
new/usr/src/Targetdirs 1

**
 71419 Sun May 4 03:04:40 2014
new/usr/src/Targetdirs
**

1 # CDDL HEADER START
2 #
3 # The contents of this file are subject to the terms of the
4 # Common Development and Distribution License (the "License").
5 # You may not use this file except in compliance with the License.
6 #
7 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
8 # or http://www.opensolaris.org/os/licensing.
9 # See the License for the specific language governing permissions

10 # and limitations under the License.
11 #
12 # When distributing Covered Code, include this CDDL HEADER in each
13 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
14 # If applicable, add the following below this CDDL HEADER, with the
15 # fields enclosed by brackets "[]" replaced with your own identifying
16 # information: Portions Copyright [yyyy] [name of copyright owner]
17 #
18 # CDDL HEADER END
19 #

21 #
22 # Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright 2011, Richard Lowe
24 # Copyright (c) 2012 by Delphix. All rights reserved.
25 # Copyright (c) 2012, Igor Kozhukhov <ikozhukhov@gmail.com>
26 #endif /* ! codereview */
27 # Copyright 2012 OmniTI Computer Consulting, Inc. All rights reserved.
28 # Copyright (c) 2013 RackTop Systems.
29 # Copyright 2013 Nexenta Systems, Inc. All rights reserved.
30 #

32 #
33 # It is easier to think in terms of directory names without the ROOT macro
34 # prefix. ROOTDIRS is TARGETDIRS with ROOT prefixes. It is necessary
35 # to work with ROOT prefixes when controlling conditional assignments.
36 #

38 DIRLINKS= $(SYM.DIRS)
39 $(BUILD64) DIRLINKS += $(SYM.DIRS64)

41 FILELINKS= $(SYM.USRCCSLIB) $(SYM.USRLIB)
42 $(BUILD64) FILELINKS += $(SYM.USRCCSLIB64) $(SYM.USRLIB64)

44 TARGETDIRS= $(DIRS)
45 $(BUILD64) TARGETDIRS += $(DIRS64)

47 TARGETDIRS += $(FILELINKS) $(DIRLINKS)

49 i386_DIRS= \
50 /boot/acpi \
51 /boot/acpi/tables \
52 /boot/grub \
53 /boot/grub/bin \
54 /platform/i86pc \
55 /lib/libmvec \
56 /usr/lib/xen \
57 /usr/lib/xen/bin

59 sparc_DIRS= \
60 /usr/lib/ldoms

62 sparc_64ONLY= $(POUND_SIGN)

new/usr/src/Targetdirs 2

63 64ONLY= $($(MACH)_64ONLY)

65 $(64ONLY) MACH32_DIRS=/usr/ucb/$(MACH32)

67 DIRS= \
68 /boot \
69 /boot/solaris \
70 /boot/solaris/bin \
71 $($(MACH)_DIRS) \
72 /dev \
73 /dev/dsk \
74 /dev/fd \
75 /dev/ipnet \
76 /dev/net \
77 /dev/rdsk \
78 /dev/rmt \
79 /dev/pts \
80 /dev/sad \
81 /dev/swap \
82 /dev/term \
83 /dev/vt \
84 /dev/zcons \
85 /devices \
86 /devices/pseudo \
87 /etc \
88 /etc/brand \
89 /etc/brand/solaris10 \
90 /etc/cron.d \
91 /etc/crypto \
92 /etc/crypto/certs \
93 /etc/crypto/crls \
94 /etc/dbus-1 \
95 /etc/dbus-1/system.d \
96 /etc/default \
97 /etc/devices \
98 /etc/dev \
99 /etc/dfs \
100 /etc/dladm \
101 /etc/fs \
102 /etc/fs/nfs \
103 /etc/fs/zfs \
104 /etc/ftpd \
105 /etc/hal \
106 /etc/hal/fdi \
107 /etc/hal/fdi/information \
108 /etc/hal/fdi/information/10freedesktop \
109 /etc/hal/fdi/information/20thirdparty \
110 /etc/hal/fdi/information/30user \
111 /etc/hal/fdi/policy \
112 /etc/hal/fdi/policy/10osvendor \
113 /etc/hal/fdi/policy/20thirdparty \
114 /etc/hal/fdi/policy/30user \
115 /etc/hal/fdi/preprobe \
116 /etc/hal/fdi/preprobe/10osvendor \
117 /etc/hal/fdi/preprobe/20thirdparty \
118 /etc/hal/fdi/preprobe/30user \
119 /etc/ipadm \
120 /etc/iscsi \
121 /etc/rpcsec \
122 /etc/security \
123 /etc/security/auth_attr.d \
124 /etc/security/exec_attr.d \
125 /etc/security/prof_attr.d \
126 /etc/security/tsol \
127 /etc/gss \
128 /etc/init.d \

new/usr/src/Targetdirs 3

129 /etc/dhcp \
130 /etc/lib \
131 /etc/mail \
132 /etc/mail/cf \
133 /etc/mail/cf/cf \
134 /etc/mail/cf/domain \
135 /etc/mail/cf/feature \
136 /etc/mail/cf/m4 \
137 /etc/mail/cf/mailer \
138 /etc/mail/cf/ostype \
139 /etc/mail/cf/sh \
140 /etc/net-snmp \
141 /etc/net-snmp/snmp \
142 /etc/opt \
143 /etc/rc0.d \
144 /etc/rc1.d \
145 /etc/rc2.d \
146 /etc/rc3.d \
147 /etc/rcS.d \
148 /etc/saf \
149 /etc/sasl \
150 /etc/sfw \
151 /etc/skel \
152 /etc/svc \
153 /etc/svc/profile \
154 /etc/svc/profile/site \
155 /etc/svc/volatile \
156 /etc/tm \
157 /etc/usb \
158 /etc/user_attr.d \
159 /etc/zfs \
160 /etc/zones \
161 /export \
162 /home \
163 /lib \
164 /lib/crypto \
165 /lib/inet \
166 /lib/fm \
167 /lib/secure \
168 /lib/svc \
169 /lib/svc/bin \
170 /lib/svc/capture \
171 /lib/svc/manifest \
172 /lib/svc/manifest/milestone \
173 /lib/svc/manifest/device \
174 /lib/svc/manifest/system \
175 /lib/svc/manifest/system/device \
176 /lib/svc/manifest/system/filesystem \
177 /lib/svc/manifest/system/security \
178 /lib/svc/manifest/system/svc \
179 /lib/svc/manifest/network \
180 /lib/svc/manifest/network/dns \
181 /lib/svc/manifest/network/ipsec \
182 /lib/svc/manifest/network/ldap \
183 /lib/svc/manifest/network/nfs \
184 /lib/svc/manifest/network/nis \
185 /lib/svc/manifest/network/rpc \
186 /lib/svc/manifest/network/security \
187 /lib/svc/manifest/network/shares \
188 /lib/svc/manifest/network/ssl \
189 /lib/svc/manifest/application \
190 /lib/svc/manifest/application/management \
191 /lib/svc/manifest/application/security \
192 /lib/svc/manifest/application/print \
193 /lib/svc/manifest/platform \
194 /lib/svc/manifest/platform/sun4u \

new/usr/src/Targetdirs 4

195 /lib/svc/manifest/platform/sun4v \
196 /lib/svc/manifest/site \
197 /lib/svc/method \
198 /lib/svc/monitor \
199 /lib/svc/seed \
200 /lib/svc/share \
201 /kernel \
202 /mnt \
203 /opt \
204 /platform \
205 /proc \
206 /root \
207 /sbin \
208 /system \
209 /system/contract \
210 /system/object \
211 /tmp \
212 /usr \
213 /usr/4lib \
214 /usr/ast \
215 /usr/ast/bin \
216 /usr/bin \
217 /usr/bin/$(MACH32) \
218 /usr/ccs \
219 /usr/ccs/bin \
220 /usr/ccs/lib \
221 /usr/demo \
222 /usr/demo/SOUND \
223 /usr/games \
224 /usr/has \
225 /usr/has/bin \
226 /usr/has/lib \
227 /usr/has/man \
228 /usr/has/man/man1has \
229 /usr/include \
230 /usr/include/ast \
231 /usr/include/fm \
232 /usr/include/gssapi \
233 /usr/include/hal \
234 /usr/include/kerberosv5 \
235 /usr/include/libmilter \
236 /usr/include/libpolkit \
237 /usr/include/sasl \
238 /usr/include/scsi \
239 /usr/include/security \
240 /usr/include/sys/crypto \
241 /usr/include/tsol \
242 /usr/kernel \
243 /usr/kvm \
244 /usr/lib \
245 /usr/lib/abi \
246 /usr/lib/brand \
247 /usr/lib/brand/ipkg \
248 /usr/lib/brand/labeled \
249 /usr/lib/brand/shared \
250 /usr/lib/brand/sn1 \
251 /usr/lib/brand/solaris10 \
252 /usr/lib/class \
253 /usr/lib/class/FSS \
254 /usr/lib/class/FX \
255 /usr/lib/class/IA \
256 /usr/lib/class/RT \
257 /usr/lib/class/SDC \
258 /usr/lib/class/TS \
259 /usr/lib/crypto \
260 /usr/lib/drv \

new/usr/src/Targetdirs 5

261 /usr/lib/elfedit \
262 /usr/lib/fm \
263 /usr/lib/font \
264 /usr/lib/fs \
265 /usr/lib/fs/nfs \
266 /usr/lib/fs/proc \
267 /usr/lib/fs/smb \
268 /usr/lib/fs/zfs \
269 /usr/lib/gss \
270 /usr/lib/hal \
271 /usr/lib/inet \
272 /usr/lib/inet/dhcp \
273 /usr/lib/inet/dhcp/nsu \
274 /usr/lib/inet/dhcp/svc \
275 /usr/lib/inet/dhcp/svcadm \
276 /usr/lib/inet/ilb \
277 /usr/lib/inet/$(MACH32) \
278 /usr/lib/inet/wanboot \
279 /usr/lib/krb5 \
280 /usr/lib/link_audit \
281 /usr/lib/libp \
282 /usr/lib/lwp \
283 /usr/lib/mdb \
284 /usr/lib/mdb/kvm \
285 /usr/lib/mdb/proc \
286 /usr/lib/nfs \
287 /usr/net \
288 /usr/net/servers \
289 /usr/lib/pool \
290 /usr/lib/python2.6 \
291 /usr/lib/python2.6/vendor-packages \
292 /usr/lib/python2.6/vendor-packages/64 \
293 /usr/lib/python2.6/vendor-packages/solaris \
294 /usr/lib/python2.6/vendor-packages/zfs \
295 /usr/lib/python2.6/vendor-packages/beadm \
296 /usr/lib/rcap \
297 /usr/lib/rcap/$(MACH32) \
298 /usr/lib/sa \
299 /usr/lib/saf \
300 /usr/lib/sasl \
301 /usr/lib/scsi \
302 /usr/lib/secure \
303 /usr/lib/security \
304 /usr/lib/smbsrv \
305 /usr/lib/vscan \
306 /usr/lib/zfs \
307 /usr/lib/zones \
308 /usr/old \
309 /usr/platform \
310 /usr/proc \
311 /usr/proc/bin \
312 /usr/sadm \
313 /usr/sadm/install \
314 /usr/sadm/install/bin \
315 /usr/sadm/install/scripts \
316 /usr/sbin \
317 /usr/sbin/$(MACH32) \
318 /usr/share \
319 /usr/share/applications \
320 /usr/share/audio \
321 /usr/share/audio/samples \
322 /usr/share/audio/samples/au \
323 /usr/share/gnome \
324 /usr/share/gnome/autostart \
325 /usr/share/hwdata \
326 /usr/share/lib \

new/usr/src/Targetdirs 6

327 /usr/share/lib/ccs \
328 /usr/share/lib/tmac \
329 /usr/share/lib/ldif \
330 /usr/share/lib/xml \
331 /usr/share/lib/xml/dtd \
332 /usr/share/man \
333 /usr/share/man/man1 \
334 /usr/share/man/man1b \
335 /usr/share/man/man1c \
336 /usr/share/man/man1m \
337 /usr/share/man/man2 \
338 /usr/share/man/man3 \
339 /usr/share/man/man3bsm \
340 /usr/share/man/man3c \
341 /usr/share/man/man3c_db \
342 /usr/share/man/man3cfgadm \
343 /usr/share/man/man3commputil \
344 /usr/share/man/man3contract \
345 /usr/share/man/man3cpc \
346 /usr/share/man/man3curses \
347 /usr/share/man/man3dat \
348 /usr/share/man/man3devid \
349 /usr/share/man/man3devinfo \
350 /usr/share/man/man3dlpi \
351 /usr/share/man/man3dns_sd \
352 /usr/share/man/man3elf \
353 /usr/share/man/man3exacct \
354 /usr/share/man/man3ext \
355 /usr/share/man/man3fcoe \
356 /usr/share/man/man3fstyp \
357 /usr/share/man/man3gen \
358 /usr/share/man/man3gss \
359 /usr/share/man/man3head \
360 /usr/share/man/man3iscsit \
361 /usr/share/man/man3kstat \
362 /usr/share/man/man3kvm \
363 /usr/share/man/man3ldap \
364 /usr/share/man/man3lgrp \
365 /usr/share/man/man3lib \
366 /usr/share/man/man3m \
367 #endif /* ! codereview */
368 /usr/share/man/man3mail \
369 /usr/share/man/man3malloc \
370 /usr/share/man/man3mp \
371 /usr/share/man/man3mpapi \
372 /usr/share/man/man3mvec \
373 #endif /* ! codereview */
374 /usr/share/man/man3nsl \
375 /usr/share/man/man3nvpair \
376 /usr/share/man/man3pam \
377 /usr/share/man/man3papi \
378 /usr/share/man/man3perl \
379 /usr/share/man/man3picl \
380 /usr/share/man/man3picltree \
381 /usr/share/man/man3pool \
382 /usr/share/man/man3proc \
383 /usr/share/man/man3project \
384 /usr/share/man/man3resolv \
385 /usr/share/man/man3rpc \
386 /usr/share/man/man3rsm \
387 /usr/share/man/man3sasl \
388 /usr/share/man/man3scf \
389 /usr/share/man/man3sec \
390 /usr/share/man/man3secdb \
391 /usr/share/man/man3sip \
392 /usr/share/man/man3slp \

new/usr/src/Targetdirs 7

393 /usr/share/man/man3socket \
394 /usr/share/man/man3stmf \
395 /usr/share/man/man3sysevent \
396 /usr/share/man/man3tecla \
397 /usr/share/man/man3tnf \
398 /usr/share/man/man3tsol \
399 /usr/share/man/man3uuid \
400 /usr/share/man/man3volmgt \
401 /usr/share/man/man3xcurses \
402 /usr/share/man/man3xnet \
403 /usr/share/man/man4 \
404 /usr/share/man/man5 \
405 /usr/share/man/man7 \
406 /usr/share/man/man7d \
407 /usr/share/man/man7fs \
408 /usr/share/man/man7i \
409 /usr/share/man/man7ipp \
410 /usr/share/man/man7m \
411 /usr/share/man/man7p \
412 /usr/share/man/man9 \
413 /usr/share/man/man9e \
414 /usr/share/man/man9f \
415 /usr/share/man/man9p \
416 /usr/share/man/man9s \
417 /usr/share/src \
418 /usr/snadm \
419 /usr/snadm/lib \
420 /usr/ucb \
421 $(MACH32_DIRS) \
422 /usr/ucblib \
423 /usr/xpg4 \
424 /usr/xpg4/bin \
425 /usr/xpg4/include \
426 /usr/xpg4/lib \
427 /usr/xpg6 \
428 /usr/xpg6/bin \
429 /var \
430 /var/adm \
431 /var/adm/exacct \
432 /var/adm/log \
433 /var/adm/pool \
434 /var/adm/sa \
435 /var/adm/sm.bin \
436 /var/adm/streams \
437 /var/cores \
438 /var/cron \
439 /var/db \
440 /var/db/ipf \
441 /var/games \
442 /var/idmap \
443 /var/krb5 \
444 /var/krb5/rcache \
445 /var/krb5/rcache/root \
446 /var/ld \
447 /var/log \
448 /var/log/pool \
449 /var/logadm \
450 /var/mail \
451 /var/news \
452 /var/opt \
453 /var/preserve \
454 /var/run \
455 /var/saf \
456 /var/sadm \
457 /var/sadm/install \
458 /var/sadm/install/admin \

new/usr/src/Targetdirs 8

459 /var/sadm/install/logs \
460 /var/sadm/pkg \
461 /var/sadm/security \
462 /var/smb \
463 /var/smb/cvol \
464 /var/smb/cvol/windows \
465 /var/smb/cvol/windows/system32 \
466 /var/smb/cvol/windows/system32/vss \
467 /var/spool \
468 /var/spool/cron \
469 /var/spool/cron/atjobs \
470 /var/spool/cron/crontabs \
471 /var/spool/lp \
472 /var/spool/pkg \
473 /var/spool/uucp \
474 /var/spool/uucppublic \
475 /var/svc \
476 /var/svc/log \
477 /var/svc/manifest \
478 /var/svc/manifest/milestone \
479 /var/svc/manifest/device \
480 /var/svc/manifest/system \
481 /var/svc/manifest/system/device \
482 /var/svc/manifest/system/filesystem \
483 /var/svc/manifest/system/security \
484 /var/svc/manifest/system/svc \
485 /var/svc/manifest/network \
486 /var/svc/manifest/network/dns \
487 /var/svc/manifest/network/ipsec \
488 /var/svc/manifest/network/ldap \
489 /var/svc/manifest/network/nfs \
490 /var/svc/manifest/network/nis \
491 /var/svc/manifest/network/rpc \
492 /var/svc/manifest/network/routing \
493 /var/svc/manifest/network/security \
494 /var/svc/manifest/network/shares \
495 /var/svc/manifest/network/ssl \
496 /var/svc/manifest/application \
497 /var/svc/manifest/application/management \
498 /var/svc/manifest/application/print \
499 /var/svc/manifest/application/security \
500 /var/svc/manifest/platform \
501 /var/svc/manifest/platform/sun4u \
502 /var/svc/manifest/platform/sun4v \
503 /var/svc/manifest/site \
504 /var/svc/profile \
505 /var/uucp \
506 /var/tmp \
507 /var/tsol \
508 /var/tsol/doors

510 sparcv9_DIRS64= \
511 /platform/sun4u \
512 /platform/sun4u/lib \
513 /platform/sun4u/lib/$(MACH64) \
514 /usr/platform/sun4u \
515 /usr/platform/sun4u/sbin \
516 /usr/platform/sun4u/lib \
517 /platform/sun4v/lib \
518 /platform/sun4v/lib/$(MACH64) \
519 /usr/platform/sun4v/sbin \
520 /usr/platform/sun4v/lib \
521 /usr/platform/sun4u-us3/lib \
522 /usr/platform/sun4u-opl/lib

524 amd64_DIRS64= \

new/usr/src/Targetdirs 9

525 /platform/i86pc/amd64

527 DIRS64= \
528 $($(MACH64)_DIRS64) \
529 /lib/$(MACH64) \
530 /lib/crypto/$(MACH64) \
531 /lib/fm/$(MACH64) \
532 /lib/secure/$(MACH64) \
533 /usr/bin/$(MACH64) \
534 /usr/ccs/bin/$(MACH64) \
535 /usr/ccs/lib/$(MACH64) \
536 /usr/lib/$(MACH64) \
537 /usr/lib/$(MACH64)/gss \
538 /usr/lib/brand/sn1/$(MACH64) \
539 /usr/lib/brand/solaris10/$(MACH64) \
540 /usr/lib/elfedit/$(MACH64) \
541 /usr/lib/fm/$(MACH64) \
542 /usr/lib/fs/nfs/$(MACH64) \
543 /usr/lib/fs/smb/$(MACH64) \
544 /usr/lib/inet/$(MACH64) \
545 /usr/lib/krb5/$(MACH64) \
546 /usr/lib/libp/$(MACH64) \
547 /usr/lib/link_audit/$(MACH64) \
548 /usr/lib/lwp/$(MACH64) \
549 /usr/lib/mdb/kvm/$(MACH64) \
550 /usr/lib/mdb/proc/$(MACH64) \
551 /usr/lib/rcap/$(MACH64) \
552 /usr/lib/sasl/$(MACH64) \
553 /usr/lib/scsi/$(MACH64) \
554 /usr/lib/secure/$(MACH64) \
555 /usr/lib/security/$(MACH64) \
556 /usr/lib/smbsrv/$(MACH64) \
557 /usr/lib/abi/$(MACH64) \
558 /usr/sbin/$(MACH64) \
559 /usr/ucb/$(MACH64) \
560 /usr/ucblib/$(MACH64) \
561 /usr/xpg4/lib/$(MACH64) \
562 /var/ld/$(MACH64)

564 # /var/mail/:saved is built directly by the rootdirs target in
565 # /usr/src/Makefile because of the colon in its name.

567 # macros for symbolic links
568 SYM.DIRS= \
569 /bin \
570 /dev/stdin \
571 /dev/stdout \
572 /dev/stderr \
573 /etc/lib/ld.so.1 \
574 /etc/lib/libdl.so.1 \
575 /etc/lib/nss_files.so.1 \
576 /etc/log \
577 /lib/32 \
578 /lib/crypto/32 \
579 /lib/secure/32 \
580 /usr/adm \
581 /usr/spool \
582 /usr/lib/tmac \
583 /usr/ccs/lib/link_audit \
584 /usr/news \
585 /usr/preserve \
586 /usr/lib/32 \
587 /usr/lib/cron \
588 /usr/lib/elfedit/32 \
589 /usr/lib/libp/32 \
590 /usr/lib/lwp/32 \

new/usr/src/Targetdirs 10

591 /usr/lib/link_audit/32 \
592 /usr/lib/secure/32 \
593 /usr/mail \
594 /usr/man \
595 /usr/pub \
596 /usr/src \
597 /usr/tmp \
598 /usr/ucblib/32 \
599 /var/ld/32

601 sparc_SYM.DIRS64=

603 SYM.DIRS64= \
604 $($(MACH)_SYM.DIRS64) \
605 /lib/64 \
606 /lib/crypto/64 \
607 /lib/secure/64 \
608 /usr/lib/64 \
609 /usr/lib/brand/sn1/64 \
610 /usr/lib/brand/solaris10/64 \
611 /usr/lib/elfedit/64 \
612 /usr/lib/libp/64 \
613 /usr/lib/link_audit/64 \
614 /usr/lib/lwp/64 \
615 /usr/lib/secure/64 \
616 /usr/lib/security/64 \
617 /usr/xpg4/lib/64 \
618 /var/ld/64 \
619 /usr/ucblib/64

621 # prepend the ROOT prefix

623 ROOTDIRS= $(TARGETDIRS:%=$(ROOT)%)

625 # conditional assignments
626 #
627 # Target directories with non-default values for owner and group must
628 # be referenced here, using their fully-prefixed names, and the non-
629 # default values assigned. If a directory is mentioned above and not
630 # mentioned below, it has default values for attributes.
631 #
632 # The default value for DIRMODE is specified in usr/src/Makefile.master.
633 #

635 $(ROOT)/var/adm \
636 $(ROOT)/var/adm/sa := DIRMODE= 775

638 $(ROOT)/var/spool/lp:= DIRMODE= 775

640 # file mode
641 #
642 $(ROOT)/tmp \
643 $(ROOT)/var/krb5/rcache \
644 $(ROOT)/var/preserve \
645 $(ROOT)/var/spool/pkg \
646 $(ROOT)/var/spool/uucppublic \
647 $(ROOT)/var/tmp:= DIRMODE= 1777

649 $(ROOT)/root:= DIRMODE= 700

651 $(ROOT)/var/krb5/rcache/root:= DIRMODE= 700

654 #
655 # These permissions must match those set
656 # in the package manifests.

new/usr/src/Targetdirs 11

657 #
658 $(ROOT)/var/sadm/pkg \
659 $(ROOT)/var/sadm/security \
660 $(ROOT)/var/sadm/install/logs := DIRMODE= 555

663 #
664 # These permissions must match the ones set
665 # internally by fdfs and autofs.
666 #
667 $(ROOT)/dev/fd \
668 $(ROOT)/home:= DIRMODE= 555

670 $(ROOT)/var/mail:= DIRMODE=1777

672 $(ROOT)/proc:= DIRMODE= 555

674 $(ROOT)/system/contract:= DIRMODE= 555
675 $(ROOT)/system/object:= DIRMODE= 555

677 # symlink assignments, LINKDEST is the value of the symlink
678 #
679 $(ROOT)/usr/lib/cron:= LINKDEST=../../etc/cron.d
680 $(ROOT)/bin:= LINKDEST=usr/bin
681 $(ROOT)/lib/32:= LINKDEST=.
682 $(ROOT)/lib/crypto/32:= LINKDEST=.
683 $(ROOT)/lib/secure/32:= LINKDEST=.
684 $(ROOT)/dev/stdin:= LINKDEST=fd/0
685 $(ROOT)/dev/stdout:= LINKDEST=fd/1
686 $(ROOT)/dev/stderr:= LINKDEST=fd/2
687 $(ROOT)/usr/pub:= LINKDEST=share/lib/pub
688 $(ROOT)/usr/man:= LINKDEST=share/man
689 $(ROOT)/usr/src:= LINKDEST=share/src
690 $(ROOT)/usr/adm:= LINKDEST=../var/adm
691 $(ROOT)/etc/lib/ld.so.1:= LINKDEST=../../lib/ld.so.1
692 $(ROOT)/etc/lib/libdl.so.1:= LINKDEST=../../lib/libdl.so.1
693 $(ROOT)/etc/lib/nss_files.so.1:= LINKDEST=../../lib/nss_files.so.1
694 $(ROOT)/etc/log:= LINKDEST=../var/adm/log
695 $(ROOT)/usr/mail:= LINKDEST=../var/mail
696 $(ROOT)/usr/news:= LINKDEST=../var/news
697 $(ROOT)/usr/preserve:= LINKDEST=../var/preserve
698 $(ROOT)/usr/spool:= LINKDEST=../var/spool
699 $(ROOT)/usr/tmp:= LINKDEST=../var/tmp
700 $(ROOT)/usr/lib/tmac:= LINKDEST=../share/lib/tmac
701 $(ROOT)/usr/lib/32:= LINKDEST=.
702 $(ROOT)/usr/lib/elfedit/32:= LINKDEST=.
703 $(ROOT)/usr/lib/libp/32:= LINKDEST=.
704 $(ROOT)/usr/lib/lwp/32:= LINKDEST=.
705 $(ROOT)/usr/lib/link_audit/32:= LINKDEST=.
706 $(ROOT)/usr/lib/secure/32:= LINKDEST=.
707 $(ROOT)/usr/ccs/lib/link_audit:= LINKDEST=../../lib/link_audit
708 $(ROOT)/var/ld/32:= LINKDEST=.
709 $(ROOT)/usr/ucblib/32:= LINKDEST=.

712 $(BUILD64) $(ROOT)/lib/64:= LINKDEST=$(MACH64)
713 $(BUILD64) $(ROOT)/lib/crypto/64:= LINKDEST=$(MACH64)
714 $(BUILD64) $(ROOT)/lib/secure/64:= LINKDEST=$(MACH64)
715 $(BUILD64) $(ROOT)/usr/lib/64:= LINKDEST=$(MACH64)
716 $(BUILD64) $(ROOT)/usr/lib/elfedit/64:= LINKDEST=$(MACH64)
717 $(BUILD64) $(ROOT)/usr/lib/brand/sn1/64:= LINKDEST=$(MACH64)
718 $(BUILD64) $(ROOT)/usr/lib/brand/solaris10/64:= LINKDEST=$(MACH64)
719 $(BUILD64) $(ROOT)/usr/lib/libp/64:= LINKDEST=$(MACH64)
720 $(BUILD64) $(ROOT)/usr/lib/lwp/64:= LINKDEST=$(MACH64)
721 $(BUILD64) $(ROOT)/usr/lib/link_audit/64:= LINKDEST=$(MACH64)
722 $(BUILD64) $(ROOT)/usr/lib/secure/64:= LINKDEST=$(MACH64)

new/usr/src/Targetdirs 12

723 $(BUILD64) $(ROOT)/usr/lib/security/64:= LINKDEST=$(MACH64)
724 $(BUILD64) $(ROOT)/usr/xpg4/lib/64:= LINKDEST=$(MACH64)
725 $(BUILD64) $(ROOT)/var/ld/64:= LINKDEST=$(MACH64)
726 $(BUILD64) $(ROOT)/usr/ucblib/64:= LINKDEST=$(MACH64)

728 #
729 # Installing a directory symlink calls for overriding INS.dir to install
730 # a symlink.
731 #
732 $(DIRLINKS:%=$(ROOT)%):= \
733 INS.dir= -$(RM) -r $@; $(SYMLINK) $(LINKDEST) $@

735 # Special symlinks to populate usr/ccs/lib, whose objects
736 # have actually been moved to usr/lib
737 # Rather than adding another set of rules, we add usr/lib/lwp files here
738 $(ROOT)/usr/ccs/lib/libcurses.so:= REALPATH=../../../lib/libcurses.so.1
739 $(ROOT)/usr/ccs/lib/llib-lcurses:= REALPATH=../../../lib/llib-lcurses
740 $(ROOT)/usr/ccs/lib/llib-lcurses.ln:= REALPATH=../../../lib/llib-lcurses.ln
741 $(ROOT)/usr/ccs/lib/libform.so:= REALPATH=../../lib/libform.so.1
742 $(ROOT)/usr/ccs/lib/llib-lform:= REALPATH=../../lib/llib-lform
743 $(ROOT)/usr/ccs/lib/llib-lform.ln:= REALPATH=../../lib/llib-lform.ln
744 $(ROOT)/usr/ccs/lib/libgen.so:= REALPATH=../../../lib/libgen.so.1
745 $(ROOT)/usr/ccs/lib/llib-lgen:= REALPATH=../../../lib/llib-lgen
746 $(ROOT)/usr/ccs/lib/llib-lgen.ln:= REALPATH=../../../lib/llib-lgen.ln
747 $(ROOT)/usr/ccs/lib/libmalloc.so:= REALPATH=../../lib/libmalloc.so.1
748 $(ROOT)/usr/ccs/lib/libmenu.so:= REALPATH=../../lib/libmenu.so.1
749 $(ROOT)/usr/ccs/lib/llib-lmenu:= REALPATH=../../lib/llib-lmenu
750 $(ROOT)/usr/ccs/lib/llib-lmenu.ln:= REALPATH=../../lib/llib-lmenu.ln
751 $(ROOT)/usr/ccs/lib/libpanel.so:= REALPATH=../../lib/libpanel.so.1
752 $(ROOT)/usr/ccs/lib/llib-lpanel:= REALPATH=../../lib/llib-lpanel
753 $(ROOT)/usr/ccs/lib/llib-lpanel.ln:= REALPATH=../../lib/llib-lpanel.ln
754 $(ROOT)/usr/ccs/lib/libtermlib.so:= REALPATH=../../../lib/libcurses.so.1
755 $(ROOT)/usr/ccs/lib/llib-ltermlib:= REALPATH=../../../lib/llib-lcurses
756 $(ROOT)/usr/ccs/lib/llib-ltermlib.ln:= REALPATH=../../../lib/llib-lcurses.ln
757 $(ROOT)/usr/ccs/lib/libtermcap.so:= REALPATH=../../../lib/libtermcap.so.1
758 $(ROOT)/usr/ccs/lib/llib-ltermcap:= REALPATH=../../../lib/llib-ltermcap
759 $(ROOT)/usr/ccs/lib/llib-ltermcap.ln:= REALPATH=../../../lib/llib-ltermcap.ln
760 $(ROOT)/usr/ccs/lib/values-Xa.o:= REALPATH=../../lib/values-Xa.o
761 $(ROOT)/usr/ccs/lib/values-Xc.o:= REALPATH=../../lib/values-Xc.o
762 $(ROOT)/usr/ccs/lib/values-Xs.o:= REALPATH=../../lib/values-Xs.o
763 $(ROOT)/usr/ccs/lib/values-Xt.o:= REALPATH=../../lib/values-Xt.o
764 $(ROOT)/usr/ccs/lib/values-xpg4.o:= REALPATH=../../lib/values-xpg4.o
765 $(ROOT)/usr/ccs/lib/values-xpg6.o:= REALPATH=../../lib/values-xpg6.o
766 $(ROOT)/usr/ccs/lib/libl.so:= REALPATH=../../lib/libl.so.1
767 $(ROOT)/usr/ccs/lib/llib-ll.ln:= REALPATH=../../lib/llib-ll.ln
768 $(ROOT)/usr/ccs/lib/liby.so:= REALPATH=../../lib/liby.so.1
769 $(ROOT)/usr/ccs/lib/llib-ly.ln:= REALPATH=../../lib/llib-ly.ln
770 $(ROOT)/usr/lib/libp/libc.so.1:= REALPATH=../../../lib/libc.so.1
771 $(ROOT)/usr/lib/lwp/libthread.so.1:= REALPATH=../libthread.so.1
772 $(ROOT)/usr/lib/lwp/libthread_db.so.1:= REALPATH=../libthread_db.so.1

774 # symlinks to populate usr/ccs/lib/$(MACH64)
775 $(ROOT)/usr/ccs/lib/$(MACH64)/libcurses.so:= \
776 REALPATH=../../../../lib/$(MACH64)/libcurses.so.1
777 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-lcurses.ln:= \
778 REALPATH=../../../../lib/$(MACH64)/llib-lcurses.ln
779 $(ROOT)/usr/ccs/lib/$(MACH64)/libform.so:= \
780 REALPATH=../../../lib/$(MACH64)/libform.so.1
781 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-lform.ln:= \
782 REALPATH=../../../lib/$(MACH64)/llib-lform.ln
783 $(ROOT)/usr/ccs/lib/$(MACH64)/libgen.so:= \
784 REALPATH=../../../../lib/$(MACH64)/libgen.so.1
785 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-lgen.ln:= \
786 REALPATH=../../../../lib/$(MACH64)/llib-lgen.ln
787 $(ROOT)/usr/ccs/lib/$(MACH64)/libmalloc.so:= \
788 REALPATH=../../../lib/$(MACH64)/libmalloc.so.1

new/usr/src/Targetdirs 13

789 $(ROOT)/usr/ccs/lib/$(MACH64)/libmenu.so:= \
790 REALPATH=../../../lib/$(MACH64)/libmenu.so.1
791 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-lmenu.ln:= \
792 REALPATH=../../../lib/$(MACH64)/llib-lmenu.ln
793 $(ROOT)/usr/ccs/lib/$(MACH64)/libpanel.so:= \
794 REALPATH=../../../lib/$(MACH64)/libpanel.so.1
795 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-lpanel.ln:= \
796 REALPATH=../../../lib/$(MACH64)/llib-lpanel.ln
797 $(ROOT)/usr/ccs/lib/$(MACH64)/libtermlib.so:= \
798 REALPATH=../../../../lib/$(MACH64)/libcurses.so.1
799 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-ltermlib.ln:= \
800 REALPATH=../../../../lib/$(MACH64)/llib-lcurses.ln
801 $(ROOT)/usr/ccs/lib/$(MACH64)/libtermcap.so:= \
802 REALPATH=../../../../lib/$(MACH64)/libtermcap.so.1
803 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-ltermcap.ln:= \
804 REALPATH=../../../../lib/$(MACH64)/llib-ltermcap.ln
805 $(ROOT)/usr/ccs/lib/$(MACH64)/values-Xa.o:= \
806 REALPATH=../../../lib/$(MACH64)/values-Xa.o
807 $(ROOT)/usr/ccs/lib/$(MACH64)/values-Xc.o:= \
808 REALPATH=../../../lib/$(MACH64)/values-Xc.o
809 $(ROOT)/usr/ccs/lib/$(MACH64)/values-Xs.o:= \
810 REALPATH=../../../lib/$(MACH64)/values-Xs.o
811 $(ROOT)/usr/ccs/lib/$(MACH64)/values-Xt.o:= \
812 REALPATH=../../../lib/$(MACH64)/values-Xt.o
813 $(ROOT)/usr/ccs/lib/$(MACH64)/values-xpg4.o:= \
814 REALPATH=../../../lib/$(MACH64)/values-xpg4.o
815 $(ROOT)/usr/ccs/lib/$(MACH64)/values-xpg6.o:= \
816 REALPATH=../../../lib/$(MACH64)/values-xpg6.o
817 $(ROOT)/usr/ccs/lib/$(MACH64)/libl.so:= \
818 REALPATH=../../../lib/$(MACH64)/libl.so.1
819 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-ll.ln:= \
820 REALPATH=../../../lib/$(MACH64)/llib-ll.ln
821 $(ROOT)/usr/ccs/lib/$(MACH64)/liby.so:= \
822 REALPATH=../../../lib/$(MACH64)/liby.so.1
823 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-ly.ln:= \
824 REALPATH=../../../lib/$(MACH64)/llib-ly.ln
825 $(ROOT)/usr/lib/libp/$(MACH64)/libc.so.1:= \
826 REALPATH=../../../../lib/$(MACH64)/libc.so.1
827 $(ROOT)/usr/lib/lwp/$(MACH64)/libthread.so.1:= \
828 REALPATH=../../$(MACH64)/libthread.so.1
829 $(ROOT)/usr/lib/lwp/$(MACH64)/libthread_db.so.1:= \
830 REALPATH=../../$(MACH64)/libthread_db.so.1

832 SYM.USRCCSLIB= \
833 /usr/ccs/lib/libcurses.so \
834 /usr/ccs/lib/llib-lcurses \
835 /usr/ccs/lib/llib-lcurses.ln \
836 /usr/ccs/lib/libform.so \
837 /usr/ccs/lib/llib-lform \
838 /usr/ccs/lib/llib-lform.ln \
839 /usr/ccs/lib/libgen.so \
840 /usr/ccs/lib/llib-lgen \
841 /usr/ccs/lib/llib-lgen.ln \
842 /usr/ccs/lib/libmalloc.so \
843 /usr/ccs/lib/libmenu.so \
844 /usr/ccs/lib/llib-lmenu \
845 /usr/ccs/lib/llib-lmenu.ln \
846 /usr/ccs/lib/libpanel.so \
847 /usr/ccs/lib/llib-lpanel \
848 /usr/ccs/lib/llib-lpanel.ln \
849 /usr/ccs/lib/libtermlib.so \
850 /usr/ccs/lib/llib-ltermlib \
851 /usr/ccs/lib/llib-ltermlib.ln \
852 /usr/ccs/lib/libtermcap.so \
853 /usr/ccs/lib/llib-ltermcap \
854 /usr/ccs/lib/llib-ltermcap.ln \

new/usr/src/Targetdirs 14

855 /usr/ccs/lib/values-Xa.o \
856 /usr/ccs/lib/values-Xc.o \
857 /usr/ccs/lib/values-Xs.o \
858 /usr/ccs/lib/values-Xt.o \
859 /usr/ccs/lib/values-xpg4.o \
860 /usr/ccs/lib/values-xpg6.o \
861 /usr/ccs/lib/libl.so \
862 /usr/ccs/lib/llib-ll.ln \
863 /usr/ccs/lib/liby.so \
864 /usr/ccs/lib/llib-ly.ln \
865 /usr/lib/libp/libc.so.1 \
866 /usr/lib/lwp/libthread.so.1 \
867 /usr/lib/lwp/libthread_db.so.1

869 SYM.USRCCSLIB64= \
870 /usr/ccs/lib/$(MACH64)/libcurses.so \
871 /usr/ccs/lib/$(MACH64)/llib-lcurses.ln \
872 /usr/ccs/lib/$(MACH64)/libform.so \
873 /usr/ccs/lib/$(MACH64)/llib-lform.ln \
874 /usr/ccs/lib/$(MACH64)/libgen.so \
875 /usr/ccs/lib/$(MACH64)/llib-lgen.ln \
876 /usr/ccs/lib/$(MACH64)/libmalloc.so \
877 /usr/ccs/lib/$(MACH64)/libmenu.so \
878 /usr/ccs/lib/$(MACH64)/llib-lmenu.ln \
879 /usr/ccs/lib/$(MACH64)/libpanel.so \
880 /usr/ccs/lib/$(MACH64)/llib-lpanel.ln \
881 /usr/ccs/lib/$(MACH64)/libtermlib.so \
882 /usr/ccs/lib/$(MACH64)/llib-ltermlib.ln \
883 /usr/ccs/lib/$(MACH64)/libtermcap.so \
884 /usr/ccs/lib/$(MACH64)/llib-ltermcap.ln \
885 /usr/ccs/lib/$(MACH64)/values-Xa.o \
886 /usr/ccs/lib/$(MACH64)/values-Xc.o \
887 /usr/ccs/lib/$(MACH64)/values-Xs.o \
888 /usr/ccs/lib/$(MACH64)/values-Xt.o \
889 /usr/ccs/lib/$(MACH64)/values-xpg4.o \
890 /usr/ccs/lib/$(MACH64)/values-xpg6.o \
891 /usr/ccs/lib/$(MACH64)/libl.so \
892 /usr/ccs/lib/$(MACH64)/llib-ll.ln \
893 /usr/ccs/lib/$(MACH64)/liby.so \
894 /usr/ccs/lib/$(MACH64)/llib-ly.ln \
895 /usr/lib/libp/$(MACH64)/libc.so.1 \
896 /usr/lib/lwp/$(MACH64)/libthread.so.1 \
897 /usr/lib/lwp/$(MACH64)/libthread_db.so.1

899 # Special symlinks to direct libraries that have been moved
900 # from /usr/lib to /lib in order to live in the root filesystem.
901 $(ROOT)/lib/libposix4.so.1:= REALPATH=librt.so.1
902 $(ROOT)/lib/libposix4.so:= REALPATH=libposix4.so.1
903 $(ROOT)/lib/llib-lposix4:= REALPATH=llib-lrt
904 $(ROOT)/lib/llib-lposix4.ln:= REALPATH=llib-lrt.ln
905 $(ROOT)/lib/libthread_db.so.1:= REALPATH=libc_db.so.1
906 $(ROOT)/lib/libthread_db.so:= REALPATH=libc_db.so.1
907 $(ROOT)/usr/lib/ld.so.1:= REALPATH=../../lib/ld.so.1
908 $(ROOT)/usr/lib/libadm.so.1:= REALPATH=../../lib/libadm.so.1
909 $(ROOT)/usr/lib/libadm.so:= REALPATH=../../lib/libadm.so.1
910 $(ROOT)/usr/lib/libaio.so.1:= REALPATH=../../lib/libaio.so.1
911 $(ROOT)/usr/lib/libaio.so:= REALPATH=../../lib/libaio.so.1
912 $(ROOT)/usr/lib/libavl.so.1:= REALPATH=../../lib/libavl.so.1
913 $(ROOT)/usr/lib/libavl.so:= REALPATH=../../lib/libavl.so.1
914 $(ROOT)/usr/lib/libbsm.so.1:= REALPATH=../../lib/libbsm.so.1
915 $(ROOT)/usr/lib/libbsm.so:= REALPATH=../../lib/libbsm.so.1
916 $(ROOT)/usr/lib/libc.so.1:= REALPATH=../../lib/libc.so.1
917 $(ROOT)/usr/lib/libc.so:= REALPATH=../../lib/libc.so.1
918 $(ROOT)/usr/lib/libc_db.so.1:= REALPATH=../../lib/libc_db.so.1
919 $(ROOT)/usr/lib/libc_db.so:= REALPATH=../../lib/libc_db.so.1
920 $(ROOT)/usr/lib/libcmdutils.so.1:= REALPATH=../../lib/libcmdutils.so.1

new/usr/src/Targetdirs 15

921 $(ROOT)/usr/lib/libcmdutils.so:= REALPATH=../../lib/libcmdutils.so.1
922 $(ROOT)/usr/lib/libcontract.so.1:= REALPATH=../../lib/libcontract.so.1
923 $(ROOT)/usr/lib/libcontract.so:= REALPATH=../../lib/libcontract.so.1
924 $(ROOT)/usr/lib/libcryptoutil.so.1:= REALPATH=../../lib/libcryptoutil.so.1
925 $(ROOT)/usr/lib/libcryptoutil.so:= REALPATH=../../lib/libcryptoutil.so.1
926 $(ROOT)/usr/lib/libctf.so.1:= REALPATH=../../lib/libctf.so.1
927 $(ROOT)/usr/lib/libctf.so:= REALPATH=../../lib/libctf.so.1
928 $(ROOT)/usr/lib/libcurses.so.1:= REALPATH=../../lib/libcurses.so.1
929 $(ROOT)/usr/lib/libcurses.so:= REALPATH=../../lib/libcurses.so.1
930 $(ROOT)/usr/lib/libdevice.so.1:= REALPATH=../../lib/libdevice.so.1
931 $(ROOT)/usr/lib/libdevice.so:= REALPATH=../../lib/libdevice.so.1
932 $(ROOT)/usr/lib/libdevid.so.1:= REALPATH=../../lib/libdevid.so.1
933 $(ROOT)/usr/lib/libdevid.so:= REALPATH=../../lib/libdevid.so.1
934 $(ROOT)/usr/lib/libdevinfo.so.1:= REALPATH=../../lib/libdevinfo.so.1
935 $(ROOT)/usr/lib/libdevinfo.so:= REALPATH=../../lib/libdevinfo.so.1
936 $(ROOT)/usr/lib/libdhcpagent.so.1:= REALPATH=../../lib/libdhcpagent.so.1
937 $(ROOT)/usr/lib/libdhcpagent.so:= REALPATH=../../lib/libdhcpagent.so.1
938 $(ROOT)/usr/lib/libdhcputil.so.1:= REALPATH=../../lib/libdhcputil.so.1
939 $(ROOT)/usr/lib/libdhcputil.so:= REALPATH=../../lib/libdhcputil.so.1
940 $(ROOT)/usr/lib/libdl.so.1:= REALPATH=../../lib/libdl.so.1
941 $(ROOT)/usr/lib/libdl.so:= REALPATH=../../lib/libdl.so.1
942 $(ROOT)/usr/lib/libdlpi.so.1:= REALPATH=../../lib/libdlpi.so.1
943 $(ROOT)/usr/lib/libdlpi.so:= REALPATH=../../lib/libdlpi.so.1
944 $(ROOT)/usr/lib/libdoor.so.1:= REALPATH=../../lib/libdoor.so.1
945 $(ROOT)/usr/lib/libdoor.so:= REALPATH=../../lib/libdoor.so.1
946 $(ROOT)/usr/lib/libefi.so.1:= REALPATH=../../lib/libefi.so.1
947 $(ROOT)/usr/lib/libefi.so:= REALPATH=../../lib/libefi.so.1
948 $(ROOT)/usr/lib/libelf.so.1:= REALPATH=../../lib/libelf.so.1
949 $(ROOT)/usr/lib/libelf.so:= REALPATH=../../lib/libelf.so.1
950 $(ROOT)/usr/lib/libfdisk.so.1:= REALPATH=../../lib/libfdisk.so.1
951 $(ROOT)/usr/lib/libfdisk.so:= REALPATH=../../lib/libfdisk.so.1
952 $(ROOT)/usr/lib/libgen.so.1:= REALPATH=../../lib/libgen.so.1
953 $(ROOT)/usr/lib/libgen.so:= REALPATH=../../lib/libgen.so.1
954 $(ROOT)/usr/lib/libinetutil.so.1:= REALPATH=../../lib/libinetutil.so.1
955 $(ROOT)/usr/lib/libinetutil.so:= REALPATH=../../lib/libinetutil.so.1
956 $(ROOT)/usr/lib/libintl.so.1:= REALPATH=../../lib/libintl.so.1
957 $(ROOT)/usr/lib/libintl.so:= REALPATH=../../lib/libintl.so.1
958 $(ROOT)/usr/lib/libkmf.so.1:= REALPATH=../../lib/libkmf.so.1
959 $(ROOT)/usr/lib/libkmf.so:= REALPATH=../../lib/libkmf.so.1
960 $(ROOT)/usr/lib/libkmfberder.so.1:= REALPATH=../../lib/libkmfberder.so.1
961 $(ROOT)/usr/lib/libkmfberder.so:= REALPATH=../../lib/libkmfberder.so.1
962 $(ROOT)/usr/lib/libkstat.so.1:= REALPATH=../../lib/libkstat.so.1
963 $(ROOT)/usr/lib/libkstat.so:= REALPATH=../../lib/libkstat.so.1
964 $(ROOT)/usr/lib/liblddbg.so.4:= REALPATH=../../lib/liblddbg.so.4
965 $(ROOT)/usr/lib/libm.so.1:= REALPATH=../../lib/libm.so.1
966 $(ROOT)/usr/lib/libm.so.2:= REALPATH=../../lib/libm.so.2
967 $(ROOT)/usr/lib/libm.so:= REALPATH=../../lib/libm.so.2
968 $(ROOT)/usr/lib/libmd.so.1:= REALPATH=../../lib/libmd.so.1
969 $(ROOT)/usr/lib/libmd.so:= REALPATH=../../lib/libmd.so.1
970 $(ROOT)/usr/lib/libmd5.so.1:= REALPATH=../../lib/libmd5.so.1
971 $(ROOT)/usr/lib/libmd5.so:= REALPATH=../../lib/libmd5.so.1
972 $(ROOT)/usr/lib/libmeta.so.1:= REALPATH=../../lib/libmeta.so.1
973 $(ROOT)/usr/lib/libmeta.so:= REALPATH=../../lib/libmeta.so.1
974 $(ROOT)/usr/lib/libmp.so.1:= REALPATH=../../lib/libmp.so.1
975 $(ROOT)/usr/lib/libmp.so.2:= REALPATH=../../lib/libmp.so.2
976 $(ROOT)/usr/lib/libmp.so:= REALPATH=../../lib/libmp.so.2
977 $(ROOT)/usr/lib/libmvec.so.1:= REALPATH=../../lib/libmvec.so.1
978 $(ROOT)/usr/lib/libmvec.so:= REALPATH=../../lib/libmvec.so.1
979 $(ROOT)/usr/lib/libnsl.so.1:= REALPATH=../../lib/libnsl.so.1
980 $(ROOT)/usr/lib/libnsl.so:= REALPATH=../../lib/libnsl.so.1
981 $(ROOT)/usr/lib/libnvpair.so.1:= REALPATH=../../lib/libnvpair.so.1
982 $(ROOT)/usr/lib/libnvpair.so:= REALPATH=../../lib/libnvpair.so.1
983 $(ROOT)/usr/lib/libpam.so.1:= REALPATH=../../lib/libpam.so.1
984 $(ROOT)/usr/lib/libpam.so:= REALPATH=../../lib/libpam.so.1
985 $(ROOT)/usr/lib/libposix4.so.1:= REALPATH=../../lib/librt.so.1
986 $(ROOT)/usr/lib/libposix4.so:= REALPATH=../../lib/librt.so.1

new/usr/src/Targetdirs 16

987 $(ROOT)/usr/lib/libproc.so.1:= REALPATH=../../lib/libproc.so.1
988 $(ROOT)/usr/lib/libproc.so:= REALPATH=../../lib/libproc.so.1
989 $(ROOT)/usr/lib/libpthread.so.1:= REALPATH=../../lib/libpthread.so.1
990 $(ROOT)/usr/lib/libpthread.so:= REALPATH=../../lib/libpthread.so.1
991 $(ROOT)/usr/lib/librcm.so.1:= REALPATH=../../lib/librcm.so.1
992 $(ROOT)/usr/lib/librcm.so:= REALPATH=../../lib/librcm.so.1
993 $(ROOT)/usr/lib/libresolv.so.1:= REALPATH=../../lib/libresolv.so.1
994 $(ROOT)/usr/lib/libresolv.so.2:= REALPATH=../../lib/libresolv.so.2
995 $(ROOT)/usr/lib/libresolv.so:= REALPATH=../../lib/libresolv.so.2
996 $(ROOT)/usr/lib/librestart.so.1:= REALPATH=../../lib/librestart.so.1
997 $(ROOT)/usr/lib/librestart.so:= REALPATH=../../lib/librestart.so.1
998 $(ROOT)/usr/lib/librpcsvc.so.1:= REALPATH=../../lib/librpcsvc.so.1
999 $(ROOT)/usr/lib/librpcsvc.so:= REALPATH=../../lib/librpcsvc.so.1

1000 $(ROOT)/usr/lib/librt.so.1:= REALPATH=../../lib/librt.so.1
1001 $(ROOT)/usr/lib/librt.so:= REALPATH=../../lib/librt.so.1
1002 $(ROOT)/usr/lib/librtld.so.1:= REALPATH=../../lib/librtld.so.1
1003 $(ROOT)/usr/lib/librtld_db.so.1:= REALPATH=../../lib/librtld_db.so.1
1004 $(ROOT)/usr/lib/librtld_db.so:= REALPATH=../../lib/librtld_db.so.1
1005 $(ROOT)/usr/lib/libscf.so.1:= REALPATH=../../lib/libscf.so.1
1006 $(ROOT)/usr/lib/libscf.so:= REALPATH=../../lib/libscf.so.1
1007 $(ROOT)/usr/lib/libsec.so.1:= REALPATH=../../lib/libsec.so.1
1008 $(ROOT)/usr/lib/libsec.so:= REALPATH=../../lib/libsec.so.1
1009 $(ROOT)/usr/lib/libsecdb.so.1:= REALPATH=../../lib/libsecdb.so.1
1010 $(ROOT)/usr/lib/libsecdb.so:= REALPATH=../../lib/libsecdb.so.1
1011 $(ROOT)/usr/lib/libsendfile.so.1:= REALPATH=../../lib/libsendfile.so.1
1012 $(ROOT)/usr/lib/libsendfile.so:= REALPATH=../../lib/libsendfile.so.1
1013 $(ROOT)/usr/lib/libsocket.so.1:= REALPATH=../../lib/libsocket.so.1
1014 $(ROOT)/usr/lib/libsocket.so:= REALPATH=../../lib/libsocket.so.1
1015 $(ROOT)/usr/lib/libsysevent.so.1:= REALPATH=../../lib/libsysevent.so.1
1016 $(ROOT)/usr/lib/libsysevent.so:= REALPATH=../../lib/libsysevent.so.1
1017 $(ROOT)/usr/lib/libtermcap.so.1:= REALPATH=../../lib/libtermcap.so.1
1018 $(ROOT)/usr/lib/libtermcap.so:= REALPATH=../../lib/libtermcap.so.1
1019 $(ROOT)/usr/lib/libtermlib.so.1:= REALPATH=../../lib/libcurses.so.1
1020 $(ROOT)/usr/lib/libtermlib.so:= REALPATH=../../lib/libcurses.so.1
1021 $(ROOT)/usr/lib/libthread.so.1:= REALPATH=../../lib/libthread.so.1
1022 $(ROOT)/usr/lib/libthread.so:= REALPATH=../../lib/libthread.so.1
1023 $(ROOT)/usr/lib/libthread_db.so.1:= REALPATH=../../lib/libc_db.so.1
1024 $(ROOT)/usr/lib/libthread_db.so:= REALPATH=../../lib/libc_db.so.1
1025 $(ROOT)/usr/lib/libtsnet.so.1:= REALPATH=../../lib/libtsnet.so.1
1026 $(ROOT)/usr/lib/libtsnet.so:= REALPATH=../../lib/libtsnet.so.1
1027 $(ROOT)/usr/lib/libtsol.so.2:= REALPATH=../../lib/libtsol.so.2
1028 $(ROOT)/usr/lib/libtsol.so:= REALPATH=../../lib/libtsol.so.2
1029 $(ROOT)/usr/lib/libumem.so.1:= REALPATH=../../lib/libumem.so.1
1030 $(ROOT)/usr/lib/libumem.so:= REALPATH=../../lib/libumem.so.1
1031 $(ROOT)/usr/lib/libuuid.so.1:= REALPATH=../../lib/libuuid.so.1
1032 $(ROOT)/usr/lib/libuuid.so:= REALPATH=../../lib/libuuid.so.1
1033 $(ROOT)/usr/lib/libuutil.so.1:= REALPATH=../../lib/libuutil.so.1
1034 $(ROOT)/usr/lib/libuutil.so:= REALPATH=../../lib/libuutil.so.1
1035 $(ROOT)/usr/lib/libw.so.1:= REALPATH=../../lib/libw.so.1
1036 $(ROOT)/usr/lib/libw.so:= REALPATH=../../lib/libw.so.1
1037 $(ROOT)/usr/lib/libxnet.so.1:= REALPATH=../../lib/libxnet.so.1
1038 $(ROOT)/usr/lib/libxnet.so:= REALPATH=../../lib/libxnet.so.1
1039 $(ROOT)/usr/lib/libzfs.so.1:= REALPATH=../../lib/libzfs.so.1
1040 $(ROOT)/usr/lib/libzfs.so:= REALPATH=../../lib/libzfs.so.1
1041 $(ROOT)/usr/lib/libzfs_core.so.1:= REALPATH=../../lib/libzfs_core.so.1
1042 $(ROOT)/usr/lib/libzfs_core.so:= REALPATH=../../lib/libzfs_core.so.1
1043 $(ROOT)/usr/lib/llib-ladm.ln:= REALPATH=../../lib/llib-ladm.ln
1044 $(ROOT)/usr/lib/llib-ladm:= REALPATH=../../lib/llib-ladm
1045 $(ROOT)/usr/lib/llib-laio.ln:= REALPATH=../../lib/llib-laio.ln
1046 $(ROOT)/usr/lib/llib-laio:= REALPATH=../../lib/llib-laio
1047 $(ROOT)/usr/lib/llib-lavl.ln:= REALPATH=../../lib/llib-lavl.ln
1048 $(ROOT)/usr/lib/llib-lavl:= REALPATH=../../lib/llib-lavl
1049 $(ROOT)/usr/lib/llib-lbsm.ln:= REALPATH=../../lib/llib-lbsm.ln
1050 $(ROOT)/usr/lib/llib-lbsm:= REALPATH=../../lib/llib-lbsm
1051 $(ROOT)/usr/lib/llib-lc.ln:= REALPATH=../../lib/llib-lc.ln
1052 $(ROOT)/usr/lib/llib-lc:= REALPATH=../../lib/llib-lc

new/usr/src/Targetdirs 17

1053 $(ROOT)/usr/lib/llib-lcmdutils.ln:= REALPATH=../../lib/llib-lcmdutils.ln
1054 $(ROOT)/usr/lib/llib-lcmdutils:= REALPATH=../../lib/llib-lcmdutils
1055 $(ROOT)/usr/lib/llib-lcontract.ln:= REALPATH=../../lib/llib-lcontract.ln
1056 $(ROOT)/usr/lib/llib-lcontract:= REALPATH=../../lib/llib-lcontract
1057 $(ROOT)/usr/lib/llib-lctf.ln:= REALPATH=../../lib/llib-lctf.ln
1058 $(ROOT)/usr/lib/llib-lctf:= REALPATH=../../lib/llib-lctf
1059 $(ROOT)/usr/lib/llib-lcurses.ln:= REALPATH=../../lib/llib-lcurses.ln
1060 $(ROOT)/usr/lib/llib-lcurses:= REALPATH=../../lib/llib-lcurses
1061 $(ROOT)/usr/lib/llib-ldevice.ln:= REALPATH=../../lib/llib-ldevice.ln
1062 $(ROOT)/usr/lib/llib-ldevice:= REALPATH=../../lib/llib-ldevice
1063 $(ROOT)/usr/lib/llib-ldevid.ln:= REALPATH=../../lib/llib-ldevid.ln
1064 $(ROOT)/usr/lib/llib-ldevid:= REALPATH=../../lib/llib-ldevid
1065 $(ROOT)/usr/lib/llib-ldevinfo.ln:= REALPATH=../../lib/llib-ldevinfo.ln
1066 $(ROOT)/usr/lib/llib-ldevinfo:= REALPATH=../../lib/llib-ldevinfo
1067 $(ROOT)/usr/lib/llib-ldhcpagent.ln:= REALPATH=../../lib/llib-ldhcpagent.ln
1068 $(ROOT)/usr/lib/llib-ldhcpagent:= REALPATH=../../lib/llib-ldhcpagent
1069 $(ROOT)/usr/lib/llib-ldhcputil.ln:= REALPATH=../../lib/llib-ldhcputil.ln
1070 $(ROOT)/usr/lib/llib-ldhcputil:= REALPATH=../../lib/llib-ldhcputil
1071 $(ROOT)/usr/lib/llib-ldl.ln:= REALPATH=../../lib/llib-ldl.ln
1072 $(ROOT)/usr/lib/llib-ldl:= REALPATH=../../lib/llib-ldl
1073 $(ROOT)/usr/lib/llib-ldoor.ln:= REALPATH=../../lib/llib-ldoor.ln
1074 $(ROOT)/usr/lib/llib-ldoor:= REALPATH=../../lib/llib-ldoor
1075 $(ROOT)/usr/lib/llib-lefi.ln:= REALPATH=../../lib/llib-lefi.ln
1076 $(ROOT)/usr/lib/llib-lefi:= REALPATH=../../lib/llib-lefi
1077 $(ROOT)/usr/lib/llib-lelf.ln:= REALPATH=../../lib/llib-lelf.ln
1078 $(ROOT)/usr/lib/llib-lelf:= REALPATH=../../lib/llib-lelf
1079 $(ROOT)/usr/lib/llib-lfdisk.ln:= REALPATH=../../lib/llib-lfdisk.ln
1080 $(ROOT)/usr/lib/llib-lfdisk:= REALPATH=../../lib/llib-lfdisk
1081 $(ROOT)/usr/lib/llib-lgen.ln:= REALPATH=../../lib/llib-lgen.ln
1082 $(ROOT)/usr/lib/llib-lgen:= REALPATH=../../lib/llib-lgen
1083 $(ROOT)/usr/lib/llib-linetutil.ln:= REALPATH=../../lib/llib-linetutil.ln
1084 $(ROOT)/usr/lib/llib-linetutil:= REALPATH=../../lib/llib-linetutil
1085 $(ROOT)/usr/lib/llib-lintl.ln:= REALPATH=../../lib/llib-lintl.ln
1086 $(ROOT)/usr/lib/llib-lintl:= REALPATH=../../lib/llib-lintl
1087 $(ROOT)/usr/lib/llib-lkstat.ln:= REALPATH=../../lib/llib-lkstat.ln
1088 $(ROOT)/usr/lib/llib-lkstat:= REALPATH=../../lib/llib-lkstat
1089 $(ROOT)/usr/lib/llib-lm:= REALPATH=../../lib/llib-lm
1090 $(ROOT)/usr/lib/llib-lm.ln:= REALPATH=../../lib/llib-lm.ln
1091 $(ROOT)/usr/lib/llib-lmd5.ln:= REALPATH=../../lib/llib-lmd5.ln
1092 $(ROOT)/usr/lib/llib-lmd5:= REALPATH=../../lib/llib-lmd5
1093 $(ROOT)/usr/lib/llib-lmeta.ln:= REALPATH=../../lib/llib-lmeta.ln
1094 $(ROOT)/usr/lib/llib-lmeta:= REALPATH=../../lib/llib-lmeta
1095 $(ROOT)/usr/lib/llib-lnsl.ln:= REALPATH=../../lib/llib-lnsl.ln
1096 $(ROOT)/usr/lib/llib-lnsl:= REALPATH=../../lib/llib-lnsl
1097 $(ROOT)/usr/lib/llib-lnvpair.ln:= REALPATH=../../lib/llib-lnvpair.ln
1098 $(ROOT)/usr/lib/llib-lnvpair:= REALPATH=../../lib/llib-lnvpair
1099 $(ROOT)/usr/lib/llib-lpam.ln:= REALPATH=../../lib/llib-lpam.ln
1100 $(ROOT)/usr/lib/llib-lpam:= REALPATH=../../lib/llib-lpam
1101 $(ROOT)/usr/lib/llib-lposix4.ln:= REALPATH=../../lib/llib-lrt.ln
1102 $(ROOT)/usr/lib/llib-lposix4:= REALPATH=../../lib/llib-lrt
1103 $(ROOT)/usr/lib/llib-lpthread.ln:= REALPATH=../../lib/llib-lpthread.ln
1104 $(ROOT)/usr/lib/llib-lpthread:= REALPATH=../../lib/llib-lpthread
1105 $(ROOT)/usr/lib/llib-lresolv.ln:= REALPATH=../../lib/llib-lresolv.ln
1106 $(ROOT)/usr/lib/llib-lresolv:= REALPATH=../../lib/llib-lresolv
1107 $(ROOT)/usr/lib/llib-lrpcsvc.ln:= REALPATH=../../lib/llib-lrpcsvc.ln
1108 $(ROOT)/usr/lib/llib-lrpcsvc:= REALPATH=../../lib/llib-lrpcsvc
1109 $(ROOT)/usr/lib/llib-lrt.ln:= REALPATH=../../lib/llib-lrt.ln
1110 $(ROOT)/usr/lib/llib-lrt:= REALPATH=../../lib/llib-lrt
1111 $(ROOT)/usr/lib/llib-lrtld_db.ln:= REALPATH=../../lib/llib-lrtld_db.ln
1112 $(ROOT)/usr/lib/llib-lrtld_db:= REALPATH=../../lib/llib-lrtld_db
1113 $(ROOT)/usr/lib/llib-lscf.ln:= REALPATH=../../lib/llib-lscf.ln
1114 $(ROOT)/usr/lib/llib-lscf:= REALPATH=../../lib/llib-lscf
1115 $(ROOT)/usr/lib/llib-lsec.ln:= REALPATH=../../lib/llib-lsec.ln
1116 $(ROOT)/usr/lib/llib-lsec:= REALPATH=../../lib/llib-lsec
1117 $(ROOT)/usr/lib/llib-lsecdb.ln:= REALPATH=../../lib/llib-lsecdb.ln
1118 $(ROOT)/usr/lib/llib-lsecdb:= REALPATH=../../lib/llib-lsecdb

new/usr/src/Targetdirs 18

1119 $(ROOT)/usr/lib/llib-lsendfile.ln:= REALPATH=../../lib/llib-lsendfile.ln
1120 $(ROOT)/usr/lib/llib-lsendfile:= REALPATH=../../lib/llib-lsendfile
1121 $(ROOT)/usr/lib/llib-lsocket.ln:= REALPATH=../../lib/llib-lsocket.ln
1122 $(ROOT)/usr/lib/llib-lsocket:= REALPATH=../../lib/llib-lsocket
1123 $(ROOT)/usr/lib/llib-lsysevent.ln:= REALPATH=../../lib/llib-lsysevent.ln
1124 $(ROOT)/usr/lib/llib-lsysevent:= REALPATH=../../lib/llib-lsysevent
1125 $(ROOT)/usr/lib/llib-ltermcap.ln:= REALPATH=../../lib/llib-ltermcap.ln
1126 $(ROOT)/usr/lib/llib-ltermcap:= REALPATH=../../lib/llib-ltermcap
1127 $(ROOT)/usr/lib/llib-ltermlib.ln:= REALPATH=../../lib/llib-lcurses.ln
1128 $(ROOT)/usr/lib/llib-ltermlib:= REALPATH=../../lib/llib-lcurses
1129 $(ROOT)/usr/lib/llib-lthread.ln:= REALPATH=../../lib/llib-lthread.ln
1130 $(ROOT)/usr/lib/llib-lthread:= REALPATH=../../lib/llib-lthread
1131 $(ROOT)/usr/lib/llib-lthread_db.ln:= REALPATH=../../lib/llib-lc_db.ln
1132 $(ROOT)/usr/lib/llib-lthread_db:= REALPATH=../../lib/llib-lc_db
1133 $(ROOT)/usr/lib/llib-ltsnet.ln:= REALPATH=../../lib/llib-ltsnet.ln
1134 $(ROOT)/usr/lib/llib-ltsnet:= REALPATH=../../lib/llib-ltsnet
1135 $(ROOT)/usr/lib/llib-ltsol.ln:= REALPATH=../../lib/llib-ltsol.ln
1136 $(ROOT)/usr/lib/llib-ltsol:= REALPATH=../../lib/llib-ltsol
1137 $(ROOT)/usr/lib/llib-lumem.ln:= REALPATH=../../lib/llib-lumem.ln
1138 $(ROOT)/usr/lib/llib-lumem:= REALPATH=../../lib/llib-lumem
1139 $(ROOT)/usr/lib/llib-luuid.ln:= REALPATH=../../lib/llib-luuid.ln
1140 $(ROOT)/usr/lib/llib-luuid:= REALPATH=../../lib/llib-luuid
1141 $(ROOT)/usr/lib/llib-lxnet.ln:= REALPATH=../../lib/llib-lxnet.ln
1142 $(ROOT)/usr/lib/llib-lxnet:= REALPATH=../../lib/llib-lxnet
1143 $(ROOT)/usr/lib/llib-lzfs.ln:= REALPATH=../../lib/llib-lzfs.ln
1144 $(ROOT)/usr/lib/llib-lzfs:= REALPATH=../../lib/llib-lzfs
1145 $(ROOT)/usr/lib/llib-lzfs_core.ln:= REALPATH=../../lib/llib-lzfs_core.ln
1146 $(ROOT)/usr/lib/llib-lzfs_core:= REALPATH=../../lib/llib-lzfs_core
1147 $(ROOT)/usr/lib/nss_compat.so.1:= REALPATH=../../lib/nss_compat.so.1
1148 $(ROOT)/usr/lib/nss_dns.so.1:= REALPATH=../../lib/nss_dns.so.1
1149 $(ROOT)/usr/lib/nss_files.so.1:= REALPATH=../../lib/nss_files.so.1
1150 $(ROOT)/usr/lib/nss_nis.so.1:= REALPATH=../../lib/nss_nis.so.1
1151 $(ROOT)/usr/lib/nss_user.so.1:= REALPATH=../../lib/nss_user.so.1
1152 $(ROOT)/usr/lib/fm/libfmevent.so.1:= REALPATH=../../../lib/fm/libfmevent.so.1
1153 $(ROOT)/usr/lib/fm/libfmevent.so:= REALPATH=../../../lib/fm/libfmevent.so.1
1154 $(ROOT)/usr/lib/fm/llib-lfmevent.ln:= REALPATH=../../../lib/fm/llib-lfmevent.l
1155 $(ROOT)/usr/lib/fm/llib-lfmevent:= REALPATH=../../../lib/fm/llib-lfmevent

1157 $(ROOT)/lib/$(MACH64)/libposix4.so.1:= \
1158 REALPATH=librt.so.1
1159 $(ROOT)/lib/$(MACH64)/libposix4.so:= \
1160 REALPATH=libposix4.so.1
1161 $(ROOT)/lib/$(MACH64)/llib-lposix4.ln:= \
1162 REALPATH=llib-lrt.ln
1163 $(ROOT)/lib/$(MACH64)/libthread_db.so.1:= \
1164 REALPATH=libc_db.so.1
1165 $(ROOT)/lib/$(MACH64)/libthread_db.so:= \
1166 REALPATH=libc_db.so.1
1167 $(ROOT)/usr/lib/$(MACH64)/ld.so.1:= \
1168 REALPATH=../../../lib/$(MACH64)/ld.so.1
1169 $(ROOT)/usr/lib/$(MACH64)/libadm.so.1:= \
1170 REALPATH=../../../lib/$(MACH64)/libadm.so.1
1171 $(ROOT)/usr/lib/$(MACH64)/libadm.so:= \
1172 REALPATH=../../../lib/$(MACH64)/libadm.so.1
1173 $(ROOT)/usr/lib/$(MACH64)/libaio.so.1:= \
1174 REALPATH=../../../lib/$(MACH64)/libaio.so.1
1175 $(ROOT)/usr/lib/$(MACH64)/libaio.so:= \
1176 REALPATH=../../../lib/$(MACH64)/libaio.so.1
1177 $(ROOT)/usr/lib/$(MACH64)/libavl.so.1:= \
1178 REALPATH=../../../lib/$(MACH64)/libavl.so.1
1179 $(ROOT)/usr/lib/$(MACH64)/libavl.so:= \
1180 REALPATH=../../../lib/$(MACH64)/libavl.so.1
1181 $(ROOT)/usr/lib/$(MACH64)/libbsm.so.1:= \
1182 REALPATH=../../../lib/$(MACH64)/libbsm.so.1
1183 $(ROOT)/usr/lib/$(MACH64)/libbsm.so:= \
1184 REALPATH=../../../lib/$(MACH64)/libbsm.so.1

new/usr/src/Targetdirs 19

1185 $(ROOT)/usr/lib/$(MACH64)/libc.so.1:= \
1186 REALPATH=../../../lib/$(MACH64)/libc.so.1
1187 $(ROOT)/usr/lib/$(MACH64)/libc.so:= \
1188 REALPATH=../../../lib/$(MACH64)/libc.so.1
1189 $(ROOT)/usr/lib/$(MACH64)/libc_db.so.1:= \
1190 REALPATH=../../../lib/$(MACH64)/libc_db.so.1
1191 $(ROOT)/usr/lib/$(MACH64)/libc_db.so:= \
1192 REALPATH=../../../lib/$(MACH64)/libc_db.so.1
1193 $(ROOT)/usr/lib/$(MACH64)/libcmdutils.so.1:= \
1194 REALPATH=../../../lib/$(MACH64)/libcmdutils.so.1
1195 $(ROOT)/usr/lib/$(MACH64)/libcmdutils.so:= \
1196 REALPATH=../../../lib/$(MACH64)/libcmdutils.so.1
1197 $(ROOT)/usr/lib/$(MACH64)/libcontract.so.1:= \
1198 REALPATH=../../../lib/$(MACH64)/libcontract.so.1
1199 $(ROOT)/usr/lib/$(MACH64)/libcontract.so:= \
1200 REALPATH=../../../lib/$(MACH64)/libcontract.so.1
1201 $(ROOT)/usr/lib/$(MACH64)/libctf.so.1:= \
1202 REALPATH=../../../lib/$(MACH64)/libctf.so.1
1203 $(ROOT)/usr/lib/$(MACH64)/libctf.so:= \
1204 REALPATH=../../../lib/$(MACH64)/libctf.so.1
1205 $(ROOT)/usr/lib/$(MACH64)/libcurses.so.1:= \
1206 REALPATH=../../../lib/$(MACH64)/libcurses.so.1
1207 $(ROOT)/usr/lib/$(MACH64)/libcurses.so:= \
1208 REALPATH=../../../lib/$(MACH64)/libcurses.so.1
1209 $(ROOT)/usr/lib/$(MACH64)/libdevice.so.1:= \
1210 REALPATH=../../../lib/$(MACH64)/libdevice.so.1
1211 $(ROOT)/usr/lib/$(MACH64)/libdevice.so:= \
1212 REALPATH=../../../lib/$(MACH64)/libdevice.so.1
1213 $(ROOT)/usr/lib/$(MACH64)/libdevid.so.1:= \
1214 REALPATH=../../../lib/$(MACH64)/libdevid.so.1
1215 $(ROOT)/usr/lib/$(MACH64)/libdevid.so:= \
1216 REALPATH=../../../lib/$(MACH64)/libdevid.so.1
1217 $(ROOT)/usr/lib/$(MACH64)/libdevinfo.so.1:= \
1218 REALPATH=../../../lib/$(MACH64)/libdevinfo.so.1
1219 $(ROOT)/usr/lib/$(MACH64)/libdevinfo.so:= \
1220 REALPATH=../../../lib/$(MACH64)/libdevinfo.so.1
1221 $(ROOT)/usr/lib/$(MACH64)/libdhcputil.so.1:= \
1222 REALPATH=../../../lib/$(MACH64)/libdhcputil.so.1
1223 $(ROOT)/usr/lib/$(MACH64)/libdhcputil.so:= \
1224 REALPATH=../../../lib/$(MACH64)/libdhcputil.so.1
1225 $(ROOT)/usr/lib/$(MACH64)/libdl.so.1:= \
1226 REALPATH=../../../lib/$(MACH64)/libdl.so.1
1227 $(ROOT)/usr/lib/$(MACH64)/libdl.so:= \
1228 REALPATH=../../../lib/$(MACH64)/libdl.so.1
1229 $(ROOT)/usr/lib/$(MACH64)/libdlpi.so.1:= \
1230 REALPATH=../../../lib/$(MACH64)/libdlpi.so.1
1231 $(ROOT)/usr/lib/$(MACH64)/libdlpi.so:= \
1232 REALPATH=../../../lib/$(MACH64)/libdlpi.so.1
1233 $(ROOT)/usr/lib/$(MACH64)/libdoor.so.1:= \
1234 REALPATH=../../../lib/$(MACH64)/libdoor.so.1
1235 $(ROOT)/usr/lib/$(MACH64)/libdoor.so:= \
1236 REALPATH=../../../lib/$(MACH64)/libdoor.so.1
1237 $(ROOT)/usr/lib/$(MACH64)/libefi.so.1:= \
1238 REALPATH=../../../lib/$(MACH64)/libefi.so.1
1239 $(ROOT)/usr/lib/$(MACH64)/libefi.so:= \
1240 REALPATH=../../../lib/$(MACH64)/libefi.so.1
1241 $(ROOT)/usr/lib/$(MACH64)/libelf.so.1:= \
1242 REALPATH=../../../lib/$(MACH64)/libelf.so.1
1243 $(ROOT)/usr/lib/$(MACH64)/libelf.so:= \
1244 REALPATH=../../../lib/$(MACH64)/libelf.so.1
1245 $(ROOT)/usr/lib/$(MACH64)/libgen.so.1:= \
1246 REALPATH=../../../lib/$(MACH64)/libgen.so.1
1247 $(ROOT)/usr/lib/$(MACH64)/libgen.so:= \
1248 REALPATH=../../../lib/$(MACH64)/libgen.so.1
1249 $(ROOT)/usr/lib/$(MACH64)/libinetutil.so.1:= \
1250 REALPATH=../../../lib/$(MACH64)/libinetutil.so.1

new/usr/src/Targetdirs 20

1251 $(ROOT)/usr/lib/$(MACH64)/libinetutil.so:= \
1252 REALPATH=../../../lib/$(MACH64)/libinetutil.so.1
1253 $(ROOT)/usr/lib/$(MACH64)/libintl.so.1:= \
1254 REALPATH=../../../lib/$(MACH64)/libintl.so.1
1255 $(ROOT)/usr/lib/$(MACH64)/libintl.so:= \
1256 REALPATH=../../../lib/$(MACH64)/libintl.so.1
1257 $(ROOT)/usr/lib/$(MACH64)/libkstat.so.1:= \
1258 REALPATH=../../../lib/$(MACH64)/libkstat.so.1
1259 $(ROOT)/usr/lib/$(MACH64)/libkstat.so:= \
1260 REALPATH=../../../lib/$(MACH64)/libkstat.so.1
1261 $(ROOT)/usr/lib/$(MACH64)/liblddbg.so.4:= \
1262 REALPATH=../../../lib/$(MACH64)/liblddbg.so.4
1263 $(ROOT)/usr/lib/$(MACH64)/libm.so.1:= \
1264 REALPATH=../../../lib/$(MACH64)/libm.so.1
1265 $(ROOT)/usr/lib/$(MACH64)/libm.so.2:= \
1266 REALPATH=../../../lib/$(MACH64)/libm.so.2
1267 $(ROOT)/usr/lib/$(MACH64)/libm.so:= \
1268 REALPATH=../../../lib/$(MACH64)/libm.so.2
1269 $(ROOT)/usr/lib/$(MACH64)/libmd.so.1:= \
1270 REALPATH=../../../lib/$(MACH64)/libmd.so.1
1271 $(ROOT)/usr/lib/$(MACH64)/libmd.so:= \
1272 REALPATH=../../../lib/$(MACH64)/libmd.so.1
1273 $(ROOT)/usr/lib/$(MACH64)/libmd5.so.1:= \
1274 REALPATH=../../../lib/$(MACH64)/libmd5.so.1
1275 $(ROOT)/usr/lib/$(MACH64)/libmd5.so:= \
1276 REALPATH=../../../lib/$(MACH64)/libmd5.so.1
1277 $(ROOT)/usr/lib/$(MACH64)/libmp.so.2:= \
1278 REALPATH=../../../lib/$(MACH64)/libmp.so.2
1279 $(ROOT)/usr/lib/$(MACH64)/libmp.so:= \
1280 REALPATH=../../../lib/$(MACH64)/libmp.so.2
1281 $(ROOT)/usr/lib/$(MACH64)/libmvec.so.1:= \
1282 REALPATH=../../../lib/$(MACH64)/libmvec.so.1
1283 $(ROOT)/usr/lib/$(MACH64)/libmvec.so:= \
1284 REALPATH=../../../lib/$(MACH64)/libmvec.so.1
1285 $(ROOT)/usr/lib/$(MACH64)/libnsl.so.1:= \
1286 REALPATH=../../../lib/$(MACH64)/libnsl.so.1
1287 $(ROOT)/usr/lib/$(MACH64)/libnsl.so:= \
1288 REALPATH=../../../lib/$(MACH64)/libnsl.so.1
1289 $(ROOT)/usr/lib/$(MACH64)/libnvpair.so.1:= \
1290 REALPATH=../../../lib/$(MACH64)/libnvpair.so.1
1291 $(ROOT)/usr/lib/$(MACH64)/libnvpair.so:= \
1292 REALPATH=../../../lib/$(MACH64)/libnvpair.so.1
1293 $(ROOT)/usr/lib/$(MACH64)/libpam.so.1:= \
1294 REALPATH=../../../lib/$(MACH64)/libpam.so.1
1295 $(ROOT)/usr/lib/$(MACH64)/libpam.so:= \
1296 REALPATH=../../../lib/$(MACH64)/libpam.so.1
1297 $(ROOT)/usr/lib/$(MACH64)/libposix4.so.1:= \
1298 REALPATH=../../../lib/$(MACH64)/librt.so.1
1299 $(ROOT)/usr/lib/$(MACH64)/libposix4.so:= \
1300 REALPATH=../../../lib/$(MACH64)/librt.so.1
1301 $(ROOT)/usr/lib/$(MACH64)/libproc.so.1:= \
1302 REALPATH=../../../lib/$(MACH64)/libproc.so.1
1303 $(ROOT)/usr/lib/$(MACH64)/libproc.so:= \
1304 REALPATH=../../../lib/$(MACH64)/libproc.so.1
1305 $(ROOT)/usr/lib/$(MACH64)/libpthread.so.1:= \
1306 REALPATH=../../../lib/$(MACH64)/libpthread.so.1
1307 $(ROOT)/usr/lib/$(MACH64)/libpthread.so:= \
1308 REALPATH=../../../lib/$(MACH64)/libpthread.so.1
1309 $(ROOT)/usr/lib/$(MACH64)/librcm.so.1:= \
1310 REALPATH=../../../lib/$(MACH64)/librcm.so.1
1311 $(ROOT)/usr/lib/$(MACH64)/librcm.so:= \
1312 REALPATH=../../../lib/$(MACH64)/librcm.so.1
1313 $(ROOT)/usr/lib/$(MACH64)/libresolv.so.2:= \
1314 REALPATH=../../../lib/$(MACH64)/libresolv.so.2
1315 $(ROOT)/usr/lib/$(MACH64)/libresolv.so:= \
1316 REALPATH=../../../lib/$(MACH64)/libresolv.so.2

new/usr/src/Targetdirs 21

1317 $(ROOT)/usr/lib/$(MACH64)/librestart.so.1:= \
1318 REALPATH=../../../lib/$(MACH64)/librestart.so.1
1319 $(ROOT)/usr/lib/$(MACH64)/librestart.so:= \
1320 REALPATH=../../../lib/$(MACH64)/librestart.so.1
1321 $(ROOT)/usr/lib/$(MACH64)/librpcsvc.so.1:= \
1322 REALPATH=../../../lib/$(MACH64)/librpcsvc.so.1
1323 $(ROOT)/usr/lib/$(MACH64)/librpcsvc.so:= \
1324 REALPATH=../../../lib/$(MACH64)/librpcsvc.so.1
1325 $(ROOT)/usr/lib/$(MACH64)/librt.so.1:= \
1326 REALPATH=../../../lib/$(MACH64)/librt.so.1
1327 $(ROOT)/usr/lib/$(MACH64)/librt.so:= \
1328 REALPATH=../../../lib/$(MACH64)/librt.so.1
1329 $(ROOT)/usr/lib/$(MACH64)/librtld.so.1:= \
1330 REALPATH=../../../lib/$(MACH64)/librtld.so.1
1331 $(ROOT)/usr/lib/$(MACH64)/librtld_db.so.1:= \
1332 REALPATH=../../../lib/$(MACH64)/librtld_db.so.1
1333 $(ROOT)/usr/lib/$(MACH64)/librtld_db.so:= \
1334 REALPATH=../../../lib/$(MACH64)/librtld_db.so.1
1335 $(ROOT)/usr/lib/$(MACH64)/libscf.so.1:= \
1336 REALPATH=../../../lib/$(MACH64)/libscf.so.1
1337 $(ROOT)/usr/lib/$(MACH64)/libscf.so:= \
1338 REALPATH=../../../lib/$(MACH64)/libscf.so.1
1339 $(ROOT)/usr/lib/$(MACH64)/libsec.so.1:= \
1340 REALPATH=../../../lib/$(MACH64)/libsec.so.1
1341 $(ROOT)/usr/lib/$(MACH64)/libsec.so:= \
1342 REALPATH=../../../lib/$(MACH64)/libsec.so.1
1343 $(ROOT)/usr/lib/$(MACH64)/libsecdb.so.1:= \
1344 REALPATH=../../../lib/$(MACH64)/libsecdb.so.1
1345 $(ROOT)/usr/lib/$(MACH64)/libsecdb.so:= \
1346 REALPATH=../../../lib/$(MACH64)/libsecdb.so.1
1347 $(ROOT)/usr/lib/$(MACH64)/libsendfile.so.1:= \
1348 REALPATH=../../../lib/$(MACH64)/libsendfile.so.1
1349 $(ROOT)/usr/lib/$(MACH64)/libsendfile.so:= \
1350 REALPATH=../../../lib/$(MACH64)/libsendfile.so.1
1351 $(ROOT)/usr/lib/$(MACH64)/libsocket.so.1:= \
1352 REALPATH=../../../lib/$(MACH64)/libsocket.so.1
1353 $(ROOT)/usr/lib/$(MACH64)/libsocket.so:= \
1354 REALPATH=../../../lib/$(MACH64)/libsocket.so.1
1355 $(ROOT)/usr/lib/$(MACH64)/libsysevent.so.1:= \
1356 REALPATH=../../../lib/$(MACH64)/libsysevent.so.1
1357 $(ROOT)/usr/lib/$(MACH64)/libsysevent.so:= \
1358 REALPATH=../../../lib/$(MACH64)/libsysevent.so.1
1359 $(ROOT)/usr/lib/$(MACH64)/libtermcap.so.1:= \
1360 REALPATH=../../../lib/$(MACH64)/libtermcap.so.1
1361 $(ROOT)/usr/lib/$(MACH64)/libtermcap.so:= \
1362 REALPATH=../../../lib/$(MACH64)/libtermcap.so.1
1363 $(ROOT)/usr/lib/$(MACH64)/libtermlib.so.1:= \
1364 REALPATH=../../../lib/$(MACH64)/libcurses.so.1
1365 $(ROOT)/usr/lib/$(MACH64)/libtermlib.so:= \
1366 REALPATH=../../../lib/$(MACH64)/libcurses.so.1
1367 $(ROOT)/usr/lib/$(MACH64)/libthread.so.1:= \
1368 REALPATH=../../../lib/$(MACH64)/libthread.so.1
1369 $(ROOT)/usr/lib/$(MACH64)/libthread.so:= \
1370 REALPATH=../../../lib/$(MACH64)/libthread.so.1
1371 $(ROOT)/usr/lib/$(MACH64)/libthread_db.so.1:= \
1372 REALPATH=../../../lib/$(MACH64)/libc_db.so.1
1373 $(ROOT)/usr/lib/$(MACH64)/libthread_db.so:= \
1374 REALPATH=../../../lib/$(MACH64)/libc_db.so.1
1375 $(ROOT)/usr/lib/$(MACH64)/libtsnet.so.1:= \
1376 REALPATH=../../../lib/$(MACH64)/libtsnet.so.1
1377 $(ROOT)/usr/lib/$(MACH64)/libtsnet.so:= \
1378 REALPATH=../../../lib/$(MACH64)/libtsnet.so.1
1379 $(ROOT)/usr/lib/$(MACH64)/libtsol.so.2:= \
1380 REALPATH=../../../lib/$(MACH64)/libtsol.so.2
1381 $(ROOT)/usr/lib/$(MACH64)/libtsol.so:= \
1382 REALPATH=../../../lib/$(MACH64)/libtsol.so.2

new/usr/src/Targetdirs 22

1383 $(ROOT)/usr/lib/$(MACH64)/libumem.so.1:= \
1384 REALPATH=../../../lib/$(MACH64)/libumem.so.1
1385 $(ROOT)/usr/lib/$(MACH64)/libumem.so:= \
1386 REALPATH=../../../lib/$(MACH64)/libumem.so.1
1387 $(ROOT)/usr/lib/$(MACH64)/libuuid.so.1:= \
1388 REALPATH=../../../lib/$(MACH64)/libuuid.so.1
1389 $(ROOT)/usr/lib/$(MACH64)/libuuid.so:= \
1390 REALPATH=../../../lib/$(MACH64)/libuuid.so.1
1391 $(ROOT)/usr/lib/$(MACH64)/libuutil.so.1:= \
1392 REALPATH=../../../lib/$(MACH64)/libuutil.so.1
1393 $(ROOT)/usr/lib/$(MACH64)/libuutil.so:= \
1394 REALPATH=../../../lib/$(MACH64)/libuutil.so.1
1395 $(ROOT)/usr/lib/$(MACH64)/libw.so.1:= \
1396 REALPATH=../../../lib/$(MACH64)/libw.so.1
1397 $(ROOT)/usr/lib/$(MACH64)/libw.so:= \
1398 REALPATH=../../../lib/$(MACH64)/libw.so.1
1399 $(ROOT)/usr/lib/$(MACH64)/libxnet.so.1:= \
1400 REALPATH=../../../lib/$(MACH64)/libxnet.so.1
1401 $(ROOT)/usr/lib/$(MACH64)/libxnet.so:= \
1402 REALPATH=../../../lib/$(MACH64)/libxnet.so.1
1403 $(ROOT)/usr/lib/$(MACH64)/libzfs.so:= \
1404 REALPATH=../../../lib/$(MACH64)/libzfs.so.1
1405 $(ROOT)/usr/lib/$(MACH64)/libzfs.so.1:= \
1406 REALPATH=../../../lib/$(MACH64)/libzfs.so.1
1407 $(ROOT)/usr/lib/$(MACH64)/libzfs_core.so:= \
1408 REALPATH=../../../lib/$(MACH64)/libzfs_core.so.1
1409 $(ROOT)/usr/lib/$(MACH64)/libzfs_core.so.1:= \
1410 REALPATH=../../../lib/$(MACH64)/libzfs_core.so.1
1411 $(ROOT)/usr/lib/$(MACH64)/libfdisk.so.1:= \
1412 REALPATH=../../../lib/$(MACH64)/libfdisk.so.1
1413 $(ROOT)/usr/lib/$(MACH64)/libfdisk.so:= \
1414 REALPATH=../../../lib/$(MACH64)/libfdisk.so.1
1415 $(ROOT)/usr/lib/$(MACH64)/llib-ladm.ln:= \
1416 REALPATH=../../../lib/$(MACH64)/llib-ladm.ln
1417 $(ROOT)/usr/lib/$(MACH64)/llib-laio.ln:= \
1418 REALPATH=../../../lib/$(MACH64)/llib-laio.ln
1419 $(ROOT)/usr/lib/$(MACH64)/llib-lavl.ln:= \
1420 REALPATH=../../../lib/$(MACH64)/llib-lavl.ln
1421 $(ROOT)/usr/lib/$(MACH64)/llib-lbsm.ln:= \
1422 REALPATH=../../../lib/$(MACH64)/llib-lbsm.ln
1423 $(ROOT)/usr/lib/$(MACH64)/llib-lc.ln:= \
1424 REALPATH=../../../lib/$(MACH64)/llib-lc.ln
1425 $(ROOT)/usr/lib/$(MACH64)/llib-lcmdutils.ln:= \
1426 REALPATH=../../../lib/$(MACH64)/llib-lcmdutils.ln
1427 $(ROOT)/usr/lib/$(MACH64)/llib-lcontract.ln:= \
1428 REALPATH=../../../lib/$(MACH64)/llib-lcontract.ln
1429 $(ROOT)/usr/lib/$(MACH64)/llib-lctf.ln:= \
1430 REALPATH=../../../lib/$(MACH64)/llib-lctf.ln
1431 $(ROOT)/usr/lib/$(MACH64)/llib-lcurses.ln:= \
1432 REALPATH=../../../lib/$(MACH64)/llib-lcurses.ln
1433 $(ROOT)/usr/lib/$(MACH64)/llib-ldevice.ln:= \
1434 REALPATH=../../../lib/$(MACH64)/llib-ldevice.ln
1435 $(ROOT)/usr/lib/$(MACH64)/llib-ldevid.ln:= \
1436 REALPATH=../../../lib/$(MACH64)/llib-ldevid.ln
1437 $(ROOT)/usr/lib/$(MACH64)/llib-ldevinfo.ln:= \
1438 REALPATH=../../../lib/$(MACH64)/llib-ldevinfo.ln
1439 $(ROOT)/usr/lib/$(MACH64)/llib-ldhcputil.ln:= \
1440 REALPATH=../../../lib/$(MACH64)/llib-ldhcputil.ln
1441 $(ROOT)/usr/lib/$(MACH64)/llib-ldl.ln:= \
1442 REALPATH=../../../lib/$(MACH64)/llib-ldl.ln
1443 $(ROOT)/usr/lib/$(MACH64)/llib-ldoor.ln:= \
1444 REALPATH=../../../lib/$(MACH64)/llib-ldoor.ln
1445 $(ROOT)/usr/lib/$(MACH64)/llib-lefi.ln:= \
1446 REALPATH=../../../lib/$(MACH64)/llib-lefi.ln
1447 $(ROOT)/usr/lib/$(MACH64)/llib-lelf.ln:= \
1448 REALPATH=../../../lib/$(MACH64)/llib-lelf.ln

new/usr/src/Targetdirs 23

1449 $(ROOT)/usr/lib/$(MACH64)/llib-lgen.ln:= \
1450 REALPATH=../../../lib/$(MACH64)/llib-lgen.ln
1451 $(ROOT)/usr/lib/$(MACH64)/llib-linetutil.ln:= \
1452 REALPATH=../../../lib/$(MACH64)/llib-linetutil.ln
1453 $(ROOT)/usr/lib/$(MACH64)/llib-lintl.ln:= \
1454 REALPATH=../../../lib/$(MACH64)/llib-lintl.ln
1455 $(ROOT)/usr/lib/$(MACH64)/llib-lkstat.ln:= \
1456 REALPATH=../../../lib/$(MACH64)/llib-lkstat.ln
1457 $(ROOT)/usr/lib/$(MACH64)/llib-lm.ln:= \
1458 REALPATH=../../../lib/$(MACH64)/llib-lm.ln
1459 $(ROOT)/usr/lib/$(MACH64)/llib-lmd5.ln:= \
1460 REALPATH=../../../lib/$(MACH64)/llib-lmd5.ln
1461 $(ROOT)/usr/lib/$(MACH64)/llib-lnsl.ln:= \
1462 REALPATH=../../../lib/$(MACH64)/llib-lnsl.ln
1463 $(ROOT)/usr/lib/$(MACH64)/llib-lnvpair.ln:= \
1464 REALPATH=../../../lib/$(MACH64)/llib-lnvpair.ln
1465 $(ROOT)/usr/lib/$(MACH64)/llib-lpam.ln:= \
1466 REALPATH=../../../lib/$(MACH64)/llib-lpam.ln
1467 $(ROOT)/usr/lib/$(MACH64)/llib-lposix4.ln:= \
1468 REALPATH=../../../lib/$(MACH64)/llib-lrt.ln
1469 $(ROOT)/usr/lib/$(MACH64)/llib-lpthread.ln:= \
1470 REALPATH=../../../lib/$(MACH64)/llib-lpthread.ln
1471 $(ROOT)/usr/lib/$(MACH64)/llib-lresolv.ln:= \
1472 REALPATH=../../../lib/$(MACH64)/llib-lresolv.ln
1473 $(ROOT)/usr/lib/$(MACH64)/llib-lrpcsvc.ln:= \
1474 REALPATH=../../../lib/$(MACH64)/llib-lrpcsvc.ln
1475 $(ROOT)/usr/lib/$(MACH64)/llib-lrt.ln:= \
1476 REALPATH=../../../lib/$(MACH64)/llib-lrt.ln
1477 $(ROOT)/usr/lib/$(MACH64)/llib-lrtld_db.ln:= \
1478 REALPATH=../../../lib/$(MACH64)/llib-lrtld_db.ln
1479 $(ROOT)/usr/lib/$(MACH64)/llib-lscf.ln:= \
1480 REALPATH=../../../lib/$(MACH64)/llib-lscf.ln
1481 $(ROOT)/usr/lib/$(MACH64)/llib-lsec.ln:= \
1482 REALPATH=../../../lib/$(MACH64)/llib-lsec.ln
1483 $(ROOT)/usr/lib/$(MACH64)/llib-lsecdb.ln:= \
1484 REALPATH=../../../lib/$(MACH64)/llib-lsecdb.ln
1485 $(ROOT)/usr/lib/$(MACH64)/llib-lsendfile.ln:= \
1486 REALPATH=../../../lib/$(MACH64)/llib-lsendfile.ln
1487 $(ROOT)/usr/lib/$(MACH64)/llib-lsocket.ln:= \
1488 REALPATH=../../../lib/$(MACH64)/llib-lsocket.ln
1489 $(ROOT)/usr/lib/$(MACH64)/llib-lsysevent.ln:= \
1490 REALPATH=../../../lib/$(MACH64)/llib-lsysevent.ln
1491 $(ROOT)/usr/lib/$(MACH64)/llib-ltermcap.ln:= \
1492 REALPATH=../../../lib/$(MACH64)/llib-ltermcap.ln
1493 $(ROOT)/usr/lib/$(MACH64)/llib-ltermlib.ln:= \
1494 REALPATH=../../../lib/$(MACH64)/llib-lcurses.ln
1495 $(ROOT)/usr/lib/$(MACH64)/llib-lthread.ln:= \
1496 REALPATH=../../../lib/$(MACH64)/llib-lthread.ln
1497 $(ROOT)/usr/lib/$(MACH64)/llib-lthread_db.ln:= \
1498 REALPATH=../../../lib/$(MACH64)/llib-lc_db.ln
1499 $(ROOT)/usr/lib/$(MACH64)/llib-ltsnet.ln:= \
1500 REALPATH=../../../lib/$(MACH64)/llib-ltsnet.ln
1501 $(ROOT)/usr/lib/$(MACH64)/llib-ltsol.ln:= \
1502 REALPATH=../../../lib/$(MACH64)/llib-ltsol.ln
1503 $(ROOT)/usr/lib/$(MACH64)/llib-lumem.ln:= \
1504 REALPATH=../../../lib/$(MACH64)/llib-lumem.ln
1505 $(ROOT)/usr/lib/$(MACH64)/llib-luuid.ln:= \
1506 REALPATH=../../../lib/$(MACH64)/llib-luuid.ln
1507 $(ROOT)/usr/lib/$(MACH64)/llib-lxnet.ln:= \
1508 REALPATH=../../../lib/$(MACH64)/llib-lxnet.ln
1509 $(ROOT)/usr/lib/$(MACH64)/llib-lzfs.ln:= \
1510 REALPATH=../../../lib/$(MACH64)/llib-lzfs.ln
1511 $(ROOT)/usr/lib/$(MACH64)/llib-lzfs_core.ln:= \
1512 REALPATH=../../../lib/$(MACH64)/llib-lzfs_core.ln
1513 $(ROOT)/usr/lib/$(MACH64)/llib-lfdisk.ln:= \
1514 REALPATH=../../../lib/$(MACH64)/llib-lfdisk.ln

new/usr/src/Targetdirs 24

1515 $(ROOT)/usr/lib/$(MACH64)/nss_compat.so.1:= \
1516 REALPATH=../../../lib/$(MACH64)/nss_compat.so.1
1517 $(ROOT)/usr/lib/$(MACH64)/nss_dns.so.1:= \
1518 REALPATH=../../../lib/$(MACH64)/nss_dns.so.1
1519 $(ROOT)/usr/lib/$(MACH64)/nss_files.so.1:= \
1520 REALPATH=../../../lib/$(MACH64)/nss_files.so.1
1521 $(ROOT)/usr/lib/$(MACH64)/nss_nis.so.1:= \
1522 REALPATH=../../../lib/$(MACH64)/nss_nis.so.1
1523 $(ROOT)/usr/lib/$(MACH64)/nss_user.so.1:= \
1524 REALPATH=../../../lib/$(MACH64)/nss_user.so.1
1525 $(ROOT)/usr/lib/fm/$(MACH64)/libfmevent.so.1:= \
1526 REALPATH=../../../../lib/fm/$(MACH64)/libfmevent.so.1
1527 $(ROOT)/usr/lib/fm/$(MACH64)/libfmevent.so:= \
1528 REALPATH=../../../../lib/fm/$(MACH64)/libfmevent.so.1
1529 $(ROOT)/usr/lib/fm/$(MACH64)/llib-lfmevent.ln:= \
1530 REALPATH=../../../../lib/fm/$(MACH64)/llib-lfmevent.ln

1532 i386_SYM.USRLIB= \
1533 /usr/lib/libfdisk.so \
1534 /usr/lib/libfdisk.so.1 \
1535 /usr/lib/llib-lfdisk \
1536 /usr/lib/llib-lfdisk.ln

1538 SYM.USRLIB= \
1539 $($(MACH)_SYM.USRLIB) \
1540 /lib/libposix4.so \
1541 /lib/libposix4.so.1 \
1542 /lib/llib-lposix4 \
1543 /lib/llib-lposix4.ln \
1544 /lib/libthread_db.so \
1545 /lib/libthread_db.so.1 \
1546 /usr/lib/ld.so.1 \
1547 /usr/lib/libadm.so \
1548 /usr/lib/libadm.so.1 \
1549 /usr/lib/libaio.so \
1550 /usr/lib/libaio.so.1 \
1551 /usr/lib/libavl.so \
1552 /usr/lib/libavl.so.1 \
1553 /usr/lib/libbsm.so \
1554 /usr/lib/libbsm.so.1 \
1555 /usr/lib/libc.so \
1556 /usr/lib/libc.so.1 \
1557 /usr/lib/libc_db.so \
1558 /usr/lib/libc_db.so.1 \
1559 /usr/lib/libcmdutils.so \
1560 /usr/lib/libcmdutils.so.1 \
1561 /usr/lib/libcontract.so \
1562 /usr/lib/libcontract.so.1 \
1563 /usr/lib/libctf.so \
1564 /usr/lib/libctf.so.1 \
1565 /usr/lib/libcurses.so \
1566 /usr/lib/libcurses.so.1 \
1567 /usr/lib/libdevice.so \
1568 /usr/lib/libdevice.so.1 \
1569 /usr/lib/libdevid.so \
1570 /usr/lib/libdevid.so.1 \
1571 /usr/lib/libdevinfo.so \
1572 /usr/lib/libdevinfo.so.1 \
1573 /usr/lib/libdhcpagent.so \
1574 /usr/lib/libdhcpagent.so.1 \
1575 /usr/lib/libdhcputil.so \
1576 /usr/lib/libdhcputil.so.1 \
1577 /usr/lib/libdl.so \
1578 /usr/lib/libdl.so.1 \
1579 /usr/lib/libdlpi.so \
1580 /usr/lib/libdlpi.so.1 \

new/usr/src/Targetdirs 25

1581 /usr/lib/libdoor.so \
1582 /usr/lib/libdoor.so.1 \
1583 /usr/lib/libefi.so \
1584 /usr/lib/libefi.so.1 \
1585 /usr/lib/libelf.so \
1586 /usr/lib/libelf.so.1 \
1587 /usr/lib/libgen.so \
1588 /usr/lib/libgen.so.1 \
1589 /usr/lib/libinetutil.so \
1590 /usr/lib/libinetutil.so.1 \
1591 /usr/lib/libintl.so \
1592 /usr/lib/libintl.so.1 \
1593 /usr/lib/libkstat.so \
1594 /usr/lib/libkstat.so.1 \
1595 /usr/lib/liblddbg.so.4 \
1596 /usr/lib/libm.so.1 \
1597 /usr/lib/libm.so.2 \
1598 /usr/lib/libm.so \
1599 /usr/lib/libmd.so \
1600 /usr/lib/libmd.so.1 \
1601 /usr/lib/libmd5.so \
1602 /usr/lib/libmd5.so.1 \
1603 /usr/lib/libmeta.so \
1604 /usr/lib/libmeta.so.1 \
1605 /usr/lib/libmp.so \
1606 /usr/lib/libmp.so.1 \
1607 /usr/lib/libmp.so.2 \
1608 /usr/lib/libmvec.so.1 \
1609 /usr/lib/libmvec.so \
1610 /usr/lib/libnsl.so \
1611 /usr/lib/libnsl.so.1 \
1612 /usr/lib/libnvpair.so \
1613 /usr/lib/libnvpair.so.1 \
1614 /usr/lib/libpam.so \
1615 /usr/lib/libpam.so.1 \
1616 /usr/lib/libposix4.so \
1617 /usr/lib/libposix4.so.1 \
1618 /usr/lib/libproc.so \
1619 /usr/lib/libproc.so.1 \
1620 /usr/lib/libpthread.so \
1621 /usr/lib/libpthread.so.1 \
1622 /usr/lib/librcm.so \
1623 /usr/lib/librcm.so.1 \
1624 /usr/lib/libresolv.so \
1625 /usr/lib/libresolv.so.1 \
1626 /usr/lib/libresolv.so.2 \
1627 /usr/lib/librestart.so \
1628 /usr/lib/librestart.so.1 \
1629 /usr/lib/librpcsvc.so \
1630 /usr/lib/librpcsvc.so.1 \
1631 /usr/lib/librt.so \
1632 /usr/lib/librt.so.1 \
1633 /usr/lib/librtld.so.1 \
1634 /usr/lib/librtld_db.so \
1635 /usr/lib/librtld_db.so.1 \
1636 /usr/lib/libscf.so \
1637 /usr/lib/libscf.so.1 \
1638 /usr/lib/libsec.so \
1639 /usr/lib/libsec.so.1 \
1640 /usr/lib/libsecdb.so \
1641 /usr/lib/libsecdb.so.1 \
1642 /usr/lib/libsendfile.so \
1643 /usr/lib/libsendfile.so.1 \
1644 /usr/lib/libsocket.so \
1645 /usr/lib/libsocket.so.1 \
1646 /usr/lib/libsysevent.so \

new/usr/src/Targetdirs 26

1647 /usr/lib/libsysevent.so.1 \
1648 /usr/lib/libtermcap.so \
1649 /usr/lib/libtermcap.so.1 \
1650 /usr/lib/libtermlib.so \
1651 /usr/lib/libtermlib.so.1 \
1652 /usr/lib/libthread.so \
1653 /usr/lib/libthread.so.1 \
1654 /usr/lib/libthread_db.so \
1655 /usr/lib/libthread_db.so.1 \
1656 /usr/lib/libtsnet.so \
1657 /usr/lib/libtsnet.so.1 \
1658 /usr/lib/libtsol.so \
1659 /usr/lib/libtsol.so.2 \
1660 /usr/lib/libumem.so \
1661 /usr/lib/libumem.so.1 \
1662 /usr/lib/libuuid.so \
1663 /usr/lib/libuuid.so.1 \
1664 /usr/lib/libuutil.so \
1665 /usr/lib/libuutil.so.1 \
1666 /usr/lib/libw.so \
1667 /usr/lib/libw.so.1 \
1668 /usr/lib/libxnet.so \
1669 /usr/lib/libxnet.so.1 \
1670 /usr/lib/libzfs.so \
1671 /usr/lib/libzfs.so.1 \
1672 /usr/lib/libzfs_core.so \
1673 /usr/lib/libzfs_core.so.1 \
1674 /usr/lib/llib-ladm \
1675 /usr/lib/llib-ladm.ln \
1676 /usr/lib/llib-laio \
1677 /usr/lib/llib-laio.ln \
1678 /usr/lib/llib-lavl \
1679 /usr/lib/llib-lavl.ln \
1680 /usr/lib/llib-lbsm \
1681 /usr/lib/llib-lbsm.ln \
1682 /usr/lib/llib-lc \
1683 /usr/lib/llib-lc.ln \
1684 /usr/lib/llib-lcmdutils \
1685 /usr/lib/llib-lcmdutils.ln \
1686 /usr/lib/llib-lcontract \
1687 /usr/lib/llib-lcontract.ln \
1688 /usr/lib/llib-lctf \
1689 /usr/lib/llib-lctf.ln \
1690 /usr/lib/llib-lcurses \
1691 /usr/lib/llib-lcurses.ln \
1692 /usr/lib/llib-ldevice \
1693 /usr/lib/llib-ldevice.ln \
1694 /usr/lib/llib-ldevid \
1695 /usr/lib/llib-ldevid.ln \
1696 /usr/lib/llib-ldevinfo \
1697 /usr/lib/llib-ldevinfo.ln \
1698 /usr/lib/llib-ldhcpagent \
1699 /usr/lib/llib-ldhcpagent.ln \
1700 /usr/lib/llib-ldhcputil \
1701 /usr/lib/llib-ldhcputil.ln \
1702 /usr/lib/llib-ldl \
1703 /usr/lib/llib-ldl.ln \
1704 /usr/lib/llib-ldoor \
1705 /usr/lib/llib-ldoor.ln \
1706 /usr/lib/llib-lefi \
1707 /usr/lib/llib-lefi.ln \
1708 /usr/lib/llib-lelf \
1709 /usr/lib/llib-lelf.ln \
1710 /usr/lib/llib-lgen \
1711 /usr/lib/llib-lgen.ln \
1712 /usr/lib/llib-linetutil \

new/usr/src/Targetdirs 27

1713 /usr/lib/llib-linetutil.ln \
1714 /usr/lib/llib-lintl \
1715 /usr/lib/llib-lintl.ln \
1716 /usr/lib/llib-lkstat \
1717 /usr/lib/llib-lkstat.ln \
1718 /usr/lib/llib-lm \
1719 /usr/lib/llib-lm.ln \
1720 /usr/lib/llib-lmd5 \
1721 /usr/lib/llib-lmd5.ln \
1722 /usr/lib/llib-lmeta \
1723 /usr/lib/llib-lmeta.ln \
1724 /usr/lib/llib-lnsl \
1725 /usr/lib/llib-lnsl.ln \
1726 /usr/lib/llib-lnvpair \
1727 /usr/lib/llib-lnvpair.ln \
1728 /usr/lib/llib-lpam \
1729 /usr/lib/llib-lpam.ln \
1730 /usr/lib/llib-lposix4 \
1731 /usr/lib/llib-lposix4.ln \
1732 /usr/lib/llib-lpthread \
1733 /usr/lib/llib-lpthread.ln \
1734 /usr/lib/llib-lresolv \
1735 /usr/lib/llib-lresolv.ln \
1736 /usr/lib/llib-lrpcsvc \
1737 /usr/lib/llib-lrpcsvc.ln \
1738 /usr/lib/llib-lrt \
1739 /usr/lib/llib-lrt.ln \
1740 /usr/lib/llib-lrtld_db \
1741 /usr/lib/llib-lrtld_db.ln \
1742 /usr/lib/llib-lscf \
1743 /usr/lib/llib-lscf.ln \
1744 /usr/lib/llib-lsec \
1745 /usr/lib/llib-lsec.ln \
1746 /usr/lib/llib-lsecdb \
1747 /usr/lib/llib-lsecdb.ln \
1748 /usr/lib/llib-lsendfile \
1749 /usr/lib/llib-lsendfile.ln \
1750 /usr/lib/llib-lsocket \
1751 /usr/lib/llib-lsocket.ln \
1752 /usr/lib/llib-lsysevent \
1753 /usr/lib/llib-lsysevent.ln \
1754 /usr/lib/llib-ltermcap \
1755 /usr/lib/llib-ltermcap.ln \
1756 /usr/lib/llib-ltermlib \
1757 /usr/lib/llib-ltermlib.ln \
1758 /usr/lib/llib-lthread \
1759 /usr/lib/llib-lthread.ln \
1760 /usr/lib/llib-lthread_db \
1761 /usr/lib/llib-lthread_db.ln \
1762 /usr/lib/llib-ltsnet \
1763 /usr/lib/llib-ltsnet.ln \
1764 /usr/lib/llib-ltsol \
1765 /usr/lib/llib-ltsol.ln \
1766 /usr/lib/llib-lumem \
1767 /usr/lib/llib-lumem.ln \
1768 /usr/lib/llib-luuid \
1769 /usr/lib/llib-luuid.ln \
1770 /usr/lib/llib-lxnet \
1771 /usr/lib/llib-lxnet.ln \
1772 /usr/lib/llib-lzfs \
1773 /usr/lib/llib-lzfs.ln \
1774 /usr/lib/llib-lzfs_core \
1775 /usr/lib/llib-lzfs_core.ln \
1776 /usr/lib/nss_compat.so.1 \
1777 /usr/lib/nss_dns.so.1 \
1778 /usr/lib/nss_files.so.1 \

new/usr/src/Targetdirs 28

1779 /usr/lib/nss_nis.so.1 \
1780 /usr/lib/nss_user.so.1 \
1781 /usr/lib/fm/libfmevent.so \
1782 /usr/lib/fm/libfmevent.so.1 \
1783 /usr/lib/fm/llib-lfmevent \
1784 /usr/lib/fm/llib-lfmevent.ln

1786 sparcv9_SYM.USRLIB64=

1788 amd64_SYM.USRLIB64= \
1789 /usr/lib/amd64/libfdisk.so \
1790 /usr/lib/amd64/libfdisk.so.1 \
1791 /usr/lib/amd64/llib-lfdisk.ln

1794 SYM.USRLIB64= \
1795 $($(MACH64)_SYM.USRLIB64) \
1796 /lib/$(MACH64)/libposix4.so \
1797 /lib/$(MACH64)/libposix4.so.1 \
1798 /lib/$(MACH64)/llib-lposix4.ln \
1799 /lib/$(MACH64)/libthread_db.so \
1800 /lib/$(MACH64)/libthread_db.so.1 \
1801 /usr/lib/$(MACH64)/ld.so.1 \
1802 /usr/lib/$(MACH64)/libadm.so \
1803 /usr/lib/$(MACH64)/libadm.so.1 \
1804 /usr/lib/$(MACH64)/libaio.so \
1805 /usr/lib/$(MACH64)/libaio.so.1 \
1806 /usr/lib/$(MACH64)/libavl.so \
1807 /usr/lib/$(MACH64)/libavl.so.1 \
1808 /usr/lib/$(MACH64)/libbsm.so \
1809 /usr/lib/$(MACH64)/libbsm.so.1 \
1810 /usr/lib/$(MACH64)/libc.so \
1811 /usr/lib/$(MACH64)/libc.so.1 \
1812 /usr/lib/$(MACH64)/libc_db.so \
1813 /usr/lib/$(MACH64)/libc_db.so.1 \
1814 /usr/lib/$(MACH64)/libcmdutils.so \
1815 /usr/lib/$(MACH64)/libcmdutils.so.1 \
1816 /usr/lib/$(MACH64)/libcontract.so \
1817 /usr/lib/$(MACH64)/libcontract.so.1 \
1818 /usr/lib/$(MACH64)/libctf.so \
1819 /usr/lib/$(MACH64)/libctf.so.1 \
1820 /usr/lib/$(MACH64)/libcurses.so \
1821 /usr/lib/$(MACH64)/libcurses.so.1 \
1822 /usr/lib/$(MACH64)/libdevice.so \
1823 /usr/lib/$(MACH64)/libdevice.so.1 \
1824 /usr/lib/$(MACH64)/libdevid.so \
1825 /usr/lib/$(MACH64)/libdevid.so.1 \
1826 /usr/lib/$(MACH64)/libdevinfo.so \
1827 /usr/lib/$(MACH64)/libdevinfo.so.1 \
1828 /usr/lib/$(MACH64)/libdhcputil.so \
1829 /usr/lib/$(MACH64)/libdhcputil.so.1 \
1830 /usr/lib/$(MACH64)/libdl.so \
1831 /usr/lib/$(MACH64)/libdl.so.1 \
1832 /usr/lib/$(MACH64)/libdlpi.so \
1833 /usr/lib/$(MACH64)/libdlpi.so.1 \
1834 /usr/lib/$(MACH64)/libdoor.so \
1835 /usr/lib/$(MACH64)/libdoor.so.1 \
1836 /usr/lib/$(MACH64)/libefi.so \
1837 /usr/lib/$(MACH64)/libefi.so.1 \
1838 /usr/lib/$(MACH64)/libelf.so \
1839 /usr/lib/$(MACH64)/libelf.so.1 \
1840 /usr/lib/$(MACH64)/libgen.so \
1841 /usr/lib/$(MACH64)/libgen.so.1 \
1842 /usr/lib/$(MACH64)/libinetutil.so \
1843 /usr/lib/$(MACH64)/libinetutil.so.1 \
1844 /usr/lib/$(MACH64)/libintl.so \

new/usr/src/Targetdirs 29

1845 /usr/lib/$(MACH64)/libintl.so.1 \
1846 /usr/lib/$(MACH64)/libkstat.so \
1847 /usr/lib/$(MACH64)/libkstat.so.1 \
1848 /usr/lib/$(MACH64)/liblddbg.so.4 \
1849 /usr/lib/$(MACH64)/libm.so.1 \
1850 /usr/lib/$(MACH64)/libm.so.2 \
1851 /usr/lib/$(MACH64)/libm.so \
1852 /usr/lib/$(MACH64)/libmd.so \
1853 /usr/lib/$(MACH64)/libmd.so.1 \
1854 /usr/lib/$(MACH64)/libmd5.so \
1855 /usr/lib/$(MACH64)/libmd5.so.1 \
1856 /usr/lib/$(MACH64)/libmp.so \
1857 /usr/lib/$(MACH64)/libmp.so.2 \
1858 /usr/lib/$(MACH64)/libmvec.so.1 \
1859 /usr/lib/$(MACH64)/libmvec.so \
1860 /usr/lib/$(MACH64)/libnsl.so \
1861 /usr/lib/$(MACH64)/libnsl.so.1 \
1862 /usr/lib/$(MACH64)/libnvpair.so \
1863 /usr/lib/$(MACH64)/libnvpair.so.1 \
1864 /usr/lib/$(MACH64)/libpam.so \
1865 /usr/lib/$(MACH64)/libpam.so.1 \
1866 /usr/lib/$(MACH64)/libposix4.so \
1867 /usr/lib/$(MACH64)/libposix4.so.1 \
1868 /usr/lib/$(MACH64)/libproc.so \
1869 /usr/lib/$(MACH64)/libproc.so.1 \
1870 /usr/lib/$(MACH64)/libpthread.so \
1871 /usr/lib/$(MACH64)/libpthread.so.1 \
1872 /usr/lib/$(MACH64)/librcm.so \
1873 /usr/lib/$(MACH64)/librcm.so.1 \
1874 /usr/lib/$(MACH64)/libresolv.so \
1875 /usr/lib/$(MACH64)/libresolv.so.2 \
1876 /usr/lib/$(MACH64)/librestart.so \
1877 /usr/lib/$(MACH64)/librestart.so.1 \
1878 /usr/lib/$(MACH64)/librpcsvc.so \
1879 /usr/lib/$(MACH64)/librpcsvc.so.1 \
1880 /usr/lib/$(MACH64)/librt.so \
1881 /usr/lib/$(MACH64)/librt.so.1 \
1882 /usr/lib/$(MACH64)/librtld.so.1 \
1883 /usr/lib/$(MACH64)/librtld_db.so \
1884 /usr/lib/$(MACH64)/librtld_db.so.1 \
1885 /usr/lib/$(MACH64)/libscf.so \
1886 /usr/lib/$(MACH64)/libscf.so.1 \
1887 /usr/lib/$(MACH64)/libsec.so \
1888 /usr/lib/$(MACH64)/libsec.so.1 \
1889 /usr/lib/$(MACH64)/libsecdb.so \
1890 /usr/lib/$(MACH64)/libsecdb.so.1 \
1891 /usr/lib/$(MACH64)/libsendfile.so \
1892 /usr/lib/$(MACH64)/libsendfile.so.1 \
1893 /usr/lib/$(MACH64)/libsocket.so \
1894 /usr/lib/$(MACH64)/libsocket.so.1 \
1895 /usr/lib/$(MACH64)/libsysevent.so \
1896 /usr/lib/$(MACH64)/libsysevent.so.1 \
1897 /usr/lib/$(MACH64)/libtermcap.so \
1898 /usr/lib/$(MACH64)/libtermcap.so.1 \
1899 /usr/lib/$(MACH64)/libtermlib.so \
1900 /usr/lib/$(MACH64)/libtermlib.so.1 \
1901 /usr/lib/$(MACH64)/libthread.so \
1902 /usr/lib/$(MACH64)/libthread.so.1 \
1903 /usr/lib/$(MACH64)/libthread_db.so \
1904 /usr/lib/$(MACH64)/libthread_db.so.1 \
1905 /usr/lib/$(MACH64)/libtsnet.so \
1906 /usr/lib/$(MACH64)/libtsnet.so.1 \
1907 /usr/lib/$(MACH64)/libtsol.so \
1908 /usr/lib/$(MACH64)/libtsol.so.2 \
1909 /usr/lib/$(MACH64)/libumem.so \
1910 /usr/lib/$(MACH64)/libumem.so.1 \

new/usr/src/Targetdirs 30

1911 /usr/lib/$(MACH64)/libuuid.so \
1912 /usr/lib/$(MACH64)/libuuid.so.1 \
1913 /usr/lib/$(MACH64)/libuutil.so \
1914 /usr/lib/$(MACH64)/libuutil.so.1 \
1915 /usr/lib/$(MACH64)/libw.so \
1916 /usr/lib/$(MACH64)/libw.so.1 \
1917 /usr/lib/$(MACH64)/libxnet.so \
1918 /usr/lib/$(MACH64)/libxnet.so.1 \
1919 /usr/lib/$(MACH64)/libzfs.so \
1920 /usr/lib/$(MACH64)/libzfs.so.1 \
1921 /usr/lib/$(MACH64)/libzfs_core.so \
1922 /usr/lib/$(MACH64)/libzfs_core.so.1 \
1923 /usr/lib/$(MACH64)/llib-ladm.ln \
1924 /usr/lib/$(MACH64)/llib-laio.ln \
1925 /usr/lib/$(MACH64)/llib-lavl.ln \
1926 /usr/lib/$(MACH64)/llib-lbsm.ln \
1927 /usr/lib/$(MACH64)/llib-lc.ln \
1928 /usr/lib/$(MACH64)/llib-lcmdutils.ln \
1929 /usr/lib/$(MACH64)/llib-lcontract.ln \
1930 /usr/lib/$(MACH64)/llib-lctf.ln \
1931 /usr/lib/$(MACH64)/llib-lcurses.ln \
1932 /usr/lib/$(MACH64)/llib-ldevice.ln \
1933 /usr/lib/$(MACH64)/llib-ldevid.ln \
1934 /usr/lib/$(MACH64)/llib-ldevinfo.ln \
1935 /usr/lib/$(MACH64)/llib-ldhcputil.ln \
1936 /usr/lib/$(MACH64)/llib-ldl.ln \
1937 /usr/lib/$(MACH64)/llib-ldoor.ln \
1938 /usr/lib/$(MACH64)/llib-lefi.ln \
1939 /usr/lib/$(MACH64)/llib-lelf.ln \
1940 /usr/lib/$(MACH64)/llib-lgen.ln \
1941 /usr/lib/$(MACH64)/llib-linetutil.ln \
1942 /usr/lib/$(MACH64)/llib-lintl.ln \
1943 /usr/lib/$(MACH64)/llib-lkstat.ln \
1944 /usr/lib/$(MACH64)/llib-lm.ln \
1945 /usr/lib/$(MACH64)/llib-lmd5.ln \
1946 /usr/lib/$(MACH64)/llib-lnsl.ln \
1947 /usr/lib/$(MACH64)/llib-lnvpair.ln \
1948 /usr/lib/$(MACH64)/llib-lpam.ln \
1949 /usr/lib/$(MACH64)/llib-lposix4.ln \
1950 /usr/lib/$(MACH64)/llib-lpthread.ln \
1951 /usr/lib/$(MACH64)/llib-lresolv.ln \
1952 /usr/lib/$(MACH64)/llib-lrpcsvc.ln \
1953 /usr/lib/$(MACH64)/llib-lrt.ln \
1954 /usr/lib/$(MACH64)/llib-lrtld_db.ln \
1955 /usr/lib/$(MACH64)/llib-lscf.ln \
1956 /usr/lib/$(MACH64)/llib-lsec.ln \
1957 /usr/lib/$(MACH64)/llib-lsecdb.ln \
1958 /usr/lib/$(MACH64)/llib-lsendfile.ln \
1959 /usr/lib/$(MACH64)/llib-lsocket.ln \
1960 /usr/lib/$(MACH64)/llib-lsysevent.ln \
1961 /usr/lib/$(MACH64)/llib-ltermcap.ln \
1962 /usr/lib/$(MACH64)/llib-ltermlib.ln \
1963 /usr/lib/$(MACH64)/llib-lthread.ln \
1964 /usr/lib/$(MACH64)/llib-lthread_db.ln \
1965 /usr/lib/$(MACH64)/llib-ltsnet.ln \
1966 /usr/lib/$(MACH64)/llib-ltsol.ln \
1967 /usr/lib/$(MACH64)/llib-lumem.ln \
1968 /usr/lib/$(MACH64)/llib-luuid.ln \
1969 /usr/lib/$(MACH64)/llib-lxnet.ln \
1970 /usr/lib/$(MACH64)/llib-lzfs.ln \
1971 /usr/lib/$(MACH64)/llib-lzfs_core.ln \
1972 /usr/lib/$(MACH64)/nss_compat.so.1 \
1973 /usr/lib/$(MACH64)/nss_dns.so.1 \
1974 /usr/lib/$(MACH64)/nss_files.so.1 \
1975 /usr/lib/$(MACH64)/nss_nis.so.1 \
1976 /usr/lib/$(MACH64)/nss_user.so.1 \

new/usr/src/Targetdirs 31

1977 /usr/lib/fm/$(MACH64)/libfmevent.so \
1978 /usr/lib/fm/$(MACH64)/libfmevent.so.1 \
1979 /usr/lib/fm/$(MACH64)/llib-lfmevent.ln

1981 #
1982 # usr/src/Makefile uses INS.dir for any member of ROOTDIRS, the fact
1983 # these are symlinks to files has no bearing on this.
1984 #
1985 $(FILELINKS:%=$(ROOT)%):= \
1986 INS.dir= -$(RM) $@; $(SYMLINK) $(REALPATH) $@

new/usr/src/lib/Makefile 1

**
 13627 Sun May 4 03:04:43 2014
new/usr/src/lib/Makefile
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 # Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012 by Delphix. All rights reserved.
25 # Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 # Copyright (c) 2013 Gary Mills

28 include ../Makefile.master

30 # Note that libcurses installs commands along with its library.
31 # This is a minor bug which probably should be fixed.
32 # Note also that a few extra libraries are kept in cmd source.
33 #
34 # Certain libraries are linked with, hence depend on, other libraries.
35 #
36 # Although we have historically used .WAIT to express dependencies, it
37 # reduces the amount of parallelism and thus lengthens the time it
38 # takes to build the libraries. Thus, we now require that any new
39 # libraries explicitly call out their dependencies. Eventually, all
40 # the library dependencies will be called out explicitly. See
41 # "Library interdependencies" near the end of this file.
42 #
43 # Aside from explicit dependencies (and legacy .WAITs), all libraries
44 # are built in parallel.
45 #
46 .PARALLEL:

48 SUBDIRS= \
49 common .WAIT \
50 ../cmd/sgs/libconv \
51 ../cmd/sgs/libdl .WAIT

53 SUBDIRS += \
54 libc .WAIT \
55 ../cmd/sgs/libelf .WAIT \
56 c_synonyms \
57 libmd \
58 libmd5 \
59 librsm \
60 libmp .WAIT \
61 libnsl \
62 libsecdb .WAIT \

new/usr/src/lib/Makefile 2

63 librpcsvc \
64 libsocket .WAIT \
65 libsctp \
66 libsip \
67 libcommputil \
68 libresolv \
69 libresolv2 .WAIT \
70 libw .WAIT \
71 libintl .WAIT \
72 ../cmd/sgs/librtld_db \
73 libaio \
74 libast \
75 libdll \
76 libcmd \
77 libshell \
78 libsum \
79 librt \
80 libadm \
81 libctf \
82 libdtrace \
83 libdtrace_jni \
84 libcurses \
85 libtermcap \
86 libgen \
87 libgss \
88 libpam \
89 libuuid \
90 libthread \
91 libpthread .WAIT \
92 libslp \
93 libbsdmalloc \
94 libdoor \
95 libdevinfo \
96 libdladm \
97 libdlpi \
98 libeti \
99 libcrypt \
100 libdns_sd \
101 libefi \
102 libfstyp \
103 libwanboot \
104 libwanbootutil \
105 libcryptoutil \
106 libinetutil \
107 libipadm \
108 libipd \
109 libipmp \
110 libiscsit \
111 libkmf \
112 libkstat \
113 libkvm \
114 liblm \
115 libmalloc \
116 libmapmalloc \
117 libmtmalloc \
118 libnls \
119 libnwam \
120 libsmbios \
121 libtecla \
122 libumem \
123 libnvpair .WAIT \
124 libexacct \
125 libsasl \
126 libldap5 \
127 libsldap .WAIT \
128 libbsm \

new/usr/src/lib/Makefile 3

129 libsys \
130 libsysevent \
131 libnisdb \
132 libpool \
133 libpp \
134 libproc \
135 libproject \
136 libsendfile \
137 nametoaddr \
138 ncad_addr \
139 hbaapi \
140 smhba \
141 sun_fc \
142 sun_sas \
143 gss_mechs/mech_krb5 .WAIT \
144 libkrb5 .WAIT \
145 krb5 .WAIT \
146 libsmbfs \
147 libfcoe \
148 libsrpt \
149 libstmf \
150 libstmfproxy \
151 libnsctl \
152 libunistat \
153 libdscfg \
154 librdc \
155 libinstzones \
156 libpkg \
157 libpcidb \
158 libm1 \
159 libm \
160 libmvec

157 libpcidb

163 SUBDIRS += \
164 passwdutil \
165 pam_modules \
166 crypt_modules \
167 libadt_jni \
168 abi \
169 auditd_plugins \
170 libvolmgt \
171 libdevice \
172 libdevid \
173 libdhcpsvc \
174 libc_db \
175 libndmp \
176 libsec \
177 libtnfprobe \
178 libtnf \
179 libtnfctl \
180 libdhcpagent \
181 libdhcpdu \
182 libdhcputil \
183 libxnet \
184 libipsecutil \
185 nsswitch \
186 print \
187 libuutil \
188 libscf \
189 libinetsvc \
190 librestart \
191 libsched \
192 libelfsign \
193 pkcs11 .WAIT \

new/usr/src/lib/Makefile 4

194 libpctx .WAIT \
195 libcpc \
196 getloginx \
197 watchmalloc \
198 extendedFILE \
199 madv \
200 mpss \
201 libdisasm \
202 libwrap \
203 libxcurses \
204 libxcurses2 \
205 libbrand .WAIT \
206 libzonecfg \
207 libzoneinfo \
208 libzonestat \
209 libtsnet \
210 libtsol \
211 gss_mechs/mech_spnego \
212 gss_mechs/mech_dummy \
213 gss_mechs/mech_dh \
214 rpcsec_gss \
215 libraidcfg .WAIT \
216 librcm .WAIT \
217 libcfgadm .WAIT \
218 libpicl .WAIT \
219 libpicltree .WAIT \
220 raidcfg_plugins \
221 cfgadm_plugins \
222 libmail \
223 lvm \
224 libsmedia \
225 libipp \
226 libdiskmgt \
227 liblgrp \
228 libfsmgt \
229 fm \
230 libavl \
231 libcmdutils \
232 libcontract \
233 ../cmd/sendmail/libmilter \
234 sasl_plugins \
235 udapl \
236 libzpool \
237 libzfs_core \
238 libzfs \
239 libbe \
240 pylibbe \
241 libzfs_jni \
242 pyzfs \
243 pysolaris \
244 libmapid \
245 brand \
246 policykit \
247 hal \
248 libshare \
249 libsqlite \
250 libidmap \
251 libadutils \
252 libipmi \
253 libexacct/demo \
254 libvrrpadm \
255 libvscan \
256 libgrubmgmt \
257 smbsrv \
258 libilb \
259 scsi \

new/usr/src/lib/Makefile 5

260 libima \
261 libsun_ima \
262 mpapi \
263 librstp \
264 libreparse \
265 libhotplug \
266 libfruutils .WAIT \
267 libfru \
268 $($(MACH)_SUBDIRS)

270 i386_SUBDIRS= \
271 libntfs \
272 libparted \
273 libfdisk \
274 libsaveargs

276 sparc_SUBDIRS= .WAIT \
277 efcode \
278 libds \
279 libdscp \
280 libprtdiag .WAIT \
281 libprtdiag_psr \
282 libpri \
283 librsc \
284 storage \
285 libpcp \
286 libtsalarm \
287 libv12n

289 FM_sparc_DEPLIBS= libpri

291 fm: \
292 libexacct \
293 libipmi \
294 libzfs \
295 scsi \
296 $(FM_$(MACH)_DEPLIBS)

298 #
299 # Create a special version of $(SUBDIRS) with no .WAIT’s, for use with the
300 # clean and clobber targets (for more information, see those targets, below).
301 #
302 NOWAIT_SUBDIRS= $(SUBDIRS:.WAIT=)

304 DCSUBDIRS = \
305 lvm

307 MSGSUBDIRS= \
308 abi \
309 auditd_plugins \
310 brand \
311 cfgadm_plugins \
312 gss_mechs/mech_dh \
313 gss_mechs/mech_krb5 \
314 krb5 \
315 libast \
316 libbsm \
317 libc \
318 libcfgadm \
319 libcmd \
320 libcontract \
321 libcurses \
322 libdhcpsvc \
323 libdhcputil \
324 libipsecutil \
325 libdiskmgt \

new/usr/src/lib/Makefile 6

326 libdladm \
327 libdll \
328 libgrubmgmt \
329 libgss \
330 libidmap \
331 libipmp \
332 libilb \
333 libinetutil \
334 libinstzones \
335 libipadm \
336 libnsl \
337 libnwam \
338 libpam \
339 libpicl \
340 libpool \
341 libpkg \
342 libpp \
343 libscf \
344 libsasl \
345 libldap5 \
346 libsecdb \
347 libshare \
348 libshell \
349 libsldap \
350 libslp \
351 libsmbfs \
352 libsmedia \
353 libsum \
354 libtsol \
355 libuutil \
356 libvrrpadm \
357 libvscan \
358 libwanboot \
359 libwanbootutil \
360 libzfs \
361 libzonecfg \
362 lvm \
363 madv \
364 mpss \
365 pam_modules \
366 pyzfs \
367 pysolaris \
368 rpcsec_gss \
369 libreparse
370 MSGSUBDIRS += \
371 $($(MACH)_MSGSUBDIRS)

373 sparc_MSGSUBDIRS= \
374 libprtdiag \
375 libprtdiag_psr

377 i386_MSGSUBDIRS= libfdisk

379 HDRSUBDIRS= \
380 auditd_plugins \
381 libast \
382 libbrand \
383 libbsm \
384 libc \
385 libcmd \
386 libcmdutils \
387 libcommputil \
388 libcontract \
389 libcpc \
390 libctf \
391 libcurses \

new/usr/src/lib/Makefile 7

392 libtermcap \
393 libcryptoutil \
394 libdevice \
395 libdevid \
396 libdevinfo \
397 libdiskmgt \
398 libdladm \
399 libdll \
400 libdlpi \
401 libdhcpagent \
402 libdhcpsvc \
403 libdhcputil \
404 libdisasm \
405 libdns_sd \
406 libdscfg \
407 libdtrace \
408 libdtrace_jni \
409 libelfsign \
410 libeti \
411 libfru \
412 libfstyp \
413 libgen \
414 libipadm \
415 libipd \
416 libipsecutil \
417 libinetsvc \
418 libinetutil \
419 libinstzones \
420 libipmi \
421 libipmp \
422 libipp \
423 libiscsit \
424 libkstat \
425 libkvm \
426 libmail \
427 libmd \
428 libmtmalloc \
429 libndmp \
430 libnvpair \
431 libnsctl \
432 libnsl \
433 libnwam \
434 libpam \
435 libpcidb \
436 libpctx \
437 libpicl \
438 libpicltree \
439 libpool \
440 libpp \
441 libproc \
442 libraidcfg \
443 librcm \
444 librdc \
445 libscf \
446 libsip \
447 libsmbios \
448 librestart \
449 librpcsvc \
450 librsm \
451 librstp \
452 libsasl \
453 libsec \
454 libshell \
455 libslp \
456 libsmedia \
457 libsocket \

new/usr/src/lib/Makefile 8

458 libsqlite \
459 libfcoe \
460 libsrpt \
461 libstmf \
462 libstmfproxy \
463 libsum \
464 libsysevent \
465 libtecla \
466 libtnf \
467 libtnfctl \
468 libtnfprobe \
469 libtsnet \
470 libtsol \
471 libvrrpadm \
472 libvolmgt \
473 libumem \
474 libunistat \
475 libuutil \
476 libwanboot \
477 libwanbootutil \
478 libwrap \
479 libxcurses2 \
480 libzfs \
481 libzfs_core \
482 libzfs_jni \
483 libzoneinfo \
484 libzonestat \
485 hal \
486 policykit \
487 lvm \
488 pkcs11 \
489 passwdutil \
490 ../cmd/sendmail/libmilter \
491 fm \
492 udapl \
493 libmapid \
494 libkrb5 \
495 libsmbfs \
496 libshare \
497 libidmap \
498 libvscan \
499 libgrubmgmt \
500 smbsrv \
501 libilb \
502 scsi \
503 hbaapi \
504 smhba \
505 libima \
506 libsun_ima \
507 mpapi \
508 libreparse \
509 $($(MACH)_HDRSUBDIRS)

511 i386_HDRSUBDIRS= \
512 libparted \
513 libfdisk \
514 libsaveargs

516 sparc_HDRSUBDIRS= \
517 libds \
518 libdscp \
519 libpri \
520 libv12n \
521 storage

523 all := TARGET= all

new/usr/src/lib/Makefile 9

524 check := TARGET= check
525 clean := TARGET= clean
526 clobber := TARGET= clobber
527 install := TARGET= install
528 install_h := TARGET= install_h
529 lint := TARGET= lint
530 _dc := TARGET= _dc
531 _msg := TARGET= _msg

533 .KEEP_STATE:

535 #
536 # For the all and install targets, we clearly must respect library
537 # dependencies so that the libraries link correctly. However, for
538 # the remaining targets (check, clean, clobber, install_h, lint, _dc
539 # and _msg), libraries do not have any dependencies on one another
540 # and thus respecting dependencies just slows down the build.
541 # As such, for these rules, we use pattern replacement to explicitly
542 # avoid triggering the dependency information. Note that for clean,
543 # clobber and lint, we must use $(NOWAIT_SUBDIRS) rather than
544 # $(SUBDIRS), to prevent ‘.WAIT’ from expanding to ‘.WAIT-nodepend’.
545 #

547 all: $(SUBDIRS)

549 install: $(SUBDIRS) .WAIT install_extra

551 # extra libraries kept in other source areas
552 install_extra:
553 @cd ../cmd/sgs; pwd; $(MAKE) install_lib
554 @pwd

556 clean clobber lint: $(NOWAIT_SUBDIRS:%=%-nodepend)

558 install_h check: $(HDRSUBDIRS:%=%-nodepend)

560 _msg: $(MSGSUBDIRS:%=%-nodepend) .WAIT _dc

562 _dc: $(DCSUBDIRS:%=%-nodepend)

564 #
565 # Library interdependencies are called out explicitly here
566 #
567 auditd_plugins: libbsm libnsl libsecdb
568 gss_mechs/mech_krb5: libgss libnsl libsocket libresolv pkcs11
569 libadt_jni: libbsm
570 libast: libsocket libm
571 libadutils: libldap5 libresolv libsocket libnsl
572 nsswitch: libadutils libidmap
573 libbe: libzfs
574 libbsm: libtsol
575 libcmd: libsum libast libsocket libnsl
576 libcmdutils: libavl
577 libcontract: libnvpair
578 libdevid: libdevinfo
579 libdevinfo: libnvpair libsec
580 libdhcpagent: libsocket libdhcputil libuuid libdlpi libcontract
581 libdhcpsvc: libinetutil
582 libdhcputil: libnsl libgen libinetutil libdlpi
583 libdladm: libdevinfo libinetutil libsocket libscf librcm libnvpair \
584 libexacct libnsl libkstat libcurses
585 libdll: libast
586 libdlpi: libinetutil libdladm
587 libds: libsysevent
588 libdscfg: libnsctl libunistat libsocket libnsl
589 libdtrace: libproc libgen libctf

new/usr/src/lib/Makefile 10

590 libdtrace_jni: libuutil libdtrace
591 libefi: libuuid
592 libfstyp: libnvpair
593 libelfsign: libcryptoutil libkmf
594 libidmap: libadutils libldap5 libavl libsldap libuutil
595 libipadm: libnsl libinetutil libsocket libdlpi libnvpair libdhcpagent \
596 libdladm libsecdb
597 libiscsit: libc libnvpair libstmf libuuid libnsl
598 libkmf: libcryptoutil pkcs11
599 libm: libc
600 libm1: libc libm
601 libmvec: libc libm
602 libnsl: libmd5
603 libmapid: libresolv
604 librdc: libsocket libnsl libnsctl libunistat libdscfg
605 libuuid: libdlpi
606 libinetutil: libsocket
607 libipsecutil: libtecla libsocket
608 libinstzones: libzonecfg libcontract
609 libpkg: libwanboot libscf libadm
610 libnwam: libscf
611 libsecdb: libnsl
612 libsasl: libgss libsocket pkcs11 libmd
613 sasl_plugins: pkcs11 libgss libsocket libsasl
614 libsctp: libsocket
615 libshell: libast libcmd libdll libsocket libsecdb libm
616 libsip: libmd5
617 libsmbfs: libcmdutils libsocket libnsl libkrb5
618 libsocket: libnsl
619 libstmfproxy: libstmf libsocket libnsl libpthread
620 libsum: libast
621 libsysevent: libsecdb
622 libldap5: libsasl libsocket libnsl libmd
623 libsldap: libldap5 libtsol libnsl libc libscf libresolv
624 libpool: libnvpair libexacct
625 libpp: libast
626 libzonecfg: libc libsocket libnsl libuuid libnvpair libsysevent libsec \
627 libbrand libpool libscf
628 libproc: ../cmd/sgs/librtld_db ../cmd/sgs/libelf libctf libsaveargs
629 libproject: libpool libproc libsecdb
630 libtermcap: libcurses
631 libtsnet: libnsl libtsol libsecdb
632 libwrap: libnsl libsocket
633 libwanboot: libnvpair libresolv libnsl libsocket libdevinfo libinetutil \
634 libdhcputil
635 libwanbootutil: libnsl
636 pam_modules: libproject passwdutil smbsrv
637 libscf: libuutil libmd libgen libsmbios libnsl
638 libinetsvc: libscf
639 librestart: libuutil libscf
640 libsaveargs: libdisasm
641 ../cmd/sgs/libdl: ../cmd/sgs/libconv
642 ../cmd/sgs/libelf: ../cmd/sgs/libconv
643 pkcs11: libcryptoutil
644 print: libldap5
645 udapl/udapl_tavor: udapl/libdat
646 libzfs: libdevid libgen libnvpair libuutil \
647 libadm libavl libefi libidmap libmd libm libzfs_core
643 libadm libavl libefi libidmap libmd libzfs_core libm
648 libzfs_core: libnvpair
649 libzfs_jni: libdiskmgt libnvpair libzfs
650 libzpool: libavl libumem libnvpair libcmdutils
651 libsec: libavl libidmap
652 brand: libc libsocket
653 libshare: libscf libzfs libuuid libfsmgt libsecdb libumem libsmbfs
654 libexacct/demo: libexacct libproject libsocket libnsl

new/usr/src/lib/Makefile 11

655 libtsalarm: libpcp
656 smbsrv: libsocket libnsl libmd libxnet libpthread librt \
657 libshare libidmap pkcs11 libsqlite libcryptoutil \
658 libreparse libcmdutils
659 libv12n: libds libuuid
660 libvrrpadm: libsocket libdladm libscf
661 libvscan: libscf
662 libfru: libfruutils
663 scsi: libnvpair libfru
664 mpapi: libpthread libdevinfo libsysevent libnvpair
665 sun_fc: libdevinfo libsysevent libnvpair
666 libsun_ima: libdevinfo libsysevent libnsl
667 sun_sas: libdevinfo libsysevent libnvpair libkstat libdevid
668 libgrubmgmt: libdevinfo libzfs libfstyp
669 pylibbe: libbe libzfs
670 pyzfs: libnvpair libzfs
671 pysolaris: libsec libidmap
672 libreparse: libnvpair
673 libhotplug: libnvpair
674 cfgadm_plugins: libhotplug
675 libilb: libsocket
676 libipmi: libm
677 libprtdiag: libm
678 libsqlite: libm
679 libstmf: libm
680 libvscan: libm

683 $(INTEL_BUILD)libdiskmgt:libfdisk

685 #
686 # The reason this rule checks for the existence of the
687 # Makefile is that some of the directories do not exist
688 # in certain situations (e.g., exportable source builds,
689 # OpenSolaris).
690 #
691 $(SUBDIRS): FRC
692 @if [-f $@/Makefile]; then \
693 cd $@; pwd; $(MAKE) $(TARGET); \
694 else \
695 true; \
696 fi

698 $(SUBDIRS:%=%-nodepend):
699 @if [-f $(@:%-nodepend=%)/Makefile]; then \
700 cd $(@:%-nodepend=%); pwd; $(MAKE) $(TARGET); \
701 else \
702 true; \
703 fi

705 FRC:

new/usr/src/lib/libm/Makefile.com 1

**
 19733 Sun May 4 03:04:45 2014
new/usr/src/lib/libm/Makefile.com
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 #

16 LIBRARY = libm.a
17 VERS = .2

19 LIBMDIR = $(SRC)/lib/libm

21 m9xsseOBJS_i386 = \
22 __fex_hdlr.o \
23 __fex_i386.o \
24 __fex_sse.o \
25 __fex_sym.o \
26 fex_log.o

28 m9xsseOBJS = $(m9xsseOBJS_$(TARGET_ARCH))

30 m9xOBJS_amd64 = \
31 __fex_sse.o \
32 feprec.o

34 m9xOBJS_sparc = \
35 lrint.o \
36 lrintf.o \
37 lrintl.o \
38 lround.o \
39 lroundf.o \
40 lroundl.o

42 m9xOBJS_i386 = \
43 __fex_sse.o \
44 feprec.o \
45 lrint.o \
46 lrintf.o \
47 lrintl.o \
48 lround.o \
49 lroundf.o \
50 lroundl.o

52 #
53 # lrint.o, lrintf.o, lrintl.o, lround.o, lroundf.o & lroundl.o are 32-bit only
54 #
55 m9xOBJS = \
56 $(m9xOBJS_$(TARGET_ARCH)) \
57 __fex_$(MACH).o \
58 __fex_hdlr.o \
59 __fex_sym.o \
60 fdim.o \
61 fdimf.o \
62 fdiml.o \

new/usr/src/lib/libm/Makefile.com 2

63 feexcept.o \
64 fenv.o \
65 feround.o \
66 fex_handler.o \
67 fex_log.o \
68 fma.o \
69 fmaf.o \
70 fmal.o \
71 fmax.o \
72 fmaxf.o \
73 fmaxl.o \
74 fmin.o \
75 fminf.o \
76 fminl.o \
77 frexp.o \
78 frexpf.o \
79 frexpl.o \
80 ldexp.o \
81 ldexpf.o \
82 ldexpl.o \
83 llrint.o \
84 llrintf.o \
85 llrintl.o \
86 llround.o \
87 llroundf.o \
88 llroundl.o \
89 modf.o \
90 modff.o \
91 modfl.o \
92 nan.o \
93 nanf.o \
94 nanl.o \
95 nearbyint.o \
96 nearbyintf.o \
97 nearbyintl.o \
98 nexttoward.o \
99 nexttowardf.o \
100 nexttowardl.o \
101 remquo.o \
102 remquof.o \
103 remquol.o \
104 round.o \
105 roundf.o \
106 roundl.o \
107 scalbln.o \
108 scalblnf.o \
109 scalblnl.o \
110 tgamma.o \
111 tgammaf.o \
112 tgammal.o \
113 trunc.o \
114 truncf.o \
115 truncl.o

117 OBJS_M9XSSE = $(m9xsseOBJS:%=pics/%)

119 COBJS_i386 = \
120 __libx_errno.o

122 COBJS_sparc = \
123 $(COBJS_i386) \
124 _TBL_atan.o \
125 _TBL_exp2.o \
126 _TBL_log.o \
127 _TBL_log2.o \
128 _TBL_tan.o \

new/usr/src/lib/libm/Makefile.com 3

129 __tan.o \
130 __tanf.o

132 #
133 # atan2pi.o and sincospi.o is for internal use only
134 #

136 COBJS_amd64 = \
137 _TBL_atan.o \
138 _TBL_exp2.o \
139 _TBL_log.o \
140 _TBL_log2.o \
141 __tan.o \
142 __tanf.o \
143 _TBL_tan.o \
144 copysign.o \
145 exp.o \
146 fabs.o \
147 fmod.o \
148 ilogb.o \
149 isnan.o \
150 nextafter.o \
151 remainder.o \
152 rint.o \
153 scalbn.o

155 COBJS_sparcv9 = $(COBJS_amd64)

157 COBJS = \
158 $(COBJS_$(TARGET_ARCH)) \
159 __cos.o \
160 __lgamma.o \
161 __rem_pio2.o \
162 __rem_pio2m.o \
163 __sin.o \
164 __sincos.o \
165 __xpg6.o \
166 _lib_version.o \
167 _SVID_error.o \
168 _TBL_ipio2.o \
169 _TBL_sin.o \
170 acos.o \
171 acosh.o \
172 asin.o \
173 asinh.o \
174 atan.o \
175 atan2.o \
176 atan2pi.o \
177 atanh.o \
178 cbrt.o \
179 ceil.o \
180 cos.o \
181 cosh.o \
182 erf.o \
183 exp10.o \
184 exp2.o \
185 expm1.o \
186 floor.o \
187 gamma.o \
188 gamma_r.o \
189 hypot.o \
190 j0.o \
191 j1.o \
192 jn.o \
193 lgamma.o \
194 lgamma_r.o \

new/usr/src/lib/libm/Makefile.com 4

195 log.o \
196 log10.o \
197 log1p.o \
198 log2.o \
199 logb.o \
200 matherr.o \
201 pow.o \
202 scalb.o \
203 signgam.o \
204 significand.o \
205 sin.o \
206 sincos.o \
207 sincospi.o \
208 sinh.o \
209 sqrt.o \
210 tan.o \
211 tanh.o

213 #
214 # LSARC/2003/658 adds isnanl
215 #
216 QOBJS_sparc = \
217 _TBL_atanl.o \
218 _TBL_expl.o \
219 _TBL_expm1l.o \
220 _TBL_logl.o \
221 finitel.o \
222 isnanl.o

224 QOBJS_sparcv9 = $(QOBJS_sparc)

226 QOBJS_amd64 = \
227 finitel.o \
228 isnanl.o

230 #
231 # atan2pil.o, ieee_funcl.o, rndintl.o, sinpil.o, sincospil.o
232 # are for internal use only
233 #
234 # LSARC/2003/279 adds the following:
235 # gammal.o 1
236 # gammal_r.o 1
237 # j0l.o 2
238 # j1l.o 2
239 # jnl.o 2
240 # lgammal_r.o 1
241 # scalbl.o 1
242 # significandl.o 1
243 #
244 QOBJS = \
245 $(QOBJS_$(TARGET_ARCH)) \
246 __cosl.o \
247 __lgammal.o \
248 __poly_libmq.o \
249 __rem_pio2l.o \
250 __sincosl.o \
251 __sinl.o \
252 __tanl.o \
253 _TBL_cosl.o \
254 _TBL_ipio2l.o \
255 _TBL_sinl.o \
256 _TBL_tanl.o \
257 acoshl.o \
258 acosl.o \
259 asinhl.o \
260 asinl.o \

new/usr/src/lib/libm/Makefile.com 5

261 atan2l.o \
262 atan2pil.o \
263 atanhl.o \
264 atanl.o \
265 cbrtl.o \
266 copysignl.o \
267 coshl.o \
268 cosl.o \
269 erfl.o \
270 exp10l.o \
271 exp2l.o \
272 expl.o \
273 expm1l.o \
274 fabsl.o \
275 floorl.o \
276 fmodl.o \
277 gammal.o \
278 gammal_r.o \
279 hypotl.o \
280 ieee_funcl.o \
281 ilogbl.o \
282 j0l.o \
283 j1l.o \
284 jnl.o \
285 lgammal.o \
286 lgammal_r.o \
287 log10l.o \
288 log1pl.o \
289 log2l.o \
290 logbl.o \
291 logl.o \
292 nextafterl.o \
293 powl.o \
294 remainderl.o \
295 rintl.o \
296 rndintl.o \
297 scalbl.o \
298 scalbnl.o \
299 signgaml.o \
300 significandl.o \
301 sincosl.o \
302 sincospil.o \
303 sinhl.o \
304 sinl.o \
305 sinpil.o \
306 sqrtl.o \
307 tanhl.o \
308 tanl.o

310 #
311 # LSARC/2003/658 adds isnanf
312 #
313 ROBJS_sparc = \
314 __cosf.o \
315 __sincosf.o \
316 __sinf.o \
317 isnanf.o

319 ROBJS_sparcv9 = $(ROBJS_sparc)

321 ROBJS_amd64 = \
322 isnanf.o \
323 __cosf.o \
324 __sincosf.o \
325 __sinf.o

new/usr/src/lib/libm/Makefile.com 6

327 #
328 # atan2pif.o, sincosf.o, sincospif.o are for internal use only
329 #
330 # LSARC/2003/279 adds the following:
331 # besself.o 6
332 # scalbf.o 1
333 # gammaf.o 1
334 # gammaf_r.o 1
335 # lgammaf_r.o 1
336 # significandf.o 1
337 #
338 ROBJS = \
339 $(ROBJS_$(TARGET_ARCH)) \
340 _TBL_r_atan_.o \
341 acosf.o \
342 acoshf.o \
343 asinf.o \
344 asinhf.o \
345 atan2f.o \
346 atan2pif.o \
347 atanf.o \
348 atanhf.o \
349 besself.o \
350 cbrtf.o \
351 copysignf.o \
352 cosf.o \
353 coshf.o \
354 erff.o \
355 exp10f.o \
356 exp2f.o \
357 expf.o \
358 expm1f.o \
359 fabsf.o \
360 floorf.o \
361 fmodf.o \
362 gammaf.o \
363 gammaf_r.o \
364 hypotf.o \
365 ilogbf.o \
366 lgammaf.o \
367 lgammaf_r.o \
368 log10f.o \
369 log1pf.o \
370 log2f.o \
371 logbf.o \
372 logf.o \
373 nextafterf.o \
374 powf.o \
375 remainderf.o \
376 rintf.o \
377 scalbf.o \
378 scalbnf.o \
379 signgamf.o \
380 significandf.o \
381 sinf.o \
382 sinhf.o \
383 sincosf.o \
384 sincospif.o \
385 sqrtf.o \
386 tanf.o \
387 tanhf.o

389 #
390 # LSARC/2003/658 adds isnanf/isnanl
391 #

new/usr/src/lib/libm/Makefile.com 7

393 SOBJS_sparc = \
394 copysign.o \
395 exp.o \
396 fabs.o \
397 fmod.o \
398 ilogb.o \
399 isnan.o \
400 nextafter.o \
401 remainder.o \
402 rint.o \
403 scalbn.o

405 SOBJS_i386 = \
406 __reduction.o \
407 finitef.o \
408 finitel.o \
409 isnanf.o \
410 isnanl.o \
411 $(SOBJS_sparc)

413 SOBJS_amd64 = \
414 __swapFLAGS.o
415 # _xtoll.o \
416 # _xtoull.o \

419 SOBJS = \
420 $(SOBJS_$(TARGET_ARCH))

422 complexOBJS = \
423 cabs.o \
424 cabsf.o \
425 cabsl.o \
426 cacos.o \
427 cacosf.o \
428 cacosh.o \
429 cacoshf.o \
430 cacoshl.o \
431 cacosl.o \
432 carg.o \
433 cargf.o \
434 cargl.o \
435 casin.o \
436 casinf.o \
437 casinh.o \
438 casinhf.o \
439 casinhl.o \
440 casinl.o \
441 catan.o \
442 catanf.o \
443 catanh.o \
444 catanhf.o \
445 catanhl.o \
446 catanl.o \
447 ccos.o \
448 ccosf.o \
449 ccosh.o \
450 ccoshf.o \
451 ccoshl.o \
452 ccosl.o \
453 cexp.o \
454 cexpf.o \
455 cexpl.o \
456 cimag.o \
457 cimagf.o \
458 cimagl.o \

new/usr/src/lib/libm/Makefile.com 8

459 clog.o \
460 clogf.o \
461 clogl.o \
462 conj.o \
463 conjf.o \
464 conjl.o \
465 cpow.o \
466 cpowf.o \
467 cpowl.o \
468 cproj.o \
469 cprojf.o \
470 cprojl.o \
471 creal.o \
472 crealf.o \
473 creall.o \
474 csin.o \
475 csinf.o \
476 csinh.o \
477 csinhf.o \
478 csinhl.o \
479 csinl.o \
480 csqrt.o \
481 csqrtf.o \
482 csqrtl.o \
483 ctan.o \
484 ctanf.o \
485 ctanh.o \
486 ctanhf.o \
487 ctanhl.o \
488 ctanl.o \
489 k_atan2.o \
490 k_atan2l.o \
491 k_cexp.o \
492 k_cexpl.o \
493 k_clog_r.o \
494 k_clog_rl.o

496 OBJECTS = $(COBJS) $(ROBJS) $(QOBJS) $(SOBJS) $(m9xOBJS) $(complexOBJS)

498 include $(SRC)/lib/Makefile.lib
499 include $(LIBMDIR)/Makefile.libm.com
500 include $(SRC)/lib/Makefile.rootfs

502 SRCDIR = ../common/
503 LIBS = $(DYNLIB) $(LINTLIB)

505 LINTERROFF = -erroff=E_FUNC_SET_NOT_USED
506 LINTERROFF += -erroff=E_FUNC_RET_ALWAYS_IGNOR2
507 LINTERROFF += -erroff=E_FUNC_RET_MAYBE_IGNORED2
508 LINTERROFF += -erroff=E_IMPL_CONV_RETURN
509 LINTERROFF += -erroff=E_NAME_MULTIPLY_DEF2
510 LINTFLAGS += $(LINTERROFF)
511 LINTFLAGS64 += $(LINTERROFF)
512 LINTFLAGS64 += -errchk=longptr64

514 CERRWARN += -_gcc=-Wno-switch
515 CERRWARN += -_gcc=-Wno-parentheses
516 CERRWARN += -_gcc=-Wno-unused-variable

518 #endif /* ! codereview */
519 CPPFLAGS += -DLIBM_BUILD

521 CFLAGS += $(C_BIGPICFLAGS)
522 CFLAGS64 += $(C_BIGPICFLAGS)

524 m9x_IL = $(LIBMDIR)/common/m9x/__fenv_$(TARGET_ARCH).il

new/usr/src/lib/libm/Makefile.com 9

526 SRCS_LD_i386_amd64 = \
527 ../common/LD/finitel.c \
528 ../common/LD/isnanl.c \
529 ../common/LD/nextafterl.c

531 SRCS_LD = \
532 $(SRCS_LD_i386_$(TARGET_ARCH)) \
533 ../common/LD/__cosl.c \
534 ../common/LD/__lgammal.c \
535 ../common/LD/__poly_libmq.c \
536 ../common/LD/__rem_pio2l.c \
537 ../common/LD/__sincosl.c \
538 ../common/LD/__sinl.c \
539 ../common/LD/__tanl.c \
540 ../common/LD/_TBL_cosl.c \
541 ../common/LD/_TBL_ipio2l.c \
542 ../common/LD/_TBL_sinl.c \
543 ../common/LD/_TBL_tanl.c \
544 ../common/LD/acoshl.c \
545 ../common/LD/asinhl.c \
546 ../common/LD/atan2pil.c \
547 ../common/LD/atanhl.c \
548 ../common/LD/cbrtl.c \
549 ../common/LD/coshl.c \
550 ../common/LD/cosl.c \
551 ../common/LD/erfl.c \
552 ../common/LD/gammal.c \
553 ../common/LD/gammal_r.c \
554 ../common/LD/hypotl.c \
555 ../common/LD/j0l.c \
556 ../common/LD/j1l.c \
557 ../common/LD/jnl.c \
558 ../common/LD/lgammal.c \
559 ../common/LD/lgammal_r.c \
560 ../common/LD/log1pl.c \
561 ../common/LD/logbl.c \
562 ../common/LD/scalbl.c \
563 ../common/LD/signgaml.c \
564 ../common/LD/significandl.c \
565 ../common/LD/sincosl.c \
566 ../common/LD/sincospil.c \
567 ../common/LD/sinhl.c \
568 ../common/LD/sinl.c \
569 ../common/LD/sinpil.c \
570 ../common/LD/tanhl.c \
571 ../common/LD/tanl.c

573 SRCS_LD_i386 = \
574 $(SRCS_LD)

576 SRCS_R_amd64 = \
577 ../common/R/__tanf.c \
578 ../common/R/isnanf.c \
579 ../common/R/__cosf.c \
580 ../common/R/__sincosf.c \
581 ../common/R/__sinf.c \
582 ../common/R/acosf.c \
583 ../common/R/asinf.c \
584 ../common/R/atan2f.c \
585 ../common/R/copysignf.c \
586 ../common/R/exp10f.c \
587 ../common/R/exp2f.c \
588 ../common/R/expm1f.c \
589 ../common/R/fabsf.c \
590 ../common/R/hypotf.c \

new/usr/src/lib/libm/Makefile.com 10

591 ../common/R/ilogbf.c \
592 ../common/R/log10f.c \
593 ../common/R/log2f.c \
594 ../common/R/nextafterf.c \
595 ../common/R/powf.c \
596 ../common/R/rintf.c \
597 ../common/R/scalbnf.c

599 # sparc + sparcv9
600 SRCS_R_sparc = \
601 ../common/R/__tanf.c \
602 ../common/R/__cosf.c \
603 ../common/R/__sincosf.c \
604 ../common/R/__sinf.c \
605 ../common/R/isnanf.c \
606 ../common/R/acosf.c \
607 ../common/R/asinf.c \
608 ../common/R/atan2f.c \
609 ../common/R/copysignf.c \
610 ../common/R/exp10f.c \
611 ../common/R/exp2f.c \
612 ../common/R/expm1f.c \
613 ../common/R/fabsf.c \
614 ../common/R/fmodf.c \
615 ../common/R/hypotf.c \
616 ../common/R/ilogbf.c \
617 ../common/R/log10f.c \
618 ../common/R/log2f.c \
619 ../common/R/nextafterf.c \
620 ../common/R/powf.c \
621 ../common/R/remainderf.c \
622 ../common/R/rintf.c \
623 ../common/R/scalbnf.c

625 SRCS_R = \
626 $(SRCS_R_$(MACH)) \
627 $(SRCS_R_$(TARGET_ARCH)) \
628 ../common/R/_TBL_r_atan_.c \
629 ../common/R/acoshf.c \
630 ../common/R/asinhf.c \
631 ../common/R/atan2pif.c \
632 ../common/R/atanf.c \
633 ../common/R/atanhf.c \
634 ../common/R/besself.c \
635 ../common/R/cbrtf.c \
636 ../common/R/cosf.c \
637 ../common/R/coshf.c \
638 ../common/R/erff.c \
639 ../common/R/expf.c \
640 ../common/R/floorf.c \
641 ../common/R/gammaf.c \
642 ../common/R/gammaf_r.c \
643 ../common/R/lgammaf.c \
644 ../common/R/lgammaf_r.c \
645 ../common/R/log1pf.c \
646 ../common/R/logbf.c \
647 ../common/R/logf.c \
648 ../common/R/scalbf.c \
649 ../common/R/signgamf.c \
650 ../common/R/significandf.c \
651 ../common/R/sinf.c \
652 ../common/R/sinhf.c \
653 ../common/R/sincosf.c \
654 ../common/R/sincospif.c \
655 ../common/R/sqrtf.c \
656 ../common/R/tanf.c \

new/usr/src/lib/libm/Makefile.com 11

657 ../common/R/tanhf.c

659 SRCS_Q = \
660 ../common/Q/_TBL_atanl.c \
661 ../common/Q/_TBL_expl.c \
662 ../common/Q/_TBL_expm1l.c \
663 ../common/Q/_TBL_logl.c \
664 ../common/Q/finitel.c \
665 ../common/Q/isnanl.c \
666 ../common/Q/__cosl.c \
667 ../common/Q/__lgammal.c \
668 ../common/Q/__poly_libmq.c \
669 ../common/Q/__rem_pio2l.c \
670 ../common/Q/__sincosl.c \
671 ../common/Q/__sinl.c \
672 ../common/Q/__tanl.c \
673 ../common/Q/_TBL_cosl.c \
674 ../common/Q/_TBL_ipio2l.c \
675 ../common/Q/_TBL_sinl.c \
676 ../common/Q/_TBL_tanl.c \
677 ../common/Q/acoshl.c \
678 ../common/Q/acosl.c \
679 ../common/Q/asinhl.c \
680 ../common/Q/asinl.c \
681 ../common/Q/atan2l.c \
682 ../common/Q/atan2pil.c \
683 ../common/Q/atanhl.c \
684 ../common/Q/atanl.c \
685 ../common/Q/cbrtl.c \
686 ../common/Q/copysignl.c \
687 ../common/Q/coshl.c \
688 ../common/Q/cosl.c \
689 ../common/Q/erfl.c \
690 ../common/Q/exp10l.c \
691 ../common/Q/exp2l.c \
692 ../common/Q/expl.c \
693 ../common/Q/expm1l.c \
694 ../common/Q/fabsl.c \
695 ../common/Q/floorl.c \
696 ../common/Q/fmodl.c \
697 ../common/Q/gammal.c \
698 ../common/Q/gammal_r.c \
699 ../common/Q/hypotl.c \
700 ../common/Q/ieee_funcl.c \
701 ../common/Q/ilogbl.c \
702 ../common/Q/j0l.c \
703 ../common/Q/j1l.c \
704 ../common/Q/jnl.c \
705 ../common/Q/lgammal.c \
706 ../common/Q/lgammal_r.c \
707 ../common/Q/log10l.c \
708 ../common/Q/log1pl.c \
709 ../common/Q/log2l.c \
710 ../common/Q/logbl.c \
711 ../common/Q/logl.c \
712 ../common/Q/nextafterl.c \
713 ../common/Q/powl.c \
714 ../common/Q/remainderl.c \
715 ../common/Q/rintl.c \
716 ../common/Q/rndintl.c \
717 ../common/Q/scalbl.c \
718 ../common/Q/scalbnl.c \
719 ../common/Q/signgaml.c \
720 ../common/Q/significandl.c \
721 ../common/Q/sincosl.c \
722 ../common/Q/sincospil.c \

new/usr/src/lib/libm/Makefile.com 12

723 ../common/Q/sinhl.c \
724 ../common/Q/sinl.c \
725 ../common/Q/sinpil.c \
726 ../common/Q/sqrtl.c \
727 ../common/Q/tanhl.c \
728 ../common/Q/tanl.c

730 SRCS_Q_sparc = \
731 $(SRCS_Q)

733 SRCS_complex = \
734 ../common/complex/cabs.c \
735 ../common/complex/cabsf.c \
736 ../common/complex/cabsl.c \
737 ../common/complex/cacos.c \
738 ../common/complex/cacosf.c \
739 ../common/complex/cacosh.c \
740 ../common/complex/cacoshf.c \
741 ../common/complex/cacoshl.c \
742 ../common/complex/cacosl.c \
743 ../common/complex/carg.c \
744 ../common/complex/cargf.c \
745 ../common/complex/cargl.c \
746 ../common/complex/casin.c \
747 ../common/complex/casinf.c \
748 ../common/complex/casinh.c \
749 ../common/complex/casinhf.c \
750 ../common/complex/casinhl.c \
751 ../common/complex/casinl.c \
752 ../common/complex/catan.c \
753 ../common/complex/catanf.c \
754 ../common/complex/catanh.c \
755 ../common/complex/catanhf.c \
756 ../common/complex/catanhl.c \
757 ../common/complex/catanl.c \
758 ../common/complex/ccos.c \
759 ../common/complex/ccosf.c \
760 ../common/complex/ccosh.c \
761 ../common/complex/ccoshf.c \
762 ../common/complex/ccoshl.c \
763 ../common/complex/ccosl.c \
764 ../common/complex/cexp.c \
765 ../common/complex/cexpf.c \
766 ../common/complex/cexpl.c \
767 ../common/complex/cimag.c \
768 ../common/complex/cimagf.c \
769 ../common/complex/cimagl.c \
770 ../common/complex/clog.c \
771 ../common/complex/clogf.c \
772 ../common/complex/clogl.c \
773 ../common/complex/conj.c \
774 ../common/complex/conjf.c \
775 ../common/complex/conjl.c \
776 ../common/complex/cpow.c \
777 ../common/complex/cpowf.c \
778 ../common/complex/cpowl.c \
779 ../common/complex/cproj.c \
780 ../common/complex/cprojf.c \
781 ../common/complex/cprojl.c \
782 ../common/complex/creal.c \
783 ../common/complex/crealf.c \
784 ../common/complex/creall.c \
785 ../common/complex/csin.c \
786 ../common/complex/csinf.c \
787 ../common/complex/csinh.c \
788 ../common/complex/csinhf.c \

new/usr/src/lib/libm/Makefile.com 13

789 ../common/complex/csinhl.c \
790 ../common/complex/csinl.c \
791 ../common/complex/csqrt.c \
792 ../common/complex/csqrtf.c \
793 ../common/complex/csqrtl.c \
794 ../common/complex/ctan.c \
795 ../common/complex/ctanf.c \
796 ../common/complex/ctanh.c \
797 ../common/complex/ctanhf.c \
798 ../common/complex/ctanhl.c \
799 ../common/complex/ctanl.c \
800 ../common/complex/k_atan2.c \
801 ../common/complex/k_atan2l.c \
802 ../common/complex/k_cexp.c \
803 ../common/complex/k_cexpl.c \
804 ../common/complex/k_clog_r.c \
805 ../common/complex/k_clog_rl.c

807 SRCS_m9x_i386 = \
808 ../common/m9x/__fex_sse.c \
809 ../common/m9x/feprec.c \
810 ../common/m9x/__fex_i386.c

812 SRCS_m9x_i386_i386 = \
813 ../common/m9x/lroundf.c

815 SRCS_m9x_i386_amd64 = \
816 ../common/m9x/llrint.c \
817 ../common/m9x/llrintf.c \
818 ../common/m9x/llrintl.c \
819 ../common/m9x/nexttowardl.c \
820 ../common/m9x/remquo.c \
821 ../common/m9x/remquof.c \
822 ../common/m9x/round.c \
823 ../common/m9x/roundl.c \
824 ../common/m9x/scalbln.c \
825 ../common/m9x/scalblnf.c \
826 ../common/m9x/scalblnl.c \
827 ../common/m9x/trunc.c \
828 ../common/m9x/truncl.c

830 # sparc
831 SRCS_m9x_sparc_sparc = \
832 ../common/m9x/lrint.c \
833 ../common/m9x/lrintf.c \
834 ../common/m9x/lrintl.c \
835 ../common/m9x/lround.c \
836 ../common/m9x/lroundf.c \
837 ../common/m9x/lroundl.c

839 SRCS_m9x_sparc = \
840 ../common/m9x/__fex_sparc.c \
841 ../common/m9x/llrint.c \
842 ../common/m9x/llrintf.c \
843 ../common/m9x/llrintl.c \
844 ../common/m9x/nexttowardl.c \
845 ../common/m9x/remquo.c \
846 ../common/m9x/remquof.c \
847 ../common/m9x/remquol.c \
848 ../common/m9x/round.c \
849 ../common/m9x/roundl.c \
850 ../common/m9x/scalbln.c \
851 ../common/m9x/scalblnf.c \
852 ../common/m9x/scalblnl.c \
853 ../common/m9x/trunc.c \
854 ../common/m9x/truncl.c

new/usr/src/lib/libm/Makefile.com 14

856 SRCS_m9x = \
857 $(SRCS_m9x_$(MACH)) \
858 $(SRCS_m9x_sparc_$(TARGET_ARCH)) \
859 $(SRCS_m9x_i386_$(TARGET_ARCH)) \
860 ../common/m9x/__fex_hdlr.c \
861 ../common/m9x/__fex_sym.c \
862 ../common/m9x/fdim.c \
863 ../common/m9x/fdimf.c \
864 ../common/m9x/fdiml.c \
865 ../common/m9x/feexcept.c \
866 ../common/m9x/fenv.c \
867 ../common/m9x/feround.c \
868 ../common/m9x/fex_handler.c \
869 ../common/m9x/fex_log.c \
870 ../common/m9x/fma.c \
871 ../common/m9x/fmaf.c \
872 ../common/m9x/fmal.c \
873 ../common/m9x/fmax.c \
874 ../common/m9x/fmaxf.c \
875 ../common/m9x/fmaxl.c \
876 ../common/m9x/fmin.c \
877 ../common/m9x/fminf.c \
878 ../common/m9x/fminl.c \
879 ../common/m9x/frexp.c \
880 ../common/m9x/frexpf.c \
881 ../common/m9x/frexpl.c \
882 ../common/m9x/ldexp.c \
883 ../common/m9x/ldexpf.c \
884 ../common/m9x/ldexpl.c \
885 ../common/m9x/llround.c \
886 ../common/m9x/llroundf.c \
887 ../common/m9x/llroundl.c \
888 ../common/m9x/modf.c \
889 ../common/m9x/modff.c \
890 ../common/m9x/modfl.c \
891 ../common/m9x/nan.c \
892 ../common/m9x/nanf.c \
893 ../common/m9x/nanl.c \
894 ../common/m9x/nearbyint.c \
895 ../common/m9x/nearbyintf.c \
896 ../common/m9x/nearbyintl.c \
897 ../common/m9x/nexttoward.c \
898 ../common/m9x/nexttowardf.c \
899 ../common/m9x/roundf.c \
900 ../common/m9x/tgamma.c \
901 ../common/m9x/tgammaf.c \
902 ../common/m9x/tgammal.c \
903 ../common/m9x/truncf.c

905 SRCS_C_sparc = \
906 ../common/C/__tan.c \
907 ../common/C/_TBL_atan.c \
908 ../common/C/_TBL_exp2.c \
909 ../common/C/_TBL_log.c \
910 ../common/C/_TBL_log2.c \
911 ../common/C/_TBL_tan.c \
912 ../common/C/acos.c \
913 ../common/C/asin.c \
914 ../common/C/atan.c \
915 ../common/C/atan2.c \
916 ../common/C/ceil.c \
917 ../common/C/cos.c \
918 ../common/C/exp.c \
919 ../common/C/exp10.c \
920 ../common/C/exp2.c \

new/usr/src/lib/libm/Makefile.com 15

921 ../common/C/expm1.c \
922 ../common/C/floor.c \
923 ../common/C/fmod.c \
924 ../common/C/hypot.c \
925 ../common/C/ilogb.c \
926 ../common/C/isnan.c \
927 ../common/C/log.c \
928 ../common/C/log10.c \
929 ../common/C/log2.c \
930 ../common/C/pow.c \
931 ../common/C/remainder.c \
932 ../common/C/rint.c \
933 ../common/C/scalbn.c \
934 ../common/C/sin.c \
935 ../common/C/sincos.c \
936 ../common/C/tan.c

938 SRCS_i386_i386 = \
939 ../common/C/__libx_errno.c

941 SRCS_sparc_sparc = \
942 $(SRCS_i386_i386)

944 SRCS_sparc_sparcv9 = \
945 ../common/C/copysign.c \
946 ../common/C/fabs.c \
947 ../common/C/nextafter.c

949 SRCS_i386_amd64 = \
950 ../common/C/_TBL_atan.c \
951 ../common/C/_TBL_exp2.c \
952 ../common/C/_TBL_log.c \
953 ../common/C/_TBL_log2.c \
954 ../common/C/__tan.c \
955 ../common/C/_TBL_tan.c \
956 ../common/C/copysign.c \
957 ../common/C/exp.c \
958 ../common/C/fabs.c \
959 ../common/C/ilogb.c \
960 ../common/C/isnan.c \
961 ../common/C/nextafter.c \
962 ../common/C/rint.c \
963 ../common/C/scalbn.c \
964 ../common/C/acos.c \
965 ../common/C/asin.c \
966 ../common/C/atan.c \
967 ../common/C/atan2.c \
968 ../common/C/ceil.c \
969 ../common/C/cos.c \
970 ../common/C/exp10.c \
971 ../common/C/exp2.c \
972 ../common/C/expm1.c \
973 ../common/C/floor.c \
974 ../common/C/hypot.c \
975 ../common/C/log.c \
976 ../common/C/log10.c \
977 ../common/C/log2.c \
978 ../common/C/pow.c \
979 ../common/C/sin.c \
980 ../common/C/sincos.c \
981 ../common/C/tan.c

983 SRCS_C = \
984 $(SRCS_C_$(MACH)) \
985 $(SRCS_C_i386_$(TARGET_ARCH)) \
986 ../common/C/__cos.c \

new/usr/src/lib/libm/Makefile.com 16

987 ../common/C/__lgamma.c \
988 ../common/C/__rem_pio2.c \
989 ../common/C/__rem_pio2m.c \
990 ../common/C/__sin.c \
991 ../common/C/__sincos.c \
992 ../common/C/__xpg6.c \
993 ../common/C/_lib_version.c \
994 ../common/C/_SVID_error.c \
995 ../common/C/_TBL_ipio2.c \
996 ../common/C/_TBL_sin.c \
997 ../common/C/acosh.c \
998 ../common/C/asinh.c \
999 ../common/C/atan2pi.c \

1000 ../common/C/atanh.c \
1001 ../common/C/cbrt.c \
1002 ../common/C/cosh.c \
1003 ../common/C/erf.c \
1004 ../common/C/gamma.c \
1005 ../common/C/gamma_r.c \
1006 ../common/C/j0.c \
1007 ../common/C/j1.c \
1008 ../common/C/jn.c \
1009 ../common/C/lgamma.c \
1010 ../common/C/lgamma_r.c \
1011 ../common/C/log1p.c \
1012 ../common/C/logb.c \
1013 ../common/C/matherr.c \
1014 ../common/C/scalb.c \
1015 ../common/C/signgam.c \
1016 ../common/C/significand.c \
1017 ../common/C/sincospi.c \
1018 ../common/C/sinh.c \
1019 ../common/C/sqrt.c \
1020 ../common/C/tanh.c

1022 SRCS = \
1023 $(SRCS_Q_$(MACH)) \
1024 $(SRCS_LD_$(MACH)) \
1025 $(SRCS_R) \
1026 $(SRCS_complex) \
1027 $(SRCS_C)

1029 .KEEP_STATE:

1031 all: $(LIBS)

1033 lint: lintcheck

new/usr/src/lib/libm/Makefile.libm.com 1

**
 2735 Sun May 4 03:04:47 2014
new/usr/src/lib/libm/Makefile.libm.com
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 #

16 LIBMDIR = $(SRC)/lib/libm

18 LIBMSRC = $(LIBMDIR)/common

20 CPP_CMD = $(CC) -E -Xs

22 ASSUFFIX_sparc = S
23 ASSUFFIX_i386 = s
24 ASSUFFIX = $(ASSUFFIX_$(MACH))

26 # C99MODE of neither enabled nor disabled is "no_lib", whereby we expect
27 # C99-the-language, but don’t modify the behaviour of library routines. This
28 # is VERY IMPORTANT, as -xc99=%all, for instance, would link us with
29 # values-xpg6, which would introduce an __xpg6 to our object with the C99
30 # flags set, causing us to default C99 libm behaviour on, breaking
31 # compatibility.
32 C99MODE =

34 M4FLAGS = -D__STDC__ -DELFOBJ -DPIC

36 LDBLDIR_sparc = Q
37 LDBLDIR_i386 = LD
38 LDBLDIR = $(LDBLDIR_$(MACH))

40 LM_IL = $(LIBMDIR)/$(TARGET_ARCH)/src/locallibm.il

42 CFLAGS += $(C_PICFLAGS) -D__INLINE $(XSTRCONST) $(LM_IL)
43 CFLAGS64 += $(C_PICFLAGS) -D__INLINE $(XSTRCONST) $(LM_IL)
44 sparc_CFLAGS += -Wa,-xarch=v8plus

46 CDEF_i386 = -DCOMPARISON_MACRO_BUG
46 CPPFLAGS += -DELFOBJ \
47 -DLIBM_MT_FEX_SYNC \
49 $(CDEF_$(TARGET_ARCH)) \
48 -I$(LIBMSRC)/C \
49 -I$(LIBMSRC)/$(LDBLDIR) -I$(LIBMDIR)/$(TARGET_ARCH)/src

51 # GCC needs __C99FEATURES__ such that the implementations of isunordered,
52 # isgreaterequal, islessequal, etc, exist. This is basically equivalent to
53 # providing no -xc99 to Studio, in that it gets us the C99 language features,
54 # but not values-xpg6, the reason for which is outline with C99MODE.
55 CFLAGS += -_gcc=-D__C99FEATURES__
56 CFLAGS64 += -_gcc=-D__C99FEATURES__

58 # libm depends on integer overflow characteristics
59 CFLAGS += -_gcc=-fno-strict-overflow
60 CFLAGS64 += -_gcc=-fno-strict-overflow

new/usr/src/lib/libm/Makefile.libm.com 2

62 $(DYNLIB) := LDLIBS += -lc

64 $(LINTLIB) := SRCS = $(LIBMSRC)/$(LINTSRC)

66 CLEANFILES += pics/*.s pics/*.S

68 FPDEF_amd64 = -DARCH_amd64
69 FPDEF_sparc = -DCG89 -DARCH_v8plus -DFPADD_TRAPS_INCOMPLETE_ON_NAN
70 FPDEF_sparcv9 = -DARCH_v9 -DFPADD_TRAPS_INCOMPLETE_ON_NAN
71 FPDEF = $(FPDEF_$(TARGET_ARCH))

73 ASFLAGS = -P -D_ASM $(FPDEF)

75 XARCH_sparc = v8plus
76 XARCH_sparcv9 = v9
77 XARCH_i386 = f80387
78 XARCH_amd64 = amd64
79 XARCH = $(XARCH_$(TARGET_ARCH))

81 ASOPT_sparc = -xarch=$(XARCH) $(AS_PICFLAGS)
82 ASOPT_sparcv9 = -xarch=$(XARCH) $(AS_PICFLAGS)
83 ASOPT_i386 =
84 ASOPT_amd64 = -xarch=$(XARCH) $(AS_PICFLAGS)
85 ASOPT = $(ASOPT_$(TARGET_ARCH))

87 ASFLAGS += $(ASOPT)

89 CPPFLAGS_sparc = -DFPADD_TRAPS_INCOMPLETE_ON_NAN \
90 -DFDTOS_TRAPS_INCOMPLETE_IN_FNS_MODE

92 CPPFLAGS += $(CPPFLAGS_$(MACH))
93 ASFLAGS += $(CPPFLAGS)

new/usr/src/lib/libm/Makefile.com 1

**
 19733 Sun May 4 03:04:48 2014
new/usr/src/lib/libm/Makefile.com
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 #

16 LIBRARY = libm.a
17 VERS = .2

19 LIBMDIR = $(SRC)/lib/libm

21 m9xsseOBJS_i386 = \
22 __fex_hdlr.o \
23 __fex_i386.o \
24 __fex_sse.o \
25 __fex_sym.o \
26 fex_log.o

28 m9xsseOBJS = $(m9xsseOBJS_$(TARGET_ARCH))

30 m9xOBJS_amd64 = \
31 __fex_sse.o \
32 feprec.o

34 m9xOBJS_sparc = \
35 lrint.o \
36 lrintf.o \
37 lrintl.o \
38 lround.o \
39 lroundf.o \
40 lroundl.o

42 m9xOBJS_i386 = \
43 __fex_sse.o \
44 feprec.o \
45 lrint.o \
46 lrintf.o \
47 lrintl.o \
48 lround.o \
49 lroundf.o \
50 lroundl.o

52 #
53 # lrint.o, lrintf.o, lrintl.o, lround.o, lroundf.o & lroundl.o are 32-bit only
54 #
55 m9xOBJS = \
56 $(m9xOBJS_$(TARGET_ARCH)) \
57 __fex_$(MACH).o \
58 __fex_hdlr.o \
59 __fex_sym.o \
60 fdim.o \
61 fdimf.o \
62 fdiml.o \

new/usr/src/lib/libm/Makefile.com 2

63 feexcept.o \
64 fenv.o \
65 feround.o \
66 fex_handler.o \
67 fex_log.o \
68 fma.o \
69 fmaf.o \
70 fmal.o \
71 fmax.o \
72 fmaxf.o \
73 fmaxl.o \
74 fmin.o \
75 fminf.o \
76 fminl.o \
77 frexp.o \
78 frexpf.o \
79 frexpl.o \
80 ldexp.o \
81 ldexpf.o \
82 ldexpl.o \
83 llrint.o \
84 llrintf.o \
85 llrintl.o \
86 llround.o \
87 llroundf.o \
88 llroundl.o \
89 modf.o \
90 modff.o \
91 modfl.o \
92 nan.o \
93 nanf.o \
94 nanl.o \
95 nearbyint.o \
96 nearbyintf.o \
97 nearbyintl.o \
98 nexttoward.o \
99 nexttowardf.o \
100 nexttowardl.o \
101 remquo.o \
102 remquof.o \
103 remquol.o \
104 round.o \
105 roundf.o \
106 roundl.o \
107 scalbln.o \
108 scalblnf.o \
109 scalblnl.o \
110 tgamma.o \
111 tgammaf.o \
112 tgammal.o \
113 trunc.o \
114 truncf.o \
115 truncl.o

117 OBJS_M9XSSE = $(m9xsseOBJS:%=pics/%)

119 COBJS_i386 = \
120 __libx_errno.o

122 COBJS_sparc = \
123 $(COBJS_i386) \
124 _TBL_atan.o \
125 _TBL_exp2.o \
126 _TBL_log.o \
127 _TBL_log2.o \
128 _TBL_tan.o \

new/usr/src/lib/libm/Makefile.com 3

129 __tan.o \
130 __tanf.o

132 #
133 # atan2pi.o and sincospi.o is for internal use only
134 #

136 COBJS_amd64 = \
137 _TBL_atan.o \
138 _TBL_exp2.o \
139 _TBL_log.o \
140 _TBL_log2.o \
141 __tan.o \
142 __tanf.o \
143 _TBL_tan.o \
144 copysign.o \
145 exp.o \
146 fabs.o \
147 fmod.o \
148 ilogb.o \
149 isnan.o \
150 nextafter.o \
151 remainder.o \
152 rint.o \
153 scalbn.o

155 COBJS_sparcv9 = $(COBJS_amd64)

157 COBJS = \
158 $(COBJS_$(TARGET_ARCH)) \
159 __cos.o \
160 __lgamma.o \
161 __rem_pio2.o \
162 __rem_pio2m.o \
163 __sin.o \
164 __sincos.o \
165 __xpg6.o \
166 _lib_version.o \
167 _SVID_error.o \
168 _TBL_ipio2.o \
169 _TBL_sin.o \
170 acos.o \
171 acosh.o \
172 asin.o \
173 asinh.o \
174 atan.o \
175 atan2.o \
176 atan2pi.o \
177 atanh.o \
178 cbrt.o \
179 ceil.o \
180 cos.o \
181 cosh.o \
182 erf.o \
183 exp10.o \
184 exp2.o \
185 expm1.o \
186 floor.o \
187 gamma.o \
188 gamma_r.o \
189 hypot.o \
190 j0.o \
191 j1.o \
192 jn.o \
193 lgamma.o \
194 lgamma_r.o \

new/usr/src/lib/libm/Makefile.com 4

195 log.o \
196 log10.o \
197 log1p.o \
198 log2.o \
199 logb.o \
200 matherr.o \
201 pow.o \
202 scalb.o \
203 signgam.o \
204 significand.o \
205 sin.o \
206 sincos.o \
207 sincospi.o \
208 sinh.o \
209 sqrt.o \
210 tan.o \
211 tanh.o

213 #
214 # LSARC/2003/658 adds isnanl
215 #
216 QOBJS_sparc = \
217 _TBL_atanl.o \
218 _TBL_expl.o \
219 _TBL_expm1l.o \
220 _TBL_logl.o \
221 finitel.o \
222 isnanl.o

224 QOBJS_sparcv9 = $(QOBJS_sparc)

226 QOBJS_amd64 = \
227 finitel.o \
228 isnanl.o

230 #
231 # atan2pil.o, ieee_funcl.o, rndintl.o, sinpil.o, sincospil.o
232 # are for internal use only
233 #
234 # LSARC/2003/279 adds the following:
235 # gammal.o 1
236 # gammal_r.o 1
237 # j0l.o 2
238 # j1l.o 2
239 # jnl.o 2
240 # lgammal_r.o 1
241 # scalbl.o 1
242 # significandl.o 1
243 #
244 QOBJS = \
245 $(QOBJS_$(TARGET_ARCH)) \
246 __cosl.o \
247 __lgammal.o \
248 __poly_libmq.o \
249 __rem_pio2l.o \
250 __sincosl.o \
251 __sinl.o \
252 __tanl.o \
253 _TBL_cosl.o \
254 _TBL_ipio2l.o \
255 _TBL_sinl.o \
256 _TBL_tanl.o \
257 acoshl.o \
258 acosl.o \
259 asinhl.o \
260 asinl.o \

new/usr/src/lib/libm/Makefile.com 5

261 atan2l.o \
262 atan2pil.o \
263 atanhl.o \
264 atanl.o \
265 cbrtl.o \
266 copysignl.o \
267 coshl.o \
268 cosl.o \
269 erfl.o \
270 exp10l.o \
271 exp2l.o \
272 expl.o \
273 expm1l.o \
274 fabsl.o \
275 floorl.o \
276 fmodl.o \
277 gammal.o \
278 gammal_r.o \
279 hypotl.o \
280 ieee_funcl.o \
281 ilogbl.o \
282 j0l.o \
283 j1l.o \
284 jnl.o \
285 lgammal.o \
286 lgammal_r.o \
287 log10l.o \
288 log1pl.o \
289 log2l.o \
290 logbl.o \
291 logl.o \
292 nextafterl.o \
293 powl.o \
294 remainderl.o \
295 rintl.o \
296 rndintl.o \
297 scalbl.o \
298 scalbnl.o \
299 signgaml.o \
300 significandl.o \
301 sincosl.o \
302 sincospil.o \
303 sinhl.o \
304 sinl.o \
305 sinpil.o \
306 sqrtl.o \
307 tanhl.o \
308 tanl.o

310 #
311 # LSARC/2003/658 adds isnanf
312 #
313 ROBJS_sparc = \
314 __cosf.o \
315 __sincosf.o \
316 __sinf.o \
317 isnanf.o

319 ROBJS_sparcv9 = $(ROBJS_sparc)

321 ROBJS_amd64 = \
322 isnanf.o \
323 __cosf.o \
324 __sincosf.o \
325 __sinf.o

new/usr/src/lib/libm/Makefile.com 6

327 #
328 # atan2pif.o, sincosf.o, sincospif.o are for internal use only
329 #
330 # LSARC/2003/279 adds the following:
331 # besself.o 6
332 # scalbf.o 1
333 # gammaf.o 1
334 # gammaf_r.o 1
335 # lgammaf_r.o 1
336 # significandf.o 1
337 #
338 ROBJS = \
339 $(ROBJS_$(TARGET_ARCH)) \
340 _TBL_r_atan_.o \
341 acosf.o \
342 acoshf.o \
343 asinf.o \
344 asinhf.o \
345 atan2f.o \
346 atan2pif.o \
347 atanf.o \
348 atanhf.o \
349 besself.o \
350 cbrtf.o \
351 copysignf.o \
352 cosf.o \
353 coshf.o \
354 erff.o \
355 exp10f.o \
356 exp2f.o \
357 expf.o \
358 expm1f.o \
359 fabsf.o \
360 floorf.o \
361 fmodf.o \
362 gammaf.o \
363 gammaf_r.o \
364 hypotf.o \
365 ilogbf.o \
366 lgammaf.o \
367 lgammaf_r.o \
368 log10f.o \
369 log1pf.o \
370 log2f.o \
371 logbf.o \
372 logf.o \
373 nextafterf.o \
374 powf.o \
375 remainderf.o \
376 rintf.o \
377 scalbf.o \
378 scalbnf.o \
379 signgamf.o \
380 significandf.o \
381 sinf.o \
382 sinhf.o \
383 sincosf.o \
384 sincospif.o \
385 sqrtf.o \
386 tanf.o \
387 tanhf.o

389 #
390 # LSARC/2003/658 adds isnanf/isnanl
391 #

new/usr/src/lib/libm/Makefile.com 7

393 SOBJS_sparc = \
394 copysign.o \
395 exp.o \
396 fabs.o \
397 fmod.o \
398 ilogb.o \
399 isnan.o \
400 nextafter.o \
401 remainder.o \
402 rint.o \
403 scalbn.o

405 SOBJS_i386 = \
406 __reduction.o \
407 finitef.o \
408 finitel.o \
409 isnanf.o \
410 isnanl.o \
411 $(SOBJS_sparc)

413 SOBJS_amd64 = \
414 __swapFLAGS.o
415 # _xtoll.o \
416 # _xtoull.o \

419 SOBJS = \
420 $(SOBJS_$(TARGET_ARCH))

422 complexOBJS = \
423 cabs.o \
424 cabsf.o \
425 cabsl.o \
426 cacos.o \
427 cacosf.o \
428 cacosh.o \
429 cacoshf.o \
430 cacoshl.o \
431 cacosl.o \
432 carg.o \
433 cargf.o \
434 cargl.o \
435 casin.o \
436 casinf.o \
437 casinh.o \
438 casinhf.o \
439 casinhl.o \
440 casinl.o \
441 catan.o \
442 catanf.o \
443 catanh.o \
444 catanhf.o \
445 catanhl.o \
446 catanl.o \
447 ccos.o \
448 ccosf.o \
449 ccosh.o \
450 ccoshf.o \
451 ccoshl.o \
452 ccosl.o \
453 cexp.o \
454 cexpf.o \
455 cexpl.o \
456 cimag.o \
457 cimagf.o \
458 cimagl.o \

new/usr/src/lib/libm/Makefile.com 8

459 clog.o \
460 clogf.o \
461 clogl.o \
462 conj.o \
463 conjf.o \
464 conjl.o \
465 cpow.o \
466 cpowf.o \
467 cpowl.o \
468 cproj.o \
469 cprojf.o \
470 cprojl.o \
471 creal.o \
472 crealf.o \
473 creall.o \
474 csin.o \
475 csinf.o \
476 csinh.o \
477 csinhf.o \
478 csinhl.o \
479 csinl.o \
480 csqrt.o \
481 csqrtf.o \
482 csqrtl.o \
483 ctan.o \
484 ctanf.o \
485 ctanh.o \
486 ctanhf.o \
487 ctanhl.o \
488 ctanl.o \
489 k_atan2.o \
490 k_atan2l.o \
491 k_cexp.o \
492 k_cexpl.o \
493 k_clog_r.o \
494 k_clog_rl.o

496 OBJECTS = $(COBJS) $(ROBJS) $(QOBJS) $(SOBJS) $(m9xOBJS) $(complexOBJS)

498 include $(SRC)/lib/Makefile.lib
499 include $(LIBMDIR)/Makefile.libm.com
500 include $(SRC)/lib/Makefile.rootfs

502 SRCDIR = ../common/
503 LIBS = $(DYNLIB) $(LINTLIB)

505 LINTERROFF = -erroff=E_FUNC_SET_NOT_USED
506 LINTERROFF += -erroff=E_FUNC_RET_ALWAYS_IGNOR2
507 LINTERROFF += -erroff=E_FUNC_RET_MAYBE_IGNORED2
508 LINTERROFF += -erroff=E_IMPL_CONV_RETURN
509 LINTERROFF += -erroff=E_NAME_MULTIPLY_DEF2
510 LINTFLAGS += $(LINTERROFF)
511 LINTFLAGS64 += $(LINTERROFF)
512 LINTFLAGS64 += -errchk=longptr64

514 CERRWARN += -_gcc=-Wno-switch
515 CERRWARN += -_gcc=-Wno-parentheses
516 CERRWARN += -_gcc=-Wno-unused-variable

518 #endif /* ! codereview */
519 CPPFLAGS += -DLIBM_BUILD

521 CFLAGS += $(C_BIGPICFLAGS)
522 CFLAGS64 += $(C_BIGPICFLAGS)

524 m9x_IL = $(LIBMDIR)/common/m9x/__fenv_$(TARGET_ARCH).il

new/usr/src/lib/libm/Makefile.com 9

526 SRCS_LD_i386_amd64 = \
527 ../common/LD/finitel.c \
528 ../common/LD/isnanl.c \
529 ../common/LD/nextafterl.c

531 SRCS_LD = \
532 $(SRCS_LD_i386_$(TARGET_ARCH)) \
533 ../common/LD/__cosl.c \
534 ../common/LD/__lgammal.c \
535 ../common/LD/__poly_libmq.c \
536 ../common/LD/__rem_pio2l.c \
537 ../common/LD/__sincosl.c \
538 ../common/LD/__sinl.c \
539 ../common/LD/__tanl.c \
540 ../common/LD/_TBL_cosl.c \
541 ../common/LD/_TBL_ipio2l.c \
542 ../common/LD/_TBL_sinl.c \
543 ../common/LD/_TBL_tanl.c \
544 ../common/LD/acoshl.c \
545 ../common/LD/asinhl.c \
546 ../common/LD/atan2pil.c \
547 ../common/LD/atanhl.c \
548 ../common/LD/cbrtl.c \
549 ../common/LD/coshl.c \
550 ../common/LD/cosl.c \
551 ../common/LD/erfl.c \
552 ../common/LD/gammal.c \
553 ../common/LD/gammal_r.c \
554 ../common/LD/hypotl.c \
555 ../common/LD/j0l.c \
556 ../common/LD/j1l.c \
557 ../common/LD/jnl.c \
558 ../common/LD/lgammal.c \
559 ../common/LD/lgammal_r.c \
560 ../common/LD/log1pl.c \
561 ../common/LD/logbl.c \
562 ../common/LD/scalbl.c \
563 ../common/LD/signgaml.c \
564 ../common/LD/significandl.c \
565 ../common/LD/sincosl.c \
566 ../common/LD/sincospil.c \
567 ../common/LD/sinhl.c \
568 ../common/LD/sinl.c \
569 ../common/LD/sinpil.c \
570 ../common/LD/tanhl.c \
571 ../common/LD/tanl.c

573 SRCS_LD_i386 = \
574 $(SRCS_LD)

576 SRCS_R_amd64 = \
577 ../common/R/__tanf.c \
578 ../common/R/isnanf.c \
579 ../common/R/__cosf.c \
580 ../common/R/__sincosf.c \
581 ../common/R/__sinf.c \
582 ../common/R/acosf.c \
583 ../common/R/asinf.c \
584 ../common/R/atan2f.c \
585 ../common/R/copysignf.c \
586 ../common/R/exp10f.c \
587 ../common/R/exp2f.c \
588 ../common/R/expm1f.c \
589 ../common/R/fabsf.c \
590 ../common/R/hypotf.c \

new/usr/src/lib/libm/Makefile.com 10

591 ../common/R/ilogbf.c \
592 ../common/R/log10f.c \
593 ../common/R/log2f.c \
594 ../common/R/nextafterf.c \
595 ../common/R/powf.c \
596 ../common/R/rintf.c \
597 ../common/R/scalbnf.c

599 # sparc + sparcv9
600 SRCS_R_sparc = \
601 ../common/R/__tanf.c \
602 ../common/R/__cosf.c \
603 ../common/R/__sincosf.c \
604 ../common/R/__sinf.c \
605 ../common/R/isnanf.c \
606 ../common/R/acosf.c \
607 ../common/R/asinf.c \
608 ../common/R/atan2f.c \
609 ../common/R/copysignf.c \
610 ../common/R/exp10f.c \
611 ../common/R/exp2f.c \
612 ../common/R/expm1f.c \
613 ../common/R/fabsf.c \
614 ../common/R/fmodf.c \
615 ../common/R/hypotf.c \
616 ../common/R/ilogbf.c \
617 ../common/R/log10f.c \
618 ../common/R/log2f.c \
619 ../common/R/nextafterf.c \
620 ../common/R/powf.c \
621 ../common/R/remainderf.c \
622 ../common/R/rintf.c \
623 ../common/R/scalbnf.c

625 SRCS_R = \
626 $(SRCS_R_$(MACH)) \
627 $(SRCS_R_$(TARGET_ARCH)) \
628 ../common/R/_TBL_r_atan_.c \
629 ../common/R/acoshf.c \
630 ../common/R/asinhf.c \
631 ../common/R/atan2pif.c \
632 ../common/R/atanf.c \
633 ../common/R/atanhf.c \
634 ../common/R/besself.c \
635 ../common/R/cbrtf.c \
636 ../common/R/cosf.c \
637 ../common/R/coshf.c \
638 ../common/R/erff.c \
639 ../common/R/expf.c \
640 ../common/R/floorf.c \
641 ../common/R/gammaf.c \
642 ../common/R/gammaf_r.c \
643 ../common/R/lgammaf.c \
644 ../common/R/lgammaf_r.c \
645 ../common/R/log1pf.c \
646 ../common/R/logbf.c \
647 ../common/R/logf.c \
648 ../common/R/scalbf.c \
649 ../common/R/signgamf.c \
650 ../common/R/significandf.c \
651 ../common/R/sinf.c \
652 ../common/R/sinhf.c \
653 ../common/R/sincosf.c \
654 ../common/R/sincospif.c \
655 ../common/R/sqrtf.c \
656 ../common/R/tanf.c \

new/usr/src/lib/libm/Makefile.com 11

657 ../common/R/tanhf.c

659 SRCS_Q = \
660 ../common/Q/_TBL_atanl.c \
661 ../common/Q/_TBL_expl.c \
662 ../common/Q/_TBL_expm1l.c \
663 ../common/Q/_TBL_logl.c \
664 ../common/Q/finitel.c \
665 ../common/Q/isnanl.c \
666 ../common/Q/__cosl.c \
667 ../common/Q/__lgammal.c \
668 ../common/Q/__poly_libmq.c \
669 ../common/Q/__rem_pio2l.c \
670 ../common/Q/__sincosl.c \
671 ../common/Q/__sinl.c \
672 ../common/Q/__tanl.c \
673 ../common/Q/_TBL_cosl.c \
674 ../common/Q/_TBL_ipio2l.c \
675 ../common/Q/_TBL_sinl.c \
676 ../common/Q/_TBL_tanl.c \
677 ../common/Q/acoshl.c \
678 ../common/Q/acosl.c \
679 ../common/Q/asinhl.c \
680 ../common/Q/asinl.c \
681 ../common/Q/atan2l.c \
682 ../common/Q/atan2pil.c \
683 ../common/Q/atanhl.c \
684 ../common/Q/atanl.c \
685 ../common/Q/cbrtl.c \
686 ../common/Q/copysignl.c \
687 ../common/Q/coshl.c \
688 ../common/Q/cosl.c \
689 ../common/Q/erfl.c \
690 ../common/Q/exp10l.c \
691 ../common/Q/exp2l.c \
692 ../common/Q/expl.c \
693 ../common/Q/expm1l.c \
694 ../common/Q/fabsl.c \
695 ../common/Q/floorl.c \
696 ../common/Q/fmodl.c \
697 ../common/Q/gammal.c \
698 ../common/Q/gammal_r.c \
699 ../common/Q/hypotl.c \
700 ../common/Q/ieee_funcl.c \
701 ../common/Q/ilogbl.c \
702 ../common/Q/j0l.c \
703 ../common/Q/j1l.c \
704 ../common/Q/jnl.c \
705 ../common/Q/lgammal.c \
706 ../common/Q/lgammal_r.c \
707 ../common/Q/log10l.c \
708 ../common/Q/log1pl.c \
709 ../common/Q/log2l.c \
710 ../common/Q/logbl.c \
711 ../common/Q/logl.c \
712 ../common/Q/nextafterl.c \
713 ../common/Q/powl.c \
714 ../common/Q/remainderl.c \
715 ../common/Q/rintl.c \
716 ../common/Q/rndintl.c \
717 ../common/Q/scalbl.c \
718 ../common/Q/scalbnl.c \
719 ../common/Q/signgaml.c \
720 ../common/Q/significandl.c \
721 ../common/Q/sincosl.c \
722 ../common/Q/sincospil.c \

new/usr/src/lib/libm/Makefile.com 12

723 ../common/Q/sinhl.c \
724 ../common/Q/sinl.c \
725 ../common/Q/sinpil.c \
726 ../common/Q/sqrtl.c \
727 ../common/Q/tanhl.c \
728 ../common/Q/tanl.c

730 SRCS_Q_sparc = \
731 $(SRCS_Q)

733 SRCS_complex = \
734 ../common/complex/cabs.c \
735 ../common/complex/cabsf.c \
736 ../common/complex/cabsl.c \
737 ../common/complex/cacos.c \
738 ../common/complex/cacosf.c \
739 ../common/complex/cacosh.c \
740 ../common/complex/cacoshf.c \
741 ../common/complex/cacoshl.c \
742 ../common/complex/cacosl.c \
743 ../common/complex/carg.c \
744 ../common/complex/cargf.c \
745 ../common/complex/cargl.c \
746 ../common/complex/casin.c \
747 ../common/complex/casinf.c \
748 ../common/complex/casinh.c \
749 ../common/complex/casinhf.c \
750 ../common/complex/casinhl.c \
751 ../common/complex/casinl.c \
752 ../common/complex/catan.c \
753 ../common/complex/catanf.c \
754 ../common/complex/catanh.c \
755 ../common/complex/catanhf.c \
756 ../common/complex/catanhl.c \
757 ../common/complex/catanl.c \
758 ../common/complex/ccos.c \
759 ../common/complex/ccosf.c \
760 ../common/complex/ccosh.c \
761 ../common/complex/ccoshf.c \
762 ../common/complex/ccoshl.c \
763 ../common/complex/ccosl.c \
764 ../common/complex/cexp.c \
765 ../common/complex/cexpf.c \
766 ../common/complex/cexpl.c \
767 ../common/complex/cimag.c \
768 ../common/complex/cimagf.c \
769 ../common/complex/cimagl.c \
770 ../common/complex/clog.c \
771 ../common/complex/clogf.c \
772 ../common/complex/clogl.c \
773 ../common/complex/conj.c \
774 ../common/complex/conjf.c \
775 ../common/complex/conjl.c \
776 ../common/complex/cpow.c \
777 ../common/complex/cpowf.c \
778 ../common/complex/cpowl.c \
779 ../common/complex/cproj.c \
780 ../common/complex/cprojf.c \
781 ../common/complex/cprojl.c \
782 ../common/complex/creal.c \
783 ../common/complex/crealf.c \
784 ../common/complex/creall.c \
785 ../common/complex/csin.c \
786 ../common/complex/csinf.c \
787 ../common/complex/csinh.c \
788 ../common/complex/csinhf.c \

new/usr/src/lib/libm/Makefile.com 13

789 ../common/complex/csinhl.c \
790 ../common/complex/csinl.c \
791 ../common/complex/csqrt.c \
792 ../common/complex/csqrtf.c \
793 ../common/complex/csqrtl.c \
794 ../common/complex/ctan.c \
795 ../common/complex/ctanf.c \
796 ../common/complex/ctanh.c \
797 ../common/complex/ctanhf.c \
798 ../common/complex/ctanhl.c \
799 ../common/complex/ctanl.c \
800 ../common/complex/k_atan2.c \
801 ../common/complex/k_atan2l.c \
802 ../common/complex/k_cexp.c \
803 ../common/complex/k_cexpl.c \
804 ../common/complex/k_clog_r.c \
805 ../common/complex/k_clog_rl.c

807 SRCS_m9x_i386 = \
808 ../common/m9x/__fex_sse.c \
809 ../common/m9x/feprec.c \
810 ../common/m9x/__fex_i386.c

812 SRCS_m9x_i386_i386 = \
813 ../common/m9x/lroundf.c

815 SRCS_m9x_i386_amd64 = \
816 ../common/m9x/llrint.c \
817 ../common/m9x/llrintf.c \
818 ../common/m9x/llrintl.c \
819 ../common/m9x/nexttowardl.c \
820 ../common/m9x/remquo.c \
821 ../common/m9x/remquof.c \
822 ../common/m9x/round.c \
823 ../common/m9x/roundl.c \
824 ../common/m9x/scalbln.c \
825 ../common/m9x/scalblnf.c \
826 ../common/m9x/scalblnl.c \
827 ../common/m9x/trunc.c \
828 ../common/m9x/truncl.c

830 # sparc
831 SRCS_m9x_sparc_sparc = \
832 ../common/m9x/lrint.c \
833 ../common/m9x/lrintf.c \
834 ../common/m9x/lrintl.c \
835 ../common/m9x/lround.c \
836 ../common/m9x/lroundf.c \
837 ../common/m9x/lroundl.c

839 SRCS_m9x_sparc = \
840 ../common/m9x/__fex_sparc.c \
841 ../common/m9x/llrint.c \
842 ../common/m9x/llrintf.c \
843 ../common/m9x/llrintl.c \
844 ../common/m9x/nexttowardl.c \
845 ../common/m9x/remquo.c \
846 ../common/m9x/remquof.c \
847 ../common/m9x/remquol.c \
848 ../common/m9x/round.c \
849 ../common/m9x/roundl.c \
850 ../common/m9x/scalbln.c \
851 ../common/m9x/scalblnf.c \
852 ../common/m9x/scalblnl.c \
853 ../common/m9x/trunc.c \
854 ../common/m9x/truncl.c

new/usr/src/lib/libm/Makefile.com 14

856 SRCS_m9x = \
857 $(SRCS_m9x_$(MACH)) \
858 $(SRCS_m9x_sparc_$(TARGET_ARCH)) \
859 $(SRCS_m9x_i386_$(TARGET_ARCH)) \
860 ../common/m9x/__fex_hdlr.c \
861 ../common/m9x/__fex_sym.c \
862 ../common/m9x/fdim.c \
863 ../common/m9x/fdimf.c \
864 ../common/m9x/fdiml.c \
865 ../common/m9x/feexcept.c \
866 ../common/m9x/fenv.c \
867 ../common/m9x/feround.c \
868 ../common/m9x/fex_handler.c \
869 ../common/m9x/fex_log.c \
870 ../common/m9x/fma.c \
871 ../common/m9x/fmaf.c \
872 ../common/m9x/fmal.c \
873 ../common/m9x/fmax.c \
874 ../common/m9x/fmaxf.c \
875 ../common/m9x/fmaxl.c \
876 ../common/m9x/fmin.c \
877 ../common/m9x/fminf.c \
878 ../common/m9x/fminl.c \
879 ../common/m9x/frexp.c \
880 ../common/m9x/frexpf.c \
881 ../common/m9x/frexpl.c \
882 ../common/m9x/ldexp.c \
883 ../common/m9x/ldexpf.c \
884 ../common/m9x/ldexpl.c \
885 ../common/m9x/llround.c \
886 ../common/m9x/llroundf.c \
887 ../common/m9x/llroundl.c \
888 ../common/m9x/modf.c \
889 ../common/m9x/modff.c \
890 ../common/m9x/modfl.c \
891 ../common/m9x/nan.c \
892 ../common/m9x/nanf.c \
893 ../common/m9x/nanl.c \
894 ../common/m9x/nearbyint.c \
895 ../common/m9x/nearbyintf.c \
896 ../common/m9x/nearbyintl.c \
897 ../common/m9x/nexttoward.c \
898 ../common/m9x/nexttowardf.c \
899 ../common/m9x/roundf.c \
900 ../common/m9x/tgamma.c \
901 ../common/m9x/tgammaf.c \
902 ../common/m9x/tgammal.c \
903 ../common/m9x/truncf.c

905 SRCS_C_sparc = \
906 ../common/C/__tan.c \
907 ../common/C/_TBL_atan.c \
908 ../common/C/_TBL_exp2.c \
909 ../common/C/_TBL_log.c \
910 ../common/C/_TBL_log2.c \
911 ../common/C/_TBL_tan.c \
912 ../common/C/acos.c \
913 ../common/C/asin.c \
914 ../common/C/atan.c \
915 ../common/C/atan2.c \
916 ../common/C/ceil.c \
917 ../common/C/cos.c \
918 ../common/C/exp.c \
919 ../common/C/exp10.c \
920 ../common/C/exp2.c \

new/usr/src/lib/libm/Makefile.com 15

921 ../common/C/expm1.c \
922 ../common/C/floor.c \
923 ../common/C/fmod.c \
924 ../common/C/hypot.c \
925 ../common/C/ilogb.c \
926 ../common/C/isnan.c \
927 ../common/C/log.c \
928 ../common/C/log10.c \
929 ../common/C/log2.c \
930 ../common/C/pow.c \
931 ../common/C/remainder.c \
932 ../common/C/rint.c \
933 ../common/C/scalbn.c \
934 ../common/C/sin.c \
935 ../common/C/sincos.c \
936 ../common/C/tan.c

938 SRCS_i386_i386 = \
939 ../common/C/__libx_errno.c

941 SRCS_sparc_sparc = \
942 $(SRCS_i386_i386)

944 SRCS_sparc_sparcv9 = \
945 ../common/C/copysign.c \
946 ../common/C/fabs.c \
947 ../common/C/nextafter.c

949 SRCS_i386_amd64 = \
950 ../common/C/_TBL_atan.c \
951 ../common/C/_TBL_exp2.c \
952 ../common/C/_TBL_log.c \
953 ../common/C/_TBL_log2.c \
954 ../common/C/__tan.c \
955 ../common/C/_TBL_tan.c \
956 ../common/C/copysign.c \
957 ../common/C/exp.c \
958 ../common/C/fabs.c \
959 ../common/C/ilogb.c \
960 ../common/C/isnan.c \
961 ../common/C/nextafter.c \
962 ../common/C/rint.c \
963 ../common/C/scalbn.c \
964 ../common/C/acos.c \
965 ../common/C/asin.c \
966 ../common/C/atan.c \
967 ../common/C/atan2.c \
968 ../common/C/ceil.c \
969 ../common/C/cos.c \
970 ../common/C/exp10.c \
971 ../common/C/exp2.c \
972 ../common/C/expm1.c \
973 ../common/C/floor.c \
974 ../common/C/hypot.c \
975 ../common/C/log.c \
976 ../common/C/log10.c \
977 ../common/C/log2.c \
978 ../common/C/pow.c \
979 ../common/C/sin.c \
980 ../common/C/sincos.c \
981 ../common/C/tan.c

983 SRCS_C = \
984 $(SRCS_C_$(MACH)) \
985 $(SRCS_C_i386_$(TARGET_ARCH)) \
986 ../common/C/__cos.c \

new/usr/src/lib/libm/Makefile.com 16

987 ../common/C/__lgamma.c \
988 ../common/C/__rem_pio2.c \
989 ../common/C/__rem_pio2m.c \
990 ../common/C/__sin.c \
991 ../common/C/__sincos.c \
992 ../common/C/__xpg6.c \
993 ../common/C/_lib_version.c \
994 ../common/C/_SVID_error.c \
995 ../common/C/_TBL_ipio2.c \
996 ../common/C/_TBL_sin.c \
997 ../common/C/acosh.c \
998 ../common/C/asinh.c \
999 ../common/C/atan2pi.c \

1000 ../common/C/atanh.c \
1001 ../common/C/cbrt.c \
1002 ../common/C/cosh.c \
1003 ../common/C/erf.c \
1004 ../common/C/gamma.c \
1005 ../common/C/gamma_r.c \
1006 ../common/C/j0.c \
1007 ../common/C/j1.c \
1008 ../common/C/jn.c \
1009 ../common/C/lgamma.c \
1010 ../common/C/lgamma_r.c \
1011 ../common/C/log1p.c \
1012 ../common/C/logb.c \
1013 ../common/C/matherr.c \
1014 ../common/C/scalb.c \
1015 ../common/C/signgam.c \
1016 ../common/C/significand.c \
1017 ../common/C/sincospi.c \
1018 ../common/C/sinh.c \
1019 ../common/C/sqrt.c \
1020 ../common/C/tanh.c

1022 SRCS = \
1023 $(SRCS_Q_$(MACH)) \
1024 $(SRCS_LD_$(MACH)) \
1025 $(SRCS_R) \
1026 $(SRCS_complex) \
1027 $(SRCS_C)

1029 .KEEP_STATE:

1031 all: $(LIBS)

1033 lint: lintcheck

new/usr/src/lib/libm/Makefile.libm.com 1

**
 2735 Sun May 4 03:04:50 2014
new/usr/src/lib/libm/Makefile.libm.com
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 #

16 LIBMDIR = $(SRC)/lib/libm

18 LIBMSRC = $(LIBMDIR)/common

20 CPP_CMD = $(CC) -E -Xs

22 ASSUFFIX_sparc = S
23 ASSUFFIX_i386 = s
24 ASSUFFIX = $(ASSUFFIX_$(MACH))

26 # C99MODE of neither enabled nor disabled is "no_lib", whereby we expect
27 # C99-the-language, but don’t modify the behaviour of library routines. This
28 # is VERY IMPORTANT, as -xc99=%all, for instance, would link us with
29 # values-xpg6, which would introduce an __xpg6 to our object with the C99
30 # flags set, causing us to default C99 libm behaviour on, breaking
31 # compatibility.
32 C99MODE =

34 M4FLAGS = -D__STDC__ -DELFOBJ -DPIC

36 LDBLDIR_sparc = Q
37 LDBLDIR_i386 = LD
38 LDBLDIR = $(LDBLDIR_$(MACH))

40 LM_IL = $(LIBMDIR)/$(TARGET_ARCH)/src/locallibm.il

42 CFLAGS += $(C_PICFLAGS) -D__INLINE $(XSTRCONST) $(LM_IL)
43 CFLAGS64 += $(C_PICFLAGS) -D__INLINE $(XSTRCONST) $(LM_IL)
44 sparc_CFLAGS += -Wa,-xarch=v8plus

46 CDEF_i386 = -DCOMPARISON_MACRO_BUG
46 CPPFLAGS += -DELFOBJ \
47 -DLIBM_MT_FEX_SYNC \
49 $(CDEF_$(TARGET_ARCH)) \
48 -I$(LIBMSRC)/C \
49 -I$(LIBMSRC)/$(LDBLDIR) -I$(LIBMDIR)/$(TARGET_ARCH)/src

51 # GCC needs __C99FEATURES__ such that the implementations of isunordered,
52 # isgreaterequal, islessequal, etc, exist. This is basically equivalent to
53 # providing no -xc99 to Studio, in that it gets us the C99 language features,
54 # but not values-xpg6, the reason for which is outline with C99MODE.
55 CFLAGS += -_gcc=-D__C99FEATURES__
56 CFLAGS64 += -_gcc=-D__C99FEATURES__

58 # libm depends on integer overflow characteristics
59 CFLAGS += -_gcc=-fno-strict-overflow
60 CFLAGS64 += -_gcc=-fno-strict-overflow

new/usr/src/lib/libm/Makefile.libm.com 2

62 $(DYNLIB) := LDLIBS += -lc

64 $(LINTLIB) := SRCS = $(LIBMSRC)/$(LINTSRC)

66 CLEANFILES += pics/*.s pics/*.S

68 FPDEF_amd64 = -DARCH_amd64
69 FPDEF_sparc = -DCG89 -DARCH_v8plus -DFPADD_TRAPS_INCOMPLETE_ON_NAN
70 FPDEF_sparcv9 = -DARCH_v9 -DFPADD_TRAPS_INCOMPLETE_ON_NAN
71 FPDEF = $(FPDEF_$(TARGET_ARCH))

73 ASFLAGS = -P -D_ASM $(FPDEF)

75 XARCH_sparc = v8plus
76 XARCH_sparcv9 = v9
77 XARCH_i386 = f80387
78 XARCH_amd64 = amd64
79 XARCH = $(XARCH_$(TARGET_ARCH))

81 ASOPT_sparc = -xarch=$(XARCH) $(AS_PICFLAGS)
82 ASOPT_sparcv9 = -xarch=$(XARCH) $(AS_PICFLAGS)
83 ASOPT_i386 =
84 ASOPT_amd64 = -xarch=$(XARCH) $(AS_PICFLAGS)
85 ASOPT = $(ASOPT_$(TARGET_ARCH))

87 ASFLAGS += $(ASOPT)

89 CPPFLAGS_sparc = -DFPADD_TRAPS_INCOMPLETE_ON_NAN \
90 -DFDTOS_TRAPS_INCOMPLETE_IN_FNS_MODE

92 CPPFLAGS += $(CPPFLAGS_$(MACH))
93 ASFLAGS += $(CPPFLAGS)

new/usr/src/lib/libm/amd64/src/ieee_funcl.s 1

**
 3415 Sun May 4 03:04:51 2014
new/usr/src/lib/libm/amd64/src/ieee_funcl.s
**
______unchanged_portion_omitted_

58 ENTRY(isnormall)
59 / TRUE iff (x is finite, but
60 / neither subnormal nor zero)
61 / iff (msb(sgnfcnd(x) /= 0
62 / & 0 < bexp(x) < 0x7fff)
63 movl 12(%rsp),%eax / eax <-- hi_32(sgnfcnd(x))
64 andl $-0x80000000,%eax / eax[31] <-- msb(sgnfcnd(x)),
64 movq $0x80000000,%r8
65 andq %r8,%rax / eax[31] <-- msb(sgnfcnd(x)),
65 / rest_of(eax) <-- 0
66 jz .L8 / jump iff msb(sgnfcnd(x)) = 0
67 movl 16(%rsp),%eax / ax <-- sign and bexp of x
68 notl %eax / ax[0..14] <-- not(bexp(x))
69 andq $0x7fff,%rax / eax <-- zero_xtnd(not(bexp(x)))
70 jz .L8 / jump iff bexp(x) = 0x7fff or 0
71 xorq $0x7fff,%rax / treat pseudo-denormal as subnormal
72 jz .L8
73 movq $1,%rax
74 .L8:
75 ret
76 .align 16
77 SET_SIZE(isnormall)

79 ENTRY(issubnormall)
80 / TRUE iff (bexp(x) = 0 &
81 / msb(sgnfcnd(x)) = 0 & frac(x) /= 0)
82 movl 12(%rsp),%eax / eax <-- hi_32(sgnfcnd(x))
83 testl $0x80000000,%eax / eax[31] = msb(sgnfcnd(x));
84 / set ZF if it’s 0.
85 / set ZF if it is 0.
85 jz .may_be_subnorm / jump iff msb(sgnfcnd(x)) = 0
86 .not_subnorm:
87 movq $0,%rax
88 ret
89 .may_be_subnorm:
90 testl $0x7fff,16(%rsp) / set ZF iff bexp(x) = 0
91 jnz .not_subnorm / jump iff bexp(x) /= 0
92 orl 8(%rsp),%eax / (eax) = 0 iff sgnfcnd(x) = 0
93 jz .not_subnorm
94 movq $1,%rax
95 ret
96 .align 16
97 SET_SIZE(issubnormall)

______unchanged_portion_omitted_

new/usr/src/lib/libm/amd64/src/libm_inlines.h 1

**
 3962 Sun May 4 03:04:53 2014
new/usr/src/lib/libm/amd64/src/libm_inlines.h
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /*
31 * Copyright 2011, Richard Lowe.
32 */

34 /* Functions in this file are duplicated in locallibm.il. Keep them in sync */
34 /* Functions in this file are duplicated in libm.m4. Keep them in sync */

36 #ifndef _LIBM_INLINES_H
37 #define _LIBM_INLINES_H

39 #ifdef __GNUC__

41 #ifdef __cplusplus
42 extern "C" {
43 #endif

45 #include <sys/types.h>
46 #include <sys/ieeefp.h>

48 extern __inline__ double
49 __ieee754_sqrt(double a)
50 {
51 double ret;

53 __asm__ __volatile__("sqrtsd %1, %0\n\t" : "=x" (ret) : "x" (a));
54 return (ret);
55 }

48 extern __inline__ float
49 __inline_sqrtf(float a)
50 {
51 float ret;

new/usr/src/lib/libm/amd64/src/libm_inlines.h 2

53 __asm__ __volatile__("sqrtss %1, %0\n\t" : "=x" (ret) : "x" (a));
54 return (ret);
55 }

______unchanged_portion_omitted_

66 extern __inline__ double
67 __ieee754_sqrt(double a)
75 /* XXX: Not actually called */
76 extern __inline__ short
77 __inline_fstsw(void)
68 {
69 return (__inline_sqrt(a));
79 short ret;

81 __asm__ __volatile__("fstsw %0\n\t" : "=r" (ret));
82 return (ret);
70 }

______unchanged_portion_omitted_

116 extern __inline__ int
117 abs(int i)
118 {
119 int ret;
120 __asm__ __volatile__(
121 "movl %1, %0\n\t"
134 "movl %1,%0\n\t"
122 "negl %1\n\t"
123 "cmovnsl %1, %0\n\t"
124 : "=r" (ret), "+r" (i)
125 :
126 : "cc");
136 "cmovnsl %1,%0\n\t"
137 : "=r" (ret), "+r" (i));
127 return (ret);
128 }

130 extern __inline__ double
131 copysign(double d1, double d2)
132 {
133 double tmpd;
144 double ret;

135 __asm__ __volatile__(
136 "movd %3, %1\n\t"
137 "andpd %1, %0\n\t"
138 "andnpd %2, %1\n\t"
139 "orpd %1, %0\n\t"
140 : "+x" (d1), "=x" (tmpd)
141 : "x" (d2), "r" (0x7fffffffffffffff));
147 "movq $0x7fffffffffffffff,%%rax\n\t"
148 "movd %%rax,%%xmm2\n\t"
149 "andpd %%xmm2,%0\n\t"
150 "andnpd %1,%%xmm2\n\t"
151 "orpd %%xmm2,%0\n\t"
152 : "=x" (ret)
153 : "x" (d2), "0" (d1)
154 : "xmm2", "rax");

143 return (d1);
156 return (ret);
157 }

159 extern __inline__ double
160 d_sqrt_(double *d)
161 {
162 double ret;

new/usr/src/lib/libm/amd64/src/libm_inlines.h 3

163 __asm__ __volatile__(
164 "movlpd %1,%0\n\t"
165 "sqrtsd %0,%0"
166 : "=x" (ret)
167 : "m" (*d));
168 return (ret);
144 }

146 extern __inline__ double
147 fabs(double d)
148 {
149 double tmp;
174 double ret;

151 __asm__ __volatile__(
152 "movd %2, %1\n\t"
153 "andpd %1, %0"
154 : "+x" (d), "=x" (tmp)
155 : "r" (0x7fffffffffffffff));
177 "movq $0x7fffffffffffffff,%%rax\n\t"
178 "movd %%rax,%%xmm1\n\t"
179 "andpd %%xmm1,%0"
180 : "=x" (ret)
181 : "0" (d)
182 : "rax", "xmm1");

157 return (d);
184 return (ret);
158 }

160 extern __inline__ float
161 fabsf(float d)
162 {
190 float ret;

163 __asm__ __volatile__(
164 "andpd %1, %0"
165 : "+x" (d)
166 : "x" (0x7fffffff));
193 "andpd %2,%0"
194 : "=x" (ret)
195 : "0" (d), "x" (0x7fffffff));

168 return (d);
197 return (ret);
169 }

171 extern __inline__ int
172 finite(double d)
173 {
174 long ret = 0x7fffffffffffffff;
175 uint64_t tmp;
203 long ret; /* A long, so gcc chooses an %r* for %0 */

177 __asm__ __volatile__(
178 "movq %2, %1\n\t"
179 "andq %1, %0\n\t"
180 "movq $0x7ff0000000000000, %1\n\t"
181 "subq %1, %0\n\t"
182 "shrq $63, %0\n\t"
183 : "+r" (ret), "=r" (tmp)
206 "movq %1,%%rcx\n\t"
207 "movq $0x7fffffffffffffff,%0\n\t"
208 "andq %%rcx,%0\n\t"
209 "movq $0x7ff0000000000000,%%rcx\n\t"
210 "subq %%rcx,%0\n\t"

new/usr/src/lib/libm/amd64/src/libm_inlines.h 4

211 "shrq $63,%0\n\t"
212 : "=r" (ret)
184 : "x" (d)
185 : "cc");
214 : "rcx");

216 return (ret);
217 }

219 extern __inline__ float
220 r_sqrt_(float *f)
221 {
222 float ret;

224 __asm__ __volatile__(
225 "movss %1,%0\n\t"
226 "sqrtss %0,%0\n\t"
227 : "+x" (ret)
228 : "m" (*f));
187 return (ret);
188 }

190 extern __inline__ int
191 signbit(double d)
192 {
193 long ret;
194 __asm__ __volatile__(
195 "movmskpd %1, %0\n\t"
237 "movmskpd %1,%0\n\t"
196 "andq $1, %0\n\t"
197 : "=r" (ret)
198 : "x" (d)
199 : "cc");
240 : "x" (d));
241 return (ret);
242 }

244 extern __inline__ int
245 signbitf(float f)
246 {
247 int ret;
248 __asm__ __volatile__(
249 "movskps %1,%0\n\t"
250 "andq $1, %0\n\t"
251 : "=r" (ret)
252 : "x" (f));
200 return (ret);
201 }

203 extern __inline__ double
204 sqrt(double d)
205 {
206 return (__inline_sqrt(d));
259 double ret;

261 __asm__ __volatile__(
262 "sqrtsd %0, %0"
263 : "=x" (ret)
264 : "0" (d));
265 return (ret);
207 }

209 extern __inline__ float
210 sqrtf(float f)
211 {
212 return (__inline_sqrtf(f));

new/usr/src/lib/libm/amd64/src/libm_inlines.h 5

271 float ret;

273 __asm__ __volatile__(
274 "sqrtss %0, %0"
275 : "=x" (ret)
276 : "0" (f));
277 return (ret);
213 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/amd64/src/locallibm.il 1

**
 3242 Sun May 4 03:04:55 2014
new/usr/src/lib/libm/amd64/src/locallibm.il
**

1 /
2 / CDDL HEADER START
3 /
4 / The contents of this file are subject to the terms of the
5 / Common Development and Distribution License (the "License").
6 / You may not use this file except in compliance with the License.
7 /
8 / You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 / or http://www.opensolaris.org/os/licensing.

10 / See the License for the specific language governing permissions
11 / and limitations under the License.
12 /
13 / When distributing Covered Code, this CDDL HEADER in each
14 / file and the License file at usr/src/OPENSOLARIS.LICENSE.
15 / If applicable, add the following below this CDDL HEADER, with the
16 / fields enclosed by brackets "[]" replaced with your own identifying
17 / information: Portions Copyright [yyyy] [name of copyright owner]
18 /
19 / CDDL HEADER END
20 /
21 /
22 / Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 /
24 / Copyright 2006 Sun Microsystems, Inc. All rights reserved.
25 / Use is subject to license terms.
26 /

28 / Portions of this file are duplicated as GCC inline assembly in
29 / libm_inlines.h. Keep them in sync.

31 .inline __ieee754_sqrt,0
32 sqrtsd %xmm0,%xmm0
33 .end

35 .inline __inline_sqrtf,0
36 sqrtss %xmm0,%xmm0
37 .end

39 .inline __inline_sqrt,0
40 sqrtsd %xmm0,%xmm0
41 .end

43 .inline __inline_fstsw,0
44 fstsw %ax
45 .end

43 /
44 / 00 - 24 bits
45 / 01 - reserved
46 / 10 - 53 bits
47 / 11 - 64 bits
48 /
49 .inline __swapRP,0
50 subq $16,%rsp
51 fstcw (%rsp)
52 movw (%rsp),%ax
53 movw %ax,%cx
54 andw $0xfcff,%cx
55 andl $0x3,%edi
56 shlw $8,%di
57 orw %di,%cx
58 movl %ecx,(%rsp)

new/usr/src/lib/libm/amd64/src/locallibm.il 2

59 fldcw (%rsp)
60 shrw $8,%ax
61 andq $0x3,%rax
62 addq $16,%rsp
63 .end

65 /
66 / 00 - Round to nearest, with even preferred
67 / 01 - Round down
68 / 10 - Round up
69 / 11 - Chop
70 /
71 .inline __swap87RD,0
72 subq $16,%rsp
73 fstcw (%rsp)
74 movw (%rsp),%ax
75 movw %ax,%cx
76 andw $0xf3ff,%cx
77 andl $0x3,%edi
78 shlw $10,%di
79 orw %di,%cx
80 movl %ecx,(%rsp)
81 fldcw (%rsp)
82 shrw $10,%ax
83 andq $0x3,%rax
84 addq $16,%rsp
85 .end

87 .inline abs,0
88 cmpl $0,%edi
89 jge 1f
90 negl %edi
91 1: movl %edi,%eax
92 .end

94 .inline __copysign,0
95 movq $0x7fffffffffffffff,%rax
96 movdq %rax,%xmm2
97 andpd %xmm2,%xmm0
98 andnpd %xmm1,%xmm2
99 orpd %xmm2,%xmm0
100 .end

106 .inline __d_sqrt_,0
107 movlpd (%rdi),%xmm0
108 sqrtsd %xmm0,%xmm0
109 .end

102 .inline __fabs,0
103 movq $0x7fffffffffffffff,%rax
104 movdq %rax,%xmm1
105 andpd %xmm1,%xmm0
106 .end

108 .inline __fabsf,0
109 movl $0x7fffffff,%eax
110 movdl %eax,%xmm1
111 andps %xmm1,%xmm0
112 .end

114 .inline _finite,0
115 subq $16,%rsp
116 movlpd %xmm0,(%rsp)
117 movq (%rsp),%rcx
118 movq $0x7fffffffffffffff,%rax
119 andq %rcx,%rax

new/usr/src/lib/libm/amd64/src/locallibm.il 3

120 movq $0x7ff0000000000000,%rcx
121 subq %rcx,%rax
122 shrq $63,%rax
123 addq $16,%rsp
124 .end

135 .inline __r_sqrt_,0
136 movss (%rdi),%xmm0
137 sqrtss %xmm0,%xmm0
138 .end

126 .inline __signbit,0
127 movmskpd %xmm0,%eax
142 andq $1,%rax
143 .end

145 .inline __signbitf,0
146 movmskps %xmm0,%eax
128 andq $1,%rax
129 .end

131 .inline __sqrt,0
132 sqrtsd %xmm0,%xmm0
133 .end

135 .inline __sqrtf,0
136 sqrtss %xmm0,%xmm0
137 .end

139 .inline __f95_signf,0
140 movl (%rdi),%eax
141 movl (%rsi),%ecx
142 andl $0x7fffffff,%eax
143 andl $0x80000000,%ecx
144 orl %ecx,%eax
145 movdl %eax,%xmm0
146 .end

148 .inline __f95_sign,0
149 movq (%rsi),%rax
150 movq $0x7fffffffffffffff,%rdx
151 shrq $63,%rax
152 shlq $63,%rax
153 andq (%rdi),%rdx
154 orq %rdx,%rax
155 movdq %rax,%xmm0
156 .end

158 .inline __r_sign,0
159 movl $0x7fffffff,%eax
160 movl $0x80000000,%edx
161 andl (%rdi),%eax
162 cmpl (%rsi),%edx
163 cmovel %eax,%edx
164 andl (%rsi),%edx
165 orl %edx,%eax
166 movdl %eax,%xmm0
167 .end

169 .inline __d_sign,0
170 movq $0x7fffffffffffffff,%rax
171 movq $0x8000000000000000,%rdx
172 andq (%rdi),%rax
173 cmpq (%rsi),%rdx
174 cmoveq %rax,%rdx
175 andq (%rsi),%rdx

new/usr/src/lib/libm/amd64/src/locallibm.il 4

176 orq %rdx,%rax
177 movdq %rax,%xmm0
178 .end

new/usr/src/lib/libm/common/C/_SVID_error.c 1

**
 22354 Sun May 4 03:04:56 2014
new/usr/src/lib/libm/common/C/_SVID_error.c
**
______unchanged_portion_omitted_

114 #define NaN C[0].d
115 #define PI_RZ C[1].d

117 #define __HI(x) ((unsigned *)&x)[HIWORD]
118 #define __LO(x) ((unsigned *)&x)[LOWORD]
119 #undef Inf
120 #define Inf HUGE_VAL

122 double
123 _SVID_libm_err(double x, double y, int type) {
124 struct exception exc;
125 double t, w, ieee_retval = 0;
125 double t, w, ieee_retval;
126 enum version lib_version = _lib_version;
127 int iy;

129 /* force libm_ieee behavior in SUSv3 mode */
130 if ((__xpg6 & _C99SUSv3_math_errexcept) != 0)
131 lib_version = libm_ieee;
132 if (lib_version == c_issue_4) {
133 (void) fflush(stdout);
134 }
135 exc.arg1 = x;
136 exc.arg2 = y;
137 switch (type) {
138 case 1:
139 /* acos(|x|>1) */
140 exc.type = DOMAIN;
141 exc.name = "acos";
142 ieee_retval = setexception(3, 1.0);
143 exc.retval = 0.0;
144 if (lib_version == strict_ansi) {
145 errno = EDOM;
146 } else if (!matherr(&exc)) {
147 if (lib_version == c_issue_4) {
148 (void) write(2, "acos: DOMAIN error\n", 19);
149 }
150 errno = EDOM;
151 }
152 break;
153 case 2:
154 /* asin(|x|>1) */
155 exc.type = DOMAIN;
156 exc.name = "asin";
157 exc.retval = 0.0;
158 ieee_retval = setexception(3, 1.0);
159 if (lib_version == strict_ansi) {
160 errno = EDOM;
161 } else if (!matherr(&exc)) {
162 if (lib_version == c_issue_4) {
163 (void) write(2, "asin: DOMAIN error\n", 19);
164 }
165 errno = EDOM;
166 }
167 break;
168 case 3:
169 /* atan2(+-0,+-0) */
170 exc.arg1 = y;
171 exc.arg2 = x;
172 exc.type = DOMAIN;

new/usr/src/lib/libm/common/C/_SVID_error.c 2

173 exc.name = "atan2";
174 ieee_retval = copysign(1.0, x) == 1.0 ? y :
175 copysign(PI_RZ + DBL_MIN, y);
176 exc.retval = 0.0;
177 if (lib_version == strict_ansi) {
178 errno = EDOM;
179 } else if (!matherr(&exc)) {
180 if (lib_version == c_issue_4) {
181 (void) write(2, "atan2: DOMAIN error\n", 20);
182 }
183 errno = EDOM;
184 }
185 break;
186 case 4:
187 /* hypot(finite,finite) overflow */
188 exc.type = OVERFLOW;
189 exc.name = "hypot";
190 ieee_retval = Inf;
191 if (lib_version == c_issue_4)
192 exc.retval = HUGE;
193 else
194 exc.retval = HUGE_VAL;
195 if (lib_version == strict_ansi)
196 errno = ERANGE;
197 else if (!matherr(&exc))
198 errno = ERANGE;
199 break;
200 case 5:
201 /* cosh(finite) overflow */
202 exc.type = OVERFLOW;
203 exc.name = "cosh";
204 ieee_retval = setexception(2, 1.0);
205 if (lib_version == c_issue_4)
206 exc.retval = HUGE;
207 else
208 exc.retval = HUGE_VAL;
209 if (lib_version == strict_ansi)
210 errno = ERANGE;
211 else if (!matherr(&exc))
212 errno = ERANGE;
213 break;
214 case 6:
215 /* exp(finite) overflow */
216 exc.type = OVERFLOW;
217 exc.name = "exp";
218 ieee_retval = setexception(2, 1.0);
219 if (lib_version == c_issue_4)
220 exc.retval = HUGE;
221 else
222 exc.retval = HUGE_VAL;
223 if (lib_version == strict_ansi)
224 errno = ERANGE;
225 else if (!matherr(&exc))
226 errno = ERANGE;
227 break;
228 case 7:
229 /* exp(finite) underflow */
230 exc.type = UNDERFLOW;
231 exc.name = "exp";
232 ieee_retval = setexception(1, 1.0);
233 exc.retval = 0.0;
234 if (lib_version == strict_ansi)
235 errno = ERANGE;
236 else if (!matherr(&exc))
237 errno = ERANGE;
238 break;

new/usr/src/lib/libm/common/C/_SVID_error.c 3

239 case 8:
240 /* y0(0) = -inf */
241 exc.type = DOMAIN; /* should be SING for IEEE */
242 exc.name = "y0";
243 ieee_retval = setexception(0, -1.0);
244 if (lib_version == c_issue_4)
245 exc.retval = -HUGE;
246 else
247 exc.retval = -HUGE_VAL;
248 if (lib_version == strict_ansi) {
249 errno = EDOM;
250 } else if (!matherr(&exc)) {
251 if (lib_version == c_issue_4) {
252 (void) write(2, "y0: DOMAIN error\n", 17);
253 }
254 errno = EDOM;
255 }
256 break;
257 case 9:
258 /* y0(x<0) = NaN */
259 exc.type = DOMAIN;
260 exc.name = "y0";
261 ieee_retval = setexception(3, 1.0);
262 if (lib_version == c_issue_4)
263 exc.retval = -HUGE;
264 else
265 exc.retval = -HUGE_VAL;
266 if (lib_version == strict_ansi) {
267 errno = EDOM;
268 } else if (!matherr(&exc)) {
269 if (lib_version == c_issue_4) {
270 (void) write(2, "y0: DOMAIN error\n", 17);
271 }
272 errno = EDOM;
273 }
274 break;
275 case 10:
276 /* y1(0) = -inf */
277 exc.type = DOMAIN; /* should be SING for IEEE */
278 exc.name = "y1";
279 ieee_retval = setexception(0, -1.0);
280 if (lib_version == c_issue_4)
281 exc.retval = -HUGE;
282 else
283 exc.retval = -HUGE_VAL;
284 if (lib_version == strict_ansi) {
285 errno = EDOM;
286 } else if (!matherr(&exc)) {
287 if (lib_version == c_issue_4) {
288 (void) write(2, "y1: DOMAIN error\n", 17);
289 }
290 errno = EDOM;
291 }
292 break;
293 case 11:
294 /* y1(x<0) = NaN */
295 exc.type = DOMAIN;
296 exc.name = "y1";
297 ieee_retval = setexception(3, 1.0);
298 if (lib_version == c_issue_4)
299 exc.retval = -HUGE;
300 else
301 exc.retval = -HUGE_VAL;
302 if (lib_version == strict_ansi) {
303 errno = EDOM;
304 } else if (!matherr(&exc)) {

new/usr/src/lib/libm/common/C/_SVID_error.c 4

305 if (lib_version == c_issue_4) {
306 (void) write(2, "y1: DOMAIN error\n", 17);
307 }
308 errno = EDOM;
309 }
310 break;
311 case 12:
312 /* yn(n,0) = -inf */
313 exc.type = DOMAIN; /* should be SING for IEEE */
314 exc.name = "yn";
315 ieee_retval = setexception(0, -1.0);
316 if (lib_version == c_issue_4)
317 exc.retval = -HUGE;
318 else
319 exc.retval = -HUGE_VAL;
320 if (lib_version == strict_ansi) {
321 errno = EDOM;
322 } else if (!matherr(&exc)) {
323 if (lib_version == c_issue_4) {
324 (void) write(2, "yn: DOMAIN error\n", 17);
325 }
326 errno = EDOM;
327 }
328 break;
329 case 13:
330 /* yn(x<0) = NaN */
331 exc.type = DOMAIN;
332 exc.name = "yn";
333 ieee_retval = setexception(3, 1.0);
334 if (lib_version == c_issue_4)
335 exc.retval = -HUGE;
336 else
337 exc.retval = -HUGE_VAL;
338 if (lib_version == strict_ansi) {
339 errno = EDOM;
340 } else if (!matherr(&exc)) {
341 if (lib_version == c_issue_4) {
342 (void) write(2, "yn: DOMAIN error\n", 17);
343 }
344 errno = EDOM;
345 }
346 break;
347 case 14:
348 /* lgamma(finite) overflow */
349 exc.type = OVERFLOW;
350 exc.name = "lgamma";
351 ieee_retval = setexception(2, 1.0);
352 if (lib_version == c_issue_4)
353 exc.retval = HUGE;
354 else
355 exc.retval = HUGE_VAL;
356 if (lib_version == strict_ansi)
357 errno = ERANGE;
358 else if (!matherr(&exc))
359 errno = ERANGE;
360 break;
361 case 15:
362 /* lgamma(-integer) or lgamma(0) */
363 exc.type = SING;
364 exc.name = "lgamma";
365 ieee_retval = setexception(0, 1.0);
366 if (lib_version == c_issue_4)
367 exc.retval = HUGE;
368 else
369 exc.retval = HUGE_VAL;
370 if (lib_version == strict_ansi) {

new/usr/src/lib/libm/common/C/_SVID_error.c 5

371 errno = EDOM;
372 } else if (!matherr(&exc)) {
373 if (lib_version == c_issue_4) {
374 (void) write(2, "lgamma: SING error\n", 19);
375 }
376 errno = EDOM;
377 }
378 break;
379 case 16:
380 /* log(0) */
381 exc.type = SING;
382 exc.name = "log";
383 ieee_retval = setexception(0, -1.0);
384 if (lib_version == c_issue_4)
385 exc.retval = -HUGE;
386 else
387 exc.retval = -HUGE_VAL;
388 if (lib_version == strict_ansi) {
389 errno = ERANGE;
390 } else if (!matherr(&exc)) {
391 if (lib_version == c_issue_4) {
392 (void) write(2, "log: SING error\n", 16);
393 errno = EDOM;
394 } else {
395 errno = ERANGE;
396 }
397 }
398 break;
399 case 17:
400 /* log(x<0) */
401 exc.type = DOMAIN;
402 exc.name = "log";
403 ieee_retval = setexception(3, 1.0);
404 if (lib_version == c_issue_4)
405 exc.retval = -HUGE;
406 else
407 exc.retval = -HUGE_VAL;
408 if (lib_version == strict_ansi) {
409 errno = EDOM;
410 } else if (!matherr(&exc)) {
411 if (lib_version == c_issue_4) {
412 (void) write(2, "log: DOMAIN error\n", 18);
413 }
414 errno = EDOM;
415 }
416 break;
417 case 18:
418 /* log10(0) */
419 exc.type = SING;
420 exc.name = "log10";
421 ieee_retval = setexception(0, -1.0);
422 if (lib_version == c_issue_4)
423 exc.retval = -HUGE;
424 else
425 exc.retval = -HUGE_VAL;
426 if (lib_version == strict_ansi) {
427 errno = ERANGE;
428 } else if (!matherr(&exc)) {
429 if (lib_version == c_issue_4) {
430 (void) write(2, "log10: SING error\n", 18);
431 errno = EDOM;
432 } else {
433 errno = ERANGE;
434 }
435 }
436 break;

new/usr/src/lib/libm/common/C/_SVID_error.c 6

437 case 19:
438 /* log10(x<0) */
439 exc.type = DOMAIN;
440 exc.name = "log10";
441 ieee_retval = setexception(3, 1.0);
442 if (lib_version == c_issue_4)
443 exc.retval = -HUGE;
444 else
445 exc.retval = -HUGE_VAL;
446 if (lib_version == strict_ansi) {
447 errno = EDOM;
448 } else if (!matherr(&exc)) {
449 if (lib_version == c_issue_4) {
450 (void) write(2, "log10: DOMAIN error\n", 20);
451 }
452 errno = EDOM;
453 }
454 break;
455 case 20:
456 /* pow(0.0,0.0) */
457 /* error only if lib_version == c_issue_4 */
458 exc.type = DOMAIN;
459 exc.name = "pow";
460 exc.retval = 0.0;
461 ieee_retval = 1.0;
462 if (lib_version != c_issue_4) {
463 exc.retval = 1.0;
464 } else if (!matherr(&exc)) {
465 (void) write(2, "pow(0,0): DOMAIN error\n", 23);
466 errno = EDOM;
467 }
468 break;
469 case 21:
470 /* pow(x,y) overflow */
471 exc.type = OVERFLOW;
472 exc.name = "pow";
473 exc.retval = (lib_version == c_issue_4)? HUGE : HUGE_VAL;
474 if (signbit(x)) {
475 t = rint(y);
476 if (t == y) {
477 w = rint(0.5 * y);
478 if (t != w + w) { /* y is odd */
479 exc.retval = -exc.retval;
480 }
481 }
482 }
483 ieee_retval = setexception(2, exc.retval);
484 if (lib_version == strict_ansi)
485 errno = ERANGE;
486 else if (!matherr(&exc))
487 errno = ERANGE;
488 break;
489 case 22:
490 /* pow(x,y) underflow */
491 exc.type = UNDERFLOW;
492 exc.name = "pow";
493 exc.retval = 0.0;
494 if (signbit(x)) {
495 t = rint(y);
496 if (t == y) {
497 w = rint(0.5 * y);
498 if (t != w + w) /* y is odd */
499 exc.retval = -exc.retval;
500 }
501 }
502 ieee_retval = setexception(1, exc.retval);

new/usr/src/lib/libm/common/C/_SVID_error.c 7

503 if (lib_version == strict_ansi)
504 errno = ERANGE;
505 else if (!matherr(&exc))
506 errno = ERANGE;
507 break;
508 case 23:
509 /* (+-0)**neg */
510 exc.type = DOMAIN;
511 exc.name = "pow";
512 ieee_retval = setexception(0, 1.0);
513 {
514 int ahy, k, j, yisint, ly, hx;
515 /* INDENT OFF */
516 /*
517 * determine if y is an odd int when x = -0
518 * yisint = 0 ... y is not an integer
519 * yisint = 1 ... y is an odd int
520 * yisint = 2 ... y is an even int
521 */
522 /* INDENT ON */
523 hx = __HI(x);
524 ahy = __HI(y)&0x7fffffff;
525 ly = __LO(y);

527 yisint = 0;
528 if (ahy >= 0x43400000) {
529 yisint = 2; /* even integer y */
530 } else if (ahy >= 0x3ff00000) {
531 k = (ahy >> 20) - 0x3ff; /* exponent */
532 if (k > 20) {
533 j = ly >> (52 - k);
534 if ((j << (52 - k)) == ly)
535 yisint = 2 - (j & 1);
536 } else if (ly == 0) {
537 j = ahy >> (20 - k);
538 if ((j << (20 - k)) == ahy)
539 yisint = 2 - (j & 1);
540 }
541 }
542 if (hx < 0 && yisint == 1)
543 ieee_retval = -ieee_retval;
544 }
545 if (lib_version == c_issue_4)
546 exc.retval = 0.0;
547 else
548 exc.retval = -HUGE_VAL;
549 if (lib_version == strict_ansi) {
550 errno = EDOM;
551 } else if (!matherr(&exc)) {
552 if (lib_version == c_issue_4) {
553 (void) write(2, "pow(0,neg): DOMAIN error\n",
554 25);
555 }
556 errno = EDOM;
557 }
558 break;
559 case 24:
560 /* neg**non-integral */
561 exc.type = DOMAIN;
562 exc.name = "pow";
563 ieee_retval = setexception(3, 1.0);
564 if (lib_version == c_issue_4)
565 exc.retval = 0.0;
566 else
567 exc.retval = ieee_retval; /* X/Open allow NaN */
568 if (lib_version == strict_ansi) {

new/usr/src/lib/libm/common/C/_SVID_error.c 8

569 errno = EDOM;
570 } else if (!matherr(&exc)) {
571 if (lib_version == c_issue_4) {
572 (void) write(2,
573 "neg**non-integral: DOMAIN error\n", 32);
574 }
575 errno = EDOM;
576 }
577 break;
578 case 25:
579 /* sinh(finite) overflow */
580 exc.type = OVERFLOW;
581 exc.name = "sinh";
582 ieee_retval = copysign(Inf, x);
583 if (lib_version == c_issue_4)
584 exc.retval = x > 0.0 ? HUGE : -HUGE;
585 else
586 exc.retval = x > 0.0 ? HUGE_VAL : -HUGE_VAL;
587 if (lib_version == strict_ansi)
588 errno = ERANGE;
589 else if (!matherr(&exc))
590 errno = ERANGE;
591 break;
592 case 26:
593 /* sqrt(x<0) */
594 exc.type = DOMAIN;
595 exc.name = "sqrt";
596 ieee_retval = setexception(3, 1.0);
597 if (lib_version == c_issue_4)
598 exc.retval = 0.0;
599 else
600 exc.retval = ieee_retval; /* quiet NaN */
601 if (lib_version == strict_ansi) {
602 errno = EDOM;
603 } else if (!matherr(&exc)) {
604 if (lib_version == c_issue_4) {
605 (void) write(2, "sqrt: DOMAIN error\n", 19);
606 }
607 errno = EDOM;
608 }
609 break;
610 case 27:
611 /* fmod(x,0) */
612 exc.type = DOMAIN;
613 exc.name = "fmod";
614 if (fp_class(x) == fp_quiet)
615 ieee_retval = NaN;
616 else
617 ieee_retval = setexception(3, 1.0);
618 if (lib_version == c_issue_4)
619 exc.retval = x;
620 else
621 exc.retval = ieee_retval;
622 if (lib_version == strict_ansi) {
623 errno = EDOM;
624 } else if (!matherr(&exc)) {
625 if (lib_version == c_issue_4) {
626 (void) write(2, "fmod: DOMAIN error\n", 20);
627 }
628 errno = EDOM;
629 }
630 break;
631 case 28:
632 /* remainder(x,0) */
633 exc.type = DOMAIN;
634 exc.name = "remainder";

new/usr/src/lib/libm/common/C/_SVID_error.c 9

635 if (fp_class(x) == fp_quiet)
636 ieee_retval = NaN;
637 else
638 ieee_retval = setexception(3, 1.0);
639 exc.retval = NaN;
640 if (lib_version == strict_ansi) {
641 errno = EDOM;
642 } else if (!matherr(&exc)) {
643 if (lib_version == c_issue_4) {
644 (void) write(2, "remainder: DOMAIN error\n",
645 24);
646 }
647 errno = EDOM;
648 }
649 break;
650 case 29:
651 /* acosh(x<1) */
652 exc.type = DOMAIN;
653 exc.name = "acosh";
654 ieee_retval = setexception(3, 1.0);
655 exc.retval = NaN;
656 if (lib_version == strict_ansi) {
657 errno = EDOM;
658 } else if (!matherr(&exc)) {
659 if (lib_version == c_issue_4) {
660 (void) write(2, "acosh: DOMAIN error\n", 20);
661 }
662 errno = EDOM;
663 }
664 break;
665 case 30:
666 /* atanh(|x|>1) */
667 exc.type = DOMAIN;
668 exc.name = "atanh";
669 ieee_retval = setexception(3, 1.0);
670 exc.retval = NaN;
671 if (lib_version == strict_ansi) {
672 errno = EDOM;
673 } else if (!matherr(&exc)) {
674 if (lib_version == c_issue_4) {
675 (void) write(2, "atanh: DOMAIN error\n", 20);
676 }
677 errno = EDOM;
678 }
679 break;
680 case 31:
681 /* atanh(|x|=1) */
682 exc.type = SING;
683 exc.name = "atanh";
684 ieee_retval = setexception(0, x);
685 exc.retval = ieee_retval;
686 if (lib_version == strict_ansi) {
687 errno = ERANGE;
688 } else if (!matherr(&exc)) {
689 if (lib_version == c_issue_4) {
690 (void) write(2, "atanh: SING error\n", 18);
691 errno = EDOM;
692 } else {
693 errno = ERANGE;
694 }
695 }
696 break;
697 case 32:
698 /* scalb overflow; SVID also returns +-HUGE_VAL */
699 exc.type = OVERFLOW;
700 exc.name = "scalb";

new/usr/src/lib/libm/common/C/_SVID_error.c 10

701 ieee_retval = setexception(2, x);
702 exc.retval = x > 0.0 ? HUGE_VAL : -HUGE_VAL;
703 if (lib_version == strict_ansi)
704 errno = ERANGE;
705 else if (!matherr(&exc))
706 errno = ERANGE;
707 break;
708 case 33:
709 /* scalb underflow */
710 exc.type = UNDERFLOW;
711 exc.name = "scalb";
712 ieee_retval = setexception(1, x);
713 exc.retval = ieee_retval; /* +-0.0 */
714 if (lib_version == strict_ansi)
715 errno = ERANGE;
716 else if (!matherr(&exc))
717 errno = ERANGE;
718 break;
719 case 34:
720 /* j0(|x|>X_TLOSS) */
721 exc.type = TLOSS;
722 exc.name = "j0";
723 exc.retval = 0.0;
724 ieee_retval = y;
725 if (lib_version == strict_ansi) {
726 errno = ERANGE;
727 } else if (!matherr(&exc)) {
728 if (lib_version == c_issue_4) {
729 (void) write(2, exc.name, 2);
730 (void) write(2, ": TLOSS error\n", 14);
731 }
732 errno = ERANGE;
733 }
734 break;
735 case 35:
736 /* y0(x>X_TLOSS) */
737 exc.type = TLOSS;
738 exc.name = "y0";
739 exc.retval = 0.0;
740 ieee_retval = y;
741 if (lib_version == strict_ansi) {
742 errno = ERANGE;
743 } else if (!matherr(&exc)) {
744 if (lib_version == c_issue_4) {
745 (void) write(2, exc.name, 2);
746 (void) write(2, ": TLOSS error\n", 14);
747 }
748 errno = ERANGE;
749 }
750 break;
751 case 36:
752 /* j1(|x|>X_TLOSS) */
753 exc.type = TLOSS;
754 exc.name = "j1";
755 exc.retval = 0.0;
756 ieee_retval = y;
757 if (lib_version == strict_ansi) {
758 errno = ERANGE;
759 } else if (!matherr(&exc)) {
760 if (lib_version == c_issue_4) {
761 (void) write(2, exc.name, 2);
762 (void) write(2, ": TLOSS error\n", 14);
763 }
764 errno = ERANGE;
765 }
766 break;

new/usr/src/lib/libm/common/C/_SVID_error.c 11

767 case 37:
768 /* y1(x>X_TLOSS) */
769 exc.type = TLOSS;
770 exc.name = "y1";
771 exc.retval = 0.0;
772 ieee_retval = y;
773 if (lib_version == strict_ansi) {
774 errno = ERANGE;
775 } else if (!matherr(&exc)) {
776 if (lib_version == c_issue_4) {
777 (void) write(2, exc.name, 2);
778 (void) write(2, ": TLOSS error\n", 14);
779 }
780 errno = ERANGE;
781 }
782 break;
783 case 38:
784 /* jn(|x|>X_TLOSS) */
785 /* incorrect ieee value: ieee should never be here */
786 exc.type = TLOSS;
787 exc.name = "jn";
788 exc.retval = 0.0;
789 ieee_retval = 0.0; /* shall not be used */
790 if (lib_version == strict_ansi) {
791 errno = ERANGE;
792 } else if (!matherr(&exc)) {
793 if (lib_version == c_issue_4) {
794 (void) write(2, exc.name, 2);
795 (void) write(2, ": TLOSS error\n", 14);
796 }
797 errno = ERANGE;
798 }
799 break;
800 case 39:
801 /* yn(x>X_TLOSS) */
802 /* incorrect ieee value: ieee should never be here */
803 exc.type = TLOSS;
804 exc.name = "yn";
805 exc.retval = 0.0;
806 ieee_retval = 0.0; /* shall not be used */
807 if (lib_version == strict_ansi) {
808 errno = ERANGE;
809 } else if (!matherr(&exc)) {
810 if (lib_version == c_issue_4) {
811 (void) write(2, exc.name, 2);
812 (void) write(2, ": TLOSS error\n", 14);
813 }
814 errno = ERANGE;
815 }
816 break;
817 case 40:
818 /* gamma(finite) overflow */
819 exc.type = OVERFLOW;
820 exc.name = "gamma";
821 ieee_retval = setexception(2, 1.0);
822 if (lib_version == c_issue_4)
823 exc.retval = HUGE;
824 else
825 exc.retval = HUGE_VAL;
826 if (lib_version == strict_ansi)
827 errno = ERANGE;
828 else if (!matherr(&exc))
829 errno = ERANGE;
830 break;
831 case 41:
832 /* gamma(-integer) or gamma(0) */

new/usr/src/lib/libm/common/C/_SVID_error.c 12

833 exc.type = SING;
834 exc.name = "gamma";
835 ieee_retval = setexception(0, 1.0);
836 if (lib_version == c_issue_4)
837 exc.retval = HUGE;
838 else
839 exc.retval = HUGE_VAL;
840 if (lib_version == strict_ansi) {
841 errno = EDOM;
842 } else if (!matherr(&exc)) {
843 if (lib_version == c_issue_4) {
844 (void) write(2, "gamma: SING error\n", 18);
845 }
846 errno = EDOM;
847 }
848 break;
849 case 42:
850 /* pow(NaN,0.0) */
851 /* error if lib_version == c_issue_4 or ansi_1 */
852 exc.type = DOMAIN;
853 exc.name = "pow";
854 exc.retval = x;
855 ieee_retval = 1.0;
856 if (lib_version == strict_ansi) {
857 exc.retval = 1.0;
858 } else if (!matherr(&exc)) {
859 if ((lib_version == c_issue_4) || (lib_version == ansi_1
859 switch (lib_version) {
860 case c_issue_4:
861 case ansi_1:
860 errno = EDOM;
863 }
861 }
862 break;
863 case 43:
864 /* log1p(-1) */
865 exc.type = SING;
866 exc.name = "log1p";
867 ieee_retval = setexception(0, -1.0);
868 if (lib_version == c_issue_4)
869 exc.retval = -HUGE;
870 else
871 exc.retval = -HUGE_VAL;
872 if (lib_version == strict_ansi) {
873 errno = ERANGE;
874 } else if (!matherr(&exc)) {
875 if (lib_version == c_issue_4) {
876 (void) write(2, "log1p: SING error\n", 18);
877 errno = EDOM;
878 } else {
879 errno = ERANGE;
880 }
881 }
882 break;
883 case 44:
884 /* log1p(x<-1) */
885 exc.type = DOMAIN;
886 exc.name = "log1p";
887 ieee_retval = setexception(3, 1.0);
888 exc.retval = ieee_retval;
889 if (lib_version == strict_ansi) {
890 errno = EDOM;
891 } else if (!matherr(&exc)) {
892 if (lib_version == c_issue_4) {
893 (void) write(2, "log1p: DOMAIN error\n", 20);
894 }

new/usr/src/lib/libm/common/C/_SVID_error.c 13

895 errno = EDOM;
896 }
897 break;
898 case 45:
899 /* logb(0) */
900 exc.type = DOMAIN;
901 exc.name = "logb";
902 ieee_retval = setexception(0, -1.0);
903 exc.retval = -HUGE_VAL;
904 if (lib_version == strict_ansi)
905 errno = EDOM;
906 else if (!matherr(&exc))
907 errno = EDOM;
908 break;
909 case 46:
910 /* nextafter overflow */
911 exc.type = OVERFLOW;
912 exc.name = "nextafter";
913 /*
914 * The value as returned by setexception is +/-DBL_MAX in
915 * round-to-{zero,-/+Inf} mode respectively, which is not
916 * usable.
917 */
918 (void) setexception(2, x);
919 ieee_retval = x > 0 ? Inf : -Inf;
920 exc.retval = x > 0 ? HUGE_VAL : -HUGE_VAL;
921 if (lib_version == strict_ansi)
922 errno = ERANGE;
923 else if (!matherr(&exc))
924 errno = ERANGE;
925 break;
926 case 47:
927 /* scalb(x,inf) */
928 iy = ((int *)&y)[HIWORD];
929 if (lib_version == c_issue_4)
930 /* SVID3: ERANGE in all cases */
931 errno = ERANGE;
932 else if ((x == 0.0 && iy > 0) || (!finite(x) && iy < 0))
933 /* EDOM for scalb(0,+inf) or scalb(inf,-inf) */
934 errno = EDOM;
935 exc.retval = ieee_retval = ((iy < 0)? x / -y : x * y);
936 break;
937 }
938 switch (lib_version) {
939 case c_issue_4:
940 case ansi_1:
941 case strict_ansi:
942 return (exc.retval);
943 /* NOTREACHED */
944 default:
945 return (ieee_retval);
946 }
947 /* NOTREACHED */
948 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/C/__tan.c 1

**
 5678 Sun May 4 03:04:58 2014
new/usr/src/lib/libm/common/C/__tan.c
**
______unchanged_portion_omitted_

106 #define one q[0]
107 #define pp1 q[1]
108 #define pp2 q[2]
109 #define pp3 q[3]
110 #define qq1 q[4]
111 #define qq2 q[5]
112 #define t1 q[6]
113 #define t2 q[7]
114 #define t3 q[8]
115 #define t4 q[9]
116 #define t5 q[10]
117 #define t6 q[11]

119 /* INDENT ON */

122 double
123 __k_tan(double x, double y, int k) {
124 double a, t, z, w = 0.0L, s, c, r, rh, xh, xl;
124 double a, t, z, w, s, c, r, rh, xh, xl;
125 int i, j, hx, ix;

127 t = one;
128 hx = ((int *) &x)[HIWORD];
129 ix = hx & 0x7fffffff;
130 if (ix < 0x3fc40000) { /* 0.15625 */
131 if (ix < 0x3e400000) { /* 2^-27 */
130 if (ix < 0x3fc40000) {
131 if (ix < 0x3e400000) {
132 if ((i = (int) x) == 0) /* generate inexact */
133 w = x;
134 t = y;
135 } else {
136 z = x * x;
137 t = y + (((t1 * x) * z) * (t2 + z * (t3 + z))) *
138 ((t4 + z) * (t5 + z * (t6 + z)));
139 w = x + t;
140 }
141 if (k == 0)
142 return (w);
143 /*
144 * Compute -1/(x+T) with great care
145 * Let r = -1/(x+T), rh = r chopped to 20 bits.
146 * Also let xh = x+T chopped to 20 bits, xl = (x-xh)+T. Then
147 * -1/(x+T) = rh + (-1/(x+T)-rh) = rh + r*(1+rh*(x+T))
148 * = rh + r*((1+rh*xh)+rh*xl).
149 */
150 rh = r = -one / w;
151 ((int *) &rh)[LOWORD] = 0;
152 xh = w;
153 ((int *) &xh)[LOWORD] = 0;
154 xl = (x - xh) + t;
155 return (rh + r * ((one + rh * xh) + rh * xl));
156 }
157 j = (ix + 0x4000) & 0x7fff8000;
158 i = (j - 0x3fc40000) >> 15;
159 ((int *) &t)[HIWORD] = j;
160 if (hx > 0)
161 x = y - (t - x);

new/usr/src/lib/libm/common/C/__tan.c 2

162 else
163 x = -y - (t + x);
164 a = _TBL_tan_hi[i];
165 z = x * x;
166 s = (pp1 * x) * (pp2 + z * (pp3 + z)); /* sin(x) */
167 t = (qq1 * z) * (qq2 + z); /* cos(x) - 1 */
168 if (k == 0) {
169 w = a * s;
170 t = _TBL_tan_lo[i] + (s + a * w) / (one - (w - t));
171 return (hx < 0 ? -a - t : a + t);
172 } else {
173 w = s + a * t;
174 c = w + _TBL_tan_lo[i];
175 t = a * s - t;
176 /*
177 * Now try to compute [(1-T)/(a+c)] accurately
178 *
179 * Let r = 1/(a+c), rh = (1-T)*r chopped to 20 bits.
180 * Also let xh = a+c chopped to 20 bits, xl = (a-xh)+c. Then
181 * (1-T)/(a+c) = rh + ((1-T)/(a+c)-rh)
182 * = rh + r*(1-T-rh*(a+c))
183 * = rh + r*((1-T-rh*xh)-rh*xl)
184 * = rh + r*(((1-rh*xh)-T)-rh*xl)
185 */
186 r = one / (a + c);
187 rh = (one - t) * r;
188 ((int *) &rh)[LOWORD] = 0;
189 xh = a + c;
190 ((int *) &xh)[LOWORD] = 0;
191 xl = (a - xh) + c;
192 z = rh + r * (((one - rh * xh) - t) - rh * xl);
193 return (hx >= 0 ? -z : z);
194 }
195 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/C/asin.c 1

**
 4870 Sun May 4 03:05:00 2014
new/usr/src/lib/libm/common/C/asin.c
**
______unchanged_portion_omitted_
88 #define one xxx[0]
89 #define huge xxx[1]
90 #define pio2_hi xxx[2]
91 #define pio2_lo xxx[3]
92 #define pio4_hi xxx[4]
93 #define pS0 xxx[5]
94 #define pS1 xxx[6]
95 #define pS2 xxx[7]
96 #define pS3 xxx[8]
97 #define pS4 xxx[9]
98 #define pS5 xxx[10]
99 #define qS1 xxx[11]
100 #define qS2 xxx[12]
101 #define qS3 xxx[13]
102 #define qS4 xxx[14]
103 /* INDENT ON */

105 double
106 asin(double x) {
107 double t, w, p, q, c, r, s;
108 int hx, ix, i;
108 int hx, ix;

110 hx = ((int *) &x)[HIWORD];
111 ix = hx & 0x7fffffff;
112 if (ix >= 0x3ff00000) { /* |x| >= 1 */
113 if (((ix - 0x3ff00000) | ((int *) &x)[LOWORD]) == 0)
114 /* asin(1)=+-pi/2 with inexact */
115 return x * pio2_hi + x * pio2_lo;
116 else if (isnan(x))
117 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
118 return ix >= 0x7ff80000 ? x : (x - x) / (x - x);
119 /* assumes sparc-like QNaN */
120 #else
121 return (x - x) / (x - x); /* asin(|x|>1) is NaN */
122 #endif
123 else
124 return _SVID_libm_err(x, x, 2);
125 }
126 else if (ix < 0x3fe00000) { /* |x| < 0.5 */
127 if (ix < 0x3e400000) { /* if |x| < 2**-27 */
128 if ((i = (int) x) == 0)
128 if (huge + x > one)
129 return x; /* return x with inexact if
130 * x != 0 */
131 }
132 else
132 t = x * x;
133 p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 +
134 t * (pS4 + t * pS5)))));
135 q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
136 w = p / q;
137 return x + x * w;
138 }
139 /* 1 > |x| >= 0.5 */
140 w = one - fabs(x);
141 t = w * 0.5;
142 p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
143 q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
144 s = sqrt(t);
145 if (ix >= 0x3FEF3333) { /* if |x| > 0.975 */

new/usr/src/lib/libm/common/C/asin.c 2

146 w = p / q;
147 t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
148 }
149 else {
150 w = s;
151 ((int *) &w)[LOWORD] = 0;
152 c = (t - w * w) / (s + w);
153 r = p / q;
154 p = 2.0 * s * r - (pio2_lo - 2.0 * c);
155 q = pio4_hi - 2.0 * w;
156 t = pio4_hi - (p - q);
157 }
158 return hx > 0 ? t : -t;
159 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/C/expm1.c 1

**
 8501 Sun May 4 03:05:02 2014
new/usr/src/lib/libm/common/C/expm1.c
**
______unchanged_portion_omitted_
148 #define one xxx[0]
149 #define huge xxx[1]
150 #define tiny xxx[2]
151 #define o_threshold xxx[3]
152 #define ln2_hi xxx[4]
153 #define ln2_lo xxx[5]
154 #define invln2 xxx[6]
155 #define Q1 xxx[7]
156 #define Q2 xxx[8]
157 #define Q3 xxx[9]
158 #define Q4 xxx[10]
159 #define Q5 xxx[11]

161 double
162 expm1(double x) {
163 double y, hi, lo, c = 0.0L, t, e, hxs, hfx, r1;
163 double y, hi, lo, c, t, e, hxs, hfx, r1;
164 int k, xsb;
165 unsigned hx;

167 hx = ((unsigned *) &x)[HIWORD]; /* high word of x */
168 xsb = hx & 0x80000000; /* sign bit of x */
169 if (xsb == 0)
170 y = x;
171 else
172 y = -x; /* y = |x| */
173 hx &= 0x7fffffff; /* high word of |x| */

175 /* filter out huge and non-finite argument */
176 /* for example exp(38)-1 is approximately 3.1855932e+16 */
177 if (hx >= 0x4043687A) { /* if |x|>=56*ln2 (~38.8162...)
178 if (hx >= 0x40862E42) { /* if |x|>=709.78... -> inf */
175 /* filter out huge and non-finite arugment */
176 if (hx >= 0x4043687A) { /* if |x|>=56*ln2 */
177 if (hx >= 0x40862E42) { /* if |x|>=709.78... */
179 if (hx >= 0x7ff00000) {
180 if (((hx & 0xfffff) | ((int *) &x)[LOWORD])
181 != 0)
182 return x * x; /* + -> * for Cheetah */
183 else
184 return xsb == 0 ? x : -1.0; /* exp(+
185 }
186 if (x > o_threshold)
187 return huge * huge; /* overflow */
188 }
189 if (xsb != 0) { /* x < -56*ln2, return -1.0 w/inexact */
190 if (x + tiny < 0.0) /* raise inexact */
191 return tiny - one; /* return -1 */
192 }
193 }

195 /* argument reduction */
196 if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
197 if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
198 if (xsb == 0) { /* positive number */
197 if (xsb == 0) {
199 hi = x - ln2_hi;
200 lo = ln2_lo;
201 k = 1;
202 }
203 else { /* negative number */

new/usr/src/lib/libm/common/C/expm1.c 2

202 else {
204 hi = x + ln2_hi;
205 lo = -ln2_lo;
206 k = -1;
207 }
208 }
209 else { /* |x| > 1.5 ln2 */
208 else {
210 k = (int) (invln2 * x + (xsb == 0 ? 0.5 : -0.5));
211 t = k;
212 hi = x - t * ln2_hi; /* t*ln2_hi is exact here */
213 lo = t * ln2_lo;
214 }
215 x = hi - lo;
216 c = (hi - x) - lo; /* still at |x| > 0.5 ln2 */
215 c = (hi - x) - lo;
217 }
218 else if (hx < 0x3c900000) { /* when |x|<2**-54, return x */
219 t = huge + x; /* return x w/inexact when x != 0 */
220 return x - (t - (huge + x));
221 }
222 else /* |x| <= 0.5 ln2 */
221 else
223 k = 0;

225 /* x is now in primary range */
226 hfx = 0.5 * x;
227 hxs = x * hfx;
228 r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
229 t = 3.0 - r1 * hfx;
230 e = hxs * ((r1 - t) / (6.0 - x * t));
231 if (k == 0) /* |x| <= 0.5 ln2 */
232 return x - (x * e - hxs);
233 else { /* |x| > 0.5 ln2 */
230 if (k == 0)
231 return x - (x * e - hxs); /* c is 0 */
232 else {
234 e = (x * (e - c) - c);
235 e -= hxs;
236 if (k == -1)
237 return 0.5 * (x - e) - 0.5;
238 if (k == 1) {
237 if (k == 1)
239 if (x < -0.25)
240 return -2.0 * (e - (x + 0.5));
241 else
242 return one + 2.0 * (x - e);
243 }
244 #endif /* ! codereview */
245 if (k <= -2 || k > 56) { /* suffice to return exp(x)-1 */
246 y = one - (e - x);
247 ((int *) &y)[HIWORD] += k << 20;
248 return y - one;
249 }
250 t = one;
251 if (k < 20) {
252 ((int *) &t)[HIWORD] = 0x3ff00000 - (0x200000 >> k);
253 /* t = 1 - 2^-k */
254 y = t - (e - x);
255 ((int *) &y)[HIWORD] += k << 20;
256 }
257 else {
258 ((int *) &t)[HIWORD] = (0x3ff - k) << 20; /* 2^-k */
259 y = x - (e + t);
260 y += one;
261 ((int *) &y)[HIWORD] += k << 20;

new/usr/src/lib/libm/common/C/expm1.c 3

262 }
263 }
264 return y;
265 }

new/usr/src/lib/libm/common/C/jn.c 1

**
 7265 Sun May 4 03:05:04 2014
new/usr/src/lib/libm/common/C/jn.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak jn = __jn
31 #pragma weak yn = __yn

33 /*
34 * floating point Bessel’s function of the 1st and 2nd kind
35 * of order n: jn(n,x),yn(n,x);
36 *
37 * Special cases:
38 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
39 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
40 * Note 2. About jn(n,x), yn(n,x)
41 * For n=0, j0(x) is called,
42 * for n=1, j1(x) is called,
43 * for n<x, forward recursion us used starting
44 * from values of j0(x) and j1(x).
45 * for n>x, a continued fraction approximation to
46 * j(n,x)/j(n-1,x) is evaluated and then backward
47 * recursion is used starting from a supposed value
48 * for j(n,x). The resulting value of j(0,x) is
49 * compared with the actual value to correct the
50 * supposed value of j(n,x).
51 *
52 * yn(n,x) is similar in all respects, except
53 * that forward recursion is used for all
54 * values of n>1.
55 *
56 */

58 #include "libm.h"
59 #include <float.h> /* DBL_MIN */
60 #include <values.h> /* X_TLOSS */
61 #include "xpg6.h" /* __xpg6 */

new/usr/src/lib/libm/common/C/jn.c 2

63 #define GENERIC double

65 static const GENERIC
66 invsqrtpi = 5.641895835477562869480794515607725858441e-0001,
67 two = 2.0,
68 zero = 0.0,
69 one = 1.0;

71 GENERIC
72 jn(int n, GENERIC x) {
73 int i, sgn;
74 GENERIC a, b, temp = 0;
74 GENERIC a, b, temp;
75 GENERIC z, w, ox, on;

77 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
78 * Thus, J(-n,x) = J(n,-x)
79 */
80 ox = x; on = (GENERIC)n;
81 if(n<0){
82 n = -n;
83 x = -x;
84 }
85 if(isnan(x)) return x*x; /* + -> * for Cheetah */
86 if (!((int) _lib_version == libm_ieee ||
87 (__xpg6 & _C99SUSv3_math_errexcept) != 0)) {
88 if(fabs(x) > X_TLOSS) return _SVID_libm_err(on,ox,38);
89 }
90 if(n==0) return(j0(x));
91 if(n==1) return(j1(x));
92 if((n&1)==0)
93 sgn=0; /* even n */
94 else
95 sgn = signbit(x); /* old n */
96 x = fabs(x);
97 if(x == zero||!finite(x)) b = zero;
98 else if((GENERIC)n<=x) { /* Safe to use
99 J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
100 */
101 if(x>1.0e91) { /* x >> n**2
102 Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
103 Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
104 Let s=sin(x), c=cos(x),
105 xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then

107 n sin(xn)*sqt2 cos(xn)*sqt2
108 ----------------------------------
109 0 s-c c+s
110 1 -s-c -c+s
111 2 -s+c -c-s
112 3 s+c c-s
113 */
114 switch(n&3) {
115 case 0: temp = cos(x)+sin(x); break;
116 case 1: temp = -cos(x)+sin(x); break;
117 case 2: temp = -cos(x)-sin(x); break;
118 case 3: temp = cos(x)-sin(x); break;
119 }
120 b = invsqrtpi*temp/sqrt(x);
121 } else {
122 a = j0(x);
123 b = j1(x);
124 for(i=1;i<n;i++){
125 temp = b;
126 b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */
127 a = temp;

new/usr/src/lib/libm/common/C/jn.c 3

128 }
129 }
130 } else {
131 if(x<1e-9) { /* use J(n,x) = 1/n!*(x/2)^n */
132 b = pow(0.5*x,(GENERIC) n);
133 if (b!=zero) {
134 for(a=one,i=1;i<=n;i++) a *= (GENERIC)i;
135 b = b/a;
136 }
137 } else {
138 /* use backward recurrence */
139 /* x x^2 x^2
140 * J(n,x)/J(n-1,x) = ---- ------ ------
141 * 2n - 2(n+1) - 2(n+2)
142 *
143 * 1 1 1
144 * (for large x) = ---- ------ ------
145 * 2n 2(n+1) 2(n+2)
146 * -- - ------ - ------ -
147 * x x x
148 *
149 * Let w = 2n/x and h=2/x, then the above quotient
150 * is equal to the continued fraction:
151 * 1
152 * = -----------------------
153 * 1
154 * w - -----------------
155 * 1
156 * w+h - ---------
157 * w+2h - ...
158 *
159 * To determine how many terms needed, let
160 * Q(0) = w, Q(1) = w(w+h) - 1,
161 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
162 * When Q(k) > 1e4 good for single
163 * When Q(k) > 1e9 good for double
164 * When Q(k) > 1e17 good for quaduple
165 */
166 /* determin k */
167 GENERIC t,v;
168 double q0,q1,h,tmp; int k,m;
169 w = (n+n)/(double)x; h = 2.0/(double)x;
170 q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
171 while(q1<1.0e9) {
172 k += 1; z += h;
173 tmp = z*q1 - q0;
174 q0 = q1;
175 q1 = tmp;
176 }
177 m = n+n;
178 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
179 a = t;
180 b = one;
181 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
182 hence, if n*(log(2n/x)) > ...
183 single 8.8722839355e+01
184 double 7.09782712893383973096e+02
185 long double 1.1356523406294143949491931077970765006170e+04
186 then recurrent value may overflow and the result is
187 likely underflow to zero
188 */
189 tmp = n;
190 v = two/x;
191 tmp = tmp*log(fabs(v*tmp));
192 if(tmp<7.09782712893383973096e+02) {
193 for(i=n-1;i>0;i--){

new/usr/src/lib/libm/common/C/jn.c 4

194 temp = b;
195 b = ((i+i)/x)*b - a;
196 a = temp;
197 }
198 } else {
199 for(i=n-1;i>0;i--){
200 temp = b;
201 b = ((i+i)/x)*b - a;
202 a = temp;
203 if(b>1e100) {
204 a /= b;
205 t /= b;
206 b = 1.0;
207 }
208 }
209 }
210 b = (t*j0(x)/b);
211 }
212 }
213 if(sgn==1) return -b; else return b;
214 }

216 GENERIC
217 yn(int n, GENERIC x) {
218 int i;
219 int sign;
220 GENERIC a, b, temp = 0, ox, on;
220 GENERIC a, b, temp, ox, on;

222 ox = x; on = (GENERIC)n;
223 if(isnan(x)) return x*x; /* + -> * for Cheetah */
224 if (x <= zero) {
225 if(x==zero) {
224 if (x <= zero)
225 if(x==zero)
226 /* return -one/zero; */
227 return _SVID_libm_err((GENERIC)n,x,12);
228 } else {
228 else
229 /* return zero/zero; */
230 return _SVID_libm_err((GENERIC)n,x,13);
231 }
232 }
233 #endif /* ! codereview */
234 if (!((int) _lib_version == libm_ieee ||
235 (__xpg6 & _C99SUSv3_math_errexcept) != 0)) {
236 if(x > X_TLOSS) return _SVID_libm_err(on,ox,39);
237 }
238 sign = 1;
239 if(n<0){
240 n = -n;
241 if((n&1) == 1) sign = -1;
242 }
243 if(n==0) return(y0(x));
244 if(n==1) return(sign*y1(x));
245 if(!finite(x)) return zero;

247 if(x>1.0e91) { /* x >> n**2
248 Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
249 Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
250 Let s=sin(x), c=cos(x),
251 xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then

253 n sin(xn)*sqt2 cos(xn)*sqt2
254 ----------------------------------
255 0 s-c c+s

new/usr/src/lib/libm/common/C/jn.c 5

256 1 -s-c -c+s
257 2 -s+c -c-s
258 3 s+c c-s
259 */
260 switch(n&3) {
261 case 0: temp = sin(x)-cos(x); break;
262 case 1: temp = -sin(x)-cos(x); break;
263 case 2: temp = -sin(x)+cos(x); break;
264 case 3: temp = sin(x)+cos(x); break;
265 }
266 b = invsqrtpi*temp/sqrt(x);
267 } else {
268 a = y0(x);
269 b = y1(x);
270 /*
271 * fix 1262058 and take care of non-default rounding
272 */
273 for (i = 1; i < n; i++) {
274 temp = b;
275 b *= (GENERIC) (i + i) / x;
276 if (b <= -DBL_MAX)
277 break;
278 b -= a;
279 a = temp;
280 }
281 }
282 if(sign>0) return b; else return -b;
283 }

new/usr/src/lib/libm/common/C/log1p.c 1

**
 6359 Sun May 4 03:05:06 2014
new/usr/src/lib/libm/common/C/log1p.c
**
______unchanged_portion_omitted_
112 #define ln2_hi xxx[0]
113 #define ln2_lo xxx[1]
114 #define two54 xxx[2]
115 #define Lp1 xxx[3]
116 #define Lp2 xxx[4]
117 #define Lp3 xxx[5]
118 #define Lp4 xxx[6]
119 #define Lp5 xxx[7]
120 #define Lp6 xxx[8]
121 #define Lp7 xxx[9]
122 #define zero xxx[10]

124 double
125 log1p(double x) {
126 double hfsq, f, c = 0.0, s, z, R, u;
126 double hfsq, f, c, s, z, R, u;
127 int k, hx, hu, ax;

129 hx = ((int *)&x)[HIWORD]; /* high word of x */
130 ax = hx & 0x7fffffff;

132 if (ax >= 0x7ff00000) { /* x is inf or nan */
133 if (((hx - 0xfff00000) | ((int *)&x)[LOWORD]) == 0) /* -inf */
134 return (_SVID_libm_err(x, x, 44));
135 return (x * x);
136 }

138 k = 1;
139 if (hx < 0x3FDA827A) { /* x < 0.41422 */
140 if (ax >= 0x3ff00000) /* x <= -1.0 */
141 return (_SVID_libm_err(x, x, x == -1.0 ? 43 : 44));
142 if (ax < 0x3e200000) { /* |x| < 2**-29 */
143 if (two54 + x > zero && /* raise inexact */
144 ax < 0x3c900000) /* |x| < 2**-54 */
145 return (x);
146 else
147 return (x - x * x * 0.5);
148 }
149 if (hx > 0 || hx <= (int)0xbfd2bec3) { /* -0.2929<x<0.41422 */
150 k = 0;
151 f = x;
152 hu = 1;
153 }
154 }
155 /* We will initialize ’c’ here. */
156 #endif /* ! codereview */
157 if (k != 0) {
158 if (hx < 0x43400000) {
159 u = 1.0 + x;
160 hu = ((int *)&u)[HIWORD]; /* high word of u */
161 k = (hu >> 20) - 1023;
162 /*
163 * correction term
164 */
165 c = k > 0 ? 1.0 - (u - x) : x - (u - 1.0);
166 c /= u;
167 } else {
168 u = x;
169 hu = ((int *)&u)[HIWORD]; /* high word of u */
170 k = (hu >> 20) - 1023;
171 c = 0;

new/usr/src/lib/libm/common/C/log1p.c 2

172 }
173 hu &= 0x000fffff;
174 if (hu < 0x6a09e) { /* normalize u */
175 ((int *)&u)[HIWORD] = hu | 0x3ff00000;
176 } else { /* normalize u/2 */
177 k += 1;
178 ((int *)&u)[HIWORD] = hu | 0x3fe00000;
179 hu = (0x00100000 - hu) >> 2;
180 }
181 f = u - 1.0;
182 }
183 hfsq = 0.5 * f * f;
184 if (hu == 0) { /* |f| < 2**-20 */
185 if (f == zero) {
186 if (k == 0)
187 return (zero);
188 /* We already initialized ’c’ before, when (k != 0) */
189 #endif /* ! codereview */
190 c += k * ln2_lo;
191 return (k * ln2_hi + c);
192 }
193 R = hfsq * (1.0 - 0.66666666666666666 * f);
194 if (k == 0)
195 return (f - R);
196 return (k * ln2_hi - ((R - (k * ln2_lo + c)) - f));
197 }
198 s = f / (2.0 + f);
199 z = s * s;
200 R = z * (Lp1 + z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 +
201 z * (Lp6 + z * Lp7))))));
202 if (k == 0)
203 return (f - (hfsq - s * (hfsq + R)));
204 return (k * ln2_hi - ((hfsq - (s * (hfsq + R) +
205 (k * ln2_lo + c))) - f));
206 }

new/usr/src/lib/libm/common/C/nextafter.c 1

**
 2274 Sun May 4 03:05:07 2014
new/usr/src/lib/libm/common/C/nextafter.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 */
24 /*
25 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
27 */

29 #pragma weak nextafter = __nextafter
30 #pragma weak _nextafter = __nextafter

32 #include "libm.h"
33 #include <float.h> /* DBL_MIN */

35 double
36 nextafter(double x, double y) {
37 int hx, hy, k;
38 double ans;
39 unsigned lx;
40 volatile double dummy;
41 #endif /* ! codereview */

43 hx = ((int *)&x)[HIWORD];
44 lx = ((int *)&x)[LOWORD];
45 hy = ((int *)&y)[HIWORD];
46 k = (hx & ~0x80000000) | lx;

48 if (x == y)
49 return (y); /* C99 requirement */
50 if (x != x || y != y)
51 return (x * y);
52 if (k == 0) { /* x = 0 */
53 k = hy & 0x80000000;
54 ((int *)&ans)[HIWORD] = k;
55 ((int *)&ans)[LOWORD] = 1;
56 } else if (hx >= 0) {
57 if (x > y) {
58 ((int *)&ans)[LOWORD] = lx - 1;
59 k = (lx == 0)? hx - 1 : hx;
60 ((int *)&ans)[HIWORD] = k;
61 } else {
62 ((int *)&ans)[LOWORD] = lx + 1;

new/usr/src/lib/libm/common/C/nextafter.c 2

63 k = (lx == 0xffffffff)? hx + 1 : hx;
64 ((int *)&ans)[HIWORD] = k;
65 }
66 } else {
67 if (x < y) {
68 ((int *)&ans)[LOWORD] = lx - 1;
69 k = (lx == 0)? hx - 1 : hx;
70 ((int *)&ans)[HIWORD] = k;
71 } else {
72 ((int *)&ans)[LOWORD] = lx + 1;
73 k = (lx == 0xffffffff)? hx + 1 : hx;
74 ((int *)&ans)[HIWORD] = k;
75 }
76 }
77 k = (k >> 20) & 0x7ff;
78 if (k == 0x7ff) {
79 /* overflow */
80 return (_SVID_libm_err(x, y, 46));
81 #if !defined(__lint)
82 } else if (k == 0) {
83 /* underflow */
84 dummy = DBL_MIN * copysign(DBL_MIN, x);
40 volatile double dummy = DBL_MIN * copysign(DBL_MIN, x);
85 #endif
86 }
87 return (ans);
88 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/C/pow.c 1

**
 10202 Sun May 4 03:05:08 2014
new/usr/src/lib/libm/common/C/pow.c
**
______unchanged_portion_omitted_

154 extern const double _TBL_exp2_hi[], _TBL_exp2_lo[];
155 static const double /* poly app of 2^x-1 on [-1e-10,2^-7+1e-10] */
156 E1 = 6.931471805599453100674958533810346197328e-0001,
157 E2 = 2.402265069587779347846769151717493815979e-0001,
158 E3 = 5.550410866475410512631124892773937864699e-0002,
159 E4 = 9.618143209991026824853712740162451423355e-0003,
160 E5 = 1.333357676549940345096774122231849082991e-0003;

162 double
163 pow(double x, double y) {
164 double z, ax;
165 double y1, y2, w1, w2;
166 int sbx, sby, j, k, yisint;
167 int hx, hy, ahx, ahy;
168 unsigned lx, ly;
169 int *pz = (int *) &z;

171 hx = ((int *) &x)[HIWORD];
172 lx = ((unsigned *) &x)[LOWORD];
173 hy = ((int *) &y)[HIWORD];
174 ly = ((unsigned *) &y)[LOWORD];
175 ahx = hx & ~0x80000000;
176 ahy = hy & ~0x80000000;
177 if ((ahy | ly) == 0) { /* y==zero */
178 if ((ahx | lx) == 0)
179 z = _SVID_libm_err(x, y, 20); /* +-0**+-0 */
180 else if ((ahx | (((lx | -lx) >> 31) & 1)) > 0x7ff00000)
181 z = _SVID_libm_err(x, y, 42); /* NaN**+-0 */
182 else
183 z = one; /* x**+-0 = 1 */
184 return (z);
185 } else if (hx == 0x3ff00000 && lx == 0 &&
186 (__xpg6 & _C99SUSv3_pow) != 0)
187 return (one); /* C99: 1**anything = 1 */
188 else if (ahx > 0x7ff00000 || (ahx == 0x7ff00000 && lx != 0) ||
189 ahy > 0x7ff00000 || (ahy == 0x7ff00000 && ly != 0))
190 return (x * y); /* +-NaN return x*y; + -> * for Cheetah */
191 /* includes Sun: 1**NaN = NaN */
192 sbx = (unsigned) hx >> 31;
193 sby = (unsigned) hy >> 31;
194 ax = fabs(x);

196 /*
197 * determine if y is an odd int when x < 0
198 * yisint = 0 ... y is not an integer
199 * yisint = 1 ... y is an odd int
200 * yisint = 2 ... y is an even int
201 */
202 yisint = 0;
203 if (sbx) {
204 if (ahy >= 0x43400000)
205 yisint = 2; /* even integer y */
206 else if (ahy >= 0x3ff00000) {
207 k = (ahy >> 20) - 0x3ff; /* exponent */
208 if (k > 20) {
209 j = ly >> (52 - k);
210 if ((j << (52 - k)) == ly)
211 yisint = 2 - (j & 1);
212 } else if (ly == 0) {
213 j = ahy >> (20 - k);

new/usr/src/lib/libm/common/C/pow.c 2

214 if ((j << (20 - k)) == ahy)
215 yisint = 2 - (j & 1);
216 }
217 }
218 }
219 /* special value of y */
220 if (ly == 0) {
221 if (ahy == 0x7ff00000) { /* y is +-inf */
222 if (((ahx - 0x3ff00000) | lx) == 0) {
223 if ((__xpg6 & _C99SUSv3_pow) != 0)
224 return (one);
225 /* C99: (-1)**+-inf = 1 */
226 else
227 return (y - y);
228 /* Sun: (+-1)**+-inf = NaN */
229 } else if (ahx >= 0x3ff00000)
230 /* (|x|>1)**+,-inf = inf,0 */
231 return (sby == 0 ? y : zero);
232 else /* (|x|<1)**-,+inf = inf,0 */
233 return (sby != 0 ? -y : zero);
234 }
235 if (ahy == 0x3ff00000) { /* y is +-1 */
236 if (sby != 0) { /* y is -1 */
237 if (x == zero) /* divided by zero */
238 return (_SVID_libm_err(x, y, 23));
239 else if (ahx < 0x40000 || ((ahx - 0x40000) |
240 lx) == 0) /* overflow */
241 return (_SVID_libm_err(x, y, 21));
242 else
243 return (one / x);
244 } else
245 return (x);
246 }
247 if (hy == 0x40000000) { /* y is 2 */
248 if (ahx >= 0x5ff00000 && ahx < 0x7ff00000)
249 return (_SVID_libm_err(x, y, 21));
250 /* x*x overflow */
251 else if ((ahx < 0x1e56a09e && (ahx | lx) != 0) ||
252 (ahx == 0x1e56a09e && lx < 0x667f3bcd))
251 else if (ahx < 0x1e56a09e && (ahx | lx) != 0 ||
252 ahx == 0x1e56a09e && lx < 0x667f3bcd)
253 return (_SVID_libm_err(x, y, 22));
254 /* x*x underflow */
255 else
256 return (x * x);
257 }
258 if (hy == 0x3fe00000) {
259 if (!((ahx | lx) == 0 || ((ahx - 0x7ff00000) | lx) ==
260 0 || sbx == 1))
261 return (sqrt(x)); /* y is 0.5 and x > 0 */
262 }
263 }
264 /* special value of x */
265 if (lx == 0) {
266 if (ahx == 0x7ff00000 || ahx == 0 || ahx == 0x3ff00000) {
267 /* x is +-0,+-inf,-1 */
268 z = ax;
269 if (sby == 1) {
270 z = one / z; /* z = |x|**y */
271 if (ahx == 0)
272 return (_SVID_libm_err(x, y, 23));
273 }
274 if (sbx == 1) {
275 if (ahx == 0x3ff00000 && yisint == 0)
276 z = _SVID_libm_err(x, y, 24);
277 /* neg**non-integral is NaN + invalid */

new/usr/src/lib/libm/common/C/pow.c 3

278 else if (yisint == 1)
279 z = -z; /* (x<0)**odd = -(|x|**odd) */
280 }
281 return (z);
282 }
283 }
284 /* (x<0)**(non-int) is NaN */
285 if (sbx == 1 && yisint == 0)
286 return (_SVID_libm_err(x, y, 24));
287 /* Now ax is finite, y is finite */
288 /* first compute log2(ax) = w1+w2, with 24 bits w1 */
289 w1 = log2_x(ax, &w2);

291 /* split up y into y1+y2 and compute (y1+y2)*(w1+w2) */
292 if (((ly & 0x07ffffff) == 0) || ahy >= 0x47e00000 ||
293 ahy <= 0x38100000) {
294 /* no need to split if y is short or too large or too small */
295 y1 = y * w1;
296 y2 = y * w2;
297 } else {
298 y1 = (double) ((float) y);
299 y2 = (y - y1) * w1 + y * w2;
300 y1 *= w1;
301 }
302 z = y1 + y2;
303 j = pz[HIWORD];
304 if (j >= 0x40900000) { /* z >= 1024 */
305 if (!(j == 0x40900000 && pz[LOWORD] == 0)) /* z > 1024 */
306 return (_SVID_libm_err(x, y, 21)); /* overflow */
307 else {
308 w2 = y1 - z;
309 w2 += y2;
310 /* rounded to inf */
311 if (w2 >= -8.008566259537296567160e-17)
312 return (_SVID_libm_err(x, y, 21));
313 /* overflow */
314 }
315 } else if ((j & ~0x80000000) >= 0x4090cc00) { /* z <= -1075 */
316 if (!(j == 0xc090cc00 && pz[LOWORD] == 0)) /* z < -1075 */
317 return (_SVID_libm_err(x, y, 22)); /* underflow */
318 else {
319 w2 = y1 - z;
320 w2 += y2;
321 if (w2 <= zero) /* underflow */
322 return (_SVID_libm_err(x, y, 22));
323 }
324 }
325 /*
326 * compute 2**(k+f[j]+g)
327 */
328 k = (int) (z * 64.0 + (((hy ^ (ahx - 0x3ff00000)) > 0) ? 0.5 : -0.5));
329 j = k & 63;
330 w1 = y2 - ((double) k * 0.015625 - y1);
331 w2 = _TBL_exp2_hi[j];
332 z = _TBL_exp2_lo[j] + (w2 * w1) * (E1 + w1 * (E2 + w1 * (E3 + w1 *
333 (E4 + w1 * E5))));
334 z += w2;
335 k >>= 6;
336 if (k < -1021)
337 z = scalbn(z, k);
338 else /* subnormal output */
339 pz[HIWORD] += k << 20;
340 if (sbx == 1 && yisint == 1)
341 z = -z; /* (-ve)**(odd int) */
342 return (z);
343 }

new/usr/src/lib/libm/common/LD/__cosl.c 1

**
 4615 Sun May 4 03:05:10 2014
new/usr/src/lib/libm/common/LD/__cosl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /* INDENT OFF */
31 /*
32 * __k_cosl(long double x; long double y)
33 * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
34 * Input x is assumed to be bounded by ~pi/4 in magnitude.
35 * Input y is the tail of x.
36 *
37 * Table look up algorithm
38 * 1. by cos(-x) = cos(x), we may replace x by |x|
39 * 2. if x < 25/128 = [0x3ffc4000, 0] = 0.15625 , then
40 * if x < 2^-57 (hx < 0x3fc60000 0), return 1.0 with inexact if x!= 0
41 * z = x*x;
42 * if x <= 1/128 = 2**-7 = 0.0078125
43 * cos(x)=1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
44 * else
45 * cos(x)=1.0+z*(q1+ ... z*q8)
46 * 3. else
47 * ht = (hx + 0x400)&0x7ffff800 (round x to a break point t)
48 * lt = 0
49 * i = (hy-0x3ffc4000)>>11; (i<=64)
50 * x’ = (x - t)+y (|x’| ~<= 2^-7
51 * By
52 * cos(t+x’)
53 * = cos(t)cos(x’)-sin(t)sin(x’)
54 * = cos(t)(1+z*(qq1+z*qq2))-[sin(t)]*x*(1+z*(pp1+z*pp2))
55 * = cos(t) + [cos(t)]*(z*(qq1+z*qq2))-
56 * [sin(t)]*x*(1+z*(pp1+z*pp2))
57 *
58 * Thus,
59 * let a= _TBL_cos_hi[i], b = _TBL_cos_lo[i], c= _TBL_sin_hi[i],
60 * x = (x-t)+y
61 * z = x*x;
62 * cos(t+x) = a+(b+ (-c*x*(1+z*(pp1+z*pp2))+a*(z*(qq1+z*qq2)))

new/usr/src/lib/libm/common/LD/__cosl.c 2

63 */

65 #include "libm.h"

67 #include <sys/isa_defs.h>

69 extern const long double _TBL_cosl_hi[], _TBL_cosl_lo[], _TBL_sinl_hi[];
70 static const long double
71 one = 1.0,
72 /*
73 * |sin(x) - (x+pp1*x^3+...+ pp5*x^11)| <= 2^-122.32 for |x|<1/64
74 */
75 pp1 = -1.666666666666666666666666666586782940810e-0001L,
76 pp2 = 8.333333333333333333333003723660929317540e-0003L,
77 pp3 = -1.984126984126984076045903483778337804470e-0004L,
78 pp4 = 2.755731922361906641319723106210900949413e-0006L,
79 pp5 = -2.505198398570947019093998469135012057673e-0008L,
80 /*
81 *
82 * |cos(x) - (1+q1*x^2+...+q8*x^16)| <= 2^-117.11 for |x|<= 0.15625
83 */
84 q1 = -4.999999999999999999999999999999756416975e-0001L,
85 q2 = 4.166666666666666666666666664006066577258e-0002L,
86 q3 = -1.388888888888888888888877700363937169637e-0003L,
87 q4 = 2.480158730158730158494468463031814083559e-0005L,
88 q5 = -2.755731922398586276322819250356005542871e-0007L,
89 q6 = 2.087675698767424261441959760729854017855e-0009L,
90 q7 = -1.147074481239662089072452129010790774761e-0011L,
91 q8 = 4.777761647399651599730663422263531034782e-0014L,
92 /*
93 *
94 * |cos(x) - (1+qq1*x^2+...+ qq5*x^10)| <= 2^-123.84 for |x|<=1/128
95 */
96 qq1 = -4.999999999999999999999999999999378373641e-0001L,
97 qq2 = 4.166666666666666666666665478399327703130e-0002L,
98 qq3 = -1.388888888888888888058211230618051613494e-0003L,
99 qq4 = 2.480158730156105377771585658905303111866e-0005L,
100 qq5 = -2.755728099762526325736488376695157008736e-0007L;
101 /* INDENT ON */
102 long double
103 __k_cosl(long double x, long double y) {
104 long double a, t, z, w;
105 int *pt = (int *) &t, *px = (int *) &x;
106 int i, j, hx, ix;

108 t = 1.0;
109 #if defined(__i386) || defined(__amd64)
110 XTOI(px, hx);
111 #else
109 #if defined(_BIG_ENDIAN)
112 hx = px[0];
111 #else
112 XTOI(px, hx);
113 #endif
114 ix = hx & 0x7fffffff;
115 if (ix < 0x3ffc4000) {
116 if (ix < 0x3fc60000)
117 if ((i = (int) x) == 0)
118 return (one); /* generate inexact */
119 z = x * x;

121 if (ix < 0x3ff80000) /* 0.0078125 */
122 return (one + z * (qq1 + z * (qq2 + z * (qq3 + z *
123 (qq4 + z * qq5)))));
124 else
125 return (one + z * (q1 + z * (q2 + z * (q3 + z * (q4 +

new/usr/src/lib/libm/common/LD/__cosl.c 3

126 z * (q5 + z * (q6 + z * (q7 + z * q8))))))));
127 }
128 j = (ix + 0x400) & 0x7ffff800;
129 i = (j - 0x3ffc4000) >> 11;
130 #if defined(__i386) || defined(__amd64)
131 ITOX(j, pt);
132 #else
130 #if defined(_BIG_ENDIAN)
133 pt[0] = j;
132 #else
133 ITOX(j, pt);
134 #endif
135 if (hx > 0)
136 x = y - (t - x);
137 else
138 x = (-y) - (t + x);
139 a = _TBL_cosl_hi[i];
140 z = x * x;
141 t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
142 w = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z *
143 pp5)))));
144 t = _TBL_cosl_lo[i] - (_TBL_sinl_hi[i] * w - a * t);
145 return (a + t);
146 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/LD/__rem_pio2l.c 1

**
 1935 Sun May 4 03:05:12 2014
new/usr/src/lib/libm/common/LD/__rem_pio2l.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /* __rem_pio2l(x,y)
31 *
32 * return the remainder of x rem pi/2 in y[0]+y[1]
33 * by calling __rem_pio2m
34 */

36 #include "libm.h"
37 #include "longdouble.h"
38 #endif /* ! codereview */

40 extern const int _TBL_ipio2l_inf[];

42 static const long double
43 two24l = 16777216.0L,
44 pio4 = 0.7853981633974483096156608458198757210495L;

46 int
47 __rem_pio2l(long double x, long double *y)
48 {
49 long double z, w;
50 double t[3], v[5];
51 int e0, i, nx, n, sign;

53 sign = signbitl(x);
54 z = fabsl(x);
55 if (z <= pio4) {
56 y[0] = x;
57 y[1] = 0;
58 return (0);
59 }
60 e0 = ilogbl(z) - 23;
61 z = scalbnl(z, -e0);
62 for (i = 0; i < 3; i++) {

new/usr/src/lib/libm/common/LD/__rem_pio2l.c 2

63 t[i] = (double)((int)(z));
64 z = (z - (long double)t[i]) * two24l;
65 }
66 nx = 3;
67 while (t[nx-1] == 0.0)
68 nx--; /* omit trailing zeros */
69 n = __rem_pio2m(t, v, e0, nx, 2, _TBL_ipio2l_inf);
70 z = (long double)v[1];
71 w = (long double)v[0];
72 y[0] = z + w;
73 y[1] = z - (y[0] - w);
74 if (sign == 1) {
75 y[0] = -y[0];
76 y[1] = -y[1];
77 return (-n);
78 }
79 return (n);
80 }

new/usr/src/lib/libm/common/LD/__sincosl.c 1

**
 4822 Sun May 4 03:05:14 2014
new/usr/src/lib/libm/common/LD/__sincosl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /* INDENT OFF */
31 /*
32 * long double __k_sincos(long double x, long double y, long double *c)
33 * kernel sincosl function on [-pi/4, pi/4], pi/4 ~ 0.785398164
34 * Input x is assumed to be bounded by ~pi/4 in magnitude.
35 * Input y is the tail of x.
36 * return sinl(x) with *c = cosl(x)
37 *
38 * Table look up algorithm
39 * see __k_sinl() and __k_cosl()
40 */

42 #include "libm.h"

44 #include <sys/isa_defs.h>

46 extern const long double _TBL_sinl_hi[], _TBL_sinl_lo[], _TBL_cosl_hi[],
47 _TBL_cosl_lo[];
48 static const long double
49 one = 1.0,
50 /*
51 * |sin(x) - (x+pp1*x^3+...+pp5*x^11)| <= 2^-122.32 for |x|<1/64
52 */
53 pp1 = -1.666666666666666666666666666586782940810e-0001L,
54 pp2 = 8.333333333333333333333003723660929317540e-0003L,
55 pp3 = -1.984126984126984076045903483778337804470e-0004L,
56 pp4 = 2.755731922361906641319723106210900949413e-0006L,
57 pp5 = -2.505198398570947019093998469135012057673e-0008L,
58 /*
59 * |(sin(x) - (x+p1*x^3+...+p8*x^17)|
60 * |------------------------------- | <= 2^-116.17 for |x|<0.1953125
61 * | x |
62 */

new/usr/src/lib/libm/common/LD/__sincosl.c 2

63 p1 = -1.666666666666666666666666666666211262297e-0001L,
64 p2 = 8.333333333333333333333333301497876908541e-0003L,
65 p3 = -1.984126984126984126984041302881180621922e-0004L,
66 p4 = 2.755731922398589064100587351307269621093e-0006L,
67 p5 = -2.505210838544163129378906953765595393873e-0008L,
68 p6 = 1.605904383643244375050998243778534074273e-0010L,
69 p7 = -7.647162722800685516901456114270824622699e-0013L,
70 p8 = 2.810046428661902961725428841068844462603e-0015L,
71 /*
72 *
73 * |cos(x) - (1+qq1*x^2+...+ qq5*x^10)| <= 2^-123.84 for |x|<=1/128
74 */
75 qq1 = -4.999999999999999999999999999999378373641e-0001L,
76 qq2 = 4.166666666666666666666665478399327703130e-0002L,
77 qq3 = -1.388888888888888888058211230618051613494e-0003L,
78 qq4 = 2.480158730156105377771585658905303111866e-0005L,
79 qq5 = -2.755728099762526325736488376695157008736e-0007L,
80 /*
81 *
82 * |cos(x) - (1+q1*x^2+...+ q8*x^16)| <= 2^-117.11 for |x|<= 0.15625
83 */
84 q1 = -4.999999999999999999999999999999756416975e-0001L,
85 q2 = 4.166666666666666666666666664006066577258e-0002L,
86 q3 = -1.388888888888888888888877700363937169637e-0003L,
87 q4 = 2.480158730158730158494468463031814083559e-0005L,
88 q5 = -2.755731922398586276322819250356005542871e-0007L,
89 q6 = 2.087675698767424261441959760729854017855e-0009L,
90 q7 = -1.147074481239662089072452129010790774761e-0011L,
91 q8 = 4.777761647399651599730663422263531034782e-0014L;
92 /* INDENT ON */
93 long double
94 __k_sincosl(long double x, long double y, long double *c) {
95 long double a1, a2, t, t1, t2, z, w;
96 int *pt = (int *) &t, *px = (int *) &x;
97 int i, j, hx, ix;

99 t = 1.0;
100 #if defined(__i386) || defined(__amd64)
101 XTOI(px, hx);
102 #else
100 #if defined(_BIG_ENDIAN)
103 hx = px[0];
102 #else
103 XTOI(px, hx);
104 #endif
105 ix = hx & 0x7fffffff;
106 if (ix < 0x3ffc4000) {
107 if (ix < 0x3fc60000)
108 if (((int) x) == 0) {
109 *c = one;
110 return (x);
111 } /* generate inexact */
112 z = x * x;

114 if (ix < 0x3ff80000) {
115 *c = one + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 +
116 z * qq5))));
117 t = z * (p1 + z * (p2 + z * (p3 + z * (p4 + z * (p5 +
118 z * p6)))));
119 } else {
120 *c = one + z * (q1 + z * (q2 + z * (q3 + z * (q4 + z *
121 (q5 + z * (q6 + z * (q7 + z * q8)))))));
122 t = z * (p1 + z * (p2 + z * (p3 + z * (p4 + z * (p5 +
123 z * (p6 + z * (p7 + z * p8)))))));
124 }

new/usr/src/lib/libm/common/LD/__sincosl.c 3

126 t = y + x * t;
127 return (x + t);
128 }
129 j = (ix + 0x400) & 0x7ffff800;
130 i = (j - 0x3ffc4000) >> 11;
131 #if defined(__i386) || defined(__amd64)
132 ITOX(j, pt);
133 #else
131 #if defined(_BIG_ENDIAN)
134 pt[0] = j;
133 #else
134 ITOX(j, pt);
135 #endif
136 if (hx > 0)
137 x = y - (t - x);
138 else
139 x = (-y) - (t + x);
140 a1 = _TBL_sinl_hi[i];
141 z = x * x;
142 t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
143 w = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z *
144 pp5)))));
145 a2 = _TBL_cosl_hi[i];
146 t2 = _TBL_cosl_lo[i] - (a1 * w - a2 * t);
147 *c = a2 + t2;
148 t1 = a2 * w + a1 * t;
149 t1 += _TBL_sinl_lo[i];
150 if (hx < 0)
151 return (-a1 - t1);
152 else
153 return (a1 + t1);
154 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/LD/__sinl.c 1

**
 4646 Sun May 4 03:05:15 2014
new/usr/src/lib/libm/common/LD/__sinl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /* INDENT OFF */
31 /*
32 * __k_sinl(long double x; long double y)
33 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.785398164
34 * Input x is assumed to be bounded by ~pi/4 in magnitude.
35 * Input y is the tail of x.
36 *
37 * Table look up algorithm
38 * 1. by sin(-x) = -sin(x), need only to consider positive x
39 * 2. if x < 25/128 = [0x3ffc9000,0,0,0] = 0.1953125 , then
40 * if x < 2^-57 (hx < 0x3fc60000,0,0,0), return x (inexact if x!= 0)
41 * z = x*x;
42 * if x <= 1/64 = 2**-6
43 * sin(x) = x + (y+(x*z)*(p1 + z*p2))
44 * else
45 * sin(x) = x + (y+(x*z)*(p1 + z*(p2 + z*(p3 + z*p4))))
46 * 3. else
47 * ht = (hx + 0x400)&0x7ffff800 (round x to a break point t)
48 * lt = 0
49 * i = (hy-0x3ffc4000)>>11; (i<=64)
50 * x’ = (x - t)+y (|x’| ~<= 2^-7
51 * By
52 * sin(t+x’)
53 * = sin(t)cos(x’)+cos(t)sin(x’)
54 * = sin(t)(1+z*(qq1+z*qq2))+[cos(t)]*x*(1+z*(pp1+z*pp2))
55 * = sin(t) + [sin(t)]*(z*(qq1+z*qq2))+
56 * [cos(t)]*x*(1+z*(pp1+z*pp2))
57 *
58 * Thus,
59 * let a= _TBL_sin_hi[i], b = _TBL_sin_lo[i], c= _TBL_cos_hi[i],
60 * x = (x-t)+y
61 * z = x*x;
62 * sin(t+x) = a+(b+ ((c*x)*(1+z*(pp1+z*pp2))+a*(z*(qq1+z*qq2)))

new/usr/src/lib/libm/common/LD/__sinl.c 2

63 */

65 #include "libm.h"

67 #include <sys/isa_defs.h>

69 extern const long double _TBL_sinl_hi[], _TBL_sinl_lo[], _TBL_cosl_hi[];
70 static const long double
71 one = 1.0,
72 /*
73 * |sin(x) - (x+pp1*x^3+...+ pp5*x^11)| <= 2^-122.32 for |x|<1/64
74 */
75 pp1 = -1.666666666666666666666666666586782940810e-0001L,
76 pp2 = 8.333333333333333333333003723660929317540e-0003L,
77 pp3 = -1.984126984126984076045903483778337804470e-0004L,
78 pp4 = 2.755731922361906641319723106210900949413e-0006L,
79 pp5 = -2.505198398570947019093998469135012057673e-0008L,
80 /*
81 * |(sin(x) - (x+p1*x^3+...+p8*x^17)|
82 * |------------------------------- | <= 2^-116.17 for |x|<0.1953125
83 * | x |
84 */
85 p1 = -1.666666666666666666666666666666211262297e-0001L,
86 p2 = 8.333333333333333333333333301497876908541e-0003L,
87 p3 = -1.984126984126984126984041302881180621922e-0004L,
88 p4 = 2.755731922398589064100587351307269621093e-0006L,
89 p5 = -2.505210838544163129378906953765595393873e-0008L,
90 p6 = 1.605904383643244375050998243778534074273e-0010L,
91 p7 = -7.647162722800685516901456114270824622699e-0013L,
92 p8 = 2.810046428661902961725428841068844462603e-0015L,
93 /*
94 * 2 10 -123.84
95 * |cos(x) - (1+qq1*x +...+ qq5*x)| <= 2 for |x|<=1/128
96 */
97 qq1 = -4.999999999999999999999999999999378373641e-0001L,
98 qq2 = 4.166666666666666666666665478399327703130e-0002L,
99 qq3 = -1.388888888888888888058211230618051613494e-0003L,
100 qq4 = 2.480158730156105377771585658905303111866e-0005L,
101 qq5 = -2.755728099762526325736488376695157008736e-0007L;
102 /* INDENT ON */
103 long double
104 __k_sinl(long double x, long double y) {
105 long double a, t, z, w;
106 int *pt = (int *) &t, *px = (int *) &x;
107 int i, j, hx, ix;

109 t = 1.0L;
110 #if defined(__i386) || defined(__amd64)
111 XTOI(px, hx);
112 #else
110 #if defined(_BIG_ENDIAN)
113 hx = px[0];
112 #else
113 XTOI(px, hx);
114 #endif
115 ix = hx & 0x7fffffff;
116 if (ix < 0x3ffc9000) {
117 if (ix < 0x3fc60000)
118 if (((int) x) == 0)
119 return (x); /* generate inexact */
120 z = x * x;
121 t = z * (p1 + z * (p2 + z * (p3 + z * (p4 + z * (p5 + z *
122 (p6 + z * (p7 + z * p8)))))));
123 t = y + x * t;
124 return (x + t);
125 }

new/usr/src/lib/libm/common/LD/__sinl.c 3

126 j = (ix + 0x400) & 0x7ffff800;
127 i = (j - 0x3ffc4000) >> 11;
128 #if defined(__i386) || defined(__amd64)
129 ITOX(j, pt);
130 #else
128 #if defined(_BIG_ENDIAN)
131 pt[0] = j;
130 #else
131 ITOX(j, pt);
132 #endif
133 if (hx > 0)
134 x = y - (t - x);
135 else
136 x = (-y) - (t + x);
137 a = _TBL_sinl_hi[i];
138 z = x * x;
139 t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
140 w = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z *
141 pp5)))));
142 t = _TBL_cosl_hi[i] * w + a * t;
143 t += _TBL_sinl_lo[i];
144 if (hx < 0)
145 return (-a - t);
146 else
147 return (a + t);
148 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/LD/__tanl.c 1

**
 5472 Sun May 4 03:05:17 2014
new/usr/src/lib/libm/common/LD/__tanl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /* INDENT OFF */
31 /*
32 * __k_tanl(long double x; long double y; int k)
33 * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
34 * Input x is assumed to be bounded by ~pi/4 in magnitude.
35 * Input y is the tail of x.
36 * Input k indicate -- tan if k=0; else -1/tan
37 *
38 * Table look up algorithm
39 * 1. by tan(-x) = -tan(x), need only to consider positive x
40 * 2. if x < 5/32 = [0x3ffc4000, 0] = 0.15625 , then
41 * if x < 2^-57 (hx < 0x3fc40000 0), set w=x with inexact if x!= 0
42 * else
43 * z = x*x;
44 * w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6))))))
45 * return (k == 0 ? w : 1/w);
46 * 3. else
47 * ht = (hx + 0x400)&0x7ffff800 (round x to a break point t)
48 * lt = 0
49 * i = (hy-0x3ffc4000)>>11; (i<=64)
50 * x’ = (x - t)+y (|x’| ~<= 2^-7)
51 * By
52 * tan(t+x’)
53 * = (tan(t)+tan(x’))/(1-tan(x’)tan(t))
54 * We have
55 * sin(x’)+tan(t)*(tan(t)*sin(x’))
56 * = tan(t) + ------------------------------- for k=0
57 * cos(x’) - tan(t)*sin(x’)
58 *
59 * cos(x’) - tan(t)*sin(x’)
60 * = - -------------------------------------- for k=1
61 * tan(t) + tan(t)*(cos(x’)-1) + sin(x’)
62 *

new/usr/src/lib/libm/common/LD/__tanl.c 2

63 *
64 * where tan(t) is from the table,
65 * sin(x’) = x + pp1*x^3 + ...+ pp5*x^11
66 * cos(x’) = 1 + qq1*x^2 + ...+ qq5*x^10
67 */

69 #include "libm.h"

71 #include <sys/isa_defs.h>

73 extern const long double _TBL_tanl_hi[], _TBL_tanl_lo[];
74 static const long double
75 one = 1.0,
76 /*
77 * |sin(x) - (x+pp1*x^3+...+ pp5*x^11)| <= 2^-122.32 for |x|<1/64
78 */
79 pp1 = -1.666666666666666666666666666586782940810e-0001L,
80 pp2 = 8.333333333333333333333003723660929317540e-0003L,
81 pp3 = -1.984126984126984076045903483778337804470e-0004L,
82 pp4 = 2.755731922361906641319723106210900949413e-0006L,
83 pp5 = -2.505198398570947019093998469135012057673e-0008L,
84 /*
85 * 2 10 -123.84
86 * |cos(x) - (1+qq1*x +...+ qq5*x)| <= 2 for |x|<=1/128
87 */
88 qq1 = -4.999999999999999999999999999999378373641e-0001L,
89 qq2 = 4.166666666666666666666665478399327703130e-0002L,
90 qq3 = -1.388888888888888888058211230618051613494e-0003L,
91 qq4 = 2.480158730156105377771585658905303111866e-0005L,
92 qq5 = -2.755728099762526325736488376695157008736e-0007L,
93 /*
94 * |tan(x) - (x+t1*x^3+...+t6*x^13)|
95 * |------------------------------ | <= 2^-59.73 for |x|<0.15625
96 * | x |
97 */
98 t1 = 3.333333333333333333333333333333423342490e-0001L,
99 t2 = 1.333333333333333333333333333093838744537e-0001L,
100 t3 = 5.396825396825396825396827906318682662250e-0002L,
101 t4 = 2.186948853615520282185576976994418486911e-0002L,
102 t5 = 8.863235529902196573354554519991152936246e-0003L,
103 t6 = 3.592128036572480064652191427543994878790e-0003L,
104 t7 = 1.455834387051455257856833807581901305474e-0003L,
105 t8 = 5.900274409318599857829983256201725587477e-0004L,
106 t9 = 2.391291152117265181501116961901122362937e-0004L,
107 t10 = 9.691533169382729742394024173194981882375e-0005L,
108 t11 = 3.927994733186415603228178184225780859951e-0005L,
109 t12 = 1.588300018848323824227640064883334101288e-0005L,
110 t13 = 6.916271223396808311166202285131722231723e-0006L;
111 /* INDENT ON */
112 long double
113 __k_tanl(long double x, long double y, int k) {
114 long double a, t, z, w = 0.0, s, c;
114 long double a, t, z, w, s, c;
115 int *pt = (int *) &t, *px = (int *) &x;
116 int i, j, hx, ix;

118 t = 1.0;
119 #if defined(__i386) || defined(__amd64)
120 XTOI(px, hx);
121 #else
119 #if defined(_BIG_ENDIAN)
122 hx = px[0];
121 #else
122 XTOI(px, hx);
123 #endif
124 ix = hx & 0x7fffffff;

new/usr/src/lib/libm/common/LD/__tanl.c 3

125 if (ix < 0x3ffc4000) {
126 if (ix < 0x3fc60000) {
127 if ((i = (int) x) == 0) /* generate inexact */
128 w = x;
129 } else {
130 z = x * x;
131 if (ix < 0x3ff30000) /* 2**-12 */
132 t = z * (t1 + z * (t2 + z * (t3 + z * t4)));
133 else
134 t = z * (t1 + z * (t2 + z * (t3 + z * (t4 +
135 z * (t5 + z * (t6 + z * (t7 + z *
136 (t8 + z * (t9 + z * (t10 + z * (t11 +
137 z * (t12 + z * t13))))))))))));
138 t = y + x * t;
139 w = x + t;
140 }
141 return (k == 0 ? w : -one / w);
142 }
143 j = (ix + 0x400) & 0x7ffff800;
144 i = (j - 0x3ffc4000) >> 11;
145 #if defined(__i386) || defined(__amd64)
146 ITOX(j, pt);
147 #else
145 #if defined(_BIG_ENDIAN)
148 pt[0] = j;
147 #else
148 ITOX(j, pt);
149 #endif
150 if (hx > 0)
151 x = y - (t - x);
152 else
153 x = (-y) - (t + x);
154 a = _TBL_tanl_hi[i];
155 z = x * x;
156 /* cos(x)-1 */
157 t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
158 /* sin(x) */
159 s = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z *
160 pp5)))));
161 if (k == 0) {
162 w = a * s;
163 t = _TBL_tanl_lo[i] + (s + a * w) / (one - (w - t));
164 return (hx < 0 ? -a - t : a + t);
165 } else {
166 w = s + a * t;
167 c = w + _TBL_tanl_lo[i];
168 z = (one - (a * s - t));
169 return (hx >= 0 ? z / (-a - c) : z / (a + c));
170 }
171 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/LD/asinhl.c 1

**
 1617 Sun May 4 03:05:18 2014
new/usr/src/lib/libm/common/LD/asinhl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak asinhl = __asinhl
32 #endif

34 #include "libm.h"

36 static const long double
37 ln2 = 6.931471805599453094172321214581765680755e-0001L,
38 one = 1.0L,
39 big = 1.0e+20L,
40 tiny = 1.0e-20L;

42 long double
43 asinhl(long double x) {
44 long double t, w;
45 volatile long double dummy;
46 #endif /* ! codereview */

48 w = fabsl(x);
49 if (isnanl(x))
50 return (x + x); /* x is NaN */
51 if (w < tiny) {
52 #ifndef lint
53 dummy = x + big; /* inexact if x != 0 */
45 volatile long double dummy = x + big; /* inexact if x != 0 */
54 #endif
55 return (x); /* tiny x */
56 } else if (w < big) {
57 t = one / w;
58 return (copysignl(log1pl(w + w / (t + sqrtl(one + t * t))), x));
59 } else
60 return (copysignl(logl(w) + ln2, x));
61 }

new/usr/src/lib/libm/common/LD/cbrtl.c 1

**
 1779 Sun May 4 03:05:20 2014
new/usr/src/lib/libm/common/LD/cbrtl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak cbrtl = __cbrtl
32 #endif

34 #include "libm.h"
35 #include "longdouble.h"
36 #endif /* ! codereview */

38 static const double d_one = 1.0;

40 long double
41 cbrtl(long double x) {
42 long double s, t, r, w, y;
43 double dx, dy;
44 int *py = (int *) &dy;
45 int n, m, m3, n0, sx;

47 if (!finitel(x))
48 return (x + x);
49 if (iszerol(x))
50 return (x);
51 n0 = 0;
52 if (*((int *) &d_one) == 0)
53 n0 = 1;
54 sx = signbitl(x);
55 x = fabsl(x);
56 n = ilogbl(x);
57 m = n / 3;
58 m3 = m + m + m;
59 y = scalbnl(x, -m3);
60 dx = (double) y;
61 dy = cbrt(dx);
62 py[1 - n0] += 2;

new/usr/src/lib/libm/common/LD/cbrtl.c 2

63 if (py[1 - n0] == 0)
64 py[n0] += 1;

66 /* one step newton iteration to 113 bits with error < 0.667ulps */
67 t = (long double) dy;
68 t = scalbnl(t, m);
69 s = t * t;
70 r = x / s;
71 w = t + t;
72 r = (r - t) / (w + r);
73 t += t * r;

75 return (sx == 0 ? t : -t);
76 }

new/usr/src/lib/libm/common/LD/coshl.c 1

**
 2815 Sun May 4 03:05:22 2014
new/usr/src/lib/libm/common/LD/coshl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak coshl = __coshl
32 #endif

34 #include "libm.h"
35 #include "longdouble.h"
36 #endif /* ! codereview */

38 /*
39 * COSH(X)
40 * RETURN THE HYPERBOLIC COSINE OF X
41 *
42 * Method :
43 * 1. Replace x by |x| (COSH(x) = COSH(-x)).
44 * 2.
45 * [EXP(x) - 1]^2
46 * 0 <= x <= 0.3465 : COSH(x) := 1 + -------------------
47 * 2*EXP(x)
48 *
49 * EXP(x) + 1/EXP(x)
50 * 0.3465 <= x <= thresh : COSH(x) := -------------------
51 * 2
52 * thresh <= x <= lnovft : COSH(x) := EXP(x)/2
53 * lnovft <= x < INF : COSH(x) := SCALBN(EXP(x-MEP1*ln2),ME)
54 *
55 *
56 * here
57 * 0.3465 a number that is near one half of ln2.
58 * thresh a number such that
59 * EXP(thresh)+EXP(-thresh)=EXP(thresh)
60 * lnovft logarithm of the overflow threshold
61 * = MEP1*ln2 chopped to machine precision.
62 * ME maximum exponent

new/usr/src/lib/libm/common/LD/coshl.c 2

63 * MEP1 maximum exponent plus 1
64 *
65 * Special cases:
66 * COSH(x) is |x| if x is +INF, -INF, or NaN.
67 * only COSH(0)=1 is exact for finite x.
68 */

70 static const long double C[] = {
71 0.5L,
72 1.0L,
73 0.3465L,
74 45.0L,
75 1.135652340629414394879149e+04L,
76 7.004447686242549087858985e-16L,
77 2.710505431213761085018632e-20L, /* 2^-65 */
78 };

80 #define half C[0]
81 #define one C[1]
82 #define thr1 C[2]
83 #define thr2 C[3]
84 #define lnovft C[4]
85 #define lnovlo C[5]
86 #define tinyl C[6]

88 long double
89 coshl(long double x) {
90 long double w, t;

92 w = fabsl(x);
93 if (!finitel(w))
94 return (w + w); /* x is INF or NaN */
95 if (w < thr1) {
96 if (w < tinyl)
97 return (one + w); /* inexact+directed rounding */
98 t = expm1l(w);
99 w = one + t;
100 w = one + (t * t) / (w + w);
101 return (w);
102 }
103 if (w < thr2) {
104 t = expl(w);
105 return (half * (t + one / t));
106 }
107 if (w <= lnovft)
108 return (half * expl(w));
109 return (scalbnl(expl((w - lnovft) - lnovlo), 16383));
110 }

new/usr/src/lib/libm/common/LD/cosl.c 1

**
 2816 Sun May 4 03:05:24 2014
new/usr/src/lib/libm/common/LD/cosl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak cosl = __cosl

32 /* INDENT OFF */
33 /* cosl(x)
34 * Table look-up algorithm by K.C. Ng, November, 1989.
35 *
36 * kernel function:
37 * __k_sinl ... sin function on [-pi/4,pi/4]
38 * __k_cosl ... cos function on [-pi/4,pi/4]
39 * __rem_pio2l ... argument reduction routine
40 *
41 * Method.
42 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
43 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
44 * [-pi/2 , +pi/2], and let n = k mod 4.
45 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
46 *
47 * n sin(x) cos(x) tan(x)
48 * --
49 * 0 S C S/C
50 * 1 C -S -C/S
51 * 2 -S -C S/C
52 * 3 -C S -C/S
53 * --
54 *
55 * Special cases:
56 * Let trig be any of sin, cos, or tan.
57 * trig(+-INF) is NaN, with signals;
58 * trig(NaN) is that NaN;
59 *
60 * Accuracy:
61 * computer TRIG(x) returns trig(x) nearly rounded.
62 */

new/usr/src/lib/libm/common/LD/cosl.c 2

63 /* INDENT ON */

65 #include "libm.h"
66 #include "libm_synonyms.h"
67 #include "longdouble.h"

69 #include <sys/isa_defs.h>

71 long double
72 cosl(long double x) {
73 long double y[2], z = 0.0L;
74 int n, ix;
75 int *px = (int *) &x;

77 /* trig(Inf or NaN) is NaN */
78 if (!finitel(x))
79 return x - x;

81 /* High word of x. */
82 #if defined(__i386) || defined(__amd64)
83 XTOI(px, ix);
84 #else
82 #if defined(_BIG_ENDIAN)
85 ix = px[0];
84 #else
85 XTOI(px, ix);
86 #endif

88 /* |x| ~< pi/4 */
89 ix &= 0x7fffffff;
90 if (ix <= 0x3ffe9220)
91 return __k_cosl(x, z);

93 /* argument reduction needed */
94 else {
95 n = __rem_pio2l(x, y);
96 switch (n & 3) {
97 case 0:
98 return __k_cosl(y[0], y[1]);
99 case 1:
100 return -__k_sinl(y[0], y[1]);
101 case 2:
102 return -__k_cosl(y[0], y[1]);
103 case 3:
104 return __k_sinl(y[0], y[1]);
105 /* NOTREACHED */
106 }
107 }
108 return 0.0L;
109 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/LD/isnanl.c 1

**
 1612 Sun May 4 03:05:25 2014
new/usr/src/lib/libm/common/LD/isnanl.c
**
______unchanged_portion_omitted_
43 #elif defined(__x86)
44 int
45 isnanl(long double x) {
46 int *px = (int *) &x, t = px[2] & 0x7fff;
47 #if defined(HANDLE_UNSUPPORTED)
48 return ((t == 0x7fff && ((px[1] & ~0x80000000) | px[0]) != 0) ||
49 (t != 0 && (px[1] & 0x80000000) == 0));
48 return (t == 0x7fff && ((px[1] & ~0x80000000) | px[0]) != 0 ||
49 t != 0 && (px[1] & 0x80000000) == 0);
50 #else
51 return (t == 0x7fff && ((px[1] & ~0x80000000) | px[0]) != 0);
52 #endif
53 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/LD/j0l.c 1

**
 27705 Sun May 4 03:05:27 2014
new/usr/src/lib/libm/common/LD/j0l.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /*
31 * Floating point Bessel’s function of the first and second kinds
32 * of order zero: j0(x),y0(x);
33 *
34 * Special cases:
35 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
36 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
37 */

39 #pragma weak j0l = __j0l
40 #pragma weak y0l = __y0l

42 #include "libm.h"
43 #include "libm_synonyms.h"

45 #include "longdouble.h"

47 #endif /* ! codereview */
48 #include <math.h>
49 #if defined(__SUNPRO_C)
50 #include <sunmath.h>
51 #endif

53 #define GENERIC long double
54 static GENERIC
55 zero = 0.0L,
56 small = 1.0e-9L,
57 tiny = 1.0e-38L,
58 one = 1.0L,
59 five = 5.0L,
60 eight = 8.0L,
61 invsqrtpi= 5.641895835477562869480794515607725858441e-0001L,
62 tpi = 0.636619772367581343075535053490057448L;

new/usr/src/lib/libm/common/LD/j0l.c 2

64 static GENERIC pzero(), qzero();
65 static GENERIC r0[7] = {
66 -2.499999999999999999999999999999998934492e-0001L,
67 1.272657927360049786327618451133763714880e-0002L,
68 -2.694499763712963276900636693400659600898e-0004L,
69 2.724877475058977576903234070919616447883e-0006L,
70 -1.432617103214330236967477495393076320281e-0008L,
71 3.823248804080079168706683540513792224471e-0011L,
72 -4.183174277567983647337568504286313665065e-0014L,
73 };
74 static GENERIC s0[7] = {
75 1.0e0L,
76 1.159368290559800854689526195462884666395e-0002L,
77 6.629397597394973383009743876169946772559e-0005L,
78 2.426779981394054406305431142501735094340e-0007L,
79 6.097663491248511069094400469635449749883e-0010L,
80 1.017019133340929220238747413216052224036e-0012L,
81 9.012593179306197579518374581969371278481e-0016L,
82 };

84 GENERIC
85 j0l(x) GENERIC x;{
86 GENERIC z, s, c, ss, cc, r, u, v;
87 int i;

89 if(isnanl(x)) return x+x;
90 x = fabsl(x);
91 if(x > 1.28L){
92 if(!finitel(x)) return zero;
93 s = sinl(x);
94 c = cosl(x);
95 /* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
96 * where x0 = x-pi/4
97 * Better formula:
98 * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
99 * = 1/sqrt(2) * (cos(x) + sin(x))
100 * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
101 * = 1/sqrt(2) * (sin(x) - cos(x))
102 * To avoid cancellation, use
103 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
104 * to compute the worse one.
105 */
106 if(x>1.0e2450L) { /* x+x may overflow */
107 ss = s-c;
108 cc = s+c;
109 } else if(signbitl(s)!=signbitl(c)) {
110 ss = s - c;
111 cc = -cosl(x+x)/ss;
112 } else {
113 cc = s + c;
114 ss = -cosl(x+x)/cc;
115 }
116 /*
117 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
118 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
119 */
120 if(x>1.0e120L) return (invsqrtpi*cc)/sqrtl(x);
121 u = pzero(x); v = qzero(x);
122 return invsqrtpi*(u*cc-v*ss)/sqrtl(x);
123 }
124 if(x<=small) {
125 if(x<=tiny) return one-x;
126 else return one-x*x*0.25L;
127 }
128 z = x*x;

new/usr/src/lib/libm/common/LD/j0l.c 3

129 r = r0[6]; s = s0[6];
130 for(i=5;i>=0;i--) {
131 r = r*z + r0[i];
132 s = s*z + s0[i];
133 }
134 return(one+z*(r/s));
135 }

137 static GENERIC u0[8] = {
138 -7.380429510868722527434392794848301631220e-0002L,
139 1.766855559625940791857536949301981816513e-0001L,
140 -1.386470722701047923235553251240162839408e-0002L,
141 3.520149242724811578636970811631224862615e-0004L,
142 -3.978599663243790049853642275624951870025e-0006L,
143 2.228801153263957224547222556806915479763e-0008L,
144 -6.121246764298785018658597179498837316177e-0011L,
145 6.677103629722678833475965810525587396596e-0014L,
146 };
147 static GENERIC v0[8] = {
148 1.0e0L,
149 1.247164416539111311571676766127767127970e-0002L,
150 7.829144749639791500052900281489367443576e-0005L,
151 3.247126540422245330511218321013360336606e-0007L,
152 9.750516724789499678567062572549568447869e-0010L,
153 2.156713223173591212250543390258458098776e-0012L,
154 3.322169561597890004231482431236452752624e-0015L,
155 2.821213295314000924252226486305726805093e-0018L,
156 };

158 GENERIC
159 y0l(x) GENERIC x;{
160 GENERIC z, d, s, c, ss, cc, u, v;
161 int i;

163 if(isnanl(x)) return x+x;
164 if(x <= zero){
165 if(x==zero)
166 d= -one/(x-x);
167 else
168 d = zero/(x-x);
169 }
170 if(x > 1.28L){
171 if(!finitel(x)) return zero;
172 s = sinl(x);
173 c = cosl(x);
174 /* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
175 * where x0 = x-pi/4
176 * Better formula:
177 * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
178 * = 1/sqrt(2) * (cos(x) + sin(x))
179 * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
180 * = 1/sqrt(2) * (sin(x) - cos(x))
181 * To avoid cancellation, use
182 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
183 * to compute the worse one.
184 */
185 if(x>1.0e2450L) { /* x+x may overflow */
186 ss = s-c;
187 cc = s+c;
188 } else if(signbitl(s)!=signbitl(c)) {
189 ss = s - c;
190 cc = -cosl(x+x)/ss;
191 } else {
192 cc = s + c;
193 ss = -cosl(x+x)/cc;
194 }

new/usr/src/lib/libm/common/LD/j0l.c 4

195 /*
196 * j0(x) = 1/sqrt(pi*x) * (P(0,x)*cc - Q(0,x)*ss)
197 * y0(x) = 1/sqrt(pi*x) * (P(0,x)*ss + Q(0,x)*cc)
198 */
199 if(x>1.0e120L) return (invsqrtpi*ss)/sqrtl(x);
200 return invsqrtpi*(pzero(x)*ss+qzero(x)*cc)/sqrtl(x);

202 }
203 if(x<=tiny) {
204 return(u0[0] + tpi*logl(x));
205 }
206 z = x*x;
207 u = u0[7]; v = v0[7];
208 for(i=6;i>=0;i--){
209 u = u*z + u0[i];
210 v = v*z + v0[i];
211 }
212 return(u/v + tpi*(j0l(x)*logl(x)));
213 }

215 static GENERIC pr0[12] = { /* [16 -- inf] */
216 9.999999999999999999999999999999999997515e-0001L,
217 1.065981615377273376425365823967550598358e+0003L,
218 4.390991200927588978306374718984240719130e+0005L,
219 9.072086218607986711847069407339321363103e+0007L,
220 1.022552886177375367408408501046461671528e+0010L,
221 6.420766912243658241570635854089597269031e+0011L,
222 2.206451725126933913591080211081242266908e+0013L,
223 3.928369596816895077363705478743346298368e+0014L,
224 3.258159928874124597286701119721482876596e+0015L,
225 1.025715808134188978860679130140685101348e+0016L,
226 7.537170874795721255796001687024031280685e+0015L,
227 -1.579413901450157332307745586004207687796e+0014L,
228 };
229 static GENERIC ps0[11] = {
230 1.0e0L,
231 1.066051927877273376425365823967550512687e+0003L,
232 4.391739647168381592399173804329266353038e+0005L,
233 9.075162261801343671805658294123888867884e+0007L,
234 1.023186118519904751819581912075985995058e+0010L,
235 6.427861860414223746340515376512730275061e+0011L,
236 2.210861503237823589735481303627993406235e+0013L,
237 3.943247335784292905915956840901818177989e+0014L,
238 3.283720976777545142150200110647270004481e+0015L,
239 1.045346918812754048903645641538728986759e+0016L,
240 8.043455468065618900750599584291193680463e+0015L,
241 };
242 static GENERIC pr1[12] = { /* [8 -- 16] */
243 9.999999999999999999999784422701108683618e-0001L,
244 6.796098532948334207755488692777907062894e+0002L,
245 1.840036112605722168824530758797169836042e+0005L,
246 2.598490483191916637264894340635847598122e+0007L,
247 2.105774863242707025525730249472054578523e+0009L,
248 1.015822044230542426666314997796944979959e+0011L,
249 2.931557457008110436764077699944189071875e+0012L,
250 4.962885121125457633655259224179322808824e+0013L,
251 4.705424055148223269155430598563351566279e+0014L,
252 2.294439854910747229152056080910427001110e+0015L,
253 4.905531843137486691500950019322475458629e+0015L,
254 3.187543169710339218793442542845735994565e+0015L,
255 };
256 static GENERIC ps1[14] = {
257 1.0e0L,
258 6.796801657948334207754571576066758180288e+0002L,
259 1.840512891201300567325421059826676366447e+0005L,
260 2.599777028312918975306252167127695075221e+0007L,

new/usr/src/lib/libm/common/LD/j0l.c 5

261 2.107582572771047636846811284634244892537e+0009L,
262 1.017275794694156108975782763889979940348e+0011L,
263 2.938487645192463845428059755454762316011e+0012L,
264 4.982512164735557054521042916182317924466e+0013L,
265 4.737639900153703274792677468264564361437e+0014L,
266 2.323398719123742743524249528275097100646e+0015L,
267 5.033419107069210577868909797896984419391e+0015L,
268 3.409036105931068609601317076759804716059e+0015L,
269 7.505655364352679737585745147753521662166e+0013L,
270 -9.976837153983688250780198248297109118313e+0012L,
271 };
272 static GENERIC pr2[12] = { /* [5 -- 8] */
273 9.999999999999999937857236789277366320220e-0001L,
274 3.692848765268649571651602420376358849214e+0002L,
275 5.373022067535476576926715900057760985410e+0004L,
276 4.038738891191314969971504035057219430725e+0006L,
277 1.728285706306940523397385566659762646999e+0008L,
278 4.375400819645889911158688737206054788534e+0009L,
279 6.598950418204912408375591217782088567076e+0010L,
280 5.827182039183238492480275401520072793783e+0011L,
281 2.884222642913492390887572414999490975844e+0012L,
282 7.373278873797767721932837830628688632775e+0012L,
283 8.338295457568973761205077964397969230489e+0012L,
284 2.911383183467288345772308817209806922143e+0012L,
285 };
286 static GENERIC ps2[14] = {
287 1.0e0L,
288 3.693551890268649477288896267171993213102e+0002L,
289 5.375607880998361502474715133828068514297e+0004L,
290 4.042477764024108249744998862572786367328e+0006L,
291 1.731069838737016956685839588670132939513e+0008L,
292 4.387147674049898778738226585935491417728e+0009L,
293 6.628058659620653765349556940567715258165e+0010L,
294 5.869659904164177740471685856367322160664e+0011L,
295 2.919839445622817017058977559638969436383e+0012L,
296 7.535314897696671402628203718612309253907e+0012L,
297 8.696355561452933775773309859748610658935e+0012L,
298 3.216155103141537221173601557697083216257e+0012L,
299 4.756857081068942248246880159213789086363e+0010L,
300 -3.496356619666608032231074866481472824067e+0009L,
301 };
302 static GENERIC pr3[13] = { /* [3.5 -- 5] */
303 9.999999999999916693107285612398196588247e-0001L,
304 2.263975921282917721194425320484974336945e+0002L,
305 1.994358386744245848889492762781484199966e+0004L,
306 8.980067458430542243559962493831661323168e+0005L,
307 2.282213787521372663705567756420087553508e+0007L,
308 3.409784374889063618250288699908375135923e+0008L,
309 3.024380857401448589254343517589811711108e+0009L,
310 1.571110368046740246895071721443082286379e+0010L,
311 4.603187020243604632153685300463160593768e+0010L,
312 7.087196453409712719449549280664058793403e+0010L,
313 5.046196021776346356803687409644239065041e+0010L,
314 1.287758439080165765709154276618854799932e+0010L,
315 5.900679773415023433787846658096813590784e+0008L,
316 };
317 static GENERIC ps3[13] = {
318 1.0e0L,
319 2.264679046282855061328604619231774747116e+0002L,
320 1.995939523988944553755653255389812103448e+0004L,
321 8.993853144706348727038389967490183236820e+0005L,
322 2.288326099634588843906989983704795468773e+0007L,
323 3.424967100255240885169240956804790118282e+0008L,
324 3.046311797972463991368023759640028910016e+0009L,
325 1.589614961932826812790222479700797224003e+0010L,
326 4.692406624527744816497089139325073939927e+0010L,

new/usr/src/lib/libm/common/LD/j0l.c 6

327 7.320486495902008912866462849073108323948e+0010L,
328 5.345945972828978289935309597742981360994e+0010L,
329 1.444033091910423754121309915092247171008e+0010L,
330 7.987714685115314668378957273824383610525e+0008L,
331 };
332 static GENERIC pr4[13] = { /* [2.5 , 3.5] */
333 9.999999999986736677961118722747757712260e-0001L,
334 1.453824980703800559037873123568378845663e+0002L,
335 8.097327216430682288267610447006508661032e+0003L,
336 2.273847252038264370231169686380192662135e+0005L,
337 3.561056728046211111354759998976985449622e+0006L,
338 3.244933588800096378434627029369680378599e+0007L,
339 1.740112392860717950376210038908476792588e+0008L,
340 5.426170187455893285197878563881579269524e+0008L,
341 9.490107486454362321004377336020526281371e+0008L,
342 8.688872439428470049801714121070005313806e+0008L,
343 3.673315853166437222811910656900123215515e+0008L,
344 5.577770470359303305164877446339693270239e+0007L,
345 1.540438642031689641308197880181291865714e+0006L,
346 };
347 static GENERIC ps4[13] = { /* [2.5 , 3.5] */
348 1.0e0L,
349 1.454528105698159439773035951959131799816e+0002L,
350 8.107442215200392397172179900434987859618e+0003L,
351 2.279390393778242887574177096606328994140e+0005L,
352 3.576251625592252008424781111770934135844e+0006L,
353 3.267909499056932631405942058670933813863e+0007L,
354 1.760021515330805537499778238099704648805e+0008L,
355 5.525553787667353981242060222587465726729e+0008L,
356 9.769870295912820457889384082671269328511e+0008L,
357 9.110582071004774279226905629624018008454e+0008L,
358 3.981857678621955599371967680343918454345e+0008L,
359 6.482404686230769399073192961667697036706e+0007L,
360 2.210046943095878402443535460329391782298e+0006L,
361 };
362 static GENERIC pr5[13] = { /* [1.777..., 2.5] */
363 9.999999999114986107951817871144655880699e-0001L,
364 9.252583736048588342568344570315435947614e+0001L,
365 3.218726757856078715214631502407386264637e+0003L,
366 5.554009964621111656479588505862577040831e+0004L,
367 5.269993115643664338253196944523510290175e+0005L,
368 2.874613773778430691192912190618220544575e+0006L,
369 9.133538151103658353874146919613442436035e+0006L,
370 1.673067041410338922825193013077354249193e+0007L,
371 1.706913873848398011744790289200151840498e+0007L,
372 9.067766583853288534551600235576747618679e+0006L,
373 2.216746733457884568532695355036338655872e+0006L,
374 1.945753880802872541235703812722344514405e+0005L,
375 3.132374412921948071539195638885330951749e+0003L,
376 };
377 static GENERIC ps5[13] = { /* [1.777..., 2.5] */
378 1.0e0L,
379 9.259614983862181118883831670990340052982e+0001L,
380 3.225125275462903384842124075132609290304e+0003L,
381 5.575705362829101545292760055941855246492e+0004L,
382 5.306049863037087855496170121958448492522e+0005L,
383 2.907060758873509564309729903109018597215e+0006L,
384 9.298059206584995898298257827131208539289e+0006L,
385 1.720391071006963176836108026556547062980e+0007L,
386 1.782614812922865190479394509487941920612e+0007L,
387 9.708016389605273153536452032839879950155e+0006L,
388 2.476495084688170096480215640962175140027e+0006L,
389 2.363200660365585759668077790194604917187e+0005L,
390 4.803239569848196077121203575704356936731e+0003L,
391 };
392 static GENERIC pr6[13] = { /* [1.28, 1.777...] */

new/usr/src/lib/libm/common/LD/j0l.c 7

393 9.999999969777095495998606925524322559556e-0001L,
394 5.825486719466194430503283824096872219216e+0001L,
395 1.248155491637757281915184824965379905380e+0003L,
396 1.302093199842358609321338417071710477615e+0004L,
397 7.353835804186292782840961999810543016039e+0004L,
398 2.356471661113686180549195092555751341757e+0005L,
399 4.350553267429009581632987060942780847101e+0005L,
400 4.588762661876600638719159826652389418235e+0005L,
401 2.675796398548523436544221045225290128611e+0005L,
402 8.077649557108971388298292919988449940464e+0004L,
403 1.117640459221306873519068741664054573776e+0004L,
404 5.544400072396814695175787511557757885585e+0002L,
405 5.072550541191480498431289089905822910718e+0000L,
406 };
407 static GENERIC ps6[13] = { /* [1.28, 1.777...] */
408 1.0e0L,
409 5.832517925357165050639075848183613063291e+0001L,
410 1.252144364743592128171256104364976466898e+0003L,
411 1.310300234342216813579118022415585740772e+0004L,
412 7.434667697093812197817292154032863632923e+0004L,
413 2.398706595587719165726469002404004614711e+0005L,
414 4.472737517625103157004869372427480602511e+0005L,
415 4.786313523337761975294171429067037723611e+0005L,
416 2.851161872872731228472536061865365370192e+0005L,
417 8.891648269899148412331918021801385815586e+0004L,
418 1.297097489535351517572978123584751042287e+0004L,
419 7.096761640545975756202184143400469812618e+0002L,
420 8.378049338590233325977702401733340820351e+0000L,
421 };
422 static GENERIC sixteen = 16.0L;
423 static GENERIC huge = 1.0e30L;

425 static GENERIC pzero(x)
426 GENERIC x;
427 {
428 GENERIC s,r,t,z;
429 int i;
430 if(x>huge) return one;
431 t = one/x; z = t*t;
432 if(x>sixteen) {
433 r = z*pr0[11]+pr0[10]; s = ps0[10];
434 for(i=9;i>=0;i--) {
435 r = z*r + pr0[i];
436 s = z*s + ps0[i];
437 }
438 } else if (x > eight){
439 r = pr1[11]; s = ps1[11]+z*(ps1[12]+z*ps1[13]);
440 for(i=10;i>=0;i--) {
441 r = z*r + pr1[i];
442 s = z*s + ps1[i];
443 }
444 } else if (x > five){ /* x > 5.0 */
445 r = pr2[11]; s = ps2[11]+z*(ps2[12]+z*ps2[13]);
446 for(i=10;i>=0;i--) {
447 r = z*r + pr2[i];
448 s = z*s + ps2[i];
449 }
450 } else if(x>3.5L) {
451 r = pr3[12]; s = ps3[12];
452 for(i=11;i>=0;i--) {
453 r = z*r + pr3[i];
454 s = z*s + ps3[i];
455 }
456 } else if(x>2.5L) {
457 r = pr4[12]; s = ps4[12];
458 for(i=11;i>=0;i--) {

new/usr/src/lib/libm/common/LD/j0l.c 8

459 r = z*r + pr4[i];
460 s = z*s + ps4[i];
461 }
462 } else if(x> (1.0L/0.5625L)){
463 r = pr5[12]; s = ps5[12];
464 for(i=11;i>=0;i--) {
465 r = z*r + pr5[i];
466 s = z*s + ps5[i];
467 }
468 } else { /* assume x > 1.28 */
469 r = pr6[12]; s = ps6[12];
470 for(i=11;i>=0;i--) {
471 r = z*r + pr6[i];
472 s = z*s + ps6[i];
473 }
474 }
475 return r/s;
476 }
477

479 static GENERIC qr0[12] = { /* [16, inf] */
480 -1.249999999999999999999999999999999972972e-0001L,
481 -1.425179595545670577414395762503991596897e+0002L,
482 -6.312499645625970845534460257936222407219e+0004L,
483 -1.411374326457208384315121243698814446848e+0007L,
484 -1.735034212758873581410984757860787252842e+0009L,
485 -1.199777647512789489421826342485055280680e+0011L,
486 -4.596025334081655714499860409699100373644e+0012L,
487 -9.262525628201284107792924477031653399187e+0013L,
488 -8.858394728685039245344398842180662867639e+0014L,
489 -3.267527953687534887623740622709505972113e+0015L,
490 -2.664222971186311967587129347029450062019e+0015L,
491 3.442464060723987869585180095344504100204e+0014L,
492 };
493 static GENERIC qs0[11] = {
494 1.0e0L,
495 1.140729613936536461931516610003185687881e+0003L,
496 5.056665510442299351009198186490085803580e+0005L,
497 1.132041763825642787943941650522718199115e+0008L,
498 1.394570111872581606392620678214246479767e+0010L,
499 9.677945218152264789534431079563744378421e+0011L,
500 3.731140327851536828225143058896348502096e+0013L,
501 7.612785951064869291722846681020881676410e+0014L,
502 7.476077016406764891730191004811863975940e+0015L,
503 2.951246482613592035421503427100393831709e+0016L,
504 3.108361803691811711136854587074302034901e+0016L,
505 };
506 static GENERIC qr1[12] = { /* [8, 16] */
507 -1.249999999999999999997949010383433818157e-0001L,
508 -9.051215166393822640636752244895124126934e+0001L,
509 -2.620782703428148837671179031904208303947e+0004L,
510 -3.975571261553504457766177974508785790884e+0006L,
511 -3.479029330759311306270072218074074994090e+0008L,
512 -1.823955008124268573036216746186239829089e+0010L,
513 -5.765932697111801375765156029221568664435e+0011L,
514 -1.079843680798742592954002192417934779114e+0013L,
515 -1.146893630504592739082205764611581332897e+0014L,
516 -6.367016059683898464936104447282880704182e+0014L,
517 -1.583109041961213490464459111903484209098e+0015L,
518 -1.230149555764242473103128650135795639412e+0015L,
519 };
520 static GENERIC qs1[14] = {
521 1.0e0L,
522 7.246831508115058112438579847778014458432e+0002L,
523 2.100854184439168518399383786306927037611e+0005L,
524 3.192636418837951507430188285940994235122e+0007L,

new/usr/src/lib/libm/common/LD/j0l.c 9

525 2.801558443383354674538443461124434216152e+0009L,
526 1.475026997664373739293483927250653467487e+0011L,
527 4.694486824913954608552363821799927145318e+0012L,
528 8.890350100919200250838438709601547334021e+0013L,
529 9.626844429082905144874701068760469752067e+0014L,
530 5.541110744600460773528263862687521642140e+0015L,
531 1.486500494789452556727470329232123096563e+0016L,
532 1.415840104845959400365430773732093899210e+0016L,
533 1.780866095241517418081312567239682336483e+0015L,
534 -2.359230917384889357887631544079990129494e+0014L,
535 };
536 static GENERIC qr2[12] = { /* [5, 8] */
537 -1.249999999999999531937744362527772181614e-0001L,
538 -4.944373897356969774839375977239241573966e+0001L,
539 -7.728449175433465285314261650078450473909e+0003L,
540 -6.262574329612752346336901434651220705903e+0005L,
541 -2.900948220220943306027235217424380672732e+0007L,
542 -7.988719647634192770463917157562874119535e+0008L,
543 -1.318228171927181389547760026626357012375e+0010L,
544 -1.282439773983029245309263271945424928196e+0011L,
545 -7.050925570827818040186149940257918845138e+0011L,
546 -2.021751882573871990004205616874202684429e+0012L,
547 -2.592939962400668552384333900573812635658e+0012L,
548 -1.038267109518891262840601514932972850326e+0012L,
549 };
550 static GENERIC qs2[14] = {
551 1.0e0L,
552 3.961358492885570003202784022894248952116e+0002L,
553 6.205788738864701882828752634586510926968e+0004L,
554 5.045715603932670286550673813011764406749e+0006L,
555 2.349248611362658323353343389430968751429e+0008L,
556 6.520244524415828635917683553721880063911e+0009L,
557 1.089111211223507719337067159886281887722e+0011L,
558 1.080406000905359867958779409414903018610e+0012L,
559 6.135645280895514703514154680623769562148e+0012L,
560 1.862433040246625874245867151368643668215e+0013L,
561 2.667780805786648888840777888702193708994e+0013L,
562 1.394401107289087774765300711809313112824e+0013L,
563 1.093247500616320375562898297156722445484e+0012L,
564 -7.228875530378928722826604216491493780775e+0010L,
565 };
566 static GENERIC qr3[13] = { /* [3.5 5] */
567 -1.249999999999473067748420379578481661075e-0001L,
568 -3.044549048635289351913574324803250977998e+0001L,
569 -2.890081140649769078496693003524681440869e+0003L,
570 -1.404922456817202235879343275330529107684e+0005L,
571 -3.862746614385573443518177403617349281869e+0006L,
572 -6.257517309110249049201133708911155047689e+0007L,
573 -6.031451330920839916987079782727323477520e+0008L,
574 -3.411542405173830611454025765755854382346e+0009L,
575 -1.089392478149726672133014498723021526099e+0010L,
576 -1.824934078420210941290140903415956782726e+0010L,
577 -1.400780278304358710423481070486939531139e+0010L,
578 -3.716484136064917363926635716743771092093e+0009L,
579 -1.397591075296425529970434890954904331580e+0008L,
580 };
581 static GENERIC qs3[13] = {
582 1.0e0L,
583 2.441498613904962049391000187014945858042e+0002L,
584 2.326188882072370711500164222341514337043e+0004L,
585 1.137138213121231338494977104659239578165e+0006L,
586 3.152918070735662728722998452605364253517e+0007L,
587 5.172877993426507259314270488444013595108e+0008L,
588 5.083086439731669807455961078856470774115e+0009L,
589 2.961842732066434123119325521139476909941e+0010L,
590 9.912185866862440735829781856081353151390e+0010L,

new/usr/src/lib/libm/common/LD/j0l.c 10

591 1.793560561251622234430564181567297983598e+0011L,
592 1.577090119341228122525265108497940403073e+0011L,
593 5.509910306780166194333889999985463681636e+0010L,
594 4.761691134078874491202320181517936758141e+0009L,
595 };
596 static GENERIC qr4[13] = { /* [2.5 3.5] */
597 -1.249999999928567734339745043490705340835e-0001L,
598 -1.967201748731419063051601624435565528481e+0001L,
599 -1.186329146714562236407099740615528170707e+0003L,
600 -3.607736959222941810356301491152457934060e+0004L,
601 -6.119200717978104904932828468575194267125e+0005L,
602 -6.037847781158358226670305078652205586384e+0006L,
603 -3.503558153336140359700536720393565984740e+0007L,
604 -1.180196478268225718757218523746787309773e+0008L,
605 -2.221860232085134915841426363505169680528e+0008L,
606 -2.173372505452747585296176761701746236760e+0008L,
607 -9.649364865061237558517730539506568013963e+0007L,
608 -1.465429227847933034546039640094862650385e+0007L,
609 -3.083003197920262085170581866246663380607e+0005L,
610 };
611 static GENERIC qs4[13] = { /* [2.5 3.5] */
612 1.0e0L,
613 1.579620773732259142752614142139986854055e+0002L,
614 9.581372220329138733203879503753685054968e+0003L,
615 2.939598672379108095776114131010825885308e+0005L,
616 5.052183049314542218630341818692588448168e+0006L,
617 5.083497695595206639433839326338971980149e+0007L,
618 3.036385361800553388049719014005099206516e+0008L,
619 1.067826481452753409910563785161661492137e+0009L,
620 2.145644125557118044720741775125319669272e+0009L,
621 2.324115615959719949363946673491552216799e+0009L,
622 1.223262962112070757966959855619847011146e+0009L,
623 2.569765553318495423738478585947110270709e+0008L,
624 1.354744744299227127897905787732636565504e+0007L,
625 };
626 static GENERIC qr5[13] = { /* [1.777.., 2.5] */
627 -1.249999995936639697637680428174576069971e-0001L,
628 -1.260846055371311453485891923426489068315e+0001L,
629 -4.772398467544467480801174330290141578895e+0002L,
630 -8.939852599990298486613760833996490599724e+0003L,
631 -9.184070787149542050979542226446134243197e+0004L,
632 -5.406038945018274458362637897739280435171e+0005L,
633 -1.845896544705190261018653728678171084418e+0006L,
634 -3.613616990680809501878667570653308071547e+0006L,
635 -3.908782978135693252252557720414348623779e+0006L,
636 -2.173711022517323927109138170588442768176e+0006L,
637 -5.431253130679918485836408549007856244495e+0005L,
638 -4.591098546452684510082591587275940765959e+0004L,
639 -5.244711364168207806835520057792229646578e+0002L,
640 };
641 static GENERIC qs5[13] = { /* [1.777.., 2.5] */
642 1.0e0L,
643 1.014536210851290878350892750972474861447e+0002L,
644 3.875547510687135314064434160096139681076e+0003L,
645 7.361913122670079814955259281995617732580e+0004L,
646 7.720288944218771126581086539585529314636e+0005L,
647 4.681529554446752496404431433608306558038e+0006L,
648 1.667882621940503925455031252308367745820e+0007L,
649 3.469403153761399881888272620855305156241e+0007L,
650 4.096992047964210711867089384719947863019e+0007L,
651 2.596804755829217449311530735959560630554e+0007L,
652 7.983933774697889238154465064019410763845e+0006L,
653 9.818133816979900819087242425280757938152e+0005L,
654 3.061083930868694396013541535670745443560e+0004L,
655 };

new/usr/src/lib/libm/common/LD/j0l.c 11

657 static GENERIC qr6[13] = { /* [1.28, 1.777..] */
658 -1.249999881577289001807137282824929082771e-0001L,
659 -7.998273510053110759610810594119533619282e+0000L,
660 -1.872481955335172543369089617771565632719e+0002L,
661 -2.122116786726300805079874003303799646812e+0003L,
662 -1.293850285839529282503178263484773478457e+0004L,
663 -4.445024742266316181033354192262529356093e+0004L,
664 -8.730161378334357767668344467356505347070e+0004L,
665 -9.706222895172078442801444972505315054736e+0004L,
666 -5.896325518259858270165531513618195321041e+0004L,
667 -1.823172034368108822276420827074668832233e+0004L,
668 -2.509304178635055926638833040337472387175e+0003L,
669 -1.156608965715779237316769828941729964099e+0002L,
670 -7.028005789650731396887346826397785210442e-0001L,
671 };
672 static GENERIC qs6[13] = { /* [1.28, 1.777..] */
673 1.0e0L,
674 6.457211085058064845601261321277721075900e+0001L,
675 1.534005216588011210342824555136008682950e+0003L,
676 1.777217999176441782593357660462379097171e+0004L,
677 1.118372652642469468091084810263231199696e+0005L,
678 4.015242433858461813142365748386473605294e+0005L,
679 8.377081045517098645448616514388280497673e+0005L,
680 1.011495020008010352575398009604164287337e+0006L,
681 6.886722075290430568652227875200208955970e+0005L,
682 2.504735189948021472047157148613171956537e+0005L,
683 4.408138920171044846941001844352009817062e+0004L,
684 3.105572178072115145673058722853640854884e+0003L,
685 5.588294821118916113437396504573817033678e+0001L,
686 };
687 static GENERIC qzero(x)
688 GENERIC x;
689 {
690 GENERIC s,r,t,z;
691 int i;
692 if(x>huge) return -0.125L/x;
693 t = one/x; z = t*t;
694 if(x>sixteen) {
695 r = z*qr0[11]+qr0[10]; s = qs0[10];
696 for(i=9;i>=0;i--) {
697 r = z*r + qr0[i];
698 s = z*s + qs0[i];
699 }
700 } else if(x>eight) {
701 r = qr1[11]; s = qs1[11]+z*(qs1[12]+z*qs1[13]);
702 for(i=10;i>=0;i--) {
703 r = z*r + qr1[i];
704 s = z*s + qs1[i];
705 }
706 } else if(x>five){ /* assume x > 5.0 */
707 r = qr2[11]; s = qs2[11]+z*(qs2[12]+z*qs2[13]);
708 for(i=10;i>=0;i--) {
709 r = z*r + qr2[i];
710 s = z*s + qs2[i];
711 }
712 } else if(x>3.5L) {
713 r = qr3[12]; s = qs3[12];
714 for(i=11;i>=0;i--) {
715 r = z*r + qr3[i];
716 s = z*s + qs3[i];
717 }
718 } else if(x>2.5L) {
719 r = qr4[12]; s = qs4[12];
720 for(i=11;i>=0;i--) {
721 r = z*r + qr4[i];
722 s = z*s + qs4[i];

new/usr/src/lib/libm/common/LD/j0l.c 12

723 }
724 } else if(x> (1.0L/0.5625L)) {
725 r = qr5[12]; s = qs5[12];
726 for(i=11;i>=0;i--) {
727 r = z*r + qr5[i];
728 s = z*s + qs5[i];
729 }
730 } else { /* assume x > 1.28 */
731 r = qr6[12]; s = qs6[12];
732 for(i=11;i>=0;i--) {
733 r = z*r + qr6[i];
734 s = z*s + qs6[i];
735 }
736 }
737 return t*(r/s);
738 }

new/usr/src/lib/libm/common/LD/j1l.c 1

**
 28046 Sun May 4 03:05:28 2014
new/usr/src/lib/libm/common/LD/j1l.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /*
31 * floating point Bessel’s function of the first and second kinds
32 * of order zero: j1(x),y1(x);
33 *
34 * Special cases:
35 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
36 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
37 */

39 #pragma weak j1l = __j1l
40 #pragma weak y1l = __y1l

42 #include "libm.h"
43 #include "libm_synonyms.h"
44 #include "longdouble.h"
45 #endif /* ! codereview */
46 #include <math.h>
47 #if defined(__SUNPRO_C)
48 #include <sunmath.h>
49 #endif

51 #define GENERIC long double
52 static GENERIC
53 zero = 0.0L,
54 small = 1.0e-9L,
55 tiny = 1.0e-38L,
56 one = 1.0L,
57 five = 5.0L,
58 invsqrtpi= 5.641895835477562869480794515607725858441e-0001L,
59 tpi = 0.636619772367581343075535053490057448L;

61 static GENERIC pone(), qone();
62 static GENERIC r0[7] = {

new/usr/src/lib/libm/common/LD/j1l.c 2

63 -6.249999999999999999999999999999999627320e-0002L,
64 1.940606727194041716205384618494641565464e-0003L,
65 -3.005630423155733701856481469986459043883e-0005L,
66 2.345586219403918667468341047369572169358e-0007L,
67 -9.976809285885253587529010109133336669724e-0010L,
68 2.218743258363623946078958783775107473381e-0012L,
69 -2.071079656218700604767650924103578046280e-0015L,
70 };
71 static GENERIC s0[7] = {
72 1.0e0L,
73 1.061695903156199920738051277075003059555e-0002L,
74 5.521860513111180371566951179398862692060e-0005L,
75 1.824214367413754193524107877084979441407e-0007L,
76 4.098957778439576834818838198039029353925e-0010L,
77 6.047735079699666389853240090925264056197e-0013L,
78 4.679044728878836197247923279512047035041e-0016L,
79 };

81 GENERIC
82 j1l(x) GENERIC x;{
83 GENERIC z, d, s, c, ss, cc, r;
84 int i, sgn;

86 if(!finitel(x)) return one/x;
87 sgn = signbitl(x);
88 x = fabsl(x);
89 if(x > 1.28L){
90 s = sinl(x);
91 c = cosl(x);
92 /* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x0)-q1(x)*sin(x0))
93 * where x0 = x-3pi/4
94 * Better formula:
95 * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
96 * = 1/sqrt(2) * (sin(x) - cos(x))
97 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
98 * = -1/sqrt(2) * (cos(x) + sin(x))
99 * To avoid cancellation, use
100 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
101 * to compute the worse one.
102 */
103 if(x>1.0e2450L) { /* x+x may overflow */
104 ss = -s-c;
105 cc = s-c;
106 } else if(signbitl(s)!=signbitl(c)) {
107 cc = s - c;
108 ss = cosl(x+x)/cc;
109 } else {
110 ss = -s-c;
111 cc = cosl(x+x)/ss;
112 }
113 /*
114 * j1(x) = 1/sqrt(pi*x) * (P(1,x)*cc - Q(1,x)*ss)
115 * y1(x) = 1/sqrt(pi*x) * (P(1,x)*ss + Q(1,x)*cc)
116 */
117 if(x>1.0e120L) return (invsqrtpi*cc)/sqrtl(x);
118 d = invsqrtpi*(pone(x)*cc-qone(x)*ss)/sqrtl(x);
119 if(sgn==0) return d; else return -d;
120 }
121 if(x<=small) {
122 if(x<=tiny) d = 0.5L*x;
123 else d = x*(0.5L-x*x*0.125L);
124 if(sgn==0) return d; else return -d;
125 }
126 z = x*x;
127 r = r0[6];
128 s = s0[6];

new/usr/src/lib/libm/common/LD/j1l.c 3

129 for(i=5;i>=0;i--) {
130 r = r*z + r0[i];
131 s = s*z + s0[i];
132 }
133 d = x*0.5L+x*(z*(r/s));
134 if(sgn==0) return d; else return -d;
135 }

137 static GENERIC u0[7] = {
138 -1.960570906462389484060557273467558703503e-0001L,
139 5.166389353148318460304315890665450006495e-0002L,
140 -2.229699464105910913337190798743451115604e-0003L,
141 3.625437034548863342715657067759078267158e-0005L,
142 -2.689902826993117212255524537353883987171e-0007L,
143 9.304570592456930912969387719010256018466e-0010L,
144 -1.234878126794286643318321347997500346131e-0012L,
145 };
146 static GENERIC v0[8] = {
147 1.0e0L,
148 1.369394302535807332517110204820556695644e-0002L,
149 9.508438148097659501433367062605935379588e-0005L,
150 4.399007309420092056052714797296467565655e-0007L,
151 1.488083087443756398305819693177715000787e-0009L,
152 3.751609832625793536245746965768587624922e-0012L,
153 6.680926434086257291872903276124244131448e-0015L,
154 6.676602383908906988160099057991121446058e-0018L,
155 };

157 GENERIC
158 y1l(x) GENERIC x;{
159 GENERIC z, s, c, ss, cc, u, v;
160 int i;

162 if(isnanl(x)) return x+x;
163 if(x <= zero){
164 if(x==zero)
165 return -one/zero;
166 else
167 return zero/zero;
168 }
169 if(x > 1.28L){
170 if(!finitel(x)) return zero;
171 s = sinl(x);
172 c = cosl(x);
173 /* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x0)-q1(x)*sin(x0))
174 * where x0 = x-3pi/4
175 * Better formula:
176 * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
177 * = 1/sqrt(2) * (sin(x) - cos(x))
178 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
179 * = -1/sqrt(2) * (cos(x) + sin(x))
180 * To avoid cancellation, use
181 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
182 * to compute the worse one.
183 */
184 if(x>1.0e2450L) { /* x+x may overflow */
185 ss = -s-c;
186 cc = s-c;
187 } else if(signbitl(s)!=signbitl(c)) {
188 cc = s - c;
189 ss = cosl(x+x)/cc;
190 } else {
191 ss = -s-c;
192 cc = cosl(x+x)/ss;
193 }
194 /*

new/usr/src/lib/libm/common/LD/j1l.c 4

195 * j1(x) = 1/sqrt(pi*x) * (P(1,x)*cc - Q(1,x)*ss)
196 * y1(x) = 1/sqrt(pi*x) * (P(1,x)*ss + Q(1,x)*cc)
197 */
198 if(x>1.0e91L) return (invsqrtpi*ss)/sqrtl(x);
199 return invsqrtpi*(pone(x)*ss+qone(x)*cc)/sqrtl(x);
200 }
201 if(x<=tiny) {
202 return(-tpi/x);
203 }
204 z = x*x;
205 u = u0[6]; v = v0[6]+z*v0[7];
206 for(i=5;i>=0;i--){
207 u = u*z + u0[i];
208 v = v*z + v0[i];
209 }
210 return(x*(u/v) + tpi*(j1l(x)*logl(x)-one/x));
211 }

213 static GENERIC pr0[12] = {
214 1.000000000000000000000000000000000000267e+0000L,
215 1.060717875045891455602180843276758003035e+0003L,
216 4.344347542892127024446687712181105852335e+0005L,
217 8.915680220724007016377924252717410457094e+0007L,
218 9.969502259938406062809873257569171272819e+0009L,
219 6.200290193138613035646510338707386316595e+0011L,
220 2.105978548788015119851815854422247330118e+0013L,
221 3.696635772784601239371730810311998368948e+0014L,
222 3.015913097920694682057958412534134515156e+0015L,
223 9.370298471339353098123277427328592725921e+0015L,
224 7.190349005196335967340799265074029443057e+0015L,
225 2.736097786240689996880391074927552517982e+0014L,
226 };
227 static GENERIC ps0[11] = {
228 1.0e0L,
229 1.060600687545891455602180843276758095107e+0003L,
230 4.343106093416975589147153906505338900961e+0005L,
231 8.910605869002176566582072242244353399059e+0007L,
232 9.959122058635087888690713917622056540190e+0009L,
233 6.188744967234948231792482949171041843894e+0011L,
234 2.098863976953783506401759873801990304907e+0013L,
235 3.672870357018063196746729751479938908450e+0014L,
236 2.975538419246824921049011529574385888420e+0015L,
237 9.063657659995043205018686029284479837091e+0015L,
238 6.401953344314747916729366441508892711691e+0015L,
239 };
240 static GENERIC pr1[12] = {
241 1.000000000000000000000023667524130660984e+0000L,
242 6.746154419979618754354803488126452971204e+0002L,
243 1.811210781083390154857018330296145970502e+0005L,
244 2.533098390379924268038005329095287842244e+0007L,
245 2.029683619805342145252338570875424600729e+0009L,
246 9.660859662192711465301069401598929980319e+0010L,
247 2.743396238644831519934098967716621316316e+0012L,
248 4.553097354140854377931023170263455246288e+0013L,
249 4.210245069852219757476169864974870720374e+0014L,
250 1.987334056229596485076645967176169801727e+0015L,
251 4.067120052787096893838970455751338930462e+0015L,
252 2.486539606380406398310845264910691398133e+0015L,
253 };
254 static GENERIC ps1[14] = {
255 1.0e0L,
256 6.744982544979618754355808680196859521782e+0002L,
257 1.810421795396966762032155290441364740350e+0005L,
258 2.530986460644310651529583759699988435573e+0007L,
259 2.026743276048023121360249288818290224145e+0009L,
260 9.637461924407405935245269407052641341836e+0010L,

new/usr/src/lib/libm/common/LD/j1l.c 5

261 2.732378628423766417402292797028314160831e+0012L,
262 4.522345274960527124354844364012184278488e+0013L,
263 4.160650668341743132685335758415469856545e+0014L,
264 1.943730242988858208243492424892435901211e+0015L,
265 3.880228532692127989901131618598067450001e+0015L,
266 2.178020816161154615841000173683302999728e+0015L,
267 -8.994062666842225551554346698171600634173e+0013L,
268 1.368520368508851253495764806934619574990e+0013L,
269 };
270 static GENERIC pr2[12] = {
271 1.000000000000000006938651621840396237282e+0000L,
272 3.658416291850404981407101077037948144698e+0002L,
273 5.267073772170356547709794670602812447537e+0004L,
274 3.912012101226837463014925210735894620442e+0006L,
275 1.651295648974103957193874928714180765625e+0008L,
276 4.114901144480797609972484998142146783499e+0009L,
277 6.092524309766036681542980572526335147672e+0010L,
278 5.263913178071282616719249969074134570577e+0011L,
279 2.538408581124324223367341020538081330994e+0012L,
280 6.288607929360291027895126983015365677648e+0012L,
281 6.848330048211148419047055075386525945280e+0012L,
282 2.290309646838867941423178163991423244690e+0012L,
283 };
284 static GENERIC ps2[14] = {
285 1.0e0L,
286 3.657244416850405086459410165762319861856e+0002L,
287 5.262802358425023243992387075861237306312e+0004L,
288 3.905896813959919648136295861661483848364e+0006L,
289 1.646791907791461220742694842108202772763e+0008L,
290 4.096132803064256022224954120208201437344e+0009L,
291 6.046665195915950447544429445730680236759e+0010L,
292 5.198061739781991313414052212328653295168e+0011L,
293 2.484233851814333966401527626421254279796e+0012L,
294 6.047868806925315879339651539434315255940e+0012L,
295 6.333103831254091652501642567294101813354e+0012L,
296 1.875143098754284994467609936924685024968e+0012L,
297 -5.238330920563392692965412762508813601534e+0010L,
298 4.656888609439364725427789198383779259957e+0009L,
299 };
300 static GENERIC pr3[13] = {
301 1.000000000000009336887318068056137842897e+0000L,
302 2.242719942728459588488051572002835729183e+0002L,
303 1.955450611382026550266257737331095691092e+0004L,
304 8.707143293993619899395400562409175590739e+0005L,
305 2.186267894487004565948324289010954505316e+0007L,
306 3.224328510541957792360691585667502864688e+0008L,
307 2.821057355151380597331792896882741364897e+0009L,
308 1.445371387295422404365584793796028979840e+0010L,
309 4.181743160669891357783011002656658107864e+0010L,
310 6.387371088767993119325536137794535513922e+0010L,
311 4.575619999412716078064070587767416436396e+0010L,
312 1.228415651211639160620284441690503550842e+0010L,
313 7.242170349875563053436050532153112882072e+0008L,
314 };
315 static GENERIC ps3[13] = {
316 1.0e0L,
317 2.241548067728529551049804610486061401070e+0002L,
318 1.952838216795552145132137932931237181307e+0004L,
319 8.684574926493185744628127341069974575526e+0005L,
320 2.176357771067037962940853412819852189164e+0007L,
321 3.199958682356132977319258783167122100567e+0008L,
322 2.786218931525334687844675219914201872570e+0009L,
323 1.416283776951741549631417572317916039767e+0010L,
324 4.042962659271567948735676834609348842922e+0010L,
325 6.028168462646694510083847222968444402161e+0010L,
326 4.118410226794641413833887606580085281111e+0010L,

new/usr/src/lib/libm/common/LD/j1l.c 6

327 9.918735736297038430744161253338202230263e+0009L,
328 4.092967198238098023219124487437130332038e+0008L,
329 };
330 static GENERIC pr4[13] = {
331 1.000000000001509220978157399042059553390e+0000L,
332 1.437551868378147851133499996323782607787e+0002L,
333 7.911335537418177296041518061404505428004e+0003L,
334 2.193710939115317214716518908935756104804e+0005L,
335 3.390662495136730962513489796538274984382e+0006L,
336 3.048655347929348891006070609293884274789e+0007L,
337 1.613781633489496606354045161527450975195e+0008L,
338 4.975089835037230277110156150038482159988e+0008L,
339 8.636047087015115403880904418339566323264e+0008L,
340 7.918202912328366140110671223076949101509e+0008L,
341 3.423294665798984733439650311722794853294e+0008L,
342 5.621904953441963961040503934782662613621e+0007L,
343 2.086303543310240260758670404509484499793e+0006L,
344 };
345 static GENERIC ps4[13] = {
346 1.0e0L,
347 1.436379993384532371670493319591847362304e+0002L,
348 7.894647154785430678061053848847436659499e+0003L,
349 2.184659753392097529008981741550878586174e+0005L,
350 3.366109083305465176803513738147049499361e+0006L,
351 3.011911545968996817697665866587226343186e+0007L,
352 1.582262913779689851316760148459414895301e+0008L,
353 4.819268809494937919217938589530138201770e+0008L,
354 8.201355762990450679702837123432527154830e+0008L,
355 7.268232093982510937417446421282341425212e+0008L,
356 2.950911909015572933262131323934036480462e+0008L,
357 4.242839924305934423010858966540621219396e+0007L,
358 1.064387620445090779182117666330405186866e+0006L,
359 };
360 static GENERIC pr5[13] = {
361 1.000000000102434805241171427253847353861e+0000L,
362 9.129332257083629259060502249025963234821e+0001L,
363 3.132238483586953037576119377504557191413e+0003L,
364 5.329782528269307971278943122454171107861e+0004L,
365 4.988460157184117790692873002103052944145e+0005L,
366 2.686602071615786816147010334256047469378e+0006L,
367 8.445418526028961197703799808701268301831e+0006L,
368 1.536575358646141157475725889907900827390e+0007L,
369 1.568405818236523821796862770586544811945e+0007L,
370 8.450876239888770102387618667362302173547e+0006L,
371 2.154414900139567328424026827163203446077e+0006L,
372 2.105656926565043898888460254808062352205e+0005L,
373 4.739165011023396507022134303736862812975e+0003L,
374 };
375 static GENERIC ps5[13] = {
376 1.0e0L,
377 9.117613509595327476509152673394703847793e+0001L,
378 3.121697972484015639301279229281770795147e+0003L,
379 5.294447222735893568040911873834576440255e+0004L,
380 4.930368882192772335798256684110887882807e+0005L,
381 2.634854685641165298302167435798357437768e+0006L,
382 8.185462775400326393555896157031818280918e+0006L,
383 1.462417423080215192609668642663030667086e+0007L,
384 1.450624993985851675982860844153954896015e+0007L,
385 7.460467647561995283219086567162006113864e+0006L,
386 1.754210981405612478869227142579056338965e+0006L,
387 1.463286721155271971526264914524746699596e+0005L,
388 2.155894725796702015341211116579827039459e+0003L,
389 };
390 static GENERIC pr6[13] = {
391 1.000000003564855546741735920315743157129e+0000L,
392 5.734003934862540458119423509909510288366e+0001L,

new/usr/src/lib/libm/common/LD/j1l.c 7

393 1.209572491935850486086559692291796887976e+0003L,
394 1.243398391422281247933674779163660286838e+0004L,
395 6.930996755181437937258220998601708278787e+0004L,
396 2.198067659532757598646722249966767620099e+0005L,
397 4.033659432712058633933179115820576858455e+0005L,
398 4.257759657219008027016047206574574358678e+0005L,
399 2.511917395876004349480721277445763916389e+0005L,
400 7.813756153070623654178731651381881953552e+0004L,
401 1.152069173381127881385588092905864352891e+0004L,
402 6.548580782804088553777816037551523398082e+0002L,
403 8.668725370116906132327542766127938496880e+0000L,
404 };
405 static GENERIC ps6[13] = {
406 1.0e0L,
407 5.722285236357114566499221525736286205184e+0001L,
408 1.203010842878317935444582950620339570506e+0003L,
409 1.230058335378583550155825502172435371208e+0004L,
410 6.800998550607861288865300438648089894412e+0004L,
411 2.130767829599304262987769347536850885921e+0005L,
412 3.840483466643916681759936972992155310026e+0005L,
413 3.947432373459225542861819148108081160393e+0005L,
414 2.237816239393081111481588434457838526738e+0005L,
415 6.545820495124419723398946273790921540774e+0004L,
416 8.729563630320892741500726213278834737196e+0003L,
417 4.130762660291894753450174794196998813709e+0002L,
418 3.480368898672684645130335786015075595598e+0000L,
419 };
420 static GENERIC sixteen = 16.0L;
421 static GENERIC eight = 8.0L;
422 static GENERIC huge = 1.0e30L;

424 static GENERIC pone(x)
425 GENERIC x;
426 {
427 GENERIC s,r,t,z;
428 int i;
429 if(x>huge) return one;
430 t = one/x; z = t*t;
431 if(x>sixteen) {
432 r = z*pr0[11]+pr0[10]; s = ps0[10];
433 for(i=9;i>=0;i--) {
434 r = z*r + pr0[i];
435 s = z*s + ps0[i];
436 }
437 } else if(x>eight) {
438 r = pr1[11]; s = ps1[11]+z*(ps1[12]+z*ps1[13]);
439 for(i=10;i>=0;i--) {
440 r = z*r + pr1[i];
441 s = z*s + ps1[i];
442 }
443 } else if(x>five) {
444 r = pr2[11]; s = ps2[11]+z*(ps2[12]+z*ps2[13]);
445 for(i=10;i>=0;i--) {
446 r = z*r + pr2[i];
447 s = z*s + ps2[i];
448 }
449 } else if(x>3.5L) {
450 r = pr3[12]; s = ps3[12];
451 for(i=11;i>=0;i--) {
452 r = z*r + pr3[i];
453 s = z*s + ps3[i];
454 }
455 } else if(x>2.5L) {
456 r = pr4[12]; s = ps4[12];
457 for(i=11;i>=0;i--) {
458 r = z*r + pr4[i];

new/usr/src/lib/libm/common/LD/j1l.c 8

459 s = z*s + ps4[i];
460 }
461 } else if(x> (1.0L/0.5625L)){
462 r = pr5[12]; s = ps5[12];
463 for(i=11;i>=0;i--) {
464 r = z*r + pr5[i];
465 s = z*s + ps5[i];
466 }
467 } else { /* assume x > 1.28 */
468 r = pr6[12]; s = ps6[12];
469 for(i=11;i>=0;i--) {
470 r = z*r + pr6[i];
471 s = z*s + ps6[i];
472 }
473 }
474 return r/s;
475 }
476

478 static GENERIC qr0[12] = {
479 3.749999999999999999999999999999999971033e-0001L,
480 4.256726035237050601607682277433094262226e+0002L,
481 1.875976490812878489192409978945401066066e+0005L,
482 4.170314268048041914273603680317745592790e+0007L,
483 5.092750132543855817293451118974555746551e+0009L,
484 3.494749676278488654103505795794139483404e+0011L,
485 1.327062148257437316997667817096694173709e+0013L,
486 2.648993138273427226907503742066551150490e+0014L,
487 2.511695665909547412222430494473998127684e+0015L,
488 9.274694506662289043224310499164702306096e+0015L,
489 8.150904170663663829331320302911792892002e+0015L,
490 -5.001918733707662355772037829620388765122e+0014L,
491 };
492 static GENERIC qs0[11] = {
493 1.0e0L,
494 1.135400380229880160428715273982155760093e+0003L,
495 5.005701183877126164326765545516590744360e+0005L,
496 1.113444200113712167984337603933040102987e+0008L,
497 1.361074819925223062778717565699039471124e+0010L,
498 9.355750985802849484438933905325982809653e+0011L,
499 3.563462786008988825003965543857998084828e+0013L,
500 7.155145113900094163648726863803802910454e+0014L,
501 6.871266835834472758055559013851843654113e+0015L,
502 2.622030899226736712644974988157345234092e+0016L,
503 2.602912729172876330650077021706139707746e+0016L,
504 };
505 static GENERIC qr1[12] = {
506 3.749999999999999999997762458207284405806e-0001L,
507 2.697883998881706839929255517498189980485e+0002L,
508 7.755195925781028489386938870473834411019e+0004L,
509 1.166777762104017777198211072895528968355e+0007L,
510 1.011504772984321168320010084520261069362e+0009L,
511 5.246007703574156853577754571720205550010e+0010L,
512 1.637692549885592683166116551691266537647e+0012L,
513 3.022303623698185669912990310925039382495e+0013L,
514 3.154769927290655684846107030265909987946e+0014L,
515 1.715819913441554770089730934808123360921e+0015L,
516 4.165044355759732622273534445131736188510e+0015L,
517 3.151381420874174705643100381708086287596e+0015L,
518 };
519 static GENERIC qs1[14] = {
520 1.0e0L,
521 7.197091705351218239785633172408276982828e+0002L,
522 2.070012799599548685544883041297609861055e+0005L,
523 3.117014815317656221871840152778458754516e+0007L,
524 2.705719678902554974863325877025902971727e+0009L,

new/usr/src/lib/libm/common/LD/j1l.c 9

525 1.406113614727345726925060648750867264098e+0011L,
526 4.403777536067131320363005978631674817359e+0012L,
527 8.170725690209322283061499386703167242894e+0013L,
528 8.609458844975495289227794126964431210566e+0014L,
529 4.766766367015473481257280600694952920204e+0015L,
530 1.202286587943342194863557940888115641650e+0016L,
531 1.012474328306200909525063936061756024120e+0016L,
532 6.183552022678917858273222879615824070703e+0014L,
533 -9.756731548558226997573737400988225722740e+0013L,
534 };
535 static GENERIC qr2[12] = {
536 3.749999999999999481245647262226994293189e-0001L,
537 1.471366807289771354491181140167359026735e+0002L,
538 2.279432486768448220142080962843526951250e+0004L,
539 1.828943048523771225163804043356958285893e+0006L,
540 8.379828388647823135832220596417725010837e+0007L,
541 2.279814029335044024585393671278378022053e+0009L,
542 3.711653952257118120832817785271466441420e+0010L,
543 3.557650914518554549916730572553105048068e+0011L,
544 1.924583483146095896259774329498934160650e+0012L,
545 5.424386256063736390759567088291887140278e+0012L,
546 6.839325621241776786206509704671746841737e+0012L,
547 2.702169563144001166291686452305436313971e+0012L,
548 };
549 static GENERIC qs2[14] = {
550 1.0e0L,
551 3.926379194439388135703211933895203191089e+0002L,
552 6.089148804106598297488336063007609312276e+0004L,
553 4.893546162973278583711376356041614150645e+0006L,
554 2.247571119114497845046388801813832219404e+0008L,
555 6.137635663350177751290469334200757872645e+0009L,
556 1.005115019784102856424493519524998953678e+0011L,
557 9.725664462014503832860151384604677240620e+0011L,
558 5.345525100485511116148634192844434636072e+0012L,
559 1.549944007398946691720862738173956994779e+0013L,
560 2.067148441178952625710302124163264760362e+0013L,
561 9.401565402641963611295119487242595462301e+0012L,
562 3.548217088622398274748837287769709374385e+0011L,
563 -2.934470341719047120076509938432417352365e+0010L,
564 };
565 static GENERIC qr3[13] = {
566 3.749999999999412724084579833297451472091e-0001L,
567 9.058478580291706212422978492938435582527e+0001L,
568 8.524056033161038750461083666711724381171e+0003L,
569 4.105967158629109427753434569223631014730e+0005L,
570 1.118326603378531348259783091972623333657e+0007L,
571 1.794636683403578918528064904714132329343e+0008L,
572 1.714314157463635959556133236004368896724e+0009L,
573 9.622092032236084846572067257267661456030e+0009L,
574 3.057759524485859159957762858780768355020e+0010L,
575 5.129306780754798531609621454415938890020e+0010L,
576 3.999122002794961070680636194346316041352e+0010L,
577 1.122298454643493485989721564358100345388e+0010L,
578 5.603981987645989709668830968522362582221e+0008L,
579 };
580 static GENERIC qs3[13] = {
581 1.0e0L,
582 2.418328663076578169836155170053634419922e+0002L,
583 2.279620205900121042587523541281272875520e+0004L,
584 1.100984222585729521470129014992217092794e+0006L,
585 3.010743223679247091004262516286654516282e+0007L,
586 4.860925542827367817289619265215599433996e+0008L,
587 4.686668111035348691982715864307839581243e+0009L,
588 2.668701788405102017427214705946730894074e+0010L,
589 8.677395746106802640390580944836650584903e+0010L,
590 1.511936455574951790658498795945106643036e+0011L,

new/usr/src/lib/libm/common/LD/j1l.c 10

591 1.260845604432623478002018696873608353093e+0011L,
592 4.052692278419853853911440231600864589805e+0010L,
593 2.965516519212226064983267822243329694729e+0009L,
594 };
595 static GENERIC qr4[13] = {
596 3.749999999919234164154669754440123072618e-0001L,
597 5.844218580776819864791168253485055101858e+0001L,
598 3.489273514092912982675669411371435670220e+0003L,
599 1.050523637774575684509663430018995479594e+0005L,
600 1.764549172059701565500717319792780115289e+0006L,
601 1.725532438844133795028063102681497371154e+0007L,
602 9.938114847359778539965140247590176334874e+0007L,
603 3.331710808184595545396883770200772842314e+0008L,
604 6.271970557641881511609560444872797282698e+0008L,
605 6.188529798677357075020774923903737913285e+0008L,
606 2.821905302742849974509982167877885011629e+0008L,
607 4.615467358646911976773290256984329814896e+0007L,
608 1.348140608731546467396685802693380693275e+0006L,
609 };
610 static GENERIC qs4[13] = {
611 1.0e0L,
612 1.561192663112345185261418296389902133372e+0002L,
613 9.346678031144098270547225423124213083072e+0003L,
614 2.825851246482293547838023847601704751590e+0005L,
615 4.776572711622156091710902891124911556293e+0006L,
616 4.715106953717135402977938048006267859302e+0007L,
617 2.753962350894311316439652227611209035193e+0008L,
618 9.428501434615463207768964787500411575223e+0008L,
619 1.832650858775206787088236896454141572617e+0009L,
620 1.901697378939743226948920874296595242257e+0009L,
621 9.433322226854293780627188599226380812725e+0008L,
622 1.808520540608671608680284520798858587370e+0008L,
623 7.983342331736662753157217446919462398008e+0006L,
624 };
625 static GENERIC qr5[13] = {
626 3.749999995331364437028988850515190446719e-0001L,
627 3.739356381766559882677514593041627547911e+0001L,
628 1.399562500629413529355265462912819802551e+0003L,
629 2.594154053098947925345332218062210111753e+0004L,
630 2.640149879297408640394163979394594318371e+0005L,
631 1.542471854873199142031889093591449397995e+0006L,
632 5.242272868972053374067572098992335425895e+0006L,
633 1.025834487769410221329633071426044839935e+0007L,
634 1.116553924239448940142230579060124209622e+0007L,
635 6.318076065595910176374916303525884653514e+0006L,
636 1.641218086168640408527639735915512881785e+0006L,
637 1.522369793529178644168813882912134706444e+0005L,
638 2.526530541062297200914180060208669584055e+0003L,
639 };
640 static GENERIC qs5[13] = {
641 1.0e0L,
642 9.998960735935075380397545659016287506660e+0001L,
643 3.758767417842043742686475060540416737562e+0003L,
644 7.013652806952306520121959742519780781653e+0004L,
645 7.208949808818615099246529616211730446850e+0005L,
646 4.272753927109614455417836186072202009252e+0006L,
647 1.482524411356470699336129814111025434703e+0007L,
648 2.988750366665678233425279237627700803473e+0007L,
649 3.396957890261080492694709150553619185065e+0007L,
650 2.050652487738593004111578091156304540386e+0007L,
651 5.900504120811732547616511555946279451316e+0006L,
652 6.563391409260160897024498082273183468347e+0005L,
653 1.692629845012790205348966731477187041419e+0004L,
654 };
655 static GENERIC qr6[13] = {
656 3.749999861516664133157566870858975421296e-0001L,

new/usr/src/lib/libm/common/LD/j1l.c 11

657 2.367863756747764863120797431599473468918e+0001L,
658 5.476715802114976248882067325630793143777e+0002L,
659 6.143190357869842894025012945444096170251e+0003L,
660 3.716250534677997850513733595140463851730e+0004L,
661 1.270883463823876752138326905022875657430e+0005L,
662 2.495301449636814481646371665429083801388e+0005L,
663 2.789578988212952248340486296254398601942e+0005L,
664 1.718247946911109055931819087137397324634e+0005L,
665 5.458973214011665714330326732204106364229e+0004L,
666 7.912102686687948786048943339759596652813e+0003L,
667 4.077961006160866935722030715149087938091e+0002L,
668 3.765206972770245085551057237882528510428e+0000L,
669 };
670 static GENERIC qs6[13] = {
671 1.0e0L,
672 6.341646532940517305641893852673926809601e+0001L,
673 1.477058277414040790932597537920671025359e+0003L,
674 1.674406564031044491436044253393536487604e+0004L,
675 1.028516501369755949895050806908994650768e+0005L,
676 3.593620042532885295087463507733285434207e+0005L,
677 7.267924991381020915185873399453724799625e+0005L,
678 8.462277510768818399961191426205006083088e+0005L,
679 5.514399892230892163373611895645500250514e+0005L,
680 1.898084241009259353540620272932188102299e+0005L,
681 3.102941242117739015721984123081026253068e+0004L,
682 1.958971184431466907681440650181421086143e+0003L,
683 2.878853357310495087181721613889455121867e+0001L,
684 };
685 static GENERIC qone(x)
686 GENERIC x;
687 {
688 GENERIC s,r,t,z;
689 int i;
690 if(x>huge) return 0.375L/x;
691 t = one/x; z = t*t;
692 if(x>sixteen) {
693 r = z*qr0[11]+qr0[10]; s = qs0[10];
694 for(i=9;i>=0;i--) {
695 r = z*r + qr0[i];
696 s = z*s + qs0[i];
697 }
698 } else if(x>eight) {
699 r = qr1[11]; s = qs1[11]+z*(qs1[12]+z*qs1[13]);
700 for(i=10;i>=0;i--) {
701 r = z*r + qr1[i];
702 s = z*s + qs1[i];
703 }
704 } else if (x>five) { /* x > 5.0 */
705 r = qr2[11]; s = qs2[11]+z*(qs2[12]+z*qs2[13]);
706 for(i=10;i>=0;i--) {
707 r = z*r + qr2[i];
708 s = z*s + qs2[i];
709 }
710 } else if(x>3.5L) {
711 r = qr3[12]; s = qs3[12];
712 for(i=11;i>=0;i--) {
713 r = z*r + qr3[i];
714 s = z*s + qs3[i];
715 }
716 } else if(x>2.5L) {
717 r = qr4[12]; s = qs4[12];
718 for(i=11;i>=0;i--) {
719 r = z*r + qr4[i];
720 s = z*s + qs4[i];
721 }
722 } else if(x> (1.0L/0.5625L)) {

new/usr/src/lib/libm/common/LD/j1l.c 12

723 r = qr5[12]; s = qs5[12];
724 for(i=11;i>=0;i--) {
725 r = z*r + qr5[i];
726 s = z*s + qs5[i];
727 }
728 } else { /* assume x > 1.28 */
729 r = qr6[12]; s = qs6[12];
730 for(i=11;i>=0;i--) {
731 r = z*r + qr6[i];
732 s = z*s + qs6[i];
733 }
734 }
735 return t*(r/s);
736 }

new/usr/src/lib/libm/common/LD/jnl.c 1

**
 7031 Sun May 4 03:05:29 2014
new/usr/src/lib/libm/common/LD/jnl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak jnl = __jnl
32 #pragma weak ynl = __ynl
33 #endif

35 /*
36 * floating point Bessel’s function of the 1st and 2nd kind
37 * of order n: jn(n,x),yn(n,x);
38 *
39 * Special cases:
40 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
41 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
42 * Note 2. About jn(n,x), yn(n,x)
43 * For n=0, j0(x) is called,
44 * for n=1, j1(x) is called,
45 * for n<x, forward recursion us used starting
46 * from values of j0(x) and j1(x).
47 * for n>x, a continued fraction approximation to
48 * j(n,x)/j(n-1,x) is evaluated and then backward
49 * recursion is used starting from a supposed value
50 * for j(n,x). The resulting value of j(0,x) is
51 * compared with the actual value to correct the
52 * supposed value of j(n,x).
53 *
54 * yn(n,x) is similar in all respects, except
55 * that forward recursion is used for all
56 * values of n>1.
57 *
58 */

60 #include "libm.h"
61 #include "longdouble.h"
62 #endif /* ! codereview */

new/usr/src/lib/libm/common/LD/jnl.c 2

63 #include <float.h> /* LDBL_MAX */

65 #define GENERIC long double

67 static const GENERIC
68 invsqrtpi= 5.641895835477562869480794515607725858441e-0001L,
69 two = 2.0L,
70 zero = 0.0L,
71 one = 1.0L;

73 GENERIC
74 jnl(n,x) int n; GENERIC x;{
75 int i, sgn;
76 GENERIC a, b, temp = 0, z, w;
61 GENERIC a, b, temp, z, w;

78 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
79 * Thus, J(-n,x) = J(n,-x)
80 */
81 if(n<0){
82 n = -n;
83 x = -x;
84 }
85 if(n==0) return(j0l(x));
86 if(n==1) return(j1l(x));
87 if(x!=x) return x+x;
88 if((n&1)==0)
89 sgn=0; /* even n */
90 else
91 sgn = signbitl(x); /* old n */
92 x = fabsl(x);
93 if(x == zero||!finitel(x)) b = zero;
94 else if((GENERIC)n<=x) { /* Safe to use
95 J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
96 */
97 if(x>1.0e91L) { /* x >> n**2
98 Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
99 Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
100 Let s=sin(x), c=cos(x),
101 xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then

103 n sin(xn)*sqt2 cos(xn)*sqt2
104 ----------------------------------
105 0 s-c c+s
106 1 -s-c -c+s
107 2 -s+c -c-s
108 3 s+c c-s
109 */
110 switch(n&3) {
111 case 0: temp = cosl(x)+sinl(x); break;
112 case 1: temp = -cosl(x)+sinl(x); break;
113 case 2: temp = -cosl(x)-sinl(x); break;
114 case 3: temp = cosl(x)-sinl(x); break;
115 }
116 b = invsqrtpi*temp/sqrtl(x);
117 } else {
118 a = j0l(x);
119 b = j1l(x);
120 for(i=1;i<n;i++){
121 temp = b;
122 b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */
123 a = temp;
124 }
125 }
126 } else {
127 if(x<1e-17L) { /* use J(n,x) = 1/n!*(x/2)^n */

new/usr/src/lib/libm/common/LD/jnl.c 3

128 b = powl(0.5L*x,(GENERIC) n);
129 if (b!=zero) {
130 for(a=one,i=1;i<=n;i++) a *= (GENERIC)i;
131 b = b/a;
132 }
133 } else {
134 /* use backward recurrence */
135 /* x x^2 x^2
136 * J(n,x)/J(n-1,x) = ---- ------ ------
137 * 2n - 2(n+1) - 2(n+2)
138 *
139 * 1 1 1
140 * (for large x) = ---- ------ ------
141 * 2n 2(n+1) 2(n+2)
142 * -- - ------ - ------ -
143 * x x x
144 *
145 * Let w = 2n/x and h=2/x, then the above quotient
146 * is equal to the continued fraction:
147 * 1
148 * = -----------------------
149 * 1
150 * w - -----------------
151 * 1
152 * w+h - ---------
153 * w+2h - ...
154 *
155 * To determine how many terms needed, let
156 * Q(0) = w, Q(1) = w(w+h) - 1,
157 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
158 * When Q(k) > 1e4 good for single
159 * When Q(k) > 1e9 good for double
160 * When Q(k) > 1e17 good for quaduple
161 */
162 /* determin k */
163 GENERIC t,v;
164 double q0,q1,h,tmp; int k,m;
165 w = (n+n)/(double)x; h = 2.0/(double)x;
166 q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
167 while(q1<1.0e17) {
168 k += 1; z += h;
169 tmp = z*q1 - q0;
170 q0 = q1;
171 q1 = tmp;
172 }
173 m = n+n;
174 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
175 a = t;
176 b = one;
177 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
178 hence, if n*(log(2n/x)) > ...
179 single 8.8722839355e+01
180 double 7.09782712893383973096e+02
181 long double 1.1356523406294143949491931077970765006170e+04
182 then recurrent value may overflow and the result is
183 likely underflow to zero
184 */
185 tmp = n;
186 v = two/x;
187 tmp = tmp*logl(fabsl(v*tmp));
188 if(tmp<1.1356523406294143949491931077970765e+04L) {
189 for(i=n-1;i>0;i--){
190 temp = b;
191 b = ((i+i)/x)*b - a;
192 a = temp;
193 }

new/usr/src/lib/libm/common/LD/jnl.c 4

194 } else {
195 for(i=n-1;i>0;i--){
196 temp = b;
197 b = ((i+i)/x)*b - a;
198 a = temp;
199 if(b>1e1000L) {
200 a /= b;
201 t /= b;
202 b = 1.0;
203 }
204 }
205 }
206 b = (t*j0l(x)/b);
207 }
208 }
209 if(sgn==1) return -b; else return b;
210 }

212 GENERIC ynl(n,x)
213 int n; GENERIC x;{
214 int i;
215 int sign;
216 GENERIC a, b, temp = 0;
201 GENERIC a, b, temp;

218 if(x!=x)
219 return x+x;
220 if (x <= zero) {
203 if(x!=x) return x+x;
204 if (x <= zero)
221 if(x==zero)
222 return -one/zero;
223 else
224 return zero/zero;
225 }
226 #endif /* ! codereview */
227 sign = 1;
228 if(n<0){
229 n = -n;
230 if((n&1) == 1) sign = -1;
231 }
232 if(n==0) return(y0l(x));
233 if(n==1) return(sign*y1l(x));
234 if(!finitel(x)) return zero;

236 if(x>1.0e91L) { /* x >> n**2
237 Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
238 Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
239 Let s=sin(x), c=cos(x),
240 xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then

242 n sin(xn)*sqt2 cos(xn)*sqt2
243 ----------------------------------
244 0 s-c c+s
245 1 -s-c -c+s
246 2 -s+c -c-s
247 3 s+c c-s
248 */
249 switch(n&3) {
250 case 0: temp = sinl(x)-cosl(x); break;
251 case 1: temp = -sinl(x)-cosl(x); break;
252 case 2: temp = -sinl(x)+cosl(x); break;
253 case 3: temp = sinl(x)+cosl(x); break;
254 }
255 b = invsqrtpi*temp/sqrtl(x);
256 } else {

new/usr/src/lib/libm/common/LD/jnl.c 5

257 a = y0l(x);
258 b = y1l(x);
259 /*
260 * fix 1262058 and take care of non-default rounding
261 */
262 for (i = 1; i < n; i++) {
263 temp = b;
264 b *= (GENERIC) (i + i) / x;
265 if (b <= -LDBL_MAX)
266 break;
267 b -= a;
268 a = temp;
269 }
270 }
271 if(sign>0) return b; else return -b;
272 }

new/usr/src/lib/libm/common/LD/log1pl.c 1

**
 1619 Sun May 4 03:05:31 2014
new/usr/src/lib/libm/common/LD/log1pl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak log1pl = __log1pl
32 #endif

34 /*
35 * log1pl(x)
36 * Kahan’s trick based on log(1+x)/x being a slow varying function.
37 */

39 #include "libm.h"

41 #if defined(__x86)
42 #define __swapRD __swap87RD
43 #endif
44 extern enum fp_direction_type __swapRD(enum fp_direction_type);

46 long double
47 log1pl(long double x) {
48 long double y;
49 enum fp_direction_type rd;

51 if (x != x)
52 return (x + x);
53 if (x < -1.L)
54 return (logl(x));
55 rd = __swapRD(fp_nearest);
56 y = 1.L + x;
57 if (y != 1.L) {
57 if (y != 1.L)
58 if (y == x)
59 x = logl(x);
60 else
61 x *= logl(y) / (y - 1.L);

new/usr/src/lib/libm/common/LD/log1pl.c 2

62 }
63 #endif /* ! codereview */
64 if (rd != fp_nearest)
65 (void) __swapRD(rd);
66 return (x);
67 }

new/usr/src/lib/libm/common/LD/scalbl.c 1

**
 1768 Sun May 4 03:05:33 2014
new/usr/src/lib/libm/common/LD/scalbl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak scalbl = __scalbl

32 /*
33 * scalbl(x,n): return x * 2**n by manipulating exponent.
34 */

36 #include "libm.h"
37 #include "longdouble.h"

39 #include <sys/isa_defs.h>

41 long double
42 scalbl(long double x, long double fn) {
43 int *py = (int *) &fn, n;
44 long double z;

46 if (isnanl(x) || isnanl(fn))
47 return x * fn;

49 /* fn is +/-Inf */
50 #if defined(_BIG_ENDIAN)
51 if ((py[0] & 0x7fff0000) == 0x7fff0000) {
51 if ((py[0] & 0x7fff0000) == 0x7fff0000)
52 if ((py[0] & 0x80000000) != 0)
53 #else
54 if ((py[2] & 0x7fff) == 0x7fff) {
54 if ((py[2] & 0x7fff) == 0x7fff)
55 if ((py[2] & 0x8000) != 0)
56 #endif
57 return x / (-fn);
58 else
59 return x * fn;
60 }

new/usr/src/lib/libm/common/LD/scalbl.c 2

61 if (rintl(fn) != fn)
62 return (fn - fn) / (fn - fn);
63 if (fn > 65000.0L)
64 z = scalbnl(x, 65000);
65 else if (-fn > 65000.0L)
66 z = scalbnl(x, -65000);
67 else {
68 n = (int) fn;
69 z = scalbnl(x, n);
70 }
71 return z;
72 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/LD/sincosl.c 1

**
 2927 Sun May 4 03:05:34 2014
new/usr/src/lib/libm/common/LD/sincosl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak sincosl = __sincosl

32 /* INDENT OFF */
33 /* cosl(x)
34 * Table look-up algorithm by K.C. Ng, November, 1989.
35 *
36 * kernel function:
37 * __k_sincosl ... sin and cos function on [-pi/4,pi/4]
38 * __rem_pio2l ... argument reduction routine
39 *
40 * Method.
41 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
42 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
43 * [-pi/2 , +pi/2], and let n = k mod 4.
44 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
45 *
46 * n sin(x) cos(x) tan(x)
47 * --
48 * 0 S C S/C
49 * 1 C -S -C/S
50 * 2 -S -C S/C
51 * 3 -C S -C/S
52 * --
53 *
54 * Special cases:
55 * Let trig be any of sin, cos, or tan.
56 * trig(+-INF) is NaN, with signals;
57 * trig(NaN) is that NaN;
58 *
59 * Accuracy:
60 * computer TRIG(x) returns trig(x) nearly rounded.
61 */
62 /* INDENT ON */

new/usr/src/lib/libm/common/LD/sincosl.c 2

64 #include "libm.h"
65 #include "libm_synonyms.h"
66 #include "longdouble.h"

68 #include <sys/isa_defs.h>

70 void
71 sincosl(long double x, long double *s, long double *c) {
72 long double y[2], z = 0.0L;
73 int n, ix;
74 #if defined(__i386) || defined(__amd64)
74 #if defined(_LITTLE_ENDIAN)
75 int *px = (int *) &x;
76 #endif

78 /* trig(Inf or NaN) is NaN */
79 if (!finitel(x)) {
80 *s = *c = x - x;
81 return;
82 }

84 /* High word of x. */
85 #if defined(__i386) || defined(__amd64)
86 XTOI(px, ix);
87 #else
85 #if defined(_BIG_ENDIAN)
88 ix = *(int *) &x;
87 #else
88 XTOI(px, ix);
89 #endif

91 /* |x| ~< pi/4 */
92 ix &= 0x7fffffff;
93 if (ix <= 0x3ffe9220)
94 *s = __k_sincosl(x, z, c);

96 /* argument reduction needed */
97 else {
98 n = __rem_pio2l(x, y);
99 switch (n & 3) {
100 case 0:
101 *s = __k_sincosl(y[0], y[1], c);
102 break;
103 case 1:
104 *c = -__k_sincosl(y[0], y[1], s);
105 break;
106 case 2:
107 *s = -__k_sincosl(y[0], y[1], c);
108 *c = -*c;
109 break;
110 case 3:
111 *c = __k_sincosl(y[0], y[1], s);
112 *s = -*s;
113 }
114 }
115 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/LD/sincospil.c 1

**
 6047 Sun May 4 03:05:36 2014
new/usr/src/lib/libm/common/LD/sincospil.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak sincospil = __sincospil

32 /*
33 * void sincospil(long double x, long double *s, long double *c)
34 * *s = sinl(pi*x); *c = cosl(pi*x);
35 *
36 * Algorithm, 10/17/2002, K.C. Ng
37 * ------------------------------
38 * Let y = |4x|, z = floor(y), and n = (int)(z mod 8.0) (displayed in binary).
39 * 1. If y==z, then x is a multiple of pi/4. Return the following values:
40 * ---
41 * n x mod 2 sin(x*pi) cos(x*pi) tan(x*pi)
42 * ---
43 * 000 0.00 +0 ___ +1 ___ +0
44 * 001 0.25 +\/0.5 +\/0.5 +1
45 * 010 0.50 +1 ___ +0 ___ +inf
46 * 011 0.75 +\/0.5 -\/0.5 -1
47 * 100 1.00 -0 ___ -1 ___ +0
48 * 101 1.25 -\/0.5 -\/0.5 +1
49 * 110 1.50 -1 ___ -0 ___ +inf
50 * 111 1.75 -\/0.5 +\/0.5 -1
51 * ---
52 * 2. Otherwise,
53 * ---
54 * n t sin(x*pi) cos(x*pi) tan(x*pi)
55 * ---
56 * 000 (y-z)/4 sinpi(t) cospi(t) tanpi(t)
57 * 001 (z+1-y)/4 cospi(t) sinpi(t) 1/tanpi(t)
58 * 010 (y-z)/4 cospi(t) -sinpi(t) -1/tanpi(t)
59 * 011 (z+1-y)/4 sinpi(t) -cospi(t) -tanpi(t)
60 * 100 (y-z)/4 -sinpi(t) -cospi(t) tanpi(t)
61 * 101 (z+1-y)/4 -cospi(t) -sinpi(t) 1/tanpi(t)
62 * 110 (y-z)/4 -cospi(t) sinpi(t) -1/tanpi(t)

new/usr/src/lib/libm/common/LD/sincospil.c 2

63 * 111 (z+1-y)/4 -sinpi(t) cospi(t) -tanpi(t)
64 * ---
65 *
66 * NOTE. This program compute sinpi/cospi(t<0.25) by __k_sin/cos(pi*t, 0.0).
67 * This will return a result with error slightly more than one ulp (but less
68 * than 2 ulp). If one wants accurate result, one may break up pi*t in
69 * high (tpi_h) and low (tpi_l) parts and call __k_sin/cos(tip_h, tip_lo)
70 * instead.
71 */

73 #include "libm.h"
74 #include "libm_synonyms.h"
75 #include "longdouble.h"

77 #include <sys/isa_defs.h>

79 #define I(q, m) ((int *) &(q))[m]
80 #define U(q, m) ((unsigned *) &(q))[m]
81 #if defined(__i386) || defined(__amd64)
81 #if defined(_LITTLE_ENDIAN)
82 #define LDBL_MOST_SIGNIF_I(ld) ((I(ld, 2) << 16) | (0xffff & (I(ld, 1) >> 15)))
83 #define LDBL_LEAST_SIGNIF_U(ld) U(ld, 0)
84 #define PREC 64
85 #define PRECM1 63
86 #define PRECM2 62
87 static const long double twoPRECM2 = 9.223372036854775808000000000000000e+18L;
88 #else
89 #define LDBL_MOST_SIGNIF_I(ld) I(ld, 0)
90 #define LDBL_LEAST_SIGNIF_U(ld) U(ld, sizeof(long double) / sizeof(int) - 1)
91 #define PREC 113
92 #define PRECM1 112
93 #define PRECM2 111
94 static const long double twoPRECM2 = 5.192296858534827628530496329220096e+33L;
95 #endif

97 static const long double
98 zero = 0.0L,
99 quater = 0.25L,
100 one = 1.0L,
101 pi = 3.141592653589793238462643383279502884197e+0000L,
102 sqrth = 0.707106781186547524400844362104849039284835937688474,
103 tiny = 1.0e-100;

105 void
106 sincospil(long double x, long double *s, long double *c) {
107 long double y, z, t;
108 int hx, n, k;
109 unsigned lx;

111 hx = LDBL_MOST_SIGNIF_I(x);
112 lx = LDBL_LEAST_SIGNIF_U(x);
113 k = ((hx & 0x7fff0000) >> 16) - 0x3fff;
114 if (k >= PRECM2) { /* |x| >= 2**(Prec-2) */
115 if (k >= 16384) {
116 *s = *c = x - x;
117 }
118 else {
119 if (k >= PREC) {
120 *s = zero;
121 *c = one;
122 }
123 else if (k == PRECM1) {
124 if ((lx & 1) == 0) {
125 *s = zero;
126 *c = one;
127 }

new/usr/src/lib/libm/common/LD/sincospil.c 3

128 else {
129 *s = -zero;
130 *c = -one;
131 }
132 }
133 else { /* k = Prec - 2 */
134 if ((lx & 1) == 0) {
135 *s = zero;
136 *c = one;
137 }
138 else {
139 *s = one;
140 *c = zero;
141 }
142 if ((lx & 2) != 0) {
143 *s = -*s;
144 *c = -*c;
145 }
146 }
147 }
148 }
149 else if (k < -2) /* |x| < 0.25 */
150 *s = __k_sincosl(pi * fabsl(x), zero, c);
151 else {
152 /* y = |4x|, z = floor(y), and n = (int)(z mod 8.0) */
153 y = 4.0L * fabsl(x);
154 if (k < PRECM2) {
155 z = y + twoPRECM2;
156 n = LDBL_LEAST_SIGNIF_U(z) & 7; /* 3 LSb of z */
157 t = z - twoPRECM2;
158 k = 0;
159 if (t == y)
160 k = 1;
161 else if (t > y) {
162 n -= 1;
163 t = quater + (y - t) * quater;
164 }
165 else
166 t = (y - t) * quater;
167 }
168 else { /* k = Prec-3 */
169 n = LDBL_LEAST_SIGNIF_U(y) & 7; /* 3 LSb of z */
170 k = 1;
171 }
172 if (k) { /* x = N/4 */
173 if((n & 1) != 0)
174 *s = *c = sqrth + tiny;
175 else
176 if ((n & 2) == 0) {
177 *s = zero;
178 *c = one;
179 }
180 else {
181 *s = one;
182 *c = zero;
183 }
184 if ((n & 4) != 0)
185 *s = -*s;
186 if (((n + 1) & 4) != 0)
187 *c = -*c;
188 }
189 else {
190 if ((n & 1) != 0)
191 t = quater - t;
192 if (((n + (n & 1)) & 2) == 0)
193 *s = __k_sincosl(pi * t, zero, c);

new/usr/src/lib/libm/common/LD/sincospil.c 4

194 else
195 *c = __k_sincosl(pi * t, zero, s);
196 if ((n & 4) != 0)
197 *s = -*s;
198 if (((n + 2) & 4) != 0)
199 *c = -*c;
200 }
201 }
202 if (hx < 0)
203 *s = -*s;
204 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/LD/sinhl.c 1

**
 2239 Sun May 4 03:05:37 2014
new/usr/src/lib/libm/common/LD/sinhl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak sinhl = __sinhl

32 #include "libm.h"
33 #include "longdouble.h"
34 #endif /* ! codereview */

36 /* SINH(X)
37 * RETURN THE HYPERBOLIC SINE OF X
38 *
39 * Method :
40 * 1. reduce x to non-negative by SINH(-x) = - SINH(x).
41 * 2.
42 *
43 * EXPM1(x) + EXPM1(x)/(EXPM1(x)+1)
44 * 0 <= x <= lnovft : SINH(x) := --------------------------------
45 * 2
46 *
47 * lnovft <= x < INF : SINH(x) := EXP(x-MEP1*ln2)*2**ME
48 *
49 * here
50 * lnovft logarithm of the overflow threshold
51 * = MEP1*ln2 chopped to machine precision.
52 * ME maximum exponent
53 * MEP1 maximum exponent plus 1
54 *
55 * Special cases:
56 * SINH(x) is x if x is +INF, -INF, or NaN.
57 * only SINH(0)=0 is exact for finite argument.
58 *
59 */

61 static const long double C[] = {
62 0.5L,

new/usr/src/lib/libm/common/LD/sinhl.c 2

63 1.0L,
64 1.135652340629414394879149e+04L,
65 7.004447686242549087858985e-16L
66 };

68 #define half C[0]
69 #define one C[1]
70 #define lnovft C[2]
71 #define lnovlo C[3]

73 long double
74 sinhl(long double x)
75 {
76 long double r, t;

78 if (!finitel(x))
79 return (x + x); /* x is INF or NaN */
80 r = fabsl(x);
81 if (r < lnovft) {
82 t = expm1l(r);
83 r = copysignl((t + t / (one + t)) * half, x);
84 } else {
85 r = copysignl(expl((r - lnovft) - lnovlo), x);
86 r = scalbnl(r, 16383);
87 }
88 return (r);
89 }

new/usr/src/lib/libm/common/LD/sinl.c 1

**
 2866 Sun May 4 03:05:38 2014
new/usr/src/lib/libm/common/LD/sinl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak sinl = __sinl

32 /* INDENT OFF */
33 /* sinl(x)
34 * Table look-up algorithm by K.C. Ng, November, 1989.
35 *
36 * kernel function:
37 * __k_sinl ... sin function on [-pi/4,pi/4]
38 * __k_cosl ... cos function on [-pi/4,pi/4]
39 * __rem_pio2l ... argument reduction routine
40 *
41 * Method.
42 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
43 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
44 * [-pi/2 , +pi/2], and let n = k mod 4.
45 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
46 *
47 * n sin(x) cos(x) tan(x)
48 * --
49 * 0 S C S/C
50 * 1 C -S -C/S
51 * 2 -S -C S/C
52 * 3 -C S -C/S
53 * --
54 *
55 * Special cases:
56 * Let trig be any of sin, cos, or tan.
57 * trig(+-INF) is NaN, with signals;
58 * trig(NaN) is that NaN;
59 *
60 * Accuracy:
61 * computer TRIG(x) returns trig(x) nearly rounded.
62 */

new/usr/src/lib/libm/common/LD/sinl.c 2

63 /* INDENT ON */

65 #include "libm.h"
66 #include "libm_synonyms.h"
67 #include "longdouble.h"

69 #include <sys/isa_defs.h>

71 long double
72 sinl(long double x) {
73 long double y[2], z = 0.0L;
74 int n, ix;
75 #if defined(__i386) || defined(__amd64)
75 #if defined(_LITTLE_ENDIAN)
76 int *px = (int *) &x;
77 #endif

79 /* sin(Inf or NaN) is NaN */
80 if (!finitel(x))
81 return x - x;

83 /* High word of x. */
84 #if defined(__i386) || defined(__amd64)
85 XTOI(px, ix);
86 #else
84 #if defined(_BIG_ENDIAN)
87 ix = *(int *) &x;
86 #else
87 XTOI(px, ix);
88 #endif
89 /* |x| ~< pi/4 */
90 ix &= 0x7fffffff;
91 if (ix <= 0x3ffe9220)
91 if (ix <= 0x3ffe9220) {
92 return __k_sinl(x, z);
93 }

94 /* argument reduction needed */
95 else {
96 n = __rem_pio2l(x, y);
97 switch (n & 3) {
98 case 0:
99 return __k_sinl(y[0], y[1]);
100 case 1:
101 return __k_cosl(y[0], y[1]);
102 case 2:
103 return -__k_sinl(y[0], y[1]);
104 case 3:
105 return -__k_cosl(y[0], y[1]);
106 /* NOTREACHED */
107 }
108 }
109 return 0.0L;
110 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/LD/sinpil.c 1

**
 5594 Sun May 4 03:05:39 2014
new/usr/src/lib/libm/common/LD/sinpil.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak sinpil = __sinpil

32 /* long double sinpil(long double x),
33 * return long double precision sinl(pi*x).
34 *
35 * Algorithm, 10/17/2002, K.C. Ng
36 * ------------------------------
37 * Let y = |4x|, z = floor(y), and n = (int)(z mod 8.0) (displayed in binary).
38 * 1. If y==z, then x is a multiple of pi/4. Return the following values:
39 * ---
40 * n x mod 2 sin(x*pi) cos(x*pi) tan(x*pi)
41 * ---
42 * 000 0.00 +0 ___ +1 ___ +0
43 * 001 0.25 +\/0.5 +\/0.5 +1
44 * 010 0.50 +1 ___ +0 ___ +inf
45 * 011 0.75 +\/0.5 -\/0.5 -1
46 * 100 1.00 -0 ___ -1 ___ +0
47 * 101 1.25 -\/0.5 -\/0.5 +1
48 * 110 1.50 -1 ___ -0 ___ +inf
49 * 111 1.75 -\/0.5 +\/0.5 -1
50 * ---
51 * 2. Otherwise,
52 * ---
53 * n t sin(x*pi) cos(x*pi) tan(x*pi)
54 * ---
55 * 000 (y-z)/4 sinpi(t) cospi(t) tanpi(t)
56 * 001 (z+1-y)/4 cospi(t) sinpi(t) 1/tanpi(t)
57 * 010 (y-z)/4 cospi(t) -sinpi(t) -1/tanpi(t)
58 * 011 (z+1-y)/4 sinpi(t) -cospi(t) -tanpi(t)
59 * 100 (y-z)/4 -sinpi(t) -cospi(t) tanpi(t)
60 * 101 (z+1-y)/4 -cospi(t) -sinpi(t) 1/tanpi(t)
61 * 110 (y-z)/4 -cospi(t) sinpi(t) -1/tanpi(t)
62 * 111 (z+1-y)/4 -sinpi(t) cospi(t) -tanpi(t)

new/usr/src/lib/libm/common/LD/sinpil.c 2

63 * ---
64 *
65 * NOTE. This program compute sinpi/cospi(t<0.25) by __k_sin/cos(pi*t, 0.0).
66 * This will return a result with error slightly more than one ulp (but less
67 * than 2 ulp). If one wants accurate result, one may break up pi*t in
68 * high (tpi_h) and low (tpi_l) parts and call __k_sin/cos(tip_h, tip_lo)
69 * instead.
70 */

72 #include "libm.h"
73 #include "libm_synonyms.h"
74 #include "longdouble.h"

76 #include <sys/isa_defs.h>

78 #define I(q, m) ((int *) &(q))[m]
79 #define U(q, m) ((unsigned *) &(q))[m]
80 #if defined(__i386) || defined(__amd64)
80 #if defined(_LITTLE_ENDIAN)
81 #define LDBL_MOST_SIGNIF_I(ld) ((I(ld, 2) << 16) | (0xffff & (I(ld, 1) >> 15)))
82 #define LDBL_LEAST_SIGNIF_U(ld) U(ld, 0)
83 #define PREC 64
84 #define PRECM1 63
85 #define PRECM2 62
86 static const long double twoPRECM2 = 9.223372036854775808000000000000000e+18L;
87 #else
88 #define LDBL_MOST_SIGNIF_I(ld) I(ld, 0)
89 #define LDBL_LEAST_SIGNIF_U(ld) U(ld, sizeof(long double) / sizeof(int) - 1)
90 #define PREC 113
91 #define PRECM1 112
92 #define PRECM2 111
93 static const long double twoPRECM2 = 5.192296858534827628530496329220096e+33L;
94 #endif

96 static const long double
97 zero = 0.0L,
98 quater = 0.25L,
99 one = 1.0L,
100 pi = 3.141592653589793238462643383279502884197e+0000L,
101 sqrth = 0.707106781186547524400844362104849039284835937688474,
102 tiny = 1.0e-100;

104 long double
105 sinpil(long double x) {
106 long double y, z, t;
107 int hx, n, k;
108 unsigned lx;

110 hx = LDBL_MOST_SIGNIF_I(x);
111 lx = LDBL_LEAST_SIGNIF_U(x);
112 k = ((hx & 0x7fff0000) >> 16) - 0x3fff;
113 if (k >= PRECM2) { /* |x| >= 2**(Prec-2) */
114 if (k >= 16384)
115 y = x - x;
116 else {
117 if (k >= PREC)
118 y = zero;
119 else if (k == PRECM1)
120 y = (lx & 1) == 0 ? zero: -zero;
121 else { /* k = Prec - 2 */
122 y = (lx & 1) == 0 ? zero : one;
123 if ((lx & 2) != 0)
124 y = -y;
125 }
126 }
127 }

new/usr/src/lib/libm/common/LD/sinpil.c 3

128 else if (k < -2) /* |x| < 0.25 */
129 y = __k_sinl(pi * fabsl(x), zero);
130 else {
131 /* y = |4x|, z = floor(y), and n = (int)(z mod 8.0) */
132 y = 4.0L * fabsl(x);
133 if (k < PRECM2) {
134 z = y + twoPRECM2;
135 n = LDBL_LEAST_SIGNIF_U(z) & 7; /* 3 LSb of z */
136 t = z - twoPRECM2;
137 k = 0;
138 if (t == y)
139 k = 1;
140 else if (t > y) {
141 n -= 1;
142 t = quater + (y - t) * quater;
143 }
144 else
145 t = (y - t) * quater;
146 }
147 else { /* k = Prec-3 */
148 n = LDBL_LEAST_SIGNIF_U(y) & 7; /* 3 LSb of z */
149 k = 1;
150 }
151 if (k) { /* x = N/4 */
152 if((n & 1) != 0)
153 y = sqrth + tiny;
154 else
155 y = (n & 2) == 0 ? zero : one;
156 if ((n & 4) != 0)
157 y = -y;
158 }
159 else {
160 if ((n & 1) != 0)
161 t = quater - t;
162 if (((n + (n & 1)) & 2) == 0)
163 y = __k_sinl(pi * t, zero);
164 else
165 y = __k_cosl(pi * t, zero);
166 if ((n & 4) != 0)
167 y = -y;
168 }
169 }
170 return hx >= 0 ? y : -y;
171 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/LD/tanhl.c 1

**
 2608 Sun May 4 03:05:41 2014
new/usr/src/lib/libm/common/LD/tanhl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak tanhl = __tanhl
32 #endif

34 /*
35 * tanhl(x) returns the hyperbolic tangent of x
36 *
37 * Method :
38 * 1. reduce x to non-negative: tanhl(-x) = - tanhl(x).
39 * 2.
40 * 0 < x <= small : tanhl(x) := x
41 * -expm1l(-2x)
42 * small < x <= 1 : tanhl(x) := --------------
43 * expm1l(-2x) + 2
44 * 2
45 * 1 <= x <= threshold : tanhl(x) := 1 - ---------------
46 * expm1l(2x) + 2
47 * threshold < x <= INF : tanhl(x) := 1.
48 *
49 * where
50 * single : small = 1.e-5 threshold = 11.0
51 * double : small = 1.e-10 threshold = 22.0
52 * quad : small = 1.e-20 threshold = 45.0
53 *
54 * Note: threshold was chosen so that
55 * fl(1.0+2/(expm1(2*threshold)+2)) == 1.
56 *
57 * Special cases:
58 * tanhl(NaN) is NaN;
59 * only tanhl(0.0)=0.0 is exact for finite argument.
60 */

62 #include "libm.h"

new/usr/src/lib/libm/common/LD/tanhl.c 2

63 #include "longdouble.h"
64 #endif /* ! codereview */

66 static const long double small = 1.0e-20L, one = 1.0, two = 2.0,
67 #ifndef lint
68 big = 1.0e+20L,
69 #endif
70 threshold = 45.0L;

72 long double
73 tanhl(long double x) {
74 long double t, y, z;
75 int signx;
76 volatile long double dummy;
77 #endif /* ! codereview */

79 if (isnanl(x))
80 return (x + x); /* x is NaN */
81 signx = signbitl(x);
82 t = fabsl(x);
83 z = one;
84 if (t <= threshold) {
85 if (t > one)
86 z = one - two / (expm1l(t + t) + two);
87 else if (t > small) {
88 y = expm1l(-t - t);
89 z = -y / (y + two);
90 } else {
91 #ifndef lint
92 dummy = t + big;
63 volatile long double dummy = t + big;
93 /* inexact if t != 0 */
94 #endif
95 return (x);
96 }
97 } else if (!finitel(t))
98 return (copysignl(one, x));
99 else
100 return (signx ? -z + small * small : z - small * small);
101 return (signx ? -z : z);
102 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/LD/tanl.c 1

**
 2640 Sun May 4 03:05:44 2014
new/usr/src/lib/libm/common/LD/tanl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak tanl = __tanl

32 /* INDENT OFF */
33 /* cosl(x)
34 * Table look-up algorithm by K.C. Ng, November, 1989.
35 *
36 * kernel function:
37 * __k_tanl ... tangent function on [-pi/4,pi/4]
38 * __rem_pio2l ... argument reduction routine
39 *
40 * Method.
41 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
42 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
43 * [-pi/2 , +pi/2], and let n = k mod 4.
44 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
45 *
46 * n sin(x) cos(x) tan(x)
47 * --
48 * 0 S C S/C
49 * 1 C -S -C/S
50 * 2 -S -C S/C
51 * 3 -C S -C/S
52 * --
53 *
54 * Special cases:
55 * Let trig be any of sin, cos, or tan.
56 * trig(+-INF) is NaN, with signals;
57 * trig(NaN) is that NaN;
58 *
59 * Accuracy:
60 * computer TRIG(x) returns trig(x) nearly rounded.
61 */
62 /* INDENT ON */

new/usr/src/lib/libm/common/LD/tanl.c 2

64 #include "libm.h"
65 #include "libm_synonyms.h"
66 #include "longdouble.h"

68 #include <sys/isa_defs.h>

70 long double
71 tanl(long double x) {
72 long double y[2], z = 0.0L;
73 int n, ix;
74 #if defined(__i386) || defined(__amd64)
74 #if defined(_LITTLE_ENDIAN)
75 int *px = (int *) &x;
76 #endif

78 /* trig(Inf or NaN) is NaN */
79 if (!finitel(x))
80 return x - x;

82 /* High word of x. */
83 #if defined(__i386) || defined(__amd64)
84 XTOI(px, ix);
85 #else
83 #if defined(_BIG_ENDIAN)
86 ix = *(int *) &x;
85 #else
86 XTOI(px, ix);
87 #endif

89 /* |x| ~< pi/4 */
90 ix &= 0x7fffffff;
91 if (ix <= 0x3ffe9220)
92 return __k_tanl(x, z, 0);

94 /* argument reduction needed */
95 else {
96 n = __rem_pio2l(x, y);
97 return __k_tanl(y[0], y[1], n & 1);
98 }
99 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/Q/__tanl.c 1

**
 5459 Sun May 4 03:05:46 2014
new/usr/src/lib/libm/common/Q/__tanl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /*
31 * long double __k_tanl(long double x; long double y, int k);
32 * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
33 * Input x is assumed to be bounded by ~pi/4 in magnitude.
34 * Input y is the tail of x.
35 * Input k indicate -- tan if k=0; else -1/tan
36 *
37 * Table look up algorithm
38 * 1. by tan(-x) = -tan(x), need only to consider positive x
39 * 2. if x < 5/32 = [0x3ffc4000, 0] = 0.15625 , then
40 * if x < 2^-57 (hx < 0x3fc40000 0), set w=x with inexact if x!= 0
41 * else
42 * z = x*x;
43 * w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6))))))
44 * return (k==0)? w: 1/w;
45 * 3. else
46 * ht = (hx + 0x400)&0x7ffff800 (round x to a break point t)
47 * lt = 0
48 * i = (hy-0x3ffc4000)>>11; (i<=64)
49 * x’ = (x - t)+y (|x’| ~<= 2^-7)
50 * By
51 * tan(t+x’)
52 * = (tan(t)+tan(x’))/(1-tan(x’)tan(t))
53 * We have
54 * sin(x’)+tan(t)*(tan(t)*sin(x’))
55 * = tan(t) + ------------------------------- for k=0
56 * cos(x’) - tan(t)*sin(x’)
57 *
58 * cos(x’) - tan(t)*sin(x’)
59 * = - -------------------------------------- for k=1
60 * tan(t) + tan(t)*(cos(x’)-1) + sin(x’)
61 *
62 *

new/usr/src/lib/libm/common/Q/__tanl.c 2

63 * where tan(t) is from the table,
64 * sin(x’) = x + pp1*x^3 + ...+ pp5*x^11
65 * cos(x’) = 1 + qq1*x^2 + ...+ qq5*x^10
66 */

68 #include "libm.h"

70 extern const long double _TBL_tanl_hi[], _TBL_tanl_lo[];
71 static const long double
72 one = 1.0L,
73 /*
74 * 3 11 -122.32
75 * |sin(x) - (x+pp1*x +...+ pp5*x)| <= 2 for |x|<1/64
76 */
77 pp1 = -1.666666666666666666666666666586782940810e-0001L,
78 pp2 = +8.333333333333333333333003723660929317540e-0003L,
79 pp3 = -1.984126984126984076045903483778337804470e-0004L,
80 pp4 = +2.755731922361906641319723106210900949413e-0006L,
81 pp5 = -2.505198398570947019093998469135012057673e-0008L,
82 /*
83 * 2 10 -123.84
84 * |cos(x) - (1+qq1*x +...+ qq5*x)| <= 2 for |x|<=1/128
85 */
86 qq1 = -4.999999999999999999999999999999378373641e-0001L,
87 qq2 = +4.166666666666666666666665478399327703130e-0002L,
88 qq3 = -1.388888888888888888058211230618051613494e-0003L,
89 qq4 = +2.480158730156105377771585658905303111866e-0005L,
90 qq5 = -2.755728099762526325736488376695157008736e-0007L,
91 /*
92 * |tan(x) - (x+t1*x^3+...+t6*x^13)|
93 * |------------------------------ | <= 2^-59.73 for |x|<0.15625
94 * | x |
95 */
96 t1 = +3.333333333333333333333333333333423342490e-0001L,
97 t2 = +1.333333333333333333333333333093838744537e-0001L,
98 t3 = +5.396825396825396825396827906318682662250e-0002L,
99 t4 = +2.186948853615520282185576976994418486911e-0002L,
100 t5 = +8.863235529902196573354554519991152936246e-0003L,
101 t6 = +3.592128036572480064652191427543994878790e-0003L,
102 t7 = +1.455834387051455257856833807581901305474e-0003L,
103 t8 = +5.900274409318599857829983256201725587477e-0004L,
104 t9 = +2.391291152117265181501116961901122362937e-0004L,
105 t10 = +9.691533169382729742394024173194981882375e-0005L,
106 t11 = +3.927994733186415603228178184225780859951e-0005L,
107 t12 = +1.588300018848323824227640064883334101288e-0005L,
108 t13 = +6.916271223396808311166202285131722231723e-0006L;

110 #define i0 0

112 long double
113 __k_tanl(long double x, long double y, int k) {
114 long double a, t, z, w = 0, s, c;
114 long double a, t, z, w, s, c;
115 int *pt = (int *) &t, *px = (int *) &x;
116 int i, j, hx, ix;

118 t = 1.0L;
119 hx = px[i0];
120 ix = hx & 0x7fffffff;
121 if (ix < 0x3ffc4000) {
122 *(3 - i0 + (int *) &t) = 1; /* make t = one+ulp */
123 if (ix < 0x3fc60000) {
124 if (((int) (x * t)) < 1) /* generate inexact */
125 w = x; /* generate underflow if subnormal */
126 } else {
127 z = x * x;

new/usr/src/lib/libm/common/Q/__tanl.c 3

128 if (ix < 0x3ff30000) /* 2**-12 */
129 t = z * (t1 + z * (t2 + z * (t3 + z * t4)));
130 else
131 t = z * (t1 + z * (t2 + z * (t3 + z * (t4 +
132 z * (t5 + z * (t6 + z * (t7 + z * (t8 +
133 z * (t9 + z * (t10 + z * (t11 +
134 z * (t12 + z * t13))))))))))));
135 t = y + x * t;
136 w = x + t;
137 }
138 return (k == 0 ? w : -one / w);
139 }
140 j = (ix + 0x400) & 0x7ffff800;
141 i = (j - 0x3ffc4000) >> 11;
142 pt[i0] = j;
143 if (hx > 0)
144 x = y - (t - x);
145 else
146 x = (-y) - (t + x);
147 a = _TBL_tanl_hi[i];
148 z = x * x;
149 /* cos(x)-1 */
150 t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
151 /* sin(x) */
152 s = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z * pp5)))));
153 if (k == 0) {
154 w = a * s;
155 t = _TBL_tanl_lo[i] + (s + a * w) / (one - (w - t));
156 return (hx < 0 ? -a - t : a + t);
157 } else {
158 w = s + a * t;
159 c = w + _TBL_tanl_lo[i];
160 z = one - (a * s - t);
161 return (hx >= 0 ? z / (-a - c) : z / (a + c));
162 }
163 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/Q/asinhl.c 1

**
 1617 Sun May 4 03:05:47 2014
new/usr/src/lib/libm/common/Q/asinhl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak asinhl = __asinhl
32 #endif

34 #include "libm.h"

36 static const long double
37 ln2 = 6.931471805599453094172321214581765680755e-0001L,
38 one = 1.0L,
39 big = 1.0e+20L,
40 tiny = 1.0e-20L;

42 long double
43 asinhl(long double x) {
44 long double t, w;
45 volatile long double dummy;
46 #endif /* ! codereview */

48 w = fabsl(x);
49 if (isnanl(x))
50 return (x + x); /* x is NaN */
51 if (w < tiny) {
52 #ifndef lint
53 dummy = x + big; /* inexact if x != 0 */
45 volatile long double dummy = x + big; /* inexact if x != 0 */
54 #endif
55 return (x); /* tiny x */
56 } else if (w < big) {
57 t = one / w;
58 return (copysignl(log1pl(w + w / (t + sqrtl(one + t * t))), x));
59 } else
60 return (copysignl(logl(w) + ln2, x));
61 }

new/usr/src/lib/libm/common/Q/asinl.c 1

**
 2037 Sun May 4 03:05:49 2014
new/usr/src/lib/libm/common/Q/asinl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak asinl = __asinl
32 #endif

34 /*
35 * asinl(x) = atan2l(x,sqrt(1-x*x));
36 *
37 * For better accuracy, 1-x*x is computed as follows
38 * 1-x*x if x < 0.5,
39 * 2*(1-|x|)-(1-|x|)*(1-|x|) if x >= 0.5.
40 *
41 * Special cases:
42 * if x is NaN, return x itself;
43 * if |x|>1, return NaN with invalid signal.
44 */

46 #include "libm.h"

48 static const long double zero = 0.0L, small = 1.0e-20L, half = 0.5L, one = 1.0L;
49 #ifndef lint
50 static const long double big = 1.0e+20L;
51 #endif

53 long double
54 asinl(long double x) {
55 long double t, w;
56 volatile long double dummy;
57 #endif /* ! codereview */

59 w = fabsl(x);
60 if (isnanl(x))
61 return (x + x);
62 else if (w <= half) {

new/usr/src/lib/libm/common/Q/asinl.c 2

63 if (w < small) {
64 #ifndef lint
65 dummy = w + big;
56 volatile long double dummy = w + big;
66 /* inexact if w != 0 */
67 #endif
68 return (x);
69 } else
70 return (atanl(x / sqrtl(one - x * x)));
71 } else if (w < one) {
72 t = one - w;
73 w = t + t;
74 return (atanl(x / sqrtl(w - t * t)));
75 } else if (w == one)
76 return (atan2l(x, zero)); /* asin(+-1) = +- PI/2 */
77 else
78 return (zero / zero); /* |x| > 1: invalid */
79 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/Q/atan2l.c 1

**
 4154 Sun May 4 03:05:50 2014
new/usr/src/lib/libm/common/Q/atan2l.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /*
31 * atan2l(y,x)
32 *
33 * Method :
34 * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
35 * 2. Reduce x to positive by (if x and y are unexceptional):
36 * ARG (x+iy) = arctan(y/x) ... if x > 0,
37 * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
38 *
39 * Special cases:
40 *
41 * ATAN2((anything), NaN) is NaN;
42 * ATAN2(NAN , (anything)) is NaN;
43 * ATAN2(+-0, +(anything but NaN)) is +-0 ;
44 * ATAN2(+-0, -(anything but NaN)) is +-PI ;
45 * ATAN2(+-(anything but 0 and NaN), 0) is +-PI/2;
46 * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
47 * ATAN2(+-(anything but INF and NaN), -INF) is +-PI;
48 * ATAN2(+-INF,+INF) is +-PI/4 ;
49 * ATAN2(+-INF,-INF) is +-3PI/4;
50 * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-PI/2;
51 *
52 * Constants:
53 * The hexadecimal values are the intended ones for the following constants.
54 * The decimal values may be used, provided that the compiler will convert
55 * from decimal to binary accurately enough to produce the hexadecimal values
56 * shown.
57 */

59 #pragma weak atan2l = __atan2l

61 #include "libm.h"
62 #include "longdouble.h"

new/usr/src/lib/libm/common/Q/atan2l.c 2

64 static const long double
65 zero = 0.0L,
66 tiny = 1.0e-40L,
67 one = 1.0L,
68 half = 0.5L,
69 PI3o4 = 2.356194490192344928846982537459627163148L,
70 PIo4 = 0.785398163397448309615660845819875721049L,
71 PIo2 = 1.570796326794896619231321691639751442099L,
72 PI = 3.141592653589793238462643383279502884197L,
73 PI_lo = 8.671810130123781024797044026043351968762e-35L;

75 long double
76 atan2l(long double y, long double x) {
77 long double t, z;
78 int k, m, signy, signx;

80 if (x != x || y != y)
81 return (x + y); /* return NaN if x or y is NAN */
82 signy = signbitl(y);
83 signx = signbitl(x);
84 if (x == one)
85 return (atanl(y));
86 m = signy + signx + signx;

88 /* when y = 0 */
89 if (y == zero)
90 switch (m) {
91 case 0:
92 return (y); /* atan(+0,+anything) */
93 case 1:
94 return (y); /* atan(-0,+anything) */
95 case 2:
96 return (PI + tiny); /* atan(+0,-anything) */
97 case 3:
98 return (-PI - tiny); /* atan(-0,-anything) */
99 }

101 /* when x = 0 */
102 if (x == zero)
103 return (signy == 1 ? -PIo2 - tiny : PIo2 + tiny);

105 /* when x is INF */
106 if (!finitel(x)) {
106 if (!finitel(x))
107 if (!finitel(y)) {
108 switch (m) {
109 case 0:
110 return (PIo4 + tiny); /* atan(+INF,+INF) */
111 case 1:
112 return (-PIo4 - tiny); /* atan(-INF,+INF) */
113 case 2:
114 return (PI3o4 + tiny); /* atan(+INF,-INF) */
115 case 3:
116 return (-PI3o4 - tiny); /* atan(-INF,-INF) */
117 }
118 } else {
119 switch (m) {
120 case 0:
121 return (zero); /* atan(+...,+INF) */
122 case 1:
123 return (-zero); /* atan(-...,+INF) */
124 case 2:
125 return (PI + tiny); /* atan(+...,-INF) */
126 case 3:
127 return (-PI - tiny); /* atan(-...,-INF) */

new/usr/src/lib/libm/common/Q/atan2l.c 3

128 }
129 }
130 }

131 /* when y is INF */
132 if (!finitel(y))
133 return (signy == 1 ? -PIo2 - tiny : PIo2 + tiny);

135 /* compute y/x */
136 x = fabsl(x);
137 y = fabsl(y);
138 t = PI_lo;
139 k = (ilogbl(y) - ilogbl(x));

141 if (k > 120)
142 z = PIo2 + half * t;
143 else if (m > 1 && k < -120)
144 z = zero;
145 else
146 z = atanl(y / x);

148 switch (m) {
149 case 0:
150 return (z); /* atan(+,+) */
151 case 1:
152 return (-z); /* atan(-,+) */
153 case 2:
154 return (PI - (z - t)); /* atan(+,-) */
155 case 3:
156 return ((z - t) - PI); /* atan(-,-) */
157 }
158 /* NOTREACHED */
159 return 0.0L;
160 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/Q/jnl.c 1

**
 6994 Sun May 4 03:05:52 2014
new/usr/src/lib/libm/common/Q/jnl.c
**
______unchanged_portion_omitted_

214 GENERIC ynl(n,x)
215 int n; GENERIC x;{
216 int i;
217 int sign;
218 GENERIC a, b, temp;

220 if(x!=x) return x+x;
221 if (x <= zero) {
221 if (x <= zero)
222 if(x==zero)
223 return -one/zero;
224 else
225 return zero/zero;
226 }
227 #endif /* ! codereview */
228 sign = 1;
229 if(n<0){
230 n = -n;
231 if((n&1) == 1) sign = -1;
232 }
233 if(n==0) return(y0l(x));
234 if(n==1) return(sign*y1l(x));
235 if(!finitel(x)) return zero;

237 if(x>1.0e91L) { /* x >> n**2
238 Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
239 Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
240 Let s=sin(x), c=cos(x),
241 xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then

243 n sin(xn)*sqt2 cos(xn)*sqt2
244 ----------------------------------
245 0 s-c c+s
246 1 -s-c -c+s
247 2 -s+c -c-s
248 3 s+c c-s
249 */
250 switch(n&3) {
251 case 0: temp = sinl(x)-cosl(x); break;
252 case 1: temp = -sinl(x)-cosl(x); break;
253 case 2: temp = -sinl(x)+cosl(x); break;
254 case 3: temp = sinl(x)+cosl(x); break;
255 }
256 b = invsqrtpi*temp/sqrtl(x);
257 } else {
258 a = y0l(x);
259 b = y1l(x);
260 /*
261 * fix 1262058 and take care of non-default rounding
262 */
263 for (i = 1; i < n; i++) {
264 temp = b;
265 b *= (GENERIC) (i + i) / x;
266 if (b <= -LDBL_MAX)
267 break;
268 b -= a;
269 a = temp;
270 }
271 }
272 if(sign>0) return b; else return -b;

new/usr/src/lib/libm/common/Q/jnl.c 2

273 }

new/usr/src/lib/libm/common/Q/tanhl.c 1

**
 2608 Sun May 4 03:05:53 2014
new/usr/src/lib/libm/common/Q/tanhl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak tanhl = __tanhl
32 #endif

34 /*
35 * tanhl(x) returns the hyperbolic tangent of x
36 *
37 * Method :
38 * 1. reduce x to non-negative: tanhl(-x) = - tanhl(x).
39 * 2.
40 * 0 < x <= small : tanhl(x) := x
41 * -expm1l(-2x)
42 * small < x <= 1 : tanhl(x) := --------------
43 * expm1l(-2x) + 2
44 * 2
45 * 1 <= x <= threshold : tanhl(x) := 1 - ---------------
46 * expm1l(2x) + 2
47 * threshold < x <= INF : tanhl(x) := 1.
48 *
49 * where
50 * single : small = 1.e-5 threshold = 11.0
51 * double : small = 1.e-10 threshold = 22.0
52 * quad : small = 1.e-20 threshold = 45.0
53 *
54 * Note: threshold was chosen so that
55 * fl(1.0+2/(expm1(2*threshold)+2)) == 1.
56 *
57 * Special cases:
58 * tanhl(NaN) is NaN;
59 * only tanhl(0.0)=0.0 is exact for finite argument.
60 */

62 #include "libm.h"

new/usr/src/lib/libm/common/Q/tanhl.c 2

63 #include "longdouble.h"

65 static const long double small = 1.0e-20L, one = 1.0, two = 2.0,
66 #ifndef lint
67 big = 1.0e+20L,
68 #endif
69 threshold = 45.0L;

71 long double
72 tanhl(long double x) {
73 long double t, y, z;
74 int signx;
75 volatile long double dummy;
76 #endif /* ! codereview */

78 if (isnanl(x))
79 return (x + x); /* x is NaN */
80 signx = signbitl(x);
81 t = fabsl(x);
82 z = one;
83 if (t <= threshold) {
84 if (t > one)
85 z = one - two / (expm1l(t + t) + two);
86 else if (t > small) {
87 y = expm1l(-t - t);
88 z = -y / (y + two);
89 } else {
90 #ifndef lint
91 dummy = t + big;
75 volatile long double dummy = t + big;
92 /* inexact if t != 0 */
93 #endif
94 return (x);
95 }
96 } else if (!finitel(t))
97 return (copysignl(one, x));
98 else
99 return (signx ? -z + small * small : z - small * small);
100 return (signx ? -z : z);
101 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/R/__tanf.c 1

**
 3022 Sun May 4 03:05:55 2014
new/usr/src/lib/libm/common/R/__tanf.c
**
______unchanged_portion_omitted_
58 /* INDENT ON */

60 #define one q[0]
61 #define P0 q[1]
62 #define P1 q[2]
63 #define P2 q[3]
64 #define P3 q[4]
65 #define P4 q[5]
66 #define P5 q[6]
67 #define P6 q[7]
68 #define P7 q[8]
69 #define T0 q[9]
70 #define T1 q[10]

72 float
73 __k_tanf(double x, int n) {
74 float ft = 0.0;
74 float ft;
75 double z, w;
76 int ix;

78 ix = ((int *) &x)[HIWORD] & ~0x80000000; /* ix = leading |x| */
79 /* small argument */
80 if (ix < 0x3f800000) { /* if |x| < 0.0078125 = 2**-7 */
81 if (ix < 0x3f100000) { /* if |x| < 2**-14 */
82 if ((int) x == 0) { /* raise inexact if x!=0 */
83 ft = n == 0 ? (float) x : (float) (-one / x);
84 }
85 return (ft);
86 }
87 z = (x * T0) * (T1 + x * x);
88 ft = n == 0 ? (float) z : (float) (-one / z);
89 return (ft);
90 }
91 z = x * x;
92 w = ((P0 * x) * (P1 + z * (P2 + z)) * (P3 + z * (P4 + z)))
93 * (P5 + z * (P6 + z * (P7 + z)));
94 ft = n == 0 ? (float) w : (float) (-one / w);
95 return (ft);
96 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/R/cosf.c 1

**
 3872 Sun May 4 03:05:57 2014
new/usr/src/lib/libm/common/R/cosf.c
**
______unchanged_portion_omitted_

59 #define S0 C[0]
60 #define S1 C[1]
61 #define S2 C[2]
62 #define S3 C[3]
63 #define C0 C[4]
64 #define C1 C[5]
65 #define C2 C[6]
66 #define C3 C[7]
67 #define C4 C[8]
68 #define invpio2 C[9]
69 #define half C[10]
70 #define pio2_1 C[11]
71 #define pio2_t C[12]

73 float
74 cosf(float x)
75 {
76 double y, z, w;
77 float f;
78 int n, ix, hx, hy;
79 volatile int i;
80 #endif /* ! codereview */

82 hx = *((int *)&x);
83 ix = hx & 0x7fffffff;

85 y = (double)x;

87 if (ix <= 0x4016cbe4) { /* |x| < 3*pi/4 */
88 if (ix <= 0x3f490fdb) { /* |x| < pi/4 */
89 if (ix <= 0x39800000) { /* |x| <= 2**-12 */
90 i = (int)y;
79 volatile int i = (int)y;
91 #ifdef lint
92 i = i;
93 #endif
94 return (1.0f);
95 }
96 z = y * y;
97 return ((float)(((C0 + z * C1) + (z * z) * C2) *
98 (C3 + z * (C4 + z))));
99 } else if (hx > 0) {
100 y = (y - pio2_1) - pio2_t;
101 z = y * y;
102 return ((float)-((y * (S0 + z * S1)) *
103 (S2 + z * (S3 + z))));
104 } else {
105 y = (y + pio2_1) + pio2_t;
106 z = y * y;
107 return ((float)((y * (S0 + z * S1)) *
108 (S2 + z * (S3 + z))));
109 }
110 } else if (ix <= 0x49c90fdb) { /* |x| < 2^19*pi */
111 #if defined(__i386) && !defined(__amd64)
112 int rp;

114 rp = __swapRP(fp_extended);
115 #endif
116 w = y * invpio2;
117 if (hx < 0)

new/usr/src/lib/libm/common/R/cosf.c 2

118 n = (int)(w - half);
119 else
120 n = (int)(w + half);
121 y = (y - n * pio2_1) - n * pio2_t;
122 n++;
123 #if defined(__i386) && !defined(__amd64)
124 if (rp != fp_extended)
125 (void) __swapRP(rp);
126 #endif
127 } else {
128 if (ix >= 0x7f800000)
129 return (x / x); /* cos(Inf or NaN) is NaN */
130 hy = ((int *)&y)[HIWORD];
131 n = ((hy >> 20) & 0x7ff) - 1046;
132 ((int *)&w)[HIWORD] = (hy & 0xfffff) | 0x41600000;
133 ((int *)&w)[LOWORD] = ((int *)&y)[LOWORD];
134 n = __rem_pio2m(&w, &y, n, 1, 0, _TBL_ipio2_inf) + 1;
135 }

137 if (n & 1) {
138 /* compute cos y */
139 z = y * y;
140 f = (float)(((C0 + z * C1) + (z * z) * C2) *
141 (C3 + z * (C4 + z)));
142 } else {
143 /* compute sin y */
144 z = y * y;
145 f = (float)((y * (S0 + z * S1)) * (S2 + z * (S3 + z)));
146 }

148 return ((n & 2)? -f : f);
149 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/R/exp10f.c 1

**
 1231 Sun May 4 03:05:59 2014
new/usr/src/lib/libm/common/R/exp10f.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak exp10f = __exp10f

32 #include "libm.h"

34 extern double exp10(double);
34 double exp10(double);

36 float
37 exp10f(float x) {
38 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
39 if (isnanf(x))
40 return (x * x);
41 else
42 #endif
43 return ((float) exp10((double) x));
44 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/R/sincosf.c 1

**
 5085 Sun May 4 03:06:01 2014
new/usr/src/lib/libm/common/R/sincosf.c
**
______unchanged_portion_omitted_

81 #define S0 C[0]
82 #define S1 C[1]
83 #define S2 C[2]
84 #define S3 C[3]
85 #define C0 C[4]
86 #define C1 C[5]
87 #define C2 C[6]
88 #define C3 C[7]
89 #define C4 C[8]
90 #define invpio2 C[9]
91 #define half C[10]
92 #define pio2_1 C[11]
93 #define pio2_t C[12]

95 void
96 sincosf(float x, float *s, float *c)
97 {
98 double y, z, w;
99 float f, g;
100 int n, ix, hx, hy;
101 volatile int i;
102 #endif /* ! codereview */

104 hx = *((int *)&x);
105 ix = hx & 0x7fffffff;

107 y = (double)x;

109 if (ix <= 0x4016cbe4) { /* |x| < 3*pi/4 */
110 if (ix <= 0x3f490fdb) { /* |x| < pi/4 */
111 if (ix <= 0x39800000) { /* |x| <= 2**-12 */
112 i = (int)y;
101 volatile int i = (int)y;
113 #ifdef lint
114 i = i;
115 #endif
116 *s = x;
117 *c = 1.0f;
118 return;
119 }
120 z = y * y;
121 *s = (float)((y * (S0 + z * S1)) *
122 (S2 + z * (S3 + z)));
123 *c = (float)(((C0 + z * C1) + (z * z) * C2) *
124 (C3 + z * (C4 + z)));
125 } else if (hx > 0) {
126 y = (y - pio2_1) - pio2_t;
127 z = y * y;
128 *s = (float)(((C0 + z * C1) + (z * z) * C2) *
129 (C3 + z * (C4 + z)));
130 *c = (float)-((y * (S0 + z * S1)) *
131 (S2 + z * (S3 + z)));
132 } else {
133 y = (y + pio2_1) + pio2_t;
134 z = y * y;
135 *s = (float)-(((C0 + z * C1) + (z * z) * C2) *
136 (C3 + z * (C4 + z)));
137 *c = (float)((y * (S0 + z * S1)) *
138 (S2 + z * (S3 + z)));
139 }

new/usr/src/lib/libm/common/R/sincosf.c 2

140 return;
141 } else if (ix <= 0x49c90fdb) { /* |x| < 2^19*pi */
142 #if defined(__i386) && !defined(__amd64)
143 int rp;

145 rp = __swapRP(fp_extended);
146 #endif
147 w = y * invpio2;
148 if (hx < 0)
149 n = (int)(w - half);
150 else
151 n = (int)(w + half);
152 y = (y - n * pio2_1) - n * pio2_t;
153 #if defined(__i386) && !defined(__amd64)
154 if (rp != fp_extended)
155 (void) __swapRP(rp);
156 #endif
157 } else {
158 if (ix >= 0x7f800000) {
159 *s = *c = x / x;
160 return;
161 }
162 hy = ((int *)&y)[HIWORD];
163 n = ((hy >> 20) & 0x7ff) - 1046;
164 ((int *)&w)[HIWORD] = (hy & 0xfffff) | 0x41600000;
165 ((int *)&w)[LOWORD] = ((int *)&y)[LOWORD];
166 n = __rem_pio2m(&w, &y, n, 1, 0, _TBL_ipio2_inf);
167 if (hy < 0) {
168 y = -y;
169 n = -n;
170 }
171 }

173 z = y * y;
174 f = (float)((y * (S0 + z * S1)) * (S2 + z * (S3 + z)));
175 g = (float)(((C0 + z * C1) + (z * z) * C2) *
176 (C3 + z * (C4 + z)));
177 if (n & 2) {
178 f = -f;
179 g = -g;
180 }
181 if (n & 1) {
182 *s = g;
183 *c = -f;
184 } else {
185 *s = f;
186 *c = g;
187 }
188 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/R/sincospif.c 1

**
 1385 Sun May 4 03:06:03 2014
new/usr/src/lib/libm/common/R/sincospif.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak sincospif = __sincospif

32 #include "libm.h"

34 extern void sincospi(double, double *, double *);
34 void sincospi(double x, double *s, double *c);

36 void
37 sincospif(float x, float *s, float *c) {
38 double ds, dc;

40 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
41 if (isnanf(x))
42 *s = *c = x * x;
43 else {
44 #endif
45 sincospi((double) x, &ds, &dc);
46 *s = (float) ds;
47 *c = (float) dc;
48 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
49 }
50 #endif
51 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/R/sinf.c 1

**
 3911 Sun May 4 03:06:04 2014
new/usr/src/lib/libm/common/R/sinf.c
**
______unchanged_portion_omitted_

59 #define S0 C[0]
60 #define S1 C[1]
61 #define S2 C[2]
62 #define S3 C[3]
63 #define C0 C[4]
64 #define C1 C[5]
65 #define C2 C[6]
66 #define C3 C[7]
67 #define C4 C[8]
68 #define invpio2 C[9]
69 #define half C[10]
70 #define pio2_1 C[11]
71 #define pio2_t C[12]

73 float
74 sinf(float x)
75 {
76 double y, z, w;
77 float f;
78 int n, ix, hx, hy;
79 volatile int i;
80 #endif /* ! codereview */

82 hx = *((int *)&x);
83 ix = hx & 0x7fffffff;

85 y = (double)x;

87 if (ix <= 0x4016cbe4) { /* |x| < 3*pi/4 */
88 if (ix <= 0x3f490fdb) { /* |x| < pi/4 */
89 if (ix <= 0x39800000) { /* |x| <= 2**-12 */
90 i = (int)y;
79 volatile int i = (int)y;
91 #ifdef lint
92 i = i;
93 #endif
94 return (x);
95 }
96 z = y * y;
97 return ((float)((y * (S0 + z * S1)) *
98 (S2 + z * (S3 + z))));
99 } else if (hx > 0) {
100 y = (y - pio2_1) - pio2_t;
101 z = y * y;
102 return ((float)(((C0 + z * C1) + (z * z) * C2) *
103 (C3 + z * (C4 + z))));
104 } else {
105 y = (y + pio2_1) + pio2_t;
106 z = y * y;
107 return ((float)-(((C0 + z * C1) + (z * z) * C2) *
108 (C3 + z * (C4 + z))));
109 }
110 } else if (ix <= 0x49c90fdb) { /* |x| < 2^19*pi */
111 #if defined(__i386) && !defined(__amd64)
112 int rp;

114 rp = __swapRP(fp_extended);
115 #endif
116 w = y * invpio2;
117 if (hx < 0)

new/usr/src/lib/libm/common/R/sinf.c 2

118 n = (int)(w - half);
119 else
120 n = (int)(w + half);
121 y = (y - n * pio2_1) - n * pio2_t;
122 #if defined(__i386) && !defined(__amd64)
123 if (rp != fp_extended)
124 (void) __swapRP(rp);
125 #endif
126 } else {
127 if (ix >= 0x7f800000)
128 return (x / x); /* sin(Inf or NaN) is NaN */
129 hy = ((int *)&y)[HIWORD];
130 n = ((hy >> 20) & 0x7ff) - 1046;
131 ((int *)&w)[HIWORD] = (hy & 0xfffff) | 0x41600000;
132 ((int *)&w)[LOWORD] = ((int *)&y)[LOWORD];
133 n = __rem_pio2m(&w, &y, n, 1, 0, _TBL_ipio2_inf);
134 if (hy < 0) {
135 y = -y;
136 n = -n;
137 }
138 }

140 if (n & 1) {
141 /* compute cos y */
142 z = y * y;
143 f = (float)(((C0 + z * C1) + (z * z) * C2) *
144 (C3 + z * (C4 + z)));
145 } else {
146 /* compute sin y */
147 z = y * y;
148 f = (float)((y * (S0 + z * S1)) * (S2 + z * (S3 + z)));
149 }

151 return ((n & 2)? -f : f);
152 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/R/tanf.c 1

**
 4309 Sun May 4 03:06:06 2014
new/usr/src/lib/libm/common/R/tanf.c
**
______unchanged_portion_omitted_

57 #define one C[0]
58 #define P0 C[1]
59 #define P1 C[2]
60 #define P2 C[3]
61 #define P3 C[4]
62 #define P4 C[5]
63 #define P5 C[6]
64 #define P6 C[7]
65 #define P7 C[8]
66 #define T0 C[9]
67 #define T1 C[10]
68 #define invpio2 C[11]
69 #define half C[12]
70 #define pio2_1 C[13]
71 #define pio2_t C[14]

73 float
74 tanf(float x)
75 {
76 double y, z, w;
77 float f;
78 int n, ix, hx, hy;
79 volatile int i;
80 #endif /* ! codereview */

82 hx = *((int *)&x);
83 ix = hx & 0x7fffffff;

85 y = (double)x;

87 if (ix <= 0x4016cbe4) { /* |x| < 3*pi/4 */
88 if (ix <= 0x3f490fdb) { /* |x| < pi/4 */
89 if (ix < 0x3c000000) { /* |x| < 2**-7 */
90 if (ix <= 0x39800000) { /* |x| < 2**-12 */
91 i = (int)y;
79 volatile int i = (int)y;
92 #ifdef lint
93 i = i;
94 #endif
95 return (x);
96 }
97 return ((float)((y * T0) * (T1 + y * y)));
98 }
99 z = y * y;
100 return ((float)(((P0 * y) * (P1 + z * (P2 + z)) *
101 (P3 + z * (P4 + z))) *
102 (P5 + z * (P6 + z * (P7 + z)))));
103 }
104 if (hx > 0)
105 y = (y - pio2_1) - pio2_t;
106 else
107 y = (y + pio2_1) + pio2_t;
108 hy = ((int *)&y)[HIWORD] & ~0x80000000;
109 if (hy < 0x3f800000) { /* |y| < 2**-7 */
110 z = (y * T0) * (T1 + y * y);
111 return ((float)(-one / z));
112 }
113 z = y * y;
114 w = ((P0 * y) * (P1 + z * (P2 + z)) * (P3 + z * (P4 + z))) *
115 (P5 + z * (P6 + z * (P7 + z)));

new/usr/src/lib/libm/common/R/tanf.c 2

116 return ((float)(-one / w));
117 }

119 if (ix <= 0x49c90fdb) { /* |x| < 2^19*pi */
120 #if defined(__i386) && !defined(__amd64)
121 int rp;

123 rp = __swapRP(fp_extended);
124 #endif
125 w = y * invpio2;
126 if (hx < 0)
127 n = (int)(w - half);
128 else
129 n = (int)(w + half);
130 y = (y - n * pio2_1) - n * pio2_t;
131 #if defined(__i386) && !defined(__amd64)
132 if (rp != fp_extended)
133 (void) __swapRP(rp);
134 #endif
135 } else {
136 if (ix >= 0x7f800000)
137 return (x / x); /* sin(Inf or NaN) is NaN */
138 hy = ((int *)&y)[HIWORD];
139 n = ((hy >> 20) & 0x7ff) - 1046;
140 ((int *)&w)[HIWORD] = (hy & 0xfffff) | 0x41600000;
141 ((int *)&w)[LOWORD] = ((int *)&y)[LOWORD];
142 n = __rem_pio2m(&w, &y, n, 1, 0, _TBL_ipio2_inf);
143 if (hy < 0) {
144 y = -y;
145 n = -n;
146 }
147 }

149 hy = ((int *)&y)[HIWORD] & ~0x80000000;
150 if (hy < 0x3f800000) { /* |y| < 2**-7 */
151 z = (y * T0) * (T1 + y * y);
152 f = ((n & 1) == 0)? (float)z : (float)(-one / z);
153 return (f);
154 }
155 z = y * y;
156 w = ((P0 * y) * (P1 + z * (P2 + z)) * (P3 + z * (P4 + z))) *
157 (P5 + z * (P6 + z * (P7 + z)));
158 f = ((n & 1) == 0)? (float)w : (float)(-one / w);
159 return (f);
160 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/complex/cpow.c 1

**
 9501 Sun May 4 03:06:08 2014
new/usr/src/lib/libm/common/complex/cpow.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak cpow = __cpow

32 /* INDENT OFF */
33 /*
34 * dcomplex cpow(dcomplex z);
35 *
36 * z**w analytically equivalent to
37 *
38 * cpow(z,w) = cexp(w clog(z))
39 *
40 * Let z = x+iy, w = u+iv.
41 * Since
42 * _________
43 * / 2 2 -1 y
44 * log(x+iy) = log(\/ x + y) + i tan (---)
45 * x
46 *
47 * 1 2 2 -1 y
48 * = --- log(x + y) + i tan (---)
49 * 2 x
50 * u 2 2 -1 y
51 * (u+iv)* log(x+iy) = --- log(x + y) - v tan (---) + (1)
52 * 2 x
53 *
54 * v 2 2 -1 y
55 * i * [--- log(x + y) + u tan (---)] (2)
56 * 2 x
57 *
58 * = r + i q
59 *
60 * Therefore,
61 * w r+iq r
62 * z = e = e (cos(q)+i*sin(q))

new/usr/src/lib/libm/common/complex/cpow.c 2

63 * _______
64 * / 2 2
65 * r \/ x + y -v*atan2(y,x)
66 * Here e can be expressed as: u * e
67 *
68 * Special cases (in the order of appearance):
69 * 1. (anything) ** 0 is 1
70 * 2. (anything) ** 1 is itself
71 * 3. When v = 0, y = 0:
72 * If x is finite and negative, and u is finite, then
73 * x ** u = exp(u*pi i) * pow(|x|, u);
74 * otherwise,
75 * x ** u = pow(x, u);
76 * 4. When v = 0, x = 0 or |x| = |y| or x is inf or y is inf:
77 * (x + y i) ** u = r * exp(q i)
78 * where
79 * r = hypot(x,y) ** u
80 * q = u * atan2pi(y, x)
81 *
82 * 5. otherwise, z**w is NAN if any x, y, u, v is a Nan or inf
83 *
84 * Note: many results of special cases are obtained in terms of
85 * polar coordinate. In the conversion from polar to rectangle:
86 * r exp(q i) = r * cos(q) + r * sin(q) i,
87 * we regard r * 0 is 0 except when r is a NaN.
88 */
89 /* INDENT ON */

91 #include "libm.h" /* atan2/exp/fabs/hypot/log/pow/scalbn */
92 /* atan2pi/exp2/sincos/sincospi/__k_clog_r/__k_atan2 */
93 #include "complex_wrapper.h"

95 extern void sincospi(double, double *, double *);

97 static const double
98 huge = 1e300,
99 tiny = 1e-300,
100 invln2 = 1.44269504088896338700e+00,
101 ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
102 ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
103 one = 1.0,
104 zero = 0.0;

106 static const int hiinf = 0x7ff00000;
107 extern double atan2pi(double, double);
107 double atan2pi(double, double);

109 /*
110 * Assuming |t[0]| > |t[1]| and |t[2]| > |t[3]|, sum4fp subroutine
111 * compute t[0] + t[1] + t[2] + t[3] into two double fp numbers.
112 */
113 static double
114 sum4fp(double ta[], double *w) {
115 double t1, t2, t3, t4, w1, w2, t;
116 t1 = ta[0]; t2 = ta[1]; t3 = ta[2]; t4 = ta[3];
117 /*
118 * Rearrange ti so that |t1| >= |t2| >= |t3| >= |t4|
119 */
120 if (fabs(t4) > fabs(t1)) {
121 t = t1; t1 = t3; t3 = t;
122 t = t2; t2 = t4; t4 = t;
123 } else if (fabs(t3) > fabs(t1)) {
124 t = t1; t1 = t3;
125 if (fabs(t4) > fabs(t2)) {
126 t3 = t4; t4 = t2; t2 = t;
127 } else {

new/usr/src/lib/libm/common/complex/cpow.c 3

128 t3 = t2; t2 = t;
129 }
130 } else if (fabs(t3) > fabs(t2)) {
131 t = t2; t2 = t3;
132 if (fabs(t4) > fabs(t2)) {
133 t3 = t4; t4 = t;
134 } else
135 t3 = t;
136 }
137 /* summing r = t1 + t2 + t3 + t4 to w1 + w2 */
138 w1 = t3 + t4;
139 w2 = t4 - (w1 - t3);
140 t = t2 + w1;
141 w2 += w1 - (t - t2);
142 w1 = t + w2;
143 w2 += t - w1;
144 t = t1 + w1;
145 w2 += w1 - (t - t1);
146 w1 = t + w2;
147 *w = w2 - (w1 - t);
148 return (w1);
149 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/complex/k_cexp.c 1

**
 5524 Sun May 4 03:06:09 2014
new/usr/src/lib/libm/common/complex/k_cexp.c
**
______unchanged_portion_omitted_
110 invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
111 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
112 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
113 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
114 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
115 P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
116 /* INDENT ON */

118 double
119 __k_cexp(double x, int *n) {
120 double hi = 0.0L, lo = 0.0L, c, t;
120 double hi, lo, c, t;
121 int k, xsb;
122 unsigned hx, lx;

124 hx = HI_WORD(x); /* high word of x */
125 lx = LO_WORD(x); /* low word of x */
126 xsb = (hx >> 31) & 1; /* sign bit of x */
127 hx &= 0x7fffffff; /* high word of |x| */

129 /* filter out non-finite argument */
130 if (hx >= 0x40e86a00) { /* if |x| > 50000 */
131 if (hx >= 0x7ff00000) {
132 *n = 1;
133 if (((hx & 0xfffff) | lx) != 0)
134 return (x + x); /* NaN */
135 else
136 return ((xsb == 0) ? x : 0.0);
137 /* exp(+-inf)={inf,0} */
138 }
139 *n = (xsb == 0) ? 50000 : -50000;
140 return (one + ln2LO[1] * ln2LO[1]); /* generate inexact */
141 }

143 *n = 0;
144 /* argument reduction */
145 if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
146 if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
147 hi = x - ln2HI[xsb];
148 lo = ln2LO[xsb];
149 k = 1 - xsb - xsb;
150 } else {
151 k = (int) (invln2 * x + halF[xsb]);
152 t = k;
153 hi = x - t * ln2HI[0];
154 /* t*ln2HI is exact for t<2**20 */
155 lo = t * ln2LO[0];
156 }
157 x = hi - lo;
158 *n = k;
159 } else if (hx < 0x3e300000) { /* when |x|<2**-28 */
160 return (one + x);
161 } else
162 k = 0;

164 /* x is now in primary range */
165 t = x * x;
166 c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
167 if (k == 0)
168 return (one - ((x * c) / (c - 2.0) - x));
169 else {

new/usr/src/lib/libm/common/complex/k_cexp.c 2

170 t = one - ((lo - (x * c) / (2.0 - c)) - hi);
171 if (k > 128) {
172 t *= two128;
173 *n = k - 128;
174 } else if (k > 0) {
175 HI_WORD(t) += (k << 20);
176 *n = 0;
177 }
178 return (t);
179 }
180 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/complex/k_clog_rl.c 1

**
 22566 Sun May 4 03:06:11 2014
new/usr/src/lib/libm/common/complex/k_clog_rl.c
**
______unchanged_portion_omitted_

408 long double
409 __k_clog_rl(long double x, long double y, long double *er)
410 {
411 long double t1, t2, t3, t4, tk, z, wh, w, zh, zk;
412 int n, k, ix, iy, iz, nx, ny, nz, i;
413 double dk;

415 #if !defined(__x86)
416 int j;
417 unsigned lx, ly;
418 #endif

420 ix = HI_XWORD(x) & ~0x80000000;
421 iy = HI_XWORD(y) & ~0x80000000;
422 y = fabsl(y); x = fabsl(x);
423 if (ix < iy || (ix < 0x7fff0000 && ix == iy && x < y)) {
424 /* force x >= y */
425 tk = x; x = y; y = tk;
426 n = ix, ix = iy; iy = n;
427 }
428 *er = zero;
429 nx = ix >> 16; ny = iy >> 16;
430 if (nx >= 0x7fff) { /* x or y is Inf or NaN */
431 if (isinfl(x))
432 return (x);
433 else if (isinfl(y))
434 return (y);
435 else
436 return (x+y);
437 }
438 /*
439 * for tiny y:(double y < 2^-35, extended y < 2^-46, quad y < 2^-70)
440 *
441 * log(sqrt(1 + y**2)) = y**2 / 2 - y**4 / 8 + ... = y**2 / 2
442 */
443 #if defined(__x86)
444 if (x == 1.0L && ny < (0x3fff - 46)) {
445 #else
446 if (x == 1.0L && ny < (0x3fff - 70)) {
447 #endif

449 t2 = y * y;
450 if (ny >= 8305) { /* compute er = tail of t2 */
451 dk = (double) y;

453 #if defined(__x86)
454 ((unsigned *)&dk)[LOWORD] &= 0xfffe0000;
455 #endif

457 wh = (long double) dk;
458 *er = half * ((y - wh) * (y + wh) - (t2 - wh * wh));
459 }
460 return (half * t2);
461 }
462 /*
463 * x or y is subnormal or zero
464 */
465 if (nx == 0) {
466 if (x == 0.0L)
467 return (-1.0L / x);

new/usr/src/lib/libm/common/complex/k_clog_rl.c 2

468 else {
469 x *= two240;
470 y *= two240;
471 ix = HI_XWORD(x);
472 iy = HI_XWORD(y);
473 nx = (ix >> 16) - 240;
474 ny = (iy >> 16) - 240;
475 /* guard subnormal flush to 0 */
476 if (x == 0.0L)
477 return (-1.0L / x);
478 }
479 } else if (ny == 0) { /* y subnormal, scale it */
480 y *= two240;
481 iy = HI_XWORD(y);
482 ny = (iy >> 16) - 240;
483 }
484 n = nx - ny;
485 /*
486 * When y is zero or when x >> y, i.e., n > 62, 78, 122 for DBLE,
487 * EXTENDED, QUAD respectively,
488 * log(x) = log(sqrt(x * x + y * y)) to 27 extra bits.
489 */

491 #if defined(__x86)
492 if (n > 78 || y == 0.0L) {
493 #else
494 if (n > 122 || y == 0.0L) {
495 #endif

497 XFSCALE(x, (0x3fff - (ix >> 16)));
497 XFSCALE(x, 0x3fff - (ix >> 16));
498 i = ((ix & 0xffff) + 0x100) >> 9; /* 7.5 bits of x */
499 zk = 1.0L + ((long double) i) * 0.0078125L;
500 z = x - zk;
501 dk = (double)z;

503 #if defined(__x86)
504 ((unsigned *)&dk)[LOWORD] &= 0xfffe0000;
505 #endif

507 zh = (long double)dk;
508 k = i & 0x7f; /* index of zk */
509 n = nx - 0x3fff;
510 *er = z - zh;
511 if (i == 0x80) { /* if zk = 2.0, adjust scaling */
512 n += 1;
513 zh *= 0.5L; *er *= 0.5L;
514 }
515 w = k_log_NKzl(n, k, zh, er);
516 } else {
517 /*
518 * compute z = x*x + y*y
519 */
520 XFSCALE(x, (0x3fff - (ix >> 16)));
521 XFSCALE(y, (0x3fff - n - (iy >> 16)));
520 XFSCALE(x, 0x3fff - (ix >> 16));
521 XFSCALE(y, 0x3fff - n - (iy >> 16));
522 ix = (ix & 0xffff) | 0x3fff0000;
523 iy = (iy & 0xffff) | (0x3fff0000 - (n << 16));
524 nx -= 0x3fff;
525 t1 = x * x; t2 = y * y;
526 wh = x;

528 /* split x into correctly rounded half */
529 #if defined(__x86)
530 ((unsigned *)&wh)[0] = 0; /* 32 bits chopped */

new/usr/src/lib/libm/common/complex/k_clog_rl.c 3

531 #else
532 lx = ((unsigned *)&wh)[2]; /* 56 rounded */
533 j = ((lx >> 24) + 1) >> 1;
534 ((unsigned *)&wh)[2] = (j << 25);
535 lx = ((unsigned *)&wh)[1];
536 ly = lx + (j >> 7);
537 ((unsigned *)&wh)[1] = ly;
538 ((unsigned *)&wh)[0] += (ly == 0 && lx != 0);
539 ((unsigned *)&wh)[3] = 0;
540 #endif

542 z = t1+t2;
543 /*
544 * higher precision simulation x*x = t1 + t3, y*y = t2 + t4
545 */
546 tk = wh - x;
547 t3 = tk * tk - (two * wh * tk - (wh * wh - t1));
548 wh = y;

550 /* split y into correctly rounded half */
551 #if defined(__x86)
552 ((unsigned *)&wh)[0] = 0; /* 32 bits chopped */
553 #else
554 ly = ((unsigned *)&wh)[2]; /* 56 bits rounded */
555 j = ((ly >> 24) + 1) >> 1;
556 ((unsigned *)&wh)[2] = (j << 25);
557 lx = ((unsigned *)&wh)[1];
558 ly = lx + (j >> 7);
559 ((unsigned *)&wh)[1] = ly;
560 ((unsigned *)&wh)[0] += (ly == 0 && lx != 0);
561 ((unsigned *)&wh)[3] = 0;
562 #endif

564 tk = wh - y;
565 t4 = tk * tk - (two * wh * tk - (wh * wh - t2));
566 /*
567 * find zk matches z to 7.5 bits
568 */
569 iz = HI_XWORD(z);
570 k = ((iz & 0xffff) + 0x100) >> 9; /* 7.5 bits of x */
571 nz = (iz >> 16) - 0x3fff + (k >> 7);
572 k &= 0x7f;
573 zk = 1.0L + ((long double) k) * 0.0078125L;
574 if (nz == 1) zk += zk;
575 else if (nz == 2) zk *= 4.0L;
576 else if (nz == 3) zk *= 8.0L;
577 /*
578 * order t1, t2, t3, t4 according to their size
579 */
580 if (t2 >= fabsl(t3)) {
581 if (fabsl(t3) < fabsl(t4)) {
582 wh = t3; t3 = t4; t4 = wh;
583 }
584 } else {
585 wh = t2; t2 = t3; t3 = wh;
586 }
587 /*
588 * higher precision simulation: x * x + y * y = t1 + t2 + t3 + t4
589 * = zk(7 bits) + zh(24 bits) + *er(tail) and call k_log_NKz
590 */
591 tk = t1 - zk;
592 zh = ((tk + t2) + t3) + t4;

594 /* split zh into correctly rounded half */
595 #if defined(__x86)
596 ((unsigned *)&zh)[0] = 0;

new/usr/src/lib/libm/common/complex/k_clog_rl.c 4

597 #else
598 ly = ((unsigned *)&zh)[2];
599 j = ((ly >> 24) + 1) >> 1;
600 ((unsigned *)&zh)[2] = (j << 25);
601 lx = ((unsigned *)&zh)[1];
602 ly = lx + (j >> 7);
603 ((unsigned *)&zh)[1] = ly;
604 ((unsigned *)&zh)[0] += (ly == 0 && lx != 0);
605 ((unsigned *)&zh)[3] = 0;
606 #endif

608 w = fabsl(zh);
609 if (w >= fabsl(t2))
610 {
611 *er = (((tk - zh) + t2) + t3) + t4;
612 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/__fex_hdlr.c 1

**
 21518 Sun May 4 03:06:12 2014
new/usr/src/lib/libm/common/m9x/__fex_hdlr.c
**
______unchanged_portion_omitted_

375 #elif defined(__x86)

377 #if defined(__amd64)
378 #define test_sse_hw 1
379 #else
380 extern int _sse_hw;
381 #define test_sse_hw _sse_hw
381 #define test_sse_hw &_sse_hw && _sse_hw
382 #endif

384 #if !defined(REG_PC)
385 #define REG_PC EIP
386 #endif

388 /*
389 * If a handling mode is in effect, apply it; otherwise invoke the
390 * saved handler
391 */
392 static void
393 __fex_hdlr(int sig, siginfo_t *sip, ucontext_t *uap)
394 {
395 struct fex_handler_data *thr_handlers;
396 struct sigaction act;
397 void (*handler)() = NULL, (*simd_handler[4])();
397 void (*handler)(), (*simd_handler[4])();
398 int mode, simd_mode[4], i, len, accrued, *ap;
399 unsigned int cwsw, oldcwsw, mxcsr, oldmxcsr;
400 enum fex_exception e, simd_e[4];
401 fex_info_t info, simd_info[4];
402 unsigned long addr;
403 siginfo_t osip = *sip;
404 sseinst_t inst;

406 /* check for an exception caused by an SSE instruction */
407 if (!(uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.status & 0x80)) {
408 len = __fex_parse_sse(uap, &inst);
409 if (len == 0)
410 goto not_ieee;

412 /* disable all traps and clear flags */
413 __fenv_getcwsw(&oldcwsw);
414 cwsw = (oldcwsw & ~0x3f) | 0x003f0000;
415 __fenv_setcwsw(&cwsw);
416 __fenv_getmxcsr(&oldmxcsr);
417 mxcsr = (oldmxcsr & ~0x3f) | 0x1f80;
418 __fenv_setmxcsr(&mxcsr);

420 if ((int)inst.op & SIMD) {
421 __fex_get_simd_op(uap, &inst, simd_e, simd_info);

423 thr_handlers = __fex_get_thr_handlers();
424 addr = (unsigned long)uap->uc_mcontext.gregs[REG_PC];
425 accrued = uap->uc_mcontext.fpregs.fp_reg_set.
426 fpchip_state.mxcsr;

428 e = (enum fex_exception)-1;
429 mode = FEX_NONSTOP;
430 for (i = 0; i < 4; i++) {
431 if ((int)simd_e[i] < 0)
432 continue;

new/usr/src/lib/libm/common/m9x/__fex_hdlr.c 2

434 e = simd_e[i];
435 simd_mode[i] = FEX_NOHANDLER;
436 simd_handler[i] = oact.sa_handler;
437 if (thr_handlers &&
438 thr_handlers[(int)e].__mode !=
439 FEX_NOHANDLER) {
440 simd_mode[i] =
441 thr_handlers[(int)e].__mode;
442 simd_handler[i] =
443 thr_handlers[(int)e].__handler;
444 }
445 accrued &= ~te_bit[(int)e];
446 switch (simd_mode[i]) {
447 case FEX_ABORT:
448 mode = FEX_ABORT;
449 break;
450 case FEX_SIGNAL:
451 if (mode != FEX_ABORT)
452 mode = FEX_SIGNAL;
453 handler = simd_handler[i];
454 break;
455 case FEX_NOHANDLER:
456 if (mode != FEX_ABORT && mode !=
457 FEX_SIGNAL)
458 mode = FEX_NOHANDLER;
459 break;
460 }
461 }
462 if (e == (enum fex_exception)-1) {
463 __fenv_setcwsw(&oldcwsw);
464 __fenv_setmxcsr(&oldmxcsr);
465 goto not_ieee;
466 }
467 accrued |= uap->uc_mcontext.fpregs.fp_reg_set.
468 fpchip_state.status;
469 ap = __fex_accrued();
470 accrued |= *ap;
471 accrued &= 0x3d;

473 for (i = 0; i < 4; i++) {
474 if ((int)simd_e[i] < 0)
475 continue;

477 __fex_mklog(uap, (char *)addr, accrued,
478 simd_e[i], simd_mode[i],
479 (void *)simd_handler[i]);
480 }

482 if (mode == FEX_NOHANDLER) {
483 __fenv_setcwsw(&oldcwsw);
484 __fenv_setmxcsr(&oldmxcsr);
485 goto not_ieee;
486 } else if (mode == FEX_ABORT) {
487 abort();
488 } else if (mode == FEX_SIGNAL) {
489 __fenv_setcwsw(&oldcwsw);
490 __fenv_setmxcsr(&oldmxcsr);
491 handler(sig, &osip, uap);
492 return;
493 }

495 *ap = 0;
496 for (i = 0; i < 4; i++) {
497 if ((int)simd_e[i] < 0)
498 continue;

new/usr/src/lib/libm/common/m9x/__fex_hdlr.c 3

500 if (simd_mode[i] == FEX_CUSTOM) {
501 handler(1 << (int)simd_e[i],
502 &simd_info[i]);
503 __fenv_setcwsw(&cwsw);
504 __fenv_setmxcsr(&mxcsr);
505 }
506 }

508 __fex_st_simd_result(uap, &inst, simd_e, simd_info);
509 for (i = 0; i < 4; i++) {
510 if ((int)simd_e[i] < 0)
511 continue;

513 accrued |= simd_info[i].flags;
514 }

516 if ((int)inst.op & INTREG) {
517 /* set MMX mode */
518 #if defined(__amd64)
519 uap->uc_mcontext.fpregs.fp_reg_set.
520 fpchip_state.sw &= ~0x3800;
521 uap->uc_mcontext.fpregs.fp_reg_set.
522 fpchip_state.fctw = 0;
523 #else
524 uap->uc_mcontext.fpregs.fp_reg_set.
525 fpchip_state.state[1] &= ~0x3800;
526 uap->uc_mcontext.fpregs.fp_reg_set.
527 fpchip_state.state[2] = 0;
528 #endif
529 }
530 } else {
531 e = __fex_get_sse_op(uap, &inst, &info);
532 if ((int)e < 0) {
533 __fenv_setcwsw(&oldcwsw);
534 __fenv_setmxcsr(&oldmxcsr);
535 goto not_ieee;
536 }

538 mode = FEX_NOHANDLER;
539 handler = oact.sa_handler;
540 thr_handlers = __fex_get_thr_handlers();
541 if (thr_handlers && thr_handlers[(int)e].__mode !=
542 FEX_NOHANDLER) {
543 mode = thr_handlers[(int)e].__mode;
544 handler = thr_handlers[(int)e].__handler;
545 }

547 addr = (unsigned long)uap->uc_mcontext.gregs[REG_PC];
548 accrued = uap->uc_mcontext.fpregs.fp_reg_set.
549 fpchip_state.mxcsr & ~te_bit[(int)e];
550 accrued |= uap->uc_mcontext.fpregs.fp_reg_set.
551 fpchip_state.status;
552 ap = __fex_accrued();
553 accrued |= *ap;
554 accrued &= 0x3d;
555 __fex_mklog(uap, (char *)addr, accrued, e, mode,
556 (void *)handler);

558 if (mode == FEX_NOHANDLER) {
559 __fenv_setcwsw(&oldcwsw);
560 __fenv_setmxcsr(&oldmxcsr);
561 goto not_ieee;
562 } else if (mode == FEX_ABORT) {
563 abort();
564 } else if (mode == FEX_SIGNAL) {

new/usr/src/lib/libm/common/m9x/__fex_hdlr.c 4

565 __fenv_setcwsw(&oldcwsw);
566 __fenv_setmxcsr(&oldmxcsr);
567 handler(sig, &osip, uap);
568 return;
569 } else if (mode == FEX_CUSTOM) {
570 *ap = 0;
571 if (addr >= (unsigned long)feraiseexcept &&
572 addr < (unsigned long)fetestexcept) {
573 info.op = fex_other;
574 info.op1.type = info.op2.type =
575 info.res.type = fex_nodata;
576 }
577 handler(1 << (int)e, &info);
578 __fenv_setcwsw(&cwsw);
579 __fenv_setmxcsr(&mxcsr);
580 }

582 __fex_st_sse_result(uap, &inst, e, &info);
583 accrued |= info.flags;

585 #if defined(__amd64)
586 /*
587 * In 64-bit mode, the 32-bit convert-to-integer
588 * instructions zero the upper 32 bits of the
589 * destination. (We do this here and not in
590 * __fex_st_sse_result because __fex_st_sse_result
591 * can be called from __fex_st_simd_result, too.)
592 */
593 if (inst.op == cvtss2si || inst.op == cvttss2si ||
594 inst.op == cvtsd2si || inst.op == cvttsd2si)
595 inst.op1->i[1] = 0;
596 #endif
597 }

599 /* advance the pc past the SSE instruction */
600 uap->uc_mcontext.gregs[REG_PC] += len;
601 goto update_state;
602 }

604 /* determine which exception occurred */
605 __fex_get_x86_exc(sip, uap);
606 switch (sip->si_code) {
607 case FPE_FLTDIV:
608 e = fex_division;
609 break;
610 case FPE_FLTOVF:
611 e = fex_overflow;
612 break;
613 case FPE_FLTUND:
614 e = fex_underflow;
615 break;
616 case FPE_FLTRES:
617 e = fex_inexact;
618 break;
619 case FPE_FLTINV:
620 if ((int)(e = __fex_get_invalid_type(sip, uap)) < 0)
621 goto not_ieee;
622 break;
623 default:
624 /* not an IEEE exception */
625 goto not_ieee;
626 }

628 /* get the handling mode */
629 mode = FEX_NOHANDLER;
630 handler = oact.sa_handler; /* for log; just looking, no need to lock */

new/usr/src/lib/libm/common/m9x/__fex_hdlr.c 5

631 thr_handlers = __fex_get_thr_handlers();
632 if (thr_handlers && thr_handlers[(int)e].__mode != FEX_NOHANDLER) {
633 mode = thr_handlers[(int)e].__mode;
634 handler = thr_handlers[(int)e].__handler;
635 }

637 /* make an entry in the log of retro. diag. if need be */
638 #if defined(__amd64)
639 addr = (unsigned long)uap->uc_mcontext.fpregs.fp_reg_set.
640 fpchip_state.rip;
641 #else
642 addr = (unsigned long)uap->uc_mcontext.fpregs.fp_reg_set.
643 fpchip_state.state[3];
644 #endif
645 accrued = uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.status &
646 ~te_bit[(int)e];
647 if (test_sse_hw)
648 accrued |= uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.
649 mxcsr;
650 ap = __fex_accrued();
651 accrued |= *ap;
652 accrued &= 0x3d;
653 __fex_mklog(uap, (char *)addr, accrued, e, mode, (void *)handler);

655 /* handle the exception based on the mode */
656 if (mode == FEX_NOHANDLER)
657 goto not_ieee;
658 else if (mode == FEX_ABORT)
659 abort();
660 else if (mode == FEX_SIGNAL) {
661 handler(sig, &osip, uap);
662 return;
663 }

665 /* disable all traps and clear flags */
666 __fenv_getcwsw(&cwsw);
667 cwsw = (cwsw & ~0x3f) | 0x003f0000;
668 __fenv_setcwsw(&cwsw);
669 if (test_sse_hw) {
670 __fenv_getmxcsr(&mxcsr);
671 mxcsr = (mxcsr & ~0x3f) | 0x1f80;
672 __fenv_setmxcsr(&mxcsr);
673 }
674 *ap = 0;

676 /* decode the operation */
677 __fex_get_op(sip, uap, &info);

679 /* if a custom mode handler is installed, invoke it */
680 if (mode == FEX_CUSTOM) {
681 /* if we got here from feraiseexcept, pass dummy info */
682 if (addr >= (unsigned long)feraiseexcept &&
683 addr < (unsigned long)fetestexcept) {
684 info.op = fex_other;
685 info.op1.type = info.op2.type = info.res.type =
686 fex_nodata;
687 }

689 handler(1 << (int)e, &info);

691 /* restore modes in case the user’s handler changed them */
692 __fenv_setcwsw(&cwsw);
693 if (test_sse_hw)
694 __fenv_setmxcsr(&mxcsr);
695 }

new/usr/src/lib/libm/common/m9x/__fex_hdlr.c 6

697 /* stuff the result */
698 __fex_st_result(sip, uap, &info);
699 accrued |= info.flags;

701 update_state:
702 accrued &= 0x3d;
703 i = __fex_te_needed(thr_handlers, accrued);
704 *ap = accrued & i;
705 #if defined(__amd64)
706 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.sw &= ~0x3d;
707 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.sw |= (accrued & ~i);
708 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.cw |= 0x3d;
709 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.cw &= ~i;
710 #else
711 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.state[1] &= ~0x3d;
712 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.state[1] |=
713 (accrued & ~i);
714 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.state[0] |= 0x3d;
715 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.state[0] &= ~i;
716 #endif
717 if (test_sse_hw) {
718 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.mxcsr &= ~0x3d;
719 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.mxcsr |=
720 0x1e80 | (accrued & ~i);
721 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.mxcsr &=
722 ~(i << 7);
723 }
724 return;

726 not_ieee:
727 /* revert to the saved handler (if any) */
728 mutex_lock(&hdlr_lock);
729 act = oact;
730 mutex_unlock(&hdlr_lock);
731 switch ((unsigned long)act.sa_handler) {
732 case (unsigned long)SIG_DFL:
733 /* simulate trap with no handler installed */
734 sigaction(SIGFPE, &act, NULL);
735 kill(getpid(), SIGFPE);
736 break;
737 #if !defined(__lint)
738 case (unsigned long)SIG_IGN:
739 break;
740 #endif
741 default:
742 act.sa_handler(sig, &osip, uap);
743 }
744 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/__fex_i386.c 1

**
 36583 Sun May 4 03:06:14 2014
new/usr/src/lib/libm/common/m9x/__fex_i386.c
**
______unchanged_portion_omitted_

1227 /* scale factors for exponent wrapping */
1228 static const float
1229 fun = 7.922816251e+28f, /* 2^96 */
1230 fov = 1.262177448e-29f; /* 2^-96 */
1231 static const double
1232 dun = 1.552518092300708935e+231, /* 2^768 */
1233 dov = 6.441148769597133308e-232; /* 2^-768 */

1235 /*
1236 * Store the specified result; if no result is given but the exception
1237 * is underflow or overflow, use the default trapped result
1238 */
1239 void
1240 __fex_st_result(siginfo_t *sip, ucontext_t *uap, fex_info_t *info)
1241 {
1242 fex_numeric_t r;
1243 unsigned long ex, op, ea, stack;

1245 /* get the exception type, opcode, and data address */
1246 ex = sip->si_code;
1247 #if defined(__amd64)
1248 op = uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.fop >> 16;
1249 ea = uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.rdp; /*???*/
1250 #else
1251 op = uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.state[OP] >> 16;
1252 ea = uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.state[EA];
1253 #endif

1255 /* if the instruction is a compare, set the condition codes
1256 to unordered and update the stack */
1257 switch (op & 0x7f8) {
1258 case 0x010:
1259 case 0x050:
1260 case 0x090:
1261 case 0x0d0:
1262 case 0x210:
1263 case 0x250:
1264 case 0x290:
1265 case 0x410:
1266 case 0x450:
1267 case 0x490:
1268 case 0x4d0:
1269 case 0x5e0:
1270 case 0x610:
1271 case 0x650:
1272 case 0x690:
1273 /* f[u]com */
1274 #if defined(__amd64)
1275 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.sw |= 0x4500;
1276 #else
1277 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.state[SW] |= 0x4
1278 #endif
1279 return;

1281 case 0x018:
1282 case 0x058:
1283 case 0x098:
1284 case 0x0d8:
1285 case 0x218:
1286 case 0x258:

new/usr/src/lib/libm/common/m9x/__fex_i386.c 2

1287 case 0x298:
1288 case 0x418:
1289 case 0x458:
1290 case 0x498:
1291 case 0x4d8:
1292 case 0x5e8:
1293 case 0x618:
1294 case 0x658:
1295 case 0x698:
1296 case 0x6d0:
1297 /* f[u]comp */
1298 #if defined(__amd64)
1299 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.sw |= 0x4500;
1300 #else
1301 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.state[SW] |= 0x4
1302 #endif
1303 pop(uap);
1304 return;

1306 case 0x2e8:
1307 case 0x6d8:
1308 /* f[u]compp */
1309 #if defined(__amd64)
1310 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.sw |= 0x4500;
1311 #else
1312 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.state[SW] |= 0x4
1313 #endif
1314 pop(uap);
1315 pop(uap);
1316 return;

1318 case 0x1e0:
1319 if (op == 0x1e4) { /* ftst */
1320 #if defined(__amd64)
1321 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.sw |= 0x
1322 #else
1323 uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.state[SW
1324 #endif
1325 return;
1326 }
1327 break;

1329 case 0x3e8:
1330 case 0x3f0:
1331 /* f[u]comi */
1332 #if defined(__amd64)
1333 uap->uc_mcontext.gregs[REG_PS] |= 0x45;
1334 #else
1335 uap->uc_mcontext.gregs[EFL] |= 0x45;
1336 #endif
1337 return;

1339 case 0x7e8:
1340 case 0x7f0:
1341 /* f[u]comip */
1342 #if defined(__amd64)
1343 uap->uc_mcontext.gregs[REG_PS] |= 0x45;
1344 #else
1345 uap->uc_mcontext.gregs[EFL] |= 0x45;
1346 #endif
1347 pop(uap);
1348 return;
1349 }

1351 /* if there is no result available and the exception is overflow
1352 or underflow, use the wrapped result */

new/usr/src/lib/libm/common/m9x/__fex_i386.c 3

1353 r = info->res;
1354 if (r.type == fex_nodata) {
1355 if (ex == FPE_FLTOVF || ex == FPE_FLTUND) {
1356 /* for store instructions, do the scaling and store */
1357 switch (op & 0x7f8) {
1358 case 0x110:
1359 case 0x118:
1360 case 0x150:
1361 case 0x158:
1362 case 0x190:
1363 case 0x198:
1364 if (!ea)
1365 return;
1366 if (ex == FPE_FLTOVF)
1367 *(float *)ea = (fpreg(uap, 0) * fov) * f
1368 else
1369 *(float *)ea = (fpreg(uap, 0) * fun) * f
1370 if ((op & 8) != 0)
1371 pop(uap);
1372 break;

1374 case 0x510:
1375 case 0x518:
1376 case 0x550:
1377 case 0x558:
1378 case 0x590:
1379 case 0x598:
1380 if (!ea)
1381 return;
1382 if (ex == FPE_FLTOVF)
1383 *(double *)ea = (fpreg(uap, 0) * dov) *
1384 else
1385 *(double *)ea = (fpreg(uap, 0) * dun) *
1386 if ((op & 8) != 0)
1387 pop(uap);
1388 break;
1389 }
1390 }
1391 #ifdef DEBUG
1392 else if (ex != FPE_FLTRES)
1393 printf("No result supplied, stack may be hosed\n");
1394 #endif
1395 return;
1396 }

1398 /* otherwise convert the supplied result to the correct type,
1399 put it in the destination, and update the stack as need be */

1401 /* store instructions */
1402 switch (op & 0x7f8) {
1403 case 0x110:
1404 case 0x118:
1405 case 0x150:
1406 case 0x158:
1407 case 0x190:
1408 case 0x198:
1409 if (!ea)
1410 return;
1411 switch (r.type) {
1412 case fex_int:
1413 *(float *)ea = (float) r.val.i;
1414 break;

1416 case fex_llong:
1417 *(float *)ea = (float) r.val.l;
1418 break;

new/usr/src/lib/libm/common/m9x/__fex_i386.c 4

1420 case fex_float:
1421 *(float *)ea = r.val.f;
1422 break;

1424 case fex_double:
1425 *(float *)ea = (float) r.val.d;
1426 break;

1428 case fex_ldouble:
1429 *(float *)ea = (float) r.val.q;
1430 break;

1432 default:
1433 break;
1434 #endif /* ! codereview */
1435 }
1436 if (ex != FPE_FLTRES && (op & 8) != 0)
1437 pop(uap);
1438 return;

1440 case 0x310:
1441 case 0x318:
1442 case 0x350:
1443 case 0x358:
1444 case 0x390:
1445 case 0x398:
1446 if (!ea)
1447 return;
1448 switch (r.type) {
1449 case fex_int:
1450 *(int *)ea = r.val.i;
1451 break;

1453 case fex_llong:
1454 *(int *)ea = (int) r.val.l;
1455 break;

1457 case fex_float:
1458 *(int *)ea = (int) r.val.f;
1459 break;

1461 case fex_double:
1462 *(int *)ea = (int) r.val.d;
1463 break;

1465 case fex_ldouble:
1466 *(int *)ea = (int) r.val.q;
1467 break;

1469 default:
1470 break;
1471 #endif /* ! codereview */
1472 }
1473 if (ex != FPE_FLTRES && (op & 8) != 0)
1474 pop(uap);
1475 return;

1477 case 0x510:
1478 case 0x518:
1479 case 0x550:
1480 case 0x558:
1481 case 0x590:
1482 case 0x598:
1483 if (!ea)
1484 return;

new/usr/src/lib/libm/common/m9x/__fex_i386.c 5

1485 switch (r.type) {
1486 case fex_int:
1487 *(double *)ea = (double) r.val.i;
1488 break;

1490 case fex_llong:
1491 *(double *)ea = (double) r.val.l;
1492 break;

1494 case fex_float:
1495 *(double *)ea = (double) r.val.f;
1496 break;

1498 case fex_double:
1499 *(double *)ea = r.val.d;
1500 break;

1502 case fex_ldouble:
1503 *(double *)ea = (double) r.val.q;
1504 break;

1506 default:
1507 break;
1508 #endif /* ! codereview */
1509 }
1510 if (ex != FPE_FLTRES && (op & 8) != 0)
1511 pop(uap);
1512 return;

1514 case 0x710:
1515 case 0x718:
1516 case 0x750:
1517 case 0x758:
1518 case 0x790:
1519 case 0x798:
1520 if (!ea)
1521 return;
1522 switch (r.type) {
1523 case fex_int:
1524 *(short *)ea = (short) r.val.i;
1525 break;

1527 case fex_llong:
1528 *(short *)ea = (short) r.val.l;
1529 break;

1531 case fex_float:
1532 *(short *)ea = (short) r.val.f;
1533 break;

1535 case fex_double:
1536 *(short *)ea = (short) r.val.d;
1537 break;

1539 case fex_ldouble:
1540 *(short *)ea = (short) r.val.q;
1541 break;

1543 default:
1544 break;
1545 #endif /* ! codereview */
1546 }
1547 if (ex != FPE_FLTRES && (op & 8) != 0)
1548 pop(uap);
1549 return;

new/usr/src/lib/libm/common/m9x/__fex_i386.c 6

1551 case 0x730:
1552 case 0x770:
1553 case 0x7b0:
1554 /* fbstp; don’t bother */
1555 if (ea && ex != FPE_FLTRES)
1556 pop(uap);
1557 return;

1559 case 0x738:
1560 case 0x778:
1561 case 0x7b8:
1562 if (!ea)
1563 return;
1564 switch (r.type) {
1565 case fex_int:
1566 *(long long *)ea = (long long) r.val.i;
1567 break;

1569 case fex_llong:
1570 *(long long *)ea = r.val.l;
1571 break;

1573 case fex_float:
1574 *(long long *)ea = (long long) r.val.f;
1575 break;

1577 case fex_double:
1578 *(long long *)ea = (long long) r.val.d;
1579 break;

1581 case fex_ldouble:
1582 *(long long *)ea = (long long) r.val.q;
1583 break;

1585 default:
1586 break;
1587 #endif /* ! codereview */
1588 }
1589 if (ex != FPE_FLTRES)
1590 pop(uap);
1591 return;
1592 }

1594 /* for all other instructions, the result goes into a register */
1595 switch (r.type) {
1596 case fex_int:
1597 r.val.q = (long double) r.val.i;
1598 break;

1600 case fex_llong:
1601 r.val.q = (long double) r.val.l;
1602 break;

1604 case fex_float:
1605 r.val.q = (long double) r.val.f;
1606 break;

1608 case fex_double:
1609 r.val.q = (long double) r.val.d;
1610 break;

1612 default:
1613 #endif /* ! codereview */
1614 break;
1615 }

new/usr/src/lib/libm/common/m9x/__fex_i386.c 7

1617 /* for load instructions, push the result onto the stack */
1618 switch (op & 0x7f8) {
1619 case 0x100:
1620 case 0x140:
1621 case 0x180:
1622 case 0x500:
1623 case 0x540:
1624 case 0x580:
1625 if (ea)
1626 push(r.val.q, uap);
1627 return;
1628 }

1630 /* for all other instructions, if the exception is overflow,
1631 underflow, or inexact, the stack has already been updated */
1632 stack = (ex == FPE_FLTOVF || ex == FPE_FLTUND || ex == FPE_FLTRES);
1633 switch (op & 0x7f8) {
1634 case 0x1f0: /* oddballs */
1635 switch (op) {
1636 case 0x1f1: /* fyl2x */
1637 case 0x1f3: /* fpatan */
1638 case 0x1f9: /* fyl2xp1 */
1639 /* pop the stack, leaving the result in st */
1640 if (!stack)
1641 pop(uap);
1642 fpreg(uap, 0) = r.val.q;
1643 return;

1645 case 0x1f2: /* fpatan */
1646 /* fptan pushes 1.0 afterward */
1647 if (stack)
1648 fpreg(uap, 1) = r.val.q;
1649 else {
1650 fpreg(uap, 0) = r.val.q;
1651 push(1.0L, uap);
1652 }
1653 return;

1655 case 0x1f4: /* fxtract */
1656 case 0x1fb: /* fsincos */
1657 /* leave the supplied result in st */
1658 if (stack)
1659 fpreg(uap, 0) = r.val.q;
1660 else {
1661 fpreg(uap, 0) = 0.0; /* punt */
1662 push(r.val.q, uap);
1663 }
1664 return;
1665 }

1667 /* all others leave the stack alone and the result in st */
1668 fpreg(uap, 0) = r.val.q;
1669 return;

1671 case 0x4c0:
1672 case 0x4c8:
1673 case 0x4e0:
1674 case 0x4e8:
1675 case 0x4f0:
1676 case 0x4f8:
1677 fpreg(uap, op & 7) = r.val.q;
1678 return;

1680 case 0x6c0:
1681 case 0x6c8:
1682 case 0x6e0:

new/usr/src/lib/libm/common/m9x/__fex_i386.c 8

1683 case 0x6e8:
1684 case 0x6f0:
1685 case 0x6f8:
1686 /* stack is popped afterward */
1687 if (stack)
1688 fpreg(uap, (op - 1) & 7) = r.val.q;
1689 else {
1690 fpreg(uap, op & 7) = r.val.q;
1691 pop(uap);
1692 }
1693 return;

1695 default:
1696 fpreg(uap, 0) = r.val.q;
1697 return;
1698 }
1699 }

new/usr/src/lib/libm/common/m9x/__fex_sparc.c 1

**
 21370 Sun May 4 03:06:16 2014
new/usr/src/lib/libm/common/m9x/__fex_sparc.c
**
______unchanged_portion_omitted_

472 /*
473 * Store the specified result; if no result is given but the exception
474 * is underflow or overflow, supply the default trapped result
475 */
476 void
477 __fex_st_result(siginfo_t *sip, ucontext_t *uap, fex_info_t *info)
478 {
479 unsigned instr, opf, rs1, rs2, rd;
480 long double qscl;
481 double dscl;
482 float fscl;

484 /* parse the instruction which caused the exception */
485 instr = uap->uc_mcontext.fpregs.fpu_q->FQu.fpq.fpq_instr;
486 opf = (instr >> 5) & 0x1ff;
487 rs1 = (instr >> 14) & 0x1f;
488 rs2 = instr & 0x1f;
489 rd = (instr >> 25) & 0x1f;

491 /* if the instruction is a compare, just set fcc to unordered */
492 if (((instr >> 19) & 0x183f) == 0x1035) {
493 if (rd == 0)
494 uap->uc_mcontext.fpregs.fpu_fsr |= 0xc00;
495 else {
496 #ifdef __sparcv9
497 uap->uc_mcontext.fpregs.fpu_fsr |= (3l << ((rd << 1) + 3
498 #else
499 ((prxregset_t*)uap->uc_mcontext.xrs.xrs_ptr)->pr_un.pr_v
500 #endif
501 }
502 return;
503 }

505 /* if there is no result available, try to generate the untrapped
506 default */
507 if (info->res.type == fex_nodata) {
508 /* set scale factors for exponent wrapping */
509 switch (sip->si_code) {
510 case FPE_FLTOVF:
511 fscl = 1.262177448e-29f; /* 2^-96 */
512 dscl = 6.441148769597133308e-232; /* 2^-768 */
513 qscl = 8.778357852076208839765066529179033145e-3700l;/*
514 break;

516 case FPE_FLTUND:
517 fscl = 7.922816251e+28f; /* 2^96 */
518 dscl = 1.552518092300708935e+231; /* 2^768 */
519 qscl = 1.139165225263043370845938579315932009e+3699l;/*
520 break;

522 default:
523 /* user may have blown away the default result by mistak
524 so try to regenerate it */
525 (void) __fex_get_op(sip, uap, info);
526 if (info->res.type != fex_nodata)
527 goto stuff;
528 /* couldn’t do it */
529 return;
530 }

new/usr/src/lib/libm/common/m9x/__fex_sparc.c 2

532 /* get the operands */
533 switch (opf & 3) {
534 case 1: /* single */
535 info->op1.val.f = *(float*)FPreg(rs1);
536 info->op2.val.f = *(float*)FPreg(rs2);
537 break;

539 case 2: /* double */
540 info->op1.val.d = *(double*)FPREG(rs1);
541 info->op2.val.d = *(double*)FPREG(rs2);
542 break;

544 case 3: /* quad */
545 info->op1.val.q = *(long double*)FPREG(rs1);
546 info->op2.val.q = *(long double*)FPREG(rs2);
547 break;
548 }

550 /* generate the wrapped result */
551 switch (opf) {
552 case 0x41: /* add single */
553 info->res.type = fex_float;
554 info->res.val.f = fscl * (fscl * info->op1.val.f +
555 fscl * info->op2.val.f);
556 break;

558 case 0x42: /* add double */
559 info->res.type = fex_double;
560 info->res.val.d = dscl * (dscl * info->op1.val.d +
561 dscl * info->op2.val.d);
562 break;

564 case 0x43: /* add quad */
565 info->res.type = fex_ldouble;
566 info->res.val.q = qscl * (qscl * info->op1.val.q +
567 qscl * info->op2.val.q);
568 break;

570 case 0x45: /* subtract single */
571 info->res.type = fex_float;
572 info->res.val.f = fscl * (fscl * info->op1.val.f -
573 fscl * info->op2.val.f);
574 break;

576 case 0x46: /* subtract double */
577 info->res.type = fex_double;
578 info->res.val.d = dscl * (dscl * info->op1.val.d -
579 dscl * info->op2.val.d);
580 break;

582 case 0x47: /* subtract quad */
583 info->res.type = fex_ldouble;
584 info->res.val.q = qscl * (qscl * info->op1.val.q -
585 qscl * info->op2.val.q);
586 break;

588 case 0x49: /* multiply single */
589 info->res.type = fex_float;
590 info->res.val.f = (fscl * info->op1.val.f) *
591 (fscl * info->op2.val.f);
592 break;

594 case 0x4a: /* multiply double */
595 info->res.type = fex_double;
596 info->res.val.d = (dscl * info->op1.val.d) *
597 (dscl * info->op2.val.d);

new/usr/src/lib/libm/common/m9x/__fex_sparc.c 3

598 break;

600 case 0x4b: /* multiply quad */
601 info->res.type = fex_ldouble;
602 info->res.val.q = (qscl * info->op1.val.q) *
603 (qscl * info->op2.val.q);
604 break;

606 case 0x4d: /* divide single */
607 info->res.type = fex_float;
608 info->res.val.f = (fscl * info->op1.val.f) /
609 (info->op2.val.f / fscl);
610 break;

612 case 0x4e: /* divide double */
613 info->res.type = fex_double;
614 info->res.val.d = (dscl * info->op1.val.d) /
615 (info->op2.val.d / dscl);
616 break;

618 case 0x4f: /* divide quad */
619 info->res.type = fex_ldouble;
620 info->res.val.q = (qscl * info->op1.val.q) /
621 (info->op2.val.q / qscl);
622 break;

624 case 0xc6: /* convert double to single */
625 info->res.type = fex_float;
626 info->res.val.f = (float) (fscl * (fscl * info->op1.va
627 break;

629 case 0xc7: /* convert quad to single */
630 info->res.type = fex_float;
631 info->res.val.f = (float) (fscl * (fscl * info->op1.va
632 break;

634 case 0xcb: /* convert quad to double */
635 info->res.type = fex_double;
636 info->res.val.d = (double) (dscl * (dscl * info->op1.v
637 break;
638 }

640 if (info->res.type == fex_nodata)
641 /* couldn’t do it */
642 return;
643 }

645 stuff:
646 /* stick the result in the destination */
647 if (opf & 0x80) { /* conversion */
648 if (opf & 0x10) { /* result is an int */
649 switch (info->res.type) {
650 case fex_llong:
651 info->res.val.i = (int) info->res.val.l;
652 break;

654 case fex_float:
655 info->res.val.i = (int) info->res.val.f;
656 break;

658 case fex_double:
659 info->res.val.i = (int) info->res.val.d;
660 break;

662 case fex_ldouble:
663 info->res.val.i = (int) info->res.val.q;

new/usr/src/lib/libm/common/m9x/__fex_sparc.c 4

664 break;

666 default:
667 break;
668 #endif /* ! codereview */
669 }
670 *(int*)FPreg(rd) = info->res.val.i;
671 return;
672 }

674 switch (opf & 0xc) {
675 case 0: /* result is long long */
676 switch (info->res.type) {
677 case fex_int:
678 info->res.val.l = (long long) info->res.val.i;
679 break;

681 case fex_float:
682 info->res.val.l = (long long) info->res.val.f;
683 break;

685 case fex_double:
686 info->res.val.l = (long long) info->res.val.d;
687 break;

689 case fex_ldouble:
690 info->res.val.l = (long long) info->res.val.q;
691 break;

693 default:
694 break;
695 #endif /* ! codereview */
696 }
697 *(long long*)FPREG(rd) = info->res.val.l;
698 break;

700 case 0x4: /* result is float */
701 switch (info->res.type) {
702 case fex_int:
703 info->res.val.f = (float) info->res.val.i;
704 break;

706 case fex_llong:
707 info->res.val.f = (float) info->res.val.l;
708 break;

710 case fex_double:
711 info->res.val.f = (float) info->res.val.d;
712 break;

714 case fex_ldouble:
715 info->res.val.f = (float) info->res.val.q;
716 break;

718 default:
719 break;
720 #endif /* ! codereview */
721 }
722 *(float*)FPreg(rd) = info->res.val.f;
723 break;

725 case 0x8: /* result is double */
726 switch (info->res.type) {
727 case fex_int:
728 info->res.val.d = (double) info->res.val.i;
729 break;

new/usr/src/lib/libm/common/m9x/__fex_sparc.c 5

731 case fex_llong:
732 info->res.val.d = (double) info->res.val.l;
733 break;

735 case fex_float:
736 info->res.val.d = (double) info->res.val.f;
737 break;

739 case fex_ldouble:
740 info->res.val.d = (double) info->res.val.q;
741 break;

743 default:
744 break;
745 #endif /* ! codereview */
746 }
747 *(double*)FPREG(rd) = info->res.val.d;
748 break;

750 case 0xc: /* result is long double */
751 switch (info->res.type) {
752 case fex_int:
753 info->res.val.q = (long double) info->res.val.i;
754 break;

756 case fex_llong:
757 info->res.val.q = (long double) info->res.val.l;
758 break;

760 case fex_float:
761 info->res.val.q = (long double) info->res.val.f;
762 break;

764 case fex_double:
765 info->res.val.q = (long double) info->res.val.d;
766 break;

768 default:
769 break;
770 #endif /* ! codereview */
771 }
772 *(long double*)FPREG(rd) = info->res.val.q;
773 break;
774 }
775 return;
776 }

778 if ((opf & 0xf0) == 0x60) { /* fsmuld, fdmulq */
779 switch (opf & 0xc0) {
780 case 0x8: /* result is double */
781 switch (info->res.type) {
782 case fex_int:
783 info->res.val.d = (double) info->res.val.i;
784 break;

786 case fex_llong:
787 info->res.val.d = (double) info->res.val.l;
788 break;

790 case fex_float:
791 info->res.val.d = (double) info->res.val.f;
792 break;

794 case fex_ldouble:
795 info->res.val.d = (double) info->res.val.q;

new/usr/src/lib/libm/common/m9x/__fex_sparc.c 6

796 break;

798 default:
799 break;
800 #endif /* ! codereview */
801 }
802 *(double*)FPREG(rd) = info->res.val.d;
803 break;

805 case 0xc: /* result is long double */
806 switch (info->res.type) {
807 case fex_int:
808 info->res.val.q = (long double) info->res.val.i;
809 break;

811 case fex_llong:
812 info->res.val.q = (long double) info->res.val.l;
813 break;

815 case fex_float:
816 info->res.val.q = (long double) info->res.val.f;
817 break;

819 case fex_double:
820 info->res.val.q = (long double) info->res.val.d;
821 break;

823 default:
824 break;
825 #endif /* ! codereview */
826 }
827 *(long double*)FPREG(rd) = info->res.val.q;
828 break;
829 }
830 return;
831 }

833 switch (opf & 3) { /* other arithmetic op */
834 case 1: /* result is float */
835 switch (info->res.type) {
836 case fex_int:
837 info->res.val.f = (float) info->res.val.i;
838 break;

840 case fex_llong:
841 info->res.val.f = (float) info->res.val.l;
842 break;

844 case fex_double:
845 info->res.val.f = (float) info->res.val.d;
846 break;

848 case fex_ldouble:
849 info->res.val.f = (float) info->res.val.q;
850 break;

852 default:
853 break;
854 #endif /* ! codereview */
855 }
856 *(float*)FPreg(rd) = info->res.val.f;
857 break;

859 case 2: /* result is double */
860 switch (info->res.type) {
861 case fex_int:

new/usr/src/lib/libm/common/m9x/__fex_sparc.c 7

862 info->res.val.d = (double) info->res.val.i;
863 break;

865 case fex_llong:
866 info->res.val.d = (double) info->res.val.l;
867 break;

869 case fex_float:
870 info->res.val.d = (double) info->res.val.f;
871 break;

873 case fex_ldouble:
874 info->res.val.d = (double) info->res.val.q;
875 break;

877 default:
878 break;
879 #endif /* ! codereview */
880 }
881 *(double*)FPREG(rd) = info->res.val.d;
882 break;

884 case 3: /* result is long double */
885 switch (info->res.type) {
886 case fex_int:
887 info->res.val.q = (long double) info->res.val.i;
888 break;

890 case fex_llong:
891 info->res.val.q = (long double) info->res.val.l;
892 break;

894 case fex_float:
895 info->res.val.q = (long double) info->res.val.f;
896 break;

898 case fex_double:
899 info->res.val.q = (long double) info->res.val.d;
900 break;

902 default:
903 #endif /* ! codereview */
904 break;
905 }
906 *(long double*)FPREG(rd) = info->res.val.q;
907 break;
908 }
909 }
910 #endif /* defined(__sparc) */

new/usr/src/lib/libm/common/m9x/__fex_sse.c 1

**
 39094 Sun May 4 03:06:18 2014
new/usr/src/lib/libm/common/m9x/__fex_sse.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #include "fenv_synonyms.h"
31 #include <ucontext.h>
32 #include <fenv.h>
33 #if defined(__SUNPRO_C)
34 #include <sunmath.h>
35 #else
36 #include <sys/ieeefp.h>
37 #endif
38 #include "fex_handler.h"
39 #include "fenv_inlines.h"

41 #if !defined(REG_PC)
42 #define REG_PC EIP
43 #endif

45 #if !defined(REG_PS)
46 #define REG_PS EFL
47 #endif

49 #ifdef __amd64
50 #define regno(X) ((X < 4)? REG_RAX - X : \
51 ((X > 4)? REG_RAX + 1 - X : REG_RSP))
52 #else
53 #define regno(X) (EAX - X)
54 #endif

56 /*
57 * Support for SSE instructions
58 */

60 /*
61 * Decode an SSE instruction. Fill in *inst and return the length of the
62 * instruction in bytes. Return 0 if the instruction is not recognized.

new/usr/src/lib/libm/common/m9x/__fex_sse.c 2

63 */
64 int
65 __fex_parse_sse(ucontext_t *uap, sseinst_t *inst)
66 {
67 unsigned char *ip;
68 char *addr;
69 int i, dbl, simd, rex, modrm, sib, r;

71 i = 0;
72 ip = (unsigned char *)uap->uc_mcontext.gregs[REG_PC];

74 /* look for pseudo-prefixes */
75 dbl = 0;
76 simd = SIMD;
77 if (ip[i] == 0xF3) {
78 simd = 0;
79 i++;
80 } else if (ip[i] == 0x66) {
81 dbl = DOUBLE;
82 i++;
83 } else if (ip[i] == 0xF2) {
84 dbl = DOUBLE;
85 simd = 0;
86 i++;
87 }

89 /* look for AMD64 REX prefix */
90 rex = 0;
91 if (ip[i] >= 0x40 && ip[i] <= 0x4F) {
92 rex = ip[i];
93 i++;
94 }

96 /* parse opcode */
97 if (ip[i++] != 0x0F)
98 return 0;
99 switch (ip[i++]) {
100 case 0x2A:
101 inst->op = (int)cvtsi2ss + simd + dbl;
102 if (!simd)
103 inst->op = (int)inst->op + (rex & 8);
104 break;

106 case 0x2C:
107 inst->op = (int)cvttss2si + simd + dbl;
108 if (!simd)
109 inst->op = (int)inst->op + (rex & 8);
110 break;

112 case 0x2D:
113 inst->op = (int)cvtss2si + simd + dbl;
114 if (!simd)
115 inst->op = (int)inst->op + (rex & 8);
116 break;

118 case 0x2E:
119 /* oddball: scalar instruction in a SIMD opcode group */
120 if (!simd)
121 return 0;
122 inst->op = (int)ucomiss + dbl;
123 break;

125 case 0x2F:
126 /* oddball: scalar instruction in a SIMD opcode group */
127 if (!simd)
128 return 0;

new/usr/src/lib/libm/common/m9x/__fex_sse.c 3

129 inst->op = (int)comiss + dbl;
130 break;

132 case 0x51:
133 inst->op = (int)sqrtss + simd + dbl;
134 break;

136 case 0x58:
137 inst->op = (int)addss + simd + dbl;
138 break;

140 case 0x59:
141 inst->op = (int)mulss + simd + dbl;
142 break;

144 case 0x5A:
145 inst->op = (int)cvtss2sd + simd + dbl;
146 break;

148 case 0x5B:
149 if (dbl) {
150 if (simd)
151 inst->op = cvtps2dq;
152 else
153 return 0;
154 } else {
155 inst->op = (simd)? cvtdq2ps : cvttps2dq;
156 }
157 break;

159 case 0x5C:
160 inst->op = (int)subss + simd + dbl;
161 break;

163 case 0x5D:
164 inst->op = (int)minss + simd + dbl;
165 break;

167 case 0x5E:
168 inst->op = (int)divss + simd + dbl;
169 break;

171 case 0x5F:
172 inst->op = (int)maxss + simd + dbl;
173 break;

175 case 0xC2:
176 inst->op = (int)cmpss + simd + dbl;
177 break;

179 case 0xE6:
180 if (simd) {
181 if (dbl)
182 inst->op = cvttpd2dq;
183 else
184 return 0;
185 } else {
186 inst->op = (dbl)? cvtpd2dq : cvtdq2pd;
187 }
188 break;

190 default:
191 return 0;
192 }

194 /* locate operands */

new/usr/src/lib/libm/common/m9x/__fex_sse.c 4

195 modrm = ip[i++];

197 if (inst->op == cvtss2si || inst->op == cvttss2si ||
198 inst->op == cvtsd2si || inst->op == cvttsd2si ||
199 inst->op == cvtss2siq || inst->op == cvttss2siq ||
200 inst->op == cvtsd2siq || inst->op == cvttsd2siq) {
201 /* op1 is a gp register */
202 r = ((rex & 4) << 1) | ((modrm >> 3) & 7);
203 inst->op1 = (sseoperand_t *)&uap->uc_mcontext.gregs[regno(r)];
204 } else if (inst->op == cvtps2pi || inst->op == cvttps2pi ||
205 inst->op == cvtpd2pi || inst->op == cvttpd2pi) {
206 /* op1 is a mmx register */
207 #ifdef __amd64
208 inst->op1 = (sseoperand_t *)&uap->uc_mcontext.fpregs.fp_reg_set.
209 fpchip_state.st[(modrm >> 3) & 7];
210 #else
211 inst->op1 = (sseoperand_t *)(10 * ((modrm >> 3) & 7) +
212 (char *)&uap->uc_mcontext.fpregs.fp_reg_set.
213 fpchip_state.state[7]);
214 #endif
215 } else {
216 /* op1 is a xmm register */
217 r = ((rex & 4) << 1) | ((modrm >> 3) & 7);
218 inst->op1 = (sseoperand_t *)&uap->uc_mcontext.fpregs.
219 fp_reg_set.fpchip_state.xmm[r];
220 }

222 if ((modrm >> 6) == 3) {
223 if (inst->op == cvtsi2ss || inst->op == cvtsi2sd ||
224 inst->op == cvtsi2ssq || inst->op == cvtsi2sdq) {
225 /* op2 is a gp register */
226 r = ((rex & 1) << 3) | (modrm & 7);
227 inst->op2 = (sseoperand_t *)&uap->uc_mcontext.
228 gregs[regno(r)];
229 } else if (inst->op == cvtpi2ps || inst->op == cvtpi2pd) {
230 /* op2 is a mmx register */
231 #ifdef __amd64
232 inst->op2 = (sseoperand_t *)&uap->uc_mcontext.fpregs.
233 fp_reg_set.fpchip_state.st[modrm & 7];
234 #else
235 inst->op2 = (sseoperand_t *)(10 * (modrm & 7) +
236 (char *)&uap->uc_mcontext.fpregs.fp_reg_set.
237 fpchip_state.state[7]);
238 #endif
239 } else {
240 /* op2 is a xmm register */
241 r = ((rex & 1) << 3) | (modrm & 7);
242 inst->op2 = (sseoperand_t *)&uap->uc_mcontext.fpregs.
243 fp_reg_set.fpchip_state.xmm[r];
244 }
245 } else if ((modrm & 0xc7) == 0x05) {
246 #ifdef __amd64
246 #if defined(__amd64)
247 /* address of next instruction + offset */
248 r = i + 4;
249 if (inst->op == cmpss || inst->op == cmpps ||
250 inst->op == cmpsd || inst->op == cmppd)
251 r++;
252 inst->op2 = (sseoperand_t *)(ip + r + *(int *)(ip + i));
253 #else
254 /* absolute address */
255 inst->op2 = (sseoperand_t *)(*(int *)(ip + i));
256 #endif
257 i += 4;
258 } else {
259 /* complex address */

new/usr/src/lib/libm/common/m9x/__fex_sse.c 5

260 if ((modrm & 7) == 4) {
261 /* parse sib byte */
262 sib = ip[i++];
263 if ((sib & 7) == 5 && (modrm >> 6) == 0) {
264 /* start with absolute address */
265 addr = (char *)(uintptr_t)(*(int *)(ip + i));
265 addr = (char *)(uintptr_t)(ip + i);
266 i += 4;
267 } else {
268 /* start with base */
269 r = ((rex & 1) << 3) | (sib & 7);
270 addr = (char *)uap->uc_mcontext.gregs[regno(r)];
271 }
272 r = ((rex & 2) << 2) | ((sib >> 3) & 7);
273 if (r != 4) {
274 /* add scaled index */
275 addr += uap->uc_mcontext.gregs[regno(r)]
276 << (sib >> 6);
277 }
278 } else {
279 r = ((rex & 1) << 3) | (modrm & 7);
280 addr = (char *)uap->uc_mcontext.gregs[regno(r)];
281 }

283 /* add displacement, if any */
284 if ((modrm >> 6) == 1) {
285 addr += (char)ip[i++];
286 } else if ((modrm >> 6) == 2) {
287 addr += *(int *)(ip + i);
288 i += 4;
289 }
290 inst->op2 = (sseoperand_t *)addr;
291 }

293 if (inst->op == cmpss || inst->op == cmpps || inst->op == cmpsd ||
294 inst->op == cmppd) {
295 /* get the immediate operand */
296 inst->imm = ip[i++];
297 }

299 return i;
300 }

______unchanged_portion_omitted_

338 /*
339 * Inspect a scalar SSE instruction that incurred an invalid operation
340 * exception to determine which type of exception it was.
341 */
342 static enum fex_exception
343 __fex_get_sse_invalid_type(sseinst_t *inst)
344 {
345 enum fp_class_type t1, t2;

347 /* check op2 for signaling nan */
348 t2 = ((int)inst->op & DOUBLE)? my_fp_class(&inst->op2->d[0]) :
349 my_fp_classf(&inst->op2->f[0]);
350 if (t2 == fp_signaling)
351 return fex_inv_snan;

353 /* eliminate all single-operand instructions */
354 switch (inst->op) {
355 case cvtsd2ss:
356 case cvtss2sd:
357 /* hmm, this shouldn’t have happened */
358 return (enum fex_exception) -1;

new/usr/src/lib/libm/common/m9x/__fex_sse.c 6

360 case sqrtss:
361 case sqrtsd:
362 return fex_inv_sqrt;

364 case cvtss2si:
365 case cvtsd2si:
366 case cvttss2si:
367 case cvttsd2si:
368 case cvtss2siq:
369 case cvtsd2siq:
370 case cvttss2siq:
371 case cvttsd2siq:
372 return fex_inv_int;
373 default:
374 break;
375 #endif /* ! codereview */
376 }

378 /* check op1 for signaling nan */
379 t1 = ((int)inst->op & DOUBLE)? my_fp_class(&inst->op1->d[0]) :
380 my_fp_classf(&inst->op1->f[0]);
381 if (t1 == fp_signaling)
382 return fex_inv_snan;

384 /* check two-operand instructions for other cases */
385 switch (inst->op) {
386 case cmpss:
387 case cmpsd:
388 case minss:
389 case minsd:
390 case maxss:
391 case maxsd:
392 case comiss:
393 case comisd:
394 return fex_inv_cmp;

396 case addss:
397 case addsd:
398 case subss:
399 case subsd:
400 if (t1 == fp_infinity && t2 == fp_infinity)
401 return fex_inv_isi;
402 break;

404 case mulss:
405 case mulsd:
406 if ((t1 == fp_zero && t2 == fp_infinity) ||
407 (t2 == fp_zero && t1 == fp_infinity))
408 return fex_inv_zmi;
409 break;

411 case divss:
412 case divsd:
413 if (t1 == fp_zero && t2 == fp_zero)
414 return fex_inv_zdz;
415 if (t1 == fp_infinity && t2 == fp_infinity)
416 return fex_inv_idi;
417 default:
418 break;
419 #endif /* ! codereview */
420 }

422 return (enum fex_exception)-1;
423 }

425 /* inline templates */

new/usr/src/lib/libm/common/m9x/__fex_sse.c 7

426 extern void sse_cmpeqss(float *, float *, int *);
427 extern void sse_cmpltss(float *, float *, int *);
428 extern void sse_cmpless(float *, float *, int *);
429 extern void sse_cmpunordss(float *, float *, int *);
430 extern void sse_minss(float *, float *, float *);
431 extern void sse_maxss(float *, float *, float *);
432 extern void sse_addss(float *, float *, float *);
433 extern void sse_subss(float *, float *, float *);
434 extern void sse_mulss(float *, float *, float *);
435 extern void sse_divss(float *, float *, float *);
436 extern void sse_sqrtss(float *, float *);
437 extern void sse_ucomiss(float *, float *);
438 extern void sse_comiss(float *, float *);
439 extern void sse_cvtss2sd(float *, double *);
440 extern void sse_cvtsi2ss(int *, float *);
441 extern void sse_cvttss2si(float *, int *);
442 extern void sse_cvtss2si(float *, int *);
443 #ifdef __amd64
444 extern void sse_cvtsi2ssq(long long *, float *);
445 extern void sse_cvttss2siq(float *, long long *);
446 extern void sse_cvtss2siq(float *, long long *);
447 #endif
448 extern void sse_cmpeqsd(double *, double *, long long *);
449 extern void sse_cmpltsd(double *, double *, long long *);
450 extern void sse_cmplesd(double *, double *, long long *);
451 extern void sse_cmpunordsd(double *, double *, long long *);
452 extern void sse_minsd(double *, double *, double *);
453 extern void sse_maxsd(double *, double *, double *);
454 extern void sse_addsd(double *, double *, double *);
455 extern void sse_subsd(double *, double *, double *);
456 extern void sse_mulsd(double *, double *, double *);
457 extern void sse_divsd(double *, double *, double *);
458 extern void sse_sqrtsd(double *, double *);
459 extern void sse_ucomisd(double *, double *);
460 extern void sse_comisd(double *, double *);
461 extern void sse_cvtsd2ss(double *, float *);
462 extern void sse_cvtsi2sd(int *, double *);
463 extern void sse_cvttsd2si(double *, int *);
464 extern void sse_cvtsd2si(double *, int *);
465 #ifdef __amd64
466 extern void sse_cvtsi2sdq(long long *, double *);
467 extern void sse_cvttsd2siq(double *, long long *);
468 extern void sse_cvtsd2siq(double *, long long *);
469 #endif

471 /*
472 * Fill in *info with the operands, default untrapped result, and
473 * flags produced by a scalar SSE instruction, and return the type
474 * of trapped exception (if any). On entry, the mxcsr must have
475 * all exceptions masked and all flags clear. The same conditions
476 * will hold on exit.
477 *
478 * This routine does not work if the instruction specified by *inst
479 * is not a scalar instruction.
480 */
481 enum fex_exception
482 __fex_get_sse_op(ucontext_t *uap, sseinst_t *inst, fex_info_t *info)
483 {
484 unsigned int e, te, mxcsr, oldmxcsr, subnorm;

486 /*
487 * Perform the operation with traps disabled and check the
488 * exception flags. If the underflow trap was enabled, also
489 * check for an exact subnormal result.
490 */
491 __fenv_getmxcsr(&oldmxcsr);

new/usr/src/lib/libm/common/m9x/__fex_sse.c 8

492 subnorm = 0;
493 if ((int)inst->op & DOUBLE) {
494 if (inst->op == cvtsi2sd) {
495 info->op1.type = fex_int;
496 info->op1.val.i = inst->op2->i[0];
497 info->op2.type = fex_nodata;
498 } else if (inst->op == cvtsi2sdq) {
499 info->op1.type = fex_llong;
500 info->op1.val.l = inst->op2->l[0];
501 info->op2.type = fex_nodata;
502 } else if (inst->op == sqrtsd || inst->op == cvtsd2ss ||
503 inst->op == cvttsd2si || inst->op == cvtsd2si ||
504 inst->op == cvttsd2siq || inst->op == cvtsd2siq) {
505 info->op1.type = fex_double;
506 info->op1.val.d = inst->op2->d[0];
507 info->op2.type = fex_nodata;
508 } else {
509 info->op1.type = fex_double;
510 info->op1.val.d = inst->op1->d[0];
511 info->op2.type = fex_double;
512 info->op2.val.d = inst->op2->d[0];
513 }
514 info->res.type = fex_double;
515 switch (inst->op) {
516 case cmpsd:
517 info->op = fex_cmp;
518 info->res.type = fex_llong;
519 switch (inst->imm & 3) {
520 case 0:
521 sse_cmpeqsd(&info->op1.val.d, &info->op2.val.d,
522 &info->res.val.l);
523 break;

525 case 1:
526 sse_cmpltsd(&info->op1.val.d, &info->op2.val.d,
527 &info->res.val.l);
528 break;

530 case 2:
531 sse_cmplesd(&info->op1.val.d, &info->op2.val.d,
532 &info->res.val.l);
533 break;

535 case 3:
536 sse_cmpunordsd(&info->op1.val.d,
537 &info->op2.val.d, &info->res.val.l);
538 }
539 if (inst->imm & 4)
540 info->res.val.l ^= 0xffffffffffffffffull;
541 break;

543 case minsd:
544 info->op = fex_other;
545 sse_minsd(&info->op1.val.d, &info->op2.val.d,
546 &info->res.val.d);
547 break;

549 case maxsd:
550 info->op = fex_other;
551 sse_maxsd(&info->op1.val.d, &info->op2.val.d,
552 &info->res.val.d);
553 break;

555 case addsd:
556 info->op = fex_add;
557 sse_addsd(&info->op1.val.d, &info->op2.val.d,

new/usr/src/lib/libm/common/m9x/__fex_sse.c 9

558 &info->res.val.d);
559 if (my_fp_class(&info->res.val.d) == fp_subnormal)
560 subnorm = 1;
561 break;

563 case subsd:
564 info->op = fex_sub;
565 sse_subsd(&info->op1.val.d, &info->op2.val.d,
566 &info->res.val.d);
567 if (my_fp_class(&info->res.val.d) == fp_subnormal)
568 subnorm = 1;
569 break;

571 case mulsd:
572 info->op = fex_mul;
573 sse_mulsd(&info->op1.val.d, &info->op2.val.d,
574 &info->res.val.d);
575 if (my_fp_class(&info->res.val.d) == fp_subnormal)
576 subnorm = 1;
577 break;

579 case divsd:
580 info->op = fex_div;
581 sse_divsd(&info->op1.val.d, &info->op2.val.d,
582 &info->res.val.d);
583 if (my_fp_class(&info->res.val.d) == fp_subnormal)
584 subnorm = 1;
585 break;

587 case sqrtsd:
588 info->op = fex_sqrt;
589 sse_sqrtsd(&info->op1.val.d, &info->res.val.d);
590 break;

592 case cvtsd2ss:
593 info->op = fex_cnvt;
594 info->res.type = fex_float;
595 sse_cvtsd2ss(&info->op1.val.d, &info->res.val.f);
596 if (my_fp_classf(&info->res.val.f) == fp_subnormal)
597 subnorm = 1;
598 break;

600 case cvtsi2sd:
601 info->op = fex_cnvt;
602 sse_cvtsi2sd(&info->op1.val.i, &info->res.val.d);
603 break;

605 case cvttsd2si:
606 info->op = fex_cnvt;
607 info->res.type = fex_int;
608 sse_cvttsd2si(&info->op1.val.d, &info->res.val.i);
609 break;

611 case cvtsd2si:
612 info->op = fex_cnvt;
613 info->res.type = fex_int;
614 sse_cvtsd2si(&info->op1.val.d, &info->res.val.i);
615 break;

617 #ifdef __amd64
618 case cvtsi2sdq:
619 info->op = fex_cnvt;
620 sse_cvtsi2sdq(&info->op1.val.l, &info->res.val.d);
621 break;

623 case cvttsd2siq:

new/usr/src/lib/libm/common/m9x/__fex_sse.c 10

624 info->op = fex_cnvt;
625 info->res.type = fex_llong;
626 sse_cvttsd2siq(&info->op1.val.d, &info->res.val.l);
627 break;

629 case cvtsd2siq:
630 info->op = fex_cnvt;
631 info->res.type = fex_llong;
632 sse_cvtsd2siq(&info->op1.val.d, &info->res.val.l);
633 break;
634 #endif

636 case ucomisd:
637 info->op = fex_cmp;
638 info->res.type = fex_nodata;
639 sse_ucomisd(&info->op1.val.d, &info->op2.val.d);
640 break;

642 case comisd:
643 info->op = fex_cmp;
644 info->res.type = fex_nodata;
645 sse_comisd(&info->op1.val.d, &info->op2.val.d);
646 break;
647 default:
648 break;
649 #endif /* ! codereview */
650 }
651 } else {
652 if (inst->op == cvtsi2ss) {
653 info->op1.type = fex_int;
654 info->op1.val.i = inst->op2->i[0];
655 info->op2.type = fex_nodata;
656 } else if (inst->op == cvtsi2ssq) {
657 info->op1.type = fex_llong;
658 info->op1.val.l = inst->op2->l[0];
659 info->op2.type = fex_nodata;
660 } else if (inst->op == sqrtss || inst->op == cvtss2sd ||
661 inst->op == cvttss2si || inst->op == cvtss2si ||
662 inst->op == cvttss2siq || inst->op == cvtss2siq) {
663 info->op1.type = fex_float;
664 info->op1.val.f = inst->op2->f[0];
665 info->op2.type = fex_nodata;
666 } else {
667 info->op1.type = fex_float;
668 info->op1.val.f = inst->op1->f[0];
669 info->op2.type = fex_float;
670 info->op2.val.f = inst->op2->f[0];
671 }
672 info->res.type = fex_float;
673 switch (inst->op) {
674 case cmpss:
675 info->op = fex_cmp;
676 info->res.type = fex_int;
677 switch (inst->imm & 3) {
678 case 0:
679 sse_cmpeqss(&info->op1.val.f, &info->op2.val.f,
680 &info->res.val.i);
681 break;

683 case 1:
684 sse_cmpltss(&info->op1.val.f, &info->op2.val.f,
685 &info->res.val.i);
686 break;

688 case 2:
689 sse_cmpless(&info->op1.val.f, &info->op2.val.f,

new/usr/src/lib/libm/common/m9x/__fex_sse.c 11

690 &info->res.val.i);
691 break;

693 case 3:
694 sse_cmpunordss(&info->op1.val.f,
695 &info->op2.val.f, &info->res.val.i);
696 }
697 if (inst->imm & 4)
698 info->res.val.i ^= 0xffffffffu;
699 break;

701 case minss:
702 info->op = fex_other;
703 sse_minss(&info->op1.val.f, &info->op2.val.f,
704 &info->res.val.f);
705 break;

707 case maxss:
708 info->op = fex_other;
709 sse_maxss(&info->op1.val.f, &info->op2.val.f,
710 &info->res.val.f);
711 break;

713 case addss:
714 info->op = fex_add;
715 sse_addss(&info->op1.val.f, &info->op2.val.f,
716 &info->res.val.f);
717 if (my_fp_classf(&info->res.val.f) == fp_subnormal)
718 subnorm = 1;
719 break;

721 case subss:
722 info->op = fex_sub;
723 sse_subss(&info->op1.val.f, &info->op2.val.f,
724 &info->res.val.f);
725 if (my_fp_classf(&info->res.val.f) == fp_subnormal)
726 subnorm = 1;
727 break;

729 case mulss:
730 info->op = fex_mul;
731 sse_mulss(&info->op1.val.f, &info->op2.val.f,
732 &info->res.val.f);
733 if (my_fp_classf(&info->res.val.f) == fp_subnormal)
734 subnorm = 1;
735 break;

737 case divss:
738 info->op = fex_div;
739 sse_divss(&info->op1.val.f, &info->op2.val.f,
740 &info->res.val.f);
741 if (my_fp_classf(&info->res.val.f) == fp_subnormal)
742 subnorm = 1;
743 break;

745 case sqrtss:
746 info->op = fex_sqrt;
747 sse_sqrtss(&info->op1.val.f, &info->res.val.f);
748 break;

750 case cvtss2sd:
751 info->op = fex_cnvt;
752 info->res.type = fex_double;
753 sse_cvtss2sd(&info->op1.val.f, &info->res.val.d);
754 break;

new/usr/src/lib/libm/common/m9x/__fex_sse.c 12

756 case cvtsi2ss:
757 info->op = fex_cnvt;
758 sse_cvtsi2ss(&info->op1.val.i, &info->res.val.f);
759 break;

761 case cvttss2si:
762 info->op = fex_cnvt;
763 info->res.type = fex_int;
764 sse_cvttss2si(&info->op1.val.f, &info->res.val.i);
765 break;

767 case cvtss2si:
768 info->op = fex_cnvt;
769 info->res.type = fex_int;
770 sse_cvtss2si(&info->op1.val.f, &info->res.val.i);
771 break;

773 #ifdef __amd64
774 case cvtsi2ssq:
775 info->op = fex_cnvt;
776 sse_cvtsi2ssq(&info->op1.val.l, &info->res.val.f);
777 break;

779 case cvttss2siq:
780 info->op = fex_cnvt;
781 info->res.type = fex_llong;
782 sse_cvttss2siq(&info->op1.val.f, &info->res.val.l);
783 break;

785 case cvtss2siq:
786 info->op = fex_cnvt;
787 info->res.type = fex_llong;
788 sse_cvtss2siq(&info->op1.val.f, &info->res.val.l);
789 break;
790 #endif

792 case ucomiss:
793 info->op = fex_cmp;
794 info->res.type = fex_nodata;
795 sse_ucomiss(&info->op1.val.f, &info->op2.val.f);
796 break;

798 case comiss:
799 info->op = fex_cmp;
800 info->res.type = fex_nodata;
801 sse_comiss(&info->op1.val.f, &info->op2.val.f);
802 break;
803 default:
804 break;
805 #endif /* ! codereview */
806 }
807 }
808 __fenv_getmxcsr(&mxcsr);
809 info->flags = mxcsr & 0x3d;
810 __fenv_setmxcsr(&oldmxcsr);

812 /* determine which exception would have been trapped */
813 te = ~(uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.mxcsr
814 >> 7) & 0x3d;
815 e = mxcsr & te;
816 if (e & FE_INVALID)
817 return __fex_get_sse_invalid_type(inst);
818 if (e & FE_DIVBYZERO)
819 return fex_division;
820 if (e & FE_OVERFLOW)
821 return fex_overflow;

new/usr/src/lib/libm/common/m9x/__fex_sse.c 13

822 if ((e & FE_UNDERFLOW) || (subnorm && (te & FE_UNDERFLOW)))
823 return fex_underflow;
824 if (e & FE_INEXACT)
825 return fex_inexact;
826 return (enum fex_exception)-1;
827 }

829 /*
830 * Emulate a SIMD SSE instruction to determine which exceptions occur
831 * in each part. For i = 0, 1, 2, and 3, set e[i] to indicate the
832 * trapped exception that would occur if the i-th part of the SIMD
833 * instruction were executed in isolation; set e[i] to -1 if no
834 * trapped exception would occur in this part. Also fill in info[i]
835 * with the corresponding operands, default untrapped result, and
836 * flags.
837 *
838 * This routine does not work if the instruction specified by *inst
839 * is not a SIMD instruction.
840 */
841 void
842 __fex_get_simd_op(ucontext_t *uap, sseinst_t *inst, enum fex_exception *e,
843 fex_info_t *info)
844 {
845 sseinst_t dummy;
846 int i;

848 e[0] = e[1] = e[2] = e[3] = -1;

850 /* perform each part of the SIMD operation */
851 switch (inst->op) {
852 case cmpps:
853 dummy.op = cmpss;
854 dummy.imm = inst->imm;
855 for (i = 0; i < 4; i++) {
856 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
857 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
858 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
859 }
860 break;

862 case minps:
863 dummy.op = minss;
864 for (i = 0; i < 4; i++) {
865 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
866 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
867 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
868 }
869 break;

871 case maxps:
872 dummy.op = maxss;
873 for (i = 0; i < 4; i++) {
874 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
875 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
876 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
877 }
878 break;

880 case addps:
881 dummy.op = addss;
882 for (i = 0; i < 4; i++) {
883 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
884 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
885 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
886 }
887 break;

new/usr/src/lib/libm/common/m9x/__fex_sse.c 14

889 case subps:
890 dummy.op = subss;
891 for (i = 0; i < 4; i++) {
892 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
893 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
894 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
895 }
896 break;

898 case mulps:
899 dummy.op = mulss;
900 for (i = 0; i < 4; i++) {
901 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
902 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
903 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
904 }
905 break;

907 case divps:
908 dummy.op = divss;
909 for (i = 0; i < 4; i++) {
910 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
911 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
912 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
913 }
914 break;

916 case sqrtps:
917 dummy.op = sqrtss;
918 for (i = 0; i < 4; i++) {
919 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
920 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
921 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
922 }
923 break;

925 case cvtdq2ps:
926 dummy.op = cvtsi2ss;
927 for (i = 0; i < 4; i++) {
928 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
929 dummy.op2 = (sseoperand_t *)&inst->op2->i[i];
930 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
931 }
932 break;

934 case cvttps2dq:
935 dummy.op = cvttss2si;
936 for (i = 0; i < 4; i++) {
937 dummy.op1 = (sseoperand_t *)&inst->op1->i[i];
938 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
939 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
940 }
941 break;

943 case cvtps2dq:
944 dummy.op = cvtss2si;
945 for (i = 0; i < 4; i++) {
946 dummy.op1 = (sseoperand_t *)&inst->op1->i[i];
947 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
948 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
949 }
950 break;

952 case cvtpi2ps:
953 dummy.op = cvtsi2ss;

new/usr/src/lib/libm/common/m9x/__fex_sse.c 15

954 for (i = 0; i < 2; i++) {
955 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
956 dummy.op2 = (sseoperand_t *)&inst->op2->i[i];
957 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
958 }
959 break;

961 case cvttps2pi:
962 dummy.op = cvttss2si;
963 for (i = 0; i < 2; i++) {
964 dummy.op1 = (sseoperand_t *)&inst->op1->i[i];
965 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
966 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
967 }
968 break;

970 case cvtps2pi:
971 dummy.op = cvtss2si;
972 for (i = 0; i < 2; i++) {
973 dummy.op1 = (sseoperand_t *)&inst->op1->i[i];
974 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
975 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
976 }
977 break;

979 case cmppd:
980 dummy.op = cmpsd;
981 dummy.imm = inst->imm;
982 for (i = 0; i < 2; i++) {
983 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
984 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
985 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
986 }
987 break;

989 case minpd:
990 dummy.op = minsd;
991 for (i = 0; i < 2; i++) {
992 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
993 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
994 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
995 }
996 break;

998 case maxpd:
999 dummy.op = maxsd;
1000 for (i = 0; i < 2; i++) {
1001 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
1002 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1003 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
1004 }
1005 break;

1007 case addpd:
1008 dummy.op = addsd;
1009 for (i = 0; i < 2; i++) {
1010 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
1011 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1012 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
1013 }
1014 break;

1016 case subpd:
1017 dummy.op = subsd;
1018 for (i = 0; i < 2; i++) {
1019 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];

new/usr/src/lib/libm/common/m9x/__fex_sse.c 16

1020 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1021 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
1022 }
1023 break;

1025 case mulpd:
1026 dummy.op = mulsd;
1027 for (i = 0; i < 2; i++) {
1028 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
1029 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1030 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
1031 }
1032 break;

1034 case divpd:
1035 dummy.op = divsd;
1036 for (i = 0; i < 2; i++) {
1037 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
1038 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1039 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
1040 }
1041 break;

1043 case sqrtpd:
1044 dummy.op = sqrtsd;
1045 for (i = 0; i < 2; i++) {
1046 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
1047 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1048 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
1049 }
1050 break;

1052 case cvtpi2pd:
1053 case cvtdq2pd:
1054 dummy.op = cvtsi2sd;
1055 for (i = 0; i < 2; i++) {
1056 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
1057 dummy.op2 = (sseoperand_t *)&inst->op2->i[i];
1058 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
1059 }
1060 break;

1062 case cvttpd2pi:
1063 case cvttpd2dq:
1064 dummy.op = cvttsd2si;
1065 for (i = 0; i < 2; i++) {
1066 dummy.op1 = (sseoperand_t *)&inst->op1->i[i];
1067 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1068 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
1069 }
1070 break;

1072 case cvtpd2pi:
1073 case cvtpd2dq:
1074 dummy.op = cvtsd2si;
1075 for (i = 0; i < 2; i++) {
1076 dummy.op1 = (sseoperand_t *)&inst->op1->i[i];
1077 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1078 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
1079 }
1080 break;

1082 case cvtps2pd:
1083 dummy.op = cvtss2sd;
1084 for (i = 0; i < 2; i++) {
1085 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];

new/usr/src/lib/libm/common/m9x/__fex_sse.c 17

1086 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
1087 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
1088 }
1089 break;

1091 case cvtpd2ps:
1092 dummy.op = cvtsd2ss;
1093 for (i = 0; i < 2; i++) {
1094 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
1095 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1096 e[i] = __fex_get_sse_op(uap, &dummy, &info[i]);
1097 }
1098 default:
1099 break;
1100 #endif /* ! codereview */
1101 }
1102 }

1104 /*
1105 * Store the result value from *info in the destination of the scalar
1106 * SSE instruction specified by *inst. If no result is given but the
1107 * exception is underflow or overflow, supply the default trapped result.
1108 *
1109 * This routine does not work if the instruction specified by *inst
1110 * is not a scalar instruction.
1111 */
1112 void
1113 __fex_st_sse_result(ucontext_t *uap, sseinst_t *inst, enum fex_exception e,
1114 fex_info_t *info)
1115 {
1116 int i = 0;
1117 long long l = 0L;;
1118 float f = 0.0, fscl;
1119 double d = 0.0L, dscl;
373 int i;
374 long long l;
375 float f, fscl;
376 double d, dscl;

1121 /* for compares that write eflags, just set the flags
1122 to indicate "unordered" */
1123 if (inst->op == ucomiss || inst->op == comiss ||
1124 inst->op == ucomisd || inst->op == comisd) {
1125 uap->uc_mcontext.gregs[REG_PS] |= 0x45;
1126 return;
1127 }

1129 /* if info doesn’t specify a result value, try to generate
1130 the default trapped result */
1131 if (info->res.type == fex_nodata) {
1132 /* set scale factors for exponent wrapping */
1133 switch (e) {
1134 case fex_overflow:
1135 fscl = 1.262177448e-29f; /* 2^-96 */
1136 dscl = 6.441148769597133308e-232; /* 2^-768 */
1137 break;

1139 case fex_underflow:
1140 fscl = 7.922816251e+28f; /* 2^96 */
1141 dscl = 1.552518092300708935e+231; /* 2^768 */
1142 break;

1144 default:
1145 (void) __fex_get_sse_op(uap, inst, info);
1146 if (info->res.type == fex_nodata)
1147 return;

new/usr/src/lib/libm/common/m9x/__fex_sse.c 18

1148 goto stuff;
1149 }

1151 /* generate the wrapped result */
1152 if (inst->op == cvtsd2ss) {
1153 info->op1.type = fex_double;
1154 info->op1.val.d = inst->op2->d[0];
1155 info->op2.type = fex_nodata;
1156 info->res.type = fex_float;
1157 info->res.val.f = (float)(fscl * (fscl *
1158 info->op1.val.d));
1159 } else if ((int)inst->op & DOUBLE) {
1160 info->op1.type = fex_double;
1161 info->op1.val.d = inst->op1->d[0];
1162 info->op2.type = fex_double;
1163 info->op2.val.d = inst->op2->d[0];
1164 info->res.type = fex_double;
1165 switch (inst->op) {
1166 case addsd:
1167 info->res.val.d = dscl * (dscl *
1168 info->op1.val.d + dscl * info->op2.val.d);
1169 break;

1171 case subsd:
1172 info->res.val.d = dscl * (dscl *
1173 info->op1.val.d - dscl * info->op2.val.d);
1174 break;

1176 case mulsd:
1177 info->res.val.d = (dscl * info->op1.val.d) *
1178 (dscl * info->op2.val.d);
1179 break;

1181 case divsd:
1182 info->res.val.d = (dscl * info->op1.val.d) /
1183 (info->op2.val.d / dscl);
1184 break;

1186 default:
1187 return;
1188 }
1189 } else {
1190 info->op1.type = fex_float;
1191 info->op1.val.f = inst->op1->f[0];
1192 info->op2.type = fex_float;
1193 info->op2.val.f = inst->op2->f[0];
1194 info->res.type = fex_float;
1195 switch (inst->op) {
1196 case addss:
1197 info->res.val.f = fscl * (fscl *
1198 info->op1.val.f + fscl * info->op2.val.f);
1199 break;

1201 case subss:
1202 info->res.val.f = fscl * (fscl *
1203 info->op1.val.f - fscl * info->op2.val.f);
1204 break;

1206 case mulss:
1207 info->res.val.f = (fscl * info->op1.val.f) *
1208 (fscl * info->op2.val.f);
1209 break;

1211 case divss:
1212 info->res.val.f = (fscl * info->op1.val.f) /
1213 (info->op2.val.f / fscl);

new/usr/src/lib/libm/common/m9x/__fex_sse.c 19

1214 break;

1216 default:
1217 return;
1218 }
1219 }
1220 }

1222 /* put the result in the destination */
1223 stuff:
1224 if (inst->op == cmpss || inst->op == cvttss2si || inst->op == cvtss2si
1225 || inst->op == cvttsd2si || inst->op == cvtsd2si) {
1226 switch (info->res.type) {
1227 case fex_int:
1228 i = info->res.val.i;
1229 break;

1231 case fex_llong:
1232 i = info->res.val.l;
1233 break;

1235 case fex_float:
1236 i = info->res.val.f;
1237 break;

1239 case fex_double:
1240 i = info->res.val.d;
1241 break;

1243 case fex_ldouble:
1244 i = info->res.val.q;
1245 break;

1247 default:
1248 break;
1249 #endif /* ! codereview */
1250 }
1251 inst->op1->i[0] = i;
1252 } else if (inst->op == cmpsd || inst->op == cvttss2siq ||
1253 inst->op == cvtss2siq || inst->op == cvttsd2siq ||
1254 inst->op == cvtsd2siq) {
1255 switch (info->res.type) {
1256 case fex_int:
1257 l = info->res.val.i;
1258 break;

1260 case fex_llong:
1261 l = info->res.val.l;
1262 break;

1264 case fex_float:
1265 l = info->res.val.f;
1266 break;

1268 case fex_double:
1269 l = info->res.val.d;
1270 break;

1272 case fex_ldouble:
1273 l = info->res.val.q;
1274 break;

1276 default:
1277 break;
1278 #endif /* ! codereview */
1279 }

new/usr/src/lib/libm/common/m9x/__fex_sse.c 20

1280 inst->op1->l[0] = l;
1281 } else if ((((int)inst->op & DOUBLE) && inst->op != cvtsd2ss) ||
1282 inst->op == cvtss2sd) {
1283 switch (info->res.type) {
1284 case fex_int:
1285 d = info->res.val.i;
1286 break;

1288 case fex_llong:
1289 d = info->res.val.l;
1290 break;

1292 case fex_float:
1293 d = info->res.val.f;
1294 break;

1296 case fex_double:
1297 d = info->res.val.d;
1298 break;

1300 case fex_ldouble:
1301 d = info->res.val.q;
1302 break;

1304 default:
1305 break;
1306 #endif /* ! codereview */
1307 }
1308 inst->op1->d[0] = d;
1309 } else {
1310 switch (info->res.type) {
1311 case fex_int:
1312 f = info->res.val.i;
1313 break;

1315 case fex_llong:
1316 f = info->res.val.l;
1317 break;

1319 case fex_float:
1320 f = info->res.val.f;
1321 break;

1323 case fex_double:
1324 f = info->res.val.d;
1325 break;

1327 case fex_ldouble:
1328 f = info->res.val.q;
1329 break;

1331 default:
1332 break;
1333 #endif /* ! codereview */
1334 }
1335 inst->op1->f[0] = f;
1336 }
1337 }

1339 /*
1340 * Store the results from a SIMD instruction. For each i, store
1341 * the result value from info[i] in the i-th part of the destination
1342 * of the SIMD SSE instruction specified by *inst. If no result
1343 * is given but the exception indicated by e[i] is underflow or
1344 * overflow, supply the default trapped result.
1345 *

new/usr/src/lib/libm/common/m9x/__fex_sse.c 21

1346 * This routine does not work if the instruction specified by *inst
1347 * is not a SIMD instruction.
1348 */
1349 void
1350 __fex_st_simd_result(ucontext_t *uap, sseinst_t *inst, enum fex_exception *e,
1351 fex_info_t *info)
1352 {
1353 sseinst_t dummy;
1354 int i;

1356 /* store each part */
1357 switch (inst->op) {
1358 case cmpps:
1359 dummy.op = cmpss;
1360 dummy.imm = inst->imm;
1361 for (i = 0; i < 4; i++) {
1362 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
1363 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
1364 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1365 }
1366 break;

1368 case minps:
1369 dummy.op = minss;
1370 for (i = 0; i < 4; i++) {
1371 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
1372 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
1373 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1374 }
1375 break;

1377 case maxps:
1378 dummy.op = maxss;
1379 for (i = 0; i < 4; i++) {
1380 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
1381 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
1382 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1383 }
1384 break;

1386 case addps:
1387 dummy.op = addss;
1388 for (i = 0; i < 4; i++) {
1389 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
1390 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
1391 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1392 }
1393 break;

1395 case subps:
1396 dummy.op = subss;
1397 for (i = 0; i < 4; i++) {
1398 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
1399 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
1400 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1401 }
1402 break;

1404 case mulps:
1405 dummy.op = mulss;
1406 for (i = 0; i < 4; i++) {
1407 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
1408 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
1409 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1410 }
1411 break;

new/usr/src/lib/libm/common/m9x/__fex_sse.c 22

1413 case divps:
1414 dummy.op = divss;
1415 for (i = 0; i < 4; i++) {
1416 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
1417 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
1418 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1419 }
1420 break;

1422 case sqrtps:
1423 dummy.op = sqrtss;
1424 for (i = 0; i < 4; i++) {
1425 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
1426 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
1427 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1428 }
1429 break;

1431 case cvtdq2ps:
1432 dummy.op = cvtsi2ss;
1433 for (i = 0; i < 4; i++) {
1434 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
1435 dummy.op2 = (sseoperand_t *)&inst->op2->i[i];
1436 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1437 }
1438 break;

1440 case cvttps2dq:
1441 dummy.op = cvttss2si;
1442 for (i = 0; i < 4; i++) {
1443 dummy.op1 = (sseoperand_t *)&inst->op1->i[i];
1444 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
1445 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1446 }
1447 break;

1449 case cvtps2dq:
1450 dummy.op = cvtss2si;
1451 for (i = 0; i < 4; i++) {
1452 dummy.op1 = (sseoperand_t *)&inst->op1->i[i];
1453 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
1454 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1455 }
1456 break;

1458 case cvtpi2ps:
1459 dummy.op = cvtsi2ss;
1460 for (i = 0; i < 2; i++) {
1461 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
1462 dummy.op2 = (sseoperand_t *)&inst->op2->i[i];
1463 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1464 }
1465 break;

1467 case cvttps2pi:
1468 dummy.op = cvttss2si;
1469 for (i = 0; i < 2; i++) {
1470 dummy.op1 = (sseoperand_t *)&inst->op1->i[i];
1471 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
1472 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1473 }
1474 break;

1476 case cvtps2pi:
1477 dummy.op = cvtss2si;

new/usr/src/lib/libm/common/m9x/__fex_sse.c 23

1478 for (i = 0; i < 2; i++) {
1479 dummy.op1 = (sseoperand_t *)&inst->op1->i[i];
1480 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
1481 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1482 }
1483 break;

1485 case cmppd:
1486 dummy.op = cmpsd;
1487 dummy.imm = inst->imm;
1488 for (i = 0; i < 2; i++) {
1489 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
1490 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1491 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1492 }
1493 break;

1495 case minpd:
1496 dummy.op = minsd;
1497 for (i = 0; i < 2; i++) {
1498 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
1499 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1500 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1501 }
1502 break;

1504 case maxpd:
1505 dummy.op = maxsd;
1506 for (i = 0; i < 2; i++) {
1507 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
1508 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1509 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1510 }
1511 break;

1513 case addpd:
1514 dummy.op = addsd;
1515 for (i = 0; i < 2; i++) {
1516 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
1517 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1518 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1519 }
1520 break;

1522 case subpd:
1523 dummy.op = subsd;
1524 for (i = 0; i < 2; i++) {
1525 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
1526 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1527 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1528 }
1529 break;

1531 case mulpd:
1532 dummy.op = mulsd;
1533 for (i = 0; i < 2; i++) {
1534 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
1535 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1536 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1537 }
1538 break;

1540 case divpd:
1541 dummy.op = divsd;
1542 for (i = 0; i < 2; i++) {
1543 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];

new/usr/src/lib/libm/common/m9x/__fex_sse.c 24

1544 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1545 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1546 }
1547 break;

1549 case sqrtpd:
1550 dummy.op = sqrtsd;
1551 for (i = 0; i < 2; i++) {
1552 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
1553 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1554 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1555 }
1556 break;

1558 case cvtpi2pd:
1559 case cvtdq2pd:
1560 dummy.op = cvtsi2sd;
1561 for (i = 0; i < 2; i++) {
1562 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
1563 dummy.op2 = (sseoperand_t *)&inst->op2->i[i];
1564 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1565 }
1566 break;

1568 case cvttpd2pi:
1569 case cvttpd2dq:
1570 dummy.op = cvttsd2si;
1571 for (i = 0; i < 2; i++) {
1572 dummy.op1 = (sseoperand_t *)&inst->op1->i[i];
1573 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1574 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1575 }
1576 /* for cvttpd2dq, zero the high 64 bits of the destination */
1577 if (inst->op == cvttpd2dq)
1578 inst->op1->l[1] = 0ll;
1579 break;

1581 case cvtpd2pi:
1582 case cvtpd2dq:
1583 dummy.op = cvtsd2si;
1584 for (i = 0; i < 2; i++) {
1585 dummy.op1 = (sseoperand_t *)&inst->op1->i[i];
1586 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1587 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1588 }
1589 /* for cvtpd2dq, zero the high 64 bits of the destination */
1590 if (inst->op == cvtpd2dq)
1591 inst->op1->l[1] = 0ll;
1592 break;

1594 case cvtps2pd:
1595 dummy.op = cvtss2sd;
1596 for (i = 0; i < 2; i++) {
1597 dummy.op1 = (sseoperand_t *)&inst->op1->d[i];
1598 dummy.op2 = (sseoperand_t *)&inst->op2->f[i];
1599 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1600 }
1601 break;

1603 case cvtpd2ps:
1604 dummy.op = cvtsd2ss;
1605 for (i = 0; i < 2; i++) {
1606 dummy.op1 = (sseoperand_t *)&inst->op1->f[i];
1607 dummy.op2 = (sseoperand_t *)&inst->op2->d[i];
1608 __fex_st_sse_result(uap, &dummy, e[i], &info[i]);
1609 }

new/usr/src/lib/libm/common/m9x/__fex_sse.c 25

1610 /* zero the high 64 bits of the destination */
1611 inst->op1->l[1] = 0ll;

1613 default:
1614 break;
1615 #endif /* ! codereview */
1616 }
1617 }

1619 #endif /* ! codereview */

new/usr/src/lib/libm/common/m9x/fdim.c 1

**
 1487 Sun May 4 03:06:20 2014
new/usr/src/lib/libm/common/m9x/fdim.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak fdim = __fdim
32 #endif

34 /*
35 * fdim(x,y) returns x - y if x > y, +0 if x <= y, and NaN if x and
36 * y are unordered.
37 *
38 * fdim(x,y) raises overflow or inexact if x > y and x - y overflows
39 * or is inexact. It raises invalid if either operand is a signaling
40 * NaN. Otherwise, it raises no exceptions.
41 */

43 #include "libm.h" /* for islessequal macro */

45 double
46 __fdim(double x, double y) {
47 #if defined(COMPARISON_MACRO_BUG)
48 if (x == x && y == y && x <= y) { /* } */
49 #else
47 if (islessequal(x, y)) {
51 #endif
48 x = 0.0;
49 y = -x;
50 }
51 return (x - y);
52 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/fdimf.c 1

**
 1549 Sun May 4 03:06:21 2014
new/usr/src/lib/libm/common/m9x/fdimf.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak fdimf = __fdimf
32 #endif

34 #include "libm.h" /* for islessequal macro */

36 float
37 __fdimf(float x, float y) {
38 /*
39 * On SPARC v8plus/v9, this could be implemented as follows
40 * (assuming %f0 = x, %f1 = y, return value left in %f0):
41 *
42 * fcmps %fcc0,%f0,%f1
43 * st %g0,[scratch] ! use fzero instead of st/ld
44 * ld [scratch],%f2 ! if VIS is available
45 * fnegs %f2,%f3
46 * fmovsle %fcc0,%f2,%f0
47 * fmovsle %fcc0,%f3,%f1
48 * fsubs %f0,%f1,%f0
49 */
50 #if defined(COMPARISON_MACRO_BUG)
51 if (x == x && y == y && x <= y) { /* } */
52 #else
50 if (islessequal(x, y)) {
54 #endif
51 x = 0.0f;
52 y = -x;
53 }
54 return (x - y);
55 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/fdiml.c 1

**
 1223 Sun May 4 03:06:23 2014
new/usr/src/lib/libm/common/m9x/fdiml.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak fdiml = __fdiml
32 #endif

34 #include "libm.h" /* for islessequal macro */

36 long double
37 __fdiml(long double x, long double y) {
38 #if defined(COMPARISON_MACRO_BUG)
39 if (x == x && y == y && x <= y) {
40 #else
38 if (islessequal(x, y)) {
42 #endif
39 x = 0.0l;
40 y = -x;
41 }
42 return (x - y);
43 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 1

**
 12598 Sun May 4 03:06:24 2014
new/usr/src/lib/libm/common/m9x/fenv_inlines.h
**
______unchanged_portion_omitted_

42 extern __inline__ void
43 __fenv_getcwsw(unsigned int *value)
44 {
45 union fp_cwsw *u = (union fp_cwsw *)value;
45 union fp_cwsw ret;

47 __asm__ __volatile__(
48 "fstsw %0\n\t"
49 "fstcw %1\n\t"
50 : "=m" (u->words.cw), "=m" (u->words.sw));
50 : "=m" (ret.words.cw), "=m" (ret.words.sw));
51 *value = ret.cwsw;
51 }

53 extern __inline__ void
54 __fenv_setcwsw(const unsigned int *value)
55 {
56 union fp_cwsw cwsw;
57 short fenv[16];

59 cwsw.cwsw = *value;

61 __asm__ __volatile__(
62 "fstenv %0\n\t"
63 "movw %4,%1\n\t"
64 "movw %3,%2\n\t"
65 "fldenv %0\n\t"
66 "fwait\n\t"
67 : "=m" (fenv), "=m" (fenv[0]), "=m" (fenv[2])
68 : "r" (cwsw.words.cw), "r" (cwsw.words.sw)
69 : "d" (cwsw.words.cw), "c" (cwsw.words.sw)
69 /* For practical purposes, we clobber the whole FPU */
70 : "cc", "st", "st(1)", "st(2)", "st(3)", "st(4)", "st(5)",
71 "st(6)", "st(7)");
72 }

74 extern __inline__ void
75 __fenv_getmxcsr(unsigned int *value)
76 {
77 __asm__ __volatile__("stmxcsr %0" : "=m" (*value));
78 __asm__ __volatile__("stmxcsr %1" : "+m" (*value));
78 }

______unchanged_portion_omitted_

86 extern __inline__ long double
87 f2xm1(long double x)
88 {
89 long double ret;

91 __asm__ __volatile__("f2xm1" : "=t" (ret) : "0" (x) : "cc");
92 __asm__ __volatile__("f2xm1" : "=t" (ret) : "0" (x));
92 return (ret);
93 }

95 extern __inline__ long double
96 fyl2x(long double y, long double x)
97 {
98 long double ret;

100 __asm__ __volatile__("fyl2x"

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 2

101 : "=t" (ret)
102 : "0" (x), "u" (y)
103 : "st(1)", "cc");
101 __asm__ __volatile__("fyl2x" : "=t" (ret): "0" (x), "u" (y) : "st(1)");
104 return (ret);
105 }

107 extern __inline__ long double
108 fptan(long double x)
109 {
110 /*
111 * fptan pushes 1.0 then the result on completion, so we want to pop
112 * the FP stack twice, so we need a dummy value into which to pop it.
113 */
114 long double ret;
115 long double dummy;

117 __asm__ __volatile__("fptan"
118 : "=t" (dummy), "=u" (ret)
119 : "0" (x)
120 : "cc");
115 __asm__ __volatile__("fptan" : "=t" (dummy), "=u" (ret) : "0" (x));
121 return (ret);
122 }

124 extern __inline__ long double
125 fpatan(long double x, long double y)
126 {
127 long double ret;

129 __asm__ __volatile__("fpatan"
130 : "=t" (ret)
131 : "0" (y), "u" (x)
132 : "st(1)", "cc");
127 : "st(1)");
133 return (ret);
134 }

136 extern __inline__ long double
137 fxtract(long double x)
138 {
139 __asm__ __volatile__("fxtract" : "+t" (x) : : "cc");
140 return (x);
134 long double ret;

136 __asm__ __volatile__("fxtract" : "=t" (ret) : "0" (x));
137 return (ret);
141 }

143 extern __inline__ long double
144 fprem1(long double idend, long double div)
145 {
146 __asm__ __volatile__("fprem1" : "+t" (div) : "u" (idend) : "cc");
147 return (div);
143 long double ret;

145 __asm__ __volatile__("fprem1" : "=t" (ret) : "0" (div), "u" (idend));
146 return (ret);
148 }

150 extern __inline__ long double
151 fprem(long double idend, long double div)
152 {
153 __asm__ __volatile__("fprem" : "+t" (div) : "u" (idend) : "cc");
154 return (div);
152 long double ret;

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 3

154 __asm__ __volatile__("fprem" : "=t" (ret) : "0" (div), "u" (idend));
155 return (ret);
155 }

157 extern __inline__ long double
158 fyl2xp1(long double y, long double x)
159 {
160 long double ret;

162 __asm__ __volatile__("fyl2xp1"
163 : "=t" (ret)
164 : "0" (x), "u" (y)
165 : "st(1)", "cc");
166 : "st(1)");
166 return (ret);
167 }

169 extern __inline__ long double
170 fsqrt(long double x)
171 {
172 __asm__ __volatile__("fsqrt" : "+t" (x) : : "cc");
173 return (x);
173 long double ret;

175 __asm__ __volatile__("fsqrt" : "=t" (ret) : "0" (x));
176 return (ret);
174 }

176 extern __inline__ long double
177 fsincos(long double x)
178 {
179 __asm__ __volatile__("fsincos" : "+t" (x) : : "cc");
180 return (x);
182 long double ret;

184 __asm__ __volatile__("fsincos" : "=t" (ret) : "0" (x));
185 return (ret);
181 }

183 extern __inline__ long double
184 frndint(long double x)
185 {
186 __asm__ __volatile__("frndint" : "+t" (x) : : "cc");
187 return (x);
191 long double ret;

193 __asm__ __volatile__("frndint" : "=t" (ret) : "0" (x));
194 return (ret);
188 }

190 extern __inline__ long double
191 fscale(long double x, long double y)
192 {
193 long double ret;

195 __asm__ __volatile__("fscale" : "=t" (ret) : "0" (y), "u" (x) : "cc");
202 __asm__ __volatile__("fscale" : "=t" (ret) : "0" (y), "u" (x));
196 return (ret);
197 }

199 extern __inline__ long double
200 fsin(long double x)
201 {
202 __asm__ __volatile__("fsin" : "+t" (x) : : "cc");
203 return (x);

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 4

209 long double ret;

211 __asm__ __volatile__("fsin" : "=t" (ret) : "0" (x));
212 return (ret);
204 }

206 extern __inline__ long double
207 fcos(long double x)
208 {
209 __asm__ __volatile__("fcos" : "+t" (x) : : "cc");
210 return (x);
218 long double ret;

220 __asm__ __volatile__("fcos" : "=t" (ret) : "0" (x));
221 return (ret);
211 }

213 extern __inline__ void
214 sse_cmpeqss(float *f1, float *f2, int *i1)
215 {
216 __asm__ __volatile__(
217 "cmpeqss %2, %1\n\t"
218 "movss %1, %0"
219 : "=m" (*i1), "+x" (*f1)
220 : "x" (*f2)
221 : "cc");
230 : "=m" (*i1)
231 : "x" (*f1), "x" (*f2));
222 }

224 extern __inline__ void
225 sse_cmpltss(float *f1, float *f2, int *i1)
226 {
227 __asm__ __volatile__(
228 "cmpltss %2, %1\n\t"
229 "movss %1, %0"
230 : "=m" (*i1), "+x" (*f1)
231 : "x" (*f2)
232 : "cc");
240 : "=m" (*i1)
241 : "x" (*f1), "x" (*f2));
233 }

235 extern __inline__ void
236 sse_cmpless(float *f1, float *f2, int *i1)
237 {
238 __asm__ __volatile__(
239 "cmpless %2, %1\n\t"
240 "movss %1, %0"
241 : "=m" (*i1), "+x" (*f1)
242 : "x" (*f2)
243 : "cc");
250 : "=m" (*i1)
251 : "x" (*f1), "x" (*f2));
244 }

246 extern __inline__ void
247 sse_cmpunordss(float *f1, float *f2, int *i1)
248 {
249 __asm__ __volatile__(
250 "cmpunordss %2, %1\n\t"
251 "movss %1, %0"
252 : "=m" (*i1), "+x" (*f1)
253 : "x" (*f2)
254 : "cc");
260 : "=m" (*i1)

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 5

261 : "x" (*f1), "x" (*f2));
255 }

257 extern __inline__ void
258 sse_minss(float *f1, float *f2, float *f3)
259 {
260 __asm__ __volatile__(
261 "minss %2, %1\n\t"
262 "movss %1, %0"
263 : "=m" (*f3), "+x" (*f1)
264 : "x" (*f2));
270 : "=m" (*f3)
271 : "x" (*f1), "x" (*f2));
265 }

267 extern __inline__ void
268 sse_maxss(float *f1, float *f2, float *f3)
269 {
270 __asm__ __volatile__(
271 "maxss %2, %1\n\t"
272 "movss %1, %0"
273 : "=m" (*f3), "+x" (*f1)
274 : "x" (*f2));
280 : "=m" (*f3)
281 : "x" (*f1), "x" (*f2));
275 }

277 extern __inline__ void
278 sse_addss(float *f1, float *f2, float *f3)
279 {
280 __asm__ __volatile__(
281 "addss %2, %1\n\t"
282 "movss %1, %0"
283 : "=m" (*f3), "+x" (*f1)
284 : "x" (*f2));
290 : "=m" (*f3)
291 : "x" (*f1), "x" (*f2));
285 }

287 extern __inline__ void
288 sse_subss(float *f1, float *f2, float *f3)
289 {
290 __asm__ __volatile__(
291 "subss %2, %1\n\t"
292 "movss %1, %0"
293 : "=m" (*f3), "+x" (*f1)
294 : "x" (*f2));
300 : "=m" (*f3)
301 : "x" (*f1), "x" (*f2));
295 }

297 extern __inline__ void
298 sse_mulss(float *f1, float *f2, float *f3)
299 {
300 __asm__ __volatile__(
301 "mulss %2, %1\n\t"
302 "movss %1, %0"
303 : "=m" (*f3), "+x" (*f1)
304 : "x" (*f2));
310 : "=m" (*f3)
311 : "x" (*f1), "x" (*f2));
305 }

307 extern __inline__ void
308 sse_divss(float *f1, float *f2, float *f3)
309 {

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 6

310 __asm__ __volatile__(
311 "divss %2, %1\n\t"
312 "movss %1, %0"
313 : "=m" (*f3), "+x" (*f1)
314 : "x" (*f2));
320 : "=m" (*f3)
321 : "x" (*f1), "x" (*f2));
315 }

317 extern __inline__ void
318 sse_sqrtss(float *f1, float *f2)
319 {
320 double tmp;

322 #endif /* ! codereview */
323 __asm__ __volatile__(
324 "sqrtss %2, %1\n\t"
325 "movss %1, %0"
326 : "=m" (*f2), "=x" (tmp)
327 : "m" (*f1));
327 "sqrtss %1, %%xmm0\n\t"
328 "movss %%xmm0, %0"
329 : "=m" (*f2)
330 : "m" (*f1)
331 : "xmm0");
328 }

______unchanged_portion_omitted_

343 extern __inline__ void
344 sse_cvtss2sd(float *f1, double *d1)
345 {
346 double tmp;

348 #endif /* ! codereview */
349 __asm__ __volatile__(
350 "cvtss2sd %2, %1\n\t"
351 "movsd %1, %0"
352 : "=m" (*d1), "=x" (tmp)
353 : "m" (*f1));
350 "cvtss2sd %1, %%xmm0\n\t"
351 "movsd %%xmm0, %0"
352 : "=m" (*d1)
353 : "m" (*f1)
354 : "xmm0");
354 }

356 extern __inline__ void
357 sse_cvtsi2ss(int *i1, float *f1)
358 {
359 double tmp;

361 #endif /* ! codereview */
362 __asm__ __volatile__(
363 "cvtsi2ss %2, %1\n\t"
364 "movss %1, %0"
365 : "=m" (*f1), "=x" (tmp)
366 : "m" (*i1));
360 "cvtsi2ss %1, %%xmm0\n\t"
361 "movss %%xmm0, %0"
362 : "=m" (*f1)
363 : "m" (*i1)
364 : "xmm0");
367 }

369 extern __inline__ void
370 sse_cvttss2si(float *f1, int *i1)

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 7

371 {
372 int tmp;

374 #endif /* ! codereview */
375 __asm__ __volatile__(
376 "cvttss2si %2, %1\n\t"
377 "movl %1, %0"
378 : "=m" (*i1), "=r" (tmp)
379 : "m" (*f1));
370 "cvttss2si %1, %%ecx\n\t"
371 "movl %%ecx, %0"
372 : "=m" (*i1)
373 : "m" (*f1)
374 : "ecx");
380 }

382 extern __inline__ void
383 sse_cvtss2si(float *f1, int *i1)
384 {
385 int tmp;

387 #endif /* ! codereview */
388 __asm__ __volatile__(
389 "cvtss2si %2, %1\n\t"
390 "movl %1, %0"
391 : "=m" (*i1), "=r" (tmp)
392 : "m" (*f1));
380 "cvtss2si %1, %%ecx\n\t"
381 "movl %%ecx, %0"
382 : "=m" (*i1)
383 : "m" (*f1)
384 : "ecx");
393 }

395 #if defined(__amd64)
396 extern __inline__ void
397 sse_cvtsi2ssq(long long *ll1, float *f1)
398 {
399 double tmp;

401 #endif /* ! codereview */
402 __asm__ __volatile__(
403 "cvtsi2ssq %2, %1\n\t"
404 "movss %1, %0"
405 : "=m" (*f1), "=x" (tmp)
406 : "m" (*ll1));
391 "cvtsi2ssq %1, %%xmm0\n\t"
392 "movss %%xmm0, %0"
393 : "=m" (*f1)
394 : "m" (*ll1)
395 : "xmm0");
407 }

409 extern __inline__ void
410 sse_cvttss2siq(float *f1, long long *ll1)
411 {
412 uint64_t tmp;

414 #endif /* ! codereview */
415 __asm__ __volatile__(
416 "cvttss2siq %2, %1\n\t"
417 "movq %1, %0"
418 : "=m" (*ll1), "=r" (tmp)
419 : "m" (*f1));
401 "cvttss2siq %1, %%rcx\n\t"
402 "movq %%rcx, %0"

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 8

403 : "=m" (*ll1)
404 : "m" (*f1)
405 : "rcx");
420 }

422 extern __inline__ void
423 sse_cvtss2siq(float *f1, long long *ll1)
424 {
425 uint64_t tmp;

427 #endif /* ! codereview */
428 __asm__ __volatile__(
429 "cvtss2siq %2, %1\n\t"
430 "movq %1, %0"
431 : "=m" (*ll1), "=r" (tmp)
432 : "m" (*f1));
411 "cvtss2siq %1, %%rcx\n\t"
412 "movq %%rcx, %0"
413 : "=m" (*ll1)
414 : "m" (*f1)
415 : "rcx");
433 }

435 #endif

437 extern __inline__ void
438 sse_cmpeqsd(double *d1, double *d2, long long *ll1)
439 {
440 __asm__ __volatile__(
441 "cmpeqsd %2,%1\n\t"
442 "movsd %1,%0"
443 : "=m" (*ll1), "=x" (*d1)
444 : "x" (*d2));
426 : "=m" (*ll1)
427 : "x" (*d1), "x" (*d2));
445 }

447 extern __inline__ void
448 sse_cmpltsd(double *d1, double *d2, long long *ll1)
449 {
450 __asm__ __volatile__(
451 "cmpltsd %2,%1\n\t"
452 "movsd %1,%0"
453 : "=m" (*ll1), "=x" (*d1)
454 : "x" (*d2));
436 : "=m" (*ll1)
437 : "x" (*d1), "x" (*d2));
455 }

457 extern __inline__ void
458 sse_cmplesd(double *d1, double *d2, long long *ll1)
459 {
460 __asm__ __volatile__(
461 "cmplesd %2,%1\n\t"
462 "movsd %1,%0"
463 : "=m" (*ll1), "=x" (*d1)
464 : "x" (*d2));
446 : "=m" (*ll1)
447 : "x" (*d1), "x" (*d2));
465 }

467 extern __inline__ void
468 sse_cmpunordsd(double *d1, double *d2, long long *ll1)
469 {
470 __asm__ __volatile__(
471 "cmpunordsd %2,%1\n\t"

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 9

472 "movsd %1,%0"
473 : "=m" (*ll1), "=x" (*d1)
474 : "x" (*d2));
456 : "=m" (*ll1)
457 : "x" (*d1), "x" (*d2));
475 }

478 extern __inline__ void
479 sse_minsd(double *d1, double *d2, double *d3)
480 {
481 __asm__ __volatile__(
482 "minsd %2,%1\n\t"
483 "movsd %1,%0"
484 : "=m" (*d3), "=x" (*d1)
485 : "x" (*d2));
467 : "=m" (*d3)
468 : "x" (*d1), "x" (*d2));
486 }

488 extern __inline__ void
489 sse_maxsd(double *d1, double *d2, double *d3)
490 {
491 __asm__ __volatile__(
492 "maxsd %2,%1\n\t"
493 "movsd %1,%0"
494 : "=m" (*d3), "=x" (*d1)
495 : "x" (*d2));
477 : "=m" (*d3)
478 : "x" (*d1), "x" (*d2));
496 }

498 extern __inline__ void
499 sse_addsd(double *d1, double *d2, double *d3)
500 {
501 __asm__ __volatile__(
502 "addsd %2,%1\n\t"
503 "movsd %1,%0"
504 : "=m" (*d3), "=x" (*d1)
505 : "x" (*d2));
487 : "=m" (*d3)
488 : "x" (*d1), "x" (*d2));
506 }

508 extern __inline__ void
509 sse_subsd(double *d1, double *d2, double *d3)
510 {
511 __asm__ __volatile__(
512 "subsd %2,%1\n\t"
513 "movsd %1,%0"
514 : "=m" (*d3), "=x" (*d1)
515 : "x" (*d2));
497 : "=m" (*d3)
498 : "x" (*d1), "x" (*d2));
516 }

518 extern __inline__ void
519 sse_mulsd(double *d1, double *d2, double *d3)
520 {
521 __asm__ __volatile__(
522 "mulsd %2,%1\n\t"
523 "movsd %1,%0"
524 : "=m" (*d3), "=x" (*d1)
525 : "x" (*d2));
507 : "=m" (*d3)
508 : "x" (*d1), "x" (*d2));

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 10

526 }

528 extern __inline__ void
529 sse_divsd(double *d1, double *d2, double *d3)
530 {
531 __asm__ __volatile__(
532 "divsd %2,%1\n\t"
533 "movsd %1,%0"
534 : "=m" (*d3), "=x" (*d1)
535 : "x" (*d2));
517 : "=m" (*d3)
518 : "x" (*d1), "x" (*d2)
519 : "xmm0");
536 }

538 extern __inline__ void
539 sse_sqrtsd(double *d1, double *d2)
540 {
541 double tmp;

543 #endif /* ! codereview */
544 __asm__ __volatile__(
545 "sqrtsd %2, %1\n\t"
546 "movsd %1, %0"
547 : "=m" (*d2), "=x" (tmp)
548 : "m" (*d1));
525 "sqrtsd %1, %%xmm0\n\t"
526 "movsd %%xmm0, %0"
527 : "=m" (*d2)
528 : "m" (*d1)
529 : "xmm0");
549 }

______unchanged_portion_omitted_

563 extern __inline__ void
564 sse_cvtsd2ss(double *d1, float *f1)
565 {
566 double tmp;

568 #endif /* ! codereview */
569 __asm__ __volatile__(
570 "cvtsd2ss %2,%1\n\t"
571 "movss %1,%0"
572 : "=m" (*f1), "=x" (tmp)
573 : "m" (*d1));
547 "cvtsd2ss %1,%%xmm0\n\t"
548 "movss %%xmm0,%0"
549 : "=m" (*f1)
550 : "m" (*d1)
551 : "xmm0");
574 }

576 extern __inline__ void
577 sse_cvtsi2sd(int *i1, double *d1)
578 {
579 double tmp;
580 #endif /* ! codereview */
581 __asm__ __volatile__(
582 "cvtsi2sd %2,%1\n\t"
583 "movsd %1,%0"
584 : "=m" (*d1), "=x" (tmp)
585 : "m" (*i1));
558 "cvtsi2sd %1,%%xmm0\n\t"
559 "movsd %%xmm0,%0"
560 : "=m" (*d1)

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 11

561 : "m" (*i1)
562 : "xmm0");
586 }

588 extern __inline__ void
589 sse_cvttsd2si(double *d1, int *i1)
590 {
591 int tmp;

593 #endif /* ! codereview */
594 __asm__ __volatile__(
595 "cvttsd2si %2,%1\n\t"
596 "movl %1,%0"
597 : "=m" (*i1), "=r" (tmp)
598 : "m" (*d1));
568 "cvttsd2si %1,%%ecx\n\t"
569 "movl %%ecx,%0"
570 : "=m" (*i1)
571 : "m" (*d1)
572 : "ecx");
599 }

601 extern __inline__ void
602 sse_cvtsd2si(double *d1, int *i1)
603 {
604 int tmp;

606 #endif /* ! codereview */
607 __asm__ __volatile__(
608 "cvtsd2si %2,%1\n\t"
609 "movl %1,%0"
610 : "=m" (*i1), "=r" (tmp)
611 : "m" (*d1));
578 "cvtsd2si %1,%%ecx\n\t"
579 "movl %%ecx,%0"
580 : "=m" (*i1)
581 : "m" (*d1)
582 : "ecx");
612 }

614 #if defined(__amd64)
615 extern __inline__ void
616 sse_cvtsi2sdq(long long *ll1, double *d1)
617 {
618 double tmp;

620 #endif /* ! codereview */
621 __asm__ __volatile__(
622 "cvtsi2sdq %2,%1\n\t"
623 "movsd %1,%0"
624 : "=m" (*d1), "=x" (tmp)
625 : "m" (*ll1));
589 "cvtsi2sdq %1,%%xmm0\n\t"
590 "movsd %%xmm0,%0"
591 : "=m" (*d1)
592 : "m" (*ll1)
593 : "xmm0");
626 }

628 extern __inline__ void
629 sse_cvttsd2siq(double *d1, long long *ll1)
630 {
631 uint64_t tmp;

633 #endif /* ! codereview */
634 __asm__ __volatile__(

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 12

635 "cvttsd2siq %2,%1\n\t"
636 "movq %1,%0"
637 : "=m" (*ll1), "=r" (tmp)
638 : "m" (*d1));
599 "cvttsd2siq %1,%%rcx\n\t"
600 "movq %%rcx,%0"
601 : "=m" (*ll1)
602 : "m" (*d1)
603 : "rcx");
639 }

641 extern __inline__ void
642 sse_cvtsd2siq(double *d1, long long *ll1)
643 {
644 uint64_t tmp;

646 #endif /* ! codereview */
647 __asm__ __volatile__(
648 "cvtsd2siq %2,%1\n\t"
649 "movq %1,%0"
650 : "=m" (*ll1), "=r" (tmp)
651 : "m" (*d1));
609 "cvtsd2siq %1,%%rcx\n\t"
610 "movq %%rcx,%0"
611 : "=m" (*ll1)
612 : "m" (*d1)
613 : "rcx");
652 }
653 #endif

655 #endif /* ! codereview */
656 #elif defined(__sparc)
657 extern __inline__ void
658 __fenv_getfsr(unsigned long *l)
659 {
660 __asm__ __volatile__(
661 #if defined(__sparcv9)
662 "stx %%fsr,%0\n\t"
663 #else
664 "st %%fsr,%0\n\t"
665 #endif
666 : "=m" (*l));
667 }

669 extern __inline__ void
670 __fenv_setfsr(const unsigned long *l)
671 {
672 __asm__ __volatile__(
673 #if defined(__sparcv9)
674 "ldx %0,%%fsr\n\t"
675 #else
676 "ld %0,%%fsr\n\t"
677 #endif
678 : : "m" (*l) : "cc");
616 : : "m" (*l));
679 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/fex_handler.h 1

**
 6089 Sun May 4 03:06:27 2014
new/usr/src/lib/libm/common/m9x/fex_handler.h
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /* #include <sys/isa_defs.h> */

30 /* the following enums must match the bit positions in fenv.h */
31 enum fex_exception {
32 fex_inexact = 0,
33 fex_division = 1,
34 fex_underflow = 2,
35 fex_overflow = 3,
36 fex_inv_zdz = 4,
37 fex_inv_idi = 5,
38 fex_inv_isi = 6,
39 fex_inv_zmi = 7,
40 fex_inv_sqrt = 8,
41 fex_inv_snan = 9,
42 fex_inv_int = 10,
43 fex_inv_cmp = 11
44 };

47 /* auxiliary functions in __fex_hdlr.c */
48 extern struct fex_handler_data *__fex_get_thr_handlers(void);
49 extern void __fex_update_te(void);

51 /* auxiliary functions in __fex_sym.c */
52 extern void __fex_sym_init(void);
53 extern char *__fex_sym(char *, char **);

55 /* auxiliary functions in fex_log.c */
56 extern void __fex_mklog(ucontext_t *, char *, int, enum fex_exception,
57 int, void *);

59 /* system-dependent auxiliary functions */
60 extern enum fex_exception __fex_get_invalid_type(siginfo_t *, ucontext_t *);

new/usr/src/lib/libm/common/m9x/fex_handler.h 2

61 extern void __fex_get_op(siginfo_t *, ucontext_t *, fex_info_t *);
62 extern void __fex_st_result(siginfo_t *, ucontext_t *, fex_info_t *);

64 /* inline templates and macros for accessing fp state */
65 extern void __fenv_getfsr(unsigned long *);
66 extern void __fenv_setfsr(const unsigned long *);
68 extern void __fenv_setfsr(unsigned const long *);

68 #if defined(__sparc)

70 #define __fenv_get_rd(X) ((X>>30)&0x3)
71 #define __fenv_set_rd(X,Y) X=(X&~0xc0000000ul)|((Y)<<30)

73 #define __fenv_get_te(X) ((X>>23)&0x1f)
74 #define __fenv_set_te(X,Y) X=(X&~0x0f800000ul)|((Y)<<23)

76 #define __fenv_get_ex(X) ((X>>5)&0x1f)
77 #define __fenv_set_ex(X,Y) X=(X&~0x000003e0ul)|((Y)<<5)

79 #elif defined(__x86)

81 extern void __fenv_getcwsw(unsigned int *);
82 extern void __fenv_setcwsw(const unsigned int *);

84 extern void __fenv_getmxcsr(unsigned int *);
85 extern void __fenv_setmxcsr(const unsigned int *);

87 #define __fenv_get_rd(X) ((X>>26)&3)
88 #define __fenv_set_rd(X,Y) X=(X&~0x0c000000)|((Y)<<26)

90 #define __fenv_get_rp(X) ((X>>24)&3)
91 #define __fenv_set_rp(X,Y) X=(X&~0x03000000)|((Y)<<24)

93 #define __fenv_get_te(X) ((X>>16)&0x3d)
94 #define __fenv_set_te(X,Y) X=(X&~0x003d0000)|((Y)<<16)

96 #define __fenv_get_ex(X) (X&0x3d)
97 #define __fenv_set_ex(X,Y) X=(X&~0x0000003d)|(Y)

99 /*
100 * These macros define some useful distinctions between various
101 * SSE instructions. In some cases, distinctions are made for
102 * the purpose of simplifying the decoding of instructions, while
103 * in other cases, they are made for the purpose of simplying the
104 * emulation. Note that these values serve as bit flags within
105 * the enum values in sseinst_t.
106 */
107 #define DOUBLE 0x100
108 #define SIMD 0x080
109 #define INTREG 0x040

111 typedef union {
112 double d[2];
113 long long l[2];
114 float f[4];
115 int i[4];
116 } sseoperand_t;

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/fex_log.c 1

**
 9376 Sun May 4 03:06:29 2014
new/usr/src/lib/libm/common/m9x/fex_log.c
**
______unchanged_portion_omitted_

108 #ifdef __sparcv9
109 #define FRAMEP(X) (struct frame *)((char*)(X)+(((long)(X)&1)?2047:0))
110 #else
111 #define FRAMEP(X) (struct frame *)(X)
112 #endif

114 #ifdef _LP64
115 #define PDIG "16"
116 #else
117 #define PDIG "8"
118 #endif

120 /* look for a matching exc_list; return 1 if one is found,
121 otherwise add this one to the list and return 0 */
122 static int check_exc_list(char *addr, unsigned long code, char *stk,
123 struct frame *fp)
124 {
125 struct exc_list *l, *ll = NULL;
125 struct exc_list *l, *ll;
126 struct frame *f;
127 int i, n;

129 if (list) {
130 for (l = list; l; ll = l, l = l->next) {
131 if (l->addr != addr || l->code != code)
132 continue;
133 if (log_depth < 1 || l->nstack < 1)
134 return 1;
135 if (l->stack[0] != stk)
136 continue;
137 n = 1;
138 for (i = 1, f = fp; i < log_depth && i < l->nstack &&
139 f && f->fr_savpc; i++, f = FRAMEP(f->fr_savfp))
140 if (l->stack[i] != (char *)f->fr_savpc) {
141 n = 0;
142 break;
143 }
144 if (n)
145 return 1;
146 }
147 }

149 /* create a new exc_list structure and tack it on the list */
150 for (n = 1, f = fp; n < log_depth && f && f->fr_savpc;
151 n++, f = FRAMEP(f->fr_savfp)) ;
152 if ((l = (struct exc_list *)malloc(sizeof(struct exc_list) +
153 (n - 1) * sizeof(char *))) != NULL) {
154 l->next = NULL;
155 l->addr = addr;
156 l->code = code;
157 l->nstack = ((log_depth < 1)? 0 : n);
158 l->stack[0] = stk;
159 for (i = 1; i < n; i++) {
160 l->stack[i] = (char *)fp->fr_savpc;
161 fp = FRAMEP(fp->fr_savfp);
162 }
163 if (list)
164 ll->next = l;
165 else
166 list = l;

new/usr/src/lib/libm/common/m9x/fex_log.c 2

167 }
168 return 0;
169 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/fma.c 1

**
 11316 Sun May 4 03:06:31 2014
new/usr/src/lib/libm/common/m9x/fma.c
**
______unchanged_portion_omitted_

56 #define half C[0].d
57 #define two C[1].d
58 #define two52 C[2].d
59 #define two27 C[3].d
60 #define twom26 C[4].d
61 #define twom32 C[5].d
62 #define twom64 C[6].d
63 #define huge C[7].d
64 #define tiny C[8].d
65 #define tiny2 C[9].d

67 static const unsigned int fsr_rm = 0xc0000000u;

69 /*
70 * fma for SPARC: 64-bit double precision, big-endian
71 */
72 double
73 __fma(double x, double y, double z) {
74 union {
75 unsigned i[2];
76 double d;
77 } xx, yy, zz;
78 double xhi, yhi, xlo, ylo, t;
79 unsigned int xy0, xy1, xy2, xy3, z0, z1, z2, z3, fsr, rm, sticky;
79 unsigned xy0, xy1, xy2, xy3, z0, z1, z2, z3, rm, sticky;
80 unsigned int fsr;
80 int hx, hy, hz, ex, ey, ez, exy, sxy, sz, e, ibit;
81 volatile double dummy;

83 /* extract the high order words of the arguments */
84 xx.d = x;
85 yy.d = y;
86 zz.d = z;
87 hx = xx.i[0] & ~0x80000000;
88 hy = yy.i[0] & ~0x80000000;
89 hz = zz.i[0] & ~0x80000000;

91 /* dispense with inf, nan, and zero cases */
92 if (hx >= 0x7ff00000 || hy >= 0x7ff00000 || (hx | xx.i[1]) == 0 ||
93 (hy | yy.i[1]) == 0) /* x or y is inf, nan, or zero */
94 return (x * y + z);

96 if (hz >= 0x7ff00000) /* z is inf or nan */
97 return (x + z); /* avoid spurious under/overflow in x * y */

99 if ((hz | zz.i[1]) == 0) /* z is zero */
100 /*
101 * x * y isn’t zero but could underflow to zero,
102 * so don’t add z, lest we perturb the sign
103 */
104 return (x * y);

106 /*
107 * now x, y, and z are all finite and nonzero; save the fsr and
108 * set round-to-negative-infinity mode (and clear nonstandard
109 * mode before we try to scale subnormal operands)
110 */
111 __fenv_getfsr32(&fsr);
112 __fenv_setfsr32(&fsr_rm);

new/usr/src/lib/libm/common/m9x/fma.c 2

114 /* extract signs and exponents, and normalize subnormals */
115 sxy = (xx.i[0] ^ yy.i[0]) & 0x80000000;
116 sz = zz.i[0] & 0x80000000;
117 ex = hx >> 20;
118 if (!ex) {
119 xx.d = x * two52;
120 ex = ((xx.i[0] & ~0x80000000) >> 20) - 52;
121 }
122 ey = hy >> 20;
123 if (!ey) {
124 yy.d = y * two52;
125 ey = ((yy.i[0] & ~0x80000000) >> 20) - 52;
126 }
127 ez = hz >> 20;
128 if (!ez) {
129 zz.d = z * two52;
130 ez = ((zz.i[0] & ~0x80000000) >> 20) - 52;
131 }

133 /* multiply x*y to 106 bits */
134 exy = ex + ey - 0x3ff;
135 xx.i[0] = (xx.i[0] & 0xfffff) | 0x3ff00000;
136 yy.i[0] = (yy.i[0] & 0xfffff) | 0x3ff00000;
137 x = xx.d;
138 y = yy.d;
139 xhi = ((x + twom26) + two27) - two27;
140 yhi = ((y + twom26) + two27) - two27;
141 xlo = x - xhi;
142 ylo = y - yhi;
143 x *= y;
144 y = ((xhi * yhi - x) + xhi * ylo + xlo * yhi) + xlo * ylo;
145 if (x >= two) {
146 x *= half;
147 y *= half;
148 exy++;
149 }

151 /* extract the significands */
152 xx.d = x;
153 xy0 = (xx.i[0] & 0xfffff) | 0x100000;
154 xy1 = xx.i[1];
155 yy.d = t = y + twom32;
156 xy2 = yy.i[1];
157 yy.d = (y - (t - twom32)) + twom64;
158 xy3 = yy.i[1];
159 z0 = (zz.i[0] & 0xfffff) | 0x100000;
160 z1 = zz.i[1];
161 z2 = z3 = 0;

163 /*
164 * now x*y is represented by sxy, exy, and xy[0-3], and z is
165 * represented likewise; swap if need be so |xy| <= |z|
166 */
167 if (exy > ez || (exy == ez && (xy0 > z0 || (xy0 == z0 &&
168 (xy1 > z1 || (xy1 == z1 && (xy2 | xy3) != 0)))))) {
169 e = sxy; sxy = sz; sz = e;
170 e = exy; exy = ez; ez = e;
171 e = xy0; xy0 = z0; z0 = e;
172 e = xy1; xy1 = z1; z1 = e;
173 z2 = xy2; xy2 = 0;
174 z3 = xy3; xy3 = 0;
175 }

177 /* shift the significand of xy keeping a sticky bit */
178 e = ez - exy;
179 if (e > 116) {

new/usr/src/lib/libm/common/m9x/fma.c 3

180 xy0 = xy1 = xy2 = 0;
181 xy3 = 1;
182 } else if (e >= 96) {
183 sticky = xy3 | xy2 | xy1 | ((xy0 << 1) << (127 - e));
184 xy3 = xy0 >> (e - 96);
185 if (sticky)
186 xy3 |= 1;
187 xy0 = xy1 = xy2 = 0;
188 } else if (e >= 64) {
189 sticky = xy3 | xy2 | ((xy1 << 1) << (95 - e));
190 xy3 = (xy1 >> (e - 64)) | ((xy0 << 1) << (95 - e));
191 if (sticky)
192 xy3 |= 1;
193 xy2 = xy0 >> (e - 64);
194 xy0 = xy1 = 0;
195 } else if (e >= 32) {
196 sticky = xy3 | ((xy2 << 1) << (63 - e));
197 xy3 = (xy2 >> (e - 32)) | ((xy1 << 1) << (63 - e));
198 if (sticky)
199 xy3 |= 1;
200 xy2 = (xy1 >> (e - 32)) | ((xy0 << 1) << (63 - e));
201 xy1 = xy0 >> (e - 32);
202 xy0 = 0;
203 } else if (e) {
204 sticky = (xy3 << 1) << (31 - e);
205 xy3 = (xy3 >> e) | ((xy2 << 1) << (31 - e));
206 if (sticky)
207 xy3 |= 1;
208 xy2 = (xy2 >> e) | ((xy1 << 1) << (31 - e));
209 xy1 = (xy1 >> e) | ((xy0 << 1) << (31 - e));
210 xy0 >>= e;
211 }

213 /* if this is a magnitude subtract, negate the significand of xy */
214 if (sxy ^ sz) {
215 xy0 = ~xy0;
216 xy1 = ~xy1;
217 xy2 = ~xy2;
218 xy3 = -xy3;
219 if (xy3 == 0)
220 if (++xy2 == 0)
221 if (++xy1 == 0)
222 xy0++;
223 }

225 /* add, propagating carries */
226 z3 += xy3;
227 e = (z3 < xy3);
228 z2 += xy2;
229 if (e) {
230 z2++;
231 e = (z2 <= xy2);
232 } else
233 e = (z2 < xy2);
234 z1 += xy1;
235 if (e) {
236 z1++;
237 e = (z1 <= xy1);
238 } else
239 e = (z1 < xy1);
240 z0 += xy0;
241 if (e)
242 z0++;

244 /* postnormalize and collect rounding information into z2 */
245 if (ez < 1) {

new/usr/src/lib/libm/common/m9x/fma.c 4

246 /* result is tiny; shift right until exponent is within range */
247 e = 1 - ez;
248 if (e > 56) {
249 z2 = 1; /* result can’t be exactly zero */
250 z0 = z1 = 0;
251 } else if (e >= 32) {
252 sticky = z3 | z2 | ((z1 << 1) << (63 - e));
253 z2 = (z1 >> (e - 32)) | ((z0 << 1) << (63 - e));
254 if (sticky)
255 z2 |= 1;
256 z1 = z0 >> (e - 32);
257 z0 = 0;
258 } else {
259 sticky = z3 | (z2 << 1) << (31 - e);
260 z2 = (z2 >> e) | ((z1 << 1) << (31 - e));
261 if (sticky)
262 z2 |= 1;
263 z1 = (z1 >> e) | ((z0 << 1) << (31 - e));
264 z0 >>= e;
265 }
266 ez = 1;
267 } else if (z0 >= 0x200000) {
268 /* carry out; shift right by one */
269 sticky = (z2 & 1) | z3;
270 z2 = (z2 >> 1) | (z1 << 31);
271 if (sticky)
272 z2 |= 1;
273 z1 = (z1 >> 1) | (z0 << 31);
274 z0 >>= 1;
275 ez++;
276 } else {
277 if (z0 < 0x100000 && (z0 | z1 | z2 | z3) != 0) {
278 /*
279 * borrow/cancellation; shift left as much as
280 * exponent allows
281 */
282 while (!(z0 | (z1 & 0xffe00000)) && ez >= 33) {
283 z0 = z1;
284 z1 = z2;
285 z2 = z3;
286 z3 = 0;
287 ez -= 32;
288 }
289 while (z0 < 0x100000 && ez > 1) {
290 z0 = (z0 << 1) | (z1 >> 31);
291 z1 = (z1 << 1) | (z2 >> 31);
292 z2 = (z2 << 1) | (z3 >> 31);
293 z3 <<= 1;
294 ez--;
295 }
296 }
297 if (z3)
298 z2 |= 1;
299 }

301 /* get the rounding mode and clear current exceptions */
302 rm = fsr >> 30;
303 fsr &= ~FSR_CEXC;

305 /* strip off the integer bit, if there is one */
306 ibit = z0 & 0x100000;
307 if (ibit)
308 z0 -= 0x100000;
309 else {
310 ez = 0;
311 if (!(z0 | z1 | z2)) { /* exact zero */

new/usr/src/lib/libm/common/m9x/fma.c 5

312 zz.i[0] = rm == FSR_RM ? 0x80000000 : 0;
313 zz.i[1] = 0;
314 __fenv_setfsr32(&fsr);
315 return (zz.d);
316 }
317 }

319 /*
320 * flip the sense of directed roundings if the result is negative;
321 * the logic below applies to a positive result
322 */
323 if (sz)
324 rm ^= rm >> 1;

326 /* round and raise exceptions */
327 if (z2) {
328 fsr |= FSR_NXC;

330 /* decide whether to round the fraction up */
331 if (rm == FSR_RP || (rm == FSR_RN && (z2 > 0x80000000u ||
332 (z2 == 0x80000000u && (z1 & 1))))) {
333 /* round up and renormalize if necessary */
334 if (++z1 == 0) {
335 if (++z0 == 0x100000) {
336 z0 = 0;
337 ez++;
338 }
339 }
340 }
341 }

343 /* check for under/overflow */
344 if (ez >= 0x7ff) {
345 if (rm == FSR_RN || rm == FSR_RP) {
346 zz.i[0] = sz | 0x7ff00000;
347 zz.i[1] = 0;
348 } else {
349 zz.i[0] = sz | 0x7fefffff;
350 zz.i[1] = 0xffffffff;
351 }
352 fsr |= FSR_OFC | FSR_NXC;
353 } else {
354 zz.i[0] = sz | (ez << 20) | z0;
355 zz.i[1] = z1;

357 /*
358 * !ibit => exact result was tiny before rounding,
359 * z2 nonzero => result delivered is inexact
360 */
361 if (!ibit) {
362 if (z2)
363 fsr |= FSR_UFC | FSR_NXC;
364 else if (fsr & FSR_UFM)
365 fsr |= FSR_UFC;
366 }
367 }

369 /* restore the fsr and emulate exceptions as needed */
370 if ((fsr & FSR_CEXC) & (fsr >> 23)) {
371 __fenv_setfsr32(&fsr);
372 if (fsr & FSR_OFC) {
373 dummy = huge;
374 dummy *= huge;
375 } else if (fsr & FSR_UFC) {
376 dummy = tiny;
377 if (fsr & FSR_NXC)

new/usr/src/lib/libm/common/m9x/fma.c 6

378 dummy *= tiny;
379 else
380 dummy -= tiny2;
381 } else {
382 dummy = huge;
383 dummy += tiny;
384 }
385 } else {
386 fsr |= (fsr & 0x1f) << 5;
387 __fenv_setfsr32(&fsr);
388 }
389 return (zz.d);
390 }

______unchanged_portion_omitted_

496 #if 0
497 /*
498 * another fma for x86: assumes return value will be left in
499 * long double (80-bit double extended) precision
500 */
501 long double
502 __fma(double x, double y, double z) {
503 union {
504 unsigned i[3];
505 long double e;
506 } xx, yy, zz, tt;
507 long double xe, ye, xhi, xlo, yhi, ylo, zhi, zlo;
508 int ex, ey, ez;
509 unsigned cwsw, oldcwsw, s;

511 /* convert the operands to double extended */
512 xx.e = (long double) x;
513 yy.e = (long double) y;
514 zz.e = (long double) z;

516 /* extract the exponents of the arguments */
517 ex = xx.i[2] & 0x7fff;
518 ey = yy.i[2] & 0x7fff;
519 ez = zz.i[2] & 0x7fff;

521 /* dispense with inf, nan, and zero cases */
522 if (ex == 0x7fff || ey == 0x7fff || ex == 0 || ey == 0)
523 /* x or y is inf, nan, or zero */
524 return (xx.e * yy.e + zz.e);

526 if (ez >= 0x7fff) /* z is inf or nan */
527 return (xx.e + zz.e); /* avoid spurious inexact in x * y */

529 if (ez == 0) /* z is zero */
530 return (xx.e * yy.e); /* x * y isn’t zero; no need to add z */

532 /*
533 * save the control and status words, mask all exceptions, and
534 * set rounding to 64-bit precision and to-nearest
535 */
536 __fenv_getcwsw(&oldcwsw);
537 cwsw = (oldcwsw & 0xf0c0ffff) | 0x033f0000;
538 __fenv_setcwsw(&cwsw);

540 /* multiply x*y to 106 bits */
541 xe = xx.e;
542 xx.i[0] = 0;
543 xhi = xx.e; /* hi 32 bits */
544 xlo = xe - xhi; /* lo 21 bits */
545 ye = yy.e;
546 yy.i[0] = 0;

new/usr/src/lib/libm/common/m9x/fma.c 7

547 yhi = yy.e;
548 ylo = ye - yhi;
549 xx.e = xe * ye;
550 xx.i[0] &= ~0x7ff; /* 53 bits of x*y */
551 yy.e = ((xhi * yhi - xx.e) + xhi * ylo + xlo * yhi) + xlo * ylo;

553 /* reduce to a sum of two terms */
554 if (yy.e != 0.0) {
555 ex = xx.i[2] & 0x7fff;
556 if (ez - ex > 10) {
557 /* collapse y into a single bit and add to x */
558 yy.i[0] = 0;
559 yy.i[1] = 0x80000000;
560 yy.i[2] = (yy.i[2] & 0x8000) | (ex - 60);
561 xx.e += yy.e;
562 } else if (ex - ez <= 10) {
563 xx.e += zz.e; /* exact */
564 zz.e = yy.e;
565 } else if (ex - ez <= 42) {
566 /* split z into two pieces */
567 tt.i[0] = 0;
568 tt.i[1] = 0x80000000;
569 tt.i[2] = ex + 11;
570 zhi = (zz.e + tt.e) - tt.e;
571 zlo = zz.e - zhi;
572 xx.e += zhi;
573 zz.e = yy.e + zlo;
574 } else if (ex - ez <= 63) {
575 zz.e += yy.e; /* exact */
576 } else if (ex - ez <= 106) {
577 /*
578 * collapse the tail of z into a sticky bit and add z
579 * to y without error
580 */
581 if (ex - ez <= 81) {
582 s = 1 << (ex - ez - 50);
583 if (zz.i[0] & (s - 1))
584 zz.i[0] |= s;
585 zz.i[0] &= ~(s - 1);
586 } else {
587 s = 1 << (ex - ez - 82);
588 if ((zz.i[1] & (s - 1)) | zz.i[0])
589 zz.i[1] |= s;
590 zz.i[1] &= ~(s - 1);
591 zz.i[0] = 0;
592 }
593 zz.e += yy.e;
594 } else {
595 /* collapse z into a single bit and add to y */
596 zz.i[0] = 0;
597 zz.i[1] = 0x80000000;
598 zz.i[2] = (zz.i[2] & 0x8000) | (ex - 113);
599 zz.e += yy.e;
600 }
601 }

603 /* restore the control and status words, and sum */
604 __fenv_setcwsw(&oldcwsw);
605 return (xx.e + zz.e);
606 }
607 #endif

495 #else
496 #error Unknown architecture
497 #endif

new/usr/src/lib/libm/common/m9x/fmal.c 1

**
 28135 Sun May 4 03:06:33 2014
new/usr/src/lib/libm/common/m9x/fmal.c
**
______unchanged_portion_omitted_

62 #define half C[0].d
63 #define two C[1].d
64 #define twom16 C[2].d
65 #define twom24 C[3].d
66 #define two20 C[4].d
67 #define twom28 C[5].d
68 #define twom76 C[6].d
69 #define twom124 C[7].d
70 #define two36 C[8].d
71 #define twom32 C[9].d
72 #define huge C[10].d
73 #define tiny C[11].d
74 #define tiny2 C[12].d
75 #define zero C[13].d
76 #define inf C[14].d
77 #define snan C[15].d

79 static const unsigned int fsr_rm = 0xc0000000u;

81 /*
82 * fmal for SPARC: 128-bit quad precision, big-endian
83 */
84 long double
85 __fmal(long double x, long double y, long double z) {
86 union {
87 unsigned int i[4];
87 unsigned i[4];
88 long double q;
89 } xx, yy, zz;
90 union {
91 unsigned int i[2];
91 unsigned i[2];
92 double d;
93 } u;
94 double dx[5], dy[5], dxy[9], c, s;
95 unsigned int xy0, xy1, xy2, xy3, xy4, xy5, xy6, xy7;
96 unsigned int z0, z1, z2, z3, z4, z5, z6, z7;
97 unsigned int rm, sticky;
95 unsigned xy0, xy1, xy2, xy3, xy4, xy5, xy6, xy7;
96 unsigned z0, z1, z2, z3, z4, z5, z6, z7;
97 unsigned rm, sticky;
98 unsigned int fsr;
99 int hx, hy, hz, ex, ey, ez, exy, sxy, sz, e, ibit;
100 int cx, cy, cz;
101 volatile double dummy;

103 /* extract the high order words of the arguments */
104 xx.q = x;
105 yy.q = y;
106 zz.q = z;
107 hx = xx.i[0] & ~0x80000000;
108 hy = yy.i[0] & ~0x80000000;
109 hz = zz.i[0] & ~0x80000000;

111 /*
112 * distinguish zero, finite nonzero, infinite, and quiet nan
113 * arguments; raise invalid and return for signaling nans
114 */
115 if (hx >= 0x7fff0000) {
116 if ((hx & 0xffff) | xx.i[1] | xx.i[2] | xx.i[3]) {

new/usr/src/lib/libm/common/m9x/fmal.c 2

117 if (!(hx & 0x8000)) {
118 /* signaling nan, raise invalid */
119 dummy = snan;
120 dummy += snan;
121 xx.i[0] |= 0x8000;
122 return (xx.q);
123 }
124 cx = 3; /* quiet nan */
125 } else
126 cx = 2; /* inf */
127 } else if (hx == 0) {
128 cx = (xx.i[1] | xx.i[2] | xx.i[3]) ? 1 : 0;
129 /* subnormal or zero */
130 } else
131 cx = 1; /* finite nonzero */

133 if (hy >= 0x7fff0000) {
134 if ((hy & 0xffff) | yy.i[1] | yy.i[2] | yy.i[3]) {
135 if (!(hy & 0x8000)) {
136 dummy = snan;
137 dummy += snan;
138 yy.i[0] |= 0x8000;
139 return (yy.q);
140 }
141 cy = 3;
142 } else
143 cy = 2;
144 } else if (hy == 0) {
145 cy = (yy.i[1] | yy.i[2] | yy.i[3]) ? 1 : 0;
146 } else
147 cy = 1;

149 if (hz >= 0x7fff0000) {
150 if ((hz & 0xffff) | zz.i[1] | zz.i[2] | zz.i[3]) {
151 if (!(hz & 0x8000)) {
152 dummy = snan;
153 dummy += snan;
154 zz.i[0] |= 0x8000;
155 return (zz.q);
156 }
157 cz = 3;
158 } else
159 cz = 2;
160 } else if (hz == 0) {
161 cz = (zz.i[1] | zz.i[2] | zz.i[3]) ? 1 : 0;
162 } else
163 cz = 1;

165 /* get the fsr and clear current exceptions */
166 __fenv_getfsr32(&fsr);
167 fsr &= ~FSR_CEXC;

169 /* handle all other zero, inf, and nan cases */
170 if (cx != 1 || cy != 1 || cz != 1) {
171 /* if x or y is a quiet nan, return it */
172 if (cx == 3) {
173 __fenv_setfsr32(&fsr);
174 return (x);
175 }
176 if (cy == 3) {
177 __fenv_setfsr32(&fsr);
178 return (y);
179 }

181 /* if x*y is 0*inf, raise invalid and return the default nan */
182 if ((cx == 0 && cy == 2) || (cx == 2 && cy == 0)) {

new/usr/src/lib/libm/common/m9x/fmal.c 3

183 dummy = zero;
184 dummy *= inf;
185 zz.i[0] = 0x7fffffff;
186 zz.i[1] = zz.i[2] = zz.i[3] = 0xffffffff;
187 return (zz.q);
188 }

190 /* if z is a quiet nan, return it */
191 if (cz == 3) {
192 __fenv_setfsr32(&fsr);
193 return (z);
194 }

196 /*
197 * now none of x, y, or z is nan; handle cases where x or y
198 * is inf
199 */
200 if (cx == 2 || cy == 2) {
201 /*
202 * if z is also inf, either we have inf-inf or
203 * the result is the same as z depending on signs
204 */
205 if (cz == 2) {
206 if ((int) ((xx.i[0] ^ yy.i[0]) ^ zz.i[0]) < 0) {
207 dummy = inf;
208 dummy -= inf;
209 zz.i[0] = 0x7fffffff;
210 zz.i[1] = zz.i[2] = zz.i[3] =
211 0xffffffff;
212 return (zz.q);
213 }
214 __fenv_setfsr32(&fsr);
215 return (z);
216 }

218 /* otherwise the result is inf with appropriate sign */
219 zz.i[0] = ((xx.i[0] ^ yy.i[0]) & 0x80000000) |
220 0x7fff0000;
221 zz.i[1] = zz.i[2] = zz.i[3] = 0;
222 __fenv_setfsr32(&fsr);
223 return (zz.q);
224 }

226 /* if z is inf, return it */
227 if (cz == 2) {
228 __fenv_setfsr32(&fsr);
229 return (z);
230 }

232 /*
233 * now x, y, and z are all finite; handle cases where x or y
234 * is zero
235 */
236 if (cx == 0 || cy == 0) {
237 /* either we have 0-0 or the result is the same as z */
238 if (cz == 0 && (int) ((xx.i[0] ^ yy.i[0]) ^ zz.i[0]) <
239 0) {
240 zz.i[0] = (fsr >> 30) == FSR_RM ? 0x80000000 :
241 0;
242 __fenv_setfsr32(&fsr);
243 return (zz.q);
244 }
245 __fenv_setfsr32(&fsr);
246 return (z);
247 }

new/usr/src/lib/libm/common/m9x/fmal.c 4

249 /* if we get here, x and y are nonzero finite, z must be zero */
250 return (x * y);
251 }

253 /*
254 * now x, y, and z are all finite and nonzero; set round-to-
255 * negative-infinity mode
256 */
257 __fenv_setfsr32(&fsr_rm);

259 /*
260 * get the signs and exponents and normalize the significands
261 * of x and y
262 */
263 sxy = (xx.i[0] ^ yy.i[0]) & 0x80000000;
264 ex = hx >> 16;
265 hx &= 0xffff;
266 if (!ex) {
267 if (hx | (xx.i[1] & 0xfffe0000)) {
268 ex = 1;
269 } else if (xx.i[1] | (xx.i[2] & 0xfffe0000)) {
270 hx = xx.i[1];
271 xx.i[1] = xx.i[2];
272 xx.i[2] = xx.i[3];
273 xx.i[3] = 0;
274 ex = -31;
275 } else if (xx.i[2] | (xx.i[3] & 0xfffe0000)) {
276 hx = xx.i[2];
277 xx.i[1] = xx.i[3];
278 xx.i[2] = xx.i[3] = 0;
279 ex = -63;
280 } else {
281 hx = xx.i[3];
282 xx.i[1] = xx.i[2] = xx.i[3] = 0;
283 ex = -95;
284 }
285 while ((hx & 0x10000) == 0) {
286 hx = (hx << 1) | (xx.i[1] >> 31);
287 xx.i[1] = (xx.i[1] << 1) | (xx.i[2] >> 31);
288 xx.i[2] = (xx.i[2] << 1) | (xx.i[3] >> 31);
289 xx.i[3] <<= 1;
290 ex--;
291 }
292 } else
293 hx |= 0x10000;
294 ey = hy >> 16;
295 hy &= 0xffff;
296 if (!ey) {
297 if (hy | (yy.i[1] & 0xfffe0000)) {
298 ey = 1;
299 } else if (yy.i[1] | (yy.i[2] & 0xfffe0000)) {
300 hy = yy.i[1];
301 yy.i[1] = yy.i[2];
302 yy.i[2] = yy.i[3];
303 yy.i[3] = 0;
304 ey = -31;
305 } else if (yy.i[2] | (yy.i[3] & 0xfffe0000)) {
306 hy = yy.i[2];
307 yy.i[1] = yy.i[3];
308 yy.i[2] = yy.i[3] = 0;
309 ey = -63;
310 } else {
311 hy = yy.i[3];
312 yy.i[1] = yy.i[2] = yy.i[3] = 0;
313 ey = -95;
314 }

new/usr/src/lib/libm/common/m9x/fmal.c 5

315 while ((hy & 0x10000) == 0) {
316 hy = (hy << 1) | (yy.i[1] >> 31);
317 yy.i[1] = (yy.i[1] << 1) | (yy.i[2] >> 31);
318 yy.i[2] = (yy.i[2] << 1) | (yy.i[3] >> 31);
319 yy.i[3] <<= 1;
320 ey--;
321 }
322 } else
323 hy |= 0x10000;
324 exy = ex + ey - 0x3fff;

326 /* convert the significands of x and y to doubles */
327 c = twom16;
328 dx[0] = (double) ((int) hx) * c;
329 dy[0] = (double) ((int) hy) * c;

331 c *= twom24;
332 dx[1] = (double) ((int) (xx.i[1] >> 8)) * c;
333 dy[1] = (double) ((int) (yy.i[1] >> 8)) * c;

335 c *= twom24;
336 dx[2] = (double) ((int) (((xx.i[1] << 16) | (xx.i[2] >> 16)) &
337 0xffffff)) * c;
338 dy[2] = (double) ((int) (((yy.i[1] << 16) | (yy.i[2] >> 16)) &
339 0xffffff)) * c;

341 c *= twom24;
342 dx[3] = (double) ((int) (((xx.i[2] << 8) | (xx.i[3] >> 24)) &
343 0xffffff)) * c;
344 dy[3] = (double) ((int) (((yy.i[2] << 8) | (yy.i[3] >> 24)) &
345 0xffffff)) * c;

347 c *= twom24;
348 dx[4] = (double) ((int) (xx.i[3] & 0xffffff)) * c;
349 dy[4] = (double) ((int) (yy.i[3] & 0xffffff)) * c;

351 /* form the "digits" of the product */
352 dxy[0] = dx[0] * dy[0];
353 dxy[1] = dx[0] * dy[1] + dx[1] * dy[0];
354 dxy[2] = dx[0] * dy[2] + dx[1] * dy[1] + dx[2] * dy[0];
355 dxy[3] = dx[0] * dy[3] + dx[1] * dy[2] + dx[2] * dy[1] +
356 dx[3] * dy[0];
357 dxy[4] = dx[0] * dy[4] + dx[1] * dy[3] + dx[2] * dy[2] +
358 dx[3] * dy[1] + dx[4] * dy[0];
359 dxy[5] = dx[1] * dy[4] + dx[2] * dy[3] + dx[3] * dy[2] +
360 dx[4] * dy[1];
361 dxy[6] = dx[2] * dy[4] + dx[3] * dy[3] + dx[4] * dy[2];
362 dxy[7] = dx[3] * dy[4] + dx[4] * dy[3];
363 dxy[8] = dx[4] * dy[4];

365 /* split odd-numbered terms and combine into even-numbered terms */
366 c = (dxy[1] + two20) - two20;
367 dxy[0] += c;
368 dxy[1] -= c;
369 c = (dxy[3] + twom28) - twom28;
370 dxy[2] += c + dxy[1];
371 dxy[3] -= c;
372 c = (dxy[5] + twom76) - twom76;
373 dxy[4] += c + dxy[3];
374 dxy[5] -= c;
375 c = (dxy[7] + twom124) - twom124;
376 dxy[6] += c + dxy[5];
377 dxy[8] += (dxy[7] - c);

379 /* propagate carries, adjusting the exponent if need be */
380 dxy[7] = dxy[6] + dxy[8];

new/usr/src/lib/libm/common/m9x/fmal.c 6

381 dxy[5] = dxy[4] + dxy[7];
382 dxy[3] = dxy[2] + dxy[5];
383 dxy[1] = dxy[0] + dxy[3];
384 if (dxy[1] >= two) {
385 dxy[0] *= half;
386 dxy[1] *= half;
387 dxy[2] *= half;
388 dxy[3] *= half;
389 dxy[4] *= half;
390 dxy[5] *= half;
391 dxy[6] *= half;
392 dxy[7] *= half;
393 dxy[8] *= half;
394 exy++;
395 }

397 /* extract the significand of x*y */
398 s = two36;
399 u.d = c = dxy[1] + s;
400 xy0 = u.i[1];
401 c -= s;
402 dxy[1] -= c;
403 dxy[0] -= c;

405 s *= twom32;
406 u.d = c = dxy[1] + s;
407 xy1 = u.i[1];
408 c -= s;
409 dxy[2] += (dxy[0] - c);
410 dxy[3] = dxy[2] + dxy[5];

412 s *= twom32;
413 u.d = c = dxy[3] + s;
414 xy2 = u.i[1];
415 c -= s;
416 dxy[4] += (dxy[2] - c);
417 dxy[5] = dxy[4] + dxy[7];

419 s *= twom32;
420 u.d = c = dxy[5] + s;
421 xy3 = u.i[1];
422 c -= s;
423 dxy[4] -= c;
424 dxy[5] = dxy[4] + dxy[7];

426 s *= twom32;
427 u.d = c = dxy[5] + s;
428 xy4 = u.i[1];
429 c -= s;
430 dxy[6] += (dxy[4] - c);
431 dxy[7] = dxy[6] + dxy[8];

433 s *= twom32;
434 u.d = c = dxy[7] + s;
435 xy5 = u.i[1];
436 c -= s;
437 dxy[8] += (dxy[6] - c);

439 s *= twom32;
440 u.d = c = dxy[8] + s;
441 xy6 = u.i[1];
442 c -= s;
443 dxy[8] -= c;

445 s *= twom32;
446 u.d = c = dxy[8] + s;

new/usr/src/lib/libm/common/m9x/fmal.c 7

447 xy7 = u.i[1];

449 /* extract the sign, exponent, and significand of z */
450 sz = zz.i[0] & 0x80000000;
451 ez = hz >> 16;
452 z0 = hz & 0xffff;
453 if (!ez) {
454 if (z0 | (zz.i[1] & 0xfffe0000)) {
455 z1 = zz.i[1];
456 z2 = zz.i[2];
457 z3 = zz.i[3];
458 ez = 1;
459 } else if (zz.i[1] | (zz.i[2] & 0xfffe0000)) {
460 z0 = zz.i[1];
461 z1 = zz.i[2];
462 z2 = zz.i[3];
463 z3 = 0;
464 ez = -31;
465 } else if (zz.i[2] | (zz.i[3] & 0xfffe0000)) {
466 z0 = zz.i[2];
467 z1 = zz.i[3];
468 z2 = z3 = 0;
469 ez = -63;
470 } else {
471 z0 = zz.i[3];
472 z1 = z2 = z3 = 0;
473 ez = -95;
474 }
475 while ((z0 & 0x10000) == 0) {
476 z0 = (z0 << 1) | (z1 >> 31);
477 z1 = (z1 << 1) | (z2 >> 31);
478 z2 = (z2 << 1) | (z3 >> 31);
479 z3 <<= 1;
480 ez--;
481 }
482 } else {
483 z0 |= 0x10000;
484 z1 = zz.i[1];
485 z2 = zz.i[2];
486 z3 = zz.i[3];
487 }
488 z4 = z5 = z6 = z7 = 0;

490 /*
491 * now x*y is represented by sxy, exy, and xy[0-7], and z is
492 * represented likewise; swap if need be so |xy| <= |z|
493 */
494 if (exy > ez || (exy == ez && (xy0 > z0 || (xy0 == z0 && (xy1 > z1 ||
495 (xy1 == z1 && (xy2 > z2 || (xy2 == z2 && (xy3 > z3 ||
496 (xy3 == z3 && (xy4 | xy5 | xy6 | xy7) != 0)))))))))) {
497 e = sxy; sxy = sz; sz = e;
498 e = exy; exy = ez; ez = e;
499 e = xy0; xy0 = z0; z0 = e;
500 e = xy1; xy1 = z1; z1 = e;
501 e = xy2; xy2 = z2; z2 = e;
502 e = xy3; xy3 = z3; z3 = e;
503 z4 = xy4; xy4 = 0;
504 z5 = xy5; xy5 = 0;
505 z6 = xy6; xy6 = 0;
506 z7 = xy7; xy7 = 0;
507 }

509 /* shift the significand of xy keeping a sticky bit */
510 e = ez - exy;
511 if (e > 236) {
512 xy0 = xy1 = xy2 = xy3 = xy4 = xy5 = xy6 = 0;

new/usr/src/lib/libm/common/m9x/fmal.c 8

513 xy7 = 1;
514 } else if (e >= 224) {
515 sticky = xy7 | xy6 | xy5 | xy4 | xy3 | xy2 | xy1 |
516 ((xy0 << 1) << (255 - e));
517 xy7 = xy0 >> (e - 224);
518 if (sticky)
519 xy7 |= 1;
520 xy0 = xy1 = xy2 = xy3 = xy4 = xy5 = xy6 = 0;
521 } else if (e >= 192) {
522 sticky = xy7 | xy6 | xy5 | xy4 | xy3 | xy2 |
523 ((xy1 << 1) << (223 - e));
524 xy7 = (xy1 >> (e - 192)) | ((xy0 << 1) << (223 - e));
525 if (sticky)
526 xy7 |= 1;
527 xy6 = xy0 >> (e - 192);
528 xy0 = xy1 = xy2 = xy3 = xy4 = xy5 = 0;
529 } else if (e >= 160) {
530 sticky = xy7 | xy6 | xy5 | xy4 | xy3 |
531 ((xy2 << 1) << (191 - e));
532 xy7 = (xy2 >> (e - 160)) | ((xy1 << 1) << (191 - e));
533 if (sticky)
534 xy7 |= 1;
535 xy6 = (xy1 >> (e - 160)) | ((xy0 << 1) << (191 - e));
536 xy5 = xy0 >> (e - 160);
537 xy0 = xy1 = xy2 = xy3 = xy4 = 0;
538 } else if (e >= 128) {
539 sticky = xy7 | xy6 | xy5 | xy4 | ((xy3 << 1) << (159 - e));
540 xy7 = (xy3 >> (e - 128)) | ((xy2 << 1) << (159 - e));
541 if (sticky)
542 xy7 |= 1;
543 xy6 = (xy2 >> (e - 128)) | ((xy1 << 1) << (159 - e));
544 xy5 = (xy1 >> (e - 128)) | ((xy0 << 1) << (159 - e));
545 xy4 = xy0 >> (e - 128);
546 xy0 = xy1 = xy2 = xy3 = 0;
547 } else if (e >= 96) {
548 sticky = xy7 | xy6 | xy5 | ((xy4 << 1) << (127 - e));
549 xy7 = (xy4 >> (e - 96)) | ((xy3 << 1) << (127 - e));
550 if (sticky)
551 xy7 |= 1;
552 xy6 = (xy3 >> (e - 96)) | ((xy2 << 1) << (127 - e));
553 xy5 = (xy2 >> (e - 96)) | ((xy1 << 1) << (127 - e));
554 xy4 = (xy1 >> (e - 96)) | ((xy0 << 1) << (127 - e));
555 xy3 = xy0 >> (e - 96);
556 xy0 = xy1 = xy2 = 0;
557 } else if (e >= 64) {
558 sticky = xy7 | xy6 | ((xy5 << 1) << (95 - e));
559 xy7 = (xy5 >> (e - 64)) | ((xy4 << 1) << (95 - e));
560 if (sticky)
561 xy7 |= 1;
562 xy6 = (xy4 >> (e - 64)) | ((xy3 << 1) << (95 - e));
563 xy5 = (xy3 >> (e - 64)) | ((xy2 << 1) << (95 - e));
564 xy4 = (xy2 >> (e - 64)) | ((xy1 << 1) << (95 - e));
565 xy3 = (xy1 >> (e - 64)) | ((xy0 << 1) << (95 - e));
566 xy2 = xy0 >> (e - 64);
567 xy0 = xy1 = 0;
568 } else if (e >= 32) {
569 sticky = xy7 | ((xy6 << 1) << (63 - e));
570 xy7 = (xy6 >> (e - 32)) | ((xy5 << 1) << (63 - e));
571 if (sticky)
572 xy7 |= 1;
573 xy6 = (xy5 >> (e - 32)) | ((xy4 << 1) << (63 - e));
574 xy5 = (xy4 >> (e - 32)) | ((xy3 << 1) << (63 - e));
575 xy4 = (xy3 >> (e - 32)) | ((xy2 << 1) << (63 - e));
576 xy3 = (xy2 >> (e - 32)) | ((xy1 << 1) << (63 - e));
577 xy2 = (xy1 >> (e - 32)) | ((xy0 << 1) << (63 - e));
578 xy1 = xy0 >> (e - 32);

new/usr/src/lib/libm/common/m9x/fmal.c 9

579 xy0 = 0;
580 } else if (e) {
581 sticky = (xy7 << 1) << (31 - e);
582 xy7 = (xy7 >> e) | ((xy6 << 1) << (31 - e));
583 if (sticky)
584 xy7 |= 1;
585 xy6 = (xy6 >> e) | ((xy5 << 1) << (31 - e));
586 xy5 = (xy5 >> e) | ((xy4 << 1) << (31 - e));
587 xy4 = (xy4 >> e) | ((xy3 << 1) << (31 - e));
588 xy3 = (xy3 >> e) | ((xy2 << 1) << (31 - e));
589 xy2 = (xy2 >> e) | ((xy1 << 1) << (31 - e));
590 xy1 = (xy1 >> e) | ((xy0 << 1) << (31 - e));
591 xy0 >>= e;
592 }

594 /* if this is a magnitude subtract, negate the significand of xy */
595 if (sxy ^ sz) {
596 xy0 = ~xy0;
597 xy1 = ~xy1;
598 xy2 = ~xy2;
599 xy3 = ~xy3;
600 xy4 = ~xy4;
601 xy5 = ~xy5;
602 xy6 = ~xy6;
603 xy7 = -xy7;
604 if (xy7 == 0)
605 if (++xy6 == 0)
606 if (++xy5 == 0)
607 if (++xy4 == 0)
608 if (++xy3 == 0)
609 if (++xy2 == 0)
610 if (++xy1 == 0)
611 xy0++;
612 }

614 /* add, propagating carries */
615 z7 += xy7;
616 e = (z7 < xy7);
617 z6 += xy6;
618 if (e) {
619 z6++;
620 e = (z6 <= xy6);
621 } else
622 e = (z6 < xy6);
623 z5 += xy5;
624 if (e) {
625 z5++;
626 e = (z5 <= xy5);
627 } else
628 e = (z5 < xy5);
629 z4 += xy4;
630 if (e) {
631 z4++;
632 e = (z4 <= xy4);
633 } else
634 e = (z4 < xy4);
635 z3 += xy3;
636 if (e) {
637 z3++;
638 e = (z3 <= xy3);
639 } else
640 e = (z3 < xy3);
641 z2 += xy2;
642 if (e) {
643 z2++;
644 e = (z2 <= xy2);

new/usr/src/lib/libm/common/m9x/fmal.c 10

645 } else
646 e = (z2 < xy2);
647 z1 += xy1;
648 if (e) {
649 z1++;
650 e = (z1 <= xy1);
651 } else
652 e = (z1 < xy1);
653 z0 += xy0;
654 if (e)
655 z0++;

657 /* postnormalize and collect rounding information into z4 */
658 if (ez < 1) {
659 /* result is tiny; shift right until exponent is within range */
660 e = 1 - ez;
661 if (e > 116) {
662 z4 = 1; /* result can’t be exactly zero */
663 z0 = z1 = z2 = z3 = 0;
664 } else if (e >= 96) {
665 sticky = z7 | z6 | z5 | z4 | z3 | z2 |
666 ((z1 << 1) << (127 - e));
667 z4 = (z1 >> (e - 96)) | ((z0 << 1) << (127 - e));
668 if (sticky)
669 z4 |= 1;
670 z3 = z0 >> (e - 96);
671 z0 = z1 = z2 = 0;
672 } else if (e >= 64) {
673 sticky = z7 | z6 | z5 | z4 | z3 |
674 ((z2 << 1) << (95 - e));
675 z4 = (z2 >> (e - 64)) | ((z1 << 1) << (95 - e));
676 if (sticky)
677 z4 |= 1;
678 z3 = (z1 >> (e - 64)) | ((z0 << 1) << (95 - e));
679 z2 = z0 >> (e - 64);
680 z0 = z1 = 0;
681 } else if (e >= 32) {
682 sticky = z7 | z6 | z5 | z4 | ((z3 << 1) << (63 - e));
683 z4 = (z3 >> (e - 32)) | ((z2 << 1) << (63 - e));
684 if (sticky)
685 z4 |= 1;
686 z3 = (z2 >> (e - 32)) | ((z1 << 1) << (63 - e));
687 z2 = (z1 >> (e - 32)) | ((z0 << 1) << (63 - e));
688 z1 = z0 >> (e - 32);
689 z0 = 0;
690 } else {
691 sticky = z7 | z6 | z5 | (z4 << 1) << (31 - e);
692 z4 = (z4 >> e) | ((z3 << 1) << (31 - e));
693 if (sticky)
694 z4 |= 1;
695 z3 = (z3 >> e) | ((z2 << 1) << (31 - e));
696 z2 = (z2 >> e) | ((z1 << 1) << (31 - e));
697 z1 = (z1 >> e) | ((z0 << 1) << (31 - e));
698 z0 >>= e;
699 }
700 ez = 1;
701 } else if (z0 >= 0x20000) {
702 /* carry out; shift right by one */
703 sticky = (z4 & 1) | z5 | z6 | z7;
704 z4 = (z4 >> 1) | (z3 << 31);
705 if (sticky)
706 z4 |= 1;
707 z3 = (z3 >> 1) | (z2 << 31);
708 z2 = (z2 >> 1) | (z1 << 31);
709 z1 = (z1 >> 1) | (z0 << 31);
710 z0 >>= 1;

new/usr/src/lib/libm/common/m9x/fmal.c 11

711 ez++;
712 } else {
713 if (z0 < 0x10000 && (z0 | z1 | z2 | z3 | z4 | z5 | z6 | z7)
714 != 0) {
715 /*
716 * borrow/cancellation; shift left as much as
717 * exponent allows
718 */
719 while (!(z0 | (z1 & 0xfffe0000)) && ez >= 33) {
720 z0 = z1;
721 z1 = z2;
722 z2 = z3;
723 z3 = z4;
724 z4 = z5;
725 z5 = z6;
726 z6 = z7;
727 z7 = 0;
728 ez -= 32;
729 }
730 while (z0 < 0x10000 && ez > 1) {
731 z0 = (z0 << 1) | (z1 >> 31);
732 z1 = (z1 << 1) | (z2 >> 31);
733 z2 = (z2 << 1) | (z3 >> 31);
734 z3 = (z3 << 1) | (z4 >> 31);
735 z4 = (z4 << 1) | (z5 >> 31);
736 z5 = (z5 << 1) | (z6 >> 31);
737 z6 = (z6 << 1) | (z7 >> 31);
738 z7 <<= 1;
739 ez--;
740 }
741 }
742 if (z5 | z6 | z7)
743 z4 |= 1;
744 }

746 /* get the rounding mode */
747 rm = fsr >> 30;

749 /* strip off the integer bit, if there is one */
750 ibit = z0 & 0x10000;
751 if (ibit)
752 z0 -= 0x10000;
753 else {
754 ez = 0;
755 if (!(z0 | z1 | z2 | z3 | z4)) { /* exact zero */
756 zz.i[0] = rm == FSR_RM ? 0x80000000 : 0;
757 zz.i[1] = zz.i[2] = zz.i[3] = 0;
758 __fenv_setfsr32(&fsr);
759 return (zz.q);
760 }
761 }

763 /*
764 * flip the sense of directed roundings if the result is negative;
765 * the logic below applies to a positive result
766 */
767 if (sz)
768 rm ^= rm >> 1;

770 /* round and raise exceptions */
771 if (z4) {
772 fsr |= FSR_NXC;

774 /* decide whether to round the fraction up */
775 if (rm == FSR_RP || (rm == FSR_RN && (z4 > 0x80000000u ||
776 (z4 == 0x80000000u && (z3 & 1))))) {

new/usr/src/lib/libm/common/m9x/fmal.c 12

777 /* round up and renormalize if necessary */
778 if (++z3 == 0)
779 if (++z2 == 0)
780 if (++z1 == 0)
781 if (++z0 == 0x10000) {
782 z0 = 0;
783 ez++;
784 }
785 }
786 }

788 /* check for under/overflow */
789 if (ez >= 0x7fff) {
790 if (rm == FSR_RN || rm == FSR_RP) {
791 zz.i[0] = sz | 0x7fff0000;
792 zz.i[1] = zz.i[2] = zz.i[3] = 0;
793 } else {
794 zz.i[0] = sz | 0x7ffeffff;
795 zz.i[1] = zz.i[2] = zz.i[3] = 0xffffffff;
796 }
797 fsr |= FSR_OFC | FSR_NXC;
798 } else {
799 zz.i[0] = sz | (ez << 16) | z0;
800 zz.i[1] = z1;
801 zz.i[2] = z2;
802 zz.i[3] = z3;

804 /*
805 * !ibit => exact result was tiny before rounding,
806 * z4 nonzero => result delivered is inexact
807 */
808 if (!ibit) {
809 if (z4)
810 fsr |= FSR_UFC | FSR_NXC;
811 else if (fsr & FSR_UFM)
812 fsr |= FSR_UFC;
813 }
814 }

816 /* restore the fsr and emulate exceptions as needed */
817 if ((fsr & FSR_CEXC) & (fsr >> 23)) {
818 __fenv_setfsr32(&fsr);
819 if (fsr & FSR_OFC) {
820 dummy = huge;
821 dummy *= huge;
822 } else if (fsr & FSR_UFC) {
823 dummy = tiny;
824 if (fsr & FSR_NXC)
825 dummy *= tiny;
826 else
827 dummy -= tiny2;
828 } else {
829 dummy = huge;
830 dummy += tiny;
831 }
832 } else {
833 fsr |= (fsr & 0x1f) << 5;
834 __fenv_setfsr32(&fsr);
835 }
836 return (zz.q);
837 }

______unchanged_portion_omitted_

1225 #else
1226 #error Unknown architecture
1227 #endif

new/usr/src/lib/libm/common/m9x/fmax.c 1

**
 2009 Sun May 4 03:06:35 2014
new/usr/src/lib/libm/common/m9x/fmax.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak fmax = __fmax
32 #endif

34 /*
35 * fmax(x,y) returns the larger of x and y. If just one of the
36 * arguments is NaN, fmax returns the other argument. If both
37 * arguments are NaN, fmax returns NaN.
38 *
39 * See fmaxf.c for a discussion of implementation trade-offs.
40 */

42 #include "libm.h" /* for isgreaterequal macro */
43 #include <fenv.h>

45 double
46 __fmax(double x, double y) {
47 union {
48 unsigned i[2];
49 double d;
50 } xx, yy;
51 unsigned s;

53 /* if y is nan, replace it by x */
54 if (y != y)
55 y = x;

57 /* if x is nan, replace it by y */
58 if (x != x)
59 x = y;

61 /* At this point, x and y are either both numeric, or both NaN */
62 if (!isnan(x) && !isgreaterequal(x, y))

new/usr/src/lib/libm/common/m9x/fmax.c 2

61 /* if x is less than y or x and y are unordered, replace x by y */
62 #if defined(COMPARISON_MACRO_BUG)
63 if (x < y)
64 #else
65 if (!isgreaterequal(x, y))
66 #endif
63 x = y;

65 /*
66 * clear the sign of the result if either x or y has its sign clear
70 * now x and y are either both NaN or both numeric; clear the
71 * sign of the result if either x or y has its sign clear
67 */
68 xx.d = x;
69 yy.d = y;
70 #if defined(__sparc)
71 s = ~(xx.i[0] & yy.i[0]) & 0x80000000;
72 xx.i[0] &= ~s;
73 #elif defined(__x86)
74 s = ~(xx.i[1] & yy.i[1]) & 0x80000000;
75 xx.i[1] &= ~s;
76 #else
77 #error Unknown architecture
78 #endif

80 return (xx.d);
81 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/fmaxf.c 1

**
 4325 Sun May 4 03:06:36 2014
new/usr/src/lib/libm/common/m9x/fmaxf.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak fmaxf = __fmaxf
32 #endif

34 /*
35 * fmax(x,y) returns the larger of x and y. If just one of the
36 * arguments is NaN, fmax returns the other argument. If both
37 * arguments are NaN, fmax returns NaN (ideally, one of the
38 * argument NaNs).
39 *
40 * C99 does not require that fmax(-0,+0) = fmax(+0,-0) = +0, but
41 * ideally fmax should satisfy this.
42 *
43 * C99 makes no mention of exceptions for fmax. I suppose ideally
44 * either fmax never raises any exceptions or else it raises the
45 * invalid operation exception if and only if some argument is a
46 * signaling NaN. In the former case, fmax should always return
47 * one of its arguments. In the latter, fmax shouldn’t return a
48 * signaling NaN, although when both arguments are signaling NaNs,
49 * this ideal is at odds with the stipulation that fmax should
50 * always return one of its arguments.
51 *
52 * Commutativity of fmax follows from the properties listed above
53 * except when both arguments are NaN. In that case, fmax may be
54 * declared commutative by fiat because there is no portable way
55 * to tell different NaNs apart. Ideally fmax would be truly com-
56 * mutative for all arguments.
57 *
58 * On SPARC V8, fmax must involve tests and branches. Ideally,
59 * an implementation on SPARC V9 should avoid branching, using
60 * conditional moves instead where necessary, and be as efficient
61 * as possible in its use of other resources.
62 *

new/usr/src/lib/libm/common/m9x/fmaxf.c 2

63 * It appears to be impossible to attain all of the aforementioned
64 * ideals simultaneously. The implementation below satisfies the
65 * following (on SPARC):
66 *
67 * 1. fmax(x,y) returns the larger of x and y if neither x nor y
68 * is NaN and the non-NaN argument if just one of x or y is NaN.
69 * If both x and y are NaN, fmax(x,y) returns x unchanged.
70 * 2. fmax(-0,+0) = fmax(+0,-0) = +0.
71 * 3. If either argument is a signaling NaN, fmax raises the invalid
72 * operation exception. Otherwise, it raises no exceptions.
73 */

75 #include "libm.h" /* for isgreaterequal macro */

77 float
78 __fmaxf(float x, float y) {
79 /*
80 * On SPARC v8plus/v9, this could be implemented as follows
81 * (assuming %f0 = x, %f1 = y, return value left in %f0):
82 *
83 * fcmps %fcc0,%f1,%f1
84 * fmovsu %fcc0,%f0,%f1
85 * fcmps %fcc0,%f0,%f1
86 * fmovsul %fcc0,%f1,%f0
87 * st %f0,[x]
88 * st %f1,[y]
89 * ld [x],%l0
90 * ld [y],%l1
91 * and %l0,%l1,%l2
92 * sethi %hi(0x80000000),%l3
93 * andn %l3,%l2,%l2
94 * andn %l0,%l2,%l0
95 * st %l0,[x]
96 * ld [x],%f0
97 *
98 * If VIS instructions are available, use this code instead:
99 *
100 * fcmps %fcc0,%f1,%f1
101 * fmovsu %fcc0,%f0,%f1
102 * fcmps %fcc0,%f0,%f1
103 * fmovsul %fcc0,%f1,%f0
104 * fands %f0,%f1,%f2
105 * fzeros %f3
106 * fnegs %f3,%f3
107 * fandnot2s %f3,%f2,%f2
108 * fandnot2s %f0,%f2,%f0
109 *
110 * If VIS 3.0 instructions are available, use this:
111 *
112 * flcmps %fcc0,%f0,%f1
113 * fmovslg %fcc0,%f1,%f0 ! move if %fcc0 is 1 or 2
114 */

116 union {
117 unsigned i;
118 float f;
119 } xx, yy;
120 unsigned s;

122 /* if y is nan, replace it by x */
123 if (y != y)
124 y = x;

126 /* if x is nan, replace it by y */
127 if (x != x)
128 x = y;

new/usr/src/lib/libm/common/m9x/fmaxf.c 3

130 /* At this point, x and y are either both numeric, or both NaN */
131 if (!isnan(x) && !isgreaterequal(x, y))
130 /* if x is less than y or x and y are unordered, replace x by y */
131 #if defined(COMPARISON_MACRO_BUG)
132 if (x < y)
133 #else
134 if (!isgreaterequal(x, y))
135 #endif
132 x = y;

134 /*
135 * clear the sign of the result if either x or y has its sign clear
139 * now x and y are either both NaN or both numeric; clear the
140 * sign of the result if either x or y has its sign clear
136 */
137 xx.f = x;
138 yy.f = y;
139 s = ~(xx.i & yy.i) & 0x80000000;
140 xx.i &= ~s;

142 return (xx.f);
143 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/fmaxl.c 1

**
 1874 Sun May 4 03:06:38 2014
new/usr/src/lib/libm/common/m9x/fmaxl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak fmaxl = __fmaxl
32 #endif

34 #include "libm.h" /* for isgreaterequal macro */

36 long double
37 __fmaxl(long double x, long double y) {
38 union {
39 #if defined(__sparc)
40 unsigned i[4];
41 #elif defined(__x86)
42 unsigned i[3];
43 #else
44 #error Unknown architecture
45 #endif
46 long double ld;
47 } xx, yy;
48 unsigned s;

50 /* if y is nan, replace it by x */
51 if (y != y)
52 y = x;

54 /* if x is nan, replace it by y */
55 if (x != x)
56 x = y;

58 /* At this point, x and y are either both numeric, or both NaN */
59 if (!isnan(x) && !isgreaterequal(x, y))
54 /* if x is less than y or x and y are unordered, replace x by y */
55 #if defined(COMPARISON_MACRO_BUG)
56 if (x != x || x < y)

new/usr/src/lib/libm/common/m9x/fmaxl.c 2

57 #else
58 if (!isgreaterequal(x, y))
59 #endif
60 x = y;

62 /*
63 * clear the sign of the result if either x or y has its sign clear
63 * now x and y are either both NaN or both numeric; clear the
64 * sign of the result if either x or y has its sign clear
64 */
65 xx.ld = x;
66 yy.ld = y;
67 #if defined(__sparc)
68 s = ~(xx.i[0] & yy.i[0]) & 0x80000000;
69 xx.i[0] &= ~s;
70 #elif defined(__x86)
71 s = ~(xx.i[2] & yy.i[2]) & 0x8000;
72 xx.i[2] &= ~s;
73 #else
74 #error Unknown architecture
75 #endif

77 return (xx.ld);
78 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/fmin.c 1

**
 2006 Sun May 4 03:06:39 2014
new/usr/src/lib/libm/common/m9x/fmin.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak fmin = __fmin
32 #endif

34 /*
35 * fmin(x,y) returns the smaller of x and y. If just one of the
36 * arguments is NaN, fmin returns the other argument. If both
37 * arguments are NaN, fmin returns NaN.
38 *
39 * See fmaxf.c for a discussion of implementation trade-offs.
40 */

42 #include "libm.h" /* for islessequal macro */

44 #include "fenv_inlines.h"
45 #include <stdio.h>
46 #endif /* ! codereview */
47 #include <sys/isa_defs.h>

49 double
50 __fmin(double x, double y) {
51 union {
52 unsigned i[2];
53 double d;
54 } xx, yy;
55 unsigned s;
56
57 /* if y is nan, replace it by x */
58 if (y != y)
59 y = x;

61 /* if x is nan, replace it by y */
62 if (x != x)

new/usr/src/lib/libm/common/m9x/fmin.c 2

63 x = y;

65 /* At this point, x and y are either both numeric, or both NaN */
66 if (!isnan(x) && !islessequal(x, y))
44 /* if x is greater than y or x and y are unordered, replace x by y */
45 #if defined(COMPARISON_MACRO_BUG)
46 if (x != x || x > y)
47 #else
48 if (!islessequal(x, y))
49 #endif
67 x = y;

69 /*
70 * set the sign of the result if either x or y has its sign set
53 * now x and y are either both NaN or both numeric; set the
54 * sign of the result if either x or y has its sign set
71 */
72 xx.d = x;
73 yy.d = y;
74 #if defined(_BIG_ENDIAN)
75 s = (xx.i[0] | yy.i[0]) & 0x80000000;
76 xx.i[0] |= s;
77 #else
78 s = (xx.i[1] | yy.i[1]) & 0x80000000;
79 xx.i[1] |= s;
80 #endif

82 return (xx.d);
83 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/fminf.c 1

**
 2413 Sun May 4 03:06:40 2014
new/usr/src/lib/libm/common/m9x/fminf.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak fminf = __fminf
32 #endif

34 #include "libm.h" /* for islessequal macro */

36 float
37 __fminf(float x, float y) {
38 /*
39 * On SPARC v8plus/v9, this could be implemented as follows
40 * (assuming %f0 = x, %f1 = y, return value left in %f0):
41 *
42 * fcmps %fcc0,%f1,%f1
43 * fmovsu %fcc0,%f0,%f1
44 * fcmps %fcc0,%f0,%f1
45 * fmovsug %fcc0,%f1,%f0
46 * st %f0,[x]
47 * st %f1,[y]
48 * ld [x],%l0
49 * ld [y],%l1
50 * or %l0,%l1,%l2
51 * sethi %hi(0x80000000),%l3
52 * and %l3,%l2,%l2
53 * or %l0,%l2,%l0
54 * st %l0,[x]
55 * ld [x],%f0
56 *
57 * If VIS instructions are available, use this code instead:
58 *
59 * fcmps %fcc0,%f1,%f1
60 * fmovsu %fcc0,%f0,%f1
61 * fcmps %fcc0,%f0,%f1
62 * fmovsug %fcc0,%f1,%f0

new/usr/src/lib/libm/common/m9x/fminf.c 2

63 * fors %f0,%f1,%f2
64 * fzeros %f3
65 * fnegs %f3,%f3
66 * fands %f3,%f2,%f2
67 * fors %f0,%f2,%f0
68 *
69 * If VIS 3.0 instructions are available, use this:
70 *
71 * flcmps %fcc0,%f0,%f1
72 * fmovsge %fcc0,%f1,%f0 ! move if %fcc0 is 0 or 2
73 */

75 union {
76 unsigned i;
77 float f;
78 } xx, yy;
79 unsigned s;

81 /* if y is nan, replace it by x */
82 if (y != y)
83 y = x;

85 /* if x is nan, replace it by y */
86 if (x != x)
87 x = y;

89 /* At this point, x and y are either both numeric, or both NaN */
90 if (!isnan(x) && !islessequal(x, y))
89 /* if x is greater than y or x and y are unordered, replace x by y */
90 #if defined(COMPARISON_MACRO_BUG)
91 if (x > y)
92 #else
93 if (!islessequal(x, y))
94 #endif
91 x = y;

93 /*
94 * set the sign of the result if either x or y has its sign set
98 * now x and y are either both NaN or both numeric; set the
99 * sign of the result if either x or y has its sign set
95 */
96 xx.f = x;
97 yy.f = y;
98 s = (xx.i | yy.i) & 0x80000000;
99 xx.i |= s;

101 return (xx.f);
102 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/fminl.c 1

**
 1860 Sun May 4 03:06:43 2014
new/usr/src/lib/libm/common/m9x/fminl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak fminl = __fminl
32 #endif

34 #include "libm.h" /* for islessequal macro */

36 long double
37 __fminl(long double x, long double y) {
38 union {
39 #if defined(__sparc)
40 unsigned i[4];
41 #elif defined(__x86)
42 unsigned i[3];
43 #else
44 #error Unknown architecture
45 #endif
46 long double ld;
47 } xx, yy;
48 unsigned s;

50 /* if y is nan, replace it by x */
51 if (y != y)
52 y = x;

54 /* if x is nan, replace it by y */
55 if (x != x)
56 x = y;

58 /* At this point, x and y are either both numeric, or both NaN */
59 if (!isnan(x) && !islessequal(x, y))
54 /* if x is greater than y or x and y are unordered, replace x by y */
55 #if defined(COMPARISON_MACRO_BUG)
56 if (x != x || x > y)

new/usr/src/lib/libm/common/m9x/fminl.c 2

57 #else
58 if (!islessequal(x, y))
59 #endif
60 x = y;

62 /*
63 * set the sign of the result if either x or y has its sign set
63 * now x and y are either both NaN or both numeric; set the
64 * sign of the result if either x or y has its sign set
64 */
65 xx.ld = x;
66 yy.ld = y;
67 #if defined(__sparc)
68 s = (xx.i[0] | yy.i[0]) & 0x80000000;
69 xx.i[0] |= s;
70 #elif defined(__x86)
71 s = (xx.i[2] | yy.i[2]) & 0x8000;
72 xx.i[2] |= s;
73 #else
74 #error Unknown architecture
75 #endif

77 return (xx.ld);
78 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/llrintl.c 1

**
 4344 Sun May 4 03:06:44 2014
new/usr/src/lib/libm/common/m9x/llrintl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak llrintl = __llrintl
32 #if defined(__sparcv9) || defined(__amd64)
33 #pragma weak lrintl = __llrintl
34 #pragma weak __lrintl = __llrintl
35 #endif
36 #endif

38 #include "libm.h"

40 #if defined(__sparc)

42 #include "fma.h"
43 #include "fenv_inlines.h"

45 long long
46 llrintl(long double x) {
47 union {
48 unsigned i[4];
49 long double q;
50 } xx;
51 union {
52 unsigned i[2];
53 long long l;
54 } zz;
55 union {
56 unsigned i;
57 float f;
58 } tt;
59 unsigned int hx, sx, frac, fsr;
59 unsigned int hx, sx, frac;
60 unsigned int fsr;
60 int rm, j;

new/usr/src/lib/libm/common/m9x/llrintl.c 2

61 volatile float dummy;

63 xx.q = x;
64 sx = xx.i[0] & 0x80000000;
65 hx = xx.i[0] & ~0x80000000;

67 /* handle trivial cases */
68 if (hx > 0x403e0000) { /* |x| > 2^63 + ... or x is nan */
69 /* convert an out-of-range float */
70 tt.i = sx | 0x7f000000;
71 return ((long long) tt.f);
72 } else if ((hx | xx.i[1] | xx.i[2] | xx.i[3]) == 0) /* x is zero */
73 return (0LL);

75 /* get the rounding mode */
76 __fenv_getfsr32(&fsr);
77 rm = fsr >> 30;

79 /* flip the sense of directed roundings if x is negative */
80 if (sx)
81 rm ^= rm >> 1;

83 /* handle |x| < 1 */
84 if (hx < 0x3fff0000) {
85 dummy = 1.0e30f; /* x is nonzero, so raise inexact */
86 dummy += 1.0e-30f;
87 if (rm == FSR_RP || (rm == FSR_RN && (hx >= 0x3ffe0000 &&
88 ((hx & 0xffff) | xx.i[1] | xx.i[2] | xx.i[3]))))
89 return (sx ? -1LL : 1LL);
90 return (0LL);
91 }

93 /* extract the integer and fractional parts of x */
94 j = 0x406f - (hx >> 16);
95 xx.i[0] = 0x10000 | (xx.i[0] & 0xffff);
96 if (j >= 96) {
97 zz.i[0] = 0;
98 zz.i[1] = xx.i[0] >> (j - 96);
99 frac = ((xx.i[0] << 1) << (127 - j)) | (xx.i[1] >> (j - 96));
100 if (((xx.i[1] << 1) << (127 - j)) | xx.i[2] | xx.i[3])
101 frac |= 1;
102 } else if (j >= 64) {
103 zz.i[0] = xx.i[0] >> (j - 64);
104 zz.i[1] = ((xx.i[0] << 1) << (95 - j)) | (xx.i[1] >> (j - 64));
105 frac = ((xx.i[1] << 1) << (95 - j)) | (xx.i[2] >> (j - 64));
106 if (((xx.i[2] << 1) << (95 - j)) | xx.i[3])
107 frac |= 1;
108 } else {
109 zz.i[0] = ((xx.i[0] << 1) << (63 - j)) | (xx.i[1] >> (j - 32));
110 zz.i[1] = ((xx.i[1] << 1) << (63 - j)) | (xx.i[2] >> (j - 32));
111 frac = ((xx.i[2] << 1) << (63 - j)) | (xx.i[3] >> (j - 32));
112 if ((xx.i[3] << 1) << (63 - j))
113 frac |= 1;
114 }

116 /* round */
117 if (frac && (rm == FSR_RP || (rm == FSR_RN && (frac > 0x80000000u ||
118 (frac == 0x80000000 && (zz.i[1] & 1)))))) {
119 if (++zz.i[1] == 0)
120 zz.i[0]++;
121 }

123 /* check for result out of range (note that z is |x| at this point) */
124 if (zz.i[0] > 0x80000000u || (zz.i[0] == 0x80000000 && (zz.i[1] ||
125 !sx))) {
126 tt.i = sx | 0x7f000000;

new/usr/src/lib/libm/common/m9x/llrintl.c 3

127 return ((long long) tt.f);
128 }

130 /* raise inexact if need be */
131 if (frac) {
132 dummy = 1.0e30F;
133 dummy += 1.0e-30F;
134 }

136 /* negate result if need be */
137 if (sx) {
138 zz.i[0] = ~zz.i[0];
139 zz.i[1] = -zz.i[1];
140 if (zz.i[1] == 0)
141 zz.i[0]++;
142 }
143 return (zz.l);
144 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/lrintl.c 1

**
 3910 Sun May 4 03:06:46 2014
new/usr/src/lib/libm/common/m9x/lrintl.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak lrintl = __lrintl
32 #endif

34 #include <sys/isa_defs.h> /* _ILP32 */
35 #include "libm.h"

37 #if defined(_ILP32)
38 #if defined(__sparc)

40 #include "fma.h"
41 #include "fenv_inlines.h"

43 long
44 lrintl(long double x) {
45 union {
46 unsigned int i[4];
46 unsigned i[4];
47 long double q;
48 } xx;
49 union {
50 unsigned int i;
50 unsigned i;
51 float f;
52 } tt;
53 unsigned int hx, sx, frac, l, fsr;
53 unsigned hx, sx, frac, l;
54 unsigned int fsr;
54 int rm, j;
55 volatile float dummy;

57 xx.q = x;
58 sx = xx.i[0] & 0x80000000;

new/usr/src/lib/libm/common/m9x/lrintl.c 2

59 hx = xx.i[0] & ~0x80000000;

61 /* handle trivial cases */
62 if (hx > 0x401e0000) { /* |x| > 2^31 + ... or x is nan */
63 /* convert an out-of-range float */
64 tt.i = sx | 0x7f000000;
65 return ((long) tt.f);
66 } else if ((hx | xx.i[1] | xx.i[2] | xx.i[3]) == 0) /* x is zero */
67 return (0L);

69 /* get the rounding mode */
70 __fenv_getfsr32(&fsr);
71 rm = fsr >> 30;

73 /* flip the sense of directed roundings if x is negative */
74 if (sx)
75 rm ^= rm >> 1;

77 /* handle |x| < 1 */
78 if (hx < 0x3fff0000) {
79 dummy = 1.0e30F; /* x is nonzero, so raise inexact */
80 dummy += 1.0e-30F;
81 if (rm == FSR_RP || (rm == FSR_RN && (hx >= 0x3ffe0000 &&
82 ((hx & 0xffff) | xx.i[1] | xx.i[2] | xx.i[3]))))
83 return (sx ? -1L : 1L);
84 return (0L);
85 }

87 /* extract the integer and fractional parts of x */
88 j = 0x406f - (hx >> 16); /* 91 <= j <= 112 */
89 xx.i[0] = 0x10000 | (xx.i[0] & 0xffff);
90 if (j >= 96) { /* 96 <= j <= 112 */
91 l = xx.i[0] >> (j - 96);
92 frac = ((xx.i[0] << 1) << (127 - j)) | (xx.i[1] >> (j - 96));
93 if (((xx.i[1] << 1) << (127 - j)) | xx.i[2] | xx.i[3])
94 frac |= 1;
95 } else { /* 91 <= j <= 95 */
96 l = (xx.i[0] << (96 - j)) | (xx.i[1] >> (j - 64));
97 frac = (xx.i[1] << (96 - j)) | (xx.i[2] >> (j - 64));
98 if ((xx.i[2] << (96 - j)) | xx.i[3])
99 frac |= 1;
100 }

102 /* round */
103 if (frac && (rm == FSR_RP || (rm == FSR_RN && (frac > 0x80000000U ||
104 (frac == 0x80000000 && (l & 1))))))
105 l++;

107 /* check for result out of range (note that z is |x| at this point) */
108 if (l > 0x80000000U || (l == 0x80000000U && !sx)) {
109 tt.i = sx | 0x7f000000;
110 return ((long) tt.f);
111 }

113 /* raise inexact if need be */
114 if (frac) {
115 dummy = 1.0e30F;
116 dummy += 1.0e-30F;
117 }

119 /* negate result if need be */
120 if (sx)
121 l = -l;
122 return ((long) l);
123 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/nan.c 1

**
 1527 Sun May 4 03:06:48 2014
new/usr/src/lib/libm/common/m9x/nan.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak nan = __nan
32 #endif

34 /*
35 * nan(c) returns a NaN. This implementation ignores c.
36 */

38 #include "libm.h"
39 #include <sys/isa_defs.h>

41 #if defined(__sparc)
41 #if defined(_BIG_ENDIAN)

43 static const union {
44 unsigned i[2];
45 double d;
46 } __nan_union = { 0x7fffffff, 0xffffffff };

48 #elif defined(__i386) || defined(__amd64)
48 #else

50 static const union {
51 unsigned i[2];
52 double d;
53 } __nan_union = { 0xffffffff, 0x7fffffff };

55 #else
56 #error Unknown architecture
57 #endif /* ! codereview */
58 #endif

60 /* ARGSUSED0 */

new/usr/src/lib/libm/common/m9x/nan.c 2

61 double
62 __nan(const char *c) {
63 return (__nan_union.d);
64 }

new/usr/src/lib/libm/common/m9x/nearbyint.c 1

**
 5109 Sun May 4 03:06:50 2014
new/usr/src/lib/libm/common/m9x/nearbyint.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak nearbyint = __nearbyint
32 #endif

34 /*
35 * nearbyint(x) returns the nearest fp integer to x in the direction
36 * corresponding to the current rounding direction without raising
37 * the inexact exception.
38 *
39 * nearbyint(x) is x unchanged if x is +/-0 or +/-inf. If x is NaN,
40 * nearbyint(x) is also NaN.
41 */

43 #include "libm.h"
44 #include "fenv_synonyms.h"
45 #include <fenv.h>

47 double
48 __nearbyint(double x) {
49 union {
50 unsigned i[2];
51 double d;
52 } xx;
53 unsigned hx, sx, i, frac;
54 int rm, j;

56 xx.d = x;
57 sx = xx.i[HIWORD] & 0x80000000;
58 hx = xx.i[HIWORD] & ~0x80000000;

60 /* handle trivial cases */
61 if (hx >= 0x43300000) { /* x is nan, inf, or already integral */
62 if (hx >= 0x7ff00000) /* x is inf or nan */

new/usr/src/lib/libm/common/m9x/nearbyint.c 2

63 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
64 return (hx >= 0x7ff80000 ? x : x + x);
65 /* assumes sparc-like QNaN */
66 #else
67 return (x + x);
68 #endif
69 return (x);
70 } else if ((hx | xx.i[LOWORD]) == 0) /* x is zero */
71 return (x);

73 /* get the rounding mode */
74 rm = fegetround();

76 /* flip the sense of directed roundings if x is negative */
77 if (sx && (rm == FE_UPWARD || rm == FE_DOWNWARD))
78 rm = (FE_UPWARD + FE_DOWNWARD) - rm;

80 /* handle |x| < 1 */
81 if (hx < 0x3ff00000) {
82 if (rm == FE_UPWARD || (rm == FE_TONEAREST &&
83 (hx >= 0x3fe00000 && ((hx & 0xfffff) | xx.i[LOWORD]))))
84 xx.i[HIWORD] = sx | 0x3ff00000;
85 else
86 xx.i[HIWORD] = sx;
87 xx.i[LOWORD] = 0;
88 return (xx.d);
89 }

91 /* round x at the integer bit */
92 j = 0x433 - (hx >> 20);
93 if (j >= 32) {
94 i = 1 << (j - 32);
95 frac = ((xx.i[HIWORD] << 1) << (63 - j)) |
96 (xx.i[LOWORD] >> (j - 32));
97 if (xx.i[LOWORD] & (i - 1))
98 frac |= 1;
99 if (!frac)
100 return (x);
101 xx.i[LOWORD] = 0;
102 xx.i[HIWORD] &= ~(i - 1);
103 if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) &&
104 ((frac > 0x80000000u) || ((frac == 0x80000000) &&
105 (xx.i[HIWORD] & i)))))
103 if (rm == FE_UPWARD || (rm == FE_TONEAREST &&
104 (frac > 0x80000000u || (frac == 0x80000000) &&
105 (xx.i[HIWORD] & i))))
106 xx.i[HIWORD] += i;
107 } else {
108 i = 1 << j;
109 frac = (xx.i[LOWORD] << 1) << (31 - j);
110 if (!frac)
111 return (x);
112 xx.i[LOWORD] &= ~(i - 1);
113 if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) &&
114 (frac > 0x80000000u || ((frac == 0x80000000) &&
115 (xx.i[LOWORD] & i))))) {
113 if (rm == FE_UPWARD || (rm == FE_TONEAREST &&
114 (frac > 0x80000000u || (frac == 0x80000000) &&
115 (xx.i[LOWORD] & i)))) {
116 xx.i[LOWORD] += i;
117 if (xx.i[LOWORD] == 0)
118 xx.i[HIWORD]++;
119 }
120 }
121 return (xx.d);
122 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/nearbyintf.c 1

**
 4024 Sun May 4 03:06:51 2014
new/usr/src/lib/libm/common/m9x/nearbyintf.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak nearbyintf = __nearbyintf
32 #endif

34 #include "libm.h"
35 #include "fenv_synonyms.h"
36 #include <fenv.h>

38 float
39 __nearbyintf(float x) {
40 union {
41 unsigned i;
42 float f;
43 } xx;
44 unsigned hx, sx, i, frac;
45 int rm;

47 xx.f = x;
48 sx = xx.i & 0x80000000;
49 hx = xx.i & ~0x80000000;

51 /* handle trivial cases */
52 if (hx >= 0x4b000000) { /* x is nan, inf, or already integral */
53 if (hx > 0x7f800000) /* x is nan */
54 return (x * x); /* + -> * for Cheetah */
55 return (x);
56 } else if (hx == 0) /* x is zero */
57 return (x);

59 /* get the rounding mode */
60 rm = fegetround();

62 /* flip the sense of directed roundings if x is negative */

new/usr/src/lib/libm/common/m9x/nearbyintf.c 2

63 if (sx && (rm == FE_UPWARD || rm == FE_DOWNWARD))
64 rm = (FE_UPWARD + FE_DOWNWARD) - rm;

66 /* handle |x| < 1 */
67 if (hx < 0x3f800000) {
68 if (rm == FE_UPWARD || (rm == FE_TONEAREST && hx > 0x3f000000))
69 xx.i = sx | 0x3f800000;
70 else
71 xx.i = sx;
72 return (xx.f);
73 }

75 /* round x at the integer bit */
76 i = 1 << (0x96 - (hx >> 23));
77 frac = hx & (i - 1);
78 if (!frac)
79 return (x);

81 hx &= ~(i - 1);
82 if (rm == FE_UPWARD || (rm == FE_TONEAREST && (frac > (i >> 1) ||
83 ((frac == (i >> 1)) && (hx & i)))))
83 (frac == (i >> 1)) && (hx & i))))
84 xx.i = sx | (hx + i);
85 else
86 xx.i = sx | hx;
87 return (xx.f);
88 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/scalblnl.c 1

**
 2430 Sun May 4 03:06:53 2014
new/usr/src/lib/libm/common/m9x/scalblnl.c
**
______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/tgamma.c 1

**
 68985 Sun May 4 03:06:55 2014
new/usr/src/lib/libm/common/m9x/tgamma.c
**
______unchanged_portion_omitted_

1392 /* INDENT OFF */
1393 static const double
1394 /* 0.134861805732790769689793935774652917006 */
1395 t0z1 = 0.1348618057327907737708,
1396 t0z1_l = -4.0810077708578299022531e-18,
1397 /* 0.461632144968362341262659542325721328468 */
1398 t0z2 = 0.4616321449683623567850,
1399 t0z2_l = -1.5522348162858676890521e-17,
1400 /* 0.819773101100500601787868704921606996312 */
1401 t0z3 = 0.8197731011005006118708,
1402 t0z3_l = -1.0082945122487103498325e-17;
1403 /* 1.134861805732790769689793935774652917006 */
1404 /* INDENT ON */

1406 /* gamma(x+i) for 0 <= x < 1 */
1407 static struct Double
1408 gam_n(int i, double x) {
1409 struct Double rr = {0.0L, 0.0L}, yy;
1409 struct Double rr, yy;
1410 double r1, r2, t2, z, xh, xl, yh, yl, zh, z1, z2, zl, x5, wh, wl;

1412 /* compute yy = gamma(x+1) */
1413 if (x > 0.2845) {
1414 if (x > 0.6374) {
1415 r1 = x - t0z3;
1416 r2 = (double) ((float) (r1 - t0z3_l));
1417 t2 = r1 - r2;
1418 yy = GT3(r2, t2 - t0z3_l);
1419 } else {
1420 r1 = x - t0z2;
1421 r2 = (double) ((float) (r1 - t0z2_l));
1422 t2 = r1 - r2;
1423 yy = GT2(r2, t2 - t0z2_l);
1424 }
1425 } else {
1426 r1 = x - t0z1;
1427 r2 = (double) ((float) (r1 - t0z1_l));
1428 t2 = r1 - r2;
1429 yy = GT1(r2, t2 - t0z1_l);
1430 }

1432 /* compute gamma(x+i) = (x+i-1)*...*(x+1)*yy, 0<i<8 */
1433 switch (i) {
1434 case 0: /* yy/x */
1435 r1 = one / x;
1436 xh = (double) ((float) x); /* x is not tiny */
1437 rr.h = (double) ((float) ((yy.h + yy.l) * r1));
1438 rr.l = r1 * (yy.h - rr.h * xh) -
1439 ((r1 * rr.h) * (x - xh) - r1 * yy.l);
1440 break;
1441 case 1: /* yy */
1442 rr.h = yy.h;
1443 rr.l = yy.l;
1444 break;
1445 case 2: /* (x+1)*yy */
1446 z = x + one; /* may not be exact */
1447 zh = (double) ((float) z);
1448 rr.h = zh * yy.h;
1449 rr.l = z * yy.l + (x - (zh - one)) * yy.h;
1450 break;

new/usr/src/lib/libm/common/m9x/tgamma.c 2

1451 case 3: /* (x+2)*(x+1)*yy */
1452 z1 = x + one;
1453 z2 = x + 2.0;
1454 z = z1 * z2;
1455 xh = (double) ((float) z);
1456 zh = (double) ((float) z1);
1457 xl = (x - (zh - one)) * (z2 + zh) - (xh - zh * (zh + one));
1458 rr.h = xh * yy.h;
1459 rr.l = z * yy.l + xl * yy.h;
1460 break;

1462 case 4: /* (x+1)*(x+3)*(x+2)*yy */
1463 z1 = x + 2.0;
1464 z2 = (x + one) * (x + 3.0);
1465 zh = z1;
1466 __LO(zh) = 0;
1467 __HI(zh) &= 0xfffffff8; /* zh 18 bits mantissa */
1468 zl = x - (zh - 2.0);
1469 z = z1 * z2;
1470 xh = (double) ((float) z);
1471 xl = zl * (z2 + zh * (z1 + zh)) - (xh - zh * (zh * zh - one));
1472 rr.h = xh * yy.h;
1473 rr.l = z * yy.l + xl * yy.h;
1474 break;
1475 case 5: /* ((x+1)*(x+4)*(x+2)*(x+3))*yy */
1476 z1 = x + 2.0;
1477 z2 = x + 3.0;
1478 z = z1 * z2;
1479 zh = (double) ((float) z1);
1480 yh = (double) ((float) z);
1481 yl = (x - (zh - 2.0)) * (z2 + zh) - (yh - zh * (zh + one));
1482 z2 = z - 2.0;
1483 z *= z2;
1484 xh = (double) ((float) z);
1485 xl = yl * (z2 + yh) - (xh - yh * (yh - 2.0));
1486 rr.h = xh * yy.h;
1487 rr.l = z * yy.l + xl * yy.h;
1488 break;
1489 case 6: /* ((x+1)*(x+2)*(x+3)*(x+4)*(x+5))*yy */
1490 z1 = x + 2.0;
1491 z2 = x + 3.0;
1492 z = z1 * z2;
1493 zh = (double) ((float) z1);
1494 yh = (double) ((float) z);
1495 z1 = x - (zh - 2.0);
1496 yl = z1 * (z2 + zh) - (yh - zh * (zh + one));
1497 z2 = z - 2.0;
1498 x5 = x + 5.0;
1499 z *= z2;
1500 xh = (double) ((float) z);
1501 zh += 3.0;
1502 xl = yl * (z2 + yh) - (xh - yh * (yh - 2.0));
1503 /* xh+xl=(x+1)*...*(x+4) */
1504 /* wh+wl=(x+5)*yy */
1505 wh = (double) ((float) (x5 * (yy.h + yy.l)));
1506 wl = (z1 * yy.h + x5 * yy.l) - (wh - zh * yy.h);
1507 rr.h = wh * xh;
1508 rr.l = z * wl + xl * wh;
1509 break;
1510 case 7: /* ((x+1)*(x+2)*(x+3)*(x+4)*(x+5)*(x+6))*yy */
1511 z1 = x + 3.0;
1512 z2 = x + 4.0;
1513 z = z2 * z1;
1514 zh = (double) ((float) z1);
1515 yh = (double) ((float) z); /* yh+yl = (x+3)(x+4) */
1516 yl = (x - (zh - 3.0)) * (z2 + zh) - (yh - (zh * (zh + one)));

new/usr/src/lib/libm/common/m9x/tgamma.c 3

1517 z1 = x + 6.0;
1518 z2 = z - 2.0; /* z2 = (x+2)*(x+5) */
1519 z *= z2;
1520 xh = (double) ((float) z);
1521 xl = yl * (z2 + yh) - (xh - yh * (yh - 2.0));
1522 /* xh+xl=(x+2)*...*(x+5) */
1523 /* wh+wl=(x+1)(x+6)*yy */
1524 z2 -= 4.0; /* z2 = (x+1)(x+6) */
1525 wh = (double) ((float) (z2 * (yy.h + yy.l)));
1526 wl = (z2 * yy.l + yl * yy.h) - (wh - (yh - 6.0) * yy.h);
1527 rr.h = wh * xh;
1528 rr.l = z * wl + xl * wh;
1529 }
1530 return (rr);
1531 }

1533 double
1534 tgamma(double x) {
1535 struct Double ss, ww;
1536 double t, t1, t2, t3, t4, t5, w, y, z, z1, z2, z3, z5;
1537 int i, j, k, m, ix, hx, xk;
1538 unsigned lx;

1540 hx = __HI(x);
1541 lx = __LO(x);
1542 ix = hx & 0x7fffffff;
1543 y = x;

1545 if (ix < 0x3ca00000)
1546 return (one / x); /* |x| < 2**-53 */
1547 if (ix >= 0x7ff00000)
1548 /* +Inf -> +Inf, -Inf or NaN -> NaN */
1549 return (x * ((hx < 0)? 0.0 : x));
1550 if (hx > 0x406573fa || /* x > 171.62... overflow to +inf */
1551 (hx == 0x406573fa && lx > 0xE561F647)) {
1552 z = x / tiny;
1553 return (z * z);
1554 }
1555 if (hx >= 0x40200000) { /* x >= 8 */
1556 ww = large_gam(x, &m);
1557 w = ww.h + ww.l;
1558 __HI(w) += m << 20;
1559 return (w);
1560 }
1561 if (hx > 0) { /* 0 < x < 8 */
1561 if (hx > 0) { /* x from 0 to 8 */
1562 i = (int) x;
1563 ww = gam_n(i, x - (double) i);
1564 return (ww.h + ww.l);
1565 }

1567 /* negative x */
1568 /* INDENT OFF */
1569 /*
1570 * compute: xk =
1571 * -2 ... x is an even int (-inf is even)
1572 * -1 ... x is an odd int
1573 * +0 ... x is not an int but chopped to an even int
1574 * +1 ... x is not an int but chopped to an odd int
1575 */
1576 /* INDENT ON */
1577 xk = 0;
1578 if (ix >= 0x43300000) {
1579 if (ix >= 0x43400000)
1580 xk = -2;
1581 else

new/usr/src/lib/libm/common/m9x/tgamma.c 4

1582 xk = -2 + (lx & 1);
1583 } else if (ix >= 0x3ff00000) {
1584 k = (ix >> 20) - 0x3ff;
1585 if (k > 20) {
1586 j = lx >> (52 - k);
1587 if ((j << (52 - k)) == lx)
1588 xk = -2 + (j & 1);
1589 else
1590 xk = j & 1;
1591 } else {
1592 j = ix >> (20 - k);
1593 if ((j << (20 - k)) == ix && lx == 0)
1594 xk = -2 + (j & 1);
1595 else
1596 xk = j & 1;
1597 }
1598 }
1599 if (xk < 0)
1600 /* ideally gamma(-n)= (-1)**(n+1) * inf, but c99 expect NaN */
1601 return ((x - x) / (x - x)); /* 0/0 = NaN */

1604 /* negative underflow thresold */
1605 if (ix > 0x4066e000 || (ix == 0x4066e000 && lx > 11)) {
1606 /* x < -183.0 - 11ulp */
1607 z = tiny / x;
1608 if (xk == 1)
1609 z = -z;
1610 return (z * tiny);
1611 }

1613 /* now compute gamma(x) by -1/((sin(pi*y)/pi)*gamma(1+y)), y = -x */

1615 /*
1616 * First compute ss = -sin(pi*y)/pi , so that
1617 * gamma(x) = 1/(ss*gamma(1+y))
1618 */
1619 y = -x;
1620 j = (int) y;
1621 z = y - (double) j;
1622 if (z > 0.3183098861837906715377675)
1623 if (z > 0.6816901138162093284622325)
1624 ss = kpsin(one - z);
1625 else
1626 ss = kpcos(0.5 - z);
1627 else
1628 ss = kpsin(z);
1629 if (xk == 0) {
1630 ss.h = -ss.h;
1631 ss.l = -ss.l;
1632 }

1634 /* Then compute ww = gamma(1+y), note that result scale to 2**m */
1635 m = 0;
1636 if (j < 7) {
1637 ww = gam_n(j + 1, z);
1638 } else {
1639 w = y + one;
1640 if ((lx & 1) == 0) { /* y+1 exact (note that y<184) */
1641 ww = large_gam(w, &m);
1642 } else {
1643 t = w - one;
1644 if (t == y) { /* y+one exact */
1645 ww = large_gam(w, &m);
1646 } else { /* use y*gamma(y) */
1647 if (j == 7)

new/usr/src/lib/libm/common/m9x/tgamma.c 5

1648 ww = gam_n(j, z);
1649 else
1650 ww = large_gam(y, &m);
1651 t4 = ww.h + ww.l;
1652 t1 = (double) ((float) y);
1653 t2 = (double) ((float) t4);
1654 /* t4 will not be too large */
1655 ww.l = y * (ww.l - (t2 - ww.h)) + (y - t1) * t2;
1656 ww.h = t1 * t2;
1657 }
1658 }
1659 }

1661 /* compute 1/(ss*ww) */
1662 t3 = ss.h + ss.l;
1663 t4 = ww.h + ww.l;
1664 t1 = (double) ((float) t3);
1665 t2 = (double) ((float) t4);
1666 z1 = ss.l - (t1 - ss.h); /* (t1,z1) = ss */
1667 z2 = ww.l - (t2 - ww.h); /* (t2,z2) = ww */
1668 t3 = t3 * t4; /* t3 = ss*ww */
1669 z3 = one / t3; /* z3 = 1/(ss*ww) */
1670 t5 = t1 * t2;
1671 z5 = z1 * t4 + t1 * z2; /* (t5,z5) = ss*ww */
1672 t1 = (double) ((float) t3); /* (t1,z1) = ss*ww */
1673 z1 = z5 - (t1 - t5);
1674 t2 = (double) ((float) z3); /* leading 1/(ss*ww) */
1675 z2 = z3 * (t2 * z1 - (one - t2 * t1));
1676 z = t2 - z2;

1678 /* check whether z*2**-m underflow */
1679 if (m != 0) {
1680 hx = __HI(z);
1681 i = hx & 0x80000000;
1682 ix = hx ^ i;
1683 j = ix >> 20;
1684 if (j > m) {
1685 ix -= m << 20;
1686 __HI(z) = ix ^ i;
1687 } else if ((m - j) > 52) {
1688 /* underflow */
1689 if (xk == 0)
1690 z = -tiny * tiny;
1691 else
1692 z = tiny * tiny;
1693 } else {
1694 /* subnormal */
1695 m -= 60;
1696 t = one;
1697 __HI(t) -= 60 << 20;
1698 ix -= m << 20;
1699 __HI(z) = ix ^ i;
1700 z *= t;
1701 }
1702 }
1703 return (z);
1704 }
______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/tgammaf.c 1

**
 15261 Sun May 4 03:06:56 2014
new/usr/src/lib/libm/common/m9x/tgammaf.c
**
______unchanged_portion_omitted_

390 /* INDENT OFF */
391 static const double
392 t0z1 = 0.134861805732790769689793935774652917006,
393 t0z2 = 0.461632144968362341262659542325721328468,
394 t0z3 = 0.819773101100500601787868704921606996312;
395 /* 1.134861805732790769689793935774652917006 */
396 /* INDENT ON */

398 /*
399 * gamma(x+i) for 0 <= x < 1
400 */
401 static double
402 gam_n(int i, double x) {
403 double rr = 0.0L, yy;
403 double rr, yy;
404 double z1, z2;

406 /* compute yy = gamma(x+1) */
407 if (x > 0.2845) {
408 if (x > 0.6374)
409 yy = GT3(x - t0z3);
410 else
411 yy = GT2(x - t0z2);
412 } else
413 yy = GT1(x - t0z1);

415 /* compute gamma(x+i) = (x+i-1)*...*(x+1)*yy, 0<i<8 */
416 switch (i) {
417 case 0: /* yy/x */
418 rr = yy / x;
419 break;
420 case 1: /* yy */
421 rr = yy;
422 break;
423 case 2: /* (x+1)*yy */
424 rr = (x + one) * yy;
425 break;
426 case 3: /* (x+2)*(x+1)*yy */
427 rr = (x + one) * (x + two) * yy;
428 break;

430 case 4: /* (x+1)*(x+3)*(x+2)*yy */
431 rr = (x + one) * (x + two) * ((x + 3.0) * yy);
432 break;
433 case 5: /* ((x+1)*(x+4)*(x+2)*(x+3))*yy */
434 z1 = (x + two) * (x + 3.0) * yy;
435 z2 = (x + one) * (x + 4.0);
436 rr = z1 * z2;
437 break;
438 case 6: /* ((x+1)*(x+2)*(x+3)*(x+4)*(x+5))*yy */
439 z1 = (x + two) * (x + 3.0);
440 z2 = (x + 5.0) * yy;
441 rr = z1 * (z1 - two) * z2;
442 break;
443 case 7: /* ((x+1)*(x+2)*(x+3)*(x+4)*(x+5)*(x+6))*yy */
444 z1 = (x + two) * (x + 3.0);
445 z2 = (x + 5.0) * (x + 6.0) * yy;
446 rr = z1 * (z1 - two) * z2;
447 break;
448 }

new/usr/src/lib/libm/common/m9x/tgammaf.c 2

449 return (rr);
450 }

452 float
453 tgammaf(float xf) {
454 float zf;
455 double ss, ww;
456 double x, y, z;
457 int i, j, k, ix, hx, xk;

459 hx = *(int *) &xf;
460 ix = hx & 0x7fffffff;

462 x = (double) xf;
463 if (ix < 0x33800000)
464 return (1.0F / xf); /* |x| < 2**-24 */

466 if (ix >= 0x7f800000)
467 return (xf * ((hx < 0)? 0.0F : xf)); /* +-Inf or NaN */

469 if (hx > 0x420C290F) /* x > 35.040096283... overflow */
470 return (float)(x / tiny);

472 if (hx >= 0x41000000) /* x >= 8 */
473 return ((float) large_gam(x));

475 if (hx > 0) { /* 0 < x < 8 */
475 if (hx > 0) { /* x from 0 to 8 */
476 i = (int) xf;
477 return ((float) gam_n(i, x - (double) i));
478 }

480 /* negative x */
481 /* INDENT OFF */
482 /*
483 * compute xk =
484 * -2 ... x is an even int (-inf is considered even)
485 * -1 ... x is an odd int
486 * +0 ... x is not an int but chopped to an even int
487 * +1 ... x is not an int but chopped to an odd int
488 */
489 /* INDENT ON */
490 xk = 0;
491 if (ix >= 0x4b000000) {
492 if (ix > 0x4b000000)
493 xk = -2;
494 else
495 xk = -2 + (ix & 1);
496 } else if (ix >= 0x3f800000) {
497 k = (ix >> 23) - 0x7f;
498 j = ix >> (23 - k);
499 if ((j << (23 - k)) == ix)
500 xk = -2 + (j & 1);
501 else
502 xk = j & 1;
503 }
504 if (xk < 0) {
505 /* 0/0 invalid NaN, ideally gamma(-n)= (-1)**(n+1) * inf */
506 zf = xf - xf;
507 return (zf / zf);
508 }

510 /* negative underflow thresold */
511 if (ix > 0x4224000B) { /* x < -(41+11ulp) */
512 if (xk == 0)
513 z = -tiny;

new/usr/src/lib/libm/common/m9x/tgammaf.c 3

514 else
515 z = tiny;
516 return ((float)z);
517 }

519 /* INDENT OFF */
520 /* now compute gamma(x) by -1/((sin(pi*y)/pi)*gamma(1+y)), y = -x */
521 /*
522 * First compute ss = -sin(pi*y)/pi , so that
523 * gamma(x) = 1/(ss*gamma(1+y))
524 */
525 /* INDENT ON */
526 y = -x;
527 j = (int) y;
528 z = y - (double) j;
529 if (z > 0.3183098861837906715377675)
530 if (z > 0.6816901138162093284622325)
531 ss = kpsin(one - z);
532 else
533 ss = kpcos(0.5 - z);
534 else
535 ss = kpsin(z);
536 if (xk == 0)
537 ss = -ss;

539 /* Then compute ww = gamma(1+y) */
540 if (j < 7)
541 ww = gam_n(j + 1, z);
542 else
543 ww = large_gam(y + one);

545 /* return 1/(ss*ww) */
546 return ((float) (one / (ww * ss)));
547 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/common/m9x/tgammal.c 1

**
 40087 Sun May 4 03:06:58 2014
new/usr/src/lib/libm/common/m9x/tgammal.c
**
______unchanged_portion_omitted_

850 /* INDENT OFF */
851 static const long double
852 /* 0.13486180573279076968979393577465291700642511139552429398233 */
853 #if defined(__x86)
854 t0z1 = 0.1348618057327907696779385054997035808810L,
855 t0z1_l = 1.1855430274949336125392717150257379614654e-20L,
856 #else
857 t0z1 = 0.1348618057327907696897939357746529168654L,
858 t0z1_l = 1.4102088588676879418739164486159514674310e-37L,
859 #endif
860 /* 0.46163214496836234126265954232572132846819620400644635129599 */
861 #if defined(__x86)
862 t0z2 = 0.4616321449683623412538115843295472018326L,
863 t0z2_l = 8.84795799617412663558532305039261747030640e-21L,
864 #else
865 t0z2 = 0.46163214496836234126265954232572132343318L,
866 t0z2_l = 5.03501162329616380465302666480916271611101e-36L,
867 #endif
868 /* 0.81977310110050060178786870492160699631174407846245179119586 */
869 #if defined(__x86)
870 t0z3 = 0.81977310110050060178773362329351925836817L,
871 t0z3_l = 1.350816280877379435658077052534574556256230e-22L
872 #else
873 t0z3 = 0.8197731011005006017878687049216069516957449L,
874 t0z3_l = 4.461599916947014419045492615933551648857380e-35L
875 #endif
876 ;
877 /* INDENT ON */

879 /*
880 * gamma(x+i) for 0 <= x < 1
881 */
882 static struct LDouble
883 gam_n(int i, long double x) {
884 struct LDouble rr = {0.0L, 0.0L}, yy;
884 struct LDouble rr, yy;
885 long double r1, r2, t2, z, xh, xl, yh, yl, zh, z1, z2, zl, x5, wh, wl;

887 /* compute yy = gamma(x+1) */
888 if (x > 0.2845L) {
889 if (x > 0.6374L) {
890 r1 = x - t0z3;
891 r2 = CHOPPED((r1 - t0z3_l));
892 t2 = r1 - r2;
893 yy = GT3(r2, t2 - t0z3_l);
894 } else {
895 r1 = x - t0z2;
896 r2 = CHOPPED((r1 - t0z2_l));
897 t2 = r1 - r2;
898 yy = GT2(r2, t2 - t0z2_l);
899 }
900 } else {
901 r1 = x - t0z1;
902 r2 = CHOPPED((r1 - t0z1_l));
903 t2 = r1 - r2;
904 yy = GT1(r2, t2 - t0z1_l);
905 }
906 /* compute gamma(x+i) = (x+i-1)*...*(x+1)*yy, 0<i<8 */
907 switch (i) {
908 case 0: /* yy/x */

new/usr/src/lib/libm/common/m9x/tgammal.c 2

909 r1 = one / x;
910 xh = CHOPPED((x)); /* x is not tiny */
911 rr.h = CHOPPED(((yy.h + yy.l) * r1));
912 rr.l = r1 * (yy.h - rr.h * xh) - ((r1 * rr.h) * (x - xh) -
913 r1 * yy.l);
914 break;
915 case 1: /* yy */
916 rr.h = yy.h;
917 rr.l = yy.l;
918 break;
919 case 2: /* (x+1)*yy */
920 z = x + one; /* may not be exact */
921 zh = CHOPPED((z));
922 rr.h = zh * yy.h;
923 rr.l = z * yy.l + (x - (zh - one)) * yy.h;
924 break;
925 case 3: /* (x+2)*(x+1)*yy */
926 z1 = x + one;
927 z2 = x + 2.0L;
928 z = z1 * z2;
929 xh = CHOPPED((z));
930 zh = CHOPPED((z1));
931 xl = (x - (zh - one)) * (z2 + zh) - (xh - zh * (zh + one));

933 rr.h = xh * yy.h;
934 rr.l = z * yy.l + xl * yy.h;
935 break;

937 case 4: /* (x+1)*(x+3)*(x+2)*yy */
938 z1 = x + 2.0L;
939 z2 = (x + one) * (x + 3.0L);
940 zh = CHOPPED(z1);
941 zl = x - (zh - 2.0L);
942 xh = CHOPPED(z2);
943 xl = zl * (zh + z1) - (xh - (zh * zh - one));

945 /* wh+wl=(x+2)*yy */
946 wh = CHOPPED((z1 * (yy.h + yy.l)));
947 wl = (zl * yy.h + z1 * yy.l) - (wh - zh * yy.h);

949 rr.h = xh * wh;
950 rr.l = z2 * wl + xl * wh;

952 break;
953 case 5: /* ((x+1)*(x+4)*(x+2)*(x+3))*yy */
954 z1 = x + 2.0L;
955 z2 = x + 3.0L;
956 z = z1 * z2;
957 zh = CHOPPED((z1));
958 yh = CHOPPED((z));
959 yl = (x - (zh - 2.0L)) * (z2 + zh) - (yh - zh * (zh + one));
960 z2 = z - 2.0L;
961 z *= z2;
962 xh = CHOPPED((z));
963 xl = yl * (z2 + yh) - (xh - yh * (yh - 2.0L));
964 rr.h = xh * yy.h;
965 rr.l = z * yy.l + xl * yy.h;
966 break;
967 case 6: /* ((x+1)*(x+2)*(x+3)*(x+4)*(x+5))*yy */
968 z1 = x + 2.0L;
969 z2 = x + 3.0L;
970 z = z1 * z2;
971 zh = CHOPPED((z1));
972 yh = CHOPPED((z));
973 z1 = x - (zh - 2.0L);
974 yl = z1 * (z2 + zh) - (yh - zh * (zh + one));

new/usr/src/lib/libm/common/m9x/tgammal.c 3

975 z2 = z - 2.0L;
976 x5 = x + 5.0L;
977 z *= z2;
978 xh = CHOPPED(z);
979 zh += 3.0;
980 xl = yl * (z2 + yh) - (xh - yh * (yh - 2.0L));
981 /* xh+xl=(x+1)*...*(x+4) */
982 /* wh+wl=(x+5)*yy */
983 wh = CHOPPED((x5 * (yy.h + yy.l)));
984 wl = (z1 * yy.h + x5 * yy.l) - (wh - zh * yy.h);
985 rr.h = wh * xh;
986 rr.l = z * wl + xl * wh;
987 break;
988 case 7: /* ((x+1)*(x+2)*(x+3)*(x+4)*(x+5)*(x+6))*yy */
989 z1 = x + 3.0L;
990 z2 = x + 4.0L;
991 z = z2 * z1;
992 zh = CHOPPED((z1));
993 yh = CHOPPED((z)); /* yh+yl = (x+3)(x+4) */
994 yl = (x - (zh - 3.0L)) * (z2 + zh) - (yh - (zh * (zh + one)));
995 z1 = x + 6.0L;
996 z2 = z - 2.0L; /* z2 = (x+2)*(x+5) */
997 z *= z2;
998 xh = CHOPPED((z));
999 xl = yl * (z2 + yh) - (xh - yh * (yh - 2.0L));

1000 /* xh+xl=(x+2)*...*(x+5) */
1001 /* wh+wl=(x+1)(x+6)*yy */
1002 z2 -= 4.0L; /* z2 = (x+1)(x+6) */
1003 wh = CHOPPED((z2 * (yy.h + yy.l)));
1004 wl = (z2 * yy.l + yl * yy.h) - (wh - (yh - 6.0L) * yy.h);
1005 rr.h = wh * xh;
1006 rr.l = z * wl + xl * wh;
1007 }
1008 return (rr);
1009 }

1011 long double
1012 tgammal(long double x) {
1013 struct LDouble ss, ww;
1014 long double t, t1, t2, t3, t4, t5, w, y, z, z1, z2, z3, z5;
1015 int i, j, m, ix, hx, xk;
1016 unsigned lx;

1018 hx = H0_WORD(x);
1019 lx = H3_WORD(x);
1020 ix = hx & 0x7fffffff;
1021 y = x;
1022 if (ix < 0x3f8e0000) { /* x < 2**-113 */
1023 return (one / x);
1024 }
1025 if (ix >= 0x7fff0000)
1026 return (x * ((hx < 0)? zero : x)); /* Inf or NaN */
1027 if (x > overflow) /* overflow threshold */
1028 return (x * 1.0e4932L);
1029 if (hx >= 0x40020000) { /* x >= 8 */
1030 ww = large_gam(x, &m);
1031 w = ww.h + ww.l;
1032 return (scalbnl(w, m));
1033 }

1035 if (hx > 0) { /* 0 < x < 8 */
1035 if (hx > 0) { /* x from 0 to 8 */
1036 i = (int) x;
1037 ww = gam_n(i, x - (long double) i);
1038 return (ww.h + ww.l);
1039 }

new/usr/src/lib/libm/common/m9x/tgammal.c 4

1040 /* INDENT OFF */
1041 /* negative x */
1042 /*
1043 * compute xk =
1044 * -2 ... x is an even int (-inf is considered an even #)
1045 * -1 ... x is an odd int
1046 * +0 ... x is not an int but chopped to an even int
1047 * +1 ... x is not an int but chopped to an odd int
1048 */
1049 /* INDENT ON */
1050 xk = 0;
1051 #if defined(__x86)
1052 if (ix >= 0x403e0000) { /* x >= 2**63 } */
1053 if (ix >= 0x403f0000)
1054 xk = -2;
1055 else
1056 xk = -2 + (lx & 1);
1057 #else
1058 if (ix >= 0x406f0000) { /* x >= 2**112 */
1059 if (ix >= 0x40700000)
1060 xk = -2;
1061 else
1062 xk = -2 + (lx & 1);
1063 #endif
1064 } else if (ix >= 0x3fff0000) {
1065 w = -x;
1066 t1 = floorl(w);
1067 t2 = t1 * half;
1068 t3 = floorl(t2);
1069 if (t1 == w) {
1070 if (t2 == t3)
1071 xk = -2;
1072 else
1073 xk = -1;
1074 } else {
1075 if (t2 == t3)
1076 xk = 0;
1077 else
1078 xk = 1;
1079 }
1080 }

1082 if (xk < 0) {
1083 /* return NaN. Ideally gamma(-n)= (-1)**(n+1) * inf */
1084 return (x - x) / (x - x);
1085 }

1087 /*
1088 * negative underflow thresold -(1774+9ulp)
1089 */
1090 if (x < -1774.0000000000000000000000000000017749370L) {
1091 z = tiny / x;
1092 if (xk == 1)
1093 z = -z;
1094 return (z * tiny);
1095 }

1097 /* INDENT OFF */
1098 /*
1099 * now compute gamma(x) by -1/((sin(pi*y)/pi)*gamma(1+y)), y = -x
1100 */
1101 /*
1102 * First compute ss = -sin(pi*y)/pi so that
1103 * gamma(x) = 1/(ss*gamma(1+y))
1104 */
1105 /* INDENT ON */

new/usr/src/lib/libm/common/m9x/tgammal.c 5

1106 y = -x;
1107 j = (int) y;
1108 z = y - (long double) j;
1109 if (z > 0.3183098861837906715377675L)
1110 if (z > 0.6816901138162093284622325L)
1111 ss = kpsin(one - z);
1112 else
1113 ss = kpcos(0.5L - z);
1114 else
1115 ss = kpsin(z);
1116 if (xk == 0) {
1117 ss.h = -ss.h;
1118 ss.l = -ss.l;
1119 }

1121 /* Then compute ww = gamma(1+y), note that result scale to 2**m */
1122 m = 0;
1123 if (j < 7) {
1124 ww = gam_n(j + 1, z);
1125 } else {
1126 w = y + one;
1127 if ((lx & 1) == 0) { /* y+1 exact (note that y<184) */
1128 ww = large_gam(w, &m);
1129 } else {
1130 t = w - one;
1131 if (t == y) { /* y+one exact */
1132 ww = large_gam(w, &m);
1133 } else { /* use y*gamma(y) */
1134 if (j == 7)
1135 ww = gam_n(j, z);
1136 else
1137 ww = large_gam(y, &m);
1138 t4 = ww.h + ww.l;
1139 t1 = CHOPPED((y));
1140 t2 = CHOPPED((t4));
1141 /* t4 will not be too large */
1142 ww.l = y * (ww.l - (t2 - ww.h)) + (y - t1) * t2;
1143 ww.h = t1 * t2;
1144 }
1145 }
1146 }

1148 /* compute 1/(ss*ww) */
1149 t3 = ss.h + ss.l;
1150 t4 = ww.h + ww.l;
1151 t1 = CHOPPED((t3));
1152 t2 = CHOPPED((t4));
1153 z1 = ss.l - (t1 - ss.h); /* (t1,z1) = ss */
1154 z2 = ww.l - (t2 - ww.h); /* (t2,z2) = ww */
1155 t3 = t3 * t4; /* t3 = ss*ww */
1156 z3 = one / t3; /* z3 = 1/(ss*ww) */
1157 t5 = t1 * t2;
1158 z5 = z1 * t4 + t1 * z2; /* (t5,z5) = ss*ww */
1159 t1 = CHOPPED((t3)); /* (t1,z1) = ss*ww */
1160 z1 = z5 - (t1 - t5);
1161 t2 = CHOPPED((z3)); /* leading 1/(ss*ww) */
1162 z2 = z3 * (t2 * z1 - (one - t2 * t1));
1163 z = t2 - z2;

1165 return (scalbnl(z, -m));
1166 }
______unchanged_portion_omitted_

new/usr/src/lib/libm/i386/src/libm_inlines.h 1

**
 5896 Sun May 4 03:06:59 2014
new/usr/src/lib/libm/i386/src/libm_inlines.h
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2011, Richard Lowe
29 */

31 /* Functions in this file are duplicated in locallibm.il. Keep them in sync */
31 /* Functions in this file are duplicated in libm.m4. Keep them in sync */

33 #ifndef _LIBM_INLINES_H
34 #define _LIBM_INLINES_H

36 #ifdef __GNUC__

38 #ifdef __cplusplus
39 extern "C" {
40 #endif

42 #include <sys/types.h>
43 #include <sys/ieeefp.h>

45 #define _LO_WORD(x) ((uint32_t *)&x)[0]
46 #define _HI_WORD(x) ((uint32_t *)&x)[1]
47 #define _HIER_WORD(x) ((uint32_t *)&x)[2]

49 extern __inline__ double
50 __ieee754_sqrt(double a)
51 {
52 double ret;

54 __asm__ __volatile__("fsqrt\n\t" : "=t" (ret) : "0" (a));
55 return (ret);
56 }

58 extern __inline__ double
50 __inline_sqrt(double a)
51 {
52 double ret;

new/usr/src/lib/libm/i386/src/libm_inlines.h 2

54 __asm__ __volatile__("fsqrt\n\t" : "=t" (ret) : "0" (a) : "cc");
63 __asm__ __volatile__("fsqrt\n\t" : "=t" (ret) : "0" (a));
55 return (ret);
56 }

58 extern __inline__ double
59 __ieee754_sqrt(double a)
68 __d_sqrt_(double *a)
60 {
61 return (__inline_sqrt(a));
70 double ret;

72 __asm__ __volatile__("fsqrt\n\t" : "=t" (ret) : "0" (*a));
73 return (ret);
62 }

64 extern __inline__ float
65 __inline_sqrtf(float a)
66 {
67 float ret;

69 __asm__ __volatile__("fsqrt\n\t" : "=t" (ret) : "0" (a) : "cc");
81 __asm__ __volatile__("fsqrt\n\t" : "=t" (ret) : "0" (a));
70 return (ret);
71 }

73 extern __inline__ double
74 __inline_rint(double a)
75 {
88 double ret;

76 __asm__ __volatile__(
77 "andl $0x7fffffff,%1\n\t"
78 "cmpl $0x43300000,%1\n\t"
91 "andl $0x7fffffff,%2\n\t"
92 "cmpl $0x43300000,%2\n\t"
79 "jae 1f\n\t"
80 "frndint\n\t"
81 "1: fwait\n\t"
82 : "+t" (a), "+&r" (_HI_WORD(a))
83 :
84 : "cc");
96 : "=t" (ret)
97 : "0" (a), "r" (_HI_WORD(a)));

86 return (a);
99 return (ret);
100 }

102 extern __inline__ short
103 __inline_fstsw(void)
104 {
105 short ret;

107 __asm__ __volatile__("fstsw %0\n\t" : "=r" (ret));
108 return (ret);
87 }

______unchanged_portion_omitted_

133 extern __inline__ double
134 ceil(double d)
135 {
158 double ret;
136 short rd = __swap87RD(fp_positive);

new/usr/src/lib/libm/i386/src/libm_inlines.h 3

138 __asm__ __volatile__("frndint" : "+t" (d), "+r" (rd) : : "cc");
161 __asm__ __volatile__("frndint" : "=t" (ret) : "0" (d));
139 __swap87RD(rd);

141 return (d);
164 return (ret);
142 }

144 extern __inline__ double
145 copysign(double d1, double d2)
146 {
147 __asm__ __volatile__(
148 "andl $0x7fffffff,%0\n\t" /* %0 <-- hi_32(abs(d)) */
149 "andl $0x80000000,%1\n\t" /* %1[31] <-- sign_bit(d2) */
150 "orl %1,%0\n\t" /* %0 <-- hi_32(copysign(x,y)) */
151 : "+&r" (_HI_WORD(d1)), "+r" (_HI_WORD(d2))
152 :
153 : "cc");
174 : "+r" (_HI_WORD(d1))
175 : "r" (_HI_WORD(d2)));

155 return (d1);
156 }

158 extern __inline__ double
159 fabs(double d)
160 {
161 __asm__ __volatile__("fabs\n\t" : "+t" (d) : : "cc");
162 return (d);
183 double ret;

185 __asm__ __volatile__("fabs\n\t" : "=t" (ret) : "0" (d));
186 return (ret);
163 }

165 extern __inline__ float
166 fabsf(float d)
167 {
168 __asm__ __volatile__("fabs\n\t" : "+t" (d) : : "cc");
169 return (d);
192 float ret;

194 __asm__ __volatile__("fabs\n\t" : "=t" (ret) : "0" (d));
195 return (ret);
170 }

172 extern __inline__ long double
173 fabsl(long double d)
174 {
175 __asm__ __volatile__("fabs\n\t" : "+t" (d) : : "cc");
176 return (d);
201 long double ret;

203 __asm__ __volatile__("fabs\n\t" : "=t" (ret) : "0" (d));
204 return (ret);
177 }

179 extern __inline__ int
180 finite(double d)
181 {
182 int ret = _HI_WORD(d);
210 int ret;

184 __asm__ __volatile__(
185 "notl %0\n\t"
186 "andl $0x7ff00000,%0\n\t"

new/usr/src/lib/libm/i386/src/libm_inlines.h 4

187 "negl %0\n\t"
188 "shrl $31,%0\n\t"
189 : "+r" (ret)
190 :
191 : "cc");
213 "notl %1\n\t"
214 "andl $0x7ff00000,%1\n\t"
215 "negl %1\n\t"
216 "shrl $31,%1\n\t"
217 : "=r" (ret)
218 : "0" (_HI_WORD(d)));
192 return (ret);
193 }

195 extern __inline__ double
196 floor(double d)
197 {
225 double ret;
198 short rd = __swap87RD(fp_negative);

200 __asm__ __volatile__("frndint" : "+t" (d), "+r" (rd) : : "cc");
228 __asm__ __volatile__("frndint" : "=t" (ret) : "0" (d));
201 __swap87RD(rd);

203 return (d);
231 return (ret);
232 }

234 /*
235 * branchless __isnan
236 * ((0x7ff00000-[((lx|-lx)>>31)&1]|ahx)>>31)&1 = 1 iff x is NaN
237 */
238 extern __inline__ int
239 isnan(double d)
240 {
241 int ret;

243 __asm__ __volatile__(
244 "movl %1,%%ecx\n\t"
245 "negl %%ecx\n\t" /* ecx <-- -lo_32(x) */
246 "orl %%ecx,%1\n\t"
247 "shrl $31,%1\n\t" /* 1 iff lx != 0 */
248 "andl $0x7fffffff,%2\n\t" /* ecx <-- hi_32(abs(x)) */
249 "orl %2,%1\n\t"
250 "subl $0x7ff00000,%1\n\t"
251 "negl %1\n\t"
252 "shrl $31,%1\n\t"
253 : "=r" (ret)
254 : "0" (_HI_WORD(d)), "r" (_LO_WORD(d))
255 : "ecx");

257 return (ret);
204 }

206 extern __inline__ int
207 isnanf(float f)
208 {
263 int ret;

209 __asm__ __volatile__(
210 "andl $0x7fffffff,%0\n\t"
211 "negl %0\n\t"
212 "addl $0x7f800000,%0\n\t"
213 "shrl $31,%0\n\t"
214 : "+r" (f)
215 :

new/usr/src/lib/libm/i386/src/libm_inlines.h 5

216 : "cc");
270 : "=r" (ret)
271 : "0" (f));

273 return (ret);
274 }

276 extern __inline__ int
277 isinf(double d)
278 {
279 int ret;

218 return (f);
281 __asm__ __volatile__(
282 "andl $0x7fffffff,%1\n\t" /* set first bit to 0 */
283 "cmpl $0x7ff00000,%1\n\t"
284 "pushfl\n\t"
285 "popl %0\n\t"
286 "cmpl $0,%2\n\t" /* is lo_32(x) = 0? */
287 "pushfl\n\t"
288 "popl %2\n\t" /* bit 6 of ecx <-- lo_32(x) == 0 */
289 "andl %2,%0\n\t"
290 "andl $0x40,%0\n\t"
291 "shrl $6,%0\n\t"
292 : "=r" (ret)
293 : "0" (_HI_WORD(d)), "r" (_LO_WORD(d)));

295 return (ret);
219 }

221 extern __inline__ double
222 rint(double a) {
223 return (__inline_rint(a));
300 double ret;

302 __asm__ __volatile__(
303 "andl $0x7fffffff,%2\n\t"
304 "cmpl $0x43300000,%2\n\t"
305 "jae 1f\n\t"
306 "frndint\n\t"
307 "1: fwait\n\t"
308 : "=t" (ret)
309 : "0" (a), "r" (_HI_WORD(a)));

311 return (ret);
224 }

226 extern __inline__ double
227 scalbn(double d, int n)
228 {
229 double dummy;
317 double ret, dummy;

231 __asm__ __volatile__(
232 "fildl %2\n\t" /* Convert N to extended */
320 "fildl %3\n\t" /* Convert N to extended */
233 "fxch\n\t"
234 "fscale\n\t"
235 : "+t" (d), "=u" (dummy)
236 : "m" (n)
237 : "cc");
323 : "=t" (ret), "=u" (dummy)
324 : "0" (d), "m" (n));

239 return (d);
326 return (ret);

new/usr/src/lib/libm/i386/src/libm_inlines.h 6

240 }
______unchanged_portion_omitted_

254 extern __inline__ double
255 sqrt(double d)
256 {
257 return (__inline_sqrt(d));
344 double ret;
345 __asm__ __volatile__("fsqrt" : "=t" (ret) : "0" (d));
346 return (ret);
258 }

260 extern __inline__ float
261 sqrtf(float f)
262 {
263 return (__inline_sqrtf(f));
352 float ret;
353 __asm__ __volatile__("fsqrt" : "=t" (ret) : "0" (f));
354 return (ret);
264 }

266 extern __inline__ long double
267 sqrtl(long double ld)
268 {
269 __asm__ __volatile__("fsqrt" : "+t" (ld) : : "cc");
270 return (ld);
360 long double ret;
361 __asm__ __volatile__("fsqrt" : "=t" (ret) : "0" (ld));
362 return (ret);
271 }

273 extern __inline__ int
274 isnanl(long double ld)
275 {
276 int ret = _HIER_WORD(ld);
368 int ret;

278 __asm__ __volatile__(
279 "andl $0x00007fff,%0\n\t"
280 "jz 1f\n\t" /* jump if exp is all 0 */
281 "xorl $0x00007fff,%0\n\t"
282 "jz 2f\n\t" /* jump if exp is all 1 */
283 "testl $0x80000000,%1\n\t"
371 "andl $0x00007fff,%1\n\t"
372 "jz 1f\n\t" /* jump if __exp is all 0 */
373 "xorl $0x00007fff,%1\n\t"
374 "jz 2f\n\t" /* jump if __exp is all 1 */
375 "testl $0x80000000,%2\n\t"
284 "jz 3f\n\t" /* jump if leading bit is 0 */
285 "movl $0,%0\n\t"
377 "movl $0,%1\n\t"
286 "jmp 1f\n\t"
287 "2:\n\t" /* note that %0 = 0 from before */
288 "cmpl $0x80000000,%1\n\t" /* what is first half of significand? */
379 "2:\n\t" /* note that %eax = 0 from before */
380 "cmpl $0x80000000,%2\n\t" /* what is first half of __significand? *
289 "jnz 3f\n\t" /* jump if not equal to 0x80000000 */
290 "testl $0xffffffff,%2\n\t" /* is second half of significand 0? */
382 "testl $0xffffffff,%3\n\t" /* is second half of __significand 0? */
291 "jnz 3f\n\t" /* jump if not equal to 0 */
292 "jmp 1f\n\t"
293 "3:\n\t"
294 "movl $1,%0\n\t"
386 "movl $1,%1\n\t"
295 "1:\n\t"
296 : "+&r" (ret)

new/usr/src/lib/libm/i386/src/libm_inlines.h 7

297 : "r" (_HI_WORD(ld)), "r" (_LO_WORD(ld))
298 : "cc");
388 : "=r" (ret)
389 : "0" (_HIER_WORD(ld)), "r" (_HI_WORD(ld)), "r" (_LO_WORD(ld)));

300 return (ret);
301 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/i386/src/locallibm.il 1

**
 7507 Sun May 4 03:07:01 2014
new/usr/src/lib/libm/i386/src/locallibm.il
**

1 /
2 / CDDL HEADER START
3 /
4 / The contents of this file are subject to the terms of the
5 / Common Development and Distribution License (the "License").
6 / You may not use this file except in compliance with the License.
7 /
8 / You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 / or http://www.opensolaris.org/os/licensing.

10 / See the License for the specific language governing permissions
11 / and limitations under the License.
12 /
13 / When distributing Covered Code, this CDDL HEADER in each
14 / file and the License file at usr/src/OPENSOLARIS.LICENSE.
15 / If applicable, add the following below this CDDL HEADER, with the
16 / fields enclosed by brackets "[]" replaced with your own identifying
17 / information: Portions Copyright [yyyy] [name of copyright owner]
18 /
19 / CDDL HEADER END
20 /
21 / Copyright 2011 Nexenta Systems, Inc. All rights reserved.
22 /
23 / Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 / Use is subject to license terms.
25 /

27 / Portions of this file are duplicated as GCC inline assembly in
28 / libm_inlines.h. Keep them in sync.

30 .inline __ieee754_sqrt,0
31 fldl (%esp)
32 fsqrt
33 .end

35 .inline __inline_rint,0
36 fldl (%esp)
37 movl 4(%esp),%eax
38 andl $0x7fffffff,%eax
39 cmpl $0x43300000,%eax
40 jae 1f
41 frndint
42 1:
43 fwait / in case we jumped around the frndint
44 .end

46 .inline __inline_sqrtf,0
47 flds (%esp)
48 fsqrt
49 .end

51 .inline __inline_sqrt,0
52 fldl (%esp)
53 fsqrt
54 .end

56 .inline __inline_fstsw,0
57 fstsw %ax
58 .end

60 /
61 / 00 - 24 bits
62 / 01 - reserved

new/usr/src/lib/libm/i386/src/locallibm.il 2

63 / 10 - 53 bits
64 / 11 - 64 bits
65 /
66 .inline __swapRP,0
67 subl $4,%esp
68 fstcw (%esp)
69 movw (%esp),%ax
70 movw %ax,%cx
71 andw $0xfcff,%cx
72 movl 4(%esp),%edx ///
73 andl $0x3,%edx
74 shlw $8,%dx
75 orw %dx,%cx
76 movl %ecx,(%esp)
77 fldcw (%esp)
78 shrw $8,%ax
79 andl $0x3,%eax
80 addl $4,%esp
81 .end

83 /
84 / 00 - Round to nearest, with even preferred
85 / 01 - Round down
86 / 10 - Round up
87 / 11 - Chop
88 /
89 .inline __swap87RD,0
90 subl $4,%esp
91 fstcw (%esp)
92 movw (%esp),%ax
93 movw %ax,%cx
94 andw $0xf3ff,%cx
95 movl 4(%esp),%edx
96 andl $0x3,%edx
97 shlw $10,%dx
98 orw %dx,%cx
99 movl %ecx,(%esp)
100 fldcw (%esp)
101 shrw $10,%ax
102 andl $0x3,%eax
103 addl $4,%esp
104 .end

106 /
107 / Convert Top-of-Stack to long
108 /
109 .inline __xtol,0
110 subl $8,%esp / 8 bytes of stack space
111 fstcw 2(%esp) / byte[2:3] = old_cw
112 movw 2(%esp),%ax
113 andw $0xf3ff,%ax
114 orw $0x0c00,%ax / RD set to Chop
115 movw %ax,(%esp) / byte[0:1] = new_cw
116 fldcw (%esp) / set new_cw
117 fistpl 4(%esp) / byte[4:7] = converted long
118 fstcw (%esp) / restore old RD
119 movw (%esp),%ax
120 andw $0xf3ff,%ax
121 movw 2(%esp),%dx
122 andw $0x0c00,%dx
123 orw %ax,%dx
124 movw %dx,2(%esp)
125 fldcw 2(%esp)
126 movl 4(%esp),%eax
127 addl $8,%esp
128 .end

new/usr/src/lib/libm/i386/src/locallibm.il 3

130 .inline __ceil,0
131 subl $8,%esp
132 fstcw (%esp)
133 fldl 8(%esp) ///
134 movw (%esp),%cx
135 orw $0x0c00,%cx
136 xorw $0x0400,%cx
137 movw %cx,4(%esp)
138 fldcw 4(%esp) / set RD = up
139 frndint
140 fstcw 4(%esp) / restore RD
141 movw 4(%esp),%dx
142 andw $0xf3ff,%dx
143 movw (%esp),%cx
144 andw $0x0c00,%cx
145 orw %dx,%cx
146 movw %cx,(%esp)
147 fldcw (%esp)
148 addl $8,%esp
149 .end

151 .inline __copysign,0
152 movl 4(%esp),%eax /// eax <-- hi_32(x)
153 movl 12(%esp),%ecx /// ecx <-- hi_32(y)
154 andl $0x7fffffff,%eax / eax <-- hi_32(abs(x))
155 andl $0x80000000,%ecx / ecx[31] <-- sign_bit(y)
156 orl %ecx,%eax / eax <-- hi_32(__copysign(x,y))
157 movl (%esp),%ecx /// ecx <-- lo_32(x)
158 / = lo_32(__copysign(x,y))
159 subl $8,%esp / set up loading dock for result
160 movl %ecx,(%esp) / copy lo_32(result) to loading dock
161 movl %eax,4(%esp) / copy hi_32(result) to loading dock
162 fldl (%esp) / load __copysign(x,y)
163 fwait / in case fldl causes exception
164 addl $8,%esp / restore stack-pointer
165 .end

167 .inline __d_sqrt_,0
168 movl (%esp),%eax
169 fldl (%eax)
170 fsqrt
171 .end

173 .inline __fabs,0
174 fldl (%esp) ///
175 fabs
176 .end

178 .inline __fabsf,0
179 flds (%esp)
180 fabs
181 .end

183 .inline __fabsl,0
184 fldt (%esp)
185 fabs
186 .end

188 /
189 / branchless _finite
190 /
191 .inline _finite,0
192 movl 4(%esp),%eax /// eax <-- hi_32(x)
193 notl %eax / not(bexp) = 0 iff bexp = all 1’s
194 andl $0x7ff00000,%eax

new/usr/src/lib/libm/i386/src/locallibm.il 4

195 negl %eax
196 shrl $31,%eax
197 .end

199 .inline __floor,0
200 subl $8,%esp
201 fstcw (%esp)
202 fldl 8(%esp) ///
203 movw (%esp),%cx
204 orw $0x0c00,%cx
205 xorw $0x0800,%cx
206 movw %cx,4(%esp)
207 fldcw 4(%esp) / set RD = down
208 frndint
209 fstcw 4(%esp) / restore RD
210 movw 4(%esp),%dx
211 andw $0xf3ff,%dx
212 movw (%esp),%cx
213 andw $0x0c00,%cx
214 orw %dx,%cx
215 movw %cx,(%esp)
216 fldcw (%esp) / restore RD
217 addl $8,%esp
218 .end

220 /
221 / branchless __isnan
222 / ((0x7ff00000-[((lx|-lx)>>31)&1]|ahx)>>31)&1 = 1 iff x is NaN
223 /
224 .inline __isnan,0
225 movl (%esp),%eax /// eax <-- lo_32(x)
226 movl %eax,%ecx
227 negl %ecx / ecx <-- -lo_32(x)
228 orl %ecx,%eax
229 shrl $31,%eax / 1 iff lx != 0
230 movl 4(%esp),%ecx /// ecx <-- hi_32(x)
231 andl $0x7fffffff,%ecx / ecx <-- hi_32(abs(x))
232 orl %ecx,%eax
233 subl $0x7ff00000,%eax
234 negl %eax
235 shrl $31,%eax
236 .end

220 .inline __isnanf,0
221 movl (%esp),%eax
222 andl $0x7fffffff,%eax
223 negl %eax
224 addl $0x7f800000,%eax
225 shrl $31,%eax
226 .end

246 .inline __isinf,0
247 movl 4(%esp),%eax / eax <-- hi_32(x)
248 andl $0x7fffffff,%eax / set first bit to 0
249 cmpl $0x7ff00000,%eax
250 pushfl
251 popl %eax
252 cmpl $0,(%esp) / is lo_32(x) = 0?
253 pushfl
254 popl %ecx / bit 6 of ecx <-- lo_32(x) == 0
255 andl %ecx,%eax
256 andl $0x40,%eax
257 shrl $6,%eax
258 .end

229 .inline __isnormal,0

new/usr/src/lib/libm/i386/src/locallibm.il 5

230 / TRUE iff (x is _finite, but
231 / neither subnormal nor +/-0)
232 / iff (0 < bexp(x) < 0x7ff)
233 movl 4(%esp),%eax / eax <-- hi_32(x)
234 andl $0x7ff00000,%eax / eax[20..30] <-- bexp(x),
235 / rest_of(eax) <-- 0
236 pushfl
237 popl %ecx / bit 6 of ecx <-- not bexp(x)
238 subl $0x7ff00000,%eax
239 pushfl
240 popl %eax / bit 6 of eax <-- not bexp(x)
241 orl %ecx,%eax
242 andl $0x40,%eax
243 xorl $0x40,%eax
244 shrl $6,%eax
245 .end

247 .inline __issubnormal,0
248 / TRUE iff (bexp(x) = 0 and
249 / frac(x) /= 0)
250 movl $0,%eax
251 movl 4(%esp),%ecx / ecx <-- hi_32(x)
252 andl $0x7fffffff,%ecx / ecx <-- hi_32(abs(x))
253 cmpl $0x00100000,%ecx / is bexp(x) = 0?
254 adcl $0,%eax / jump if bexp(x) = 0
255 orl (%esp),%ecx / = 0 iff sgnfcnd(x) = 0
256 / iff x = +/- 0.0 here
257 pushfl
258 popl %ecx
259 andl $0x40,%ecx
260 xorl $0x40,%ecx
261 shrl $6,%ecx
262 andl %ecx,%eax
263 .end

265 .inline __iszero,0
266 movl 4(%esp),%eax / eax <-- hi_32(x)
267 andl $0x7fffffff,%eax / eax <-- hi_32(abs(x))
268 orl (%esp),%eax / = 0 iff x = +/- 0.0
269 pushfl
270 popl %eax
271 andl $0x40,%eax
272 shrl $6,%eax
273 .end

275 .inline __r_sqrt_,0
276 movl (%esp),%eax
277 flds (%eax)
278 fsqrt
279 .end

281 .inline __rint,0
282 fldl (%esp)
283 movl 4(%esp),%eax
284 andl $0x7fffffff,%eax
285 cmpl $0x43300000,%eax
286 jae 1f
287 frndint
288 1:
289 fwait / in case we jumped around frndint
290 .end

292 .inline __scalbn,0
293 fildl 8(%esp) /// convert N to extended
294 fldl (%esp) /// push x
295 fscale

new/usr/src/lib/libm/i386/src/locallibm.il 6

296 fstp %st(1)
297 .end

299 .inline __signbit,0
300 movl 4(%esp),%eax /// high part of x
301 shrl $31,%eax
302 .end

304 .inline __signbitf,0
305 movl (%esp),%eax
306 shrl $31,%eax
307 .end

309 .inline __sqrt,0
310 fldl (%esp)
311 fsqrt
312 .end

314 .inline __sqrtf,0
315 flds (%esp)
316 fsqrt
317 .end

319 .inline __sqrtl,0
320 fldt (%esp)
321 fsqrt
322 .end

324 .inline __isnanl,0
325 movl 8(%esp),%eax / ax <-- sign bit and __exp
326 andl $0x00007fff,%eax
327 jz 1f / jump if __exp is all 0
328 xorl $0x00007fff,%eax
329 jz 2f / jump if __exp is all 1
330 testl $0x80000000,4(%esp)
331 jz 3f / jump if leading bit is 0
332 movl $0,%eax
333 jmp 1f
334 2: / note that %eax = 0 from before
335 cmpl $0x80000000,4(%esp) / what is first half of __significand?
336 jnz 3f / jump if not equal to 0x80000000
337 testl $0xffffffff,(%esp) / is second half of __significand 0?
338 jnz 3f / jump if not equal to 0
339 jmp 1f
340 3:
341 movl $1,%eax
342 1:
343 .end

345 .inline __f95_signf,0
346 sub $4,%esp
347 mov 4(%esp),%edx
348 mov (%edx),%eax
349 and $0x7fffffff,%eax
350 mov 8(%esp),%edx
351 mov (%edx),%ecx
352 and $0x80000000,%ecx
353 or %ecx,%eax
354 mov %eax,(%esp)
355 flds (%esp)
356 add $4,%esp
357 .end

359 .inline __f95_sign,0
360 mov (%esp),%edx
361 fldl (%edx)

new/usr/src/lib/libm/i386/src/locallibm.il 7

362 fabs
363 mov 4(%esp),%edx
364 mov 4(%edx),%eax
365 test %eax,%eax
366 jns 1f
367 fchs
368 1:
369 .end

new/usr/src/lib/libm/sparc/src/libm_inlines.h 1

**
 6972 Sun May 4 03:07:04 2014
new/usr/src/lib/libm/sparc/src/libm_inlines.h
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2011, Richard Lowe.
29 */

31 /* Functions in this file are duplicated in locallibm.il. Keep them in sync */
31 /* Functions in this file are duplicated in libm.m4. Keep them in sync */

33 #ifndef _LIBM_INLINES_H
34 #define _LIBM_INLINES_H

36 #ifdef __GNUC__

38 #include <sys/types.h>
39 #include <sys/ieeefp.h>

41 #ifdef __cplusplus
42 extern "C" {
43 #endif

45 extern __inline__ double
46 __inline_sqrt(double d)
47 {
48 double ret;

50 __asm__ __volatile__("fsqrtd %1,%0\n\t" : "=e" (ret) : "e" (d));
50 __asm__ __volatile__("fsqrtd %0,%0\n\t" : "=e" (ret) : "0" (d));
51 return (ret);
52 }

54 extern __inline__ float
55 __inline_sqrtf(float f)
56 {
57 float ret;

59 __asm__ __volatile__("fsqrts %1,%0\n\t" : "=f" (ret) : "f" (f));
59 __asm__ __volatile__("fsqrts %0,%0\n\t" : "=f" (ret) : "0" (f));

new/usr/src/lib/libm/sparc/src/libm_inlines.h 2

60 return (ret);
61 }

63 extern __inline__ enum fp_class_type
64 fp_classf(float f)
65 {
66 enum fp_class_type ret;
67 uint32_t tmp;
68 #endif /* ! codereview */

70 /* XXX: Separate input and output */
71 #endif /* ! codereview */
72 __asm__ __volatile__(
73 "sethi %%hi(0x80000000),%1\n\t"
74 "andncc %3,%1,%0\n\t"
67 "sethi %%hi(0x80000000),%%o2\n\t"
68 "andncc %0,%%o2,%0\n\t"
75 "bne 1f\n\t"
76 "nop\n\t"
77 "mov 0,%0\n\t"
78 "ba 2f\n\t" /* x is 0 */
79 "nop\n\t"
80 "1:\n\t"
81 "sethi %%hi(0x7f800000),%1\n\t"
82 "andcc %0,%1,%%g0\n\t"
75 "sethi %%hi(0x7f800000),%%o2\n\t"
76 "andcc %0,%%o2,%%g0\n\t"
83 "bne 1f\n\t"
84 "nop\n\t"
85 "mov 1,%0\n\t"
86 "ba 2f\n\t" /* x is subnormal */
87 "nop\n\t"
88 "1:\n\t"
89 "cmp %0,%1\n\t"
83 "cmp %0,%%o2\n\t"
90 "bge 1f\n\t"
91 "nop\n\t"
92 "mov 2,%0\n\t"
93 "ba 2f\n\t" /* x is normal */
94 "nop\n\t"
95 "1:\n\t"
96 "bg 1f\n\t"
97 "nop\n\t"
98 "mov 3,%0\n\t"
99 "ba 2f\n\t" /* x is __infinity */
100 "nop\n\t"
101 "1:\n\t"
102 "sethi %%hi(0x00400000),%1\n\t"
103 "andcc %0,%1,%%g0\n\t"
96 "sethi %%hi(0x00400000),%%o2\n\t"
97 "andcc %0,%%o2,%%g0\n\t"
104 "mov 4,%0\n\t" /* x is quiet NaN */
105 "bne 2f\n\t"
106 "nop\n\t"
107 "mov 5,%0\n\t" /* x is signaling NaN */
108 "2:\n\t"
109 : "+r" (ret), "=&r" (tmp)
110 : "r" (f)
111 : "cc");
103 : "=r" (ret)
104 : "0" (f)
105 : "o2");
112 return (ret);
113 }

115 #define _HI_WORD(x) ((uint32_t *)&x)[0]

new/usr/src/lib/libm/sparc/src/libm_inlines.h 3

116 #define _LO_WORD(x) ((uint32_t *)&x)[1]

118 extern __inline__ enum fp_class_type
119 fp_class(double d)
120 {
121 enum fp_class_type ret;
122 uint32_t tmp;
123 #endif /* ! codereview */

125 __asm__ __volatile__(
126 "sethi %%hi(0x80000000),%1\n\t" /* %1 gets 80000000 */
127 "andn %2,%1,%0\n\t" /* %2-%0 gets abs(x) */
128 "orcc %0,%3,%%g0\n\t" /* set cc as x is zero/nonzero *
116 "sethi %%hi(0x80000000),%%o2\n\t" /* o2 gets 80000000 */
117 "andn %0,%%o2,%0\n\t" /* o0-o1 gets abs(x) */
118 "orcc %0,%2,%%g0\n\t" /* set cc as x is zero/nonzero */
129 "bne 1f\n\t" /* branch if x is nonzero */
130 "nop\n\t"
131 "mov 0,%0\n\t"
132 "ba 2f\n\t" /* x is 0 */
133 "nop\n\t"
134 "1:\n\t"
135 "sethi %%hi(0x7ff00000),%1\n\t" /* %1 gets 7ff00000 */
136 "andcc %0,%1,%%g0\n\t" /* cc set by __exp field of x */
125 "sethi %%hi(0x7ff00000),%%o2\n\t" /* o2 gets 7ff00000 */
126 "andcc %0,%%o2,%%g0\n\t" /* cc set by __exp field of x */
137 "bne 1f\n\t" /* branch if normal or max __exp
138 "nop\n\t"
139 "mov 1,%0\n\t"
140 "ba 2f\n\t" /* x is subnormal */
141 "nop\n\t"
142 "1:\n\t"
143 "cmp %0,%1\n\t"
133 "cmp %0,%%o2\n\t"
144 "bge 1f\n\t" /* branch if x is max __exp */
145 "nop\n\t"
146 "mov 2,%0\n\t"
147 "ba 2f\n\t" /* x is normal */
148 "nop\n\t"
149 "1:\n\t"
150 "andn %0,%1,%0\n\t" /* o0 gets msw __significand fie
151 "orcc %0,%3,%%g0\n\t" /* set cc by OR __significand */
140 "andn %0,%%o2,%0\n\t" /* o0 gets msw __significand field
141 "orcc %0,%2,%%g0\n\t" /* set cc by OR __significand */
152 "bne 1f\n\t" /* Branch if __nan */
153 "nop\n\t"
154 "mov 3,%0\n\t"
155 "ba 2f\n\t" /* x is __infinity */
156 "nop\n\t"
157 "1:\n\t"
158 "sethi %%hi(0x00080000),%1\n\t"
159 "andcc %0,%1,%%g0\n\t" /* set cc by quiet/sig bit */
148 "sethi %%hi(0x00080000),%%o2\n\t"
149 "andcc %0,%%o2,%%g0\n\t" /* set cc by quiet/sig bit */
160 "be 1f\n\t" /* Branch if signaling */
161 "nop\n\t"
162 "mov 4,%0\n\t" /* x is quiet NaN */
163 "ba 2f\n\t"
164 "nop\n\t"
165 "1:\n\t"
166 "mov 5,%0\n\t" /* x is signaling NaN */
167 "2:\n\t"
168 : "=&r" (ret), "=&r" (tmp)
169 : "r" (_HI_WORD(d)), "r" (_LO_WORD(d))
170 : "cc");
158 : "=r" (ret)

new/usr/src/lib/libm/sparc/src/libm_inlines.h 4

159 : "0" (_HI_WORD(d)), "r" (_LO_WORD(d))
160 : "o2");

172 return (ret);
173 }

175 extern __inline__ int
176 __swapEX(int i)
177 {
178 int ret;
179 uint32_t fsr;
180 uint32_t tmp1, tmp2;
181 #endif /* ! codereview */

183 __asm__ __volatile__(
184 "and %4,0x1f,%3\n\t"
185 "sll %3,5,%3\n\t" /* shift input to aexc bit location */
170 "and %0,0x1f,%%o1\n\t"
171 "sll %%o1,5,%%o1\n\t" /* input to aexc bit location */
186 ".volatile\n\t"
187 "st %%fsr,%1\n\t"
188 "ld %1,%0\n\t" /* %0 = fsr */
189 "andn %0,0x3e0,%4\n\t"
190 "or %3,%4,%3\n\t" /* %3 = new fsr */
191 "st %3,%1\n\t"
192 "ld %1,%%fsr\n\t"
173 "st %%fsr,%2\n\t"
174 "ld %2,%0\n\t" /* = fsr */
175 "andn %0,0x3e0,%%o2\n\t"
176 "or %%o1,%%o2,%%o1\n\t" /* o1 = new fsr */
177 "st %%o1,%2\n\t"
178 "ld %2,%%fsr\n\t"
193 "srl %0,5,%0\n\t"
194 "and %0,0x1f,%0\n\t"
195 ".nonvolatile\n\t"
196 : "=r" (ret), "=m" (fsr), "=r" (tmp1), "=r" (tmp2)
197 : "r" (i)
198 : "cc");
182 : "=r" (ret)
183 : "0" (i), "m" (fsr)
184 : "o1", "o2");

200 return (ret);
201 }

______unchanged_portion_omitted_

214 extern __inline__ enum fp_direction_type
215 __swapRD(enum fp_direction_type d)
216 {
217 enum fp_direction_type ret;
218 uint32_t fsr;
219 uint32_t tmp1, tmp2, tmp3;
220 #endif /* ! codereview */

222 __asm__ __volatile__(
223 "and %5,0x3,%0\n\t"
224 "sll %0,30,%2\n\t" /* shift input to RD bit location */
205 "and %0,0x3,%0\n\t"
206 "sll %0,30,%%o1\n\t" /* input to RD bit location */
225 ".volatile\n\t"
226 "st %%fsr,%1\n\t"
227 "ld %1,%0\n\t" /* %0 = fsr */
228 "set 0xc0000000,%4\n\t" /* mask of rounding direction bits */
229 "andn %0,%4,%3\n\t"
230 "or %2,%3,%2\n\t" /* %2 = new fsr */
231 "st %2,%1\n\t"

new/usr/src/lib/libm/sparc/src/libm_inlines.h 5

232 "ld %1,%%fsr\n\t"
208 "st %%fsr,%2\n\t"
209 "ld %2,%0\n\t" /* o0 = fsr */
210 "set 0xc0000000,%%o4\n\t" /* mask of rounding direction bits */
211 "andn %0,%%o4,%%o2\n\t"
212 "or %%o1,%%o2,%%o1\n\t" /* o1 = new fsr */
213 "st %%o1,%2\n\t"
214 "ld %2,%%fsr\n\t"
233 "srl %0,30,%0\n\t"
234 "and %0,0x3,%0\n\t"
235 ".nonvolatile\n\t"
236 : "=r" (ret), "=m" (fsr), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3)
237 : "r" (d)
238 : "cc");
218 : "=r" (ret)
219 : "0" (d), "m" (fsr)
220 : "o1", "o2", "o4");

240 return (ret);
241 }

243 extern __inline__ int
244 __swapTE(int i)
245 {
246 int ret;
247 uint32_t fsr, tmp1, tmp2;
229 uint32_t fsr;

249 __asm__ __volatile__(
250 "and %4,0x1f,%0\n\t"
251 "sll %0,23,%2\n\t" /* shift input to TEM bit location */
232 "and %0,0x1f,%0\n\t"
233 "sll %0,23,%%o1\n\t" /* input to TEM bit location */
252 ".volatile\n\t"
253 "st %%fsr,%1\n\t"
254 "ld %1,%0\n\t" /* %0 = fsr */
235 "st %%fsr,%2\n\t"
236 "ld %2,%0\n\t" /* o0 = fsr */
255 "set 0x0f800000,%%o4\n\t" /* mask of TEM (Trap Enable Mode bits) *
256 "andn %0,%%o4,%3\n\t"
257 "or %2,%3,%2\n\t" /* %2 = new fsr */
258 "st %2,%1\n\t"
259 "ld %1,%%fsr\n\t"
238 "andn %0,%%o4,%%o2\n\t"
239 "or %%o1,%%o2,%%o1\n\t" /* o1 = new fsr */
240 "st %%o1,%2\n\t"
241 "ld %2,%%fsr\n\t"
260 "srl %0,23,%0\n\t"
261 "and %0,0x1f,%0\n\t"
262 ".nonvolatile\n\t"
263 : "=r" (ret), "=m" (fsr), "=r" (tmp1), "=r" (tmp2)
264 : "r" (i)
265 : "cc");
245 : "=r" (ret)
246 : "0" (i), "m" (fsr)
247 : "o1", "o2", "o4");

267 return (ret);
268 }

270 extern __inline__ double
271 sqrt(double d)
272 {
273 return (__inline_sqrt(d));
255 double ret;

new/usr/src/lib/libm/sparc/src/libm_inlines.h 6

257 __asm__ __volatile__("fsqrtd %0,%0\n\t" : "=f" (ret) : "0" (d));
258 return (ret);
274 }

276 extern __inline__ float
277 sqrtf(float f)
278 {
279 return (__inline_sqrtf(f));
264 float ret;

266 __asm__ __volatile__("fsqrts %0,%0\n\t" : "=f" (ret) : "0" (f));
267 return (ret);
280 }

282 extern __inline__ double
283 fabs(double d)
284 {
285 double ret;

287 __asm__ __volatile__("fabsd %1,%0\n\t" : "=e" (ret) : "e" (d));
275 __asm__ __volatile__("fabsd %0,%0\n\t" : "=e" (ret) : "0" (d));
288 return (ret);
289 }

291 extern __inline__ float
292 fabsf(float f)
293 {
294 float ret;

296 __asm__ __volatile__("fabss %1,%0\n\t" : "=f" (ret) : "f" (f));
284 __asm__ __volatile__("fabss %0,%0\n\t" : "=f" (ret) : "0" (f));
297 return (ret);
298 }

______unchanged_portion_omitted_

new/usr/src/lib/libm/sparc/src/locallibm.il 1

**
 32674 Sun May 4 03:07:06 2014
new/usr/src/lib/libm/sparc/src/locallibm.il
**

1 !
2 ! CDDL HEADER START
3 !
4 ! The contents of this file are subject to the terms of the
5 ! Common Development and Distribution License (the "License").
6 ! You may not use this file except in compliance with the License.
7 !
8 ! You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 ! or http://www.opensolaris.org/os/licensing.

10 ! See the License for the specific language governing permissions
11 ! and limitations under the License.
12 !
13 ! When distributing Covered Code, this CDDL HEADER in each
14 ! file and the License file at usr/src/OPENSOLARIS.LICENSE.
15 ! If applicable, add the following below this CDDL HEADER, with the
16 ! fields enclosed by brackets "[]" replaced with your own identifying
17 ! information: Portions Copyright [yyyy] [name of copyright owner]
18 !
19 ! CDDL HEADER END
20 !
21 ! Copyright 2011 Nexenta Systems, Inc. All rights reserved.
22 !
23 ! Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 ! Use is subject to license terms.
25 !

27 ! Portions of this file are duplicated as GCC inline assembly in
28 ! libm_inlines.h. Keep them in sync.

30 .inline __r_hypot_,2
31 ld [%o0],%o4
32 sethi 0x1fffff,%o5
33 or %o5,1023,%o5
34 and %o4,%o5,%o4
35 sethi 0x1fe000,%o3
36 cmp %o4,%o3
37 ld [%o0],%f0 ! load result with first argument
38 bne 2f
39 nop
40 fabss %f0,%f0
41 ld [%o1],%f1
42 .volatile
43 fcmps %f0,%f1 ! generate invalid for Snan
44 .nonvolatile
45 nop
46 fba 5f
47 nop
48 2:
49 ld [%o1],%o4
50 sethi 0x1fffff,%o5
51 or %o5,1023,%o5
52 and %o4,%o5,%o4
53 sethi 0x1fe000,%o3
54 cmp %o4,%o3
55 bne 4f
56 nop
57 ld [%o1],%f0 ! second argument inf
58 fabss %f0,%f0
59 ld [%o0],%f1
60 .volatile
61 fcmps %f0,%f1 ! generate invalid for Snan
62 .nonvolatile

new/usr/src/lib/libm/sparc/src/locallibm.il 2

63 nop
64 fba 5f
65 nop
66 4:
67 ld [%o1],%f3
68 fsmuld %f0,%f0,%f0
69 fsmuld %f3,%f3,%f2
70 faddd %f2,%f0,%f0
71 fsqrtd %f0,%f0
72 fdtos %f0,%f0
73 5:
74 .end

76 .inline __c_abs,1
77 ld [%o0],%o4
78 sethi 0x1fffff,%o5
79 or %o5,1023,%o5
80 and %o4,%o5,%o4
81 sethi 0x1fe000,%o3
82 cmp %o4,%o3
83 ld [%o0],%f0
84 bne 2f
85 nop
86 fabss %f0,%f0
87 ld [%o0+4],%f1
88 .volatile
89 fcmps %f0,%f1 ! generate invalid for Snan
90 .nonvolatile
91 nop
92 fba 5f
93 nop
94 2:
95 ld [%o0+4],%o4
96 sethi 0x1fffff,%o5
97 or %o5,1023,%o5
98 and %o4,%o5,%o4
99 sethi 0x1fe000,%o3
100 cmp %o4,%o3
101 bne 4f
102 nop
103 ld [%o0+4],%f0
104 fabss %f0,%f0
105 ld [%o0],%f1
106 .volatile
107 fcmps %f0,%f1 ! generate invalid for Snan
108 .nonvolatile
109 nop
110 fba 5f
111 nop
112 ! store to 8-aligned address
113 4:
114 ld [%o0+4],%f3
115 fsmuld %f0,%f0,%f0
116 fsmuld %f3,%f3,%f2
117 faddd %f2,%f0,%f0
118 fsqrtd %f0,%f0
119 fdtos %f0,%f0
120 5:
121 .end
122 !- -
123 ! void
124 ! __Fc_mult(c, a, b)
125 ! complex *c, *a, *b;
126 ! {

128 .inline __Fc_mult,3

new/usr/src/lib/libm/sparc/src/locallibm.il 3

129 ! 21 c->real = (a->real * b->real) - (a->imag * b->imag)
130 ld [%o1+4],%f0 ! f0 = a->imag
131 ld [%o2+4],%f1 ! f1 = b->imag
132 ld [%o1],%f2 ! f2 = a->real
133 fsmuld %f0,%f1,%f4 ! f4 = (a->imag * b->imag)
134 ld [%o2],%f3 ! f3 = b->real
135 fsmuld %f2,%f1,%f6 ! f6 = a->real * b->imag
136 fsmuld %f2,%f3,%f8 ! f8 = a->real * b->real
137 fsmuld %f0,%f3,%f10 ! f10 = a->imag * b->real
138 fsubd %f8,%f4,%f0 ! f0 = ar*br - ai*bi
139 faddd %f6,%f10,%f2 ! f2 = ai*br + ar*bi
140 fdtos %f0,%f4
141 fdtos %f2,%f6
142 st %f4,[%o0]
143 st %f6,[%o0+4]
144 .end
145 ! }
146 !- -
147 ! void
148 ! __Fc_div(c, a, b)
149 ! complex *c, *a, *b;
150 ! {
151 .inline __Fc_div,3
152 ld [%o2+4],%o3
153 sethi %hi(0x7fffffff),%o4
154 or %o4,%lo(0x7fffffff),%o4 ! [internal]
155 andcc %o3,%o4,%g0
156 ld [%o2],%f6 ! f6 gets reb
157 bne 1f
158 nop
159 ld [%o1],%f0
160 ld [%o2],%f1
161 fdivs %f0,%f1,%f0
162 st %f0,[%o0]
163 ld [%o1+4],%f3
164 fdivs %f3,%f1,%f3
165 st %f3,[%o0+4]
166 ba 2f
167 nop
168 1: ! [internal]
169 sethi %hi(0x3ff00000),%o4
170 or %g0,0,%o5
171 std %o4,[%sp+0x48]
172 ldd [%sp+0x48],%f8
173 ld [%o2+4],%f10 ! f10 gets imb
174 fsmuld %f6,%f6,%f16 ! f16/17 gets reb**2
175 ld [%o1+4],%f4 ! f4 gets ima
176 fsmuld %f10,%f10,%f12 ! f12/13 gets imb**2
177 ld [%o1],%f19 ! f19 gets rea
178 fsmuld %f4,%f10,%f0 ! f0/f1 gets ima*imb
179 fsmuld %f19,%f6,%f2 ! f2/3 gets rea*reb
180 faddd %f12,%f16,%f12 ! f12/13 gets reb**2+imb**2
181 fdivd %f8,%f12,%f12 ! f12/13 gets 1/(reb**2+imb**2)
182 faddd %f2,%f0,%f2 ! f2/3 gets rea*reb+ima*imb
183 fsmuld %f4,%f6,%f24 ! f24/5 gets ima*reb
184 fmuld %f2,%f12,%f2 ! f2/3 gets rec
185 fsmuld %f19,%f10,%f10 ! f10/11 gets rea*imb
186 fsubd %f24,%f10,%f10 ! f10/11 gets ima*reb-rea*imb
187 fmuld %f10,%f12,%f12 ! f12 gets imc
188 fdtos %f2,%f7 ! f7 gets rec
189 fdtos %f12,%f15 ! f15 gets imc
190 st %f7,[%o0]
191 st %f15,[%o0+4]
192 2:
193 .end
194 ! }

new/usr/src/lib/libm/sparc/src/locallibm.il 4

196 .inline .mul,2
197 .volatile
198 smul %o0,%o1,%o0
199 rd %y,%o1
200 sra %o0,31,%o2
201 cmp %o1,%o2
202 .nonvolatile
203 .end

205 .inline .umul,2
206 .volatile
207 umul %o0,%o1,%o0
208 rd %y,%o1
209 tst %o1
210 .nonvolatile
211 .end

213 .inline .div,2
214 sra %o0,31,%o4 ! extend sign
215 .volatile
216 wr %o4,%g0,%y
217 cmp %o1,0xffffffff ! is divisor -1?
218 be,a 1f ! if yes
219 .volatile
220 subcc %g0,%o0,%o0 ! simply negate dividend
221 nop ! RT620 FABs A.0/A.1
222 sdiv %o0,%o1,%o0 ! o0 contains quotient a/b
223 .nonvolatile
224 1:
225 .end

227 .inline .udiv,2
228 .volatile
229 wr %g0,%g0,%y
230 nop
231 nop
232 nop
233 udiv %o0,%o1,%o0 ! o0 contains quotient a/b
234 .nonvolatile
235 .end

237 .inline .rem,2
238 sra %o0,31,%o4 ! extend sign
239 .volatile
240 wr %o4,%g0,%y
241 cmp %o1,0xffffffff ! is divisor -1?
242 be,a 1f ! if yes
243 .volatile
244 or %g0,%g0,%o0 ! simply return 0
245 nop ! RT620 FABs A.0/A.1
246 sdiv %o0,%o1,%o2 ! o2 contains quotient a/b
247 .nonvolatile
248 smul %o2,%o1,%o4 ! o4 contains q*b
249 sub %o0,%o4,%o0 ! o0 gets a-q*b
250 1:
251 .end

253 .inline .urem,2
254 .volatile
255 wr %g0,%g0,%y
256 nop
257 nop
258 nop
259 udiv %o0,%o1,%o2 ! o2 contains quotient a/b
260 .nonvolatile

new/usr/src/lib/libm/sparc/src/locallibm.il 5

261 umul %o2,%o1,%o4 ! o4 contains q*b
262 sub %o0,%o4,%o0 ! o0 gets a-q*b
263 .end

265 .inline .div_o3,2
266 sra %o0,31,%o4 ! extend sign
267 .volatile
268 wr %o4,%g0,%y
269 cmp %o1,0xffffffff ! is divisor -1?
270 be,a 1f ! if yes
271 .volatile
272 subcc %g0,%o0,%o0 ! simply negate dividend
273 mov %o0,%o3 ! o3 gets __remainder
274 sdiv %o0,%o1,%o0 ! o0 contains quotient a/b
275 .nonvolatile
276 smul %o0,%o1,%o4 ! o4 contains q*b
277 ba 2f
278 sub %o3,%o4,%o3 ! o3 gets a-q*b
279 1:
280 mov %g0,%o3 ! __remainder is 0
281 2:
282 .end

284 .inline .udiv_o3,2
285 .volatile
286 wr %g0,%g0,%y
287 mov %o0,%o3 ! o3 gets __remainder
288 nop
289 nop
290 udiv %o0,%o1,%o0 ! o0 contains quotient a/b
291 .nonvolatile
292 umul %o0,%o1,%o4 ! o4 contains q*b
293 sub %o3,%o4,%o3 ! o3 gets a-q*b
294 .end

296 .inline __ieee754_sqrt,2
297 std %o0,[%sp+0x48] ! store to 8-aligned address
298 ldd [%sp+0x48],%f0
299 fsqrtd %f0,%f0
300 .end

302 .inline __inline_sqrtf,1
303 st %o0,[%sp+0x44]
304 ld [%sp+0x44],%f0
305 fsqrts %f0,%f0
306 .end

308 .inline __inline_sqrt,2
309 std %o0,[%sp+0x48] ! store to 8-aligned address
310 ldd [%sp+0x48],%f0
311 fsqrtd %f0,%f0
312 .end

314 .inline __sqrtf,1
315 st %o0,[%sp+0x44]
316 ld [%sp+0x44],%f0
317 fsqrts %f0,%f0
318 .end

320 .inline __sqrt,2
321 std %o0,[%sp+0x48] ! store to 8-aligned address
322 ldd [%sp+0x48],%f0
323 fsqrtd %f0,%f0
324 .end

326 .inline __r_sqrt_,1

new/usr/src/lib/libm/sparc/src/locallibm.il 6

327 ld [%o0],%f0
328 fsqrts %f0,%f0
329 .end

331 .inline __d_sqrt_,1
332 ld [%o0],%f0
333 ld [%o0+4],%f1
334 fsqrtd %f0,%f0
335 .end

337 .inline __ceil,2
338 std %o0,[%sp+0x48]
339 sethi %hi(0x80000000),%o5
340 andn %o0,%o5,%o2
341 sethi %hi(0x43300000),%o3
342 st %g0,[%sp+0x54]
343 subcc %o2,%o3,%g0
344 bl 1f
345 nop
346 sethi %hi(0x3ff00000),%o2
347 st %o2,[%sp+0x50]
348 ldd [%sp+0x48],%f0
349 ldd [%sp+0x50],%f2
350 fmuld %f0,%f2,%f0
351 ba 4f
352 nop
353 1:
354 tst %o0
355 st %o3,[%sp+0x50]
356 ldd [%sp+0x50],%f2
357 bge 2f
358 nop
359 fnegs %f2,%f2
360 2:
361 ldd [%sp+0x48],%f4
362 faddd %f4,%f2,%f0
363 fsubd %f0,%f2,%f0
364 fcmpd %f0,%f4
365 sethi %hi(0x3ff00000),%o2
366 st %o2,[%sp+0x50]
367 and %o0,%o5,%o4
368 fbge 3f
369 nop
370 ldd [%sp+0x50],%f4
371 faddd %f0,%f4,%f0
372 3:
373 st %f0,[%sp+0x48]
374 ld [%sp+0x48],%o3
375 andn %o3,%o5,%o3
376 or %o4,%o3,%o3
377 st %o3,[%sp+0x48]
378 ld [%sp+0x48],%f0
379 4:
380 .end

382 .inline __floor,2
383 std %o0,[%sp+0x48]
384 sethi %hi(0x80000000),%o5
385 andn %o0,%o5,%o2
386 sethi %hi(0x43300000),%o3
387 st %g0,[%sp+0x54]
388 subcc %o2,%o3,%g0
389 bl 1f
390 nop
391 sethi %hi(0x3ff00000),%o2
392 st %o2,[%sp+0x50]

new/usr/src/lib/libm/sparc/src/locallibm.il 7

393 ldd [%sp+0x48],%f0
394 ldd [%sp+0x50],%f2
395 fmuld %f0,%f2,%f0
396 ba 4f
397 nop
398 1:
399 tst %o0
400 st %o3,[%sp+0x50]
401 ldd [%sp+0x50],%f2
402 bge 2f
403 nop
404 fnegs %f2,%f2
405 2:
406 ldd [%sp+0x48],%f4
407 faddd %f4,%f2,%f0
408 fsubd %f0,%f2,%f0
409 fcmpd %f0,%f4
410 sethi %hi(0x3ff00000),%o2
411 st %o2,[%sp+0x50]
412 ldd [%sp+0x50],%f4
413 and %o0,%o5,%o4
414 fble 3f
415 nop
416 fsubd %f0,%f4,%f0
417 3:
418 st %f0,[%sp+0x48]
419 ld [%sp+0x48],%o3
420 andn %o3,%o5,%o3
421 or %o4,%o3,%o3
422 st %o3,[%sp+0x48]
423 ld [%sp+0x48],%f0
424 4:
425 .end

427 .inline __ilogb,2
428 sethi %hi(0x7ff00000),%o4
429 andcc %o4,%o0,%o2
430 bne 1f
431 nop
432 sethi %hi(0x43500000),%o3
433 std %o0,[%sp+0x48]
434 st %o3,[%sp+0x50]
435 st %g0,[%sp+0x54]
436 ldd [%sp+0x48],%f0
437 ldd [%sp+0x50],%f2
438 fmuld %f0,%f2,%f0
439 sethi %hi(0x80000001),%o0
440 or %o0,%lo(0x80000001),%o0
441 st %f0,[%sp+0x48]
442 ld [%sp+0x48],%o2
443 andcc %o2,%o4,%o2
444 srl %o2,20,%o2
445 be 2f
446 nop
447 sub %o2,0x435,%o0
448 ba 2f
449 nop
450 1:
451 subcc %o4,%o2,%g0
452 srl %o2,20,%o3
453 bne 0f
454 nop
455 sethi %hi(0x7fffffff),%o0
456 or %o0,%lo(0x7fffffff),%o0
457 ba 2f
458 nop

new/usr/src/lib/libm/sparc/src/locallibm.il 8

459 0:
460 sub %o3,0x3ff,%o0
461 2:
462 .end

464 .inline __rint,2
465 std %o0,[%sp+0x48]
466 sethi %hi(0x80000000),%o2
467 andn %o0,%o2,%o2
468 ldd [%sp+0x48],%f0
469 sethi %hi(0x43300000),%o3
470 st %g0,[%sp+0x50]
471 st %g0,[%sp+0x54]
472 subcc %o2,%o3,%g0
473 bl 1f
474 nop
475 sethi %hi(0x3ff00000),%o2
476 st %o2,[%sp+0x50]
477 ldd [%sp+0x50],%f2
478 fmuld %f0,%f2,%f0
479 ba 3f
480 nop
481 1:
482 tst %o0
483 st %o3,[%sp+0x48]
484 st %g0,[%sp+0x4c]
485 ldd [%sp+0x48],%f2
486 bge 2f
487 nop
488 fnegs %f2,%f2
489 2:
490 faddd %f0,%f2,%f0
491 fcmpd %f0,%f2
492 fbne 0f
493 nop
494 ldd [%sp+0x50],%f0
495 bge 3f
496 nop
497 fnegs %f0,%f0
498 ba 3f
499 nop
500 0:
501 fsubd %f0,%f2,%f0
502 3:
503 .end

505 .inline __rintf,1
506 st %o0,[%sp+0x48]
507 sethi %hi(0x80000000),%o2
508 andn %o0,%o2,%o2
509 ld [%sp+0x48],%f0
510 sethi %hi(0x4b000000),%o3
511 st %g0,[%sp+0x50]
512 subcc %o2,%o3,%g0
513 bl 1f
514 nop
515 sethi %hi(0x3f800000),%o2
516 st %o2,[%sp+0x50]
517 ld [%sp+0x50],%f2
518 fmuls %f0,%f2,%f0
519 ba 3f
520 nop
521 1:
522 tst %o0
523 st %o3,[%sp+0x48]
524 ld [%sp+0x48],%f2

new/usr/src/lib/libm/sparc/src/locallibm.il 9

525 bge 2f
526 nop
527 fnegs %f2,%f2
528 2:
529 fadds %f0,%f2,%f0
530 fcmps %f0,%f2
531 fbne 0f
532 nop
533 ld [%sp+0x50],%f0
534 bge 3f
535 nop
536 fnegs %f0,%f0
537 ba 3f
538 nop
539 0:
540 fsubs %f0,%f2,%f0
541 3:
542 .end

544 .inline __min_subnormal,0
545 set 0x0,%o0
546 st %o0,[%sp+0x44]
547 ld [%sp+0x44],%f0
548 set 0x1,%o0
549 st %o0,[%sp+0x44]
550 ld [%sp+0x44],%f1
551 .end

553 .inline __d_min_subnormal_,0
554 set 0x0,%o0
555 st %o0,[%sp+0x44]
556 ld [%sp+0x44],%f0
557 set 0x1,%o0
558 st %o0,[%sp+0x44]
559 ld [%sp+0x44],%f1
560 .end

562 .inline __min_subnormalf,0
563 set 0x1,%o0
564 st %o0,[%sp+0x44]
565 ld [%sp+0x44],%f0
566 .end

568 .inline __r_min_subnormal_,0
569 set 0x1,%o0
570 st %o0,[%sp+0x44]
571 ld [%sp+0x44],%f0
572 .end

574 .inline __max_subnormal,0
575 set 0x000fffff,%o0
576 st %o0,[%sp+0x44]
577 ld [%sp+0x44],%f0
578 set 0xffffffff,%o0
579 st %o0,[%sp+0x44]
580 ld [%sp+0x44],%f1
581 .end

583 .inline __d_max_subnormal_,0
584 set 0x000fffff,%o0
585 st %o0,[%sp+0x44]
586 ld [%sp+0x44],%f0
587 set 0xffffffff,%o0
588 st %o0,[%sp+0x44]
589 ld [%sp+0x44],%f1
590 .end

new/usr/src/lib/libm/sparc/src/locallibm.il 10

592 .inline __max_subnormalf,0
593 set 0x007fffff,%o0
594 st %o0,[%sp+0x44]
595 ld [%sp+0x44],%f0
596 .end

598 .inline __r_max_subnormal_,0
599 set 0x007fffff,%o0
600 st %o0,[%sp+0x44]
601 ld [%sp+0x44],%f0
602 .end

604 .inline __min_normal,0
605 set 0x00100000,%o0
606 set 0x0,%o1
607 std %o0,[%sp+0x48]
608 ldd [%sp+0x48],%f0
609 .end

611 .inline __d_min_normal_,0
612 set 0x00100000,%o0
613 st %o0,[%sp+0x44]
614 ld [%sp+0x44],%f0
615 set 0x0,%o0
616 st %o0,[%sp+0x44]
617 ld [%sp+0x44],%f1
618 .end

620 .inline __min_normalf,0
621 set 0x00800000,%o0
622 st %o0,[%sp+0x44]
623 ld [%sp+0x44],%f0
624 .end

626 .inline __r_min_normal_,0
627 set 0x00800000,%o0
628 st %o0,[%sp+0x44]
629 ld [%sp+0x44],%f0
630 .end

632 .inline __max_normal,0
633 set 0x7fefffff,%o0
634 set 0xffffffff,%o1
635 std %o0,[%sp+0x48]
636 ldd [%sp+0x48],%f0
637 .end

639 .inline __d_max_normal_,0
640 set 0x7fefffff,%o0
641 st %o0,[%sp+0x44]
642 ld [%sp+0x44],%f0
643 set 0xffffffff,%o0
644 st %o0,[%sp+0x44]
645 ld [%sp+0x44],%f1
646 .end

648 .inline __max_normalf,0
649 set 0x7f7fffff,%o0
650 st %o0,[%sp+0x44]
651 ld [%sp+0x44],%f0
652 .end

654 .inline __r_max_normal_,0
655 set 0x7f7fffff,%o0
656 st %o0,[%sp+0x44]

new/usr/src/lib/libm/sparc/src/locallibm.il 11

657 ld [%sp+0x44],%f0
658 .end

660 .inline __infinity,0
661 set 0x7ff00000,%o0
662 set 0x0,%o1
663 std %o0,[%sp+0x48]
664 ldd [%sp+0x48],%f0
665 .end

667 .inline __infinity,0
668 set 0x7ff00000,%o0
669 set 0x0,%o1
670 std %o0,[%sp+0x48]
671 ldd [%sp+0x48],%f0
672 .end

674 .inline __d_infinity_,0
675 set 0x7ff00000,%o0
676 st %o0,[%sp+0x44]
677 ld [%sp+0x44],%f0
678 set 0x0,%o0
679 st %o0,[%sp+0x44]
680 ld [%sp+0x44],%f1
681 .end

683 .inline __infinityf,0
684 set 0x7f800000,%o0
685 st %o0,[%sp+0x44]
686 ld [%sp+0x44],%f0
687 .end

689 .inline __r_infinity_,0
690 set 0x7f800000,%o0
691 st %o0,[%sp+0x44]
692 ld [%sp+0x44],%f0
693 .end

695 .inline __signaling_nan,0
696 set 0x7ff00000,%o0
697 set 0x1,%o1
698 std %o0,[%sp+0x48]
699 ldd [%sp+0x48],%f0
700 .end

702 .inline __d_signaling_nan_,0
703 set 0x7ff00000,%o0
704 st %o0,[%sp+0x44]
705 ld [%sp+0x44],%f0
706 set 0x1,%o0
707 st %o0,[%sp+0x44]
708 ld [%sp+0x44],%f1
709 .end

711 .inline __signaling_nanf,0
712 set 0x7f800001,%o0
713 st %o0,[%sp+0x44]
714 ld [%sp+0x44],%f0
715 .end

717 .inline __r_signaling_nan_,0
718 set 0x7f800001,%o0
719 st %o0,[%sp+0x44]
720 ld [%sp+0x44],%f0
721 .end

new/usr/src/lib/libm/sparc/src/locallibm.il 12

723 .inline __quiet_nan,0
724 set 0x7fffffff,%o0
725 st %o0,[%sp+0x44]
726 ld [%sp+0x44],%f0
727 set 0xffffffff,%o0
728 st %o0,[%sp+0x44]
729 ld [%sp+0x44],%f1
730 .end

732 .inline __d_quiet_nan_,0
733 set 0x7fffffff,%o0
734 st %o0,[%sp+0x44]
735 ld [%sp+0x44],%f0
736 set 0xffffffff,%o0
737 st %o0,[%sp+0x44]
738 ld [%sp+0x44],%f1
739 .end

741 .inline __quiet_nanf,0
742 set 0x7fffffff,%o0
743 st %o0,[%sp+0x44]
744 ld [%sp+0x44],%f0
745 .end

747 .inline __r_quiet_nan_,0
748 set 0x7fffffff,%o0
749 st %o0,[%sp+0x44]
750 ld [%sp+0x44],%f0
751 .end

753 .inline __swapEX,1
754 and %o0,0x1f,%o1
755 sll %o1,5,%o1 ! shift input to aexc bit location
755 sll %o1,5,%o1 ! input to aexc bit location
756 .volatile
757 st %fsr,[%sp+0x44]
758 ld [%sp+0x44],%o0 ! o0 = fsr
759 andn %o0,0x3e0,%o2
760 or %o1,%o2,%o1 ! o1 = new fsr
761 st %o1,[%sp+0x44]
762 ld [%sp+0x44],%fsr
763 srl %o0,5,%o0
764 and %o0,0x1f,%o0
765 .nonvolatile
766 .end

768 .inline _QgetRD,0
769 st %fsr,[%sp+0x44]
770 ld [%sp+0x44],%o0 ! o0 = fsr
771 srl %o0,30,%o0 ! return __round control value
772 .end

774 .inline _QgetRP,0
775 or %g0,%g0,%o0
776 .end

778 .inline __swapRD,1
779 and %o0,0x3,%o0
780 sll %o0,30,%o1 ! shift input to RD bit location
780 sll %o0,30,%o1 ! input to RD bit location
781 .volatile
782 st %fsr,[%sp+0x44]
783 ld [%sp+0x44],%o0 ! o0 = fsr
784 set 0xc0000000,%o4 ! mask of rounding direction bits
785 andn %o0,%o4,%o2
786 or %o1,%o2,%o1 ! o1 = new fsr

new/usr/src/lib/libm/sparc/src/locallibm.il 13

787 st %o1,[%sp+0x44]
788 ld [%sp+0x44],%fsr
789 srl %o0,30,%o0
790 and %o0,0x3,%o0
791 .nonvolatile
792 .end
793 !
794 ! On the SPARC, __swapRP is a no-op; always return 0 for backward compatibility
795 !

797 .inline __swapRP,1
798 or %g0,%g0,%o0
799 .end

801 .inline __swapTE,1
802 and %o0,0x1f,%o0
803 sll %o0,23,%o1 ! shift input to TEM bit location
803 sll %o0,23,%o1 ! input to TEM bit location
804 .volatile
805 st %fsr,[%sp+0x44]
806 ld [%sp+0x44],%o0 ! o0 = fsr
807 set 0x0f800000,%o4 ! mask of TEM (Trap Enable Mode bits)
808 andn %o0,%o4,%o2
809 or %o1,%o2,%o1 ! o1 = new fsr
810 st %o1,[%sp+0x48]
811 ld [%sp+0x48],%fsr
812 srl %o0,23,%o0
813 and %o0,0x1f,%o0
814 .nonvolatile
815 .end

817 .inline __fp_class,2
818 sethi %hi(0x80000000),%o2 ! o2 gets 80000000
819 andn %o0,%o2,%o0 ! o0-o1 gets abs(x)
820 orcc %o0,%o1,%g0 ! set cc as x is zero/nonzero
821 bne 1f ! branch if x is nonzero
822 nop
823 mov 0,%o0
824 ba 2f ! x is 0
825 nop
826 1:
827 sethi %hi(0x7ff00000),%o2 ! o2 gets 7ff00000
828 andcc %o0,%o2,%g0 ! cc set by __exp field of x
829 bne 1f ! branch if normal or max __exp
830 nop
831 mov 1,%o0
832 ba 2f ! x is subnormal
833 nop
834 1:
835 cmp %o0,%o2
836 bge 1f ! branch if x is max __exp
837 nop
838 mov 2,%o0
839 ba 2f ! x is normal
840 nop
841 1:
842 andn %o0,%o2,%o0 ! o0 gets msw __significand field
843 orcc %o0,%o1,%g0 ! set cc by OR __significand
844 bne 1f ! Branch if __nan
845 nop
846 mov 3,%o0
847 ba 2f ! x is __infinity
848 nop
849 1:
850 sethi %hi(0x00080000),%o2
851 andcc %o0,%o2,%g0 ! set cc by quiet/sig bit

new/usr/src/lib/libm/sparc/src/locallibm.il 14

852 be 1f ! Branch if signaling
853 nop
854 mov 4,%o0 ! x is quiet NaN
855 ba 2f
856 nop
857 1:
858 mov 5,%o0 ! x is signaling NaN
859 2:
860 .end

862 .inline __fp_classf,1
863 sethi %hi(0x80000000),%o2
864 andncc %o0,%o2,%o0
865 bne 1f
866 nop
867 mov 0,%o0
868 ba 2f ! x is 0
869 nop
870 1:
871 sethi %hi(0x7f800000),%o2
872 andcc %o0,%o2,%g0
873 bne 1f
874 nop
875 mov 1,%o0
876 ba 2f ! x is subnormal
877 nop
878 1:
879 cmp %o0,%o2
880 bge 1f
881 nop
882 mov 2,%o0
883 ba 2f ! x is normal
884 nop
885 1:
886 bg 1f
887 nop
888 mov 3,%o0
889 ba 2f ! x is __infinity
890 nop
891 1:
892 sethi %hi(0x00400000),%o2
893 andcc %o0,%o2,%g0
894 mov 4,%o0 ! x is quiet NaN
895 bne 2f
896 nop
897 mov 5,%o0 ! x is signaling NaN
898 2:
899 .end

901 .inline __ir_fp_class_,1
902 ld [%o0],%o0
903 sethi %hi(0x80000000),%o2
904 andncc %o0,%o2,%o0
905 bne 1f
906 nop
907 mov 0,%o0
908 ba 2f ! x is 0
909 nop
910 1:
911 sethi %hi(0x7f800000),%o2
912 andcc %o0,%o2,%g0
913 bne 1f
914 nop
915 mov 1,%o0
916 ba 2f ! x is subnormal
917 nop

new/usr/src/lib/libm/sparc/src/locallibm.il 15

918 1:
919 cmp %o0,%o2
920 bge 1f
921 nop
922 mov 2,%o0
923 ba 2f ! x is normal
924 nop
925 1:
926 bg 1f
927 nop
928 mov 3,%o0
929 ba 2f ! x is __infinity
930 nop
931 1:
932 sethi %hi(0x00400000),%o2
933 andcc %o0,%o2,%g0
934 mov 4,%o0 ! x is quiet NaN
935 bne 2f
936 nop
937 mov 5,%o0 ! x is signaling NaN
938 2:
939 .end

941 .inline __copysign,4
942 set 0x80000000,%o3
943 and %o2,%o3,%o2
944 andn %o0,%o3,%o0
945 or %o0,%o2,%o0
946 std %o0,[%sp+0x48]
947 ldd [%sp+0x48],%f0
948 .end

950 .inline __copysignf,2
951 set 0x80000000,%o2
952 andn %o0,%o2,%o0
953 and %o1,%o2,%o1
954 or %o0,%o1,%o0
955 st %o0,[%sp+0x44]
956 ld [%sp+0x44],%f0
957 .end

959 .inline __r_copysign_,2
960 ld [%o0],%o0
961 ld [%o1],%o1
962 set 0x80000000,%o2
963 andn %o0,%o2,%o0
964 and %o1,%o2,%o1
965 or %o0,%o1,%o0
966 st %o0,[%sp+0x44]
967 ld [%sp+0x44],%f0
968 .end

970 .inline _finite,2
971 set 0x7ff00000,%o1
972 and %o0,%o1,%o0
973 cmp %o0,%o1
974 mov 1,%o0
975 bne 1f
976 nop
977 mov 0,%o0
978 1:
979 .end

981 .inline __finitef,2
982 set 0x7f800000,%o1
983 and %o0,%o1,%o0

new/usr/src/lib/libm/sparc/src/locallibm.il 16

984 cmp %o0,%o1
985 mov 1,%o0
986 bne 1f
987 nop
988 mov 0,%o0
989 1:
990 .end

992 .inline __ir_finite_,1
993 ld [%o0],%o0
994 set 0x7f800000,%o1
995 and %o0,%o1,%o0
996 cmp %o0,%o1
997 mov 1,%o0
998 bne 1f
999 nop

1000 mov 0,%o0
1001 1:
1002 .end

1004 .inline __signbit,1
1005 srl %o0,31,%o0
1006 .end

1008 .inline __signbitf,1
1009 srl %o0,31,%o0
1010 .end

1012 .inline __ir_signbit_,1
1013 ld [%o0],%o0
1014 srl %o0,31,%o0
1015 .end

1017 .inline __isinf,2
1018 tst %o1
1019 sethi %hi(0x80000000),%o2
1020 bne 1f
1021 nop
1022 andn %o0,%o2,%o0
1023 sethi %hi(0x7ff00000),%o2
1024 cmp %o0,%o2
1025 mov 1,%o0
1026 be 2f
1027 nop
1028 1:
1029 mov 0,%o0
1030 2:
1031 .end

1033 .inline __isinff,1
1034 sethi %hi(0x80000000),%o2
1035 andn %o0,%o2,%o0 ! o0 gets abs(x)
1036 sethi %hi(0x7f800000),%o2
1037 cmp %o0,%o2
1038 mov 0,%o0
1039 bne 1f ! Branch if not inf.
1040 nop
1041 mov 1,%o0
1042 1:
1043 .end

1045 .inline __ir_isinf_,1
1046 ld [%o0],%o0
1047 sethi %hi(0x80000000),%o2
1048 andn %o0,%o2,%o0 ! o0 gets abs(x)
1049 sethi %hi(0x7f800000),%o2

new/usr/src/lib/libm/sparc/src/locallibm.il 17

1050 cmp %o0,%o2
1051 mov 0,%o0
1052 bne 1f ! Branch if not inf.
1053 nop
1054 mov 1,%o0
1055 1:
1056 .end

1058 .inline __isnan,2
1059 sethi %hi(0x80000000),%o2
1060 andn %o0,%o2,%o0
1061 sub %g0,%o1,%o3
1062 or %o1,%o3,%o1
1063 srl %o1,31,%o1
1064 or %o0,%o1,%o0
1065 sethi %hi(0x7ff00000),%o4
1066 sub %o4,%o0,%o0
1067 srl %o0,31,%o0
1068 .end

1070 .inline __isnanf,1
1071 sethi %hi(0x80000000),%o2
1072 andn %o0,%o2,%o0
1073 sethi %hi(0x7f800000),%o1
1074 sub %o1,%o0,%o0
1075 srl %o0,31,%o0
1076 .end

1078 .inline __ir_isnan_,1
1079 ld [%o0],%o0
1080 sethi %hi(0x80000000),%o2
1081 andn %o0,%o2,%o0
1082 sethi %hi(0x7f800000),%o1
1083 sub %o1,%o0,%o0
1084 srl %o0,31,%o0
1085 .end

1087 .inline __isnormal,2
1088 sethi %hi(0x80000000),%o2
1089 andn %o0,%o2,%o0
1090 sethi %hi(0x7ff00000),%o2
1091 cmp %o0,%o2
1092 sethi %hi(0x00100000),%o2
1093 bge 1f
1094 nop
1095 cmp %o0,%o2
1096 mov 1,%o0
1097 bge 2f
1098 nop
1099 1:
1100 mov 0,%o0
1101 2:
1102 .end

1104 .inline __isnormalf,1
1105 sethi %hi(0x80000000),%o2
1106 andn %o0,%o2,%o0
1107 sethi %hi(0x7f800000),%o2
1108 cmp %o0,%o2
1109 sethi %hi(0x00800000),%o2
1110 bge 1f
1111 nop
1112 cmp %o0,%o2
1113 mov 1,%o0
1114 bge 2f
1115 nop

new/usr/src/lib/libm/sparc/src/locallibm.il 18

1116 1:
1117 mov 0,%o0
1118 2:
1119 .end

1121 .inline __ir_isnormal_,1
1122 ld [%o0],%o0
1123 sethi %hi(0x80000000),%o2
1124 andn %o0,%o2,%o0
1125 sethi %hi(0x7f800000),%o2
1126 cmp %o0,%o2
1127 sethi %hi(0x00800000),%o2
1128 bge 1f
1129 nop
1130 cmp %o0,%o2
1131 mov 1,%o0
1132 bge 2f
1133 nop
1134 1:
1135 mov 0,%o0
1136 2:
1137 .end

1139 .inline __issubnormal,2
1140 sethi %hi(0x80000000),%o2 ! o2 gets 80000000
1141 andn %o0,%o2,%o0 ! o0/o1 gets abs(x)
1142 sethi %hi(0x00100000),%o2 ! o2 gets 00100000
1143 cmp %o0,%o2
1144 bge 1f ! branch if x norm or max __exp
1145 nop
1146 orcc %o0,%o1,%g0
1147 be 1f ! Branch if x zero
1148 nop
1149 mov 1,%o0 ! x is subnormal
1150 ba 2f
1151 nop
1152 1:
1153 mov 0,%o0
1154 2:
1155 .end

1157 .inline __issubnormalf,1
1158 sethi %hi(0x80000000),%o2 ! o2 gets 80000000
1159 andn %o0,%o2,%o0 ! o0 gets abs(x)
1160 sethi %hi(0x00800000),%o2 ! o2 gets 00800000
1161 cmp %o0,%o2
1162 bge 1f ! branch if x norm or max __exp
1163 nop
1164 orcc %o0,%g0,%g0
1165 be 1f ! Branch if x zero
1166 nop
1167 mov 1,%o0 ! x is subnormal
1168 ba 2f
1169 nop
1170 1:
1171 mov 0,%o0
1172 2:
1173 .end

1175 .inline __ir_issubnormal_,1
1176 ld [%o0],%o0
1177 sethi %hi(0x80000000),%o2 ! o2 gets 80000000
1178 andn %o0,%o2,%o0 ! o0 gets abs(x)
1179 sethi %hi(0x00800000),%o2 ! o2 gets 00800000
1180 cmp %o0,%o2
1181 bge 1f ! branch if x norm or max __exp

new/usr/src/lib/libm/sparc/src/locallibm.il 19

1182 nop
1183 orcc %o0,%g0,%g0
1184 be 1f ! Branch if x zero
1185 nop
1186 mov 1,%o0 ! x is subnormal
1187 ba 2f
1188 nop
1189 1:
1190 mov 0,%o0
1191 2:
1192 .end

1194 .inline __iszero,2
1195 sethi %hi(0x80000000),%o2
1196 andn %o0,%o2,%o0
1197 orcc %o0,%o1,%g0
1198 mov 1,%o0
1199 be 1f
1200 nop
1201 mov 0,%o0
1202 1:
1203 .end

1205 .inline __iszerof,1
1206 sethi %hi(0x80000000),%o2
1207 andncc %o0,%o2,%o0
1208 mov 1,%o0
1209 be 1f
1210 nop
1211 mov 0,%o0
1212 1:
1213 .end

1215 .inline __ir_iszero_,1
1216 ld [%o0],%o0
1217 sethi %hi(0x80000000),%o2
1218 andncc %o0,%o2,%o0
1219 mov 1,%o0
1220 be 1f
1221 nop
1222 mov 0,%o0
1223 1:
1224 .end

1226 .inline abs,1
1227 sra %o0,31,%o1
1228 xor %o0,%o1,%o0
1229 sub %o0,%o1,%o0
1230 .end

1232 .inline __fabs,2
1233 st %o0,[%sp+0x48]
1234 st %o1,[%sp+0x4c]
1235 ldd [%sp+0x48],%f0
1236 fabsd %f0,%f0
1237 .end

1239 .inline __fabsf,1
1240 st %o0,[%sp+0x44]
1241 ld [%sp+0x44],%f0
1242 fabss %f0,%f0
1243 .end

1245 .inline __r_fabs_,1
1246 ld [%o0],%f0
1247 fabss %f0,%f0

new/usr/src/lib/libm/sparc/src/locallibm.il 20

1248 .end
1249 !
1250 ! __nintf - f77 NINT(REAL*4)
1251 !

1253 .inline __nintf,1
1254 srl %o0,30-7,%g1
1255 sethi %hi(0x7fffff),%o2
1256 st %o0,[%sp+0x44]
1257 and %g1,0xff,%g1
1258 or %o2,%lo(0x7fffff),%o2
1259 sethi %hi(1<<22),%o4
1260 subcc %g1,127+31,%g0
1261 and %o0,%o2,%o3
1262 bl 0f
1263 nop
1264 sethi %hi(0xcf000000),%o2
1265 sethi %hi(0x80000000),%g1
1266 subcc %o0,%o2,%g0
1267 or %g1,%g0,%o0
1268 be 9f
1269 nop
1270 ld [%sp+0x44],%f0
1271 fstoi %f0,%f0
1272 st %f0,[%sp+0x44]
1273 ld [%sp+0x44],%o0
1274 ba 9f
1275 nop
1276 0:
1277 add %o4,%o4,%o5
1278 or %o3,%o5,%o3
1279 sra %o0,31-0,%o2
1280 subcc %g1,127,%g1
1281 srl %o4,%g1,%o4
1282 bge 1f
1283 nop
1284 subcc %g1,-1,%g0
1285 or %g0,0,%o0
1286 bne 2f
1287 nop
1288 or %g0,1,%o0
1289 ba 2f
1290 nop
1291 1:
1292 add %o3,%o4,%o3
1293 or %g0,23,%o0
1294 subcc %o0,%g1,%o0
1295 bl 1f
1296 nop
1297 srl %o3,%o0,%o0
1298 ba 2f
1299 nop
1300 1:
1301 sub %g0,%o0,%o0
1302 sll %o3,%o0,%o0
1303 2:
1304 xor %o0,%o2,%o0
1305 and %o2,1,%o2
1306 add %o0,%o2,%o0
1307 9:
1308 .end

1310 .inline __il_nint,1
1311 ld [%o0],%o0
1312 sra %o0,0,%o0
1313 srlx %o0,31-8,%g1

new/usr/src/lib/libm/sparc/src/locallibm.il 21

1314 or %g0,1,%o2
1315 sllx %o2,23-1,%o4
1316 and %g1,0xff,%g1
1317 sllx %o2,63-0,%o2
1318 subcc %g1,127+63,%g0
1319 bl 0f
1320 nop
1321 st %o0,[%sp+0x48]
1322 ld [%sp+0x48],%f0
1323 fstox %f0,%f0
1324 std %f0,[%sp+0x48]
1325 ldx [%sp+0x48],%o1
1326 ba 9f
1327 nop
1328 0:
1329 add %o4,%o4,%o5
1330 srax %o2,63-23,%o2
1331 sub %g1,127+23,%o1
1332 xnor %o2,%g0,%o2
1333 and %o0,%o2,%o3
1334 or %o3,%o5,%o3
1335 srax %o0,63-0,%o2
1336 subcc %g1,127,%g1
1337 bge 1f
1338 nop
1339 subcc %g1,-1,%g0
1340 or %g0,0,%o0
1341 bne 2f
1342 nop
1343 or %g0,1,%o0
1344 ba 2f
1345 nop
1346 1:
1347 brlz,pt %o1,3f
1348 nop
1349 sub %g1,23,%o0
1350 sllx %o3,%o0,%o0
1351 ba 2f
1352 nop
1353 3:
1354 srlx %o4,%g1,%o4
1355 add %o3,%o4,%o3
1356 or %g0,23,%o0
1357 sub %o0,%g1,%o0
1358 srlx %o3,%o0,%o0
1359 2:
1360 xor %o0,%o2,%o0
1361 sub %o0,%o2,%o1
1362 9:
1363 srlx %o1,32,%o0
1364 .end
1365 !
1366 ! __i_dnnt - f77 NINT(REAL*8)
1367 !

1369 .inline __i_dnnt,1
1370 ld [%o0],%o1
1371 sllx %o1,32,%o1
1372 ld [%o0+4],%o0
1373 or %o0,%o1,%o0
1374 srlx %o0,63-11,%g1
1375 or %g0,1,%o2
1376 stx %o0,[%sp+0x48]
1377 sllx %o2,52-1,%o4
1378 and %g1,0x7ff,%g1
1379 sllx %o2,63-0,%o2

new/usr/src/lib/libm/sparc/src/locallibm.il 22

1380 subcc %g1,1023+32,%g0
1381 bl 0f
1382 nop
1383 ldd [%sp+0x48],%f0
1384 ba 8f
1385 nop
1386 0:
1387 add %o4,%o4,%o5
1388 srax %o2,63-52,%o2
1389 sub %g1,1023+30,%o1
1390 xnor %o2,%g0,%o2
1391 and %o0,%o2,%o3
1392 or %o3,%o5,%o3
1393 srax %o0,63-0,%o2
1394 subcc %g1,1023,%g1
1395 bge 1f
1396 nop
1397 subcc %g1,-1,%g0
1398 or %g0,0,%o0
1399 bne 2f
1400 nop
1401 or %g0,1,%o0
1402 ba 2f
1403 nop
1404 1:
1405 srlx %o4,%g1,%o4
1406 add %o3,%o4,%o3
1407 or %g0,52,%o0
1408 sub %o0,%g1,%o0
1409 srlx %o3,%o0,%o0
1410 2:
1411 xor %o0,%o2,%o0
1412 sub %o0,%o2,%o0
1413 brlz,pt %o1,9f
1414 nop
1415 stx %o0,[%sp+0x48]
1416 ldd [%sp+0x48],%f0
1417 fxtod %f0,%f0
1418 8:
1419 fdtoi %f0,%f0
1420 st %f0,[%sp+0x44]
1421 ld [%sp+0x44],%o0
1422 9:
1423 .end

1425 .inline __il_dnnt,1
1426 ld [%o0],%o1
1427 sllx %o1,32,%o1
1428 ld [%o0+4],%o0
1429 or %o0,%o1,%o0
1430 srlx %o0,63-11,%g1
1431 or %g0,1,%o2
1432 sllx %o2,52-1,%o4
1433 and %g1,0x7ff,%g1
1434 sllx %o2,63-0,%o2
1435 subcc %g1,1023+63,%g0
1436 bl 0f
1437 nop
1438 stx %o0,[%sp+0x48]
1439 ldd [%sp+0x48],%f0
1440 fdtox %f0,%f0
1441 std %f0,[%sp+0x48]
1442 ldx [%sp+0x48],%o1
1443 ba 9f
1444 nop
1445 0:

new/usr/src/lib/libm/sparc/src/locallibm.il 23

1446 add %o4,%o4,%o5
1447 srax %o2,63-52,%o2
1448 sub %g1,1023+52,%o1
1449 xnor %o2,%g0,%o2
1450 and %o0,%o2,%o3
1451 or %o3,%o5,%o3
1452 srax %o0,63-0,%o2
1453 subcc %g1,1023,%g1
1454 bge 1f
1455 nop
1456 subcc %g1,-1,%g0
1457 or %g0,0,%o0
1458 bne 2f
1459 nop
1460 or %g0,1,%o0
1461 ba 2f
1462 nop
1463 1:
1464 brlz,pt %o1,3f
1465 nop
1466 sub %g1,52,%o0
1467 sllx %o3,%o0,%o0
1468 ba 2f
1469 nop
1470 3:
1471 srlx %o4,%g1,%o4
1472 add %o3,%o4,%o3
1473 or %g0,52,%o0
1474 sub %o0,%g1,%o0
1475 srlx %o3,%o0,%o0
1476 2:
1477 xor %o0,%o2,%o0
1478 sub %o0,%o2,%o1
1479 9:
1480 srlx %o1,32,%o0
1481 .end

1483 .inline __anintf,1
1484 or %g0,1,%o1
1485 srl %o0,23,%g1
1486 and %g1,0xff,%g1
1487 sub %g0,%g1,%g1
1488 add %g1,0x95,%g1
1489 subcc %g1,23,%g0
1490 sll %o1,%g1,%o1
1491 sub %o1,1,%o2
1492 bcs 1f
1493 nop
1494 be 2f
1495 nop
1496 bl 3f
1497 nop
1498 sethi %hi(0x80000000),%o1
1499 and %o0,%o1,%o0
1500 ba 3f
1501 nop
1502 1:
1503 and %o0,%o1,%o1
1504 2:
1505 add %o0,%o1,%o0
1506 andn %o0,%o2,%o0
1507 3:
1508 st %o0,[%sp+0x48]
1509 ld [%sp+0x48],%f0
1510 .end

new/usr/src/lib/libm/sparc/src/locallibm.il 24

1512 .inline __anint,2
1513 sllx %o0,32,%o0
1514 or %o0,%o1,%o0
1515 or %g0,1,%o1
1516 srlx %o0,52,%g1
1517 and %g1,0x7ff,%g1
1518 sub %g0,%g1,%g1
1519 add %g1,0x432,%g1
1520 subcc %g1,52,%g0
1521 sllx %o1,%g1,%o1
1522 sub %o1,1,%o2
1523 bcs,pt %icc,1f
1524 nop
1525 be,pt %icc,2f
1526 nop
1527 bl,pt %icc,3f
1528 nop
1529 srlx %o0,63,%o0
1530 sllx %o0,63,%o0
1531 ba 3f
1532 nop
1533 1:
1534 and %o0,%o1,%o1
1535 2:
1536 add %o0,%o1,%o0
1537 andn %o0,%o2,%o0
1538 3:
1539 stx %o0,[%sp+0x48]
1540 ldd [%sp+0x48],%f0
1541 .end

1543 .inline __Fz_minus,3
1544 ld [%o1],%f0
1545 ld [%o1+0x4],%f1
1546 ld [%o2],%f4
1547 ld [%o2+0x4],%f5
1548 fsubd %f0,%f4,%f0
1549 ld [%o1+8],%f2
1550 ld [%o1+0xc],%f3
1551 ld [%o2+8],%f6
1552 ld [%o2+0xc],%f7
1553 fsubd %f2,%f6,%f2
1554 st %f0,[%o0+0x0]
1555 st %f1,[%o0+0x4]
1556 st %f2,[%o0+0x8]
1557 st %f3,[%o0+0xc]
1558 .end

1560 .inline __Fz_add,3
1561 ld [%o1],%f0
1562 ld [%o1+0x4],%f1
1563 ld [%o2],%f4
1564 ld [%o2+0x4],%f5
1565 faddd %f0,%f4,%f0
1566 ld [%o1+8],%f2
1567 ld [%o1+0xc],%f3
1568 ld [%o2+8],%f6
1569 ld [%o2+0xc],%f7
1570 faddd %f2,%f6,%f2
1571 st %f0,[%o0+0x0]
1572 st %f1,[%o0+0x4]
1573 st %f2,[%o0+0x8]
1574 st %f3,[%o0+0xc]
1575 .end

1577 .inline __Fz_neg,2

new/usr/src/lib/libm/sparc/src/locallibm.il 25

1578 ld [%o1],%f0
1579 fnegs %f0,%f0
1580 ld [%o1+0x4],%f1
1581 st %f1,[%o0+0x4]
1582 ld [%o1+8],%f2
1583 fnegs %f2,%f2
1584 ld [%o1+0xc],%f3
1585 st %f3,[%o0+0xc]
1586 st %f0,[%o0]
1587 st %f2,[%o0+0x8]
1588 .end

1590 .inline __Ff_conv_z,2
1591 st %o1,[%sp+0x44]
1592 ld [%sp+0x44],%f0
1593 fstod %f0,%f0
1594 st %g0,[%o0+0x8]
1595 st %g0,[%o0+0xc]
1596 st %f1,[%o0+0x4]
1597 st %f0,[%o0]
1598 .end

1600 .inline __Fz_conv_f,1
1601 ld [%o0],%f0
1602 ld [%o0+4],%f1
1603 fdtos %f0,%f0
1604 .end

1606 .inline __Fz_conv_i,1
1607 ld [%o0],%f0
1608 ld [%o0+4],%f1
1609 fdtoi %f0,%f0
1610 st %f0,[%sp+0x44]
1611 ld [%sp+0x44],%o0
1612 .end

1614 .inline __Fi_conv_z,2
1615 st %o1,[%sp+0x44]
1616 ld [%sp+0x44],%f0
1617 fitod %f0,%f0
1618 st %g0,[%o0+0x8]
1619 st %g0,[%o0+0xc]
1620 st %f1,[%o0+0x4]
1621 st %f0,[%o0]
1622 .end

1624 .inline __Fz_conv_d,1
1625 ld [%o0],%f0
1626 ld [%o0+4],%f1
1627 .end

1629 .inline __Fd_conv_z,3
1630 st %o1,[%o0]
1631 st %o2,[%o0+0x4]
1632 st %g0,[%o0+0x8]
1633 st %g0,[%o0+0xc]
1634 .end

1636 .inline __Fz_conv_c,2
1637 ldd [%o1],%f0
1638 fdtos %f0,%f0
1639 st %f0,[%o0]
1640 ldd [%o1+0x8],%f2
1641 fdtos %f2,%f1
1642 st %f1,[%o0+0x4]
1643 .end

new/usr/src/lib/libm/sparc/src/locallibm.il 26

1645 .inline __Fz_eq,2
1646 ld [%o0],%f0
1647 ld [%o0+4],%f1
1648 ld [%o1],%f2
1649 ld [%o1+4],%f3
1650 fcmpd %f0,%f2
1651 mov %o0,%o2
1652 mov 0,%o0
1653 fbne 1f
1654 nop
1655 ld [%o2+8],%f0
1656 ld [%o2+12],%f1
1657 ld [%o1+8],%f2
1658 ld [%o1+12],%f3
1659 fcmpd %f0,%f2
1660 nop
1661 fbne 1f
1662 nop
1663 mov 1,%o0
1664 1:
1665 .end

1667 .inline __Fz_ne,2
1668 ld [%o0],%f0
1669 ld [%o0+4],%f1
1670 ld [%o1],%f2
1671 ld [%o1+4],%f3
1672 fcmpd %f0,%f2
1673 mov %o0,%o2
1674 mov 1,%o0
1675 fbne 1f
1676 nop
1677 ld [%o2+8],%f0
1678 ld [%o2+12],%f1
1679 ld [%o1+8],%f2
1680 ld [%o1+12],%f3
1681 fcmpd %f0,%f2
1682 nop
1683 fbne 1f
1684 nop
1685 mov 0,%o0
1686 1:
1687 .end

1689 .inline __c_cmplx,3
1690 ld [%o1],%o1
1691 st %o1,[%o0]
1692 ld [%o2],%o2
1693 st %o2,[%o0+4]
1694 .end

1696 .inline __d_cmplx,3
1697 ld [%o1],%f0
1698 st %f0,[%o0]
1699 ld [%o1+4],%f1
1700 st %f1,[%o0+4]
1701 ld [%o2],%f0
1702 st %f0,[%o0+0x8]
1703 ld [%o2+4],%f1
1704 st %f1,[%o0+0xc]
1705 .end

1707 .inline __r_cnjg,2
1708 ld [%o1+0x4],%f1
1709 fnegs %f1,%f1

new/usr/src/lib/libm/sparc/src/locallibm.il 27

1710 ld [%o1],%f0
1711 st %f0,[%o0]
1712 st %f1,[%o0+4]
1713 .end

1715 .inline __d_cnjg,2
1716 ld [%o1+0x8],%f0
1717 fnegs %f0,%f0
1718 ld [%o1+0xc],%f1
1719 st %f1,[%o0+0xc]
1720 ld [%o1+0x0],%f1
1721 st %f1,[%o0+0x0]
1722 ld [%o1+0x4],%f1
1723 st %f1,[%o0+0x4]
1724 st %f0,[%o0+0x8]
1725 .end

1727 .inline __r_dim,2
1728 st %g0,[%sp+0x48]
1729 ld [%sp+0x48],%f4
1730 ld [%o0],%f0
1731 ld [%o1],%f2
1732 fcmps %fcc0,%f0,%f2
1733 fmovsule %fcc0,%f4,%f2
1734 fsubs %f0,%f2,%f0
1735 fmovsule %fcc0,%f4,%f0
1736 .end

1738 .inline __d_dim,2
1739 stx %g0,[%sp+0x48]
1740 ldd [%sp+0x48],%f4
1741 ld [%o0],%f0
1742 ld [%o0+4],%f1
1743 ld [%o1],%f2
1744 ld [%o1+4],%f3
1745 fcmpd %fcc0,%f0,%f2
1746 fmovdule %fcc0,%f4,%f2
1747 fsubd %f0,%f2,%f0
1748 fmovdule %fcc0,%f4,%f0
1749 .end

1751 .inline __r_imag,1
1752 ld [%o0+4],%f0
1753 .end

1755 .inline __d_imag,1
1756 ld [%o0+8],%f0
1757 ld [%o0+0xc],%f1
1758 .end

1760 .inline __f95_signf,2
1761 ld [%o0],%f0
1762 ld [%o1],%o1
1763 fabss %f0,%f0
1764 fnegs %f0,%f1
1765 sra %o1,0,%o1
1766 fmovrslz %o1,%f1,%f0
1767 .end

1769 .inline __f95_sign,2
1770 ld [%o0],%f0
1771 ld [%o0+4],%f1
1772 ld [%o1],%o1
1773 fabsd %f0,%f0
1774 fnegd %f0,%f2
1775 sra %o1,0,%o1

new/usr/src/lib/libm/sparc/src/locallibm.il 28

1776 fmovrdlz %o1,%f2,%f0
1777 .end

1779 .inline __r_sign,2
1780 ld [%o0],%f0
1781 ld [%o1],%o1
1782 fabss %f0,%f0
1783 fnegs %f0,%f1
1784 sub %o1,1,%o0
1785 and %o1,%o0,%o1
1786 sra %o1,0,%o1
1787 fmovrslz %o1,%f1,%f0
1788 .end

1790 .inline __d_sign,2
1791 ld [%o0],%f0
1792 ld [%o0+4],%f1
1793 ld [%o1],%o0
1794 sllx %o0,32,%o0
1795 ld [%o1+4],%o1
1796 or %o1,%o0,%o1
1797 fabsd %f0,%f0
1798 fnegd %f0,%f2
1799 sub %o1,1,%o0
1800 and %o1,%o0,%o1
1801 fmovrdlz %o1,%f2,%f0
1802 .end

1804 .inline __Fz_mult,3
1805 ld [%o1],%f0
1806 ld [%o1+0x4],%f1
1807 ld [%o2],%f4
1808 ld [%o2+0x4],%f5
1809 fmuld %f0,%f4,%f8 ! f8 = r1*r2
1810 ld [%o1+0x8],%f2
1811 ld [%o1+0xc],%f3
1812 ld [%o2+0x8],%f6
1813 ld [%o2+0xc],%f7
1814 fmuld %f2,%f6,%f10 ! f10= i1*i2
1815 fsubd %f8,%f10,%f12 ! f12= r1*r2-i1*i2
1816 st %f12,[%o0]
1817 st %f13,[%o0+4]
1818 fmuld %f0,%f6,%f14 ! f14= r1*i2
1819 fmuld %f2,%f4,%f16 ! f16= r2*i1
1820 faddd %f14,%f16,%f2 ! f2 = r1*i2+r2*i1
1821 st %f2,[%o0+8]
1822 st %f3,[%o0+12]
1823 .end
1824 !- -
1825 ! void
1826 ! __Fc_minus(c, a, b)
1827 ! complex *c, *a, *b;
1828 ! {

1830 .inline __Fc_minus,3
1831 ! 30 c->real = a->real - b->real
1832 ld [%o1],%f0
1833 ld [%o2],%f1
1834 fsubs %f0,%f1,%f2
1835 ! 31 c->imag = a->imag - b->imag
1836 ld [%o1+4],%f3
1837 ld [%o2+4],%f4
1838 fsubs %f3,%f4,%f5
1839 st %f2,[%o0]
1840 st %f5,[%o0+4]
1841 .end

new/usr/src/lib/libm/sparc/src/locallibm.il 29

1842 }
1843 !- -
1844 ! void
1845 ! __Fc_add(c, a, b)
1846 ! complex *c, *a, *b;
1847 ! {

1849 .inline __Fc_add,3
1850 ! 39 c->real = a->real + b->real
1851 ld [%o1],%f0
1852 ld [%o2],%f1
1853 fadds %f0,%f1,%f2
1854 ! 40 c->imag = a->imag + b->imag
1855 ld [%o1+4],%f3
1856 ld [%o2+4],%f4
1857 fadds %f3,%f4,%f5
1858 st %f2,[%o0]
1859 st %f5,[%o0+4]
1860 .end
1861 ! }
1862 !- -
1863 ! void
1864 ! __Fc_neg(c, a)
1865 ! complex *c, *a;
1866 ! {

1868 .inline __Fc_neg,2
1869 ! 48 c->real = - a->real
1870 ld [%o1],%f0
1871 fnegs %f0,%f1
1872 ! 49 c->imag = - a->imag
1873 ld [%o1+4],%f2
1874 fnegs %f2,%f3
1875 st %f1,[%o0]
1876 st %f3,[%o0+4]
1877 .end
1878 ! }
1879 !- -
1880 ! void
1881 ! __Ff_conv_c(c, x)
1882 ! complex *c;
1883 ! FLOATPARAMETER x;
1884 ! {

1886 .inline __Ff_conv_c,2
1887 ! 59 c->real = x
1888 st %o1,[%o0]
1889 ! 60 c->imag = 0.0
1890 st %g0,[%o0+4]
1891 .end
1892 ! }
1893 !- -
1894 ! FLOATFUNCTIONTYPE
1895 ! __Fc_conv_f(c)
1896 ! complex *c;
1897 ! {

1899 .inline __Fc_conv_f,1
1900 ! 69 RETURNFLOAT(c->real)
1901 ld [%o0],%f0
1902 .end
1903 ! }
1904 !- -
1905 ! int
1906 ! __Fc_conv_i(c)
1907 ! complex *c;

new/usr/src/lib/libm/sparc/src/locallibm.il 30

1908 ! {

1910 .inline __Fc_conv_i,1
1911 ! 78 return (int)c->real
1912 ld [%o0],%f0
1913 fstoi %f0,%f1
1914 st %f1,[%sp+68]
1915 ld [%sp+68],%o0
1916 .end
1917 ! }
1918 !- -
1919 ! void
1920 ! __Fi_conv_c(c, i)
1921 ! complex *c;
1922 ! int i;
1923 ! {

1925 .inline __Fi_conv_c,2
1926 ! 88 c->real = (float)i
1927 st %o1,[%sp+68]
1928 ld [%sp+68],%f0
1929 fitos %f0,%f1
1930 st %f1,[%o0]
1931 ! 89 c->imag = 0.0
1932 st %g0,[%o0+4]
1933 .end
1934 ! }
1935 !- -
1936 ! double
1937 ! __Fc_conv_d(c)
1938 ! complex *c;
1939 ! {

1941 .inline __Fc_conv_d,1
1942 ! 98 return (double)c->real
1943 ld [%o0],%f2
1944 fstod %f2,%f0
1945 .end
1946 ! }
1947 !- -
1948 ! void
1949 ! __Fd_conv_c(c, x)
1950 ! complex *c;
1951 ! double x;
1952 ! {

1954 .inline __Fd_conv_c,2
1955 st %o1,[%sp+72]
1956 st %o2,[%sp+76]
1957 ! 109 c->real = (float)(x)
1958 ldd [%sp+72],%f0
1959 fdtos %f0,%f1
1960 st %f1,[%o0]
1961 ! 110 c->imag = 0.0
1962 st %g0,[%o0+4]
1963 .end
1964 ! }
1965 !- -
1966 ! void
1967 ! __Fc_conv_z(result, c)
1968 ! dcomplex *result;
1969 ! complex *c;
1970 ! {

1972 .inline __Fc_conv_z,2
1973 ! 120 result->dreal = (double)c->real

new/usr/src/lib/libm/sparc/src/locallibm.il 31

1974 ld [%o1],%f0
1975 fstod %f0,%f2
1976 st %f2,[%o0]
1977 st %f3,[%o0+4]
1978 ! 121 result->dimag = (double)c->imag
1979 ld [%o1+4],%f3
1980 fstod %f3,%f4
1981 st %f4,[%o0+8]
1982 st %f5,[%o0+12]
1983 .end
1984 ! }
1985 !- -
1986 ! int
1987 ! __Fc_eq(x, y)
1988 ! complex *x, *y;
1989 ! {

1991 .inline __Fc_eq,2
1992 ! return (x->real == y->real) && (x->imag == y->imag);
1993 ld [%o0],%f0
1994 ld [%o1],%f2
1995 mov %o0,%o2
1996 fcmps %f0,%f2
1997 mov 0,%o0
1998 fbne 1f
1999 nop
2000 ld [%o2+4],%f0
2001 ld [%o1+4],%f2
2002 fcmps %f0,%f2
2003 nop
2004 fbne 1f
2005 nop
2006 mov 1,%o0
2007 1:
2008 .end
2009 ! }
2010 !- -
2011 ! int
2012 ! __Fc_ne(x, y)
2013 ! complex *x, *y;
2014 ! {

2016 .inline __Fc_ne,2
2017 ! return (x->real != y->real) || (x->imag != y->imag);
2018 ld [%o0],%f0
2019 ld [%o1],%f2
2020 mov %o0,%o2
2021 fcmps %f0,%f2
2022 mov 1,%o0
2023 fbne 1f
2024 nop
2025 ld [%o2+4],%f0
2026 ld [%o1+4],%f2
2027 fcmps %f0,%f2
2028 nop
2029 fbne 1f
2030 nop
2031 mov 0,%o0
2032 1:
2033 .end
2034 ! }

new/usr/src/lib/libm/sparcv9/src/libm_inlines.h 1

**
 6471 Sun May 4 03:07:08 2014
new/usr/src/lib/libm/sparcv9/src/libm_inlines.h
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2011, Richard Lowe.
29 */

31 /* Functions in this file are duplicated in locallibm.il. Keep them in sync */
31 /* Functions in this file are duplicated in libm.m4. Keep them in sync */

33 #ifndef _LIBM_INLINES_H
34 #define _LIBM_INLINES_H

36 #ifdef __GNUC__

38 #include <sys/types.h>
39 #include <sys/ieeefp.h>

41 #ifdef __cplusplus
42 extern "C" {
43 #endif

45 extern __inline__ enum fp_class_type
46 fp_classf(float f)
47 {
48 enum fp_class_type ret;
49 int fint; /* scratch for f as int */
50 uint64_t tmp;
51 #endif /* ! codereview */

53 __asm__ __volatile__(
54 "fabss %3,%3\n\t"
55 "st %3,%1\n\t"
50 "fabss %2,%2\n\t"
51 "st %2,%1\n\t"
56 "ld %1,%0\n\t"
57 "orcc %%g0,%0,%%g0\n\t"
58 "be,pn %%icc,2f\n\t"
59 "nop\n\t"

new/usr/src/lib/libm/sparcv9/src/libm_inlines.h 2

60 "1:\n\t"
61 "sethi %%hi(0x7f800000),%2\n\t"
62 "andcc %0,%2,%%g0\n\t"
57 "sethi %%hi(0x7f800000),%%o1\n\t"
58 "andcc %0,%%o1,%%g0\n\t"
63 "bne,pt %%icc,1f\n\t"
64 "nop\n\t"
65 "or %%g0,1,%0\n\t"
66 "ba 2f\n\t" /* subnormal */
62 "ba 2f\n\t"
67 "nop\n\t"
68 "1:\n\t"
69 "subcc %0,%2,%%g0\n\t"
65 "subcc %0,%%o1,%%g0\n\t"
70 "bge,pn %%icc,1f\n\t"
71 "nop\n\t"
72 "or %%g0,2,%0\n\t"
73 "ba 2f\n\t" /* normal */
69 "ba 2f\n\t"
74 "nop\n\t"
75 "1:\n\t"
76 "bg,pn %%icc,1f\n\t"
77 "nop\n\t"
78 "or %%g0,3,%0\n\t"
79 "ba 2f\n\t" /* infinity */
75 "ba 2f\n\t"
80 "nop\n\t"
81 "1:\n\t"
82 "sethi %%hi(0x00400000),%2\n\t"
83 "andcc %0,%2,%%g0\n\t"
78 "sethi %%hi(0x00400000),%%o1\n\t"
79 "andcc %0,%%o1,%%g0\n\t"
84 "or %%g0,4,%0\n\t"
85 "bne,pt %%icc,2f\n\t" /* quiet NaN */
81 "bne,pt %%icc,2f\n\t"
86 "nop\n\t"
87 "or %%g0,5,%0\n\t" /* signalling NaN */
83 "or %%g0,5,%0\n\t"
88 "2:\n\t"
89 : "=r" (ret), "=m" (fint), "=r" (tmp)
85 : "=r" (ret), "=m" (fint)
90 : "f" (f)
91 : "cc");
87 : "o1");

93 return (ret);
94 }

96 extern __inline__ enum fp_class_type
97 fp_class(double d)
98 {
99 enum fp_class_type ret;
100 uint64_t dint; /* Scratch for d-as-long */
101 uint64_t tmp;
102 #endif /* ! codereview */

104 __asm__ __volatile__(
105 "fabsd %3,%3\n\t"
106 "std %3,%1\n\t"
97 "fabsd %2,%2\n\t"
98 "std %2,%1\n\t"
107 "ldx %1,%0\n\t"
108 "orcc %%g0,%0,%%g0\n\t"
109 "be,pn %%xcc,2f\n\t"
110 "nop\n\t"
111 "sethi %%hi(0x7ff00000),%2\n\t"

new/usr/src/lib/libm/sparcv9/src/libm_inlines.h 3

112 "sllx %2,32,%2\n\t"
113 "andcc %0,%2,%%g0\n\t"
103 "sethi %%hi(0x7ff00000),%%o1\n\t"
104 "sllx %%o1,32,%%o1\n\t"
105 "andcc %0,%%o1,%%g0\n\t"
114 "bne,pt %%xcc,1f\n\t"
115 "nop\n\t"
116 "or %%g0,1,%0\n\t"
117 "ba 2f\n\t"
118 "nop\n\t"
119 "1:\n\t"
120 "subcc %0,%2,%%g0\n\t"
112 "subcc %0,%%o1,%%g0\n\t"
121 "bge,pn %%xcc,1f\n\t"
122 "nop\n\t"
123 "or %%g0,2,%0\n\t"
124 "ba 2f\n\t"
125 "nop\n\t"
126 "1:\n\t"
127 "andncc %0,%2,%0\n\t"
119 "andncc %0,%%o1,%0\n\t"
128 "bne,pn %%xcc,1f\n\t"
129 "nop\n\t"
130 "or %%g0,3,%0\n\t"
131 "ba 2f\n\t"
132 "nop\n\t"
133 "1:\n\t"
134 "sethi %%hi(0x00080000),%2\n\t"
135 "sllx %2,32,%2\n\t"
136 "andcc %0,%2,%%g0\n\t"
126 "sethi %%hi(0x00080000),%%o1\n\t"
127 "sllx %%o1,32,%%o1\n\t"
128 "andcc %0,%%o1,%%g0\n\t"
137 "or %%g0,4,%0\n\t"
138 "bne,pt %%xcc,2f\n\t"
139 "nop\n\t"
140 "or %%g0,5,%0\n\t"
141 "2:\n\t"
142 : "=r" (ret), "=m" (dint), "=r" (tmp)
134 : "=r" (ret), "=m" (dint)
143 : "e" (d)
144 : "cc");
136 : "o1");

146 return (ret);
147 }

149 extern __inline__ float
150 __inline_sqrtf(float f)
151 {
152 float ret;

154 __asm__ __volatile__("fsqrts %1,%0\n\t" : "=f" (ret) : "f" (f));
146 __asm__ __volatile__("fsqrts %0,%0\n\t" : "=f" (ret) : "f" (f));
155 return (ret);
156 }

158 extern __inline__ double
159 __inline_sqrt(double d)
160 {
161 double ret;

163 __asm__ __volatile__("fsqrtd %1,%0\n\t" : "=f" (ret) : "f" (d));
155 __asm__ __volatile__("fsqrtd %0,%0\n\t" : "=f" (ret) : "0" (d));
164 return (ret);
165 }

new/usr/src/lib/libm/sparcv9/src/libm_inlines.h 4

167 extern __inline__ int
168 __swapEX(int i)
169 {
170 int ret;
171 uint32_t fsr;
172 uint64_t tmp1, tmp2;
173 #endif /* ! codereview */

175 __asm__ __volatile__(
176 "and %4,0x1f,%2\n\t"
177 "sll %2,5,%2\n\t" /* shift input to aexc bit location */
164 "and %0,0x1f,%%o1\n\t"
165 "sll %%o1,5,%%o1\n\t" /* input to aexc bit location */
178 ".volatile\n\t"
179 "st %%fsr,%1\n\t"
180 "ld %1,%0\n\t" /* %0 = fsr */
181 "andn %0,0x3e0,%3\n\t"
182 "or %2,%3,%2\n\t" /* %2 = new fsr */
183 "st %2,%1\n\t"
184 "ld %1,%%fsr\n\t"
167 "st %%fsr,%2\n\t"
168 "ld %2,%0\n\t" /* = fsr */
169 "andn %0,0x3e0,%%o2\n\t"
170 "or %%o1,%%o2,%%o1\n\t" /* o1 = new fsr */
171 "st %%o1,%2\n\t"
172 "ld %2,%%fsr\n\t"
185 "srl %0,5,%0\n\t"
186 "and %0,0x1f,%0\n\t"
187 ".nonvolatile\n\t"
188 : "=r" (ret), "=m" (fsr), "=r" (tmp1), "=r" (tmp2)
189 : "r" (i)
190 : "cc");
176 : "=r" (ret)
177 : "0" (i), "m" (fsr)
178 : "o1", "o2");

192 return (ret);
193 }

______unchanged_portion_omitted_

206 extern __inline__ enum fp_direction_type
207 __swapRD(enum fp_direction_type d)
208 {
209 enum fp_direction_type ret;
210 uint32_t fsr;
211 uint64_t tmp1, tmp2, tmp3;
212 #endif /* ! codereview */

214 __asm__ __volatile__(
215 "and %5,0x3,%0\n\t"
216 "sll %0,30,%2\n\t" /* shift input to RD bit location */
199 "and %0,0x3,%0\n\t"
200 "sll %0,30,%%o1\n\t" /* input to RD bit location */
217 ".volatile\n\t"
218 "st %%fsr,%1\n\t"
219 "ld %1,%0\n\t" /* %0 = fsr */
220 /* mask of rounding direction bits */
221 "sethi %%hi(0xc0000000),%4\n\t"
222 "andn %0,%4,%3\n\t"
223 "or %2,%3,%2\n\t" /* %2 = new fsr */
224 "st %2,%1\n\t"
225 "ld %1,%%fsr\n\t"
202 "st %%fsr,%2\n\t"
203 "ld %2,%0\n\t" /* o0 = fsr */
204 "sethi %%hi(0xc0000000),%%o4\n\t" /* mask of rounding direction bits

new/usr/src/lib/libm/sparcv9/src/libm_inlines.h 5

205 "andn %0,%%o4,%%o2\n\t"
206 "or %%o1,%%o2,%%o1\n\t" /* o1 = new fsr */
207 "st %%o1,%2\n\t"
208 "ld %2,%%fsr\n\t"
226 "srl %0,30,%0\n\t"
227 "and %0,0x3,%0\n\t"
228 ".nonvolatile\n\t"
229 : "=r" (ret), "=m" (fsr), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3)
230 : "r" (d)
231 : "cc");
212 : "=r" (ret)
213 : "0" (d), "m" (fsr)
214 : "o1", "o2", "o4");

233 return (ret);
234 }

236 extern __inline__ int
237 __swapTE(int i)
238 {
239 int ret;
240 uint32_t fsr;
241 uint64_t tmp1, tmp2, tmp3;
242 #endif /* ! codereview */

244 __asm__ __volatile__(
245 "and %5,0x1f,%0\n\t"
246 "sll %0,23,%2\n\t" /* shift input to TEM bit location */
224 "and %0,0x1f,%0\n\t"
225 "sll %0,23,%%o1\n\t" /* input to TEM bit location */
247 ".volatile\n\t"
248 "st %%fsr,%1\n\t"
249 "ld %1,%0\n\t" /* %0 = fsr */
250 /* mask of TEM (Trap Enable Mode bits) */
251 "sethi %%hi(0x0f800000),%4\n\t"
252 "andn %0,%4,%3\n\t"
253 "or %2,%3,%2\n\t" /* %2 = new fsr */
254 "st %2,%1\n\t"
255 "ld %1,%%fsr\n\t"
227 "st %%fsr,%2\n\t"
228 "ld %2,%0\n\t" /* o0 = fsr */
229 "sethi %%hi(0x0f800000),%%o4\n\t" /* mask of TEM (Trap Enable Mode b
230 "andn %0,%%o4,%%o2\n\t"
231 "or %%o1,%%o2,%%o1\n\t" /* o1 = new fsr */
232 "st %%o1,%2\n\t"
233 "ld %2,%%fsr\n\t"
256 "srl %0,23,%0\n\t"
257 "and %0,0x1f,%0\n\t"
258 ".nonvolatile\n\t"
259 : "=r" (ret), "=m" (fsr), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3)
260 : "r" (i)
261 : "cc");
237 : "=r" (ret)
238 : "0" (i), "m" (fsr)
239 : "o1", "o2", "o4");

263 return (ret);
264 }

267 extern __inline__ double
268 sqrt(double d)
269 {
270 return (__inline_sqrt(d));
248 double ret;

new/usr/src/lib/libm/sparcv9/src/libm_inlines.h 6

250 __asm__ __volatile__("fsqrtd %0,%0\n\t" : "=f" (ret) : "0" (d));
251 return (ret);
271 }

273 extern __inline__ float
274 sqrtf(float f)
275 {
276 return (__inline_sqrtf(f));
257 float ret;

259 __asm__ __volatile__("fsqrts %0,%0\n\t" : "=f" (ret) : "0" (f));
260 return (ret);
277 }

279 extern __inline__ double
280 fabs(double d)
281 {
282 double ret;

284 __asm__ __volatile__("fabsd %1,%0\n\t" : "=e" (ret) : "e" (d));
268 __asm__ __volatile__("fabsd %0,%0\n\t" : "=e" (ret) : "0" (d));
285 return (ret);
286 }

288 extern __inline__ float
289 fabsf(float f)
290 {
291 float ret;

293 __asm__ __volatile__("fabss %1,%0\n\t" : "=f" (ret) : "f" (f));
277 __asm__ __volatile__("fabss %0,%0\n\t" : "=f" (ret) : "0" (f));
294 return (ret);
295 }

______unchanged_portion_omitted_

new/usr/src/lib/libmvec/Makefile.com 1

**
 5808 Sun May 4 03:07:10 2014
new/usr/src/lib/libmvec/Makefile.com
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 #

16 LIBMDIR = $(SRC)/lib/libm

18 mvecOBJS = \
19 __vTBL_atan1.o \
20 __vTBL_atan2.o \
21 __vTBL_rsqrt.o \
22 __vTBL_sincos.o \
23 __vTBL_sincos2.o \
24 __vTBL_sqrtf.o \
25 __vatan.o \
26 __vatan2.o \
27 __vatan2f.o \
28 __vatanf.o \
29 __vc_abs.o \
30 __vc_exp.o \
31 __vc_log.o \
32 __vc_pow.o \
33 __vcos.o \
34 __vcosbig.o \
35 __vcosbigf.o \
36 __vcosf.o \
37 __vexp.o \
38 __vexpf.o \
39 __vhypot.o \
40 __vhypotf.o \
41 __vlog.o \
42 __vlogf.o \
43 __vpow.o \
44 __vpowf.o \
45 __vrem_pio2m.o \
46 __vrhypot.o \
47 __vrhypotf.o \
48 __vrsqrt.o \
49 __vrsqrtf.o \
50 __vsin.o \
51 __vsinbig.o \
52 __vsinbigf.o \
53 __vsincos.o \
54 __vsincosbig.o \
55 __vsincosbigf.o \
56 __vsincosf.o \
57 __vsinf.o \
58 __vsqrt.o \
59 __vsqrtf.o \
60 __vz_abs.o \
61 __vz_exp.o \
62 __vz_log.o \

new/usr/src/lib/libmvec/Makefile.com 2

63 __vz_pow.o \
64 vatan2_.o \
65 vatan2f_.o \
66 vatan_.o \
67 vatanf_.o \
68 vc_abs_.o \
69 vc_exp_.o \
70 vc_log_.o \
71 vc_pow_.o \
72 vcos_.o \
73 vcosf_.o \
74 vexp_.o \
75 vexpf_.o \
76 vhypot_.o \
77 vhypotf_.o \
78 vlog_.o \
79 vlogf_.o \
80 vpow_.o \
81 vpowf_.o \
82 vrhypot_.o \
83 vrhypotf_.o \
84 vrsqrt_.o \
85 vrsqrtf_.o \
86 vsin_.o \
87 vsincos_.o \
88 vsincosf_.o \
89 vsinf_.o \
90 vsqrt_.o \
91 vsqrtf_.o \
92 vz_abs_.o \
93 vz_exp_.o \
94 vz_log_.o \
95 vz_pow_.o \
96 #end

98 mvecvisCOBJS = \
99 __vTBL_atan1.o \
100 __vTBL_atan2.o \
101 __vTBL_rsqrt.o \
102 __vTBL_sincos.o \
103 __vTBL_sincos2.o \
104 __vTBL_sqrtf.o \
105 __vcosbig.o \
106 __vcosbigf.o \
107 __vrem_pio2m.o \
108 __vsinbig.o \
109 __vsinbigf.o \
110 __vsincosbig.o \
111 __vsincosbigf.o \
112 #end

114 mvecvisSOBJS = \
115 __vatan.o \
116 __vatan2.o \
117 __vatan2f.o \
118 __vatanf.o \
119 __vcos.o \
120 __vcosf.o \
121 __vexp.o \
122 __vexpf.o \
123 __vhypot.o \
124 __vhypotf.o \
125 __vlog.o \
126 __vlogf.o \
127 __vpow.o \
128 __vpowf.o \

new/usr/src/lib/libmvec/Makefile.com 3

129 __vrhypot.o \
130 __vrhypotf.o \
131 __vrsqrt.o \
132 __vrsqrtf.o \
133 __vsin.o \
134 __vsincos.o \
135 __vsincosf.o \
136 __vsinf.o \
137 __vsqrt.o \
138 __vsqrtf.o \
139 #end

141 mvecvis2COBJS = \
142 __vTBL_sincos.o \
143 __vTBL_sincos2.o \
144 __vTBL_sqrtf.o \
145 __vcosbig.o \
146 __vcosbig_ultra3.o \
147 __vrem_pio2m.o \
148 __vsinbig.o \
149 __vsinbig_ultra3.o \
150 #end

152 mvecvis2SOBJS = \
153 __vcos_ultra3.o \
154 __vlog_ultra3.o \
155 __vsin_ultra3.o \
156 __vsqrtf_ultra3.o \
157 #end

159 include $(SRC)/lib/Makefile.lib
160 include $(SRC)/lib/Makefile.rootfs
161 include $(LIBMDIR)/Makefile.libm.com

163 LIBS = $(DYNLIB)
164 SRCDIR = ../common/
165 DYNFLAGS += -zignore

167 LINTERROFF = -erroff=E_FP_DIVISION_BY_ZERO
168 LINTERROFF += -erroff=E_FP_INVALID
169 LINTERROFF += -erroff=E_BAD_PTR_CAST_ALIGN
170 LINTERROFF += -erroff=E_ASSIGMENT_CAUSE_LOSS_PREC
171 LINTERROFF += -erroff=E_FUNC_SET_NOT_USED

173 CERRWARN += -_gcc=-Wno-parentheses
174 CERRWARN += -_gcc=-Wno-unused-variable

176 #endif /* ! codereview */
177 LINTFLAGS += $(LINTERROFF)
178 LINTFLAGS64 += $(LINTERROFF)
179 LINTFLAGS64 += -errchk=longptr64

181 CLAGS += $(LINTERROFF)
182 CFLAGS64 += $(LINTERROFF)

184 ASDEF += -DLIBMVEC_SO_BUILD

186 FLTRPATH_sparc = $$ORIGIN/cpu/$$ISALIST/libmvec_isa.so.1
187 FLTRPATH_sparcv9 = $$ORIGIN/../cpu/$$ISALIST/sparcv9/libmvec_isa.so.1
188 FLTRPATH_i386 = $$ORIGIN/libmvec/$$HWCAP
189 FLTRPATH = $(FLTRPATH_$(TARGET_ARCH))

191 sparc_CFLAGS += -_cc=-W0,-xintrinsic
192 sparcv9_CFLAGS += -_cc=-W0,-xintrinsic
193 CPPFLAGS_i386 += -Dfabs=__fabs

new/usr/src/lib/libmvec/Makefile.com 4

195 CPPFLAGS += -DLIBMVEC_SO_BUILD

197 SRCS_mvec_i386 = \
198 ../common/__vsqrtf.c \
199 #end

201 SRCS_mvec_sparc = \
202 $(SRCS_mvec_i386) \
203 #end
204 SRCS_mvec_sparcv9 = \
205 $(SRCS_mvec_i386) \
206 #end

208 SRCS_mvec = \
209 $(SRCS_mvec_$(TARGETMACH)) \
210 ../common/__vTBL_atan1.c \
211 ../common/__vTBL_atan2.c \
212 ../common/__vTBL_rsqrt.c \
213 ../common/__vTBL_sincos.c \
214 ../common/__vTBL_sincos2.c \
215 ../common/__vTBL_sqrtf.c \
216 ../common/__vatan.c \
217 ../common/__vatan2.c \
218 ../common/__vatan2f.c \
219 ../common/__vatanf.c \
220 ../common/__vc_abs.c \
221 ../common/__vc_exp.c \
222 ../common/__vc_log.c \
223 ../common/__vc_pow.c \
224 ../common/__vcos.c \
225 ../common/__vcosbig.c \
226 ../common/__vcosbigf.c \
227 ../common/__vcosf.c \
228 ../common/__vexp.c \
229 ../common/__vexpf.c \
230 ../common/__vhypot.c \
231 ../common/__vhypotf.c \
232 ../common/__vlog.c \
233 ../common/__vlogf.c \
234 ../common/__vpow.c \
235 ../common/__vpowf.c \
236 ../common/__vrem_pio2m.c \
237 ../common/__vrhypot.c \
238 ../common/__vrhypotf.c \
239 ../common/__vrsqrt.c \
240 ../common/__vrsqrtf.c \
241 ../common/__vsin.c \
242 ../common/__vsinbig.c \
243 ../common/__vsinbigf.c \
244 ../common/__vsincos.c \
245 ../common/__vsincosbig.c \
246 ../common/__vsincosbigf.c \
247 ../common/__vsincosf.c \
248 ../common/__vsinf.c \
249 ../common/__vsqrt.c \
250 ../common/__vz_abs.c \
251 ../common/__vz_exp.c \
252 ../common/__vz_log.c \
253 ../common/__vz_pow.c \
254 ../common/vatan2_.c \
255 ../common/vatan2f_.c \
256 ../common/vatan_.c \
257 ../common/vatanf_.c \
258 ../common/vc_abs_.c \
259 ../common/vc_exp_.c \
260 ../common/vc_log_.c \

new/usr/src/lib/libmvec/Makefile.com 5

261 ../common/vc_pow_.c \
262 ../common/vcos_.c \
263 ../common/vcosf_.c \
264 ../common/vexp_.c \
265 ../common/vexpf_.c \
266 ../common/vhypot_.c \
267 ../common/vhypotf_.c \
268 ../common/vlog_.c \
269 ../common/vlogf_.c \
270 ../common/vpow_.c \
271 ../common/vpowf_.c \
272 ../common/vrhypot_.c \
273 ../common/vrhypotf_.c \
274 ../common/vrsqrt_.c \
275 ../common/vrsqrtf_.c \
276 ../common/vsin_.c \
277 ../common/vsincos_.c \
278 ../common/vsincosf_.c \
279 ../common/vsinf_.c \
280 ../common/vsqrt_.c \
281 ../common/vsqrtf_.c \
282 ../common/vz_abs_.c \
283 ../common/vz_exp_.c \
284 ../common/vz_log_.c \
285 ../common/vz_pow_.c \
286 #end

288 .KEEP_STATE:

290 all: $(LIBS)

292 lint: lintcheck

294 pics/%.o: ../$(TARGET_ARCH)/src/%.S
295 $(COMPILE.s) -o $@ $<
296 $(POST_PROCESS_O)

298 pics/%.o: ../common/$$(CHIP)/%.S
299 $(COMPILE.s) -o $@ $<
300 $(POST_PROCESS_O)

new/usr/src/lib/libmvec/Makefile.com 1

**
 5808 Sun May 4 03:07:11 2014
new/usr/src/lib/libmvec/Makefile.com
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 #

16 LIBMDIR = $(SRC)/lib/libm

18 mvecOBJS = \
19 __vTBL_atan1.o \
20 __vTBL_atan2.o \
21 __vTBL_rsqrt.o \
22 __vTBL_sincos.o \
23 __vTBL_sincos2.o \
24 __vTBL_sqrtf.o \
25 __vatan.o \
26 __vatan2.o \
27 __vatan2f.o \
28 __vatanf.o \
29 __vc_abs.o \
30 __vc_exp.o \
31 __vc_log.o \
32 __vc_pow.o \
33 __vcos.o \
34 __vcosbig.o \
35 __vcosbigf.o \
36 __vcosf.o \
37 __vexp.o \
38 __vexpf.o \
39 __vhypot.o \
40 __vhypotf.o \
41 __vlog.o \
42 __vlogf.o \
43 __vpow.o \
44 __vpowf.o \
45 __vrem_pio2m.o \
46 __vrhypot.o \
47 __vrhypotf.o \
48 __vrsqrt.o \
49 __vrsqrtf.o \
50 __vsin.o \
51 __vsinbig.o \
52 __vsinbigf.o \
53 __vsincos.o \
54 __vsincosbig.o \
55 __vsincosbigf.o \
56 __vsincosf.o \
57 __vsinf.o \
58 __vsqrt.o \
59 __vsqrtf.o \
60 __vz_abs.o \
61 __vz_exp.o \
62 __vz_log.o \

new/usr/src/lib/libmvec/Makefile.com 2

63 __vz_pow.o \
64 vatan2_.o \
65 vatan2f_.o \
66 vatan_.o \
67 vatanf_.o \
68 vc_abs_.o \
69 vc_exp_.o \
70 vc_log_.o \
71 vc_pow_.o \
72 vcos_.o \
73 vcosf_.o \
74 vexp_.o \
75 vexpf_.o \
76 vhypot_.o \
77 vhypotf_.o \
78 vlog_.o \
79 vlogf_.o \
80 vpow_.o \
81 vpowf_.o \
82 vrhypot_.o \
83 vrhypotf_.o \
84 vrsqrt_.o \
85 vrsqrtf_.o \
86 vsin_.o \
87 vsincos_.o \
88 vsincosf_.o \
89 vsinf_.o \
90 vsqrt_.o \
91 vsqrtf_.o \
92 vz_abs_.o \
93 vz_exp_.o \
94 vz_log_.o \
95 vz_pow_.o \
96 #end

98 mvecvisCOBJS = \
99 __vTBL_atan1.o \
100 __vTBL_atan2.o \
101 __vTBL_rsqrt.o \
102 __vTBL_sincos.o \
103 __vTBL_sincos2.o \
104 __vTBL_sqrtf.o \
105 __vcosbig.o \
106 __vcosbigf.o \
107 __vrem_pio2m.o \
108 __vsinbig.o \
109 __vsinbigf.o \
110 __vsincosbig.o \
111 __vsincosbigf.o \
112 #end

114 mvecvisSOBJS = \
115 __vatan.o \
116 __vatan2.o \
117 __vatan2f.o \
118 __vatanf.o \
119 __vcos.o \
120 __vcosf.o \
121 __vexp.o \
122 __vexpf.o \
123 __vhypot.o \
124 __vhypotf.o \
125 __vlog.o \
126 __vlogf.o \
127 __vpow.o \
128 __vpowf.o \

new/usr/src/lib/libmvec/Makefile.com 3

129 __vrhypot.o \
130 __vrhypotf.o \
131 __vrsqrt.o \
132 __vrsqrtf.o \
133 __vsin.o \
134 __vsincos.o \
135 __vsincosf.o \
136 __vsinf.o \
137 __vsqrt.o \
138 __vsqrtf.o \
139 #end

141 mvecvis2COBJS = \
142 __vTBL_sincos.o \
143 __vTBL_sincos2.o \
144 __vTBL_sqrtf.o \
145 __vcosbig.o \
146 __vcosbig_ultra3.o \
147 __vrem_pio2m.o \
148 __vsinbig.o \
149 __vsinbig_ultra3.o \
150 #end

152 mvecvis2SOBJS = \
153 __vcos_ultra3.o \
154 __vlog_ultra3.o \
155 __vsin_ultra3.o \
156 __vsqrtf_ultra3.o \
157 #end

159 include $(SRC)/lib/Makefile.lib
160 include $(SRC)/lib/Makefile.rootfs
161 include $(LIBMDIR)/Makefile.libm.com

163 LIBS = $(DYNLIB)
164 SRCDIR = ../common/
165 DYNFLAGS += -zignore

167 LINTERROFF = -erroff=E_FP_DIVISION_BY_ZERO
168 LINTERROFF += -erroff=E_FP_INVALID
169 LINTERROFF += -erroff=E_BAD_PTR_CAST_ALIGN
170 LINTERROFF += -erroff=E_ASSIGMENT_CAUSE_LOSS_PREC
171 LINTERROFF += -erroff=E_FUNC_SET_NOT_USED

173 CERRWARN += -_gcc=-Wno-parentheses
174 CERRWARN += -_gcc=-Wno-unused-variable

176 #endif /* ! codereview */
177 LINTFLAGS += $(LINTERROFF)
178 LINTFLAGS64 += $(LINTERROFF)
179 LINTFLAGS64 += -errchk=longptr64

181 CLAGS += $(LINTERROFF)
182 CFLAGS64 += $(LINTERROFF)

184 ASDEF += -DLIBMVEC_SO_BUILD

186 FLTRPATH_sparc = $$ORIGIN/cpu/$$ISALIST/libmvec_isa.so.1
187 FLTRPATH_sparcv9 = $$ORIGIN/../cpu/$$ISALIST/sparcv9/libmvec_isa.so.1
188 FLTRPATH_i386 = $$ORIGIN/libmvec/$$HWCAP
189 FLTRPATH = $(FLTRPATH_$(TARGET_ARCH))

191 sparc_CFLAGS += -_cc=-W0,-xintrinsic
192 sparcv9_CFLAGS += -_cc=-W0,-xintrinsic
193 CPPFLAGS_i386 += -Dfabs=__fabs

new/usr/src/lib/libmvec/Makefile.com 4

195 CPPFLAGS += -DLIBMVEC_SO_BUILD

197 SRCS_mvec_i386 = \
198 ../common/__vsqrtf.c \
199 #end

201 SRCS_mvec_sparc = \
202 $(SRCS_mvec_i386) \
203 #end
204 SRCS_mvec_sparcv9 = \
205 $(SRCS_mvec_i386) \
206 #end

208 SRCS_mvec = \
209 $(SRCS_mvec_$(TARGETMACH)) \
210 ../common/__vTBL_atan1.c \
211 ../common/__vTBL_atan2.c \
212 ../common/__vTBL_rsqrt.c \
213 ../common/__vTBL_sincos.c \
214 ../common/__vTBL_sincos2.c \
215 ../common/__vTBL_sqrtf.c \
216 ../common/__vatan.c \
217 ../common/__vatan2.c \
218 ../common/__vatan2f.c \
219 ../common/__vatanf.c \
220 ../common/__vc_abs.c \
221 ../common/__vc_exp.c \
222 ../common/__vc_log.c \
223 ../common/__vc_pow.c \
224 ../common/__vcos.c \
225 ../common/__vcosbig.c \
226 ../common/__vcosbigf.c \
227 ../common/__vcosf.c \
228 ../common/__vexp.c \
229 ../common/__vexpf.c \
230 ../common/__vhypot.c \
231 ../common/__vhypotf.c \
232 ../common/__vlog.c \
233 ../common/__vlogf.c \
234 ../common/__vpow.c \
235 ../common/__vpowf.c \
236 ../common/__vrem_pio2m.c \
237 ../common/__vrhypot.c \
238 ../common/__vrhypotf.c \
239 ../common/__vrsqrt.c \
240 ../common/__vrsqrtf.c \
241 ../common/__vsin.c \
242 ../common/__vsinbig.c \
243 ../common/__vsinbigf.c \
244 ../common/__vsincos.c \
245 ../common/__vsincosbig.c \
246 ../common/__vsincosbigf.c \
247 ../common/__vsincosf.c \
248 ../common/__vsinf.c \
249 ../common/__vsqrt.c \
250 ../common/__vz_abs.c \
251 ../common/__vz_exp.c \
252 ../common/__vz_log.c \
253 ../common/__vz_pow.c \
254 ../common/vatan2_.c \
255 ../common/vatan2f_.c \
256 ../common/vatan_.c \
257 ../common/vatanf_.c \
258 ../common/vc_abs_.c \
259 ../common/vc_exp_.c \
260 ../common/vc_log_.c \

new/usr/src/lib/libmvec/Makefile.com 5

261 ../common/vc_pow_.c \
262 ../common/vcos_.c \
263 ../common/vcosf_.c \
264 ../common/vexp_.c \
265 ../common/vexpf_.c \
266 ../common/vhypot_.c \
267 ../common/vhypotf_.c \
268 ../common/vlog_.c \
269 ../common/vlogf_.c \
270 ../common/vpow_.c \
271 ../common/vpowf_.c \
272 ../common/vrhypot_.c \
273 ../common/vrhypotf_.c \
274 ../common/vrsqrt_.c \
275 ../common/vrsqrtf_.c \
276 ../common/vsin_.c \
277 ../common/vsincos_.c \
278 ../common/vsincosf_.c \
279 ../common/vsinf_.c \
280 ../common/vsqrt_.c \
281 ../common/vsqrtf_.c \
282 ../common/vz_abs_.c \
283 ../common/vz_exp_.c \
284 ../common/vz_log_.c \
285 ../common/vz_pow_.c \
286 #end

288 .KEEP_STATE:

290 all: $(LIBS)

292 lint: lintcheck

294 pics/%.o: ../$(TARGET_ARCH)/src/%.S
295 $(COMPILE.s) -o $@ $<
296 $(POST_PROCESS_O)

298 pics/%.o: ../common/$$(CHIP)/%.S
299 $(COMPILE.s) -o $@ $<
300 $(POST_PROCESS_O)

new/usr/src/lib/libmvec/common/__vatan.c 1

**
 11255 Sun May 4 03:07:13 2014
new/usr/src/lib/libmvec/common/__vatan.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #include <sys/isa_defs.h>
31 #include "libm_inlines.h"

33 #ifdef _LITTLE_ENDIAN
34 #define HI(x) *(1+(int*)x)
35 #define LO(x) *(unsigned*)x
36 #else
37 #define HI(x) *(int*)x
38 #define LO(x) *(1+(unsigned*)x)
39 #endif

41 #ifdef __RESTRICT
42 #define restrict _Restrict
43 #else
44 #define restrict
45 #endif

47 void
48 __vatan(int n, double * restrict x, int stridex, double * restrict y, int strid
49 {
50 double f , z, ans = 0.0L, ansu , ansl , tmp , poly , conup , conlo , dummy;
50 double f , z, ans, ansu , ansl , tmp , poly , conup , conlo , dummy;
51 double f1, ans1, ansu1, ansl1, tmp1, poly1, conup1, conlo1;
52 double f2, ans2, ansu2, ansl2, tmp2, poly2, conup2, conlo2;
53 int index, sign, intf, intflo, intz, argcount;
54 int index1, sign1 = 0;
55 int index2, sign2 = 0;
56 double *yaddr,*yaddr1 = 0,*yaddr2 = 0;
54 int index1, sign1 ;
55 int index2, sign2 ;
56 double *yaddr,*yaddr1,*yaddr2;
57 extern const double __vlibm_TBL_atan1[];
58 extern double fabs(double);

new/usr/src/lib/libmvec/common/__vatan.c 2

60 /* Power series atan(x) = x + p1*x**3 + p2*x**5 + p3*x**7
61 * Error = -3.08254E-18 On the interval |x| < 1/64 */

63 /* define dummy names for readability. Use parray to help compiler optimize loa
64 #define p3 parray[0]
65 #define p2 parray[1]
66 #define p1 parray[2]

68 static const double parray[] = {
69 -1.428029046844299722E-01, /* p[3] */
70 1.999999917247000615E-01, /* p[2] */
71 -3.333333333329292858E-01, /* p[1] */
72 1.0, /* not used for p[0], though
73 -1.0, /* used to flip sign of answer
74 };

76 if(n <= 0) return; /* if no. of elements is 0 or neg, do nothing */
77 do
78 {
79 LOOP0:

81 f = fabs(*x); /* fetch argument
82 intf = HI(x); /* upper half of x, as integer */
83 intflo = LO(x); /* lower half of x, as integer */
84 sign = intf & 0x80000000; /* sign of argument
85 intf = intf & ~0x80000000; /* abs(upper argument)
86
87 if((intf > 0x43600000) || (intf < 0x3e300000)) /* filter out special cases
88 {
89 if((intf > 0x7ff00000) || ((intf == 0x7ff00000) && (intflo !=0)))
90 {
91 ans = f - f; /* return NaN if x=NaN*/
92 }
93 else if(intf < 0x3e300000) /* avoid underflow for small arg
94 {
95 dummy = 1.0e37 + f;
96 dummy = dummy;
97 ans = f;
98 }
99 else if(intf > 0x43600000) /* avoid underflow for big arg
100 {
101 index = 2;
102 ans = __vlibm_TBL_atan1[index] + __vlibm_TBL_atan1[index+1];/* pi/2 up
103 }
104 *y = (sign) ? -ans: ans; /* store answer, with sign bit
105 x += stridex;
106 y += stridey;
107 argcount = 0; /* initialize argcount
108 if (--n <=0) break; /* we are done
109 goto LOOP0; /* otherwise, examine next arg
110 }
111
112 index = 0; /* points to 0,0 in table
113 if (intf > 0x40500000) /* if(|x| > 64
114 { f = -1.0/f;
115 index = 2; /* point to pi/2 upper, lower
116 }
117 else if(intf >= 0x3f900000) /* if |x| >= (1/64)...
118 {
119 intz = (intf + 0x00008000) & 0x7fff0000;/* round arg, keep upper
120 HI(&z) = intz; /* store as a double (z)
121 LO(&z) = 0; /* ...lower
122 f = (f - z)/(1.0 + f*z); /* get reduced argument
123 index = (intz - 0x3f900000) >> 15; /* (index >> 16) << 1)
124 index = index + 4; /* skip over 0,0,pi/2,pi/2

new/usr/src/lib/libmvec/common/__vatan.c 3

125 }
126 yaddr = y; /* address to store this answer
127 x += stridex; /* point to next arg
128 y += stridey; /* point to next result
129 argcount = 1; /* we now have 1 good argument
130 if (--n <=0)
131 {
132 f1 = 0.0; /* put dummy values in args 1,2
133 f2 = 0.0;
134 index1 = 0;
135 index2 = 0;
136 goto UNROLL3; /* finish up with 1 good arg
137 }

139 /*--
140 /*--
141 /*--

143 LOOP1:

145 f1 = fabs(*x); /* fetch argument
146 intf = HI(x); /* upper half of x, as integer */
147 intflo = LO(x); /* lower half of x, as integer */
148 sign1 = intf & 0x80000000; /* sign of argument
149 intf = intf & ~0x80000000; /* abs(upper argument)
150
151 if((intf > 0x43600000) || (intf < 0x3e300000)) /* filter out special cases
152 {
153 if((intf > 0x7ff00000) || ((intf == 0x7ff00000) && (intflo !=0)))
154 {
155 ans = f1 - f1; /* return NaN if x=NaN*/
156 }
157 else if(intf < 0x3e300000) /* avoid underflow for small arg
158 {
159 dummy = 1.0e37 + f1;
160 dummy = dummy;
161 ans = f1;
162 }
163 else if(intf > 0x43600000) /* avoid underflow for big arg
164 {
165 index1 = 2;
166 ans = __vlibm_TBL_atan1[index1] + __vlibm_TBL_atan1[index1+1];/* pi/2
167 }
168 *y = (sign1) ? -ans: ans; /* store answer, with sign bit
169 x += stridex;
170 y += stridey;
171 argcount = 1; /* we still have 1 good arg
172 if (--n <=0)
173 {
174 f1 = 0.0; /* put dummy values in args 1,2
175 f2 = 0.0;
176 index1 = 0;
177 index2 = 0;
178 goto UNROLL3; /* finish up with 1 good arg
179 }
180 goto LOOP1; /* otherwise, examine next arg
181 }
182
183 index1 = 0; /* points to 0,0 in table
184 if (intf > 0x40500000) /* if(|x| > 64
185 { f1 = -1.0/f1;
186 index1 = 2; /* point to pi/2 upper, lower
187 }
188 else if(intf >= 0x3f900000) /* if |x| >= (1/64)...
189 {
190 intz = (intf + 0x00008000) & 0x7fff0000;/* round arg, keep upper

new/usr/src/lib/libmvec/common/__vatan.c 4

191 HI(&z) = intz; /* store as a double (z)
192 LO(&z) = 0; /* ...lower
193 f1 = (f1 - z)/(1.0 + f1*z); /* get reduced argument
194 index1 = (intz - 0x3f900000) >> 15; /* (index >> 16) << 1)
195 index1 = index1 + 4; /* skip over 0,0,pi/2,pi/2
196 }
197 yaddr1 = y; /* address to store this answer
198 x += stridex; /* point to next arg
199 y += stridey; /* point to next result
200 argcount = 2; /* we now have 2 good arguments
201 if (--n <=0)
202 {
203 f2 = 0.0; /* put dummy value in arg 2 */
204 index2 = 0;
205 goto UNROLL3; /* finish up with 2 good args
206 }

208 /*--
209 /*--
210 /*--

212 LOOP2:

214 f2 = fabs(*x); /* fetch argument
215 intf = HI(x); /* upper half of x, as integer */
216 intflo = LO(x); /* lower half of x, as integer */
217 sign2 = intf & 0x80000000; /* sign of argument
218 intf = intf & ~0x80000000; /* abs(upper argument)
219
220 if((intf > 0x43600000) || (intf < 0x3e300000)) /* filter out special cases
221 {
222 if((intf > 0x7ff00000) || ((intf == 0x7ff00000) && (intflo !=0)))
223 {
224 ans = f2 - f2; /* return NaN if x=NaN*/
225 }
226 else if(intf < 0x3e300000) /* avoid underflow for small arg
227 {
228 dummy = 1.0e37 + f2;
229 dummy = dummy;
230 ans = f2;
231 }
232 else if(intf > 0x43600000) /* avoid underflow for big arg
233 {
234 index2 = 2;
235 ans = __vlibm_TBL_atan1[index2] + __vlibm_TBL_atan1[index2+1];/* pi/2
236 }
237 *y = (sign2) ? -ans: ans; /* store answer, with sign bit
238 x += stridex;
239 y += stridey;
240 argcount = 2; /* we still have 2 good args
241 if (--n <=0)
242 {
243 f2 = 0.0; /* put dummy value in arg 2 */
244 index2 = 0;
245 goto UNROLL3; /* finish up with 2 good args
246 }
247 goto LOOP2; /* otherwise, examine next arg
248 }
249
250 index2 = 0; /* points to 0,0 in table
251 if (intf > 0x40500000) /* if(|x| > 64
252 { f2 = -1.0/f2;
253 index2 = 2; /* point to pi/2 upper, lower
254 }
255 else if(intf >= 0x3f900000) /* if |x| >= (1/64)...
256 {

new/usr/src/lib/libmvec/common/__vatan.c 5

257 intz = (intf + 0x00008000) & 0x7fff0000;/* round arg, keep upper
258 HI(&z) = intz; /* store as a double (z)
259 LO(&z) = 0; /* ...lower
260 f2 = (f2 - z)/(1.0 + f2*z); /* get reduced argument
261 index2 = (intz - 0x3f900000) >> 15; /* (index >> 16) << 1)
262 index2 = index2 + 4; /* skip over 0,0,pi/2,pi/2
263 }
264 yaddr2 = y; /* address to store this answer
265 x += stridex; /* point to next arg
266 y += stridey; /* point to next result
267 argcount = 3; /* we now have 3 good arguments

270 /* here is the 3 way unrolled section,
271 note, we may actually only have
272 1,2, or 3 ’real’ arguments at this point
273 */

275 UNROLL3:

277 conup = __vlibm_TBL_atan1[index]; /* upper table
278 conup1 = __vlibm_TBL_atan1[index1]; /* upper table
279 conup2 = __vlibm_TBL_atan1[index2]; /* upper table

281 conlo = __vlibm_TBL_atan1[index +1]; /* lower table
282 conlo1 = __vlibm_TBL_atan1[index1+1]; /* lower table
283 conlo2 = __vlibm_TBL_atan1[index2+1]; /* lower table

285 tmp = f *f ;
286 tmp1 = f1*f1;
287 tmp2 = f2*f2;

289 poly = f *((p3*tmp + p2)*tmp + p1)*tmp ;
290 poly1 = f1*((p3*tmp1 + p2)*tmp1 + p1)*tmp1;
291 poly2 = f2*((p3*tmp2 + p2)*tmp2 + p1)*tmp2;

293 ansu = conup + f ; /* compute atan(f) upper
294 ansu1 = conup1 + f1; /* compute atan(f) upper
295 ansu2 = conup2 + f2; /* compute atan(f) upper

297 ansl = (((conup - ansu) + f) + poly) + conlo ;
298 ansl1 = (((conup1 - ansu1) + f1) + poly1) + conlo1;
299 ansl2 = (((conup2 - ansu2) + f2) + poly2) + conlo2;

301 ans = ansu + ansl ;
302 ans1 = ansu1 + ansl1;
303 ans2 = ansu2 + ansl2;

305 /* now check to see if these are ’real’ or ’dummy’ arguments BEFORE storing */

307 *yaddr = sign ? -ans: ans; /* this one is always good
308 if(argcount < 3) break; /* end loop and finish up
309 *yaddr1 = sign1 ? -ans1: ans1;
310 *yaddr2 = sign2 ? -ans2: ans2;

312 } while (--n > 0);

314 if(argcount == 2)
315 { *yaddr1 = sign1 ? -ans1: ans1;
316 }
317 }

______unchanged_portion_omitted_

new/usr/src/lib/libmvec/common/__vatan2f.c 1

**
 8571 Sun May 4 03:07:14 2014
new/usr/src/lib/libmvec/common/__vatan2f.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #ifdef __RESTRICT
31 #define restrict _Restrict
32 #else
33 #define restrict
34 #endif

36 extern const double __vlibm_TBL_atan1[];

38 static const double
39 pio4 = 7.8539816339744827900e-01,
40 pio2 = 1.5707963267948965580e+00,
41 pi = 3.1415926535897931160e+00;

43 static const float
44 zero = 0.0f,
45 one = 1.0f,
46 q1 = -3.3333333333296428046e-01f,
47 q2 = 1.9999999186853752618e-01f,
48 twop24 = 16777216.0f;

50 void
51 __vatan2f(int n, float * restrict y, int stridey, float * restrict x,
52 int stridex, float * restrict z, int stridez)
53 {
54 float x0, x1, x2, y0, y1, y2, *pz0 = 0, *pz1, *pz2;
54 float x0, x1, x2, y0, y1, y2, *pz0, *pz1, *pz2;
55 double ah0, ah1, ah2;
56 double t0, t1, t2;
57 double sx0, sx1, sx2;
58 double sign0, sign1, sign2;
59 int i, k0 = 0, k1, k2, hx, sx, sy;
59 int i, k0, k1, k2, hx, sx, sy;
60 int hy0, hy1, hy2;

new/usr/src/lib/libmvec/common/__vatan2f.c 2

61 float base0 = 0.0, base1, base2;
61 float base0, base1, base2;
62 double num0, num1, num2;
63 double den0, den1, den2;
64 double dx0, dx1, dx2;
65 double dy0, dy1, dy2;
66 double db0, db1, db2;

68 do
69 {
70 loop0:
71 hy0 = *(int*)y;
72 hx = *(int*)x;
73 sign0 = one;
74 sy = hy0 & 0x80000000;
75 hy0 &= ~0x80000000;

77 sx = hx & 0x80000000;
78 hx &= ~0x80000000;

80 if (hy0 > hx)
81 {
82 x0 = *y;
83 y0 = *x;
84 i = hx;
85 hx = hy0;
86 hy0 = i;
87 if (sy)
88 {
89 x0 = -x0;
90 sign0 = -sign0;
91 }
92 if (sx)
93 {
94 y0 = -y0;
95 ah0 = pio2;
96 }
97 else
98 {
99 ah0 = -pio2;
100 sign0 = -sign0;
101 }
102 }
103 else
104 {
105 y0 = *y;
106 x0 = *x;
107 if (sy)
108 {
109 y0 = -y0;
110 sign0 = -sign0;
111 }
112 if (sx)
113 {
114 x0 = -x0;
115 ah0 = -pi;
116 sign0 = -sign0;
117 }
118 else
119 ah0 = zero;
120 }

122 if (hx >= 0x7f800000 || hx - hy0 >= 0x0c800000)
123 {
124 if (hx >= 0x7f800000)
125 {

new/usr/src/lib/libmvec/common/__vatan2f.c 3

126 if (hx ^ 0x7f800000) /* nan */
127 ah0 = x0 + y0;
128 else if (hy0 >= 0x7f800000)
129 ah0 += pio4;
130 }
131 else if ((int) ah0 == 0)
132 ah0 = y0 / x0;
133 *z = (sign0 == one) ? ah0 : -ah0;
134 /* sign0*ah0 would change nan behavior relative to previous release */
135 x += stridex;
136 y += stridey;
137 z += stridez;
138 i = 0;
139 if (--n <= 0)
140 break;
141 goto loop0;
142 }
143 if (hy0 < 0x00800000) {
144 if (hy0 == 0)
145 {
146 *z = sign0 * (float) ah0;
147 x += stridex;
148 y += stridey;
149 z += stridez;
150 i = 0;
151 if (--n <= 0)
152 break;
153 goto loop0;
154 }
155 y0 *= twop24; /* scale subnormal y */
156 x0 *= twop24; /* scale possibly subnormal x */
157 hy0 = *(int*)&y0;
158 hx = *(int*)&x0;
159 }
160 pz0 = z;

162 k0 = (hy0 - hx + 0x3f800000) & 0xfff80000;
163 if(k0 >= 0x3C800000) /* if |x| >= (1/64)... */
164 {
165 *(int*)&base0 = k0;
166 k0 = (k0 - 0x3C800000) >> 18; /* (index >> 19) << 1) */
167 k0 += 4;
168 /* skip over 0,0,pi/2,pi/2 */
169 }
170 else /* |x| < 1/64 */
171 {
172 k0 = 0;
173 base0 = zero;
174 }

176 x += stridex;
177 y += stridey;
178 z += stridez;
179 i = 1;
180 if (--n <= 0)
181 break;

184 loop1:
185 hy1 = *(int*)y;
186 hx = *(int*)x;
187 sign1 = one;
188 sy = hy1 & 0x80000000;
189 hy1 &= ~0x80000000;

191 sx = hx & 0x80000000;

new/usr/src/lib/libmvec/common/__vatan2f.c 4

192 hx &= ~0x80000000;

194 if (hy1 > hx)
195 {
196 x1 = *y;
197 y1 = *x;
198 i = hx;
199 hx = hy1;
200 hy1 = i;
201 if (sy)
202 {
203 x1 = -x1;
204 sign1 = -sign1;
205 }
206 if (sx)
207 {
208 y1 = -y1;
209 ah1 = pio2;
210 }
211 else
212 {
213 ah1 = -pio2;
214 sign1 = -sign1;
215 }
216 }
217 else
218 {
219 y1 = *y;
220 x1 = *x;
221 if (sy)
222 {
223 y1 = -y1;
224 sign1 = -sign1;
225 }
226 if (sx)
227 {
228 x1 = -x1;
229 ah1 = -pi;
230 sign1 = -sign1;
231 }
232 else
233 ah1 = zero;
234 }

236 if (hx >= 0x7f800000 || hx - hy1 >= 0x0c800000)
237 {
238 if (hx >= 0x7f800000)
239 {
240 if (hx ^ 0x7f800000) /* nan */
241 ah1 = x1 + y1;
242 else if (hy1 >= 0x7f800000)
243 ah1 += pio4;
244 }
245 else if ((int) ah1 == 0)
246 ah1 = y1 / x1;
247 *z = (sign1 == one)? ah1 : -ah1;
248 x += stridex;
249 y += stridey;
250 z += stridez;
251 i = 1;
252 if (--n <= 0)
253 break;
254 goto loop1;
255 }
256 if (hy1 < 0x00800000) {
257 if (hy1 == 0)

new/usr/src/lib/libmvec/common/__vatan2f.c 5

258 {
259 *z = sign1 * (float) ah1;
260 x += stridex;
261 y += stridey;
262 z += stridez;
263 i = 1;
264 if (--n <= 0)
265 break;
266 goto loop1;
267 }
268 y1 *= twop24; /* scale subnormal y */
269 x1 *= twop24; /* scale possibly subnormal x */
270 hy1 = *(int*)&y1;
271 hx = *(int*)&x1;
272 }
273 pz1 = z;

275 k1 = (hy1 - hx + 0x3f800000) & 0xfff80000;
276 if(k1 >= 0x3C800000) /* if |x| >= (1/64)... */
277 {
278 *(int*)&base1 = k1;
279 k1 = (k1 - 0x3C800000) >> 18; /* (index >> 19) << 1) */
280 k1 += 4;
281 /* skip over 0,0,pi/2,pi/2 */
282 }
283 else /* |x| < 1/64 */
284 {
285 k1 = 0;
286 base1 = zero;
287 }

289 x += stridex;
290 y += stridey;
291 z += stridez;
292 i = 2;
293 if (--n <= 0)
294 break;

296 loop2:
297 hy2 = *(int*)y;
298 hx = *(int*)x;
299 sign2 = one;
300 sy = hy2 & 0x80000000;
301 hy2 &= ~0x80000000;

303 sx = hx & 0x80000000;
304 hx &= ~0x80000000;

306 if (hy2 > hx)
307 {
308 x2 = *y;
309 y2 = *x;
310 i = hx;
311 hx = hy2;
312 hy2 = i;
313 if (sy)
314 {
315 x2 = -x2;
316 sign2 = -sign2;
317 }
318 if (sx)
319 {
320 y2 = -y2;
321 ah2 = pio2;
322 }
323 else

new/usr/src/lib/libmvec/common/__vatan2f.c 6

324 {
325 ah2 = -pio2;
326 sign2 = -sign2;
327 }
328 }
329 else
330 {
331 y2 = *y;
332 x2 = *x;
333 if (sy)
334 {
335 y2 = -y2;
336 sign2 = -sign2;
337 }
338 if (sx)
339 {
340 x2 = -x2;
341 ah2 = -pi;
342 sign2 = -sign2;
343 }
344 else
345 ah2 = zero;
346 }

348 if (hx >= 0x7f800000 || hx - hy2 >= 0x0c800000)
349 {
350 if (hx >= 0x7f800000)
351 {
352 if (hx ^ 0x7f800000) /* nan */
353 ah2 = x2 + y2;
354 else if (hy2 >= 0x7f800000)
355 ah2 += pio4;
356 }
357 else if ((int) ah2 == 0)
358 ah2 = y2 / x2;
359 *z = (sign2 == one)? ah2 : -ah2;
360 x += stridex;
361 y += stridey;
362 z += stridez;
363 i = 2;
364 if (--n <= 0)
365 break;
366 goto loop2;
367 }
368 if (hy2 < 0x00800000) {
369 if (hy2 == 0)
370 {
371 *z = sign2 * (float) ah2;
372 x += stridex;
373 y += stridey;
374 z += stridez;
375 i = 2;
376 if (--n <= 0)
377 break;
378 goto loop2;
379 }
380 y2 *= twop24; /* scale subnormal y */
381 x2 *= twop24; /* scale possibly subnormal x */
382 hy2 = *(int*)&y2;
383 hx = *(int*)&x2;
384 }

386 pz2 = z;

388 k2 = (hy2 - hx + 0x3f800000) & 0xfff80000;
389 if(k2 >= 0x3C800000) /* if |x| >= (1/64)... */

new/usr/src/lib/libmvec/common/__vatan2f.c 7

390 {
391 *(int*)&base2 = k2;
392 k2 = (k2 - 0x3C800000) >> 18; /* (index >> 19) << 1) */
393 k2 += 4;
394 /* skip over 0,0,pi/2,pi/2 */
395 }
396 else /* |x| < 1/64 */
397 {
398 k2 = 0;
399 base2 = zero;
400 }

402 goto endloop;

404 endloop:

406 ah2 += __vlibm_TBL_atan1[k2];
407 ah1 += __vlibm_TBL_atan1[k1];
408 ah0 += __vlibm_TBL_atan1[k0];

410 db2 = base2;
411 db1 = base1;
412 db0 = base0;
413 dy2 = y2;
414 dy1 = y1;
415 dy0 = y0;
416 dx2 = x2;
417 dx1 = x1;
418 dx0 = x0;

420 num2 = dy2 - dx2 * db2;
421 den2 = dx2 + dy2 * db2;

423 num1 = dy1 - dx1 * db1;
424 den1 = dx1 + dy1 * db1;

426 num0 = dy0 - dx0 * db0;
427 den0 = dx0 + dy0 * db0;

429 t2 = num2 / den2;
430 t1 = num1 / den1;
431 t0 = num0 / den0;

433 sx2 = t2 * t2;
434 sx1 = t1 * t1;
435 sx0 = t0 * t0;
436
437 t2 += t2 * sx2 * (q1 + sx2 * q2);
438 t1 += t1 * sx1 * (q1 + sx1 * q2);
439 t0 += t0 * sx0 * (q1 + sx0 * q2);

441 t2 += ah2;
442 t1 += ah1;
443 t0 += ah0;

445 *pz2 = sign2 * t2;
446 *pz1 = sign1 * t1;
447 *pz0 = sign0 * t0;

449 x += stridex;
450 y += stridey;
451 z += stridez;
452 i = 0;
453 } while (--n > 0);

455 if (i > 1)

new/usr/src/lib/libmvec/common/__vatan2f.c 8

456 {
457 ah1 += __vlibm_TBL_atan1[k1];
458 t1 = (y1 - x1 * (double)base1) /
459 (x1 + y1 * (double)base1);
460 sx1 = t1 * t1;
461 t1 += t1 * sx1 * (q1 + sx1 * q2);
462 t1 += ah1;
463 *pz1 = sign1 * t1;
464 }

466 if (i > 0)
467 {
468 ah0 += __vlibm_TBL_atan1[k0];
469 t0 = (y0 - x0 * (double)base0) /
470 (x0 + y0 * (double)base0);
471 sx0 = t0 * t0;
472 t0 += t0 * sx0 * (q1 + sx0 * q2);
473 t0 += ah0;
474 *pz0 = sign0 * t0;
475 }
476 }

______unchanged_portion_omitted_

new/usr/src/lib/libmvec/common/__vatanf.c 1

**
 12272 Sun May 4 03:07:16 2014
new/usr/src/lib/libmvec/common/__vatanf.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #ifdef __RESTRICT
31 #define restrict _Restrict
32 #else
33 #define restrict
34 #endif

36 void
37 __vatanf(int n, float * restrict x, int stridex, float * restrict y, int stride
38 {
39 extern const double __vlibm_TBL_atan1[];
40 double conup0, conup1, conup2;
41 float dummy, ansf = 0.0;
41 float dummy, ansf;
42 float f0, f1, f2;
43 float ans0, ans1, ans2;
44 float poly0, poly1, poly2;
45 float sign0, sign1, sign2;
46 int intf, intz, argcount;
47 int index0, index1, index2;
48 float z,*yaddr0,*yaddr1,*yaddr2;
49 int *pz = (int *) &z;
50 #ifdef UNROLL4
51 double conup3;
52 int index3;
53 float f3, ans3, poly3, sign3, *yaddr3;
54 #endif

56 /* Power series atan(x) = x + p1*x**3 + p2*x**5 + p3*x**7
57 * Error = -3.08254E-18 On the interval |x| < 1/64 */

59 static const float p1 = -0.33329644f /* -3.333333333329292858E-01f */ ;
60 static const float pone = 1.0f;

new/usr/src/lib/libmvec/common/__vatanf.c 2

62 if(n <= 0) return; /* if no. of elements is 0 or neg, do nothing */
63 do
64 {
65 LOOP0:

67 intf = *(int *) x; /* upper half of x, as integer */
68 f0 = *x;
69 sign0 = pone;
70 if (intf < 0) {
71 intf = intf & ~0x80000000; /* abs(upper argument) */
72 f0 = -f0;
73 sign0 = -sign0;
74 }
75
76 if((intf > 0x5B000000) || (intf < 0x31800000)) /* filter out special cases
77 {
78 if(intf > 0x7f800000)
79 {
80 ansf = f0- f0; /* return NaN if x=NaN*/
81 }
82 else if(intf < 0x31800000) /* avoid underflow for small arg
83 {
84 dummy = 1.0e37 + f0;
85 dummy = dummy;
86 ansf = f0;
87 }
88 else if(intf > 0x5B000000) /* avoid underflow for big arg
89 {
90 index0= 2;
91 ansf = __vlibm_TBL_atan1[index0];/* pi/2 up */
92 }
93 *y = sign0*ansf; /* store answer, with sign bit */
94 x += stridex;
95 y += stridey;
96 argcount = 0; /* initialize argcount
97 if (--n <=0) break; /* we are done
98 goto LOOP0; /* otherwise, examine next arg
99 }
100
101 if (intf > 0x42800000) /* if(|x| > 64
102 {
103 f0 = -pone/f0;
104 index0 = 2; /* point to pi/2 upper, lower
105 }
106 else if(intf >= 0x3C800000) /* if |x| >= (1/64)...
107 {
108 intz = (intf + 0x00040000) & 0x7ff80000;/* round arg, keep upper
109 pz[0] = intz; /* store as a float (z)
110 f0 = (f0 - z)/(pone + f0*z);
111 index0 = (intz - 0x3C800000) >> 18; /* (index >> 19) << 1)
112 index0 = index0+ 4; /* skip over 0,0,pi/2,pi/2
113 }
114 else /* |x| < 1/64 */
115 {
116 index0 = 0; /* points to 0,0 in table
117 }
118 yaddr0 = y; /* address to store this answer
119 x += stridex; /* point to next arg
120 y += stridey; /* point to next result
121 argcount = 1; /* we now have 1 good argument
122 if (--n <=0)
123 {
124 goto UNROLL; /* finish up with 1 good arg
125 }

127 /*--

new/usr/src/lib/libmvec/common/__vatanf.c 3

128 /*--
129 /*--

131 LOOP1:

133 intf = *(int *) x; /* upper half of x, as integer */
134 f1 = *x;
135 sign1 = pone;
136 if (intf < 0) {
137 intf = intf & ~0x80000000; /* abs(upper argument) */
138 f1 = -f1;
139 sign1 = -sign1;
140 }
141
142 if((intf > 0x5B000000) || (intf < 0x31800000)) /* filter out special cases
143 {
144 if(intf > 0x7f800000)
145 {
146 ansf = f1 - f1; /* return NaN if x=NaN*/
147 }
148 else if(intf < 0x31800000) /* avoid underflow for small arg
149 {
150 dummy = 1.0e37 + f1;
151 dummy = dummy;
152 ansf = f1;
153 }
154 else if(intf > 0x5B000000) /* avoid underflow for big arg
155 {
156 index1 = 2;
157 ansf = __vlibm_TBL_atan1[index1] ;/* pi/2 up */
158 }
159 *y = sign1 * ansf; /* store answer, with sign bit */
160 x += stridex;
161 y += stridey;
162 argcount = 1; /* we still have 1 good arg
163 if (--n <=0)
164 {
165 goto UNROLL; /* finish up with 1 good arg
166 }
167 goto LOOP1; /* otherwise, examine next arg
168 }
169
170 if (intf > 0x42800000) /* if(|x| > 64
171 {
172 f1 = -pone/f1;
173 index1 = 2; /* point to pi/2 upper, lower
174 }
175 else if(intf >= 0x3C800000) /* if |x| >= (1/64)...
176 {
177 intz = (intf + 0x00040000) & 0x7ff80000;/* round arg, keep upper
178 pz[0] = intz; /* store as a float (z)
179 f1 = (f1 - z)/(pone + f1*z);
180 index1 = (intz - 0x3C800000) >> 18; /* (index >> 19) << 1)
181 index1 = index1 + 4; /* skip over 0,0,pi/2,pi/2
182 }
183 else
184 {
185 index1 = 0; /* points to 0,0 in table
186 }

188 yaddr1 = y; /* address to store this answer
189 x += stridex; /* point to next arg
190 y += stridey; /* point to next result
191 argcount = 2; /* we now have 2 good arguments
192 if (--n <=0)
193 {

new/usr/src/lib/libmvec/common/__vatanf.c 4

194 goto UNROLL; /* finish up with 2 good args
195 }

197 /*--
198 /*--
199 /*--

201 LOOP2:

203 intf = *(int *) x; /* upper half of x, as integer */
204 f2 = *x;
205 sign2 = pone;
206 if (intf < 0) {
207 intf = intf & ~0x80000000; /* abs(upper argument) */
208 f2 = -f2;
209 sign2 = -sign2;
210 }
211
212 if((intf > 0x5B000000) || (intf < 0x31800000)) /* filter out special cases
213 {
214 if(intf > 0x7f800000)
215 {
216 ansf = f2 - f2; /* return NaN if x=NaN*/
217 }
218 else if(intf < 0x31800000) /* avoid underflow for small arg
219 {
220 dummy = 1.0e37 + f2;
221 dummy = dummy;
222 ansf = f2;
223 }
224 else if(intf > 0x5B000000) /* avoid underflow for big arg
225 {
226 index2 = 2;
227 ansf = __vlibm_TBL_atan1[index2] ;/* pi/2 up */
228 }
229 *y = sign2 * ansf; /* store answer, with sign bit */
230 x += stridex;
231 y += stridey;
232 argcount = 2; /* we still have 2 good args
233 if (--n <=0)
234 {
235 goto UNROLL; /* finish up with 2 good args
236 }
237 goto LOOP2; /* otherwise, examine next arg
238 }
239
240 if (intf > 0x42800000) /* if(|x| > 64
241 {
242 f2 = -pone/f2;
243 index2 = 2; /* point to pi/2 upper, lower
244 }
245 else if(intf >= 0x3C800000) /* if |x| >= (1/64)...
246 {
247 intz = (intf + 0x00040000) & 0x7ff80000;/* round arg, keep upper
248 pz[0] = intz; /* store as a float (z)
249 f2 = (f2 - z)/(pone + f2*z);
250 index2 = (intz - 0x3C800000) >> 18; /* (index >> 19) << 1)
251 index2 = index2 + 4; /* skip over 0,0,pi/2,pi/2
252 }
253 else
254 {
255 index2 = 0; /* points to 0,0 in table
256 }
257 yaddr2 = y; /* address to store this answer
258 x += stridex; /* point to next arg
259 y += stridey; /* point to next result

new/usr/src/lib/libmvec/common/__vatanf.c 5

260 argcount = 3; /* we now have 3 good arguments
261 if (--n <=0)
262 {
263 goto UNROLL; /* finish up with 2 good args
264 }

267 /*--
268 /*--
269 /*--

271 #ifdef UNROLL4
272 LOOP3:

274 intf = *(int *) x; /* upper half of x, as integer */
275 f3 = *x;
276 sign3 = pone;
277 if (intf < 0) {
278 intf = intf & ~0x80000000; /* abs(upper argument) */
279 f3 = -f3;
280 sign3 = -sign3;
281 }
282
283 if((intf > 0x5B000000) || (intf < 0x31800000)) /* filter out special cases
284 {
285 if(intf > 0x7f800000)
286 {
287 ansf = f3 - f3; /* return NaN if x=NaN*/
288 }
289 else if(intf < 0x31800000) /* avoid underflow for small arg
290 {
291 dummy = 1.0e37 + f3;
292 dummy = dummy;
293 ansf = f3;
294 }
295 else if(intf > 0x5B000000) /* avoid underflow for big arg
296 {
297 index3 = 2;
298 ansf = __vlibm_TBL_atan1[index3] ;/* pi/2 up */
299 }
300 *y = sign3 * ansf; /* store answer, with sign bit */
301 x += stridex;
302 y += stridey;
303 argcount = 3; /* we still have 3 good args
304 if (--n <=0)
305 {
306 goto UNROLL; /* finish up with 3 good args
307 }
308 goto LOOP3; /* otherwise, examine next arg
309 }
310
311 if (intf > 0x42800000) /* if(|x| > 64
312 {
313 n3 = -pone;
314 d3 = f3;
315 f3 = n3/d3;
316 index3 = 2; /* point to pi/2 upper, lower
317 }
318 else if(intf >= 0x3C800000) /* if |x| >= (1/64)...
319 {
320 intz = (intf + 0x00040000) & 0x7ff80000;/* round arg, keep upper
321 pz[0] = intz; /* store as a float (z)
322 n3 = (f3 - z);
323 d3 = (pone + f3*z); /* get reduced argument
324 f3 = n3/d3;
325 index3 = (intz - 0x3C800000) >> 18; /* (index >> 19) << 1)

new/usr/src/lib/libmvec/common/__vatanf.c 6

326 index3 = index3 + 4; /* skip over 0,0,pi/2,pi/2
327 }
328 else
329 {
330 n3 = f3;
331 d3 = pone;
332 index3 = 0; /* points to 0,0 in table
333 }
334 yaddr3 = y; /* address to store this answer
335 x += stridex; /* point to next arg
336 y += stridey; /* point to next result
337 argcount = 4; /* we now have 4 good arguments
338 if (--n <=0)
339 {
340 goto UNROLL; /* finish up with 3 good args
341 }
342 #endif /* UNROLL4 */

344 /* here is the n-way unrolled section,
345 but we may actually have less than n
346 arguments at this point
347 */

349 UNROLL:

351 #ifdef UNROLL4
352 if (argcount == 4)
353 {
354 conup0 = __vlibm_TBL_atan1[index0];
355 conup1 = __vlibm_TBL_atan1[index1];
356 conup2 = __vlibm_TBL_atan1[index2];
357 conup3 = __vlibm_TBL_atan1[index3];
358 poly0 = p1*f0*f0*f0 + f0;
359 ans0 = sign0 * (float)(conup0 + poly0);
360 poly1 = p1*f1*f1*f1 + f1;
361 ans1 = sign1 * (float)(conup1 + poly1);
362 poly2 = p1*f2*f2*f2 + f2;
363 ans2 = sign2 * (float)(conup2 + poly2);
364 poly3 = p1*f3*f3*f3 + f3;
365 ans3 = sign3 * (float)(conup3 + poly3);
366 *yaddr0 = ans0;
367 *yaddr1 = ans1;
368 *yaddr2 = ans2;
369 *yaddr3 = ans3;
370 }
371 else
372 #endif
373 if (argcount == 3)
374 {
375 conup0 = __vlibm_TBL_atan1[index0];
376 conup1 = __vlibm_TBL_atan1[index1];
377 conup2 = __vlibm_TBL_atan1[index2];
378 poly0 = p1*f0*f0*f0 + f0;
379 poly1 = p1*f1*f1*f1 + f1;
380 poly2 = p1*f2*f2*f2 + f2;
381 ans0 = sign0 * (float)(conup0 + poly0);
382 ans1 = sign1 * (float)(conup1 + poly1);
383 ans2 = sign2 * (float)(conup2 + poly2);
384 *yaddr0 = ans0;
385 *yaddr1 = ans1;
386 *yaddr2 = ans2;
387 }
388 else
389 if (argcount == 2)
390 {
391 conup0 = __vlibm_TBL_atan1[index0];

new/usr/src/lib/libmvec/common/__vatanf.c 7

392 conup1 = __vlibm_TBL_atan1[index1];
393 poly0 = p1*f0*f0*f0 + f0;
394 poly1 = p1*f1*f1*f1 + f1;
395 ans0 = sign0 * (float)(conup0 + poly0);
396 ans1 = sign1 * (float)(conup1 + poly1);
397 *yaddr0 = ans0;
398 *yaddr1 = ans1;
399 }
400 else
401 if (argcount == 1)
402 {
403 conup0 = __vlibm_TBL_atan1[index0];
404 poly0 = p1*f0*f0*f0 + f0;
405 ans0 = sign0 * (float)(conup0 + poly0);
406 *yaddr0 = ans0;
407 }

409 } while (n > 0);

411 }
______unchanged_portion_omitted_

new/usr/src/lib/libmvec/common/__vcos.c 1

**
 29704 Sun May 4 03:07:18 2014
new/usr/src/lib/libmvec/common/__vcos.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #include <sys/isa_defs.h>
31 #include <sys/ccompile.h>
32 #endif /* ! codereview */

34 #ifdef _LITTLE_ENDIAN
35 #define HI(x) *(1+(int*)x)
36 #define LO(x) *(unsigned*)x
37 #else
38 #define HI(x) *(int*)x
39 #define LO(x) *(1+(unsigned*)x)
40 #endif

42 #ifdef __RESTRICT
43 #define restrict _Restrict
44 #else
45 #define restrict
46 #endif

48 /*
49 * vcos.1.c
50 *
51 * Vector cosine function. Just slight modifications to vsin.8.c, mainly
52 * in the primary range part.
53 *
54 * Modification to primary range processing. If an argument that does not
55 * fall in the primary range is encountered, then processing is continued
56 * in the medium range.
57 *
58 */

60 extern const double __vlibm_TBL_sincos_hi[], __vlibm_TBL_sincos_lo[];

62 static const double

new/usr/src/lib/libmvec/common/__vcos.c 2

63 half[2] = { 0.5, -0.5 },
64 one = 1.0,
65 invpio2 = 0.636619772367581343075535, /* 53 bits of pi/2 */
66 pio2_1 = 1.570796326734125614166, /* first 33 bits of pi/2 */
67 pio2_2 = 6.077100506303965976596e-11, /* second 33 bits of pi/2 */
68 pio2_3 = 2.022266248711166455796e-21, /* third 33 bits of pi/2 */
69 pio2_3t = 8.478427660368899643959e-32, /* pi/2 - pio2_3 */
70 pp1 = -1.666666666605760465276263943134982554676e-0001,
71 pp2 = 8.333261209690963126718376566146180944442e-0003,
72 qq1 = -4.999999999977710986407023955908711557870e-0001,
73 qq2 = 4.166654863857219350645055881018842089580e-0002,
74 poly1[2]= { -1.666666666666629669805215138920301589656e-0001,
75 -4.999999999999931701464060878888294524481e-0001
76 poly2[2]= { 8.333333332390951295683993455280336376663e-0003,
77 4.166666666394861917535640593963708222319e-0002
78 poly3[2]= { -1.984126237997976692791551778230098403960e-0004,
79 -1.388888552656142867832756687736851681462e-0003
80 poly4[2]= { 2.753403624854277237649987622848330351110e-0006,
81 2.478519423681460796618128289454530524759e-0005

83 static const unsigned thresh[2] = { 0x3fc90000, 0x3fc40000 };

85 /* Don’t __ the following; acomp will handle it */
86 extern double fabs(double);
87 extern void __vlibm_vcos_big(int, double *, int, double *, int, int);

89 /*
90 * y[i*stridey] := cos(x[i*stridex]), for i = 0..n.
91 *
92 * Calls __vlibm_vcos_big to handle all elts which have abs >~ 1.647e+06.
93 * Argument reduction is done here for elts pi/4 < arg < 1.647e+06.
94 *
95 * elts < 2^-27 use the approximation 1.0 ~ cos(x).
96 */
97 void
98 __vcos(int n, double * restrict x, int stridex, double * restrict y,
99 int stridey)
100 {
101 double x0_or_one[4], x1_or_one[4], x2_or_one[4];
102 double y0_or_zero[4], y1_or_zero[4], y2_or_zero[4];
103 double x0, x1, x2, *py0 = 0, *py1 = 0, *py2, *xsave, *ysave;
104 unsigned hx0, hx1, hx2, xsb0, xsb1 = 0, xsb2;
31 double x0, x1, x2, *py0, *py1, *py2, *xsave, *ysave;
32 unsigned hx0, hx1, hx2, xsb0, xsb1, xsb2;
105 int i, biguns, nsave, sxsave, sysave;

106 nsave = n;
107 xsave = x;
108 sxsave = stridex;
109 ysave = y;
110 sysave = stridey;
111 biguns = 0;

113 do /* MAIN LOOP */
114 {
115 /* Gotos here so _break_ exits MAIN LOOP. */
116 LOOP0: /* Find first arg in right range. */
117 xsb0 = HI(x); /* get most significant word */
118 hx0 = xsb0 & ~0x80000000; /* mask off sign bit */
119 if (hx0 > 0x3fe921fb) {
120 /* Too big: arg reduction needed, so leave for second pa
121 biguns = 1;
122 goto MEDIUM;
123 }
124 if (hx0 < 0x3e400000) {
125 /* Too small. cos x ~ 1. */

new/usr/src/lib/libmvec/common/__vcos.c 3

55 volatile int v = *x;
126 *y = 1.0;
127 x += stridex;
128 y += stridey;
129 i = 0;
130 if (--n <= 0)
131 break;
132 goto LOOP0;
133 }
134 x0 = *x;
135 py0 = y;
136 x += stridex;
137 y += stridey;
138 i = 1;
139 if (--n <= 0)
140 break;

142 LOOP1: /* Get second arg, same as above. */
143 xsb1 = HI(x);
144 hx1 = xsb1 & ~0x80000000;
145 if (hx1 > 0x3fe921fb)
146 {
147 biguns = 2;
148 goto MEDIUM;
149 }
150 if (hx1 < 0x3e400000)
151 {
82 volatile int v = *x;
152 *y = 1.0;
153 x += stridex;
154 y += stridey;
155 i = 1;
156 if (--n <= 0)
157 break;
158 goto LOOP1;
159 }
160 x1 = *x;
161 py1 = y;
162 x += stridex;
163 y += stridey;
164 i = 2;
165 if (--n <= 0)
166 break;

168 LOOP2: /* Get third arg, same as above. */
169 xsb2 = HI(x);
170 hx2 = xsb2 & ~0x80000000;
171 if (hx2 > 0x3fe921fb)
172 {
173 biguns = 3;
174 goto MEDIUM;
175 }
176 if (hx2 < 0x3e400000)
177 {
109 volatile int v = *x;
178 *y = 1.0;
179 x += stridex;
180 y += stridey;
181 i = 2;
182 if (--n <= 0)
183 break;
184 goto LOOP2;
185 }
186 x2 = *x;
187 py2 = y;

new/usr/src/lib/libmvec/common/__vcos.c 4

189 /*
190 * 0x3fc40000 = 5/32 ~ 0.15625
191 * Get msb after subtraction. Will be 1 only if
192 * hx0 - 5/32 is negative.
193 */
194 i = (hx0 - 0x3fc40000) >> 31;
195 i |= ((hx1 - 0x3fc40000) >> 30) & 2;
196 i |= ((hx2 - 0x3fc40000) >> 29) & 4;
197 switch (i)
198 {
199 double a0, a1, a2, w0, w1, w2;
200 double t0, t1, t2, z0, z1, z2;
201 unsigned j0, j1, j2;

203 case 0: /* All are > 5/32 */
204 j0 = (xsb0 + 0x4000) & 0xffff8000;
205 j1 = (xsb1 + 0x4000) & 0xffff8000;
206 j2 = (xsb2 + 0x4000) & 0xffff8000;
207 HI(&t0) = j0;
208 HI(&t1) = j1;
209 HI(&t2) = j2;
210 LO(&t0) = 0;
211 LO(&t1) = 0;
212 LO(&t2) = 0;
213 x0 -= t0;
214 x1 -= t1;
215 x2 -= t2;
216 z0 = x0 * x0;
217 z1 = x1 * x1;
218 z2 = x2 * x2;
219 t0 = z0 * (qq1 + z0 * qq2);
220 t1 = z1 * (qq1 + z1 * qq2);
221 t2 = z2 * (qq1 + z2 * qq2);
222 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
223 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
224 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
225 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
226 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
227 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
228 xsb0 = (xsb0 >> 30) & 2;
229 xsb1 = (xsb1 >> 30) & 2;
230 xsb2 = (xsb2 >> 30) & 2;
231 a0 = __vlibm_TBL_sincos_hi[j0+1]; /* cos_hi(t) */
232 a1 = __vlibm_TBL_sincos_hi[j1+1];
233 a2 = __vlibm_TBL_sincos_hi[j2+1];
234 /* cos_lo(t) sin_hi(t) */
235 t0 = __vlibm_TBL_sincos_lo[j0+1] - (__vlibm_TBL_sincos_
236 t1 = __vlibm_TBL_sincos_lo[j1+1] - (__vlibm_TBL_sincos_
237 t2 = __vlibm_TBL_sincos_lo[j2+1] - (__vlibm_TBL_sincos_

239 *py0 = a0 + t0;
240 *py1 = a1 + t1;
241 *py2 = a2 + t2;
242 break;

244 case 1:
245 j1 = (xsb1 + 0x4000) & 0xffff8000;
246 j2 = (xsb2 + 0x4000) & 0xffff8000;
247 HI(&t1) = j1;
248 HI(&t2) = j2;
249 LO(&t1) = 0;
250 LO(&t2) = 0;
251 x1 -= t1;
252 x2 -= t2;
253 z0 = x0 * x0;
254 z1 = x1 * x1;

new/usr/src/lib/libmvec/common/__vcos.c 5

255 z2 = x2 * x2;
256 t0 = z0 * (poly3[1] + z0 * poly4[1]);
257 t1 = z1 * (qq1 + z1 * qq2);
258 t2 = z2 * (qq1 + z2 * qq2);
259 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
260 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
261 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
262 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
263 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
264 xsb1 = (xsb1 >> 30) & 2;
265 xsb2 = (xsb2 >> 30) & 2;
266 a1 = __vlibm_TBL_sincos_hi[j1+1];
267 a2 = __vlibm_TBL_sincos_hi[j2+1];
268 t1 = __vlibm_TBL_sincos_lo[j1+1] - (__vlibm_TBL_sincos_
269 t2 = __vlibm_TBL_sincos_lo[j2+1] - (__vlibm_TBL_sincos_
270 *py0 = one + t0;
271 *py1 = a1 + t1;
272 *py2 = a2 + t2;
273 break;

275 case 2:
276 j0 = (xsb0 + 0x4000) & 0xffff8000;
277 j2 = (xsb2 + 0x4000) & 0xffff8000;
278 HI(&t0) = j0;
279 HI(&t2) = j2;
280 LO(&t0) = 0;
281 LO(&t2) = 0;
282 x0 -= t0;
283 x2 -= t2;
284 z0 = x0 * x0;
285 z1 = x1 * x1;
286 z2 = x2 * x2;
287 t0 = z0 * (qq1 + z0 * qq2);
288 t1 = z1 * (poly3[1] + z1 * poly4[1]);
289 t2 = z2 * (qq1 + z2 * qq2);
290 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
291 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
292 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
293 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
294 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
295 xsb0 = (xsb0 >> 30) & 2;
296 xsb2 = (xsb2 >> 30) & 2;
297 a0 = __vlibm_TBL_sincos_hi[j0+1];
298 a2 = __vlibm_TBL_sincos_hi[j2+1];
299 t0 = __vlibm_TBL_sincos_lo[j0+1] - (__vlibm_TBL_sincos_
300 t2 = __vlibm_TBL_sincos_lo[j2+1] - (__vlibm_TBL_sincos_
301 *py0 = a0 + t0;
302 *py1 = one + t1;
303 *py2 = a2 + t2;
304 break;

306 case 3:
307 j2 = (xsb2 + 0x4000) & 0xffff8000;
308 HI(&t2) = j2;
309 LO(&t2) = 0;
310 x2 -= t2;
311 z0 = x0 * x0;
312 z1 = x1 * x1;
313 z2 = x2 * x2;
314 t0 = z0 * (poly3[1] + z0 * poly4[1]);
315 t1 = z1 * (poly3[1] + z1 * poly4[1]);
316 t2 = z2 * (qq1 + z2 * qq2);
317 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
318 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
319 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
320 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~

new/usr/src/lib/libmvec/common/__vcos.c 6

321 xsb2 = (xsb2 >> 30) & 2;
322 a2 = __vlibm_TBL_sincos_hi[j2+1];
323 t2 = __vlibm_TBL_sincos_lo[j2+1] - (__vlibm_TBL_sincos_
324 *py0 = one + t0;
325 *py1 = one + t1;
326 *py2 = a2 + t2;
327 break;

329 case 4:
330 j0 = (xsb0 + 0x4000) & 0xffff8000;
331 j1 = (xsb1 + 0x4000) & 0xffff8000;
332 HI(&t0) = j0;
333 HI(&t1) = j1;
334 LO(&t0) = 0;
335 LO(&t1) = 0;
336 x0 -= t0;
337 x1 -= t1;
338 z0 = x0 * x0;
339 z1 = x1 * x1;
340 z2 = x2 * x2;
341 t0 = z0 * (qq1 + z0 * qq2);
342 t1 = z1 * (qq1 + z1 * qq2);
343 t2 = z2 * (poly3[1] + z2 * poly4[1]);
344 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
345 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
346 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
347 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
348 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
349 xsb0 = (xsb0 >> 30) & 2;
350 xsb1 = (xsb1 >> 30) & 2;
351 a0 = __vlibm_TBL_sincos_hi[j0+1];
352 a1 = __vlibm_TBL_sincos_hi[j1+1];
353 t0 = __vlibm_TBL_sincos_lo[j0+1] - (__vlibm_TBL_sincos_
354 t1 = __vlibm_TBL_sincos_lo[j1+1] - (__vlibm_TBL_sincos_
355 *py0 = a0 + t0;
356 *py1 = a1 + t1;
357 *py2 = one + t2;
358 break;

360 case 5:
361 j1 = (xsb1 + 0x4000) & 0xffff8000;
362 HI(&t1) = j1;
363 LO(&t1) = 0;
364 x1 -= t1;
365 z0 = x0 * x0;
366 z1 = x1 * x1;
367 z2 = x2 * x2;
368 t0 = z0 * (poly3[1] + z0 * poly4[1]);
369 t1 = z1 * (qq1 + z1 * qq2);
370 t2 = z2 * (poly3[1] + z2 * poly4[1]);
371 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
372 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
373 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
374 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
375 xsb1 = (xsb1 >> 30) & 2;
376 a1 = __vlibm_TBL_sincos_hi[j1+1];
377 t1 = __vlibm_TBL_sincos_lo[j1+1] - (__vlibm_TBL_sincos_
378 *py0 = one + t0;
379 *py1 = a1 + t1;
380 *py2 = one + t2;
381 break;

383 case 6:
384 j0 = (xsb0 + 0x4000) & 0xffff8000;
385 HI(&t0) = j0;
386 LO(&t0) = 0;

new/usr/src/lib/libmvec/common/__vcos.c 7

387 x0 -= t0;
388 z0 = x0 * x0;
389 z1 = x1 * x1;
390 z2 = x2 * x2;
391 t0 = z0 * (qq1 + z0 * qq2);
392 t1 = z1 * (poly3[1] + z1 * poly4[1]);
393 t2 = z2 * (poly3[1] + z2 * poly4[1]);
394 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
395 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
396 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
397 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
398 xsb0 = (xsb0 >> 30) & 2;
399 a0 = __vlibm_TBL_sincos_hi[j0+1];
400 t0 = __vlibm_TBL_sincos_lo[j0+1] - (__vlibm_TBL_sincos_
401 *py0 = a0 + t0;
402 *py1 = one + t1;
403 *py2 = one + t2;
404 break;

406 case 7: /* All are < 5/32 */
407 z0 = x0 * x0;
408 z1 = x1 * x1;
409 z2 = x2 * x2;
410 t0 = z0 * (poly3[1] + z0 * poly4[1]);
411 t1 = z1 * (poly3[1] + z1 * poly4[1]);
412 t2 = z2 * (poly3[1] + z2 * poly4[1]);
413 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
414 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
415 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
416 *py0 = one + t0;
417 *py1 = one + t1;
418 *py2 = one + t2;
419 break;
420 }

422 x += stridex;
423 y += stridey;
424 i = 0;
425 } while (--n > 0); /* END MAIN LOOP */

427 /*
428 * CLEAN UP last 0, 1, or 2 elts.
429 */
430 if (i > 0) /* Clean up elts at tail. i < 3. */
431 {
432 double a0, a1, w0, w1;
433 double t0, t1, z0, z1;
434 unsigned j0, j1;

436 if (i > 1)
437 {
438 if (hx1 < 0x3fc40000)
439 {
440 z1 = x1 * x1;
441 t1 = z1 * (poly3[1] + z1 * poly4[1]);
442 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
443 t1 = one + t1;
444 *py1 = t1;
445 }
446 else
447 {
448 j1 = (xsb1 + 0x4000) & 0xffff8000;
449 HI(&t1) = j1;
450 LO(&t1) = 0;
451 x1 -= t1;
452 z1 = x1 * x1;

new/usr/src/lib/libmvec/common/__vcos.c 8

453 t1 = z1 * (qq1 + z1 * qq2);
454 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
455 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >>
456 xsb1 = (xsb1 >> 30) & 2;
457 a1 = __vlibm_TBL_sincos_hi[j1+1];
458 t1 = __vlibm_TBL_sincos_lo[j1+1]
459 - (__vlibm_TBL_sincos_hi[j1+xsb1]*w1 -
460 *py1 = a1 + t1;
461 }
462 }
463 if (hx0 < 0x3fc40000)
464 {
465 z0 = x0 * x0;
466 t0 = z0 * (poly3[1] + z0 * poly4[1]);
467 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
468 t0 = one + t0;
469 *py0 = t0;
470 }
471 else
472 {
473 j0 = (xsb0 + 0x4000) & 0xffff8000;
474 HI(&t0) = j0;
475 LO(&t0) = 0;
476 x0 -= t0;
477 z0 = x0 * x0;
478 t0 = z0 * (qq1 + z0 * qq2);
479 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
480 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
481 xsb0 = (xsb0 >> 30) & 2;
482 a0 = __vlibm_TBL_sincos_hi[j0+1];
483 t0 = __vlibm_TBL_sincos_lo[j0+1] - (__vlibm_TBL_sincos_
484 *py0 = a0 + t0;
485 }
486 } /* END CLEAN UP */

488 return;

490 /*
491 * Take care of BIGUNS.
492 *
493 * We have jumped here in the middle of processing after having
494 * encountered a medium range argument. Therefore things are in a
495 * bit of a tizzy.
496 */

498 MEDIUM:

500 x0_or_one[1] = 1.0;
501 x1_or_one[1] = 1.0;
502 x2_or_one[1] = 1.0;
503 x0_or_one[3] = -1.0;
504 x1_or_one[3] = -1.0;
505 x2_or_one[3] = -1.0;
506 y0_or_zero[1] = 0.0;
507 y1_or_zero[1] = 0.0;
508 y2_or_zero[1] = 0.0;
509 y0_or_zero[3] = 0.0;
510 y1_or_zero[3] = 0.0;
511 y2_or_zero[3] = 0.0;

513 if (biguns == 3)
514 {
515 biguns = 0;
516 xsb0 = xsb0 >> 31;
517 xsb1 = xsb1 >> 31;
518 goto loop2;

new/usr/src/lib/libmvec/common/__vcos.c 9

519 }
520 else if (biguns == 2)
521 {
522 xsb0 = xsb0 >> 31;
523 biguns = 0;
524 goto loop1;
525 }
526 biguns = 0;

528 do
529 {
530 double fn0, fn1, fn2, a0, a1, a2, w0, w1, w2, y0, y1, y
531 unsigned hx;
532 int n0, n1, n2;

534 /*
535 * Find 3 more to work on: Not already done, not too big.
536 */

538 loop0:
539 hx = HI(x);
540 xsb0 = hx >> 31;
541 hx &= ~0x80000000;
542 if (hx > 0x413921fb) /* (1.6471e+06) Too big: leave it. */
543 {
544 if (hx >= 0x7ff00000) /* Inf or NaN */
545 {
546 x0 = *x;
547 *y = x0 - x0;
548 }
549 else
550 biguns = 1;
551 x += stridex;
552 y += stridey;
553 i = 0;
554 if (--n <= 0)
555 break;
556 goto loop0;
557 }
558 x0 = *x;
559 py0 = y;
560 x += stridex;
561 y += stridey;
562 i = 1;
563 if (--n <= 0)
564 break;

566 loop1:
567 hx = HI(x);
568 xsb1 = hx >> 31;
569 hx &= ~0x80000000;
570 if (hx > 0x413921fb)
571 {
572 if (hx >= 0x7ff00000)
573 {
574 x1 = *x;
575 *y = x1 - x1;
576 }
577 else
578 biguns = 1;
579 x += stridex;
580 y += stridey;
581 i = 1;
582 if (--n <= 0)
583 break;
584 goto loop1;

new/usr/src/lib/libmvec/common/__vcos.c 10

585 }
586 x1 = *x;
587 py1 = y;
588 x += stridex;
589 y += stridey;
590 i = 2;
591 if (--n <= 0)
592 break;

594 loop2:
595 hx = HI(x);
596 xsb2 = hx >> 31;
597 hx &= ~0x80000000;
598 if (hx > 0x413921fb)
599 {
600 if (hx >= 0x7ff00000)
601 {
602 x2 = *x;
603 *y = x2 - x2;
604 }
605 else
606 biguns = 1;
607 x += stridex;
608 y += stridey;
609 i = 2;
610 if (--n <= 0)
611 break;
612 goto loop2;
613 }
614 x2 = *x;
615 py2 = y;

617 n0 = (int) (x0 * invpio2 + half[xsb0]);
618 n1 = (int) (x1 * invpio2 + half[xsb1]);
619 n2 = (int) (x2 * invpio2 + half[xsb2]);
620 fn0 = (double) n0;
621 fn1 = (double) n1;
622 fn2 = (double) n2;
623 n0 = (n0 + 1) & 3; /* Add 1 (before the mod) to make sin into co
624 n1 = (n1 + 1) & 3;
625 n2 = (n2 + 1) & 3;
626 a0 = x0 - fn0 * pio2_1;
627 a1 = x1 - fn1 * pio2_1;
628 a2 = x2 - fn2 * pio2_1;
629 w0 = fn0 * pio2_2;
630 w1 = fn1 * pio2_2;
631 w2 = fn2 * pio2_2;
632 x0 = a0 - w0;
633 x1 = a1 - w1;
634 x2 = a2 - w2;
635 y0 = (a0 - x0) - w0;
636 y1 = (a1 - x1) - w1;
637 y2 = (a2 - x2) - w2;
638 a0 = x0;
639 a1 = x1;
640 a2 = x2;
641 w0 = fn0 * pio2_3 - y0;
642 w1 = fn1 * pio2_3 - y1;
643 w2 = fn2 * pio2_3 - y2;
644 x0 = a0 - w0;
645 x1 = a1 - w1;
646 x2 = a2 - w2;
647 y0 = (a0 - x0) - w0;
648 y1 = (a1 - x1) - w1;
649 y2 = (a2 - x2) - w2;
650 a0 = x0;

new/usr/src/lib/libmvec/common/__vcos.c 11

651 a1 = x1;
652 a2 = x2;
653 w0 = fn0 * pio2_3t - y0;
654 w1 = fn1 * pio2_3t - y1;
655 w2 = fn2 * pio2_3t - y2;
656 x0 = a0 - w0;
657 x1 = a1 - w1;
658 x2 = a2 - w2;
659 y0 = (a0 - x0) - w0;
660 y1 = (a1 - x1) - w1;
661 y2 = (a2 - x2) - w2;
662 xsb0 = HI(&x0);
663 i = ((xsb0 & ~0x80000000) - thresh[n0&1]) >> 31;
664 xsb1 = HI(&x1);
665 i |= (((xsb1 & ~0x80000000) - thresh[n1&1]) >> 30) & 2;
666 xsb2 = HI(&x2);
667 i |= (((xsb2 & ~0x80000000) - thresh[n2&1]) >> 29) & 4;
668 switch (i)
669 {
670 double t0, t1, t2, z0, z1, z2;
671 unsigned j0, j1, j2;

673 case 0:
674 j0 = (xsb0 + 0x4000) & 0xffff8000;
675 j1 = (xsb1 + 0x4000) & 0xffff8000;
676 j2 = (xsb2 + 0x4000) & 0xffff8000;
677 HI(&t0) = j0;
678 HI(&t1) = j1;
679 HI(&t2) = j2;
680 LO(&t0) = 0;
681 LO(&t1) = 0;
682 LO(&t2) = 0;
683 x0 = (x0 - t0) + y0;
684 x1 = (x1 - t1) + y1;
685 x2 = (x2 - t2) + y2;
686 z0 = x0 * x0;
687 z1 = x1 * x1;
688 z2 = x2 * x2;
689 t0 = z0 * (qq1 + z0 * qq2);
690 t1 = z1 * (qq1 + z1 * qq2);
691 t2 = z2 * (qq1 + z2 * qq2);
692 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
693 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
694 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
695 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
696 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
697 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
698 xsb0 = (xsb0 >> 30) & 2;
699 xsb1 = (xsb1 >> 30) & 2;
700 xsb2 = (xsb2 >> 30) & 2;
701 n0 ^= (xsb0 & ~(n0 << 1));
702 n1 ^= (xsb1 & ~(n1 << 1));
703 n2 ^= (xsb2 & ~(n2 << 1));
704 xsb0 |= 1;
705 xsb1 |= 1;
706 xsb2 |= 1;
707 a0 = __vlibm_TBL_sincos_hi[j0+n0];
708 a1 = __vlibm_TBL_sincos_hi[j1+n1];
709 a2 = __vlibm_TBL_sincos_hi[j2+n2];
710 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
711 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
712 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
713 *py0 = (a0 + t0);
714 *py1 = (a1 + t1);
715 *py2 = (a2 + t2);
716 break;

new/usr/src/lib/libmvec/common/__vcos.c 12

718 case 1:
719 j0 = n0 & 1;
720 j1 = (xsb1 + 0x4000) & 0xffff8000;
721 j2 = (xsb2 + 0x4000) & 0xffff8000;
722 HI(&t1) = j1;
723 HI(&t2) = j2;
724 LO(&t1) = 0;
725 LO(&t2) = 0;
726 x0_or_one[0] = x0;
727 x0_or_one[2] = -x0;
728 y0_or_zero[0] = y0;
729 y0_or_zero[2] = -y0;
730 x1 = (x1 - t1) + y1;
731 x2 = (x2 - t2) + y2;
732 z0 = x0 * x0;
733 z1 = x1 * x1;
734 z2 = x2 * x2;
735 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
736 t1 = z1 * (qq1 + z1 * qq2);
737 t2 = z2 * (qq1 + z2 * qq2);
738 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
739 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
740 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
741 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
742 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
743 xsb1 = (xsb1 >> 30) & 2;
744 xsb2 = (xsb2 >> 30) & 2;
745 n1 ^= (xsb1 & ~(n1 << 1));
746 n2 ^= (xsb2 & ~(n2 << 1));
747 xsb1 |= 1;
748 xsb2 |= 1;
749 a1 = __vlibm_TBL_sincos_hi[j1+n1];
750 a2 = __vlibm_TBL_sincos_hi[j2+n2];
751 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
752 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
753 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
754 *py0 = t0;
755 *py1 = (a1 + t1);
756 *py2 = (a2 + t2);
757 break;

759 case 2:
760 j0 = (xsb0 + 0x4000) & 0xffff8000;
761 j1 = n1 & 1;
762 j2 = (xsb2 + 0x4000) & 0xffff8000;
763 HI(&t0) = j0;
764 HI(&t2) = j2;
765 LO(&t0) = 0;
766 LO(&t2) = 0;
767 x1_or_one[0] = x1;
768 x1_or_one[2] = -x1;
769 x0 = (x0 - t0) + y0;
770 y1_or_zero[0] = y1;
771 y1_or_zero[2] = -y1;
772 x2 = (x2 - t2) + y2;
773 z0 = x0 * x0;
774 z1 = x1 * x1;
775 z2 = x2 * x2;
776 t0 = z0 * (qq1 + z0 * qq2);
777 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
778 t2 = z2 * (qq1 + z2 * qq2);
779 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
780 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
781 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
782 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~

new/usr/src/lib/libmvec/common/__vcos.c 13

783 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
784 xsb0 = (xsb0 >> 30) & 2;
785 xsb2 = (xsb2 >> 30) & 2;
786 n0 ^= (xsb0 & ~(n0 << 1));
787 n2 ^= (xsb2 & ~(n2 << 1));
788 xsb0 |= 1;
789 xsb2 |= 1;
790 a0 = __vlibm_TBL_sincos_hi[j0+n0];
791 a2 = __vlibm_TBL_sincos_hi[j2+n2];
792 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
793 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
794 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
795 *py0 = (a0 + t0);
796 *py1 = t1;
797 *py2 = (a2 + t2);
798 break;

800 case 3:
801 j0 = n0 & 1;
802 j1 = n1 & 1;
803 j2 = (xsb2 + 0x4000) & 0xffff8000;
804 HI(&t2) = j2;
805 LO(&t2) = 0;
806 x0_or_one[0] = x0;
807 x0_or_one[2] = -x0;
808 x1_or_one[0] = x1;
809 x1_or_one[2] = -x1;
810 y0_or_zero[0] = y0;
811 y0_or_zero[2] = -y0;
812 y1_or_zero[0] = y1;
813 y1_or_zero[2] = -y1;
814 x2 = (x2 - t2) + y2;
815 z0 = x0 * x0;
816 z1 = x1 * x1;
817 z2 = x2 * x2;
818 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
819 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
820 t2 = z2 * (qq1 + z2 * qq2);
821 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
822 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
823 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
824 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
825 xsb2 = (xsb2 >> 30) & 2;
826 n2 ^= (xsb2 & ~(n2 << 1));
827 xsb2 |= 1;
828 a2 = __vlibm_TBL_sincos_hi[j2+n2];
829 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
830 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
831 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
832 *py0 = t0;
833 *py1 = t1;
834 *py2 = (a2 + t2);
835 break;

837 case 4:
838 j0 = (xsb0 + 0x4000) & 0xffff8000;
839 j1 = (xsb1 + 0x4000) & 0xffff8000;
840 j2 = n2 & 1;
841 HI(&t0) = j0;
842 HI(&t1) = j1;
843 LO(&t0) = 0;
844 LO(&t1) = 0;
845 x2_or_one[0] = x2;
846 x2_or_one[2] = -x2;
847 x0 = (x0 - t0) + y0;
848 x1 = (x1 - t1) + y1;

new/usr/src/lib/libmvec/common/__vcos.c 14

849 y2_or_zero[0] = y2;
850 y2_or_zero[2] = -y2;
851 z0 = x0 * x0;
852 z1 = x1 * x1;
853 z2 = x2 * x2;
854 t0 = z0 * (qq1 + z0 * qq2);
855 t1 = z1 * (qq1 + z1 * qq2);
856 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
857 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
858 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
859 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
860 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
861 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
862 xsb0 = (xsb0 >> 30) & 2;
863 xsb1 = (xsb1 >> 30) & 2;
864 n0 ^= (xsb0 & ~(n0 << 1));
865 n1 ^= (xsb1 & ~(n1 << 1));
866 xsb0 |= 1;
867 xsb1 |= 1;
868 a0 = __vlibm_TBL_sincos_hi[j0+n0];
869 a1 = __vlibm_TBL_sincos_hi[j1+n1];
870 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
871 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
872 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
873 *py0 = (a0 + t0);
874 *py1 = (a1 + t1);
875 *py2 = t2;
876 break;

878 case 5:
879 j0 = n0 & 1;
880 j1 = (xsb1 + 0x4000) & 0xffff8000;
881 j2 = n2 & 1;
882 HI(&t1) = j1;
883 LO(&t1) = 0;
884 x0_or_one[0] = x0;
885 x0_or_one[2] = -x0;
886 x2_or_one[0] = x2;
887 x2_or_one[2] = -x2;
888 y0_or_zero[0] = y0;
889 y0_or_zero[2] = -y0;
890 x1 = (x1 - t1) + y1;
891 y2_or_zero[0] = y2;
892 y2_or_zero[2] = -y2;
893 z0 = x0 * x0;
894 z1 = x1 * x1;
895 z2 = x2 * x2;
896 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
897 t1 = z1 * (qq1 + z1 * qq2);
898 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
899 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
900 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
901 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
902 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
903 xsb1 = (xsb1 >> 30) & 2;
904 n1 ^= (xsb1 & ~(n1 << 1));
905 xsb1 |= 1;
906 a1 = __vlibm_TBL_sincos_hi[j1+n1];
907 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
908 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
909 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
910 *py0 = t0;
911 *py1 = (a1 + t1);
912 *py2 = t2;
913 break;

new/usr/src/lib/libmvec/common/__vcos.c 15

915 case 6:
916 j0 = (xsb0 + 0x4000) & 0xffff8000;
917 j1 = n1 & 1;
918 j2 = n2 & 1;
919 HI(&t0) = j0;
920 LO(&t0) = 0;
921 x1_or_one[0] = x1;
922 x1_or_one[2] = -x1;
923 x2_or_one[0] = x2;
924 x2_or_one[2] = -x2;
925 x0 = (x0 - t0) + y0;
926 y1_or_zero[0] = y1;
927 y1_or_zero[2] = -y1;
928 y2_or_zero[0] = y2;
929 y2_or_zero[2] = -y2;
930 z0 = x0 * x0;
931 z1 = x1 * x1;
932 z2 = x2 * x2;
933 t0 = z0 * (qq1 + z0 * qq2);
934 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
935 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
936 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
937 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
938 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
939 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
940 xsb0 = (xsb0 >> 30) & 2;
941 n0 ^= (xsb0 & ~(n0 << 1));
942 xsb0 |= 1;
943 a0 = __vlibm_TBL_sincos_hi[j0+n0];
944 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
945 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
946 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
947 *py0 = (a0 + t0);
948 *py1 = t1;
949 *py2 = t2;
950 break;

952 case 7:
953 j0 = n0 & 1;
954 j1 = n1 & 1;
955 j2 = n2 & 1;
956 x0_or_one[0] = x0;
957 x0_or_one[2] = -x0;
958 x1_or_one[0] = x1;
959 x1_or_one[2] = -x1;
960 x2_or_one[0] = x2;
961 x2_or_one[2] = -x2;
962 y0_or_zero[0] = y0;
963 y0_or_zero[2] = -y0;
964 y1_or_zero[0] = y1;
965 y1_or_zero[2] = -y1;
966 y2_or_zero[0] = y2;
967 y2_or_zero[2] = -y2;
968 z0 = x0 * x0;
969 z1 = x1 * x1;
970 z2 = x2 * x2;
971 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
972 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
973 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
974 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
975 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
976 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
977 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
978 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
979 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
980 *py0 = t0;

new/usr/src/lib/libmvec/common/__vcos.c 16

981 *py1 = t1;
982 *py2 = t2;
983 break;
984 }

986 x += stridex;
987 y += stridey;
988 i = 0;
989 } while (--n > 0);

991 if (i > 0)
992 {
993 double fn0, fn1, a0, a1, w0, w1, y0, y1;
994 double t0, t1, z0, z1;
995 unsigned j0, j1;
996 int n0, n1;

998 if (i > 1)
999 {

1000 n1 = (int) (x1 * invpio2 + half[xsb1]);
1001 fn1 = (double) n1;
1002 n1 = (n1 + 1) & 3; /* Add 1 (before the mod) to make sin
1003 a1 = x1 - fn1 * pio2_1;
1004 w1 = fn1 * pio2_2;
1005 x1 = a1 - w1;
1006 y1 = (a1 - x1) - w1;
1007 a1 = x1;
1008 w1 = fn1 * pio2_3 - y1;
1009 x1 = a1 - w1;
1010 y1 = (a1 - x1) - w1;
1011 a1 = x1;
1012 w1 = fn1 * pio2_3t - y1;
1013 x1 = a1 - w1;
1014 y1 = (a1 - x1) - w1;
1015 xsb1 = HI(&x1);
1016 if ((xsb1 & ~0x80000000) < thresh[n1&1])
1017 {
1018 j1 = n1 & 1;
1019 x1_or_one[0] = x1;
1020 x1_or_one[2] = -x1;
1021 y1_or_zero[0] = y1;
1022 y1_or_zero[2] = -y1;
1023 z1 = x1 * x1;
1024 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1025 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1)
1026 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_on
1027 *py1 = t1;
1028 }
1029 else
1030 {
1031 j1 = (xsb1 + 0x4000) & 0xffff8000;
1032 HI(&t1) = j1;
1033 LO(&t1) = 0;
1034 x1 = (x1 - t1) + y1;
1035 z1 = x1 * x1;
1036 t1 = z1 * (qq1 + z1 * qq2);
1037 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
1038 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >>
1039 xsb1 = (xsb1 >> 30) & 2;
1040 n1 ^= (xsb1 & ~(n1 << 1));
1041 xsb1 |= 1;
1042 a1 = __vlibm_TBL_sincos_hi[j1+n1];
1043 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] *
1044 *py1 = (a1 + t1);
1045 }
1046 }

new/usr/src/lib/libmvec/common/__vcos.c 17

1047 n0 = (int) (x0 * invpio2 + half[xsb0]);
1048 fn0 = (double) n0;
1049 n0 = (n0 + 1) & 3; /* Add 1 (before the mod) to make sin into co
1050 a0 = x0 - fn0 * pio2_1;
1051 w0 = fn0 * pio2_2;
1052 x0 = a0 - w0;
1053 y0 = (a0 - x0) - w0;
1054 a0 = x0;
1055 w0 = fn0 * pio2_3 - y0;
1056 x0 = a0 - w0;
1057 y0 = (a0 - x0) - w0;
1058 a0 = x0;
1059 w0 = fn0 * pio2_3t - y0;
1060 x0 = a0 - w0;
1061 y0 = (a0 - x0) - w0;
1062 xsb0 = HI(&x0);
1063 if ((xsb0 & ~0x80000000) < thresh[n0&1])
1064 {
1065 j0 = n0 & 1;
1066 x0_or_one[0] = x0;
1067 x0_or_one[2] = -x0;
1068 y0_or_zero[0] = y0;
1069 y0_or_zero[2] = -y0;
1070 z0 = x0 * x0;
1071 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1072 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1073 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1074 *py0 = t0;
1075 }
1076 else
1077 {
1078 j0 = (xsb0 + 0x4000) & 0xffff8000;
1079 HI(&t0) = j0;
1080 LO(&t0) = 0;
1081 x0 = (x0 - t0) + y0;
1082 z0 = x0 * x0;
1083 t0 = z0 * (qq1 + z0 * qq2);
1084 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
1085 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1086 xsb0 = (xsb0 >> 30) & 2;
1087 n0 ^= (xsb0 & ~(n0 << 1));
1088 xsb0 |= 1;
1089 a0 = __vlibm_TBL_sincos_hi[j0+n0];
1090 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
1091 *py0 = (a0 + t0);
1092 }
1093 }

1095 if (biguns)
1096 __vlibm_vcos_big(nsave, xsave, sxsave, ysave, sysave, 0x413921f
1097 }
______unchanged_portion_omitted_

new/usr/src/lib/libmvec/common/__vcosf.c 1

**
 10431 Sun May 4 03:07:21 2014
new/usr/src/lib/libmvec/common/__vcosf.c
**
______unchanged_portion_omitted_

76 #define S0 C[0]
77 #define S1 C[1]
78 #define S2 C[2]
79 #define one C[3]
80 #define mhalf C[4]
81 #define C0 C[5]
82 #define C1 C[6]
83 #define C2 C[7]
84 #define invpio2 C[8]
85 #define c3two51 C[9]
86 #define pio2_1 C[10]
87 #define pio2_t C[11]

89 #define PREPROCESS(N, index, label) \
90 hx = *(int *)x; \
91 ix = hx & 0x7fffffff; \
92 t = *x; \
93 x += stridex; \
94 if (ix <= 0x3f490fdb) { /* |x| < pi/4 */ \
95 if (ix == 0) { \
96 y[index] = one; \
97 goto label; \
98 } \
99 y##N = (double)t; \
100 n##N = 1; \
101 } else if (ix <= 0x49c90fdb) { /* |x| < 2^19*pi */ \
102 y##N = (double)t; \
103 medium = 1; \
104 } else { \
105 if (ix >= 0x7f800000) { /* inf or nan */ \
106 y[index] = t / t; \
107 goto label; \
108 } \
109 z##N = y##N = (double)t; \
110 hx = HI(y##N); \
111 n##N = ((hx >> 20) & 0x7ff) - 1046; \
112 HI(z##N) = (hx & 0xfffff) | 0x41600000; \
113 n##N = __vlibm_rem_pio2m(&z##N, &y##N, n##N, 1, 0) + 1; \
114 z##N = y##N * y##N; \
115 if (n##N & 1) { /* compute cos y */ \
116 f##N = (float)(one + z##N * (mhalf + z##N * \
117 (C0 + z##N * (C1 + z##N * C2)))); \
118 } else { /* compute sin y */ \
119 f##N = (float)(y##N + y##N * z##N * (S0 + \
120 z##N * (S1 + z##N * S2))); \
121 } \
122 y[index] = (n##N & 2)? -f##N : f##N; \
123 goto label; \
124 }

126 #define PROCESS(N) \
127 if (medium) { \
128 z##N = y##N * invpio2 + c3two51; \
129 n##N = LO(z##N) + 1; \
130 z##N -= c3two51; \
131 y##N = (y##N - z##N * pio2_1) - z##N * pio2_t; \
132 } \
133 z##N = y##N * y##N; \
134 if (n##N & 1) { /* compute cos y */ \
135 f##N = (float)(one + z##N * (mhalf + z##N * (C0 + \

new/usr/src/lib/libmvec/common/__vcosf.c 2

136 z##N * (C1 + z##N * C2)))); \
137 } else { /* compute sin y */ \
138 f##N = (float)(y##N + y##N * z##N * (S0 + z##N * (S1 + \
139 z##N * S2))); \
140 } \
141 *y = (n##N & 2)? -f##N : f##N; \
142 y += stridey

144 void
145 __vcosf(int n, float *restrict x, int stridex, float *restrict y,
146 int stridey)
147 {
148 double y0, y1, y2, y3;
149 double z0, z1, z2, z3;
150 float f0, f1, f2, f3, t;
151 int n0 = 0, n1 = 0, n2 = 0, n3, hx, ix, medium;
151 int n0, n1, n2, n3, hx, ix, medium;

153 y -= stridey;

155 for (;;) {
156 begin:
157 y += stridey;

159 if (--n < 0)
160 break;

162 medium = 0;
163 PREPROCESS(0, 0, begin);

165 if (--n < 0)
166 goto process1;

168 PREPROCESS(1, stridey, process1);

170 if (--n < 0)
171 goto process2;

173 PREPROCESS(2, (stridey << 1), process2);

175 if (--n < 0)
176 goto process3;

178 PREPROCESS(3, (stridey << 1) + stridey, process3);

180 if (medium) {
181 z0 = y0 * invpio2 + c3two51;
182 z1 = y1 * invpio2 + c3two51;
183 z2 = y2 * invpio2 + c3two51;
184 z3 = y3 * invpio2 + c3two51;

186 n0 = LO(z0) + 1;
187 n1 = LO(z1) + 1;
188 n2 = LO(z2) + 1;
189 n3 = LO(z3) + 1;

191 z0 -= c3two51;
192 z1 -= c3two51;
193 z2 -= c3two51;
194 z3 -= c3two51;

196 y0 = (y0 - z0 * pio2_1) - z0 * pio2_t;
197 y1 = (y1 - z1 * pio2_1) - z1 * pio2_t;
198 y2 = (y2 - z2 * pio2_1) - z2 * pio2_t;
199 y3 = (y3 - z3 * pio2_1) - z3 * pio2_t;
200 }

new/usr/src/lib/libmvec/common/__vcosf.c 3

202 z0 = y0 * y0;
203 z1 = y1 * y1;
204 z2 = y2 * y2;
205 z3 = y3 * y3;

207 hx = (n0 & 1) | ((n1 & 1) << 1) | ((n2 & 1) << 2) |
208 ((n3 & 1) << 3);
209 switch (hx) {
210 case 0:
211 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
212 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
213 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
214 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
215 break;

217 case 1:
218 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
219 z0 * (C1 + z0 * C2))));
220 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
221 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
222 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
223 break;

225 case 2:
226 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
227 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
228 z1 * (C1 + z1 * C2))));
229 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
230 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
231 break;

233 case 3:
234 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
235 z0 * (C1 + z0 * C2))));
236 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
237 z1 * (C1 + z1 * C2))));
238 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
239 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
240 break;

242 case 4:
243 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
244 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
245 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
246 z2 * (C1 + z2 * C2))));
247 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
248 break;

250 case 5:
251 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
252 z0 * (C1 + z0 * C2))));
253 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
254 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
255 z2 * (C1 + z2 * C2))));
256 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
257 break;

259 case 6:
260 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
261 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
262 z1 * (C1 + z1 * C2))));
263 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
264 z2 * (C1 + z2 * C2))));
265 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
266 break;

new/usr/src/lib/libmvec/common/__vcosf.c 4

268 case 7:
269 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
270 z0 * (C1 + z0 * C2))));
271 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
272 z1 * (C1 + z1 * C2))));
273 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
274 z2 * (C1 + z2 * C2))));
275 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
276 break;

278 case 8:
279 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
280 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
281 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
282 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
283 z3 * (C1 + z3 * C2))));
284 break;

286 case 9:
287 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
288 z0 * (C1 + z0 * C2))));
289 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
290 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
291 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
292 z3 * (C1 + z3 * C2))));
293 break;

295 case 10:
296 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
297 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
298 z1 * (C1 + z1 * C2))));
299 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
300 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
301 z3 * (C1 + z3 * C2))));
302 break;

304 case 11:
305 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
306 z0 * (C1 + z0 * C2))));
307 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
308 z1 * (C1 + z1 * C2))));
309 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
310 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
311 z3 * (C1 + z3 * C2))));
312 break;

314 case 12:
315 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
316 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
317 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
318 z2 * (C1 + z2 * C2))));
319 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
320 z3 * (C1 + z3 * C2))));
321 break;

323 case 13:
324 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
325 z0 * (C1 + z0 * C2))));
326 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
327 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
328 z2 * (C1 + z2 * C2))));
329 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
330 z3 * (C1 + z3 * C2))));
331 break;

new/usr/src/lib/libmvec/common/__vcosf.c 5

333 case 14:
334 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
335 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
336 z1 * (C1 + z1 * C2))));
337 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
338 z2 * (C1 + z2 * C2))));
339 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
340 z3 * (C1 + z3 * C2))));
341 break;

343 default:
344 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
345 z0 * (C1 + z0 * C2))));
346 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
347 z1 * (C1 + z1 * C2))));
348 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
349 z2 * (C1 + z2 * C2))));
350 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
351 z3 * (C1 + z3 * C2))));
352 }

354 *y = (n0 & 2)? -f0 : f0;
355 y += stridey;
356 *y = (n1 & 2)? -f1 : f1;
357 y += stridey;
358 *y = (n2 & 2)? -f2 : f2;
359 y += stridey;
360 *y = (n3 & 2)? -f3 : f3;
361 continue;

363 process1:
364 PROCESS(0);
365 continue;

367 process2:
368 PROCESS(0);
369 PROCESS(1);
370 continue;

372 process3:
373 PROCESS(0);
374 PROCESS(1);
375 PROCESS(2);
376 }
377 }

______unchanged_portion_omitted_

new/usr/src/lib/libmvec/common/__vpow.c 1

**
 56146 Sun May 4 03:07:23 2014
new/usr/src/lib/libmvec/common/__vpow.c
**
______unchanged_portion_omitted_
546 yisint##I = 0; /* Y - non-integer */
547 exp = hy >> 20; /* Y exponent */
548 ull_y0 &= LMMANT;
549 ull_x##I = (ull_y0 | LDONE);
549 ull_x##I = ull_y0 | LDONE;
550 x##I = *(double*)&ull_x##I;
551 ull_ax##I = ((ull_x##I + LMROUND) & LMHI20);
551 ull_ax##I = (ull_x##I + LMROUND) & LMHI20;
552 ax##I = *(double*)&ull_ax##I;
553 if (hx >= 0x7ff00000 || exp >= 0x43e) /* X=Inf,Nan or |Y|>2^63,Inf,Nan
554 {
555 y0 = *px;
556 if (hx > 0x7ff00000 || (hx == 0x7ff00000 && lx != 0) ||
557 hy > 0x7ff00000 || (hy == 0x7ff00000 && ly != 0)) /* |X| or |Y| =
558 RETURN (I, y0 + *py)
559 if (hy == 0x7ff00000 && (ly == 0)) /* |Y| = Inf */
560 {
561 if (hx == 0x3ff00000 && (lx == 0)) /* +-1 ** +-Inf
562 *pz = *py - *py;
563 else if ((hx < 0x3ff00000) != sy)
564 *pz = DZERO;
565 else
566 {
567 HI(pz) = hy;
568 LO(pz) = ly;
569 }
570 RET_SC(I)
571 }
572 if (exp < 0x43e) /* |Y| < 2^63 */
573 {
574 if (sx) /* X = -Inf */
575 {
576 if (exp >= 0x434) /* |Y| >= 2^53 */
577 yisint##I = 2; /* Y - even */
578 else
579 {
580 if (exp >= 0x3ff) /* |Y| >= 1 */
581 {
582 if (exp > (20 + 0x3ff))
583 {
584 i0 = ly >> (52 - (exp - 0x3ff));
585 if ((i0 << (52 - (exp - 0x3ff))
586 yisint##I = 2 - (i0 & 1)
587 }
588 else if (ly == 0)
589 {
590 i0 = hy >> (20 - (exp - 0x3ff));
591 if ((i0 << (20 - (exp - 0x3ff))
592 yisint##I = 2 - (i0 & 1)
593 }
594 }
595 }
596 }
597 if (sy)
598 hx = lx = 0;
599 hx += yisint##I << 31;
600 HI(pz) = hx;
601 LO(pz) = lx;
602 RET_SC(I)
603 }
604 else /* |Y| >= 2^63 */

new/usr/src/lib/libmvec/common/__vpow.c 2

605 {
606 /* |X| = 0, 1, Inf */
607 if (lx == 0 && (hx == 0 || hx == 0x3ff00000 || hx == 0x7ff00000
608 {
609 HI(pz) = hx;
610 LO(pz) = lx;
611 if (sy)
612 *pz = DONE / *pz;
613 }
614 else
615 {
616 y0 = ((hx < 0x3ff00000) != sy) ? _TINY : _HUGE;
617 *pz = y0 * y0;
618 }
619 RET_SC(I)
620 }
621 }
622 if ((sx || (hx | lx)) == 0) /* X <= 0 */
622 if (sx || (hx | lx) == 0) /* X <= 0 */
623 {
624 if (exp >= 0x434) /* |Y| >= 2^53 */
625 yisint##I = 2; /* Y - even */
626 else
627 {
628 if (exp >= 0x3ff) /* |Y| >= 1 */
629 {
630 if (exp > (20 + 0x3ff))
631 {
632 i0 = ly >> (52 - (exp - 0x3ff));
633 if ((i0 << (52 - (exp - 0x3ff))) == ly)
634 yisint##I = 2 - (i0 & 1);
635 }
636 else if (ly == 0)
637 {
638 i0 = hy >> (20 - (exp - 0x3ff));
639 if ((i0 << (20 - (exp - 0x3ff))) == hy)
640 yisint##I = 2 - (i0 & 1);
641 }
642 }
643 }
644 if ((hx | lx) == 0) /* X == 0 */
645 {
646 y0 = DZERO;
647 if (sy)
648 y0 = DONE / y0;
649 if (sx & yisint##I)
650 y0 = -y0;
651 RETURN (I, y0)
652 }
653 if (yisint##I == 0) /* pow(neg,non-integer) */
654 RETURN (I, DZERO / DZERO) /* NaN */
655 }
656 exp = (hx >> 20);
657 exp##I = exp - 2046;
658 py##I = py;
659 pz##I = pz;
660 ux##I = x##I + ax##I;
661 if (!exp)
662 {
663 ax##I = (double) ull_y0;
664 ull_ax##I = *(unsigned long long*)&ax##I;
665 ull_x##I = ((ull_ax##I & LMMANT) | LDONE);
665 ull_x##I = ull_ax##I & LMMANT | LDONE;
666 x##I = *(double*)&ull_x##I;
667 exp##I = ((unsigned int*) & ull_ax##I)[0];
668 exp##I = (exp##I >> 20) - (2046 + 1023 + 51);

new/usr/src/lib/libmvec/common/__vpow.c 3

669 ull_ax##I = (ull_x##I + (LMROUND & LMHI20));
669 ull_ax##I = ull_x##I + LMROUND & LMHI20;
670 ax##I = *(double*)&ull_ax##I;
671 ux##I = x##I + ax##I;
672 }
673 ull_x##I = *(unsigned long long *)&ux##I;
674 hx##I = HI(&ull_ax##I);
675 yd##I = DONE / ux##I;

677 void
678 __vpow(int n, double * restrict px, int stridex, double * restrict py,
679 int stridey, double * restrict pz, int stridez)
680 {
681 double *py0 = 0, *py1 = 0, *py2;
682 double *pz0 = 0, *pz1 = 0, *pz2;
683 double y0, yd0 = 0.0L, u0, s0, s_l0, m_h0;
684 double y1, yd1 = 0.0L, u1, s1, s_l1, m_h1;
681 double *py0, *py1, *py2;
682 double *pz0, *pz1, *pz2;
683 double y0, yd0, u0, s0, s_l0, m_h0;
684 double y1, yd1, u1, s1, s_l1, m_h1;
685 double y2, yd2, u2, s2, s_l2, m_h2;
686 double ax0 = 0.0L, x0 = 0.0L, s_h0, ux0;
687 double ax1 = 0.0L, x1 = 0.0L, s_h1, ux1;
686 double ax0, x0, s_h0, ux0;
687 double ax1, x1, s_h1, ux1;
688 double ax2, x2, s_h2, ux2;
689 int eflag0, gflag0, ind0, i0;
690 int eflag1, gflag1, ind1, i1;
691 int eflag2, gflag2, ind2, i2;
692 int hx0 = 0, yisint0 = 0, exp0 = 0;
693 int hx1 = 0, yisint1 = 0, exp1 = 0;
692 int hx0, yisint0, exp0;
693 int hx1, yisint1, exp1;
694 int hx2, yisint2, exp2;
695 int exp, i = 0;
696 unsigned hx, lx, sx, hy, ly, sy;
697 unsigned long long ull_y0, ull_x0, ull_x1, ull_x2, ull_ax0, ull_ax1
698 unsigned long long LDONE = ((unsigned long long*)LCONST)[1];
699 unsigned long long LMMANT = ((unsigned long long*)LCONST)[4];
700 unsigned long long LMROUND = ((unsigned long long*)LCONST)[5];
701 unsigned long long LMHI20 = ((unsigned long long*)LCONST)[6];
702 double DONE = ((double*)LCONST)[1];
703 double DZERO = ((double*)LCONST)[7];
704 double KA5 = ((double*)LCONST)[8];
705 double KA3 = ((double*)LCONST)[9];
706 double KA1_LO = ((double*)LCONST)[10];
707 double KA1_HI = ((double*)LCONST)[11];
708 double KA1 = ((double*)LCONST)[12];
709 double HTHRESH = ((double*)LCONST)[13];
710 double LTHRESH = ((double*)LCONST)[14];
711 double KB5 = ((double*)LCONST)[15];
712 double KB4 = ((double*)LCONST)[16];
713 double KB3 = ((double*)LCONST)[17];
714 double KB2 = ((double*)LCONST)[18];
715 double KB1 = ((double*)LCONST)[19];

717 if (stridex == 0)
718 {
719 unsigned hx = HI(px);
720 unsigned lx = LO(px);

722 /* if x is a positive normal number not equal to one,
723 call __vpowx */
724 if (hx >= 0x00100000 && hx < 0x7ff00000 &&
725 (hx != 0x3ff00000 || lx != 0))

new/usr/src/lib/libmvec/common/__vpow.c 4

726 {
727 __vpowx(n, px, py, stridey, pz, stridez);
728 return;
729 }
730 }

732 do
733 {
734 /* perform si + ydi = 256*log2(xi)*yi */
735 start0:
736 PREP(0)
737 px += stridex;
738 py += stridey;
739 pz += stridez;
740 i = 1;
741 if (--n <= 0)
742 break;

744 start1:
745 PREP(1)
746 px += stridex;
747 py += stridey;
748 pz += stridez;
749 i = 2;
750 if (--n <= 0)
751 break;

753 start2:
754 PREP(2)

756 u0 = x0 - ax0;
757 u1 = x1 - ax1;
758 u2 = x2 - ax2;

760 s0 = u0 * yd0;
761 LO(&ux0) = 0;
762 s1 = u1 * yd1;
763 LO(&ux1) = 0;
764 s2 = u2 * yd2;
765 LO(&ux2) = 0;

767 y0 = s0 * s0;
768 s_h0 = s0;
769 LO(&s_h0) = 0;
770 y1 = s1 * s1;
771 s_h1 = s1;
772 LO(&s_h1) = 0;
773 y2 = s2 * s2;
774 s_h2 = s2;
775 LO(&s_h2) = 0;

777 s0 = (KA5 * y0 + KA3) * y0 * s0;
778 s1 = (KA5 * y1 + KA3) * y1 * s1;
779 s2 = (KA5 * y2 + KA3) * y2 * s2;

781 s_l0 = (x0 - (ux0 - ax0));
782 s_l1 = (x1 - (ux1 - ax1));
783 s_l2 = (x2 - (ux2 - ax2));

785 s_l0 = u0 - s_h0 * ux0 - s_h0 * s_l0;
786 s_l1 = u1 - s_h1 * ux1 - s_h1 * s_l1;
787 s_l2 = u2 - s_h2 * ux2 - s_h2 * s_l2;

789 s_l0 = KA1 * yd0 * s_l0;
790 i0 = (hx0 >> 8) & 0xff0;
791 exp0 += (hx0 >> 20);

new/usr/src/lib/libmvec/common/__vpow.c 5

793 s_l1 = KA1 * yd1 * s_l1;
794 i1 = (hx1 >> 8) & 0xff0;
795 exp1 += (hx1 >> 20);

797 s_l2 = KA1 * yd2 * s_l2;
798 i2 = (hx2 >> 8) & 0xff0;
799 exp2 += (hx2 >> 20);

801 yd0 = KA1_HI * s_h0;
802 yd1 = KA1_HI * s_h1;
803 yd2 = KA1_HI * s_h2;

805 y0 = *(double *)((char*)__TBL_log2 + i0);
806 y1 = *(double *)((char*)__TBL_log2 + i1);
807 y2 = *(double *)((char*)__TBL_log2 + i2);

809 y0 += (double)(exp0 << 8);
810 y1 += (double)(exp1 << 8);
811 y2 += (double)(exp2 << 8);

813 m_h0 = y0 + yd0;
814 m_h1 = y1 + yd1;
815 m_h2 = y2 + yd2;

817 y0 = s0 - ((m_h0 - y0 - yd0) - s_l0);
818 y1 = s1 - ((m_h1 - y1 - yd1) - s_l1);
819 y2 = s2 - ((m_h2 - y2 - yd2) - s_l2);

821 y0 += *(double *)((char*)__TBL_log2 + i0 + 8) + KA1_LO * s_h0;
822 y1 += *(double *)((char*)__TBL_log2 + i1 + 8) + KA1_LO * s_h1;
823 y2 += *(double *)((char*)__TBL_log2 + i2 + 8) + KA1_LO * s_h2;

825 s_h0 = y0 + m_h0;
826 s_h1 = y1 + m_h1;
827 s_h2 = y2 + m_h2;

829 LO(&s_h0) = 0;
830 LO(&s_h1) = 0;
831 LO(&s_h2) = 0;

833 yd0 = *py0;
834 yd1 = *py1;
835 yd2 = *py2;
836 s0 = yd0;
837 s1 = yd1;
838 s2 = yd2;
839 LO(&s0) = 0;
840 LO(&s1) = 0;
841 LO(&s2) = 0;

843 y0 = y0 - (s_h0 - m_h0);
844 y1 = y1 - (s_h1 - m_h1);
845 y2 = y2 - (s_h2 - m_h2);

847 yd0 = (yd0 - s0) * s_h0 + yd0 * y0;
848 yd1 = (yd1 - s1) * s_h1 + yd1 * y1;
849 yd2 = (yd2 - s2) * s_h2 + yd2 * y2;

851 s0 = s_h0 * s0;
852 s1 = s_h1 * s1;
853 s2 = s_h2 * s2;

855 /* perform 2 ** ((si+ydi)/256) */
856 if (s0 > HTHRESH)
857 {

new/usr/src/lib/libmvec/common/__vpow.c 6

858 s0 = HTHRESH;
859 yd0 = DZERO;
860 }
861 if (s1 > HTHRESH)
862 {
863 s1 = HTHRESH;
864 yd1 = DZERO;
865 }
866 if (s2 > HTHRESH)
867 {
868 s2 = HTHRESH;
869 yd2 = DZERO;
870 }

872 if (s0 < LTHRESH)
873 {
874 s0 = LTHRESH;
875 yd0 = DZERO;
876 }
877 ind0 = (int) (s0 + yd0);
878 if (s1 < LTHRESH)
879 {
880 s1 = LTHRESH;
881 yd1 = DZERO;
882 }
883 ind1 = (int) (s1 + yd1);
884 if (s2 < LTHRESH)
885 {
886 s2 = LTHRESH;
887 yd2 = DZERO;
888 }
889 ind2 = (int) (s2 + yd2);

891 i0 = (ind0 & 0xff) << 4;
892 u0 = (double) ind0;
893 ind0 >>= 8;

895 i1 = (ind1 & 0xff) << 4;
896 u1 = (double)ind1;
897 ind1 >>= 8;

899 i2 = (ind2 & 0xff) << 4;
900 u2 = (double) ind2;
901 ind2 >>= 8;

903 y0 = s0 - u0 + yd0;
904 y1 = s1 - u1 + yd1;
905 y2 = s2 - u2 + yd2;

907 u0 = *(double*)((char*)__TBL_exp2 + i0);
908 y0 = ((((KB5 * y0 + KB4) * y0 + KB3) * y0 + KB2) * y0 + KB1) * y
909 u1 = *(double*)((char*)__TBL_exp2 + i1);
910 y1 = ((((KB5 * y1 + KB4) * y1 + KB3) * y1 + KB2) * y1 + KB1) * y
911 u2 = *(double*)((char*)__TBL_exp2 + i2);
912 y2 = ((((KB5 * y2 + KB4) * y2 + KB3) * y2 + KB2) * y2 + KB1) * y

914 eflag0 = (ind0 + 1021) >> 31;
915 gflag0 = (1022 - ind0) >> 31;
916 eflag1 = (ind1 + 1021) >> 31;
917 gflag1 = (1022 - ind1) >> 31;
918 eflag2 = (ind2 + 1021) >> 31;
919 gflag2 = (1022 - ind2) >> 31;

921 ind0 = (yisint0 << 11) + ind0 + (54 & eflag0) - (52 & gflag0);
922 ind0 <<= 20;
923 ind1 = (yisint1 << 11) + ind1 + (54 & eflag1) - (52 & gflag1);

new/usr/src/lib/libmvec/common/__vpow.c 7

924 ind1 <<= 20;
925 ind2 = (yisint2 << 11) + ind2 + (54 & eflag2) - (52 & gflag2);
926 ind2 <<= 20;

928 u0 = *(double*)((char*)__TBL_exp2 + i0 + 8) + u0 * y0 + u0;
929 u1 = *(double*)((char*)__TBL_exp2 + i1 + 8) + u1 * y1 + u1;
930 u2 = *(double*)((char*)__TBL_exp2 + i2 + 8) + u2 * y2 + u2;

932 ull_x0 = *(unsigned long long*)&u0;
933 HI(&ull_x0) += ind0;
934 u0 = *(double*)&ull_x0;

936 ull_x1 = *(unsigned long long*)&u1;
937 HI(&ull_x1) += ind1;
938 u1 = *(double*)&ull_x1;

940 ull_x2 = *(unsigned long long*)&u2;
941 HI(&ull_x2) += ind2;
942 u2 = *(double*)&ull_x2;

944 *pz0 = u0 * SCALE_ARR[eflag0 - gflag0];
945 *pz1 = u1 * SCALE_ARR[eflag1 - gflag1];
946 *pz2 = u2 * SCALE_ARR[eflag2 - gflag2];

948 px += stridex;
949 py += stridey;
950 pz += stridez;
951 i = 0;

953 } while (--n > 0);

955 if (i > 0)
956 {
957 /* perform si + ydi = 256*log2(xi)*yi */
958 u0 = x0 - ax0;
959 s0 = u0 * yd0;
960 LO(&ux0) = 0;
961 y0 = s0 * s0;
962 s_h0 = s0;
963 LO(&s_h0) = 0;
964 s0 = (KA5 * y0 + KA3) * y0 * s0;
965 s_l0 = (x0 - (ux0 - ax0));
966 s_l0 = u0 - s_h0 * ux0 - s_h0 * s_l0;
967 s_l0 = KA1 * yd0 * s_l0;
968 i0 = (hx0 >> 8) & 0xff0;
969 exp0 += (hx0 >> 20);
970 yd0 = KA1_HI * s_h0;
971 y0 = *(double *)((char*)__TBL_log2 + i0);
972 y0 += (double)(exp0 << 8);
973 m_h0 = y0 + yd0;
974 y0 = s0 - ((m_h0 - y0 - yd0) - s_l0);
975 y0 += *(double *)((char*)__TBL_log2 + i0 + 8) + KA1_LO * s_h0;
976 s_h0 = y0 + m_h0;
977 LO(&s_h0) = 0;
978 y0 = y0 - (s_h0 - m_h0);
979 s0 = yd0 = *py0;
980 LO(&s0) = 0;
981 yd0 = (yd0 - s0) * s_h0 + yd0 * y0;
982 s0 = s_h0 * s0;

984 /* perform 2 ** ((si+ydi)/256) */
985 if (s0 > HTHRESH)
986 {
987 s0 = HTHRESH;
988 yd0 = DZERO;
989 }

new/usr/src/lib/libmvec/common/__vpow.c 8

990 if (s0 < LTHRESH)
991 {
992 s0 = LTHRESH;
993 yd0 = DZERO;
994 }
995 ind0 = (int) (s0 + yd0);
996 i0 = (ind0 & 0xff) << 4;
997 u0 = (double) ind0;
998 ind0 >>= 8;
999 y0 = s0 - u0 + yd0;

1000 u0 = *(double*)((char*)__TBL_exp2 + i0);
1001 y0 = ((((KB5 * y0 + KB4) * y0 + KB3) * y0 + KB2) * y0 + KB1) * y
1002 eflag0 = (ind0 + 1021) >> 31;
1003 gflag0 = (1022 - ind0) >> 31;
1004 u0 = *(double*)((char*)__TBL_exp2 + i0 + 8) + u0 * y0 + u0;
1005 ind0 = (yisint0 << 11) + ind0 + (54 & eflag0) - (52 & gflag0);
1006 ind0 <<= 20;
1007 ull_x0 = *(unsigned long long*)&u0;
1008 HI(&ull_x0) += ind0;
1009 u0 = *(double*)&ull_x0;

1011 *pz0 = u0 * SCALE_ARR[eflag0 - gflag0];

1013 if (i > 1)
1014 {
1015 /* perform si + ydi = 256*log2(xi)*yi */
1016 u0 = x1 - ax1;
1017 s0 = u0 * yd1;
1018 LO(&ux1) = 0;
1019 y0 = s0 * s0;
1020 s_h0 = s0;
1021 LO(&s_h0) = 0;
1022 s0 = (KA5 * y0 + KA3) * y0 * s0;
1023 s_l0 = (x1 - (ux1 - ax1));
1024 s_l0 = u0 - s_h0 * ux1 - s_h0 * s_l0;
1025 s_l0 = KA1 * yd1 * s_l0;
1026 i0 = (hx1 >> 8) & 0xff0;
1027 exp1 += (hx1 >> 20);
1028 yd0 = KA1_HI * s_h0;
1029 y0 = *(double *)((char*)__TBL_log2 + i0);
1030 y0 += (double)(exp1 << 8);
1031 m_h0 = y0 + yd0;
1032 y0 = s0 - ((m_h0 - y0 - yd0) - s_l0);
1033 y0 += *(double *)((char*)__TBL_log2 + i0 + 8) + KA1_LO *
1034 s_h0 = y0 + m_h0;
1035 LO(&s_h0) = 0;
1036 y0 = y0 - (s_h0 - m_h0);
1037 s0 = yd0 = *py1;
1038 LO(&s0) = 0;
1039 yd0 = (yd0 - s0) * s_h0 + yd0 * y0;
1040 s0 = s_h0 * s0;
1041 /* perform 2 ** ((si+ydi)/256) */
1042 if (s0 > HTHRESH)
1043 {
1044 s0 = HTHRESH;
1045 yd0 = DZERO;
1046 }
1047 if (s0 < LTHRESH)
1048 {
1049 s0 = LTHRESH;
1050 yd0 = DZERO;
1051 }
1052 ind0 = (int) (s0 + yd0);
1053 i0 = (ind0 & 0xff) << 4;
1054 u0 = (double) ind0;
1055 ind0 >>= 8;

new/usr/src/lib/libmvec/common/__vpow.c 9

1056 y0 = s0 - u0 + yd0;
1057 u0 = *(double*)((char*)__TBL_exp2 + i0);
1058 y0 = ((((KB5 * y0 + KB4) * y0 + KB3) * y0 + KB2) * y0 +
1059 eflag0 = (ind0 + 1021) >> 31;
1060 gflag0 = (1022 - ind0) >> 31;
1061 u0 = *(double*)((char*)__TBL_exp2 + i0 + 8) + u0 * y0 +
1062 ind0 = (yisint1 << 11) + ind0 + (54 & eflag0) - (52 & gf
1063 ind0 <<= 20;
1064 ull_x0 = *(unsigned long long*)&u0;
1065 HI(&ull_x0) += ind0;
1066 u0 = *(double*)&ull_x0;
1067 *pz1 = u0 * SCALE_ARR[eflag0 - gflag0];
1068 }
1069 }
1070 }
______unchanged_portion_omitted_

1115 #define LMMANT ((unsigned long long*)LCONST)[4] /* 0x000fffffffffffff
1116 #define LMROUND ((unsigned long long*)LCONST)[5] /* 0x0000080000000000
1117 #define LMHI20 ((unsigned long long*)LCONST)[6] /* 0xfffff00000000000
1118 #define MMANT ((double*)LCONST)[4] /* 0x000fffffffffffff
1119 #define MROUND ((double*)LCONST)[5] /* 0x0000080000000000
1120 #define MHI20 ((double*)LCONST)[6] /* 0xfffff00000000000
1121 #define KA5 ((double*)LCONST)[8] /* 5.7707860486089373798
1122 #define KA3 ((double*)LCONST)[9] /* 9.6179669392576554942
1123 #define KA1_LO ((double*)LCONST)[10] /* 1.4105215426814730956
1124 #define KA1_HI ((double*)LCONST)[11] /* 2.8853759765625e+00*2
1125 #define KA1 ((double*)LCONST)[12] /* 2.885390081777926774e

1128 static void
1129 __vpowx(int n, double * restrict px, double * restrict py,
1130 int stridey, double * restrict pz, int stridez)
1131 {
1132 double *py0, *py1 = 0, *py2;
1133 double *pz0, *pz1 = 0, *pz2;
1132 double *py0, *py1, *py2;
1133 double *pz0, *pz1, *pz2;
1134 double ux0, y0, yd0, u0, s0;
1135 double y1, yd1, u1, s1;
1136 double y2, yd2, u2, s2;
1137 double yr, s_h0, s_l0, m_h0, x0, ax0;
1138 unsigned long long ull_y0, ull_x0, ull_x1, ull_x2, ull_ax0;
1139 int eflag0, gflag0, ind0, i0, exp0;
1140 int eflag1, gflag1, ind1, i1;
1141 int eflag2, gflag2, ind2, i2;
1142 int i = 0;
1143 unsigned hx, hx0, hy, ly, sy;
1144 double DONE = ((double*)LCONST)[1];
1145 unsigned long long LDONE = ((unsigned long long*)LCONST)[1];
1146 double DZERO = ((double*)LCONST)[7];
1147 double HTHRESH = ((double*)LCONST)[13];
1148 double LTHRESH = ((double*)LCONST)[14];
1149 double KB5 = ((double*)LCONST)[15];
1150 double KB4 = ((double*)LCONST)[16];
1151 double KB3 = ((double*)LCONST)[17];
1152 double KB2 = ((double*)LCONST)[18];
1153 double KB1 = ((double*)LCONST)[19];

1155 /* perform s_h + yr = 256*log2(x) */
1156 ull_y0 = *(unsigned long long*)px;
1157 hx = HI(px);
1158 ull_x0 = (ull_y0 & LMMANT) | LDONE;
1158 ull_x0 = ull_y0 & LMMANT | LDONE;
1159 x0 = *(double*)&ull_x0;
1160 exp0 = (hx >> 20) - 2046;

new/usr/src/lib/libmvec/common/__vpow.c 10

1161 ull_ax0 = ull_x0 + (LMROUND & LMHI20);
1161 ull_ax0 = ull_x0 + LMROUND & LMHI20;
1162 ax0 = *(double*)&ull_ax0;
1163 hx0 = HI(&ax0);
1164 ux0 = x0 + ax0;
1165 yd0 = DONE / ux0;
1166 u0 = x0 - ax0;
1167 s0 = u0 * yd0;
1168 LO(&ux0) = 0;
1169 y0 = s0 * s0;
1170 s_h0 = s0;
1171 LO(&s_h0) = 0;
1172 s0 = (KA5 * y0 + KA3) * y0 * s0;
1173 s_l0 = (x0 - (ux0 - ax0));
1174 s_l0 = u0 - s_h0 * ux0 - s_h0 * s_l0;
1175 s_l0 = KA1 * yd0 * s_l0;
1176 i0 = (hx0 >> 8) & 0xff0;
1177 exp0 += (hx0 >> 20);
1178 yd0 = KA1_HI * s_h0;
1179 y0 = *(double *)((char*)__TBL_log2 + i0);
1180 y0 += (double)(exp0 << 8);
1181 m_h0 = y0 + yd0;
1182 y0 = s0 - ((m_h0 - y0 - yd0) - s_l0);
1183 y0 += *(double *)((char*)__TBL_log2 + i0 + 8) + KA1_LO * s_h0;
1184 s_h0 = y0 + m_h0;
1185 LO(&s_h0) = 0;
1186 yr = y0 - (s_h0 - m_h0);

1188 do
1189 {
1190 /* perform 2 ** ((s_h0+yr)*yi/256) */
1191 start0:
1192 PREP_X(0)
1193 py += stridey;
1194 pz += stridez;
1195 i = 1;
1196 if (--n <= 0)
1197 break;

1199 start1:
1200 PREP_X(1)
1201 py += stridey;
1202 pz += stridez;
1203 i = 2;
1204 if (--n <= 0)
1205 break;

1207 start2:
1208 PREP_X(2)

1210 s0 = yd0 = *py0;
1211 s1 = yd1 = *py1;
1212 s2 = yd2 = *py2;

1214 LO(&s0) = 0;
1215 LO(&s1) = 0;
1216 LO(&s2) = 0;

1218 yd0 = (yd0 - s0) * s_h0 + yd0 * yr;
1219 yd1 = (yd1 - s1) * s_h0 + yd1 * yr;
1220 yd2 = (yd2 - s2) * s_h0 + yd2 * yr;

1222 s0 = s_h0 * s0;
1223 s1 = s_h0 * s1;
1224 s2 = s_h0 * s2;

new/usr/src/lib/libmvec/common/__vpow.c 11

1226 if (s0 > HTHRESH)
1227 {
1228 s0 = HTHRESH;
1229 yd0 = DZERO;
1230 }
1231 if (s1 > HTHRESH)
1232 {
1233 s1 = HTHRESH;
1234 yd1 = DZERO;
1235 }
1236 if (s2 > HTHRESH)
1237 {
1238 s2 = HTHRESH;
1239 yd2 = DZERO;
1240 }

1242 if (s0 < LTHRESH)
1243 {
1244 s0 = LTHRESH;
1245 yd0 = DZERO;
1246 }
1247 ind0 = (int) (s0 + yd0);
1248 if (s1 < LTHRESH)
1249 {
1250 s1 = LTHRESH;
1251 yd1 = DZERO;
1252 }
1253 ind1 = (int) (s1 + yd1);
1254 if (s2 < LTHRESH)
1255 {
1256 s2 = LTHRESH;
1257 yd2 = DZERO;
1258 }
1259 ind2 = (int) (s2 + yd2);

1261 i0 = (ind0 & 0xff) << 4;
1262 u0 = (double) ind0;
1263 ind0 >>= 8;

1265 i1 = (ind1 & 0xff) << 4;
1266 u1 = (double) ind1;
1267 ind1 >>= 8;

1269 i2 = (ind2 & 0xff) << 4;
1270 u2 = (double) ind2;
1271 ind2 >>= 8;

1273 y0 = s0 - u0 + yd0;
1274 y1 = s1 - u1 + yd1;
1275 y2 = s2 - u2 + yd2;

1277 u0 = *(double*)((char*)__TBL_exp2 + i0);
1278 y0 = ((((KB5 * y0 + KB4) * y0 + KB3) * y0 + KB2) * y0 + KB1) * y
1279 u1 = *(double*)((char*)__TBL_exp2 + i1);
1280 y1 = ((((KB5 * y1 + KB4) * y1 + KB3) * y1 + KB2) * y1 + KB1) * y
1281 u2 = *(double*)((char*)__TBL_exp2 + i2);
1282 y2 = ((((KB5 * y2 + KB4) * y2 + KB3) * y2 + KB2) * y2 + KB1) * y

1284 eflag0 = (ind0 + 1021) >> 31;
1285 gflag0 = (1022 - ind0) >> 31;
1286 eflag1 = (ind1 + 1021) >> 31;
1287 gflag1 = (1022 - ind1) >> 31;
1288 eflag2 = (ind2 + 1021) >> 31;
1289 gflag2 = (1022 - ind2) >> 31;

1291 u0 = *(double*)((char*)__TBL_exp2 + i0 + 8) + u0 * y0 + u0;

new/usr/src/lib/libmvec/common/__vpow.c 12

1292 ind0 = ind0 + (54 & eflag0) - (52 & gflag0);
1293 ind0 <<= 20;
1294 ull_x0 = *(unsigned long long*)&u0;
1295 HI(&ull_x0) += ind0;
1296 u0 = *(double*)&ull_x0;

1298 u1 = *(double*)((char*)__TBL_exp2 + i1 + 8) + u1 * y1 + u1;
1299 ind1 = ind1 + (54 & eflag1) - (52 & gflag1);
1300 ind1 <<= 20;
1301 ull_x1 = *(unsigned long long*)&u1;
1302 HI(&ull_x1) += ind1;
1303 u1 = *(double*)&ull_x1;

1305 u2 = *(double*)((char*)__TBL_exp2 + i2 + 8) + u2 * y2 + u2;
1306 ind2 = ind2 + (54 & eflag2) - (52 & gflag2);
1307 ind2 <<= 20;
1308 ull_x2 = *(unsigned long long*)&u2;
1309 HI(&ull_x2) += ind2;
1310 u2 = *(double*)&ull_x2;

1312 *pz0 = u0 * SCALE_ARR[eflag0 - gflag0];
1313 *pz1 = u1 * SCALE_ARR[eflag1 - gflag1];
1314 *pz2 = u2 * SCALE_ARR[eflag2 - gflag2];

1316 py += stridey;
1317 pz += stridez;
1318 i = 0;

1320 } while (--n > 0);

1322 if (i > 0)
1323 {
1324 /* perform 2 ** ((s_h0+yr)*yi/256) */
1325 s0 = y0 = *py0;
1326 LO(&s0) = 0;
1327 yd0 = (y0 - s0) * s_h0 + y0 * yr;
1328 s0 = s_h0 * s0;
1329 if (s0 > HTHRESH)
1330 {
1331 s0 = HTHRESH;
1332 yd0 = DZERO;
1333 }
1334 if (s0 < LTHRESH)
1335 {
1336 s0 = LTHRESH;
1337 yd0 = DZERO;
1338 }
1339 ind0 = (int) (s0 + yd0);
1340 i0 = (ind0 & 0xff) << 4;
1341 u0 = (double) ind0;
1342 ind0 >>= 8;
1343 y0 = s0 - u0 + yd0;
1344 u0 = *(double*)((char*)__TBL_exp2 + i0);
1345 y0 = ((((KB5 * y0 + KB4) * y0 + KB3) * y0 + KB2) * y0 + KB1) * y
1346 eflag0 = (ind0 + 1021) >> 31;
1347 gflag0 = (1022 - ind0) >> 31;
1348 u0 = *(double*)((char*)__TBL_exp2 + i0 + 8) + u0 * y0 + u0;
1349 ind0 = ind0 + (54 & eflag0) - (52 & gflag0);
1350 ind0 <<= 20;
1351 ull_x0 = *(unsigned long long*)&u0;
1352 HI(&ull_x0) += ind0;
1353 u0 = *(double*)&ull_x0;
1354 *pz0 = u0 * SCALE_ARR[eflag0 - gflag0];

1356 if (i > 1)
1357 {

new/usr/src/lib/libmvec/common/__vpow.c 13

1358 /* perform 2 ** ((s_h0+yr)*yi/256) */
1359 s0 = y0 = *py1;
1360 LO(&s0) = 0;
1361 yd0 = (y0 - s0) * s_h0 + y0 * yr;
1362 s0 = s_h0 * s0;
1363 if (s0 > HTHRESH)
1364 {
1365 s0 = HTHRESH;
1366 yd0 = DZERO;
1367 }
1368 if (s0 < LTHRESH)
1369 {
1370 s0 = LTHRESH;
1371 yd0 = DZERO;
1372 }
1373 ind0 = (int) (s0 + yd0);
1374 i0 = (ind0 & 0xff) << 4;
1375 u0 = (double) ind0;
1376 ind0 >>= 8;
1377 y0 = s0 - u0 + yd0;
1378 u0 = *(double*)((char*)__TBL_exp2 + i0);
1379 y0 = ((((KB5 * y0 + KB4) * y0 + KB3) * y0 + KB2) * y0 +
1380 eflag0 = (ind0 + 1021) >> 31;
1381 gflag0 = (1022 - ind0) >> 31;
1382 u0 = *(double*)((char*)__TBL_exp2 + i0 + 8) + u0 * y0 +
1383 ind0 = ind0 + (54 & eflag0) - (52 & gflag0);
1384 ind0 <<= 20;
1385 ull_x0 = *(unsigned long long*)&u0;
1386 HI(&ull_x0) += ind0;
1387 u0 = *(double*)&ull_x0;
1388 *pz1 = u0 * SCALE_ARR[eflag0 - gflag0];
1389 }
1390 }
1391 }
______unchanged_portion_omitted_

new/usr/src/lib/libmvec/common/__vrhypot.c 1

**
 11672 Sun May 4 03:07:25 2014
new/usr/src/lib/libmvec/common/__vrhypot.c
**
______unchanged_portion_omitted_
206 j0 = hy##I - (diff0 & j0);
207 j0 &= 0x7ff00000;
208 HI(&scl##I) = 0x7ff00000 - j0;

210 void
211 __vrhypot(int n, double * restrict px, int stridex, double * restrict py,
212 int stridey, double * restrict pz, int stridez)
213 {
214 int i = 0;
215 double x, y;
216 double x_hi0, x_lo0, y_hi0, y_lo0, scl0 = 0;
217 double x0, y0, res0, dd0;
218 double res0_hi,res0_lo, dres0;
219 double x_hi1, x_lo1, y_hi1, y_lo1, scl1 = 0;
220 double x1 = 0.0L, y1 = 0.0L, res1, dd1;
220 double x1, y1, res1, dd1;
221 double res1_hi,res1_lo, dres1;
222 double x_hi2, x_lo2, y_hi2, y_lo2, scl2 = 0;
223 double x2, y2, res2, dd2;
224 double res2_hi,res2_lo, dres2;

226 int hx0, hy0, j0, diff0;
227 int iarr0, iexp0, itbl0;
228 int hx1, hy1;
229 int iarr1, iexp1, itbl1;
230 int hx2, hy2;
231 int iarr2, iexp2, itbl2;

233 int lx, ly;

235 double DONE = ((double*)LCONST)[0];
236 double DTWO = ((double*)LCONST)[1];
237 double D2ON36 = ((double*)LCONST)[2];
238 double D2ON1022 = ((double*)LCONST)[3];
239 double D2ONM52 = ((double*)LCONST)[4];

241 double *pz0, *pz1 = 0, *pz2;
241 double *pz0, *pz1, *pz2;

243 do
244 {
245 start0:
246 PREP(0)
247 px += stridex;
248 py += stridey;
249 pz += stridez;
250 i = 1;
251 if (--n <= 0)
252 break;

254 start1:
255 PREP(1)
256 px += stridex;
257 py += stridey;
258 pz += stridez;
259 i = 2;
260 if (--n <= 0)
261 break;

263 start2:
264 PREP(2)

new/usr/src/lib/libmvec/common/__vrhypot.c 2

266 x0 *= scl0;
267 y0 *= scl0;
268 x1 *= scl1;
269 y1 *= scl1;
270 x2 *= scl2;
271 y2 *= scl2;

273 x_hi0 = (x0 + D2ON36) - D2ON36;
274 y_hi0 = (y0 + D2ON36) - D2ON36;
275 x_hi1 = (x1 + D2ON36) - D2ON36;
276 y_hi1 = (y1 + D2ON36) - D2ON36;
277 x_hi2 = (x2 + D2ON36) - D2ON36;
278 y_hi2 = (y2 + D2ON36) - D2ON36;
279 x_lo0 = x0 - x_hi0;
280 y_lo0 = y0 - y_hi0;
281 x_lo1 = x1 - x_hi1;
282 y_lo1 = y1 - y_hi1;
283 x_lo2 = x2 - x_hi2;
284 y_lo2 = y2 - y_hi2;
285 res0_hi = (x_hi0 * x_hi0 + y_hi0 * y_hi0);
286 res1_hi = (x_hi1 * x_hi1 + y_hi1 * y_hi1);
287 res2_hi = (x_hi2 * x_hi2 + y_hi2 * y_hi2);
288 res0_lo = ((x0 + x_hi0) * x_lo0 + (y0 + y_hi0) * y_lo0);
289 res1_lo = ((x1 + x_hi1) * x_lo1 + (y1 + y_hi1) * y_lo1);
290 res2_lo = ((x2 + x_hi2) * x_lo2 + (y2 + y_hi2) * y_lo2);

292 dres0 = res0_hi + res0_lo;
293 dres1 = res1_hi + res1_lo;
294 dres2 = res2_hi + res2_lo;

296 iarr0 = HI(&dres0);
297 iarr1 = HI(&dres1);
298 iarr2 = HI(&dres2);
299 iexp0 = iarr0 & 0xfff00000;
300 iexp1 = iarr1 & 0xfff00000;
301 iexp2 = iarr2 & 0xfff00000;

303 iarr0 = (iarr0 >> 11) & 0x1fc;
304 iarr1 = (iarr1 >> 11) & 0x1fc;
305 iarr2 = (iarr2 >> 11) & 0x1fc;
306 itbl0 = ((int*)((char*)__vlibm_TBL_rhypot + iarr0))[0];
307 itbl1 = ((int*)((char*)__vlibm_TBL_rhypot + iarr1))[0];
308 itbl2 = ((int*)((char*)__vlibm_TBL_rhypot + iarr2))[0];
309 itbl0 -= iexp0;
310 itbl1 -= iexp1;
311 itbl2 -= iexp2;
312 HI(&dd0) = itbl0;
313 HI(&dd1) = itbl1;
314 HI(&dd2) = itbl2;
315 LO(&dd0) = 0;
316 LO(&dd1) = 0;
317 LO(&dd2) = 0;

319 dd0 = dd0 * (DTWO - dd0 * dres0);
320 dd1 = dd1 * (DTWO - dd1 * dres1);
321 dd2 = dd2 * (DTWO - dd2 * dres2);
322 dd0 = dd0 * (DTWO - dd0 * dres0);
323 dd1 = dd1 * (DTWO - dd1 * dres1);
324 dd2 = dd2 * (DTWO - dd2 * dres2);
325 dres0 = dd0 * (DTWO - dd0 * dres0);
326 dres1 = dd1 * (DTWO - dd1 * dres1);
327 dres2 = dd2 * (DTWO - dd2 * dres2);

329 HI(&res0) = HI(&dres0) & 0xffffff00;
330 HI(&res1) = HI(&dres1) & 0xffffff00;

new/usr/src/lib/libmvec/common/__vrhypot.c 3

331 HI(&res2) = HI(&dres2) & 0xffffff00;
332 LO(&res0) = 0;
333 LO(&res1) = 0;
334 LO(&res2) = 0;
335 res0 += (DONE - res0_hi * res0 - res0_lo * res0) * dres0;
336 res1 += (DONE - res1_hi * res1 - res1_lo * res1) * dres1;
337 res2 += (DONE - res2_hi * res2 - res2_lo * res2) * dres2;
338 res0 = sqrt (res0);
339 res1 = sqrt (res1);
340 res2 = sqrt (res2);

342 res0 = scl0 * res0;
343 res1 = scl1 * res1;
344 res2 = scl2 * res2;

346 *pz0 = res0;
347 *pz1 = res1;
348 *pz2 = res2;

350 px += stridex;
351 py += stridey;
352 pz += stridez;
353 i = 0;

355 } while (--n > 0);

357 if (i > 0)
358 {
359 x0 *= scl0;
360 y0 *= scl0;

362 x_hi0 = (x0 + D2ON36) - D2ON36;
363 y_hi0 = (y0 + D2ON36) - D2ON36;
364 x_lo0 = x0 - x_hi0;
365 y_lo0 = y0 - y_hi0;
366 res0_hi = (x_hi0 * x_hi0 + y_hi0 * y_hi0);
367 res0_lo = ((x0 + x_hi0) * x_lo0 + (y0 + y_hi0) * y_lo0);

369 dres0 = res0_hi + res0_lo;

371 iarr0 = HI(&dres0);
372 iexp0 = iarr0 & 0xfff00000;

374 iarr0 = (iarr0 >> 11) & 0x1fc;
375 itbl0 = ((int*)((char*)__vlibm_TBL_rhypot + iarr0))[0];
376 itbl0 -= iexp0;
377 HI(&dd0) = itbl0;
378 LO(&dd0) = 0;

380 dd0 = dd0 * (DTWO - dd0 * dres0);
381 dd0 = dd0 * (DTWO - dd0 * dres0);
382 dres0 = dd0 * (DTWO - dd0 * dres0);

384 HI(&res0) = HI(&dres0) & 0xffffff00;
385 LO(&res0) = 0;
386 res0 += (DONE - res0_hi * res0 - res0_lo * res0) * dres0;
387 res0 = sqrt (res0);

389 res0 = scl0 * res0;

391 *pz0 = res0;

393 if (i > 1)
394 {
395 x1 *= scl1;
396 y1 *= scl1;

new/usr/src/lib/libmvec/common/__vrhypot.c 4

398 x_hi1 = (x1 + D2ON36) - D2ON36;
399 y_hi1 = (y1 + D2ON36) - D2ON36;
400 x_lo1 = x1 - x_hi1;
401 y_lo1 = y1 - y_hi1;
402 res1_hi = (x_hi1 * x_hi1 + y_hi1 * y_hi1);
403 res1_lo = ((x1 + x_hi1) * x_lo1 + (y1 + y_hi1) * y_lo1);

405 dres1 = res1_hi + res1_lo;

407 iarr1 = HI(&dres1);
408 iexp1 = iarr1 & 0xfff00000;

410 iarr1 = (iarr1 >> 11) & 0x1fc;
411 itbl1 = ((int*)((char*)__vlibm_TBL_rhypot + iarr1))[0];
412 itbl1 -= iexp1;
413 HI(&dd1) = itbl1;
414 LO(&dd1) = 0;

416 dd1 = dd1 * (DTWO - dd1 * dres1);
417 dd1 = dd1 * (DTWO - dd1 * dres1);
418 dres1 = dd1 * (DTWO - dd1 * dres1);

420 HI(&res1) = HI(&dres1) & 0xffffff00;
421 LO(&res1) = 0;
422 res1 += (DONE - res1_hi * res1 - res1_lo * res1) * dres1
423 res1 = sqrt (res1);

425 res1 = scl1 * res1;

427 *pz1 = res1;
428 }
429 }
430 }

______unchanged_portion_omitted_

new/usr/src/lib/libmvec/common/__vsin.c 1

**
 28751 Sun May 4 03:07:26 2014
new/usr/src/lib/libmvec/common/__vsin.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #include <sys/isa_defs.h>
31 #include <sys/ccompile.h>
32 #endif /* ! codereview */

34 #ifdef _LITTLE_ENDIAN
35 #define HI(x) *(1+(int*)x)
36 #define LO(x) *(unsigned*)x
37 #else
38 #define HI(x) *(int*)x
39 #define LO(x) *(1+(unsigned*)x)
40 #endif

42 #ifdef __RESTRICT
43 #define restrict _Restrict
44 #else
45 #define restrict
46 #endif

48 extern const double __vlibm_TBL_sincos_hi[], __vlibm_TBL_sincos_lo[];

50 static const double
51 half[2] = { 0.5, -0.5 },
52 one = 1.0,
53 invpio2 = 0.636619772367581343075535,
54 pio2_1 = 1.570796326734125614166,
55 pio2_2 = 6.077100506303965976596e-11,
56 pio2_3 = 2.022266248711166455796e-21,
57 pio2_3t = 8.478427660368899643959e-32,
58 pp1 = -1.666666666605760465276263943134982554676e-0001,
59 pp2 = 8.333261209690963126718376566146180944442e-0003,
60 qq1 = -4.999999999977710986407023955908711557870e-0001,
61 qq2 = 4.166654863857219350645055881018842089580e-0002,
62 poly1[2]= { -1.666666666666629669805215138920301589656e-0001,

new/usr/src/lib/libmvec/common/__vsin.c 2

63 -4.999999999999931701464060878888294524481e-0001
64 poly2[2]= { 8.333333332390951295683993455280336376663e-0003,
65 4.166666666394861917535640593963708222319e-0002
66 poly3[2]= { -1.984126237997976692791551778230098403960e-0004,
67 -1.388888552656142867832756687736851681462e-0003
68 poly4[2]= { 2.753403624854277237649987622848330351110e-0006,
69 2.478519423681460796618128289454530524759e-0005

71 static const unsigned thresh[2] = { 0x3fc90000, 0x3fc40000 };

73 /* Don’t __ the following; acomp will handle it */
74 extern double fabs(double);
75 extern void __vlibm_vsin_big(int, double *, int, double *, int, int);

77 void
78 __vsin(int n, double * restrict x, int stridex, double * restrict y,
79 int stridey)
80 {
81 double x0_or_one[4], x1_or_one[4], x2_or_one[4];
82 double y0_or_zero[4], y1_or_zero[4], y2_or_zero[4];
83 double x0, x1, x2, *py0 = 0, *py1 = 0, *py2, *xsave, *ysave;
84 unsigned hx0, hx1, hx2, xsb0, xsb1 = 0, xsb2;
31 double x0, x1, x2, *py0, *py1, *py2, *xsave, *ysave;
32 unsigned hx0, hx1, hx2, xsb0, xsb1, xsb2;
85 int i, biguns, nsave, sxsave, sysave;

86 nsave = n;
87 xsave = x;
88 sxsave = stridex;
89 ysave = y;
90 sysave = stridey;
91 biguns = 0;

93 do
94 {
95 LOOP0:
96 xsb0 = HI(x);
97 hx0 = xsb0 & ~0x80000000;
98 if (hx0 > 0x3fe921fb)
99 {
100 biguns = 1;
101 goto MEDIUM;
102 }
103 if (hx0 < 0x3e400000)
104 {
54 volatile int v = *x;
105 *y = *x;
106 x += stridex;
107 y += stridey;
108 i = 0;
109 if (--n <= 0)
110 break;
111 goto LOOP0;
112 }
113 x0 = *x;
114 py0 = y;
115 x += stridex;
116 y += stridey;
117 i = 1;
118 if (--n <= 0)
119 break;

121 LOOP1:
122 xsb1 = HI(x);
123 hx1 = xsb1 & ~0x80000000;
124 if (hx1 > 0x3fe921fb)

new/usr/src/lib/libmvec/common/__vsin.c 3

125 {
126 biguns = 2;
127 goto MEDIUM;
128 }
129 if (hx1 < 0x3e400000)
130 {
81 volatile int v = *x;
131 *y = *x;
132 x += stridex;
133 y += stridey;
134 i = 1;
135 if (--n <= 0)
136 break;
137 goto LOOP1;
138 }
139 x1 = *x;
140 py1 = y;
141 x += stridex;
142 y += stridey;
143 i = 2;
144 if (--n <= 0)
145 break;

147 LOOP2:
148 xsb2 = HI(x);
149 hx2 = xsb2 & ~0x80000000;
150 if (hx2 > 0x3fe921fb)
151 {
152 biguns = 3;
153 goto MEDIUM;
154 }
155 if (hx2 < 0x3e400000)
156 {
108 volatile int v = *x;
157 *y = *x;
158 x += stridex;
159 y += stridey;
160 i = 2;
161 if (--n <= 0)
162 break;
163 goto LOOP2;
164 }
165 x2 = *x;
166 py2 = y;

168 i = (hx0 - 0x3fc90000) >> 31;
169 i |= ((hx1 - 0x3fc90000) >> 30) & 2;
170 i |= ((hx2 - 0x3fc90000) >> 29) & 4;
171 switch (i)
172 {
173 double a0, a1, a2, w0, w1, w2;
174 double t0, t1, t2, z0, z1, z2;
175 unsigned j0, j1, j2;

177 case 0:
178 j0 = (xsb0 + 0x4000) & 0xffff8000;
179 j1 = (xsb1 + 0x4000) & 0xffff8000;
180 j2 = (xsb2 + 0x4000) & 0xffff8000;
181 HI(&t0) = j0;
182 HI(&t1) = j1;
183 HI(&t2) = j2;
184 LO(&t0) = 0;
185 LO(&t1) = 0;
186 LO(&t2) = 0;
187 x0 -= t0;
188 x1 -= t1;

new/usr/src/lib/libmvec/common/__vsin.c 4

189 x2 -= t2;
190 z0 = x0 * x0;
191 z1 = x1 * x1;
192 z2 = x2 * x2;
193 t0 = z0 * (qq1 + z0 * qq2);
194 t1 = z1 * (qq1 + z1 * qq2);
195 t2 = z2 * (qq1 + z2 * qq2);
196 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
197 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
198 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
199 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
200 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
201 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
202 xsb0 = (xsb0 >> 30) & 2;
203 xsb1 = (xsb1 >> 30) & 2;
204 xsb2 = (xsb2 >> 30) & 2;
205 a0 = __vlibm_TBL_sincos_hi[j0+xsb0];
206 a1 = __vlibm_TBL_sincos_hi[j1+xsb1];
207 a2 = __vlibm_TBL_sincos_hi[j2+xsb2];
208 t0 = (__vlibm_TBL_sincos_hi[j0+1] * w0 + a0 * t0) + __
209 t1 = (__vlibm_TBL_sincos_hi[j1+1] * w1 + a1 * t1) + __
210 t2 = (__vlibm_TBL_sincos_hi[j2+1] * w2 + a2 * t2) + __
211 *py0 = a0 + t0;
212 *py1 = a1 + t1;
213 *py2 = a2 + t2;
214 break;

216 case 1:
217 j1 = (xsb1 + 0x4000) & 0xffff8000;
218 j2 = (xsb2 + 0x4000) & 0xffff8000;
219 HI(&t1) = j1;
220 HI(&t2) = j2;
221 LO(&t1) = 0;
222 LO(&t2) = 0;
223 x1 -= t1;
224 x2 -= t2;
225 z0 = x0 * x0;
226 z1 = x1 * x1;
227 z2 = x2 * x2;
228 t0 = z0 * (poly3[0] + z0 * poly4[0]);
229 t1 = z1 * (qq1 + z1 * qq2);
230 t2 = z2 * (qq1 + z2 * qq2);
231 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
232 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
233 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
234 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
235 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
236 xsb1 = (xsb1 >> 30) & 2;
237 xsb2 = (xsb2 >> 30) & 2;
238 a1 = __vlibm_TBL_sincos_hi[j1+xsb1];
239 a2 = __vlibm_TBL_sincos_hi[j2+xsb2];
240 t0 = x0 + x0 * t0;
241 t1 = (__vlibm_TBL_sincos_hi[j1+1] * w1 + a1 * t1) + __
242 t2 = (__vlibm_TBL_sincos_hi[j2+1] * w2 + a2 * t2) + __
243 *py0 = t0;
244 *py1 = a1 + t1;
245 *py2 = a2 + t2;
246 break;

248 case 2:
249 j0 = (xsb0 + 0x4000) & 0xffff8000;
250 j2 = (xsb2 + 0x4000) & 0xffff8000;
251 HI(&t0) = j0;
252 HI(&t2) = j2;
253 LO(&t0) = 0;
254 LO(&t2) = 0;

new/usr/src/lib/libmvec/common/__vsin.c 5

255 x0 -= t0;
256 x2 -= t2;
257 z0 = x0 * x0;
258 z1 = x1 * x1;
259 z2 = x2 * x2;
260 t0 = z0 * (qq1 + z0 * qq2);
261 t1 = z1 * (poly3[0] + z1 * poly4[0]);
262 t2 = z2 * (qq1 + z2 * qq2);
263 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
264 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
265 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
266 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
267 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
268 xsb0 = (xsb0 >> 30) & 2;
269 xsb2 = (xsb2 >> 30) & 2;
270 a0 = __vlibm_TBL_sincos_hi[j0+xsb0];
271 a2 = __vlibm_TBL_sincos_hi[j2+xsb2];
272 t0 = (__vlibm_TBL_sincos_hi[j0+1] * w0 + a0 * t0) + __
273 t1 = x1 + x1 * t1;
274 t2 = (__vlibm_TBL_sincos_hi[j2+1] * w2 + a2 * t2) + __
275 *py0 = a0 + t0;
276 *py1 = t1;
277 *py2 = a2 + t2;
278 break;

280 case 3:
281 j2 = (xsb2 + 0x4000) & 0xffff8000;
282 HI(&t2) = j2;
283 LO(&t2) = 0;
284 x2 -= t2;
285 z0 = x0 * x0;
286 z1 = x1 * x1;
287 z2 = x2 * x2;
288 t0 = z0 * (poly3[0] + z0 * poly4[0]);
289 t1 = z1 * (poly3[0] + z1 * poly4[0]);
290 t2 = z2 * (qq1 + z2 * qq2);
291 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
292 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
293 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
294 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
295 xsb2 = (xsb2 >> 30) & 2;
296 a2 = __vlibm_TBL_sincos_hi[j2+xsb2];
297 t0 = x0 + x0 * t0;
298 t1 = x1 + x1 * t1;
299 t2 = (__vlibm_TBL_sincos_hi[j2+1] * w2 + a2 * t2) + __
300 *py0 = t0;
301 *py1 = t1;
302 *py2 = a2 + t2;
303 break;

305 case 4:
306 j0 = (xsb0 + 0x4000) & 0xffff8000;
307 j1 = (xsb1 + 0x4000) & 0xffff8000;
308 HI(&t0) = j0;
309 HI(&t1) = j1;
310 LO(&t0) = 0;
311 LO(&t1) = 0;
312 x0 -= t0;
313 x1 -= t1;
314 z0 = x0 * x0;
315 z1 = x1 * x1;
316 z2 = x2 * x2;
317 t0 = z0 * (qq1 + z0 * qq2);
318 t1 = z1 * (qq1 + z1 * qq2);
319 t2 = z2 * (poly3[0] + z2 * poly4[0]);
320 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));

new/usr/src/lib/libmvec/common/__vsin.c 6

321 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
322 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));
323 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
324 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
325 xsb0 = (xsb0 >> 30) & 2;
326 xsb1 = (xsb1 >> 30) & 2;
327 a0 = __vlibm_TBL_sincos_hi[j0+xsb0];
328 a1 = __vlibm_TBL_sincos_hi[j1+xsb1];
329 t0 = (__vlibm_TBL_sincos_hi[j0+1] * w0 + a0 * t0) + __
330 t1 = (__vlibm_TBL_sincos_hi[j1+1] * w1 + a1 * t1) + __
331 t2 = x2 + x2 * t2;
332 *py0 = a0 + t0;
333 *py1 = a1 + t1;
334 *py2 = t2;
335 break;

337 case 5:
338 j1 = (xsb1 + 0x4000) & 0xffff8000;
339 HI(&t1) = j1;
340 LO(&t1) = 0;
341 x1 -= t1;
342 z0 = x0 * x0;
343 z1 = x1 * x1;
344 z2 = x2 * x2;
345 t0 = z0 * (poly3[0] + z0 * poly4[0]);
346 t1 = z1 * (qq1 + z1 * qq2);
347 t2 = z2 * (poly3[0] + z2 * poly4[0]);
348 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
349 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
350 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));
351 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
352 xsb1 = (xsb1 >> 30) & 2;
353 a1 = __vlibm_TBL_sincos_hi[j1+xsb1];
354 t0 = x0 + x0 * t0;
355 t1 = (__vlibm_TBL_sincos_hi[j1+1] * w1 + a1 * t1) + __
356 t2 = x2 + x2 * t2;
357 *py0 = t0;
358 *py1 = a1 + t1;
359 *py2 = t2;
360 break;

362 case 6:
363 j0 = (xsb0 + 0x4000) & 0xffff8000;
364 HI(&t0) = j0;
365 LO(&t0) = 0;
366 x0 -= t0;
367 z0 = x0 * x0;
368 z1 = x1 * x1;
369 z2 = x2 * x2;
370 t0 = z0 * (qq1 + z0 * qq2);
371 t1 = z1 * (poly3[0] + z1 * poly4[0]);
372 t2 = z2 * (poly3[0] + z2 * poly4[0]);
373 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
374 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
375 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));
376 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
377 xsb0 = (xsb0 >> 30) & 2;
378 a0 = __vlibm_TBL_sincos_hi[j0+xsb0];
379 t0 = (__vlibm_TBL_sincos_hi[j0+1] * w0 + a0 * t0) + __
380 t1 = x1 + x1 * t1;
381 t2 = x2 + x2 * t2;
382 *py0 = a0 + t0;
383 *py1 = t1;
384 *py2 = t2;
385 break;

new/usr/src/lib/libmvec/common/__vsin.c 7

387 case 7:
388 z0 = x0 * x0;
389 z1 = x1 * x1;
390 z2 = x2 * x2;
391 t0 = z0 * (poly3[0] + z0 * poly4[0]);
392 t1 = z1 * (poly3[0] + z1 * poly4[0]);
393 t2 = z2 * (poly3[0] + z2 * poly4[0]);
394 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
395 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
396 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));
397 t0 = x0 + x0 * t0;
398 t1 = x1 + x1 * t1;
399 t2 = x2 + x2 * t2;
400 *py0 = t0;
401 *py1 = t1;
402 *py2 = t2;
403 break;
404 }

406 x += stridex;
407 y += stridey;
408 i = 0;
409 } while (--n > 0);

411 if (i > 0)
412 {
413 double a0, a1, w0, w1;
414 double t0, t1, z0, z1;
415 unsigned j0, j1;

417 if (i > 1)
418 {
419 if (hx1 < 0x3fc90000)
420 {
421 z1 = x1 * x1;
422 t1 = z1 * (poly3[0] + z1 * poly4[0]);
423 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
424 t1 = x1 + x1 * t1;
425 *py1 = t1;
426 }
427 else
428 {
429 j1 = (xsb1 + 0x4000) & 0xffff8000;
430 HI(&t1) = j1;
431 LO(&t1) = 0;
432 x1 -= t1;
433 z1 = x1 * x1;
434 t1 = z1 * (qq1 + z1 * qq2);
435 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
436 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >>
437 xsb1 = (xsb1 >> 30) & 2;
438 a1 = __vlibm_TBL_sincos_hi[j1+xsb1];
439 t1 = (__vlibm_TBL_sincos_hi[j1+1] * w1 + a1 * t
440 *py1 = a1 + t1;
441 }
442 }
443 if (hx0 < 0x3fc90000)
444 {
445 z0 = x0 * x0;
446 t0 = z0 * (poly3[0] + z0 * poly4[0]);
447 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
448 t0 = x0 + x0 * t0;
449 *py0 = t0;
450 }
451 else
452 {

new/usr/src/lib/libmvec/common/__vsin.c 8

453 j0 = (xsb0 + 0x4000) & 0xffff8000;
454 HI(&t0) = j0;
455 LO(&t0) = 0;
456 x0 -= t0;
457 z0 = x0 * x0;
458 t0 = z0 * (qq1 + z0 * qq2);
459 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
460 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
461 xsb0 = (xsb0 >> 30) & 2;
462 a0 = __vlibm_TBL_sincos_hi[j0+xsb0];
463 t0 = (__vlibm_TBL_sincos_hi[j0+1] * w0 + a0 * t0) + __
464 *py0 = a0 + t0;
465 }
466 }

468 return;

470 /*
471 * MEDIUM RANGE PROCESSING
472 * Jump here at first sign of medium range argument. We are a bit
473 * confused due to the jump.. fix up several variables and jump into
474 * the nth loop, same as was being processed above.
475 */

477 MEDIUM:

479 x0_or_one[1] = 1.0;
480 x1_or_one[1] = 1.0;
481 x2_or_one[1] = 1.0;
482 x0_or_one[3] = -1.0;
483 x1_or_one[3] = -1.0;
484 x2_or_one[3] = -1.0;
485 y0_or_zero[1] = 0.0;
486 y1_or_zero[1] = 0.0;
487 y2_or_zero[1] = 0.0;
488 y0_or_zero[3] = 0.0;
489 y1_or_zero[3] = 0.0;
490 y2_or_zero[3] = 0.0;

492 if (biguns == 3)
493 {
494 biguns = 0;
495 xsb0 = xsb0 >> 31;
496 xsb1 = xsb1 >> 31;
497 goto loop2;
498 }
499 else if (biguns == 2)
500 {
501 xsb0 = xsb0 >> 31;
502 biguns = 0;
503 goto loop1;
504 }
505 biguns = 0;

507 do
508 {
509 double fn0, fn1, fn2, a0, a1, a2, w0, w1, w2, y0, y1, y
510 unsigned hx;
511 int n0, n1, n2;

513 loop0:
514 hx = HI(x);
515 xsb0 = hx >> 31;
516 hx &= ~0x80000000;
517 if (hx < 0x3e400000)
518 {

new/usr/src/lib/libmvec/common/__vsin.c 9

471 volatile int v = *x;
519 *y = *x;
520 x += stridex;
521 y += stridey;
522 i = 0;
523 if (--n <= 0)
524 break;
525 goto loop0;
526 }
527 if (hx > 0x413921fb)
528 {
529 if (hx >= 0x7ff00000)
530 {
531 x0 = *x;
532 *y = x0 - x0;
533 }
534 else
535 biguns = 1;
536 x += stridex;
537 y += stridey;
538 i = 0;
539 if (--n <= 0)
540 break;
541 goto loop0;
542 }
543 x0 = *x;
544 py0 = y;
545 x += stridex;
546 y += stridey;
547 i = 1;
548 if (--n <= 0)
549 break;

551 loop1:
552 hx = HI(x);
553 xsb1 = hx >> 31;
554 hx &= ~0x80000000;
555 if (hx < 0x3e400000)
556 {
510 volatile int v = *x;
557 *y = *x;
558 x += stridex;
559 y += stridey;
560 i = 1;
561 if (--n <= 0)
562 break;
563 goto loop1;
564 }
565 if (hx > 0x413921fb)
566 {
567 if (hx >= 0x7ff00000)
568 {
569 x1 = *x;
570 *y = x1 - x1;
571 }
572 else
573 biguns = 1;
574 x += stridex;
575 y += stridey;
576 i = 1;
577 if (--n <= 0)
578 break;
579 goto loop1;
580 }
581 x1 = *x;
582 py1 = y;

new/usr/src/lib/libmvec/common/__vsin.c 10

583 x += stridex;
584 y += stridey;
585 i = 2;
586 if (--n <= 0)
587 break;

589 loop2:
590 hx = HI(x);
591 xsb2 = hx >> 31;
592 hx &= ~0x80000000;
593 if (hx < 0x3e400000)
594 {
549 volatile int v = *x;
595 *y = *x;
596 x += stridex;
597 y += stridey;
598 i = 2;
599 if (--n <= 0)
600 break;
601 goto loop2;
602 }
603 if (hx > 0x413921fb)
604 {
605 if (hx >= 0x7ff00000)
606 {
607 x2 = *x;
608 *y = x2 - x2;
609 }
610 else
611 biguns = 1;
612 x += stridex;
613 y += stridey;
614 i = 2;
615 if (--n <= 0)
616 break;
617 goto loop2;
618 }
619 x2 = *x;
620 py2 = y;

622 n0 = (int) (x0 * invpio2 + half[xsb0]);
623 n1 = (int) (x1 * invpio2 + half[xsb1]);
624 n2 = (int) (x2 * invpio2 + half[xsb2]);
625 fn0 = (double) n0;
626 fn1 = (double) n1;
627 fn2 = (double) n2;
628 n0 &= 3;
629 n1 &= 3;
630 n2 &= 3;
631 a0 = x0 - fn0 * pio2_1;
632 a1 = x1 - fn1 * pio2_1;
633 a2 = x2 - fn2 * pio2_1;
634 w0 = fn0 * pio2_2;
635 w1 = fn1 * pio2_2;
636 w2 = fn2 * pio2_2;
637 x0 = a0 - w0;
638 x1 = a1 - w1;
639 x2 = a2 - w2;
640 y0 = (a0 - x0) - w0;
641 y1 = (a1 - x1) - w1;
642 y2 = (a2 - x2) - w2;
643 a0 = x0;
644 a1 = x1;
645 a2 = x2;
646 w0 = fn0 * pio2_3 - y0;
647 w1 = fn1 * pio2_3 - y1;

new/usr/src/lib/libmvec/common/__vsin.c 11

648 w2 = fn2 * pio2_3 - y2;
649 x0 = a0 - w0;
650 x1 = a1 - w1;
651 x2 = a2 - w2;
652 y0 = (a0 - x0) - w0;
653 y1 = (a1 - x1) - w1;
654 y2 = (a2 - x2) - w2;
655 a0 = x0;
656 a1 = x1;
657 a2 = x2;
658 w0 = fn0 * pio2_3t - y0;
659 w1 = fn1 * pio2_3t - y1;
660 w2 = fn2 * pio2_3t - y2;
661 x0 = a0 - w0;
662 x1 = a1 - w1;
663 x2 = a2 - w2;
664 y0 = (a0 - x0) - w0;
665 y1 = (a1 - x1) - w1;
666 y2 = (a2 - x2) - w2;
667 xsb0 = HI(&x0);
668 i = ((xsb0 & ~0x80000000) - thresh[n0&1]) >> 31;
669 xsb1 = HI(&x1);
670 i |= (((xsb1 & ~0x80000000) - thresh[n1&1]) >> 30) & 2;
671 xsb2 = HI(&x2);
672 i |= (((xsb2 & ~0x80000000) - thresh[n2&1]) >> 29) & 4;
673 switch (i)
674 {
675 double t0, t1, t2, z0, z1, z2;
676 unsigned j0, j1, j2;

678 case 0:
679 j0 = (xsb0 + 0x4000) & 0xffff8000;
680 j1 = (xsb1 + 0x4000) & 0xffff8000;
681 j2 = (xsb2 + 0x4000) & 0xffff8000;
682 HI(&t0) = j0;
683 HI(&t1) = j1;
684 HI(&t2) = j2;
685 LO(&t0) = 0;
686 LO(&t1) = 0;
687 LO(&t2) = 0;
688 x0 = (x0 - t0) + y0;
689 x1 = (x1 - t1) + y1;
690 x2 = (x2 - t2) + y2;
691 z0 = x0 * x0;
692 z1 = x1 * x1;
693 z2 = x2 * x2;
694 t0 = z0 * (qq1 + z0 * qq2);
695 t1 = z1 * (qq1 + z1 * qq2);
696 t2 = z2 * (qq1 + z2 * qq2);
697 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
698 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
699 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
700 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
701 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
702 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
703 xsb0 = (xsb0 >> 30) & 2;
704 xsb1 = (xsb1 >> 30) & 2;
705 xsb2 = (xsb2 >> 30) & 2;
706 n0 ^= (xsb0 & ~(n0 << 1));
707 n1 ^= (xsb1 & ~(n1 << 1));
708 n2 ^= (xsb2 & ~(n2 << 1));
709 xsb0 |= 1;
710 xsb1 |= 1;
711 xsb2 |= 1;
712 a0 = __vlibm_TBL_sincos_hi[j0+n0];
713 a1 = __vlibm_TBL_sincos_hi[j1+n1];

new/usr/src/lib/libmvec/common/__vsin.c 12

714 a2 = __vlibm_TBL_sincos_hi[j2+n2];
715 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
716 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
717 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
718 *py0 = (a0 + t0);
719 *py1 = (a1 + t1);
720 *py2 = (a2 + t2);
721 break;

723 case 1:
724 j0 = n0 & 1;
725 j1 = (xsb1 + 0x4000) & 0xffff8000;
726 j2 = (xsb2 + 0x4000) & 0xffff8000;
727 HI(&t1) = j1;
728 HI(&t2) = j2;
729 LO(&t1) = 0;
730 LO(&t2) = 0;
731 x0_or_one[0] = x0;
732 x0_or_one[2] = -x0;
733 y0_or_zero[0] = y0;
734 y0_or_zero[2] = -y0;
735 x1 = (x1 - t1) + y1;
736 x2 = (x2 - t2) + y2;
737 z0 = x0 * x0;
738 z1 = x1 * x1;
739 z2 = x2 * x2;
740 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
741 t1 = z1 * (qq1 + z1 * qq2);
742 t2 = z2 * (qq1 + z2 * qq2);
743 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
744 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
745 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
746 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
747 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
748 xsb1 = (xsb1 >> 30) & 2;
749 xsb2 = (xsb2 >> 30) & 2;
750 n1 ^= (xsb1 & ~(n1 << 1));
751 n2 ^= (xsb2 & ~(n2 << 1));
752 xsb1 |= 1;
753 xsb2 |= 1;
754 a1 = __vlibm_TBL_sincos_hi[j1+n1];
755 a2 = __vlibm_TBL_sincos_hi[j2+n2];
756 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
757 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
758 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
759 *py0 = t0;
760 *py1 = (a1 + t1);
761 *py2 = (a2 + t2);
762 break;

764 case 2:
765 j0 = (xsb0 + 0x4000) & 0xffff8000;
766 j1 = n1 & 1;
767 j2 = (xsb2 + 0x4000) & 0xffff8000;
768 HI(&t0) = j0;
769 HI(&t2) = j2;
770 LO(&t0) = 0;
771 LO(&t2) = 0;
772 x1_or_one[0] = x1;
773 x1_or_one[2] = -x1;
774 x0 = (x0 - t0) + y0;
775 y1_or_zero[0] = y1;
776 y1_or_zero[2] = -y1;
777 x2 = (x2 - t2) + y2;
778 z0 = x0 * x0;
779 z1 = x1 * x1;

new/usr/src/lib/libmvec/common/__vsin.c 13

780 z2 = x2 * x2;
781 t0 = z0 * (qq1 + z0 * qq2);
782 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
783 t2 = z2 * (qq1 + z2 * qq2);
784 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
785 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
786 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
787 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
788 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
789 xsb0 = (xsb0 >> 30) & 2;
790 xsb2 = (xsb2 >> 30) & 2;
791 n0 ^= (xsb0 & ~(n0 << 1));
792 n2 ^= (xsb2 & ~(n2 << 1));
793 xsb0 |= 1;
794 xsb2 |= 1;
795 a0 = __vlibm_TBL_sincos_hi[j0+n0];
796 a2 = __vlibm_TBL_sincos_hi[j2+n2];
797 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
798 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
799 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
800 *py0 = (a0 + t0);
801 *py1 = t1;
802 *py2 = (a2 + t2);
803 break;

805 case 3:
806 j0 = n0 & 1;
807 j1 = n1 & 1;
808 j2 = (xsb2 + 0x4000) & 0xffff8000;
809 HI(&t2) = j2;
810 LO(&t2) = 0;
811 x0_or_one[0] = x0;
812 x0_or_one[2] = -x0;
813 x1_or_one[0] = x1;
814 x1_or_one[2] = -x1;
815 y0_or_zero[0] = y0;
816 y0_or_zero[2] = -y0;
817 y1_or_zero[0] = y1;
818 y1_or_zero[2] = -y1;
819 x2 = (x2 - t2) + y2;
820 z0 = x0 * x0;
821 z1 = x1 * x1;
822 z2 = x2 * x2;
823 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
824 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
825 t2 = z2 * (qq1 + z2 * qq2);
826 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
827 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
828 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
829 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
830 xsb2 = (xsb2 >> 30) & 2;
831 n2 ^= (xsb2 & ~(n2 << 1));
832 xsb2 |= 1;
833 a2 = __vlibm_TBL_sincos_hi[j2+n2];
834 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
835 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
836 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
837 *py0 = t0;
838 *py1 = t1;
839 *py2 = (a2 + t2);
840 break;

842 case 4:
843 j0 = (xsb0 + 0x4000) & 0xffff8000;
844 j1 = (xsb1 + 0x4000) & 0xffff8000;
845 j2 = n2 & 1;

new/usr/src/lib/libmvec/common/__vsin.c 14

846 HI(&t0) = j0;
847 HI(&t1) = j1;
848 LO(&t0) = 0;
849 LO(&t1) = 0;
850 x2_or_one[0] = x2;
851 x2_or_one[2] = -x2;
852 x0 = (x0 - t0) + y0;
853 x1 = (x1 - t1) + y1;
854 y2_or_zero[0] = y2;
855 y2_or_zero[2] = -y2;
856 z0 = x0 * x0;
857 z1 = x1 * x1;
858 z2 = x2 * x2;
859 t0 = z0 * (qq1 + z0 * qq2);
860 t1 = z1 * (qq1 + z1 * qq2);
861 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
862 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
863 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
864 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
865 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
866 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
867 xsb0 = (xsb0 >> 30) & 2;
868 xsb1 = (xsb1 >> 30) & 2;
869 n0 ^= (xsb0 & ~(n0 << 1));
870 n1 ^= (xsb1 & ~(n1 << 1));
871 xsb0 |= 1;
872 xsb1 |= 1;
873 a0 = __vlibm_TBL_sincos_hi[j0+n0];
874 a1 = __vlibm_TBL_sincos_hi[j1+n1];
875 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
876 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
877 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
878 *py0 = (a0 + t0);
879 *py1 = (a1 + t1);
880 *py2 = t2;
881 break;

883 case 5:
884 j0 = n0 & 1;
885 j1 = (xsb1 + 0x4000) & 0xffff8000;
886 j2 = n2 & 1;
887 HI(&t1) = j1;
888 LO(&t1) = 0;
889 x0_or_one[0] = x0;
890 x0_or_one[2] = -x0;
891 x2_or_one[0] = x2;
892 x2_or_one[2] = -x2;
893 y0_or_zero[0] = y0;
894 y0_or_zero[2] = -y0;
895 x1 = (x1 - t1) + y1;
896 y2_or_zero[0] = y2;
897 y2_or_zero[2] = -y2;
898 z0 = x0 * x0;
899 z1 = x1 * x1;
900 z2 = x2 * x2;
901 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
902 t1 = z1 * (qq1 + z1 * qq2);
903 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
904 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
905 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
906 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
907 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
908 xsb1 = (xsb1 >> 30) & 2;
909 n1 ^= (xsb1 & ~(n1 << 1));
910 xsb1 |= 1;
911 a1 = __vlibm_TBL_sincos_hi[j1+n1];

new/usr/src/lib/libmvec/common/__vsin.c 15

912 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
913 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
914 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
915 *py0 = t0;
916 *py1 = (a1 + t1);
917 *py2 = t2;
918 break;

920 case 6:
921 j0 = (xsb0 + 0x4000) & 0xffff8000;
922 j1 = n1 & 1;
923 j2 = n2 & 1;
924 HI(&t0) = j0;
925 LO(&t0) = 0;
926 x1_or_one[0] = x1;
927 x1_or_one[2] = -x1;
928 x2_or_one[0] = x2;
929 x2_or_one[2] = -x2;
930 x0 = (x0 - t0) + y0;
931 y1_or_zero[0] = y1;
932 y1_or_zero[2] = -y1;
933 y2_or_zero[0] = y2;
934 y2_or_zero[2] = -y2;
935 z0 = x0 * x0;
936 z1 = x1 * x1;
937 z2 = x2 * x2;
938 t0 = z0 * (qq1 + z0 * qq2);
939 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
940 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
941 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
942 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
943 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
944 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
945 xsb0 = (xsb0 >> 30) & 2;
946 n0 ^= (xsb0 & ~(n0 << 1));
947 xsb0 |= 1;
948 a0 = __vlibm_TBL_sincos_hi[j0+n0];
949 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
950 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
951 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
952 *py0 = (a0 + t0);
953 *py1 = t1;
954 *py2 = t2;
955 break;

957 case 7:
958 j0 = n0 & 1;
959 j1 = n1 & 1;
960 j2 = n2 & 1;
961 x0_or_one[0] = x0;
962 x0_or_one[2] = -x0;
963 x1_or_one[0] = x1;
964 x1_or_one[2] = -x1;
965 x2_or_one[0] = x2;
966 x2_or_one[2] = -x2;
967 y0_or_zero[0] = y0;
968 y0_or_zero[2] = -y0;
969 y1_or_zero[0] = y1;
970 y1_or_zero[2] = -y1;
971 y2_or_zero[0] = y2;
972 y2_or_zero[2] = -y2;
973 z0 = x0 * x0;
974 z1 = x1 * x1;
975 z2 = x2 * x2;
976 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
977 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);

new/usr/src/lib/libmvec/common/__vsin.c 16

978 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
979 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
980 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
981 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
982 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
983 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
984 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
985 *py0 = t0;
986 *py1 = t1;
987 *py2 = t2;
988 break;
989 }

991 x += stridex;
992 y += stridey;
993 i = 0;
994 } while (--n > 0);

996 if (i > 0)
997 {
998 double fn0, fn1, a0, a1, w0, w1, y0, y1;
999 double t0, t1, z0, z1;

1000 unsigned j0, j1;
1001 int n0, n1;

1003 if (i > 1)
1004 {
1005 n1 = (int) (x1 * invpio2 + half[xsb1]);
1006 fn1 = (double) n1;
1007 n1 &= 3;
1008 a1 = x1 - fn1 * pio2_1;
1009 w1 = fn1 * pio2_2;
1010 x1 = a1 - w1;
1011 y1 = (a1 - x1) - w1;
1012 a1 = x1;
1013 w1 = fn1 * pio2_3 - y1;
1014 x1 = a1 - w1;
1015 y1 = (a1 - x1) - w1;
1016 a1 = x1;
1017 w1 = fn1 * pio2_3t - y1;
1018 x1 = a1 - w1;
1019 y1 = (a1 - x1) - w1;
1020 xsb1 = HI(&x1);
1021 if ((xsb1 & ~0x80000000) < thresh[n1&1])
1022 {
1023 j1 = n1 & 1;
1024 x1_or_one[0] = x1;
1025 x1_or_one[2] = -x1;
1026 y1_or_zero[0] = y1;
1027 y1_or_zero[2] = -y1;
1028 z1 = x1 * x1;
1029 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1030 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1)
1031 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_on
1032 *py1 = t1;
1033 }
1034 else
1035 {
1036 j1 = (xsb1 + 0x4000) & 0xffff8000;
1037 HI(&t1) = j1;
1038 LO(&t1) = 0;
1039 x1 = (x1 - t1) + y1;
1040 z1 = x1 * x1;
1041 t1 = z1 * (qq1 + z1 * qq2);
1042 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
1043 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >>

new/usr/src/lib/libmvec/common/__vsin.c 17

1044 xsb1 = (xsb1 >> 30) & 2;
1045 n1 ^= (xsb1 & ~(n1 << 1));
1046 xsb1 |= 1;
1047 a1 = __vlibm_TBL_sincos_hi[j1+n1];
1048 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] *
1049 *py1 = (a1 + t1);
1050 }
1051 }
1052 n0 = (int) (x0 * invpio2 + half[xsb0]);
1053 fn0 = (double) n0;
1054 n0 &= 3;
1055 a0 = x0 - fn0 * pio2_1;
1056 w0 = fn0 * pio2_2;
1057 x0 = a0 - w0;
1058 y0 = (a0 - x0) - w0;
1059 a0 = x0;
1060 w0 = fn0 * pio2_3 - y0;
1061 x0 = a0 - w0;
1062 y0 = (a0 - x0) - w0;
1063 a0 = x0;
1064 w0 = fn0 * pio2_3t - y0;
1065 x0 = a0 - w0;
1066 y0 = (a0 - x0) - w0;
1067 xsb0 = HI(&x0);
1068 if ((xsb0 & ~0x80000000) < thresh[n0&1])
1069 {
1070 j0 = n0 & 1;
1071 x0_or_one[0] = x0;
1072 x0_or_one[2] = -x0;
1073 y0_or_zero[0] = y0;
1074 y0_or_zero[2] = -y0;
1075 z0 = x0 * x0;
1076 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1077 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1078 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1079 *py0 = t0;
1080 }
1081 else
1082 {
1083 j0 = (xsb0 + 0x4000) & 0xffff8000;
1084 HI(&t0) = j0;
1085 LO(&t0) = 0;
1086 x0 = (x0 - t0) + y0;
1087 z0 = x0 * x0;
1088 t0 = z0 * (qq1 + z0 * qq2);
1089 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
1090 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1091 xsb0 = (xsb0 >> 30) & 2;
1092 n0 ^= (xsb0 & ~(n0 << 1));
1093 xsb0 |= 1;
1094 a0 = __vlibm_TBL_sincos_hi[j0+n0];
1095 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
1096 *py0 = (a0 + t0);
1097 }
1098 }

1100 if (biguns)
1101 __vlibm_vsin_big(nsave, xsave, sxsave, ysave, sysave, 0x413921f
1102 }
______unchanged_portion_omitted_

new/usr/src/lib/libmvec/common/__vsincos.c 1

**
 39377 Sun May 4 03:07:29 2014
new/usr/src/lib/libmvec/common/__vsincos.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #include <sys/isa_defs.h>
31 #include <sys/ccompile.h>
32 #endif /* ! codereview */

34 #ifdef _LITTLE_ENDIAN
35 #define HI(x) *(1+(int*)x)
36 #define LO(x) *(unsigned*)x
37 #else
38 #define HI(x) *(int*)x
39 #define LO(x) *(1+(unsigned*)x)
40 #endif

42 #ifdef __RESTRICT
43 #define restrict _Restrict
44 #else
45 #define restrict
46 #endif

48 /*
49 * vsincos.c
50 *
51 * Vector sine and cosine function. Just slight modifications to vcos.c.
52 */

54 extern const double __vlibm_TBL_sincos_hi[], __vlibm_TBL_sincos_lo[];

56 static const double
57 half[2] = { 0.5, -0.5 },
58 one = 1.0,
59 invpio2 = 0.636619772367581343075535, /* 53 bits of pi/2 */
60 pio2_1 = 1.570796326734125614166, /* first 33 bits of pi/2 */
61 pio2_2 = 6.077100506303965976596e-11, /* second 33 bits of pi/2 */
62 pio2_3 = 2.022266248711166455796e-21, /* third 33 bits of pi/2 */

new/usr/src/lib/libmvec/common/__vsincos.c 2

63 pio2_3t = 8.478427660368899643959e-32, /* pi/2 - pio2_3 */
64 pp1 = -1.666666666605760465276263943134982554676e-0001,
65 pp2 = 8.333261209690963126718376566146180944442e-0003,
66 qq1 = -4.999999999977710986407023955908711557870e-0001,
67 qq2 = 4.166654863857219350645055881018842089580e-0002,
68 poly1[2]= { -1.666666666666629669805215138920301589656e-0001,
69 -4.999999999999931701464060878888294524481e-0001
70 poly2[2]= { 8.333333332390951295683993455280336376663e-0003,
71 4.166666666394861917535640593963708222319e-0002
72 poly3[2]= { -1.984126237997976692791551778230098403960e-0004,
73 -1.388888552656142867832756687736851681462e-0003
74 poly4[2]= { 2.753403624854277237649987622848330351110e-0006,
75 2.478519423681460796618128289454530524759e-0005

77 /* Don’t __ the following; acomp will handle it */
78 extern double fabs(double);
79 extern void __vlibm_vsincos_big(int, double *, int, double *, int, double *, in

81 /*
82 * y[i*stridey] := sin(x[i*stridex]), for i = 0..n.
83 * c[i*stridec] := cos(x[i*stridex]), for i = 0..n.
84 *
85 * Calls __vlibm_vsincos_big to handle all elts which have abs >~ 1.647e+06.
86 * Argument reduction is done here for elts pi/4 < arg < 1.647e+06.
87 *
88 * elts < 2^-27 use the approximation 1.0 ~ cos(x).
89 */
90 void
91 __vsincos(int n, double * restrict x, int stridex,
92 double * restrict y, int stridey,
93 double * restrict c, int stridec)
94 {
95 double x0_or_one[4], x1_or_one[4], x2_or_one[4];
96 double y0_or_zero[4], y1_or_zero[4], y2_or_zero[4];
97 double x0, x1, x2,
98 *py0, *py1, *py2,
99 *pc0, *pc1, *pc2,
100 *xsave, *ysave, *csave;
101 unsigned hx0, hx1, hx2, xsb0, xsb1, xsb2;
102 int i, biguns, nsave, sxsave, sysave, scsave;

103 nsave = n;
104 xsave = x;
105 sxsave = stridex;
106 ysave = y;
107 sysave = stridey;
108 csave = c;
109 scsave = stridec;
110 biguns = 0;

112 do /* MAIN LOOP */
113 {

115 /* Gotos here so _break_ exits MAIN LOOP. */
116 LOOP0: /* Find first arg in right range. */
117 xsb0 = HI(x); /* get most significant word */
118 hx0 = xsb0 & ~0x80000000; /* mask off sign bit */
119 if (hx0 > 0x3fe921fb) {
120 /* Too big: arg reduction needed, so leave for second pa
121 biguns = 1;
122 x += stridex;
123 y += stridey;
124 c += stridec;
125 i = 0;
126 if (--n <= 0)
127 break;

new/usr/src/lib/libmvec/common/__vsincos.c 3

128 goto LOOP0;
129 }
130 if (hx0 < 0x3e400000) {
131 /* Too small. cos x ~ 1, sin x ~ x. */
61 volatile int v = *x;
132 *c = 1.0;
133 *y = *x;
134 x += stridex;
135 y += stridey;
136 c += stridec;
137 i = 0;
138 if (--n <= 0)
139 break;
140 goto LOOP0;
141 }
142 x0 = *x;
143 py0 = y;
144 pc0 = c;
145 x += stridex;
146 y += stridey;
147 c += stridec;
148 i = 1;
149 if (--n <= 0)
150 break;

152 LOOP1: /* Get second arg, same as above. */
153 xsb1 = HI(x);
154 hx1 = xsb1 & ~0x80000000;
155 if (hx1 > 0x3fe921fb)
156 {
157 biguns = 1;
158 x += stridex;
159 y += stridey;
160 c += stridec;
161 i = 1;
162 if (--n <= 0)
163 break;
164 goto LOOP1;
165 }
166 if (hx1 < 0x3e400000)
167 {
98 volatile int v = *x;
168 *c = 1.0;
169 *y = *x;
170 x += stridex;
171 y += stridey;
172 c += stridec;
173 i = 1;
174 if (--n <= 0)
175 break;
176 goto LOOP1;
177 }
178 x1 = *x;
179 py1 = y;
180 pc1 = c;
181 x += stridex;
182 y += stridey;
183 c += stridec;
184 i = 2;
185 if (--n <= 0)
186 break;

188 LOOP2: /* Get third arg, same as above. */
189 xsb2 = HI(x);
190 hx2 = xsb2 & ~0x80000000;
191 if (hx2 > 0x3fe921fb)

new/usr/src/lib/libmvec/common/__vsincos.c 4

192 {
193 biguns = 1;
194 x += stridex;
195 y += stridey;
196 c += stridec;
197 i = 2;
198 if (--n <= 0)
199 break;
200 goto LOOP2;
201 }
202 if (hx2 < 0x3e400000)
203 {
135 volatile int v = *x;
204 *c = 1.0;
205 *y = *x;
206 x += stridex;
207 y += stridey;
208 c += stridec;
209 i = 2;
210 if (--n <= 0)
211 break;
212 goto LOOP2;
213 }
214 x2 = *x;
215 py2 = y;
216 pc2 = c;

218 /*
219 * 0x3fc40000 = 5/32 ~ 0.15625
220 * Get msb after subtraction. Will be 1 only if
221 * hx0 - 5/32 is negative.
222 */
223 i = (hx2 - 0x3fc40000) >> 31;
224 i |= ((hx1 - 0x3fc40000) >> 30) & 2;
225 i |= ((hx0 - 0x3fc40000) >> 29) & 4;
226 switch (i)
227 {
228 double a1_0, a1_1, a1_2, a2_0, a2_1, a2_2;
229 double w0, w1, w2;
230 double t0, t1, t2, t1_0, t1_1, t1_2, t2_0, t2_1
231 double z0, z1, z2;
232 unsigned j0, j1, j2;

234 case 0: /* All are > 5/32 */
235 j0 = (xsb0 + 0x4000) & 0xffff8000;
236 j1 = (xsb1 + 0x4000) & 0xffff8000;
237 j2 = (xsb2 + 0x4000) & 0xffff8000;

239 HI(&t0) = j0;
240 HI(&t1) = j1;
241 HI(&t2) = j2;
242 LO(&t0) = 0;
243 LO(&t1) = 0;
244 LO(&t2) = 0;

246 x0 -= t0;
247 x1 -= t1;
248 x2 -= t2;

250 z0 = x0 * x0;
251 z1 = x1 * x1;
252 z2 = x2 * x2;

254 t0 = z0 * (qq1 + z0 * qq2);
255 t1 = z1 * (qq1 + z1 * qq2);
256 t2 = z2 * (qq1 + z2 * qq2);

new/usr/src/lib/libmvec/common/__vsincos.c 5

258 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
259 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
260 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));

262 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
263 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
264 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~

266 xsb0 = (xsb0 >> 30) & 2;
267 xsb1 = (xsb1 >> 30) & 2;
268 xsb2 = (xsb2 >> 30) & 2;

270 a1_0 = __vlibm_TBL_sincos_hi[j0+xsb0]; /* sin_hi(t) */
271 a1_1 = __vlibm_TBL_sincos_hi[j1+xsb1];
272 a1_2 = __vlibm_TBL_sincos_hi[j2+xsb2];

274 a2_0 = __vlibm_TBL_sincos_hi[j0+1]; /* cos_hi(t) */
275 a2_1 = __vlibm_TBL_sincos_hi[j1+1];
276 a2_2 = __vlibm_TBL_sincos_hi[j2+1];
277 /* cos_lo(t) */
278 t2_0 = __vlibm_TBL_sincos_lo[j0+1] - (a1_0*w0 - a2_0*t0
279 t2_1 = __vlibm_TBL_sincos_lo[j1+1] - (a1_1*w1 - a2_1*t1
280 t2_2 = __vlibm_TBL_sincos_lo[j2+1] - (a1_2*w2 - a2_2*t2

282 *pc0 = a2_0 + t2_0;
283 *pc1 = a2_1 + t2_1;
284 *pc2 = a2_2 + t2_2;

286 t1_0 = a2_0*w0 + a1_0*t0;
287 t1_1 = a2_1*w1 + a1_1*t1;
288 t1_2 = a2_2*w2 + a1_2*t2;

290 t1_0 += __vlibm_TBL_sincos_lo[j0+xsb0]; /* sin_lo(t) */
291 t1_1 += __vlibm_TBL_sincos_lo[j1+xsb1];
292 t1_2 += __vlibm_TBL_sincos_lo[j2+xsb2];

294 *py0 = a1_0 + t1_0;
295 *py1 = a1_1 + t1_1;
296 *py2 = a1_2 + t1_2;

298 break;

300 case 1:
301 j0 = (xsb0 + 0x4000) & 0xffff8000;
302 j1 = (xsb1 + 0x4000) & 0xffff8000;
303 HI(&t0) = j0;
304 HI(&t1) = j1;
305 LO(&t0) = 0;
306 LO(&t1) = 0;
307 x0 -= t0;
308 x1 -= t1;
309 z0 = x0 * x0;
310 z1 = x1 * x1;
311 z2 = x2 * x2;
312 t0 = z0 * (qq1 + z0 * qq2);
313 t1 = z1 * (qq1 + z1 * qq2);
314 t2 = z2 * (poly3[1] + z2 * poly4[1]);
315 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
316 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
317 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
318 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
319 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
320 xsb0 = (xsb0 >> 30) & 2;
321 xsb1 = (xsb1 >> 30) & 2;

new/usr/src/lib/libmvec/common/__vsincos.c 6

323 a1_0 = __vlibm_TBL_sincos_hi[j0+xsb0]; /* sin_hi(t) */
324 a1_1 = __vlibm_TBL_sincos_hi[j1+xsb1];

326 a2_0 = __vlibm_TBL_sincos_hi[j0+1]; /* cos_hi(t) */
327 a2_1 = __vlibm_TBL_sincos_hi[j1+1];
328 /* cos_lo(t) */
329 t2_0 = __vlibm_TBL_sincos_lo[j0+1] - (a1_0*w0 - a2_0*t0
330 t2_1 = __vlibm_TBL_sincos_lo[j1+1] - (a1_1*w1 - a2_1*t1

332 *pc0 = a2_0 + t2_0;
333 *pc1 = a2_1 + t2_1;
334 *pc2 = one + t2;

336 t1_0 = a2_0*w0 + a1_0*t0;
337 t1_1 = a2_1*w1 + a1_1*t1;
338 t2 = z2 * (poly3[0] + z2 * poly4[0]);

340 t1_0 += __vlibm_TBL_sincos_lo[j0+xsb0]; /* sin_lo(t) */
341 t1_1 += __vlibm_TBL_sincos_lo[j1+xsb1];
342 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));

344 *py0 = a1_0 + t1_0;
345 *py1 = a1_1 + t1_1;
346 t2 = x2 + x2 * t2;
347 *py2 = t2;

349 break;

351 case 2:
352 j0 = (xsb0 + 0x4000) & 0xffff8000;
353 j2 = (xsb2 + 0x4000) & 0xffff8000;
354 HI(&t0) = j0;
355 HI(&t2) = j2;
356 LO(&t0) = 0;
357 LO(&t2) = 0;
358 x0 -= t0;
359 x2 -= t2;
360 z0 = x0 * x0;
361 z1 = x1 * x1;
362 z2 = x2 * x2;
363 t0 = z0 * (qq1 + z0 * qq2);
364 t1 = z1 * (poly3[1] + z1 * poly4[1]);
365 t2 = z2 * (qq1 + z2 * qq2);
366 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
367 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
368 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
369 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
370 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
371 xsb0 = (xsb0 >> 30) & 2;
372 xsb2 = (xsb2 >> 30) & 2;

374 a1_0 = __vlibm_TBL_sincos_hi[j0+xsb0]; /* sin_hi(t) */
375 a1_2 = __vlibm_TBL_sincos_hi[j2+xsb2];

377 a2_0 = __vlibm_TBL_sincos_hi[j0+1]; /* cos_hi(t) */
378 a2_2 = __vlibm_TBL_sincos_hi[j2+1];
379 /* cos_lo(t) */
380 t2_0 = __vlibm_TBL_sincos_lo[j0+1] - (a1_0*w0 - a2_0*t0
381 t2_2 = __vlibm_TBL_sincos_lo[j2+1] - (a1_2*w2 - a2_2*t2

383 *pc0 = a2_0 + t2_0;
384 *pc1 = one + t1;
385 *pc2 = a2_2 + t2_2;

387 t1_0 = a2_0*w0 + a1_0*t0;
388 t1 = z1 * (poly3[0] + z1 * poly4[0]);

new/usr/src/lib/libmvec/common/__vsincos.c 7

389 t1_2 = a2_2*w2 + a1_2*t2;

391 t1_0 += __vlibm_TBL_sincos_lo[j0+xsb0]; /* sin_lo(t) */
392 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
393 t1_2 += __vlibm_TBL_sincos_lo[j2+xsb2];

395 *py0 = a1_0 + t1_0;
396 t1 = x1 + x1 * t1;
397 *py1 = t1;
398 *py2 = a1_2 + t1_2;

400 break;

402 case 3:
403 j0 = (xsb0 + 0x4000) & 0xffff8000;
404 HI(&t0) = j0;
405 LO(&t0) = 0;
406 x0 -= t0;
407 z0 = x0 * x0;
408 z1 = x1 * x1;
409 z2 = x2 * x2;
410 t0 = z0 * (qq1 + z0 * qq2);
411 t1 = z1 * (poly3[1] + z1 * poly4[1]);
412 t2 = z2 * (poly3[1] + z2 * poly4[1]);
413 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
414 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
415 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
416 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
417 xsb0 = (xsb0 >> 30) & 2;
418 a1_0 = __vlibm_TBL_sincos_hi[j0+xsb0]; /* sin_hi(t) */

420 a2_0 = __vlibm_TBL_sincos_hi[j0+1]; /* cos_hi(t) */

422 t2_0 = __vlibm_TBL_sincos_lo[j0+1] - (a1_0*w0 - a2_0*t0

424 *pc0 = a2_0 + t2_0;
425 *pc1 = one + t1;
426 *pc2 = one + t2;

428 t1_0 = a2_0*w0 + a1_0*t0;
429 t1 = z1 * (poly3[0] + z1 * poly4[0]);
430 t2 = z2 * (poly3[0] + z2 * poly4[0]);

432 t1_0 += __vlibm_TBL_sincos_lo[j0+xsb0]; /* sin_lo(t) */
433 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
434 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));

436 *py0 = a1_0 + t1_0;
437 t1 = x1 + x1 * t1;
438 *py1 = t1;
439 t2 = x2 + x2 * t2;
440 *py2 = t2;

442 break;

444 case 4:
445 j1 = (xsb1 + 0x4000) & 0xffff8000;
446 j2 = (xsb2 + 0x4000) & 0xffff8000;
447 HI(&t1) = j1;
448 HI(&t2) = j2;
449 LO(&t1) = 0;
450 LO(&t2) = 0;
451 x1 -= t1;
452 x2 -= t2;
453 z0 = x0 * x0;
454 z1 = x1 * x1;

new/usr/src/lib/libmvec/common/__vsincos.c 8

455 z2 = x2 * x2;
456 t0 = z0 * (poly3[1] + z0 * poly4[1]);
457 t1 = z1 * (qq1 + z1 * qq2);
458 t2 = z2 * (qq1 + z2 * qq2);
459 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
460 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
461 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
462 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
463 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
464 xsb1 = (xsb1 >> 30) & 2;
465 xsb2 = (xsb2 >> 30) & 2;

467 a1_1 = __vlibm_TBL_sincos_hi[j1+xsb1];
468 a1_2 = __vlibm_TBL_sincos_hi[j2+xsb2];

470 a2_1 = __vlibm_TBL_sincos_hi[j1+1];
471 a2_2 = __vlibm_TBL_sincos_hi[j2+1];
472 /* cos_lo(t) */
473 t2_1 = __vlibm_TBL_sincos_lo[j1+1] - (a1_1*w1 - a2_1*t1
474 t2_2 = __vlibm_TBL_sincos_lo[j2+1] - (a1_2*w2 - a2_2*t2

476 *pc0 = one + t0;
477 *pc1 = a2_1 + t2_1;
478 *pc2 = a2_2 + t2_2;

480 t0 = z0 * (poly3[0] + z0 * poly4[0]);
481 t1_1 = a2_1*w1 + a1_1*t1;
482 t1_2 = a2_2*w2 + a1_2*t2;

484 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
485 t1_1 += __vlibm_TBL_sincos_lo[j1+xsb1];
486 t1_2 += __vlibm_TBL_sincos_lo[j2+xsb2];

488 t0 = x0 + x0 * t0;
489 *py0 = t0;
490 *py1 = a1_1 + t1_1;
491 *py2 = a1_2 + t1_2;

493 break;

495 case 5:
496 j1 = (xsb1 + 0x4000) & 0xffff8000;
497 HI(&t1) = j1;
498 LO(&t1) = 0;
499 x1 -= t1;
500 z0 = x0 * x0;
501 z1 = x1 * x1;
502 z2 = x2 * x2;
503 t0 = z0 * (poly3[1] + z0 * poly4[1]);
504 t1 = z1 * (qq1 + z1 * qq2);
505 t2 = z2 * (poly3[1] + z2 * poly4[1]);
506 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
507 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
508 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
509 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
510 xsb1 = (xsb1 >> 30) & 2;

512 a1_1 = __vlibm_TBL_sincos_hi[j1+xsb1];

514 a2_1 = __vlibm_TBL_sincos_hi[j1+1];

516 t2_1 = __vlibm_TBL_sincos_lo[j1+1] - (a1_1*w1 - a2_1*t1

518 *pc0 = one + t0;
519 *pc1 = a2_1 + t2_1;
520 *pc2 = one + t2;

new/usr/src/lib/libmvec/common/__vsincos.c 9

522 t0 = z0 * (poly3[0] + z0 * poly4[0]);
523 t1_1 = a2_1*w1 + a1_1*t1;
524 t2 = z2 * (poly3[0] + z2 * poly4[0]);

526 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
527 t1_1 += __vlibm_TBL_sincos_lo[j1+xsb1];
528 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));

530 t0 = x0 + x0 * t0;
531 *py0 = t0;
532 *py1 = a1_1 + t1_1;
533 t2 = x2 + x2 * t2;
534 *py2 = t2;

536 break;

538 case 6:
539 j2 = (xsb2 + 0x4000) & 0xffff8000;
540 HI(&t2) = j2;
541 LO(&t2) = 0;
542 x2 -= t2;
543 z0 = x0 * x0;
544 z1 = x1 * x1;
545 z2 = x2 * x2;
546 t0 = z0 * (poly3[1] + z0 * poly4[1]);
547 t1 = z1 * (poly3[1] + z1 * poly4[1]);
548 t2 = z2 * (qq1 + z2 * qq2);
549 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
550 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
551 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
552 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
553 xsb2 = (xsb2 >> 30) & 2;
554 a1_2 = __vlibm_TBL_sincos_hi[j2+xsb2];

556 a2_2 = __vlibm_TBL_sincos_hi[j2+1];

558 t2_2 = __vlibm_TBL_sincos_lo[j2+1] - (a1_2*w2 - a2_2*t2

560 *pc0 = one + t0;
561 *pc1 = one + t1;
562 *pc2 = a2_2 + t2_2;

564 t0 = z0 * (poly3[0] + z0 * poly4[0]);
565 t1 = z1 * (poly3[0] + z1 * poly4[0]);
566 t1_2 = a2_2*w2 + a1_2*t2;

568 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
569 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
570 t1_2 += __vlibm_TBL_sincos_lo[j2+xsb2];

572 t0 = x0 + x0 * t0;
573 *py0 = t0;
574 t1 = x1 + x1 * t1;
575 *py1 = t1;
576 *py2 = a1_2 + t1_2;

578 break;

580 case 7: /* All are < 5/32 */
581 z0 = x0 * x0;
582 z1 = x1 * x1;
583 z2 = x2 * x2;
584 t0 = z0 * (poly3[1] + z0 * poly4[1]);
585 t1 = z1 * (poly3[1] + z1 * poly4[1]);
586 t2 = z2 * (poly3[1] + z2 * poly4[1]);

new/usr/src/lib/libmvec/common/__vsincos.c 10

587 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
588 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
589 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
590 *pc0 = one + t0;
591 *pc1 = one + t1;
592 *pc2 = one + t2;
593 t0 = z0 * (poly3[0] + z0 * poly4[0]);
594 t1 = z1 * (poly3[0] + z1 * poly4[0]);
595 t2 = z2 * (poly3[0] + z2 * poly4[0]);
596 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
597 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
598 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));
599 t0 = x0 + x0 * t0;
600 t1 = x1 + x1 * t1;
601 t2 = x2 + x2 * t2;
602 *py0 = t0;
603 *py1 = t1;
604 *py2 = t2;
605 break;
606 }

608 x += stridex;
609 y += stridey;
610 c += stridec;
611 i = 0;
612 } while (--n > 0); /* END MAIN LOOP */

614 /*
615 * CLEAN UP last 0, 1, or 2 elts.
616 */
617 if (i > 0) /* Clean up elts at tail. i < 3. */
618 {
619 double a1_0, a1_1, a2_0, a2_1;
620 double w0, w1;
621 double t0, t1, t1_0, t1_1, t2_0, t2_1;
622 double z0, z1;
623 unsigned j0, j1;

625 if (i > 1)
626 {
627 if (hx1 < 0x3fc40000)
628 {
629 z1 = x1 * x1;
630 t1 = z1 * (poly3[1] + z1 * poly4[1]);
631 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
632 t1 = one + t1;
633 *pc1 = t1;
634 t1 = z1 * (poly3[0] + z1 * poly4[0]);
635 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
636 t1 = x1 + x1 * t1;
637 *py1 = t1;
638 }
639 else
640 {
641 j1 = (xsb1 + 0x4000) & 0xffff8000;
642 HI(&t1) = j1;
643 LO(&t1) = 0;
644 x1 -= t1;
645 z1 = x1 * x1;
646 t1 = z1 * (qq1 + z1 * qq2);
647 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
648 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >>
649 xsb1 = (xsb1 >> 30) & 2;
650 a1_1 = __vlibm_TBL_sincos_hi[j1+xsb1];
651 a2_1 = __vlibm_TBL_sincos_hi[j1+1];
652 t2_1 = __vlibm_TBL_sincos_lo[j1+1] - (a1_1*w1 -

new/usr/src/lib/libmvec/common/__vsincos.c 11

653 *pc1 = a2_1 + t2_1;
654 t1_1 = a2_1*w1 + a1_1*t1;
655 t1_1 += __vlibm_TBL_sincos_lo[j1+xsb1];
656 *py1 = a1_1 + t1_1;
657 }
658 }
659 if (hx0 < 0x3fc40000)
660 {
661 z0 = x0 * x0;
662 t0 = z0 * (poly3[1] + z0 * poly4[1]);
663 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
664 t0 = one + t0;
665 *pc0 = t0;
666 t0 = z0 * (poly3[0] + z0 * poly4[0]);
667 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
668 t0 = x0 + x0 * t0;
669 *py0 = t0;
670 }
671 else
672 {
673 j0 = (xsb0 + 0x4000) & 0xffff8000;
674 HI(&t0) = j0;
675 LO(&t0) = 0;
676 x0 -= t0;
677 z0 = x0 * x0;
678 t0 = z0 * (qq1 + z0 * qq2);
679 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
680 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
681 xsb0 = (xsb0 >> 30) & 2;
682 a1_0 = __vlibm_TBL_sincos_hi[j0+xsb0]; /* sin_hi(t) */
683 a2_0 = __vlibm_TBL_sincos_hi[j0+1]; /* cos_hi(t) */
684 t2_0 = __vlibm_TBL_sincos_lo[j0+1] - (a1_0*w0 - a2_0*t0
685 *pc0 = a2_0 + t2_0;
686 t1_0 = a2_0*w0 + a1_0*t0;
687 t1_0 += __vlibm_TBL_sincos_lo[j0+xsb0]; /* sin_lo(t) */
688 *py0 = a1_0 + t1_0;
689 }
690 } /* END CLEAN UP */

692 if (!biguns)
693 return;

695 /*
696 * Take care of BIGUNS.
697 */
698 n = nsave;
699 x = xsave;
700 stridex = sxsave;
701 y = ysave;
702 stridey = sysave;
703 c = csave;
704 stridec = scsave;
705 biguns = 0;

707 x0_or_one[1] = 1.0;
708 x1_or_one[1] = 1.0;
709 x2_or_one[1] = 1.0;
710 x0_or_one[3] = -1.0;
711 x1_or_one[3] = -1.0;
712 x2_or_one[3] = -1.0;
713 y0_or_zero[1] = 0.0;
714 y1_or_zero[1] = 0.0;
715 y2_or_zero[1] = 0.0;
716 y0_or_zero[3] = 0.0;
717 y1_or_zero[3] = 0.0;
718 y2_or_zero[3] = 0.0;

new/usr/src/lib/libmvec/common/__vsincos.c 12

720 do
721 {
722 double fn0, fn1, fn2, a0, a1, a2, w0, w1, w2, y0, y1, y
723 unsigned hx;
724 int n0, n1, n2;

726 /*
727 * Find 3 more to work on: Not already done, not too big.
728 */
729 loop0:
730 hx = HI(x);
731 xsb0 = hx >> 31;
732 hx &= ~0x80000000;
733 if (hx <= 0x3fe921fb) /* Done above. */
734 {
735 x += stridex;
736 y += stridey;
737 c += stridec;
738 i = 0;
739 if (--n <= 0)
740 break;
741 goto loop0;
742 }
743 if (hx > 0x413921fb) /* (1.6471e+06) Too big: leave it. */
744 {
745 if (hx >= 0x7ff00000) /* Inf or NaN */
746 {
747 x0 = *x;
748 *y = x0 - x0;
749 *c = x0 - x0;
750 }
751 else {
752 biguns = 1;
753 }
754 x += stridex;
755 y += stridey;
756 c += stridec;
757 i = 0;
758 if (--n <= 0)
759 break;
760 goto loop0;
761 }
762 x0 = *x;
763 py0 = y;
764 pc0 = c;
765 x += stridex;
766 y += stridey;
767 c += stridec;
768 i = 1;
769 if (--n <= 0)
770 break;

772 loop1:
773 hx = HI(x);
774 xsb1 = hx >> 31;
775 hx &= ~0x80000000;
776 if (hx <= 0x3fe921fb)
777 {
778 x += stridex;
779 y += stridey;
780 c += stridec;
781 i = 1;
782 if (--n <= 0)
783 break;
784 goto loop1;

new/usr/src/lib/libmvec/common/__vsincos.c 13

785 }
786 if (hx > 0x413921fb)
787 {
788 if (hx >= 0x7ff00000)
789 {
790 x1 = *x;
791 *y = x1 - x1;
792 *c = x1 - x1;
793 }
794 else {
795 biguns = 1;
796 }
797 x += stridex;
798 y += stridey;
799 c += stridec;
800 i = 1;
801 if (--n <= 0)
802 break;
803 goto loop1;
804 }
805 x1 = *x;
806 py1 = y;
807 pc1 = c;
808 x += stridex;
809 y += stridey;
810 c += stridec;
811 i = 2;
812 if (--n <= 0)
813 break;

815 loop2:
816 hx = HI(x);
817 xsb2 = hx >> 31;
818 hx &= ~0x80000000;
819 if (hx <= 0x3fe921fb)
820 {
821 x += stridex;
822 y += stridey;
823 c += stridec;
824 i = 2;
825 if (--n <= 0)
826 break;
827 goto loop2;
828 }
829 if (hx > 0x413921fb)
830 {
831 if (hx >= 0x7ff00000)
832 {
833 x2 = *x;
834 *y = x2 - x2;
835 *c = x2 - x2;
836 }
837 else {
838 biguns = 1;
839 }
840 x += stridex;
841 y += stridey;
842 c += stridec;
843 i = 2;
844 if (--n <= 0)
845 break;
846 goto loop2;
847 }
848 x2 = *x;
849 py2 = y;
850 pc2 = c;

new/usr/src/lib/libmvec/common/__vsincos.c 14

852 n0 = (int) (x0 * invpio2 + half[xsb0]);
853 n1 = (int) (x1 * invpio2 + half[xsb1]);
854 n2 = (int) (x2 * invpio2 + half[xsb2]);
855 fn0 = (double) n0;
856 fn1 = (double) n1;
857 fn2 = (double) n2;
858 n0 &= 3;
859 n1 &= 3;
860 n2 &= 3;
861 a0 = x0 - fn0 * pio2_1;
862 a1 = x1 - fn1 * pio2_1;
863 a2 = x2 - fn2 * pio2_1;
864 w0 = fn0 * pio2_2;
865 w1 = fn1 * pio2_2;
866 w2 = fn2 * pio2_2;
867 x0 = a0 - w0;
868 x1 = a1 - w1;
869 x2 = a2 - w2;
870 y0 = (a0 - x0) - w0;
871 y1 = (a1 - x1) - w1;
872 y2 = (a2 - x2) - w2;
873 a0 = x0;
874 a1 = x1;
875 a2 = x2;
876 w0 = fn0 * pio2_3 - y0;
877 w1 = fn1 * pio2_3 - y1;
878 w2 = fn2 * pio2_3 - y2;
879 x0 = a0 - w0;
880 x1 = a1 - w1;
881 x2 = a2 - w2;
882 y0 = (a0 - x0) - w0;
883 y1 = (a1 - x1) - w1;
884 y2 = (a2 - x2) - w2;
885 a0 = x0;
886 a1 = x1;
887 a2 = x2;
888 w0 = fn0 * pio2_3t - y0;
889 w1 = fn1 * pio2_3t - y1;
890 w2 = fn2 * pio2_3t - y2;
891 x0 = a0 - w0;
892 x1 = a1 - w1;
893 x2 = a2 - w2;
894 y0 = (a0 - x0) - w0;
895 y1 = (a1 - x1) - w1;
896 y2 = (a2 - x2) - w2;
897 xsb2 = HI(&x2);
898 i = ((xsb2 & ~0x80000000) - 0x3fc40000) >> 31;
899 xsb1 = HI(&x1);
900 i |= (((xsb1 & ~0x80000000) - 0x3fc40000) >> 30) & 2;
901 xsb0 = HI(&x0);
902 i |= (((xsb0 & ~0x80000000) - 0x3fc40000) >> 29) & 4;
903 switch (i)
904 {
905 double a1_0, a1_1, a1_2, a2_0, a2_1, a2_2;
906 double t0, t1, t2, t1_0, t1_1, t1_2, t2_0, t2_1
907 double z0, z1, z2;
908 unsigned j0, j1, j2;

910 case 0:
911 j0 = (xsb0 + 0x4000) & 0xffff8000;
912 j1 = (xsb1 + 0x4000) & 0xffff8000;
913 j2 = (xsb2 + 0x4000) & 0xffff8000;
914 HI(&t0) = j0;
915 HI(&t1) = j1;
916 HI(&t2) = j2;

new/usr/src/lib/libmvec/common/__vsincos.c 15

917 LO(&t0) = 0;
918 LO(&t1) = 0;
919 LO(&t2) = 0;
920 x0 = (x0 - t0) + y0;
921 x1 = (x1 - t1) + y1;
922 x2 = (x2 - t2) + y2;
923 z0 = x0 * x0;
924 z1 = x1 * x1;
925 z2 = x2 * x2;
926 t0 = z0 * (qq1 + z0 * qq2);
927 t1 = z1 * (qq1 + z1 * qq2);
928 t2 = z2 * (qq1 + z2 * qq2);
929 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
930 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
931 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
932 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
933 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
934 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
935 xsb0 = (xsb0 >> 30) & 2;
936 xsb1 = (xsb1 >> 30) & 2;
937 xsb2 = (xsb2 >> 30) & 2;
938 n0 ^= (xsb0 & ~(n0 << 1));
939 n1 ^= (xsb1 & ~(n1 << 1));
940 n2 ^= (xsb2 & ~(n2 << 1));
941 xsb0 |= 1;
942 xsb1 |= 1;
943 xsb2 |= 1;

945 a1_0 = __vlibm_TBL_sincos_hi[j0+n0];
946 a1_1 = __vlibm_TBL_sincos_hi[j1+n1];
947 a1_2 = __vlibm_TBL_sincos_hi[j2+n2];

949 a2_0 = __vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)];
950 a2_1 = __vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)];
951 a2_2 = __vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)];

953 t2_0 = __vlibm_TBL_sincos_lo[j0+((n0+xsb0)&3)] - (a1_0*
954 t2_1 = __vlibm_TBL_sincos_lo[j1+((n1+xsb1)&3)] - (a1_1*
955 t2_2 = __vlibm_TBL_sincos_lo[j2+((n2+xsb2)&3)] - (a1_2*

957 w0 *= a2_0;
958 w1 *= a2_1;
959 w2 *= a2_2;

961 *pc0 = a2_0 + t2_0;
962 *pc1 = a2_1 + t2_1;
963 *pc2 = a2_2 + t2_2;

965 t1_0 = w0 + a1_0*t0;
966 t1_1 = w1 + a1_1*t1;
967 t1_2 = w2 + a1_2*t2;

969 t1_0 += __vlibm_TBL_sincos_lo[j0+n0];
970 t1_1 += __vlibm_TBL_sincos_lo[j1+n1];
971 t1_2 += __vlibm_TBL_sincos_lo[j2+n2];

973 *py0 = a1_0 + t1_0;
974 *py1 = a1_1 + t1_1;
975 *py2 = a1_2 + t1_2;

977 break;

979 case 1:
980 j0 = (xsb0 + 0x4000) & 0xffff8000;
981 j1 = (xsb1 + 0x4000) & 0xffff8000;
982 j2 = n2 & 1;

new/usr/src/lib/libmvec/common/__vsincos.c 16

983 HI(&t0) = j0;
984 HI(&t1) = j1;
985 LO(&t0) = 0;
986 LO(&t1) = 0;
987 x2_or_one[0] = x2;
988 x2_or_one[2] = -x2;
989 x0 = (x0 - t0) + y0;
990 x1 = (x1 - t1) + y1;
991 y2_or_zero[0] = y2;
992 y2_or_zero[2] = -y2;
993 z0 = x0 * x0;
994 z1 = x1 * x1;
995 z2 = x2 * x2;
996 t0 = z0 * (qq1 + z0 * qq2);
997 t1 = z1 * (qq1 + z1 * qq2);
998 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
999 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));

1000 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
1001 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
1002 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1003 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1004 xsb0 = (xsb0 >> 30) & 2;
1005 xsb1 = (xsb1 >> 30) & 2;
1006 n0 ^= (xsb0 & ~(n0 << 1));
1007 n1 ^= (xsb1 & ~(n1 << 1));
1008 xsb0 |= 1;
1009 xsb1 |= 1;
1010 a1_0 = __vlibm_TBL_sincos_hi[j0+n0];
1011 a1_1 = __vlibm_TBL_sincos_hi[j1+n1];

1013 a2_0 = __vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)];
1014 a2_1 = __vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)];

1016 t2_0 = __vlibm_TBL_sincos_lo[j0+((n0+xsb0)&3)] - (a1_0*
1017 t2_1 = __vlibm_TBL_sincos_lo[j1+((n1+xsb1)&3)] - (a1_1*
1018 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *

1020 *pc0 = a2_0 + t2_0;
1021 *pc1 = a2_1 + t2_1;
1022 *py2 = t2;

1024 n2 = (n2 + 1) & 3;
1025 j2 = (j2 + 1) & 1;
1026 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);

1028 t1_0 = a2_0*w0 + a1_0*t0;
1029 t1_1 = a2_1*w1 + a1_1*t1;
1030 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));

1032 t1_0 += __vlibm_TBL_sincos_lo[j0+n0];
1033 t1_1 += __vlibm_TBL_sincos_lo[j1+n1];
1034 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *

1036 *py0 = a1_0 + t1_0;
1037 *py1 = a1_1 + t1_1;
1038 *pc2 = t2;

1040 break;

1042 case 2:
1043 j0 = (xsb0 + 0x4000) & 0xffff8000;
1044 j1 = n1 & 1;
1045 j2 = (xsb2 + 0x4000) & 0xffff8000;
1046 HI(&t0) = j0;
1047 HI(&t2) = j2;
1048 LO(&t0) = 0;

new/usr/src/lib/libmvec/common/__vsincos.c 17

1049 LO(&t2) = 0;
1050 x1_or_one[0] = x1;
1051 x1_or_one[2] = -x1;
1052 x0 = (x0 - t0) + y0;
1053 y1_or_zero[0] = y1;
1054 y1_or_zero[2] = -y1;
1055 x2 = (x2 - t2) + y2;
1056 z0 = x0 * x0;
1057 z1 = x1 * x1;
1058 z2 = x2 * x2;
1059 t0 = z0 * (qq1 + z0 * qq2);
1060 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1061 t2 = z2 * (qq1 + z2 * qq2);
1062 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
1063 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1064 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
1065 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1066 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1067 xsb0 = (xsb0 >> 30) & 2;
1068 xsb2 = (xsb2 >> 30) & 2;
1069 n0 ^= (xsb0 & ~(n0 << 1));
1070 n2 ^= (xsb2 & ~(n2 << 1));
1071 xsb0 |= 1;
1072 xsb2 |= 1;

1074 a1_0 = __vlibm_TBL_sincos_hi[j0+n0];
1075 a1_2 = __vlibm_TBL_sincos_hi[j2+n2];

1077 a2_0 = __vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)];
1078 a2_2 = __vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)];

1080 t2_0 = __vlibm_TBL_sincos_lo[j0+((n0+xsb0)&3)] - (a1_0*
1081 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
1082 t2_2 = __vlibm_TBL_sincos_lo[j2+((n2+xsb2)&3)] - (a1_2*

1084 *pc0 = a2_0 + t2_0;
1085 *py1 = t1;
1086 *pc2 = a2_2 + t2_2;

1088 n1 = (n1 + 1) & 3;
1089 j1 = (j1 + 1) & 1;
1090 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);

1092 t1_0 = a2_0*w0 + a1_0*t0;
1093 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1094 t1_2 = a2_2*w2 + a1_2*t2;

1096 t1_0 += __vlibm_TBL_sincos_lo[j0+n0];
1097 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
1098 t1_2 += __vlibm_TBL_sincos_lo[j2+n2];

1100 *py0 = a1_0 + t1_0;
1101 *pc1 = t1;
1102 *py2 = a1_2 + t1_2;

1104 break;

1106 case 3:
1107 j0 = (xsb0 + 0x4000) & 0xffff8000;
1108 j1 = n1 & 1;
1109 j2 = n2 & 1;
1110 HI(&t0) = j0;
1111 LO(&t0) = 0;
1112 x1_or_one[0] = x1;
1113 x1_or_one[2] = -x1;
1114 x2_or_one[0] = x2;

new/usr/src/lib/libmvec/common/__vsincos.c 18

1115 x2_or_one[2] = -x2;
1116 x0 = (x0 - t0) + y0;
1117 y1_or_zero[0] = y1;
1118 y1_or_zero[2] = -y1;
1119 y2_or_zero[0] = y2;
1120 y2_or_zero[2] = -y2;
1121 z0 = x0 * x0;
1122 z1 = x1 * x1;
1123 z2 = x2 * x2;
1124 t0 = z0 * (qq1 + z0 * qq2);
1125 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1126 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
1127 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
1128 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1129 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
1130 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1131 xsb0 = (xsb0 >> 30) & 2;
1132 n0 ^= (xsb0 & ~(n0 << 1));
1133 xsb0 |= 1;

1135 a1_0 = __vlibm_TBL_sincos_hi[j0+n0];
1136 a2_0 = __vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)];

1138 t2_0 = __vlibm_TBL_sincos_lo[j0+((n0+xsb0)&3)] - (a1_0*
1139 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
1140 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *

1142 *pc0 = a2_0 + t2_0;
1143 *py1 = t1;
1144 *py2 = t2;

1146 n1 = (n1 + 1) & 3;
1147 n2 = (n2 + 1) & 3;
1148 j1 = (j1 + 1) & 1;
1149 j2 = (j2 + 1) & 1;

1151 t1_0 = a2_0*w0 + a1_0*t0;
1152 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1153 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);

1155 t1_0 += __vlibm_TBL_sincos_lo[j0+n0];
1156 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1157 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));

1159 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
1160 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *

1162 *py0 = a1_0 + t1_0;
1163 *pc1 = t1;
1164 *pc2 = t2;

1166 break;

1168 case 4:
1169 j0 = n0 & 1;
1170 j1 = (xsb1 + 0x4000) & 0xffff8000;
1171 j2 = (xsb2 + 0x4000) & 0xffff8000;
1172 HI(&t1) = j1;
1173 HI(&t2) = j2;
1174 LO(&t1) = 0;
1175 LO(&t2) = 0;
1176 x0_or_one[0] = x0;
1177 x0_or_one[2] = -x0;
1178 y0_or_zero[0] = y0;
1179 y0_or_zero[2] = -y0;
1180 x1 = (x1 - t1) + y1;

new/usr/src/lib/libmvec/common/__vsincos.c 19

1181 x2 = (x2 - t2) + y2;
1182 z0 = x0 * x0;
1183 z1 = x1 * x1;
1184 z2 = x2 * x2;
1185 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1186 t1 = z1 * (qq1 + z1 * qq2);
1187 t2 = z2 * (qq1 + z2 * qq2);
1188 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1189 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
1190 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
1191 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1192 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1193 xsb1 = (xsb1 >> 30) & 2;
1194 xsb2 = (xsb2 >> 30) & 2;
1195 n1 ^= (xsb1 & ~(n1 << 1));
1196 n2 ^= (xsb2 & ~(n2 << 1));
1197 xsb1 |= 1;
1198 xsb2 |= 1;

1200 a1_1 = __vlibm_TBL_sincos_hi[j1+n1];
1201 a1_2 = __vlibm_TBL_sincos_hi[j2+n2];

1203 a2_1 = __vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)];
1204 a2_2 = __vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)];

1206 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1207 t2_1 = __vlibm_TBL_sincos_lo[j1+((n1+xsb1)&3)] - (a1_1*
1208 t2_2 = __vlibm_TBL_sincos_lo[j2+((n2+xsb2)&3)] - (a1_2*

1210 *py0 = t0;
1211 *pc1 = a2_1 + t2_1;
1212 *pc2 = a2_2 + t2_2;

1214 n0 = (n0 + 1) & 3;
1215 j0 = (j0 + 1) & 1;
1216 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);

1218 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1219 t1_1 = a2_1*w1 + a1_1*t1;
1220 t1_2 = a2_2*w2 + a1_2*t2;

1222 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1223 t1_1 += __vlibm_TBL_sincos_lo[j1+n1];
1224 t1_2 += __vlibm_TBL_sincos_lo[j2+n2];

1226 *py1 = a1_1 + t1_1;
1227 *py2 = a1_2 + t1_2;
1228 *pc0 = t0;

1230 break;

1232 case 5:
1233 j0 = n0 & 1;
1234 j1 = (xsb1 + 0x4000) & 0xffff8000;
1235 j2 = n2 & 1;
1236 HI(&t1) = j1;
1237 LO(&t1) = 0;
1238 x0_or_one[0] = x0;
1239 x0_or_one[2] = -x0;
1240 x2_or_one[0] = x2;
1241 x2_or_one[2] = -x2;
1242 y0_or_zero[0] = y0;
1243 y0_or_zero[2] = -y0;
1244 x1 = (x1 - t1) + y1;
1245 y2_or_zero[0] = y2;
1246 y2_or_zero[2] = -y2;

new/usr/src/lib/libmvec/common/__vsincos.c 20

1247 z0 = x0 * x0;
1248 z1 = x1 * x1;
1249 z2 = x2 * x2;
1250 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1251 t1 = z1 * (qq1 + z1 * qq2);
1252 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
1253 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1254 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
1255 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
1256 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1257 xsb1 = (xsb1 >> 30) & 2;
1258 n1 ^= (xsb1 & ~(n1 << 1));
1259 xsb1 |= 1;

1261 a1_1 = __vlibm_TBL_sincos_hi[j1+n1];
1262 a2_1 = __vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)];

1264 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1265 t2_1 = __vlibm_TBL_sincos_lo[j1+((n1+xsb1)&3)] - (a1_1*
1266 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *

1268 *py0 = t0;
1269 *pc1 = a2_1 + t2_1;
1270 *py2 = t2;

1272 n0 = (n0 + 1) & 3;
1273 n2 = (n2 + 1) & 3;
1274 j0 = (j0 + 1) & 1;
1275 j2 = (j2 + 1) & 1;

1277 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1278 t1_1 = a2_1*w1 + a1_1*t1;
1279 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);

1281 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1282 t1_1 += __vlibm_TBL_sincos_lo[j1+n1];
1283 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));

1285 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1286 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *

1288 *pc0 = t0;
1289 *py1 = a1_1 + t1_1;
1290 *pc2 = t2;

1292 break;

1294 case 6:
1295 j0 = n0 & 1;
1296 j1 = n1 & 1;
1297 j2 = (xsb2 + 0x4000) & 0xffff8000;
1298 HI(&t2) = j2;
1299 LO(&t2) = 0;
1300 x0_or_one[0] = x0;
1301 x0_or_one[2] = -x0;
1302 x1_or_one[0] = x1;
1303 x1_or_one[2] = -x1;
1304 y0_or_zero[0] = y0;
1305 y0_or_zero[2] = -y0;
1306 y1_or_zero[0] = y1;
1307 y1_or_zero[2] = -y1;
1308 x2 = (x2 - t2) + y2;
1309 z0 = x0 * x0;
1310 z1 = x1 * x1;
1311 z2 = x2 * x2;
1312 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);

new/usr/src/lib/libmvec/common/__vsincos.c 21

1313 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1314 t2 = z2 * (qq1 + z2 * qq2);
1315 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1316 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1317 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
1318 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1319 xsb2 = (xsb2 >> 30) & 2;
1320 n2 ^= (xsb2 & ~(n2 << 1));
1321 xsb2 |= 1;

1323 a1_2 = __vlibm_TBL_sincos_hi[j2+n2];
1324 a2_2 = __vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)];

1326 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1327 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
1328 t2_2 = __vlibm_TBL_sincos_lo[j2+((n2+xsb2)&3)] - (a1_2*

1330 *py0 = t0;
1331 *py1 = t1;
1332 *pc2 = a2_2 + t2_2;

1334 n0 = (n0 + 1) & 3;
1335 n1 = (n1 + 1) & 3;
1336 j0 = (j0 + 1) & 1;
1337 j1 = (j1 + 1) & 1;

1339 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1340 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1341 t1_2 = a2_2*w2 + a1_2*t2;

1343 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1344 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1345 t1_2 += __vlibm_TBL_sincos_lo[j2+n2];

1347 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1348 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *

1350 *pc0 = t0;
1351 *pc1 = t1;
1352 *py2 = a1_2 + t1_2;

1354 break;

1356 case 7:
1357 j0 = n0 & 1;
1358 j1 = n1 & 1;
1359 j2 = n2 & 1;
1360 x0_or_one[0] = x0;
1361 x0_or_one[2] = -x0;
1362 x1_or_one[0] = x1;
1363 x1_or_one[2] = -x1;
1364 x2_or_one[0] = x2;
1365 x2_or_one[2] = -x2;
1366 y0_or_zero[0] = y0;
1367 y0_or_zero[2] = -y0;
1368 y1_or_zero[0] = y1;
1369 y1_or_zero[2] = -y1;
1370 y2_or_zero[0] = y2;
1371 y2_or_zero[2] = -y2;
1372 z0 = x0 * x0;
1373 z1 = x1 * x1;
1374 z2 = x2 * x2;
1375 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1376 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1377 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
1378 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));

new/usr/src/lib/libmvec/common/__vsincos.c 22

1379 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1380 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
1381 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1382 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
1383 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
1384 *py0 = t0;
1385 *py1 = t1;
1386 *py2 = t2;

1388 n0 = (n0 + 1) & 3;
1389 n1 = (n1 + 1) & 3;
1390 n2 = (n2 + 1) & 3;
1391 j0 = (j0 + 1) & 1;
1392 j1 = (j1 + 1) & 1;
1393 j2 = (j2 + 1) & 1;
1394 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1395 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1396 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
1397 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1398 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1399 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
1400 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1401 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
1402 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
1403 *pc0 = t0;
1404 *pc1 = t1;
1405 *pc2 = t2;
1406 break;
1407 }

1409 x += stridex;
1410 y += stridey;
1411 c += stridec;
1412 i = 0;
1413 } while (--n > 0);

1415 if (i > 0)
1416 {
1417 double a1_0, a1_1, a2_0, a2_1;
1418 double t0, t1, t1_0, t1_1, t2_0, t2_1;
1419 double fn0, fn1, a0, a1, w0, w1, y0, y1;
1420 double z0, z1;
1421 unsigned j0, j1;
1422 int n0, n1;

1424 if (i > 1)
1425 {
1426 n1 = (int) (x1 * invpio2 + half[xsb1]);
1427 fn1 = (double) n1;
1428 n1 &= 3;
1429 a1 = x1 - fn1 * pio2_1;
1430 w1 = fn1 * pio2_2;
1431 x1 = a1 - w1;
1432 y1 = (a1 - x1) - w1;
1433 a1 = x1;
1434 w1 = fn1 * pio2_3 - y1;
1435 x1 = a1 - w1;
1436 y1 = (a1 - x1) - w1;
1437 a1 = x1;
1438 w1 = fn1 * pio2_3t - y1;
1439 x1 = a1 - w1;
1440 y1 = (a1 - x1) - w1;
1441 xsb1 = HI(&x1);
1442 if ((xsb1 & ~0x80000000) < 0x3fc40000)
1443 {
1444 j1 = n1 & 1;

new/usr/src/lib/libmvec/common/__vsincos.c 23

1445 x1_or_one[0] = x1;
1446 x1_or_one[2] = -x1;
1447 y1_or_zero[0] = y1;
1448 y1_or_zero[2] = -y1;
1449 z1 = x1 * x1;
1450 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1451 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1)
1452 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_on
1453 *py1 = t1;
1454 n1 = (n1 + 1) & 3;
1455 j1 = (j1 + 1) & 1;
1456 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1457 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1)
1458 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_on
1459 *pc1 = t1;
1460 }
1461 else
1462 {
1463 j1 = (xsb1 + 0x4000) & 0xffff8000;
1464 HI(&t1) = j1;
1465 LO(&t1) = 0;
1466 x1 = (x1 - t1) + y1;
1467 z1 = x1 * x1;
1468 t1 = z1 * (qq1 + z1 * qq2);
1469 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
1470 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >>
1471 xsb1 = (xsb1 >> 30) & 2;
1472 n1 ^= (xsb1 & ~(n1 << 1));
1473 xsb1 |= 1;
1474 a1_1 = __vlibm_TBL_sincos_hi[j1+n1];
1475 a2_1 = __vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)];
1476 t2_1 = __vlibm_TBL_sincos_lo[j1+((n1+xsb1)&3)] -
1477 *pc1 = a2_1 + t2_1;
1478 t1_1 = a2_1*w1 + a1_1*t1;
1479 t1_1 += __vlibm_TBL_sincos_lo[j1+n1];
1480 *py1 = a1_1 + t1_1;
1481 }
1482 }
1483 n0 = (int) (x0 * invpio2 + half[xsb0]);
1484 fn0 = (double) n0;
1485 n0 &= 3;
1486 a0 = x0 - fn0 * pio2_1;
1487 w0 = fn0 * pio2_2;
1488 x0 = a0 - w0;
1489 y0 = (a0 - x0) - w0;
1490 a0 = x0;
1491 w0 = fn0 * pio2_3 - y0;
1492 x0 = a0 - w0;
1493 y0 = (a0 - x0) - w0;
1494 a0 = x0;
1495 w0 = fn0 * pio2_3t - y0;
1496 x0 = a0 - w0;
1497 y0 = (a0 - x0) - w0;
1498 xsb0 = HI(&x0);
1499 if ((xsb0 & ~0x80000000) < 0x3fc40000)
1500 {
1501 j0 = n0 & 1;
1502 x0_or_one[0] = x0;
1503 x0_or_one[2] = -x0;
1504 y0_or_zero[0] = y0;
1505 y0_or_zero[2] = -y0;
1506 z0 = x0 * x0;
1507 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1508 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1509 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1510 *py0 = t0;

new/usr/src/lib/libmvec/common/__vsincos.c 24

1511 n0 = (n0 + 1) & 3;
1512 j0 = (j0 + 1) & 1;
1513 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1514 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1515 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1516 *pc0 = t0;
1517 }
1518 else
1519 {
1520 j0 = (xsb0 + 0x4000) & 0xffff8000;
1521 HI(&t0) = j0;
1522 LO(&t0) = 0;
1523 x0 = (x0 - t0) + y0;
1524 z0 = x0 * x0;
1525 t0 = z0 * (qq1 + z0 * qq2);
1526 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
1527 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1528 xsb0 = (xsb0 >> 30) & 2;
1529 n0 ^= (xsb0 & ~(n0 << 1));
1530 xsb0 |= 1;
1531 a1_0 = __vlibm_TBL_sincos_hi[j0+n0];
1532 a2_0 = __vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)];
1533 t2_0 = __vlibm_TBL_sincos_lo[j0+((n0+xsb0)&3)] - (a1_0*
1534 *pc0 = a2_0 + t2_0;
1535 t1_0 = a2_0*w0 + a1_0*t0;
1536 t1_0 += __vlibm_TBL_sincos_lo[j0+n0];
1537 *py0 = a1_0 + t1_0;
1538 }
1539 }

1541 if (biguns) {
1542 __vlibm_vsincos_big(nsave, xsave, sxsave, ysave, sysave, csave,
1543 }
1544 }
______unchanged_portion_omitted_

new/usr/src/lib/libmvec/common/__vsincosf.c 1

**
 7042 Sun May 4 03:07:30 2014
new/usr/src/lib/libmvec/common/__vsincosf.c
**
______unchanged_portion_omitted_

76 #define S0 C[0]
77 #define S1 C[1]
78 #define S2 C[2]
79 #define one C[3]
80 #define mhalf C[4]
81 #define C0 C[5]
82 #define C1 C[6]
83 #define C2 C[7]
84 #define invpio2 C[8]
85 #define c3two51 C[9]
86 #define pio2_1 C[10]
87 #define pio2_t C[11]

89 #define PREPROCESS(N, sindex, cindex, label) \
90 hx = *(int *)x; \
91 ix = hx & 0x7fffffff; \
92 t = *x; \
93 x += stridex; \
94 if (ix <= 0x3f490fdb) { /* |x| < pi/4 */ \
95 if (ix == 0) { \
96 s[sindex] = t; \
97 c[cindex] = one; \
98 goto label; \
99 } \
100 y##N = (double)t; \
101 n##N = 0; \
102 } else if (ix <= 0x49c90fdb) { /* |x| < 2^19*pi */ \
103 y##N = (double)t; \
104 medium = 1; \
105 } else { \
106 if (ix >= 0x7f800000) { /* inf or nan */ \
107 s[sindex] = c[cindex] = t / t; \
108 goto label; \
109 } \
110 z##N = y##N = (double)t; \
111 hx = HI(y##N); \
112 n##N = ((hx >> 20) & 0x7ff) - 1046; \
113 HI(z##N) = (hx & 0xfffff) | 0x41600000; \
114 n##N = __vlibm_rem_pio2m(&z##N, &y##N, n##N, 1, 0); \
115 if (hx < 0) { \
116 y##N = -y##N; \
117 n##N = -n##N; \
118 } \
119 z##N = y##N * y##N; \
120 f##N = (float)(y##N + y##N * z##N * (S0 + z##N * \
121 (S1 + z##N * S2))); \
122 g##N = (float)(one + z##N * (mhalf + z##N * (C0 + \
123 z##N * (C1 + z##N * C2)))); \
124 if (n##N & 2) { \
125 f##N = -f##N; \
126 g##N = -g##N; \
127 } \
128 if (n##N & 1) { \
129 s[sindex] = g##N; \
130 c[cindex] = -f##N; \
131 } else { \
132 s[sindex] = f##N; \
133 c[cindex] = g##N; \
134 } \
135 goto label; \

new/usr/src/lib/libmvec/common/__vsincosf.c 2

136 }

138 #define PROCESS(N) \
139 if (medium) { \
140 z##N = y##N * invpio2 + c3two51; \
141 n##N = LO(z##N); \
142 z##N -= c3two51; \
143 y##N = (y##N - z##N * pio2_1) - z##N * pio2_t; \
144 } \
145 z##N = y##N * y##N; \
146 f##N = (float)(y##N + y##N * z##N * (S0 + z##N * (S1 + z##N * S2)));\
147 g##N = (float)(one + z##N * (mhalf + z##N * (C0 + z##N * \
148 (C1 + z##N * C2)))); \
149 if (n##N & 2) { \
150 f##N = -f##N; \
151 g##N = -g##N; \
152 } \
153 if (n##N & 1) { \
154 *s = g##N; \
155 *c = -f##N; \
156 } else { \
157 *s = f##N; \
158 *c = g##N; \
159 } \
160 s += strides; \
161 c += stridec

163 void
164 __vsincosf(int n, float *restrict x, int stridex,
165 float *restrict s, int strides, float *restrict c, int stridec)
166 {
167 double y0, y1, y2, y3;
168 double z0, z1, z2, z3;
169 float f0, f1, f2, f3, t;
170 float g0, g1, g2, g3;
171 int n0 = 0, n1 = 0, n2 = 0, n3, hx, ix, medium;
171 int n0, n1, n2, n3, hx, ix, medium;

173 s -= strides;
174 c -= stridec;

176 for (;;) {
177 begin:
178 s += strides;
179 c += stridec;

181 if (--n < 0)
182 break;

184 medium = 0;
185 PREPROCESS(0, 0, 0, begin);

187 if (--n < 0)
188 goto process1;

190 PREPROCESS(1, strides, stridec, process1);

192 if (--n < 0)
193 goto process2;

195 PREPROCESS(2, (strides << 1), (stridec << 1), process2);

197 if (--n < 0)
198 goto process3;

200 PREPROCESS(3, (strides << 1) + strides,

new/usr/src/lib/libmvec/common/__vsincosf.c 3

201 (stridec << 1) + stridec, process3);

203 if (medium) {
204 z0 = y0 * invpio2 + c3two51;
205 z1 = y1 * invpio2 + c3two51;
206 z2 = y2 * invpio2 + c3two51;
207 z3 = y3 * invpio2 + c3two51;

209 n0 = LO(z0);
210 n1 = LO(z1);
211 n2 = LO(z2);
212 n3 = LO(z3);

214 z0 -= c3two51;
215 z1 -= c3two51;
216 z2 -= c3two51;
217 z3 -= c3two51;

219 y0 = (y0 - z0 * pio2_1) - z0 * pio2_t;
220 y1 = (y1 - z1 * pio2_1) - z1 * pio2_t;
221 y2 = (y2 - z2 * pio2_1) - z2 * pio2_t;
222 y3 = (y3 - z3 * pio2_1) - z3 * pio2_t;
223 }

225 z0 = y0 * y0;
226 z1 = y1 * y1;
227 z2 = y2 * y2;
228 z3 = y3 * y3;

230 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
231 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
232 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
233 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));

235 g0 = (float)(one + z0 * (mhalf + z0 * (C0 + z0 *
236 (C1 + z0 * C2))));
237 g1 = (float)(one + z1 * (mhalf + z1 * (C0 + z1 *
238 (C1 + z1 * C2))));
239 g2 = (float)(one + z2 * (mhalf + z2 * (C0 + z2 *
240 (C1 + z2 * C2))));
241 g3 = (float)(one + z3 * (mhalf + z3 * (C0 + z3 *
242 (C1 + z3 * C2))));

244 if (n0 & 2) {
245 f0 = -f0;
246 g0 = -g0;
247 }
248 if (n1 & 2) {
249 f1 = -f1;
250 g1 = -g1;
251 }
252 if (n2 & 2) {
253 f2 = -f2;
254 g2 = -g2;
255 }
256 if (n3 & 2) {
257 f3 = -f3;
258 g3 = -g3;
259 }

261 if (n0 & 1) {
262 *s = g0;
263 *c = -f0;
264 } else {
265 *s = f0;
266 *c = g0;

new/usr/src/lib/libmvec/common/__vsincosf.c 4

267 }
268 s += strides;
269 c += stridec;

271 if (n1 & 1) {
272 *s = g1;
273 *c = -f1;
274 } else {
275 *s = f1;
276 *c = g1;
277 }
278 s += strides;
279 c += stridec;

281 if (n2 & 1) {
282 *s = g2;
283 *c = -f2;
284 } else {
285 *s = f2;
286 *c = g2;
287 }
288 s += strides;
289 c += stridec;

291 if (n3 & 1) {
292 *s = g3;
293 *c = -f3;
294 } else {
295 *s = f3;
296 *c = g3;
297 }
298 continue;

300 process1:
301 PROCESS(0);
302 continue;

304 process2:
305 PROCESS(0);
306 PROCESS(1);
307 continue;

309 process3:
310 PROCESS(0);
311 PROCESS(1);
312 PROCESS(2);
313 }
314 }

______unchanged_portion_omitted_

new/usr/src/lib/libmvec/common/__vsinf.c 1

**
 10486 Sun May 4 03:07:31 2014
new/usr/src/lib/libmvec/common/__vsinf.c
**
______unchanged_portion_omitted_

76 #define S0 C[0]
77 #define S1 C[1]
78 #define S2 C[2]
79 #define one C[3]
80 #define mhalf C[4]
81 #define C0 C[5]
82 #define C1 C[6]
83 #define C2 C[7]
84 #define invpio2 C[8]
85 #define c3two51 C[9]
86 #define pio2_1 C[10]
87 #define pio2_t C[11]

89 #define PREPROCESS(N, index, label) \
90 hx = *(int *)x; \
91 ix = hx & 0x7fffffff; \
92 t = *x; \
93 x += stridex; \
94 if (ix <= 0x3f490fdb) { /* |x| < pi/4 */ \
95 if (ix == 0) { \
96 y[index] = t; \
97 goto label; \
98 } \
99 y##N = (double)t; \
100 n##N = 0; \
101 } else if (ix <= 0x49c90fdb) { /* |x| < 2^19*pi */ \
102 y##N = (double)t; \
103 medium = 1; \
104 } else { \
105 if (ix >= 0x7f800000) { /* inf or nan */ \
106 y[index] = t / t; \
107 goto label; \
108 } \
109 z##N = y##N = (double)t; \
110 hx = HI(y##N); \
111 n##N = ((hx >> 20) & 0x7ff) - 1046; \
112 HI(z##N) = (hx & 0xfffff) | 0x41600000; \
113 n##N = __vlibm_rem_pio2m(&z##N, &y##N, n##N, 1, 0); \
114 if (hx < 0) { \
115 y##N = -y##N; \
116 n##N = -n##N; \
117 } \
118 z##N = y##N * y##N; \
119 if (n##N & 1) { /* compute cos y */ \
120 f##N = (float)(one + z##N * (mhalf + z##N * \
121 (C0 + z##N * (C1 + z##N * C2)))); \
122 } else { /* compute sin y */ \
123 f##N = (float)(y##N + y##N * z##N * (S0 + \
124 z##N * (S1 + z##N * S2))); \
125 } \
126 y[index] = (n##N & 2)? -f##N : f##N; \
127 goto label; \
128 }

130 #define PROCESS(N) \
131 if (medium) { \
132 z##N = y##N * invpio2 + c3two51; \
133 n##N = LO(z##N); \
134 z##N -= c3two51; \
135 y##N = (y##N - z##N * pio2_1) - z##N * pio2_t; \

new/usr/src/lib/libmvec/common/__vsinf.c 2

136 } \
137 z##N = y##N * y##N; \
138 if (n##N & 1) { /* compute cos y */ \
139 f##N = (float)(one + z##N * (mhalf + z##N * (C0 + \
140 z##N * (C1 + z##N * C2)))); \
141 } else { /* compute sin y */ \
142 f##N = (float)(y##N + y##N * z##N * (S0 + z##N * (S1 + \
143 z##N * S2))); \
144 } \
145 *y = (n##N & 2)? -f##N : f##N; \
146 y += stridey

148 void
149 __vsinf(int n, float *restrict x, int stridex, float *restrict y,
150 int stridey)
151 {
152 double y0, y1, y2, y3;
153 double z0, z1, z2, z3;
154 float f0, f1, f2, f3, t;
155 int n0 = 0, n1 = 0, n2 = 0, n3, hx, ix, medium;
155 int n0, n1, n2, n3, hx, ix, medium;

157 y -= stridey;

159 for (;;) {
160 begin:
161 y += stridey;

163 if (--n < 0)
164 break;

166 medium = 0;
167 PREPROCESS(0, 0, begin);

169 if (--n < 0)
170 goto process1;

172 PREPROCESS(1, stridey, process1);

174 if (--n < 0)
175 goto process2;

177 PREPROCESS(2, (stridey << 1), process2);

179 if (--n < 0)
180 goto process3;

182 PREPROCESS(3, (stridey << 1) + stridey, process3);

184 if (medium) {
185 z0 = y0 * invpio2 + c3two51;
186 z1 = y1 * invpio2 + c3two51;
187 z2 = y2 * invpio2 + c3two51;
188 z3 = y3 * invpio2 + c3two51;

190 n0 = LO(z0);
191 n1 = LO(z1);
192 n2 = LO(z2);
193 n3 = LO(z3);

195 z0 -= c3two51;
196 z1 -= c3two51;
197 z2 -= c3two51;
198 z3 -= c3two51;

200 y0 = (y0 - z0 * pio2_1) - z0 * pio2_t;

new/usr/src/lib/libmvec/common/__vsinf.c 3

201 y1 = (y1 - z1 * pio2_1) - z1 * pio2_t;
202 y2 = (y2 - z2 * pio2_1) - z2 * pio2_t;
203 y3 = (y3 - z3 * pio2_1) - z3 * pio2_t;
204 }

206 z0 = y0 * y0;
207 z1 = y1 * y1;
208 z2 = y2 * y2;
209 z3 = y3 * y3;

211 hx = (n0 & 1) | ((n1 & 1) << 1) | ((n2 & 1) << 2) |
212 ((n3 & 1) << 3);
213 switch (hx) {
214 case 0:
215 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
216 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
217 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
218 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
219 break;

221 case 1:
222 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
223 z0 * (C1 + z0 * C2))));
224 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
225 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
226 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
227 break;

229 case 2:
230 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
231 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
232 z1 * (C1 + z1 * C2))));
233 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
234 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
235 break;

237 case 3:
238 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
239 z0 * (C1 + z0 * C2))));
240 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
241 z1 * (C1 + z1 * C2))));
242 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
243 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
244 break;

246 case 4:
247 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
248 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
249 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
250 z2 * (C1 + z2 * C2))));
251 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
252 break;

254 case 5:
255 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
256 z0 * (C1 + z0 * C2))));
257 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
258 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
259 z2 * (C1 + z2 * C2))));
260 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
261 break;

263 case 6:
264 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
265 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
266 z1 * (C1 + z1 * C2))));

new/usr/src/lib/libmvec/common/__vsinf.c 4

267 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
268 z2 * (C1 + z2 * C2))));
269 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
270 break;

272 case 7:
273 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
274 z0 * (C1 + z0 * C2))));
275 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
276 z1 * (C1 + z1 * C2))));
277 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
278 z2 * (C1 + z2 * C2))));
279 f3 = (float)(y3 + y3 * z3 * (S0 + z3 * (S1 + z3 * S2)));
280 break;

282 case 8:
283 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
284 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
285 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
286 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
287 z3 * (C1 + z3 * C2))));
288 break;

290 case 9:
291 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
292 z0 * (C1 + z0 * C2))));
293 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
294 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
295 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
296 z3 * (C1 + z3 * C2))));
297 break;

299 case 10:
300 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
301 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
302 z1 * (C1 + z1 * C2))));
303 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
304 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
305 z3 * (C1 + z3 * C2))));
306 break;

308 case 11:
309 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
310 z0 * (C1 + z0 * C2))));
311 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
312 z1 * (C1 + z1 * C2))));
313 f2 = (float)(y2 + y2 * z2 * (S0 + z2 * (S1 + z2 * S2)));
314 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
315 z3 * (C1 + z3 * C2))));
316 break;

318 case 12:
319 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
320 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
321 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
322 z2 * (C1 + z2 * C2))));
323 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
324 z3 * (C1 + z3 * C2))));
325 break;

327 case 13:
328 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
329 z0 * (C1 + z0 * C2))));
330 f1 = (float)(y1 + y1 * z1 * (S0 + z1 * (S1 + z1 * S2)));
331 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
332 z2 * (C1 + z2 * C2))));

new/usr/src/lib/libmvec/common/__vsinf.c 5

333 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
334 z3 * (C1 + z3 * C2))));
335 break;

337 case 14:
338 f0 = (float)(y0 + y0 * z0 * (S0 + z0 * (S1 + z0 * S2)));
339 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
340 z1 * (C1 + z1 * C2))));
341 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
342 z2 * (C1 + z2 * C2))));
343 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
344 z3 * (C1 + z3 * C2))));
345 break;

347 default:
348 f0 = (float)(one + z0 * (mhalf + z0 * (C0 +
349 z0 * (C1 + z0 * C2))));
350 f1 = (float)(one + z1 * (mhalf + z1 * (C0 +
351 z1 * (C1 + z1 * C2))));
352 f2 = (float)(one + z2 * (mhalf + z2 * (C0 +
353 z2 * (C1 + z2 * C2))));
354 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
355 z3 * (C1 + z3 * C2))));
356 }

358 *y = (n0 & 2)? -f0 : f0;
359 y += stridey;
360 *y = (n1 & 2)? -f1 : f1;
361 y += stridey;
362 *y = (n2 & 2)? -f2 : f2;
363 y += stridey;
364 *y = (n3 & 2)? -f3 : f3;
365 continue;

367 process1:
368 PROCESS(0);
369 continue;

371 process2:
372 PROCESS(0);
373 PROCESS(1);
374 continue;

376 process3:
377 PROCESS(0);
378 PROCESS(1);
379 PROCESS(2);
380 }
381 }

______unchanged_portion_omitted_

new/usr/src/man/Makefile 1

**
 1868 Sun May 4 03:07:33 2014
new/usr/src/man/Makefile
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet
9 # at http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011, Richard Lowe
14 # Copyright (c) 2012, Igor Kozhukhov <ikozhukhov@gmail.com>
15 #endif /* ! codereview */
16 # Copyright 2013 Nexenta Systems, Inc. All rights reserved.
17 #

19 SUBDIRS= man1 \
20 man1b \
21 man1c \
22 man1has \
23 man1m \
24 man2 \
25 man3 \
26 man3bsm \
27 man3c \
28 man3c_db \
29 man3cfgadm \
30 man3commputil \
31 man3contract \
32 man3cpc \
33 man3curses \
34 man3dat \
35 man3devid \
36 man3devinfo \
37 man3dlpi \
38 man3dns_sd \
39 man3elf \
40 man3exacct \
41 man3ext \
42 man3fcoe \
43 man3fstyp \
44 man3gen \
45 man3gss \
46 man3head \
47 man3iscsit \
48 man3kstat \
49 man3kvm \
50 man3ldap \
51 man3lgrp \
52 man3lib \
53 man3m \
54 #endif /* ! codereview */
55 man3mail \
56 man3malloc \
57 man3mp \
58 man3mpapi \
59 man3mvec \
60 #endif /* ! codereview */
61 man3nsl \
62 man3nvpair \

new/usr/src/man/Makefile 2

63 man3pam \
64 man3papi \
65 man3perl \
66 man3picl \
67 man3picltree \
68 man3pool \
69 man3proc \
70 man3project \
71 man3resolv \
72 man3rpc \
73 man3rsm \
74 man3sasl \
75 man3scf \
76 man3sec \
77 man3secdb \
78 man3sip \
79 man3slp \
80 man3socket \
81 man3stmf \
82 man3sysevent \
83 man3tecla \
84 man3tnf \
85 man3tsol \
86 man3uuid \
87 man3volmgt \
88 man3xcurses \
89 man3xnet \
90 man4 \
91 man5 \
92 man7 \
93 man7d \
94 man7fs \
95 man7i \
96 man7ipp \
97 man7m \
98 man7p \
99 man9 \
100 man9e \
101 man9f \
102 man9p \
103 man9s

105 .PARALLEL: $(SUBDIRS)

107 all := TARGET = all
108 clean := TARGET = clean
109 clobber := TARGET = clobber
110 install := TARGET = install

112 all clean clobber install: $(SUBDIRS)

114 $(SUBDIRS): FRC
115 @cd $@; pwd; $(MAKE) $(TARGET)

117 FRC:

new/usr/src/pkg/manifests/SUNWlibm.mf 1

**
 1146 Sun May 4 03:07:35 2014
new/usr/src/pkg/manifests/SUNWlibm.mf
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 #

16 # was renamed to system/library/math/header-math
17 # both obsolete now
16 set name=pkg.fmri value=pkg:/SUNWlibm@0.5.11,5.11-0.132
17 set name=pkg.description \
18 value="Math & Microtasking Library Headers & Lint Files"
19 # license license=SUNWlibm.copyright
20 # license license=SUNWlibmr.copyright
21 set name=pkg.renamed value=true
22 # set name=pkg.renamed value=true
23 set name=pkg.summary value="Math & Microtasking Library Headers & Lint Files"
19 set name=pkg.description value="Math Library Headers & Lint Files"
20 set name=pkg.obsolete value=true
21 set name=pkg.summary value="Math Library Headers & Lint Files"
24 set name=info.classification \
25 value=org.opensolaris.category.2008:System/Libraries
26 # set name=org.opensolaris.consolidation value=sunpro
27 #endif /* ! codereview */
28 set name=variant.arch value=$(ARCH)
29 set name=variant.opensolaris.zone value=global value=nonglobal
30 depend fmri=pkg:/system/library/math/header-math@$(PKGVERS) type=require
31 #endif /* ! codereview */

new/usr/src/pkg/manifests/SUNWlibms.mf 1

**
 1098 Sun May 4 03:07:37 2014
new/usr/src/pkg/manifests/SUNWlibms.mf
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 #

16 set name=pkg.fmri value=pkg:/SUNWlibms@0.5.11,5.11-0.132
17 set name=pkg.description value="Math & Microtasking Libraries"
17 set name=pkg.description value="Math Libraries"
18 # license license=SUNWlibms.copyright
19 # license license=SUNWlibmsr.copyright
20 set name=pkg.renamed value=true
21 # set name=pkg.renamed value=true
22 set name=pkg.summary value="Math & Microtasking Libraries"
23 set name=description value="Math & Microtasking Libraries"
22 set name=pkg.summary value="Math Libraries"
23 set name=description value="Math Libraries"
24 set name=info.classification \
25 value=org.opensolaris.category.2008:System/Libraries
26 set name=variant.arch value=$(ARCH)
27 set name=variant.opensolaris.zone value=global value=nonglobal
28 depend fmri=pkg:/system/library/math@$(PKGVERS) type=require

new/usr/src/tools/aw/aw.c 1

**
 17025 Sun May 4 03:07:39 2014
new/usr/src/tools/aw/aw.c
**
______unchanged_portion_omitted_

480 int
481 main(int argc, char *argv[])
482 {
483 struct aelist *cpp = NULL;
484 struct aelist *m4 = NULL;
485 struct aelist *as = newael();
486 char **asargv;
487 char *outfile = NULL;
488 char *srcfile = NULL;
489 const char *dir, *cmd;
490 static char as_pgm[MAXPATHLEN];
491 static char as64_pgm[MAXPATHLEN];
492 static char m4_pgm[MAXPATHLEN];
493 static char m4_cmdefs[MAXPATHLEN];
494 static char cpp_pgm[MAXPATHLEN];
495 int as64 = 0;
496 int code;

498 if ((progname = strrchr(argv[0], ’/’)) == NULL)
499 progname = argv[0];
500 else
501 progname++;

503 /*
504 * Helpful when debugging, or when changing tool versions..
505 */
506 if ((cmd = getenv("AW_AS")) != NULL)
507 strlcpy(as_pgm, cmd, sizeof (as_pgm));
508 else {
509 if ((dir = getenv("AW_AS_DIR")) == NULL)
510 dir = DEFAULT_AS_DIR; /* /usr/sfw/bin */
511 (void) snprintf(as_pgm, sizeof (as_pgm), "%s/gas", dir);
512 }

514 if ((cmd = getenv("AW_AS64")) != NULL)
515 strlcpy(as64_pgm, cmd, sizeof (as64_pgm));
516 else {
517 if ((dir = getenv("AW_AS64_DIR")) == NULL)
518 dir = DEFAULT_AS64_DIR; /* /usr/sfw/bin */
519 (void) snprintf(as64_pgm, sizeof (as_pgm), "%s/gas", dir);
520 }

522 if ((cmd = getenv("AW_M4")) != NULL)
523 strlcpy(m4_pgm, cmd, sizeof (m4_pgm));
524 else {
525 if ((dir = getenv("AW_M4_DIR")) == NULL)
526 dir = DEFAULT_M4_DIR; /* /usr/ccs/bin */
527 (void) snprintf(m4_pgm, sizeof (m4_pgm), "%s/m4", dir);
528 }

530 if ((cmd = getenv("AW_M4LIB")) != NULL)
531 strlcpy(m4_cmdefs, cmd, sizeof (m4_cmdefs));
532 else {
533 if ((dir = getenv("AW_M4LIB_DIR")) == NULL)
534 dir = DEFAULT_M4LIB_DIR; /* /usr/ccs/lib */
535 (void) snprintf(m4_cmdefs, sizeof (m4_cmdefs),
536 "%s/cm4defs", dir);
537 }

539 if ((cmd = getenv("AW_CPP")) != NULL)

new/usr/src/tools/aw/aw.c 2

540 strlcpy(cpp_pgm, cmd, sizeof (cpp_pgm));
541 else {
542 if ((dir = getenv("AW_CPP_DIR")) == NULL)
543 dir = DEFAULT_CPP_DIR; /* /usr/ccs/lib */
544 (void) snprintf(cpp_pgm, sizeof (cpp_pgm), "%s/cpp", dir);
545 }

547 newae(as, as_pgm);
548 newae(as, "--warn");
549 newae(as, "--fatal-warnings");
550 newae(as, "--traditional-format");

552 /*
553 * Walk the argument list, translating as we go ..
554 */
555 while (--argc > 0) {
556 char *arg;
557 int arglen;

559 arg = *++argv;
560 arglen = strlen(arg);

562 if (*arg != ’-’) {
563 char *filename;

565 /*
566 * filenames ending in ’.s’ are taken to be
567 * assembler files, and provide the default
568 * basename of the output file.
569 *
570 * other files are passed through to the
571 * preprocessor, if present, or to gas if not.
572 */
573 filename = arg;
574 if ((arglen > 2) &&
575 ((strcmp(arg + arglen - 2, ".s") == 0) ||
576 (strcmp(arg + arglen - 2, ".S") == 0))) {
574 if (arglen > 2 &&
575 (strcmp(arg + arglen - 2, ".s") == 0) ||
576 (strcmp(arg + arglen - 2, ".S") == 0)) {
577 /*
578 * Though ’as’ allows multiple assembler
579 * files to be processed in one invocation
580 * of the assembler, ON only processes one
581 * file at a time, which makes things a lot
582 * simpler!
583 */
584 if (srcfile == NULL)
585 srcfile = arg;
586 else
587 return (usage(
588 "one assembler file at a time"));

590 /*
591 * If we haven’t seen a -o option yet,
592 * default the output to the basename
593 * of the input, substituting a .o on the end
594 */
595 if (outfile == NULL) {
596 char *argcopy;

598 argcopy = strdup(arg);
599 argcopy[arglen - 1] = ’o’;

601 if ((outfile = strrchr(
602 argcopy, ’/’)) == NULL)

new/usr/src/tools/aw/aw.c 3

603 outfile = argcopy;
604 else
605 outfile++;
606 }
607 }
608 if (cpp)
609 newae(cpp, filename);
610 else if (m4)
611 newae(m4, filename);
612 else
613 newae(as, filename);
614 continue;
615 } else
616 arglen--;

618 switch (arg[1]) {
619 case ’K’:
620 /*
621 * -K pic
622 * -K PIC
623 */
624 if (arglen == 1) {
625 if ((arg = *++argv) == NULL || *arg == ’\0’)
626 return (usage("malformed -K"));
627 argc--;
628 } else {
629 arg += 2;
630 }
631 if (strcmp(arg, "PIC") != 0 && strcmp(arg, "pic") != 0)
632 return (usage("malformed -K"));
633 break; /* just ignore -Kpic for gcc */
634 case ’Q’:
635 if (strcmp(arg, "-Qn") == 0)
636 break;
637 /*FALLTHROUGH*/
638 case ’b’:
639 case ’s’:
640 case ’T’:
641 /*
642 * -b Extra symbol table for source browser ..
643 * not relevant to gas, thus should error.
644 * -s Put stabs in .stabs section not stabs.excl
645 * not clear if there’s an equivalent
646 * -T 4.x migration option
647 */
648 default:
649 return (error(arg));
650 case ’x’:
651 /*
652 * Accept -xarch special case to invoke alternate
653 * assemblers or assembler flags for different
654 * architectures.
655 */
656 if (strcmp(arg, "-xarch=amd64") == 0 ||
657 strcmp(arg, "-xarch=generic64") == 0) {
658 as64++;
659 fixae_arg(as->ael_head, as64_pgm);
660 break;
661 }
662 /*
663 * XX64: Is this useful to gas?
664 */
665 if (strcmp(arg, "-xmodel=kernel") == 0)
666 break;

668 /*

new/usr/src/tools/aw/aw.c 4

669 * -xF Generates performance analysis data
670 * no equivalent
671 */
672 return (error(arg));
673 case ’V’:
674 newae(as, arg);
675 break;
676 case ’#’:
677 verbose++;
678 break;
679 case ’L’:
680 newae(as, "--keep-locals");
681 break;
682 case ’n’:
683 newae(as, "--no-warn");
684 break;
685 case ’o’:
686 if (arglen != 1)
687 return (usage("bad -o flag"));
688 if ((arg = *++argv) == NULL || *arg == ’\0’)
689 return (usage("bad -o flag"));
690 outfile = arg;
691 argc--;
692 arglen = strlen(arg + 1);
693 break;
694 case ’m’:
695 if (cpp)
696 return (usage("-m conflicts with -P"));
697 if (m4 == NULL) {
698 m4 = newael();
699 newae(m4, m4_pgm);
700 newae(m4, m4_cmdefs);
701 }
702 break;
703 case ’P’:
704 if (m4)
705 return (usage("-P conflicts with -m"));
706 if (cpp == NULL) {
707 cpp = newael();
708 newae(cpp, cpp_pgm);
709 newae(cpp, "-D__GNUC_AS__");
710 }
711 break;
712 case ’D’:
713 case ’U’:
714 if (cpp)
715 newae(cpp, arg);
716 else if (m4)
717 newae(m4, arg);
718 else
719 newae(as, arg);
720 break;
721 case ’I’:
722 if (cpp)
723 newae(cpp, arg);
724 else
725 newae(as, arg);
726 break;
727 case ’-’: /* a gas-specific option */
728 newae(as, arg);
729 break;
730 }
731 }

733 #if defined(__i386)
734 if (as64)

new/usr/src/tools/aw/aw.c 5

735 newae(as, "--64");
736 else
737 newae(as, "--32");
738 #endif

740 if (srcfile == NULL)
741 return (usage("no source file(s) specified"));
742 if (outfile == NULL)
743 outfile = "a.out";
744 newae(as, "-o");
745 newae(as, outfile);

747 asargv = aeltoargv(as);
748 if (cpp) {
749 #if defined(__sparc)
750 newae(cpp, "-Dsparc");
751 newae(cpp, "-D__sparc");
752 if (as64)
753 newae(cpp, "-D__sparcv9");
754 else
755 newae(cpp, "-D__sparcv8");
756 #elif defined(__i386) || defined(__x86)
757 if (as64) {
758 newae(cpp, "-D__x86_64");
759 newae(cpp, "-D__amd64");
760 } else {
761 newae(cpp, "-Di386");
762 newae(cpp, "-D__i386");
763 }
764 #else
765 #error "need isa-dependent defines"
766 #endif
767 code = pipeline(aeltoargv(cpp), asargv);
768 } else if (m4)
769 code = pipeline(aeltoargv(m4), asargv);
770 else {
771 /*
772 * XXX should arrange to fork/exec so that we
773 * can unlink the output file if errors are
774 * detected..
775 */
776 (void) execvp(asargv[0], asargv);
777 perror("execvp");
778 (void) fprintf(stderr, "%s: couldn’t run %s\n",
779 progname, asargv[0]);
780 code = 7;
781 }
782 if (code != 0)
783 (void) unlink(outfile);
784 return (code);
785 }

______unchanged_portion_omitted_

new/usr/src/tools/cw/cw.c 1

**
 45780 Sun May 4 03:07:41 2014
new/usr/src/tools/cw/cw.c
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011, Richard Lowe.
24 */
25 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Wrapper for the GNU C compiler to make it accept the Sun C compiler
29 * arguments where possible.
30 *
31 * Since the translation is inexact, this is something of a work-in-progress.
32 *
33 */

35 /* If you modify this file, you must increment CW_VERSION */
36 #define CW_VERSION "1.29"
39 #define CW_VERSION "1.30"

38 /*
39 * -# Verbose mode
40 * -### Show compiler commands built by driver, no compilation
41 * -A<name[(tokens)]> Preprocessor predicate assertion
42 * -B<[static|dynamic]> Specify dynamic or static binding
43 * -C Prevent preprocessor from removing comments
44 * -c Compile only - produce .o files, suppress linking
45 * -cg92 Alias for -xtarget=ss1000
46 * -D<name[=token]> Associate name with token as if by #define
47 * -d[y|n] dynamic [-dy] or static [-dn] option to linker
48 * -E Compile source through preprocessor only, output to stdout
49 * -erroff=<t> Suppress warnings specified by tags t(%none, %all, <tag list>)
50 * -errtags=<a> Display messages with tags a(no, yes)
51 * -errwarn=<t> Treats warnings specified by tags t(%none, %all, <tag list>)
52 * as errors
53 * -fast Optimize using a selection of options
54 * -fd Report old-style function definitions and declarations
55 * -features=zla Allow zero-length arrays
56 * -flags Show this summary of compiler options
57 * -fnonstd Initialize floating-point hardware to non-standard preferences
58 * -fns[=<yes|no>] Select non-standard floating point mode

new/usr/src/tools/cw/cw.c 2

59 * -fprecision=<p> Set FP rounding precision mode p(single, double, extended)
60 * -fround=<r> Select the IEEE rounding mode in effect at startup
61 * -fsimple[=<n>] Select floating-point optimization preferences <n>
62 * -fsingle Use single-precision arithmetic (-Xt and -Xs modes only)
63 * -ftrap=<t> Select floating-point trapping mode in effect at startup
64 * -fstore force floating pt. values to target precision on assignment
65 * -G Build a dynamic shared library
66 * -g Compile for debugging
67 * -H Print path name of each file included during compilation
68 * -h <name> Assign <name> to generated dynamic shared library
69 * -I<dir> Add <dir> to preprocessor #include file search path
70 * -i Passed to linker to ignore any LD_LIBRARY_PATH setting
71 * -keeptmp Keep temporary files created during compilation
72 * -KPIC Compile position independent code with 32-bit addresses
73 * -Kpic Compile position independent code
74 * -L<dir> Pass to linker to add <dir> to the library search path
75 * -l<name> Link with library lib<name>.a or lib<name>.so
76 * -mc Remove duplicate strings from .comment section of output files
77 * -mr Remove all strings from .comment section of output files
78 * -mr,"string" Remove all strings and append "string" to .comment section
79 * -mt Specify options needed when compiling multi-threaded code
80 * -native Find available processor, generate code accordingly
81 * -nofstore Do not force floating pt. values to target precision
82 * on assignment
83 * -nolib Same as -xnolib
84 * -noqueue Disable queuing of compiler license requests
85 * -norunpath Do not build in a runtime path for shared libraries
86 * -O Use default optimization level (-xO2 or -xO3. Check man page.)
87 * -o <outputfile> Set name of output file to <outputfile>
88 * -P Compile source through preprocessor only, output to .i file
89 * -PIC Alias for -KPIC or -xcode=pic32
90 * -p Compile for profiling with prof
91 * -pic Alias for -Kpic or -xcode=pic13
92 * -Q[y|n] Emit/don’t emit identification info to output file
93 * -qp Compile for profiling with prof
94 * -R<dir[:dir]> Build runtime search path list into executable
95 * -S Compile and only generate assembly code (.s)
96 * -s Strip symbol table from the executable file
97 * -t Turn off duplicate symbol warnings when linking
98 * -U<name> Delete initial definition of preprocessor symbol <name>
99 * -V Report version number of each compilation phase
100 * -v Do stricter semantic checking
101 * -W<c>,<arg> Pass <arg> to specified component <c> (a,l,m,p,0,2,h,i,u)
102 * -w Suppress compiler warning messages
103 * -Xa Compile assuming ANSI C conformance, allow K & R extensions
104 * (default mode)
105 * -Xc Compile assuming strict ANSI C conformance
106 * -Xs Compile assuming (pre-ANSI) K & R C style code
107 * -Xt Compile assuming K & R conformance, allow ANSI C
108 * -x386 Generate code for the 80386 processor
109 * -x486 Generate code for the 80486 processor
110 * -xarch=<a> Specify target architecture instruction set
111 * -xbuiltin[=] When profitable inline, or substitute intrinisic functions
112 * for system functions, b={%all,%none}
113 * -xCC Accept C++ style comments
114 * -xchar_byte_order=<o> Specify multi-char byte order <o> (default, high, low)
115 * -xchip=<c> Specify the target processor for use by the optimizer
116 * -xcode=<c> Generate different code for forming addresses
117 * -xcrossfile[=<n>] Enable optimization and inlining across source files,
118 * n={0|1}
119 * -xe Perform only syntax/semantic checking, no code generation
120 * -xF Compile for later mapfile reordering or unused section
121 * elimination
122 * -xhelp=<f> Display on-line help information f(flags, readme, errors)
123 * -xildoff Cancel -xildon
124 * -xildon Enable use of the incremental linker, ild

new/usr/src/tools/cw/cw.c 3

125 * -xinline=[<a>,...,<a>] Attempt inlining of specified user routines,
126 * <a>={%auto,func,no%func}
127 * -xlibmieee Force IEEE 754 return values for math routines in
128 * exceptional cases
129 * -xlibmil Inline selected libm math routines for optimization
130 * -xlic_lib=sunperf Link in the Sun supplied performance libraries
131 * -xlicinfo Show license server information
132 * -xM Generate makefile dependencies
133 * -xM1 Generate makefile dependencies, but exclude /usr/include
134 * -xmaxopt=[off,1,2,3,4,5] maximum optimization level allowed on #pragma opt
135 * -xnolib Do not link with default system libraries
136 * -xnolibmil Cancel -xlibmil on command line
137 * -xO<n> Generate optimized code (n={1|2|3|4|5})
138 * -xP Print prototypes for function definitions
139 * -xpentium Generate code for the pentium processor
140 * -xpg Compile for profiling with gprof
141 * -xprofile=<p> Collect data for a profile or use a profile to optimize
142 * <p>={{collect,use}[:<path>],tcov}
143 * -xregs=<r> Control register allocation
144 * -xs Allow debugging without object (.o) files
145 * -xsb Compile for use with the WorkShop source browser
146 * -xsbfast Generate only WorkShop source browser info, no compilation
147 * -xsfpconst Represent unsuffixed floating point constants as single
148 * precision
149 * -xspace Do not do optimizations that increase code size
150 * -xstrconst Place string literals into read-only data segment
151 * -xtarget=<t> Specify target system for optimization
152 * -xtemp=<dir> Set directory for temporary files to <dir>
153 * -xtime Report the execution time for each compilation phase
154 * -xtransition Emit warnings for differences between K&R C and ANSI C
155 * -xtrigraphs[=<yes|no>] Enable|disable trigraph translation
156 * -xunroll=n Enable unrolling loops n times where possible
157 * -Y<c>,<dir> Specify <dir> for location of component <c> (a,l,m,p,0,h,i,u)
158 * -YA,<dir> Change default directory searched for components
159 * -YI,<dir> Change default directory searched for include files
160 * -YP,<dir> Change default directory for finding libraries files
161 * -YS,<dir> Change default directory for startup object files
162 */

164 /*
165 * Translation table:
166 */
167 /*
168 * -# -v
169 * -### error
170 * -A<name[(tokens)]> pass-thru
171 * -B<[static|dynamic]> pass-thru (syntax error for anything else)
172 * -C pass-thru
173 * -c pass-thru
174 * -cg92 -m32 -mcpu=v8 -mtune=supersparc (SPARC only)
175 * -D<name[=token]> pass-thru
176 * -dy or -dn -Wl,-dy or -Wl,-dn
177 * -E pass-thru
178 * -erroff=E_EMPTY_TRANSLATION_UNIT ignore
179 * -errtags=%all -Wall
180 * -errwarn=%all -Werror else -Wno-error
181 * -fast error
182 * -fd error
183 * -features=zla ignore
184 * -flags --help
185 * -fnonstd error
186 * -fns[=<yes|no>] error
187 * -fprecision=<p> error
188 * -fround=<r> error
189 * -fsimple[=<n>] error
190 * -fsingle[=<n>] error

new/usr/src/tools/cw/cw.c 4

191 * -ftrap=<t> error
192 * -fstore error
193 * -G pass-thru
194 * -g pass-thru
195 * -H pass-thru
196 * -h <name> pass-thru
197 * -I<dir> pass-thru
198 * -i pass-thru
199 * -keeptmp -save-temps
200 * -KPIC -fPIC
201 * -Kpic -fpic
202 * -L<dir> pass-thru
203 * -l<name> pass-thru
204 * -mc error
205 * -mr error
206 * -mr,"string" error
207 * -mt -D_REENTRANT
208 * -native error
209 * -nofstore error
210 * -nolib -nodefaultlibs
211 * -noqueue ignore
212 * -norunpath ignore
213 * -O -O1 (Check the man page to be certain)
214 * -o <outputfile> pass-thru
215 * -P -E -o filename.i (or error)
216 * -PIC -fPIC (C++ only)
217 * -p pass-thru
218 * -pic -fpic (C++ only)
219 * -Q[y|n] error
220 * -qp -p
221 * -R<dir[:dir]> pass-thru
222 * -S pass-thru
223 * -s -Wl,-s
224 * -t -Wl,-t
225 * -U<name> pass-thru
226 * -V --version
227 * -v -Wall
228 * -Wa,<arg> pass-thru
229 * -Wp,<arg> pass-thru except -xc99=<a>
230 * -Wl,<arg> pass-thru
231 * -W{m,0,2,h,i,u> error/ignore
232 * -Wu,-xmodel=kernel -ffreestanding -mcmodel=kernel -mno-red-zone
233 * -xmodel=kernel -ffreestanding -mcmodel=kernel -mno-red-zone
234 * -Wu,-save_args -msave-args
235 * -w pass-thru
236 * -Xa -std=iso9899:199409 or -ansi
237 * -Xc -ansi -pedantic
238 * -Xt error
239 * -Xs -traditional -std=c89
240 * -x386 -march=i386 (x86 only)
241 * -x486 -march=i486 (x86 only)
242 * -xarch=<a> table
243 * -xbuiltin[=] -fbuiltin (-fno-builtin otherwise)
244 * -xCC ignore
245 * -xchar_byte_order=<o> error
246 * -xchip=<c> table
247 * -xcode=<c> table
248 * -xdebugformat=<format> ignore (always use dwarf-2 for gcc)
249 * -xcrossfile[=<n>] ignore
250 * -xe error
251 * -xF error
252 * -xhelp=<f> error
253 * -xildoff ignore
254 * -xildon ignore
255 * -xinline ignore
256 * -xlibmieee error

new/usr/src/tools/cw/cw.c 5

257 * -xlibmil error
258 * -xlic_lib=sunperf error
259 * -xM -M
260 * -xM1 -MM
261 * -xmaxopt=[...] error
262 * -xnolib -nodefaultlibs
263 * -xnolibmil error
264 * -xO<n> -O<n>
265 * -xP error
266 * -xpentium -march=pentium (x86 only)
267 * -xpg error
268 * -xprofile=<p> error
269 * -xregs=<r> table
270 * -xs error
271 * -xsb error
272 * -xsbfast error
273 * -xsfpconst error
274 * -xspace ignore (-not -Os)
275 * -xstrconst ignore
276 * -xtarget=<t> table
277 * -xtemp=<dir> error
278 * -xtime error
279 * -xtransition -Wtransition
280 * -xtrigraphs=<yes|no> -trigraphs -notrigraphs
281 * -xunroll=n error
282 * -W0,-xdbggen=no%usedonly -fno-eliminate-unused-debug-symbols
283 * -fno-eliminate-unused-debug-types
284 * -Y<c>,<dir> error
285 * -YA,<dir> error
286 * -YI,<dir> -nostdinc -I<dir>
287 * -YP,<dir> error
288 * -YS,<dir> error
289 */

291 #include <stdio.h>
292 #include <sys/types.h>
293 #include <unistd.h>
294 #include <string.h>
295 #include <stdlib.h>
296 #include <ctype.h>
297 #include <fcntl.h>
298 #include <errno.h>
299 #include <stdarg.h>
300 #include <sys/utsname.h>
301 #include <sys/param.h>
302 #include <sys/isa_defs.h>
303 #include <sys/wait.h>
304 #include <sys/stat.h>

306 #define CW_F_CXX 0x01
307 #define CW_F_SHADOW 0x02
308 #define CW_F_EXEC 0x04
309 #define CW_F_ECHO 0x08
310 #define CW_F_XLATE 0x10
311 #define CW_F_PROG 0x20

313 typedef enum cw_compiler {
314 CW_C_CC = 0,
315 CW_C_GCC
316 } cw_compiler_t;

______unchanged_portion_omitted_

