strlen(*bufp) + 1, 1999 p += (int)cp->key.sz;
2000 conti nue;
1776 return(*szp > 1 && '\n’ == (*bufp)[(int)*szp - 2] ? 2001 }
1777 ROFF_REPARSE : ROFF_APPEND) ;
1778 } 2003 /*
__unchanged_portion_onitted_ 2004 * Handl e escapes carefully: we need to copy
2005 * over just the escape itself, or else we n ght
1940 /* 2006 * do replacenments within the escape itself.
1941 * Duplicate an input string, meking the appropriate character 2007 * Make sure to pass along the bogus string.
1942 * conversations (as stipulated by “tr’) along the way. 2008 */
1943 * Returns a heap-allocated string with all the replacenents nade. 2009 pp = p++;
1944 */ 2010 esc = mandoc_escape(&p, NULL, NULL);
1945 char * 2011 if (ESCAPEiERRCR == esc)
1946 roff_strdup(const struct roff *r, const char *p) 2012 sz = strlen(pp)
1947 { 2013 res = mandoc real loc(res, ssz + sz + 1);
1948 const struct roffkv *cp; 2014 mencpy(res + ssz, pp, Sz);
1949 char *res; 2015 br eak;
1950 const char *pp; 2016 }
1951 size_t sSsz, Sz; 2017 /*
1952 enum mandoc_esc esc; 2018 * We bail out on bad escapes.

new usr/src/ cnd/ mandoc/roff.c

2019 * No need to warn: we already did so when
2020 * roff_res() was called.

2021 /

2022 = (int)(p - pp);

2023 res = mandoc realloc(res ssz + sz + 1);

2024 mencpy(res + ssz, pp, Sz);

2025 Ssz += sz;

2026 }

2028 res[(int)ssz] ='\0";

2029 return(res);

2030 }

2032 /*

2033 * Find out whether a line is a nacro line or not.

2034 * |f it is, adjust the current position and return one; if it isn't,
2035 * return zero and don’t change the current positi on.

2036 * If the control character has been set with ‘.cc’, then let that grain
2037 * precedence.

2038 * This is slighly contrary to groff, where using the non-breaking
2039 * control character when ‘cc’ has been invoked will cause the
2040 * non-breaking nmacro contents to be printed verbatim

2041 */

2042 int

2043 roff_getcontrol (const struct roff *r, const char *cp, int *ppos)
2044 {

2045 int pos;

2047 pos = *ppos;

2049 if (0 !=r->control && cp[pos] == r->control)

2050 pos++;

2051 else if (0 !=r->control)

2052 return(0);

2053 else if ("\\' == cp[pos] && '.’ == cp[pos + 1])

2054 pos += 2;

2055 elseif (. ==cp[pos] || "\’ == cp[pos])

2056 pos++;

2057 el se

2058 return(0);

2060 while (* ' == cp[pos] || '\t’' == cp[pos])

2061 pos++;

2063 *ppos = pos;

2064 return(1);

2065 }

__unchanged_portion_onitted_

23

new usr/src/cnd/ mandoc/ st.in

R R R R

4887 Wed Jul 30 20:55:11 2014
new usr/src/cnd/ mandoc/ st.in
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: st.in,v 1.22 2013/12/25 14:09: 32 schwarze Exp $ */
1/* $Id: st.in,v 1.19 2012/02/26 21:47:09 schwarze Exp $ */
2 /*
3 * Copyright (c) 2009, 2010 Kristaps Dzonsons <kristaps@sd.|v>
4 *
5 * Pernission to use, copy, nodify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this perm ssion notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS |'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
10 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF
11 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
12 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PRCFI TS, WHETHER I N AN
14 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI OUS ACTI ON, ARI SI NG OQUT OF
15 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI S SOFTWARE.
16 */
18 /*
19 * This file defines the .St macro argunents. |f you add a new
20 * standard, nake sure that the left-and side corresponds to the .St
21 * argunent (like .St -pl1003.1) and the right-hand side corresponds to
22 * the formatted output string.
23 *
24 * Be sure to escape strings.
25 * The non-breaking bl anks prevent ending an output line right before
*
*
*
*

26 a nunber. G off prevent |line breaks at the sanme pl aces.

27

28 REMEMBER TO ADD NEW STANDARDS TO MDCC. 7!

29 */

31 LI NE("-pl003. 1-88", "1 EEE Std 1003.1-1988 (\\ (I gPCSI X. 1\\(rqg)")
32 LI NE("-p1003. 1- 90", "I EEE Std 1003.1-1990 (\\ (I qPOSI X. 1\\ (rq)")
33 LI NE("-pl003. 1-96", "1SO | EC 9945-1: 1996 (\\ (I gPCSI X. 1\\ (rqg)")

34 LI NE("-pl1003. 1-2001", "1 EEE Std 1003.1-2001 (\\ (Il gPGCSI X. 1\\(rqg)")
35 LI NE("-pl1003. 1-2004", "1 EEE Std 1003. 1-2004 (\\ (I qPGCSI X. 1\\(rq)")
36 LINE("-p1003.1-2008", "IEEE Std 1003.1-2008 (\\ (I qPOSI X. 1\\(rg)")
37 LINE("-p1003.1", "1 EEE Std 1003.1 (\\ (1 gPOSIX. 1\\(rqg)")

38 LI NE("-pl003. 1b", "1 EEE Std 1003.1b (\\ (I gPGSI X. 1b\\ (rq)")

39 LI NE("-p1003. 1b- 93", "I EEE Std 1003. 1b-1993 (\\ (I qPCSI X. 1b\\ (rqg)")
40 LINE("-p1003. 1c- 95" "I EEE Std 1003. 1c-1995 (\\ (I qPCSI X. 1c\\ (rqg)")
41 LINE("-p1003. 1d- 99 "1 EEE Std 1003.1d-1999 (\\ (I gPOSI X. 1d\\ (rg)")
42 LI NE("-pl003. lg 2000", “IEEE Std 1003. 1g-2000 (\\ (I qPOSI X. 1g\\(rq)")
43 LI NE("-p1003. 1i - 95" "I EEE Std 1003.1i-1995 (\\ (I qPCSI X. 1i\\(rqg)")
44 LI NE("-pl003. 1j -2000", "IEEE Std 1003. 1j -2000 (\\(lqPOSI X. 1j\\(rq)")
45 LI NE("-p1003. 1g-2000", "IEEE Std 1003. 1g-2000 (\\ (I qPOSI X. 1g\\ (rq)")
46 LI NE("-p1003. 2", "] EEE Std 1003.2 (\\ (I gPOSI X. 2\\ (rqg)")

38 LI NE("-p1003. 1b", "I EEE Std 1003.1b (\\ (I gPCSI X. 1\\(rqg)")

39 LINE("-pl003. 1b-93", "1 EEE Std 1003. 1b-1993 (\\ (I gPCsI X. 1\\ (rqg)")
40 LI NE("-p1003. 1c- 95", "I EEE Std 1003. 1c-1995 (\\ (I qPOSI X. 1\\ (rqg)")
41 LINE("-p1003.1g-2000", "IEEE Std 1003.1g-2000 (\\ (I qPCsI X. 1\\(rg)")
42 LI NE("-p1003. 1i-95", "I EEE Std 1003. 1i - 1995 (\\ (I gPCsI X. 1\\(rq)")
47 LI NE("-pl1003. 2-92", "1 EEE Std 1003.2-1992 (\\ (I gPCSI X. 2\\(rq)")
48 LI NE("-p1003. 2a- 92", "I EEE Std 1003.2a-1992 (\\ (I qPCSI X. 2\\ (rq) ™)
49 LI NE("-p1387.2", "1 EEE Std 1387.2 (\\ (I gPCSIX. 7.2\\(rq)")

50 LI NE("-pl1387.2-95", "1 EEE Std 1387.2-1995 (\\ (I qPOSI X. 7.2\\(rq)")
46 LI NE("-pl1003. 2", "1 EEE Std 1003.2 (\\(I1gPOSI X. 2\\ (rq)")

47 LINE("-p1387.2", "I EEE Std 1387.2 (\\ (1 qPOSIX. 7. 2\\ (rq)")

51 LINE("-isoC', "1SO' I EC 9899: 1990 (\\ (1 gl SO\~C90\\(rq)")

new usr/src/cnd/ mandoc/ st.in

52 LI NE("-isoC 90",

53 LINE("-isoC andl",
54 LINE("-isoC-tcorl",
55 LINE("-isoC-tcor2",
56 LINE("-isoC 99",

57 LINE("-isoC 2011",

58 LINE("-is09945-1-90",
59 LINE("-is09945-1-96",
60 LINE("-is09945-2-93",

61 LINE("-ansiC',

62 LINE("-ansi C 89",
63 LI NE("-ansi C- 99",
64 LINE("-ieee754",

65 LINE("-iso08802-3",
66 LINE("-iso8601",

67 LINE("-ieeel275-94",
68 LI NE("-xpg3",

69 LI NE("-xpg4",

70 LI NE("-xpg4.2",

71 LI NE("-xpg4. 3",

72 LI NE("-xbd5",

73 LI NE("-xcub5",

74 LINE("-xsh4.2",

75 LI NE("-xsh5",

76 LINE("-xns5",

77 LINE("-xns5.2",

78 LI NE("-xns5.2d2.0",
79 LINE("-xcurses4. 2",
80 LI NE("-susv2",

81 LI NE("-susv3",

76 LI NE("-susv2",

77 LINE("-susv3",

82 LI NE("-svid4",

2
"1 SO EC 9899: 1990 (\\ (I ql SO\ ~C90\\ (rq)")
"1 SO | EC 9899/ AMDL: 1995 (\\ (I gl SO\ ~C90, Anendment 1\\(r
"1SQ | EC 9899/ TCORL: 1994 (\\ (I gl SO\ ~C90, Technical Corr
"1 SO | EC 9899/ TCOR2: 1995 (\\ (I gl SO\ ~C90, Technical Corr
"1 SO EC 9899: 1999 (\\ (I gl SO\ ~CO\\ (rqg)")
"I SO | EC 9899: 2011 (\\ (I gl SO\ ~C11\\(rq)")
"SI EC 9945-1: 1990 (\\ (1 gPOSI X. 1\\ (rg)")
"1 SO | EC 9945-1: 1996 (\\ (I gPCSI X. 1\\ (rq)")
"1 SO | EC 9945-2: 1993 (\\ (I gPCSI X. 2\\ (rq)")
"ANSI X3.159-1989 (\\ (I gANSI\\~CB89\\(rq)")
"ANSI X3.159-1989 (\\ (I gANSI\\~C89\\ (rq)")
"ANSI /1 SO | EC 9899-1999 (\\ (I gANSI\\ ~C9\\ (rq)")
"1 EEE Std 754-1985")
"1SO 8802-3: 1989")
"1 SO 8601")
"I EEE Std 1275-1994 (\\ (I qOpen Firmware\\(rq)")
"X/Open Portability Guide |ssue\\~3 (\\(IqX \\(rq)")
"X/ Open Portability Guide Issue\\~4 (\\(IgxXPGH\\(rqg)")
"X/ Open Portability Cuide Issue\\~4, Version\\~2 (\\(lqg
"X/ Open Portability Guide Issue\\~4, Version\\~3 (\\(lq
"X/ Open Base Definitions Issue\\~5 (\\(IqXBD5\\(q)")
"X/ Open Commands and Utilities Issue\\~5 (\\(lgXCU\\(rq
"X/ Open System Interfaces and Headers |ssue\\~4, Version
"X/ Open System Interfaces and Headers Issue\\~5 (\\(lgXS
"X/ Open Networ ki ng Services Issue\\~5 (\\ (I gXNS5\\(rqg)")
"X/ Open Networ ki ng Services Issue\\~5.2 (\\(lIgXNS5.2\\(r
"X/ Open Networking Services |ssue\\~5.2 Draft\\ ~2.0 (\\(
"X/ Open Curses |ssue\\~4, Version\\~2 (\\ (| gXCURSES4. 2\\
"Version\\~2 of the Single UNI X Specification (\\(IqSUSv
"Version\\~3 of the Single UNI X Specification (\\(IqSUSv
"Version\\~2 of the Single UN X Specification")
"Version\\~3 of the Single UN X Specification")

"System\~V Interface Definition, Fourth Edit

ion (\\(IgS

new usr/ src/ cnd/ mandoc/ thl . c

R R R R

4085 Wed Jul 30 20:55:12 2014
new usr/src/cnd/ mandoc/thl.c
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: tbl.c,v 1.27 2013/05/31 22:08: 09 schwarze Exp $ */

1/* $Id: tbl.c,v 1.26 2011/07/25 15:37:00 kristaps Exp $ */

2 /*

3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>

4 * Copyright (c) 2011 Ingo Schwarze <schwarze@penbsd. or g>

5 *

6 * Permission to use, copy, nodify, and distribute this software for any

7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this perm ssion notice appear in all copies.

9 *

10 * THE SOFTWARE IS PROVIDED "AS |I'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

12 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
15 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SI NG QUT OF
16 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI' S SOFTWARE.

17 */

18 #if def HAVE CONFI G H
19 #include "config. h™
20 #endif

22 #include <assert.h>
23 #include <stdio. h>
24 #include <stdlib. h>
25 #include <string. h>
26 #include <tine.h>

28 #include "nandoc. h"
29 #include "libmandoc. h"
30 #include "libroff.h"

32 enumrofferr
33 tbl _read(struct tbl_node *tbl, int In, const char *p, int offs)

34 {

35 int | en;

36 const char *cp;

38 cp = &[offs];

39 Ien=(| t)strlen(cp);

41 /*

42 * |f we're in the options section and we don’t have a

43 * termnating sem col on, assume we’ve noved directly into the
44 * |ayout section. No need to report a warning: this is,

45 * apparently, standard behaviour.

46 */

48 if (TBL_PART_OPTS == tbl->part && |en)

49 if (7 l—cp[len-l])

50 tbl ->part = TBL_PART_LAYOUT;

52 /* Now process each |ogical section of the table. */

54 switch (thl->part) {

55 case (TBL_PART_OPTS):

56 return(tbl _option(thl, In, p) ? ROFF_IGN : ROFF_ERR);
57 case (TBL_PART_LAYQUT):

58 return(tbl _layout(tbl, In, p) ? ROFF_IGN : ROFF_ERR);

new usr/src/ cnd/ mandoc/ thbl . c

59 case (TBL_PART_CDATA):

60 return(tbl _cdata(tbl, In, p) ? ROFF_TBL : ROFF_IGN);
61 defaul t:

62 br eak;

63 }

65 /*

66 * This only returns zero if the line is enpty, so we ignore it
67 * and continue on.

68 */

69 return(tbl _data(tbl, In, p) ? ROFF_TBL : ROFF_IQN);

70 }

72 struct tbl_node *
73 tbl _alloc(int pos, int line, struct nparse *parse)

74 {

75 struct thl_node *thl;

75 struct tbl_node *p;

77 tbl = mandoc_cal |l oc(1, sizeof(struct tbl_node));
78 tbl->line = Tine;

79 t bl - >pos = pos;

80 t bl - >parse = par se;

81 tbl->part = TBL_PART_OPTS;
82 thl->opts.tab = "\t’

83 tbl ->opts.linesize = 12
84 tbl ->opts.decimal =".";
85 return(tbl);

77 p = rmndoc_cal loc(1, sizeof(struct tbl_node));
78 p->line = line;

79 p- >pos = pos;

80 p- >par se = parse;

81 p->part = TBL_PART_OPTS;
82 p->opts.tab = "\t’;

83 p->opts.|linesize = 12;

84 p->opts.decimal ="'.";

85 return(p);

86 }

88 void

89 tbl _free(struct thl_node *tbl)
89 thl _free(struct tbl_node *p)
{

90

91 struct tbl _row *rp;

92 struct tbl_cell *cp;

93 struct tbl_span *sp;

94 struct tbl_dat *dp;

95 struct tbl_head *hp;

97 while (NULL !'= (rp = tbl->first_row)) {
98 tbl->first_row = rp->next;

97 while (NULL !'= (rp = p->first_row)) {
98 p->first_row = rp->next;

99 while (rp->first) {

100 cp = rp->first;

101 rp->first = cp->next;
102 free(cp);

103 }

104 free(rp);

105 }

107 vx/nile(NULL!:(sp:tbl->first_span)) {
108 tbl->first_span = sp->next;
107 \A,hlle(NULL'-(sp—p>f|rst span)) {
108 p->first_span = sp->next

109 while (sp->first) {

new usr/ src/ cnd/ mandoc/ thl . c

110 dp = sp->first;

111 sp->first = dp->next;
112 if (dp->string)

113 free(dp->string);
114 free(dp);

115 }

116 free(sp);

117

119 while (NULL !'= (hp = tbl->first_head)) {
120 tbl->first_head = hp->next;

119 while (NULL !'= (hp = p->first_head)) {
120 p->first_head = hp->next;

121 free(hp);

122 1

124 free(thl);

124 free(p);

125 }

____unchanged_portion_onitted_

new usr/src/ cnd/ mandoc/ tbl _data. c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
6344 Wed Jul 30 20:55:12 2014

new usr/src/ cnd/ mandoc/ t bl _data. c

5051 inport ndocnmi-1.12.3

Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD
LR R R EEEEEEEEE SRS RS RS SRS RS RS E R EE R R RREERREREEEEEEEEEESEESESE]
1/* $ld: tbl _data.c,v 1.27 2013/06/01 04:56:50 schwarze Exp $ */
1/* $Id: tbl_data.c,v 1.24 2011/03/20 16:02:05 kristaps Exp $ */
2 /*
3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
4 * Copyright (c) 2011 Ingo Schwarze <schwarze@penbsd. or g>
5 *
6 * Permission to use, copy, nodify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this perm ssion notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS |I'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF
12 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
15 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SI NG QUT OF
16 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI S SOFTWARE.
17 */
18 #i f def HAVE CONFI G_H
19 #include "config. h™
20 #endif
22 #include <assert.h>
23 #include <ctype. h>
24 #include <stdlib. h>
25 #include <string. h>
26 #include <tinme.h>
28 #incl ude "mandoc. h"
29 #include "libnmandoc. h"
30 #include "libroff.h"
32 static int data(struct tbl_node *, struct tbl_span *,
33 int, const char *, int *);
34 static struct thl_span *newspan(struct tbl _node *, int,

37 static i
38 data(str

struct tbl_row *);

nt
uct tbl_node *tbl, struct tbl_span *dp,
int In, const char *p, Int *pos)

40 {

41 struct thl_dat *dat;

42 struct tbl_cell *cp;

43 int sv, spans;

45 cp = NUL

46 if (dp- >I ast && dp- >l ast - >| ayout)

47 = dp->| ast - >l ayout - >next ;

48 else if (NULL == dp- >l ast)

49 cp = dp->layout->first;

51 /*

52 * Skip over spanners, since

52 * Skip over spanners and vertical lines to data formats, since
53 *lwe want to match data with data layout cells in the header.
54 *

56 while (cp & TBL_CELL_SPAN == _cp- >pos)

56 while (cp & (TBL_CELL_VERT == cp->pos ||

new usr/src/ cnd/ mandoc/ tbl _data. c

57
58
57

106

110
111
112

114
115

117
118
119

TBL_CELL_DVERT == cp->pos ||
TBL_CELL_SPAN == cp->pos))
Cp = cp->next;

/*
* Stop processing when we reach the end
* cells. This nmeans that we have extra
*/

if (NULL == cp)

{
mandoc_nsg(MANDOCERR_TBLEXTRADAT,

of the avail abl e | ayout
i nput.

tbl ->parse, In, *pos, NULL);

/* Skip to the end... */
whi le (p[*pos])

(*pos) ++;
return(1);

}

dat = mandoc_cal | oc(1, sizeof(struct tbl
dat - >| ayout = cp;

dat - >pos = TBL_DATA_NONE;

assert (TBL_CELL_SPAN ! = cp->pos);

_dat));

(spans = 0, cp = cp->next; cp; cp = cp->next)

if (TBL_CELL_SPAN == cp->pos)
spans++;

el se
br eak;

dat - >spans = spans;

if (dp->last) {
dp- >l ast->next = dat;
dp->l ast = dat;

} else
dp->last = dp->first = dat;

SV = *pos;

whi |l e (p[pos] && p[*pos] != thl->opts.tab)
(*pos) ++;

0s)
/*

* Check for a continued-data scope opening.

* trailing ‘T{’ at the end of the line.
* until a standalone ‘T}', are included

*/

if (*pos - sv ==2 & 'T == p[sv] && '{’
tbl->part = TBL_ PART CDATA;
return(1);
return(O);

}

assert(*pos - sv >= 0);

dat->string =

This consists of a
Subsequent i nes,
in our cell.

== p[sv + 1]) {

mandoc_mal | oc((size_t)(*pos - sv + 1));

nencpy(dat - >str|ng, [sv] (size_t)(*pos - sv));

dat - >string[*pos - sv] =

if (p[*pos])

(*pos) ++;
if (! strcnp(dat->string, "_"))

dat - >pos = TBL_DATA HORI Z;
else if (! strcnp(dat->string, "="))

new usr/src/ cnd/ mandoc/ tbl _data. c

120
121
122
123
124
125
126

128
129
130
131
132
133

135

136 }

dat - >pos = TBL_DATA DHORI Z;
else if (! strcnp(dat->string, "_"))
dat - >pos = TBL_DATA_NHORI Z;
else if (! strcnp(dat->string, "\\="))
dat - >pos = TBL_DATA_NDHORI Z;
el se
dat - >pos = TBL_DATA DATA;

if (TBL_CELL_HORI Z == dat - >l ayout - >pos | |
TBL_CELL_DHORI Z == dat - >l ayout - >pos ||
TBL_CELL_DOWN == dat - >l ayout - >pos)
if (TBL_DATA DATA == dat->pos && '\0’ != *dat->string)
mandoc_nsg(MANDOCERR _TBLI GNDATA,
tbl->parse, In, sv, NULL);

return(1);

__unchanged_portion_onitted_

181 static struct tbl_span *
182 newspan(struct tbl_node *tbl, int line, struct tbl_row *rp)
183 {

184

186
187
188
190
189
190

192
193
194
195
196
197
198
199

201

202 }

struct tbl_span *dp;

dp = mandoc_cal | oc(1, sizeof(struct tbl_span));
dp->line = line;

dp->opts = &tbl->opts;

dp->tbl = &tbl->opts;

dp->l ayout = rp;

dp- >head = tbl->first_head;

if (tbl->last_span) {
tbl - >l ast _span- >next = dp;
tbl ->l ast_span = dp;
} else {
tbl->last_span = tbl->first_span = dp;
tbl ->current _span = NULL;
dp->flags | = TBL_SPAN_FI RST;
}

return(dp);

__unchanged_portion_onitted_

new usr/src/ cnd/ mandoc/tbl _htnl.c 1

R R R R

3160 Wed Jul 30 20:55:12 2014
new usr/src/cnd/ mandoc/tbl _htm . c
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $Id: tbl _htm.c,v 1.10 2012/05/27 17:54:54 schwarze Exp $ */

1/* $Id: tbl_htm.c,v 1.9 2011/09/18 14:14: 15 schwarze Exp $ */

2 /*

3 * Copyright (c) 2011 Kristaps Dzonsons <kristaps@sd.|v>

4 *

5 * Permission to use, copy, nodify, and distribute this software for any

6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this perm ssion notice appear in all copies.

8 *

9 * THE SOFTWARE IS PROVIDED "AS |'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
10 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

11 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
12 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PRCFI TS, WHETHER I N AN
14 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI OUS ACTI ON, ARI SI NG OQUT OF
15 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI S SOFTWARE.

16 */

17 #i fdef HAVE_CONFI G H
18 #include "config. h"
19 #endi f

21 #include <assert.h>
22 #include <stdio. h>

23 #include <stdlib. h>
24 #include <string. h>

26 #include "mandoc. h"
27 #include "out.h"
28 #include "htnl.h"

30 static void ht ml _t bl open(struct html *, const struct tbl_span *);
31 static size_t htm _tbl _len(size_t, void *);

32 static size_t htm _tbl _strlen(const char *, void *);
34 /* ARGSUSED */

35 static size_t

36 html _tbl _len(size_t sz, void *arg)

37

38

39 return(sz);

40 }

____unchanged_portion_onitted_

89 void

90 print_tbl(struct html *h, const struct tbl_span *sp)
91 {

92 const struct tbl_head *hp;

93 const struct tbl_dat *dp;

94 struct htmpair tag;

95 struct tag *tt;

97 /* Inhibit printing of spaces: we do paddi ng ourselves. */
99 if (NULL == h->thlt)

100 htm _t bl open(h, sp);

102 assert(h->tblt);

104 h->flags | = HTM._NONOSPACE;

new usr/src/cnd/ mandoc/ tbl _htm . c

105 h->fl ags | = HTM._NGSPACE;

107 tt = print_otag(h, TAG TR 0, NULL);

109 switch (sp->pos) {

110 case (TBL_SPAN _HORI Z):

111 /* FALLTHROUCH */

112 case (TBL_SPAN DHORI Z):

113 PAIR_I NI T(& ag, ATTR COLSPAN, "0");

114 print_otag(h, TAG TD, 1, &tag);

115 br eak;

116 defaul t:

117 dp = sp->first;

118 for (hp = sp->head; hp; hp = hp->next) {
119 print_stagq(h, tt);

120 print_otag(h, TAG TD, 0, NULL);
122 switch (hp->pos) {

123 case (TBL_HEAD VERT):

124 /* FALLTHROUGH */

125 case (TBL_HEAD DVERT):

126 conti nue;

127 case (TBL_HEAD DATA):

122 if (NULL == dp)

123 br eak;

124 if (TBL_CELL_DOWN != dp- >l ayout - >pos)
125 if (dp->string)

126 print_text(h, dp->string);
127 dp = dp->next;

134 br eak;

128 }

136 1

129 br eak;

130 }

132 print_tagq(h, tt);

134 h->fl ags & ~HTM._NONGCSPACE;

136 if (TBL_SPAN LAST & sp->flags) {

137 assert (h->tbl.cols);

138 free(h->tbl.cols);

139 h->tbl.cols = NULL;

140 print_tblclose(h);

141 1

143 }

____unchanged_portion_onitted_

new usr/src/ cnd/ mandoc/ tbl _| ayout . c

R R R R

8025 Wed Jul 30 20:55:12 2014
new usr/src/ cnd/ mandoc/ tbl _| ayout. c
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $Id: tbl_layout.c,v 1.23 2012/05/27 17:54:54 schwarze Exp $ */

1/* $Id: tbl_layout.c,v 1.22 2011/09/18 14:14:15 schwarze Exp $ */

2 /*

3 * Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>

4 * Copyright (c) 2012 Ingo Schwarze <schwarze@penbsd. or g>

5 *

6 * Permission to use, copy, nodify, and distribute this software for any

7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this perm ssion notice appear in all copies.

9 *

10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

12 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
15 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SI NG QUT OF
16 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI' S SOFTWARE.

17 */

18 #if def HAVE CONFI G H
19 #include "config. h™
20 #endif

22 #include <assert.h>
23 #include <ctype. h>
24 #include <stdlib. h>
25 #include <string. h>
26 #include <tine.h>

28 #include "nandoc. h"
29 #include "libmandoc. h"
30 #include "libroff.h"

32 struct thl_phrase {

33 char nane;
34 enumthbl _cellt key;
35 };

37 /*

38 * FIXME: we can make this parse a | ot nicer by, when an error is
39 * encountered in a |ayout key, bailing to the next key (i.e. to the
40 * next whitespace then continuing).

*/
43 #define KEYS_MAX 11

45 static const struct thl phrase keys[KEYS_MAX] = {

46 . L_CELL_CENTRE 7},
47 ’r’, TBL CELL_RI GHT },
48 e TBL_CELL_LEFT },
49 . TBL_CELL_NUMBER },
50 s, TBL_CELL_SPAN },
51 ‘a, TBL_CELL_LONG },
52 A TBL_CELL_DOM },
53 TBL_CELL_ HORI Z },
54 r TBL_CELL_HORI Z },
55 i TBL_CELL_DHORI Z }
54 = TBL_CELL_DHORI Z },
55 200, TBL_CELL_VERT }

new usr/src/ cnd/ mandoc/ tbl _| ayout . c

114

static int nmods(struct tbl _node *, struct tbl_cell *,
int, const char *, int *);
static int cel I (struct tbl_node *, struct thl_row *,
int, const char *, int *);
static void rowm struct tbl_node *, int, const char *, int *);
static struct tbl_cell *cell _alloc(struct tbl_node *, struct tbl_row *,
enumthbl _cellt, int vert);
static struct tbl_cell *cell_alloc(struct tbl_node *,
struct tbl _row *, enumtbl _cellt);
static void head_adj ust (const struct tbl_cell *,
struct thl_head *);
static int
nods(struct tbl_node *tbl, struct tbl_cell *cp,
(int In, const char *p, int *pos)
char buf [5] ;
int i;
/* Not all types accept nodifiers. */
switch (cp->pos) {
case (TBL_CELL_DOWN) :
/' * FALLTHROUGH */
case (TBL_CELL_HORI Z):
/* FALLTHROUGH */
case (TBL_CELL_DHORI Z):
/* FALLTHROUGH */
case (TBL_CELL_VERT):
/* FALLTHROUGH */
case (TBL_CELL_DVERT):
return(1);
defaul t:
br eak;
}
nod:
/*
* XXX: since, at least for now, nodifiers are non-conflicting
* (are separabl e by value, regardl ess of position), we |et
* nodifiers come in any order. The existi ng thl doesn’t | et
* this happen.
*/
switch (p[*pos]) {
case ('\0'):
/* FALLTHROUGH */
case (' '):
/* FALLTHRCUG—I */
case ('\t’
/* FALLTHRCUGH */
case (','):
/* FALLTHROUCH */
case (.
return(l)
defaul t:
br eak;
}
/* Throw away parenthesised expression. */
if (" ==p[*pos]) {
(*pos) ++;
while (p[*pos] && ')’ != p[*pos])
*pos) ++;
if (") == pl*pos]) {

new usr/src/ cnd/ mandoc/ tbl _| ayout . c

115
116
117
118
119
120
121

123

125
126
127
128
129
130
131

133

135
136
137
138
139

141
142

144
145
146

148

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

}

(*pos) ++;
goto nod;

}
mandoc_nsg(MANDOCERR _TBLLAYQOUT,

tbl ->parse, In, *pos, NULL);
return(0);

/* Parse nunerical spacing fromnodifier string. */

if (isdigit((unsigned char)p[pos])) {

}

for (i =0; i <
if (! |sd| glt((un5|gned char)p[*pos + i]))
br eak;

’

buf[i] = p[*pos + i];

}

buf[i] ='\0";

/* No greater than 4 digits. */

if (4==1) {

mandoc_nsg(MANDOCERR_TBLLAYQUT, tbl ->parse,

I'n, *pos, NULL);

return(0);

}

*pos += i;

cp->spacing = (size_t)atoi (buf);

got o nod;
/* NOTREACHED */

/* TODO. G\U has many nore extensions. */

switch (t ol ower ((unsi gned char)p[(*pos)++])) {
case ('z'):
cp->flags | = TBL_CELL_W G\,
goto nod;
case ('u'):
cp->flags | = TBL_CELL_UP;
got o nod;
case ('e'):
cp->flags | = TBL_CELL_EQUAL;
goto nod;
case ('t
cp >flags | = TBL_CELL_TALI GN,
got o nod;
case ('d"):
cp->flags | = TBL_CELL_BALI G\,
got o nod;
case ("w): [* XXX for now, ignore miniml colum wdth */
goto nod;
case ('f’):
break
case ('r'):
/* FALLTHROUGH */
case ('b
/* FALLTHRQUGH */
case (’)
(pos) - -;
br eak;
defaul t:

mandoc_nmsg(MANDOCERR_TBLLAYQUT, tbl ->par se,
In, *pos - 1, NULL);
return(0);

new usr/src/ cnd/ mandoc/ tbl _| ayout. c

181

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

202
203
204
205

207
208

210
211
217
212

214
220

216
217
218
219

223
224
225

227
228
229
230
231

235
236
237
238
239
240
241

243
244

}

pos) ++])) {

}
switch (t ol ower ((unsi gned char)p[(*
case ('3):
/* FALLTHROUGH */
case ('b"):
cp->flags | = TBL_CELL_BQOLD;
got o nod;
case ('2'):
/* FALLTHROUGH */
case ('i'):
cp->flags | = TBL_CELL_I TALIC,
goto nod;
case ('1’
/* FALLTHROUGH */
case ('r’
goto nod;
defaul t:
br eak;
}

mandoc_nsg(MANDOCERR _TBLLAYOUT, t bl ->par se,
In, *pos - 1, NULL);

return(0);

static int
cell (struct tbl_node *tbl, struct tbl_row

{

*rp,

“int In, const char *p, int *pos)
int vert, i;
int i;
enum thbl _cellt C;
/* Handl e vertical lines. */
/* Parse the columm position (‘r’, ‘R, ‘|, ...). */
for (vert = 0; '|' == p[*pos]; ++*pos)
vert ++;
while (* * == p[*pos])
(*pos) ++;
/* Parse the columm position (‘c’, T D R |
for (i = 0; i < KEYS_MAX; i++)
if (tolower((unsigned char)p[*pos]) == keys[i].nane)
break;
if (KEYS_MAX == i)
mandoc rrsg(l\/ANDCX:ERR TBLLAYQUT, tbl->parse,
I'n, *pos, NULL);
return(0);
}
c = keys[i].key;
/*
* |If a span cell is found first, raise a warning and abort the
* parse. |f a span cell is found and the |ast |ayout elenent
* Isn't a "normal" |ayout, bail.
*
* FI XME: recover fromthis sonmehow?
*

/

if (TBL_CELL_SPAN == c) {
if (NULL == rp->first) {

new usr/src/ cnd/ mandoc/ tbl _| ayout . c

== c) &&

245 mandoc_nsg(MANDOCERR _TBLLAYQUT, t bl - >par se,
246 I'n, *pos, NULL);

247 return(0);

248 } else if (rp->last)

249 switch (rp->last->pos) {

249 case (TBL_CELL_VERT):

250 case (TBL_CELL_DVERT):

250 case (TBL_CELL_HORI Z):

251 case (TBL_CELL_DHORI Z):

252 mandoc_nsg(MANDOCERR TBLLAYQOUT, t bl ->par se,
253 I'n, *pos, NULL);
254 return(0);

255 defaul t:

256 break;

257 }

258 }

260 /*

261 * |f a vertical spanner is found, we may not be in the first
262 row.

263 */

265 if (TBL_CELL_DOWN == c && rp == tbl->first_row) ({

266 mandoc_nsg(MANDOCERR _TBLLAYOUT, tbl->parse, |In, *pos, NULL);
267 return(0);

268 }

270 (*pos) ++;

273 /* Extra check for the double-vertical. */

275 if (TBL_CELL_VERT == c && '|' == p[*pos]) {

276 (*pos) ++;

277 ¢ = TBL_CELL_DVERT;

278 }

279

272 /* Disallow adj acent spacers. */

274 if (vert > 2)

282 if (rp-> ast & (TBL_CELL_VERT == c || TBL_CELL_DVERT
283 (TBL_CELL_VERT == rp->|l ast->pos ||

284 TBL_CELL_DVERT == rp->| ast->pos)) {

275 mandoc_nmsg(MANDOCERR_TBLLAYQUT, tbl->parse, In,
276 return(0);

277 1

279 /* Allocate cell then parse its nodifiers. */

281 return(nmods(tbl, cell_alloc(thl, rp, c, vert), In, p, pos));
291 return(nods(tbl, cell_alloc(thl, rp, c), In, p, pos));
282 }

285 static void

286 row(struct tbhl_node *tbl, int In, const char *p, int *pos)

287 {

288 struct tbl_row *rp;

290 row /*

291 * EBNF describing this section:

292 *

293 * row ci=rowlist [:space:]* [.]1?[\n]

294 * row_|ist ;= [:space:]* row elemrow tail

295 * row_tail = [:space:]*[,] row_|list |

296 * epsi |l on

297 * row_el em = [\t\]*[:alpha:]+

*pos - 1, NULL);

new usr/src/ cnd/ mandoc/ tbl _| ayout . c

298

300
301
311
302
303
304
305
314
315

307 cel |:
308
309
311

313
314
315
316
317
318
319
320

322

324
325
326
327
328

330
331

333
334
335 }

*/
rp = mandoc_cal l oc(1, sizeof(struct thl_row);
if (tbl->last_row)
if (tbl->last_row)
tbl ->l ast _row >next = rp;
el se

tbl->first_row = rp;
tbl->last_row = rp;

tbl->last_row = thl->first_row = rp;

whil e (isspace((unsigned char)p[*pos]))
(*pos) ++;

/* Safely exit |ayout context. */

if (*.7 == p[*pos]) {
tbl ->part = TBL_PART_DATA;
if (NULL == tbl->first_row)
mandoc_nsg(MANDOCERR _TBLNOLAYQUT, tbl - >par se,
I'n, *pos, NULL);
(*pos) ++;
return;

}

/* End (and possibly restart) a row. */

if (", == p[*pos]) {
(*pos) ++;
goto row,

} else if ("\0" == p[*pos])
return;

if (! cell(tbl, rp, In, p, pos))
return;

goto cell;
/* NOTREACHED */

____unchanged_portion_onitted_

349 static struct tbl_cell *
350 cell _alloc(struct thl_node *tbl, struct tbl_row *rp, enumtbl_cellt pos,

351

int vert)

360 cell _alloc(struct thl_node *tbl, struct tbl_row *rp, enumtbl_cellt pos)

352 {
353
354

356

358
359
360
361
362
363
364
368
365
370
371

367

struct tbl_cell *p, *pp;
struct tbl_head *h, *hp;

p = mandoc_cal l oc(1, sizeof(struct tbhl_cell));

if (NULL I'= (pp = rp->last)) {
pp- >next = p;
h = pp->head- >next ;
} else {
rp->first = p;
h = tbl->first_head;

}

rp->l ast->next = p;
rp->last = p;
} else

rp->last = rp->first = p;

p->pos = pos;

new usr/src/ cnd/ mandoc/ tbl _| ayout . c

368 p->vert = vert;

370 /* Re-use header. */

375 /*

376 * This is alittle bit conplicated. Here we deternmine the
377 * header the corresponds to a cell. W add headers dynanically
378 * when need be or re-use them otherwi se. As an exanple, given
379 * the follow ng:

380 *

381 * 1 c|] |

382 * 2 | c| |

383 * 3 11

384 * 3 |l c] I |.

385 *

386 * W first add the new headers (as there are none)

387 *in (2) we insert the first spanner (as it doesn’t match up
388 * with the header); then we re-use the prior data headers,
389 * ski ppi ng over the spanners; then we re-use everything and add
390 * a last spanner. Note that VERT headers are made into DVERT
391 * ones.

392 */

394 h = pp ? pp->head->next : tbl->first_head;

372 if (h) {

397 /* Re-use data header. */

398 if (TBL_HEAD DATA == h->pos &&

399 (TBL_CELL_VERT != p->pos &&

400 TBL_CELL_DVERT != p->pos)) {

373 p->head = h;

374 return(p);

375 }

405 /* Re-use spanner header. */

406 if (TBL_HEAD DATA != h->pos &&

407 (TBL_CELL_VERT == p->pos ||

408 TBL_CELL_DVERT == p->pos)) {

409 head_adj ust (p, h);

410 p->head = h;

411 return(p);

412 }

414 /* Right-shift headers with a new spanner.

415 if (TBL_HEAD_DATA == h->pos &&

416 (TBL_CELL_VERT == p->pos |

417 TBL_CELL_DVERT == p- >pos)

377 hp = mandoc_cal | oc(1, sizeof(struct tbl_head));

378 hp->ident = tbhl->opts.col s++;

379 hp->vert = vert;

420 hp->prev = h->prev;

421 if (h->prev)

422 h- >prev- >next = hp;

423 if (h == tbl->first_head)

424 tbl->first_head = hp;

425 h->prev = hp;

426 hp- >next = h;

427 head_adj ust(p, hp) ;

428 p- >head = hp;

429 return(p);

430 }

432 if (NULL !'= (h = h->next)) {

433 head_adj ust (p, h);

434 p->head = h;

435 return(p)

436 }

new usr/src/ cnd/ mandoc/ tbl _| ayout . c

438 /* Fall through to default case... */
439 }

441 hp = mandoc_cal | oc(1, sizeof(struct tbl_head));
442 hp->ident = tbl->opts. col s++;

381 if (tbl->last_head) {

382 hp->prev = tbl->l ast_head;

383 t bl - >l ast _head- >next = hp;

384 } else

385 tbl->first_head = hp;

386 tbl->l ast _head = hp;

448 } else

449 tbl->last _head = tbl->first_head = hp;
451 head adJ ust(p, hp) ;

388 p- >head =

389 return(p);

390 }

456 static void

457 head_adj ust (const struct tbl_cell *cellp, struct tbl_head *head)

458 {

459 if (TBL_CELL_VERT != cellp->pos &&

460 TBL_CELL_DVERT ! = cel | p->pos) {
461 head- >pos = TBL_HEAD DATA,

462 return;

463 }

465 if (TBL_CELL_VERT == cel | p->pos)

466 if (TBL_HEAD_DVERT != head- >pos)
467 head- >pos = TBL_HEAD VERT;
469 if (TBL_CELL_DVERT == cel | p- >pos)

470 head->pos = TBL_HEAD DVERT;

471 }

new usr/src/cnd/ mandoc/tbl _termc

R R R R

9576 Wed Jul 30 20:55:12 2014
new usr/src/cnd/ mandoc/tbl _termc
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: tbl _termc,v 1.25 2013/05/31 21:37:17 schwarze Exp $ */

1/* $Id: tbl _termc,v 1.21 2011/09/20 23:05:49 schwarze Exp $ */

2 /*

3 * Copyright (c) 2009, 2011 Kristaps Dzonsons <kristaps@sd.|v>

4 * Copyright (c) 2011, 2012 Ingo Schwarze <schwarze@penbsd. org>

4 * Copyright (c) 2011 Ingo Schwarze <schwarze@penbsd. or g>

5 *

6 * Permission to use, copy, nodify, and distribute this software for any

7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this perm ssion notice appear in all copies.

9 *

10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES CF

12 * MERCHANTABI LI TY AND FI TNESS. | N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
15 * ACTION OF CONTRACT, NEGLI GENCE OR OTHER TORTI OQUS ACTI ON, ARI SING OUT OF
16 * OR I N CONNECTION W TH THE USE OR PERFORVANCE OF THI S SOFTWARE.

17 */

18 #ifdef HAVE_CONFI G H
19 #include "config.h"
20 #endif

22 #include <assert. h>
23 #include <stdio. h>

24 #include <stdlib. h>
25 #include <string.h>

27 #include "nmandoc. h"
28 #include "out.h"
29 #include "termh"

int);

31 static size_t termtbl_len(size_t, void *);

32 static size_t termtbl_strlen(const char *, void *);

33 static void tbl _char(struct ternp *, char, size_t);

34 static void tbl _data(struct ternp *, const struct tbl_opts *,
34 static void tbl _data(struct ternp *, const struct tbhl *,

35 const struct thl_dat *,

36 const struct roffcol *);

37 static size_t tbl_rulew dth(struct ternmp *, const struct tbl_head *);
38 static void tbl _hfrane(struct ternp *, const struct tbl_span *,
39 static void tbl _literal (struct ternp *, const struct tbl_dat *,
40 const struct roffcol *);

41 static void tbl _nunmber (struct ternmp *, const struct tbhl_opts *,
41 static void t bl _nunber (struct ternp *, const struct thl *,

42 const struct thl_dat *,

43 const struct roffcol *);

44 static void tbl _hrul e(struct ternmp *, const struct tbhl_span *);
45 static void tbl _vrule(struct ternp *, const struct tbl_head *);

48 static size_t
49 termtbl _strlen(const char *p, void *arg)

52 return(termstrlen((const struct ternp *)arg, p));

__unchanged_portion_onitted_

new usr/src/cnd/ mandoc/tbl _termc

62 void

63 termthbl (struct ternp *tp, const struct tbl_span *sp)

64 {

65 const struct tbl_head *hp;

66 const struct tbl_dat *dp;

67 struct roffcol *col ;

68 int spans;

69 size_t rmargin, maxrnargin;

71 rmargin = tp->rmargin;

72 maxrmargin = tp->maxrmargin;

74 tp->rmargin = tp->maxrmargi n = TERM MAXVARG N,

76 /* Inhibit printing of spaces: we do paddi ng ourselves. */
78 tp->flags | = TERMP_NONOSPACE;

79 t p->fl ags | = TERMP_NOSPACE;

81 /*

82 * The first time we're invoked for a given table block,
83 * calculate the table wi dths and deci mal positions.

84 */

86 if (TBL_SPAN_FI RST & sp->flags) {

87 term flushln(tp);

89 tp->tbl.len = termtbl Ien;

90 tp->tbl.slen = termthl_strlen;

91 tp->thl.arg = tp;

93 tblcal c(& p->tbl, sp);

94 }

96 /* Horizontal frame at the start of boxed tables. */

98 if (TBL_SPAN FI RST & sp->flags) {

99 if (TBL_OPT_DBOX & sp->opts->opts)

99 if (TBL_OPT_DBOX & sp->tbl->opts)

100 tbl _hframe(tp, sp, 1);

101 if (TBL_OPT_DBOX & sp->opts->opts ||

102 TBL_OPT_BOX & sp- >opt s- >opt s)

101 if (TBL_OPT_DBOX & sp->thl->opts ||

102 TBL_OPT_BOX & sp->tbl ->opts)

103 “tbl _hfrane(tp, sp, 0);

104 }

106 /* Vertical frame at the start of each row. */

108 if (TBL_OPT_BOX & sp->opts->opts || TBL_OPT_DBOX & sp->opts->opts)
108 if (TBL_OPT_BOX & sp->thl->opts || TBL_OPT_DBOX & sp->tbl->opts)
109 termword(tp, TBL_SPAN_ HCRIZ == sp- >pos ||

110 TBL_SPAN DHORI Z == sp->pos ? "+" : "[|");
112 /*

113 * Now print the actual data itself depending on the span type.
114 * Spanner spans get a horizontal rule; data spanners have their
115 * data printed by natching data to header.

116 */

118 switch (sp->pos) {

119 case (TBL_SPAN HORI Z):

120 /* FALLTHROUGH */

121 case (TBL_SPAN_DHORI Z) :

122 tbl _hrule(tp, sp);

123 br eak;

new usr/src/cnd/ mandoc/tbhl _termc

124 case (TBL_SPAN _DATA):

125 /* Iterate over tenpl ate headers. */

126 dp:sp >first;

127 spans = O;

128 for (hp = sp—>head; hp; hp = hp->next) {

130 /*

131 * |If the current data header is invoked during
132 * a spanner ("spans" > 0), don’t emt anything
133 * at all.

134 */

134 swi tch (hp->pos)

135 case (TBL_HEAD VERT):

136 /* FALLTHROUGH */

137 case (TBL_HEAD DVERT):

138 if (spans <= 0)

139 tbl _vrule(tp, hp);

140 conti nue;

141 case (TBL_HEAD DATA):

142 br eak;

143 }

136 if (--spans >= 0)

137 conti nue;

139 /* Separate colums. */

148 /*

149 * All cells get a leading blank, except the
150 * first one and those after double rulers.
151 */

141 if (NULL !'= hp->prev)

142 tbl _vrule(tp, hp);

153 if (hp->prev & TBL_HEAD DVERT ! = hp- >pr ev- >pos)
154 tbl _char(tp, ASCII_NBRSP, 1);

144 col = & p->thl.cols[hp->ident];

145 tbl _data(tp, sp->opts, dp, col)

157 tbl _data(tp, sp->tbl, dp, col);

159 /* No trailing blanks. */

161 if (NULL == hp->next)

162 br eak;

147 /*

165 * Add anot her bl ank between cells,

166 * or two when there is no vertical ruler.
167 */

169 tbl _char(tp, ASCI|_NBRSP,

170 TBL_HEAD _VERT == hp->next->pos | |

171 TBL_HEAD_DVERT == hp->next->pos ? 1 : 2);
173 /*

148 * G to the next data cell and assign the
149 * nunber of subsequent spans, if applicable.
150 */

152 if (dp) {

153 spans = dp- >spans;

154 dp = dp->next;

155 }

156 }

157 br eak;

158 }

new usr/ src/ cnd/ mandoc/ t bl

160

162
188
163
164
165

167
168
169
170

172
173
174
199
200
175
176
177
178
202
179
180
181
182
183
184
185

187
188
189

191

193
194
195
196
197
198 t

200

225
204
205
206

208
227
209

229
230
231
232
233
234
235
211

}
/

*
*
*
*/
st
b

a
|

_termc

/* Vertical frame at the end of each row. */

(TBL_OPT_BOX & sp->opts->opts ||

TBL_OPT_DBOX & sp->opt s->opts)

(TBL_OPT_BOX & sp->tbl->opts || TBL OPT_DBOX & sp->tbl ->opts)
termword(tp, TBL_SPAN HORI Z == sp- >pos ||
TBL_SPAN DHORI Z == sp->pos ? "+" : " |");
termflushln(tp);
/*
* |If we're the last row, clean up after ourselves: clear the

* existing table configuration and set it to NULL.
*/

if (TBL_SPAN_LAST & sp->flags) {
if (TBL_OPT_DBOX & sp->opts->opts ||
TBL_OPT_BOX & sp->opts->opts) {
if (TBL_OPT_DBOX & sp->thl->opts ||
TBL_OPT_BOX & sp->tbl ->opts)
“thl hframa(tp, sp, 0);
t p->ski pvsp = 1;

1f (TBL_OPT_DBOX & sp->opts->opts) {
if (TBL_OPT_DBOX & sp->tbl ->opts)
“tbl _hframe(tp, sp, 1);
t p- >ski pvsp = 2;

}
assert (tp->tbl.cols);
free(tp->thl. cols)
tp->thl.cols = NUL

}

tp->flags & ~TERVP_NONCSPACE;
tp >rmargin = rmargln
t p- >maxr mar gi n = naxrmar gi n;

Hori zontal rules extend across the entire table.
Cal culate the width by iterating over colums.

tic size_t

_rulewi dth(struct ternp *tp, const struct tbl_head *hp)

size_t wi dt h;

width = tp->thl.
if (TBL_HEAD DATA == hp->pos) {
/* Account for |eading blanks. */

if (hp- >prev)
width += 2 -

col s[hp->i dent] . wi dt h;

hp->vert;

/* Account for trailing blank. */
if (hp->prev && TBL_HEAD DVERT ! = hp->prev->pos)
wi dt h++;

/* Account for trailing blanks. */
W dt h++;
if (hp->next &&
TBL_HEAD VERT !
TBL_HEAD_DVERT !
wi dt h++;

hp- >next - >pos &&
hp- >next - >pos)

}
return(w dth);

new usr/src/cnd/ mandoc/tbl _termc

212

214
215
216
217

}
| *

*
*

*/

Rul es inside the table can be single or double
and have crossings with vertical rules marked wth pluses.

218 static void

219 }bl _hrule(struct termp *tp, const struct tbl_span *sp)
220

221 const struct tbl_head *hp;

222 char c;

224 c="-";

225 if (TBL_SPAN _DHORI Z == sp->pos)

226 c="=;

228 (hp = sp->head; hp; hp = hp->next) {

229 if (hp->prev & hp->vert)

230 tbl _char(tp, '+, hp->vert);
231 tbl _char(tp, c, tbl _rulewidth(tp, hp));
232

253 for (hp = sp->head; hp; hp = hp->next)

254 tbl _char (tp,

255 TBL_HEAD DATA == hp->pos ? ¢ : '+,
256 tbl _rul ewidth(tp, hp));

233 }

235 [*

236 * Rules above and bel ow the table are always single
237 * and have an additional plus at the beginning and end.
238 * For double franes, this function is called tw ce,
239 * and the outer one does not have crossings.

240 */

241 static void

242 tbl _hframe(struct ternp *tp, const struct tbl_span *sp, int outer)
243 {

244 const struct tbl_head *hp;

246 termword(tp, "+");

247 for (hp = sp->head; hp; hp = hp->next) {

248 if (hp->prev & hp->vert)

249 tbl _char(tp, (outer ? '-' : '+"), hp->vert);
250 tbl _char(tp, '-', thl rule\Mdth(tp, hp));
251 1

271 for (hp = sp->head; hp; hp = hp->next)

272 tbl _char (tp,

273 outer || TBL_HEAD DATA == hp->pos ? '-' : '+,
274 tbl _rulewi dth(tp, hp));

252 termword(tp, "+");

253 termflushln(tp);

254 }

256 static void

257 tbl _data(struct ternp *tp, const struct tbl_opts *opts,
280 tbhl _data(struct ternp *tp, const struct tbhl *tbl,

258 const struct thl_dat *dp,

259 const struct roffcol *col)

260 {

262 if (NULL == dp) {

263 tbl _char(tp, ASCI|_NBRSP, col->width);
264 return;

265 }

266 assert (dp->l ayout);

268 switch (dp->pos) {

new usr/src/cnd/ mandoc/tbl _termc

_NBRSP, col

co

co

co

co

S,

->width);

I ->width);

[->width);

I ->wi dth);

I ->w dth);

col);

dp, col);

dp, col);

_NBRSP, col

hp->vert);

_NBRSP, 2 -

)

269 case (TBL_DATA NONE):

270 tbl _char(tp, ASCI
271 return;

272 case (TBL_DATA HORI 2):

273 /* FALLTHROUGH */
274 case (TBL_DATA NHORI 2):

275 tbl _char(tp, '-’,
276 return;

277 case (TBL_DATA_NDHO?I Z):
278 /* FALLTHROUGH */
279 case (TBL_DATA DHORI 2):
280 tbl _char(tp, "=,
281 return;

282 defaul t:

283 break;

284 }

285

286 switch (dp->layout->pos) {
287 case (TBL_CELL HORI Z):

288 tbl _char(tp, '-',
289 br eak;

290 case (TBL_ CELL_DHORI Z):

291 tbl _char(tp, '=,
292 br eak;

293 case (TBL_CELL_L(J\IG):

294 /* FALLTHROUGH */
295 case (TBL_CELL_CENTRE):
296 /* FALLTHROUCH */
297 case (TBL_CELL_LEFT):

298 /* FALLTHROUGH */
299 case (TBL_CELL_RI GHT):

300 tbl _literal (tp, dp,
301 br eak;

302 case (TBL_CELL_NUI\/BER):
303 t bl _nunber (tp, opt
326 t bl nurrber(t p, thbl,
304 bre

305 case (TBL_ CELL :

306 tbl _char(tp, ASCI
307 br eak;

308 defaul t:

309 abort();

310 /* NOTREACHED */
311 1

312 }

314 static void

315 thl _vrul e(struct ternp *tp, const struct tbl
316 {

318 tbl _char(tp, ASCII_NBRSP, 1);
319 if (0 < hp->vert)

320 tbl _char(tp, '|’,
321 if (2 > hp->vert)

322 tbl _char(tp, ASC I
341 switch (hp->pos) {

342 case (TBL_HEAD VERT):

343 termword(tp, "|");
344 br eak;

345 case (TBL_HEAD DVERT) :

346 termword(tp, "||"
347 br eak;

348 defaul t:

349 br eak;

350

323 }

__unchanged_portion_omtted_

->width);

_head *hp)

hp->vert);

new usr/src/cnd/ mandoc/tbl _termc

340 static void

341
342
343
344
345
346
372

348
349

351
352
353
354

356
376
357

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

378
379
380
381

383
384
404
385
386
387
388
389
390
391

393
394
395
396
398

400

tbl
{

}

_literal (struct ternp *tp, const struct tbl_dat *dp,

const struct roffcol *col)

struct tbl _head *hp;

size_t width, len, padl, padr;
int spans;

size_t len, padl, padr;

assert (dp->string);
len = termstrlen(tp, dp->string);

hp = dp- >l ayout - >head- >next ;

w dth = col ->wi dt h;

for (spans = dp->spans; spans--; = hp- >next)
wi dth += tp->tbl.col s[hp- >|dent] width + 3;

padr = width >len ? width - len : O;
padr = col->width >1len ? col->width - len : O;
padl = 0;

switch (dp->l ayout—>pos) {
case (TBL_ CELL L
padl = termlen(tp, 1);
padr = padr > padl ? padr - padl : O;

br eak;

case (TBL_ CELL _CENTRE) :
if (2 > padr)

br eak;

padl = padr / 2;
padr -= padl;
br eak;

case (TBL_CELL RI GHT) :
padl = padr;
padr = 0;
br eak;

def aul t
br eak;

}

tbl _char(tp, ASCI|_NBRSP, padl);
termword(tp, dp->string);
tbl _char(tp, ASCI|_NBRSP, padr);

static void

t bl
t bl

nunber (struct ternp *tp, const struct tbl_opts *opts,

“number (struct ternp *tp, const struct thl *thl,

const struct tbl_dat *dp,
const struct roffcol *col)

char *cp;

char buf[2];

size_t sz, psz, ssz, d, padl;
int i;

/'k

* See cal c_data_nunber ().

assert (dp->string);

sz = termstrlen(tp, dp->string);

Left-pad by taking the offset of our
* and the nmaxi num deci mal; right-pad by the remaining anmount.

*

/

new usr/src/cnd/ mandoc/tbl _termc

402
422
403

405

407
427
408
409
410
411
412
413
414
415

417

419
420
421
422

423 }
__unchanged_portion_omtted_

buf [0] = opts->deci mal ;
buf[0] = tbl->deci mal ;
buf[1] ="'\0";

psz = termstrlen(tp, buf);

if (NULL !'= (cp = strrchr(dp->string, opts->decinal))) {
if (NULLb!z (cp = \strrchr(dp >string, tbl->decimal))) {

for (ssz =0, i =0; cp!=&p->string[i]; i++) {
buf[0] = dp->string[i];
ssz += termstrlen(tp, buf);

}
d = ssz + psz;
} else
= sz + psz;
padl = col ->decimal - d;

tbl _char(tp, ASCI|_NBRSP, padl);
termword(tp, dp->string);
if (col->width > sz + padl)
tbl _char(tp, ASCI|I_NBRSP, col->width - sz - padl);

new usr/src/ cnd/ mandoc/termc

R R R R

16799 Wed Jul 30 20:55:12 2014
new usr/ src/ cnd/ mandoc/termc
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: termc,v 1.214 2013/12/25 00:39: 31 schwarze Exp $ */

1/* $ld: termc,v 1.201 2011/09/21 09:57: 13 schwarze Exp $ */

2 /*

3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
4 * Copyright (c) 2010, 2011, 2012, 2013 Ingo Schwarze <schwarze@penbsd. org>
4 * Copyright (c) 2010, 2011 Ingo Schwarze <schwarze@penbsd. org>

5 *

6 * Permssion to use, copy, nodify, and distribute this software for any

7 * purpose with or without fee is hereby granted, provided that the above

8 * copyright notice and this perm ssion notice appear in all copies.

9 *

10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES CF

12 * MERCHANTABI LI TY AND FI TNESS. | N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSCEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN

15 * ACTION OF CONTRACT, NEGLI GENCE OR OTHER TORTI OQUS ACTI ON, ARI SING OUT OF

16 * OR I N CONNECTION W TH THE USE OR PERFORVANCE OF THI S SOFTWARE.
17 =/

18 #ifdef HAVE_CONFI G H

19 #include "config.h"

20 #endif

22 #include <sys/types. h>

24 #include <assert.h>
25 #include <ctype. h>
26 #include <stdint.h>
27 #include <stdio. h>
28 #include <stdlib.h>
29 #include <string.h>

31 #include "nandoc. h"
32 #include "out.h"

33 #include "termh"
34 #include "nain.h"

36 static size_t cond_wi dt h(const struct ternp *, int, int *);
37 static void adj buf (struct ternp *p, size_t);

36 static void adj buf (struct ternp *p, int);

38 static void bufferc(struct ternp *, char);

39 static void encode(struct ternp *, const char *, size_t);
40 static void encodel(struct ternmp *, int);

42 void

43 termfree(struct ternp *p)

44 {

46 if (p->buf)

a7 free(p->buf);

48 if (p->syntab)

49 nchars_free(p->syntab);

51 free(p);

52

____unchanged_portion_onitted_

74 |*
75 * Flush a line of text. A "line" is |loosely defined as being sonething

new usr/src/cnd/ mandoc/termc

117

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

that should be followed by a newine, regardl ess of whether it’'s
broken apart by newines getting there. A line can also be a
fragnent of a columar list (‘Bl -tag’ or ‘Bl -colum’), which does
not have a trailing newine.

The following flags nay be specifi ed:

- TERMP_NOBREAK: this is the npst inportant and is used when naking
colums. In short: don't print a newline and instead expect the
next call to do the padding up to the start of the next colum.
p->trail space may be set to 0, 1, or 2, depending on how many
space characters are required at the end of the colum.

- TERMP_TWOSPACE: neke sure there is roomfor at |east two space
characters of padding. Oherw se, rather break the Iine.

- TERMP_DANGLE: don’t new i ne when TERMP_NOBREAK is specified and
the Iine is overrun, and don’t pad-right if it’s underrun.

- TERWP_HANG |i ke TERMP_DANGLE, but doesn’t new i ne when
overrunni ng, instead save the position and continue at that point
when the next invocation.

In-l1ine line breaking:

I f TERMP_NOBREAK is specified and the line overruns the right
margin, it will break and pad-right to the right margin after
witing. |f maxrmargin is violated, it will break and continue
witing fromthe right-margin, which will lead to the above scenario
upon exit. Oherwise, the line will break at the right margin.

I T I S U

/
voi d
termflushln(struct ternp *p)

size_t i /* current input position in p->buf */
int ntab; /* nunber of tabs to prepend */
int i /* current input position in p->buf */
size_t Vi s; /* current visual position on output */
size_t vbl ; /* nunber of blanks to prepend to output */
size_t vend; /* end of word visual position on output */
size_t bp; /* visual right border position */
size_t dv; /* tenporary for visual pos calculations */
size_t i; /* tenporary |oop index for p->buf */
size_t] hy; /* last hyph before overflowwr/t j */
int i /* tenporary |loop index for p->buf */
int] hy; /* last hyph before overflowwr/t j */
size_t maxvis; /* output position of visible boundary */
size_t mmax; /* used in calculating bp */
/*

* First, establish the maxi mum col ums of "visible" content.

* This is usually the difference between the right-margin and

* an indentation, but can be, for tagged lists or colums, a

* smal |l set of val ues.

*

* The foll owi ng unsi gned-si gned subtracti ons | ook strange,

* but they are actually correct. |If the int p->overstep

* is negative, it gets sign extended. Subtracting that

* very large size_t effectively adds a small nunber to dv.

*

assert (p->rmargin >= p->offset);

dv = p->rmargin - p->offset;

maxvis = (int)dv > p->overstep ? dv - (size_t)p->overstep : O;
dv = p->maxrmargin - p->of fset;

max = (int)dv > p->overstep ? dv - (size_t)p->overstep : 0;

new usr/src/ cnd/ mandoc/termc

136

138
139
140
141
142

144
145

147
148
149
150
151
152
153
154
155
156
157
158
159

161
162
163
164
165
166

168
169
161
170

172
173
174
175
176
177

179
180
181
182
183

185
186

188
189
190
191
192
193
194
195
196
197
198
199
200

bp = TERWP_NOBREAK & p->flags ? mmax : maxvis;

/*

* Cal culate the required anmount of padding.

*/

vbl = p->offset + p->overstep > p->viscol ?
p->of fset + p->overstep - p->viscol : O;

vis = vend = 0;

i = 0;

while (i < p->col) {

/*

* Handle literal tab characters: collapse all
* subsequent tabs into a single huge set of spaces.
*/

ntab =
whi l e (| < p->col && '\t’' == p->buf[i])
vend = (vis / p->tabwdth + 1) * p->tabw dth;
vbl += vend - vis;
vis = vend;
nt ab++;
i ++;

Count up visible word characters. Control sequences
(starting with the CSI) aren’t counted. A space
generates a non-printing word, which is valid (the
space is printed according to regular spacing rules).
/

* ok kb F ok

for (j =i, jhy = 0: j <p->col; j++) {
if (0 == p >buf[j] || '\t° p >buf[j])
if ((j &' @ == p->buf[j]) || == p->buf[j])
br eak;
/* Back over the the last printed character. */
if (8 ==p->buf[j]) {
assert(]);
vend -= (*p->width)(p, p->buf[j - 1]);
continue;
}
/* Regul ar word. */
/* Break at the hyphen point if we overrun. */
if (vend > vis && vend < bp &&
) ~ ASCII _HYPH == p->buf[j])
ihy =7j;
vend += (*p->width)(p, p->buf[j]);
}
/*

* Find out whether we woul d exceed the right margin.
* |f so, break to the next I|ine.

*/
if (vend > bp && 0 == jhy && vis > 0) {
vend -= vis;
(*p- >end||ne)(p)
p->vi scol =
if (TERWP_ NGBREAK & p->flags) {
vbl p->rmargi n;

vend += p->rmargin - p->of fset;
} else
vbl = p->offset;

new usr/src/ cnd/ mandoc/termc

202
194

204
205

207
208
209
210
211

213
214
215

217
218
219
220
221
222
223
224
225
226
227
210
228
229
230
231
232
233
234
235

237
238
239
240
241
242
243
244
245
246

248
249
250
251
252

254
255
256
257
258
259
260
261

263
264

}
/*

/* use pending tabs on the new line */
/* Renpve the p->overstep width. */

if (0 < ntab)
vbl += ntab * p->tabw dth;

*
* Renpve the p->overstep wi dth.

* Again, if p->overstep is negative,

* sign extension does the right thing.
*/

bp += (size_ t)p >over st ep;
p- >overstep =

}
/* Wite out the [remaining] word. */
for (; i < p->col; i++)

if (vend > bp & jhy > 0 & i > jhy)
K:

r eak;
if ("\t' == p->buf[i])
break
if p- >buf[|]) {

{/\Imle(" == p->buf[i])
i ++;
v (io-) * (Fp->width)(p, ')y
:(|zet)(| =Tj) * (*p->width)(p,

vend += dv

break;

}

if (ASCII_NBRSP == p->buf[i]) {
vbl += (*p->width)(p, = ');
conti nue;

}

/*

* Now we definitely know there will be
* printable characters to output,
* so wite preceding white space now.

*/

if (vbl) {
(*p->advance) (p, vbl);
p->vi scol += vbl;
vbl = 0;

}

if (ASCl|_HYPH == p- >buf[i]) {

(*p- >Ietter)()
p- >vi scol +—(p- >W|dth)(p, -,
continue;

}

(p- >Ietter)(p, p->buf[i]);

(8 == p->buf[i]) _ ,

p->viscol -= (*p->width)(p, p->buf[i-1]);

el se

p->viscol += (*p->width)(p, p->buf[i]);

vis = vend;

* If there was trailing white space, it was not printed;

new usr/src/ cnd/ mandoc/termc 5 new usr/src/ cnd/ mandoc/termc

265 * so reset the cursor position accordingly. 335 (*p->endline)(p);
266 */ 336 }
267 if (vis) __unchanged_portion_omtted_
268 vis -= vbl;
270 p->col = 0; 384 void
271 p->overstep = O; 385 term fontpopq(struct ternp *p, const void *key)
386 {
273 if (! (TERVP_NOBREAK & p->flags)) {
274 p>VISCO| = 0; 388 while (p->fonti >= 0 & key < (void *)(p->fontq + p->fonti))
275 (* p>endI|ne)(p) 372 while (p->fonti >= 0 && key != &p->fontq[p->fonti])
276 return; 389 p->fonti--;
277 } 390 assert(p->fonti >= 0);
391 }
279 if (TERVWP_HANG & p->flags) { __unchanged_portion_onitted_
280 p->overstep = (int)(vis - maxvis +
281 p->trailspace * (*p->width)(p, ' ')); 402 [*
263 /* W need one blank after the tag. */ 403 * Handl e pwords, partial words, which may be either a single word or a
264 p->overstep = (int)(vis - maxvis + (*p->width)(p, ' ')); 404 * phrase that cannot be broken down (such as a literal string). This
405 * handl es word styling.
283 /* 406 */
267 * Behave exactly the sane way as groff: 407 void
284 * If we have overstepped the margin, tenporarily nove 408 termword(struct ternp *p, const char *word)
285 * it to the right and flag the rest of the line to be 409 {
286 * shorter. 410 const char nbrsp[2] = { ASCI_NBRSP, 0 };
287 * |f there is a request to keep the col ums together, 411 const char *seq, *cp;
288 * all ow negative overstep when the colum is not full. 412 char C;
271 * |f we landed right at the margin, be happy. 413 int Sz, uc;
272 * |f we are one step before the nargin, tenporarily 414 size_t ssz;
273 * nove it one step LEFT and flag the rest of the line 415 enum mandoc_esc esc;
274 * to be | onger.
289 */ 417 if (! (TERVWP_NOSPACE & p->flags)) {
290 f (p->trail space & p->overstep < 0) 418 if (I (TERW_KEEP & p->flags)) {
276 f (p->overstep < -1) 402 i f (TERMP_PREKEEP & p->fl ags)
291 p->overstep = 0; 403 p->flags | = TERVWP_KEEP;
292 return; 419 bufferc(p, ' ');
420 if (TERMP_SENTENCE & p->f | ags)
294 } else if (TERVW_DANGLE & p->fl ags) 421 bufferc(p, ');
295 return; 422 } else
423 bufferc(p, ASCI|_NBRSP);
297 /* If the colum was overrun, break the line. */ 424 }
298 if (maxvis < vis + p->trailspace * (*p->width)(p, ' ")) { 425 i f (TERMP_PREKEEP & p->fl ags)
284 if (maxvis <= vis + 426 p->flags | = TERWP_KEEP;
285 ((TERVP_TWOSPACE & p->flags) 2 (*p->width)(p, ' ') : 0)) {
299 (*p->endline)(p); 428 if (! (p->flags & TERMP_NONOSPACE))
300 p->viscol = 0; 429 p->fl ags & ~TERMP_NOSPACE;
301 } 430 el se
302 } 431 p->flags | = TERMP_NOSPACE;
__unchanged_portion_onitted_
433 p->flags & ~TERMP_SENTENCE;
416 p->flags & ~(TERWP_SENTENCE | TERMP_|I GNDELI M ;
320 /*
321 * Asserts a vertical space (a full, enpty line-break between |lines). 435 while ("\0" != *word) {
322 * Note that if used twce, this will cause two bl ank spaces and so on. 436 if ("\\" 1= *word) {
323 * Al data in the output buff er is flushed prior to the newine 437 i f (TERWP_SKI PCHAR & p->flags) {
324 * assertion. 438 p->fl ags & ~TERMP_SKI PCHAR;
325 */ 439 wor d++;
326 void 440 conti nue;
327 termyvspace(struct ternp *p) 441 }
328 { 442 if (TERMP_ NBRWRD & p->flags) {
443 if == *word) {
330 termnew n(p); 444 encode(p, nbrsp, 1);
331 p->viscol = 0; 445 wor d++;
332 1f (0 < p->skipvsp) 446 conti nue;
333 p- >ski pvsp--; 447 }

334 el se 448 ssz = strcspn(word, "\\ ");

new usr/src/ cnd/ mandoc/termc

449 } else

450 ssz = strcspn(word, "\\");
419 if ((ssz = strcspn(word, "\\")) > 0)
451 encode(p, word, ssz);

452 word += (int)ssz;

423 if ("\\" !'= *word)

453 conti nue;

454 }

456 wor d++;

457 esc = mandoc_escape(&wword, &seq, &sz);
458 if (ESCAPE_ERROR == esc)

459 break;

461 if (TERNENC ASCI| !'= p->enc)

462 switch (esc)

463 case (ESCAPE_UNI CODE) :

464 uc = ncthars_nunRuc(seq + 1, sz
465 if ("\0" == uc)

466 br eak;

467 encodel(p, uc);

468 conti nue;

469 case (ESCAPE_SPECI AL):

470 uc = ncthars_spec2cp(p->syntab,
471 if (uc <= 0)

472 br eak;

473 encodel(p, uc);

474 continue;

475 defaul t:

476 break;

477 }

479 switch (esc)

480 case (ESCAPE_UNI CCODE) :

481 encodel(p, '?");

482 br eak;

483 case (ESGL\PE NUNBERED)

484 ¢ = nchars_nun2char (seq, sz);
485 if ('\0’ 1= ¢)

486 encode(p, &c, 1);

487 br eak;

488 case (ESCAPE SPECI AL) :

489 cp = ncthars_spec2str(p->syntab, seq,
490 if (NULL !'= cp)

491 encode(p, cp, ssz);

492 else if (1 == ssz)

493 encode(p, seq, sz);

494 br eak;

495 case (ESCAPE_FONTBOLD):

496 termfontrepl (p, TERMFONT_BOLD);
497 br eak;

498 case (ESCAPE_| FO\ITI TALI O):

499 termfontrepl (p, TERMFONT_UNDER);
500 br eak;

501 case (ESCAPE_| FO\ITBI)

502 termfontrepl (p, TERVFONT_BI);
503 br eak;

504 case (ESCAPE_| FCNT)

505 /* FALLTHROUGH */

506 case (ESCAPE_FONTROVAN) :

507 termfontrepl (p, TERMFONT_NONE);
508 br eak;

509 case (ESCAPE_| FG\ITPREV)

510 termfontlast(p);

511 br eak;

new usr/src/cnd/ mandoc/termc

512 case (ESCAPE_NOSPACE) :

513 i f (TERVP_SKI PCHAR & p->fl ags)
514 p->fl ags & ~TERMP_SKI PCHAR
515 else if ("\0 == *word)

480 if ("\0" == *word

516 p->flags | = TERVMP_NOSPACE;
517 br eak;

518 case (ESCAPE SKI PCHAR) :

519 p >flags | = TERMP_SKI PCHAR;

520 br eak;

521 defaul t:

522 br eak;

523 }

524

525 p->flags & ~TERMP_NBRWORD;

526 }

528 static void
529 adj buf (struct ternp *p, size_t sz)
490 adj buf (struct ternp *p, int sz)

530 {

532 if (0 == p->maxcol s)

533 p- >maxcol s = 1024;

534 while (sz >= p->maxcol s)

535 p- >maxcol s <<= 2;

537 p- >buf = mandoc_real | oc(p->buf, sizeof(int) * p->naxcols);
498 p->buf = nmandoc_real | oc

499 (p->buf, sizeof(int) * (size_t)p->nmaxcols);

538 }

__unchanged_portion_onitted_

550 /*

551 * See encode().

552 * Do this for a single (probably unicode) val ue.
553 * Does not check for non-decorated glyphs.

554 */

555 static void

556 encodel(struct ternmp *p, int c)

557 {

558 enum t er nf ont f;

560 i f (TERVP_SKI PCHAR & p->flags) {
561 p->flags & ~TERWP_SKI PCHAR,
562 return;

563 }

522 if (p->col + 4 >= p->maxcol s)

523 adj buf (p, p->col + 4);

565 if (p->col + 6 >= p->naxcols)

566 adj buf (p, p->col + 6);

568 f = termfonttop(p);

570 i f (TERMFONT_UNDER = || TERMEONT Bl == f) {
527 i f (TERVFONT_NONE = f) {

528 p- >buf [p- >co| ++] = ¢c;

529 return;

530 } else if (TERMFONT_UNDER == f) {
571 p->buf [p->col ++] ="' _";

572 p- >buf [p- >col ++] = 8;

573 }

574 if (TERMFONT_BOLD == f || TERMFONT Bl == f) {
575 if (ASCII_HYPH == c)

576 p- >buf [p->col ++] = '-";

new usr/src/ cnd/ mandoc/termc

577 el se

532 } else

578 p- >buf [p- >col ++] = c;

579 p- >buf [p->col ++] = 8;

580

581 p- >buf [p- >col ++] = c;

582 }

584 static void

585 encode(struct ternp *p, const char *word, size_t sz)
586 {

587 size_t i

542 enum t er nf ont f;

543 int i, len;

589 if (TERWP_SKI PCHAR & p->flags) {

590 p->fl ags & ~TERWP_SKI PCHAR,

591 return;

592 }

545 /* LINTED */

546 len = sz;

594 /*

595 * Encode and buffer a string of characters. |If the current
596 * font node is unset, buffer directly, else encode then buffer
597 * character by character.

598 */

600 if (TERMFONT_NONE == termfonttop(p)) {

601 if (p->col + sz >= p->naxcols)

602 adJ buf (p, p->col + sz);

603 fo i 0; i < sz; i++

554 if (TERNFCNT NO\IE = (f = term_fonttop(p))) {
555 if (p->col + |len >= p->nmaxcols)

556 adj buf (p, p->col + len);

557 for (i =0; i <len; i++)

604 p- >buf [p- >col ++] = word[i];
605 return;

606 1

608 /* Pre-buffer, assumi ng worst-case. */

610 if (p->col +1 + (sz * 5) >= p->naxcols)
611 adj buf (p, p->col + 1 + (sz * 5));
564 if (p->col + 1 + (len * 3) >= p->maxcol s)
565 adj buf (p, p->col + 1 + (len * 3));
613 for (i =0; i < sz; i++) {

614 if (ASCII_HYPH == word[i] ||

615 i sgraph((unsi gned char)word[i]))
616 encodel(p, word[i]);

567 for (i =0; i <len; i++)

568 if (ASCII _HYPH !'= word[i] &&

569 ! isgraph((unsigned char)word[l])) {
570 p- >buf [p->col ++] = rd[i
571 conti nue;

572 }

574 i f (TERVMFONT_UNDER == f)

575 p- >buf [p->col ++] =" _";

576 else if (ASCI|_HYPH == word[i])

577 p->buf [p->col ++] = "-";

617 el se

618 p->buf [p->col ++] = word[i];

new usr/src/ cnd/ mandoc/termc

581 p- >buf [p- >col ++] = 8;

582 p- >buf [p->col ++] = word[i];
619 }

620 }

__unchanged_portion_omtted_

629 static size_t
630 cond_wi dt h(const struct ternp *p, int c, int *skip)
631 {

633 if (*skip) {

634 (*skip) = 0;

635 return(0);

636 } else

637 return((*p->width)(p, c));
638 }

640 size_t

641 termstrlen(const struct ternp *p, const char *cp)

642 {

643 size_t sz, rsz, i;

644 int ssz, skip, c;

598 int ssz, C;

645 const char *seq, *rhs;

646 enum mandoc_esc esc;

647 static const char rej[] ={ "\\', ASCI_HYPH, ASC|_NBRSP, '\0' };

649 /*

650 * Account for escaped sequences within string | ength

651 * calculations. This follows the logic in termword() as we
652 * nust calculate the width of produced strings.

653 */

655 sz = 0;

656 skip = 0;

657 while ("\0" !'= *cp) {

658 rsz = strcspn(cp, rej);

659 for (i =0; i <rsz; |++)

660 Sz += cond_vvl dth(p, *cp++, &skip);
613 sz += (*p->width)(p, *cp+t);

662 c =0;

663 switch (*cp) {

664 case ("\\"):

665 cp++;

666 esc = mandoc escape(&cp, &seq, &ssz);
667 i f (ESCAPE_ERROR == esc)

668 return(sz);

670 if (TERMENC_ASCI| != p->enc)

671 switch (esc)

672 case (ESCAPE_UNI CODE) :

673 ¢ = nthars_nunRuc

674 (seq + 1, ssz - 1);
675 if ("\0 ==c¢)

676 break;

677 sz += cond_w dth(p, c, &skip);
630 sz += (*p->width)(p, c);

678 conti nue;

679 case (ESCAPE_SPECI AL) :

680 ¢ = nthars_spec2cp

681 (p->syntab, seq, ssz);
682 if (c <=0)

683 break;

684 sz += cond_wi dth(p, c, &skip);
637 sz += (*p->width)(p, c);

10

new usr/src/ cnd/ mandoc/termc

685 conti nue;

686 defaul t:

687 br eak;

688 }

690 rhs = NULL;

692 switch (esc) {

693 case (ESCAPE_UNI CODE):

694 sz += cond_w dth(p, '?", &skip);
647 sz += (*p->width)(p, "?);
695 br eak;

696 case (ESCAPE_NUMBERED) :

697 ¢ = nthars_nunRchar (seq, ssz);
698 if ("\0 !=c¢)

699 sz += cond_wi dth(p, c, &skip);
652 sz += (*p->width)(p, c);
700 break;

701 case (ESCAPE_SPECI AL):

702 rhs = nthars_spec2str

703 (p->syntab, seq, ssz, &rsz);
705 if (ssz!=1 || rhs)

706 br eak;

708 rhs = seq;

709 rsz = ssz;

710 br eak;

711 case (ESCAPE_SKI PCHAR) :

712 skip = 1;

713 br eak;

714 defaul t:

715 br eak;

716 }

718 if (NULL == rhs)

719 br eak;

721 if (skip) {

722 skip = 0;

723 br eak;

724 }

726 for (i =0; i <rsz; i++)

727 sz += (*p->width)(p, *rhs++);
728 br eak;

729 case (ASCl|_NBRSP):

730 sz += cond_w dt h(p, ", &skip);

675 sz += (*p->width)(p, ' ');

731 cp++;

732 br eak;

733 case (ASCI|_HYPH):

734 sz += cond_wi dth(p, '-', &skip);

679 sz += (*p->width)(p, '-');

735 cp++;

736 break;

737 defaul t:

738 br eak;

739 }

740 }

742 return(sz);

743 }

__unchanged_portion_onitted_

11

new usr/src/ cnd/ mandoc/term h 1 new usr/src/ cnd/ mandoc/term h

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 70 Int flagS,

4745 \Wed Jul 30 20:55:12 2014 71 #define TERW_SENTENCE (1 << 1) /* Space before a sentence. */
new usr/src/ cnd/ mandoc/term h 72 #defi ne TERMP_NOSPACE (1 << 2) /* No space before words. */
5051 inport ndocnmi-1.12.3 73 #define TERMP_NONCSPACE (1 << 3) /* No space (no autounset). */
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con» 74 #define TERVP_NBRWORD (1 << 4) /* Make next word nonbreaking. */
Approved by: TBD 75 #defi ne TERMP_KEEP (1 << 5) /* Keep words together. */

LR R R EEEEEEEEE SRS RS RS SRS RS RS E R EE R R RREERREREEEEEEEEEESEESESE] 76 #deflne TER’\P_PREKEEP (l << 6) /* Start'ng Wth the next One */
1/* $ld: termh,v 1.97 2013/12/25 00:39: 31 schwarze Exp $ */ 77 #define TERWP_SKIPCHAR (1 << 7) /* Skip the next character. */
1/* $Id: termh,v 1.90 2011/12/04 23:10:52 schwarze Exp $ */ 78 #defi ne TERMP_NOBREAK (1 << 8) /* See termflushln(). */

2 /* 79 #define TERMP_DANGLE (1 << 9) /* See termflushln(). */
3 * Copyright (c) 2008, 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v> 80 #defi ne TERWMP_HANG (1 << 10) /* See termflushln(). */
4 * Copyright (c) 2011, 2012, 2013 Ingo Schwarze <schwarze@penbsd. org> 69 #define TERMP_NOBREAK (1 << 4) /* See termflushlin(). */
5 * 70 #define TERVP_IGNDELIM (1 << 6) /* Delims |like regulars. */
6 * Permission to use, copy, nodify, and distribute this software for any 71 #define TERMP_NONOSPACE (1 << 7) /* No space (no autounset). */
7 * purpose with or without fee is hereby granted, provided that the above 72 #define TERVMP_DANGLE (1 << 8) /* See termflushln(). */
8 * copyright notice and this perm ssion notice appear in all copies. 73 #defi ne TERMP_HANG (1 << 9) /* See termflushln(). */
9 = 74 #define TERVWP_TWOSPACE (1 << 10) /* See termflushlin(). */
10 * THE SOFTWARE |'S PROVIDED "AS |'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES 81 #define TERMP_NOSPLI T (1 << 11) /* See ternp_an_pre/post(). */
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF 82 #define TERVMP_SPLIT (1 << 12) /* See ternp_an_pre/post(). */
12 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR 83 #defi ne TERMP_ANPREC (1 << 13) /* See ternp_an_pre(). */
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES 78 #define TERMP_KEEP (1 << 14) [* Keep words together. */
14 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN 79 #defi ne TERWMP_PREKEEP (1 << 15) /* ...starting with the next one. */
15 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SI NG QUT OF 84 int *buf ; /* Qutput buffer. */
16 * OR I N CONNECTION WTH THE USE OR PERFORMANCE OF THI' S SOFTWARE. 85 enum t er menc enc; /* Type of encoding. */
17 */ 86 struct nchars *synt ab; /* Encoded-synbol table. */
18 #ifndef TERM H 87 enum t er nf ont fontl; /* Last font set. */
19 #define TERM H 88 enum t er nf ont fontq[10]; /* Symmetric fonts. */
89 int fonti; /* Index of font stack. */
21 __BEG N_DECLS 90 termnargin headf ; /* invoked to print head */
91 termnargin footf; /* invoked to print foot */
23 struct ternp; 92 voi d (*letter)(struct ternp *, int);
93 voi d (*begin)(struct ternmp *);
25 enum termenc { 94 voi d (*end) (struct ternmp *);
26 TERMVENC_ASCI |, 95 voi d (*endline)(struct ternp *);
27 TERMENC_LOCALE, 96 voi d (*advance) (struct ternp *, size_t);
28 TERMENC_UTF8 97 size_t (*wi dth)(const struct ternmp *, int);
29 }; 98 doubl e (*hspan) (const struct termp *,
____unchanged_portion_onitted_ 99 const struct roffsu *);
100 const void *ar gf ; /* arg for headf/footf */
37 enum ternfont { 101 struct ternp_ps *ps;
38 TERMFONT_NONE = 0, 102 };
39 TERMFONT_BQOLD, ______unchanged_portion_omtted_
40 TERMFONT_UNDER,
41 TERMFONT_BI ,
42 TERMFONT__VAX
43 }

’ nchanged_portion_omitted_

54 struct ternp {
55

enum terntype type;
56 struct roffthbl thl; /* table configuration */
57 int mdocstyl e; /* imtate ndoc(7) output */
58 size_t defi ndent; /* Default indent for text. */
59 size_t def rmar gi n; /* Right margin of the device. */
60 si ze_t rmargin; /* Current right margin. */
61 size_t maxr margi n; /* Max right nmargin. */
62 size_t maxcol s; /* Max size of buf. */
60 int nmaxcol s; /* Max size of buf. */
63 size_t of f set; /* Margin offest. */
64 size_t t abwi dt h; /* Distance of tab positions. */
65 size_t col ; /* Bytes in buf. */
63 int col; /* Bytes in buf. */
66 size_t vi scol ; /* Chars on current line. */
67 size_t trail space; /* See ternp_flushln(). */
68 int over st ep; /* See ternp_flushin(). */
69 int ski pvsp; /* Vertical space to skip. */

new usr/src/cnd/ mandoc/termascii.c

R R R R

5394 Wed Jul 30 20:55:13 2014

new usr/src/cnd/ mandoc/termascii.c

5051 inport ndocnmi-1.12.3

Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: termascii.c,v 1.21 2013/06/01 14:27:20 schwarze Exp $ */

1/* $Id: termascii.c,v 1.20 2011/12/04 23:10:52 schwarze Exp $ */

2 /*

3 * Copyright (c) 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>

4 *

5 * Permission to use, copy, nodify, and distribute this software for any

6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this perm ssion notice appear in all copies.

8 *

9 * THE SOFTWARE IS PROVIDED "AS |'S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
10 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

11 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
12 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PRCFI TS, WHETHER I N AN
14 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI OUS ACTI ON, ARI SI NG OQUT OF
15 * OR I N CONNECTION WTH THE USE OR PERFORVMANCE OF THI S SOFTWARE.

16 */

17 #i fdef HAVE_CONFI G H
18 #include "config. h"
19 #endi f

21 #include <sys/types. h>

23 #include <assert. h>
24 #ifdef USE_WCHAR

25 # include <l ocal e. h>
26 #endif

27 #include <stdint.h>
28 #include <stdio. h>
29 #include <stdlib.h>
30 #include <unistd. h>
31 #ifdef USE_WCHAR
32 # include <wchar. h>
33 #endi f

35 #i nclude "nandoc. h"
36 #include "out.h"

37 #include "termh"
38 #include "main. h"

40 /*

41 * Sadly, this doesn't seemto be defined on systens even when they
42 * support it. For the tine being, renmobve it and |let those conpiling
43 * the software decide for thenselves what to use.

44 x|

45 #if 0O

46 #if ! defined(__STDC | SO 10646__)

47 # undef USE_WCHAR

48 #endi f

49 #endi f

51 static struct ternp *ascii_init(enumternmenc, char *);

52 static double ascii_hspan(const struct ternp *,

53 const struct roffsu *);

54 static size_t ascii_w dth(const struct ternp *, int);
55 static void asci i _advance(struct ternp *, size_t);
56 static void ascii_begin(struct ternp *);

57 static void ascii_end(struct ternp *);

58 static void ascii_endline(struct ternp *);

new usr/src/ cnd/ mandoc/termascii.c

59 static void ascii_letter(struct ternp *, int);
61 #ifdef USE_WCHAR

62 static void | ocal e_advance(struct ternmp *, size_t);
63 static void | ocal e_endl i ne(struct ternp *);
64 static void locale_letter(struct ternp *, int);
65 static size_t I ocal e_wi dt h(const struct ternp *, int);
66 #endi f

68 static struct ternp *

69 ascii_init(enumtermenc enc, char *outopts)

70 {

71 const char *t oks[4];

72 char *V;

73 struct ternp *p;

75 p = mandoc_cal | oc(1, sizeof(struct ternp));

76 p->enc = enc;

77 p->tabwi dth = 5;

78 p->defrmargin = 78;

80 p->begin = ascii_begin;

81 p->end = ascii_end;

82 p->hspan = ascii _hspan;

83 p->type = TERMI'YPE_CHAR;

85 p->enc = TERMENC_ASCI | ;

86 p->advance = ascii_advance;

87 p->endl i ne = ascii_endline;

88 p->letter = ascii_letter;

89 p->width = ascii_w dth;

91 #ifdef USE_WCHAR

92 if (TERMENC_ASCII != enc) {

93 v = TERMENC _LOCALE == enc ?

94 setl ocal e(LC_ALL, "") :

95 setl ocal e(LC_CTYPE, "en_US. UTF-8");
96 setl ocal e(LC_CTYPE, "UTF-8");

96 if (NULL '= v & MB_CUR MAX > 1) {

97 p->enc = enc;

98 p->advance = | ocal e_advance;

99 p->endline = | ocal e_endline;
100 p->letter = locale_letter;
101 p->wi dth = | ocal e_wi dt h;
102 }
103
104 #endi f
106 toks[0] = "indent";
107 toks[1] = "width";
108 toks[2] = "ndoc";
109 toks[3] = NULL;
111 whil e (outopts &% *outopts)
112 switch (getsubopt (&outopts, UNCONST(toks), &v)) {
113 case (0):
114 p- >defindent = (size_t)atoi(v);
115 br eak;
116 case (1):
117 p->defrmargin = (size_t)atoi(v);
118 br eak;
119 case (2):
120 /*
121 * Tenporary, undocunented nopde
122 * to imtate ndoc(7) output style.

new usr/src/cnd/ mandoc/termascii.c

123 */

124 p->nmdocstyle = 1;
125 p- >defi ndent = 5;
126 br eak;

127 defaul t:

128 break;

129 }

131 /* Enforce a | ower boundary. */
132 if (p->defrmargin < 58)

133 p->defrmargin = 58;

135 return(p);

136 }

____unchanged_portion_onitted_

new usr/src/cnd/ mandoc/ tree. c

R R R R

6575 Wed Jul 30 20:55:13 2014
new usr/ src/ cnd/ mandoc/tree. c
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1/* $ld: tree.c,v 1.50 2013/12/24 19:11:46 schwarze Exp $ */

1/* $Id: tree.c,v 1.47 2011/09/18 14:14:15 schwarze Exp $ */

2 /*

3 * Copyright (c) 2008, 2009, 2011 Kristaps Dzonsons <kristaps@sd.|v>

4 * Copyright (c) 2013 Ingo Schwarze <schwarze@penbsd. or g>

5 *

6 * Permission to use, copy, nodify, and distribute this software for any

7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this perm ssion notice appear in all copies.

9 *

10 * THE SOFTWARE IS PROVIDED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
11 * WTH REGARD TO THI S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF

12 * MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
13 * ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN
15 * ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SI NG QUT OF

16 * OR I N CONNECTION W TH THE USE OR PERFORMANCE OF THI S SOFTWARE.
17 */

18 #ifdef HAVE_CONFI G H

19 #include "config.h"

20 #endif

22 #include <assert.h>
23 #include <linits. h>
24 #include <stdio. h>
25 #include <stdlib.h>
26 #include <tine.h>

28 #include "nandoc. h"
29 #include "ndoc. h"
30 #include "man. h"

31 #include "nain.h"

33 static void print_box(const struct eqn_box *, int);

34 static void print_man(const struct man_node *, int);
35 static void print_ndoc(const struct ndoc_node *, int);
36 static void print_span(const struct tbl_span *, int);

39 /* ARGSUSED */

40 void

41 tree_ndoc(void *arg, const struct ndoc *ndoc)
42 {

44 print_nmdoc(ndoc_node(ndoc), 0);

45

____unchanged_portion_onmitted_

57 static void
58 print_ndoc(const struct ndoc_node *n, int indent)

59 {

60 const char *p, *t;
61 int i, g

62 size_t argc;

61 size_t argc, sz;
62 char **par ans;
63 struct ndoc_argv *argv;

new usr/src/ cnd/ mandoc/ tree. c

65 argv = NULL;

66 argc = 0;

66 argc = sz = 0;

67 params = NULL;

67 t = p = NULL;

69 switch (n->type) {

70 case (MDOC_ROOT) :

71 t = "root";

72 br eak;

73 case (MDOC_BLOCK) :

74 t = "bl ock";

75 br eak;

76 case (MDOC_HEAD) :

77 t = "bl ock-head";

78 br eak;

79 case (MDOC_BQODY):

80 if (n->end)

81 t = "body-end";

82 el se

83 t = "bl ock-body";

84 br eak;

85 case (MDOC_TAIL):

86 t = "block-tail";

87 br eak;

88 case (MDOC_ELEM:

89 t = "elent;

90 br eak;

91 case (MDOC_TEXT):

92 t = "text"

93 br eak;

94 case (MDOC_TBL):

95 /* FALLTHROUCH */

96 case (MDOC_EQN):

97 br eak;

98 defaul t:

99 abort();

100 /* NOTREACHED */

101 }

103 switch (n->type) {

104 case (MDOC_TEXT):

105 p = n->string;

106 br eak;

107 case (MDOC_BQODY):

108 p = ndoc_nacr onanes[n- >t ok] ;
109 br eak;

110 case (MDOC_HEAD) :

111 p = ndoc_macronanes[n- >t ok] ;
112 br eak;

113 case (MDOC TAIL):

114 p = ndoc_macr onanmes[n- >t ok] ;
115 br eak;

116 case (MDOC_ELEM :

117 p = ndoc_nacr onanmes[n- >t ok] ;
118 if (n->args) {

119 argv = n->args->argv;
120 argc = n->args->argc;
121 }

122 break;

123 case (MDOC_BLOCK) :

124 p = ndoc_macronanes[n- >t ok] ;
125 if (n->args) {

126 argv = n->args->argv;
127 argc = n->args->argc;

new usr/src/cnd/ mandoc/ tree. c

129
130
131
132
133
134
135
136
137
138
139
140

142
143
144
145
146
147
148
149
150

152

154
155
156
157
158
159
160
161
162

164
165
166
167
168
169
170
165
166

168
171

173
174
175
176

177 }

br eak;
case (MDOC_TBL):

/* FALLTHROUGH */
case (MDOC_EQN):

br eak;
case (MDOC_ROQT) :

p = "root";

br eak;
defaul t:

abort();

/* NOTREACHED */
}

if (n->span) {
assert (NULL == p && NULL == t);
print_span(n->span, indent);
} else if (n->eqn)
assert (NULL == p && NULL == t);
print_box(n->eqn->root, indent);
} else {
for (i =0; i < indent; i++)
putchar("\t");

printf("% (%)", p, t);

for (i =0; i < (int)argc; i++) {

printf(" -9%", nmdoc_argnanes[argv[i].arg]);

if (argv[i].sz > 0)
printf(" [");
for (j =0; j < (int)argv[i].sz;

printf(" [%]", argv[i].value[j]);

if (argv[i].sz > 0)
) printf(" 1");

putchar (');

1f (MDOC_LINE & n->flags)
putchar (' *");

printf("%l: %", n->line, n->pos);

1f (n->lastline != n->line)
printf("-%l", n->lastline);

putchar(’\n");

for (i =0; I < (int)sz; i++)
printf(" [%]", parans[i]);

) printf(" %:%\n", n->line, n->pos);

if (n->child)

print_mdoc(n->child, indent + 1);
if (n->next)

print _nmdoc(n->next, indent);

__unchanged_portion_omtted_

new usr/src/ man/ Makefil e. man

R R R R

1605 Wed Jul 30 20:55:13 2014
new usr/src/ man/ Makefil e. man
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You nay only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL should have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet

9 # at http://ww.illunps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2011, Richard Lowe

14 # Copyright 2014 Nexenta Systens, Inc. Al rights reserved.

15 #

17 MANDOC= $(ONBLD_TOOLS) / bi n/ ${ MACH} / mandoc

18 ROOTMAN= $(ROOT) / usr/ shar e/ man

19 ROOTHASMAN= $(ROOT) / usr / has/ man

20 FI LEMODE= 0444

22 # The manual section being built, client Makefiles nmust set this to, for e.g.
23 # "3perl", with case matching that of the section nane as installed.
24 #

25 # MANSECT=

27 MANCHECKS= $(MANFI LES: %% check)

28 ROOTMANFI LES= $(MANFI LES: %$(ROOTMAN) / man$(MANSECT) / %
29 ROOTMANLI NKS= $(MANLI NKS: %$(ROOTMAN) / man$(MANSECT) / %

31 $(ROOTMAN) / man$(MANSECT) / % $(ROOTHASMAN) / man$(MANSECT) / % %
32 $(INS.file)

34 #

35 # Note that new mandoc adds some checks for lots of extra whitespace.
36 # W don't want to check our |egacy pages for that. There are thousands
37 # and thousands of themin our man pages. Please still check them
38 # manual |y when editing (git pbchk will do so for you.)

39 #

40 $(MANCHECKS) :

41 @(EGREP) -q "~. TH' $(@ % check=% || \

42 ($(ECHO "checking $(@ % check=%"; \

43 $(MANDOC) -Tlint $(@ % check=%)

35 @(ECHO "checking $(@ % check=%"; \

36 $(MANDOC) -Tlint $(@ % check=%

45 $(MANLI NKS) :

46 $(RVM $@ $(SYM.INK) $(LINKSRC) $@

48 $(ROOTMANLI NKS) : $(MANLI NKS)

49 $(RM $@ $(CP) -RP $(@) $(@)

51 all:

53 check: $(MANCHECKS)

55 cl ean:

57 cl obber:

new usr/src/ man/ Makefil e. man

58
60 . PARALLEL:
62 FRC:

$(RV) $(MANLI NKS)

new usr/src/ man/ manl/ man. 1

R R R R

9377 Wed Jul 30 20:55:13 2014
new usr/src/ man/ manl/ man. 1
5051 inport ndocnmi-1.12.3
Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

1 .\" Copyright 2014 Garrett D Anpbre <garrett @anore. or g>
2 .\" Copyright (c) 2008, Sun Mcrosystens, Inc. All Rights Reserved.
3 .\" Copyright (c) 1980 Regents of the University of California.
4 .\" The Berkel ey software License Agreenent specifies the terns and conditions
5 .\" for redistribution.

6 .Dd Jul 18, 2014

7 .Dt MAN 1

8 .Cs

9 . Sh NAME

10 . Nm nman

11 . Nd find and display reference nmanual pages

12 . Sh SYNOPSI S

13 . Nm

14 . Op Fl

15 . Op Fl adFlrt

16 .Op FI T Ar nmacro- package

17 . FI M Ar path

18 . FI s Ar section

19 . Ar nane ...

20 . Nm

21 .Op FI MAr path

22 .Op FI s Ar section

23 .Fl k

24 . Ar keyword

25 (Ar ...

26 . Nm

27 .Op FI MAr path

28 .Op FI s Ar section

29 .Fl f

30 . Ar

31 . Nm

32 .0p FIl MAr path

33 .Fl w

34 . sh DESCRI PTI ON

35 The

36 . Nm

37 command di splays information fromthe reference manuals. It
38 di splays conpl ete manual pages that you sel ect by

39 . Ar nane ,

40 or one-line sumuaries selected either by

41 . Ar keyword

42 .Pq Fl k ,

43 or by the nanme of an associated file
44 . Pq Fl f

45 | f no nmanual page is |ocated,

46 . Nm

47 prints an error message.

48 .Ss "Source Fornmat"

49 Reference Manual pages are marked up with either
50 .Xr man 5 ,

or

52 . Xr ndoc 5

53 | anguage tags. The
Nm

55 command recogni zes the type of markup and
56 processes the file accordingly.

58 .Ss "Location of Manual Pages"

new usr/src/ man/ manl/ man. 1

The online Reference Manual page directories are conventionally |located in

.Pa /usr/share/ man .

Each directory corresponds to a

section of the manual. Since these directories are optionally installed,
m ght not reside on your host. You mi ght have to nount

. Pa /usr/share/ man

froma host on which they do reside.

The

. Nm

command reformats a page whenever it is requested.

. Pp
If the standard output is not a termnal, or if the
. Fl
flag is given,

N

. Nm
pi pes its output through
. Xr cat .

O herwi se,

. Nm

pi pes its output through a pager such as

. Xr nore 1

to handl e paging and underlining on the screen.
. Sh OPTI ONS

The follow ng options are supported:

.Bl -tag -width indent

It Floa

Shows all manual pages natching

. Ar nane

within the

. Ev. MANPATH

search path. Manual pages are displayed in the order found.

It Flod

Debugs. Displays what a section-specifier evaluates to, method used for
searchi ng, and paths searched by

. Nm .

dt FLf A file ...

Attenpts to | ocate manual pages related to any of the given

A file

nanmes. It strips the |eading path nane conponents from each

A file

and then prints one-line summaries containing the resulting basename or
This option also uses the

.Pa whatis

dat abase.

It FIF

This option is present for backwards conpatibility and is docunented
here for reference only. It performs no function.

It FI k Ar keyword ...

Prints out one-line summaries fromthe

.Pa whatis

dat abase (table of contents) that contain any of the given
.Ar keyword .

The

. Pa whatis

dat abase is created using the

FEow

option.

Lt R

Lists all manual pages found matching

. Ar nane

within the search path.

It Fl MAr path

Specifies an alternate search path for manual pages. The
.Ar path

t hey

nanes.

is a colon-separated list of directories that contain nanual page directory

subtrees. For exanple, if

new usr/src/ man/ manl/ man. 1

126 . Ar path

127 is

128 . Pa /usr/share/ man:/usr/local/nman ,

129 . Nm

130 searches for

131 . Ar nane

132 in the standard | ocation, and then

133 . Pa /usr/local /man .

134 When used with the

135 . Fl k ,

136 . FI f ,

137 or

138 . FI w

139 options, the

140 .FI M

141 option nmust appear first. Each directory in the
142 . Ar path

143 is assunmed to contain subdirectories of the form
144 . Pa man* ,

145 one for each section. This option overrides the
146 . Ev. MANPATH

147 environment vari abl e.

148 .1t Fl r

149 Reformats the manual page, checking for fornatting errors, but does not
150 display it.

151 .1t Fl s Ar section

152 Specifies sections of the manual for

153 . Nm

154 to search. The directories searched for

155 . Ar name

156 are limted to those specified by

157 . Ar section .

158 . Ar section

159 can be a nunerical digit, perhaps followed by one or nore letters
160 to match the desired section of the manual, for exanple,
161 .Li "3libucbh".

162 Al so,

163 . Ar section

164 can be a word, for exanple,

165 .Li local ,

166 .Li new,

167 .Li old ,

168 .Li public .

169 . Ar section

170 can also be a letter. To specify multiple sections,
171 separate each section with a comma. This option overrides the
172 . Ev. MANPATH

173 environnent variable and the

174 . Pa man. cf

175 file. See

176 . Sx Search Path

177 bel ow for an expl anati on of how

178 . Nm

179 conducts its search.

180 .1t Fl t

181 Arranges for the specified manual pages to be sent to the default
182 printer as PostScript.

183 .1t FI T Ar macro-package

184 This option is present for backwards conpatibility and is docunented
185 here for reference only. It performs no function.
186 .1t FI w

187 Updates the

188 . Nm whati s

189 dat abase.

190 . E

191 . Sh OPERANDS

new usr/src/ man/ manl/ man. 1

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

The foll owi ng operand i s supported:

.Bl -tag -width indent

It Ar nane

The nane of a standard utility or a keyword.
. H

. Sh USAGE

The usage of

. Nm

i s described bel ow

.Ss "Manual Page Sections"

Entries in the reference manual s are organized into

. Em sections .

A section

name consists of a major section nanme, typically a single digit, optionally
followed by a subsection name, typically one or nore |letters. An unadorned
maj or section name, for exanple,

.Q 9,

does not act as an abbreviation for

the subsections of that name, such as

. e,
.Qq of

or

.Q 9s .

That is, each subsection nust be searched separately by

. Nm

LFl s .

Each section contains descriptions apropos to a particular reference category,
wi th subsections refining these distinctions. See the

.Emintro

manual pages for an explanation of the classification used in this rel ease.

224 .

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

.Ss "Search Path"

Bef ore searching for a given

. Ar nane ,

. Nm

constructs a list of candidate directories and sections.
It searches for

. Ar nane

in the directories specified by the

. Ev. MANPATH

environment vari abl e.

.Lp

In the absence of

. Ev. MANPATH ,

. Nm

constructs its search path based upon the

. Ev PATH

environment variable, primarily by substituting
.Li man

for the | ast conponent of the

. Ev PATH

el ement. Special provisions are added

to account for unique characteristics of directories such as
.Pa /sbin ,

.Pa /usr/uchb ,

.Pa /usr/xpg4/bin ,

and others. If the file argunent contains
a

.Qq /

character, the

. Em di rname

portion of the argument is used in place of
. Ev PATH

new usr/ src/ man/ manl/ man. 1 5 new usr/src/ man/ manl/ man. 1 6
258 el enments to construct the search path. 324 . Ev LC_MESSAGES ,

259 .Lp 325 and

260 Wthin the manual page directories, 326 . Ev NLSPATH .

261 . Nm 327 .Bl -tag -width indent

262 confines its search to the 328 .1t Ev MANPATH

263 sections specified in the follow ng order: 329 A colon-separated list of directories; each directory can be followed by a
264 .Bl -bullet 330 conmma-separated list of sections. If set, its value overrides
265 . It 331 \fB/usr/share/man\fR as the default directory search path, and the \fBnan.cf\fR
266 . Ar sections 332 file as the default section search path. The \fB-MfR and \fB-s\fR flags, in
267 specified on the command line with the 333 turn, override these values.)

268 .Fl s 334 . It EBEv PAGER

269 option 335 A programto use for interactively delivering

270 . It 336 output to the screen. If not set,

271 . Ar sections 337 .Sq Nmnore Fl s

272 enbedded in the 338 is used. See

273 . Ev. MANPATH 339 . Xr nore 1 .

274 environnent variable 340 . H

275 .1t 341 . Sh FILES

276 . Ar sections 342 .Bl -tag -w dth indent

277 specified in the 343 . It Pa /usr/share/ man

278 . Pa nman. cf 344 Root of the standard manual page directory subtree
279 file for each directory specified in the 345 . It Pa /usr/share/ man/ man?/*

280 . Ev. MANPATH 346 Unfornatted nanual entries

281 environment variable 347 .1t Pa /[usr/share/ man/whatis

282 . H 348 Tabl e of contents and keyword database

283 |f none of the above exist, 349 . It Pa man. cf

284 . Nm 350 Default search order by section

285 searches each directory in the nanual 351 . H

286 page path, and displays the first matching manual page found. 352 . Sh EXIT STATUS

287 . Lp 353 .Ex -std man

288 The 354 . Sh EXAMPLES

289 . Pa man. cf 355 .

290 file has the followi ng format: 356 .Ss Exanple 1: Creating a PostScript Version of a man page
291 .Lp 357 .

292 .D Pf MANSECTS= Ar section , Ns Op Ar section... 358 The foll owi ng exanpl e spools the

293 .Lp 359 . Xr pipe 2

294 Lines beginning with 360 man page in PostScript to the default printer:

295 .Sq Li # 361 . Pp

296 and bl ank |lines are considered conments, and are 362 .D0 % man -t -s 2 pipe

297 ignored. Each directory specified in 363 . Pp

298 . Ev. MANPATH 364 Note that

299 can contain a manual page 365 . Xr nmandoc 1

300 configuration file, specifying the default search order for that directory. 366 can be used to obtain the PostScript content directly.
301 .Sh "Referring to Other Manual Pages"” 367 .Ss Exanple 2: Creating a Text Version of a man page
302 If the first line of the nanual page is a reference to another nanual 368 The foll owi ng exanple creates the

303 page entry fitting the pattern: 369 . Xr pipe 2

304 .Lp 370 man page in ASCI| text:

305 .D \& so man*/\flsourcefile\fR 371 . Pp

306 .Lp 372 .D % nman pipe.2 | col -x -b > pipe.text

307 . Nm 373 . Sh CODE SET | NDEPENDENCE

308 processes the indicated file in place of the current one. The 374 Enabl ed.

309 reference nust be expressed as a path nane relative to the root of the manual 375 . Sh | NTERFACE STABI LI TY

310 page directory subtree. 376 .Sy Committed .

311 .Lp 376 .Nm Conmitted .

312 When the second or any subsequent line starts with \fB\& so\fR, \fBman\fR 377 .Sh SEE ALSO

313 ignores it; \fBtrof f\fR(1) or \fBnroff\fR(1l) processes the request in the usual 378 . Xr apropos 1 ,

314 manner. 379 . Xr cat 1,

315 . Sh ENVI RONMENT VARI ABLES 380 . Xr col 1,

316 See 381 . Xr mandoc 1 ,

317 . Xr environ 5 382 . Xr nore 1 ,

318 for descriptions of the follow ng environment variabl es 383 . Xr whatis 1 ,

319 that affect the execution of 384 . Xr environ 5 ,

320 . Nm man : 385 .Xr man 5 ,

321 . Ev LANG , 386 . Xr ndoc 5

322 .Ev LCALL , 387 . Sh NOTES

323 . Ev LC_CTYPE , 388 The

new usr/src/ man/ manl/ man. 1

389 .Fl f
390 and
391 .Fl k

392 options use the
393 . Nm whati s

394 dat abase, which is
395 created with the

396 .Fl w
397 option.
398 . Sh BUGS

399 The manual is supposed to be reproducible either on a phototypesetter or on an
400 ASCI| terminal. However, on a termnal sone information (indicated by
401 font changes, for instance) is |ost.

new usr/ src/ man/ manl/ mandoc. 1

R R R R

14742

Wed Jul 30 20:55:13 2014

new usr/ src/ man/ manl/ mandoc. 1
5051 inport ndocnmi-1.12.3

Revi ewed
Appr oved

by: Yuri Pankov <yuri.pankov@exenta.con>
by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

A\
A
A\

1
2
3
4 \"
5.\"
6 .\"
7 .\"
8 .\"
9 .\"
10 .\
11 .\
A\
13 .\"
14 .\

=
~
————

©
K9ER

22 .Sh

N
w
E%

25 .sh
26 . Nm

2999999

34 The
35 . Nm
36 util

Ux

Perm ssion to use, copy, nodify, and distribute this software for any
purpose with or wthout fee is hereby granted, provided that the above
copyright notice and this pernission notice appear in all copies.

THE SOFTWARE |S PROVI DED "AS | S" AND THE AUTHOR DI SCLAI M5 ALL WARRANTI ES
W TH REGARD TO TH S SOFTWARE | NCLUDI NG ALL | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS. I N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR
ANY SPECI AL, DI RECT, | NDI RECT, OR CONSEQUENTI AL DAMAGES OR ANY DANVAGES
WHATSOEVER RESULTI NG FROM LOSS OF USE, DATA OR PROFI TS, WHETHER IN AN
ACTI ON OF CONTRACT, NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SI NG QUT OF
OR I'N CONNECTI ON W TH THE USE OR PERFORMANCE OF THI S SOFTWARE.

Copyright (c) 2009, 2010, 2011 Kristaps Dzonsons <kristaps@sd.|v>
Copyright 2012 Nexenta Systens, Inc. Al rights reserved.
Copyright 2014 Garrett D Anpbre <garrett @anore. org>

Jul 30, 2014
Jul 16, 2014
MANDOC 1

NAME

mandoc

format and di splay UNI X manual s
SYNOPSI S

mandoc

Fl Vv

FI mNs Ar format

FI O Ns Ar option

FI T Ns Ar output

FI . WNs Ar |eve

Ar
DESCRI PTI ON

ity formats

38 manual pages for display.
P

- Pp
40 By default,
. Nm

42 reads

43 . Xr
44 or
45 . Xr

ndoc 5

man 5

46 text fromstdin, inplying

47 . Fl
48 and
49 . Fl

m Ns Cm andoc |,
produces
T Ns Cm ascii

50 out put.

51 .Pp
52 The
53 . Bl
54 It

argunments are as foll ows:
-tag -width Ds
FI. mNs Ar fornat

55 I nput format.

56 See
57 .Sx
58 for

I nput Formats
avail abl e fornmats.

new usr/ src/ man/ manl/ mandoc. 1

Defaults to

.FI mNs Cm andoc .

.1t FI ONs Ar option
Conme- separ at ed out put options.
.1t FI T Ns Ar output

Qut put format.

See

. Sx Qutput Formats

for available formats.
Defaults to

.FI T Ns Cmascii

It FlV

Print version and exit.

It Fl. WNs Ar |evel
Speci fy the m ni num nessage
LAr level

to be reported on the standard error output and to affect the exit status.

The

LAr level

can be

. Cm war ni ng ,
.Cmerror ,

or

.Cmfatal .

The default is

.FI WNs Cmfatal ;
.FI WNs Cmall

is an alias for

.FI. ' WNs Cm warning .
See
.Sx EXIT STATUS
and

. Sx DI AGNCSTI Cs
for details.

. Pp

The special option

.FI WNs Cm stop

tells

. Nm

to exit after parsing a file that causes warnings or errors of at

the requested | evel.

No formatted output will be produced fromthat file.

If both a

.Ar level

and

.Cm stop

are requested, they can be joined with a comma, for exanple
.FI WNs Cmerror , Ns Cmstop .

Lt A file

Read input fromzero or nore files.

I'f unspecified, reads fromstdin.
If multiple files are specified,
. Nm

will halt with the first failed parse.
.H

.Ss I nput Formats

The

. Nm

utility accepts

. Xr mdoc 5

and

. Xr man 5

input with

.FI mNs Cm doc

and

.FI mNs Cman ,

| east

new usr/ src/ man/ manl/ mandoc. 1

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

respectively.

The

. Xr mdoc 5

format is

.Em strongly

recommended;

.Xr man 5

shoul d only be used for |egacy manuals.
P

- Pp

A third option,

.FI mNs Cm andoc ,

which is also the default, determ nes encoding on-the-fly: if the first
non- conment macro is

.Sq \ &Dd

or
.Sq \&Dt

the

. Xr mdoc 5

parser is used; otherw se, the
.Xr man 5

parser is used.

P

- Pp

If multiple

files are specified with

.FI mNs Cm andoc ,

each has its file-type determ ned this way.
If multiple files are

speci fied and

.FI mNs Cmdoc

or
.FI mNs Cm an

is specified, then this format is used exclusively.
. Ss Qutput Formats

The

. Nm

utility accepts the foll ow ng

FL T

argunents, which correspond to output nodes:
.Bl -tag -width "-Tlocal e"

It FI T Ns Cmascii

Produce 7-bit ASCI| output.

This is the default.

See

.Sx ASCI | Qutput .

It FI T Ns Cmhtmd

Produce strict CSS1/HTM.-4.01 output.
See

.Sx HTM. Qut put .

It FI T Ns Cmlint

Parse only: produce no output.
Inplies

.FI WNs Cmwarning .

It FI T Ns Cmlocale

Encode out put using the current |ocale.
See

. Sx Local e Qut put

.1t FI. T Ns Cm nan

Produce

.Xr man 5

format output.

See

. Sx Man CQut put .

It FI T Ns Cm pdf

Produce PDF out put.

See
. Sx PDF Cut put

new usr/src/ man/ manl/ mandoc. 1

191
192
193
194
195
196
197
198

.1t FI T Ns Cmps

Produce Post Script out put.

See

. Sx Post Script CQutput

It Fl. T Ns Cmtree

Produce an indented parse tree.

It FI T Ns Cmutf8

Encode output in the UTF\-8 nulti-byte format.

199 Se

200
201
202

e
.Sx UTR\ -8 Qutput .
It FI T Ns Cm xhtm
Produce strict CSS1/XHTM.-1.0 output.

203 Se

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

e
. Sx XHTML Qut put
L H

. Pp

If multiple input files are specified, these will be processed by the
corresponding filter in-order.

.Ss ASCI | Qut put

Qut put produced by

.FI T Ns Cmascii ,

which is the default, is rendered in standard 7-bit ASCI| docunented in
. Xr ascii 5 .

. Pp
Font styles are applied by using back-spaced encodi ng such that an
under | i ned character

.Sq ¢

is rendered as

.Sq _ Ns \e[bs] Ns c ,

wher e

.Sq \e[bs]

is the back-space character nunber 8.
Enbol dened characters are rendered as

.Sq ¢ Ns \e[bs] Ns c .

. Pp

The special characters docunented in

. Xr mandoc_char 5

are rendered best-effort in an ASCI| equival ent.
If no equivalent is found,

.Sq \ &2

is used instead.

- PP
Qutput width is limted to 78 visible colums unless literal input |ines
exceed this limt.

. Pp

The fol |l owi ng

.FI. O

argunents are accepted:

.Bl -tag -width Ds

It Cmindent Ns = Ns Ar indent

The left margin for normal text is set to

. Ar indent

bl ank characters instead of the default of five for

. Xr mdoc 5

and seven for

.Xr man 5 .

Increasing this is not recomended; it may result in degraded fornmatting,
for example overfull lines or ugly line breaks.

It Cmwdth Ns = Ns Ar width

The output width is set to

.Ar width

which will normalise to \(>=60.
.H

.Ss HTML Qut put

Qut put produced by

.FI T Ns Cm htni

new usr/ src/ man/ manl/ mandoc. 1

257 confornms to HTM.-4.01 strict.
258 . Pp

259 The
260 . Pa exanpl e.style.css

261 file docunments styl e-sheet classes available for custom sing output.
262 |f a style-sheet is not specified with

263 .FI ONs Ar style ,

264 .FI T Ns Cmhtm

265 defaults to sinple output readable in any graphical or text-based web
266 browser.

267 . Pp

268 Special characters are rendered in decinal -encoded UTF\-8.

269 . Pp

270 The fol | owi ng

271 .Fl O

272 argunents are accepted:

273 .Bl -tag -width Ds

274 .1t Cm fragnment

275 Omt the

276 . Aq ! DOCTYPE

277 declaration and the

278 .Ag htnm ,

279 . Aq head ,

280 and

281 . Ag body

282 el ements and only enmit the subtree bel ow the

283 . Ag body

284 el ement.

285 The

286 .Cmstyle

287 argument will be ignored.

288 This is useful when enbeddi ng nanual content within existing docunments.
289 .It Cmincludes Ns = Ns Ar fnt

290 The string

291 . Ar fmt ,

292 for exanple,

293 .Ar ../src/%.htm

294 is used as a tenplate for linked header files (usually via the

295 .Sq \&n
296 macro).

297 Instances of
298 . Sqg \ &%

299 are replaced with the include filenane.

300 The default is not to present a

301 hyperlink.

302 .1t Cmman Ns = Ns Ar fnt

303 The string

304 . Ar fnt ,

305 for exanple,

306 .Ar ../html %/ %N %5 htnl

307 is used as a tenplate for linked manuals (usually via the

308 . Sg \ &xr
309 nmcro).

310 I nstances of
311 . Sq \ &N
312 and

313 .Sq %

314 are replaced with the linked nanual's name and section, respectively.
315 If no section is included, section 1 is assuned.

316 The default is not to

317 present a hyperlink.

318 .It Cmstyle Ns = Ns Ar style.css

319 The file

320 . Ar style.css

321 is used for an external style-sheet.

322 This nust be a valid absolute or

new usr/src/ man/ manl/ mandoc. 1

323 relative URI.
324 . H

325 . Ss Local e CQutput

326 Local e-dependi ng output encoding is triggered with

327 .FI T Ns Cmlocale .

328 This option is not available on all systenms: systenms w thout |ocale
329 support, or those whose internal representation is not natively UCS-4,
330 will fall back to

331 .FI T Ns Cmascii

332 See

333 . Sx ASCI| CQutput

334 for font style specification and avail abl e command-1ine argunents.
335 . Ss Man CQut put

336 Translate input fornat into

337 . Xr man 5

338 output format.

339 This is useful for distributing nmanual sources to |egacy systens
340 | acki ng

341 . Xr ndoc 5

342 formatters.

343 . Pp

344 | f

345 . Xr ndoc 5

346 is passed as input, it is translated into

347 . Xr man 5 .

348 If the input format is

349 . Xr man 5 ,

350 the input is copied to the output, expanding any

351 . Xr mandoc_roff 5

352 . Sq so

353 requests.

354 The parser is also run, and as usual, the

355 .Fl W

356 | evel controls which

357 . Sx DI AGNCSTI CS

358 are displayed before copying the input to the output.

359 .Ss PDF CQut put

360 PDF-1.1 output may be generated by

361 .FI T Ns Cm pdf .

362 See

363 . Sx Post Script Qutput

364 for

365 .FI O

366 argunments and defaul ts.

367 .Ss Post Script Qutput

368 Post Scri pt

369 . Qq Adobe-3.0

370 Level -2 pages nay be generated by

371 .FI T Ns Omps

372 Qutput pages default to letter sized and are rendered in the Tines font
373 famly, 11-point.

374 Margins are calculated as 1/9 the page | ength and w dth.

375 Line-height is 1.4m

376 . Pp

377 Special characters are rendered as in

378 . Sx ASCI| CQutput

379 . Pp
380 The foll ow ng
381 .FI O

382 argunents are accepted:

383 .Bl -tag -width Ds

384 . It Cmpaper Ns = Ns Ar nane
385 The paper size

386 . Ar nane

387 may be one of

388 . Ar a3 ,

new usr/ src/ man/ manl/ mandoc. 1

389 . Ar a4 ,

390 . Ar a5 ,

391 . Ar legal ,

392 or

393 . Ar letter .

394 You may al so manual 'y specify di nensions as

395 . Ar NNXNN ,

396 width by height in mllinetres.

397 If an unknown val ue is encountered,

398 . Ar letter

399 is used.

400 . El

401 . Ss UTF\-8 CQutput

402 Use

403 .FI T Ns Cmutf8

404 to force a UTF\-8 locale.

405 See

406 . Sx Local e CQut put

407 for details and options.

408 .Ss XHTM. Cut put

409 CQutput produced by

410 .FI T Ns Cm xhtm

411 conforms to XHTM.-1.0 strict.

412 . Pp

413 See

414 . Sx HTM. Cut put

415 for details; beyond generating XHTM. tags instead of HTM. tags, these
416 out put nodes are identical.

417 . Sh EXIT STATUS

418 The

419 . Nm

420 utility exits with one of the follow ng val ues, controlled by the nessage
421 . Ar level

422 associated with the

423 . FI W

424 option:

425 . Pp

426 .Bl -tag -width Ds -conpact

427 .1t O

428 No warnings or errors occurred, or those that did were ignored because
429 they were | ower than the requested

430 . Ar |evel

431 .1t 2

432 At |east one warning occurred, but no error, and
433 . FI WNs Cm war ni ng

434 was specified.

435 . It

436 At |east one parsing error occurred, but no fatal error, and
437 .FI WNs Cmerror

438 or

439 . FI WNs Cm war ni ng

440 was speci fi ed.

441 .1t 4

442 A fatal parsing error occurred.

443 .1t 5

444 | nvalid command |ine argunments were specified.
445 No input files have been read.

446 .1t 6

447 An operating systemerror occurred, for exanple nmenory exhaustion or an
448 error accessing input files.

449 Such errors cause

450 . Nm

451 to exit at once, possibly in the nmiddle of parsing or formatting a file.
452 . El

453 . Pp

454 Note that selecting

new usr/src/ man/ manl/ mandoc. 1

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

.FI T Ns Cmlint

out put node inplies

.FI 'WNs Cm warning .

. Sh EXAMPLES

To page manuals to the termnal:
P

.D $ nandoc \-wall,stop mandoc.1 2*(& &1 | less
.Dl$ mandoc nandoc.1 ndoc.5 | |ess

. Pp

To produce HTM. manuals with

.Ar style.css

as the styl e-sheet:

. Pp

.D $ nmandoc \-Thtm -Ostyle=style.css ndoc.5 *(& ndoc.5. htni
. Pp

To check over a large set of manuals:

. Pp

.D $ mandoc \-Tlint ‘find /usr/src -nane \e*\e.[1-9]"*

. Pp

To produce a series of PostScript manuals for A4 paper:
P

- Pp
.D $ mandoc \-Tps \-QOpaper=a4 ndoc.5 man.5 *(G&G manual s. ps
. Pp
Convert a nodern
. Xr mdoc 5
manual to the ol der
.Xr man 5
format, for use on systens |acking an
. Xr mdoc 5
par ser:
P

- Pp

.D $ nmandoc \-Tman foo.ndoc *(& foo.man

. Sh DI AGNOSTI CS

Standard error nessages reporting parsing errors are prefixed by
. Pp

. Sm of f

.DL Ar file : line : colum : \ level

.Sm on

. Pp

where the fields have the follow ng nmeanings:

.Bl -tag -width "col um"

It A file

The nane of the input file causing the message.
It Ar line

The line nunber in that input file.

Li ne nunbering starts at 1.

.1t Ar colum

The col um nunber in that input file.

Col utmm nunbering starts at 1.

If the issue is caused by a word, the colum nunber usually
points to the first character of the word.

It Ar level

Thle nmessage level, printed in capital letters.

. El

. Pp

Message | evel s have the foll ow ng nmeani ngs:

.Bl -tag -wi dth "warning"

.1t Cmfatal

The parser is unable to parse a given input file at all.

No formatted output is produced fromthat input file.

It Cmerror

An input file contains syntax that cannot be safely interpreted,
ei ther because it is invalid or because

. Nm

does not inplenent it yet.

By discarding part of the input or inserting m ssing tokens,

new usr/ src/ man/ manl/ mandoc. 1

521 the parser is able to continue, and the error does not prevent

522 generation of formatted output, but typically, preparing that

523 out put involves information |oss, broken docunent structure

524 or unintended fornmatting.

525 .1t Cm warni ng

526 An input file uses obsolete, discouraged or non-portable syntax.
527 Al the same, the neaning of the input is unanbi guous and a correct
528 rendering can be produced.

529 Docunents causi ng warni ngs may render poorly when using other

530 formatting tools instead of

531 . Nm.
532 . H
533 . Pp

534 Massages of the
535 . Cm war ni ng

536 and

537 .Cmerror

538 levels are hidden unless their level, or a lower level, is requested using a
539 .Fl W

540 option or
541 .FI T Ns Cmlint
542 out put node.

543 . Pp
544 The
545 . Nm

546 utility may also print nmessages related to invalid command |ine argunents
547 or operating systemerrors, for exanple when nmenory is exhausted or
548 input files cannot be read.

549 Such nessages do not carry the prefix described above.
550 . Sh COWPATI BI LI TY

551 This section sunmmarises

552 . Nm

553 conpatibility with GNU troff.

554 Each input and output format is separately noted.
555 .Ss ASCI| Conpatibility

556 . Bl -bullet -conpact

557 .1t

558 Unrenderabl e uni code codepoints specified with
559 . Sg \ e[uNNNN]

560 escapes are printed as

561 .Sq \ &?

562 i n nmandoc.

563 In GNU troff, these raise an error.

564 . It

565 The

566 .Sq \&Bd \-literal

567 and

568 .Sq \&Bd \-unfilled

569 nacros of

570 . Xr ndoc 5

571 in

572 .FI T Ns Cmascii

573 are synonyns, as are \-filled and \-ragged.

574 .1t

575 In historic GNU troff, the

576 .Sq \ &Pa

577 . Xr ndoc 5

578 nacro does not underline when scoped under an
579 .Sq \&l't

580 in the FILES section.

581 This behaves correctly in

582 . Nm .

583 .1t

584 A list or display follow ng the
585 . Sq \ &Ss

586 . Xr ndoc 5

new usr/src/ man/ manl/ mandoc. 1

587 macro in
588 .FI T Ns Cmascii

589 does not assert a prior vertical break, just as it doesn't with

590 .Sqg \&sh .
591 . It

592 The

593 . Sqg \ &na

594 . Xr man 5

595 macro in

596 .FI T Ns Cmascii

597 has no effect.

598 .

599 Words aren’t hyphenated.

600 . El

601 .Ss HTM./ XHTML Conpatibility

602 .Bl -bullet -conpact

603 . It

604 The

605 .Sq \ef P

606 escape will revert the font to the previous
607 .Sq \ef

608 escape, not to the last rendered decoration, which is now dictated by

609 CSS I nstead of hard-coded.
610 It also will not span past the current scope,
611 for the sanme reason.

612 Note that in

613 . Sx ASCI| CQutput

614 node, this will work fine.
615 . It

616 The

617 . Xr ndoc 5

618 .Sq \&Bl \-hang

619 and

620 .Sg \&Bl \-tag

621 list types render sinmilarly (no break follow ng overreached |eft-hand

622 side) due to the expressive constraints of HTM.
623 . It

624 The

625 . Xr man 5

626 .Sq I P

627 and

628 .Sq TP

629 lists render simlarly.
630 . E

631 . Sh | NTERFACE STABILITY
632 The

633 . Nm

634 utility is

635 .Sy Conmitted ,

635 . Nm Conmitted ,

636 but the details of specific output formats other than ASCl |
637 . Nm Uncommitted .

638 . Sh SEE ALSO

639 . Xr eqn 5 ,

640 . Xr man 5 ,

641 . Xr mandoc_char 5 ,
642 . Xr ndoc 5 ,

643 . Xr mandoc_roff 5 ,
644 . Xr thl 5

645 . Sh AUTHORS

646 The

647 . Nm

648 utility was witten by
649 . An Kristaps Dzonsons ,
650 .M kristaps@sd.lv .
651 . Sh CAVEATS

are

10

new usr/ src/ man/ manl/ mandoc. 1 11

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

I'n

.FI T Ns Cmhtm

and

.FI. T Ns Om xhtnm

the maxi mum size of an elenent attribute is determ ned by

.Dv BUFSI Z ,

which is usually 1024 bytes.

Be aware of this when setting long link

formats such as

.FI ONs Cmstyle Ns = Ns Ar really/long/link .

. Pp

Nesting el ements within next-line el ement scopes of

.FI mNs Cman ,

such as

.Sq br

within an enpty

. Sq)

wi |l confuse

.FI T Ns Cmhtm

and

.FI. T Ns Om xhtn

and cause themto forget the fornatting of the prior next-line scope.
. Pp

The
.Sq \(aq

control character is an alias for the standard macro control character
and does not enit a line-break as stipulated in GNU troff.

new usr/ src/ man/ man5/ nan. 5 1

R R R R

8753 Wed Jul 30 20:55:13 2014

new usr/ src/ man/ man5/ man. 5

5051

i nport ndocm -1.12.3

Revi ewed by: Yuri Pankov <yuri.pankov@exenta. con»
Approved by: TBD

hkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkkkkkhkkkkkkkkhkkk Rk kkk kK k%

O©CONOOUTAWNE

X122 TZYZZ9PIY

\" Copryight 2014 Garrett D Anore <garrett @anore. org>

" Copyright (c) 1995, Sun M crosystens, |nc.

" The contents of this file are subject to the terms of the Common Devel opnent
You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE or http:
" Wen distributing Covered Code, include this CDDL HEADER in each file and in
"Jul 30, 2014"

“Jul 19, 2014"

MAN 5

————

NAVE

man

macros to format Reference Manual pages
SYNOPSI S

nandoc

T Ar nan

nr of f
man

.Nmtroff
.FI man

L Ar

. Sh DESCRI PTI ON

These nacros are used to lay out the reference pages in this nanual. Note: if
A file

contains format input for a preprocessor, the commands shown

above nmust be piped through the appropriate preprocessor. This is handl ed

automatically by the

.Xr man 1

conmand. See the

. Sx Conventions

section.

.Lp

Any text argument

At

may be zero to six words. Quotes may be used to

i ncl ude SPACE characters in a

.Qq word
| f

.Ar text
is enpty, the special
treatnent is applied to the next input line with text to be printed. In this

way

CNm\ & |

may be used to italicize a whole line, or
.Nm\& SB

may be used to nmeke snall bold letters.
.Lp

A prevailing indent distance is renmenbered between successive indented

par agraphs, and is reset to default value upon reaching a non-indented
paragraph. Default units for indents

.Nm i

are ens.

.Lp

Type font and size are reset to default values before each paragraph, and after
processing font and size setting nacros.

P

- Pp
These strings are predefined by
.Nm -man :

new usr/ src/ man/ man5/ nman. 5

59
60
61
62

. Bl
Lt
. Sq
. Sq
in

. Nm
It

-tag -width Ds
Nm V'e*R
\(rg .,

(Reg)

nroff .
Nm \e*S

Change to default type size.
El

- Sh
* n.
. BI

o ———— — — ——

g
3#,-.%—.#”#2#3#—.—.”#.-.—.”#
=

R 4
1]

'r_n':'z

Ss
Vhen
Nm

" Request s"
t.
-colum ".TH n
Sy Request Sy

= next text line; p.i.

= prevailing indent

sdf n "Cause " "t=n.t.|.*" "Explanation " -offset Ds

Cause

Sy "If No" Sy Expl anation

Sy "Argunent”

" Sy Break
Nm\& B Ar "t no
Nm\& Bl Ar t no
Nm\ & BR Ar t no
Nm \ & DT no Li \&
Nm\& HP Ar i yes
Nm\& 1 Art no
Nm\& IB Ar t no
Nm\& IP Ar x Ar i yes
\ & TP

tag
X .
Nm\& IR Ar t no
Nm\& I X Ar t no
Nm\ & LP yes -
Nm\ & P yes -
\& LP .
Nm\& PD Ar d no
Nm \ & PP yes -
\& LP .
Nm \ & RE yes -
Nm\& RB Ar t no
Nm\& Rl Ar t no
Nm\& RS Ar i yes

prevailing indent to .5i
Nm\& SB Ar t no
Nm\& SH Ar t yes
Nm\ & SM Ar t no
Nm\& SS Ar t yes
NM\& TH Ar ns df m
Nm\& TP Ar i yes
i
NMm\& TX Ar t p no

" Convent i ons"

formatting a nmanual page,

examines the first

whether it requires

.Lp

D \&\e" t

.Lp

i ndi cates that the manual
Xr tbl 1

preprocessor.

-Lp

Aty

. Bl

1t Nm\&TH Ar title o "1-9"

Ar t Ns =n.t.I Text is in bold font.

Ar t Ns =n.t.l. Join words, alternating bold and

Ar t Ns =n.t.l. Join words, alternating bold and
5i li... Restore default tabs.

Ar i Ns =p.i.* "Begin paragraph with hanging in

Ar t Ns =n.t.l. Text is italic.

Ar t Ns =n.t.l. Join words, altenrating italic a

Ar x Ns ="" Sane as

Ar t Ns =n.t.l. Join words, alternating italic a

I ndex macro, not used (obsol ete).
Beg| n left-aligned paragraph. Set prevailing ind
Sane as

Ar d Ns =.4v Set vertical distance between pa
Sanme as

End of relative indent. Restores prevailing inde
Ar t Ns =n.t.l. Join words, alternating roman an
Ar t Ns =n.t.l. Join words, alternating roman an
Ar i Ns =p.i. Start relative indent, increase

for nested iIndents.
Reduce size of text by 1 point, make tex
Secti on Headi ng.

Ar t Ns =n.t.|. Reduce size of text by 1 point.
Ar t Ns =n.t.l. Section Subheading.

yes - Begin reference page Ar n, No o
Ar i Ns =p.i. Begi n i ndented paragraph, with t

Resolve the title abbreviation Ar t ; No

line to deternine
speci al processing. For exanple a first line consisting of:

page nust be run through the

pi cal manual page for a command or function is laid out as follows:
-tag -width ".SH RETURN VALUES"

The nane of the command or function, which serves as the title of the nanual

page.

This is followed by the nunber of the section in which it appears.

new usr/ src/ man/ man5/ nan. 5

125
126

“1t Nm SH NAME

127 .

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

The nane, or list of names, by which the coomand is called, followed by a dash
and then a one-line sunmary of the action perforned. inroman font, this
section contains no

L Xr o troff 1

conmands or escapes, and no nmacro requests.

It is used to generate the database used by the

.Xr whatis 1

command.

.1t Nm SH SYNOPSI S

.Bl -tag -width "Functions:"

.1t Sy Conmands:

The syntax of the conmand and its argunents, as typed on the command Ii ne.
When in boldface, a word nust be typed exactly as printed. Wen initalics, a
word can be replaced with an argunment that you supply. References to bold or
italicized items are not capitalized in other sections, even when they begin a
sent ence.

Lp
Synt actic synbols appear in roman face:
. Bl —tag Wld'[h "
It
An argun’ent| when surrounded by brackets is optional.
Lt
Argunents separated by a vertical bar are exclusive.
|temfromsuch a list.
V&N
Arguments foI | owed by an ellipsis can be repeated. \Wen an ellipsis follows a
bracketed set, the expression within the brackets can be repeated.
L H
.1t Sy Functions:
If required, the data declaration, or
.Li #include
directive, is shown first,

You can supply only one

followed by the function declaration. Otherw se, the function declaration is
shown.
.El

‘1t Nm\& SH DESCRI PTI ON

166 .

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

A narrative overview of the command or function’s external behavior. This
includes how it interacts with files or data, and how it handl es the standard

i nput, standard output and standard error. Internals and inplenmentation details
are normal ly omtted. This section attenpts to provide a succinct overviewin
answer to the question, "what does it do?"

.Lp

Literal text fromthe synopsis appears in constant width, as do literal
filenanes and references to itens that appear el sewhere in the reference
manual s. Argunents are italicized.

.Lp

If a command interprets either subcommands or an input grammar,
interface or input grammar is normally described in a

. Nm USAGE

section, which follows the

. Nm OPTI ONS

section. The

. Nm DESCRI PTI ON

section only

descri bes the behavior of the comand itself,

its command

not that of subcommands.
‘1t Nm\& SH OPTI ONS

The list of options along with a description of how each affects the command’ s
operation.

new usr/ src/ man/ man5/ nan. 5

191
192

“1t Nm\& SH RETURN VALUES

193 .

194
195
196
197

Alist of the values the library routine will return to the calling program
and the conditions that cause these values to be returned.

1t Nm\& SH EXI T STATUS

198 .

199
200
201
202
203
204
205
206

Alist of the values the utility will return to the calling programor shell,
and the conditions that cause these values to be returned.

“1t Nm\& SH FILES
Alist of files associated with the command or function.

‘1t Nm\& SH SEE ALSO

207 .

208
209
210
211

A commm-separated |ist of related manual pages,
publ i shed material s.

followed by references to other

JI't Nm\& SH DI AGNGSTI CS

212 .

213
214
215

A list of diagnostic nessages and an expl anation of each.

“1t Nm\& SH BUGS

216 .

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
238
239
240
241
242
243
244
245
246
247
248
249
250

251 .

252
253

254 .

A description of limtations,
with the command or function.

known def ects, and possible problens associ ated

L H
. Sh FILES
. Pa /usr/share/ man/whatis
. Sh NOTES
The
. Nm
package should not be used for new docunentation. The
. Xr ndoc 5 ,
package is preferred, as it uses semantic markup rather than physical nmarkup.
. Sh CODE SET | NDEPENDENCE
Vhen processed with
. Xr mandoc 1 ,
this package is Code Set |ndependent.
| egacy tools such as
Xr onroff 1
and
Xr o troff 1,
the use of nulti-byte characters may not be supported.
. Sh | NTERFACE STABI LI TY
.Sy Obsolete Committed .
.Nm Obsol ete Conmitted .
The
. Xr mdoc 5
package shoul d be used instead.
. Sh SEE ALSO
.Xr eqn 1 ,
. Xr man 1,
. Xr mandoc 1 ,
Xr nroff 1,
Xr o troff 1,
L Xrothbl 1,
. Xr whatis 1 ,
. Xr ndoc 5 ,

However, when processed with

. %A Dal e Dougherty and TimO Reilly
.98 Uni x Text Processing

