new usr/src/ Targetdirs

R R R R

71419 Sun May 4 03:04:40 2014
new usr/src/ Targetdirs

hkkkkkkkkkkkkkkkkkkkkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkk ok k ok k k%

1 # CDDL HEADER START

2 #

3 # The contents of this file are subject to the terms of the

4 # Cormmon Devel opnent and Distribution License (the "License")

5 # You may not use this file except in conpliance with the License.

6 #

7 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
8 # or http://ww. opensol aris.org/os/licensing.

9 # See the License for the specific |anguage governi ng perni ssions

10 # and limtations under the License.

11 #

12 # When distributing Covered Code, include this CDDL HEADER in each

13 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

14 # |f applicable, add the followi ng below this CDDL HEADER, with the
15 # fields enclosed by brackets "[]" replaced with your own identifying
16 # information: Portions Copyright [yyyy] [nane of copyright owner]

17 #

18 # CDDL HEADER END

19 #

21 #

22 # Copyright (c) 1989, 2010, Oacle and/or its affiliates. Al rights reserved.
23 # Copyright 2011, Richard Lowe

24 # Copyright (c) 2012 by Del phix. Al rights reserved.

25 # Copyright (c) 2012, Igor Kozhukhov <i kozhukhov@mail .conm>

26 #endif /* | codereview */

27 # Copyright 2012 Omi Tl Conputer Consulting, Inc. Al rights reserved.
28 # Copyright (c) 2013 RackTop Systens.

29 # Copyright 2013 Nexenta Systens, Inc. All rights reserved.

30 #

32 #

33 # It is easier to think in terns of directory nanmes w thout the ROOT nmacro
34 # prefix. ROOIDIRS is TARGETDIRS with ROOT prefixes. It is necessary
35 # to work with ROOT prefixes when controlling conditional assignnents.
36 #

38 DI RLI NKS= $(SYM DI RS)

39 $(BUI LD64) DI RLI NKS += $(SYM DI RS64)

41 FI LELI NKS= $(SYM USRCCSLI B) $(SYM USRLI B)

42 $(BUI LD64) FI LELI NKS += $(SYM USRCCSLI B64) $(SYM USRLI B64)

44 TARGETDI RS= $(DI RS)

45 $(BUI LD64) TARGETDI RS += $(DI RS64)

47 TARGETDI RS += $(FI LELI NKS) $(DI RLI NKS)

49 i 386_DI RS= \

50 / boot / acpi \

51 / boot / acpi / t abl es \

52 / boot / gr ub \

53 / boot / grub/ bi n \

54 /platform i86pc \

55) /1ib/libmec \

56 [usr/1ib/xen \

57 [usr/1ib/xen/bin

59 sparc_DI RS= \

60 /usr/1ib/ldons

62 sparc_640NLY= $(POUND_SI GN)

new usr/src/ Targetdirs

63 640NLY=

$($(VACH) _640NLY)

65 $(640NLY) MACH32 DI RS=/ usr/ uch/ $(MACH32)

67 DIRS=\
6

/ boot \
/boot/solaris \

/ boot/sol ari s/bin \
$($(I\/ACH) DI RS) \
/ dev

/ dev/ dsk \

/dev/fd \
/dev/ipnet \

/ dev/ net \

/ dev/rdsk \
/dev/rnt \

/dev/pts \

/ dev/sad \

/ dev/ swap \
/dev/term\

/dev/vt \

/ dev/ zcons \

/ devi ces \

/ devi ces/ pseudo \
letc \

letc/brand \
/etc/brand/sol ari s10 \
letc/cron.d \
letclcrypto \
letcl/crypto/certs \
/etc/crypto/crls \
/etc/dbus-1 \

/et c/ dbus-1/systemd \
/etc/default \
/etc/devices \
/etc/dev \
letc/dfs \

/etc/dl adm\
letc/fs \
letc/fs/nfs \
letc/fs/zfs \
letc/ftpd \

/etc/hal \

/etc/hal /fdi \

/etc/hal/fdi/information \
/etc/hal/fdi/information/10freedesktop \
letc/hal/fdi/information/20thirdparty \
/etc/hal/fdi/information/30user \
/etc/hal/fdi/policy \
/etc/hal/fdi/policy/1l0osvendor \
letc/hal/fdi/policy/20thirdparty \
/etc/hal/fdi/policy/30user \

/etc/ hal/fdi/preprobe \

/etc/ hal/fdi/preprobe/100svendor \
/etc/hal/fdi/preprobe/20thirdparty \
/etc/ hal/fdi/preprobe/ 30user \
/etc/ipadm\

letcliscsi \

/etcl/rpcsec \

/etcl/security \
/etc/security/auth_attr.d \
/etc/security/exec_attr.d \
letc/security/prof _attr.d \
/etcl/security/tsol \
/ etcl/gss \
letc/init.d \

new usr/src/ Targetdirs 3 new usr/src/ Targetdirs
129 /et c/ dhcp \ 195 /1iblsvc/mani fest/platform sundv \
130 letc/lib \ 196 /1iblsve/ mani fest/site \
131 letc/mail \ 197 /1iblsvc/ method \
132 letc/mail/cf \ 198 /liblsvc/monitor \
133 letc/mail/cflcf \ 199 /liblsvc/seed \
134 /etc/mail/cf/domain \ 200 /1ibl/svclshare \
135 /etc/mail/cf/feature \ 201 /kernel \
136 letc/mail/cf/imd \ 202 /mt\
137 letc/mail/cf/mailer \ 203 /opt \
138 /etc/mail/cf/ostype \ 204 /platform \
139 /etc/mail/cf/sh \ 205 /proc \
140 /etc/net-snnp \ 206 /root \
141 [etc/net-snnp/snmp \ 207 /'sbin \
142 letc/opt \ 208 /system\
143 /etc/rc0.d \ 209 / systeni contract \
144 /etc/rcl.d \ 210 / syst enl obj ect \
145 letc/rc2.d \ 211 [tmp \
146 /etc/rc3.d \ 212 lusr \
147 /etc/rcS.d \ 213 Jusr/4lib \
148 /etclsaf \ 214 [usr/ast \
149 /et cl sasl \ 215 /usr/ast/bin \
150 letc/sfw\ 216 lusr/bin \
151 / et c/ skel \ 217 [usr/bi n/ $(MACH32) \
152 /etc/sve \ 218 /usr/ccs \
153 /etc/svc/profile \ 219 /usr/ccs/bin \
154 letc/svc/profilel/site \ 220 lusr/ccs/lib \
155 /etc/svc/volatile \ 221 /usr/deno \
156 letc/tm \ 222 [usr/ denmo/ SOUND \
157 /etc/lusb \ 223 [usr/ganmes \
158 /etc/user_attr.d \ 224 [usr/has \
159 letclzfs \ 225 /usr/ has/bin \
160 /etc/zones \ 226 /usr/has/lib \
161 /export \ 227 /usr/has/ man \
162 /home \ 228 [usr/ has/ man/ manlhas \
163 Ilib\ 229 [usr/include \
164 /liblcrypto \ 230 /usr/include/ast \
165 /1iblinet \ 231 /usr/include/fm}\
166 Iliblfm\ 232 /usr/include/gssapi \
167 /1iblsecure \ 233 [usr/include/ hal \
168 /1iblsve \ 234 /usr/incl ude/ ker ber osv5 \
169 /liblsvc/bin\ 235 Jusr/include/libmlter \
170 /1ibl/svec/capture \ 236 [usr/include/libpolkit \
171 /1ib/svc/ mani fest \ 237 [usr/include/sasl \
172 /1ib/sve/ mani fest/ m | estone \ 238 [usr/include/scsi \
173 /1i bl svc/ mani f est/ device \ 239 /usr/include/security \
174 /liblsvc/manifest/system\ 240 /usr/include/sys/crypto \
175 /1iblsvc/ mani fest/systeni device \ 241 /usr/include/tsol \
176 /i b/ sve/ mani fest/systen fil esystem\ 242 lusr/kernel \
177 /1iblsvc/ mani fest/systen security \ 243 [usr/kvm\
178 /1iblsvc/ mani fest/systen svc \ 244 Jusr/lib\
179 /1iblsvc/ mani fest/network \ 245 [usr/lib/abi \
180 /1i b/ sve/ mani f est/ networ k/ dns \ 246 Jusr/lib/brand \
181 /1i b/ sve/ mani f est/ networ k/i psec \ 247 Jusr/lib/brand/ipkg \
182 /1ibl/svel/ mani fest/ network/ | dap \ 248 /usr/1ib/brand/|abel ed \
183 /1iblsvc/ mani fest/ network/nfs \ 249 [usr/1ib/brand/shared \
184 /1iblsvc/ mani fest/network/nis \ 250 /usr/lib/brand/snl \
185 /1i b/ sve/ mani fest/ network/rpc \ 251 /usr/1ib/brand/sol aris10 \
186 /1'i b/ sve/ mani f est/ network/ security \ 252 lusr/lib/class \
187 /1iblsvc/ mani f est/ networ k/ shares \ 253 lusr/lib/class/FSS \
188 /1i bl sve/ mani f est/ networ k/ ssl \ 254 lusr/lib/class/FX\
189 /1'i b/ sve/ mani f est/application \ 255 lusr/lib/class/l1A\
190 /1iblsvc/ mani fest/application/ managenment \ 256 Jusr/lib/class/RT \
191 /'liblsvc/ mani fest/application/security \ 257 lusr/lib/class/SDC \
192 /1iblsvec/ mani fest/application/print \ 258 lusr/lib/class/TS \
193 /1ib/lsvec/ mani fest/platform\ 259 /usr/lib/crypto \
194 /1iblsvc/ mani fest/platform sundu \ 260 Jusr/lib/drv \

new usr/src/ Targetdirs

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

lusr/liblelfedit \
Jusr/lib/fm\
Jusr/lib/font \
lusr/lib/fs \
lusr/libl/fs/nfs \
Jusr/lib/fs/proc \
Jusr/libl/fs/snb \
Jusr/liblfslzfs \
lusr/lib/gss \
lusr/lib/hal \
Jusr/liblinet \
Jusr/liblinet/dhcp \
[usr/lib/inet/dhcp/nsu \
lusr/liblinet/dhcp/svc \
/usr/lib/inet/dhcp/svcadm \
Jusr/liblinet/ilb \
/usr/lib/inet/$(MACH32) \
[usr/lib/inet/wanboot \
Jusr/1ib/krb5 \
Jfusr/lib/link_audit \
Jusr/lib/libp \
lusr/1ib/lw \
Jusr/lib/mb \
[usr/1ib/ ndb/ kvm \
[usr/1ib/mb/proc \
Jusr/lib/nfs \

/usr/net \

/usr/net/servers \

[usr/1ib/pool \

[usr/1ib/python2.6 \

/usr/1i b/ python2. 6/ vendor - packages \
/usr/1i b/ python2. 6/ vendor - packages/ 64 \
lusr/1ib/python2.6/vendor-packages/solaris \
[usr/1ib/python2.6/vendor-packages/ zfs \
[usr/li bl pyt hon2 6/ vendor - packages/ beadm \
Jusr/libl/rcap \

[usr/1ib/rcap/ $(MACH32) \

/usr/lib/sa \

lusr/lib/saf \
lusr/lib/sasl \
Jusr/lib/scsi \
/usr/lib/secure \
lusr/lib/security \
Jusr/lib/snbsrv \
/usr/lib/vscan \
lusr/liblzfs \
[usr/lib/zones \
/usr/old \
/usr/platform \
lusr/proc \
[usr/proc/bin\
/usr/sadm\
/usr/sadminstall \
/usr/sadminstall/bin \
/usr/sadminstall/scripts \
/usr/sbin \

[usr/ sbi n/ $(MACH32) \
lusr/share \

/usr/share/ applications \

[usr/share/ audi o \

[usr/ shar e/ audi o/ sanpl es \
[usr/ shar e/ audi o/ sanpl es/ au \
[usr/shar e/ gnore \

[usr/share/ gnone/ autostart \
[usr/ shar e/ hwdat a \
/usr/share/lib \

new usr/src/ Targetdirs

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

lusr/sharel/lib/ccs \

/usr/share/lib/tmac \

lusr/share/lib/ldif \

[usr/share/lib/xm \

lusr/share/lib/xm/dtd \

/usr/share/ man \

[usr/share/ man/ manl \

/usr/ share/ man/ manlb \

[usr/ shar e/ man/ manlc \

[usr/ shar e/ man/ manlm \

/ usr/ shar e/ man/ man2 \

[usr/ share/ man/ man3 \

[usr/ shar e/ man/ man3bsm \

[usr/ shar e/ man/ man3c \

[usr/ shar e/ man/ man3c_db \

[usr/ shar e/ man/ man3cf gadm \

[usr/ shar e/ man/ man3commputi |

[usr/ shar e/ man/ man3contract \

[usr/ shar e/ man/ man3cpc \

[usr/ shar e/ man/ man3cur ses \

[usr/ shar e/ man/ man3dat \

[usr/ shar e/ man/ man3devi d \

[usr/ shar e/ man/ man3devi nfo \

[usr/ shar e/ man/ man3dl pi \

[usr/ shar e/ man/ man3dns_sd \

[usr/share/ man/ man3el f \

[usr/ shar e/ man/ man3exacct \

[usr/ shar e/ man/ man3ext \

[usr/ shar e/ man/ man3f coe \

[usr/share/ man/ man3f styp \

[usr/ shar e/ man/ man3gen \

[usr/ shar e/ man/ man3gss \

[usr/ shar e/ man/ man3head \

[usr/ share/ man/ man3i scsit \

[usr/ shar e/ man/ man3kst at \

[usr/ shar e/ man/ man3kvm \

[usr/ shar e/ man/ man3| dap \

[usr/ share/ man/ man3l grp \

[usr/share/ man/ man3lib \

[usr/ shar e/ man/ man3m \
#endif /* | codereview */

[usr/ shar e/ man/ man3nmai | \

[usr/ shar e/ man/ man3mal | oc \

[usr/ shar e/ man/ man3np \

[usr/ shar e/ man/ man3npapi \

[usr/ shar e/ man/ man3nvec \
#endif /* ! codereview */

[usr/ shar e/ man/ man3ns| \

[usr/ shar e/ man/ man3nvpair \

[usr/ shar e/ man/ man3pam \

[usr/ shar e/ man/ man3papi \

[usr/ shar e/ man/ man3per| \

[usr/ shar e/ man/ man3pi cl \

[usr/ shar e/ man/ man3picl tree \

[usr/ shar e/ man/ man3pool \

[usr/ shar e/ man/ man3proc \

[usr/ shar e/ man/ man3pr oj ect \

[usr/ shar e/ man/ man3resol v \

[usr/ shar e/ man/ man3rpc \

[usr/ shar e/ man/ man3rsm\

[usr/ shar e/ man/ man3sasl \

[usr/ shar e/ man/ man3scf \

[usr/ shar e/ man/ man3sec \

[usr/ shar e/ man/ man3secdb \

[usr/ shar e/ man/ man3si p \

[usr/ shar e/ man/ man3sl p \

\

new usr/src/ Targetdirs

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

[usr/ shar e/ man/ man3socket \
[usr/ shar e/ man/ man3st nf \
[usr/ shar e/ man/ man3sysevent \
[usr/share/ man/ man3t ecl a \
[usr/ shar e/ man/ man3t nf \
[usr/ shar e/ man/ man3t sol \
[usr/ shar e/ man/ man3uui d \
[usr/ shar e/ man/ man3vol ngt \
[usr/ shar e/ man/ man3xcur ses \
[usr/ shar e/ man/ man3xnet \
[usr/ shar e/ man/ man4 \

[usr/ shar e/ man/ man5 \

[usr/ share/ man/ man7 \

[usr/ shar e/ man/ man7d \

[usr/ shar e/ man/ man7fs \

[usr/ share/ man/ man7i \

[usr/ shar e/ man/ man7i pp \
[usr/ shar e/ man/ man7m \

[usr/ shar e/ man/ man7p \

[usr/ share/ man/ man9 \

[usr/ shar e/ man/ man9e \

[usr/ shar e/ man/ man9f \

[usr/ shar e/ man/ man9p \

[usr/ shar e/ man/ man9s \
/usr/sharel/src \
[usr/snadm \

/usr/snadm lib \

[usr/ucb \

$(MACH32_DI RS) \
lusr/ucblib \

[usr/xpg4 \

[usr/ xpg4/ bin \

[usr/xpg4/include \
[usr/xpgd/lib \

/usr/xpg6 \

[usr/ xpg6/ bin \

/var \

/var/adm \
/var/ adm exacct \
/var/adn | og \

/ var/ adm pool \

/var/adnm sa \

/var/adm sm bin \

/var/ adnl streans \
/var/cores \

/var/cron \

/var/db \

/var/db/ipf \

/var/ ganes \

/var/idmap \

/var/krb5 \

/var/ krb5/rcache \

/var/ krb5/rcache/root \
/var/ld\

/var/log \

/var/| og/ pool \

/var/| ogadm \

Ivar/mail \

/var/news \

/var/opt \

/var/ preserve \

/var/run \

/var/saf \

/var/sadm\
/var/sadminstall \
/var/sadminstall/admn \

new usr/src/ Targetdirs

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

510 sparcv9_|
511
512
513
514
515
516
517
518
519
520
521
522

524 and64_Di

/var/sadminstall/logs \

/var/sadm pkg \

/var/sadni security \

/var/snb \

/var/snb/cvol \

/var/ snb/ cvol / wi ndows \

/var/ snb/ cvol / wi ndows/ syst enB2 \
/var/ snb/ cvol / wi ndows/ syst enB82/ vss \
/var/spool \

/var/ spool /cron \

/ var/ spool / cron/ atjobs \

/ var/ spool / cron/ cront abs \
/var/spool/lp \

/ var/ spool / pkg \

/ var/ spool / uucp \

/ var/ spool / uucppublic \

/var/svc \

/var/svc/log \

/var/svc/ mani fest \

/var/svc/ mani fest/ni| estone \
/var/svc/ mani f est/device \

/var/svc/ mani fest/system\

/var/svc/ mani f est/ syst eni devi ce \
/var/svc/ mani fest/systenlfil esystem\
/var/svc/ mani f est/systenl security \
/var/svc/ mani f est/systen svc \
/var/svc/ mani f est/ network \
/var/svc/ mani f est/ net wor k/ dns \
/var/svc/ mani f est/ networ k/ i psec \
/var/svc/ mani f est/ networ k/ | dap \
/var/svc/ mani f est/ network/ nfs \
/var/svc/ mani fest/ network/nis \
/var/svc/ mani f est/ network/rpc \
/var/svc/ mani f est/ network/routing \
/var/svc/ mani f est/ net wor k/ security \
/var/ svc/ mani f est/ net wor k/ shares \
/var/svc/ mani f est/ net wor k/ ssl \
/var/svc/ mani f est/application \
/var/svc/ mani f est/appl i cati on/ managenent \
/var/svc/ mani fest/application/print \
/var/svc/ mani f est/ application/security \
/var/svc/ mani fest/platform\
/var/svc/ mani fest/ pl atform sundu \
/var/svc/ mani f est/ pl atforn sundv \
/var/svc/ mani fest/site \
/var/svc/profile \

/var/uucp \

/var/tnp \

/var/tsol \

/var/tsol/doors

DI RS64= \

/platform sundu \

/platform sundu/lib \

/pl atforn sundu/lib/ $(MACHE4) \
/usr/pl atform sundu \

[usr/ pl at f or m sun4u/ sbin \
Jusr/platform sundu/lib \
/platform sundv/lib \

/pl atforn sundv/lib/ $(MACHE4) \
/usr/ pl at f or ml sun4v/ sbin \
Jusr/platform sundv/lib \
[usr/platform sundu-us3/lib \
[usr/platform sund4u-opl/lib

RS64= \

new usr/src/ Targetdirs

525

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

564
565

567
568

570
571
572
573
574
5145
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

/platformi86pc/ani6s

DI RS64=
$(MACH64) _DI RS64) \

i b/ $(MACHE4) \

i b/ crypto/ $(MACH64) \

i b/ f m $(MACH64) \

i b/ secur e/ $(MACH64) \
sr/ bi n/ $(MACH64) \
/usr/ccs/ bi n/ $(MACH64) \
[usr/ccs/1ib/ $(MACHE4) \
[usr/1ib/$(MACH64) \
/usr/1ib/$(MACH64)/gss \

[usr/1ib/brand/snl/ $(MACH64) \
/usr/1ib/brand/sol aris10/ $(MACH64) \
Jusr/liblelfedit/$(MACHE4) \
[usr/1ib/fm $(MACH64) \
[usr/1ib/fs/nfs/$(MACHE4) \
[usr/1ib/fs/smb/ $(MACHE4) \
Jusr/liblinet/$(MACH64) \
/usr/1ib/krb5/ $(MACH64) \
Jusr/1ibllibp/$(MACHE4) \
Jusr/1ib/link_audit/$(MACH64) \
lusr/lib/lwp/$(MACHE4) \
[usr/1ib/ ndb/ kvml $(MACHE4) \
[usr/1ib/ nmdb/ proc/ $(MACH64) \
/usr/1ib/rcap/ $(MACH64) \
Jusr/1ib/sasl/$(MACHE4) \
/usr/1ib/scsi/$(MACH64) \
/usr/1ib/secure/ $(MACH64) \

/usr/lib/security/$(MACH64) \
[usr/1ib/snmbsrv/$(MACHE4) \
/usr/1i bl abi/$(MACHE4) \

[usr/ sbi n/ $(VACH64) \

[usr/ ucb/ $(MACH64) \
[usr/uchbl i b/ $(MACH64) \

[usr/ xpg4/ i bl $(MACH64) \
/var /| d/ $(MACH64)

/var/mail/:saved is built directly by the rootdirs target
lusr/src/ Makefil e because of the colon in its nane.

macros for synmbolic |inks
SYM DI RS= \
/bin\
/dev/stdin \
/ dev/ stdout \
/ dev/stderr \
/etc/lib/ld.so.1\
/etc/lib/libdl.so. 1\
letc/lib/nss_files.so.1 \
/letc/log \
/1ibl32\
/liblcrypto/ 32 \
/1iblsecurel/ 32 \
/usr/adm\
[usr/ spool \
Jusr/lib/tmac \
Jusr/ccs/lib/link _audit \
[usr/news \
/usr/preserve \
lusr/lib/32\

lusr/lib/lcron \
/lusr/liblelfedit/32 \
Jusr/lib/libp/32\
Jusr/1ib/lw/32\

in

new usr/src/ Targetdirs

591
592
593
594
595
596
597
598
599

601

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

621
623

625
626
627
628
629
630
631
632
633

635
636

638

640
641
642
643
644
645
646
647

649
651
654

655
656

Jusr/lib/link_audit/32 \
/usr/libl/secure/ 32 \
Jusr/mail \

[usr/man \

[usr/pub \

lusr/src \

Jusr/tnp \
/usr/ucblib/32 \
/var/1d/32

spar c_SYM DI RS64=

SYM DI RS64= \
$($(MACH) _SYM DI RS64) \
/1ibl64 \
/1iblcrypto/ 64 \
/1iblsecure/ 64 \
lusr/libl/64 \
/usr/lib/brand/ snl/64 \
/usr/1ib/brand/sol aris10/64 \
Jusr/liblelfedit/ 64 \
lusr/lib/libp/64 \
Jusr/lib/link_audit/64 \
[usr/1ib/lw/64 \
lusr/lib/secure/ 64 \
lusr/liblsecurity/ 64 \

[usr/ xpg4/1ibl 64 \
/var/1d/ 64 \
/usr/uchlib/ 64

prepend the ROOT prefix
ROOTDI RS= $(TARGETDI RS: %=$(ROOT) %

condi ti onal assignnents

Target directories with non-default values for owner and group nust
be referenced here, using their fully-prefixed names, and the non-

#
#
#
#
default values assigned. |If a directory is nmentioned above and not
nmentioned below, it has default values for attributes.

#

#

#

The default value for DIRMODE is specified in usr/src/Makefile. master.

$(ROOT) / var / adm \
$(ROOT) / var/ adni sa : =

$(ROOT) / var/ spool / | p: =

DI RMODE= 775
DI RMODE= 775

file node

#

$(ROOT) /tnp \

$(ROOT) / var/ kr b5/ rcache \

$(ROOT) / var / preserve \

$(ROOT) / var / spool / pkg \

$(ROOT)/var/spool / uucppubl ic\
$(ROOT) / var/ t np: = RVODE= 1777

$(ROOT) / root : =
$(ROOT) / var/ kr b5/ r cache/ root : =

DI RMODE= 700
DI RMODE= 700

I+

These perm ssions nust match those set
in the package nmanifests.

10

new usr/src/ Targetdirs

657 #

658 $(ROOT)/ var/sadm pkg \

659 $(ROOT)/var/sadnm security \

660 $(ROOT)/var/sadminstall/logs := DI RMODE= 555

663 #

664 # These permissions nust natch the ones set

665 # internally by fdfs and autofs.

666 #

667 $(ROOT)/dev/fd \

668 $(ROOT) / hone: = DI RMODE= 555

670 $(ROOT)/var/ mail: = DI RMODE=1777

672 $(ROOT)/proc: = DI RMODE= 555

674 $(ROOT)/systenf contract: = DI RMODE= 555

675 $(ROOT)/systent obj ect: = DI RMODE= 555

677 # synlink assignments, LINKDEST is the value of the symink

678 #

679 $(ROOT)/usr/I i b/ cron: LI NKDEST=. ./../etc/cron.d
680 $(ROOT)/ bi n: LI NKDEST=usr / bi n

681 $(ROOT)/Ilib/3 32 = LI NKDEST=.

682 $(ROAT)/|ib/cryptol 32: = LI NKDEST=.

683 $(ROOT)/|i b/ secur e/ 32: = LI NKDEST=.

684 $(ROOT)/ dev/ st din: LI NKDEST=f d/ 0

685 $(ROOT)/ dev/ st dout 1= LI NKDEST=f d/ 1

686 $(ROOT)/ dev/stderr: = LI NKDEST=f d/ 2

687 $(ROOT)/ usr/ pub: = LI NKDEST=shar e/ | i b/ pub
688 $(ROOT)/ usr/ man: = LI NKDEST=shar e/ man

689 $(ROOT)/usr/src: = LI NKDEST=shar e/ src

690 $(ROQT)/ usr/adm = LI NKDEST=. . / var/ adm

691 $(ROOT)/etc/lib/ld. so.1:= LI NKDEST=../../lib/ld.so.1
692 $(ROOT)/etc/lib/libdl.so.1:= LI NKDEST=../../lib/libdl.so.1
693 $(ROOT)/etc/lib/nss_files.so.1l:= LI NKDEST=../../lib/nss_files.so.1
694 $(ROOT)/etc/log: = LI NKDEST=. . / var/ adni | og
695 $(ROOT)/usr/mail: = LI NKDEST=. . / var / mai |

696 $(ROOT)/usr/ news: = LI NKDEST=. . / var / news

697 $(ROOT)/usr/preserve: = LI NKDEST=. . / var/ pr eserve
698 $(ROAT)/ usr/ spool : = LI NKDEST=. . / var / spool

699 $(ROOT) /usr/tnp: = LI NKDEST=. . /var/t np

700 $(ROOT)/usr/lib/tmac: = LI NKDEST=. ./ share/ |l i b/t mac
701 $(ROOT)/usr/lib/32:= LI NKDEST=.

702 $(ROCT)/usr/lib/elfedit/32:= LI NKDEST=.

703 $(ROOT)/usr/lib/libp/32:= LI NKDEST=.

704 $(ROOT)/usr/lib/|wp/32: = LI NKDEST=.

705 $(ROAT)/usr/lib/link_audit/32:= L1 NKDEST=.

706 $(ROOT)/usr/lib/secure/ 32: = LI NKDEST=.

707 $(ROOT)/usr/ccs/lib/link_audit: LI NKDEST=. ./../lib/link_audit
708 $(ROOT)/var/ld/32: = LI NKDEST=.

709 $(ROOT)/ usr/ ucblib/32: = LI NKDEST=.

712 $(BUI LD64) $(ROOM)/Ii b/ 64: = LI NKDEST=$(MACH64)

713 $(BUI LD64) $(ROOT)/ i b/ crypto/ 64: = LI NKDEST=$(MACH64)

714 $(BU LD64) $(ROOT)/Iib/secure/ 64: = LI NKDEST=%$(MACH64)

715 $(BUI LD64) $(ROOT)/usr/lib/64:= LI NKDEST=$(MACH64)

716 $(BUI LD64) $(ROOT)/usr/lib/elfedit/64:= LI NKDEST=$(MACH64)

717 $(BUI LD64) $(ROOT)/usr/|i b/ brand/ snl/64: = LI NKDEST=$(MACH64)
718 $(BUI LD64) $(ROQAT)/usr/lib/brand/ sol ari s10/64: = LI NKDEST=$(MACH64)
719 $(BUI LD64) $(ROOT)/usr/lib/libp/64:= LI NKDEST=$(MACH64)

720 $(BUILD64) $(ROOT)/usr/lib/lwp/64:= LI NKDEST=$(MACH64)

721 $(BUI LD64) $(ROOT)/usr/lib/link_audit/64: = LI NKDEST=$(MACH64)
722 $(BUI LD64) $(ROQAT)/usr/libl/secure/64:= LI NKDEST=$(MACH64)

11

new usr/src/ Targetdirs

723
724
725
726

728
729
730
731
732
733

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772

774
775
776
777
778
779
780
781
782
783
784
785
786
787
788

$(BUI LD64) $(ROOT)/usr/lib/security/64:=

$(BUI LD64) $(ROOT)/ usr/ xpg4/libl/6
$(BUI LD64) $(ROOT)/var/ld/64: =

4: =

$(BUI LD64) $(ROOT)/ usr/uchlib/64: =

#

LI NKDEST=$(MACH64)
LI NKDEST=$(MACH64)
LI NKDEST=$(MACH64)
LI NKDEST=$(MACH64)

Installing a directory symink calls for overriding INS.dir to install

a synlink.
#
$(DI RLI NKS: %=$(ROOT) % : = \

INS.dir=-$(RM -r $@ $(SYM.INK) $(LINKDEST) $@

Speci al

Rat her than addi ng anot her set
$(ROAT) / usr/ccs/lib/libcurses. so:

$(ROOT) /usr/ccs/lib/llib-Icurses:
$(ROOT) /usr/cecs/lib/llib-Icurses.
$(ROOT) /usr/ccs/lib/libformso: =
$(ROAT) /usr/ccs/lib/llib-1form=
$(ROOT) /usr/ccs/lib/llib-Iformln
$(ROOT) /usr/ccs/lib/libgen.so: =
$(ROOT) /usr/ccs/lib/llib-1gen:=
$(ROAT) /usr/ccs/lib/l1ib-1gen.In
$(ROOT) /usr/ccs/lib/libmalloc. so
$(ROOT) / usr/ccs/lib/libmenu.so: =
$(ROOT) /usr/ccs/lib/llib-1menu:=
$(ROOT) /usr/ccs/lib/llib-1menu.ln
$(ROOT) / usr/ccs/|ib/libpanel.so:=
$(ROOT) /usr/ccs/lib/llib- Ipanel:=
$(ROOT) /usr/ccs/lib/llib-Ipanel.|
$(ROOT) /usr/ccs/lib/libtermib.so
$(ROOT) /usr/ccs/lib/llib-Itermib:
$(ROOT) /usr/ccs/lib/I1ib-1termib.
$(ROOT) /usr/ccs/lib/libterncap.so:
$(ROOT) /usr/ccs/lib/llib-1terncap:
$(ROOT) /usr/ccs/lib/llib-1terncap.
$(ROOT) / usr/ ccs/ | ib/val ues- Xa. o: =
$(ROOT) / usr/ccs/ | ib/val ues-Xc. o: =
$(ROOT) / usr/ ccs/ i b/val ues- Xs. o: =
$(ROOT) / usr/ccs/1ib/val ues-Xt.o: =
$(ROOT) / usr/ ccs/ | i b/ val ues-xpg4. o:
$(ROOT) / usr/ ccs/ | ib/val ues-xpg6. o:
$(ROOT) /usr/ccs/lib/libl.so:=
$(ROAT) /usr/ccs/lib/l1ib-11.1n:=
$(ROOT) /usr/ccs/lib/liby.so:=
$(ROOT) /usr/ccs/lib/llib-1y.In:=
$(ROOT) /usr/1ib/libp/libc.so.1:=
$(ROAT) /usr/1ib/lwp/libthread. so
$(ROOT) /usr/1ib/lwp/libthread_db.

lib

I n:

—unun= s
=) I

1=
so.1: =

synmlinks to populate usr/ccs/lib/$(NACH64)

$(ROOT)/usr/ccs/I|b/$(NACH64)/I|bcurses so: =\
R

R

sym inks to popul ate usr/ccs/lib, whose objects
have actually been noved to usr/
of rules, we add usr/lib
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .

(]
c
5
1%
)
%]

i b- n
mso.1

curses. so. 1
i b-lcurses
ib-lcurses.In
ter ncap. so. 1
ib-1terncap
ib-lIterncap.ln
al ues- Xa. o

val ues- Xc. o

val ues- Xs. o

val ues-Xt. o

val ues-xpg4. o

val ues- xpg6. o

li

|

|

|

i

EALPATH=. . /.. /../../lib/$(MACH64)/1i bcurses. so.1
$(ROOT)/usr/ccs/I|b/$(MACHG4)/II|bIcursesI n: =\

REALPATH=. . /.. /.. /.. /lib/$(MACH64)/11ib-Icurses.|In
$(ROOT)/usr/ccs/I|b/$(NACHG4)/I|bformso—\

REALPATH=. ./../../1ibl/ $(MACH64)/1ibformso.1
$(ROOT)/usr/ccs/I|b/$(MACHG4)/II|bIformln—\

REALPATH=. . /../../1ib/ $(MACH64)/I1ib-1formln
(ROOT)/usr/ccs/I|b/$(NACHG4)/I|bgen so: =\

REALPATH=. . /../../../1ib/$(MACH64)/Ii bgen.so.1
$(ROOT)/usr/ccs/I|b/$(MACI-|64)/II|bIgenln—\

REALPATH=. . /.. /.. /.. /lib/$(MACH64)/11ib-l1gen.In
$(ROOT)/usr/ccs/I|b/$(MACHG4)/I|brmIIoc so: =\

REALPATH=. ./../../1ib/$(MACH64)/libnall oc.so. 1

12

new usr/src/ Targetdirs

789 $(ROOT)/usr/ccs/lib/ $(MACHE4) /| i brenu. so: = \

790 REALPATH=. ./../../1ib/$(MACH64)/1i bnenu. so. 1
791 $(R(I)T)/usr/ccs/l|b/$(NACH64)/II|b-Irrenu.In::\

792 REALPATH=. . /. ./../1ib/ $(MACH64)/11ib-Imenu.ln
793 $(ROAT)/usr/ccs/ i b/ $(MACHG4)/I|bpaneI so: =\

794 REALPATH=. . /.. /. |b/$(NAC|—|G4)/IibpaneI.so.1
795 $(ROOT)/usr/ccs/I|b/$(NACH64)/II|b-IpaneI.In::\

796 REALPATH=. . /.. /../1iDb/ $(MACHE4)/11i b-1panel.ln
797 $(ROOT)/usr/ccs/I|b/$(MACHG4)/I|bterm|b so: =\

798 REALPATH=. . /../../../lib/$(MACH64)/1i bcurses. so. 1
799 $(ROOT)/usr/ccs/I|b/$(NACHG4)/II|b Itermib.In: =\
800 REALPATH=. ./../../../1ib/$(MACH64)/Ilib-Icurses.In
801 (ROOT)/usr/ccs/I|b/$(MACI-|64)/I|bterm;ap so: =\

802 REALPATH=. . /../../../lib/$(MACH64)/1i bterncap.so. 1
803 $(ROOT)/usr/ccs/I|b/$(NACHG4)/II|b | terncap.|n: :\
804 REALPATH=. . /.. /.. /. /I|b/$(MACHGA)/II| Iterncap.ln
805 $(ROAT)/usr/ccs/li b/$(MACl-IG4)/vaI ues- Xa. o0: =\

806 REALPATH=. . /.. /. /I|b/$(l\/ACH54)/vaI ues- Xa. o
807 $(ROOT)/usr/ccslllb/$(MACHG4)/vaI ues- Xc.o0: =\

808 REALPATH=. . /.. /. /I|b/$(NAOH34)/vaI ues- Xc. 0
809 $(ROOT)/usr/ccs/Ilb/SB(MACH64)/vaI ues- Xs.0: =\

810 REALPATH=. . /.. /. /I|b/$(I\/AC|—i64)/vaI ues- Xs. o
811 $(ROOT)/usr/ccs/Ilb/$(MACH64)/vaI ues-Xt.o: =\

812 REALPATH=. . /../../1ib/ $(MACH64) / val ues- Xt.o
813 $(ROOT)/usr/ccs/ i b/ $(MACH64)/vaI ues- xpg4. o: = \

814 REALPATH=. . /.. /.. /1iDbl $(MACHE4) / val ues- Xpg4. o
815 $(ROOT)/usr/ccs/ i b/ $(MACH64)/vaI ues- xpg6. 0: = \

816 REALPATH=. . /... /I|b/$(NACH64)/vaI ues- xpg6. o
817 $(ROOT)/usr/ccs/I|b/$(MACH64)/I|bI so: =\

818 e I|b/$(I\/AC|—iG4)/I|bI so.1
819 $(ROOT)/usr/ccs/I|b/$(MACH64)/II|b Il In:=\

820 REALPATH=. . /.. /. /I|b/$(l\/ACH54)/II|bII I'n
821 $(ROOT)/usr/ccs/I|b/$(MACHG4)/I|by so: =\

822 H=. . /.. /.. /1ib/$(MACH64)/1iby.so.1
823 $(ROOT)/usr/ccs/I|b/$(MACH64)/II|b ly. In:=\

824 REALPATH=. . /.. /.. /11 b/ $(MACHB4)/11ib-1y.In
825 $(ROOT)/usr/I|b/||bp/$(NA(J—54)/I|bc so.1l:=\

826 e . /I|b/$(Mﬁ\CI-|64)/I|bc so. 1
827 $(ROOT)/usr/I|b/I\Ap/$(MACH64)/I|bthread s0.1:=\

828 REALPATH=. 1 $(IW-\O-I64)/ I'i bt hread. so. 1

829 $(ROOT)/usr/I i b/pr/ $(MACH64) / | 1 bt hread_db. so. 1: = \
830 EAL PATH=. ./ $(MACH64) /| i bt hread_db. so. 1
832 SYM USRCCSLI B= \

833 Jusr/ccs/libl/libcurses.so \

834 fusr/ccs/lib/llib-Icurses \

835 Jusr/ccs/lib/llib-lcurses.In\

836 lusr/ccs/lib/libformso \

837 Jusr/ccs/lib/lIlib-1form\

838 fusr/ccs/lib/llib-1formln\

839 lusr/ccs/libl/libgen.so \

840 lusr/ccs/lib/llib-1gen \

841 Jusr/ccs/lib/llib-1gen.In\

842 Jusr/ccs/lib/libmalloc.so \

843 /usr/ccs/lib/libmenu.so \

844 Jusr/ccs/lib/llib-1nmenu \

845 Jusr/ccs/lib/llib-Inmenu.ln\

846 Jusr/ccs/lib/libpanel.so \

847 Jusr/ccs/lib/llib-1panel \

848 lusr/ccs/lib/llib-1panel.ln\

849 lusr/ccs/lib/libtermib.so \

850 Jusr/ccs/lib/llib-l1termib\

851 Jfusr/ccs/lib/llib-ltermib.In\

852 lusr/ccs/lib/libterncap.so \

853 lusr/ccs/lib/llib-lterncap \

854 Jusr/ccs/lib/lIlib-Iterncap.ln \

13

new usr/src/ Targetdirs

REALPATH=I i bposi x4. so0. 1

PRRRRRRE

855 /usr/ccs/libl/values-Xa.o \

856 /usr/ccs/liblval ues-Xc.o \

857 /usr/ccs/lib/values-Xs.o \

858 /usr/ccs/lib/values-Xt.o \

859 lusr/ccs/libl/val ues-xpg4.0 \

860 /usr/ccs/lib/val ues-xpg6.o \

861 /usr/ccs/lib/libl.so \

862 Jusr/ccs/lib/Ilib-11.1n\

863 lusr/ccs/lib/liby.so \

864 lusr/ccs/lib/llib-1y.In\

865 [usr/lib/libp/libc.so.1\

866 Jusr/1ib/lwp/libthread.so.1 \

867 Jusr/1ib/lwp/libthread_db.so.1

869 SYM USRCCSLI B64= \

870 /usr/ccs/libl/ $(MACH64)/1ibcurses.so \

871 /usr/ccs/libl/ $(MACHE4)/|1ib-1curses.In \

872 Jusr/ccs/lib/$(MACHE4)/|ibformso \

873 /usr/ccs/lib/$(MACHE4)/I1ib-1formIn \

874 /usr/ccs/1ibl/$(MACH64)/1ibgen.so \

875 /usr/ccs/lib/$(MACHE4)/I1ib-1gen.In \

876 /usr/ccs/|ib/$(MACH64)/|ibmal | oc.so \

877 Jusr/ccs/lib/$(MACHE4) /| i brenu. so \

878 /usr/ccs/libl/$(MACHE4)/I1ib-1menu.ln \

879 /usr/ccs/|ibl $(MACHE4)/ | i bpanel .so \

880 lusr/ccs/libl $(MACHE4) /|1 b- Ipanel In \

881 Jusr/ccs/lib/ $(MACHE4)/|ibtermib.so

882 /usr/ccs/llb/$(NAC|—B4)/IIib-Itern1ib.In\

883 /usr/ccs/|ibl $(MACHE4)/ | i bt erntap. so \

884 lusr/ccs/libl/ $(MACH64)/I|1ib-lterncap.ln \

885 /usr/ccs/|ibl $(MACH64)/ val ues- Xa. o \

886 [usr/ccs/1ibl $(MACH64)/ val ues- Xc. o \

887 /usr/ccs/|ibl$(MACHE4)/ val ues-Xs. o \

888 lusr/ccs/|ibl $(MACH64)/ val ues-Xt.o \

889 /usr/ccs/|ibl $(MACH64)/ val ues- xpg4. o \

890 /usr/ccs/|ibl $(MACH64)/ val ues- xpg6. o \

891 Jusr/ccs/libl$(MACHE4)/1ibl.so \

892 Jusr/ccs/lib/$(MACHE4)/I1lib-11.In\

893 /usr/ccs/libl $(MACHE4)/|iby.so \

894 Jusr/ccs/lib/$(MACHE4)/I1ib-ly.In \

895 Jusr/1ib/libp/$(MACH64)/1ibc.so.1 \

896 Jusr/1ib/lwp/ $(MACHE4)/|ibthread.so.1 \

897 Jusr/1ib/lwp/ $(MACHE4) /| i bt hread_db. so. 1

899 # Special symliinks to direct libraries that have been noved
900 # from/usr/lib to /lib in order tolive in the root filesystem
901 $(ROCT)/|ib/libposix4.so.1:= REALPATH=l i brt. so. 1
902 $(ROOT)/Iib/libposix4.so: =

903 $(ROOT)/1ib/11ib-Iposix4:= REALPATH=I 1§ b-1rt
904 $(ROAT)/1ib/11ib-Iposix4.ln:= REALPATH=I [ib-1rt.In
905 $(ROAT)/|ib/libthread_db.so.1:= REALPATH=I i bc_db. so. 1
906 $(ROOT)/|ib/libthread_db. so: = REALPATH=I i bc
907 $(ROOT)/usr/lib/ld.so.1:= REALPATH=. . /.
908 $(ROOT)/usr/lib/libadm so. 1:= REALPATH=. . /.
909 $(ROAT)/usr/lib/libadm so: = REALPATH=. . /.
910 $(ROAT)/usr/lib/libaio.so.1l:= REALPATH=. ./ ..
911 $(ROOT)/usr/1ib/libaio.so:= REALPATH=. ./ . .
912 $(ROOT)/usr/lib/libavl.so.1l:= REALPATH=. . /.
913 $(ROAT)/usr/lib/libavl.so:= REALPATH=. . /.
914 $(ROOT)/usr/lib/libbsmso.1:= REALPATH=. . /.
915 $(ROOT)/usr/lib/libbsm so:= REALPATH=. . /.
916 $(ROOT)/usr/lib/libc.so.1:= REALPATH=. . /. .
917 $(ROAT)/usr/lib/libc.so:= REALPATH=. . /. .
918 $(ROOT)/usr/lib/libc_db.so. 1: REALPATH=. . /..
919 $(ROOT)/usr/lib/libc_ db.so- REALPATH=. . /..
920 $(ROOT)/usr/lib/libcndutils. so. 1: REALPATH=. . /.

_d
N
/
/
/
/
N
v
/
/
/
/
/
/
/

O'O'O'UO'O'O'UUO'O’UUO’U)
SSSSSSSSSSS=S%0c¢

14

new usr/src/ Targetdirs

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

IIE_

$(ROOT) /usr/lib/libcrdutils.so:=
$(ROOT) /usr/lib/libcontract. so. 1:
$(ROOT) /usr/lib/libcontract. so =
$(ROOT) /usr/1ib/libcryptoutil.
$(ROOT)/usr/I|b/||bcryptout||
$(ROOT) /usr/lib/libctf.so.1:=
$(ROOT) /usr/lib/libctf.so:=
$(ROOT) /usr/lib/libcurses.so.1:=
$(ROOT) /usr/1ib/libcurses.so: =
$(ROOT) /usr/lib/libdevice.so.1:=
$(ROOT) /usr/1ib/libdevice.so: =
$(ROOT)/usr/I|b/I|bdeV|d so. 1
$(ROOT) /usr/lib/libdevid.so:=
$(ROOT) /usr/1ib/libdevinfo.so. 1: =
$(ROOM) /usr/lib/libdevinfo.so:=
$(ROAT) /usr/1ib/libdhcpagent. so. 1:
$(ROOT) /usr/1ib/libdhcpagent. so: =
$(ROOT)/usr/I|b/I|bdhcput|I so 1
$(ROOT) /usr/1ib/libdhcputi
$(ROAT) /usr/lib/libdl.so. 1 =
$(ROAT) /usr/1ib/libdl. so =
$(R®T)/usr/l|b/l|bd|p| 1=
$(RCX)T)/usr/I|b/I|dep|.so =
$(ROOF)/usr/I|b/I|bdoor.so 1:.=
$(ROOT) /usr/lib/libdoor.so: =
$(ROOT) /usr/1ib/libefi.so.1:=
$(ROOT) /usr/lib/libefi.so:=
$(ROOT) /usr/lib/libelf.so.1:=
$(ROOT) /usr/1ib/libel f.so:=
$(ROOT) /usr/1ib/libfdisk.so.1:=
$(ROOT) /usr/1ib/libfdisk.so:=
$(ROOT) /usr/1ib/libgen.so.1:=
$(ROOT) /usr/lib/libgen.so:=
$(ROOT) /usr/1ib/libinetutil.so.1
$(ROOT) /usr/lib/libinetutil. so: =
$(ROOT) /usr/1ib/libintl.so.1:
$(RCCW)/usr/I|b/I|bintI.so:—
$(ROOT) /usr/1ib/libknf.so.1:=
$(ROOT) /usr/1ib/libknf.so:=
$(ROOT) /usr/1ib/libknfberder. so. 1
$(ROAT) /usr/1ib/libknfberder.so: =
$(ROOT) /usr/1ib/libkstat.so.1:=
$(ROOT) /usr/1ib/libkstat.so:=
$(ROOT) /usr/1ib/liblddbg. so. 4: =
$(ROOT) /usr/lib/libmso.1:=
$(ROOT) /usr/1ib/libmso.2:=
$(ROOT) /usr/1ib/libmso:=
$(ROOT) /usr/1ib/libnmd. so. 1: =
$(ROOT) /usr/lib/libnd.so:=
$(ROOT) /usr/1ib/libmds5. so. 1=
$(ROOT) /usr/1ib/libnmd5. so: =
$(ROOT) /usr/1ib/libmeta.so.1l:=
$(ROOT) /usr/lib/libneta.so:=
$(ROOT) /usr/1ib/libnp.so.1l:=
$(ROOT) /usr/1ib/libnp.so.2: =
$(ROOT) /usr/1ib/libnp.so: =
$(ROOT) /usr/1ib/libnmvec. so. 1: =
$(ROOT) /usr/lib/libnvec.so: =
$(ROOT) /usr/1ib/libnsl.so.1:=
$(ROOT)/usr/I|b/I|bnsI.so:=
$(ROOT) /usr/lib/libnvpair.so.1:=
$(ROAT) /usr/lib/libnvpair.so: =
$(ROOT) /usr/1ib/libpam so. 1: =
$(ROOT) /usr/1ib/libpam so: =
$(ROOT) /usr/1ib/libposix4.so.1l:=
$(ROAT) /usr/1ib/libposix4. so: =

REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.

e e e e e e e e e e e e e e e e e e

cndutils.so. 1
contract.so.1
contract.so.1
cryptoutil.so.1
cryptoutil.so. 1
ctf.so. 1

O
c
=
»
@
n
n
o
N

devi d. so. 1
devid. so. 1
devinfo.so.1
devinfo.so.1
dhcpagent . so. 1
dhcpagent . so. 1
dhcputil.so. 1
dhcputil.so. 1
dl.so.1

Q

9]

o

=

)
1,900
e L

q
Q
n
=~
w
o

[

so. 1
so. 1

inetutil.
inetutil.
.so.1

knf ber der . so. 1
kstat.so. 1
kstat.so.1
| ddbg. so. 4

lib

lib

lib

lib

lib

lib

lib

lib

lib

lib

lib

lib

lib

lib

lib

lib

lib

l'ib

lib

lib

lib

lib

lib

lib

lib

lib

lib

lib

lib

lib

lib

lib .
|'i bgen. so. 1
lib

lib

I'i bi

lib

lib

lib

lib

lib

lib

lib

lib
libmso.1
lib
lib
lib
lib
lib
lib
lib
lib
lib
lib
lib
lib
lib
lib
lib
lib
lib
lib
lib
lib
lib

15

new usr/src/ Targetdirs

987

988

989

990

991

992

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052

Hllﬁ

IIE_

e

IIE'

$(ROOT) /usr/lib/libproc. so. l
$(ROOT) /usr/1ib/libproc.so: =
$(ROOT) /usr/lib/libpthread. so. l
$(ROOT) /usr/1ib/libpthread. so:
$(ROOT)/usr/I|b/||brcmso.1:=
$(ROOT) /usr/1ib/librcmso: =
$(ROOT) /usr/lib/libresolv.so.1:
$(ROOT) /usr/lib/libresolv.so.2:
$(ROOT) /usr/lib/libresolv.so:=
$(ROOT) /usr/lib/librestart. so 1:
$(ROOT) /usr/lib/librestart. =
$(ROOT) /usr/1ib/librpcsve. so.l.:
$(ROOT) /usr/1ib/librpcsve. so: =
$(ROOT) /usr/lib/librt.so.1:=
$(ROOT) /usr/lib/librt.so:=
$(ROOT) /usr/lib/librtld.so.1:=
$(ROOT) /usr/lib/librtld_db.so.1:
$(ROOT) /usr/lib/librtld_db. so: =
$(ROOT) /usr/1ib/libscf.so.1:=
$(ROOT) /usr/lib/libscf.so:=
$(ROOT) /usr/1ib/libsec.so.1:=
$(ROOT) /usr/1ib/libsec.so: =
$(ROOT) /usr/1ib/libsecdb. so. 1: =
$(ROAT) /usr/1ib/libsecdb. so: =
$(ROOT) /usr/lib/libsendfile.so.
$(ROOT) /usr/lib/libsendfile.so:
$(ROOT) /usr/1ib/libsocket. so. 1
$(ROOT) /usr/1ib/libsocket. so:
$(ROOT) /usr/lib/libsysevent. so.
$(ROOT) /usr/lib/libsysevent. so:
$(ROOT) /usr/1ib/libterncap. so. 1:=
$(ROOT) /usr/1ib/libterncap. so: =
$(ROOT) /usr/lib/libtermib.so. 1 =
$(ROOT) /usr/lib/libtermib.so:=
$(ROOT) /usr/1ib/libthread. so. 1
$(ROOT) /usr/1ib/libthread. so:
$(ROOT) /usr/lib/libthread_ db so.
$(ROOT) /usr/1ib/libthread_db. so:
$(ROOT) /usr/1ib/libtsnet.so. 1:=
$(ROOT) /usr/1ib/libtsnet.so:
$(ROAT) /usr/lib/libtsol.so 2':
$(ROOT) /usr/1ib/libtsol.so:=
$(ROOT) /usr/1ib/libumem so. 1: =
$(ROOT) /usr/1ib/libumem so: =
$(ROAT) /usr/1ib/libuuid.so.1:=
$(ROAT) /usr/1ib/libuuid.so: =
$(ROOT) /usr/1ib/libuutil. so =
$(ROOT) /usr/1ib/libuutil. =
$(ROOT) /usr/1ib/libw so. 1—
$(ROOT) /usr/1ib/libw so:=
$(ROOT) /usr/1ib/libxnet.so. 1:
$(ROOT) /usr/1ib/libxnet.so:=
$(ROOT) /usr/lib/libzfs.so.1l:=
$(ROOT) /usr/lib/libzfs.so:=
$(ROOT) /usr/lib/libzfs_core.so
$(ROOT) /usr/lib/libzfs_core. so:
$(ROOT) /usr/lib/llib-ladmln:=
$(ROOT) /usr/lib/1lib-1adm=
$(ROOT) /usr/lib/llib-laio.ln:=
$(ROOT) /usr/lib/llib-1aio:=
$(ROOT) /usr/lib/llib-lavl.ln:=
$(ROOT) /usr/lib/llib-lavl:=
$(ROOT) /usr/lib/llib-1bsmln:=
$(ROOT) /usr/lib/llib-1bsm=
$(ROOT) /usr/1ib/llib-lc.|n:=
$(ROOT) /usr/lib/I1ib-lc:=

REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.
REALPATH=.

S

proc.so. 1
proc.so. 1
pthread. so. 1
pthread. so. 1
rcmso. 1

restart.so.1
restart.so.1
rpcsvce.so. 1
rpcsvce. so. 1
rt.so.1

ib

ib

ib

ib

ib

b

ib

ib

ib

ib

ib

ib

ib

ib

b

b

ib

ib

b

b

b

b

ib

i bsecdb. so. 1
ibsendfile.so. 1
i bsendfile.so. 1
i bsocket.so. 1

i bsocket.so.1

i bsysevent.so. 1
i bsysevent.so. 1
i bterncap.so. 1
i bterncap.so. 1
i bcurses.so. 1

i bcurses.so. 1

i bthread.so. 1
ib 1
ib
bc_
ibts
ib
b
b
b
b
b
b
ib
ib
b
b
b
b
b
b
ib
ib
i
i
i
i
i
i
i
i
i
i

fs_core.so. 1
fs core.so. 1

I'n

_Q.

m
m
oln

A S S S 4 S S S S S @ G S @ S T T S S S S T S S S S S S S s S S S S S Y
(/)(I)

oo c'c'm m [
a

16

new usr/src/ Targetdirs 17

1053 $(ROAT) /usr/lib/llib-lcndutils.|n:= REALPATH=. ./../lib/llib-lcndutils.In
1054 $(ROOT)/usr/I|b/||ib—|crrduti|s: REALPATH=. ./../lib/llib-lcndutils
1055 $(ROOT) /usr/lib/llib-lcontract.In:= REALPATH=. ./../lib/llib-lcontract.ln
1056 $(ROOT)/usr/lib/llib-Icontract:= REALPATH=. ./../lib/Ilib-Icontract
1057 $(ROOT)/usr/lib/llib-lctf.ln:= REALPATH=. . /.. /lib/Ilib-lctf.In
1058 $(ROOT)/usr/lib/llib-lctf:= REALPATH=. . /.. /lib/Ilib-lctf

1059 $(ROOT) /usr/lib/llib-1curses.In:= REALPATH=. ./../lib/llib-lcurses.ln
1060 $(ROOT)/usr/lib/llib-Icurses:= REALPATH=. ./../1lib/llib-Icurses
1061 $(ROOT)/usr/lib/llib-1device.ln:= REALPATH=. ./../lib/llib-ldevice.In
1062 $(ROOT)/usr/lib/llib-Idevice:= REALPATH=. ./../1ib/llib-1device
1063 $(ROOT)/usr/lib/l1ib-Idevid.In:= REALPATH=. ./../lib/Ilib-ldevid.ln
1064 $(ROOT) /usr/lib/llib-1devid:= REALPATH=. ./../lib/Ilib-Ildevid
1065 $(ROOT)/usr/lib/l1lib-Idevinfo.ln:= REALPATH=. ./../lib/llib-ldevinfo.ln
1066 $(ROOT) /usr/lib/1lib-Idevinfo:= REALPATH=. ./../1lib/llib-1devinfo
1067 $(ROOT)/usr/lib/l1ib-Idhcpagent.|n REALPATH=. ./../1ib/llib-1dhcpagent.
1068 $(ROAT)/usr/lib/llib-1dhcpagent: = REALPATH=. ./../lib/llib-1dhcpagent
1069 $(ROOT)/usr/lib/llib-1dhcputil.ln:= REALPATH=. ./../lib/llib-ldhcputil.In
1070 $(ROOT)/usr/lib/l1lib-Idhcputil:= REALPATH=. . /. ./1ib/Ilib-Idhcputil
1071 $(ROOT)/usr/lib/llib-1dl.In:= REALPATH=. ./../lib/Ilib-1dl.In
1072 $(ROOT) /usr/lib/1lib-1dl:= REALPATH=. ./../1lib/Ilib-1dl

1073 $(ROOT) /usr/lib/llib-1door.In:= REALPATH=. ./../lib/llib-1door.In
1074 $(ROOT)/usr/lib/l1lib-Idoor:= REALPATH=. ./../1ib/l1lib-1door
1075 $(ROOT)/usr/lib/llib-lefi.ln:= REALPATH=. . /.. /lib/Ilib-lefi.ln
1076 $(ROOT)/usr/lib/llib-l1efi:= REALPATH=. . /. ./1lib/Ilib-1efi

1077 $(ROOT)/usr/lib/llib-lelf.In:= REALPATH=. ./../lib/Ilib-lelf.In
1078 $(ROOT)/usr/lib/llib-lelf:= REALPATH=. . /.. /lib/Ilib-lelf

1079 $(ROOT)/usr/lib/llib-Ifdisk.In:= REALPATH=. . /.. /lib/Ilib-1fdisk.In
1080 $(ROOT) /usr/lib/llib-1fdisk:= REALPATH=. . /.. /lib/Ilib-Ifdisk
1081 $(ROOT)/usr/lib/llib-1gen.In:= REALPATH=. ./../lib/Ilib-1gen.In
1082 $(ROOT)/usr/lib/llib-1gen:= REALPATH=. ./../lib/Ilib-1gen

1083 $(ROOT)/usr/lib/llib-linetutil.ln:= REALPATH=. ./../lib/llib-linetutil.ln
1084 $(ROOT)/usr/lib/llib-linetutil:= REALPATH=. ./../lib/Ilib-linetutil
1085 $(ROOT)/usr/lib/llib-lintl.lIn:= REALPATH=. ./../lib/Ilib-lintl.In
1086 $(ROOT)/usr/lib/llib-lintl:= REALPATH=. . /.. /1ib/Ilib-1intl

1087 $(ROOT)/usr/lib/llib-lkstat.|n:= REALPATH=. ./../lib/Ilib-lkstat.ln
1088 $(ROOT)/usr/lib/llib-lkstat:= REALPATH=. . /.. /1ib/Ilib-Ikstat
1089 $(ROOT) /usr/lib/llib-1m= REALPATH=. ./../lib/Ilib-1m

1090 $(ROOT)/usr/lib/llib-Imln:= REALPATH=. . /.. /lib/Ilib-Imln
1091 $(ROOT)/usr/lib/llib-1md5.1n:= REALPATH=. . /.. /1ib/Ilib-Ind5.1n
1092 $(ROOT)/usr/lib/l1ib-1nmd5: = REALPATH=. . /.. /lib/Ilib-Ind5

1093 $(ROOT)/usr/lib/llib-Imeta.ln:= REALPATH=. ./../lib/Ilib-lneta.ln
1094 $(ROOT)/usr/lib/llib-Inmeta:= REALPATH=. ./../lib/llib-1neta
1095 $(ROOT)/usr/lib/llib-Insl.In:= REALPATH=. ./../lib/Ilib-Insl.In
1096 $(ROOT)/usr/lib/llib-Insl:= REALPATH=. . /. ./1ib/llib-Insl

1097 $(ROOT)/usr/lib/llib-Invpair.ln:= REALPATH=. ./../lib/Ilib-lInvpair.In
1098 $(ROOT)/usr/lib/llib-Invpair:= REALPATH=. ./../lib/Ilib-Invpair
1099 $(ROOT)/usr/lib/llib-Ipamln:= REALPATH=. ./../lib/Ilib-1pamIn
1100 $(ROOT)/usr/lib/l1ib-1pam= REALPATH=. ./../1lib/llib-]pam

1101 $(ROOT)/usr/lib/11ib-1posix4.ln:= REALPATH=. . /.. /lib/Ilib-Irt.In
1102 $(ROOT)/usr/lib/llib-Iposix4:= REALPATH=. ./../lib/Ilib-Irt

1103 $(ROOT)/usr/I|b/II|bIpthreadIn= REALPATH=. ./../lib/llib-1pthread.In
1104 $(ROOT)/usr/lib/l1ib-Ipthread: = REALPATH=. ./../1lib/llib-|pthread
1105 $(ROOT) /usr/lib/Ilib-lresolv.In:= REALPATH=. ./../lib/llib-lresolv.ln
1106 $(ROQT)/usr/lib/llib-lresolv:= REALPATH=. ./../lib/llib-lresolv
1107 $(ROOT)/usr/lib/llib-Irpcsve.ln:= REALPATH=. ./../lib/Ilib-lrpcsvc.In
1108 $(ROOT)/usr/lib/llib-Irpcsvc: = REALPATH=. ./../lib/llib-lrpcsvc
1109 $(ROOT)/usr/lib/llib-Irt.In:= REALPATH=. . /.. /lib/Ilib-Irt.In
1110 $(ROOT) /usr/lib/llib-1rt:= REALPATH=. ./../lib/Ilib-Irt

1111 $(ROOT) /usr/lib/llib-Irtld_db.In:= REALPATH=. . /.. /1ib/Ilib-Irtld_db.In
1112 $(ROOT)/usr/lib/l1ib-1rtld_db:= REALPATH=. . /.. /lib/Ilib-Irtld_db
1113 $(ROOT)/usr/lib/llib-Iscf.In:= REALPATH=. . /.. /lib/Ilib-Iscf.In
1114 $(ROOT)/usr/lib/Ilib-1scf:= REALPATH=. ./../lib/llib-1scf

1115 $(ROOT)/usr/lib/llib-Isec.ln:= REALPATH=. ./../lib/llib-1sec.In
1116 $(ROOT)/usr/lib/llib-1sec:= REALPATH=. ./../1lib/llib-|sec

1117 $(ROOT)/usr/lib/l1ib-Isecdb.|n:= REALPATH=. ./../lib/Ilib-lsecdb.ln
1118 $(ROAT) /usr/lib/llib-1secdb: = REALPATH=. ./../lib/1lib-1secdb

new usr/src/ Targetdirs

1119 $(ROOT)/usr/lib/llib-1sendfile.ln:
1120 $(ROOT)/usr/lib/l1ib-Isendfile:=
1121 $(ROOT)/usr/lib/l1ib-1socket.!|n:
1122 $(ROOT) /usr/lib/1lib-Isocket: =
1123 $(ROOT)/usr/lib/llib-1sysevent.|
1124 $(ROOT)/usr/lib/l1ib-Isysevent:=
1125 $(ROOT)/usr/lib/l1ib-Iterncap.In:=
1126 $(ROOT)/usr/lib/llib-1terncap: =
1127 $(ROOT)/usr/lib/llib-Itermib.In:=
1128 $(ROOT)/usr/lib/llib-l1termib:=
1129 $(ROOT)/usr/lib/llib-1thread.|n:=
1130 $(ROOT) /usr/lib/llib-Ithread: =
1131 $(ROOT)/usr/lib/llib-1thread_db.I|n:
1132 $(ROOT)/usr/lib/l1ib-1thread_db
1133 $(ROOT)/usr/lib/llib-Itsnet.In:=
1134 $(ROOT)/usr/lib/llib-ltsnet:=
1135 $(ROOT) /usr/lib/llib-Itsol.ln:=
1136 $(ROOT)/usr/lib/llib-Itsol:=

1137 $(ROOT)/usr/lib/l1ib-1umemln:=
1138 $(ROOT) /usr/lib/llib-1unmem =

1139 $(ROOT)/usr/lib/l1ib-luuid. In:=
1140 $(ROOT)/usr/lib/l1ib-1uuid:=

1141 $(ROOT)/usr/lib/l1ib-1xnet.In:=
1142 $(ROOT)/usr/1ib/11ib-1xnet:=

1143 $(ROOT) /usr/lib/llib-l1zfs.In:=
1144 $(ROOT)/usr/lib/llib-1zfs:=

1145 $(ROOT)/usr/lib/l1ib-1zfs_core.ln:
1146 $(ROOT)/usr/lib/11ib-1zfs_core:=
1147 $(ROOT)/usr/lib/ nss_conpat. so. 1: =
1148 $(ROOT)/usr/lib/nss_dns. so. 1:

1149 $(ROOT)/usr/lib/nss_files.so. 1:
1150 $(ROOT)/usr/lib/nss_nis.so.1:=
1151 $(ROQAT)/usr/lib/nss_user.so.1:=
1152 $(ROOT) /usr/lib/fmlibfnevent.so.1:=
1153 $(ROOT)/usr/lib/fnlibfnmevent.so: =
1154 $(ROOT) /usr/lib/fm11ib-Ifmevent. I
1155 $(ROOT) /usr/lib/fm11ib-Ifmevent:=

1157 $(ROOT)/1i b/ $(MACH64) /| i bposi x4. so.

1158 REALPATH=l i brt. so. 1

1159 $(ROOT)/1i b/ $(MACH64) /1 i bposi x4. so:

1160 REALPATH=I i bposi x4. so. 1

1161 $(ROOT)/1i b/ $(MACHE4) /111 b-1 posi x4.

1162 REALPATH=I lib-1rt.In

1163 $(RmT)/I i b/ $(MACH64) /| i bt hread _db.

1164 EALPATH=I i bc_db. so.

1165 $(R@T)/I i b/ $(MACHB4) 71 i bt hr ead_db

1166 REALPATH=l i be_db. so. 1

SO:

1167 $(Rwr)lusr/||b/$(l\MC|—l64)/ld so. 1:=\

1168 ATH=. . /... .11

1169 $(ROOT)/usr/I i b/ $(IVACI-|64)/I i
1170 REALPATH=. ./../../lib
1171 $(ROOT)/usr/I i b/$(l\/ACH64)/I ib
1172 Aol b
1173 $(ROOT)/usr/I i b/$(MACHB4)/I ib
1174 REALPATH=. ./../../lib
1175 $(ROOT)/usr/ i b/ $(MACHE4) /1 i b
1176 REALPATH=. ./../../lib
1177 $(ROOT)/usr/lib/ $(MACHG4)/I i bavl .
1178 REALPATH=. ./../../lib
1179 $(ROOT)/ usr/ | i b/ $(MACHG4) /| i bav .
1180 REALPATH=. ./../../lib
1181 $(ROOT)/usr/li b/$(MACl-164)/I ib
1182 REALPATH=. ./../../lib
1183 $(ROOT) / usr/ | i b/ $(MACHE4) /i b
1184 REALPATH=. ./../../lib

REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .
REALPATH=. .

i b/ $(MACHE4) /| d. so. 1
badm so. 1: =\

/ $(NAC!—B4)/I i badm so.
adm so
! $(I\/ACI-B4)/I i badm so.
aio.so.1:=\
/$(NAC|—|64)/I|ba|o so.

/ $(I\/ACI-B4)/I i bai 0. so.

so. 1:=\

SO: =

/ $(I\/ACHG4)/I i bavl . so.

/ $(I\/AG-B4)/I i bavl . so.
bsmso.1:=\

/ $(I\/ACH54) /1ibbsm so.
bsm so: =
/ $(NAOHS4)/I i bbsm so.

N = = = T = SN

e e e e e e

\\\\UO'O'UUO'O'UUO'O'UUUO'O'UO’O'O’UUO’O’UUO’O’UUO’O’U

S S S S S S S s S s s s s s s A S S S S S S S

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n
n
n
n
n
i
i
i
i

fs_core.In

zfs_core
conpat so.1
ss_dns.so. 1
ss_files.so.1
ss_nis.so. 1

ib
i
i

18

fnevent so 1

b-
b-

| f mevent .

| f mevent

new usr/src/ Targetdirs 19

1185 $(ROOT)/usr/lib/ $(MACHE4)/|i bc.so. 1: =\

1186 REALPATH=. . /../../1ibl/ $(MACHG4)/1ibc.so. 1

1187 $(ROOT)/usr/I|b/$(I\MCH64)/I|bc so: =\

1188 REALPATH=. . /... /I|b/$(IVACH64)/I|bc so. 1

1189 $(ROOT)/usr/I|b/$(MACHB4)/I|bc db. so.

1190 REALPATH=. . /.. /. /I|b/$(NACHG4)/I|bc db.so. 1
1191 $(ROOT)/usr/I|b/$(MACH64)/I|bc db.so: =\

1192 REALPATH=. . /.. /. /I|b/$(I\/ACI-64)/I|bc db. so. 1
1193 $(ROOT)/usr/I|b/$(MACHB4)/I|bcndut|Is so0.1:=\

1194 REALPATH=. . /.. /. /I|b/$(NAC|—|G4)/I|bcndut|Is.so.1
1195 $(ROOT)/usr/I|b/$(M¢-\O-I64)/I|bcndut|Is s0: =

1196 REALPATH=. . /.. /. /I|b/$(|\/AG—64)/I|bchdut|Is.so.l
1197 (ROOT)/usr/I|b/$(MA(}-164)/I|bcontract so0.1:=\

1198 REALPATH=. . /.. /. /I|b/$(l\/ACH54)/I|bcontract.so.1
1199 $(ROOT)/usr/I|b/$(M¢-\C|-|64)/I|bcontract so: =\

1200 REALPATH=. . /.. /. /I|b/$(NAOH34)/I|bcontract.so.l
1201 $(ROOT)/usr/I|b/$(MACHG4)/I|bctf so.1: =

1202 REALPATH=. . /.. /. /I|b/$(l\/ACH54)/I|bctf so. 1
1203 $(ROOT)/usr/I|b/$(Mf-\C|-|64)/I|bctf so:

1204 REALPATH=. . /. . /. /Iub/$(NAor|64)/||bctf so. 1
1205 $(ROOT)/usr/lib/ $(MACHG4)/I i bcurses. so.1: =

1206 REALPATH=. . /... /I|b/$(|\/ACI—i64)/I|bcurses.so.1
1207 $(ROOT)/usr/li b/$(Mf-\CH64)/I i bcurses.so: =\

1208 REALPATH=. . /.. /. /I|b/$(NACI-I64)/I|bcurses.so.1
1209 (ROOT)/usr/I|b/$(MAC|—I64)/I|bdeV| ce.so.1:=

1210 REALPATH=. . /.. /. /I|b/$(I\/ACI—164)/I|bdeV| ce.so.1
1211 $(ROOT)/usr/li b/$(M¢-\CH64)/I i bdevi ce.so: =\

1212 REALPATHE. . /.. /. ./1i b/ $(MACH64) /| i bdevi ce. so. 1
1213 $(ROOT)/usr/I|b/$(MAC|—I64)/I|bdeV|d so0.1:=\

1214 o /I|b/$(I\/ACI—iG4)/I|bdeV|d so.1
1215 $(ROOT)/usr/I|b/$(MACI—|64)/I|bdeV|d so: =\

1216 REALPATH=. . /.. /. /I|b/$(l\/ACH54)/I|bdeV|d so.1
1217 $(ROOT)/usr/I|b/$(MAO—I64)/I|bdeV| nfo.so.1:=\

1218 o /I|b/$(I\/ACI—164)/I|bdeV|nfo so.1
1219 $(ROOT)/usr/I|b/$(l\/ACI—|64)/I|bdeV| nfo.so:=\

1220 REALPATH=. . /.. /. /I|b/$(l\/ACI-B4)/I|bdeVI nfo.so.1
1221 $(ROOT)/usr/I|b/$(MAC|—I64)/I|bdhcput|I so.l:=\

1222 ATH=. . /.. /. /I|b/$(|\/ACHG4)/I|bdhcput|I so.1
1223 $(ROOT)/usr/I i b/$(l\/ACI—|64)/I i bdhcputil.so: =\

1224 REALPATH=. . /. . /. /I|b/$(NACH64)/I|bdhcput|I so. 1
1225 $(ROOT)/usr/I|b/$(I\/ACH64)/I|de \

1226 ATH=. . /..]. /I|b/$(IVACI—164)/I|de so. 1

1227 $(R00T)/usr/||b/$(|vACHs4)/||bd| so:= \

1228 REALPATH=. . /.. /. /I|b/$(l\/AC|-B4)/I|de so. 1

1229 $(ROOT)/usr/I|b/$(l\/AC|—I64)/I|de pi. \

1230 ATH=. . /.. /. /I|b/$(|VACI—|64)/I|de pi.so.1
1231 $(R@T)/usr/l|b/$(I\/ACHG4)/I|de pi.so:=\

1232 REALPATH=. . /.. /. /I|b/$(NAC|—I64)/I|dep| so.1
1233 $(ROOT)/usr/I|b/$(I\/ACH64)/I|bdoor so.1:=\

1234 ATH=. . /.. /. /I|b/$(|VACI—|64)/I|bdoor so. 1
1235 $(ROOT)/usr/I i b/$(NACHB4)/I i bdoor.so: =\

1236 REALPATH=. ./../../lib/$(MACH64) /i bdoor.so.1
1237 $(R(I)T)/usr/||b/$(l\/ACHG4)/I|befI so. 1:=\

1238 ATH=. . /.. /. /I|b/$(I\/ACI-64)/I|bef| .1
1239 $(ROOT)/usr/I|b/$(MACHB4)/I|bef| so: =\

1240 REALPATH=. . /.. /. /I|b/$(NAC|—|G4)/I|bef| so. 1
1241 $(ROOT)/usr/I|b/$(M¢-\O-I64)/I|beIf so.1:=\

1242 REALPATH=. . /.. /.. /1i b/ $(MACH64) /i bel f.so. 1
1243 $(ROOT)/usr/I|b/$(MACHG4)/I|beIf so: =\

1244 REALPATH=. . /.. /. /I|b/$(l\/ACH54)/I|beIf so. 1
1245 (ROOT)/usr/I|b/$(M¢-\C|-|64)/I|bgen so.1:=\

1246 REALPATH=. . /.. /. /IIb/$(NAOI-B4)/I|bgen so.1
1247 $(ROOT)/usr/I|b/$(MA(}-164)/I|bgen so: =\

1248 REALPATH=. . /../../lib/$(MACH64)/1i bgen. so. 1
1249 $(RCX)T)/usr/I|b/$(ML\C|-|64)/I|b| netutil.so.1:=\

1250 REALPATH=. . /.. /. /IIb/$(NAOH54)/I|b| netutil.so.1

new usr/src/ Targetdirs 20
1251 $(ROOT)/usr/lib/ $(MACHE4) /| i binetutil.so:=\

1252 REALPATH=. . /.. /. /I|b/$(NACH64)/I|b| netutil.so.1
1253 $(R(xfr)lusr/||b/$(l\MC|—|64)/I|b| ntl.so. 1:=\

1254 REALPATH=. ./../../1ib/$(MACH64)/1ibintl.so.1
1255 $(ROOT)/usr/I|b/$(MACHB4)/I|b| ntl.so:=\

1256 REALPATH=. . /.. /. /I|b/$(NAC|—|64)/I|b| ntl.so.1
1257 $(ROOT)/usr/I|b/$(M’-\C|—I64)/I|bkstat so0.1:=\

1258 REALPATH=. . /. .. /I|b/$(I\/ACI-64)/I|bkstat so. 1
1259 $(ROOT)/usr/I|b/$(MACHB4)/I|bkstat so: =\

1260 REALPATH=. . /.. /.. /1ib/ $(NAC|—|G4)/I|bkstat so. 1
1261 $(ROOT)/ usr /| i b/ $(MACHB4) /| i bl ddbg. so. 4: = \

1262 REALPATH=. . /.. /.. /1ibl$(IVAG—BA)/I i bl ddbg. so. 4
1263 (ROOT)/usr/Ilb/$(MA(}-164)/I|bm L1

1264 REALPATH=. ./../../libl/ $(I\/ACH54)/I|bmsol
1265 $(RCX)T)/usr/I|b/$(ML\C|-|64)/I|bm so0.2:=\

1266 REALPATH=. ./../../lib/ $(NAOH34)/I|bm so. 2

1267 $(ROOT)/usr/I|b/$(MACHG4)/I|b \

1268 REALPATH=. . /.. /[..[1i b/$(l\/ACH54)/I|bm so. 2
1269 $(ROOT)/ usr/| i b/ $(MACHE4) /| i bnd. so. 1: = \

1270 REALPATH=. . /.. /.. [li b/$(NAOH34)/I|bnd so.1
1271 $(ROOT)/usr/I|b/$(MACHG4)/I|b

1272 REALPATH=. . /.. /. /I|b/$(l\/ACH54)/I|bmj so.1
1273 $(ROOT)/usr/I|b/$(M¢-\C|—|64)/I|brm5 so.1:=

1274 REALPATH=. . /.. /.. 11ibl$(IVACH34)/I i bnd5. so. 1
1275 (ROOT)/usr/Ilb/$(MACI—I64)/I|bnd5

1276 REALPATH=. . /. . /. /I|b/$(I\/ACHG4)/I|bm15 so. 1
1277 $(R(1)T)/usr/||b/$(Mf-\C|-|64)/I|bnp s0.2: =\

1278 REALPATH=. . /.. /.. [1ibl$(IVACH54)/I i bnp. so. 2
1279 $(ROOT)/usr/I|b/$(MACI—I64)/I|b \

1280 o /I|b/$(|\/AC|—iG4)/I|brrp s0. 2
1281 $(ROOT)/usr/I|b/$(MACI—|64)/I|bnvec so0.1:=\

1282 REALPATH=. . /. ./../1ib/$(MACH64)/1ibnmvec.so.1
1283 $(ROOT)/usr/I i b/ $(MACH64)/I i bnvec. so: =

1284 ool 11 bl $(MACH64) /1 i bmvec. so. 1
1285 $(ROOT)/usr/I|b/$(l\/ACI—|64)/I|bnsI so.1:=\

1286 REALPATH=. . /.. /. /I|b/$(NACH64)/I|bnsI so.1
1287 $(ROOT)/usr/I|b/$(MACH64)/I|bnsI so: =\

1288 ATH=. . /.. /. /I|b/$(I\/ACI—164)/I|bnsI 0.1
1289 $(ROOT)/usr/I|b/$(l\/ACI—|64)/I|bnvpa|r so0.1:=\

1290 REALPATH=. . /.. /. /I|b/$(NAC|-|64)/I|bnvpa|r so. 1
1291 $(ROOT)/usr/I i b/$(l\/AC|—|64)/I ibnvpair.so: =\

1292 ATH=. . /.. /. /I|b/$(IVACHG4)/I|bnvpa|r so. 1
1293 $(R®T)/usr/l|b/$(l\/ACI—|64)/I|bpam so.1:=\

1294 REALPATH=. . /. . /. /I|b/$(NACH64)/I|bpam so. 1
1295 $(ROOT)/usr/I|b/$(I\MCi—I64)/I|bp

1296 ATH=. . /.. /. /I|b/$(|VACI—|64)/I|bpamso 1
1297 $(R@T)/usr/l|b/$(I\/ACHG4)/I|prS|x4 so0.1:=\

1298 REALPATH=. . /.. /. /I|b/$(l\/AC|—I64)/I|brt so. 1
1299 $(ROOT)/usr/I|b/$(l\/ACH64)/I|bp05|x4 so: =\

1300 ATH=. . /.. /. /I|b/$(|VACI—|64)/I|brt so. 1
1301 $(ROOT)/usr/I|b/$(NACHB4)/I|bproc so0.1:=\

1302 REALPATH=. . /.. /. /I|b/$(NAC|—I64)/I|bproc so. 1
1303 $(ROOT)/usr/I|b/$(l\/ACH64)/I|bproc so: =

1304 ATH=. . /.. /. /I|b/$(I\/ACI-64)/I|bproc so. 1
1305 $(ROOT)/usr/I|b/$(MACHB4)/I|bpthread so0.1:=\

1306 REALPATH=. . /.. /.. [1ibl$(NACHG4)/I i bpthread. so. 1
1307 $(ROOT)/usr/I|b/$(M¢-\O-I64)/I|bpthread so: =\

1308 REALPATH=. . /. . /.. [1ibl$(I\/ACI-BA)/I i bpthread. so. 1
1309 $(ROOT)/usr/I|b/$(MACHG4)/I|brcm so.1:=\

1310 REALPATH=. . /.. /. /I|b/$(l\/AC|—|G4)/I|brcm so.1
1311 (ROOT)/usr/I|b/$(M¢-\C|-|64)/I|brcmso =

1312 REALPATH=. . /.. /.. [1li b/$(NAOI—B4)/I|brcm so. 1
1313 $(ROOT)/usr/I|b/$(MA(}-164)/I|bresolv s0.2: =\

1314 REALPATH=. . /.. /.. [1ibl$(I\/ACH54)/I i bresol v.so.2
1315 $(ROOT)/usr/I|b/$(Mf-\C|-|64)/I|bresoIv so: =\

1316 REALPATH=. ./../../1ib/$(MACH64)/li bresol v. so. 2

new usr/src/ Targetdirs 21

1317 $(ROOT)/usr/lib/ $(MACHE4)/|ibrestart.so.1:=\

1318 REALPATH=. . /.. /. /I|b/$(NAC|—I64)/I|brestart so. 1
1319 $(ROOT)/usr/I|b/$(I\MCH64)/I|brestart so: =\

1320 REALPATH=. . /../../1ib/ $(MACH64)/librestart.so. 1
1321 $(ROOT)/usr/I|b/$(MACHB4)/I|brpcsvc so0.1:=\

1322 REALPATH=. . /..] .. /I|b/$(NAC|—|G4)/I|brpcsvc so. 1
1323 $(ROOT) /usr/li b/$(MACH64)/I i brpcsve. so: =\

1324 REALPATH=. . /. .. /I|b/$(I\/ACI-64)/I|brpcsvc so. 1
1325 $(ROOT)/usr/I|b/$(MACHB4)/I|brt so0.1: =

1326 REALPATH=. . /.. /.. /I|b/$(NACHG4)/I|brt so.1
1327 $(ROOT)/usr/I|b/$(M¢-\C|-|64)/I|brt so: =\

1328 REALPATH=. . /.. /. /I|b/$(I\/AG-64)/I|brt so.1
1329 (ROOT)/usr/I|b/$(MA(}-164)/I|brtId so.

1330 REALPATH=. . /.. /. /I|b/$(l\/AC|-|54)/I|brtId so.1
1331 $(ROOT)/usr/|ib/ $(MACHE4)/1ibrtld db.so.1: = \

1332 REALPATHE. . /.. /. ./1ib/ $(MACH64)/librtld_db. so.1
1333 $(ROOT)/usr/I|b/$(MACHG4)/I|brtId db. so: =

1334 REALPATH=. . /../../1ib/$(MACH64)/1ibrtld_db.so.1
1335 $(ROOT)/usr/I|b/$(Mf-\C|-|64)/I|bscf so.1:=\

1336 REALPATH=. . /. .. /IIb/$(IVAOH54)/I|bSCf so. 1
1337 $(ROOT)/usr/I|b/$(MACHG4)/I|bscf so: =\

1338 REALPATH=. . /.. [.. /I|b/$(|\/AC|—i64)/I|bscf so. 1
1339 $(ROOT)/usr/I|b/$(M¢-\C|—|64)/I|bsec so.1:=\

1340 REALPATH=. . /.. /. /I|b/$(NACHf54)/I|bsec so.1
1341 (ROOT)/usr/I|b/$(MACH64)/I|bsec so: =\

1342 REALPATH=. . /.. /. /I|b/$(I\/ACI—164)/I|bsec so.1
1343 $(ROOT)/usr/li b/$(M¢-\CH64)/I i bsecdb.so.1: =\

1344 REALPATH=. . /... /I|b/$(NACH64)/I|bsecdb so. 1
1345 $(ROOT)/usr/I i b/$(MACH64)/I i bsecdb. so: =\

1346 ool i bl $(MACH64) /1 i bsecdb. so. 1
1347 $(ROOT)/usr/I|b/$(MACI—|64)/I|bsendf|Ie s0.1:=\

1348 REALPATH=. . /.. /. /I|b/$(NAC|-I64)/I|bsendf|Ie. so. 1
1349 $(ROOT)/usr/I i b/$(MACH64)/I i bsendfile.so:

1350 o /I|b/$(I\/ACHG4)/I|bsendf||e.so.1
1351 $(ROOT)/usr/I i b/$(I\/ACI-|64)/I i bsocket.so.1: =\

1352 REALPATH=. . /.. /. /I|b/$(NAC|-I64)/I|bsocket so. 1
1353 $(ROOT)/usr/I i b/$(MACH64)/I i bsocket.so: =\

1354 ATH=. . /.. /. /I|b/$(|\/ACHG4)/I|bsocket so. 1
1355 $(ROOT)/usr/I i b/ $(I\/ACI-|64)/I i bsysevent.so. 1: =\

1356 REALPATH=. . /../../lib/ $(MACHG4)/li bsysevent.so.1
1357 $(ROOT)/usr/I i b/ $(I\/AC|—|64)/I i bsysevent.so: =\

1358 ATH=. . /..]. /I|b/$(IVACHG4)/I|bsysevent so.1
1359 $(R®T)/usr/l i b/$(l\/ACI—|64)/I i bterncap.so. 1: =

1360 REALPATH=. . /.. /. /I|b/$(NAC|-|64)/I|bterrmap so. 1
1361 $(ROOT)/usr/I|b/$(l\MC|—I64)/I|bterntap so: =\

1362 ATH=. . /.. /.. /1ib/$(MACH64)/1i bterncap.so. 1
1363 $(R@T)/usr/l|b/$(l\/ACHG4)/I|btern1|b so.1:=\

1364 REALPATH=. . /.. /. /I|b/$(NAC|—I64)/I|bcurses so. 1
1365 $(ROOT)/usr/I|b/$(l\/ACH64)/I|btern1|b so: =\

1366 ATH=. . /.. /. /I|b/$(|VACI—|64)/I|bcurses so. 1
1367 $(ROOT)/usr/I|b/$(NACHB4)/I|bthread so0.1:=\

1368 REALPATH=. . /.. /. /I|b/$(NAC|—I64)/I|bthread so. 1
1369 $(ROOT)/usr/I|b/$(l\/ACH64)/I|bthread so: =\

1370 ATH=. . /.. [.. /I|b/$(I\/ACI-64)/I|bthread so. 1
1371 $(ROOT)/usr/I|b/$(MACHB4)/I|bthread db.so.1:=\

1372 REALPATH=. . /.. /. /I|b/$(l\/ACHG4)/I|bc db so.1
1373 $(ROOT)/usr/I|b/$(M¢-\C|-|64)/I|bthread db.so: =\

1374 REALPATH=. . /.. /.. /I|b/$(I\/ACI-64)/I|bc db. so. 1
1375 $(ROOT)/usr/I|b/$(MACHG4)/I|btsnet so0.1:=\

1376 REALPATH=. . /.. /. /I|b/$(l\/AC|—|G4)/I|btsnet so.1
1377 (ROOT)/usr/I|b/$(M¢-\C|-|64)/I|btsnet so: =\

1378 REALPATH=. . /.. /.. /I|b/$(NAOI-B4)/I|btsnet so.1
1379 $(ROOT)/usr/I|b/$(MA(}-164)/I|btsol s0.2: =\

1380 REALPATH=. . /.. /. /I|b/$(l\/AC|—|54)/I|btsoI s0. 2
1381 $(ROOT)/usr/I|b/$(Mf-\C|-|64)/I|btsoI so: =\

1382 REALPATH=. ./../../1ibl/ $(MACHE4)/1i btsol.so.2

new usr/src/ Targetdirs 22
1383 $(ROOT)/usr/lib/ $(MACHE4) /| i bumem so. 1: =\

1384 REALPATH=. . /. ./../1ib/$(MACH64)/1i bumem so. 1
1385 $(ROOT)/usr/I|b/$(I\MCH64)/I|bunemso—\

1386 REALPATH=. . /.. /../1ib/$(MACH64)/1i bunem so. 1
1387 $(ROOT)/usr/I|b/$(MACHB4)/I|bUU|d so0.1:=\

1388 REALPATH=. . /../../1ib/$(MACH64)/1i buuid.so.1
1389 $(ROOT)/ usr /| i b/ $(MACHE4) /| i buui d. s0: = \

1390 REALPATH=. . /. ./../1ib/ $(MACHE4) /1 i buui d. so.1
1391 $(ROOT)/usr/I|b/$(MACHB4)/I|buut|I so0.1:=\

1392 REALPATH=. . /.. []. /I|b/$(NAC|—|G4)/I|buut|I so. 1
1393 $(RCX3T)/usr/I|b/$(M’-\C|-I64)/I|buut|I so: =\

1394 REALPATH=. . /.. /. /I|b/$(I\/AG-64)/I|buut|I so. 1
1395 (ROOT)/usr/Ilb/$(MA(}-164)/I|bw L1

1396 REALPATH=. . /.. /. /I|b/$(l\/AC|-B4)/I|bW so. 1

1397 $(ROOT)/ usr/ | i b/ $(MACHE4) /i bw. s0: = \

1398 REALPATH=. . /.. /.. /1ib/ $(MACH64)/!ibw so. 1

1399 $(ROOT)/usr/I|b/$(MACHG4)/I|bxnet so0.1:=\

1400 REALPATH=. . /.. /. /I|b/$(l\/AC|—|54)/I|bxnet so. 1
1401 $(ROOT)/usr/li b/$(Mf-\CH64)/I i bxnet.so: =\

1402 REALPATH=. . /.. /. /I|b/$(NAOH34)/I|bxnet so.1
1403 $(ROOT)/usr/I|b/$(MACHG4)/I|bzfs S0

1404 REALPATH=. . /.. /. /I|b/$(|\/ACI—i64)/I|bzfs so.1
1405 $(ROOT)/usr/I|b/$(M¢-\C|—|64)/I|bzfs so.1:=\

1406 REALPATHE. . /.. /. ./1ib/ $(MACHB4)/li bzfs. so. 1
1407 (ROOT)/usr/I|b/$(MACH64)/I|bzfs core.so: =\

1408 REALPATH=. . /.. /. /I|b/$(I\/ACI—164)/I|bzfs core.so. 1
1409 $(R(1)T)/usr/||b/$(M¢-\CI—|64)/I|bzfs core.so. 1l:=\

1410 REALPATH=. . /.. /.. /1i b/$(I\MCHf54)/I|bzfs core.so.1
1411 $(ROOT)/usr/I|b/$(MAC|—I64)/I|bfd|sk \

1412 o /I|b/$(|\/ACI—iG4)/I|bfd|sk so.1
1413 $(ROOT)/usr/I|b/$(MACI—|64)/I|bfd|sk so: =\

1414 REALPATH=. . /. ./../1ib/$(MACH64) /i bf di sk.so.1
1415 $(ROOT)/usr/I|b/$(MAO—I64)/II|bIadmln—\

1416 ool i bl $(MACHE4) /1 1ib-1admIn
1417 $(ROOT)/usr/I|b/$(l\/ACI—|64)/II|b—Ia|o In:=\

1418 REALPATH=. . /.. /. /I|b/$(NAC|-I64)/II|bIa|0In
1419 $(ROOT)/usr/I|b/$(MACH64)/II|b-I Ini=\

1420 ATH=. . /.. /. /I|b/$(I\/ACHG4)/II|bIavI I'n
1421 $(ROOT)/usr/I|b/$(l\/ACI—|64)/II|b—IbsmIn =\

1422 REALPATH=. . /.. /. /I|b/$(NAC|-I64)/II|bIbsmIn
1423 $(RCXJT)/usr/||b/$(l\/ACH64)/II|b-I

1424 ATH=. . /.. /. /I|b/$(IVACHG4)/II|bIcIn
1425 $(R®T)/usr/l|b/$(l\/ACI—|64)/II|b—Ichdut|Is In:=\

1426 REALPATH=. . /.. /. /I|b/$(NAC|-I64)/II|bIchdut|IsIn
1427 $(ROOT)/usr/I|b/$(I\MC|—I64)/II|b-Icontract In:=\

1428 ATH=. . /.. /.. [1ib/$(MACHB4)/I1ib-lcontract.|n
1429 $(R@T)/usr/l|b/$(I\/ACHG4)/II|b—Ictf In:i=\

1430 REALPATH=. . /. ./../1ib/$(MACH64)/Ilib-lctf.In
1431 $(ROOT)/usr/I|b/$(I\MCH64)/II|b-Icurses In:=\

1432 ATH=. . /.. /.. /1ib/$(MACH64)/11ib-lcurses.In
1433 $(ROOT)/usr/I|b/$(NACHB4)/II|b—IdeV|ce In:=\

1434 REALPATH=. . /../../1ib/ $(MACH64)/11ib-1device.ln
1435 $(ROOT)/usr/I|b/$(l\/ACHG4)/II|b-|deV|d.In::

1436 ATH=. . /.. /.. /1ib/$(MACH64)/I1ib-Idevid.In
1437 $(ROOT)/usr/I|b/$(MACHB4)/II|b—IdeV| nfo.ln:=\

1438 REALPATH=. . /. ./../1ib/ $(MACH64)/11i b-1devinfo.ln
1439 $(RCXJT)/usr/I|b/$(M’-\CH64)/II|b-|dhcput|I.In:

1440 REALPATH=. . /.. /../1ib/$(MACHB4)/11ib-Idhcputil .
1441 $(ROOT)/usr/I|b/$(MACHG4)/II|b—IdI In:=\

1442 REALPATH=. . /.. /. /I|b/$(NAC|-|G4)/IIib—IdI.In
1443 (ROOT)/usr/I|b/$(Mf-\O-|64)/II|b-Idoor.In::\

1444 REALPATH=. . /../../1ib/$(MACH64)/Ili b-Idoor.In
1445 $(ROOT)/usr/I|b/$(MA(}-164)/II|b—Ief| In:=

1446 REALPATH=. . /.. /. /I|b/$(l\/AC|-B4)/II|bIef| I'n
1447 $(ROOT)/ usr/|ib/ $(MACHE4) /1 1ib-1elf.In:= \

1448 REALPATH=. . /.. /. /IIb/$(NAOH’S4)/II|b lelf.ln

new usr/src/ Targetdirs

1449 (ROOT)/usr/I|b/$(NACH64)/II|b—Igen.In:=\

1450 REALPATHE. . /.. /.. /1ib/ $(MACHB4)/11ib-1gen.|n
1451 $(ROOT)/usr/I|b/$(l\/AC|—|64)/II|b-I netutil.ln: =\

1452 REALPATH=. . /.. /.. /[1ib/$(MACHE64) /1 1ib-linetutil.ln
1453 $(ROOT)/usr/I|b/$(MACHB4)/II|b—I intl.ln:=\

1454 REALPATH=. . /. lib/ $(MACHB4) /I 1ib-lTintl.In
1455 $(ROOT)/usr/I|b/$(M’-\CH64)/II|b-|kstat.ln::\

1456 REALPATH=. . /. ./../1ib/ $(MACHB4)/11ib-1kstat.In
1457 $(ROOT)/usr/I|b/$(MACHB4)/II|b—ImIn::\

1458 REALPATH=. . /. I 1ib/ $(MACHB4) /I 1ib-Imln

1459 $(RCX)T)/usr/I|b/$(M¢-\C|-I64)/II|b-Irrd5.In':\

1460 REALPATH=. . /.. /.. /1ib/ $(MACH64) /1 1ib-1nd5.1n
1461 (ROOT)/usr/I|b/$(MA(}-164)/II|b—I nsl.ln:=\

1462 REALPATH=. . /. I 1ibl/ $(MACHB4) /I 1ib-Insl.In
1463 $(ROOT)/usr/I|b/$(M¢-\C|-|64)/II|b-I nvpair.ln:=\

1464 REALPATH=. . /../../lib/$(MACH64)/Ilib-Invpair.In
1465 $(ROOT)/usr/I|b/$(MACHG4)/II|b-IpamIn:=\

1466 REALPATH=. . /.. /../1ib/$(MACHB4)/I1ib-1pamIn
1467 $(ROOT)/usr/I|b/$(Mf-\CH64)/II|b»|posix4.ln::\

1468 REALPATH=. ./ ../ ../1ib/$(MACHB4) /I lib-Irt.In
1469 $(ROOT)/usr/I|b/$(MACHG4)/II|b-|pthread.|n'=\

1470 REALPATH=. . /. ./1ib/$(MACHE4) /1 1ib-Ipthread.|n
1471 $(ROOT)/usr/I|b/$(M¢-\C|—|64)/II|b»I resolv.In:=\

1472 REALPATH=. . /../../1ib/$(MACH64)/Ilib-Iresolv.In
1473 (ROOT)/usr/I|b/$(MACH64)/II|b-I pcsve. I n: =\

1474 REALPATH=. . /. ./ 1i b/ $(MACHE4) /I 1ib-1rpcsve.ln
1475 $(R(1)T)/usr/||b/$(M¢-\CI—|64)/II|b—I rt.ln:=\

1476 REALPATH=. . /.. /.. /1ib/$(MACH64)/11ib-Irt.In
1477 $(ROOT)/usr/I|b/$(MACH64)/II|b-I tid db.In:=\

1478 L 1ib/$(MACHB4) /I 1ib-1rtld_db.In
1479 $(ROOT)/usr/I|b/$(MACI—|64)/II|b—I scf.ln:i=\

1480 REALPATH=. . /. ./../1ib/$(MACH64)/11ib-1scf.In
1481 $(R(I)T)/usr/||b/$(MAO—I64)/II|b-Isec.In:=\

1482 . 1ib/$(MACHE4) /1 1ib-1sec.In
1483 $(ROOT)/usr/I|b/$(l\/ACI—|64)/II|b—|secdb.|n:=\

1484 REALPATH=. . /. ./../1ib/$(MACH64)/11ib-1secdb.In
1485 $(R(I)T)/usr/||b/$(l\/ACH64)/II|b-|sendfi|e.|n:=\

1486 ATH=. . /. ./ 1i b/ $(MACHE4) /1 1ib-1sendfile.ln
1487 $(ROOT)/usr/I|b/$(l\/ACI—|64)/II|b—|socket.|n:=\

1488 REALPATH=. . /../../1ib/$(MACH64)/11ib-Isocket.In
1489 $(RCXJT)/usr/I|b/$(l\/ACHS4)/II|b-|sysevent.|n::\

1490 ATH=. . /. ./1i b/ $(MACH64) /1 1ib-1sysevent.In
1491 $(R®T)/usr/l|b/$(l\/ACI—|64)/II|b—|term:ap.ln:=\

1492 REALPATH=. . /../../1ib/$(MACH64)/Ilib-lterncap.ln
1493 $(RCXJT)/usr/||b/$(l\/AC|—I64)/II|b-Itern1ibIn::\

1494 ATH=. . /. ./ 1ib/$(MACH64) /1 1ib-1curses.In
1495 $(R@T)/usr/l|b/$(I\/ACHG4)/II|b—|thread.|n:=\

1496 REALPATH=. . /../../1ib/$(MACH64)/11ib-Ithread.In
1497 $(ROOT)/usr/I|b/$(I\MCH64)/II|b-Ithread_dbIn:\

1498 ATH=. . /. L 1ib/$(MACH64) /1 1ib-1c_db.In
1499 $(ROOT)/usr/I|b/$(NACHB4)/II|b—|tsnet.|n:=\

1500 REALPATH=. . /. ./../1ib/$(MACH64)/1lib-ltsnet.In
1501 $(R(I)T)/usr/||b/$(l\/AC|—|64)/II|b-Itsol.In::\

1502 ATH=. . /. .1 1ib/$(MACHB4) /I lib-1tsol.In
1503 $(ROOT)/usr/I|b/$(MACHB4)/II|b—IurTemIn:=\

1504 REALPATH=. . /. ./../lib/$(MACH64)/11ib-lunem|n
1505 $(RCXJT)/usr/I|b/$(M’-\O—I64)/II|b-quid.In::\

1506 REALPATH=. . /.. /../1ib/$(MACHE4)/11ib-luuid.In
1507 $(ROOT)/usr/I|b/$(MACHG4)/II|b—Ixnet.In::\

1508 REALPATH=. . /. ./../1ib/$(MACH64)/11ib-Ixnet.In
1509 $(ROOT)/ usr/ | i b/ $(MACHE4) /1 1ib-1zfs. | n:= \

1510 REALPATH=. . /.. /../1ib/$(MACHE4)/11ib-1zfs.In
1511 $(ROOT)/usr/I|b/$(MA(}-164)/II|b—szs_core In:=\

1512 REALPATH=. . /../../1ib/$(MACH64)/11ib-1zfs_core.ln
1513 $(ROOT)/usr/I|b/$(M¢-\CH64)/IIlb»lfdisk.ln.:\

1514 REALPATH=. . /.. /../1ib/ $(MACH64)/11ib-1fdisk.In

23

new usr/src/ Targetdirs

AISHIS) (ROOT)/usr/I i b/$(MACHB4) / nss_conpat . so. 1: = \

1516 REALPATH=. . /.. /. /I|b/$(NACH64)/nss conpat . so. 1

1517 $(ROOT)/usr/I|b/$(I\MCH64)/nss dns.so.1:=\

1518 REALPATH=. . /../../1ib/$(MACH64)/nss_dns.so.1

1519 $(ROOT)/usr/I|b/$(MACHB4)/nss files.so.1l:=\

1520 REALPATH=. . /../../1ib/ $(MACHG4)/nss_files.so.1

1521 $(ROOT)/usr/I|b/$(MACH64)/nss nis.so.1l:=\

1522 REALPATH=. . /. .. /I|b/$(I\/ACI-64)/nss nis.so.1

1523 $(ROOT)/usr/I i b/$(MACHB4)/nss user.so. 1l:=\

1524 REALPATH=. . /. ./../1ib/ $(MACH64)/ nss_user.so.1

1525 $(ROOT)/usr/I|b/fn1$(NAC|-|64)/I|bfrrevent so.1:=\

1526 REALPATH=. oo i b/ fm $(MACHE4) /10 bf mevent . so. 1
1527 (ROOT)/usr/I|b/fn“l$(|\/ACI-|64)/I|bfrTevent so: =\

1528 REALPATH=. ool i b/ fm $(MACHE4) /| i bf mevent . so. 1
1529 $(ROOT)/usr/I|b/frT1$(NACH64)/II|b I'fmevent. I n: = \

1530 REALPATH=. ./../../../lib/fm $(MACHG4)/11ib-Ifmevent.
1532 i 386_SYM USRLI B= \

1533 Jusr/1ib/libfdisk.so \

1534 Jusr/lib/libfdisk.so.1\

1535 fusr/lib/llib-1fdisk \

1536 fusr/1ib/llib-1fdisk.In

1538 SYM USRLI B= \

1539 $($(MACH) _SYM USRLI B) \
1540 /1ibllibposix4.so \

1541 /1ib/libposix4.so.1 \

1542 /1ib/11ib-Iposix4 \

1543 /1ib/llib-1posix4.In\
1544 /1ibllibthread_db.so \
1545 /1ib/libthread_db.so.1 \
1546 Jusr/lib/ld.so. 1\

1547 Jusr/lib/libadmso \

1548 [usr/lib/libadmso.1 \
1549 /usr/1ib/libaio.so \

1550 Jusr/lib/libaio.so. 1\
1551 [usr/lib/libavl.so \

1552 Jusr/lib/libavl.so.1\
1553 /usr/1ib/libbsmso \

1554 Jusr/lib/libbsmso.1 \
1555 Jusr/lib/libc.so \

1556 Jusr/lib/libc.so.1\

1557 /fusr/lib/libc_db.so \
1558 Jusr/lib/libc_db.so.1 \
1559 Jusr/lib/libcmdutils.so \
1560 Jusr/lib/libcndutils.so. 1\
1561 lusr/lib/libcontract.so \
1562 Jusr/lib/libcontract.so.1 \
1563 Jusr/lib/libctf.so \

1564 Jusr/lib/libctf.so. 1\
1565 lusr/lib/libcurses.so \
1566 /usr/lib/libcurses.so.1 \
1567 [usr/1ib/libdevice.so \
1568 Jusr/1ib/libdevice.so.1 \
1569 [usr/1ib/libdevid.so \
1570 Jusr/1ib/libdevid.so.1\
1571 /usr/1ib/libdevinfo.so \
1572 Jusr/lib/libdevinfo.so.1 \
1573 [usr/lib/libdhcpagent.so \
1574 lusr/1ib/libdhcpagent.so.1 \
1575 Jusr/1ib/libdhcputil.so \
1576 Jusr/lib/libdhcputil.so.1 \
1577 Jusr/lib/libdl.so \

1578 /fusr/lib/libdl.so.1\
1579 [usr/1ib/libdlpi.so \
1580 Jusr/lib/libdlpi.so. 1\

new usr/src/ Targetdirs

1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646

/usr/lib/libdoor.so \
/usr/lib/libdoor.so.1 \
[usr/lib/libefi.so \
Jusr/lib/libefi.so. 1\
lusr/lib/libelf.so \
Jusr/lib/libelf.so.1\
[usr/lib/libgen.so \
/usr/lib/libgen.so.1\
Jusr/lib/libinetutil.so \
Jfusr/lib/libinetutil.so.1\
Jusr/lib/libintl.so \
Jfusr/lib/libintl.so.1\
lusr/lib/libkstat.so \
lusr/lib/libkstat.so.1 \
Jusr/1ib/liblddbg. so.4 \
Jfusr/lib/libmso.1 \
Jusr/lib/libmso.2 \
/fusr/lib/libmso \
Jusr/lib/libnd. so \
Jfusr/lib/libnd.so. 1\
[usr/1ib/libnd5.so \
lusr/1ib/libm5.s0.1 \
/fusr/lib/libneta.so \
Jusr/lib/libneta.so. 1\
Jusr/lib/libnp.so \
[usr/lib/libnp.so. 1\
/fusr/lib/libnp.so.2 \
[usr/lib/libmec.so.1\
Jusr/lib/libnvec.so \
[usr/lib/libnsl.so
/fusr/lib/libnsl.so. 1\
Jusr/lib/libnvpair.so \
/usr/lib/libnvpair.so.1 \
[usr/lib/libpam so
lusr/1ib/libpamso.1 \
/usr/lib/libposix4.so \
Jusr/lib/libposix4.so.1 \
Jusr/lib/libproc.so \
/usr/lib/libproc.so.1 \
Jusr/1ib/libpthread.so \
/usr/1ib/libpthread.so.1 \
Jusr/lib/librcmso \
lusr/lib/librcmso.1 \
Jusr/lib/libresolv.so \
Jusr/lib/libresolv.so.1 \
Jusr/lib/libresolv.so.2 \
lusr/lib/librestart.so \
Jusr/lib/librestart.so.1 \
Jusr/lib/librpcsvc.so \
Jusr/lib/librpcsve.so.1 \
Jusr/lib/librt.so \
fusr/lib/librt.so.1\
fusr/lib/librtld.so. 1\
fusr/lib/librtld_db.so \
Jusr/lib/librtld_db.so.1 \
Jusr/lib/libscf.so \
Jusr/lib/libscf.so.1 \
Jusr/lib/libsec.so \
Jusr/lib/libsec.so.1\
lusr/1ib/libsecdb.so \
Jusr/lib/libsecdb.so.1 \
Jusr/lib/libsendfile.so \
Jusr/lib/libsendfile.so.1\
lusr/lib/libsocket.so \
Jusr/lib/libsocket.so.1 \
lib/li

bsysevent.so \

25

new usr/src/ Targetdirs

1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712

lusr/lib/libsysevent.so.1 \
Jusr/1ib/libterncap.so \
[usr/lib/libterncap.so.1 \
Jusr/lib/libtermib.so \
Jusr/lib/libtermib.so.1\
Jusr/lib/libthread.so \
Jusr/lib/libthread.so.1 \
Jusr/lib/libthread_db.so \
/usr/lib/libthread_db.so.1 \
Jusr/lib/libtsnet.so \
Jusr/lib/libtsnet.so.1 \
Jusr/lib/libtsol.so \
lusr/lib/libtsol.so.2 \
[fusr/lib/libumemso \
Jfusr/lib/libumemso.1 \
[usr/1ib/libuuid. so \
Jusr/lib/libuuid.so. 1\
fusr/lib/libuutil.so \
Jusr/lib/libuutil.so.1 \
Jusr/lib/libw so \
Jusr/lib/libw so.1\
/fusr/lib/libxnet.so \
Jfusr/lib/libxnet.so.1 \
Jusr/lib/libzfs.so \
Jusr/lib/libzfs.so.1\
lusr/lib/libzfs_core.so \
/lusr/lib/libzfs_core.so.1 \
Jfusr/1lib/Ilib-1adm\
Jfusr/lib/llib-ladmIn \
lfusr/lib/llib-laio \
Jusr/lib/Ilib-laio.In\
Jusr/lib/1lib-lavl \
Jusr/lib/Ilib-Tavl.In\
[fusr/lib/1lib-1bsm\
fusr/lib/Ilib-1bsmlIn \
Jusr/lib/l1lib-1c \
Jusr/lib/llib-1Tc.In\
Jfusr/lib/11ib-lcmdutils \
fusr/lib/lIlib-1cmdutils.ln\
Jusr/lib/llib-lcontract \
Jusr/lib/llib-lcontract.In\
Jfusr/lib/1lib-lctf \
fusr/lib/ITib-lTctf.In\
Jusr/lib/llib-1curses \
Jfusr/lib/1lib-lcurses.In\
Jusr/lib/llib-ldevice \
[usr/lib/llib-l1device.ln\
Jusr/lib/llib-1devid \
Jusr/lib/llib-1devid.In \
Jusr/lib/llib-l1devinfo \
Jusr/lib/llib-ldevinfo.ln\
Jusr/1ib/llib-1dhcpagent \
[usr/1ib/llib-1dhcpagent.In \
fusr/1lib/Ilib-l1dhcputil \
/usr/lib/lllbldhcputll In\
Jfusr/lib/11ib-1dl
Jusr/lib/11ib-1dl. In\
Jusr/lib/llib-1door \
Jusr/lib/llib-ldoor.In\
fusr/lib/llib-1efi \
Jusr/lib/llib-lefi.In\
Jusr/lib/llib-lelf \
Jfusr/lib/lIlib-lelf.In\
lusr/lib/llib-1gen \
Jusr/lib/lIlib-1gen.In\
Jusr/lib/lIlib-linetutil \

new usr/src/ Targetdirs

1713 lusr/lib/llib-
1714 Jusr/lib/llib-
1715 Jusr/lib/llib-
1716 Jusr/lib/llib-
1717 lusr/lib/llib-
1718 Jusr/lib/llib-
1719 Jusr/1lib/l1lib-
1720 Jusr/lib/llib-
1721 lusr/lib/llib-
1722 lusr/1ib/llib-
1723 Jusr/lib/llib-
1724 Jusr/lib/llib-
1725 lusr/lib/llib-
1726 lusr/1ib/llib-
1727 Jusr/lib/llib-
1728 Jusr/lib/llib-
1729 lusr/lib/llib-
1730 lusr/1ib/llib-
1731 Jusr/lib/llib-
1732 Jusr/lib/llib-
1733 lusr/lib/llib-
1734 lusr/1ib/llib-
1735 Jusr/lib/llib-
1736 Jusr/lib/llib-
1737 Jusr/lib/llib-
1738 lusr/lib/llib-
1739 Jusr/lib/llib-
1740 Jusr/lib/llib-
1741 Jusr/lib/llib-
1742 lusr/lib/llib-
1743 Jusr/lib/llib-
1744 Jusr/1lib/l1lib-
1745 Jusr/lib/llib-
1746 lusr/lib/llib-
1747 lusr/1ib/llib-
1748 Jfusr/lib/llib-
1749 Jusr/lib/llib-
1750 lusr/lib/llib-
1751 lusr/1ib/llib-
1752 Jusr/lib/llib-
1753 Jusr/lib/llib-
1754 lusr/lib/llib-
1755 lusr/1ib/llib-
1756 Jusr/lib/llib-
1757 Jusr/lib/llib-
1758 Jusr/lib/llib-
1759 lusr/lib/llib-
1760 Jusr/lib/llib-
1761 Jusr/lib/llib-
1762 Jusr/lib/llib-
1763 lusr/lib/llib-
1764 Jusr/lib/llib-
1765 Jusr/lib/llib-
1766 Jusr/lib/llib-
1767 lusr/lib/llib-
1768 Jusr/lib/llib-
1769 Jusr/1lib/l1lib-
1770 Jusr/lib/llib-
1771 lusr/lib/llib-
1772 lusr/1ib/llib-
1773 Jusr/lib/llib-
1774 Jusr/lib/llib-
1775 lusr/lib/l1lib-
1776 lusr/lib/n

1777 Jusr/lib/

1778 Jusr/lib/

XX T T
wwnwsS5S

3%3333
tolololcliehAtaloE
=}

LA
=
=

-

-

<< 0n®m
3T T
DL
—= s —
=3
—_———
=}
—

o
.3
=
=

osi x4 \
osi x4.1n \
thread \
thread. | n \
esolv \
esolv.ln \

ec.ln\

ocket.ln \
ysevent \
ysevent.In \
erncap \
ernmcap. I n\
ermib \
ermib.In\
hread \
hread.In \
hread_db \
hread_db.1n \

w
>
[v]
—-
—

sol \
sol.ln\

fs.In\
fs_core \
zfs_core.ln \

NNNXXCcCcCcgc—+H++rr++++++0000OLOLLLLLVOLOOWMTTITIIIIIIPTODOODOTTIIII
®
(]
Q.
o

ss_conpat.so. 1 \
nss_dns.so. 1 \
nss_files.so.1 \

27

new usr/src/ Targetdirs

1779 lusr/lib/nss_nis.
1780 lusr/lib/nss_use
1781 [usr/lib/fmlibf
1782 Jusr/lib/fm|ibf
1783 Jfusr/lib/fmIlib-
1784 Jfusr/lib/fmllib-
1786 sparcv9_SYM USRLI B64=
1788 anmd64_SYM USRLI B64=

1789 Jusr/1ibland64/ 1
1790 [usr/1ib/laml64/|i
1791 Jusr/1ib/anmd64/ |
1794 SYM USRLI B64= \

1795 $($(MACHB4) _SYM
1796 /11 b/ $(MACHB4) /
1797 /11 b/ $(MACH64) /
1798 /1i b/ $(MACH64) / |
1799 /i b/ $(MACHB4) /
1800 /i b/ $(MACHB4) /
1801 [usr/1i b/ $(MACH6
1802 [usr/1i bl $(MACH6
1803 /usr/1i b/ $(MACH6
1804 [usr/1i b/ $(MACH6
1805 [usr/1i b/ $(MACH6
1806 [usr/1ib/$(MACH6
1807 /usr/1i b/ $(MACH6
1808 [usr/1i b/ $(MACH6
1809 [usr/1ib/$(MACH6
1810 [usr/1ib/$(MACH6
1811 /usr/1i b/l $(MACH6
1812 /usr/1i b/ $(MACH6
1813 /usr/1i b/ $(MACH6
1814 [usr/1ib/$(MACH6
1815 /usr/1i bl $(MACH6
1816 /usr/1i b/ $(MACH6
1817 /usr/1i b/ $(MACH6
1818 /usr/1ib/$(MACH6
1819 [usr/1i b/ $(MACH6
1820 /usr/1ib/$(MACH6
1821 /usr/1i b/ $(MACH6
1822 [usr/1ib/$(MACH6
1823 [usr/1i b/ $(MACH6
1824 /usr/1i b/ $(MACH6
1825 [usr/1i b/ $(MACH6
1826 /usr/1ib/$(MACH6
1827 [usr/1i b/ $(MACH6
1828 /usr/1i b/ $(MACH6
1829 /usr/1i b/ $(MACH6
1830 [usr/1i b/ $(MACH6
1831 [usr/1i b/ $(MACH6
1832 Jusr/1i b/ $(MACHE
1833 [usr/1i b/ $(MACH6
1834 /usr/1i b/ $(MACH6
1835 [usr/1i b/ $(MACH6
1836 /usr/1i b/ $(MACH6
1837 /usr/1i b/ $(MACH6
1838 /usr/1i b/ $(MACH6
1839 [usr/1ib/$(MACH6
1840 /usr/1i b/ $(MACH6
1841 [usr/1i b/ $(MACH6
1842 /usr/1i b/ $(MACH6
1843 [usr/1ib/$(MACH6
1844 [usr/1i b/ $(MACHE

so. 1\
r.so.1\
nevent.so \
nevent.so. 1 \
| f mevent \

I frevent. | n

bf di sk. so
bf di sk.so. 1
ib-1

\
i
i
I fdisk.In

3

RLI B64)
i bposi x4.so \
ib

posi x4.s0.1 \
i b-1posix4.In\

i bt hread_db. so \

i bt hread_db. so. 1 \
)/1d.so. 1\
)/1ibadm so \
4)/1ibadm so. 1 \
4)/1ibaio.so \
4)/1ibaio.so. 1\

4) /i bavl .so \
4)/1ibavl.so.1 \
4)/1ibbsmso \
4)/1ibbsmso.1 \
4)/1ibc.so \
4)/1ibc.so. 1\
4)/1ibc_db.so \
4)/1ibc_db.so.1 \
4)/1ibcndutils.so \
4) /i bcndutils.so. 1\
4)/1ibcontract.so \
4)/libcontract.so.1 \
4)/libctf.so \
4)/libctf.so. 1\
4)/1ibcurses.so \
4)/1ibcurses.so.1 \
4)/1i bdevice.so \
4)/1i bdevice.so.1 \
4)/1ibdevid.so \
4)/1ibdevid.so.1 \
4)/1i bdevi nfo.so \
4)/1i bdevi nfo.so.1 \
4)/1i bdhcputil.so \
4)/1ibdhcputil.so. 1\
4)/1ibdl.so \
4)/1ibdl.so.1\
4)/I|bd|p|. o\
4)/1i bdl pi . 1\
4)/1i bdoor . so

4)/1i bdoor . so.
4)/1ibefi.so \
4)/1ibefi.so.1\
4)/1ibelf.so \
4)/1ibelf.so.1\
4)/1i bgen.so \
4)/1ibgen.so.1 \
4)/libinetutil.so \
4)/1ibinetutil.so.1\
4)/libintl.so \

new usr/src/ Targetdirs

1845 Jusr/1ib/$(MACH64)/Ilibintl.so.1 \
1846 /usr/llb/$(NAC|-|64)/I|bkstat so \
1847 Jusr/1ib/ $(MACH64) /i bkstat.so.1 \
1848 lusr/1ib/$(MACH64)/1i bl ddbg. so. 4 \
1849 /usr/1ib/$(MACH64)/|ibm so.1 \
1850 Jusr/1ib/$(MACH64)/|ibm so.2 \
1851 Jusr/1ib/$(MACH64)/1ibm so \
1852 /usr/1ib/$(MACH64)/Iibnd. so \
1853 /usr/1ib/$(MACH64)/Iibnd. so. 1 \
1854 Jusr/1ib/$(MACH64) /i bnd5. so \
1855 [usr/1ib/$(MACH64) /i bnd5. so. 1 \
1856 [usr/1ibl/ $(MACH64) /i bnp.so \
1857 /usr/1ib/$(MACH64) /I i bnp.so.2 \
1858 /usr/1ib/$(MACH64)/Iibnvec.so.1 \
1859 /usr/1ib/$(MACH64) /I ibnvec. so \
1860 Jusr/1ibl$(MACH64)/1ibnsl.so \
1861 /usr/1ib/$(MACH64)/I1ibnsl.so.1 \
1862 /usr/1ib/$(MACH64) /I ibnvpair.so \
1863 Jusr/1ib/$(MACH64)/Ilibnvpair.so.1 \
1864 Jusr/libl$(MACH64)/1ibpam so \
1865 /usr/1ib/$(MACH64) /i bpam so. 1 \
1866 /usr/1ib/$(MACH64) /I i bposi x4.s0 \
1867 Jusr/1ib/$(MACH64) /I i bposi x4.s0.1 \
1868 Jusr/1ibl $(MACH64) /i bproc.so \
1869 /usr/1ib/$(MACH64)/Iibproc.so.1 \
1870 /usr/1ib/$(MACH64)/Ii bpt hread. so \
1871 /usr/1ib/$(MACH64) /I i bpthread.so.1 \
1872 Jusr/1ib/ $(MACH64)/1ibrcmso \
1873 Jusr/1ib/$(MACH64)/librcmso.1 \
1874 /usr/1ib/$(MACH64) /I i bresolv.so \
1875 Jusr/1ib/$(MACH64)/Ii bresolv.so.2 \
1876 Jusr/1ib/$(MACH64)/librestart.so \
1877 Jusr/libl/ $(MACH64)/|ibrestart.so.1 \
1878 /usr/1ib/$(MACH64) /I i brpcsvc.so \
1879 Jusr/1ib/$(MACH64) /I i brpcsvc.so.1 \
1880 [usr/lib/$(MACH64)/librt.so \
1881 Jusr/libl/$(MACH64)/1ibrt.so.1 \
1882 /usr/lib/$(MACH64)/Ilibrtld.so.1 \
1883 Jusr/1ib/$(MACH64)/librtld_db.so \
1884 Jusr/1ib/$(MACH64)/librtld_db.so.1 \
1885 Jusr/1ibl$(MACH64)/1i bscf.so \
1886 /usr/1ib/$(MACH64) /i bscf.so.1 \
1887 /usr/1ib/$(MACH64)/Iibsec.so \
1888 /usr/1ib/$(MACH64)/Iibsec.so.1 \
1889 [usr/lib/$(MACH64) /| i bsecdb. so \
1890 /usr/1ib/$(MACH64) /I i bsecdb.so.1 \
1891 Jusr/1ib/$(MACH64) /| ibsendfile.so \
1892 /usr/lib/$(MACH64)/I|ibsendfile.so.1 \
1893 Jusr/1ibl/ $(MACH64) /I i bsocket.so \
1894 Jusr/1ib/$(MACH64) /I i bsocket.so.1 \
1895 Jusr/1ib/$(MACH64) /| i bsysevent.so \
1896 /usr/1ib/$(MACH64)/|ibsysevent.so.1 \
1897 Jusr/1ib/$(MACH64)/1i bt erntap.so \
1898 Jusr/1ib/ $(MACH64) /I i bterntap.so.1 \
1899 Jusr/1ib/$(MACH64)/libternlib.so \
1900 Jusr/lib/$(MACH64)/libternlib.so.1 \
1901 /usr/1ib/$(MACH64)/Ii bt hread. so \
1902 Jusr/1ib/ $(MACH64) /I i bthread.so.1 \
1903 Jusr/1ib/$(MACH64) /I i bt hread_db. so \
1904 /usr/1ib/$(MACH64)/Ii bt hread_db. so. 1 \
1905 [usr/1ib/$(MACH64) /i btsnet.so \
1906 Jusr/libl/$(MACH64)/1ibtsnet.so.1 \
1907 /usr/1ib/$(MACH64) /I i btsol .so \
1908 /usr/1ib/$(MACH64) /I i btsol.so.2 \
1909 /usr/llb/$(NAC|-|64)/I|burrem so \

I'i b/ $()/1ib

1910 [usr/ unem so. 1 \

29

new usr/src/ Targetdirs

1911 /usr/1ib/$(MACH64) /I i buuid.so \

1912 /usr/1ib/$(MACH64) /I i buuid.so.1 \
1913 Jusr/1ib/$(MACH64) /i buutil.so \

1914 [usr/1ib/$(MACH64)/Ilibuutil.so.1 \
1915 Jusr/1ib/$(MACH64) /i bw. so \

1916 Jusr/1ib/$(MACH64)/1ibw. so.1 \

1917 Jusr/1ibl/ $(MACH64)/1i bxnet.so \

1918 Jusr/1ib/ $(MACH64) /I i bxnet.so.1 \
1919 Jusr/1ib/$(MACH64)/Iibzfs.so \

1920 [usr/1ib/$(MACH64) /i bzfs.so.1 \

1921 Jusr/1ib/$(MACH64)/Iibzfs_core.so \
1922 Jusr/libl/$(MACH64)/1ibzfs_core.so.1 \
1923 /usr/lib/$(MACH64)/Ilib-ladmln \
1924 Jusr/lib/$(MACH64)/Ilib-laio.ln \
1925 Jusr/1ib/$(MACH64) /1 1ib-lavl.ln \
1926 Jusr/libl/$(MACHE4)/11ib-1bsmln \
1927 Jusr/lib/$(MACHE4)/Ilib-lc.In \

1928 Jusr/lib/$(MACH64) /Il ib-lcndutils.In \
1929 /usr/lib/$(MACH64)/I1ib-lcontract.In \
1930 /usr/1ib/$(MACHE4)/Ilib-lctf.In\
1931 Jusr/1ib/$(MACH64)/I1ib-1curses.In \
1932 Jusr/1ib/$(MACH64)/I1ib-1device.ln \
1933 Jusr/1ib/$(MACH64)/I1ib-ldevid.In \
1934 Jusr/1ib/$(MACH64)/Ilib-1devinfo.lIn \
1935 Jusr/1ib/$(MACH64)/I1ib-1dhcputil.ln \
1936 Jusr/1ib/ $(MACHE4) /I lib-Idl.In \

1937 Jusr/1ib/$(MACH64)/I1ib-1door.In \
1938 Jusr/1ib/$(MACH64)/I1ib-lefi.ln\
1939 /usr/lib/$(MACHE4)/Ilib-lelf.lIn\
1940 /usr/lib/$(MACH64)/I1ib-lgen.In \
1941 Jusr/lib/$(MACH64)/Ilib-linetutil.ln\
1942 Jusr/1ib/$(MACHE4) /1 1ib-Tintl. In\
1943 Jusr/lib/ $(MACH64)/Ilib-lkstat.In \
1944 Jusr/1ib/$(MACHE4)/Ilib-ImlIn \

1945 Jusr/1ib/$(MACH64)/I1ib-1nmd5.1n \
1946 Jusr/lib/$(MACH64)/I1ib-Insl.In\
1947 Jusr/1ibl$(MACH64)/11ib-lnvpair.ln\
1948 /usr/lib/$(MACH64)/I1ib-1pamln \
1949 Jusr/1ib/$(MACH64)/I1ib-1posix4.In \
1950 Jusr/lib/$(MACH64)/I1ib-1pthread.In \
1951 Jusr/1ib/ $(MACH64)/Ilib-lresolv.In \
1952 Jusr/1ib/$(MACH64)/I1ib-1rpcsvec.ln \
1953 Jusr/1ib/l$(MACHE4)/Ilib-Irt.In\

1954 Jusr/1ib/$(MACH64) /11ib-1rtid_ db.In \
1955 Jusr/1ib/ $(MACH64)/Ilib-1scf.In\
1956 /usr/lib/$(MACH64)/I1ib-1sec.In \
1957 Jusr/1ib/$(MACH64)/I1ib-1secdb.In \
1958 /usr/lib/$(MACH64)/I1ib-1sendfile.ln \
1959 Jusr/1ibl/ $(MACH64)/I1ib-1socket.In \
1960 /usr/1ib/$(MACH64)/I1ib-1sysevent.In \
1961 /usr/lib/$(MACH64)/I|ib-lterncap.In \
1962 Jusr/lib/$(MACHE4)/Ilib-lItermib.In\
1963 Jusr/1ib/$(MACH64)/Ilib-lthread.In \
1964 Jusr/1ib/$(MACH64)/Ilib-1thread_db.In \
1965 Jusr/lib/$(MACH64)/I|lib-ltsnet.In \
1966 Jusr/lib/$(MACH64)/Ilib-1tsol.ln \
1967 Jusr/1ib/$(MACH64) /1 1ib-1umem |n \
1968 /usr/llb/$(MACI-164)/II|bIuwdIn\
1969 Jusr/1ib/$(MACH64)/I1lib-1xnet.ln \
1970 Jusr/lib/$(MACHE4)/I1ib-1zfs.In \
1971 Jusr/lib/$(MACH64)/I1ib-1zfs_core.ln \
1972 Jusr/1ibl$(MACH64)/ nss_conpat.so.1 \
1973 /usr/1ib/$(MACH64)/nss_dns. so.1 \
1974 Jusr/lib/$(MACH64)/nss_files.so.1 \
1975 [usr/1ib/$(MACH64)/ nss_nis.so.1 \
1976 Jusr/libl/$(MACH64)/ nss_user.so.1 \

new usr/src/ Targetdirs 31

1977 /usr/1ib/fm $(MACH64) /I i bf mevent.so \
1978 [usr/1ib/fm $(MACH64) /i bf mevent.so.1 \
1979 Jusr/1ib/fm $(MACH64)/11ib-1fmevent.In
1981 #

1982 # usr/src/ Makefile uses INS.dir for any nenber of ROOTDI RS, the fact
1983 # these are syminks to files has no bearing on this.

1984 #

1985 $(FI LELI NKS: %=$(ROOT) % : = \

1986 INS.dir= -$(RM $@ $(SYM.INK) $(REALPATH $@

new usr/src/lib/ Makefile

R R R R

13627 Sun May 4 03:04:43 2014
new usr/src/lib/ Makefile

hkkkkkkkkkkkkkkkkhkkkkhkhkhkhkhkkkkkkkkkkkkkkkkkkkk ok kk k ok k k%

1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terns of the
5 # Common Devel oprment and Distribution License (the "License")
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License.
12 #
13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # If applicable, add the followi ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
22 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 # Copyright (c) 1989, 2010, Oracle and/or its affiliates. Al rights reserved.
24 # Copyright (c) 2012 by Del phix. Al rights reserved.
#

Copyright (c) 2012, Joyent, Inc. Al rights reserved.
26 # Copyright (c) 2013 Gary MlIlIs

28 include ../ Makefile.naster

30 # Note that |ibcurses installs commands along with its library.
31 # This is a minor bug which probably should be fixed.

32 # Note also that a few extra libraries are kept in cnd source.
33 #

34 # Certain libraries are linked with, hence depend on, other libraries.
35 #

36 # Al though we have historically used .WAIT to express dependencies, it
37 # reduces the anount of parallelism and t hus lengthens the tine it

38 # takes to build the libraries. Thus, we now require that any new
39 # libraries explicitly call out their dependencies. Eventually, all
40 # the library dependencies will be called out explicitly. See

41 # "Library interdependenci es" near the end of this file.

42 #

43 # Aside fromexplicit dependencies (and | egacy .WAITs), all libraries
44 # are built in parallel.

45 #

46 . PARALLEL:

48 SUBDI RS= \

49 conmon VAT N

50 ../cmd/ sgs/libconv \

51 ../ cmd/ sgs/ i bdl CVWALT

53 SUBDIRS +=\

54 I'i bc CWAILT \

55 ./cmd/ sgs/|ibel f CVWALT

56 c synonyms \

57 lib \

58 Iibr'rdS \

59 l'ibrsm \

60 l'i bnp VAT N

61 I'i bnsl \

62 I'i bsecdb CWALT

new usr/src/lib/ Makefile

i brpcsve
i bsocket

i bresol v2

g
$--%¢
gU
c
<

intl

cnd/ sgs/librtld_db

=3

o =0 (2] Q Q@
Ze~ezzZag
3 3 °

dtrace
dtrace_jni
curses

bsdmal | oc

efi

wanboot ut i |
cryptoutil
inetutil

i padm

i pd

prp
iscsit
nf

=~

kst at

32
3

nal | oc
mapmal | oc
nt mal | oc

53
5o
‘3

snbi os
tecla

3
3

nvpair
exacct
sasl
| dap5
sl dap
bsm

U'CTCTU'U'CTCTU'U'CTCTD'U'D'CTD'U'D'CTUC'D'CTUU'U'CTCTU'%'CTCTU'U'UUD’UUUUUUUUUUUUU'U'CTCTU'U'CT\U'U'
=
<
e}
=3

e e e e e e e e e e e e e s

——

VAIT

VWAI T

VWAI T

e

new usr/src/lib/ Makefile

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

157

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

SUBDI RS +=

l'i bsys

i bsysevent

I'i bni sdb

|'i bpool

I'i bpp

I'i bproc

I'i bproj ect

l'i bsendfile
namet oaddr
ncad_addr
hbaapi

snmhba

sun_fc
sun_sas
gss_nechs/ mech_k
I'i bkrb5 . WAI'T
kr b5 VAT
I'i bsnbf s

I'i bf coe

I'i bsrpt

i bst nf

bst nf pr oxy

i bnsct |

i bpci db

passwdut i |
pam nodul es
crypt _nodul es
l'ibadt_jn

abi

audi t d_pl ugi ns
I'i bvol ngt

I'i bdevi ce

I'i bdevid

i bdhcpsvc
bc_db

i bt nf

i bdhcpagent
i bdhcpdu
i bdhcputi

i bi psecuti
swtch

i bi netsvc
i brestart

e R e —

e o e e e e e e e

b5

CWAILT

new usr/src/lib/ Makefile

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

I'i bpet x

i bcpc
get | ogi nx
wat chnal | oc
ext endedFl LE
madv

npss

|1 bdi sasm
I'i bwrap

I'i bxcur ses
i bxcurses2
I'i bbrand

|'i bzonecfg
I'i bzonei nfo
i bzonest at
I'i bt snet

I'i bt sol

P RN

— e

VAT

VWAIT

gss_nechs/ nech_spnego
gss_nechs/ mech_dumy

gss_nechs/ mech_dh

rpcsec_gss

I'1 braidcfg

l'ibrem

i bcf gadm

i bpi cl

i bpicltree

ai dcf g_pl ugi ns

fgadm pl ugi ns
nai

i
i bcndutils

i bcontract
./cmd/ sendmai | /
sasl_plugins
udapl

I'i bzpool
libzfs_core

i bzfs

I'i bbe

pyl i bbe

11 bzfs_jni

pyzfs

pysol ari s

I'i brapi d

brand

policka

bshare

|
i

i bi dmap

i badutils

i bi pm

i bexacct/ denmo
i bvrrpadm

i bvscan

i bgr ubngnt

\

CVWAILT
VAT
CWAILT
CVWAILT

VAIT \

—

————

ibmlter

new usr/src/lib/ Makefile 5 new usr/src/lib/ Makefile
260 I'i bi ma \ 326 I'i bdl adm \
261 l'i bsun_i ma \ 327 l'i bdl'l \
262 npapi \ 328 I'i bgr ubngnt \
263 I'ibrstp \ 329 I'i bgss \
264 I'i breparse \ 330 I'i bi dmap \
265 I'i bhot pl ug \ 331 I'i bi pmp \
266 libfruutils VAT 332 libilb \
267 libfru \ 333 l'i bi netutil \
268 $($(MACH) _SUBDI RS) 334 |'i bi nstzones \
335 I'i bi padm \
270 i 386_SUBDI RS= \ 336 I'i bnsl \
271 libntfs \ 337 I'i bnwam \
272 |'i bparted \ 338 I'i bpam \
273 I'i bf di sk \ 339 I'i bpi cl \
274 i bsavear gs 340 I'i bpool \
341 I'i bpkg \
276 sparc_SUBDI RS= .WAI T \ 342 I'i bpp \
277 ef code \ 343 I'i bscf \
278 I'i bds \ 344 I'i bsasl \
279 I'i bdscp \ 345 I'i bl dap5 \
280 I'i bprtdi ag CVWALT 346 I'i bsecdb \
281 I'ibprtdiag_psr \ 347 i bshare \
282 l'i bpri \ 348 I'i bshel | \
283 librsc \ 349 I'i bsl dap \
284 storage \ 350 i bslp \
285 I'i bpcp \ 351 I'i bsmbf s \
286 I'i bt sal arm \ 352 I'i bsmedi a \
287 l'ibvl2n 353 I'i bsum \
354 l'i bt sol \
289 FM sparc_DEPLIBS= |i bpri 355 I'i buutil \
356 i bvrrpadm \
291 fm \ 357 I'i bvscan \
292 I'i bexacct \ 358 |'i bwanboot \
293 I'i bi pm \ 359 I'i bwanbootutil \
294 i bzfs \ 360 i bzfs \
295 scsi \ 361 i bzonecfg \
296 $(FM_$(MACH) _DEPLI BS) 362 lvm \
363 nadv \
298 # 364 nmpss \
299 # Create a special version of $(SUBDIRS) with no .WAIT's, for use with the 365 pam nodul es \
300 # clean and cl obber targets (for nore information, see those targets, below). 366 pyzfs \
301 # 367 pysol ari s \
302 NOWAI T_SUBDI RS= $(SUBDI RS: . WAl T=) 368 rpcsec_gss \
369 |1 brepar se
304 DCSUBDI RS = \ 370 MSGSUBDI RS += \
305 lvm 371 $($(MACH) _MSGSUBDI RS)
307 MSGSUBDI RS= \ 373 spar c_MSGSUBDI RS= \
308 abi \ 374 l'i bprtdiag \
309 audi td_plugins \ 375 I'i bprtdi ag_psr
310 br and \
311 cfgadm plugins \ 377 i386_MSGSUBDI RS= | i bf di sk
312 gss_nechs/ nech_dh \
313 gss_nechs/ mech_kr b5 \ 379 HDRSUBDI RS= \
314 kr b5 \ 380 auditd_plugins \
315 |'i bast \ 381 |'i bast \
316 I'i bbsm \ 382 I'i bbrand \
317 I'i bc \ 383 I'i bbsm \
318 I'i bcf gadm \ 384 I'i bc \
319 I'i bcnd \ 385 I'i bcnd \
320 I'i bcontract \ 386 l'i bcrdutils \
321 i bcurses \ 387 i bcommmputil \
322 I'i bdhcpsve \ 388 I'i bcontract \
323 I'i bdhcputil \ 389 I'i bcpe \
324 i bi psecutil \ 390 libctf \
325 I'i bdi skngt \ 391 I'i bcur ses \

new usr/src/lib/ Makefile 7 new usr/src/lib/ Makefile
392 I'i bterncap \ 458 libsqglite \
393 I'ibcryptoutil \ 459 I'i bf coe \
394 I'i bdevi ce \ 460 I'i bsrpt \
395 I'i bdevi d \ 461 I'i bst nf \
396 I'i bdevi nfo \ 462 I'i bst nf proxy \
397 I'i bdi skngt \ 463 i bsum \
398 I'i bdl adm \ 464 i bsysevent \
399 I'ibdll \ 465 libtecla \
400 I'i bdl \ 466 l'i bt nf \
401 I bdhcpagent \ 467 libtnfctl \
402 I'i bdhcpsve \ 468 I'i bt nf probe \
403 I'i bdhcputi | \ 469 I'i bt snet \
404 |'i bdi sasm \ 470 l'i bt sol \
405 I'i bdns_sd \ 471 i bvrrpadm \
406 i bdscfg \ 472 I'i bvol ngt \
407 I'i bdtrace \ 473 I'i bumrem \
408 I'i bdtrace_j ni \ 474 I'i buni st at \
409 I'i bel fsign \ 475 I'i buutil \
410 l'i beti \ 476 |'i bwanboot \
411 libfru \ 477 I'i bwanbootutil \
412 I'i bf styp \ 478 I'i bwrap \
413 i bgen \ 479 I'i bxcurses2 \
414 I'i bi padm \ 480 libzfs \
415 I'i bi pd \ 481 i bzfs_core \
416 |'i bi psecutil \ 482 i bzfs_jni \
417 l'i bi netsvc \ 483 |'i bzonei nfo \
418 I'i bi netutil \ 484 |'i bzonest at \
419 I'i bi nstzones \ 485 hal \
420 I'i bi pm \ 486 pol i cykit \
421 I'i bi pmp \ 487 Ivm \
422 i bi pp \ 488 pkcs1l \
423 l'ibiscsit \ 489 passwdut i | \
424 I'i bkst at \ 490 ../cmd/ sendnai |l /1ibmlter
425 I'i bkvm \ 491 fm \
426 i bmail \ 492 udapl \
427 I'i bnd \ 493 I'i bmapi d \
428 I'i bt mal | oc \ 494 I'i bkr b5 \
429 I'i bndmp \ 495 I'i bsnmbf s \
430 I'i bnvpair \ 496 i bshare \
431 I'ibnsctl \ 497 I'i bi dmap \
432 I'i bnsl \ 498 I'i bvscan \
433 I'i bnwam \ 499 I'i bgr ubngnt \
434 I'i bpam \ 500 smbsrv \
435 I'i bpci db \ 501 libilb \
436 I'i bpct x \ 502 ScCSi \
437 I'i bpi cl \ 503 hbaapi \
438 libpicltree \ 504 smhba \
439 I'i bpool \ 505 I'ibima \
440 i bpp \ 506 i bsun_i ma \
441 I'i bproc \ 507 npapi \
442 |'i braidcfg \ 508 I'l breparse \
443 l'ibrcm \ 509 $($(MACH) _HDRSUBDI RS)
444 I'i brdc \
445 l'i bscf \ 511 i 386_HDRSUBDI RS= \
446 l'i bsip \ 512 |'i bparted \
447 I'i bsmbi os \ 513 I'i bf di sk \
448 librestart \ 514 i bsavear gs
449 I'i brpcsve \
450 i brsm \ 516 spar c_HDRSUBDI RS= \
451 I'ibrstp \ 517 I'i bds \
452 Ii bsasl \ 518 i bdscp \
453 I'i bsec \ 519 I'i bpri \
454 I'i bshel | \ 520 i bvl2n \
455 l'ibslp \ 521 st orage
456 I'i bsrmedi a \
457 I'i bsocket \ 523 all := TARGET= al |

new usr/src/lib/ Makefile

524
525
526
527
528
529
530
531

533

535
536
537
538
539
540
541
542
543
544
545

547
549

551
552
553
554

556
558
560
562

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

check : = TARGET= check

clean : = TARGET= cl ean

cl obber := TARGET= cl obber

install := TARGET= i nst al

install_h := TARGET= install_h

lint := TARGET= |int

_dc := TARGET= _dc

_msg : = TARCET= _nsg

. KEEP_STATE

#

For the all and install targets, we clearly nust respect library
dependencies so that the libraries link correctly. However, for
the remaining targets (check, clean, clobber, install_h, lint, _dc
and _nmsg), libraries do not have any dependenci es on one another
and thus respecting dependencies just slows down the build

As such, for these rules, we use pattern replacement to explicitly
avoid triggering the dependency information. Note that for clean,
clobber and lint, we nust use $(NOWAI T_SUBDI RS) rather than

$(SUBDIRS), to prevent ‘.WAIT from expanding to ‘.WAl T- nodepend’
#

all: $(SUBDI RS)

install: $(SUBDIRS) .WAIT install_extra

extra libraries kept in other source areas
install _extra
@d ../cnd/sgs; pwd; $(MAKE) install_lib
wd

clean cl obber lint: $(NOWAI T_SUBDI RS: %% nodepend)

install _h check: $(HDRSUBDI RS: %% nodepend)

_nsg: $(MBGSUBDI RS: %% nodepend) .WAI T _dc
_dc: $(DCSUBDI RS: %% nodepend)

#
Library interdependencies are called out explicitly here
#

audi td_plugins: libbsmlibnsl Iibsecdb

|

gss_mechs/ mech_kr b5: libgss libnsl |ibsocket libresolv pkcsll

I'i badt _j ni: i bbsm

|'i bast: i bsocket |ibm

I'i badutils: libldap5 libresolv |ibsocket |ibns

nsswit ch: libadutils Iibidnmap

|'i bbe: libzfs

|'i bbsm l'i btsol

I'i berd: |IbSUn]|IbaSt I'i bsocket |ibns

I'i berdutil's: i

|'i bcontract: I|bnvpa|r

|'i bdevi d: |'i bdevi nfo

I'i bdevi nf o: libnvpair |ibse

I'i bdhcpagent : libsocket i bdhcput|l libuuid libdlpi libcontract

|'i bdhcpsve: l'i binetutil

|'i bdhcputil: l'ibnsl libgen Iibinetutil Iibdlpi

I'i bdl adm libdevinfo |ibinetutil |ibsocket libscf Iibrecmlibnvpair \
i bexacct libnsl |ibkstat |ibcurses

I'i bdl'l | i bast

I'i bdl pi l'ibinetutil |ibdladm

|'i bds: | i bsysevent

I'i bdscfg: libnsctl |ibunistat |ibsocket Iibns

|'i bdtrace: libproc libgen libctf

new usr/src/lib/ Makefile

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

642

643
644
645
646
647
643
648
649
650
651
652
653
654

bdtrace_]nl:

@
=

x__
3

458

napld

rdc:

uui d:
inetutil:

i psecutil:
i nstzones:

ST
553
3..

secdb:
sam
plug|n$

1%
ol
,_,

shel |

si p:

smbf s:
socket :

st nf proxy:

a
c
3

sysevem
| dap5:

| dap:
om

)

—_—————————— e —————

NTT W —
©°

onecfg

proc:
proj ect:
t er ncap:
tsnet:
bwwap:

i bwanboot ut i
am nodul es:
i .
i
i
i

bi net svc:
brestart:

|
p
|
I
|
|'i bsaveargs:

./ cmd/ sgs/ i bdl
./cnd/sgs/libelf

pkcs1l:
print:

|'i bzfs_core:
libzfs_jni:
|'i bzpool :

|'i bsec:
brand:

I'i bshare:

li

bexacct/ deno:

udapl/udapl tavor:
bzf

ibuutil |ibdtrace

buui d

bnvpai r

beryptoutil |ibknf

badutils libldap5 |ibavl |ibsldap Iibuuti

bnsl libinetutil |ibsocket libdlpi Iibnvpair Iibdhcpagent \

bdl adm | i bsecdb
bc libnvpair libstnf |ibuuid libns
cryptoutll pkcs11

b
b l'ibm
b

bsocket libnsl Iibnsctl libunistat |ibdscfg

btecl a |ibsocket
bzonecfg |ibcontract
bwanboot |ibscf Iibadm

bgss |ibsocket pkcsll |ibnd

csll libgss |ibsocket |ibsas

bsocket

bast libcnd libdll |ibsocket |ibsecdb |ibm

bcndutlls I'i bsocket |ibnsl |ibkrb5
bstnf |'i bsocket |ibnsl |ibpthread

bsasl |ibsocket libnsl |ibmd

bl dap5 libtsol libnsl libc Iibscf Iibresolv

bnvpair |ibexacct

bast

bc libsocket libnsl libuuid l'ibnvpair |ibsysevent |ibsec \
bbrand |i bpool Iibscf
./lcmd/ sgs/librtld_db
ibpool I'i bproc |ibsecdb

|
i
i
li
li
i
i
i
li
lib
i
i
li
i
i
i
li
i
i
i
li
i bnsl
i
pk
li
li
i
i
li
li
i
i
i
li
i
i
i
li

./lcmd/ sgs/libelf libctf |ibsaveargs

i
|'i bcurses
libnsl libtsol |ibsecdb
l'ibnsl |ibsocket
libnvpair libresolv libnsl |ibsocket Iibdevinfo Iibinetutil \
| i bdhcputi
l'i bnsl
i bproject passwdutil snbsrv
libuutil libnd libgen |ibsnbios Iibnsl
l'i bscf
libuutil Iibscf
l'i bdi sasm
../cmd/ sgs/1ibconv
../cmd/ sgs/1ibconv
i bcryptoutil
I'i bl dap5
udapl /1 i bdat
libdevid libgen libnvpair libuutil \
libadm libavl libefi |ibidmap libnd Iibmlibzfs_core
libadm |ibavl Iibefi |ibidmap |ibnmd |ibzfs_core |ibm
i bnvpair
i bdi sknmgt |ibnvpair libzfs
libavl |ibumem|libnvpair |ibcndutils

i bavl 1ibidmap

libc |ibsocket

libscf libzfs libuuid libfsngt |ibsecdb I'i bunem|ibsnbfs
li bexacct |ibproject libsocket libns

10

new usr/src/lib/ Makefile

655 |ibtsalarm i bpcp

656 snbsrv: libsocket libnsl libnmd libxnet libpthread librt \
657 Iibshare |ibidmap pkcsll libsqlite libcryptoutil
658 libreparse |ibcndutils

659 |ibvil2n: l'ibds |ibuuid

660 |ibvrrpadm |i bsocket |ibdladmlibscf

661 |ibvscan: i bscf

662 |ibfru: libfruutils

663 scsi: libnvpair libfru

664 npapi : libpthread |ibdevinfo |ibsysevent |ibnvpair
665 sun_fc: libdevinfo |ibsysevent |ibnvpair

666 |ibsun_ima: i bdevinfo |ibsysevent Iibnsl

667 sun_sas: i bdevinfo |ibsysevent |ibnvpair |ibkstat
668 | i bgrubmgnt: libdevinfo libzfs |ibfstyp

669 pyl i bbe: l'i bbe libzfs

670 pyzfs: libnvpair libzfs

671 pysol aris: i bsec |ibidmap

672 |1 breparse: i bnvpair

673 1ibhot pl ug: i bnvpair

674 cfgadm pl ugi ns: |ibhot plug

675 1ibilb: |'i bsocket

676 |ibipm: l'ibm

677 |ibprtdiag Iibm

678 libsqglite i bm

679 i bstnf l'i bm

680 |ibvscan l'ibm

683 $(I NTEL_BUILD) | i bdi skngt : I'i bf di sk

685 #

686 # The reason this rule checks for the existence of the
687 # Makefile is that some of the directories do not exist
688 # in certain situations (e.g., exportable source builds,
689 # (QpenSol aris).

690 #

691 $(SUBDI RS): FRC

692 @f [-f $@Makefile]; then \

693 cd $@ pwd; $(MAKE) $(TARGET); \

694 el se \

695 true; \

696 fi

698 $(SUBDI RS: %% nodepend) :

699 @f [-f $(@ % nodepend=%/ Makefile]; then \
700 cd $(@ % nodepend=%; pwd; $(MAKE) $(TARCET); \
701 el se \

702 true; \

703 fi

FRC:

11

\

I'i bdevi d

new usr/src/lib/libm Makefile.com

R R R R

19733 Sun May 4 03:04:45 2014
new usr/src/lib/libm Makefile.com

hkkkkkkkkkkkkkkkkkkhkkhkhkhkhkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k k%

1#

2 # This file and its contents are supplied under the terms of the
3 # Common Devel oprent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://ww. illunps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

14 #

16 LI BRARY = libma

17 VERS =.2

19 LIBMDIR = $(SRC)/1ib/libm

21 nmBxsseOBJS i 386 =\

22 _fex_hdlr.o \

23 _ fex_i386.0 \

24 _ fex_sse.o \

25 __fex_symo \

26 fex_log.o

28 nBxsseOBIS = $(nOxsseOBIS_$(TARGET_ARCH))

30 mOxOBJS_anmd64 =\

31 _ fex_sse.o \

32 feprec.o

34 nBxOBJS_sparc =\

35 Irint.o\

36 Irintf.o\

37 Irintl.o\

38 Iround. o \

39 I roundf.o \

40 I roundl . o

42 mOxOBJS_i 386 =\

43 __fex_sse.o \

44 feprec.o \

45 Irint.o\

46 Irintf.o\

47 Irintl.o\

48 I round. o \

49 I roundf.o \

50 I roundl .o

52 #

53 # Ilrint.o, Irintf.o, Irintl.o, Iround.o, lroundf.o & Iroundl.o are 32-bit only
54 #

55 nmPxOBJS =\

56 $(mOxOBIS_$(TARGET_ARCH)) \
57 __fex_$(MACH).o \

58 __fex_hdlr.o \

59 __fex_symo \

60 fdimo

61 fdinf.o \

62 fdim.o \

new usr/src/lib/libm Makefile.com

63 feexcept.o \

64 fenv.o \

65 feround. o \

66 fex_handler.o \

67 fex_log.o \

68 frma.o \

69 frmaf.o \

70 fmal .o \

71 frmax.o \

72 fmaxf.o \

73 fmaxl .o \

74 fmn. o\

75 fmnf.o\

76 fminl.o\

77 frexp.o \

78 frexpf.o \

79 frexpl.o \

80 | dexp. o \

81 | dexpf.o \

82 | dexpl .o \

83 Ilrint.o\

84 Ilrintf.o\

85 Ilrintl.o \

86 Ilround.o \

87 Il roundf.o \

88 I'lroundl.o \

89 modf. o \

90 nmodff.o \

91 modfl .o \

92 nan.o \

93 nanf.o \

94 nanl .o \

95 nearbyint.o \

96 nearbyintf.o \

97 nearbyintl.o \

98 nexttoward. o \

99 nexttowardf.o \
100 nexttowardl .o \
101 renmguo. o \
102 remguof. o \
103 renguol . o \
104 round. o \
105 roundf.o \
106 roundl .o \
107 scal bl n.o \
108 scal bl nf.o \
109 scal blnl.o \
110 tgama. o \
111 tgammaf.o \
112 tgamal .o \
113 trunc.o \
114 truncf.o \
115 truncl.o
117 OBJS_MDXSSE = $(nBxsseOBIS: % pi cs/ %
119 COBJS i 386 =\
120 __libx_errno.o
122 COBJS sparc =\
123 $(COBIS_i 386) \
124 _TBL_atan.o \
125 _TBL_exp2.0 \
126 _TBL_log.o \
127 _TBL_lo0g2.0 \
128 “TBLtan.o \

new usr/src/lib/libm Makefile.com

129 __tan.o \

130 _tanf.o

132 #

133 # atan2pi.o and sincospi.o is for internal
134 #

136 COBJS_and64 = \

137 _TBL_atan.o \
138 _TBL_exp2.0 \
139 _TBL_log.o \
140 _TBL_l0g2.0 \
141 __tan.o \

142 __tanf.o \
143 _TBL_tan.o \
144 copysign.o \
145 exp.o \

146 fabs.o \

147 frnod.o \

148 ilogb.o \

149 isnan.o \

150 nextafter.o \
151 remai nder.o \
152 rint.o\

153 scal bn. o

155 COBJS sparcv9 = $(COBJS_and64)

157 COBJS =\

158 $(COBIS_$(TARGET_ARCH)) \
159 _cos.0 \

160 __lgamma. o \
161 __rempio2.0 \
162 __rempio2mo \
163 _sin.o\

164 __sincos.o \
165 _ Xpg6.0 \

166 _lib_version.o \
167 _SvViD error.o \
168 _TBL_ipio2.0 \
169 _TBL_sin.o \
170 acos. o \

171 acosh.o \

172 asin.o \

173 asinh.o \

174 atan.o \

175 atan2.0 \

176 atan2pi.o \

177 atanh.o \

178 cbrt.o\

179 ceil.o\

180 cos.o \

181 cosh.o \

182 erf.o\

183 expl0.0 \

184 exp2.0 \

185 expnl. o \

186 floor.o \

187 ganme. o \

188 gamma_r.o \

189 hypot.o \

190 j0.0\

191 J1.0\

192 jn.o\

193 | gamma. o \

194 Il gamma_r.o \

use only

new usr/src/lib/libm Makefile.com

195 log.o \

196 1 0g10.0 \
197 loglp.o \
198 l0g2.0 \

199 | ogb. o \

200 matherr.o \
201 pow. 0 \

202 scalb.o \
203 signgam o \
204 significand.o \
205 sin.o \

206 sincos. o \
207 sincospi.o \
208 sinh.o \

209 sqgrt.o \

210 tan.o \

211 tanh. o

213 #

214 # LSARC/ 2003/ 658 adds i snanl

215 #

216 QOBJS_sparc =\

217 _TBL_atanl.o \
218 _TBL_expl .o \

219 _TBL_expmtl .o \
220 _TBL_logl.o \

221 finitel.o\

222 isnanl.o

224 QOBJS_sparcv9 = $(QOBJS sparc)
226 QOBJS ant64 =\

227 finitel.o \

228 isnanl.o

230 #

231 # atan2pil.o, ieee_funcl.o, rndintl.o, sinpil.o,
232 # are for internal use only

233 #

234 # LSARC/ 2003/279 adds the follow ng:
235 # gammal . o 1
236 # ganmmal _r.o 1
237 # J0l.o 2
238 # jll.o 2
239 # jnl.o 2
240 # | gammal _r. o 1
241 # scal bl . o 1
242 # significandl.o 1
243 #

244 QOBJS =\

245 $(QOBIS_$(TARGET_ARCH)) \
246 _cosl.o\

247 __lgamal .0 \

248 __poly_libmy.o \
249 __rempio2l.o\
250 __sincosl.o \

251 _sinl.o\

252 __tanl.o \

253 _TBL_cosl.o \

254 _TBL_ipio2l.o0 \
255 _TBL_sinl.o \

256 _TBL_tanl.o \

257 acoshl .o \

258 acosl .o \

259 asinhl.o \

260 asinl.o \

sincospil.o

new usr/src/lib/libm Makefile.com

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

310 #
LSARC/ 2003/ 658 adds i snanf

311
312
313
314
315
316
317

319

321
322
323
324
325

#
ROBJS_sparc

ROBJS_sparcv9

ROBJS_ani64

atan2l .o \
atan2pil.o \
atanhl .o \
atanl .o \
cbrtl.o\
copysignl.o \
coshl .o \
cosl.o \
erfl.o\
expl0l .o \
exp2l .0 \

ieee_funcl.o \
ilogbl.o\
jol.o\
j1l.0\
jnl.o\

| gammal .o \

| gammal _r.o \
1 0g10l .0 \
loglpl.o \
log2l .0\

| ogbl .o \
logl.o \
nextafterl.o \
pow .o \

remai nderl .o \
rintl.o\
rndintl.o \
scal bl .o \
scal bnl .o \
signganm .o \
significandl.o \
sincosl.o \
sincospil.o \
sinhl.o \
sinl.o\
sinpil.o \
sgrtl.o \
tanhl.o \
tanl.o

=\

_cosf.o \
__sincosf.o \
_sinf.o\
isnanf.o

= $(ROBJS_sparc)

=\

isnanf.o \
_cosf.o \
__sincosf.o \
_sinf.o

327 #

328 # atan2pif.o, sincosf.o,

329 #

330 # LSARC/ 2003/279 adds the follow ng:
331 # bessel f. o 6
332 # scal bf. o 1
333 # gammaf . o 1
334 # gamaf _r.o 1
335 # I gammaf _r. o 1
336 # significandf.o 1
337 #

338 ROBJS =

339 $(ROBIS_$(TARGET_ARCH)) \
340 _TBL_r_atan_.o \
341 acosf.o \

342 acoshf.o \

343 asinf.o \

344 asinhf.o \

345 atan2f.o \

346 atan2pif.o \

347 atanf.o \

348 atanhf.o \

349 besself.o0 \

350 cbrtf.o \

351 copysignf.o \

352 cosf.o \

353 coshf.o \

354 erff.o\

355 expl0f.o \

356 exp2f.o \

357 expf.o \

358 expmif.o \

359 fabsf.o \

360 floorf.o \

361 frodf.o \

362 ganmaf. o \

363 gammaf _r.o \

364 hypotf.o \

365 ilogbf.o\

366 | gammaf. o \

367 | gammaf _r.o \

368 | 0g10f. o0 \

369 | oglpf.o \

370 log2f.o \

371 | ogbf.o \

372 logf.o \

373 nextafterf.o \
374 powf.o \

375 renmai nderf.o \
376 rintf.o \

377 scal bf. o \

378 scal bnf.o \

379 signganf.o \

380 significandf.o \
381 sinf.o\

382 sinhf.o \

383 sincosf.o \

384 sincospif.o \

385 sgrtf.o \

386 tanf.o \

387 tanhf. o

389 #

390 # LSARC/ 2003/ 658 adds isnanf/isnanl

391 #

new usr/src/lib/libm Makefile.com

sincospif.o are for

internal

use only

new usr/src/lib/libm Makefile.com

393
394
395
396
397
398
399
400
401
402
403

405
406
407
408
409
410
411

413
414
415
416

419
420

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

SOBJS_sparc

SOBJS_i 386

SOBJS_anu64
#

#

SOBJS

conpl exOBJS

=\
copysign.o \
exp.o \
fabs.o \
frod. o \
ilogbh.o \
isnan.o \
nextafter.
remai nder .
rint.o\
scal bn. o

[eNe]
——

=\
__reduction.o \
finitef.o\
finitel.o\
isnanf.o \
isnanl.o \
$(SOBJS_sparc)

__swapFLAGS. o
_xtoll.o\
_xtoull.o \

=\
$(SOBJS_$(TARGET_ARCH))

=\

cabs.o \
cabsf.o \
cabsl .o \
cacos. o \
cacosf.o \
cacosh.o \
cacoshf.o \
cacoshl .o \
cacosl .o \

casinf.o \
casinh.o \
casinhf.o \
casinhl.o \
casinl.o \
catan.o \
catanf.o \
catanh.o \
catanhf.o \
catanhl .o \
catanl.o \
ccos. o \
ccosf.o \
ccosh.o \
ccoshf.o \
ccoshl .o \
ccosl.o \
cexp.o \
cexpf.o \
cexpl.o \
cimag.o \
cimagf.o \
cimagl.o \

new usr/src/lib/libm Makefile.com

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

496

498
499
500

502
503

505
506
507
508
509
510
511
512

514
515
516

518
519

521
522

524

OBJECTS

i ncl ude
i ncl ude
i ncl ude

SRCDI R
LI BS

LI NTERROFF
LI NTERROFF
LI NTERROFF
LI NTERROFF
LI NTERROFF
LI NTFLAGS
LI NTFLAGS64
LI NTFLAGS64

CERRWARN
CERRWARN
CERRWARN

#endi f /* |
CPPFLAGS

CFLAGS
CFLAGS64

mOx_I L

clog.o \
clogf.o \
clogl.o\
conj.o \

csinhf.o \
csinhl.o \
csinl.o\
csgrt.o \
csqrtf.o \
csqrtl.o \
ctan.o \
ctanf.o \
ctanh.o \
ctanhf.o \
ctanhl .o \
ctanl.o \
k_atan2.0 \
k_atan2l .0 \
k_cexp.o \
k_cexpl.o \
k_clog_r.o \
k_clog_rl.o

= $(COBJIS) $(ROBIS) $(QOBIS) $(SOBIS) $(nmdBxOBIS) $(conpl exOBIS)
$(SRC)/1i b/ Makefile.lib

$(LIBI\/D R)/ Makefile.libmcom

$(SRO) /i b/ Makefile.rootfs

./ commo
$(DYNLI B) $(LI NTLI B)

= -errof f =E_FUNC_SET_NOT_USED

+= -errof f =E_FUNC_RET_ALWAYS_| GNOR2
+= -errof f =E_FUNC_RET_MAYBE_T GNORED2
+= -errof f=E_| MPL_CONV_RETURN

+= -errof f =E_NAVE_MULTI PLY_DEF2

+= $(LI NTERRCFF)

+= $(LI NTERROFF)

+= -errchk=l ongptr 64
-_gcc=-Wio-switch

+= -_gcc=- Who- par ent heses

+= -_gcc=-Who- unused-vari abl e

coder evi ew */
+= -DLI BM BUI LD

+= $(C_BI GP| CFLAGS)
+= $(C_Bl GP| CFLAGS)

= $(LI BMDI R)/ comon/ mdx/ __f env_$(TARGET_ARCH) . i |

new usr/src/lib/libm Makefile.com

526 SRCS_LD_i 386_and64 = \

527
528
529

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

573
574

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

./comon/LD/ finitel.c \
./comon/ LD/ isnanl.c \
./ comon/ LD/ next afterl.c

SRCS_LD = \
$(SRCS_LD_i 386 $(TARGE\T _ARCH)) \

./ common/ LD/ __cosl
-/ conmon/ LD/ __| gammal .c \
../comon/ LD __poly libm.c \
../comon/ LD/ __rempio2l.c \
../ comon/ LD/ __sincosl.c \
../comon/ LD/ __sinl.c \
../comon/LD/ __tanl.c \
../ comon/ LD/ _TBL_cosl .
../ comon/ LD/ _TBL_i pi 02I
../ comon/ LD/ _TBL_sinl .
../ comon/ LD/ _TBL_tanl . c
../ common/ LD/ acoshl .c \
../ common/ LD/ asi nhl . c \
../ common/ LD/ at an2pi | . c \
../ comon/ LD/ at anhl . ¢ \
../ comon/ LD/ cbrtl.c \
../ common/ LD/ coshl .c \
../ common/ LD/ cosl . c \
../comon/LD/erfl.c \
../ common/ LD/ gammal . ¢ \
../ common/ LD/ gammal _r.c \
../ conmmon/ LD/ hypot | .c \
../comon/LD/jOl.c \
../comon/LD/j1l.c \
../common/LD/jnl.c \
../ common/ LD/ | ganmal . ¢ \
../ common/ LD/ | ganmal _r.c \
../ comon/ LD/ | oglpl.c \
../ common/ LD/ | ogbl . ¢ \
../ conmmon/ LD/ scal bl .c \
../ common/ LD/ si gngam . c \
../ comon/ LD/ si gni ficandl.c \
../ common/ LD/ si ncosl.c \
../ conmmon/ LD/ si ncospil.c \
../ comon/ LD/ si nhl .c \
../comon/LD/sinl.c \
../ common/ LD/ sinpil.c \
../ common/ LD/ tanhl .c \
./comon/LD/'tanl.c

//O —
—

SRCS_LD i 386 = \

$(SRCS_LD)

SRCS_R and64 =\

./comon/R __tanf.c \
../ conmon/ R/ T'snanf. ¢ \
../common/ R __cosf.c \
../comon/ R __sincosf.c \
../comon/R __sinf.c \
../ comon/ R/ acosf.c \
../ conmmon/ R asinf.c \
../ common/ R/ atan2f.c \
../ comon/ R/ copysignf.c \
../ common/ R/ expl0f.c \
../ conmon/ R exp2f.c \
../ common/ R/ expnif.c \
../ comon/ R/ fabsf.c \
./ common/ R hypotf.c \

new usr/src/lib/libm Makefile.com

591
592
593
594
595
596
597

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

../ conmmon/ Rilogbf.c \

../ common/ R/l 0g10f.c \

../ comon/ R/l og2f.c \

../ common/ R nextafterf.c \
../ conmon/ R powf.c \
../comon/Ririntf.c \

./ common/ R/ scal bnf . ¢

sparc + sparcv9
SRCS_R sparc =\

./commn/R/ _tanf.c \
../ conmon/ Rl __cosf.c \
../ comon/ R __sincosf.c \
../comon/R __sinf.c \
../comon/ R/i snanf.c \
../ common/ R acosf.c \

../ common/ R asinf.c \

../ common/ R/ atan2f.c \
../ common/ R/ copysi gnf.c \
../ common/ R/ expl0f.c \
../ common/ R exp2f.c \

../ common/ R/ expnilf.c \
../ common/ R/ fabsf.c \

../ comon/ R fnodf.c \

../ common/ R hypotf.c \
../ conmmon/ Rilogbf.c \
../ common/ R/l 0g10f.c \
../ comon/ R/l og2f.c \

../ common/ R nextafterf.c \
../ conmon/ R powf.c \

../ common/ R/ remai nderf.c \
../comon/Ririntf.c \

./ common/ R/ scal bnf . ¢

SRCS R = \

$(SRCSR$(NACH))\
$(SRCS_R_$(TARGET_ARCH)) \
../common/ R _TBL_r_atan_.c \
../ conmon/ R/ acoshf ~¢ \

../ comon/ R/ asi nhf.c \

../ comon/ R/ atan2pif.c \
../ common/ R atanf.c \

../ common/ R/ atanhf.c \

../ comon/ R/ bessel f.c \
../comon/ R cbrtf.c \
../ conmmon/ R/ cosf.c \
../ conmmon/ R/ coshf.c \
../comon/ R erff.c \
../ common/ R/ expf.c \
../common/ R/ floorf.c
../ conmon/ R/ gammaf . c
../ common/ R/ ganmaf _r.
../ comon/ R/ | gammaf.c \

../ common/ R/ | gammaf _r.c \
../ common/ R/l oglpf.c \

../ common/ R/ | ogbf.c \
../comon/ R/l ogf.c \

../ common/ R/ scal bf.c \

../ conmon/ R/ si gnganf.c \
../ common/ R/ significandf.c \
../comon/R/'sinf.c \

../ common/ R/ sinhf.c \

../ conmmon/ R/ sincosf.c \

../ common/ R/ si ncospi f.c \
../comon/ R/ sqgrtf.c \
./comon/ R tanf.c \

\
\
c\

10

new usr/src/lib/libm Makefile.com

657 ../ common/ R/ tanhf.c

659 SRCS_Q =\

660 ../comon/@Q _TBL_atanl.c \
661 ../ conmmon/ Q _TBL_expl.c \
662 ../ comon/ Q _TBL_expntll.c \
663 ../comon/Q _TBL_l ogl.c \
664 ../common/Qfinitel.c \
665 ../comon/ Qisnanl.c \

666 ../comon/Q __cosl.c \

667 ../comon/Q __| ganmal . c \
668 ../comon/Q __poly_libnmg.c \
669 ../common/Q __rempio2l.c \
670 ../comon/ Q@ __sincosl.c \
671 ../comon/Q __sinl.c \

672 ../comon/Q __tanl.c \

673 ../common/Q _TBL_cosl.c \
674 ../ common/ Q _TBL_i pi 02l .c \
675 ../comon/Q _TBL_sinl.c \
676 ../comon/Q _TBL_tanl.c \
677 ../ common/ Q acoshl .c \

678 ../ comon/ Q acosl .c \

679 ../ common/ Q asi nhl . c \

680 ../comon/Qasinl.c \

681 ../ comon/ Q atan2l.c \

682 ../ conmmon/ Q atan2pil.c \
683 ../ common/ Q atanhl . c \

684 ../comon/Q atanl.c \

685 ../common/ Qcbrtl.c \

686 ../ conmon/ Q copysignl.c \
687 ../ comon/ Q coshl.c \

688 ../ comon/ Q cosl.c \

689 ../common/Qerfl.c \

690 ../ conmon/ Q exp10l .c \

691 ../ common/ Q exp2l .c \

692 ../ comon/ Q expl.c \

693 ../ common/ Q expmill . c \

694 ../ common/ Q fabsl.c \

695 ../comon/Qfloorl.c \
696 ../comon/Q fnodl.c \

697 ../ common/ Q ganmal . ¢ \

698 ../ common/ Q gammal _r.c \
699 ../ common/ Q hypotl.c \

700 ../comon/ Qi eee_funcl.c \
701 ../comon/ Qilogbl.c \
702 ../common/QjoOl.c \

703 ../common/Qj1ll.c \

704 ../comon/Qjnl.c \

705 ../comon/ Q| ganmal . c \
706 ../ common/ Q| gammal _r.c \
707 ../ conmmon/ Q' 1 0og10l.c \

708 ../ comon/ Q| oglpl.c \

709 ../comon/ Qlog2l.c \

710 ../common/ Q' logbl.c \

711 ../common/Qlogl.c \

712 ../ common/ Q nextafterl.c \
713 ../ comon/ Q pow . c \

714 ../ common/ Q remai nderl.c \
715 ../common/Qrintl.c \

716 ../comon/Qrndintl.c \
717 ../ comon/ @ scal bl .c \

718 ../ common/ @ scal bnl . c \
719 ../ conmon/ Q' si gnganl .c \
720 ../ common/ @ significandl .c \
721 ../ comon/ @ sincosl.c \

722 ../ common/ @ si ncospil.c \

11

new usr/src/lib/libm Makefile.com

723 ../ common/ @ sinhl.c \
724 ../comon/@sinl.c \
725 ../comon/@sinpil.c \
726 ../common/ @ sqrtl.c \
727 ../common/ Q@ tanhl.c \
728 ../comon/Qtanl.c

730 SRCS_Q sparc =\
731 $(SRCS_Q

733 SRCS_conplex =\

734 ./ common/ conpl ex/ cabs. ¢ \
735 ../ conmon/ conpl ex/ cabsf.c \
736 ../ common/ conpl ex/ cabsl . c \
737 ../ common/ conpl ex/ cacos. ¢ \
738 ../ cormon/ conpl ex/ cacosf.c \
739 ../ conmon/ conpl ex/ cacosh. c \
740 ../ common/ conpl ex/ cacoshf.c \
741 ../ common/ conpl ex/ cacoshl . c \
742 ../ common/ conpl ex/ cacosl . c \
743 ../ conmon/ conpl ex/ carg. c \
744 ../ common/ conpl ex/ cargf.c \
745 ../ common/ conpl ex/ cargl.c \
746 ../ common/ conpl ex/ casin.c \
747 ../ conmon/ conpl ex/ casinf.c \
748 ../ conmon/ conpl ex/ casi nh.c \
749 ../ common/ conpl ex/ casi nhf.c \
750 ../ common/ conpl ex/ casi nhl . c \
751 ../ conmon/ conpl ex/ casinl.c \
752 ../ conmon/ conpl ex/ catan. c \
753 ../ common/ conpl ex/ catanf.c \
754 ../ common/ conpl ex/ cat anh. ¢ \
755 ../ common/ conpl ex/ catanhf.c \
756 ../ conmon/ conpl ex/ catanhl . c \
757 ../ common/ conpl ex/ catanl .c \
758 ../ common/ conpl ex/ ccos. ¢ \
759 ../ common/ conpl ex/ ccosf.c \
760 ../ conmon/ conpl ex/ ccosh. c \
761 ../ common/ conpl ex/ ccoshf.c \
762 ../ common/ conpl ex/ ccoshl . c \
763 ../ common/ conpl ex/ ccosl . c \
764 ../ conmon/ conpl ex/ cexp. ¢ \
765 ../ common/ conpl ex/ cexpf.c \
766 ../ common/ conpl ex/ cexpl . c \
767 ../ common/ conpl ex/ ci mag. ¢ \
768 ../ conmon/ conpl ex/ ci magf.c \
769 ../ conmon/ conpl ex/ ci magl . c \
770 ../ common/ conpl ex/ cl og. ¢ \
771 ../ common/ conpl ex/ cl ogf.c \
772 ../ conmon/ conpl ex/ clogl .c \
773 ../ conmon/ conpl ex/ conj . c \
774 ../ common/ conpl ex/ conjf.c \
775 ../ common/ conpl ex/ conj | .c \
776 ../ conmon/ conpl ex/ cpow. ¢ \
777 ../ conmon/ conpl ex/ cpowf. c \
778 ../ common/ conpl ex/ cpow . c \
779 ../ common/ conpl ex/ cproj.c \
780 ../ common/ conpl ex/ cprojf.c \
781 ../ conmon/ conpl ex/ cprojl.c \
782 ../ common/ conpl ex/ creal .c \
783 ../ common/ conpl ex/creal f.c \
784 ../ common/ conpl ex/creall.c \
785 ../ conmon/ conpl ex/ csin.c \
786 ../ common/ conpl ex/ csinf.c \
787 ../ common/ conpl ex/ csi nh.c \
788 ../ common/ conpl ex/ csi nhf.c \

12

new usr/src/lib/libm Makefile.com

789 ../ conmon/ conpl ex/ csinhl.c \
790 ../ common/ conpl ex/ csinl.c \
791 ../ common/ conpl ex/ csqgrt.c \
792 ../ conmon/ conpl ex/ csqrtf.c \
793 ../ conmon/ conpl ex/ csqrtl.c \
794 ../ common/ conpl ex/ ctan.c \
795 ../ common/ conpl ex/ ctanf.c \
796 ../ common/ conpl ex/ ctanh. c \
797 ../ conmon/ conpl ex/ ctanhf.c \
798 ../ common/ conpl ex/ ctanhl . c \
799 ../ common/ conpl ex/ ctanl .c \
800 ../ common/ conpl ex/ k_at an2.c \
801 ../ conmon/ conpl ex/ k_atan2l .c \
802 ../ common/ conpl ex/ k_cexp. c \
803 ../ common/ conpl ex/ k_cexpl . c \
804 ../ common/ conpl ex/ k_clog_r.c \
805 ../ conmon/ conpl ex/ k_clog_rl.c
807 SRCS ndx_i 386 = \

808 ../ common/ nBx/ __fex_sse.c \
809 ../ conmon/ mAx/ feprec.c \

810 ../ common/ nBx/ __fex_i 386.c
812 SRCS nPx_i 386_i 386 =\

813 ../ conmon/ mdx/ | roundf . ¢

815 SRCS_nBx_i 386_and64 = \

816 ../comon/mdx/Ilrint.c \

817 ../common/ mdx/Ilrintf.c \
818 ../common/ mdx/Ilrintl.c \
819 ../ common/ nBx/ next t owardl . c \
820 ../ common/ nBx/ renquo. ¢ \

821 ../ conmon/ mdx/ r emguof . ¢ \

822 ../ conmon/ mdx/round. c \

823 ../ common/ nBx/ roundl . c \

824 ../ common/ nBx/ scal bl n.c \

825 ../ common/ mAx/ scal bl nf.c \
826 ../ conmon/ mAx/ scal bl nl.c \
827 ../ common/ nBx/trunc.c \

828 ../ common/ nBx/truncl . c

830 # sparc

831 SRCS_mBx_sparc_sparc =\

832 ./common/ mx/lrint.c \

833 ../ conmon/ mdx/ 1 rin f c\

834 ../cormt)n/an/IrlntI c\

835 ../ conmmon/ mdx/ | round. c \

836 ../ common/ nBx/ | roundf.c \

837 ../ comon/ mdx/ | roundl . ¢

839 SRCS nBx_sparc =\

840 ./ common/ mOx/ __fex_sparc.c \
841 -/ conmon/ mox/TTrint.c \

842 ../ common/ mBx/ 1 lrintf.c \
843 ../common/ mdx/Ilrintl.c \
844 ../ common/ nBx/ next t owardl . c \
845 ../ common/ nBx/ renquo. ¢ \

846 ../ common/ mAx/ r emguof . ¢ \

847 ../ conmon/ mdx/ r emguol . ¢ \

848 ../ common/ nBx/ round. ¢ \

849 ../ common/ nBx/ roundl . ¢ \

850 ../ common/ mAx/ scal bl n. ¢ \

851 ../ conmon/ mAx/ scal bl nf.c \
852 ../ common/ nBx/ scal bl nl . ¢ \
853 ../ comon/ nBx/trunc.c \

854 ../ common/ mdx/truncl .c

13

new usr/src/lib/libm Makefile.com

856 SRCS nBx =\

857 $(SRCS_nBx_$(MACH)) \

858 $(SRCS_nBx_spar c_$(TARGET_. ARCH)) \
859 $(SRCS_ndx_i 386_$(TARGET_ARCH)) '\
860 ../ comon/ mdx/ __fex_hdlr.c \
861 ../ comon/ mdx/ __fex_symc \
862 ../ common/ mdx/fdimc \

863 ../ conmon/ mdx/ f di nf c\

864 ../ common/ mBx/fdim.c \

865 ../ common/ nBx/ f eexcept

866 ../ common/ mAx/fenv.c \

867 ../ conmon/ mdx/ f eround. ¢ \
868 ../ common/ nBx/ f ex_handl er.c \
869 ../ common/ nBx/ fex_l og.c \
870 ../ common/ mdx/fma.c \

871 ../ conmmon/ mdx/fmaf.c \

872 ../ common/ nBx/fmal .c \

873 ../ common/ nBx/ f max. c \

874 ../ common/ mdx/ f maxf.c \

875 ../ conmmon/ mdx/ f maxl . c \

876 ../ common/ mBx/fmn.c \

877 ../ common/ mBx/fmnf.c \

878 ../comon/ mdx/fmnl.c \

879 ../ conmon/ mAx/frexp.c \

880 ../ conmon/ mdx/ frexpf.c \

881 ../ common/ nBx/ frexpl.c \

882 ../ common/ nBx/ | dexp. c \

883 ../ conmon/ mAx/ | dexpf.c \

884 ../ conmon/ mdx/ | dexpl . c \

885 ../ common/ nBx/ || round. c \
886 ../ comon/ nBx/ | | roundf.c \
887 ../ common/ mdx/ Il roundl.c \
888 ../ conmon/ mdx/ modf . c \

889 ../ common/ nBx/ nodff.c \

890 ../ common/ nBx/ nodfl.c \

891 ../ common/ mAx/ nan. c \

892 ../ conmmon/ mdx/ nanf.c \

893 ../ common/ nBx/ nanl . ¢ \

894 ../ common/ nBx/ near byint.c \
895 ../ common/ mAx/ near byi ntf.c \
896 ../ conmon/ mAx/ near byintl.c \
897 ../ common/ nBx/ nextt oward. ¢ \
898 ../ common/ nBx/ next t owar df . ¢ \
899 ../ common/ mdx/ roundf.c \

900 ../ conmon/ mAx/ t gamma. ¢ \

901 ../ conmon/ mAx/ t gammaf . c \
902 ../ common/ nBx/ t ganmal . ¢ \
903 ../ comon/ mdx/ truncf.c

905 SRCS_C sparc =\

906 ../comon/C __tan.c \

907 ../comon/C _TBL_atan.c \
908 ../ common/ ¢ _TBL_exp2.c \
909 ../common/ ¢/ _TBL_l og.c \

910 ../comon/C _TBL_l 0g2.c \
911 ../comon/C _TBL_tan.c \

912 ../ common/ C acos. ¢ \

913 ../common/ C asin.c \

914 ../common/C atan.c \

915 ../comon/ C atan2.c \

916 ../comon/Clceil.c \

917 ../ conmmon/ C cos. c \

918 ../ common/ T exp.c \

919 ../ comon/ C/ expl0.c \

920 ../ common/ C exp2.c \

14

new usr/src/lib/libm Makefile.com 15 new usr/src/lib/libm Makefile.com

921 ../ common/ ¢ expni. ¢ \ 987 ../ common/ C __| gamma. ¢ \

922 ../comon/C floor.c \ 988 ../comon/C __rempio2.c \

923 ../ comon/ C fnod. ¢ \ 989 ../comon/C __rempio2mec \

924 ../ common/ C hypot . c \ 990 ../common/C __sin.c \

925 ../common/ Cilogb.c \ 991 ../ common/ C __sincos.c \

926 ../comon/Cisnan.c \ 992 ../ common/ T __xpg6.c \

927 ../comon/ Clog.c \ 993 ../comon/C _lib_version.c \

928 ../ common/ C' | 0g10.c \ 994 ..l comon/C/ _SVID error.c \

929 ../conmmon/ C/log2.c \ 995 ../ comon/ C/ _TBL_i pi02.c \

930 ../ common/ T pow. c \ 996 ../comon/C/ _TBL_sin.c \

931 ../ common/ C remai nder. c \ 997 ../ comon/ C/ acosh. ¢ \

932 ../comon/Crint.c \ 998 ../ common/ C asinh.c \

933 ../ common/ C scal bn.c \ 999 ../ conmmon/ ¢ atan2pi.c \

934 ../comon/Csin.c \ 1000 ../ common/ T at anh. c \

935 ../ comon/ C si ncos. c \ 1001 ../comon/C cbhrt.c \

936 ../ comon/ Ctan.c 1002 ../ common/ C cosh.c \
1003 ../common/Cerf.c \

938 SRCS_i386_i386 =\ 1004 ../ common/ ¢/ gamma. ¢ \

939 ../comon/C __libx_errno.c 1005 ../ comon/ C gamma_r.c \
1006 ../comon/Cj0.c \

941 SRCS_sparc_sparc =\ 1007 ../common/Cjl.c\

942 $(SRCS_i 386_i 386) 1008 ../comon/Cjn.c \
1009 ../comon/ C | ganma. ¢ \

944 SRCS_sparc_sparcv9 =\ 1010 ../comon/C | gamma_r.c \

945 ../ common/ C/ copysign.c \ 1011 ../ common/ C | oglp.c \

946 ../ common/ C/ fabs.c \ 1012 ../ common/ C/ | ogb.c \

947 ../ common/ C nextafter.c 1013 ../comon/ C matherr.c \
1014 ../comon/ C/ scal b.c \

949 SRCS i 386_and64 = \ 1015 ../ common/ C si gngamc \

950 ~/common/ C/ _TBL_atan.c \ 1016 ../ common/ ' significand. c \

951 ../ comon/ C _TBL_exp2.c \ 1017 ../ comon/ C si ncospi . c \

952 ../comon/C _TBL_l og.c \ 1018 ../ comon/ d sinh.c \

953 ../ common/ C _TBL_l 0g2. ¢ \ 1019 ../common/ Csqrt.c \

954 ../common/C __tan.c \ 1020 ../ conmmon/ C/ tanh. c

955 ../comon/C/ _TBL_tan.c \

956 ../ comon/ C/ copysign.c \ 1022 SRCS =\

957 ../ common/ T/ exp.c \ 1023 $(SRCS_Q $(MACH)) \

958 ../ comon/ C/ fabs.c \ 1024 $(SRCS_LD _$(MACH)) \

959 ../comon/ il ogb.c \ 1025 $(SRCS_R) "\

960 ../comon/Cisnan.c \ 1026 $(SRCS_conpl ex) \

961 ../common/ C nextafter.c \ 1027 $(SRCS_O)

962 ../common/Crint.c \

963 ../ common/ C/ scal bn.c \ 1029 . KEEP_STATE:

964 ../ comon/ C acos. c \

965 ../comon/ C asin.c \ 1031 al I : $(LI BS)

966 ../ common/ C atan.c \

967 ../ common/ C atan2.c \ 1033 lint: I'i nt check

968 ../comon/Clceil.c \

969 ../comon/C/ cos.c \

970 ../ common/ ¢ exp10.c \

971 ../ conmon/ C exp2.c \

972 ../ common/ T expntl. c \

973 ../comon/C floor.c \

974 ../ common/ C hypot.c \

975 ../conmmon/ 1 og.c \

976 ../ comon/ C | 0g10.c \

977 ../comon/C10g2.c \

978 ../ common/ C/ pow. ¢ \

979 ../conmmon/ C'sin.c \

980 ../ common/ C sincos.c \

981 ../comon/C/tan. c

983 SRCS_C =\

984 $(SRCS_C $(MACH)) \

985 $(SRCSC|386 $(TARGET_ARCH)) \

986 ./comon/C/ __cos.c \

new usr/src/lib/libm Makefile.libmcom

R R R R

2735 Sun May 4 03:04:47 2014
new usr/src/lib/libm Makefile.libmcom

hkkkkkkkkkkkkkkkkhkkhkkhkhkhkkkhkkkkkkkhkhkkhkkhkkkkkkkk ok k ok k k%

1#

2 # This file and its contents are supplied under the terms of the

3 # Common Devel oprent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this

8 # source. A copy of the CDDL is also available via the Internet at
9 # http://ww. illunps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

14 #

16 LI BMDIR = $(SRO)/1ib/libm

18 LI BMBRC = $(LI BVDI R)/ common

20 CPP_CVMD = $(CC) -E -Xs

22 ASSUFFI X_sparc S

23 ASSUFFI X_i 386
24 ASSUFFI X

2(ASSUFFI X_$(MACH))

C99MODE of neither enabl ed nor disabled is "no_lib", whereby we expect
C99-t he- | anguage, but don’t nodify the behaviour of library routines.

28 # is VERY | MPORTANT, as -xc99=%l |, for instance, would link us with
val ues-xpg6, whi ch woul d i ntroduce an xpg6 to our object with the C99
flags set, causing us to default C99 |ibm behaviour on, breaking

31 # corrpatibillty

32 C99MODE =

34 MAFLAGS -D__STDC__ -DELFOBJ -DPIC

36 LDBLDI R sparc

Q
37 LDBLDI R_i 386 LD

38 LDBLDI R $(LDBLDI R_$(MACH))

40 LMIL = $(LI BMDI R)/ $(TARGET_ARCH)/ src/local i bmiil

42 CFLAGS += $(C_PI CFLAGS) -D__I NLI NE $(XSTRCONST) $(LM I L)
43 CFLAGS64 += $(C_PI CFLAGS) —D TINLI NE $(XSTRCONST) $(LM_I L)

44 spar c_CFLAGS += - W4, - xar ch=v8pl us

46 CDEF_i 386 - DCOVPARI SON_MACRO_BUG

46 CPPFLAGS = -DELFOBJ \

47 -DLI BM_MI_FEX_SYNC \

49 $(CDEF_$(TARGET_ARCH)) \

48 -T$(LIBVBRQ)/ C \

49 -1 $(LI BVBRC)/ $(LDBLDI R) -1$(LI BMDI R)/ $(TARGET_ARCH) / st ¢

51 # GCC needs __ CO9FEATURES__ such that the inplenmentations of isunordered,
52 # isgreaterequal, islessequal, etc, exist.

54 # but not val ues-xpg6, the reason for which is outline with CI99MODE.
55 CFLAGS += -_gcc=-D__C99FEATURES _
56 CFLAGS64 += -_gcc=-D__C99FEATURES__

58 # |i bm depends on integer overflow characteristics
59 CFLAGS = -_gcc=-fno-strict-overflow
60 CFLAGS64 += -_gcc=-fno-strict-overflow

This is basically equivalent to
53 # providing no -xc99 to Studio, in that it gets us the C99 |anguage features,

new usr/src/lib/libm Makefile.libmcom

62

$(DYNLI B)
$(LI NTLI B)
CLEANFI LES

FPDEF_and64
FPDEF_spar ¢
FPDEF_spar cv9
FPDEF

ASFLAGS

XARCH_spar c
XARCH_spar cv9
XARCH_i 386
XARCH_anmd64
XARCH

ASOPT_sparc
ASOPT_spar cv9
ASOPT_i 386
ASOPT_and64
ASCPT

ASFLAGS
CPPFLAGS spar c

:= LDLIBS += -lc

1= SRCS = $(LIBMSRC)/ $(LI NTSRC)

+= pics/*.s pics/*. S

- DARCH_and64
- DCG89 - DARCH_v8pl us - DFPADD_TRAPS_| NCOVPLETE_ON_NAN
- DARCH_v9 - DFPADD_TRAPS_| NCOVPLETE_ON_NAN

$(FPDEF_$(TARGET_ARCH))

-P - D_ASM $(FPDEF)

v8pl us

IR TERTIRTAN!
-
©
o
@
©
~

$(XARCH_$(TARGET_ARCH))

- xar ch=$(XARCH) $(AS_PI CFLAGS)
- xar ch=$(XARCH) $(AS_PI CFLAGS)

- xar ch=$(XARCH) $(AS_PI CFLAGS)
$(ASOPT_$(TARGET_ARCH))

+= $(ASOPT)

- DFPADD_TRAPS_| NCOVPLETE_ON_NAN \
MODE

DFDTOS_TRAPS_| NCOMPLETE_| N_FNS_|

CPPFLAGS
ASFLAGS

+= $(CPPFLAGS_$(MACH))
+= $(CPPFLAGS)

new usr/src/lib/libm Makefile.com

R R R R

19733 Sun May 4 03:04:48 2014
new usr/src/lib/libm Makefile.com

hkkkkkkkkkkkkkkkkkkhkkhkhkhkhkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k k%

1#

2 # This file and its contents are supplied under the terms of the
3 # Common Devel oprent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://ww. illunps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

14 #

16 LI BRARY = libma

17 VERS =.2

19 LIBMDIR = $(SRC)/1ib/libm

21 nmBxsseOBJS i 386 =\

22 _fex_hdlr.o \

23 _ fex_i386.0 \

24 _ fex_sse.o \

25 __fex_symo \

26 fex_log.o

28 nBxsseOBIS = $(nOxsseOBIS_$(TARGET_ARCH))

30 mOxOBJS_anmd64 =\

31 _ fex_sse.o \

32 feprec.o

34 nBxOBJS_sparc =\

35 Irint.o\

36 Irintf.o\

37 Irintl.o\

38 Iround. o \

39 I roundf.o \

40 I roundl . o

42 mOxOBJS_i 386 =\

43 __fex_sse.o \

44 feprec.o \

45 Irint.o\

46 Irintf.o\

47 Irintl.o\

48 I round. o \

49 I roundf.o \

50 I roundl .o

52 #

53 # Ilrint.o, Irintf.o, Irintl.o, Iround.o, lroundf.o & Iroundl.o are 32-bit only
54 #

55 nmPxOBJS =\

56 $(mOxOBIS_$(TARGET_ARCH)) \
57 __fex_$(MACH).o \

58 __fex_hdlr.o \

59 __fex_symo \

60 fdimo

61 fdinf.o \

62 fdim.o \

new usr/src/lib/libm Makefile.com

63 feexcept.o \

64 fenv.o \

65 feround. o \

66 fex_handler.o \

67 fex_log.o \

68 frma.o \

69 frmaf.o \

70 fmal .o \

71 frmax.o \

72 fmaxf.o \

73 fmaxl .o \

74 fmn. o\

75 fmnf.o\

76 fminl.o\

77 frexp.o \

78 frexpf.o \

79 frexpl.o \

80 | dexp. o \

81 | dexpf.o \

82 | dexpl .o \

83 Ilrint.o\

84 Ilrintf.o\

85 Ilrintl.o \

86 Ilround.o \

87 Il roundf.o \

88 I'lroundl.o \

89 modf. o \

90 nmodff.o \

91 modfl .o \

92 nan.o \

93 nanf.o \

94 nanl .o \

95 nearbyint.o \

96 nearbyintf.o \

97 nearbyintl.o \

98 nexttoward. o \

99 nexttowardf.o \
100 nexttowardl .o \
101 renmguo. o \
102 remguof. o \
103 renguol . o \
104 round. o \
105 roundf.o \
106 roundl .o \
107 scal bl n.o \
108 scal bl nf.o \
109 scal blnl.o \
110 tgama. o \
111 tgammaf.o \
112 tgamal .o \
113 trunc.o \
114 truncf.o \
115 truncl.o
117 OBJS_MDXSSE = $(nBxsseOBIS: % pi cs/ %
119 COBJS i 386 =\
120 __libx_errno.o
122 COBJS sparc =\
123 $(COBIS_i 386) \
124 _TBL_atan.o \
125 _TBL_exp2.0 \
126 _TBL_log.o \
127 _TBL_lo0g2.0 \
128 “TBLtan.o \

new usr/src/lib/libm Makefile.com

129 __tan.o \

130 _tanf.o

132 #

133 # atan2pi.o and sincospi.o is for internal
134 #

136 COBJS_and64 = \

137 _TBL_atan.o \
138 _TBL_exp2.0 \
139 _TBL_log.o \
140 _TBL_l0g2.0 \
141 __tan.o \

142 __tanf.o \
143 _TBL_tan.o \
144 copysign.o \
145 exp.o \

146 fabs.o \

147 frnod.o \

148 ilogb.o \

149 isnan.o \

150 nextafter.o \
151 remai nder.o \
152 rint.o\

153 scal bn. o

155 COBJS sparcv9 = $(COBJS_and64)

157 COBJS =\

158 $(COBIS_$(TARGET_ARCH)) \
159 _cos.0 \

160 __lgamma. o \
161 __rempio2.0 \
162 __rempio2mo \
163 _sin.o\

164 __sincos.o \
165 _ Xpg6.0 \

166 _lib_version.o \
167 _SvViD error.o \
168 _TBL_ipio2.0 \
169 _TBL_sin.o \
170 acos. o \

171 acosh.o \

172 asin.o \

173 asinh.o \

174 atan.o \

175 atan2.0 \

176 atan2pi.o \

177 atanh.o \

178 cbrt.o\

179 ceil.o\

180 cos.o \

181 cosh.o \

182 erf.o\

183 expl0.0 \

184 exp2.0 \

185 expnl. o \

186 floor.o \

187 ganme. o \

188 gamma_r.o \

189 hypot.o \

190 j0.0\

191 J1.0\

192 jn.o\

193 | gamma. o \

194 Il gamma_r.o \

use only

new usr/src/lib/libm Makefile.com

195 log.o \

196 1 0g10.0 \
197 loglp.o \
198 l0g2.0 \

199 | ogb. o \

200 matherr.o \
201 pow. 0 \

202 scalb.o \
203 signgam o \
204 significand.o \
205 sin.o \

206 sincos. o \
207 sincospi.o \
208 sinh.o \

209 sqgrt.o \

210 tan.o \

211 tanh. o

213 #

214 # LSARC/ 2003/ 658 adds i snanl

215 #

216 QOBJS_sparc =\

217 _TBL_atanl.o \
218 _TBL_expl .o \

219 _TBL_expmtl .o \
220 _TBL_logl.o \

221 finitel.o\

222 isnanl.o

224 QOBJS_sparcv9 = $(QOBJS sparc)
226 QOBJS ant64 =\

227 finitel.o \

228 isnanl.o

230 #

231 # atan2pil.o, ieee_funcl.o, rndintl.o, sinpil.o,
232 # are for internal use only

233 #

234 # LSARC/ 2003/279 adds the follow ng:
235 # gammal . o 1
236 # ganmmal _r.o 1
237 # J0l.o 2
238 # jll.o 2
239 # jnl.o 2
240 # | gammal _r. o 1
241 # scal bl . o 1
242 # significandl.o 1
243 #

244 QOBJS =\

245 $(QOBIS_$(TARGET_ARCH)) \
246 _cosl.o\

247 __lgamal .0 \

248 __poly_libmy.o \
249 __rempio2l.o\
250 __sincosl.o \

251 _sinl.o\

252 __tanl.o \

253 _TBL_cosl.o \

254 _TBL_ipio2l.o0 \
255 _TBL_sinl.o \

256 _TBL_tanl.o \

257 acoshl .o \

258 acosl .o \

259 asinhl.o \

260 asinl.o \

sincospil.o

new usr/src/lib/libm Makefile.com

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

310 #
LSARC/ 2003/ 658 adds i snanf

311
312
313
314
315
316
317

319

321
322
323
324
325

#
ROBJS_sparc

ROBJS_sparcv9

ROBJS_ani64

atan2l .o \
atan2pil.o \
atanhl .o \
atanl .o \
cbrtl.o\
copysignl.o \
coshl .o \
cosl.o \
erfl.o\
expl0l .o \
exp2l .0 \

ieee_funcl.o \
ilogbl.o\
jol.o\
j1l.0\
jnl.o\

| gammal .o \

| gammal _r.o \
1 0g10l .0 \
loglpl.o \
log2l .0\

| ogbl .o \
logl.o \
nextafterl.o \
pow .o \

remai nderl .o \
rintl.o\
rndintl.o \
scal bl .o \
scal bnl .o \
signganm .o \
significandl.o \
sincosl.o \
sincospil.o \
sinhl.o \
sinl.o\
sinpil.o \
sgrtl.o \
tanhl.o \
tanl.o

=\

_cosf.o \
__sincosf.o \
_sinf.o\
isnanf.o

= $(ROBJS_sparc)

=\

isnanf.o \
_cosf.o \
__sincosf.o \
_sinf.o

327 #

328 # atan2pif.o, sincosf.o,

329 #

330 # LSARC/ 2003/279 adds the follow ng:
331 # bessel f. o 6
332 # scal bf. o 1
333 # gammaf . o 1
334 # gamaf _r.o 1
335 # I gammaf _r. o 1
336 # significandf.o 1
337 #

338 ROBJS =

339 $(ROBIS_$(TARGET_ARCH)) \
340 _TBL_r_atan_.o \
341 acosf.o \

342 acoshf.o \

343 asinf.o \

344 asinhf.o \

345 atan2f.o \

346 atan2pif.o \

347 atanf.o \

348 atanhf.o \

349 besself.o0 \

350 cbrtf.o \

351 copysignf.o \

352 cosf.o \

353 coshf.o \

354 erff.o\

355 expl0f.o \

356 exp2f.o \

357 expf.o \

358 expmif.o \

359 fabsf.o \

360 floorf.o \

361 frodf.o \

362 ganmaf. o \

363 gammaf _r.o \

364 hypotf.o \

365 ilogbf.o\

366 | gammaf. o \

367 | gammaf _r.o \

368 | 0g10f. o0 \

369 | oglpf.o \

370 log2f.o \

371 | ogbf.o \

372 logf.o \

373 nextafterf.o \
374 powf.o \

375 renmai nderf.o \
376 rintf.o \

377 scal bf. o \

378 scal bnf.o \

379 signganf.o \

380 significandf.o \
381 sinf.o\

382 sinhf.o \

383 sincosf.o \

384 sincospif.o \

385 sgrtf.o \

386 tanf.o \

387 tanhf. o

389 #

390 # LSARC/ 2003/ 658 adds isnanf/isnanl

391 #

new usr/src/lib/libm Makefile.com

sincospif.o are for

internal

use only

new usr/src/lib/libm Makefile.com

393
394
395
396
397
398
399
400
401
402
403

405
406
407
408
409
410
411

413
414
415
416

419
420

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

SOBJS_sparc

SOBJS_i 386

SOBJS_anu64
#

#

SOBJS

conpl exOBJS

=\
copysign.o \
exp.o \
fabs.o \
frod. o \
ilogbh.o \
isnan.o \
nextafter.
remai nder .
rint.o\
scal bn. o

[eNe]
——

=\
__reduction.o \
finitef.o\
finitel.o\
isnanf.o \
isnanl.o \
$(SOBJS_sparc)

__swapFLAGS. o
_xtoll.o\
_xtoull.o \

=\
$(SOBJS_$(TARGET_ARCH))

=\

cabs.o \
cabsf.o \
cabsl .o \
cacos. o \
cacosf.o \
cacosh.o \
cacoshf.o \
cacoshl .o \
cacosl .o \

casinf.o \
casinh.o \
casinhf.o \
casinhl.o \
casinl.o \
catan.o \
catanf.o \
catanh.o \
catanhf.o \
catanhl .o \
catanl.o \
ccos. o \
ccosf.o \
ccosh.o \
ccoshf.o \
ccoshl .o \
ccosl.o \
cexp.o \
cexpf.o \
cexpl.o \
cimag.o \
cimagf.o \
cimagl.o \

new usr/src/lib/libm Makefile.com

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

496

498
499
500

502
503

505
506
507
508
509
510
511
512

514
515
516

518
519

521
522

524

OBJECTS

i ncl ude
i ncl ude
i ncl ude

SRCDI R
LI BS

LI NTERROFF
LI NTERROFF
LI NTERROFF
LI NTERROFF
LI NTERROFF
LI NTFLAGS
LI NTFLAGS64
LI NTFLAGS64

CERRWARN
CERRWARN
CERRWARN

#endi f /* |
CPPFLAGS

CFLAGS
CFLAGS64

mOx_I L

clog.o \
clogf.o \
clogl.o\
conj.o \

csinhf.o \
csinhl.o \
csinl.o\
csgrt.o \
csqrtf.o \
csqrtl.o \
ctan.o \
ctanf.o \
ctanh.o \
ctanhf.o \
ctanhl .o \
ctanl.o \
k_atan2.0 \
k_atan2l .0 \
k_cexp.o \
k_cexpl.o \
k_clog_r.o \
k_clog_rl.o

= $(COBJIS) $(ROBIS) $(QOBIS) $(SOBIS) $(nmdBxOBIS) $(conpl exOBIS)
$(SRC)/1i b/ Makefile.lib

$(LIBI\/D R)/ Makefile.libmcom

$(SRO) /i b/ Makefile.rootfs

./ commo
$(DYNLI B) $(LI NTLI B)

= -errof f =E_FUNC_SET_NOT_USED

+= -errof f =E_FUNC_RET_ALWAYS_| GNOR2
+= -errof f =E_FUNC_RET_MAYBE_T GNORED2
+= -errof f=E_| MPL_CONV_RETURN

+= -errof f =E_NAVE_MULTI PLY_DEF2

+= $(LI NTERRCFF)

+= $(LI NTERROFF)

+= -errchk=l ongptr 64
-_gcc=-Wio-switch

+= -_gcc=- Who- par ent heses

+= -_gcc=-Who- unused-vari abl e

coder evi ew */
+= -DLI BM BUI LD

+= $(C_BI GP| CFLAGS)
+= $(C_Bl GP| CFLAGS)

= $(LI BMDI R)/ comon/ mdx/ __f env_$(TARGET_ARCH) . i |

new usr/src/lib/libm Makefile.com

526 SRCS_LD_i 386_and64 = \

527
528
529

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

573
574

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

./comon/LD/ finitel.c \
./comon/ LD/ isnanl.c \
./ comon/ LD/ next afterl.c

SRCS_LD = \
$(SRCS_LD_i 386 $(TARGE\T _ARCH)) \

./ common/ LD/ __cosl
-/ conmon/ LD/ __| gammal .c \
../comon/ LD __poly libm.c \
../comon/ LD/ __rempio2l.c \
../ comon/ LD/ __sincosl.c \
../comon/ LD/ __sinl.c \
../comon/LD/ __tanl.c \
../ comon/ LD/ _TBL_cosl .
../ comon/ LD/ _TBL_i pi 02I
../ comon/ LD/ _TBL_sinl .
../ comon/ LD/ _TBL_tanl . c
../ common/ LD/ acoshl .c \
../ common/ LD/ asi nhl . c \
../ common/ LD/ at an2pi | . c \
../ comon/ LD/ at anhl . ¢ \
../ comon/ LD/ cbrtl.c \
../ common/ LD/ coshl .c \
../ common/ LD/ cosl . c \
../comon/LD/erfl.c \
../ common/ LD/ gammal . ¢ \
../ common/ LD/ gammal _r.c \
../ conmmon/ LD/ hypot | .c \
../comon/LD/jOl.c \
../comon/LD/j1l.c \
../common/LD/jnl.c \
../ common/ LD/ | ganmal . ¢ \
../ common/ LD/ | ganmal _r.c \
../ comon/ LD/ | oglpl.c \
../ common/ LD/ | ogbl . ¢ \
../ conmmon/ LD/ scal bl .c \
../ common/ LD/ si gngam . c \
../ comon/ LD/ si gni ficandl.c \
../ common/ LD/ si ncosl.c \
../ conmmon/ LD/ si ncospil.c \
../ comon/ LD/ si nhl .c \
../comon/LD/sinl.c \
../ common/ LD/ sinpil.c \
../ common/ LD/ tanhl .c \
./comon/LD/'tanl.c

//O —
—

SRCS_LD i 386 = \

$(SRCS_LD)

SRCS_R and64 =\

./comon/R __tanf.c \
../ conmon/ R/ T'snanf. ¢ \
../common/ R __cosf.c \
../comon/ R __sincosf.c \
../comon/R __sinf.c \
../ comon/ R/ acosf.c \
../ conmmon/ R asinf.c \
../ common/ R/ atan2f.c \
../ comon/ R/ copysignf.c \
../ common/ R/ expl0f.c \
../ conmon/ R exp2f.c \
../ common/ R/ expnif.c \
../ comon/ R/ fabsf.c \
./ common/ R hypotf.c \

new usr/src/lib/libm Makefile.com

591
592
593
594
595
596
597

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

../ conmmon/ Rilogbf.c \

../ common/ R/l 0g10f.c \

../ comon/ R/l og2f.c \

../ common/ R nextafterf.c \
../ conmon/ R powf.c \
../comon/Ririntf.c \

./ common/ R/ scal bnf . ¢

sparc + sparcv9
SRCS_R sparc =\

./commn/R/ _tanf.c \
../ conmon/ Rl __cosf.c \
../ comon/ R __sincosf.c \
../comon/R __sinf.c \
../comon/ R/i snanf.c \
../ common/ R acosf.c \

../ common/ R asinf.c \

../ common/ R/ atan2f.c \
../ common/ R/ copysi gnf.c \
../ common/ R/ expl0f.c \
../ common/ R exp2f.c \

../ common/ R/ expnilf.c \
../ common/ R/ fabsf.c \

../ comon/ R fnodf.c \

../ common/ R hypotf.c \
../ conmmon/ Rilogbf.c \
../ common/ R/l 0g10f.c \
../ comon/ R/l og2f.c \

../ common/ R nextafterf.c \
../ conmon/ R powf.c \

../ common/ R/ remai nderf.c \
../comon/Ririntf.c \

./ common/ R/ scal bnf . ¢

SRCS R = \

$(SRCSR$(NACH))\
$(SRCS_R_$(TARGET_ARCH)) \
../common/ R _TBL_r_atan_.c \
../ conmon/ R/ acoshf ~¢ \

../ comon/ R/ asi nhf.c \

../ comon/ R/ atan2pif.c \
../ common/ R atanf.c \

../ common/ R/ atanhf.c \

../ comon/ R/ bessel f.c \
../comon/ R cbrtf.c \
../ conmmon/ R/ cosf.c \
../ conmmon/ R/ coshf.c \
../comon/ R erff.c \
../ common/ R/ expf.c \
../common/ R/ floorf.c
../ conmon/ R/ gammaf . c
../ common/ R/ ganmaf _r.
../ comon/ R/ | gammaf.c \

../ common/ R/ | gammaf _r.c \
../ common/ R/l oglpf.c \

../ common/ R/ | ogbf.c \
../comon/ R/l ogf.c \

../ common/ R/ scal bf.c \

../ conmon/ R/ si gnganf.c \
../ common/ R/ significandf.c \
../comon/R/'sinf.c \

../ common/ R/ sinhf.c \

../ conmmon/ R/ sincosf.c \

../ common/ R/ si ncospi f.c \
../comon/ R/ sqgrtf.c \
./comon/ R tanf.c \

\
\
c\

10

new usr/src/lib/libm Makefile.com

657 ../ common/ R/ tanhf.c

659 SRCS_Q =\

660 ../comon/@Q _TBL_atanl.c \
661 ../ conmmon/ Q _TBL_expl.c \
662 ../ comon/ Q _TBL_expntll.c \
663 ../comon/Q _TBL_l ogl.c \
664 ../common/Qfinitel.c \
665 ../comon/ Qisnanl.c \

666 ../comon/Q __cosl.c \

667 ../comon/Q __| ganmal . c \
668 ../comon/Q __poly_libnmg.c \
669 ../common/Q __rempio2l.c \
670 ../comon/ Q@ __sincosl.c \
671 ../comon/Q __sinl.c \

672 ../comon/Q __tanl.c \

673 ../common/Q _TBL_cosl.c \
674 ../ common/ Q _TBL_i pi 02l .c \
675 ../comon/Q _TBL_sinl.c \
676 ../comon/Q _TBL_tanl.c \
677 ../ common/ Q acoshl .c \

678 ../ comon/ Q acosl .c \

679 ../ common/ Q asi nhl . c \

680 ../comon/Qasinl.c \

681 ../ comon/ Q atan2l.c \

682 ../ conmmon/ Q atan2pil.c \
683 ../ common/ Q atanhl . c \

684 ../comon/Q atanl.c \

685 ../common/ Qcbrtl.c \

686 ../ conmon/ Q copysignl.c \
687 ../ comon/ Q coshl.c \

688 ../ comon/ Q cosl.c \

689 ../common/Qerfl.c \

690 ../ conmon/ Q exp10l .c \

691 ../ common/ Q exp2l .c \

692 ../ comon/ Q expl.c \

693 ../ common/ Q expmill . c \

694 ../ common/ Q fabsl.c \

695 ../comon/Qfloorl.c \
696 ../comon/Q fnodl.c \

697 ../ common/ Q ganmal . ¢ \

698 ../ common/ Q gammal _r.c \
699 ../ common/ Q hypotl.c \

700 ../comon/ Qi eee_funcl.c \
701 ../comon/ Qilogbl.c \
702 ../common/QjoOl.c \

703 ../common/Qj1ll.c \

704 ../comon/Qjnl.c \

705 ../comon/ Q| ganmal . c \
706 ../ common/ Q| gammal _r.c \
707 ../ conmmon/ Q' 1 0og10l.c \

708 ../ comon/ Q| oglpl.c \

709 ../comon/ Qlog2l.c \

710 ../common/ Q' logbl.c \

711 ../common/Qlogl.c \

712 ../ common/ Q nextafterl.c \
713 ../ comon/ Q pow . c \

714 ../ common/ Q remai nderl.c \
715 ../common/Qrintl.c \

716 ../comon/Qrndintl.c \
717 ../ comon/ @ scal bl .c \

718 ../ common/ @ scal bnl . c \
719 ../ conmon/ Q' si gnganl .c \
720 ../ common/ @ significandl .c \
721 ../ comon/ @ sincosl.c \

722 ../ common/ @ si ncospil.c \

11

new usr/src/lib/libm Makefile.com

723 ../ common/ @ sinhl.c \
724 ../comon/@sinl.c \
725 ../comon/@sinpil.c \
726 ../common/ @ sqrtl.c \
727 ../common/ Q@ tanhl.c \
728 ../comon/Qtanl.c

730 SRCS_Q sparc =\
731 $(SRCS_Q

733 SRCS_conplex =\

734 ./ common/ conpl ex/ cabs. ¢ \
735 ../ conmon/ conpl ex/ cabsf.c \
736 ../ common/ conpl ex/ cabsl . c \
737 ../ common/ conpl ex/ cacos. ¢ \
738 ../ cormon/ conpl ex/ cacosf.c \
739 ../ conmon/ conpl ex/ cacosh. c \
740 ../ common/ conpl ex/ cacoshf.c \
741 ../ common/ conpl ex/ cacoshl . c \
742 ../ common/ conpl ex/ cacosl . c \
743 ../ conmon/ conpl ex/ carg. c \
744 ../ common/ conpl ex/ cargf.c \
745 ../ common/ conpl ex/ cargl.c \
746 ../ common/ conpl ex/ casin.c \
747 ../ conmon/ conpl ex/ casinf.c \
748 ../ conmon/ conpl ex/ casi nh.c \
749 ../ common/ conpl ex/ casi nhf.c \
750 ../ common/ conpl ex/ casi nhl . c \
751 ../ conmon/ conpl ex/ casinl.c \
752 ../ conmon/ conpl ex/ catan. c \
753 ../ common/ conpl ex/ catanf.c \
754 ../ common/ conpl ex/ cat anh. ¢ \
755 ../ common/ conpl ex/ catanhf.c \
756 ../ conmon/ conpl ex/ catanhl . c \
757 ../ common/ conpl ex/ catanl .c \
758 ../ common/ conpl ex/ ccos. ¢ \
759 ../ common/ conpl ex/ ccosf.c \
760 ../ conmon/ conpl ex/ ccosh. c \
761 ../ common/ conpl ex/ ccoshf.c \
762 ../ common/ conpl ex/ ccoshl . c \
763 ../ common/ conpl ex/ ccosl . c \
764 ../ conmon/ conpl ex/ cexp. ¢ \
765 ../ common/ conpl ex/ cexpf.c \
766 ../ common/ conpl ex/ cexpl . c \
767 ../ common/ conpl ex/ ci mag. ¢ \
768 ../ conmon/ conpl ex/ ci magf.c \
769 ../ conmon/ conpl ex/ ci magl . c \
770 ../ common/ conpl ex/ cl og. ¢ \
771 ../ common/ conpl ex/ cl ogf.c \
772 ../ conmon/ conpl ex/ clogl .c \
773 ../ conmon/ conpl ex/ conj . c \
774 ../ common/ conpl ex/ conjf.c \
775 ../ common/ conpl ex/ conj | .c \
776 ../ conmon/ conpl ex/ cpow. ¢ \
777 ../ conmon/ conpl ex/ cpowf. c \
778 ../ common/ conpl ex/ cpow . c \
779 ../ common/ conpl ex/ cproj.c \
780 ../ common/ conpl ex/ cprojf.c \
781 ../ conmon/ conpl ex/ cprojl.c \
782 ../ common/ conpl ex/ creal .c \
783 ../ common/ conpl ex/creal f.c \
784 ../ common/ conpl ex/creall.c \
785 ../ conmon/ conpl ex/ csin.c \
786 ../ common/ conpl ex/ csinf.c \
787 ../ common/ conpl ex/ csi nh.c \
788 ../ common/ conpl ex/ csi nhf.c \

12

new usr/src/lib/libm Makefile.com

789 ../ conmon/ conpl ex/ csinhl.c \
790 ../ common/ conpl ex/ csinl.c \
791 ../ common/ conpl ex/ csqgrt.c \
792 ../ conmon/ conpl ex/ csqrtf.c \
793 ../ conmon/ conpl ex/ csqrtl.c \
794 ../ common/ conpl ex/ ctan.c \
795 ../ common/ conpl ex/ ctanf.c \
796 ../ common/ conpl ex/ ctanh. c \
797 ../ conmon/ conpl ex/ ctanhf.c \
798 ../ common/ conpl ex/ ctanhl . c \
799 ../ common/ conpl ex/ ctanl .c \
800 ../ common/ conpl ex/ k_at an2.c \
801 ../ conmon/ conpl ex/ k_atan2l .c \
802 ../ common/ conpl ex/ k_cexp. c \
803 ../ common/ conpl ex/ k_cexpl . c \
804 ../ common/ conpl ex/ k_clog_r.c \
805 ../ conmon/ conpl ex/ k_clog_rl.c
807 SRCS ndx_i 386 = \

808 ../ common/ nBx/ __fex_sse.c \
809 ../ conmon/ mAx/ feprec.c \

810 ../ common/ nBx/ __fex_i 386.c
812 SRCS nPx_i 386_i 386 =\

813 ../ conmon/ mdx/ | roundf . ¢

815 SRCS_nBx_i 386_and64 = \

816 ../comon/mdx/Ilrint.c \

817 ../common/ mdx/Ilrintf.c \
818 ../common/ mdx/Ilrintl.c \
819 ../ common/ nBx/ next t owardl . c \
820 ../ common/ nBx/ renquo. ¢ \

821 ../ conmon/ mdx/ r emguof . ¢ \

822 ../ conmon/ mdx/round. c \

823 ../ common/ nBx/ roundl . c \

824 ../ common/ nBx/ scal bl n.c \

825 ../ common/ mAx/ scal bl nf.c \
826 ../ conmon/ mAx/ scal bl nl.c \
827 ../ common/ nBx/trunc.c \

828 ../ common/ nBx/truncl . c

830 # sparc

831 SRCS_mBx_sparc_sparc =\

832 ./common/ mx/lrint.c \

833 ../ conmon/ mdx/ 1 rin f c\

834 ../cormt)n/an/IrlntI c\

835 ../ conmmon/ mdx/ | round. c \

836 ../ common/ nBx/ | roundf.c \

837 ../ comon/ mdx/ | roundl . ¢

839 SRCS nBx_sparc =\

840 ./ common/ mOx/ __fex_sparc.c \
841 -/ conmon/ mox/TTrint.c \

842 ../ common/ mBx/ 1 lrintf.c \
843 ../common/ mdx/Ilrintl.c \
844 ../ common/ nBx/ next t owardl . c \
845 ../ common/ nBx/ renquo. ¢ \

846 ../ common/ mAx/ r emguof . ¢ \

847 ../ conmon/ mdx/ r emguol . ¢ \

848 ../ common/ nBx/ round. ¢ \

849 ../ common/ nBx/ roundl . ¢ \

850 ../ common/ mAx/ scal bl n. ¢ \

851 ../ conmon/ mAx/ scal bl nf.c \
852 ../ common/ nBx/ scal bl nl . ¢ \
853 ../ comon/ nBx/trunc.c \

854 ../ common/ mdx/truncl .c

13

new usr/src/lib/libm Makefile.com

856 SRCS nBx =\

857 $(SRCS_nBx_$(MACH)) \

858 $(SRCS_nBx_spar c_$(TARGET_. ARCH)) \
859 $(SRCS_ndx_i 386_$(TARGET_ARCH)) '\
860 ../ comon/ mdx/ __fex_hdlr.c \
861 ../ comon/ mdx/ __fex_symc \
862 ../ common/ mdx/fdimc \

863 ../ conmon/ mdx/ f di nf c\

864 ../ common/ mBx/fdim.c \

865 ../ common/ nBx/ f eexcept

866 ../ common/ mAx/fenv.c \

867 ../ conmon/ mdx/ f eround. ¢ \
868 ../ common/ nBx/ f ex_handl er.c \
869 ../ common/ nBx/ fex_l og.c \
870 ../ common/ mdx/fma.c \

871 ../ conmmon/ mdx/fmaf.c \

872 ../ common/ nBx/fmal .c \

873 ../ common/ nBx/ f max. c \

874 ../ common/ mdx/ f maxf.c \

875 ../ conmmon/ mdx/ f maxl . c \

876 ../ common/ mBx/fmn.c \

877 ../ common/ mBx/fmnf.c \

878 ../comon/ mdx/fmnl.c \

879 ../ conmon/ mAx/frexp.c \

880 ../ conmon/ mdx/ frexpf.c \

881 ../ common/ nBx/ frexpl.c \

882 ../ common/ nBx/ | dexp. c \

883 ../ conmon/ mAx/ | dexpf.c \

884 ../ conmon/ mdx/ | dexpl . c \

885 ../ common/ nBx/ || round. c \
886 ../ comon/ nBx/ | | roundf.c \
887 ../ common/ mdx/ Il roundl.c \
888 ../ conmon/ mdx/ modf . c \

889 ../ common/ nBx/ nodff.c \

890 ../ common/ nBx/ nodfl.c \

891 ../ common/ mAx/ nan. c \

892 ../ conmmon/ mdx/ nanf.c \

893 ../ common/ nBx/ nanl . ¢ \

894 ../ common/ nBx/ near byint.c \
895 ../ common/ mAx/ near byi ntf.c \
896 ../ conmon/ mAx/ near byintl.c \
897 ../ common/ nBx/ nextt oward. ¢ \
898 ../ common/ nBx/ next t owar df . ¢ \
899 ../ common/ mdx/ roundf.c \

900 ../ conmon/ mAx/ t gamma. ¢ \

901 ../ conmon/ mAx/ t gammaf . c \
902 ../ common/ nBx/ t ganmal . ¢ \
903 ../ comon/ mdx/ truncf.c

905 SRCS_C sparc =\

906 ../comon/C __tan.c \

907 ../comon/C _TBL_atan.c \
908 ../ common/ ¢ _TBL_exp2.c \
909 ../common/ ¢/ _TBL_l og.c \

910 ../comon/C _TBL_l 0g2.c \
911 ../comon/C _TBL_tan.c \

912 ../ common/ C acos. ¢ \

913 ../common/ C asin.c \

914 ../common/C atan.c \

915 ../comon/ C atan2.c \

916 ../comon/Clceil.c \

917 ../ conmmon/ C cos. c \

918 ../ common/ T exp.c \

919 ../ comon/ C/ expl0.c \

920 ../ common/ C exp2.c \

14

new usr/src/lib/libm Makefile.com 15 new usr/src/lib/libm Makefile.com

921 ../ common/ ¢ expni. ¢ \ 987 ../ common/ C __| gamma. ¢ \

922 ../comon/C floor.c \ 988 ../comon/C __rempio2.c \

923 ../ comon/ C fnod. ¢ \ 989 ../comon/C __rempio2mec \

924 ../ common/ C hypot . c \ 990 ../common/C __sin.c \

925 ../common/ Cilogb.c \ 991 ../ common/ C __sincos.c \

926 ../comon/Cisnan.c \ 992 ../ common/ T __xpg6.c \

927 ../comon/ Clog.c \ 993 ../comon/C _lib_version.c \

928 ../ common/ C' | 0g10.c \ 994 ..l comon/C/ _SVID error.c \

929 ../conmmon/ C/log2.c \ 995 ../ comon/ C/ _TBL_i pi02.c \

930 ../ common/ T pow. c \ 996 ../comon/C/ _TBL_sin.c \

931 ../ common/ C remai nder. c \ 997 ../ comon/ C/ acosh. ¢ \

932 ../comon/Crint.c \ 998 ../ common/ C asinh.c \

933 ../ common/ C scal bn.c \ 999 ../ conmmon/ ¢ atan2pi.c \

934 ../comon/Csin.c \ 1000 ../ common/ T at anh. c \

935 ../ comon/ C si ncos. c \ 1001 ../comon/C cbhrt.c \

936 ../ comon/ Ctan.c 1002 ../ common/ C cosh.c \
1003 ../common/Cerf.c \

938 SRCS_i386_i386 =\ 1004 ../ common/ ¢/ gamma. ¢ \

939 ../comon/C __libx_errno.c 1005 ../ comon/ C gamma_r.c \
1006 ../comon/Cj0.c \

941 SRCS_sparc_sparc =\ 1007 ../common/Cjl.c\

942 $(SRCS_i 386_i 386) 1008 ../comon/Cjn.c \
1009 ../comon/ C | ganma. ¢ \

944 SRCS_sparc_sparcv9 =\ 1010 ../comon/C | gamma_r.c \

945 ../ common/ C/ copysign.c \ 1011 ../ common/ C | oglp.c \

946 ../ common/ C/ fabs.c \ 1012 ../ common/ C/ | ogb.c \

947 ../ common/ C nextafter.c 1013 ../comon/ C matherr.c \
1014 ../comon/ C/ scal b.c \

949 SRCS i 386_and64 = \ 1015 ../ common/ C si gngamc \

950 ~/common/ C/ _TBL_atan.c \ 1016 ../ common/ ' significand. c \

951 ../ comon/ C _TBL_exp2.c \ 1017 ../ comon/ C si ncospi . c \

952 ../comon/C _TBL_l og.c \ 1018 ../ comon/ d sinh.c \

953 ../ common/ C _TBL_l 0g2. ¢ \ 1019 ../common/ Csqrt.c \

954 ../common/C __tan.c \ 1020 ../ conmmon/ C/ tanh. c

955 ../comon/C/ _TBL_tan.c \

956 ../ comon/ C/ copysign.c \ 1022 SRCS =\

957 ../ common/ T/ exp.c \ 1023 $(SRCS_Q $(MACH)) \

958 ../ comon/ C/ fabs.c \ 1024 $(SRCS_LD _$(MACH)) \

959 ../comon/ il ogb.c \ 1025 $(SRCS_R) "\

960 ../comon/Cisnan.c \ 1026 $(SRCS_conpl ex) \

961 ../common/ C nextafter.c \ 1027 $(SRCS_O)

962 ../common/Crint.c \

963 ../ common/ C/ scal bn.c \ 1029 . KEEP_STATE:

964 ../ comon/ C acos. c \

965 ../comon/ C asin.c \ 1031 al I : $(LI BS)

966 ../ common/ C atan.c \

967 ../ common/ C atan2.c \ 1033 lint: I'i nt check

968 ../comon/Clceil.c \

969 ../comon/C/ cos.c \

970 ../ common/ ¢ exp10.c \

971 ../ conmon/ C exp2.c \

972 ../ common/ T expntl. c \

973 ../comon/C floor.c \

974 ../ common/ C hypot.c \

975 ../conmmon/ 1 og.c \

976 ../ comon/ C | 0g10.c \

977 ../comon/C10g2.c \

978 ../ common/ C/ pow. ¢ \

979 ../conmmon/ C'sin.c \

980 ../ common/ C sincos.c \

981 ../comon/C/tan. c

983 SRCS_C =\

984 $(SRCS_C $(MACH)) \

985 $(SRCSC|386 $(TARGET_ARCH)) \

986 ./comon/C/ __cos.c \

new usr/src/lib/libm Makefile.libmcom

R R R R

2735 Sun May 4 03:04:50 2014
new usr/src/lib/libm Makefile.libmcom

hkkkkkkkkkkkkkkkkhkkhkkhkhkhkkkhkkkkkkkhkhkkhkkhkkkkkkkk ok k ok k k%

1#

2 # This file and its contents are supplied under the terms of the

3 # Common Devel oprent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this

8 # source. A copy of the CDDL is also available via the Internet at
9 # http://ww. illunps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

14 #

16 LI BMDIR = $(SRO)/1ib/libm

18 LI BMBRC = $(LI BVDI R)/ common

20 CPP_CVMD = $(CC) -E -Xs

22 ASSUFFI X_sparc S

23 ASSUFFI X_i 386
24 ASSUFFI X

2(ASSUFFI X_$(MACH))

C99MODE of neither enabl ed nor disabled is "no_lib", whereby we expect
C99-t he- | anguage, but don’t nodify the behaviour of library routines.

28 # is VERY | MPORTANT, as -xc99=%l |, for instance, would link us with
val ues-xpg6, whi ch woul d i ntroduce an xpg6 to our object with the C99
flags set, causing us to default C99 |ibm behaviour on, breaking

31 # corrpatibillty

32 C99MODE =

34 MAFLAGS -D__STDC__ -DELFOBJ -DPIC

36 LDBLDI R sparc

Q
37 LDBLDI R_i 386 LD

38 LDBLDI R $(LDBLDI R_$(MACH))

40 LMIL = $(LI BMDI R)/ $(TARGET_ARCH)/ src/local i bmiil

42 CFLAGS += $(C_PI CFLAGS) -D__I NLI NE $(XSTRCONST) $(LM I L)
43 CFLAGS64 += $(C_PI CFLAGS) —D TINLI NE $(XSTRCONST) $(LM_I L)

44 spar c_CFLAGS += - W4, - xar ch=v8pl us

46 CDEF_i 386 - DCOVPARI SON_MACRO_BUG

46 CPPFLAGS = -DELFOBJ \

47 -DLI BM_MI_FEX_SYNC \

49 $(CDEF_$(TARGET_ARCH)) \

48 -T$(LIBVBRQ)/ C \

49 -1 $(LI BVBRC)/ $(LDBLDI R) -1$(LI BMDI R)/ $(TARGET_ARCH) / st ¢

51 # GCC needs __ CO9FEATURES__ such that the inplenmentations of isunordered,
52 # isgreaterequal, islessequal, etc, exist.

54 # but not val ues-xpg6, the reason for which is outline with CI99MODE.
55 CFLAGS += -_gcc=-D__C99FEATURES _
56 CFLAGS64 += -_gcc=-D__C99FEATURES__

58 # |i bm depends on integer overflow characteristics
59 CFLAGS = -_gcc=-fno-strict-overflow
60 CFLAGS64 += -_gcc=-fno-strict-overflow

This is basically equivalent to
53 # providing no -xc99 to Studio, in that it gets us the C99 |anguage features,

new usr/src/lib/libm Makefile.libmcom

62

$(DYNLI B)
$(LI NTLI B)
CLEANFI LES

FPDEF_and64
FPDEF_spar ¢
FPDEF_spar cv9
FPDEF

ASFLAGS

XARCH_spar c
XARCH_spar cv9
XARCH_i 386
XARCH_anmd64
XARCH

ASOPT_sparc
ASOPT_spar cv9
ASOPT_i 386
ASOPT_and64
ASCPT

ASFLAGS
CPPFLAGS spar c

:= LDLIBS += -lc

1= SRCS = $(LIBMSRC)/ $(LI NTSRC)

+= pics/*.s pics/*. S

- DARCH_and64
- DCG89 - DARCH_v8pl us - DFPADD_TRAPS_| NCOVPLETE_ON_NAN
- DARCH_v9 - DFPADD_TRAPS_| NCOVPLETE_ON_NAN

$(FPDEF_$(TARGET_ARCH))

-P - D_ASM $(FPDEF)

v8pl us

IR TERTIRTAN!
-
©
o
@
©
~

$(XARCH_$(TARGET_ARCH))

- xar ch=$(XARCH) $(AS_PI CFLAGS)
- xar ch=$(XARCH) $(AS_PI CFLAGS)

- xar ch=$(XARCH) $(AS_PI CFLAGS)
$(ASOPT_$(TARGET_ARCH))

+= $(ASOPT)

- DFPADD_TRAPS_| NCOVPLETE_ON_NAN \
MODE

DFDTOS_TRAPS_| NCOMPLETE_| N_FNS_|

CPPFLAGS
ASFLAGS

+= $(CPPFLAGS_$(MACH))
+= $(CPPFLAGS)

new usr/src/lib/libmand64/src/ieee_funcl.s

R R R R

3415 Sun May 4 03:04:51 2014

new usr/src/lib/libnmand64/src/ieee_funcl.s

hkkkkkkkkkkkkkkkkkkkkhkhkkkhkhkkkkk kkkkkkkkkkkkkkkkk ok k ok k k%

__unchanged_portion_omtted_

58 ENTRY(i snormal |)

63 nov| 12(% sp) , Y%eax

64 andl $- 0x80000000, Y%eax
64 novq $0x80000000, % 8
65 andq % 8, % ax

65

66 jz .L8

67 nmovl 16(% sp) , Yeax

68 not | Yeax

69 andq $Ox7fff, % ax

70 jz .L8

71 xorq $Ox7fff, % ax

72 iz . L8

73 novq $1, % ax

74 .18

75 ret

76 .align 16

77 SET_SI ZE(i snornal |)

79 ENTRY(i ssubnornal |)

80

81

82 novl 12(% sp) , Yeax

83 testl $0x80000000, %eax
84

85

85 jz . may_be_subnorm
86 . not_subnorm

87 novq $0, % ax

88 ret

89 . may_be_subnorm

90 testl $Ox7fff, 16(% sp)
91 jnz . not _subnorm

92 orl 8(% sp), Yeax

93 jz . not _subnorm

94 novq $1, % ax

95 ret

96 .align 16

97 SET_SI ZE(i ssubnormal |)

__unchanged_portion_omtted_

~————

—~——— i — —

—~————— ——

/

TRUE i ff (x is finite, but
nei t her subnormal nor zero)
iff (msb(sgnfcnd(x) /=0
& 0 < bexp(x) < Ox7fff)
eax <-- hi_32(sgnfcnd(x))
eax[31] <-- meb(sgnfcnd(x)),

eax[31] <-- msb(sgnfcnd(x))
rest_of (eax) <--

jump iff m;b(sgnfcnd(x)) =0

ax <-- sign and bexp of x
ax[0..14] <-- not(bexp(x))

eax <-- zero xtnd(not(bexp(x)))
jump i ff bexp(x) ox7fff or
treat pseudo- denormal as subnormal

TRUE i ff (bexp(x)
meb(sgnfcnd(x)) =
eax <-- h| _32(sgn
eax[31] = rrsb(sgn
set ZF if it's
set ZF if it is

= &

0 frac(x) /= 0)
fend(x))
fend(x));

jump iff m;b(sgnfcnd(x)) =0
set ZF iff bexp(x) =0
junp iff bexp(x) /=0
(eax) = 0 iff sgnfcnd(x) =0

new usr/src/lib/libmand64/src/libminlines.h

R R R R

3962 Sun May 4 03:04:53 2014
new usr/src/lib/libmand64/src/libminlines.h

hkkkkkkkkkkkkkkkkhkkkkhkhkkkkkkkkkkk kkkkkkkkkkkkkkk ok k ok k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 /*

31 * Copyright 2011, Richard Lowe.

32 */

34 /* Functions in this file are duplicated in |ocal II|bmiI. Keep themin sync */
34 /* Functions in this file are duplicated in |ibm Keep themin sync */
36 #ifndef _LIBM.INLINES H

37 #define _LIBM I NLINES_H

39 #ifdef _ GNUC

41 #ifdef __cplusplus

42 extern "C' {

43 #endi f

45 #incl ude <sys/types. h>

46 #incl ude <sys/ieeefp. h>

48 extern __inline__ double

49 i eee754_sqrt (doubl e a)

50 {

51 doubl e ret;

53 _asm_ __volatile__("sqgrtsd %, 9%®\n\t" : "=x" (ret) : "x" (a));
54 return (ret);

55 }

48 extern __inline__ float

49 __inline_sqrtf(float a)

50

51 float ret;

new usr/src/lib/libmand64/src/libminlines.h

53 asm._ volatile_ ("sqrtss %, 9%®\n\t" : "=x" (ret)
54 return (ret);
55 }

__unchanged_portion_omtted_

66 extern __inline__ double
67 __ieee754_sqrt(double a)
75 /* XXX: Not actually called */

76 extern __inline__ short
77 __inline_fstswvoid)
68 |
69 return (__inline_sqgrt(a));
79 short ret;
81 asm _ _ volatile__ ("fstsw %\n\t" : "=r" (ret));
82 return (ret);
70 }
__unchanged_portion_onitted_
116 extern __inline__ int
117 abs(int i)
118 {
119 int ret;
120 _asm_ __volatile__(
121 " novl %, 9%®\n\t"
134 " novl od, 9\ n\t"
122 "negl %W\ n\t"
123 "cnmovnsl %, 9®O\n\t"
124 Dot=rt o (ret), "4r" (i)
125 :
126 : o "cc");
136 "cnmovnsl 9%, %@\ n\t"
137 o=t (ret) "4t (1))
127 return (ret);
128 }
130 extern inline doubl e
131 copysi gn(doubl e d1, double d2)
132 {
133 doubl e tnpd;
144 doubl e ret;
135 _asm_ _ volatile__(
136 "movd 98, %d\n\t"
137 "andpd %4, 9%®\n\t"
138 " andnpd %2, %d\n\t"
139 "or pd %A, %0\ N\ t"
140 RS (dl), "=x" (tnpd)
141 ©o"x" (d2), "r" (0x7 fffffffffffffff));
147 " movq $0x7fffffffffffffff,O/G/arax\n\t"
148 " novd %96 ax, Y9&xmR\ n\ t "
149 "andpd %errrmz %\ n\ t"
150 "andnpd %, oM\ N\ t "
151 "or pd W2, 9O\ n\ t "
152 : "=x“ (ret)
153 : (d2) "0" (d1)
154 : xrm? "rax");
143 return (dl);
156 return (ret);
157 }
159 extern __inline__ double
160 d_sqrt_(double *d)
161 {

162 doubl e ret;

(a));

new usr/src/lib/libmand64/src/libminlines.h 3 new usr/src/lib/libmand64/src/libminlines.h

163 _asm _ _ volatile_ (211 "shrq $63, %0\ n\t"
164 "movl pd %, 9O\ n\t" 212 Dot=rt (ret)
165 "sqrtsd %, %" 184 otx" o (d)
166 o "=x" (ret) 185 ;o "ec");
167 c'm (*d)); 214 o"rext);
168 return (ret);
144 } 216 return (ret);
217 }
146 extern inline__ double
147 fabs(doubl e d) 219 extern __| I| f | oat
148 { 220 r_sqrt (f at *f)
149 doubl e tnp; 221 {
174 doubl e ret; 222 float ret;
151 _asm _ _ volatile_ (224 _asm__ _ volatile__
152 "movd %2, %d\n\t" 225 "movss %, 9%0\n\t"
153 " andpd %, AG)" 226 "sqrtss %0, %0\n\t"
154 : +x (d), " (tnp) 227 Ot Hx" (ret)
155 : (0x7fffffffffffffff)), 228 Dottt (*F));
177 "rqu SOXTFFFFfffefffeffff, @ ax\n\t"” 187 return (ret);
178 "movd 9% ax, &ML\ n\t" 188 }
179 "andpd %?/b(rth, %"
180 o"=x" (ret) 190 extern __inline int
181 :"0" (d) 191 signbit (doubl e d)
182 o "rax", "xmmi"); 192 {
193 long ret;
157 return (d); 194 _asm_ _ volatile__
184 return (ret); 195 "moviskpd %4, 9O\n\t"
158 } 237 "nmovnskpd %, %0\ n\t"
196 andq $1, 9%O\n\t"
160 extern inline__ float 197 :

—r (ret)
X"

161 fabsf(fToat d) 198 :

162 199 : c"

190 float ret; 240 ot (d))
241 return (ret);

163 _asm __ _ volatile_ (242 }

164 "andpd %4, %"

165 X" (d) 244 extern |n| __int

166 Dot (Ox7Fffffff)); 245 signbitf(flo f)

193 "andpd %, 99" 246 {

194 o "=x" (ret) 247 int ret;

195 "0" (d), "x" (Ox7fffffff)); 248 _asm_ __volatile__(
249 "movskps %, YO\ n\t"

168 return (d); 250 "andq $1 90\ n\t"

197 return (ret); 251 : ":r" (ret)

169 } 252 : (f));
200 return (ret),

171 extern __inline__ int 201 }

172 finite(double d)

173 { 203 extern __inline__ double

174 long ret = Ox7fffffffffffffff; 204 sqrt(doubl e d)

175 uint64_t tnp; 205 {

203 long ret; /* A long, so gcc chooses an %* for % */ 206 return (__inline_sqrt(d));
259 doubl e ret;

177 _asm_ vol ati | e_(

178 movq 9R2, %d\n\t" 261 _asm_ volatile__(

179 "andq %’L, %\ n\t" 262 'sqrtsd %, %7

180 "nmovqg $0x7ff 0000000000000, %4\ n\t" 263 Dotext (ret)

181 "subqg %, %®O\n\t" 264 "0t (d));

182 "shrq $63, %®\n\t" 265 return (ret);

183 Do"4r" (ret), "=r" (tnp) 207 }

206 "movq %, %@scx\n\t"

207 "movg $Ox7FFFffffffffffff, o@\n\t" 209 extern __inline__ float

208 "andq %% cx, %O\ n\t" 210 sqrtf(float f)

209 "movg $0x7f f 0000000000000, %86 cx\ n\t" 211 {

210 "subq %6 cx, %O\ n\t" 212 return (__inline_sqrtf(f));

new usr/src/lib/libmand64/src/libminlines.h

271 float ret;

273 _asm _ __volatile__(
274 "sqrtss %, %"
275 o "=x" (ret)

276 "0 (f));

277 return (ret);

213 }

____unchanged_portion_onmitted_

new usr/src/lib/libmanmd64/src/locallibmil

R R R R

3242 Sun May 4 03:04:55 2014
new usr/src/lib/libmand64/src/locallibmil

hkkkkkkkkkkkkkkkkhkkhkkhkhkhkhkhkkkkkkkhkhhkkkkhkkkkkkkk ok k ok k k%

1/

2 | CDDL HEADER START

3/

4 | The contents of this file are subject to the terns of the

5 / Common Devel oprent and Distribution License (the "License").

6 / You may not use this file except in conpliance with the License.
71

8 / You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 / or http://ww.opensol aris.org/os/licensing.

10 / See the License for the specific |anguage governing perm ssions
11 / and limtations under the License.

12 /

13 / Wen distributing Covered Code, this CDDL HEADER in each

14 / file and the License file at usr/src/ OPENSOLARI S. LI CENSE.

15 / If applicable, add the follow ng below this CDDL HEADER, with the
16 / fields enclosed by brackets "[]" replaced with your own identifying
17 / information: Portions Copyright [yyyy] [nane of copyright owner]
18 /

19 / CDDL HEADER END

20 /

21/

22 | Copyright 2011 Nexenta Systems, Inc. Al rights reserved.

23/

24 | Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.

25/ Use is subject to license terns.

26 /

28 /| Portions of this file are duplicated as GCC inline assenbly in
29 / libminlines.h. Keep themin sync.

31 .inline __ieee754_sqrt,0
32 sqrtsd %m0, %xmMmD

33 .end

35 .inline __inline_sqrtf,0
36 sgrtss %m0, %&moD

37 .end

39 .inline __inline_sqgrt,0
40 sqrtsd %m0, %MD

41 .end

43 .inline __inline_fstsw 0
44 fstsw %ax

45 .end

43 /

44 /| 00 - 24 bits

45 |/ 01 - reserved

46 /| 10 - 53 bits

47 /| 11 - 64 bits

48 /

49 .inline __swapRP, 0

50 subq $16, % sp

51 fstcw (% sp)

52 mvw (% sp), Y%ax

53 novw %ax, Yex

54 andw $0xfcff, %ex

55 andl $0x3, Yedi

56 shlw $8, %di

57 orw %li , %ex

58 novl %ecx, (% sp)

new usr/src/lib/libmand64/src/locallibmil

59 fldew (% sp)

60 shrw $8, Yax

61 andq $0x3, % ax

62 addq $16, % sp

63 .end

65 /

66 / 00 - Round to nearest, with even preferred
67 / 01 - Round down

68 / 10 - Round up

69 / 11 - Chop

70 /

71 .inline __swap87RD, 0
72 subq $16, % sp

73 fstew (% sp)

74 nmvw (% sp) , Yax
75 nmvw %ax, Yex

76 andw $0xf 3f f, %X
77 and| $0x3, %edi

78 shlw $10, %di

79 orw %li , ¥%ex

80 nmov| Yecx, (% sp)
81 fldew (% sp)

82 shrw $10, Yax

83 andq $0x3, % ax

84 addq $16, % sp

85 .end

87 .inline abs, 0

88 cnpl $0, %edi

89 jge 1f

90 negl %edi

91 1: novl %edi , Yeax

92 .end

94 .inline __copysign,0
95 novq SOX7EFFEFFFEfFFFfffff, o ax
96 nmovdq % ax, Y%xmmR
97 andpd 9xme2, % nmD
98 andnpd %, %M
99 or pd %xmm®, ¥%xmmD
100 .end

106 .inline _d_sqgrt_,0
107 movl pd (% di), %mD
108 sgrtsd %m0, ¥%xnmD
109 .end

102 .inline _ fabs,0

103 novq SOX7EFFEFFFFFFAfIAS, O ax
104 nmovdq % ax, Y%&xmml
105 andpd 9 mil, % nmD
106 .end

108 .inline __fabsf,0
109 novl $Ox7fffffff, veax
110 nmovdl| Y%eax, ¥xmil
111 andps %, %m0
112 .end

114 .inline _finite,0
115 subq $16, % sp

116 nmovl pd %D, (% sp)
117 nmovq (% sp), % cx
118 novq SOX7FFFEFFefFFFfffff, O ax
119 andq % cX, % ax

new usr/src/lib/libmand64/src/locallibmil 3 new usr/src/lib/libmand64/src/locallibmil
120 novq $0x7f f 0000000000000, % cx 176 orq % dx, % ax
121 subq % cX, % ax 177 nmovdq % ax, ¥%xmD
122 shrq $63, % ax 178 .end
123 addq $16, % sp
124 .end
135 .inline __r_sqrt_,0
136 novss (% di), %m0
137 sqrtss %m0, %MD
138 .end
126 .inline __signbit,0
127 nmoviskpd %m0, Yeax
142 andq $1, % ax
143 .end
145 .inline __signbitf,0
146 moviskps %m0, %eax
128 andq $1, % ax
129 .end
131 .inline __sqrt,0
132 sqrtsd %m0, %MD
133 .end
135 .inline __sqrtf,0
136 sqrtss %m0, %MD
137 .end
139 .inline __f95_signf,0
140 nmovl (% di), %eax
141 nmovl (% si), %ecx
142 and| S$ox7fffffff, %eax
143 and| $0x80000000, %ecx
144 orl %ecx, Yeax
145 nmovdl| %eax, ¥xmoi
146 .end
148 .inline _ f95_sign,0
149 nmovq (% si), % ax
150 novq SOX7FFFEFFFeFffefffef, o dx
151 shrq $63, % ax
152 shl g $63, % ax
153 andq (% di), % dx
154 orq % dx, % ax
155 nmovdg % ax, %m0
156 .end
158 .inline __r_sign,0
159 nov| $ox7fffffff, Yeax
160 novl $0x80000000, %edx
161 andl| (% di), Y%eax
162 cnpl (% si), %edx
163 cnovel Y%ax, %edx
164 and| (% si), %edx
165 orl %edx, Y%eax
166 nmovdl| %eax, ¥xmD
167 .end
169 .inline __d_sign,0
170 novq SOx7FFFffffffifffff, o ax
171 novq $0x8000000000000000, % dx
172 andq (% di), % ax
173 cnpq (% si), % dx
174 cmoveq % ax, % dx
175 andq (% si), % dx

new usr/src/lib/libmcomon/C/ _SVID error.c 1 new usr/src/lib/libmcomon/C/ _SVID error.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 173 exc. nane = "atanz";

22354 Sun May 4 03:04:56 2014 174 ieee_retval = copysign(1.0, x) == 1.0 ? y :
new usr/src/lib/libmcomon/C/ _SVID error.c 175 copysign(Pl_RZ + DBL_MN, v);
IR R R R R R R R R R R RS R R R RS RS R R E RS SRR SRR R EREREREREEEEEE] 176 exc.retval = O O’

__unchanged_portion_omtted_ 177 if (lib_version == strict_ansi) {

178 errno = EDOM
114 #define NaN co].d 179 } elseif (ln'atherr(&exc)) {
115 #define PI_RZ (C1].d 180 if (lib_version == c_issue_4) {
181 “(void) wite(2, "atan2: DOMAIN error\n", 20);
117 #define __H (x) ((unsigned *)&x)[H WORD] 182
118 #define __LQ(x) ((unsigned *)&x)[LOANORD]| 183 errno = EDOM
119 #undef Inf 184 }
120 #define Inf HUGE_VAL 185 br eak;
186 case 4:
122 doubl e 187 /* hypot(finite,finite) overflow */
123 _SVID |libmerr(double x, double y, int type) { 188 exc.type = OVERFLOW
124 struct exception exc; 189 exc. name = "hypot";
125 doubl e t, w, ieee_retval = 0; 190 ieee_retval = Inf;
125 doubl e t, w, ieee_retval; 191 if (lib_version == c_issue_4)
126 enum ver si on lib_version = _lib_version; 192 exc.retval = HUGE;
127 int iy; 193 el se
194 exc.retval = HUGE_VAL;
129 /* force libm.ieee behavior in SUSv3 node */ 195 if (lib_version == strict_ansi)
130 if ((__xpg6 & _C99SUSv3_mat h_errexcept) != 0) 196 errno = ERANGE;
131 Iib_version = | Tbm.i eee; 197 else if ('rratherr(&exc))
132 if (lib_version == c_issue_4) { 198 errno = ERANGE;
133 “(void) fflush(stdout); 199 br eak;
134 } 200 case 5:
135 exc.argl = x; 201 /* cosh(finite) overflow */
136 exc.arg2 =y; 202 exc.type = OJERFLON
137 S\Mtch (type) { 203 exc. name = "cosh"
138 cas : 204 ieee_retval = set exceptlon(2 1.0);
139 /* acos(|x| >1) * 205 if (Tib_version == c_ I ssue_4)
140 exc.type = DCNAI N, 206 exc.retval = HUGE;
141 exc. name = "acos 207 el se
142 ieee_retval = set exceptlon(3 1.0); 208 exc.ret vaI = HUGE_VAL;
143 exc.retval = 0.0; 209 if (lib_ verS|on == strict an5|)
144 if (lib_version == strict_ansi) { 210 errno = ERANGE;
145 errno = EDOM 211 else if (!matherr(&exc))
146 } elseif (! mat herr(&exc)) { 212 errno = ERANGE;
147 if (lib_version == c¢ |ssue _4) { 213 br eak;
148 “(void) wite(2, "acos: DOVAIN error\n", 19); 214 case 6:
149 } 215 /* exp(finite) overflow */
150 errno = EDOM 216 exc.type = O\/ERFLON
151 } 217 exc. name = "exp";
152 br eak; 218 ieee_retval = set exception(2, 1.0);
153 case 2: 219 if (lib_version == c_lssue_4)
154 /* asin(| x| >1) */ 220 exc.ret vaI = HUGE;
155 exc.type = DOVF-\I N; 221 el se
156 exc. name = "asin"; 222 exc.retval = HUGE_VAL;
157 exc.retval = 0.0; 223 if (lib_version == strict_ansi)
158 ieee_retval = set exceptlon(3 1.0); 224 errno = ERANGE;
159 if (Tib_ versmn == strict_ansi) { 225 else if (ln'atherr(&exc))
160 errno = EDOM 226 errno = ERANGE;
161 } else if (!matherr(&exc)) { 227 br eak;
162 if (lib_version == c_issue_4) { 228 case 7:
163 (void) wite(2, "asin: DOVAIN error\n", 19); 229 /* exp(finite) under fl ow */
164 } 230 exc.type = UNDERFLCW
165 errno = EDOM 231 exc. name = exp ;
166 1 232 ieee_r etval = set exception(1l, 1.0);
167 br eak; 233 exc.retval = O 0;
168 case 3: 234 if (li b_ver5| on == strict_ansi)
169 /* atan2(+-0,+-0) * 235 errno = ERANGE;
170 exc.argl =vy; 236 else if (!matherr(&exc))
171 exc.arg2 = x; 237 errno = ERANGE;
172 exc.type = DOVAIN; 238 br eak;

new usr/src/lib/libmcomon/C/ _SVID error.c

239 case 8:

240 /* yO(0) = -inf */

241 exc.type = DCM-\I N, /* shoul d be SING for | EEE */
242 exc. name = "y0";

243 i eee_retval = setexception(0, -1.0);
244 if (Tib_version == c_issue_4)

245 exc.retval = -HUGE

246 el se

247 exc.retval = -HUGE_VAL;

248 if (Iib_version == strict_ansi) {

249 errno = EDOM

250 } else if (!matherr(&exc)) {

251 if (lib_version == ¢ |ssue _4) {
252 (void) wite(2, "y0: DOMAIN error\n", 17);
253 }

254 errno = EDOM

255 }

256 br eak;

257 case 9:

258 /* y0(x<0) = NaN */

259 exc.type = DOVAIN;

260 exc. name = "y0";

261 ieee_retval = setexception(3, 1.0);

262 if (lib_version == c_issue_4)

263 exc.retval = -HUGE;

264 el se

265 exc.retval = - HUGE_VAL;

266 if (lib_version == strict_ansi) {

267 errno = EDOM

268 } else if (!matherr(&exc)) {

269 if (lib_version == c_issue_4)
270 (void) wite(2, "y0: DOVAIN error\n", 17);
271 }

272 errno = EDOM

273 }

274 break;

275 case 10:

276 /* y1(0) = -inf */

277 exc.type = DC]VAIN /* should be SING for |EEE */
278 exc.name = "yl1";

279 ieee_retval = set exception(0, -1.0);
280 if (Tib_version == c_issue_4)

281 exc.retval = -HUGE

282 el se

283 exc.retval = -HUGE_VAL;

284 if (lib_version == strict_ansi) {

285 errno = EDOM

286 } elseif (lnatherr(&exc)) {

287 if (lib_version == c_issue_4) {
288) “(void) wite(2, "y1. DOMAIN error\n", 17);
289

290 errno = EDOM

291 }

292 br eak;

293 case 11:

294 /* y1(x<0) = NaN */

295 exc.type = DOMAIN,

296 exc. name = yl"'

297 i eee_retval = setexception(3, 1.0);

298 if (Tib_version =c I ssue_4)

299 exc.retval = - HUGE,

300 el se

301 exc.retval = -HUGE_VAL;

302 if (lib_version == strict_ansi) {

303 errno = EDOM

304 } else if (!matherr(&exc)) {

new usr/src/lib/libmcomon/C/ _SVID error.c

305 if (lib_version == c_issue_4) {
306 (void) wite(2, "yl: DOVAIN error\n",
307 }

308 errno = EDOM

309 }

310 br eak;

311 case 12:

312 /* yn(n,0) = -inf */

313 exc.type = DOMAIN; /* shoul d be SING for
314 exc. name = "yn";

315 ieee_retval = setexception(0, -1.0);
316 if (lib_version == c_issue_4)

317 exc.retval = -HUGE;

318 el se

319 exc.retval = -HUGE_VAL;

320 if (lib_version == strict_ansi) {
321 errno = EDOM

322 } else if (!nmatherr(&xc)) {

323 if (lib_version == c_issue_4)
324 (void) wite(2, "yn:
325 }

326 errno = EDOM

327 }

328 br eak;

329 case 13:

330 /* yn(x<0) = NaN */

331 exc.type = DOVAI N

332 exc. nane = "yn

333 ieee retval = set exception(3, 1.0);
334 if (Tib_version == c_issue_4)

335 exc.retval = -HUGE

336 el se

337 exc.retval = -HUGE_VAL;

338 if (lib_version == strict_ansi) {
339 errno = EDOM

340 } elseif (lnatherr(&exc))

341 if (lib_version == c¢ |ssue _4)
342 “(void) wite(2, "yn:
343 }

344 errno = EDOM

345 }

346 br eak;

347 case 14:

348 /* lgamma(finite) overflow */

349 exc.type = OJERFLON

350 exc.name = "| gamm

351 ieee_retval = set exceptlon(z 1.0);
352 if (Tib_version == c_issue_4)

353 exc.retval = HUGE

354 el se

355 exc.retval = HUGE_VAL;

356 if (lib_ version == strict_ansi)

357 errno = ERAN(E

358 else if ('natherr(&exc))

359 errno = ERANGE;

360 br eak;

361 case 15:

362 /* 1 gamma(-integer) or |gamm(0)

363 exc.type = SING

364 exc. name = "| gamma";

365 ieee_retval = setexception(0, 1.0);
366 if (lib_version == c_issue_4)

367 exc. retval = HUGE;

368 el se

369 exc.retval = HUGE_VAL;

370 if (lib_version == strict_ansi) {

DOVAI N error\n",

DOVAI N error\n",

17);

17);

17);

new usr/src/lib/libmcomon/C/ _SVID error.c 5 new usr/src/lib/libmcomon/C/ _SVID error.c

371 errno = EDOM 437 case 19:

372 } else if (!nmatherr(&xc)) { 438 /* 10gl0(x<0) */

373 if (lib_version == c_issue_4) { 439 exc.type = DOVAIN;

374 (void) wite(2, "lgama: SING error\n", 19); 440 exc.name = "| oglO"

375 } 441 ieee_retval = set exceptlon(3 1.0);

376 errno = EDOM 442 if (Tib_version == c_issue_4)

377 } 443 exc.retval = -HUGE

378 br eak; 444 el se

379 case 16: 445 exc.retval = -HUGE_VAL;

380 /* log(0) */ 446 if (Iib_version == strict_ansi) {

381 exc.type = SING 447 errno = EDOM

382 exc.name = "l og"; 448 } else if (!mat herr(&exc)) {

383 i eee_retval = setexception(0, -1.0); 449 if (lib_version == c_i ssue _4) {

384 if (Tib_version == c_i ssue_4) 450 (void) wite(2, "logl0: DOMAIN error\n", 20);
385 exc.retval = - HUGE; 451 }

386 el se 452 errno = EDOM

387 exc.retval = -HUGE_VAL; 453 }

388 if (lib_versi on == strict_ansi) { 454 br eak;

389 errno = ERANGE; 455 case 20:

390 } else if (!mat herr(&exc)) { 456 /* pow(0.0,0.0) */

391 if (lib_version == c¢ |ssue _4) { 457 /* error only if lib_version == c_issue_4 */
392 “(void) wite(2, "log: SING error\n", 16); 458 exc.type = DOMAIN;

393 errno = EDOM 459 exc. nane = " poW';

394 } else { 460 exc.retval = 0.0;

395 errno = ERANGE; 461 ieee_retval = 1.0;

396 } 462 if (Tib_version '-c _issue_4) {

397 } 463 exc.retval = 1.0;

398 br eak; 464 } elseif (!nmat herr(&exc))

399 case 17: 465 (void) wite(2, " pow(O 0): DOMAIN error\n", 23);
400 /* 1 og(x<0) */ 466 errno = EDOM

401 exc.type = DC]VAI N 467

402 exc. name = "| og" 468 br eak;

403 ieee retval = set exceptlon(3 1.0); 469 case 21:

404 if (Tib_version == c_i ssue_4) 470 /* pow(x,y) overflow */

405 exc.retval = - HUGE 471 exc.type = OVERFLOW

406 el se 472 exc. name = "pow';

407 exc.retval = -HUGE_VAL; 473 exc.retval = (lib_version == c_issue_4)? HUGE : HUGE_VAL;
408 if (lib_version == strict_ansi) { 474 if (signbit(x)) {

409 errno = EDOM 475 t =rint(y);

410 } elseif (lmatherr(&exc)) { 476 if (t ==vy) {

411 if (lib_version == c_issue_4) { 477 wW=rint(0.5 * y);

412 “(void) wite(2, "log: DOVAIN error\n", 18); 478 if (t!'=w+w { /* y is odd */
413 } 479 exc.retval = -exc.retval;
414 errno = EDOM 480 }

415 } 481 }

416 br eak; 482 }

417 case 18: 483 i eee_r etval = setexception(2, exc.retval);

418 /* 10gl0(0) */ 484 if (lib version == strict_ansi)

419 exc.type = SING 485 errno = ERANGE;

420 exc. name = "| ogl0"; 486 else if (!mat herr(&exc))

421 ieee_retval = setexception(0, -1.0); 487 errno = ERANGE;

422 if (lib_version == c_lssue_4) 488 br eak;

423 exc.retval = -HUGE; 489 case 22:

424 el se 490 /* pow(x,y) underflow */

425 exc.retval = -HUGE_VAL; 491 exc.type = UNDERFLOW

426 if (lib_versi on == strict_ansi) { 492 exc. name = "pow';

427 errno = ERANGE; 493 exc.retval = 0.0;

428 } else if ('rratherr(&exc)) { 494 if (signbit(x)) {

429 if (lib_version == ¢ |ssue _4) { 495 t = rint(y);

430 (void) wite(2, "logl0: SING error\n", 18); 496 if (t ==vy) {

431 errno = EDOM 497 w—r|nt(05* y);

432 } else { 498 if (t!=w+w /*vyis odd */
433 errno = ERANGE; 499 exc.retval = -exc.retval;
434 } 500 }

435 } 501

436 br eak; 502 ieee_retval = setexception(l, exc.retval);

new usr/src/lib/libmcomon/C/ _SVID error.c

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

case 23:

case 24:

if (lib_ verS|on == strict_ansi)
errno = ERANGE;

else if (lmatherr(&exc))
errno = ERANGE;

br eak;

/* (+-0)**neg */
exc.type = DOVAIN;

exc. name = "pow';
ieee_retval = setexception(0, 1.0);
int ahy, k, j, yisint, ly, hx;
/* | NDENT OFF */
/*
* determine if y is an odd int when x = -0
* yisint =0 . y is not an integer
* yisint =1 y is an odd int
* yisint = 2 y is an even int
*
/
/* | NDENT ON */
hx = __H(x);
ahy = _ H(y)&x7fffffff;
ly = __LAYy);
yisint = 0;
if (ahy >= 0x43400000) {
yisint = 2; /* even integer y */

} else if (ahy >= 0x3ff00000) {
(ahy >> 20) - Ox3ff;
|f (k > 20) {
j =1y > (52 - k);
it (() << (52 - k)) y)
y|5|nt=2-(] & 1);
}elself(ly 0) {
j = ahy >> (20 - K);
if ((j << (20 - k)) == ahy)
y|5|nt=2-(] & 1);

/* exponent */

}
} o
if (hx <0 & yisint ==
ieee_retval = -ieee_retval;
1f (lib_version == c_issue_4)
exc.retval = 0.0;
el se
exc.retval = -HUGE_VAL;
if (li b_version == strict_ansi) {
errno = EDOM
} else |f (lrratherr(&exc)) {
f (lib_version == ¢ |ssue _4) {
(void) wite(2, "pow0,neg): DOVAIN error\n",
}
errno = EDOM
br eak;

/* neg**non-integral */
exc.type = DOVAI N
exc. name = "pow';
ieee_retval = setexception(3, 1.0);
if (lib_version == c_issue_4)
exc.retval = 0.0;
el se
exc.retval = ieee_retval;
if (lib_version == strict_ansi) {

/* X/ Open allow NaN */

new usr/src/lib/libmcomon/C/ _SVID error.c

569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

case 25:

case 26:

case 27:

case 28:

errno = EDOM
} else if (!nmatherr(&xc)) {
if (lib_version == c_issue_4) {

(void) wite(2,
"neg**non-integral: DOVAIN error\n", 32);

}

errno = EDOM
}
br eak;

/* si nh(fi nite) overflow */
exc.type = OVERFLOW
exc.name = "sinh";
ieee_r etval = copy5| gn(Inf, x);
if (li b_ver5| on == c_i ssue_4)
exc.retval = x > 0.0 ? HUGE : - HUGE;
el se
exc.retval = x > 0.0 ? HUGE_VAL : -HUGE_VAL;
if (lib_version == strict_ansi)
errno = ERAI\GE
else if ('nﬁtherr(&exc))
errno = ERANGE;
br eak;

/* sqrt(x<0)
exc.type = DOVAIN

exc.nanme = "sqrt"
ieee_retval = set exceptlon(3 1.0);
if (Tib_version == c_i ssue_4)
exc.retval = 0.0;
el se
exc.retval = ieee_retval; /* quiet NaN */
if (lib_version == strict_ansi) {
errno = E
} elseif (lmitherr(&exc)) {
if (lib_version == ¢ |ssue _4)

(void) wite(2, "sqgrt: {DCNNNerror\n", 19);
?errno = EDOM
Lreak;
/* frod(x, 0) */

exc.type = DOVAI N:
exc. name = "fnod

if (fp_class(x) == fp_quiet)
i eee_| retval = NaN;
el se
i eee_retval = setexception(3, 1.0);
if (lib_version == c_issue_4
exc.retval = x;
el se
exc.retval = ieee_retval;
if (lib_version == strict_ansi) {
errno = EDOM
} else |f (lmatherr(&exc)) {
(lib_version == c_issue_4) {
) (void) wite(2, "frnod: DOVAIN error\n", 20);
errno = EDOM
br eak;

/* renai nder(x 0) */
exc.type = DO\/F—\IN
exc. name = "renui nder";

new usr/src/lib/libmcomon/C/ _SVID error.c

635 if (fp_class(x) = fp qulet)

636 i eee_| retval = NaN;

637 el se

638 i eee_retval = setexception(3, 1.0);
639 exc.retval = NaN;

640 if (Iib_version == strict_ansi) {

641 errno = EDOM

642 } else if (!matherr(&exc)) {

643 if (lib_version == ¢ |ssue _4)
644 (void) wite(2, "remainder:
645 24);

646 }

647 errno = EDOM

648 }

649 br eak;

650 case 29:

651 /* acosh(x<l) */

652 exc.type = DOVAI N

653 exc.nane = "acosh";

654 ieee_retval = setexception(3, 1.0);

655 exc.retval = NaN;

656 if (Iib_version == strict_ansi) {

657 errno = EDOM

658 } else if (!matherr(&exc))

659 if (lib_version == c¢ |ssue _4) {
660 (void) wite(2, "acosh: DOVAIN error\n",
661 }

662 errno = EDOM

663 }

664 br eak;

665 case 30:

666 /* atanh(]| x| >1) */

667 exc.type = DOMVAIN;

668 exc. name = "atanh";

669 ieee_retval = setexception(3, 1.0);

670 exc.retval = NaN;

671 if (lib_version == strict_ansi) {

672 errno = E

673 } else if (!matherr(&exc)) {

674 if (lib_version == c_issue_4) {
675) “(void) wite(2, "atanh: DOVAIN error\n",
676

677 errno = EDOM

678 }

679 br eak;

680 case 31:

681 /* atanh(]| x| =1) */

682 exc.type = SING

683 exc.nanme = "atanh";

684 ieee_retval = setexception(0, x);

685 exc.retval = ieee_retval;

686 if (lib_ ver5|on == strict _ansi) {

687 errno = ERANGE;

688 } else if (!matherr(&exc)) {

689 if (lib_version ==C|ssue _4) {
690 (void) wite(2, "atanh: SING error\n"
691 errno = EDOM

692 } else {

693 errno = ERANGE;

694 }

695

696 br eak;

697 case 32:

698 /* scalb overflow, SVID also returns +-HUGE_VAL */
699 exc.type = OVERFLOW

700 exc. name = "scal b";

DOVAI N error\n",

20);

20);

18);

new usr/src/lib/libmcomon/C/ _SVID error.c

701 ieee_r etval = setexception(2, x);

702 exc.retval = x > 0.0 ? HUGE_VAL : -HUGE_VAL;
703 if (lib_version == strict_ansi)

704 errno = ERANGE;

705 else if (lmatherr(&exc))

706 errno = ERANGE;

707 br eak;

708 case 33:

709 /* scal b underflow */

710 exc.type = UNDERFLOW

711 exc.nane = "scal b";

712 ieee_retval = setexception(l, x);

713 exc.retval = ieee_retval; /* +-0.0 */
714 if (lib_version == strict _ansi)

715 errno = ERANGE;

716 else if ('matherr(&exc))

717 errno = ERANGE;

718 br eak;

719 case 34:

720 /* jO(] x| >X_TLOSS)

721 exc.type = TLOSS

722 exc.name = "j0"

723 exc.retval = 0. O

724 ieee_retval =y;

725 if (Tib_version == strict_ansi) {

726 errno = ERANGE

727 } else if (!nmatherr(&xc)) {

728 if (lib_version == c_issue_4) {

729 (void) wite(2, exc.nane, 2);
730 (void) wite(2, ": TLOSS error\n",
731 }

732 errno = ERANGE;

733 }

734 br eak;

735 case 35:

736 /* yO(x>X_TLOSS)

737 exc.type = TLGCSS;

738 exc. name = "yO";

739 exc. retval 0.0;

740 ieee_retval =vy;

741 if (Tib_ ver5|on == strict_ansi) {

742 errno = ERAN(E

743 } elseif (lrratherr(&exc)) {

744 if (lib_version == c_issue_4) {

745 (void) wite(2, exc.nane, 2);
746 (void) wite(2, ": TLOSS error\n",
747 }

748 errno = ERANGE;

749 }

750 br eak;

751 case 36:

752 /* j1(] x| >X_TLOSS)

753 exc.type = TLCSS;

754 exc. nanme = "j 1";

755 exc. retval 0.0;

756 ieee_retval = s

757 if (Tib_ ver3|on == strict_ansi) {

758 errno = ERANGE

759 } else if (!matherr(&exc))

760 if (lib_version == c_issue_4) {

761 (void) wite(2, exc.nane, 2);
762 (void) wite(2, ": TLOSS error\n",
763 }

764 errno = ERANGE;

765 }

766 br eak;

10

new usr/src/lib/libmcomon/C/ _SVID error.c

767 case 37:

768 /* y1(x>X_TLGOSS)

769 exc.type = TLCSS;

770 exc. name = "yl1";

771 exc.retval = 0. 0;

772 ieee_retval =vy;

773 if (Tib_ ver5|on == strict_ansi) {

774 errno = ERANGE;

775 } else |f (lrratherr(&exc))

776 (lib_version == c_issue_4) {
777 (void) wite(2, exc.name, 2);
778 (void) wite(2, ":

779 }

780 errno = ERANGE;

781 1

782 br eak;

783 case 38:

784 [* jn(|x]|>X_TLOSS) */

785 /* incorrect ieee value: ieee should never
786 exc.type = TLGCSS;

787 exc. name = "jn ;

788 exc. retval O. O;

789 ieee_retval = 0.0; /* shall not
790 if (Tib_ versmn == strict_ansi) {

791 errno = ERANGE;

792 } else if (!matherr(&exc)) {

793 if (lib_version == c_issue_4) {
794 (voi d) wri te(2, exc.nane, 2);
795 (void) wite(2, ":

796

797 errno = ERANGE;

798 }

799 br eak;

800 case 39:

801 [* yn(x>X_TLOSS) */

802 /* incorrect ieee value: ieee should never
803 exc.type = TLGCSS;

804 exc. name = "yn";

805 exc.retval = 0.0;

806 ieee_retval = 0. O; /* shall not
807 if (lib_ version == strict_ansi)

808 errno = ERANGE;

809 } else if (!nmatherr(&exc)) {

810 if (lib_version == c_issue_4) {
811 (void) wite(2, exc.nane, 2);
812 (void) wite(2, ":

813 }

814 errno = ERANGE;

815 }

816 br eak;

817 case 40:

818 /* gamme(finite) overflow */

819 exc.type = O\/ERFLON

820 exc. name = ganna

821 ieee_retval = set exceptlon(Z 1.0);

822 if (Tib_version == c_issue_4)

823 exc.retval = HUGE,

824 el se

825 exc.retval = HUGE_VAL;

826 if (lib_ ver5|on == strlct _ansi)

827 errno = ERANGE;

828 else if ('matherr(&exc))

829 errno = ERANGE;

830 br eak;

831 case 41:

832 /* gamma(-integer) or gammu(0) */

TLGSS error\n",

-~

TLCSS error\n”,

-~

TLCSS error\n",

11

new usr/src/lib/libmcomon/C/ _SVID error.c

833 exc.type = SING

834 exc. nanme = "gamm";

835 ieee_retval = setexception(0, 1.0);

836 if (lib_version == c_issue_4)

837 exc.retval = HUGE;

838 el se

839 exc.retval = HUGE_VAL;

840 if (lib_version == strict_ansi) {

841 errno = EDOM

842 } else if (!nmatherr(&xc)) {

843 if (lib_version == c_issue_4) {
844 (void) wite(2, "gamma: SING error\n",
845 }

846 errno = EDOM

847 }

848 br eak;

849 case 42:

850 [* pow(NaN, 0.0) */

851 /* error if lib_version == c_issue_4 or ansi_1 */
852 exc.type = DOVAIN,

853 exc. name = "pow';

854 exc.retval = x;

855 ieee retval = 1.0;

856 if (Tib_version == strict_ansi) {

857 exc.retval = 1.0;

858 } elseif (lrratherr(&exc)) {

859 if ((lib_version == c_issue_4) || (lib_version
859 switch (lib_version) {

860 case c_issue_4:

861 case ansi _1:

860 errno = EDOM

863 }

861

862 br eak;

863 case 43:

864 /* loglp(-1) */

865 exc.type = SING

866 exc.name = "| oglp";

867 ieee_retval = setexception(0, -1.0);
868 if (Tib_version == c_issue_4)

869 exc.retval = -HUGE

870 el se

871 exc. ret vaI = - HUGE_VAL;

872 if (lib_ version == strict_ansi) {

873 errno = ERANGE;

874 } else if (!matherr(&exc)) {

875 if (lib_version == c¢ |ssue _4) {
876 (voi d) vvrite(2 "l oglp: SING error\n"
877 errno = EDOM

878 } else {

879 errno = ERANGE;

880 }

881

882 br eak;

883 case 44:

884 /* loglp(x<-1) */

885 exc.type = DOVAIN;

886 exc.name = "l oglp";

887 ieee_retval = setexception(3, 1.0);

888 exc.retval = ieee_retval;

889 if (lib_version == strict_ansi) {

890 errno = EDOM

891 } else if (!matherr(&exc))

892 if (lib_version ==C|ssue _4) {
893 (void) wite(2, "loglp: DOMAIN error\n"
894 }

18);

== ansi

18);

20);

12

1

new usr/src/lib/libmcomon/C/ _SVID error.c

895 errno = EDOM

896 }

897 br eak;

898 case 45:

899 /* 1ogb(0) */

900 exc.type = DOVAI N

901 exc. name = "l ogb";

902 ieee_retval = setexception(0, -1.0);

903 exc.retval = -HUGE_VAL;

904 if (lib_version == strict_ansi)

905 errno = EDOM

906 else if (!'matherr(&exc))

907 errno = EDOM

908 break;

909 case 46:

910 /* nextafter overflow */

911 exc.type = OVERFLOW

912 exc.nane = "nextafter";

913 /*

914 * The value as returned by setexception is +/-DBL_MAX in
915 * round-to-{zero,-/+Inf} node respectively, which is not
916 * usabl e.

917 */

918 (voi d) setexception(2, x);

919 ieee_retval = x >0 ? Inf : -Inf;

920 exc.retval = x > 0 ? HUGE_VAL : -HUGE_VAL;
921 if (lib_version == strict_ansi)

922 errno = ERANGE;

923 else if (!matherr(&exc))

924 errno = ERANGE;

925 br eak;

926 case 47:

927 /* scal b(x,inf) */

928 iy = ((int *)&)[H WORD ;

929 if (lib_version == c_issue_4)

930 /* SVID3: ERANGE in all cases */
931 errno = ERANGE;

932 else if ((x == 0.0 & iy >0) || (!'finite(x) & iy < 0))
933 /* EDOM for scal b(0, +inf) or scalb(inf,-inf) */
934 errno = EDOM

935 exc.retval = ieee_retval = ((iy <0)?x/ -y : x *vy),;
936 br eak;

937 }

938 switch (lib_version) {

939 case c_issue_4:

940 case ansi _1:

941 case strict_ansi:

942 return (exc.retval);

943 / * NOTREACHED */

944 defaul t:

945 return (ieee_retval);

946 }

947 /* NOTREACHED */

948 }

__unchanged_portion_omtted_

13

new usr/src/lib/libmcomon/C/ __tan.c

R R R R

5678 Sun May 4 03:04:58 2014
new usr/src/lib/libmcomon/C/ __tan.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkkkkkk Kk kkkkkkkkkkkkkkkkkk ok kk k ok k k%

__unchanged_portion_omtted_

106 #define one
107 #define ppl
108 #define pp2
109 #define pp3
110 #define qql
111 #define qqg2
112 #define t1
113 #define
114 #define
115 #define
116 #define
117 #define

0]

PRPOO~NOUIRAWNEFO

fa

00000000000

-, .-
oUThwN

119 /* I NDENT ON */

122 doubl e

123 __k_tan(doubl e x, double y, int k) {

124 double a, t, z, w=0.0L, s, ¢, r, rh, xh, xl;

124 double a, t, z, w, s, ¢, r, rh, xh, xI;

125 int i, j, hx, ix;

127 t = one;

128 hx = ((int *) &)[H WORD];

129 ix = hx & Ox7fffffff;

130 if (ix < 0x3fc40000) { /* 0.15625 */

131 if (ix < 0x3e400000) { /* 27-27 */

130 if (ix < 0x3fc40000)

131 if (ix < 0x3e400000) {

132 if ((i = (int) x) == 0) /* gen
133 w = X;

134 t =y,

135 } else {

136 zZ =X * X

137 t =y + (((t1* x) *z) * (t2 +z * (t
138 ((t4 +z) * (t5 +z * (16 + z)
139 w=Xx +1t

140 }

141 if (k ==0)

142 return (w;

143 /*

144 * Conpute -1/(x+T) with great care

145 * Let r = -1/(x+T), rh =r chopped to 20 bits.
146 * Also let xh = x+T chopped to 20 bits, xI =
147 * -1/ (x+T) =rh + (-1/(x+T)-rh) =rh + r*
148 * =rh + r*((1+rh*xh) +rh*xl).
149 */

150 rh=r =-one/ w

151 ((int *) &h)[LONORD] = O;

152 xh = w,

153 ((int *) &h)[LOWORD] = O;

154 xI = (x - xh) +t;

155 return (rh +r * ((one + rh * xh) + rh * x1));
156 1

157 j = (ix + 0x4000) & Ox7fff8000;

158 i = (j - 0x3fc40000) >> 15;

159 ((int *) &)[HWORD = j;

160 if (hx > 0)

161 x =y - (t-x);

erate inexact */

(x-xh)+T. Then
(1+rh*(x+T))

new

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

usr/src/lib/libmcomon/C/ __tan.c

el se

p2 +z * (pp3 + 2z)); [/* sin(x) */
q2 + z); /* cos(x) - 1 */

—~oND
oo

W)‘/ (one - (w- t));

| a*
0?-a-t: a+t);

s

*

Now try to conmpute [(1-T)/(a+c)] accurately
Let r = 1/(a+c), rh = (1-T)*r chopped to 20 bits.
Also let xh = at+c chopped to 20 bits, xl
(1-T)/(atc) =rh + ((1-T)/(a+c)-rh)
=rh + r*(1-T-rh*(a+c)
*((1-T-rh*xh)-rh*xl)
*(((1-rh*xh)-T)-rh*xl)

-~

=one / (a+ c);

(one - t) * r;

t *) &rh)[LONORD] 0;
a + c;

*) &xh) [LONORD]
(a - xh) + c;
z=rh+r * (((one - rh* xh) - t) - rh * xlI);
return (hx >=0? -z : 2z);

[[=11i=1]
=3
1]

0;

XANXANT T ok kK K K F * kA~

—_ S~

}

195 }

__unchanged_portion_onitted_

= (a-xh)+c.

Then

new usr/src/lib/libmconmmon/C asin.c 1
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
4870 Sun May 4 03:05:00 2014
new usr/src/lib/libm conmmon/C asin.c
IR R R R R R R R R R R RS R R R R RS R R RS R R RS REREREREEEEEEE]
__unchanged_portion_omtted_
~#define one xxx[0]

89 #define huge xxx[1]

90 #define pio2_hi xxx[2]

91 #define pi 02_1 0 xxx[3]

92 #define piod_hi xxx[4]

93 #define pSO xxX[5]

94 #define pS1 XxX[6]

95 #define pS2 XXX[7]

96 #define pS3 xxx[8]

97 #define pS4 xxx[9]

98 #define pS5 xxx[10]

99 #define qS1 xxx[11]

100 #define gS2 xxx[12]

101 #define gS3 xxx[13]

102 #define qS4 xxx[14]

103 /* I NDENT ON */

105 doubl e

106 asi n(double x) {

107 double t, w, p, g, ¢, r, s;

108 int hx, ix, i;

108 int hx, ix;

110 hx = ((int *))[HIWRD]

111 ix = hx & OX7fffffff

112 if (ix >= Ox3ff00000) { I* |x| >=1*/

113 if (((ix - Ox3ff00000) | ((int *) &)[LOWORD]) == 0)
114 /* asin(1l)=+-pi/2 with inexact */

115 return x * pio2_hi + x * pio2_|o;

116 else if (isnan(x))

117 #if defi ned(FPADD_TRAPS_| NCOVPLETE_ON_NAN)

118 return ix >= 0x7ff80000 ? x : (x - x) I (x - x);
119 /* assumes sparc-1like QNaN *

120 #el se

121 return (x - x) / (x - Xx); /* asin(]|x|>1) is NaN */
122 #endi f

123 el se

124 return _SVID libmerr(x, x, 2);

125 1

126 else if (ix < 0x3fe00000) { [* |x] <0.5*

127 if (ix < 0x3e400000) { /* if |x| < 2**-27 */

128 if ((i = (int) x) == 0)

128 if (huge + x > one)

129 return Xx; /* return x with inexact if
130 *x =0 */

131 }

132 el se

132 t = x * x;

133 p=t* (pSO+t * (pS1 +t * (pS2 +t * (pS3 +
134 t * (pS4 +t * pSh)))));

135 g=one+t * (qS1 +t * (qS2 +t * (qS3 +t * gq$4)));
136 w=p/ q

137 return x + x * w

138 }

139 /* 1> |x|] > 0.5 */

140 w = one - fabs(x);

141 t =w* 0.5;

142 p=t*(pSO+t*(pSl+t*(p82+t*(pS3+t*(pS4+t*p35)))));
143 qg=o0one+t * (gSL +t * (qS2 +t * (gS3 +t * gS$4)));

144 s = sqrt(t);

145 if (ix >= OX3FEF3333) { /* if |x| > 0.975 */

new usr/src/lib/libm comon/C/asin.c

146 w
147 t
148
149
150
151
152
153
154
155
156
157
158
159 }
__unchanged_portion_onitted_

p/ q;
pio2_hi -

el se {

—~

w

~aoT - o0o~s

r
- 2.
(

}
return hx >

(2.0 * (s +s *w -

*) &w) [LOWORD]
* W) /

0+
p -

pio2_lo0);

= 0;

(s +w;

(pio2_lo - 2.0 * c);
w,

a);

new usr/src/lib/libm comon/C expnl. c 1

R R R R

8501 Sun May 4 03:05:02 2014
new usr/src/lib/libm comon/C expnl. c

hkkkkkkkkkkkkkkkkkkhkkhkhkkkhkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k k%

__unchanged_portion_omtted_
d

148 #define one xxx[0

149 #define huge xxx[1

150 #define tiny XXX[2

151 #define o_threshold xxx[3

152 #define | n2_hi xxx|[4

153 #define In2_lo xxX[5

154 #define invln2 xxX[6

155 #define QL XxX[7

156 #define Q XXX[8

157 #define @B xxx[9

158 #define Q4 xxx[10]

159 #define &b xxx[11]

161 doubl e

162 expnil(double x) {

163 double y, hi, lo, ¢ =0.0L, t, e, hxs, hfx, ri;

163 double y, hi, lo, c, t, e, hxs, hfx, ril;

164 int k, xsb;

165 unsi gned hx;

167 hx = ((unsigned *) &x)[H WORD]; /* high word of x */

168 xsb = hx & 0x80000000; /* sign bit of x */

169 if (xsb == 0)

170 y = X;

171 el se

172 y = -X; I*y = |x| */

173 hx &= Ox7fffffff; /* high word of |x]| */

175 /* filter out huge and non-finite argunent */

176 /* for exanple exp(38)-1 is approxi mat ely 3.1855932e+16 */

177 if (hx >= 0x4043687A) { if |x|>=56%In2 (~38. 8162...)
178 if (hx >= 0x40862E42) { /* if |x|>=709.78... ->inf */
175 /* filter out huge and non-finite arugr'rent */

176 if (hx >= 0x4043687A) { [* if |x|>=56%In2 */

177 if (hx >= Ox40862E42) { /* if |x|>=709.78... */
179 if (hx >= Ox7ff00000) {

180 if (((hx & Oxfffff) | ((int *) &)[LOWORD])
181 =0

182 return x * x; /* + ->* for Cheetah */
183 el se

184 return xsb == 0 ? x : -1.0; /* exp(+
185 }

186 if (x > o_threshol d)

187 return huge * huge; /* overflow */

188 }

189 if (xsb !'=0) { /* x < -56*In2, return -1.0 W inexact */
190 if (x +tiny <0.0) /* raise inexact */
191 return tiny - one; /* return -1 */
192 }

193 }

195 /* argunent reduction */

196 if (hx > 0x3fd62e42) { /* if |x] >0.51n2 */
197 if (hx < Ox3FFOA2B2) { /* and [x| < 1.5 In2 */
198 if (xsb == 0) { /* positive nunber */

197 if (xsb == 0) {

199 hi = x - In2_hi;

200 lo =1n2_lo;

201 k = 1;

202

}
203 else { /* negative nunber */

202
204
205
206
207
208
209
208
210
211
212
213
214
215
216
215
217
218
219
220
221
222
221
223

225
226
227
228
229
230
231
232
233
230
231
232
234
235
236
237
238
237
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

new usr/src/lib/libm comon/C expnl. c

X + In2_hi;
-1 n2_lo;

k = (int) (invIn2 * x + (xsbh ==0? 0.5: -0.5));
t =

el se {
hi =
lo =
k =-1
}
else{ /* |x] >1.51n2 */
el se {
hi =x -t *In
lo=1t * In2_lo;
})
X = hi - lo;
c =(hi - x) - lo; /* still
c =(hi - x) - lo;

}
else if (hx < 0x3c900000) {
t = huge + x;

el se /* |x] <= 0.5 1n2 */
el se

k = 0;
/* x is nowin primary range */
hfx = 0.5 * x;
hxs:x*hfx
t =3.0-r1
e:hxs*((rl—t)/(GO—x*t))
if (k ==0) /* |x] <= 0.5 1n2 */

return x - (x * e - hxs);
el se { /* |x] > 0.5 1n2 */
if (k ==0)

return x - (x * e - hxs);
el se {

e=(x*(e-c)-c)

e -= hxs;

if (k ==-1)

return 0.5 * (x -
if (k ==
if (k ==1)

if (x < -0.25)

/* t*In2_hi is exact here */

|x] > 0.5 1n2 */

/* when | x| <2**-54, return x */

/* return x winexact when x !'= 0 */
return x - (t - (huge + x));

/* cis 0 */

0.5;

return -2.0 * (e - (x + 0.5));

el se

return one + 2.0 * (x - e);

}
#endif /* | codereview */

if (k<=-2]] k >56) {
y = one - (e -

((int *) &y)[HIV‘EQD]

returny - one;

}
t = one;
if (k <20) {
((int *) &)[H WORD|
y=t- (e-x);
((int *) &)[H WORD]
el se {
((int *) &t)[H WORD
y =X - (e +t);
y += one
((int *) &y) [H VWORD]

/* suffice to return exp(x)-1 */

= k << 20;

0x3ff 00000 - (0x200000 >> Kk);
/

*t =1- 27k */
k << 20;

(0x3ff - k) << 20; [* 2°-k */

+= k << 20;

new usr/src/lib/libm comon/C expnl. c

262 }
263

264 return vy,
265 }

new usr/src/lib/libmcomon/C/jn.c

R R R R

7265 Sun May 4 03:05:04 2014
new usr/src/lib/libmcomon/Cjn.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkk ok k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #pragma weak jn = _ jn

31 #pragma weak yn = __yn

33 /*

34 * floating point Bessel’s function of the 1st and 2nd ki nd
35 * of order n: jn(n,x),yn(n,Xx);

36 *

37 * Special cases:

38 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
39 * yO(-ve)=yl(-ve) =yn(n, -ve) are NaN with invalid signal.
40 * Note 2. About jn(n,x), yn(n,Xx)

41 = For n=0, jO(x) iIs called,

42 = for n=1, j1(x) is called,

43 * for n<x, forward recursion us used starting

44 * fromvalues of jO(x) and j1(x).

45 * for n>x, a continued fraction approxi mation to

46 * j(n,x)/j(n-1,x) is evaluated and then backward

47 = recurS| on is used starting froma supposed val ue

48 * for j(n,x). The resulting value of j(0,x) is

49 * conpared with the actual value to correct the

50 * supposed val ue of j(n,x).

51 *

52 * yn(n,x) is simlar in all respects, except

53 * that forward recursion is used for all

54 = val ues of n>1.

55 *

56 */

58 #include "libmh"

59 #include <float.h> /* DBL_MN */
60 #include <val ues. h> [* X_TLCSS */
61 #include "xpg6.h" /* __xpg6 */

new usr/src/lib/libmcomon/C/jn.c

63 #defi ne GENERI C doubl e

65 static const GENERIC

71
72

127

invsqrtpi = 5.641895835477562869480794515607725858441e- 0001,
two = 2.0,
zero = 0.0,
one = 1.0;
GENERI C
jn(int n, GENERIC x) {
int i, sgn;
CENERIC a, b, tenp = 0;
GENERIC a, b, tenp;
GENERIC z, w, o0x, on;
/* J(-n,x) = (-1)*n * J(n, x), IJ(n, -x) = (-1)"n * J(n, Xx)
* Thus, J(-n,x) = J(n,-Xx)
*
/
ox = x; on = (GENERI Q) n;
i f (n<0){
n=-n;
X = -X;
}
if(isnan(x)) return x*x; /* + ->* for Cheetah */
if (!((int) _lib_version == libm.ieee ||
(__Xpg6 & CQQSUS/3 nmat h errexcept) 1=0)) {
if(fabs(x) > X_TLOSS) return _SVID Iibmerr(on,ox, 38);
}
if(n==0) return(joO(x));
if(n==1) return(j1(x));
i f((n&l)==0)
sgn=0; /* even n */
els
sgn = signbit(x); /* old n */
x = fabs(x);
if(x == zero||!finite(x)) b = zero;
el se if((CGENERI C) n<=x) { /* Safe to use
J(n+1, x)=2n/x *J(n, x)-J(n-1,x)
*
if(x>1.0e91) { /* x >> n**2
Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
Let s=sin(x), c=cos(x),
xn=x-(2n+1l)*pi/ 4, sqt2 = sqrt(2),then
n si n(xn)*sqt 2 cos(xn)*sqt2
0 s-C c+s
1 -s-C -cts
2 -s+C -Cc-s
3 s+c c-s
*/
switch(n&3) {
case 0: tenp = cos(x)+sin(x); break;
case 1: tenp = -cos(x)+sin(x); break;
case 2: tenp = -cos(x)-sin(x); break;
case 3: tenp = cos(x)-sin(x); break;
}
b = invsqrtpi*tenp/sqrt(x);
} else {
a =jo(x);
b =11(x);
for(i=1;1<n;i++){
tenp = b
b = b*((GENERI O (i+i)/x) - a; /* avoid underflow */
a = tenp;

new usr/src/lib/libmcomon/C/jn.c 3 new usr/src/lib/libmcomon/C/jn.c

128 } 194 temp = b;

129 } 195 b = ((i+i)/x)*b - a;

130 } else { 196 a = tenp;

131 |f(x<1e 9) { /* use J(n,x) = 1/ n'*(x/2)"n */ 197 }

132 b = pow(O0. 5*x (GENERICQ) n); 198 } else {

133 if (b' =zer o) 199 for(i=n-1;i>0;i--){

134 for(a= one|—1|<n|++) a *= (GENERI Q)i ; 200 terrp:b

135 b = b/a; 201 b = ((i+i)/x)*b - a;

136 } 202 a = tenp;

137 } else { 203 i f(b>1e100) {

138 /* use backward recurrence */ 204 al/=b;

139 /* X xN2 xN2 205 t /=b;

140 *od(n,x)/JI(n-1,X) = ---- ------ e 206 b =1.0;

141 * 2n - 2(n+l) - 2(n+2) 207 }

142 * 208 }

143 * 1 1 1 209 }

144 * (for large x) S L 210 b = (t*j0o(x)/b);

145 * 2n 2(n+1) 2(n+2) 211 }

146 * - - ------ R - 212 }

147 * X X X 213 if(sgn==1) return -b; else return b;

148 * 214 }

149 * Let w = 2n/x and h=2/x, then the above quotient

150 * is equal to the continued fraction: 216 GENERIC

151 * 1 217 yn(int n, GENERIC x) {

152 * R R R R 218 int i;

153 * 1 219 int sign;

154 * R 220 CENERIC a, b, tenp = 0, ox, on;

155 * 1 220 CENERIC a, b, tenp, ox, on;

156 * wth - ---------

157 * w+2h - .. 222 ox = x; on = (GENERI C)n;

158 * 223 if(isnan(x)) return x*x; /* + ->* for Cheetah */
159 * To determ ne how many terms needed, |et 224 if (x <= zero) {

160 * Q0 =w Q1) w(w+h) - 225 if(x==zero) {

161 * Q k) = (w+k* h) Q(k 1) - Q(k 2), 224 if (x <= zero)

162 * When (k) > good for single 225 i f(x==zero)

163 * When (k) > 1e9 good for double 226 /* return -one/zero; */

164 * When Q k) > lel7 good for quaduple 227 return _SVID |ibm err((GENERI On,x,12);
165 */ 228 } else {

166 /* determin k */ 228 el se

167 GENERIC t, v; 229 /* return zerol/ zero; */

168 doubl e g0, g1, h, tnp; int Kk, 230 return _SVID |ibm err((GENERI On, x,13);
169 w = (n+n)/(double)x; h = 2 0/ (doubl e) x; 231 }

170 g0 =w, z = wh; ql = wz 1.0; k=1; 232 }

171 whi | e(q1<l 0e9) { 233 #endif /* | codereview */

172 +=1; z += h; 234 if (I((int) _lib_version == libm.ieee ||

173 trrp = z*ql - qO; 235 (__Xpg6 & _C99SUSv3_mat h_errexcept) != 0)) {
174 g0 = q1i; 236 if(x > X_TLOSS) return _SVID |ibmerr(on, ox, 39);

175 ql = tnp; 237 }

176 } 238 sign = 1;

177 m = n+n; 239 i f(n<0){

178 for(t=zero, i = 2*(n+k); i>=m i -=2) t = one/(i/lx-t); 240 n=-n;

179 a=t; 241 if((n&l) == 1) sign = -1;

180 b = one; 242 }

181 /* estimate log((2/x)”n*n!') = n*log(2/x)+n*I n(n) 243 if(n==0) return(yO0(x));

182 hence, if n*(log(2n/x)) > ... 244 if(n==1) return(sign*yl(x));

183 singl e 8.8722839355e+01 245 if(!finite(x)) return zero;

184 doubl e 7.09782712893383973096e+02

185 | ong doubl e 1.1356523406294143949491931077970765006170e+04 247 if(x>1.0e91) { /* x >> n**2

186 then recurrent value may overflow and the result is 248 Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
187 l'ikely underflow to zero 249 Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/ x*pi)
188 */ 250 Let s=sin(x), c=cos(x),

189 tnp = n; 251 xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
190 v = two/ X

191 trrp = tnp | og(fabs(v*tm)); 253 n si n(xn)*sqt 2 cos(xn)*sqt 2
192 if(t rrp<7 09782712893383973096e+02) { 254 e oo
193 for(i=n-1;i>0;i--){ 255 0 s-C c+s

new usr/src/lib/libmcomon/C/jn.c

256 1 -s-¢C -Cc+s
257 2 -s+c -c-s
258 3 s+C c-s
259 */

260 switch(n&3) {

261 case tenp sin(x)-cos(x); break;

262 case
263 case
264 case
265
266
267 } else {

-sin(x)-cos(x); break;
-sin(x)+cos(x); break;
sin(x)+cos(x); break;

tenp
tenp
tenp

AN

o~
1

invsqgrtpi *tenp/sqrt(x);
268

a = yo(x);
269 b y1(x);
270 /

271 * fix 1262058 and take care of non-default rounding

272 */

273 for (i =1; i <n; i++) {

274 enp
f (b

275
276
277 break
278 = a;
279 tenp;

280 }

281

282 if(sign>0) return b; else return -b;
283 }

_O""

= b;
(GEERIC) (i +i) /1 x
- DBL_MAX)

o T

new usr/src/lib/libm comon/C | oglp.c

R R R R

6359 Sun May 4 03:05:06 2014

new usr/src/lib/libm comon/C/ | oglp.c

hkkkkkkkkkkkkkkkkhkkkkhkhkkkhkkkkkkkkkkkkkkkkhkkkkkkkk ok k ok k k%

unchanged portl on_omtted_
0

112
113
114
115
116
117
118
119
120
121
122

124
125
126
126
127

129
130

132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

“#define xxx[0]

#def i ne I n2_| o xxx[1]

#define two54 xxx[2]

#define Lpl xxXx[3]

#define Lp2 xxXx[4]

#define Lp3 xxX[5]

#define Lp4 XxX[6]

#define Lp5 XXX[7]

#define Lp6 xxx[8]

#define Lp7 xxx[9]

#define zero xxx[10]

doubl e

| oglp(double x) {
double hfsq, f, ¢ =0.0, s, z, R u;
double hfsq, f, ¢, s, z, R u
int , hx, hu, ax;
hx = ((int *)&)[H WORD]; /* high word of x */
ax = hx & Ox7fffffff;

#endi

f

if (ax >= 0x7ff00000) { /* x is inf or

}
k = 1;

if (hx < Ox3FDA827A) {

return (

nan */

if (((hx - Oxfff00000) | ((int *)&)[LOMRD]) == 0) /* -inf */
return (_SVID libmerr(x, x, 44));
X * X);
/* x < 0.41422 */
if (ax >= 0x3ff00000) /* x <= -1.0 */
return (_SVID libmerr(x, x, == -1.0 ? 43 : 44));

if (ax < 0x3e200000) {

[* x| < 2%*- 29 */
if (twb54 + x > zero && /* rai se i nexact */

ax < 0x3c900000) /* | x| < 2**-54 */
return (x);
el se
return (x - x * x * 0.5);
1f (hx >0 || hx <= (int)Oxbfd2bec3) { /* -0.2929<x<0.41422 */
k = 0;
f =x;
hu = 1;
) }
/* We will initialize "¢ here. */
/* ! codereview */
if (k!'=0) {
if (hx < 0x43400000) {
u=10 + x;
hu = ((int *)&u)[H WORD] ; /* high word of u */
k = (hu >> 20) - 1023;
/*
* correction term
*/
c=k>07?1212.0-(u-x):x-(u-1.0);
c /= u;
} else {

c
1]

hu =X:((i nt *)&u)[H WORD] ;
(hu >> 20) - 1023,
c 0;

/* high word of u */

new usr/src/lib/libm comon/C/ | oglp.c

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

}
hu &= 0xO000fffff;
if (hu < 0x6a09e)

((int *)&u)[H WORD] = hu |
} else { /
k += 1;
((int *)&)[H WORD] = hu |
) hu = (0x00100000 - hu) >> 2;
f =u- 1.0
}
hfsq = 0.5 * f *
if (hu == 0) { [* | f] < 2*¥*-20 */
if (f == zero) {
if (k ==0)
return (zero);
/* We already initialized 'c’
#endif /* | codereview */

c += k * In2 lo;

/* normalize u */
0x3f f 00000;
* normalize u/2 */

0x3f e00000;

before, when (k !'= 0)

return (k * Tn2_hi

+c);

}
R = hfsq * (1.0 - 0.66666666666666666 * f);
0

if (k ==

i return (f - R);

return (k * In2_hi - ((R- (k * In2_lo +¢c)) - f));
}s:f I (2.0 + f);
zZ =s * s;
R=z*(Lp1+z*(L +2z * (Lp3 +2z * (Lp4d +z * (Lp5 +
) oz (LPG+Z* Lp7)))))):
if (k ==0)

return (f - (hfsq - s * (hfsq + R));
return (k * n2h - (hfsq- (s * (hfsg + R +

k * In2_ c))) - 1))

}

*/

new usr/src/lib/libm comon/C/ nextafter.c 1

R R R R

2274 Sun May 4 03:05:07 2014
new usr/src/lib/libm comon/C nextafter.c

hkkkkkkkkkkkkkkkkhkkkkhkhkkkhkkkkkkkkkhkhkkkkkkkkkkkk ok k ok k k%

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License")

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing perm ssions
11 * and limtations under the License.

12 *

13 * Wen distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]
18 =

19 * CDDL HEADER END

20 */

21 [*

22 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

23 =/

24 | *

25 * Copyright 2005 Sun Mcrosystens, Inc. Al rights reserved.

26 * Use is subject to |license terns.

27 =/

29 #pragma weak nextafter = __nextafter

30 #pragma weak _nextafter = __nextafter

32 #include "libmh"

33 #include <float.h> /* DBL_M N */

35 doubl e

36 nextafter(double x, double y) {

37 int hx, hy, k;

38 doubl e ans;

39 unsi gned | X;

40 vol atil e doubl e dumry

41 #endif /* | codereview */

43 hx = ((int *)&x)[HIWRD]

44 Ix = ((int *)&x)[LONORD ;

45 hy = ((int *)&)[H WORD ;

46 k = (hx & ~0x80000000) | Ix;

48 if (x ==vy)

49 return (y); /* C99 requirenent */

50 if (x!=x|] yl=y)

51 return (x * vy);

52 if (k ==0) { /[* x =0 */

53 k = hy & 0x80000000;

54 ((int *)&ans)[HIW.PD] = k;

55 ((int *)&ns)[LOMORD] = 1;

56 } else if (hx >= 0) {

57 if (x >y) {

58 ((int *)&ns)[LOMORD] = Ix - 1;

59 k = (Ix==0)? hx - 1: hx;

60 ((int *)&ans)[H WORD] = k;

61 } else {

62 ((int *)&ns)[LONMORD] = Ix + 1;

new usr/src/lib/libm comon/C/ nextafter.c

63 = (Ix == Oxffffffff)? hx + 1 : hx;
64 ((|nt *) &ns) [HWORD] = k;

il{‘l'[*)&ans) [LOMORD] = Ix - 1;
= (Ix ==0)? hx - 1: hx;
i *) &ns) [H WORD] k;

e
72 ((|nt *)&ans) [LONMORD] = Ix + 1;
73 (Ix == Ooxffffffff)? hx + 1 : hx;
74 ((|nt *)&ans) [HHWORD] = k;
75 }

77 k = (k >> 20) & Ox7ff;

78 if (k == 0x7ff) {

79 /* overflow */

80 return (_SVID |ibmerr(x, y, 46));

81 #if !defined(__lint)

82 } elseif (k == {

83 /* under fl ow */

84 dummy = DBL_M N * copyS|gn(DBL MN, Xx);

40 vol atile double dummy = DBL_MN * copysi gn(DBL_M N,

85 #endi f

86

87 return (ans);

88 }
__unchanged_portion_onitted_

X);

new usr/src/lib/libm comon/C/ pow. c 1 new usr/src/lib/libm comon/C/ pow. c 2
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 214 If ((J << (20 - k)) = ahy)
10202 Sun May 4 03:05:08 2014 215 yi si nt (j &1);
new usr/src/lib/libm comon/C/ pow. c 216 }
IR R R R R R R R R R R RS R R R RS RS R RS R R SRR R ERREREREEEEEEEE] 217 }
__unchanged_portion_omtted_ 218
219 /* special value of y */
154 extern const double _TBL_exp2_hi[], _TBL_exp2_lo[]; 220 if (ly ==0) {
155 static const double /* poly app of 27x-1 on [-1le-10,2"-7+1e-10] */ 221 if (ahy == 0x7ff00000) { /*y |s +-inf */
156 El = 6.931471805599453100674958533810346197328e- 0001, 222 if (((ahx - 0x3ff00000) | Ix) == 0) {
157 E2 = 2.402265069587779347846769151717493815979e- 0001, 223 if ((__xpg6 & _C99SUSv pow) 1= 0)
158 E3 = 5.550410866475410512631124892773937864699¢e- 0002, 224 return (one);
159 E4 = 9.618143209991026824853712740162451423355e- 0003, 225 /* C99: (-1)**+-inf =1 */
160 E5 = 1.333357676549940345096774122231849082991e- 0003; 226 el se
227 return (y - vy);
162 doubl e 228 /* Sun: (+-1)**+-inf = NaN */
163 pow(doubl e x, double y) { 229 } else if (ahx >= 0x3ff00000)
164 doubi e z, ax; 230 /* (| x]>1)**+,-inf =inf,0 */
165 doubl e y1, y2 wl, w2, 231 return (shy == 0 ? y : zero);
166 int sbx, shy, j, k ylsint; 232 el se /* (| x]<1)**-,+inf =inf,0 */
167 int hx, hy, ahx, ahy; 233 return (shby !'=0 ? -y : zero);
168 unsigned Ix, ly; 234 }
169 int *pz = (int *) &z; 235 1 f (ahy == 0x3ff00000) ({ /* yis +-1%*
236 |f(sby':0){/*y|s—l*/
171 hx = ((int *) &)[H WORD] ; 237 if (x == zero) [/* divided by zero */
172 Ix = ((unsigned *) &x)[LOAORD]; 238 return (_SVID libmerr(x, y, 23));
173 hy = ((int *) &)[H WORD]; 239 else if (ahx < 0x40000 || ((ahx - 0x40000) |
174 ly = ((unsigned *) &y)[LONORD]; 240 Ix) == 0) /* overflow */
175 ahx = hx & ~0x80000000; 241 return (_SVID libmerr(x, vy, 21));
176 ahy = hy & ~0x80000000; 242 el se
177 if ((ahy | ly) ==0) { [/* y==zero */ 243 return (one / x);
178 if ((ahx | Ix) == 0) 244 } else
179 = VIDI|bmerr(x, y, 20); [* +-0%*+-0 */ 245 return (x);
180 else if ((ahx | (((I x| -1x) >> 31) & 1)) > 0x7ff00000) 246 }
181 Dlibmerr(x, y, 42); NaN**+-0 */ 247 if (hy == 0x40000000) { /*yis 2*
182 el se 248 if (ahx >= 0x5ff00000 && ahx < 0x7ff00000)
183 Z = one; /* x**+-0 = 1 */ 249 return (_SVID libmerr(x, y, 21));
184 return (z); 250 1+ x*x overflow */
185 } else if (hx == 0x3ff00000 && I x == 0 && 251 else if ((ahx < Oxle56a09e && (ahx | Ix) !'= 0)
186 (__xpg6 & _C99SUSv3_pow) != 0) 252 (ahx == 0Oxle56a09e && | x < 0x667f 3bcd))
187 return (one); /* C99: 1**anything = 1 */ 251 else if (ahx < Ox1le56a09e && (ahx | Ix) !'=0
188 else if (ahx > Ox7ff00000 || (ahx == Ox7ff00000 & Ix !'= 0) || 252 ahx == Oxle56a09e && | x < 0x667f3bcd)
189 ahy > 0x7ff00000 || (ahy == Ox7ff00000 && Iy != 0)) 253 return (_SVID libmerr(x, y, 22));
190 return (x * y); /* +-NaN return x*y; + -> * for Cheetah */ 254 /% x*x underfl ow */
191 /* includes Sun: 1**NaN = NaN */ 255 el se
192 sbx = (unsigned) hx >> 31; 256 return (x * x);
193 sby = (unsigned) hy >> 31; 257 }
194 ax = fabs(x); 258 1 f (hy == 0x3fe00000)
259 if (!((ahx | Ix) == 0]| ((ahx - Ox7ff00000) | Ix) ==
196 /* 260 0 || sbx == 1))
197 * determne if yls an odd int when x < 0 261 return (sqrt(x)); /* yis 0.5 and x > 0 */
198 * yisint =0 ... y is not an integer 262 }
199 *yisintzl. y is an odd int 263 }
200 * yisint = 2 . y is an even int 264 /* special value of x */
201 */ 265 if (Ix ==0) {
202 yisint = 0; 266 if (ahx == 0x7ff00000 || ahx == 0 || ahx == 0x3ff00000) {
203 1f (sbx) { 267 /* x is +-0,+-inf, 1*/
204 if (ahy >= 0x43400000) 268 z = ax;
205 yisint = 2; /* even integer y */ 269 if (sby == 1) {
206 else if (ahy >= Ox3ff00000) { 270 z = one | z; /* z = |x|**y */
207 = (ahy >> 20) - Ox3ff; /* exponent */ 271 if (ahx == 0)
208 |f (k > 20) { 272 return (_SVID libmerr(x, y, 23));
209 ly >> (52 - k); 273 }
210 |f ((J << (52 - k)) = Iy) 274 if (sbx == 1) {
211 yisint = 2 - (J & 1); 275 if (ahx == 0x3ff00000 && yisint == 0)
212 } else if (Iy——O){ 276 z = _SVID libmerr(x, y, 24);
213 j = ahy >> (20 - k); 277 /* neg**non-integral is NaN + invalid */

new usr/src/lib/libm comon/C/ pow. c

278
279
280
281
282
283
284
285
286
287
288
289

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343 }

else if (y|S|nt == 1)
= -z; /* (x<0)**odd = -(|x|**odd) */

return (z);

}

/* (x<0)**(n0n-int) is NaN */
if (sbx == 1 && yisint == 0)
return (_SVID_libmerr(x, y, 24));
/* Now ax is finite, yis flnlte */
/* first conpute Iogz(ax) = wi+w2, with 24 bits wl */
wl = log2_x(ax, &w2);

/* split up y into yl+y2 and conpute (yl+y2)*(wl+w2) */
if (((ly & Oox07ffffff) == 0) || ahy >= 0x47e00000 ||
ahy <= Ox38100000) {

/* no need to split if yis short or too large or too small */
yl =y * wl,
y2 =y * w2
} else {
yl = (double) ((float) y);
y2 = (y - yl) * wl +y * w2
yl *= wi;
}
z =yl +y2;
j = pz[H WORD ;
if (] >= 0x40900000) { [* z >= 1024 */
if (!(j == 0x40900000 && pz[LONORD] == 0)) /* z > 1024 */
return (_SVID_libmerr(x, y, 21)); /* overflow */
el se {
w2 =yl - z;
W2 += y2;

/* rounded to inf */
if (w2 >= -8.008566259537296567160e- 17)
return (_SVID_libmerr(x, y, 21));
/* overflow */

}
} elseif ((] & ~0x80000000) >= 0x4090cc00) { /* z <= -1075 */

if (!(j == 0xc090cc00 && pz[LOAMORD] == 0)) /* z < -1075 */
return (_SVID libmerr(x, y, 22)); /* underflow */
el se {
w2 =yl - z;
w2 += y2;
if (w2 <= zero) /* underflow */

return (_SVID libmerr(x, vy, 22));

*
* conpute 2**(k+f[j]+g)
*

/

k = (int) (z * 64.0 + (((hy ~ (ahx - 0x3ff00000)) > 0) ? 0.5 : -0.5));

j = k & 63;

wl = y2 - ((doubl e) k * 0.015625 - y1);

w2 = _TBL_exp2_hi[]];

z = _TBL_exp2_lo[]] +(V\/2*W.l) * (E1 +wl * (E2 + wl * (E3 + wl *
(E4 + wl * E5))));

zZ += W2;

k >>= 6;

if (k< -1021)
z = scalbn(z, k);

el se /* subnormal output */

pz[HWORD] += k << 20;
if (sbx == 1 & yisint == 1)

z = -2; /* (-ve)**(odd int) */
return (z);

new usr/src/lib/libm comon/LD __cosl.c 1 new usr/src/lib/libmcomon/LD __cosl.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 63 */
4615 Sun May 4 03:05:10 2014
new usr/src/lib/libm comon/LD __cosl.c 65 #include "libmh"
IR R R R R R R R R R R RS R R R R RS RS R R RS SRR SRR R ERREREREEEEEEEE]
1/* 67 #include <sys/isa_defs.h>
2 * CDDL HEADER START
3 * 69 extern const |ong double _TBL_cosl_hi[], _TBL_cosl_lo[], _TBL_sinl_hi[];
4 * The contents of this file are subject to the terns of the 70 static const |ong double
5 * Common Devel opnent and Distribution License (the "License"). 71 one = 1.0,
6 * You may not use this file except in conpliance with the License. 72 1*
7 73 * |sin(x) - (X+ppl*x~3+...+ pp5*x~1l)| <= 27-122.32 for |x|<1/64
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 */
9 * or http://ww.opensol aris.org/os/licensing. 75 ppl = -1.666666666666666666666666666586782940810e- 0001L,
10 * See the License for the specific |anguage governing perm ssions 76 pp2 = 8.333333333333333333333003723660929317540e-0003L,
11 * and limtations under the License. 77 pp3 = -1.984126984126984076045903483778337804470e- 0004L,
12 = 78 pp4 = 2.755731922361906641319723106210900949413e- 0006L,
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 79 pp5 = -2.505198398570947019093998469135012057673e- 0008L,
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 /*
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 81
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 * |cos(x) - (1l+gl*x"2+...+q8*x"16)| <= 27-117.11 for |x|<= 0.15625
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 83
18 = 84 ql = -4.999999999999999999999999999999756416975e- 0001L,
19 * CDDL HEADER END 85 g2 = 4.166666666666666666666666664006066577258e- 0002L,
20 */ 86 g3 = -1.388888888888888888888877700363937169637e-0003L,
87 g4 = 2.480158730158730158494468463031814083559e- 0005L,
22 /* 88 g5 = -2.755731922398586276322819250356005542871e- 0007L,
23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved. 89 6 = 2.087675698767424261441959760729854017855e- 0009L,
24 */ 90 q7 = -1.147074481239662089072452129010790774761e-0011L,
25 [* 91 g8 = 4.777761647399651599730663422263531034782e- 0014L,
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved. 92 /*
27 * Use is subject to license terns. 93 *
28 */ 94 * |cos(x) - (1+gql*x~2+. ..+ qg5*x"10)| <= 27-123.84 for |x|<=1/128
95 */
30 /* I NDENT OFF */ 96 qql = -4.999999999999999999999999999999378373641e- 0001L,
31 /* 97 qq2 = 4.166666666666666666666665478399327703130e- 0002L,
32 * __k_cosl(long double x; long double y) 98 qq3 = -1.388888888888888888058211230618051613494e- 0003L,
33 * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 99 qq4 = 2.480158730156105377771585658905303111866e- 0005L,
34 * Input x is assumed to be bounded by ~pi/4 in magnitude. 100 qg5 = -2.755728099762526325736488376695157008736e- 0007L;
35 * Input y is the tail of x. 101 /* | NDENT ON */
36 * 102 1 ong doubl e
37 * Table | ook up algorithm 103 __k_cosl (1 ong double x, long double y) {
38 * 1. by cos(-x) = cos(x), we nay replace x by |x| 104 long double a, t, z, w
39 * 2. if x < 25/128 = [0x3ffc4000, 0] = 0.15625 , then 105 int *pt = (int *) &, *px = (int *) &x;
40 * if x<2"—57(hx<0x3fc60000 0), return 1.0 with inexact if x!=0 106 int i, J, hx, ix;
41 * z = XxX*X;
42 * if x <= 1/128 = 2**-7 = 0.0078125 108 t = 1.0;
43 = cos(x) =1. 0+z (gql+z*(qq2+z*(qq3+z*(qq4+z*qq5)))) 109 #if defi ned(|386) || defined(__and64)
44 * el se 110 XTO (px, hx);
45 * cos(x)=1.0+z*(ql+ ... z*q8) 111 #el se
46 * 3. else 109 #if defined(_BlI G ENDI AN)
47 = ht = (hx + 0x400) &x7ffff 800 (round x to a break point t) 112 hx = px[0];
48 * It =0 111 #el se
49 * i = (hy-0x3ffc4000)>>11; (i <=64) 112 XTO (px, hx);
50 * X' = (x - t)+y (x| ~<=2n-7 113 #endi f
51 = By 114 ix = hx & Ox7fffffff;
52 * cos(t+x) 115 if (ix < 0x3ffc4000) {
53 * = cos(t)cos (x)-sin(t)sin(x") 116 if (ix < Ox3fc60000)
54 * = cos(t)(1+z*(qql+z*qq2))-[si n(t)] x*(1+z*(ppl+z*pp2)) 117 if ((i = (int) x) == 0)
55 * = cos(t) + [cos(t)]*(z*(qgql+z*qQ2))- 118 return (one); /* generate inexact */
56 * [sin(t)]*x*(1+z*(ppl+z*pp2)) 119 zZ =X * Xx;
57 *
58 * Thus, 121 if (ix < 0x3ff80000) /* 0.0078125 */
59 = let a= _TBL_cos_hi[i], b = _TBL_cos_lo[i], c= _TBL_sin_hi[i], 122 return (one + z * (gqql + z * (gqg2 + z * (qq3 + z *
60 * X = (x-t)+y 123 (994 + z * qg5)))));
61 * zZ = X*X; 124 el se
62 * cos(t+x) = a+(b+ (-c*x*(1l+z*(ppl+z*pp2))+a*(z*(qql+z*qQg2))) 125 return (one + z * (gl +z * (g2 +z * (g3 +z * (g4 +

new usr/src/lib/libm comon/LD __cosl.c

gg } z* (g5 +z* (g6 +2z* (q7 +z * 08))))))));
128 i = (ix + 0x400) & Ox7ffff800

129 i = (j - Ox3ffc4000) >> 11;
130 #if defined(__i386) || defined(__and64)
131 I TOX(j, pt)
132 #el se
130 #if defined(_BlI G_ENDI AN)
133 pt[O] =j;
132 #el se
133 I TOX(j, pt)
134 #endi f
135 if (hx > 0)
136 X =y - (t - x);
137 el se
138 X = (-y) - (t +x);
139
140
141
142
143
144 t = _TBL
145 return (
146 }
__unchanged_portion_omtted_

s—No

new

* ok kK

new

* ok ok *

usr/src/lib/libm comon/LD __rempio2l.c

B R

1935 Sun May 4 03:05:12 2014
usr/src/lib/libm comon/ LD

em pio2l.c

kI kkkkkkkkkkkkkkkkkkk k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensolaris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying

information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

* Copyright 2011 Nexenta Systenms, Inc. Al rights reserved.
*

/
/*

* Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
* Use is subject to license terns.
*
/
/* __rempio2l (x,y)
*

* return the renminder of x rempi/2 in y[0]+y[1]
* by calling __rempio2m
*/

#i nclude "libmh"
#i ncl ude "I ongdoubl e. h"
#endif /* | codereview */
extern const int _TBL_ipio2l _inf[];
static const |ong double

two24] = 16777216. 0L,

pi 04 0. 7853981633974483096156608458198757210495L;
int
__rempio2l (long double x, |ong double *y)
I ong doubl e z,
doubl e t[3] v[5];
int e0, i, nx, n, sign;
sign = signbitl(x);
z = fabsl (x);
if (z <= piod) {
y[0] = x;
y[1] = 0;
return (0);
}
e0 = ilogbl(z) - 23;
z = scalbnl(z, -€0);
for (i =0; i <3; i++) {

new usr/src/lib/libm comon/ LD

(doubl e) ((int)
- (long doubl e

t[i]

z = (z

S

x

5

__rempi 02n(t,
ong doubl e) v

<< sSN3
BO

—h—r—

y[O];
yl[1];
-n);

}
return (n);

’(t[nx 1] == 0.0)
nx- - ; /* omt trailing zeros */
v, _TBL_i pi 02l
ong doubl e)v[1];
Lol

0] - w;
!

e0,

nx,

(z
e)t

__rempio2l.c

));
[1]

2,

) * two24l;

_inf);

new usr/src/lib/libm comon/LD __sincosl.c

R R R R

4822 Sun May 4 03:05:14 2014
new usr/src/lib/libmcomon/LD __sincosl.c

hkkkkkkkkkkkkkkkkkkhkkhkhkkkhkkk Kk kkkkkkkkkkkkkkkkkkkk ok k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensolaris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

-~

22 /*
23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
24 */
25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.
28 */
30 /* I NDENT OFF */
31 /*
32 * long double __k_sincos(|ong double x, long double y, |long double *c)
33 * kernel sincosl function on [-pi/4, p|/4] pi/4 ~ 0.785398164
34 * Input x is assumed to be bounded by ~p|/4 In magni tude.
35 * Input y is the tail of x.
36 * return sinl(x) with *c = cosl (x)
37 *
38 * Table | ook up algorithm
39 * see _ _k_sinl() and __k_cosl ()
*

/
42 #include "libmh"
44 #include <sys/isa_defs. h>

46 extern const |ong double _TBL_sinl_hi[], _TBL_sinl_lo[], _TBL_cosl_hi[],

47 _TBL_cosl _lo[];
48 static const |ong double
49 one = 1.0,

50 /*

51 * |sin(x) - (x+ppl*x"3+...+pp5*x"11)| <= 27-122.32 for |x|<1l/64
*
/

53 ppl = -1.666666666666666666666666666586782940810e- 0001L,
54 pp2 = 8.333333333333333333333003723660929317540e- 0003L,
55 pp3 = -1.984126984126984076045903483778337804470e- 0004L,
56 pp4 = 2.755731922361906641319723106210900949413e- 0006L,
57 pp5 = -2.505198398570947019093998469135012057673e- 0008L,
58 /*
59 * |(sin(x) - (x+pl*x"3+.. +p8*x"17)|
60 * |- <= 27-116.17 for |x|<0.1953125
61 * | X |
*

new usr/src/lib/libm comon/LD __sincosl.c

63 pl = -1.666666666666666666666666666666211262297e-0001L,
64 p2 = 8.333333333333333333333333301497876908541e- 0003L,
65 p3 = -1.984126984126984126984041302881180621922e- 0004L,
66 p4 = 2.755731922398589064100587351307269621093e- 0006L,
67 p5 = -2.505210838544163129378906953765595393873e- 0008L,
68 p6 = 1.605904383643244375050998243778534074273e- 0010L,
69 p7 = -7.647162722800685516901456114270824622699e- 0013L,
70 /p8 = 2.810046428661902961725428841068844462603e- 0015L,
71 /%

72 *

73 * |cos(x) - (1+qgl*x"2+...+ qq5*x"10)| <= 27-123.84 for |x|<=1/128
*/

= -4.999999999999999999999999999999378373641e- 0001L,
= 4.166666666666666666666665478399327703130e-0002L,
77 qq3 = -1.388888888888888888058211230618051613494e-0003L,

78 qq4 2.480158730156105377771585658905303111866e- 0005L,
79 qg5 -2.755728099762526325736488376695157008736e- 0007L,
80 /*
81 *

82 * |cos(x) - (1l+gql*x"2+...+ q8*x”"16)| <= 27-117.11 for |x|<= 0.15625
*/

84 ql = -4.999999999999999999999999999999756416975e- 0001L,
85 2 = 4.166666666666666666666666664006066577258e-0002L,
86 Q3 = -1.388888888888888888888877700363937169637e- 0003L,
87 g4 = 2.480158730158730158494468463031814083559e- 0005L,
88 g5 = -2.755731922398586276322819250356005542871e- 0007L,
89 g6 = 2.087675698767424261441959760729854017855e- 0009L,
90 q7 = -1.147074481239662089072452129010790774761e-0011L,
91 = 4

q8 . 777761647399651599730663422263531034782e- 0014L;
92 /* INDENT ON */

93 | ong doubl e

94 __k_sincosl (Il ong double x, Iong double y, long double *c) {
95 long double al, a2, t, t1, t2, z, w

96 int *pt = (int *) &t *px = (int *) &x;

97 inti,j,hx iX;

t 1.0;
100 #if defi ned(i 386) || defined(__and64)
101 XTA (px, hx);
102 #el se
100 #if defined(_BI G_ENDI AN)
103 hx = px[0];
102 #el se
103 XTA (px, hx);
104 #endi f
105 ix = hx & Ox7fffffff;
106 if (ix < Ox3ffc4000) {
107 if (ix < 0x3fc60000)
108 if (((int) x) ==0) {
109 *c = one;
110 return (x);
111 } /* generate inexact */

114 if (ix < Ox3ff80000) {

115 c=one+z*(qql +z * (qq2 + z * (qg3 + z * (qg4 +

116 z * qg5))));

117 t=z*(p1+z*(p2+z*(p3+z*(p4+z*(p5+

118 z * p6)))));

119 } else {

120 *c:one+z*(q1+z*(q2+z*(q3
(z* (q7 +z *

122 t =z * (pl +2z (p3+ *

123 z * (p6 z)))

124 }

6 +z z q
* 2 +z z (
+z* (p7 p8)))))

p

new usr/src/lib/libm comon/LD __sincosl.c

126 t =y +x *t;

127 return (x + t);

128 1

129 j = (ix + 0x400) & Ox7ffff800;
130 = (j - Ox3ffc4000) >> 11;

131 #i f deflned(_l 386) || defined(__and64)
132 I TOX(j, pt);

133 #el se

131 #if deflned(_BI G_ENDI AN)

134 pt[=7,

133 #el se

134 I TOX(j, pt);

135 #endi f

136 if (hx > 0)

137 X =y - (t - x);

138 el se

139 x=(y)—(t+x)
140 al = _TBL_sinl_hi[i];

141 Z = X * X,

142 t =z*(qql +z* (gqg2 +z * (qg3 + z * (qg4 + z * qg5))));
143 w=x* (one +z* (ppl +z * (pp2 +z * (pp3 +z * (ppd +z *
144 pp5)))));

145 a2 = _TBL_cosl _hi[i];

146 t2 = _TBL_cosl_lo[i] - (al * w- a2 * t);
147 *C = a2 +t2;

148 tl =a2 * w+ al * t;

149 tl += _TBL_sinl_lo[i];

150 if (hx <0)

151 return (-al - t1);

152 el se

153 return (al + t1);

154 }

__unchanged_portion_omtted_

new usr/src/lib/libmcomon/LD __sinl.c

R R R R

4646 Sun May 4 03:05:15 2014
new usr/src/lib/libmcomon/LD __sinl.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkkkhkkk Kk kkkkkkkkkkkhkkkkkkkk ok k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensolaris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

-~

22 /*

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

24 */

25 [*

26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.

27 * Use is subject to license terns.

28 */

30 /* I NDENT OFF */

31 /*

32 * __k_sinl(long double x; |ong double y)

33 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.785398164

34 * Input x is assumed to be bounded by ~pi/4 in magnitude.

35 * Input y is the tail of x.

36 *

37 * Table | ook up algorithm

38 * 1. by sin(-x) = -sin(x), need only to consider positive x

39 * 2. if x < 25/128 = [0x3ffc9000,0,0,0] = 0.1953125 , then

40 * if x <2757 (hx < 0x3fc60000,0,0,0), return x (inexact if x!= 0)
41 * z = XxX*X;

42 * |fx<—1/64—2**6

43 = sin(x) = x + (y+(x*z)*(pl + z*p2))

44 = el se

45 * sin(x) = x + (y+(x*z)*(pl + z*(p2 + z*(p3 + z*p4))))

46 * 3. else

47 = ht = (hx + 0x400) &x7ffff 800 (round x to a break point t)
48 * It =0

49 = i = (hy-0x3ffc4000)>>11; (i <=64)

50 * X = (x - t)+y (| x| ~<=27-7

51 * By

52 * sin(t+x’)

53 * = sin(t)cos(x’)+cos(t)sin(x")

54 * = sin(t)(1+z*(qql+z*qq2)) +[cos(t)]*x*(1+z*(ppl+z*pp2))

55 * =sin(t) + [sin(t)]*(z*(qql+z*qq2)) +

gg x [cos(t)]*x*(1+z* (Ppl+2 pp2))

58 * Thus,

59 = let a= _TBL_sin_hi[i], b = _TBL_sin_lo[i], c= _TBL_cos_hi[i],
60 * X = (X-t)+y

61 * z = X*X;

62 * sin(t+x) = a+(b+ ((c*x)*(1+z*(ppl+z*pp2))+a*(z*(qgql+z*qg2)))

new usr/src/lib/libmcomon/LD __sinl.c

63

125

*/
#include "libmh"
#i ncl ude <sys/isa_defs. h>

extern const long double _TBL_sinl_hi[], _TBL_sinl_lo[], _TBL_cosl_hi[];
static const |ong double
one = 1.0,
/*
* | sin(x) - (X+ppl*x"3+...+ pp5*x~11)| <= 27-122.32 for |x|<1/64
*/

ppl = -1.666666666666666666666666666586782940810e-0001L,
pp2 = 8.333333333333333333333003723660929317540e- 0003L,
pp3 = -1.984126984126984076045903483778337804470e- 0004L,
pp4 = 2.755731922361906641319723106210900949413e- 0006L,
pp5 = -2.505198398570947019093998469135012057673e- 0008L,
/*

* [(sin(x) - (x+pl*x"3+...+p8*x"17)|

e | <= 27-116.17 for |x|<0.1953125

*

*/I X |
pl = -1.666666666666666666666666666666211262297e-0001L,
p2 = 8.333333333333333333333333301497876908541e- 0003L,
p3 = -1.984126984126984126984041302881180621922e- 0004L,
p4 = 2.755731922398589064100587351307269621093e- 0006L,
p5 = -2.505210838544163129378906953765595393873e- 0008L,
p6 = 1.605904383643244375050998243778534074273e- 0010L,
p7 = -7.647162722800685516901456114270824622699e- 0013L,
p8 = 2.810046428661902961725428841068844462603e- 0015L,
/*

* 2 10 -123. 84

* Jcos(x) - (1+qgl*x +...+ qg5*x)| <= 2 for |x|<=1/128

*/
qql = -4.999999999999999999999999999999378373641e- 0001L,
qq2 = 4.166666666666666666666665478399327703130e-0002L,
qq3 = -1.388888888888888888058211230618051613494e- 0003L,
qq4 = 2.480158730156105377771585658905303111866e- 0005L,

q5 = -2.755728099762526325736488376695157008736e- 0007L;

q
/* 1 NDENT ON */
| ong doubl e
__k_sinl(long double x, long double y) {
long double a, t, z, w
int *pt = (|nt *) &, *px = (int *) &;

int i, J, hx, ix;
t = 1.0L;
#if defined(__i386) || defined(__and64)
XTO (px, hx);
#el se
#i f defined(_BI G_ENDI AN)
= px[0]
#el se
XTA (px, hx);
#endi f

ix = hx & Ox7fffffff;
if (ix < Ox3ffc9000) {
if (ix < Ox3fc60000)

if (((int) x) ==
return (x); /* generate inexact */
zZ = X * Xx;
t =z* (pl+z*(p2+z* (p3+z*(ps+z* (ps+z*
(p6 + z * (p7 + 2z * p8)))))))
t =y +x*t;
return (x + t);

new usr/src/lib/libmcomon/LD __sinl.c

126 j = (ix + 0x400) & Ox7ffff800;
127 I = (j - Ox3ffc4000) >> 11;

128 #if defined(__i386) || defined(__anu64)
129 I TOX(j, pt);

130 #el se

128 #if defined(_BlI G_ENDI AN)

131 pt[O] =7j;

130 #el se

131 I TOX(j, pt);

132 #endi f

133 if (hx > 0)

134 =y - (t - x);

135 el se

136 x = (-y) - (t +x);

137 a = _TBL_sinl_hi[i];

138 zZ =X * X;

139 t =z*(qql +z * (q92 +z * (qq3 + z * (qg4 + z * qg5))));
140 w=Xx* (one +z * (ppl + 2z * (pp2 z* (pp3 +z * (ppd + z *
141 PP5))))):

142 t = _TBL_cosl _hi[i] * w+ a * t;
143 t += _TBL_sinl_lo[i];

144 if (hx < 0)

145 return (-a - t);

146 el se

147 return (a + t);

148 }

__unchanged_portion_onitted_

new usr/src/lib/libmcomon/LD __tanl.c 1 new usr/src/lib/libmcomon/LD __tanl.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 63 *
5472 Sun May 4 03:05:17 2014 64 * wher e tan(t) is fromthe table,
new usr/src/lib/libmcomon/LD __tanl.c 65 * sin(x’) = x + ppl*x"3 + ...+ pp5*x~11
IR R R R R R R R R R R RS R R R R RS RS R R RS SRR SRR R ERREREREEEEEEEE] 66 * COS(X') = 1 + qql*xl\z + . ..+ qq5*x/\10
1/* 67 */
2 * CDDL HEADER START
3 * 69 #include "libmh"
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License"). 71 #include <sys/isa_defs. h>
6 * You may not use this file except in conpliance with the License.
7 * 73 extern const long double _TBL_tanl_hi[], _TBL_tanl_lo[];
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 static const |ong double
9 * or http://ww.opensol aris.org/os/licensing. 75 one = 1.0,
10 * See the License for the specific |anguage governing perm ssions 76 | *
11 * and limtations under the License. 77 * |sin(x) - (x+ppl*x"3+...+ pp5*x"11)| <= 27-122.32 for |x|<1/64
12 = 78 */
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 79 ppl = -1.666666666666666666666666666586782940810e- 0001L,
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 pp2 = 8.333333333333333333333003723660929317540e- 0003L,
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 81 pp3 = -1.984126984126984076045903483778337804470e- 0004L,
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 pp4 = 2.755731922361906641319723106210900949413e- 0006L,
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 83 5)p5 = -2.505198398570947019093998469135012057673e- 0008L,
18 = 84 /*
19 * CDDL HEADER END 85 * 2 10 -123. 84
20 */ 86 */|cos(x) - (1+qgl*x +...+ qq5*x)| <= 2 for |x|<=1/128
87 *
22 /* 88 qql = -4.999999999999999999999999999999378373641e- 0001L,
23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved. 89 qq2 = 4.166666666666666666666665478399327703130e- 0002L,
24 x| 90 qq3 = -1.388888888888888888058211230618051613494e- 0003L,
25 [* 91 qq4 = 2.480158730156105377771585658905303111866e- 0005L,
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved. 92 qq5 = -2.755728099762526325736488376695157008736e- 0007L,
27 * Use is subject to license terns. 93 /*
28 */ 94 * |tan(x) - (x+t1*XA3+. ..+t 6*x"13)|
- | <= 27-59.73 for |x|<0.15625
30 /* I NDENT OFF */ 96 * | X |
31 /* 97 */
32 * __k_tanl(long double x; 1long double y; int k) 98 t1 = 3.333333333333333333333333333333423342490e-0001L,
33 * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164 99 t2 = 1.333333333333333333333333333093838744537e-0001L,
34 * Input x is assumed to be bounded by ~pi/4 in magnitude. 100 t3 = 5.396825396825396825396827906318682662250e- 0002L,
35 * Input y is the tail of x. 101 t4 = 2.186948853615520282185576976994418486911e- 0002L,
36 * Input k indicate -- tan if k=0; else -1/tan 102 t5 = 8.863235529902196573354554519991152936246e- 0003L,
37 * 103 t6 = 3.592128036572480064652191427543994878790e- 0003L,
38 * Table | ook up algorithm 104 t7 = 1.455834387051455257856833807581901305474e- 0003L,
39 * 1. by tan(-x) = -tan(x), need only to consider positive X 105 t8 = 5.900274409318599857829983256201725587477e- 0004L,
40 * 2. if x < 5/32 = [0x3ffc4000, 0] = 0.15625 , then 106 t9 = 2.391291152117265181501116961901122362937e- 0004L,
41 * if x < 27-57 (hx < 0x3fc40000 0), set w=x with inexact if x!=10 107 t10 = 9.691533169382729742394024173194981882375e- 0005L,
42 * el se 108 t11 = 3.927994733186415603228178184225780859951e- 0005L,
43 * z = X*X; 109 t12 = 1.588300018848323824227640064883334101288e- 0005L,
44 * W= X + (yH(X*z)*(t 1+z* (t 2+2* (t 3+z* (t 4+z* (1 5+2*t6)))))) 110 t13 = 6.916271223396808311166202285131722231723e- 0006L;
45 * return (k == 0?2 w: 1/w; 111 /* 1 NDENT ON *
46 * 3. else 112 1 ong doubl e
47 = ht = (hx + 0x400) &x7ffff 800 (round x to a break point t) 113 __k_tanl (I ong double x, long double y, int k) {
48 * It =0 114 long double a, t, z, w= 0.0, s, c;
49 * i = (hy-0x3ffc4000)>>11; (i <=64) 114 long double a, t, z, w, s, c;
50 * X = (x - t)+y (| x| ~<=27-7) 115 int *pt = (int *) &, *px = (int *) &x;
51 = By 116 int i, j, hx, ix;
52 * tan(t+x’)
53 * = (tan(t)+tan(x’'))/(1-tan(x’)tan(t)) 118 t = 1.0;
54 * W have 119 #if defined(__i386) || defined(__and64)
55 * sin(x’)+tan(t)*(tan(t)*sin(x")) 120 XTO (px, hx);
56 * =tan(t) + -------me e for k=0 121 #el se
57 * cos(x') - tan(t)*sin(x’) 119 #if defined(_BI G_ENDI AN)
58 * 122 hx = px[0];
59 = cos(x’') - tan(t)*sin(x’) 121 #el se
60 * R e for k=1 122 XTA (px, hx);
61 * tan(t) + tan(t)*(cos(x’)-1) + sin(x’) 123 #endi f
62 * 124 ix = hx & Ox7fffffff;

new usr/src/lib/libm comon/ LD

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
145
148
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171 }
__unchanged_portion_omtted_

if (ix < Ox3ffc4000) {
if

if ((i

el se

t
w

y+
X +
}
return (k ==
}
J

(]
#if defi ned(i 386)

OX(j, pt)
#el se
#if defined(_BI G ENDI AN)
ptio] =T;

ITOX(j, pt);

if (hx > 0)
X =y -

|| defined(

#el se

(t

- X);
el se

(-y) -
TBLtanI hi[i];
X * X

* cos(x) 1*/

* SI n(x)

W ~~ND

) pPps)))));
if (k ==0) {
w=a?*s;

__tanl.c

(ix < Ox3fc60000) {

(int) x) == 0) /* generate inexact */

W = X;

if (|x < 0x3ff30000)
t

X
t

0?w:

(ggl +z * (qg2 + z * (qq3 + z * (g4 + z *
*/

[* 2**-12 *]
=z* (tl+z* (t2+2z* (t3 +2z * t4)));

* ot

-one / w;

(i x + 0x400) & Ox7ffff800;
j 0x3f f c4000) >> 11;
__and64)

(t + x);

ag5))));

(one + z * (ppl + 2z * (pp2 +z * (pp3 +z * (pp4 + z *

+a*w / (one -
a+t);

(w- 1));

,

c) : z/ (a+¢c));

new usr/src/lib/libm comon/LD asinhl.c

R R R R

1617 Sun May 4 03:05:18 2014
new usr/src/lib/libm comon/LD asinhl.c

hkkkkkkkkkkkkkkkkkkkkhkhkkkhkhkkkkkkkkkkkkkkkkkkkk ok kk k ok k k%

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License")

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing perm ssions

11 * and limtations under the License.

12 *

13 * Wen distributing Covered Code, include this CDDL HEADER i n each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]

18 =

19 * CDDL HEADER END

20 */

22 /*

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*

26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #if defined(ELFOBJ)

31 #pragma weak asinhl = __asinhl
32 #endi f

34 #include "libmh"

36 static const |ong double

37 I n2 = 6.931471805599453094172321214581765680755e- 0001L,
38 one = 1.0L,

39 bi g = 1. 0e+20L,

40 tiny = 1. 0e- 20L;

42 | ong doubl e
43 asinhl (1 ong double x) {

44 long double t, w

45 vol atile | ong doubl e dummy;

46 #endif /* | codereview */

48 w = fabsl (x);

49 if (isnanl(x))

50 return (x + x); /* x is NaN */

51 if (w<tiny) {

52 #ifndef lint

53 dummy = x + big; /* inexact if x =0 */

45 vol atile long double dummy = x + big; /* inexact if x =0 */
54 #endi f

55 return (x); /* tiny x */

56 } else if (w< big)

57 t = one / w

58 return (copysignl (loglpl(w + w/ (t + sqgrtl(one +t * t))), x));
59 } else

60 return (copysignl (logl(w) + In2, x));

new usr/src/lib/libm comon/LD/ cbrtl.c

R R R R

1779 Sun May 4 03:05:20 2014
new usr/src/lib/libm comon/LD/ cbrtl.c

hkkkkkkkkkkkkkkkkhkkkkhkhkkkhkkkkkkkkkkkkkkhkkkkkkkk ok kk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*

26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #if defined(ELFOBJ)
31 #pragma weak cbrtl = _ cbrtl
32 #endi f

34 #include "libmh"

35 #include "l ongdoubl e. h"

36 #endif /* | codereview */

38 static const double d_one = 1.0;

40 | ong doubl e
41 cbrtl (l ong double x) {

42 long double s, t, r, w, vy;
43 doubl e dx, dy;

44 int *py = (int *) &dy;

45 int n, m n8, nO, sx;

47 if (Mfinitel(x))

48 return (x + x);
49 if (iszerol(x))

50 return (x);

51 n0 = 0;

52 if (*((int *) &_one) == 0)
53 n0 = 1;

54 sx = signbitl(x);

55 x = fabsl (x);

56 n = ilogbl(x);

57 m=n/ 3;

58 m=m+m+m

59 = scal bnl (x, -nB);

60

X = (double) vy;
= cbhrt(dx);
y[1 - nO] += 2;

new usr/src/lib/libm comon/LD/ cbrtl.c

63 if (py[1l - n0] == 0)

64 py[n0] += 1;

66 /* one step newton iteration to 113 bits with error < 0.667ul ps */
67 t = (long double) dy;

68 t = scalbnl (t, m;

69 s =t *t;

70 r =x/ s;

71 w=1t +t;

72 r=(r -t) / (w+r);
73 t +=t * r;

75 return (sx == 0?2t : -t);
76 }

new usr/src/lib/libm comon/LD coshl.c

R R R R

2815 Sun May 4 03:05:22 2014
new usr/src/lib/libm comon/LD coshl.c

hkkkkkkkkkkkkkkkkhkkkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkk ok kk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").

or http://ww. opensol aris.org/os/licensing.

*
*
*
*
*
*
*
*
* and limtations under the License.
*
*
*
*
*
*
*
* CDDL HEADER END

*

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*

26 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #if defined(ELFOBJ)
31 #pragma weak coshl = __ coshl
32 #endi f

34 #include "libmh"
35 #include "l ongdoubl e. h"
36 #endif /* | codereview */

38 /
COSH(X)
RETURN THE HYPERBOLI C COSI NE OF X

Met hod :
1. Replace x by |x| (COSH(x) = COSH(-x)).
2.

1
b

0 <= x <= 0.3465 : COSH(x)

0.3465 <= x <= thresh : COSH(x)

thresh <= x <= |l novft : COSH(x)
I novft <= x < INF : COsH(x)

EXP(x)/ 2

here
0. 3465
thresh

a nunber that is near one half of |n2.
a nunber such that
I novft | ogarithm of the overfl ow threshold
= MEP1*| n2 chopped to nachi ne precision.
ME mexi mum exponent

ol
o
¥ Ok R R R R R R R R R R R R Ok R Ok Ok Ok Ok Ok Ok Ok Ok

You may not use this file except in conpliance with the License.

See the License for the specific |anguage governing perm ssions

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

You can obtain a copy of the |license at usr/src/ OPENSCLARI S. LI CENSE

2* EXP(x)
EXP(x) + 1/ EXP(x)

SCALBN(EXP(x- MEP1*| n2) , NE)

EXP(t hresh) +EXP(-t hr esh) =EXP(t hr esh)

new usr/src/lib/libm comon/LD coshl.c

63 * MEP1 mexi mum exponent plus 1
64 *

65 * Special cases:

66 * COSH(x) is |x| if x is +INF, -INF, or NaN
67 * only COSH(0)=1 is exact for finite x.
68 */

70 static const long double C[] = {

71 0.5L,

72 1.0L,

73 0. 3465L,

74 45. 0L,

75 1. 135652340629414394879149e+04L,

76 7.004447686242549087858985e- 16L,

77 2.710505431213761085018632e- 20L,

78 1,

80 #define hal f q 0]

81 #define one d 1]

82 #define thrl q 2]

83 #define thr2 q 3]

84 #define Inovit (4]

85 #define Inovio (5]

86 #define tinyl q 6]

88 | ong doubl e
89 coshl (I ong double x) {

90 long double w, t;

92 w = fabsl (x);

93 if (!finitel(w)

94 return (w+ w); /* x is INF or NaN */
95 if (w<thrl) {

96 if (w<tinyl)

97 return (one + w);

98 t = expntl (W) ;

99 w = one + t;

100 w=one + (t *t) / (w+w;

101 return (w;

102 1

103 if (w<thr2) {

104 t = expl (w);

105 return (half * (t + one / t));

106 1

107 if (w<=Inovft)

108 return (half * expl(w));

109 return (scal bnl (expl ((w - Inovft) - Inovlo), 16383));
110 }

/* 2n-65 */

new usr/src/lib/libm comon/LD cosl.c

R R R R

2816 Sun May 4 03:05:24 2014
new usr/src/lib/libm comon/LD cosl.c

hkkkkkkkkkkkkkkkkkkhkkhkhkkkhkhkkkkkkkkkkkkkkkkkkkk ok kk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */
30 #pragma weak cosl = __cosl
32 /* I NDENT OFF */
33 /* cosl(x)
34 * Table | ook-up algorithmby K C. Ng, Novenber, 1989.
35 *
36 * kernel function:
37 * __k_sinl ... sin function on [-pi/4,pil4]
38 * __k_cosl ... cos function on [-pi/4,pil4]
39 * __rempi o2l ... argument reduction routine
40 *
41 * Met hod.
42 = Let S and C denote the sin and cos respectively on [-Pl/4, +Pl/4].
43 = 1. Assune the argunent x is reduced to yl+y2 = x-k*pi/2 in
44 * [-pi/2, +pi/2], and let n = k nod 4.
45 * 2. Let S=S(yl+y2), C=C(yl+y2). Depending on n, we have
46 *
47 = n si n(x) cos(x) tan(x)
/<
49 * 0 S C S/C
50 * 1 C -S -Cs
51 * 2 -S -C S/C
52 = 3 -C S -ads
53 K e e mmmmemmmmmmmmmmm e e e e e e e -
54 *
55 * Special cases:
56 * Let trig be any of sin, cos, or tan.
57 * trig(+-INF) is NaN, with signals;
58 * trig(NaN) is that NaN;
59 *
60 * Accuracy:
61 * conputer TRIG(X) returns trig(x) nearly rounded.
*

new usr/src/lib/libm comon/LD cosl.c

63 /* | NDENT ON */

65 #include "libmh"
66 #include "libmsynonyns. h"
67 #include "l ongdouble.h"

69 #include <sys/isa_defs. h>

71 |l ong doubl e
72 cosl (1 ong double x) {

73 long double y[2], z = 0.0L;

74 int n, ix;

75 int *px = (int *) &x;

77 /* trig(Inf or NaN) is NaN */

78 if (Mfinitel(x))

79 return x - X;

81 /* Hi gh word of x. */

82 #if defined(__i386) || defined(__and64)

83 XTO (px, iXx);

84 #el se

82 #if defined(_BI G ENDI AN)

85 ix = px[0];

84 f#el se

85 XTO (px, iXx);

86 #endi f

88 I* | x] ~<pild */

89 ix & Ox7fffffff;

90 if (ix <= 0x3ffe9220)

91 return __k_cosl (x, z);

93 /* argunment reduction needed */

94 else {

95 n = _ _rempio2l(x, y);

96 switch (n & 3) {

97 case O:

98 return __k_cosl (y[0], y[1]);
99 case 1:

100 return -__k_sinl(y[0], y[1]);
101 case 2:

102 return -__k_cosl (y[0], y[1]);
103 case 3:

104 return __k_sinl(y[0], y[1]);
105 /* NOTREACHED */

106 }

107 1

108 return 0.0L;

109 }

__unchanged_portion_omtted_

new usr/src/lib/libm comon/LD isnanl.c

R R R R

1612 Sun May 4 03:05:25 2014
new usr/src/lib/libmcomon/LD isnanl.c
IR R R R R R R R R R R RS R R R R RS R R RS R R RS REREREREEEEEEE]
__unchanged_portion_omtted_
43 #elif defined(__x86

44 int

45 i snanl (I ong doubl e x) {

46 int *px = (int *) &, t = px[2] & Ox7fff;

47 #if defi ned(HANDLE_ UNSUPPO?TE D)

48 return ((t == Ox7fff && ((px[1] & ~0x80000000) | px[0]) != 0) ||
49 (t 1= 0 &% (px[1] & 0x80000000) == ;

48 return (t == Ox7fff && ((px[1l] & ~Ox80000000) | px[0]) !'=0 ||
49 t 1= 0 & (px[1] & 0xB80000000) == 0)

50 #el se

51 return (t == Ox7fff && ((px[1] & ~0x80000000) | px[0]) != 0);
52 #endif

53

__unchanged_portion_onitted_

new usr/src/lib/libmcomon/LD/joOl.c

R R R R

27705 Sun May 4 03:05:27 2014
new usr/src/lib/libmcomon/LDjoOl.c

hkkkkkkkkkkkkkkkkhkkkkhkhkkkkkkkhkkkkkkkkkkkkkkkkkk ok kk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 =/

30 /*

31 * Floating point Bessel’s function of the first and second ki nds
32 * of order zero: jO(x),y0(x);

33 *

34 * Special cases:

35 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
36 * y0(-ve)=yl(-ve)=yn(n,-ve) are NaN with invalid signal.
37 */

39 #pragma weak jOI = _ joOI

40 #pragma weak yOl = _ yOI

42 #include "libm h"

43 #include "libmsynonyns. h"

45 #incl ude "I ongdoubl e. h"

47 #endif /* ! codereview */
48 #incl ude <mat h. h>

49 #if defined(__SUNPRO O
50 #include <sunnmat h. h>

51 #endif

53 #define GENERI C | ong doubl e
54 static GENERI C

55 zero = 0.0L,

56 snal | = 1. 0e-9L,

57 tiny = 1. 0e- 38L

58 one = 1.0L,

59 five = 5.0L,

60 ei ght = 8.0L,

61 invsqgrtpi= 5. 641895835477562869480794515607725858441e- 0001L,
62 tpi = 0.636619772367581343075535053490057448L;

new usr/src/lib/libmcomon/LDjoOl.c

64 static GENERI C pzero(), qzero();
65 static GENERIC rO[7] = {
66 -2.499999999999999999999999999999998934492e- 0001L,

67 1.272657927360049786327618451133763714880e- 0002L,

68 -2.694499763712963276900636693400659600898e- 0004L,

69 2.724877475058977576903234070919616447883e- 0006L,

70 -1.432617103214330236967477495393076320281e- 0008L,

71 3.823248804080079168706683540513792224471e- 0011L,

72 -4.183174277567983647337568504286313665065e- 0014L,

73 };

74 static GENERIC sO[7] = {

75 1. 0eOL,

76 1. 159368290559800854689526195462884666395e- 0002L,

77 6. 629397597394973383009743876169946772559e- 0005L,

78 2.426779981394054406305431142501735094340e- 0007L,

79 6.097663491248511069094400469635449749883e- 0010L,

80 1.017019133340929220238747413216052224036e- 0012L,

81 9. 012593179306197579518374581969371278481e- 0016L,

82 };

84 CENERIC

85 j 0l (x) GENERIC x;{

86 CENERIC z, s, ¢, ss, cc, r, u, Vv;

87 int i;

89 if(isnanl (x)) return x+x;

90 x = fabsl (x);

91 if(x > 1.28L){

92 if(!finitel (x)) return zero;

93 s = sinl(x);

94 ¢ = cosl (x);

95 /* jOo(x) = sqrt(Z/(pi *x)) *(pO(x)*cos(x0)-q0(x)*sin(x0))
96 * where x0 = x-p

97 * Better for nul a:

98 * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
99 td = 1/sqrt(2) * (cos(x) + sin(x))
100 * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
101 * = 1/sqrt(2) * (sin(x) - cos(x))
102 * To avoid cancel |l ation, use

103 i sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
104 * to conmpute the worse one.

105 */

106 if(x>1. OeZ450L) { /* x+x may overflow */
107 = s-cC;

108 = s+c;

109 } else|f(S|gnb|tI(s)'-5|gnb|tl(c)) {

110 = CH

111 cc = -cosl (x+x)/ss

112 } else {

113 cc = s + c;

114 ss = -cosl (x+x)/cc;

115 }

116 /*

117 * jO(x) = 1/sqrt(pi) * (P(O,x)*cc - QO,x)*ss) / sqgrt(x)
118 * yO(x) = 1U/sqgrt(pi) * (P(O,x)*ss + QO0,x)*cc) / sqrt(x)
119 */

120 i f(x>1 0el20L) return (i nvsqrt pi *cc)/sqrtl(x);
121 u = pzero(x); v = qzero(x);

122 return |nvsqrtp|*(u*cc v*ss)/sqrtl(x)

123 1

124 if(x<=small) {

125 if(x<=tiny) return one-x;

126 el se return one-x*x*0. 25L;

127 1

128 zZ = X*X;

new usr/src/lib/libmcomon/LD/joOl.c

129
130
131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

158
159
160

161

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

}

r =r0[6]; s =sO[6]

for(i=5;i>=0;i--) {
r=r*z +r0[i];
s=s*z+sO[i];

return(one+z*(r/s));

static GENERI C u0[8] =
7.

0
-

1%

QD
PoNwwE R

{
380429510868722527434392794848301631220e- 0002L,
766855559625940791857536949301981816513e- 0001L,

. 386470722701047923235553251240162839408e- 0002L,

520149242724811578636970811631224862615e- 0004L,
978599663243790049853642275624951870025e- 0006L,
228801153263957224547222556806915479763e- 0008L,

.121246764298785018658597179498837316177e-0011L,
.677103629722678833475965810525587396596e- 0014L,

¢ GENERIC vO[8] = {
OeOL,

.247164416539111311571676766127767127970e- 0002L,

829144749639791500052900281489367443576e- 0005L,
247126540422245330511218321013360336606€e- 0007L,

. 750516724789499678567062572549568447869e- 0010L,
.156713223173591212250543390258458098776e- 0012L,
. 322169561597890004231482431236452752624e- 0015L,
. 821213295314000924252226486305726805093e- 0018L,

GENERI C
yOI (x) GENERI C x; {

NERICz d, s, ¢, ss, cc, u, v;
int i;
if(isnanl (x)) return x+x;
if(x <= zero){

if(x==zero)

d= -one/ (x-x);
el se

d = zero/ (x-x);

}

if(x > 1.28L){
f('flnltel(x))
si nl(x)
cosl (x)

/* jo(x) = sqrt(2/(p|*x)) (pO(x) *cos(x0)-q0(x)*sin(x0))

return zero;

i
S
c

where x0 = x-pi/
Better fornula
cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
= 1/sqrt(2) * (cos(x) + sin(x))
sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)

1/sqrt(2) *

To avoi d cancel l ation, use
sin(x) +- cos(x)

to conpute the worse one.

/

(sin(x) - cos(x))

= -cos(2x)/ (sin(x)

* ok k ok % ok kb ¥ ok

i f(x>1.0e2450L) {
Ss = s-¢;
CC = s+c;

} else |f(S|gnb|tI(s)'-S|gnb|tI(c)) {

/* x+x may overflow */

cc = -cosl(x+x)/ss
} else {

cc = s + c;

ss = -cosl (x+x)/cc;

-+ cos(x))

new usr/src/lib/libmcomon/LDjoOl.c

195 /*

196 * jO(x) = Usqgrt(pi*x) * (P(0,x)*cc - QO,x)*ss)
197 */yo(x) = 1/sqrt(pi*x) * (P(0,x)*ss + O, x)*cc)
198 *

199 if(x>1.0e120L) return (i nvsqrt pi *ss)/sqrtl (x);
200 return invsqrtpi*(pzero(x)*ss+qzero(x)*cc)/sqrtl (x);
202 }

203 if(x<=tiny) {

204 return(uO[0] + tpi*logl(x));

205 1

206 Z = X*X;

207 u=u0[7]; v =vVvO[T7];

208 for(i=6;i>=0;i--){

209 u=u*z + u0[i];

210 v = v*z + vO[i];

211

212 return(u/v + tpi*(jol(x)*logl(x)));

213 }

215 static GENERIC pr0[12] = { /* [16 -- inf] */
216 9. 999999999999999999999999999999999997515e- 0001L
217 1. 065981615377273376425365823967550598358e+0003L,
218 4.390991200927588978306374718984240719130e+0005L
219 9. 072086218607986711847069407339321363103e+0007L
220 1. 022552886177375367408408501046461671528e+0010L
221 6.420766912243658241570635854089597269031e+0011L
222 2.206451725126933913591080211081242266908e+0013L,
223 3.928369596816895077363705478743346298368e+0014L
224 3.258159928874124597286701119721482876596e+0015L
225 1.025715808134188978860679130140685101348e+0016L
226 7.537170874795721255796001687024031280685e+0015L,
227) -1.579413901450157332307745586004207687796e+0014L,
228 };

229 static GENERIC psO[11] = {

230 1. OeOL,

231 1.066051927877273376425365823967550512687e+0003L
232 4.391739647168381592399173804329266353038e+0005L
233 9.075162261801343671805658294123888867884e+0007L
234 1. 023186118519904751819581912075985995058e+0010L,
235 6.427861860414223746340515376512730275061e+0011L,
236 2.210861503237823589735481303627993406235e+0013L
237 3.943247335784292905915956840901818177989e+0014L
238 3.283720976777545142150200110647270004481e+0015L,
239 1.045346918812754048903645641538728986759e+0016L
240) 8. 043455468065618900750599584291193680463e+0015L
241 };

242 static GENERIC pri[12] = { /[* [8 -- 16] */

243 9. 999999999999999999999784422701108683618e- 0001L
244 6.796098532948334207755488692777907062894e+0002L
245 1.840036112605722168824530758797169836042e+0005L
246 2.598490483191916637264894340635847598122e+0007L
247 2.105774863242707025525730249472054578523e+0009L,
248 1.015822044230542426666314997796944979959e+0011L,
249 2.931557457008110436764077699944189071875e+0012L
250 4.962885121125457633655259224179322808824e+0013L
251 4.705424055148223269155430598563351566279e+0014L,
252 2.294439854910747229152056080910427001110e+0015L,
253 4.905531843137486691500950019322475458629e+0015L
254 3.187543169710339218793442542845735994565e+0015L,
255 };

256 static GENERIC psl[14] = {

257 1. 0eOL

258 6.796801657948334207754571576066758180288e+0002L
259 1. 840512891201300567325421059826676366447e+0005L,
260 2.599777028312918975306252167127695075221e+0007L,

new usr/src/lib/libmcomon/LD/joOl.c

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

0
-
QD

0
-
Q

PROONORNET

.-,_
o
N CICICIIDEEEEIEID

DEIRINOEED (2> HEN @

=
QD

CUE GRS P EED E= N

WAWOENNUOARROWE

. 107582572771047636846811284634244892537e+0009L,

017275794694156108975782763889979940348e+0011L,
938487645192463845428059755454762316011e+0012L,

. 982512164735557054521042916182317924466e+0013L,
. 737639900153703274792677468264564361437e+0014L,

323398719123742743524249528275097100646e+0015L,
033419107069210577868909797896984419391e+0015L,

.409036105931068609601317076759804716059e+0015L,

505655364352679737585745147753521662166e+0013L,
976837153983688250780198248297109118313e+0012L,

¢ GENERIC pr2[12] = { /* [5-- 81 *I

. 999999999999999937857236789277366320220e- 0001L,

692848765268649571651602420376358849214e+0002L,
373022067535476576926715900057760985410e+0004L,
038738891191314969971504035057219430725e+0006L,
728285706306940523397385566659762646999e+0008L,
375400819645889911158688737206054788534e+0009L,
598950418204912408375591217782088567076e+0010L,
827182039183238492480275401520072793783e+0011L,

. 884222642913492390887572414999490975844e+0012L,

373278873797767721932837830628688632775e+0012L,
338295457568973761205077964397969230489e+0012L,

.911383183467288345772308817209806922143e+0012L,

¢ GENERIC ps2[14] = {
0eOL

. 6935;518902686494772888962671719932131028+0002L,
. 375607880998361502474715133828068514297e+0004L,

042477764024108249744998862572786367328e+0006L,
731069838737016956685839588670132939513e+0008L,
387147674049898778738226585935491417728e+0009L,
628058659620653765349556940567715258165e+0010L,
869659904164177740471685856367322160664e+0011L,
919839445622817017058977559638969436383e+0012L,
535314897696671402628203718612309253907e+0012L,

.696355561452933775773309859748610658935e+0012L,

216155103141537221173601557697083216257e+0012L,
756857081068942248246880159213789086363e+0010L,

. 496356619666608032231074866481472824067e+0009L,

¢ GENERIC pr3[13] = { /* [3.5 -- 5] */
999999999999916693107285612398196588247€- 0001L

. 263975921282917721194425320484974336945e+0002L,
. 994358386744245848889492762781484199966e+0004L,

980067458430542243559962493831661323168e+0005L,
282213787521372663705567756420087553508e+0007L,
409784374889063618250288699908375135923e+0008L,
024380857401448589254343517589811711108e+0009L,
571110368046740246895071721443082286379e+0010L,
603187020243604632153685300463160593768e+0010L,

. 087196453409712719449549280664058793403e+0010L,

046196021776346356803687409644239065041e+0010L,
287758439080165765709154276618854799932e+0010L,

. 900679773415023433787846658096813590784e+0008L,

¢ GENERIC ps3[13] = {
OeOL

. 264679046282855061328604619231774747116e+0002L,

995939523988944553755653255389812103448e+0004L,
993853144706348727038389967490183236820e+0005L,
288326099634588843906989983704795468773e+0007L,

.424967100255240885169240956804790118282e+0008L,
. 046311797972463991368023759640028910016e+0009L,

589614961932826812790222479700797224003e+0010L,

.692406624527744816497089139325073939927e+0010L,

new usr/src/lib/libmcomon/LDjoOl.c

327
328
329
330
331 }

/o
53
1.
7.987714685115314668378957273824383610525e+0008L,

332 stati

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391 };

0
-

0
-

0
-

392 static GENERIC pr6[13] = {

Q I Q

ANNORRONOIIWOR

PUWOONRWWNERO

320486495902008912866462849073108323948e+0010L,
345945972828978289935309597742981360994e+0010L,
444033091910423754121309915092247171008e+0010L,

¢ GENERIC pr4[13] = { /* [2.5, 3.5] */

. 999999999986736677961118722747757712260e- 0001L,
. 453824980703800559037873123568378845663e+0002L,
.097327216430682288267610447006508661032e+0003L,

273847252038264370231169686380192662135e+0005L,
561056728046211111354759998976985449622e+0006L,

. 244933588800096378434627029369680378599e+0007L,
. 740112392860717950376210038908476792588e+0008L,

426170187455893285197878563881579269524e+0008L,
490107486454362321004377336020526281371e+0008L,
688872439428470049801714121070005313806e+0008L,

. 673315853166437222811910656900123215515e+0008L,

577770470359303305164877446339693270239e+0007L,
540438642031689641308197880181291865714e+0006L,
¢ GENERI C ps4[13] = { /* [2.5, 3.5] */
OeOL

5 4545'28105698159439773035951959131799816e+0002L,
.107442215200392397172179900434987859618e+0003L,
. 279390393778242887574177096606328994140e+0005L,

576251625592252008424781111770934135844e+0006L,
267909499056932631405942058670933813863e+0007L,

. 760021515330805537499778238099704648805e+0008L,
. 525553787667353981242060222587465726729e+0008L,

769870295912820457889384082671269328511e+0008L,
110582071004774279226905629624018008454e+0008L,

. 981857678621955599371967680343918454345e+0008L,
. 482404686230769399073192961667697036706e+0007L,
. 210046943095878402443535460329391782298e+0006L,

¢ GENERIC pr5[13] = { /* [1.777..., 2.5] *I

.999999999114986107951817871144655880699e- 0001L,
. 252583736048588342568344570315435947614e+0001L,

218726757856078715214631502407386264637e+0003L,

. 554009964621111656479588505862577040831e+0004L,
. 269993115643664338253196944523510290175e+0005L,

874613773778430691192912190618220544575e+0006L,
133538151103658353874146919613442436035e+0006L,

.673067041410338922825193013077354249193e+0007L,
. 706913873848398011744790289200151840498e+0007L,

067766583853288534551600235576747618679e+0006L,

. 216746733457884568532695355036338655872e+0006L,
. 945753880802872541235703812722344514405e+0005L,
.132374412921948071539195638885330951749e+0003L,

¢ GENERIC ps5[13] = {
OeOL

259614983862181118883831670990340052982e+0001L,
225125275462903384842124075132609290304e+0003L,
575705362829101545292760055941855246492e+0004L,
306049863037087855496170121958448492522e+0005L,
907060758873509564309729903109018597215e+0006L,
298059206584995898298257827131208539289e+0006L,

/* [1.777..., 2.5] *I

. 720391071006963176836108026556547062980e+0007L,

782614812922865190479394509487941920612e+0007L,
708016389605273153536452032839879950155e+0006L,

. 476495084688170096480215640962175140027e+0006L,
. 363200660365585759668077790194604917187e+0005L,
. 803239569848196077121203575704356936731e+0003L,

/* [1.28, 1.777...]1 */

new usr/src/lib/libmcomon/LD/joOl.c

393 9. 999999969777095495998606925524322559556e- 0001L
394 5. 825486719466194430503283824096872219216e+0001L,
395 1.248155491637757281915184824965379905380e+0003L
396 1. 302093199842358609321338417071710477615e+0004L
397 7.353835804186292782840961999810543016039e+0004L
398 2.356471661113686180549195092555751341757e+0005L,
399 4.350553267429009581632987060942780847101e+0005L
400 4.588762661876600638719159826652389418235e+0005L
401 2.675796398548523436544221045225290128611e+0005L
402 8. 077649557108971388298292919988449940464e+0004L
403 1.117640459221306873519068741664054573776e+0004L,
404 5.544400072396814695175787511557757885585e+0002L
405 5. 072550541191480498431289089905822910718e+0000L
406 }

407 static GENERIC ps6[13] = { /* [1.28, 1.777...]1 */
408 1. 0eOL

409 5. 832517925357165050639075848183613063291e+0001L
410 1.252144364743592128171256104364976466898e+0003L,
411 1. 310300234342216813579118022415585740772e+0004L,
412 7.434667697093812197817292154032863632923e+0004L,
413 2.398706595587719165726469002404004614711e+0005L
414 4.472737517625103157004869372427480602511e+0005L,
415 4.786313523337761975294171429067037723611e+0005L,
416 2.851161872872731228472536061865365370192e+0005L,
417 8.891648269899148412331918021801385815586e+0004L
418 1.297097489535351517572978123584751042287e+0004L,
419 7.096761640545975756202184143400469812618e+0002L,
420) 8. 378049338590233325977702401733340820351e+0000L
421 };

422 static GENERI C sixteen = 16.0L

423 static GENERI C huge = 1. 0e30L

425 static GENERIC pzero(x)

426 GENERI C x

427 {

428 CENERIC s,r1,t, z;

429 int i;

430 i f(x>huge) return one

431 t = one/x; z =t*t

432 |f(x>S|xteen) {

433 = z*pr0[11] +pr0[10]; s = psO[10]

434 for(i=9;i>=0 i--) {

435 r =z*r + prO[i];

436 s = z*s + psO[i];

437

438 } elseif (x > eight){

439 r = pri[11]; s psl[11] +z*(psl[12] +z*ps1[13]);
440 for(i:10;i>:0;|——)

441 r = z*r + prifi

442 s = z*s + psli

443 }

444 } else if (x> five){ /* x > 5.0 */

445 r = pr2[11]; s = ps2[11]+z*(ps2[12] +z*ps2[13]);
446 for(|-10,|>0|--

447 r = z*r + pr2|

448 s = z*s + ps2[i];

449 }

450 } else if(x>3.5L) {

451 r = pr3[12]; s = ps3[12]

452 for(1=11;i>=0;i--)

453 r =z*r + pr3[i

454 s = z*s + ps3[i];

455 }

456 else if(x>2.5L) {

457 r = pr4[12]; s = ps4[12]

458 for(i=11;i>=0;i--) {

new usr/src/lib/libmcomon/LDjoOl.c

459 r = z*r + pr4f[i]

460 s = z*s + ps4[i]

461

462 } else if(x> (1.0L/0.5625L)){

463 r = pr5[12]; s = ps5[12];

464 for(i=11;i>=0;i--) {

465 r = z*r + pr5[i]

466 s = z*s + pshH[i]

467 }

468 } else { /* assune x > 1.28 */

469 r = pr6[12]; s = ps6[12];

470 for(i=11;i>=0;i--) {

471 r = z*r + pr6[i]

472 S = z*s + ps6[i]

473 }

474 1

475 return r/s;

476 }

477

479 static GENERIC qr0[12] = { /* [16, inf] */

480 -1.249999999999999999999999999999999972972e- 0001L
481 -1.425179595545670577414395762503991596897e+0002L,
482 -6.312499645625970845534460257936222407219e+0004L
483 -1.411374326457208384315121243698814446848e+0007L
484 -1.735034212758873581410984757860787252842e+0009L,
485 -1.199777647512789489421826342485055280680e+0011L,
486 -4.596025334081655714499860409699100373644e+0012L
487 -9.262525628201284107792924477031653399187e+0013L
488 -8.858394728685039245344398842180662867639e+0014L
489 -3.267527953687534887623740622709505972113e+0015L
490 -2.664222971186311967587129347029450062019e+0015L,
491) 3.442464060723987869585180095344504100204e+0014L
492

493 static GENERIC gsO[11] = {

494 1. OeOL,

495 1.140729613936536461931516610003185687881e+0003L
496 5. 056665510442299351009198186490085803580e+0005L
497 1.132041763825642787943941650522718199115e+0008L
498 1.394570111872581606392620678214246479767e+0010L,
499 9. 677945218152264789534431079563744378421e+0011L
500 3.731140327851536828225143058896348502096e+0013L
501 7.612785951064869291722846681020881676410e+0014L
502 7.476077016406764891730191004811863975940e+0015L,
503 2.951246482613592035421503427100393831709e+0016L
504) 3.108361803691811711136854587074302034901e+0016L
505 };

506 static GENERIC qr1[12] = { /* [8, 16] */

507 -1.249999999999999999997949010383433818157e- 0001L
508 -9.051215166393822640636752244895124126934e+0001L
509 -2.620782703428148837671179031904208303947e+0004L
510 -3.975571261553504457766177974508785790884e+0006L,
511 -3.479029330759311306270072218074074994090e+0008L
512 -1.823955008124268573036216746186239829089e+0010L
513 -5.765932697111801375765156029221568664435e+0011L
514 -1.079843680798742592954002192417934779114e+0013L
515 -1.146893630504592739082205764611581332897e+0014L,
516 -6.367016059683898464936104447282880704182e+0014L
517 -1.583109041961213490464459111903484209098e+0015L
518 -1.230149555764242473103128650135795639412e+0015L,
519 };

520 static GENERIC gs1[14] = {

521 1. 0eOL

522 7.246831508115058112438579847778014458432e+0002L,
523 2.100854184439168518399383786306927037611e+0005L,
524 3.192636418837951507430188285940994235122e+0007L

new usr/src/lib/libmcomon/LD/joOl.c

525 2.801558443383354674538443461124434216152e+0009L,
526 1. 475026997664373739293483927250653467487e+0011L,
527 4.694486824913954608552363821799927145318e+0012L
528 8. 890350100919200250838438709601547334021e+0013L
529 9. 626844429082905144874701068760469752067e+0014L
530 5.541110744600460773528263862687521642140e+0015L
531 1. 486500494789452556727470329232123096563e+0016L,
532 1.415840104845959400365430773732093899210e+0016L
538 1. 780866095241517418081312567239682336483e+0015L
534 -2.359230917384889357887631544079990129494e+0014L
535 }

536 static GENERIC qr2[12] = { /* [5, 8] */

537 -1.249999999999999531937744362527772181614e- 0001L
538 -4.944373897356969774839375977239241573966e+0001L,
539 -7.728449175433465285314261650078450473909e+0003L,
540 -6.262574329612752346336901434651220705903e+0005L
541 -2.900948220220943306027235217424380672732e+0007L
542 -7.988719647634192770463917157562874119535e+0008L,
543 -1.318228171927181389547760026626357012375e+0010L,
544 -1.282439773983029245309263271945424928196e+0011L,
545 -7.050925570827818040186149940257918845138e+0011L
546 -2.021751882573871990004205616874202684429e+0012L
547 -2.592939962400668552384333900573812635658e+0012L,
548) -1.038267109518891262840601514932972850326e+0012L
549 };

550 static GENERIC gs2[14] = {

551 1. 0eOL,

552 3. 961358492885570003202784022894248952116e+0002L
558 6.205788738864701882828752634586510926968e+0004L
554 5. 045715603932670286550673813011764406749e+0006L
555 2.349248611362658323353343389430968751429e+0008L
556 6.520244524415828635917683553721880063911e+0009L,
557 1.089111211223507719337067159886281887722e+0011L,
558 1. 080406000905359867958779409414903018610e+0012L
559 6. 135645280895514703514154680623769562148e+0012L
560 1. 862433040246625874245867151368643668215e+0013L,
561 2.667780805786648888840777888702193708994e+0013L
562 1.394401107289087774765300711809313112824e+0013L
563 1. 093247500616320375562898297156722445484e+0012L
564 -7.228875530378928722826604216491493780775e+0010L,
565 }

566 static GENERIC qr3[13] = { /* [3.5 5] */

567 -1.249999999999473067748420379578481661075e- 0001L
568 -3.044549048635289351913574324803250977998e+0001L,
569 -2.890081140649769078496693003524681440869e+0003L
570 -1.404922456817202235879343275330529107684e+0005L
571 -3.862746614385573443518177403617349281869e+0006L,
572 -6.257517309110249049201133708911155047689e+0007L,
573 -6.031451330920839916987079782727323477520e+0008L
574 -3.411542405173830611454025765755854382346e+0009L
575 -1.089392478149726672133014498723021526099e+0010L
576 -1.824934078420210941290140903415956782726e+0010L
577 -1.400780278304358710423481070486939531139e+0010L,
578 -3.716484136064917363926635716743771092093e+0009L
579 -1.397591075296425529970434890954904331580e+0008L
580 }

581 static GENERIC qs3[13] = {

582 1. 0eOL

583 2.441498613904962049391000187014945858042e+0002L
584 2.326188882072370711500164222341514337043e+0004L
585 1.137138213121231338494977104659239578165e+0006L,
586 3.152918070735662728722998452605364253517e+0007L
587 5.172877993426507259314270488444013595108e+0008L
588 5. 083086439731669807455961078856470774115e+0009L
589 2.961842732066434123119325521139476909941e+0010L,
590 9.912185866862440735829781856081353151390e+0010L

new usr/src/lib/libmcomon/LDjoOl.c

591 1.793560561251622234430564181567297983598e+0011L
592 1.577090119341228122525265108497940403073e+0011L
593 5.509910306780166194333889999985463681636e+0010L
594 4.761691134078874491202320181517936758141e+0009L,

595 };

596 static GENERIC qr4[13] = { /* [2.5 3.5] */

597 - 1.249999999928567734339745043490705340835e- 0001L
598 - 1.967201748731419063051601624435565528481e+0001L
599 - 1.186329146714562236407099740615528170707e+0003L
600 - 3.607736959222941810356301491152457934060e+0004L
601 - 6.119200717978104904932828468575194267125e+0005L
602 -6.037847781158358226670305078652205586384e+0006L
603 - 3.503558153336140359700536720393565984740e+0007L
604 -1.180196478268225718757218523746787309773e+0008L
605 - 2.221860232085134915841426363505169680528e+0008L
606 - 2.173372505452747585296176761701746236760e+0008L
607 -9.649364865061237558517730539506568013963e+0007L
608 - 1.465429227847933034546039640094862650385e+0007L
609 - 3.083003197920262085170581866246663380607e+0005L
610 };

611 static GENERIC qs4[13] = { /* [2.5 3.5] */

612 1.0eOL

613 1.579620773732259142752614142139986854055e+0002L
614 9.581372220329138733203879503753685054968e+0003L
615 2.939598672379108095776114131010825885308e+0005L
616 5.052183049314542218630341818692588448168e+0006L
617 5.083497695595206639433839326338971980149e+0007L
618 3.036385361800553388049719014005099206516e+0008L
619 1.067826481452753409910563785161661492137e+0009L
620 2.145644125557118044720741775125319669272e+0009L
621 2.324115615959719949363946673491552216799e+0009L
622 1.223262962112070757966959855619847011146€+0009L
623 2.569765553318495423738478585947110270709e+0008L
624 1.354744744299227127897905787732636565504e+0007L
625 };

626 static GENERIC qr5[13] = { /* [1.777.., 2.5] *I
627 - 1.249999995936639697637680428174576069971e- 0001L
628 - 1.260846055371311453485891923426489068315e+0001L
629 - 4.772398467544467480801174330290141578895e+0002L
630 - 8.939852599990298486613760833996490599724e+0003L
631 -9.184070787149542050979542226446134243197e+0004L
632 -5.406038945018274458362637897739280435171e+0005L
633 - 1.845896544705190261018653728678171084418e+0006L
634 -3.613616990680809501878667570653308071547e+0006L
635 - 3.908782978135693252252557720414348623779e+0006L
636 -2.173711022517323927109138170588442768176e+0006L
637 -5.431253130679918485836408549007856244495e+0005L
638 - 4.591098546452684510082591587275940765959e+0004L
639 : -5.244711364168207806835520057792229646578e+0002L
640 };

641 static GENERIC qs5[13] = { I* [1.777.., 2.5] */
642 1.0e0L

643 1.014536210851290878350892750972474861447e+0002L
644 3.875547510687135314064434160096139681076e+0003L
645 7.361913122670079814955259281995617732580e+0004L
646 7.720288944218771126581086539585529314636e+0005L
647 4.681529554446752496404431433608306558038e+0006L
648 1.667882621940503925455031252308367745820e+0007L
649 3.469403153761399881888272620855305156241e+0007L
650 4.096992047964210711867089384719947863019e+0007L
651 2.596804755829217449311530735959560630554e+0007L
652 7.983933774697889238154465064019410763845e+0006L
653 9.818133816979900819087242425280757938152e+0005L
654 3.061083930868694396013541535670745443560e+0004L
655 };

10

new usr/src/lib/libmcomon/LD/joOl.c

657 static GENERIC qr6[13] = { /* [1.28, 1.777..]1 *I
658 - 1.249999881577289001807137282824929082771e- 0001L

659 -7.998273510053110759610810594119533619282e+0000L
660 -1.872481955335172543369089617771565632719e+0002L
661 -2.122116786726300805079874003303799646812e+0003L
662 -1.293850285839529282503178263484773478457e+0004L
663 - 4.445024742266316181033354192262529356093e+0004L
664 -8.730161378334357767668344467356505347070e+0004L
665 -9.7062228951720784428014449725053150547366+0004L
666 -5.896325518259858270165531513618195321041e+0004L
667 -1.823172034368108822276420827074668832233e+0004L
668 -2.509304178635055926638833040337472387175e+0003L
669 -1.156608965715779237316769828941729964099e+0002L
670 -7.028005789650731396887346826397785210442¢- 0001L
671 };

672 static GENERIC qs6[13] = { /* [1.28, 1.777..]1 */
673 1.0e0L

674 6.457211085058064845601261321277721075900e+0001L
675 1.534005216588011210342824555136008682950e+0003L
676 1.777217999176441782593357660462379097171e+0004L
677 1.118372652642469468091084810263231199696e+0005L
678 4.0152424338584618131423657483864736052946+0005L
679 8.377081045517098645448616514388280497673e+0005L
680 1.011495020008010352575398009604164287337e+0006L
681 6.886722075290430568652227875200208955970e+0005L
682 2.504735189948021472047157148613171956537e+0005L
683 4.408138920171044846941001844352009817062e+0004L
684 3.105572178072115145673058722853640854884e+0003L
685 : 5.588294821118916113437396504573817033678e+0001L
686

687 static GENERI C gzero(x)
688 GENERI C x;
689 {
690 GENERIC s, 1, t, Z;
691 int i;
692 i f(x>huge) return -0.125L/x;
693 t = one/x; z = t*t;
694 i f(x>sixteen) {
695 r = z*qr0[11] +qr0[10]; s = gsO[10];
696 for(i=9;i>=0;i--) {
697 r =z*r + qr0[i];
698 s = z*s + qgsO[i];
699 }
700 } el se i f(x>ei ght)
701 r = qri[11]; s = gsi[11] +z*(qs1[12] +z*qs1[13]);
702 for(l =10; i >=
703 r r
704 S 5
705 }
706 } else i
r
f

———

assume x > 5.0 */
707
708
709
710
711 }

712 } else if(x>3.
713 r = qr3[12
714 for(i=11;
715 r =z
716 s =2z
717 }
718 } else i
719 r
720 f
721

722

s2[11] +z*(qgs2[12] +z*gs2[13]);

11

new usr/src/lib/libmcomon/LDjoOl.c

723 }

724 } el'se if(x> (1.0L/0.5625L)) {
725 r = qr5[12]; s gs5[12];
726 for(i=11;i>=0;i--)

727 r =z*r + qr5[i];

728 s = z*s + qs5[i];

729 }

730 } else { /* assume x > 1.28 */
731 r = qr6[12]; s = qsG[12];
732 for(l-ll |>— vi--)

733 = 7rr o+ qr6[|]

734 s = z*s + gs6[i];

735 }

736

737 return t*(r/s);

738 }

12

new usr/src/lib/libmcomon/LDj1l.c

R R R R

28046 Sun May 4 03:05:28 2014
new usr/src/lib/libmcomon/LDj1l.c

hkkkkkkkkkkkkkkkkhkkkkhkhkkkhkkkhkkkkkkkkkkkkhkkkkkkkk ok k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 =/

30 /*

31 * floating point Bessel’s function of the first and second ki nds
32 * of order zero: j1(x),yl(x);

33 *

34 * Special cases:

35 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
36 * y0(-ve)=yl(-ve)=yn(n,-ve) are NaN with invalid signal.
37 */

39 #pragma weak j1l = _ j1lI

40 #pragma weak yll = _ ylil

42 #include "libmh"

43 #include "libmsynonyns. h"
44 #include "l ongdoubl e. h"

45 #endif /* | codereview */
46 #include <math. h>

47 #if defined(__SUNPRO Q)

48 #incl ude <sunnat h. h>

49 #endi f

51 #define CGENERIC | ong doubl e
52 static GENERIC

53 zero = 0.0L,

54 snal | = 1.0e-9L,

55 tiny = 1. Oe- 38L,

56 one = 1.0L,

57 five = 5.0L,

58 invsqrtpi = 5.641895835477562869480794515607725858441e- 0001L,
59 tpi = 0.636619772367581343075535053490057448L;

61 static GENERI C pone(), qone();
62 static GENERIC rO[7] = {

new usr/src/lib/libmcomon/LDj1l.c

63 -6.249999999999999999999999999999999627320e- 0002L,

64 1.940606727194041716205384618494641565464e- 0003L,

65 -3.005630423155733701856481469986459043883e- 0005L,

66 2.345586219403918667468341047369572169358e- 0007L,

67 -9.976809285885253587529010109133336669724e- 0010L,

68 2.218743258363623946078958783775107473381e- 0012L,

69) -2.071079656218700604767650924103578046280e- 0015L,

70 };

71 static GENERIC sO[7] = {

72 1. 0eOL,

73 1.061695903156199920738051277075003059555e- 0002L,

74 5.521860513111180371566951179398862692060e- 0005L,

75 1.824214367413754193524107877084979441407e- 0007L,

76 4.098957778439576834818838198039029353925e- 0010L,

77 6. 047735079699666389853240090925264056197e- 0013L,

78 4.679044728878836197247923279512047035041e- 0016L,

79},

81 GENERI C

82 j 1l (x) GENERIC x;{

83 GENERIC z, d, s, ¢, ss, ccC, r;

84 int i, sgn;

86 if(!finitel(x)) return one/x;

87 sgn = signbitl (x);

88 x = fabsl (x);

89 if(x > 1.28L){

90 s = 5| nI (x);

91 c = 1(x);

92 /* j1(x) = sqrt(2/(p| *x))*(p1(x)*cos(x0)-ql(x)*sin(x0))
93 * where x0 = x-3pi/4

94 * Better formula:

95 * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pil/4)
96 * = 1/sqrt(2) * (sin(x) - cos(x)
97 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
98 * = -1/sqrt(2) * (cos(x) + sin(x))
99 * To avoi d cancel |l ation, use
100 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
101 * to conpute the worse one.
102 */
103 if(x>1.0e2450L) { /* x+x may overflow */
104 SS = -s-C;
105 cC = s-C;
106 } elself(3|gnb|tl(s)I =signbitl(c)) {
107 =s
108 ss = cosl (x+x)/cc
109 } else {
110 SS = -s-C
111 cc = cosl (x+x)/ss
112 }
113 /*
114 * jL(x) = Usgrt(pi*x) * (P(1,x)*cc - Q1,x)*ss)
115 * y1(x) = 1/sqrt(pi*x) * (P(1,x)*ss + Q1,x)*cc)
116 */
117 i f(x>1 0el120L) return (i nvsqrt pi *cc) I'sqgrtl (x);
118 d = invsqgrtpl *(pone(x)*cc-qone(x)*ss)/sqrtl (x)
119 if(sgn==0) return d; else return -d;
120 }
121 i f(x<=snall)
122 if(x<=tiny) d = 0. 5L*x,
123 else d = x*(0 Lo x*x* 0. 125L);
124 i f (sgn==0) return d; else return -d;
125 }
126 Z = X*X;
127 r =r0[6];
128 s = s0[6];

new usr/src/lib/libmcomon/LDj1l.c

129 for(|—5|>0|——) {

130 =r*z +r0[i];

131 s:sz+so[|];

132 }

133 d = x*0.5L+x*(z*(r/s));

134 if(sgn==0) return d; else return -d;

135 }

137 static GENERIC u0[7] = {

138 -1.960570906462389484060557273467558703503e- 0001L,

139 5.166389353148318460304315890665450006495e- 0002L,

140 -2.229699464105910913337190798743451115604e- 0003L,

141 3.625437034548863342715657067759078267158e- 0005L,

142 -2.689902826993117212255524537353883987171e- 0007L,

143 9. 304570592456930912969387719010256018466e- 0010L,

144 -1.234878126794286643318321347997500346131e-0012L,

145 };

146 static GENERIC vO[8] = {

147 1. OeOL,

148 1. 369394302535807332517110204820556695644e- 0002L,

149 9. 508438148097659501433367062605935379588e- 0005L,

150 4.399007309420092056052714797296467565655e- 0007L,

151 1. 488083087443756398305819693177715000787e- 0009L,

152 3.751609832625793536245746965768587624922e- 0012L,

153 6.680926434086257291872903276124244131448e- 0015L,

154 6.676602383908906988160099057991121446058e- 0018L,

155 }

157 GENERIC

158 y1l (x) GENERIC x;{

159 GENERIC z, s, c, ss, cc, U, V;

160 int i;

162 f(isnanl (x)) return x+x;

163 f(x <= zero){

164 i f(x==zero)

165 return -one/ zero;

166 el se

167 return zerol/ zero;

168 1

169 if(x > 1.28L){

170 if(!finitel(x)) return zero;

171 s = sinl(x);

172 ¢ = cosl (x);

173 /* j1(x) = sqrt(2/(p| *x))*(pl(x)*cos(x0)-ql(x)*sin(x0))
174 * where x0 = x-3pi/4

175 * Better fornula:

176 * cos(x0) = cos(x)cos(3pi/4)+sin(x) SI n(3p| /4)
177 * = 1lsqrt(2) * (sin(x) - cos(x))
178 * sin(x0) = sin(x)cos(3pi/4)-cos(x) SI n(3pi/4)
179 * = -1/sqrt(2) * (cos(x) + sin(x))
180 * To avoid cancel |l ation, use

181 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
182 * to conpute the worse one.

183 */

184 i f(x>1.0e2450L) { /* x+x may overflow */
185 SS = -s-C;

186 CC = s-C;

187 } else|f(S|gnb|tI(s)'—S|gnb|tI(c)) {

188 =s

189 ss = cosl (x+x)/cc

190 } else {

191 SS = -s-C;

192 cc = cosl (x+x)/ss;

193 }

194 /*

new usr/src/lib/libmcomon/LDj1l.c

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

253 }

254
255
256
257
258
259
260

}

stati

*j1(x)
A

1/sqrt(pi*x) * (P(1, x)*cc - Q1,x)*ss)
1/sqgrt(pi*x) * (P(1,x)*ss + 1, Xx)*cc)

if(x>1.0e91L) return (i nvsqrtpl *ss)/sqrtl()
return invsqrtpi*(pone(x)*ss+qone(x)* cc)/sqrtl (x);

}
i f(x<=tiny)
) return(-tpi/x);
Z = X*X;
u = u0[6]; v = vO[6]+z*VvO[7]
for(i=5;1>=0;i--){
u=u*z + uof[i
v = v*z + vO[i];

return(x*(u/v) + tpi*(j1l(x)*logl(x)-one/x));

¢ GENERIC pro[12] = {

1..000000000000000000000000000000000000267e+0000L,

0
=
QD

0

=
QD

NARRRNONNRORT

stati

.060717875045891455602180843276758003035e+0003L,

344347542892127024446687712181105852335e+0005L,
915680220724007016377924252717410457094e+0007L,
969502259938406062809873257569171272819e+0009L,
200290193138613035646510338707386316595e+0011L,
105978548788015119851815854422247330118e+0013L,
696635772784601239371730810311998368948e+0014L,
015913097920694682057958412534134515156e+0015L,

. 370298471339353098123277427328592725921e+0015L,

190349005196335967340799265074029443057e+0015L,
736097786240689996880391074927552517982e+0014L,

¢ GENERIC psO[11] = {
0e0L,
060600687545891455602180843276758095107e+0003L

. 343106093416975589147153906505338900961e+0005L,
.910605869002176566582072242244353399059e+0007L,

959122058635087888690713917622056540190e+0009L,
188744967234948231792482949171041843894e+0011L,
098863976953783506401759873801990304907e+0013L,
672870357018063196746729751479938908450e+0014L,
975538419246824921049011529574385888420e+0015L,
063657659995043205018686029284479837091e+0015L,

.401953344314747916729366441508892711691e+0015L,

¢ GENERIC pri[12] = {
000000000000000000000023667524130660984e+0000L

. 746154419979618754354803488126452971204e+0002L,

811210781083390154857018330296145970502e+0005L,
533098390379924268038005329095287842244e+0007L,
029683619805342145252338570875424600729e+0009L,
660859662192711465301069401598929980319e+0010L,
743396238644831519934098967716621316316e+0012L,
553097354140854377931023170263455246288e+0013L,

. 210245069852219757476169864974870720374e+0014L,
. 987334056229596485076645967176169801727e+0015L,

067120052787096893838970455751338930462e+0015L,
486539606380406398310845264910691398133e+0015L,

¢ GENERI C psi[14] = {
0eOL

. 744982544979618754355808680196859521782e+0002L,
. 810421795396966762032155290441364740350e+0005L,
. 530986460644310651529583759699988435573e+0007L,
. 026743276048023121360249288818290224145e+0009L,

637461924407405935245269407052641341836e+0010L,

new usr/src/lib/libmcomon/LDj1l.c

261
262
263
264
265
266
267
268

269 };
stati

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

0~
-
QD

7 Nad
-
Q

NI ESEES[PINEDIDESNDIS

0
-
QD

o SPESPINEDIDEIRNS

PPN ED S ETEN =T

PONWESSN

. 732378628423766417402292797028314160831e+0012L,

522345274960527124354844364012184278488e+0013L,
160650668341743132685335758415469856545e+0014L,

. 943730242988858208243492424892435901211e+0015L,
. 880228532692127989901131618598067450001e+0015L,

178020816161154615841000173683302999728e+0015L,
994062666842225551554346698171600634173e+0013L,

. 368520368508851253495764806934619574990e+0013L,

¢ GENERIC pr2[12] = {

1. 000000000000000006938651621840396237282e+0000L,

NOONUOARWOW

.658416291850404981407101077037948144698e+0002L,
.267073772170356547709794670602812447537e+0004L,

912012101226837463014925210735894620442e+0006L,
651295648974103957193874928714180765625e+0008L,
114901144480797609972484998142146783499e+0009L,
092524309766036681542980572526335147672e+0010L,
263913178071282616719249969074134570577e+0011L,
538408581124324223367341020538081330994e+0012L,

.288607929360291027895126983015365677648e+0012L,
. 848330048211148419047055075386525945280e+0012L,

290309646838867941423178163991423244690e+0012L,

¢ GENERI C ps2[14] = {

0e0L,
657244416850405086459410165762319861856€+0002L
262802358425023243992387075861237306312e+0004L
905896813959919648136295861661483848364e+0006L
646791907791461220742694842108202772763e+0008L
096132803064256022224954120208201437344e+0009L
046665195915950447544429445730680236759e+0010L

.198061739781991313414052212328653295168e+0011L,

484233851814333966401527626421254279796e+0012L,
047868806925315879339651539434315255940e+0012L,
333103831254091652501642567294101813354e+0012L,

. 875143098754284994467609936924685024968e+0012L,
. 238330920563392692965412762508813601534e+0010L,

656888609439364725427789198383779259957e+0009L
¢ GENERIC pr3[13] = {

.000000000000009336887318068056137842897e+0000L,

242719942728459588488051572002835729183e+0002L,
955450611382026550266257737331095691092e+0004L,
707143293993619899395400562409175590739e+0005L,
186267894487004565948324289010954505316e+0007L,
224328510541957792360691585667502864688e+0008L,
821057355151380597331792896882741364897e+0009L,
445371387295422404365584793796028979840e+0010L,
181743160669891357783011002656658107864e+0010L,
387371088767993119325536137794535513922e+0010L,
575619999412716078064070587767416436396e+0010L,

. 228415651211639160620284441690503550842e+0010L,

242170349875563053436050532153112882072e+0008L,

¢ GENERIC ps3[13] = {

OeOL
241548067728529551049804610486061401070e+0002L,
952838216795552145132137932931237181307e+0004L,
684574926493185744628127341069974575526e+0005L,
176357771067037962940853412819852189164e+0007L,
199958682356132977319258783167122100567e+0008L,
786218931525334687844675219914201872570e+0009L,

.416283776951741549631417572317916039767e+0010L,
. 042962659271567948735676834609348842922e+0010L,

028168462646694510083847222968444402161e+0010L,

.118410226794641413833887606580085281111e+0010L,

new usr/src/lib/libmcomon/LDj1l.c

327 9.918735736297038430744161253338202230263e+0009L
328 4.092967198238098023219124487437130332038e+0008L,
329 }

330 static GENERIC pr4[13] = {

331 1..000000000001509220978157399042059553390e+0000L
332 1.437551868378147851133499996323782607787e+0002L
333 7.911335537418177296041518061404505428004e+0003L,
334 2.193710939115317214716518908935756104804e+0005L
335 3.390662495136730962513489796538274984382e+0006L
336 3. 048655347929348891006070609293884274789e+0007L
337 1. 613781633489496606354045161527450975195e+0008L,
338 4.975089835037230277110156150038482159988e+0008L
339 8.636047087015115403880904418339566323264e+0008L
340 7.918202912328366140110671223076949101509e+0008L
341 3.423294665798984733439650311722794853294e+0008L,
342 5.621904953441963961040503934782662613621e+0007L
343 2.086303543310240260758670404509484499793e+0006L
344 }

345 static GENERI C ps4[13] = {

346 1. 0eOL

347 1.436379993384532371670493319591847362304e+0002L
348 7.894647154785430678061053848847436659499e+0003L
349 2.184659753392097529008981741550878586174e+0005L,
350 3.366109083305465176803513738147049499361e+0006L
351 3.011911545968996817697665866587226343186e+0007L
352 1.582262913779689851316760148459414895301e+0008L
353 4.819268809494937919217938589530138201770e+0008L
354 8.201355762990450679702837123432527154830e+0008L
355 7.268232093982510937417446421282341425212e+0008L
356 2.950911909015572933262131323934036480462e+0008L
357 4.242839924305934423010858966540621219396e+0007L
358 1. 064387620445090779182117666330405186866e+0006L,
359 }

360 static GENERIC pr5[13] = {

361 1.000000000102434805241171427253847353861e+0000L
362 9. 129332257083629259060502249025963234821e+0001L,
363 3.132238483586953037576119377504557191413e+0003L
364 5. 329782528269307971278943122454171107861e+0004L
365 4.988460157184117790692873002103052944145e+0005L
366 2.686602071615786816147010334256047469378e+0006L,
367 8.445418526028961197703799808701268301831e+0006L
368 1. 536575358646141157475725889907900827390e+0007L
369 1.568405818236523821796862770586544811945e+0007L
370 8.450876239888770102387618667362302173547e+0006L,
371 2.154414900139567328424026827163203446077e+0006L,
372 2.105656926565043898888460254808062352205e+0005L
373 4.739165011023396507022134303736862812975e+0003L
374 }

375 static GENERIC ps5[13] = {

376 1. 0eOL

377 9.117613509595327476509152673394703847793e+0001L
378 3.121697972484015639301279229281770795147e+0003L
379 5.294447222735893568040911873834576440255e+0004L
380 4.930368882192772335798256684110887882807e+0005L
381 2.634854685641165298302167435798357437768e+0006L
382 8.185462775400326393555896157031818280918e+0006L
383 1.462417423080215192609668642663030667086e+0007L,
384 1. 450624993985851675982860844153954896015e+0007L
385 7.460467647561995283219086567162006113864e+0006L
386 1. 754210981405612478869227142579056338965e+0006L
387 1.463286721155271971526264914524746699596e+0005L,
388) 2.155894725796702015341211116579827039459e+0003L
389 };

390 static GENERIC pr6[13] = {

391 1. 000000003564855546741735920315743157129e+0000L,
392 5. 734003934862540458119423509909510288366e+0001L

new usr/src/lib/libmcomon/LDj1l.c

393 1. 209572491935850486086559692291796887976e+0003L
394 1. 243398391422281247933674779163660286838e+0004L,
395 6.930996755181437937258220998601708278787e+0004L
396 2.198067659532757598646722249966767620099e+0005L
397 4.033659432712058633933179115820576858455e+0005L
398 4.257759657219008027016047206574574358678e+0005L,
399 2.511917395876004349480721277445763916389e+0005L,
400 7.813756153070623654178731651381881953552e+0004L
401 1.152069173381127881385588092905864352891e+0004L
402 6. 548580782804088553777816037551523398082e+0002L
403 8.668725370116906132327542766127938496880e+0000L,
404 };

405 static GENERIC ps6[13] = {

406 1. 0eOL

407 5.722285236357114566499221525736286205184e+0001L,
408 1.203010842878317935444582950620339570506e+0003L
409 1. 230058335378583550155825502172435371208e+0004L
410 6. 800998550607861288865300438648089894412e+0004L
411 2.130767829599304262987769347536850885921e+0005L,
412 3.840483466643916681759936972992155310026e+0005L
413 3.947432373459225542861819148108081160393e+0005L
414 2.237816239393081111481588434457838526738e+0005L
415 6. 545820495124419723398946273790921540774e+0004L,
416 8.729563630320892741500726213278834737196e+0003L
417 4.130762660291894753450174794196998813709e+0002L
418 3.480368898672684645130335786015075595598e+0000L
419 }

420 static GENERI C sixteen = 16.0L;

421 static GENERI C ei ght = 8.0L

422 static GENERI C huge = 1. 0e30L

424 static GENERI C pone(x)

425 CGENERI C x;

426 {

427 GENERIC s,r1,t,2;

428 int i;

429 i f(x>huge) return one

430 t = one/x; z = t*t

431 i f(x>sixteen) {

432 r = z*pr0[11] +pr0[10] ; s = psO[10]

433 for(i=9;i>=0;i--) {

434 r =z*r + pr0O[i]

435 s = z*s + psO[i];

436 }

437 } else if(x>eight) {

438 r = pri[11]; s = psi1[11]+z*(psl[12] +z*psl[13]);
439 for(1=10;i>=0;i--)

440 r = z*r + prifi

441 s = z*s + psl[i

442 }

443 } else if(x>five) {

444 r = pr2[11]; s = ps2[11] +z*(ps2[12] +z*ps2[13])
445 for(i=10;i>=0;i--)

446 r =2z + pr2[i];

447 S = z*s + ps2|

448 }

449 } else if(x>3.5L) {

450 r = pr3[12]; s = ps3[12];

451 for(i1=11;i>=0;i--)

452 r =z*r + pr3[i

453 s = z*s + ps3[i

454 }

455 } else if(x>2.5L)

456 r = pr4[12]; s = ps4[12]

457 for(i=11;i>=0;i--) {

458 r = z*r + pr4f[i];

new usr/src/lib/libmcomon/LDj1l.c

459 s = z*s + ps4[i]

460 }

461 } else if(x> (1.0L/0.5625L)){
462 r 12];
463 for(i i
464 r
465 s
466 }

467 } else { /* assume x > 1.28 */
468 r = pr ;S = ps6[12];

469 for(i= vi--) |{

470 r i
471 s
472 }

473

474 return r/s;
475 }

476

1

el

"=

—

» = y—
I

478 static GENERIC qro[12] = {
479 3.749999999999999999999999999999999971033e- 0001L,

480 4.256726035237050601607682277433094262226e+0002L
481 1. 875976490812878489192409978945401066066e+0005L,
482 4.170314268048041914273603680317745592790e+0007L,
483 5.092750132543855817293451118974555746551e+0009L
484 3.494749676278488654103505795794139483404e+0011L,
485 1.327062148257437316997667817096694173709e+0013L
486 2.648993138273427226907503742066551150490e+0014L
487 2.511695665909547412222430494473998127684e+0015L
488 9. 274694506662289043224310499164702306096e+0015L
489 8.150904170663663829331320302911792892002e+0015L
490 -5.001918733707662355772037829620388765122e+0014L,
491 };

492 static GENERIC gsO[11] = {

493 1. 0eOL

494 1.135400380229880160428715273982155760093e+0003L,
495 5.005701183877126164326765545516590744360e+0005L
496 1.113444200113712167984337603933040102987e+0008L
497 1.361074819925223062778717565699039471124e+0010L
498 9. 355750985802849484438933905325982809653e+0011L,
499 3.563462786008988825003965543857998084828e+0013L
500 7.155145113900094163648726863803802910454e+0014L
501 6. 871266835834472758055559013851843654113e+0015L,
502 2.622030899226736712644974988157345234092e+0016L,
503) 2.602912729172876330650077021706139707746e+0016L,
504 };

505 static GENERIC gr1[12] = {

506 3. 749999999999999999997762458207284405806e- 0001L,
507 2.697883998881706839929255517498189980485e+0002L
508 7.755195925781028489386938870473834411019e+0004L
509 1.166777762104017777198211072895528968355e+0007L
510 1.011504772984321168320010084520261069362e+0009L
511 5.246007703574156853577754571720205550010e+0010L,
512 1. 637692549885592683166116551691266537647e+0012L
513 3.022303623698185669912990310925039382495e+0013L
514 3.154769927290655684846107030265909987946e+0014L
515 1.715819913441554770089730934808123360921e+0015L,
516 4.165044355759732622273534445131736188510e+0015L,
517 3.151381420874174705643100381708086287596e+0015L
518 }

519 static GENERIC gs1[14] = {

520 1. 0eOL

521 7.197091705351218239785633172408276982828e+0002L
522 2.070012799599548685544883041297609861055e+0005L
523 3.117014815317656221871840152778458754516e+0007L,
524 2.705719678902554974863325877025902971727e+0009L

new usr/src/lib/libmcomon/LDj1l.c

525 1.406113614727345726925060648750867264098e+0011L,
526 4.403777536067131320363005978631674817359e+0012L,
527 8.170725690209322283061499386703167242894e+0013L
528 8. 609458844975495289227794126964431210566e+0014L
529 4.766766367015473481257280600694952920204e+0015L
530 1. 202286587943342194863557940888115641650e+0016L
531 1.012474328306200909525063936061756024120e+0016L,
532 6. 183552022678917858273222879615824070703e+0014L
533 -9.756731548558226997573737400988225722740e+0013L
534 }

535 static GENERIC qr2[12] = {

536 3. 749999999999999481245647262226994293189e- 0001L
537 1.471366807289771354491181140167359026735e+0002L
538 2.279432486768448220142080962843526951250e+0004L
539 1. 828943048523771225163804043356958285893e+0006L,
540 8.379828388647823135832220596417725010837e+0007L
541 2.279814029335044024585393671278378022053e+0009L
542 3.711653952257118120832817785271466441420e+0010L,
543 3. 557650914518554549916730572553105048068e+0011L,
544 1.924583483146095896259774329498934160650e+0012L
545 5. 424386256063736390759567088291887140278e+0012L
546 6.839325621241776786206509704671746841737e+0012L
547 2.702169563144001166291686452305436313971e+0012L,
548 }

549 static GENERIC gs2[14] = {

550 1. 0eOL,

Bl 3.926379194439388135703211933895203191089e+0002L
552 6.089148804106598297488336063007609312276e+0004L
558 4.893546162973278583711376356041614150645e+0006L
554 2.247571119114497845046388801813832219404e+0008L
555 6.137635663350177751290469334200757872645e+0009L
556 1. 005115019784102856424493519524998953678e+0011L,
557 9. 725664462014503832860151384604677240620e+0011L
558 5. 345525100485511116148634192844434636072e+0012L
559 1.549944007398946691720862738173956994779e+0013L
560 2.067148441178952625710302124163264760362e+0013L,
561 9. 401565402641963611295119487242595462301e+0012L,
562 3.548217088622398274748837287769709374385e+0011L
563 -2.934470341719047120076509938432417352365e+0010L
564 };

565 static GENERIC qr3[13] = {

566 3.749999999999412724084579833297451472091e- 0001L
567 9. 058478580291706212422978492938435582527e+0001L
568 8. 524056033161038750461083666711724381171e+0003L,
569 4.105967158629109427753434569223631014730e+0005L
570 1.118326603378531348259783091972623333657e+0007L
571 1. 794636683403578918528064904714132329343e+0008L
572 1.714314157463635959556133236004368896724e+0009L,
573 9. 622092032236084846572067257267661456030e+0009L
574 3. 057759524485859159957762858780768355020e+0010L
575 5.129306780754798531609621454415938890020e+0010L
576 3.999122002794961070680636194346316041352e+0010L
577 1.122298454643493485989721564358100345388e+0010L
578) 5. 603981987645989709668830968522362582221e+0008L
579 };

580 static GENERI C gqs3[13] = {

581 1. 0eOL,

582 2.418328663076578169836155170053634419922e+0002L
583 2.279620205900121042587523541281272875520e+0004L
584 1.100984222585729521470129014992217092794e+0006L
585 3.010743223679247091004262516286654516282e+0007L,
586 4.860925542827367817289619265215599433996e+0008L
587 4.686668111035348691982715864307839581243e+0009L
588 2.668701788405102017427214705946730894074e+0010L
589 8.677395746106802640390580944836650584903e+0010L,
590 1.511936455574951790658498795945106643036e+0011L

new usr/src/lib/libmcomon/LDj1l.c

591 1. 260845604432623478002018696873608353093e+0011L
592 4.052692278419853853911440231600864589805e+0010L,
593) 2.965516519212226064983267822243329694729e+0009L
594 };

595 static GENERIC gr4[13] = {

596 3.749999999919234164154669754440123072618e- 0001L
597 5. 844218580776819864791168253485055101858e+0001L,
598 3.489273514092912982675669411371435670220e+0003L
599 1. 050523637774575684509663430018995479594e+0005L
600 1. 764549172059701565500717319792780115289e+0006L,
601 1. 725532438844133795028063102681497371154e+0007L,
602 9. 938114847359778539965140247590176334874e+0007L
603 3.331710808184595545396883770200772842314e+0008L
604 6.271970557641881511609560444872797282698e+0008L,
605 6. 188529798677357075020774923903737913285e+0008L,
606 2.821905302742849974509982167877885011629e+0008L
607 4.615467358646911976773290256984329814896e+0007L
608 1. 348140608731546467396685802693380693275e+0006L
609 };

610 static GENERI C gs4[13] = {

611 1. 0eOL

612 1.561192663112345185261418296389902133372e+0002L
613 9. 346678031144098270547225423124213083072e+0003L,
614 2.825851246482293547838023847601704751590e+0005L
615 4.776572711622156091710902891124911556293e+0006L
616 4.715106953717135402977938048006267859302e+0007L
617 2.753962350894311316439652227611209035193e+0008L
618 9.428501434615463207768964787500411575223e+0008L
619 1. 832650858775206787088236896454141572617e+0009L
620 1.901697378939743226948920874296595242257e+0009L
621 9. 433322226854293780627188599226380812725e+0008L
622 1. 808520540608671608680284520798858587370e+0008L,
623) 7.983342331736662753157217446919462398008e+0006L
624 };

625 static GENERIC qr5[13] = {

626 3.749999995331364437028988850515190446719e- 0001L,
627 3.739356381766559882677514593041627547911e+0001L
628 1. 399562500629413529355265462912819802551e+0003L
629 2.594154053098947925345332218062210111753e+0004L
630 2.640149879297408640394163979394594318371e+0005L,
631 1.542471854873199142031889093591449397995e+0006L
632 5. 242272868972053374067572098992335425895e+0006L
633 1. 025834487769410221329633071426044839935e+0007L
634 1.116553924239448940142230579060124209622e+0007L,
635 6.318076065595910176374916303525884653514e+0006L
636 1.641218086168640408527639735915512881785e+0006L
637 1.522369793529178644168813882912134706444e+0005L
638 2.526530541062297200914180060208669584055e+0003L,
639 }

640 static GENERI C gs5[13] = {

641 1. 0eOL,

642 9. 998960735935075380397545659016287506660e+0001L
643 3.758767417842043742686475060540416737562e+0003L
644 7.013652806952306520121959742519780781653e+0004L
645 7.208949808818615099246529616211730446850e+0005L
646 4.272753927109614455417836186072202009252e+0006L
647 1. 482524411356470699336129814111025434703e+0007L,
648 2.988750366665678233425279237627700803473e+0007L
649 3. 396957890261080492694709150553619185065e+0007L
650 2.050652487738593004111578091156304540386e+0007L,
651 5.900504120811732547616511555946279451316e+0006L,
652 6.563391409260160897024498082273183468347e+0005L
653 1. 692629845012790205348966731477187041419e+0004L
654

655
656

b
static GENERIC qr6[13] = {
3. 749999861516664133157566870858975421296e- 0001L

10

new usr/src/lib/libmcomon/LDj1l.c

657 2.367863756747764863120797431599473468918e+0001L
658 5.476715802114976248882067325630793143777e+0002L
659 6.143190357869842894025012945444096170251e+0003L
660 3. 716250534677997850513733595140463851730e+0004L
661 1.270883463823876752138326905022875657430e+0005L
662 2.495301449636814481646371665429083801388e+0005L
663 2.789578988212952248340486296254398601942e+0005L
664 1.718247946911109055931819087137397324634e+0005L
665 5. 458973214011665714330326732204106364229e+0004L
666 7.912102686687948786048943339759596652813e+0003L
667 4.077961006160866935722030715149087938091e+0002L
668) 3. 765206972770245085551057237882528510428e+0000L
669 };

670 static GENERI C gqs6[13] = {

671 1. OeOL,

672 6.341646532940517305641893852673926809601e+0001L
673 1. 477058277414040790932597537920671025359e+0003L
674 1. 674406564031044491436044253393536487604e+0004L
675 1. 028516501369755949895050806908994650768e+0005L
676 3. 593620042532885295087463507733285434207e+0005L
677 7.267924991381020915185873399453724799625e+0005L
678 8.462277510768818399961191426205006083088e+0005L
679 5.514399892230892163373611895645500250514e+0005L
680 1.898084241009259353540620272932188102299e+0005L
681 3.102941242117739015721984123081026253068e+0004L
682 1.958971184431466907681440650181421086143e+0003L
683 2. 878853357310495087181721613889455121867e+0001L
684 };

685 static GENERIC gone(x)

686 GENERI C x

687 {

688 CENERIC s,r1,t, z;

689 int i;

690 i f(x>huge) return 0.375L/x

691 t = one/x; z =t*t

692 |f(x>S|xteen) {

693 r = z*qrO[1]+qr0[10] s = gs0[10]

694 for(i 9;|>— i--) {

695 ro=zrr o+ qrO[i];

696 s = z*s + qsO[i]

697

698 } else if(x>eight

699 r = qr1[11]; s = qgs1[11] +z*(qsl[12]+z*qs1[13]);
700 for(i=10;i>=0;i--

701 r=z*r + qrif[i];

702 s = z*s + gslfi

703 }

704 } else if (x>five) { /* x > 5.0 */

705 r = qr2[11]; s = gqs2[11]+z*(qgs2[12] +z*qs2[13])
706 for(i=10;i>=0;i--)

707 r =z*r + qr2[i

708 s = z*s + qs2[i

709

710 } else if(x>3.5L) {

711 r = qr3[12]; s = gs3[12]

712 for(i=11;i>=0;i--)

713 r =z*r +qr3[i];

714 s = z*s + gs3[i

715 }

716 } else if(x>2.5L) {

717 r = qr4[12]; s = gqs4[12];

718 for(i=11;i>=0;i--)

719 r = z*r + qr4[i];

720 s = z*s + qs4[i

721

722 } else if(x> (1.0L/0.5625L)) {

11

new usr/src/lib/libmcomon/LDj1l.c

723
724
725
726
727
728
729
730
731
732
733
734
735
736 }

r = qgr5[12
for(l—ll,
:Z*
s =z
}
} else {
r qr6[12
for(l-ll
= z*
s = z*
}

1

>
;
s

1

>=
;
s

}
return t*(r/s)

/* assune x > 1.28 */
s = Qgs6[12];
{

0;
+
+

12

new usr/src/lib/libmcomon/LD jnl.c

R R R R

7031 Sun May 4 03:05:29 2014
new usr/src/lib/libmcomon/LDjnl.c

hkkkkkkkkkkkkkkkkkkkkhkhkkkhkkkhkkkkkkkkkkkkkkkkkk ok kk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")

or http://ww.opensolaris.org/os/licensing.

*
*
*
*
*
*
*
*
* and limtations under the License.
*
*
*
*
*
*
*
* CDDL HEADER END

*

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*

26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #if defined(ELFOBJ)
31 #pragma weak jnl = _ jnl

32 #pragma weak ynl = __ynl

33 #endi f

35 /*

36 * floating point Bessel’s function of the 1st and 2nd kind
37 * of order n: jn(n,x),yn(n,x);

38 *

39 * Special cases:

40 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
41 * y0(-ve)=yl(-ve)=yn(n,-ve) are NaN with invalid signal.
42 * Note 2. About jn(n,x), yn(n,x)

43 = For n=0, jO(x) Is called,

44 * for n:l, J1(x) is call ed,

45 * for n<x, forward recursion us used starting

46 * fromvalues of jO(x) and j1(x).

47 = for n>x, a continued fraction approxi mation to

48 * j(n, x)/J(n 1,x) is evaluated and then backward

49 * recursion is used starting froma supposed val ue
50 * for j(n,x). The resulting value of j(0,x) is

51 = conpared with the actual value to correct the

52 * supposed val ue of j(n,x).

53 *

54 * yn(n,x) is simlar in all respects, except

55 * that forward recursion is used for all

56 * val ues of n>1.

57 *

58 */

60 #include "libmh"
61 #include "l ongdoubl e. h"
62 #endif /* | codereview */

You may not use this file except in conpliance with the License.
You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE

See the License for the specific |anguage governing perm ssions

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

new usr/src/lib/libmcomon/LD jnl.c
63 #include <float.h> /* LDBL_MAX */
65 #define CGENERIC | ong doubl e
67 static const GENERIC

68 invsqrt pl 5. 641895835477562869480794515607725858441e- 0001L,

69 two
70 zero
71 one

2. 0L,
0. 0L,
1.0L;

73 GENERI C

74 jnl(n,x) int n; GENERI C x; {

75 int i, sgn;

76 CENERIC a, b, tenp =0, z, w
61 CENERIC a, b, tenp, z, w

78 /* J(-n,x) = (-1)*n * J(n, x), J(n, -X)
79 * Thus, J(-n,x) = J(n,-Xx)

81 i f(n<0){

n)
83 X -X;
==0) return(joOl(x));
1) return(j1l(x));
1 =x) return X+X;
) ==0)
89 sgn=0;

= (-1)”n * J(n, Xx)

/* even n */

91 sgn = signbitl(x); /* old n */

92 x = fabsl (x);
93 if(x == zero||!finitel(x)) b = zero;
94 el se i f ((GENERI C)n<=x) {

/* Safe to use

95 J(n+1, x)=2n/x *J(n, x)-J(n-1,x)

96 *
97 i f(x>1.0e91L) { /% x >> n**2

98 Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)

99 Yn(x) =

si

n(x-(2n+1) *pi/4)*sqrt (2/ x*pi)

100 Let s=sin(x), c=cos(Xx),
101 xn=x-(2n+1l)*pi/ 4, sqt2 = sqrt(2),then

110 switch(n&3) {

111 case 0: tenp
112 case 1: tenp
113 case 2: tenp
114 case 3: tenp

= invsgrtpi*tenp/sqrtl (x);

J (%)
=1; |<n |++){

b*((GENERIC)(|+|)/x)
tenp;

}
126 } else

{
127 if(x<le-17L) { /* use J(n, X

)

si n(xn)*sqt 2 cos(xn)*sqt2

S-C c+s
-S-C -Ct+s
-S+C -C-Ss

S+C C-s

cosl (x) +sinl (x); break;
-cosl (x)+sinl (x); break;
-cosl (x)-sinl(x); break;
cosl (x)-sinl(x); break;

a; /* avoid underflow */

= 1/nl*(x/2)"n */

new usr/src/lib/libmcomon/LD jnl.c

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

b = pow (0.5L*x, (GENERI C) n);
if (bl=zero) {
for(a=one,i=1;i<=n;i++) a *= (GENERI Q)i ;
b = b/a;

/* use backward recurrence */
X X"2 xX"2
J(n,x)/J(n-1,x) e e PIIP
2n - 2(n+l) - 2(n+2)

1 1 1
(for large X) = === —e--en aoeaoo L,
2n 2(n+1)

Let w = 2n/x and h=2/x, then the above quotient
is equal to the continued fraction:
1

To determ ne how nany terns needed, |et
q0) =w Q1) =wwh) - 1,

Q k) = (wrk*h)*Qk-1) - Qk-2),

Wien Q k) > led good for single
Wen Q k) > 1le9 good for double

* When Q k) > lel? good for quaduple

CENERIC t,
doubl e o,

= (n+n)
qO = z
whi | e(q1<1

; k,
) X; = 2 0/ (doubl e) x;
ql = wz 1.0; k=1;

new usr/src/lib/libmcomon/LD jnl.c

194 } else {
195 for(i
196 t
197 b
a
i

'é+O'V

((i
198 t
199 >
200 a
201 t
202 b
203 }
204 }
205

e

207 }
208

210 }

212 GENERI C ynl (n, x)

213 int n; GENERIC x;{

214 int i;

215 int sign;

216 CENERIC a, b, tenp =
201 GENERI C a, b, tenp;

218 if(x!=x)

219 return Xx+Xx;
220 if (x <= zero) {
203 if(x!=x) return x+x;
204 if (x <= zero)

221 i f(x==zero)

i--){

|)/x) b - a
000L) {

0
b
b
1

206 L: (t*j 0l (x)/b);

0;

}
209 if(sgn==1) return -b; else return b;

222 return -one/zero;

223 el se

224 return zerol zero;

225 }

226 #endif /* | codereview */
227 sign = 1;

228 i f (n<0){

229

232 =0) return(yoOl (x));

n = -n;
230 if((n&l) == 1) sign

t
170 q
171 q
172 }

173 m = n+n;

233
234

236

231 }
i
i
i

f
f
f(!finitel (x)) return zero;

if(x>1.0e91L) { /* x >> n**2

Eg =1) return(sign*yll (x));
1
(

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

or_(t =zero, I = 2*(n+k); i>=m i -=2) t = one/(i/x-t);

one;
* estimate log((2/x)"n*n!) = n*log(2/x)+n*In(n)
hence, if n*(log(2n/x)) > ...
si ngI e 8.8722839355e+01
doubl e 7.09782712893383973096e+02
| ong doubl e 1.1356523406294143949491931077970765006170e+04
then recurrent value may overflow and the result is
l'ikely underflow to zero

f
a
b
/

*
-

= n
two

233

gl (fabsl (v*tnp));
6523406294143949491931077970765e+04L) {
1;i>0;i--){

= b;

((i I)/X)*b - a

tenp

/ x
= tnp lo
rrp<1 135
for(i=n-
enp =

i
t

b
a

-

237
238
239
240

242

243

244

245

246

247

248

249 switch(n&3) {
250 case 0: tenp
251 case 1: tenp
252 case 2: tenp
253 case 3: tenp
254

256 } else {

*
-~

cos(x-(2n+1)*pi/4)*sqrt (2/ x*pi)
sin(x-(2n+1)*pi/4)*sqrt(2/ x*pi)
Let s=sin(x), c=cos(x),

xn=x-(2n+1) *pi / 4, sqt2 = sqrt(2),then

n si n(xn)*sqt 2 cos(xn)*sqt 2
0 s-C c+s
1 -S-C -Cc+s
2 -s+cC -Cc-S
8 s+c c-s

sinl (x)-cosl (x);
-sinl (x)-cosl (x); break;
-sinl (x)+cosl (x); break;

sinl (x) +cosl (x); break;

br eak;

}
255 b = invsqgrtpi *tenp/sqrtl(x);

new usr/src/lib/libmcomon/LD jnl.c

yOl (x);
yil(x);

257 a
258 b
259 /

261

262 for (i = 1; i <n; i++) {
263 = b;
264 (GENERIC) (i
265 f b <= -LDBL_
266 break; ~
267 a;
268 enp
269 }

270

_O""
"Ilé

o T
1

t

260 * fix 1262058 and take care of non-default
&/

+i) /1 x;

271 if(sign>0) return b; else return -b

272 }

roundi ng

new usr/src/lib/libm comon/LD/ | oglpl.c 1

R R R R

1619 Sun May 4 03:05:31 2014
new usr/src/lib/libm comon/LD/ | oglpl.c

hkkkkkkkkkkkkkkkkhkkkkhkhkkkhkhkkkkkkkhkhkkkkkkkkkkkkk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #if defined(ELFOBJ)

31 #pragma weak | oglpl = __loglpl
32 #endi f

34/

*

35 * loglpl (x)
* Kahan’s trick based on | og(1l+x)/x being a slow varying function.
*

39 #include "l'ibmh"

41 #if defined(__x86)

42 #define __swapRD __swap87RD

43 #endi f

44 extern enum fp_direction_type _ swapRD(enum fp_direction_type);

46 | ong doubl e
47 1 0glpl (1 ong double x) {

48 I ong double vy;

49 enum fp_direction_type rd;
51 if (x !'=x)

52 return (x + x);
53 if (x <-1.L)

54 return (logl(x));
55 rd = __swapRD(fp_nearest);
56 y = 1.L + x;

57 if (y!'=1.L) {

57 if (y!=1.1L)

58 if (y ==x)

59 x = logl (x);
60 el se

61 x *=logl(y) / (y - 1.L);

new usr/src/lib/libm comon/LD | oglpl.c

62 }
63 #endif /* | codereview */

64 if (rd !'= fp_nearest)

65 (void) __swapRD(rd);
66 return (x);

67 }

new usr/src/lib/libm comon/LD scal bl.c 1 new usr/src/lib/libm comon/LD scal bl.c

R R R R

1768 Sun May 4 03:05:33 2014 61 if (rintl(fn) !'=1fn)
new usr/src/lib/libm comon/LD scal bl.c 62 return (fn - fn) / (fn - fn);
IR R R R R R R R R R R RS R R R R RS R R RS R R RS REREREREEEEEEE] 63 If (fn > 65000 OL
1/* 64 z = scal bnl (x, 65000);
2 * CDDL HEADER START 65 else if (-fn > 65000.0L)
3 * 66 z = scal bnl (x - 65000);
4 * The contents of this file are subject to the terns of the 67 el se {
5 * Common Devel opnent and Distribution License (the "License"). 68 n = (int) fn;
6 * You may not use this file except in conpliance with the License. 69 z = scal bnl (x, n);
7 70 1
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 71 return z;
9 * or http://ww.opensol aris.org/os/licensing. 72}
10 * See the License for the specific |anguage governing perm ssions __unchanged_portion_onitted_
11 * and limtations under the License.
12 *
13 * Wen distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
22 /*
23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
24 */
25 [*

26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #pragma weak scal bl = __scal bl

32 /*

33 * scalbl(x,n): return x * 2**n by mani pul ati ng exponent.
34 */

36 #include "libmh"
37 #include "l ongdoubl e. h"

39 #include <sys/isa_defs. h>

41 |1 ong doubl e
42 scal bl (1 ong doubl e x, long double fn) {

43 int *py = (|nt *) &'n, n;

44 I ong double z;

46 if (isnanl(x) || isnanl(fn))

47 return x * fn;

49 /* fnis +/ -Inf */

50 #if defined(_BlI G_ENDI AN)

51 if ((py[O] & Ox7fff0000) == Ox7fff0000) {
51 if ((py[O] & Ox7fff0000) == Ox7fff0000)
52 if ((py[0O] & OXSOOOOOOO) 1= 0)
53 #el se

54 if ((py[2] & Ox7fff) == Ox7fff) {

54 if ((py[2] & Ox7fff) == Ox7fff)

55 if ((py[2] & 0x8000) != 0)

56 #endi f

57 return x / (-fn);

58 el se

59 return x * fn;

new usr/src/lib/libm comon/LD sincosl.c

R R R R

2927 Sun May 4 03:05:34 2014
new usr/src/lib/libm comon/LD sincosl.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkkkhkkkkkkkkkhkhkkkkhkkkkkk ok kkk ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*

26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #pragma weak sincosl = __sincosl
| NDENT OFF */

cosl (x)
Tabl e | ook-up algorithmby K C. Ng, Novenber, 1989.

/
33/

kernel function:
__k_sincosl ... sin and cos function on [-pi/4,pi/4]
__rempio2l ... argunent reduction routine

Met hod.

1. Assune the argument x is reduced to yl+y2 = x-k*pi/2 in
pi/2 , +pi/2], and let n = k nod 4.
2. Let S=S(yl+y2), C=C(yl+y2). Depending on n, we have

Speci al cases:
Let trig be any of sin, cos, or tan.
trig(+-INF) is NaN, with signals;
trig(NaN) is that NaN;

Accuracy:
conputer TRIG(X) returns trig(x) nearly rounded.

IN
o
R I SR R N I I S I)
5 \
%)
]
~
<
Z
o
o
]
=S
<
Z
-
@
S
=S
<
Z

*
62 /* | NDENT ON */

Let S and C denote the sin and cos respectively on [-Pl/4, +Pl/4].

new usr/src/lib/libm comon/LD sincosl.c

64 #include "libmh"
65 #include "libmsynonymns. h"
66 #include "l ongdoubl e.h"

68 #include <sys/isa_defs. h>

70 void

71 sincosl (I ong double x, |ong doubl e *s, long double *c) {
72 I ong doubl e y[2] z = 0.0L

73 int n, ix;

74 #f defined(_ i386) || defined(__ant64)
74 #if defined(LI TTLE_ENDI AN)

75 int *px = (int *) &;

76 #endi f

78 /* trig(lnf or NaN) is NaN */

79 if (!finitel(x))

80 *s = *¢ : X - X;

81 return;

82 }

84 /* Hgh word of x. */

85 #if defined(__i386) || defined(__and64)

86 XTA (px, iXx);

87 #el se

85 #if defined(_BI G ENDI AN)

88 ix = *(int *) &;

87 #el se

88 XTO (px, iXx);

89 #endif

91 [* | x| ~< pild */

92 ix &= Ox7fffffff

93 if (ix <= Ox3ffe9220)

94 *s = _ k_sincosl(x, z, c);

96 /* argunment reduction needed */

97 else {

98 n = remp|02l(x y);

99 switch (n & 3) {

100 case 0:

101 *s = __k_sincosl (y[0],
102 break;

103 case 1:

104 *c = -__k_sincosl (y[O],
105 break;

106 case 2:

107 *s = -__k_sincosl (y[0],
108 *c = -*c;

109 br eak

110 case 3:

111 *c = __k_sincosl (y[0],
112 *s = -*g;

113 }

114 1

115

__unchanged_portion_omtted_

y[1], ¢);

y[1]., s);

y[1], ¢);

y[1], s);

new usr/src/lib/libm comon/LD sincospil.c

R R R R

6047 Sun May 4 03:05:36 2014
new usr/src/lib/libm comon/LD sincospil.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkhkhkkkkkkkkkkkkkkkkhkkkkkkkkkk ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #pragma weak sincospil = __sincospil

32 /*

33 * void sincospil (long double x, |1ong double *s, |ong double *c)

34 * *s = sinl(pi*x); *c = cosl (pi*x);

35 *

36 * Algorithm 10/17/2002, K.C. Ng

37 K e e e e e e e mme

38 * Let y = |4x|, z = floor(y), and n = (int)(z nod 8.0) (displayed in binary).
39 * 1. If y==z, then x is a nultiple of pi/4. Return the follow ng val ues:
A0 * e e e e e e e e e mm e mmm e
41 * n x nmod 2 sin(x*pi) cos(x*pi) tan(x*pi)
/U
43 * 000 0.00 +0 +1 +0

44 * 001 0.25 +/0.5 +/0.5 +1

45 * 010 0.50 +1 +0 _ +i nf

46 * 011 0.75 +/0.5 -\/0.5 -1

47 * 100 1.00 -0 __ -1 +0

48 * 101 1.25 -\/0.5 -\/0.5 +1

49 = 110 1.50 -1 -0 +i nf

50 * 111 1.75 -\/0.5 +\/0.5 -1

51 K e m e e e m— -
52 * 2. Otherw se
{532
54 * n t si n(x*pi) cos(x*pi) tan(x*pi)
55 K e mmm— -
56 * 000 (y-z)/4 sinpi (t) cospi (t) tanpi (t)
57 * 001 (z+1-y)/4 cospi (t) sinpi(t) 1/tanpi (t)
58 * 010 (y-z)/4 cospi (t) -sinpi(t) -1/tanpi (t)
59 = 011 (z+1l-y)/4 sinpi(t) -cospi (t) -tanpi (t)
60 * 100 (y-z)/4 -sinpi(t) -cospi(t) tanpi (t)
61 * 101 (z+1l-y)/4 -cospi(t) -sinpi(t) 1/tanpi (t)
62 * 110 (y-z)/4 -cospi (t) sinpi (t) -1/tanpi (t)

new usr/src/lib/libm comon/LD sincospil.c

109

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

NOTE.

This

t han

hi gh

inste
/

* ok ko k% 3k

#i ncl ude "

#i ncl ude

#i ncl ude "

#i ncl ude

#def i ne
#defi ne
#i f defi
#i f defi
#defi ne
#defi ne
#defi ne
#defi ne
#def i ne
static ¢
#el se

#defi ne
#def i ne
#def i ne
#defi ne
#defi ne
static ¢
#endi f

static
zero
quat er
one

pi

sqrth
tiny

voi d

si ncospi

111 (z+1-y)/4 -sinpi(t) cospi (t) -tanpi (t)

Thi s program conpute sinpi/cospi(t<0.25) by __k_sin/cos(pi*t, 0.0).
will return aresult with error slightly nore than one ulp (but | ess
2 ulp). If one wants accurate result, one may break up pi*t in
(tpi_h) and low (tpi_l) parts and call __k_sin/cos(tip_h, tip_lo)
ad.

l'ibm h"
"1i bm synonyns. h"
| ongdoubl e. h"
<sys/isa_defs. h>

(g, m ((Int *) &aq))lm

Uqg, m ((unsigned *) &(q))[n
ned(__1386) || defined(__and64)
(1

ned(LI TTLE_ENDI AN)
LDBL_MOST_STGNI F |(d) ((1(1d, 2) << 16) | (Oxffff & (1(Id, 1) >> 15)))
LDBL_LEAST SIGNIE_U(1d) Uld, 0)

PREC 64

PRECML 63

PRECM2 62

onst long doubl e twoPRECM2 = 9. 223372036854775808000000000000000e+18L;

LDBL_MOST_SI GNI F |(d)y Il
LDBL_LEAST SIGNIE_U(1d) Ul
PREC 113
PRECML 112
PRECV? 111
onst | ong doubl e twoPRECM2 = 5. 192296858534827628530496329220096e+33L;

. 0)
, sizeof (long double) / sizeof(int) - 1)

jeN=}

nst | ong double

25L,

oL,

. 141592653589793238462643383279502884197e+0000L,
.707106781186547524400844362104849039284835937688474,
Oe- 100;

HIIHIIHIIO

rowkroo
o

I (long double x, long double *s, long double *c) {
long double y, z, t;

int hx, n, k;

unsi gned I x;

hx
Ix

LDBL_MOST_SI GNI F_I (X) ;
LDBL_LEAST_SIGNI F U(x)
= ((hx & Ox7fff0000) >> 16) - Ox3fff;
|f (k >= PRECWR) { [* | x| >= 2**(Prec-2) */
if (k >= 16384) {
*sS = *C = X - X;

}
el se {
if (k >= PREC) {
= zero;
*c = one;

}elseif (k == PRECML) {
i((Ix & 1) == 0) {
*s zero

*c = one;

new usr/src/lib/libm comon/LD sincospil.c

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

else if (k

else {

}

A

_2)

el se {
*
s
*c

-zero;
- one;

}

else{ /* k = Prec - 2 */
if ((Ix &1) == 0) {

= zero;
*c = one;
else {
*s = one;
*Cc = zero;

i}f ((Ix&2)':0){
*s = -*s;
*c = -*c;

I* |x| < 0.25 */

*s = __k_sincosl (pi * fabsl(x), zero, c);

/yl
y =
|f(

el se {

4x|, z = floor(y), and n = (int)(z nod 8.0) */
* bsI(x)
PRECMZ)
y +twoPRECN2
LDBL_LEAST_ SIGNIF - Uz) &7, /* 3 LSb of z */
z - TwoPRECWR;
0
y)

k

else if (t >
n =
t

X T3S N

—
—~
-

1;
)

y
-=1;
= quater + (y - t) * quater;
el se

t = (y - t) * quater;

* k = Prec-3 */

/
n = LDBL_LEAST_SIGNIF_U(y) & 7; /* 3 LSb of z */
k 1;

*c = sqrth + tiny;

if ((n &2) ==0) {
*s zero;
one;

*c
}
else {
*s
*C

one;
zer o,

if ((n &}4) 1= 0)

if (((n+1)_&4) !

0)

if ((n &1 !=0)
t = quater - t;
if (((n +(n & 1)) &2) == 0)
__k_sincosl (pi * t, zero, c);

new usr/src/lib/libm comon/LD sincospil.c

194
195
196
197
198
199
200
201
202
203

204 }
__unchanged_portion_onitted_

el se
*c =
if ((n &4)
it (((n + 2>_
}
}
if (hx <0)
*g Z-*S;

'20' |I|

k
0
*s;
4
*c;

=]

j

si ncosl (pi

0)

*

t,

zero,

s);

new usr/src/lib/libm comon/LD sinhl.c

R R R R

2239 Sun May 4 03:05:37 2014
new usr/src/lib/libm comon/LD sinhl.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkkkk ok k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/
25 [*
26 * Copyright 2006 Sun Mcrosystens, Inc. All
27 * Use is subject to license terns.
28 =/

rights reserved.

30 #pragma weak sinhl = __sinhl

32 #include "l'i bmh"

33 #include "l ongdoubl e. h"
34 #endif /* ! codereview */
36 /* SINH(X)

RETURN THE HYPERBOLI C SI NE OF X

Met hod :
1. reduce x to non-negative by SINH(-x) = - SINH(x).
2.

EXPML(X) + EXPML(x)/(EXPML(X)+1)

0 <= x <= I novft SINH(X) = ---cmmmmm i

Inovft <= x < INF SINH(x) := EXP(x-MEP1*| n2)*2**ME
here

I novft | ogarithm of the overflow threshold
= MEP1*1 n2 chopped to nachi ne precision.
ME maxi mum exponent
MEP1 maxi mum exponent plus 1

Speci al cases:
SINH(x) is x if x is +INF, -INF, or NaN.
only SINH(0)=0 is exact for finite argunent.

IS
®
R N R I R R T R I

/

61 static const long double C[] = {
62 0. 5L,

new usr/src/lib/libm comon/LD sinhl.c

63 1.0L,

64 1. 135652340629414394879149e+04L,
65 7. 004447686242549087858985e- 161
66 };

68 #define hal f q 0]
69 #define one 1]
70 #define Inovft (2]
71 #define Inovio (3]

73 1 ong doubl e
74 sinhl (I ong doubl e x)

X);

75 {

76 | ong doubl e r, t;

78 if (Mfinitel(x))

79 return (x + x); /* x is IINF or NaN */

80 r = fabsl (x);

81 if (r <lnovft) {

82 t = expmll (r);

83 r = copysignl ((t +t / (one +1t)) * half, x);
84 } else {

85 r = copysignl (expl ((r - I'novft) - Inovlo),
86 r = scalbnl(r, 16383);

87 }

88 return (r);

89 }

new usr/src/lib/libm comon/LD sinl.c

R R R R

2866 Sun May 4 03:05:38 2014
new usr/src/lib/libm comon/LD sinl.c

hkkkkkkkkkkkkkkkkhkkkkhkhkhkhkkkkkkkkkkkkkkkkkkkkkkkk ok k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */
30 #pragma weak sinl = __sinl
32 /* | NDENT OFF */
33 /* sinl(x)
34 * Table | ook-up algorithmby K C. Ng, Novenber, 1989.
35 *
36 * kernel function:
37 * __k_sinl ... sin function on [-pi/4,pil4]
38 * __k_cosl ... cos function on [-pi/4,pil4]
39 * __rempi o2l ... argument reduction routine
40 *
41 * Met hod.
42 = Let S and C denote the sin and cos respectively on [-Pl/4, +Pl/4].
43 = 1. Assune the argunent x is reduced to yl+y2 = x-k*pi/2 in
44 * [-pi/2, +pi/2], and let n = k nod 4.
45 * 2. Let S=S(yl+y2), C=C(yl+y2). Depending on n, we have
46 *
47 = n si n(x) cos(x) tan(x)
/<
49 * 0 S C S/C
50 * 1 C -S -Cs
51 * 2 -S -C S/C
52 = 3 -C S -ads
53 K e e mmmmemmmmmmmmmmm e e e e e e e -
54 *
55 * Special cases:
56 * Let trig be any of sin, cos, or tan.
57 * trig(+-INF) is NaN, with signals;
58 * trig(NaN) is that NaN;
59 *
60 * Accuracy:
61 * conputer TRIG(X) returns trig(x) nearly rounded.
*

new usr/src/lib/libm comon/LD sinl.c

63 /* | NDENT ON */

65 #include "libmh"
66 #include "libmsynonyns. h"
67 #include "l ongdouble.h"

69 #include <sys/isa_defs. h>

71 |l ong doubl e

72 sinl(long double x) {

73 long double y[2], z = 0.0L;

74 int n, ix;

75 #if defined(__i386) || defined(__and64)
75 #if defined(_LI TTLE_ENDI AN)

76 int *px = (int *) &x;

77 #endif

79 /* sin(Inf or NaN) is NaN */

80 if (Mfinitel(x))

81 return x - Xx;

83 /* Hi gh word of x. */

84 #if defined(__i386) || defined(__and64)

85 XTO (px, iX);

86 #el se

84 #if defined(_BI G_ENDI AN)

87 ix =*(int *) &;

86 #el se

87 XTO (px, iXx);

88 #endi f

89 [* | x| ~< pild *]

90 ix & Ox7fffffff;

91 if (ix <= 0x3ffe9220)

91 if (ix <= 0x3ffe9220) {

92 return __k_sinl(x, z);

93 1

94 /* argunment reduction needed */

95 else {

96 n = _ rempio2l(x, y);

97 switch (n & 3) {

98 case O:

99 return __k_sinl(y[0], y[1]);
100 case 1:

101 return __k_cosl (y[0], y[1]);
102 case 2:

103 return -__k_sinl(y[0], y[1]);
104 case 3:

105 return -__k_cosl (y[0], y[1]);
106 /* NOTREACHED */

107 }

108 }

109 return 0.0L;

110

__unchanged_portion_omtted_

new usr/src/lib/libm comon/LD sinpil.c 1 new usr/src/lib/libm comon/LD sinpil.c 2

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 63 K e e e e e e e e e e e e e e . e, ———— - -
5594 Sun May 4 03:05:39 2014 64 *
new usr/src/lib/libm comon/LD sinpil.c 65 * NOTE. This program conpute sinpi/cospi(t<0.25) by k_sin/cos(pi*t, 0.0).
IR R R R R R R R R R R R S R R R RS RS R RS R E R ERERREREREEEEEEEE] 66 * ThIS Wll return a result Wth error Sllghtly nore than one ulp (but |ess
1/* 67 * than 2 ulp). If one wants accurate result, one may break up pi*t in
2 * CDDL HEADER START 68 * high (tpi_h) and low (tpi_l) parts and call __k_sin/cos(tip_h, tip_lo)
3 * 69 * instead.
4 * The contents of this file are subject to the terms of the 70 */
5 * Common Devel opnent and Distribution License (the "License")
6 * You may not use this file except in conpliance with the License. 72 #include "libmh"
7 * 73 #include "libmsynonyns. h"
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 #include "l ongdoubl e. h"
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing perm ssions 76 #include <sys/isa_defs. h>
11 * and limtations under the License.
12 * 78 #define 1(gq, m ((int *) &q))[mM
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 79 #define U(g, m ((unsigned *) &(q)) [
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 #if defined(__i1386) || defined(__and64)
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 80 #if defined(_LI TTLE_ENDI AN)
16 * fields enclosed by brackets "[]" replaced with your own identifying 81 #define LDBL_MOST. SIGNIFI(d) ((I(ld, 2) << 16) | (Oxffff & (1(ld, 1) >> 15)))
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 82 #define LDBL_LEAST SIGNIF_U(ld) U(ld, 0)
18 = 83 #define PREC 64
19 * CDDL HEADER END 84 #define PRECML 63
20 */ 85 #define PRECM2 62
, 86 st?ti c const |ong double twoPRECM2 = 9.223372036854775808000000000000000e+18L;
22 |* 87 #el se
23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved. 88 #define LDBL_MOST_SIGNI F I(d) I(ld, 0)
24 */ 89 #define LDBL_LEAST SIGNIF_U(lId) U(Id, sizeof(long double) / sizeof(int) - 1)
25 [* 90 #define PREC 113
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved. 91 #define PRECML 112
27 * Use is subject to license terns. 92 #define PRECM2 111
28 */ 93 static const |ong double twPRECM2 = 5.192296858534827628530496329220096e+33L;
94 #endi f
30 #pragma weak sinpil = __sinpil
96 static const |ong double
32 /* long double sinpil(long double x), 97 zero = 0.0L,
33 * return long doubl e precision sinl(pi*x). 98 quater = 0.25L,
34 * 99 one = 1.0L,
35 * Algorithm 10/17/2002, K C. Ng 100 pi = 3.141592653589793238462643383279502884197e+0000L,
36 * - 101 sqrth = 0.707106781186547524400844362104849039284835937688474,
37 * Let y |4x| z = floor(y), and n = (int)(z nod 8.0) (displayed in binary). 102 tiny = 1. 0e-100;
38 * 1 y==z, thenxisarrultiple of pi/4. Return the follow ng val ues:
<] I e 104 |1 ong doubl e
40 * n x nmod 2 sin(x*pi) cos(x*pi) tan(x*pi) 105 sinpil (1 ong double x) {
5 e 106 Il ong double y, z, t;
42 * 000 0.00 +0 __ +1 +0 107 int hx, n, k;
43 * 001 0.25 +/0.5 +/0.5 +1 108 unsi gned I x;
44 * 010 0.50 +1 +0 +i nf
45 * 011 0.75 +/0.5 -\/0.5 -1 110 hx = LDBL_MOST_SI GNI F_I (x);
46 * 100 1.00 -0 -1 +0 111 Ix = LDBL_LEAST SIGNIF U(x)
47 = 101 1.25 -\/0.5 -\/0.5 +1 112 = ((hx & 0x7fff0000) >> 16) - Ox3fff;
48 * 110 1.50 -1 -0 __ +i nf 113 |f (k >= PRECMR) { [* | x| >= 2**(Prec-2) */
49 * 111 1.75 -\/0.5 +\/0.5 -1 114 if (k >= 16384)
10 e eI 115 y =X - X;
51 = 2. O herwi se, 116 el se {
Y e e LT 117 if (k >= PREQ)
53 * n t sin(x*pi) cos(x*pi) tan(x*pi) 118 y = zero;
B4 % i 119 elseif (k == PRECML)
55 * 000 (y-z)/4 si npi (t) cospi (t) tanpi (t) 120 = (Ix &1) == 0 ? zero: -zero;
56 * 001 (z+1-y)/4 cospi (t) sinpi(t) 1/ tanpi (t) 121 el se { /* k = Prec - 2 */
57 * 010 (y-z)/4 cospi (t) -sinpi(t) -1/ tanpi (t) 122 = (Ix &1) == 0 ? zero : one;
58 * 011 (z+1-y)/4 sinpi (t) -cospi(t) -tanpi (t) 123 |f ((I & 2) '=0)
59 = 100 (y-z)/4 -sinpi(t) -cospi (t) tanpi (t) 124 y = -y;
60 * 101 (z+1l-y)/4 -cospi(t) -sinpi(t) 1/ tanpi (t) 125 }
61 * 110 (y-z)/4 -cospi(t) sinpi(t) -1/ tanpi (t) 126 }
62 * 111 (z+1-y)/4 -sinpi(t) cospi (t) -tanpi (t) 127 }

new usr/src/lib/libm comon/LD sinpil.c

128 else if (k <-2) /* | x] < 0.25 */

129 y = __k_sinl(pi * fabsl(x), zero);

130 el se {

131 /*y =|4x|, z = floor(y), and n = (int

132 y = * fabsl (x);

133 if (

134 z

135 n

136 t
k
i

P

y + t woPRECMR;

LDBL_LEAST_SIGNIF_U(z) & 7;
z - twoPRECMZ;

138

0;
f(t ==y
139 k =
140 else if (t >
n =
t

nnn |I%

137

1;
y) |

1

uater + (y - t) *

141

142

143 }

144 el se

145 t = (y - t) * quater;

146 }

147 else { /* k = Prec-3 */

148 n LDBL_LEAST_SIGNIF_Uy) & 7;

149 k 1;

150 }

151 1f (k) { /

152 if((n &1) !=

153 y = sq
y

=q

th + tiny;
154 el se
155 =
156 if ((n &4)!
157 y =
158 }
159 el se {
160 if ((n &1) !
161
162 if (((n
163
164 el se
165
166 if ((n &4
167
168 }
169 }
170 return hx >> 07?2y : -y;
171 }

__unchanged_portion_onitted_

:0)
quater - t;
& 1)) &2) == 0)

(n
= _k.sinl(pl * t, ze

< <+~

__k_cosl(pi * t, ze
= 0)

>~

y;

<

& 2) == 0 ? zero :

)(z nod 8.0) */

/* 3 LSb of z */

quat er;

/* 3 LSb of z */

one;

ro);

ro);

new usr/src/lib/libm comon/LD/ tanhl.c 1 new usr/src/lib/libm comon/LD/ tanhl.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 63 #I nCI ude "I ongdoubl e. h"
2608 Sun May 4 03:05:41 2014 64 #endif /* | codereview */
new usr/src/lib/libm conmon/ LD/ tanhl.c
IR R R R R R R R R R R RS R R R R RS R R RS R R RS REREREREEEEEEE] 66 StatIC COnSt |ong double SI’TH” = 1' Oe_ZOL’ one = 1. 0’ tm = 2. 0’
1/* 67 #ifndef |int
2 * CDDL HEADER START 68 big = 1. 0e+20L,
3 * 69 #endi f
4 * The contents of this file are subject to the terms of the 70 threshold = 45.0L;
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License. 72 |1 ong doubl e
7 * 73 tanhl (I ong double x) {
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 long double t, y, z;
9 * or http://ww.opensol aris.org/os/licensing. 75 int signx;
10 * See the License for the specific |anguage governing perm ssions 76 vol atile | ong doubl e dummy;
11 * and limtations under the License. 77 #endif /* | codereview */
12 *
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 79 if (isnanl(x))
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 return (x + x); /* x is NaN */
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 81 signx = signbitl(x);
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 t = fabsl (x);
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 83 Z = one;
18 = 84 if (t <= threshold) {
19 * CDDL HEADER END 85 if (t > one)
20 */ 86 z =one - two / (expnll(t +t) + two);
87 elseif (t >smll) {
22 | * 88 y = expmll (-t - t);
23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved. 89 z =-y/ (y +tw);
24 */ 90 } else {
25 [* 91 #ifndef lint
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved. 92 dummy =t + big;
27 * Use is subject to license terns. 63 vol atile I ong double dummy =t + big;
28 */ 93 /* inexact if t =0 */
94 #endi f
30 #if defined(ELFOBJ) 95 return (x);
31 #pragma weak tanhl = __tanhl 96 }
32 #endif 97 } elseif (Ifinitel(t))
98 return (copysignl (one, x));
34 /* 99 el se
35 * tanhl(x) returns the hyperbolic tangent of x 100 return (signx ? -z + small * spall : z - small * small);
36 * 101 return (signx ? -z : z);
37 * Method : 102 }
38 * 1. reduce x to non-negative: tanhl(-x) = - tanhl(x). __unchanged_portion_omtted_
39 * 2.
40 * 0 < x <= small : tanhl(x) := x
41 * -expntl (- 2x)
42 = small < x <= 1 cotanhl(Xx) 1= ------momam
43 * expmil (-2x) + 2
44 * 2
45 = 1 <= x <= threshold : tanhl(x) := B
46 * expntl (2x) + 2
47 = threshold < x <= INF : tanhl(x) :=
48 *
49 * where
50 * single : small = 1.e-5 threshold = 11.0
51 * doubl e : smal | = 1.e-10 threshold = 22.0
52 * quad : small = 1.e-20 threshold = 45.0
53 *
54 * Note: threshold was chosen so that
55 * fl(1.0+2/ (expmi(2*threshol d)+2)) ==
56 *
57 * Special cases:
58 * tanhl (NaN) is NaN;
59 = only tanhl (0.0)=0.0 is exact for finite argunent.
*

/
62 #include "libmh"

new usr/src/lib/libm comon/LD tanl.c

R R R R

2640 Sun May 4 03:05:44 2014
new usr/src/lib/libmcomon/LD tanl.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkk ok kkk ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*

26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #pragma weak tanl = __tanl
| NDENT OFF */

cosl (x)
Tabl e | ook-up algorithmby K C. Ng, Novenber, 1989.

/
33/

kernel function:
__k_tanl ... tangent function on [-pi/4, pi/4]
__rempio2l ... argunent reduction routine

Met hod.

1. Assune the argument x is reduced to yl+y2 = x-k*pi/2 in
pi/2 , +pi/2], and let n = k nod 4.
2. Let S=S(yl+y2), C=C(yl+y2). Depending on n, we have

Speci al cases:
Let trig be any of sin, cos, or tan.
trig(+-INF) is NaN, with signals;
trig(NaN) is that NaN;

Accuracy:
conputer TRIG(X) returns trig(x) nearly rounded.

IN
o
R I SR R N I I S I)
5 \ -
%)
]
~
<
Z
o
o
]
=S
<
Z
-
@
S
=S
<
Z

*
62 /* | NDENT ON */

Let S and C denote the sin and cos respectively on [-Pl/4, +Pl/4].

new usr/src/lib/libm comon/LD tanl.c

64
65
66

#i nclude "libmh"

#i nclude "libm synonymns. h"
#i ncl ude "l ongdoubl e. h"

#i ncl ude <sys/isa_defs. h>

| ong doubl e
tanl (I ong doubl e x) {
I'ong double y[2], z = 0.0L;
int n, ix;
#if defined(__i 386) || defined(__and64)
#if defined(_LI TTLE_ENDI AN)
int *px = (int *) &;

#endi f
/* trig(Inf or NaN) is NaN */
if (!finitel(x))
return x - X;
/* Hi gh word of x. */
#if defined(__i386) || defined(_ami64)

XTA (px, iXx);
#el se
#i f deflned(Bl G_ENDI AN)
ix = *(int *) &

#el se
XTO (px, iXx);
#endi f
[* | x| ~< pild *]
ix & Ox7fffffff;
if (ix <= 0x3ffe9220)
return __k_tanl (x, z, 0);
/* argunent reduction needed */
el se {
n = __rempio2l(x, y);
return __k_tanl (y[O], y[1],
}

__unchanged_portion_omtted_

n &1);

new usr/src/lib/libmcomon/Q __tanl.c

R R R R

5459 Sun May 4 03:05:46 2014
new usr/src/lib/libmcomon/Q __tanl.c

hkkkkkkkkkkkkkkkkkkkkhkhkkkkk kK kkkkkkkkkkkkkkkkkk ok k ok k ok k k%

25 /*
26 *
27 *

28 */

IN
o
L S R N I R I N S I I RS I R S

23 *
*/

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww.opensolaris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

Copyri ght 2006 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to |license terns.

| ong double __k_tanl (Il ong double x; Iong double y, int k);
kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
Input x is assumed to be bounded by ~pi/4 in magni t ude.

Input y is the tail of x.

Input k indicate -- tan if k=0; else -1/tan

Tabl e | ook up al gorithm
1. by tan(-x) = -tan(x), need only to consider positive x
2. if x <5/32 = [0x3ffc4000, 0] = 0.15625 , then

0

if x < 27r-57 (hx < 0x3fc40000 0), set w=x with inexact if x!=
el se
zZ = X*X;
w= X + (y+(x*z) (t1l+z*(t2+z*(t3+z*(t4+z*(t5+z*t6))))))
return (k==0)? w 1/w
3. else
ht = (hx + 0x400) &x7ffff800 (round x to a break point t)
It =0
i = (hy-0x3ffc4000)>>11; (i <=64)
X" = (x - t)+y (| x| ~<= 27-7)
By
tan(t+x’
= (tan(t)+tan(x’))/(1-tan(x’)tan(t))
W have

sin(x’)+tan(t)*(tan(t)*sin(x"))
=tan(t) + -----emeimi i for k=0
cos(x') - tan(t)*sin(x’)
cos(x’) - tan(t)*sin(x")

tan(t) + tan(t)*(cos(x’)-1) + sin(x’)

new usr/src/lib/libmcomon/Q __tanl.c

108
110
112

113 |

114
114
115
116

118
119
120
121
122
123
124
125
126
127

wher e tan(t) is fromthe table,
* sin(x') = x + ppl*x"3 + ...+ pp5*x~11
* cos(x’) =1 + qql*x"2 + ...+ qq5*x~10
*/
#i nclude "1ibmh"
extern const long double _TBL_tanl_hi[], _TBL_tanl_lo[];

static const |ong double

one = 1.0L,
/*
* 3 11 -122.32
* | 'sin(x) (x+ppl*x +...+ pp5*x)| <= 2 for |x|<1/64
*
/
ppl = -1.666666666666666666666666666586782940810e- 0001L,
pp2 = +8.333333333333333333333003723660929317540e- 0003L,
pp3 = -1.984126984126984076045903483778337804470e- 0004L,
pp4 = +2.755731922361906641319723106210900949413e- 0006L,
pp5 = -2.505198398570947019093998469135012057673e- 0008L,
/*
* 2 10 -123. 84
* | cos(x) (1+qgl*x +...+ qg5*x)| <= 2 for |x|<=1/128
*
/
qql = -4.999999999999999999999999999999378373641e- 0001L,
qq2 = +4.166666666666666666666665478399327703130e- 0002L,
qq3 = -1.388888888888888888058211230618051613494e- 0003L,
qq4 = +2.480158730156105377771585658905303111866e- 0005L,
, qq5 = -2.755728099762526325736488376695157008736e- 0007L,
*
* | tan(x) - (x+t1*x"3+. ..+t 6*x"13) |
M I e R T <= 27-59.73 for |x|<0.15625
*
Y | X I
tl = +3.333333333333333333333333333333423342490e- 0001L,
t2 = +1.333333333333333333333333333093838744537e- 0001L,
t3 = +5. 396825396825396825396827906318682662250e- 0002L,
t4 = +2,186948853615520282185576976994418486911e- 0002L,
t5 = +8.863235529902196573354554519991152936246e- 0003L,
t6 = +3.592128036572480064652191427543994878790e- 0003L,
t7 = +1. 455834387051455257856833807581901305474e- 0003L,
t8 = +5.900274409318599857829983256201725587477e- 0004L,
t9 = +2.391291152117265181501116961901122362937e- 0004L,
t10 = +9.691533169382729742394024173194981882375e- 0005L,
t11 = +3.927994733186415603228178184225780859951e- 0005L,
t12 = +1.588300018848323824227640064883334101288e- 0005L,
t13 = +6.916271223396808311166202285131722231723e- 0006L;
#define i0 0
| ong doubl e
k_tanl (1 ong double x, long double y, int k) {
long double a, t, z, w=20, s, c;
long double a, t, z, w, s, c;
int *pt = (int *) &, *px = (int *) &x;
int i, j, hx, ix;
t = 1.0L;
hx = px[i0];
ix = hx & OX7Effffff;
if (ix < 0x3ffc4000) {
*(3 - 00+ (int *) &) = 1, /* make t = one+ulp */
if (ix < 0x3fc60000)
if (((int) (x *t)) <1) /* generate inexact
w = Xx; [/* generate underflow if subnormal
} else {
Z = X * X;

*/
*/

new usr/src/lib/libmcomon/Q __tanl.c

128 if (ix < 0x3ff30000) [* 2%*-12 *]
129 t =z* (tl +z* (t2+z* (t3 +z * t
130 el se
131 t =z * (t
132 z
133 z
134 z
135 t
136 w
137 }
138 return (k == 0 ? w: -one / w;
139 }
140]
141 i
p
i

y + x *t;
X +t;

142
143
144 X
145 el se

146 X =
147
148
149

-y) - (b o+ %)
a _ hi
z X
/* co
150 t =2z
/* si
s X
if (k

_hifi]s

151
152
153
154 w
155 t
156 r
157 } else {
158 w
159 c
160 z
161 r

162 }

163 }

__unchanged_portion_onitted_

[

+ (s +a*w / (one - (w- t));
-t a+t);

(-a-c¢):z/ (a+c));

4));

new usr/src/lib/libmcomon/Q asinhl.c

R R R R

1617 Sun May 4 03:05:47 2014
new usr/src/lib/libmcomon/Q asinhl.c

hkkkkkkkkkkkkkkkkkkkkhkhkhkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k ok k k%

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License")

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing perm ssions

11 * and limtations under the License.

12 *

13 * Wen distributing Covered Code, include this CDDL HEADER i n each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]

18 =

19 * CDDL HEADER END

20 */

22 /*

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*

26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #if defined(ELFOBJ)

31 #pragma weak asinhl = __asinhl
32 #endi f

34 #include "libmh"

36 static const |ong double

37 I n2 = 6.931471805599453094172321214581765680755e- 0001L,
38 one = 1.0L,

39 bi g = 1. 0e+20L,

40 tiny = 1. 0e- 20L;

42 | ong doubl e
43 asinhl (1 ong double x) {

44 long double t, w

45 vol atile | ong doubl e dummy;

46 #endif /* | codereview */

48 w = fabsl (x);

49 if (isnanl(x))

50 return (x + x); /* x is NaN */

51 if (w<tiny) {

52 #ifndef lint

53 dummy = x + big; /* inexact if x =0 */

45 vol atile long double dummy = x + big; /* inexact if x =0 */
54 #endi f

55 return (x); /* tiny x */

56 } else if (w< big)

57 t = one / w

58 return (copysignl (loglpl(w + w/ (t + sgrtl(one +t * t))),
59 } else

60 return (copysignl (logl(w) + In2, x));

new usr/src/lib/libmcomon/Qasinl.c

R R R R

2037 Sun May 4 03:05:49 2014
new usr/src/lib/libmcomon/Q asinl.c

hkkkkkkkkkkkkkkkkhkkkkhkhkhkhkkkkkkkkkkkkkkkkkkkkkk ok kk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #if defined(ELFOBJ)

31 #pragma weak asinl = __asinl

32 #endif

34 /=

35 * asinl (x) = atan2l (x,sqrt(1-x*x));

36 *

37 * For better accuracy, 1l-x*x is conputed as foll ows

38 * 1-x*x if x < 0.5,

39 = 2%(1-|x|)-(2-|x])*(2-|x]) if x >= 0.5.

40 *

41 * Special cases:

42 = if x is NaN, return x itself;

43 = if |x|>1, return NaN with invalid signal.
*

/
46 #include "libmh"

48 static const long double zero = 0.0L, small = 1.0e-20L, half = 0.5L, one =
49 #ifndef lint

50 static const |ong double big = 1.0e+20L;

51 #endif

53 |l ong doubl e
54 asinl (I ong double x) {

55 long double t, w

56 vol atile | ong doubl e dunmy;
57 #endif /* | codereview */

59 w = fabsl (x);

60 if (isnanl(x))

61 return (x + x);

62 else if (w<=half) {

1.0L;

new usr/src/lib/libmcomon/Qasinl.c

63 if (w<smll) {

64 #ifndef lint

65 dummy = w + big;

56 vol atile long double dummy = w + big;

66 /* inexact if w!=0 */
67 #endi f

68 return (x);

69 } else

70 return (atanl (x / sqgrtl(one - x * x)));

71 } else if (w< one) {

72 t = one - w

73 w=1t +t;

74 return (atanl (x / sgrtl(w- t * t)));

75 } else if (w == one)

76 return (atan2l (x, zero)); /* asin(+-1) = +- PI/2 */
77 el se

78 return (zero / zero); /* | x| >1: invalid */
79 }

__unchanged_portion_onitted_

new usr/src/lib/libmcomon/Q atan2l.c

R R R R

4154 Sun May 4 03:05:50 2014
new usr/src/lib/libmcomon/ Q atan2l.c

hkkkkkkkkkkkkkkkkkkhkkhkhkkkkkkkkkkkkkkkkkkkkkkkkkk ok kk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 /*

31 * atan2l (y,x)

32 *

33 * Method :

34 = 1. Reduce y to positive by atan2(y, x)=-atan2(-y,x).

35 * 2. Reduce x to positive by (if x and y are unexceptional):

36 * ARG (x+iy) = arctan(y/x) ... if x>0,

37 * ARG (x+iy) = pi - arctan[y/(-x)] ... if x <0,

38 *

39 * Special cases:

40 *

41 = ATAN2((anything), NaN) is NaN

42 = ATAN2(NAN , (anything)) is NaN

43 = ATAN2(+- 0, +(anything but NaN)) is +0 ;

44 * ATAN2(+-0, -(anything but NaN)) is +Pl ;

45 * ATAN2(+- (anything but 0 and NaN), 0) is +Pl/2;

46 * ATAN2(+- (anyt hing but INF and NaN), +INF) is +-0 ;

47 = ATAN2(+- (anyt hing but INF and NaN), -INF) is +-Pl;

48 * ATAN2(+-INF, +INF) is +-Pl/4 ;

49 * ATAN2(+-INF, -INF) is +-3Pl/4;

50 * ATAN2(+- I NF, (anything but,0,NaN, and INF)) is +-Pl/2;

51 *

52 * Constants:

53 * The hexadeci nal values are the intended ones for the foll ow ng constants.
54 * The deci mal values may be used, provided that the conpiler wll convert
55 * fromdecimal to binary accurately enough to produce the hexadeci mal val ues
56 * shown.

57 */

59 #pragma weak atan2l = __atan2|

61 #include "libmh"
62 #include "l ongdoubl e. h"

new usr/src/lib/libmcomon/Q atan2l.c

64 static const |ong double

65 zero = 0.0L,

66 tiny = 1.0e-40L,

67 one = 1.0L,

68 hal f = 0.5L,

69 Pl 304 = 2.356194490192344928846982537459627163148L,

70 Pl 04 = 0.785398163397448309615660845819875721049L,

71 Pl 02 = 1.570796326794896619231321691639751442099L,

72 Pl = 3.141592653589793238462643383279502884197L,

73 Pl _lo = 8.671810130123781024797044026043351968762e- 35L;

75 |l ong doubl e

76 atan2l (1 ong double y, |ong double x) {
77 long double t, z;

78 int k, m signy, signx;

80 if (x!'=x1]]vy!'!=y)
81 return (x
82 signy = signbitl(
83 signx = signbitl(
84 if (x == one)

85 return (atanl (y));
86 m = signy + signx + signx;

88 /* wheny =0 */
89 if (y == zero)
90 switch (m {
case O:
92 return (y); /* atan(+0, +anyt hi ng)
93 case 1:
94 return (y); /* atan(-0, +anyt hi ng)
95 case 2:

y);
X)

96 return (Pl + tiny); /* atan(+0, -anyt hing) */

97 case 3:

98 return (-Pl - tiny); /* atan(-0,-anything) */

99 }

101 /* when x = 0 */
102 if (x == zero)

103 return (signy == 1 ? -Plo2 - tiny : Plo2 + tiny);

105 /* when x is INF */
106 if (!finitel(x)) {

106 if (!finitel(x))

107 if (Ifinitel(y))
108 switch (
109 case O:

|
(x
(x
If {
m {

110 return (Plod4 + tiny); /* atan(+l NF, +I NF)

111 case 1:

112 return (-Plo4 - tiny); /* atan(-INF, +I NF)

113 case 2:

114 return (P304 + tiny); /* atan(+lNF,-INF)

115 case 3:

116 return (-Pl304 - tiny); /* atan(-INF, -1NF)

}
118 } else {
119 switch (m {
120 case O:

121 return (zero); [/* atan(+...,+I NF)

122 case 1:

123 return (-zero); /* atan(-...,+I NF)

124 case 2:

125 return (Pl + tiny); /* atan(+...

126 case 3:

127 return (-Pl - tiny); /* atan(-...,-1NF)

+y); /* return NaNif x or y is NAN */

*/
*/

*/
*/
*/
*/

*/
*/

new usr/src/lib/libmcomon/Q atan2l.c

128 }

129 }

130 }

131 /* when 'y is INF */

132 if (Mfinitel(y))

133 return (signy == 1 ? -Plo2 - tiny : Plo2 + tiny);
135 /* conpute y/x */

136 x = fabsl (x);

137 y = fabsl (y);

138 t = Pl_lo;

139 k = (ilogbl (y) - ilogbl(x));

141 if (k > 120)

142 z = Plo2 + half * t;

143 else if (m>1 & k < -120)

144 z = zero;

145 el se

146 z = atanl (y / x);

148 switch (m {

149 case 0:

150 return (z); /[* atan(+, +) */

151 case 1:

152 return (-2); /* atan(-,+) */

153 case 2:

154 return (Pl - (z - t)); [/* atan(+,-) */
155 case 3:

156 return ((z - t) - Pl); [/* atan(-,-) */
157 1

158 /* NOTREACHED */

159 return 0.0L;

160 }

__unchanged_portion_onitted_

new usr/src/lib/libmcomon/Qjnl.c

R R R R

6994 Sun May 4 03:05:52 2014
new usr/src/lib/libmcomon/Qjnl.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkhkhkkkkkkkkkkkkkkkkkkkkkk ok kk k ok k k%

____unchanged_portion_onitted_

214 GENERI C ynl (n, x)

215 int n; GENERIC x; {

216 int i;

217 int sign;

218 CGENERIC a, b, tenp;

220 if(x!=x) return x+x;

221 if (x <= zero)

221 if (x <= zero)

222 if(x==zero)

223 return -one/ zero;
224 el se

225 return zero/ zero;
226 }

227 #endif /* ! codereview */

228 sign = 1;

229 i f (n<0){

230 n = -n;

231 if((n&l) == 1) sign = -1;
232 }
233 i f(n==0) return(yOl (x));

234 if(n==1) return(sign*yll(x));
235 if(!finitel(x)) return zero;

237 if(x>1.0e91L) { /* x >> n**2

238 Jn(x) = co
239 Yn(x) = si
240 Let s=sin(
241 xn=x- (

s(x-(2n+1) *pi / 4) *sqrt (2/ x*pi)
n(x-(2n+1)*pi/4)*sqrt(2/ x*pi)
x), c=cos(Xx),

2n+1)*pi/4, sqt2 = sqrt(2),then

243 n si n(xn)*sqt 2 cos(xn)*sqt 2

244 e
245 0 s-C
246 1 -s-c
247 2 -s+C
248 3 s+c
249 */

250 swi tch(n&3) {
251 case 0: tenp
252 case 1: tenp
253 case 2: tenp
254 case 3: tenp
255

256

257 } else {
258

259

260

sinl (x)-cosl (x);
-sinl(x)-cosl (x);
-sinl (x)+cosl (x);

sinl (x) +cosl (x);

o~
1

invsqgrtpi *tenp/sqrtl (x);

yol (x);
yil(x);

*

~oo

262

263 for (i =1; i <n; i++) {

264 tenp = b;

265 b *= (GENERIC) (i +i) / x;
266 if (b <= -LDBL_MAX)

267 br eak;

268 b

269 a
270 }

271

272 if(sign>0) return b; else return -b;

ct+s
-C+S
-C-S
C-s

br eak;
br eak;
br eak;
br eak;

261 * fix 1262058 and take care of non-default rounding
*
/

new usr/src/lib/libmcomon/Qjnl.c

273 }

new usr/src/lib/libmcomon/Q tanhl.c

R R R R

2608 Sun May 4 03:05:53 2014

new usr/src/lib/libmcomon/Q tanhl.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkkkhkkkkkkkkkkkhkkkkkkkkkk ok kkk ok k k%

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

* Copyright 2011 Nexenta Systenms, Inc. Al rights reserved.
*
/

| *

* Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
* Use is subject to license terns.

*

/

#if defined(ELFOBJ)

#pragma weak tanhl = __ tanhl
#endi f
/*

* tanhl (x) returns the hyperbolic tangent of x

*

* Met hod :

* 1. reduce x to non-negative: tanhl(-x) = - tanhl(x).

*

2.

* 0 < x <= small : tanhl(x) := x

* -expntl (- 2x)

* small < x <= 1 cotanhl(Xx) 1= ------momam
* expmil (-2x) + 2
* 2

* 1 <= x <= threshold : tanhl(x) := B
* expntl (2x) + 2
* threshold < x <= INF : tanhl(x) :=

*

* where

* single : small = 1.e-5 threshold = 11.0
* doubl e : smal | = 1.e-10 threshold = 22.0
* quad : small = 1.e-20 threshold = 45.0
*

* Note: threshold was chosen so that

* fl(1.0+2/ (expmi(2*threshol d)+2)) ==

*

* Speci al cases:

* tanhl (NaN) is NaN;

* only tanhl (0.0)=0.0 is exact for finite argunent.

*

/

62 #include "libmh"

new usr/src/lib/libmcomon/Q tanhl.c

63

#i ncl ude "1 ongdoubl e. h"

static const |ong double snal
#i fndef |int

big = 1. 0e+20L,
#endi f

threshold = 45.0L;

| ong doubl e

tanhl (I ong doubl e x) {
long double t, vy, z;
int signx

= 1.0e-20L, one = 1.0,

vol atile I ong doubl e dummy;

#endi f /* | codereview */

if (isnanl(x))
return (x +

signx = signbitl(x);

t = fabsl (x);

z one;

i t

X);

f (t <= threshold) {
if (t > one)
z = one - t
elseif (t >smll) {
y = expmll (-t - t);
z =-y !/ (y + tw);
} else {

#i f ndef Iint

my ig;
vol atile |l ong doubl e dumy

du =t +b
#endi f
return (x);
}
} elseif (!finitel(t))
return (copysignl (one, x));
el se
return (signx ? -z + snmall * small
return (signx ? -z : z);

__unchanged_portion_onitted_

/* x is NaN */

two = 2.0,

t + big;
/* inexact if t

z

smal |

* small);

=0 */

new usr/src/lib/libmcomon/R __tanf.c

R R R R

3022 Sun May 4 03:05:55 2014
new usr/src/lib/libmcomon/R __tanf.c
IR R R R R R R R R R R R S RS R R R SRR R E RS S SR SRR R ERREREREEEEEEEE]
__unchanged_portion_omtted_
58 /* | NDENT ON */

*/

60 #define one q[0]

61 #define PO g[1]

62 #define P1 q[2]

63 #define P2 q[3]

64 #define P3 q[4]

65 #define P4 g[5]

66 #define P5 ([6]

67 #define P6 q[7]

68 #define P7 ([8]

69 #define TO q[9]

70 #define T1 g[10]

72 fl oat

73 __k_tanf(double x, int n) {

74 float ft = 0.0;

74 float ft;

75 double z, w

76 int ix;

78 ix = ((int *) &)[H WORD] & ~0x80000000; /* ix = leading |x|
79 /* small argunment */

80 if (ix < 0x3f800000) { [* if |x] < 0.0078125 = 2**-7 */
81 if (ix < 0x3f100000) { /* if |x| < 2**-14 */

82 if ((int) x == 0) { /* raise inexact if x!=0 */
83 ft =n==07? (float) x : (float) (-one / x);
84 }

85 return (ft);

86 }

87 z = (x* T0O) * (Tl + x * Xx);

88 ft =n==07? (float) z : (float) (-one / z);

89 return (ft);

90 }

91 Z =X * X,

92 w=((PO* x) * (PL+2z* (P2+2z)) * (P3+2z* (P4 + 2)))

93 * (P5 +z* (P6 +2z* (P7T+2)));

94 ft =n==07? (float) w: (float) (-one / w;

95 return (ft);

96

__unchanged_portion_omtted_

new usr/src/lib/libm comon/R cosf.c

R R R R

3872 Sun May 4 03:05:57 2014
new usr/src/lib/libm comon/R cosf.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkhkhkhkhkkkkkhkhkkkkkkkkkk ok kk k ok k k%

__unchanged_portion_omtted_

59 #define SO
60 #define S1
61 #define S2
62 #define S3
63 #define
64 #define
65 #define
66 #define
67 #define
68 #define
69 #define
70 #define
71 #define

REKAS

o
N

0000000000000

=
BRI 00N UL WN RO

N b O e S

TT I
22833
oo ==<
N R T,

73 float
74 cosf(float x)
{

76 double vy, z, w

77 fl oat f;

78 int n, ix, hx, hy;
79 volatile int i;

80 #endif /* | codereview */

= *((int *)&x);
= hx & Ox7fffffff;

85 y = (doubl e)x;
87 if (ix <= 0x4016ched) { I* | x| < 3*pi/4 */

88 if (ix <= Ox3f490fdb) { I* [x| < pil4 */
89 if (ix <= 0x39800000) { /* [X| <= 2**-12 */

90 i = (int)y;

79 vol atile int i = (int)y;
91 #ifdef lint

92 =i

93 #endi f

({%Ioat (y * (SO + z * S1))
108 (S2 +z * (S3+z)))),

}
110 } else if (ix <= Ox49c90fdb) { /[* | x| < 2719*pi */
111 #if defined(__i386) && !defined(__. 64)

112 int rp;

114 rp = __swapRP(f p_extended);
115 #endi f

116 w =y * invpio2;

117 if (hx <0)

*

new usr/src/lib/libm comon/R cosf.c

118 n=(int)(w- half);

119 el se

120 = (int)(w+ half);

121 (y - n * pio2_1) - n* pio2_t;

122

123 #if defined(|386) && !defined(__and64)

124 if (rp !'= fp_extended)

125 (void) __swapRP(rp);

126 #endif

127 } else {

128 if (ix >= 0x7f800000)

129 return (x / x); /* cos(Inf or NaN) is NaN */
130 hy = ((int *)&)[H D]

131 n = ((hy >> 20) & Ox7ff) - 1046;

132 ((int *Y&W)[HWORD] = (hy & Oxfffff) | 0x41600000;
133 ((int *)&W) [LOWORD] = ((int *)&)[LOWORD;

134 n=_rempio2nm&w, &, n, 1, 0, _TBL_ipio2_inf) + 1;
135 }

137 if (n &1) {

138 /* conpu te cos y */

139 z =y *

140 f:(flo)(((CO+z*C1)+(z*z)*C2)*

141 (B +z* (& +72)));

142 } else {

143 1= corrpute siny */

144 z =y~

145 f = (fl at)((y* (SO +z * S1)) * (S2 +z * (S3 + 2)));
146 }

148 return ((n & 2)? -f : f);

149 }

__unchanged_portion_omtted_

new usr/src/lib/libm comon/ R explof.c

R R R R

1231 Sun May 4 03:05:59 2014

new usr/src/lib/libm comon/ R expl0f.c

hkkkkkkkkkkkkkkkkhkkkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkk ok kk k ok k k%

*
*
| *
*
*

*/

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END
Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

Copyri ght 2006 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to |license terns.

#pragma weak explOf = _ explOf

#include "libmh"

extern doubl e explO(double);
doubl e expl0(doubl e);

fl oat
explof (float x) {
#if defined(FPADD _TRAPS_| NCOVPLETE_ON_NAN)

if (isnanf(x))
return (x * x);
el se

#endi f

return ((float) explO((double) x));

__unchanged_portion_omtted_

new usr/src/lib/libm comon/R sincosf.c 1

R R R R

5085 Sun May 4 03:06:01 2014
new usr/src/lib/libm comon/R sincosf.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkkkkkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k k%

__unchanged_portion_omtted_

81 #define SO
82 #define S1
83 #define S2
84 #define S3
85 #define
86 #define
87 #define
88 #define
89 #define
90 #define
91 #define
92 #define
93 #define

REKAS

o
N

0000000000000

=
BRI 00N UL WN RO

N b O e S

TT I
22833
oo ==<
N R T,

voi d
96 sincosf(float x, float *s, float *c)

98 double vy, z, w

99 f1 oat f, o

100 int n, ix, hx, hy;
101 volatile int i;

102 #endif /* ! codereview */

= *((int *)&x);
= hx & Ox7fffffff;

107 y = (doubl e)x;

109 if (ix <= 0x4016ched) { I* | x| < 3*pi/4 */

110 if (ix <= 0x3f490fdb) { I[* | x| < pild */
111 if (ix <= 0x39800000) { /* [x| <= 2**-12 */
112 i = (int)y;

101 vol atile int i = (int)y;

113 #ifdef lint

115 #endi f

iz
loat)-((y * (So+z* S1)) *
+z * (83 +2)));

+ 02_1) + pio2_t;

i
w
w
* N
1nn

t)-(((CO tz*Cl) +(z*z)* Q) *
z * (CA + 27)));

t)(((SO +z* 8l)) *

*(2)));

O +O

139 }

new usr/src/lib/libm comon/R sincosf.c

140 return;

141 } else if (ix <= 0x49c90fdb) { /* |x| < 2719*pi */
142 #if defined(__i386) && !defined(__and64)

143 int rp;

145 rp = __swapRP(f p_extended);

146 #endi f

147 = * i nvpioz;

148 |f (hx < 0)

149 n=(int)(w- half);

150 el se

151 n=(int)(w+ half);

152 y =(y - n* pio2_1) - n* pio2_t;

153 #if defined(__i386) && !defined(__and64)

154 if (rp !'= fp_extended)

155 (void) _ swapRP(rp);

156 #endif

157 } else {

158 if (ix >— 0x7f 800000) {

159 *s = *c = x| x;

160 return;

161 }

162 h *)&y) [H WORD ;

163 n > 20) & 0x7ff) - 1046;
((i HWORD] = (hy & Oxfffff) | 0x41600000;
(LOAORD] = ((Int *)&)[LONORD];
n 1 02m(&w, &y, n, 1, 0, _TBL_ipi 02 _inf);
i {

164
165
166
167
168 y
169 n
170 }

171 }

173 z
174 f
9

175
176
177 ifo(
178

179

180 }
181 if (n&1) {

¥ S1)) r(S2 +z* (S3+2)));
+ (z * C2)

182 *s
183 *c -f;
184 } else {
185 *s
186 *c
187 1
188 }
__unchanged_portion_omtted_

new usr/src/lib/libm comon/R sincospif.c 1

R R R R

1385 Sun May 4 03:06: 03 2014
new usr/src/lib/libm comon/ R sincospif.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkkkhkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k k%

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing perm ssions
11 * and limtations under the License.
12 *
13 * Wen distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */

22 /*

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*

26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #pragma weak sincospif = __sincospif

32 #include "libmh"

34 extern void sincospi (double, double *, double *);
34 voi d sincospi (doubl e x, double *s, double *c);

36 void

37 sincospif(float x, float *s, float *c) {
38 doubl e ds, dc;

40 #if defi ned(FPADD_TRAPS_| NCOVPLETE_ON_NAN)
41 if (isnanf(x))

42 *sS = *c = X * X;

43 else {

44 #endi f

45 sincospi ((double) x, &ds, &dc);

46 *s = (float) ds;

a7 *c = (float) dc;

48 #if defi ned(FPADD_TRAPS_| NCOVPLETE_ON_NAN)
49

50 #endif

51

}
__unchanged_portion_onitted_

new usr/src/lib/libm comon/R sinf.c

R R R R

3911 Sun May 4 03:06:04 2014
new usr/src/lib/libm comon/ R sinf.c

hkkkkkkkkkkkkkkkkhkkkkhkhkkkkkhkkkkkkkkkkkkkkkkkkkk ok k ok k ok k k%

__unchanged_portion_omtted_

59 #define SO
60 #define S1
61 #define S2
62 #define S3
63 #define
64 #define
65 #define
66 #define
67 #define
68 #define
69 #define
70 #define
71 #define

REKAS

o
N

0000000000000

=
BRI 00N UL WN RO

N b O e S

TT I
22833
oo ==<
N R T,

73 float
74 sinf(float x)
{

76 double vy, z, w

77 fl oat f;

78 int n, ix, hx, hy;
79 volatile int i;

80 #endif /* | codereview */

= *((int *)&x);
= hx & Ox7fffffff;

85 y = (doubl e)x;

87 if (ix <= 0x4016ched) { I* | x| < 3*pi/4 */

88 if (ix <= 0x3f490fdb) { [* | x| < pild */
89 if (ix <= 0x39800000) { /* [x| <= 2**-12 */
90 i = (int)y;

79 vol atile int i = (int)y;

91 #ifdef lint

92 =i

93 #endi f

(%/float)(((d) +2*Cl) +(z*2z) *C)
tz* (& +2))));

+ p|02 1) + pio2_t;
f

)-(((00 + z * Cl) + (z*2z) * Q)
(G4 +2))));

}
110 } else if (ix <= Ox49c90fdb) { [/* |x| < 2*19*pi */
111 #if defined(__i386) && !defined(__and64)

112 int rp;

114 rp = __swapRP(f p_extended);
115 #endi f

116 w =y * invpio2;

117 if (hx <0)

*

new usr/src/lib/libm comon/ R sinf.c

118 n=(int)(w- half);

119 el se

120 = (int)(w + half);

121 (y-n*p|02 1) - n * pio2_t;

122 #if defined(|386) && !defined(__and64)

123 if (rp !'= fp_extended)

124 (void) __swapRP(rp);

125 #endi f

126 } else {

127 if (ix >= 0x7f800000)

128 return (x / x); /* sin(Inf or NaN) is NaN */
129 hy = ((int *)&)[H WORD|;

130 n = ((hy > 20) & Ox7ff) 1046;

131 ((int *)&W[H WORD] = (hy & Oxfffff) | 0x41600000;
132 ((int *)&w)[LomRD] = ((int *)&)[LOWORD;

133 n=__rempio2m&w, &y, n, 1, 0, _TBL_ipio2_inf);
134 if (hy <0) {

135 y =-y;

136 n=-n;

137 }

138 }

140 if (n &1) {

141 /* conpute cos y */

142 z=y*y

143 f=(f|oa)(((CO+z*Cl)+(z*z)*C2)*
144 (C3 + z (&4 + 2)));

145 } else {

146 /* corrpute siny */

147 z=y*y

148 f = (fl at)((y* (SO +z * S1)) * (S2 +z * (S3 + 2)));
149 1

151 return ((n & 2)? -f : f);

152 }

__unchanged_portion_onitted_

new usr/src/lib/libm comon/ R tanf.c

R R R R

4309 Sun May 4 03:06:06 2014
new usr/src/lib/libm comon/ R tanf.c

hkkkkkkkkkkkkkkkkhkkkkhkhkkkhkhkhkkkkkhkhkkkkkkkkkkkk ok k ok k k%

__unchanged_portion_omtted_

57 #define one

58 #define PO

59 #define P1

60 #define P2

61 #define P3

62 #define P4

63 #define P5

64 #define P6

65 #define P7

66 #define TO

67 #define T1

68 #define invpio2
69 #define hal f
70 #define pio2_1
71 #define pio2_t

PRRPRRPRPOONOUIRWNRO

D00000000000000
D WN B O

73 fl oat
74 tanf(float x)
{

76 double vy, z, w

77 fl oat f;

78 int n, ix, hx, hy;
79 volatllelntl;

80 #endif /* ! codereview */

82 hx
83 i x

*((int *)&x);
hx & Ox7fffffff;

85 y = (doubl e)x;

87 if (ix <= 0x4016ched) { [* |x] < 3*pi/4 */

88 if (ix <= 0x3f490fdb) { /* | x| < pild >/
89 if (ix < 0x3c000000) { 1* | x|
90 if (ix <= 0x39800000) {1 |x|
91 i=(int)y;

79 volatile int i = (int)
92 #ifdef lint

93 i =i

94 #endi f

95 return (x);

97 ieturn ((float)((y * TO) * (T1 +

z * (P7 +2)))));

105 y = (y - pio2_1) - pio2_t;
y

pio2_1) + pio2_t;

H WORD] & ~Ox80000000

00) { [* |y| < 2%*-7 */
T0) * (T1 +y /! y);
float)(-one / z));

y =

108 hy = ((int
109 if (hy < Ox
t

[y
[N
w

s N-

1nn

z * (P7 +2)));

< 2%*-7 %
< 2*%*-12 *)

y;

y *y)))s

(((PO * y) * (PL+2z* (P2 +2)
+ *
'

PL+z* (P2 +2) * (P3+2z* (P4 +2)))
+

*

new usr/src/lib/libm comon/ R tanf.c

116 return ((float)(-one / w));

117 }

119 if (ix <= 0x49c90fdb) { /* |x| < 2719*pi */

120 #if defi ned(__i1386) && !defined(__and64)

121 int rp;

123 rp = __swapRP(f p_ext ended);

124 #endif

125 w =1y * invpio2,

126 if (hx < 0)

127 n=(int)(w- half);

128 el se

129 = (int)(w + half);

130 (y-n*p|02 1) - n * pio2_t;

131 #if defined(|386) && !defined(__and64)

132 if (rp != fp_extended)

133 (void) __swapRP(rp);

134 #endi f

135 } else {

136 if (ix >= 0x7f800000)

137 return (x / x); /* sin(Inf or NaN) is NaN */
138 hy = ((int *)&)[H WORD ;

139 n = ((hy >> 20) & Ox7ff) - 1046;

140 ((int *)&w) [H WORD] (hy &Oxfffff) | 0x41600000;
141 ((int *)&W) [LONORD] = ((int *)&y)[LOAORD];

142 n = _ rempio2m &w, &y, n, 1, 0, _TBL_ipi 02 _inf);
143 if (hy <0) {

144 y = -y;

145 n=-n;

146 }

147 1

149 hy = ((int *)&)[H WORD] & ~0x80000000;

150 if (hy < 0x3f800000) { I* |y| < 2%*-7 */

151 z = (y* T0) * (T y *y);

152 f=({n&1l) == 0)’>(f|oat)z : (float)(-one / z);
153 return (f);

154 }

155 z =y *y,;

156 w={((PO*y) * (PL+2z* (P2+2z))* (P3+2z* (P4+2z))) *
157 (P5+z*(P6+z*(P7+z)))

158 f=((n&1l) ==0)? (float)w : (float)(one / w;

159 return (f);

160 }

__unchanged_portion_omtted_

new usr/src/lib/libm comon/conpl ex/ cpow. ¢ 1 new usr/src/lib/libm comon/conpl ex/ cpow. ¢
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 63 *
9501 Sun May 4 03:06:08 2014 64 * !/ 2 2
new usr/src/lib/libm comon/conpl ex/ cpow. ¢ 65 * r \/ x +y -v*atan2(y, x)
IR R R R R R R R R R R R S R R R RS RS R RS R R SRR R ERREREREEEEEEEE] 66 * '_bre e can be expressed as: u * e
1/* 67 *
2 * CDDL HEADER START 68 * Special cases (in the order of appearance):
3 * 69 * 1. (anything) ** 0 is 1
4 * The contents of this file are subject to the terms of the 70 * 2. (anythlng) ** 1 is itself
5 * Common Devel opnent and Distribution License (the "License"). 71 * 3. Wenv =0y =0
6 * You may not use this file except in conpliance with the License. 72 * If x is finite and negative, and u is finite, then
7 * 73 * X ** u = exp(u*pi 1) * pow(|x|, u);
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 * ot herwi se
9 * or http://ww.opensol aris.org/os/licensing. 75 * X ** u = pow(x, u);
10 * See the License for the specific |anguage governing perm ssions 76 * 4. Wwen v =0, X = 0 or |x] =1]y|] or x isinf or yis inf:
11 * and limtations under the License. 77 * (x+y|) *u=r * exp(q i)
12 * 78 * wher e
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 79 * r = hypot(x,y) **
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 * q = u * atan2pi(y, x)
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 81 *
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 * 5. otherwise, z**wis NANif any x, y, u, v is a Nan or inf
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 83 *
18 * 84 = Note: many results of special cases are obtained in terns of
19 * CDDL HEADER END 85 * pol ar coordinate. In the conversion frompolar to rectangle:
20 */ 86 * r exp(qi) =r * cos(q) +r * sin(q) i,
87 * we regard r * 0 1s O except when r is a NaN
22 /* 88 */
23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved. 89 /* | NDENT ON */
24 */
25 [* 91 #include "libmh" /* atan2/ exp/ f abs/ hypot /| og/ pow scal bn */
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved. 92 /* atan2pi/ exp2/ sincos/sincospi/__k_clog_r/__k_atan2 */
27 * Use is subject to license terns. 93 #i nclude "conpl ex_wrapper. h"
28 */
95 extern void sincospi (double, double *, double *);
30 #pragma weak cpow = __cpow
97 static const double
32 /* I NDENT OFF */ 98 huge = 1e300,
33 /* 99 tlny—le 300
34 * dconpl ex cpow(dconpl ex z); 100 invin2 = 1.44269504088896338700e+00,
35 * 101 I n2hi = 6 93147180369123816490e- 01, /* 0x3fe62e42, Oxfee00000 */
36 * z**w anal ytically equivalent to 102 I n2l o = 1.90821492927058770002e- 10, /* 0x3dea39ef, 0x35793c76 */
37 * 103 one = 1.0,
38 * cpow(z,w) = cexp(w clog(z)) 104 zero = 0.0;
39 *
40 * Let z = x+iy, w = u+iv. 106 static const int hiinf = 0x7ff00000;
41 * Since 107 extern doubl e atan2pi (doubl e, double);
42 = o 107 doubl e at an2pi (doubl e, doubl e);
43 * ! 2 2 -1y
44 * log(x+iy) =1log(\/ x +y) +i tan (---) 109 /*
45 * X 110 * Assuming [t[O]| > |t[1]| and |[t[2]| > |t[3]]|, sumdfp subroutine
46 * 111 * conpute t[0] + t[1] + t[2] + t[3] into two double fp nunbers.
47 * 1 2 2 -1 y 112 */
48 * =---log(x +y) +i tan (---) 113 static double
49 * 2 X 114 sunmidf p(double ta[], double *w) {
50 * u 2 2 -1y 115 double t1, t2, t3, t4, wi, w2, t;
51 * (u+iv)* log(x+iy) = --- log(x +vy) - vtan (---) + (1) 116 tl =ta[0]; t2 =ta[l]; t3 =t a[2] t4 = ta[3];
52 * 2 X 117 I*
53 * 118 * Rearrange ti so that |t1l] >= |t2] >= |t3] >= |t4]
54 * \Y% 2 2 -1y 119 */
55 * i *[---log(x +vy) +utan (---)] (2) 120 if (fabs(t4) > fabs(t1)) {
56 * 2 X 121 tl; t1 =13; t3 =1t;
57 * 122 t:t2; t2:t4 td = t;
58 * =r +i q 123 } else if (fabs(t3) > fabs(tl)) {
59 * 124 t =tl; t1 =t3;
60 * Therefore, 125 if (fabs(t4) > fabs(t2)) {
61 * w r+iq r 126 t3 =t4;, t4 =12, t2 =t;
62 * z = e = e (cos(q)+i*sin(q)) 127 } else {

new usr/src/lib/libm comon/conpl ex/ cpow. ¢

128 t3 =t2; t2 =1t;
129 }

130 } else if (fabs(t3) > fabs(t2)) {
131 t =t2; t2 =t3;

132 if (fabs(t4) > fabs(t2)) {
133 t3 =t4; t4 =t;
134 } else

135 t3 =t;

136 }

137 /* sunmming r = t1 +t2 +t3 +td4towl + w2 */
138 wl =t3 + t4;

139 w2 =t4 - (wl - t3);

140 t =t2 + wi;

141 w2 +=wl - (t - t2);

142 wl =t + w2;

143 w2 +=t - wl;

144 t =tl + wi;

145 w2 += wl - (t - tl);

146 wl =t + w2;

147 W= w2 - (Wl - t);

148 return (wl);

149 }

__unchanged_portion_onitted_

new usr/src/lib/libm comon/conpl ex/ k_cexp. c

LR R R E

5524 Sun May 4 03:06:09 2014
new usr/src/lib/libm comon/conpl ex/ k_cexp. ¢
IR R R R R R R R R R R R R SRR RS RS E R EEEEEEEESEE]
_unchanged portion_om tted
110 invln2 = 1.44269504088896338700e+00,
111 P1 1. 66666666666666019037e- 01,
112 P2 -2.77777777770155933842e- 03,
113 P3 = 6.61375632143793436117e- 05,
114 P4 = -1.65339022054652515390e- 06,
115 P5 4.13813679705723846039e- 08;
116 /* | NDENT ON */

118 doubl e

119 _ k_cexp(double x, int *
120 doubl e hi = 0.0L,
120 double hi, lo, ¢
121 int k, xsb;

122 unsi gned hx, |x;

124 hx = HI _WRD(X)
125 Ix = X) ;
126 xsb = (hx >> 31) & 1;
127 hx &— Ox7fffffff;

= 0.0L, c,

/* high
/I* | ow
/* sign
/* high
129 /* filter out non-finite argunme
130 if (hx >= 0x40e86a00) { /* if |
131 if (hx >— 0x7ff00000) {
132

133 |f (((hx & Oxf f
134 return
135 el se

136 return
137

138

140 return (one + | n2LJ 1]
141 }

143 *n = 0;

144 /* argunent reduction */

145 if (hx > 0x3fd62e42) { /* if
146 if (hx < Ox3FFOA2B2) {
147 hi = x - In2HI[

148 o = I n2LJ xsb] ;

149 k =1- xsb - x
150 } else {

151 k
152 t ,
153 hi =x -t *In
154

155 lo =1t * I n2L
156 }

157 x = hi - lo;

158 *n = k;

159 } else if (hx < 0x3e300000) {
160 return (one + x);

161 } else

162 k=0

164

/ owin primary range */
165 t

c

i

n

X
166 t
167
168 return (one - ((x * c)
169 else {

}
139 *n = (xsb == 0) ? 50000 :

khkkkk Ak A KA KKK

Khkkhkkhkkhkkkkkkk

~————

word of x */
word of x */
bit of x */

word of |x| */

nt */
x| > 50000 */

fEf) | 1x) = 0)

* O0x3ff 71547,
* 0x3FC55555,
* 0xBF66C16C,
* O0x3F11566A,
* O0xBEBBBD41,
* Ox3E663769,

0x652b82fe */
0x5555553E */
0x16BEBD93 */
0xAF25DE2C */
0xC5D26BF1 */
O0x72BEA4DO */

(x + x); /* NaN */

((xsb == 0) ? x :

-50000;
* In2L 1]);

|x] > 0.5 1n2 */

0.0);
/* exp(+-inf)={inf, 0}

/* generate inexact */

/* and | x| < 1.5 In2 */

xsb] ;
sb;

2HI[0];
/* *
0l

(int) (invin2 * x + hal F[xsb]);

In2H is exact for t<2#*20 */

/* when | x| <2**-28 */

*(PL+t * (P2+t * (P3+t* (P4+t* P5))));
0

/ (c - 2.0) - x));

new usr/src/lib/libm comon/conpl ex/ k_cexp. c

170
171
172
173
174
175
176
177
178
179

180 }
__unchanged_portion_onitted_

=one - ((lo- (x*c) [/ (2.0 - c)) -
|f (k > 128) {
t *= twol28;
*n =k - 128;
} elself (k>0) {
V‘OZED(t) += (k << 20);
*n

}
return (t);

}

hi);

new usr/src/lib/libm comon/conplex/k_clog_rl.c

R R R R

22566 Sun May 4 03:06:11 2014
new usr/src/lib/libm comon/conplex/k_clog_rl.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkkkhkhkkkkkkk kR kkkk Kk kkkkkkkk ok k ok k k%

__unchanged_portion_omtted_

408 | ong doubl e

409 __k_clog_rl(long double x, |ong double y, |ong double *er)
410 {

411 long double t1, t2, t3, t4, tk, z, wh, w, zh, zk;
412 int n, k, ix, iy, iz, nx, ny, nz, i;

413 doubl e dk;

415 #if !defined(__x86)

416 int j;

417 unsigned I x, ly;
418 #endi f

420 i X _XWORD(x) & ~0x80000000;

421 iy H _XWORD(y) & ~0x80000000;

422 y fabsl (y); x = fabsl(x);

423 |f(|x<|y|| (ix < Ox7fff0000 & & ix == iy && x < vy)) {
424 /* force x >=y */
425 tk X; y; y
426 n X, ly; iy
427

428 *er = zero;

429 nx =ix >> 16; ny =iy >> 16;

430 if (nx >= Ox7fff) { /* x or y is Inf or NaN */

431 if (isinfl(x))

432 return (x);

433 else if (isinfl(y))

434 return (y);

435 el se

436 return (x+y);

437 1

438 [*

439 * for tiny y:(double y < 27-35, extended y < 27-46, quad y < 2"-70)
440 *

441 * log(sqrt (1 + y**2)) = y**2 /] 2 - y**4 | 8+ ... = y**2 /[2
442 */

443 #if defined(__x86)

444 if (x == 1.0L & ny < (Ox3fff - 46)) {

445 #el se

446 if (x == 1.0L & ny < (Ox3fff - 70)) {

447 #endi f

II*
x

tk;
n;

i X

449 t2 =y *y;
450 if (ny >— 8305) { /* conpute er = tail of t2 */
451 (doubl e) y;

453 #if defined(__x86)
454 ((unsigned *)&dJk) [LOMORD] &= Oxfffe0000;
455 #endi f

457 wh = (long double) dk;

458 xer = half * ((y - wh) * (y + wh) - (t2 - wh * wh));

459 }

460 return (half * t2);

461 }

462 | *

463 * x or y is subnormal or zero

464 */

465 if (nx == 0) {

466 if (x == 0.0L)

467 return (-1.0L / x);

new usr/src/lib/libm comon/conplex/k_clog_rl.c

468 el se {

469 X *= two240;

470 y *= two240;

471 ix = H _XWORD(x);

472 iy = H _XWORD(y);

473 nx = (ix >> 16) - 240;

474 ny = (iy > 16) - 240;

475 /* guard subnormal flush to 0 */
476 if (x == 0.0L)

477 return (-1.0L / Xx);

478 }

479 } elseif (ny == O) { /* y subnormal, scale it */
480 y *= two240

481 iy = H vaRD();

482 ny = (iy > 16) - 240;

483 }

484 n =nx - ny;

485 [*

486 * When y is zero or when x >> vy, i.e., n > 62, 78, 122 for DBLE,
487 * EXTENDED, QUAD respectively,

488 * log(x) = log(sqgrt(x * x +y * y)) to 27 extra bits.

489 */

491 #if defined(__x86)

492 if (n>78]] y==0.0L) {

493 #el se

494 if (n>122 || y == 0.0L) {

495 #endi f

497 XFSCALE(x, (Ox3fff - (ix >> 16)));

497 XFSCALE(x Ox3fff - (ix >> 16));

498 i ((|x&Oxffff) + 0x100) >> 9, /* 7.5 bits of x */
499 zk 1.0L + ((long double) i) * 0.0078125L;
500 z =X - zk;

501 (doubl e)z;

503 #if defined(__x86)

504 ((un5| gned *) &dk) [LOANORD] &= Oxfffe0000;
505 #endi f

507 zh (I ong doubl e) dk;

508 k=| & Ox7f; /* index of zk */

509 n = nx - Ox3fff;

510 *er =z - zh;

511 if (i == Ox80) { /* if zk = 2.0, adjust scaling */
512 n +=1;

513 zh *= 0.5L; *er *= 0.5L;

514 }

515 w = k_l og_NKzl (n, k, zh, er);

516 } else {

517 /*

518 * conpute z = x*x + y*y

519 */

520 XFSCALE(x, (Ox3fff - (ix >> 16)));

521 XFSCALE(y, (Ox3fff - n - (iy >> 16)));

520 XFSCALE(x, Ox3fff - (ix >> 16));

521 XFSCALE(y, ox3fff - n - (iy > 16));

522 = (ix & Oxffff) | Ox3fff0000;

523 |y:(iy&0xffff) | (0x3fff0000 - (n << 16));
524 nx -= Ox3fff;

525 tl =x * x; t2 =y * vy,

526 wh = x;

528 /* split x into correctly rounded hal f */
529 #if defined(__x86
530 ((unsigned *)&wh)[0] = O; /* 32 bits chopped */

new usr/src/lib/libm comon/conplex/k_clog_rl.c

531 #el se

532 I x = ((unsigned *)&uwh)[2]; /* 56 rounded */
533 i = ((Ix >> 24) +1) >> 1;

534 ((unsigned *)&wh)[2] = (] << 25);

535 I'x = ((unsigned *)&nh)[1];

536 ly =1Ix + (] > 7);

537 ((unsi gned *)&\A,h)[l] =ly;

538 ((unsi gned *) &ah) [0] +—(Iy-=0&&|x!=0);
539 ((unsigned *)&wh)[3] = O;

540 #endi f

542 z = t1+t2;

543 [*

544 * higher precision sinulation x*x =t1 + t3, y*y =t2 + t4

545 */

546 tk = wh - x;

547 t3 =tk * tk - (two * wh * tk - (wh * wh - t1));
548 wh = vy;

550 /* split y into correctly rounded hal f */
551 #if defined(__x86)

552 ((unsigned *)&h)[0] = O; /* 32 bits chopped */
553 t#el se

554 ly = ((unsigned *)&nh)[2]; /* 56 bits rounded */
555 io=((ly > 24) + 1) > 1;

556 ((uns |gned *)Y&wh)[2] = (j << 25);

557 I x = ((unsigned *)&uwh)[1];

558 ly =1x + (] > 7);

559 ((unsigned *)&wh)[1] = ly

560 ((unsi gned *) &nh) [0] +-(Iy =0 & Ix !'=0);
561 ((unsigned *)&nwh)[3] =

562 #endi f

564 tk = wh - y;

565 t4 =tk * tk - (two * wh * tk - (wh * wh - t2));
566 /*

567 * find zk matches z to 7.5 bits

568 */

569 |z = H _XWORD(z) ;

570 ((|z & Oxffff) + 0x100) >> 9; /* 7.5 bits of x */
571 (iz >> 16) - Ox3fff + (k >> 7);

572 k &= ox7f;

573 zk = 1.0L + ((long double) k) * 0.0078125L;

574 if (nz == 1) zk += zk;

575 else if (nz == 2) zk *= 4.0L;

576 else if (nz == 3) zk *= 8.0L;

577 |*

578 * order t1, t2, t3, t4 according to their size

579 */

580 if (t2 >= fabsl (t3)) {

581 if (fabsl(t3) < fabsl(t4)) {

582 t3; t3 =t4; t4 = wh;

583 }

584 } else {

585 wh =1t2; t2 =t3; t3 = wh;

586 }

587 | *

588 * higher precision sinulation: x * x +y *y =1tl +t2 +t3 + t4
589 * = zk(7 bits) + zh(24 bits) + *er(tail) and call k_log_NKz

590 */

591 tk
592 zh

=tl - zk;

= ((tk +t2) +1t3) + t4;
594 /* split zh into correctly rounded hal f */
595 #if defined(__x8

596 ((unsigned *)&h)[0] = O;

new usr/src/lib/libm comon/conplex/k_clog_rl.c

597 #el se

598 ly = ((unsigned *)&h)[2];

599 i = ((ly >> 24) +1) >> 1;

600 ((unsigned *)&zh)[2] = (] << 25);

601 I'x = ((unsigned *)&zh)[1];

602 ly =1Ix + (] > 7);

603 ((unsi gned *)&zh)[l] =ly;

604 ((unsigned *)&h)[0] += (ly == 0 && Ix != 0);
605 ((unsigned *)&zh)[3] = O;

606 #endi f

608 w = fabsl (zh

609 if (>= fabsl(t2))

610 {

611 *er = (((tk - zh) +1t2) +1t3) + t4;
612 }

__unchanged_portion_omtted_

new usr/src/lib/libm comon/nBx/__fex_hdlr.c

R R R R

21518 Sun May 4 03:06:12 2014
new usr/src/lib/libm comon/nBx/__fex_hdlr.c

hkkkkkkkkkkkkkkkkkkkkhkhk kA kA kk kK kkkkkkkkkkkkkkkkkkk ok k ok k k%

__unchanged_portion_omtted_

375 #elif defined(__x86)

377 #if defined(__and64)

378 #define test_sse_hw 1

379 tel se

380 extern int _sse_hw

381 #define test_sse_hw _sse_hw

381 #define test_sse_hw & sse_hw && _sse_hw

382 #endi f

384 #if !defined(REG PC)

385 #define REG PC EIP

386 #endi f

388 /*

389 * |f a handling node is in effect, apply it; otherw se invoke the
390 * saved handl er

391 *

392 static void

393 __fex_hdlr(int sig, siginfo_t *sip, ucontext_t *uap)

394 {

395 struct fex_handl er_data *thr _handl ers;

396 struct sigaction act

397 voi d (*handler)() = NULL, (*simd_handler[4])();
397 voi d (*handl er) (), (*sind_handler[4])();
398 int node, sind rmde[4] i, len, accrued *ap;
399 unsi gned i nt cwsw, ol dcwsw, nxcsr, ol dm(csr

400 enum f ex_exception e, sind_e[4];

401 fex_info_t info, sind_i nf o[4] ;

402 unsi gned | ong addr;

403 siginfo_t osip = *sip;

404 sseinst _t inst;

406 /* check for an exception caused by an SSE instruction */
407 if (!(uap->uc_ntontext.fpregs.fp_reg_set.fpchip_state.status & 0x80)) {
408 len = _ fex_parse_sse(uap, & nst);

409 if (len == 0)

410 goto not _i eee;

412 /* disable all traps and clear flags */

413 __fenv_get cwsw(&ol dcwsw) ;

414 cwsw = (ol dewsw & ~0x3f) | 0x003f 0000;

415 _ fenv_set cwsw &cwsw) ;

416 __fenv_get nkcsr (&ol dnxcsr);

417 nmxcsr = (ol dmxcsr & ~0x3f) | Ox1f 80;

418 _ fenv_set nxcsr (&mxcsr);

420 if ((int)inst.op & SIMD) {

421 __fex_get_sinmd_op(uap, & nst, sind_e, sind_info);
423 thr handl ers = _ fex_get_thr_handlers();

424 addr (un5| gned | ong) uap- >uc_ntont ext . gr egs[REG PC] ;
425 accr ued = uap->uc_ncontext. fpregs.fp_reg_set.
426 f pchi p_st at e. nxcsr;

428 = (enum fex except ion)-1;

429 rmde = FEX_NONST

430 for (i =0; i <4; i++) {

431 if ((int)simd_e[i] < 0)

432

continue;

new usr/src/lib/libm comon/nBx/__fex_hdlr.c

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471

473
474
475

477
478
479
480

482
483
484
485
486
487
488
489
490
491
492
493

495
496
497
498

= simd_e[i];
md_node[i] = FEX_NOHANDLER,
md_handl er[i] = oact.sa_handler;
(thr_handl ers &&
thr_handlers[(int)e].__node !=
FEX_NCHANDLER) {
simd_node[i] =
thr_handl ers[(l nt)e].__node;
si md_handl er[i]
thr_handl ers[(l nt)e].__handler;

e
S
S
1

i
i
if

}
accrued & ~te_bit[(int)e];
switch (sinmd_node[1]) {
case FEX_ABORT:
mode = FEX_ABORT;
br eak;
case FEX_SI GNAL:
if (node != FEX_ABORT)
nmode = FEX_SI GNAL;
handl er = sind_handler[i];
br eak;
case FEX_NOHANDLER:
if (node !'= FEX_ABORT && node !=
FEX_SI GNAL)
node = FEX_NOHANDLER
br eak;

}

if (e == (enum fex_exception)-1) {
_ fenv_set cwsw(&ol dcwsw) ;
__fenv_set nxcsr (&ol dnxcsr);
goto not _i eee;

accrued | = uap->uc_ntontext.fpregs.fp_reg_set.
fpchi p_state. status;

ap = fex_accrued();

accrued | = *ap;

accrued &= 0x3d;

for (i =0; i <4; i++) {
if ((int)sind_e[i] < 0)
conti nue;

(uap, (char *)addr, accrued,
i], simd_node[i],
)si nd handler[l])

_ fex_nkl og
simd e[
(void *

}

if (node == FEX_NOHANDLER) {
__fenv_set cwsw(&ol dcwsw) ;
__fenv_set nxcsr (&ol dnxcsr);
goto not _i eee;

} else if (npde == FEX_ABORT) {
abort();

} else if (npde == FEX_SI GNAL)

fenv_set cwsw(&ol dewsw) ;

—_fenv_set nxcsr (&ol dm(csr);
handl er (si g, &osip, uap);

return;
}
*ap = 0
for (i =0; i <4; i++) {
if ((int)simd_e[i] < 0)

conti nue;

new usr/src/lib/libm comon/nBx/__fex_hdlr.c 3 new usr/src/lib/libm comon/nBx/__fex_hdlr.c
565 __fenv_set cwsw(&ol dcwsw) ;
500 if (simd_node[i] == FEX_CUSTOM { 566 __fenv_set nxcsr (&ol dnxcsr);
501 handl er(l << (int)sim_e[i], 567 handl er (si g, &osip, uap);
502 &sind_info[i]); 568 return;
503 __fenv_set cwsw(&CV\BW); 569 } else if (npde == FEX_CUSTOM {
504 __fenv_set mxcsr (&mxcesr); 570 *ap = O;
505 } 571 if (addr >= (unsigned |ong)ferai seexcept &%
506 } 572 addr < (unsi gned | ong) f et est except) {
573 info.op = fex_other;
508 fex st _sind_result(uap, & nst, sind_e, sind_info); 574 info.opl.type =i nf o. op2.type =
509 for (I =0, i < 4; i++) { 575 info.res.type = fex_nodat a;
510 if ((int)sind_e[i] < 0) 576 }
511 conti nue; 577 handler(1 << (int)e, & nfo);
578 _ fenv_set cwsw(&wsw) ;
513 accrued | = sind_info[i].flags; 579 __fenv_set nxcsr (&mxcsr);
514 } 580 }
516 if ((int)inst.op & INTREQ { 582 _ fex_st_sse_result(uap, & nst, e, & nfo);
517 /* set MW node */ 583 accrued | = info.flags;
518 #if defined(__and64)
519 uap- >uc_nctont ext . f pregs. f p_reg_set. 585 #if defined(__and64)
520 f pchi p_state.sw & ~0x3800; 586 /*
521 uap- >uc_ncontext.fpregs.fp_reg_set. 587 * In 64-bit node, the 32-bit convert-to-integer
522 fpchip_state.fctw = 0; 588 * instructions zero the upper 32 bits of the
523 tel se 589 * destination. (W do this here and not in
524 uap- >uc_ncontext. fpregs. fp_reg_set. 590 * _ fex_st_sse_result because __fex_st_sse_result
525 fpchip_state.state[1] & ~0x3800; 591 * can be called from__fex_st_sind_result, too.)
526 uap- >uc_ncont ext.fpregs.fp_reg_set. 592 */
527 fpchip_state.state[2] = 0; 593 if (inst.op == cvtss2si || inst.op == cvttss2si ||
528 #endi f 594 inst.op == cvtsd2si || inst.op == cvttsd2si)
529 } 595 inst.opl->[1] = 0;
530 } else { 596 #endi f
531 e = _ fex_get_sse_op(uap, & nst, & nfo); 597 }
532 if ((int)e <0) {
533 _ fenv_set cwsw(&ol dcwsw) ; 599 /* advance the pc past the SSE instruction */
534 __fenv_set nxcsr (&ol dnxcsr); 600 uap->uc_ntont ext. gregs[REG_ PC] += len;
535 goto not _i eee; 601 got o update_state;
536 } 602 }
538 node = FEX_NOHANDLER; 604 /* determ ne which exception occurred */
539 handl er = oact.sa_handl er; 605 _ fex_get_x86_exc(sip, uap);
540 thr_handlers = _ fex_get_thr_handl ers(); 606 switch (sip->si_code)
541 if (thr_handlers && thr_handlers[(int)e].__node != 607 case FPE_FLTDI V:
542 FEX_NOHANDLER) { 608 e fex _division;
543 mode = thr_handl ers[(int)e].__node; 609 bre
544 handl er = thr_handlers[(int)e].__handler; 610 case FPE_ FLTOJF
545 } 611 e = fex_overflow
612 break;
547 addr = (unsigned | ong)uap->uc_ntont ext . gregs[REG PC] ; 613 case FPE_FLTUND:
548 accrued = uap->uc_ntontext.fpregs.fp_reg_set. 614 e = fex_underflow
549 fpchip_state.nxcsr & ~te_bit[(int)e]; 615 br eak;
550 accrued | = uap->uc_ntontext.fpregs.fp_reg_set. 616 case FPE_FLTRES:
551 f pchi p_st at e. st at us; 617 e = fex_inexact;
552 ap = __fex_accrued(); 618 br eak;
553 accrued | = *ap; 619 case FPE_FLTI NV:
554 accrued &= 0x3d; 620 if ((int)(e = __fex_get_invalid_type(sip, uap)) < 0)
555 _ fex_nkl og(uap, (char *)addr, accrued, e, node, 621 goto not _i eee;
556 (void *)handler); 622 br eak;
623 defaul t:
558 if (mode == FEX_NOHANDLER) { 624 /* not an | EEE exception */
559 __fenv_set cwsw(&ol dcwsw) ; 625 goto not_i eee;
560 __fenv_set nxcsr (&ol dnxcsr); 626 }
561 goto not_i eee;
562 } else if (npde == FEX_ABORT) { 628 /* get the handling node */
563 abort (); 629 mode = FEX_NOHANDLER
564 } else if (npbde == FEX_SIGNAL) { 630 handl er = oact.sa_handler; /* for log; just |ooking, no need to | ock

new usr/src/lib/libm comon/ nBx/

631
632
633
634
635

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

655
656
657
658
659
660
661
662
663

665
666
667
668
669
670
671
672
673
674

676
677

679
680
681
682
683
684
685
686
687

689

691
692
693
694
695

#if defi

#el se

#endi f

__fex_hdlr.c

thr_handlers = _ fex_get_thr_handl ers();
if (thr_handlers & thr_handlers[(int)e].
node = thr handlers[(int)e].__node;

nmode != FEX_NOHANDLER) {

handl er = thr_handlers[(int)e].__handler;
}
/* make an entry in the log of retro. diag. if need be */
ned(__and64)

addr = (unsigned | ong)uap->uc_ntontext.fpregs.fp_reg_set.
fpchip_state.rip;

addr = (unsigned | ong)uap->uc_ntontext.fpregs.fp_reg_set.
fpchip_state.state[3];

accrued = uap->uc_ntontext.fpregs.fp_reg_set.fpchip_state.status &
~te_bit[(int)e];
if (test_sse_hw)

accrued | = uap->uc_ntontext.fpregs.fp_reg_set.fpchip_state.
nmxcsr;
ap = fex accrued();
accrued | =

accrued &= 0x3d
_ fex_nkl og(uap, (char *)addr, accrued, e, node, (void *)handler);
/* handl e the exception based on the node */
if (mode == FEX_NOHANDLER)
goto not _i eee;
else if (npde == FEX_ABCRT)
abort();
else if (npde == FEX_SIGNAL) {
handl er (si g, &osip, uap);
return;

}

/* disable all traps and clear flags */
_ f env _get cwsw(&cwsw) ;
cwsw = (cwsw & ~0x3f) | 0x003f0000;
__fenv_set cwsw &wsw) ;
if (test_sse_hw)

~fenv getrn(csr(&m(csr)

nxcsr = (nxcsr & ~0x3f) | Ox1f80;
__fenv_setnkcsr (&mxcsr);

*ap -

/* decode the operation */
__fex_get_op(sip, uap, & nfo);
/* if a customnode handler is installed, invoke it */
if (node == FEX_CUSTOM ({
/* if we got here from feraiseexcept, pass dummy info */
if (addr >= (unsigned |ong)ferai seexcept &&
addr < (unsigned |ong)fetestexcept) {
info.op = fex_other;
info.opl.type = info.op2.type = info.res.type =
f ex_nodat a;

}
handler(1 << (int)e, & nfo);
/* restore nodes in case the user’s handl er changed them */
__fenv_set cwsw &cwsw) ;
if (test_sse_hw)

__fenv_set nkcsr (&mxcesr);

new usr/src/lib/libm comon/ nBx/

697 /* stuff the result */

698 _ fex_st_result(sip, uap, & nfo);

699 accrued | = info.fl ags;

701 update_state:

702 accrued &= 0x3d;

703 i = _fex_te needed(thr handl ers, accrued);

704 *ap = accrued & i;

705 #if defined(__and64)

706 uap- >uc_ncontext.fpregs.fp_reg_set.fpchip_state. sw & ~0x3d;

707 uap->uc_ncontext.fpregs.fp_reg_set.fpchip_state.sw |= (accrued & ~i);
708 uap- >uc_ntontext . fpregs. fp_reg_set.fpchi p_state.cw | = 0x3d;

709 uap- >uc_nctontext . fpregs. fp_reg_set.fpchi p_state.cw & ~i;

710 #el se

711 uap->uc_ncontext.fpregs.fp_reg_set.fpchip_state.state[1l] &= ~0x3d;
712 uap->uc_ncontext . fpregs. fp_reg_set.fpchip_state.state[1] |

713 (accrued & ~i);

714 uap- >uc_ncont ext . fpr egs.fp_reg_set.fpchip_state.state[0] |= 0x3d;
715 uap->uc_ntontext . fpregs.fp_reg_set.fpchip_state.state[0] & ~i;
716 #endif

717 if (test_sse_hw)

718 uap- >uc_ntont ext. fpregs. fp_reg_set.fpchi p_state.nxcsr &=
719 uap- >uc_ncontext.fpregs.fp_reg_set.fpchip_state.nxcsr |=
720 0x1e80 | (accrued & ~i);

721 uap->uc_ntont ext. fpregs. fp_reg_set.fpchi p_state.nxcsr &=
722 ~(i << 7);

723

724 return;

726 not_i eee:

727 /* revert to the saved handler (if any) */

728 mut ex_| ock(&hdl r_lock);

729 act = oac

730 mut ex_unl ock(&hdl r_lock);

731 switch ((unsigned Tong)act.sa_handler) {

732 case (unsigned | ong)SI G DFL:

733 /* sinmulate trap with no handler installed */

734 si gaction(SI GFPE, &act, NULL);

735 kil'l (getpid(), SIGFPE);

736 br eak;

737 #if !defined(__lint)

738 case (unsigned |ong)SlIG |G\

739 br eak;

740 #endi f

741 defaul t:

742 act.sa_handl er (sig, &osip, uap);

743 }

744 }

__fex_hdlr.c

__unchanged_portion_onitted_

new usr/src/lib/libm comon/nBx/__fex_i 386.c

R R R R

36583 Sun May 4 03:06: 14 2014
new usr/src/lib/libm comon/nBx/__fex_i 386.c

hkkkkkkkkkkkkkkkkkkkkhk kA kA kkkk kK kkkkkkkkkkkkkkkkkkk ok k ok k k%

__unchanged_portion_omtted_

1227 /* scale factors for exponent w apping */
1228 static const float

1229 fun = 7.922816251e+28f, /* 2796 */

1230 fov = 1.262177448e-29f; [* 27-96 */

1231 static const double

1232 dun = 1.552518092300708935e+231, /* 27768 */

1233 dov = 6.441148769597133308e- 232; [* 2n-768 */

1235 /*

1236 * Store the specified result; if no result is given but the exception
1237 * is underflow or overflow, use the default trapped result

1238 *

1239 void

1240 {__f ex_st_result(siginfo_t *sip, ucontext_t *uap, fex_info_t *info)

1241

1242 fex_nuneric_t r;

1243 unsi gned | ong ex, op, ea, stack;

1245 /* get the exception type, opcode, and data address */

1246 ex = sip->si_code;

1247 #if defined(__and64)

1248 op = uap->uc_ncontext.fpregs.fp_reg_set.fpchip_state.fop >> 16;
1249 ea = uap->uc_nctontext.fpregs.fp_reg_set.fpchip_state.rdp; /*???*/
1250 #el se

1251 op = uap->uc_ntontext.fpregs.fp_reg_set.fpchip_state.state[OP] >> 16;
1252 ea = uap->uc_ntontext.fpregs.fp_reg_set.fpchip_state.state[EA];
1253 #endi f

1255 /* if the instruction is a conpare, set the condition codes
1256 to unordered and update the stack */

1257 switch (op & Ox7f8) {

1258 case 0x010:

1259 case 0x050:

1260 case 0x090

1261 case 0x0dO:

1262 case 0x210:

1263 case 0x250:

1264 case 0x290

1265 case 0x410:

1266 case 0x450:

1267 case 0x490:

1268 case 0x4do0:

1269 case 0x5e0

1270 case 0x610:

1271 case 0x650:

1272 case 0x690:

1273 /* f[u]lcom*/

1274 #if defined(__and64)

1275 uap- >uc_ntont ext . f pregs. f p_reg_set. fpchi p_state.sw | = 0x4500;
1276 #el se

1277 uap->uc_ncontext.fpregs.fp_reg_set.fpchip_state.state[SW |= 0x4
1278 #endi f

1279 return;

1281 case 0x018

1282 case 0x058:

1283 case 0x098:

1284 case 0x0d8:

1285 case 0x218

1286 case 0x258:

new usr/src/lib/libm comon/nBx/__fex_i 386.c

1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304

1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316

1318
1319
1320
1321
1322
1323
1324
1325
1326
1327

1329
1330
1331
1332
1333
1334
1335
1336
1337

1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1351
1352

#if defi
#el se

#endi f

#if defi
#el se

#endi f

#if defi
#el se

#endi f

#if defi
#el se

#endi f

#if defi
#el se

#endi f

case 0x298:
case 0x418:
case 0x458:
case 0x498:
case 0x4d8:
case 0x5e8:
case 0x618
case 0x658:
case 0x698:
case 0x6d0:
/* f[u]lconp */
ned(__and64)

uap->uc_ntont ext. fpregs. fp_reg_set.fpchi p_state.sw | = 0x4500;

uap- >uc_ncontext.fpregs.fp_reg_set.fpchip_state.state[SW |= 0x4

pop(uap);
return;

case 0Ox2e8:
case 0x6d8:

/* f[u] conpp */
ned(__and64)

uap- >uc_ncontext.fpregs.fp_reg_set.fpchip_state.sw | = 0x4500;

uap->uc_ntont ext. fpregs. fp_reg_set.fpchi p_state.state[SW |= 0x4

pop(uap) ;
pop(uap);
return;

case 0Ox1eO:
if (op == Oxled) { /* ftst */

ned(__and64)
uap->uc_ncontext. fpregs. fp_reg_set
uap->uc_ncont ext. fpregs. fp_reg_set
return;
}
br eak;

case 0x3e8:
case 0x3fO0:
/* f[ulcom */

ned(__and64)
uap- >uc_ncont ext. gregs[REG_PS] | = 0x45;
uap- >uc_ntont ext . gregs[EFL] | = 0x45;
return;

case Ox7e8:

case Ox7fO0:
/* f[ulcomp */

ned(__and64)
uap- >uc_ncont ext. gregs[REG PS] | = 0x45;
uap- >uc_ntont ext . gregs[EFL] | = 0x45;
pop(uap);
return;

}

.fpchip_state.sw |= 0x

.fpchip_state.state[SW

/* if there is no result available and the exception is overflow

or underflow, use the wapped result */

1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396

new usr/src/lib/libm comon/nBx/__fex_i 386.c 3
r = info->res;
if (r.type == fex_nodata) {
if (ex == FPE_FLTOVF || ex == FPE_FLTUND) {
/* for store instructions, do the scaling and store */
switch (op & 0x7f8) {
case 0x110:
case 0x118:
case 0x150:
case 0x158:
case 0x190:
case 0x198:
if (lea)
return;
if (ex == FPE_FLTOVF)
*(float *)ea = (fpreg(uap, 0) * fov) * f
el se
*(float *)ea = (fpreg(uap, 0) * fun) * f
if ((op &8) !'=0)
pop(uap);
br eak;
case 0x510:
case 0x518:
case 0x550:
case 0x558:
case 0x590:
case 0x598:
if (lea)
return;
if (ex == FPE_FLTOVF)
*(double *)ea = (fpreg(uap, 0) * dov) *
el se
*(double *)ea = (fpreg(uap, 0) * dun) *
if ((op &8) !'=0)
pop(uap);
break;
}
}
else if (ex != FPE_FLTRES)
printf("No result supplied, stack may be hosed\n");
return;

1398
1399

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414

1416
1417
1418

#i f def DEBUG

#endi f

}

/* otherw se convert the supplied result to the correct type,
put it in the destination,

/* store instructions */
switch (op & Ox7f8) {
case 0x110:
case 0x118:
case 0x150:
case 0x158:
case 0x190:
case 0x198:
if (lea)
return;
switch (r.type) {
case fex_int:

*(float *)ea = (float) r.val.i;
br eak;

case fex_l1ong:
*(float *)ea = (float) r.val.l;
br eak;

and update the stack as need be */

new usr/src/lib/libm comon/nBx/__fex_i 386.c

1420 case fex_float:

1421 *(float *)ea = r.val.f;
1422 br eak;

1424 case fex_doubl e:

1425 *(float *)ea = (float) r.val.d;
1426 br eak;

1428 case fex_| double:

1429 *(float *)ea = (float) r.val.q;
1430 br eak;

1432 defaul t:

1433 break;

1434 #endif /* | codereview */

1435

1436 if (ex !'= FPE_FLTRES & (op & 8) !=0)
1437 pop(uap) ;

1438 return;

1440 case 0x310:

1441 case 0x318:

1442 case 0x350:

1443 case 0x358:

1444 case 0x390:

1445 case 0x398:

1446 if (lea)

1447 return;

1448 switch (r.type) {

1449 case fex_int:

1450 *(int *)ea =r.val.i;

1451 br eak;

1453 case fex_l1ong:

1454 *(int *)ea = (int) r.val.l;
1455 br eak;

1457 case fex_float:

1458 *(int *)ea = (int) r.val.f;
1459 br eak;

1461 case fex_doubl e:

1462 *(int *)ea = (int) r.val.d;
1463 br eak;

1465 case fex_| double:

1466 *(int *)ea = (int) r.val.q;
1467 br eak;

1469 defaul t:

1470 break;

1471 #endif /* | codereview */

1472

1473 if (ex !'= FPE_FLTRES & (op & 8) !=0)
1474 pop(uap) ;

1475 return;

1477 case 0x510:

1478 case 0x518:

1479 case 0x550:

1480 case 0x558:

1481 case 0x590:

1482 case 0x598:

1483 if (lea)

1484 return;

new usr/src/lib/libm comon/nBx/__fex_i 386.c

1485 switch (r.type) {

1486 case fex_int:

1487 *(doubl e *)ea = (doubl e)
1488 br eak;

1490 case fex_l1ong:

1491 *(double *)ea = (doubl e)
1492 br eak;

1494 case fex_float:

1495 *(doubl e *)ea = (doubl e)
1496 br eak;

1498 case fex_doubl e:

1499 *(double *)ea = r.val.d;
1500 br eak;

1502 case fex_| doubl e:

1503 *(doubl e *)ea = (doubl e)
1504 br eak;

1506 defaul t:

1507 break;

1508 #endif /* ! codereview */

1509

1510 if (ex !'= FPE_FLTRES && (op & 8)
1511 pop(uap) ;

1512 return;

1514 case 0x710:

1515 case 0x718:

1516 case 0x750:

1517 case 0x758:

1518 case 0x790:

1519 case 0x798:

1520 if (lea)

1521 return;

1522 switch (r.type) {

1523 case fex_int:

1524 *(short *)ea = (short) r.
1525 br eak;

1527 case fex_l1ong:

1528 *(short *)ea = (short) r.
1529 br eak;

1531 case fex_float:

1532 *(short *)ea = (short) r.
11583] br eak;

1535 case fex_doubl e:

1536 *(short *)ea = (short) r.
1537 br eak;

1539 case fex_| double:

1540 *(short *)ea = (short) r.
1541 break;

1543 defaul t:

1544 break;

1545 #endif /* ! codereview */

1546 }

1547 if (ex !'= FPE_FLTRES && (op & 8)
1548 pop(uap);

1549 return;

r.val.

r.val.

r.val .

r.val .

val .i;

val . |;

val . f;

val . d;

val . q;

1= 0)

new usr/src/lib/libm comon/nBx/__fex_i 386.c

1551 case 0x730:

1552 case 0x770:

1553] case 0x7b0:

1554 /* fbstp; don’t bother */

AI555] if (ea & ex != FPE_FLTRES)

1556 pop(uap) ;

1557 return;

1559 case 0x738:

1560 case 0x778:

1561 case 0x7b8:

1562 if (lea)

1563 return;

1564 switch (r.type) {

1565 case fex_int:

1566 *(long long *)ea = (long long) r.val.i;
1567 br eak;

1569 case fex_l1ong:

1570 *(long long *)ea = r.val.l;
1571 br eak;

1573 case fex_float:

1574 *(long long *)ea = (long long) r.val.f;
575} br eak;

1577 case fex_doubl e:

1578 *(long long *)ea = (long long) r.val.d,;
1579 br eak;

1581 case fex_| doubl e:

1582 *(long long *)ea = (long long) r.val.q;
1583 br eak;

1585 defaul t:

1586 break;

1587 #endif /* ! codereview */

1588

1589 if (ex != FPE_FLTRES)

1590 pop(uap);

1591 return;

1592 }

1594 /* for all other instructions, the result goes into a register
1595 switch (r.type)

1596 case fex_int:

1597 r.val.q = (long double) r.val.i;
1598 br eak;

1600 case fex_|long:

1601 r.val.q = (long double) r.val.l;
1602 br eak;

1604 case fex_float:

1605 r.val.q = (long double) r.val.f;
1606 br eak;

1608 case fex_doubl e:

1609 r.val.qg = (long double) r.val.d;
1610 br eak;

1612 defaul t:

1613 #endif /* | codereview */

1614 br eak;

1615 }

*/

new usr/src/lib/libm comon/mBx/__fex_i 386.c 7

1617 /* for load instructions, push the result onto the stack */
1618 switch (op & Ox7f8)

1619 case 0x100:

1620 case 0x140:

1621 case 0x180:

1622 case 0x500:

1623 case 0x540:

1624 case 0x580:

1625 if (ea)

1626 push(r.val.q, uap);

1627 return;

1628 }

1630 /* for all other instructions, if the exception is overflow,
1631 underflow, or inexact, the stack has already been updated */
1632 stack = (ex == FPE_FLTOVF || ex == FPE_FLTUND || ex == FPE_FLTRES);
1633 switch (op & Ox7f8) {

1634 case 0x1f0: /* oddballs */

1635 switch (op)

1636 case Ox1fl: /* fyl2x */

1637 case O0x1f3: /* fpatan */

1638 case 0x1f9: /* fyl2xpl */

1639 /* pop the stack, leaving the result in st */
1640 if (!stack)

1641 pop(uap);

1642 fpreg(uap, 0) =r.val.q;

1643 return;

1645 case Ox1f2: /* fpatan */

1646 /* fptan pushes 1.0 afterward */

1647 if (stack)

1648 fpreg(uap, 1) = r.val.q;

1649 el se {

1650 fpreg(uap, 0) =r.val.q;

1651 push(1.0L, uap);

1652

1653 return;

1655 case Ox1f4: /* fxtract */

1656 case Ox1fb: /* fsincos */

1657 /* leave the supplied result in st */

1658 if (stack)

1659 fpreg(uap, 0) = r.val.q;

1660 el se {

1661 fpreg(uap, 0) = 0.0; /* punt */
1662 push(r.val.q, uap);

1663

1664 return;

1665 }

1667 /* all others |eave the stack alone and the result in st */
1668 fpreg(uap, 0) = r.val.q;

1669 return;

1671 case 0x4cO0:

1672 case 0x4c8:

1673 case 0x4e0:

1674 case 0x4e8:

1675 case Ox4fO0:

1676 case Ox4f 8:

1677 fpreg(uap, op & 7) =r.val.q;

1678 return;

1680 case 0x6cO0:

1681 case 0x6c¢8:

1682 case 0x6e0:

new usr/src/lib/libm comon/nBx/__fex_i 386.c

1683 case 0x6e8:

1684 case Ox6fO0:

1685 case Ox6f8:

1686 /* stack is popped afterward */

1687 if (stack)

1688 fpreg(uap, (op - 1) & 7) =r.val.q;
1689 el se {

1690 fpreg(uap, op & 7) = r.val.q;
1691 pop(uap) ;

1692 }

1693 return;

1695 defaul t:

1696 fpreg(uap, 0) = r.val.q;

1697 return;

1698

1699 }

new usr/src/lib/libm comon/nBx/__fex_sparc.c 1

R R R R

21370 Sun May 4 03:06:16 2014
new usr/src/lib/libm comon/nBx/__fex_sparc.c

hkkkkkkkkkkkkkkkkkkkkhkhk kA kkkk kK kkk kR kkkkkkkkkkkk ok kk k ok k k%

__unchanged_portion_omtted_

472 | *

473 * Store the specified result; if no result is given but the exception
474 * is underflow or overflow, supply the default trapped result

475 */

476 void

477 {__f ex_st_result(siginfo_t *sip, ucontext_t *uap, fex_info_t *info)

478

479 unsi gned instr, opf, rsil, rs2, rd;

480 I ong doubl e gscl ;

481 doubl e dscl;

482 fl oat fscl;

484 /* parse the instruction which caused the exception */

485 instr = uap->uc_ntontext.fpregs.fpu_qg->FQ.fpq.fpg_instr;

486 opf = (instr >> 5) & Ox1ff;

487 rsl = (instr >> 14) & Ox1if;

488 rs2 = instr & 0Oxif;

489 rd = (instr >> 25) & Ox1f;

491 /* if the instruction is a conpare, just set fcc to unordered */

492 if (((instr >> 19) & 0x183f) == 0x1035) {

493 if (rd ==

494 uap- >uc_ntont ext . f pregs. f pu_fsr | = 0xc00;

495 el se {

496 #ifdef __sparcv9

497 uap- >uc_nctontext. fpregs. fpu_fsr |= (3l << ((rd << 1) + 3
498 #el se

499 ((prxregset_t*)uap->uc_nctontext.Xxrs.xrs_ptr)->pr_un.pr_v
500 #endi f

501 }

502 return;

503 }

505 /* if there is no result available, try to generate the untrapped

506 default */

507 if (info->res.type == fex_nodata) {

508 /* set scale factors for exponent wrapping */

509 switch (sip->si_code) {

510 case FPE_FLTOVF:

511 fscl = 1.262177448e-29f; /* 27-96 */

512 dscl = 6.441148769597133308e- 232; [* 2n-768 */
513 gscl = 8.778357852076208839765066529179033145e- 37001 ; /*
514 br eak;

516 case FPE_FLTUND:

517 fscl = 7.922816251e+28f; /* 2796 */

518 dscl = 1.552518092300708935e+231; [* 27768 */

519 gscl = 1.139165225263043370845938579315932009e+3699I ; / *
520 br eak;

522 defaul t:

523 /* user may have bl own away the default result by m stak
524 so try to regenerate it */

525 (void) _ fex_get_op(sip, uap, info);

526 if (info->res.type != fex_nodata)

527 goto stuff;

528 /* couldn't do it */

529 return;

530 }

new usr/src/lib/libm comon/ nBx/

532
533
534
535
536
537

539
540
541
542

544
545
546
547
548

550
551
552
553
554
555
556

558
559
560
561
562

564
565
566
567
568

570
571
572
573
574

576
577
578
579
580

582
583
584
585
586

588
589
590
591
592

594
595
596
597

_ fex_sparc.c

/* get the operands */
switch (opf & 3)

case

case

case

}

1: /* single

i nf o->opl.
i nf 0- >op2.

break;

2: /* double

i nf o- >op1.
i nfo->op2.

break;

3: /* quad *

i nfo->opl.
i nfo->op2.

br eak;

*/
val .f = *(float*)FPreg(rsl);
val .f = *(float*)FPreg(rs2);
*/
val .d = *(doubl e*) FPREG(rs1);
val .d = *(doubl e*) FPREQ(rs2);
/
val .q = *(l ong doubl e*) FPREG(rsl);
val .q = *(l ong doubl e*) FPREG(rs2);

/* generate the wapped result */
switch (opf) {
0x41: /* add si ngIe */

case

case

case

case

case

case

case

case

info->res.type = fex float;
info->res.val.f = fscl * (fscl * info->opl.
fscl * info->op2.val.f)
br eak;
0x42: /* add double */
i nfo->res.type = fex_doubl e;
info->res.val.d = dscl * (dscl * info->opl.
dscl * info->op2.val.d);
break;
0x43: /* add quad */
i nfo->res.type = fex_| doubl e;
info->res.val.q = gscl * (qscl * i nfo->opl.
gscl * info->op2.val.q);
br eak;
0x45: /* subtract single */
info->res.type = fex_float;
info->res.val . f = fscl * (fscl * info->opl.
fscl * info->op2.val.f);
break;
0x46: /* subtract double */
info->res.type = fex doubl e;
info->res.val.d = dscl * (dscl * info->opl.
dscl * inf o->o0p2.val .d);
br eak;
0x47: /* subtract quad */
info->res.type = fex_| double;
info->res.val.q = gscl * (gscl * info->opl.
gscl * info->op2.val.q);
br eak;

0x49: /* nmultiply single */
info->res.type = fex_float;

i nfo->res.

val .

f = (fscl * info->opl.val.f)

(fscl * info->op2.val.f);

break;

Ox4a: /* multiply double */
info->res.type = fex_doubl e;

i nf o->res.

val .

d = (dscl * info->opl.val.d)

(dscl * info->op2.val.d);

val .

val .

val .

val .

val .

val .

*

new usr/src/lib/libm comon/nBx/__fex_sparc.c 3

598

600
601
602
603
604

606
607
608
609
610

612
613
614
615
616

618
619
620
621
622

624
625
626
627

629
630
631
632

634
635
636
637
638

640
641
642
643

645

647
648
649
650
651
652

654
655
656

658
659
660

662
663

stuff:

br eak;

case Ox4b: /* multiply quad */
info->res.type = fex_| doubl e;
info->res.val.q = (gscl * info->opl.val.q) *
(gscl * info->op2.val.q);
br eak;

case Ox4d: /* divide single */
info->res.type = fex_float;
info->res.val.f = (fscl * info->opl.val.f) /
(info->op2.val.f / fscl);
br eak;

case Ox4e: /* divide double */
info->res.type = fex_doubl e;
info->res.val.d = (dscl * info->opl.val.d) /
info->op2.val.d / dscl);
break;

case Ox4f: /* divide quad */
info->res.type = fex_| double;
info->res.val.q = (gscl * info->opl.val.q) /
(info->op2.val.q / gscl);
br eak;

case 0xc6: /* convert double
info->res.type = fex
info->res.val.f = (f
br eak;

fscl * (fscl * info->opl.va

case Oxc7: /* convert quad to single */
info->res.type = fex_float;
info->res.val.f = (float) (fscl * (fscl * info->opl.va
break;

case Oxch: /* convert quad to double */
i nfo->res.type = fex_doubl e;
info->res.val.d = (double) (dscl * (dscl * info->opl.v

break;

}

if (info->res.type == fex_nodata)
/* couldn’t do it */
return;

/* stick the result in the destination */
if (opf & O0x80) { /* conversion */

if (opf & 0x10) { /* result is an int */
switch (info->res.type) {
case fex_|long:
info->res.val.i = (int) info->res.val.l;
br eak;

case fex_float:
info->res.val.i = (int) info->res.val.f;
br eak;

case fex_doubl e:
info->res.val.i = (int) info->res.val.d;
br eak;

case fex_| doubl e:
info->res.val.i = (int) info->res.val.q;

new usr/src/lib/libm comon/nBx/__fex_sparc.c

664

666
667
668
669
670
671
672

674
675
676
677
678
679

681
682
683

685
686
687

689
690
691

693
694
695

697
698

700
701
702
703
704

706
707
708

710
711
712

714
715
716

718
719
720
721
722
723

725
726
727
728
729

#endi f /*

#endi f /*

#endi f /*

br eak;

defaul t:
br eak;
coderevi ew */

(int)FPreg(rd) = info->res.val.i;
return;

}

switch (opf & Oxc) {

case 0: /* result is long long */
switch (info->res.type) {
case fex_int:

info->res.val.l = (long long) info->res.val.

br eak;

case fex_float:

info->res.val.l = (long long) info->res.val.

br eak;

case fex_doubl e:

info->res.val.l = (long long) info->res.val.

br eak;

case fex_| doubl e:

info->res.val.l = (long long) info->res.val.

br eak;

defaul t:
br eak;
coderevi ew */

(long | ong) FPREG(rd) = info->res.val.l;
br eak;

case Ox4: /* result is float */
switch (info->res.type) {
case fex_int:
info->res.val .f = (float) info->res.val.i;
br eak;

case fex_|1ong:
info->res.val .f = (float) info->res.val.l;
br eak;

case fex_doubl e:
info->res.val.f = (float) info->res.val.d;
br eak;

case fex_| double:
info->res.val.f = (float) info->res.val.q;
br eak;

defaul t:
br eak;
coderevi ew */

}
(float)FPreg(rd) = info->res.val.f;
br eak;

case Ox8: /* result is double */
switch (info->res.type) {
case fex_int:
info->res.val.d = (double) info->res.val.i;
br eak;

new usr/src/lib/libm comon/nBx/__fex_sparc.c 5 new usr/src/lib/libm comon/nBx/__fex_sparc.c
796 br eak;
731 case fex_|l1ong:
732 info->res.val.d = (double) info->res.val.l; 798 defaul t:
733 br eak; 799 br eak;
800 #endif /* | codereview */
735 case fex_float: 801
736 info->res.val.d = (double) info->res.val.f; 802 *(doubl e*) FPREG(rd) = info->res.val.d;
737 br eak; 803 br eak;
739 case fex_| doubl e: 805 case Oxc: /* result is |long double */
740 info->res.val.d = (double) info->res.val.q; 806 switch (info->res.type) {
741 br eak; 807 case fex_int:
808 info->res.val.q = (long double) info->res.val.i;
743 defaul t: 809 br eak;
744 br eak;
745 #endif /* | codereview */ 811 case fex_|long:
746 } 812 info->res.val.q = (long double) info->res.val.l;
747 *(doubl e*) FPREG(rd) = info->res.val.d; 813 br eak;
748 break;
815 case fex_float:
750 case Oxc: /* result is long double */ 816 info->res.val.q = (long double) info->res.val.f;
751 switch (info->res.type) { 817 br eak;
752 case fex_int:
753 info->res.val.q = (long double) info->res.val.i; 819 case fex_doubl e:
754 br eak; 820 info->res.val.q = (long double) info->res.val.d;
821 br eak;
756 case fex_|l1ong:
757 info->res.val.q = (long double) info->res.val.l; 823 defaul t:
758 br eak; 824 br eak;
825 #endif /* | codereview */
760 case fex_float: 826 }
761 info->res.val.q = (long double) info->res.val.f; 827 *(l ong doubl e*) FPREG(rd) = info->res.val.q;
762 br eak; 828 br eak;
829
764 case fex_doubl e: 830 return;
765 info->res.val.q = (long double) info->res.val.d,; 831 }
766 br eak;
833 switch (opf & 3) { /* other arithmetic op */
768 defaul t: 834 case 1: /* result is float */
769 br eak; 835 switch (info->res.type) {
770 #endif /* | codereview */ 836 case fex_int:
771 } 837 info->res.val.f = (float) info->res.val.i;
772 *(long doubl e*) FPREG(rd) = info->res.val.q; 838 br eak;
773 break;
774 } 840 case fex_Ilong:
775 return; 841 info->res.val.f = (float) info->res.val.l;
776 } 842 br eak;
778 if ((opf & Oxf0) == 0x60) { /* fsnuld, fdmulq */ 844 case fex_doubl e:
779 switch (opf & 0xc0) { 845 info->res.val.f = (float) info->res.val.d;
780 case 0x8: /* result is double */ 846 br eak;
781 switch (info->res.type) {
782 case fex_int: 848 case fex_| double:
783 info->res.val.d = (double) info->res.val.i; 849 info->res.val.f = (float) info->res.val.q;
784 br eak; 850 br eak;
786 case fex_l1ong: 852 defaul t:
787 info->res.val.d = (double) info->res.val.l; 853 br eak;
788 br eak; 854 #endif /* | codereview */
855 }
790 case fex_float: 856 *(float*)FPreg(rd) = info->res.val.f;
791 info->res.val.d = (double) info->res.val.f; 857 br eak;
792 br eak;
859 case 2: /* result is double */
794 case fex_| doubl e: 860 switch (info->res.type) {
795 info->res.val.d = (double) info->res.val.q; 861 case fex_int:

new usr/src/lib/libm comon/nBx/__fex_sparc.c

862 info->res.val.d = (double) info->res.val.i;
863 break;

865 case fex_|long:

866 info->res.val.d = (double) info->res.val.l;
867 break;

869 case fex_float:

870 info->res.val.d = (double) info->res.val.f;
871 break;

873 case fex_| doubl e:

874 info->res.val.d = (double) info->res.val.q;
875 break;

877 defaul t:

878 br eak;

879 #endif /* ! codereview */

880 }

881 *(doubl e*) FPREG(rd) = info->res.val.d;

882 br eak;

884 case 3: /* result is long double */

885 switch (info->res.type) {

886 case fex_int:

887 info->res.val.q = (long double) info->res.val.i
888 break;

890 case fex_|long:

891 info->res.val.q = (long double) info->res.val.
892 break;

894 case fex_float:

895 info->res.val.q = (long double) info->res.val.
896 break;

898 case fex_doubl e:

899 info->res.val.q = (long double) info->res.val.
900 break;

902 defaul t:

903 #endif /* | codereview */

904 break;

905 }

906 *(long doubl e*) FPREG(rd) = info->res.val.q;

907 br eak;

908 }

909

}
910 #endif [/* defined(__sparc) */

new usr/src/lib/libm comon/nBx/__fex_sse.c 1

R R R R

39094 Sun May 4 03:06:18 2014
new usr/src/lib/libm comon/nBx/__fex_sse.c

hkkkkkkkkkkkkkkkkhkkkkhkhk kA kA kk kK kkkkkkkkkkkkkkkkkkk ok k ok k k%

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing perm ssions
11 * and limtations under the License.

12 *

13 * Wen distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]
18 =

19 * CDDL HEADER END
20 */
22 /*

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*

26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #include "fenv_synonyns. h"
31 #include <ucontext.h>

32 #include <fenv. h>

33 #if defined(__SUNPRO O

34 #include <sunnath. h>

35 #el se

36 #include <sys/ieeefp.h>
37 #endif

38 #include "fex_handl er. h"
39 #include "fenv_inlines.h"

41 #if !defined(REG _PC)
42 #define REG PC EIP
43 #endi f

45 #if ! defined(REG_PS)
46 #define REG PS EFL
47 #endi f

49 #ifdef __and64
50 #define regno(X) o\

- X : REG.RSP))
52 #el se

53 #define regno(X)
54 #endi f

56 /*
57 * Support for SSE instructions
*/

60 /*
61 * Decode an SSE instruction. Fill in *inst and return the length of the
62 * instruction in bytes. Return O if the instruction is not recognized.

new usr/src/lib/libm comon/nBx/__fex_sse.c

63 */
64 int
65 _ fex_parse_sse(ucontext _t *uap, sseinst_t *inst)

67 unsi gned char *ip;

68 char *addr ;

69 int i, dbl, simd, rex, nodrm sib, r;

71 i = 0;

72 ip = (unsigned char *)uap->uc_ntontext.gregs[REG PC];
74 /* 1 ook for pseudo-prefixes */

75 dbl = 0;

76 simd = SI M,

77 if (ip[i] == OxF3) {

78 simd = 0;

79 i++;

80 } elseif (ip[i] == 0x66) {

81 dbl = DOUBLE;

82 i ++;

83 } else if (ip[i] == O0xF2) {

84 dbl = DOUBLE;

85 simd = O;

86 i ++;

87 }

89 /* 1 ook for AVD64 REX prefix */

90 rex = 0;

91 if (ip[i] >= 0x40 && ip[i] <= Ox4F) {

92 rex = ipl[il;

93 i++;

94 1

96 /* parse opcode */

97 if (ip[i++] !'= OxOF)

98 return O;

99 switch (ip[i++]) {

100 case Ox2A

101 inst->op = (int)cvtsi2ss + sind + dbl;

102 if (!sind)

103 inst->op = (int)inst->op + (rex & 8);
104 br eak;

106 case 0x2C

107 inst->op = (int)cvttss2si + sind + dbl;

108 if (!sind)

109 inst->op = (int)inst->op + (rex & 8);
110 br eak;

112 case 0x2D:

113 inst->op = (int)cvtss2si + sind + dbl;

114 if (!sind)

115 inst->op = (int)inst->op + (rex & 8);
116 br eak;

118 case Ox2E:

119 /* oddbal | : scalar instruction in a SINMD opcode group */
120 if (!sind)

121 return O;

122 inst->op = (int)uconmiss + dbl;

123 br eak;

125 case Ox2F:

126 /* oddbal | : scalar instruction in a SIM opcode group */
127 if (!sind)

128 return O;

new usr/src/lib/libm comon/nBx/__fex_sse.c

cvttps2dq;

cvt dgq2pd;

129 inst->op = (int)com ss + dbl;

130 br eak;

132 case 0x51:

133 inst->op = (int)sqrtss + sind + dbl;
134 br eak;

136 case 0x58:

137 inst->op = (int)addss + sinmd + dbl;
138 break;

140 case 0x59:

141 inst->op = (int)nulss + simd + dbl;
142 br eak;

144 case Ox5A:

145 inst->op = (int)cvtss2sd + sind + dbl;
146 br eak;

148 case O0x5B:

149 if (dbl) {

150 if (sind)

151 i nst->op = cvtps2dq;
152 el se

153 return O;

154 } else {

155 inst->op = (sinmd)? cvtdg2ps :
156 }

157 br eak;

159 case 0x5C

160 inst->op = (int)subss + simd + dbl;
161 br eak;

163 case 0x5D:

164 inst->op = (int)nmnss + simd + dbl;
165 br eak;

167 case Ox5E:

168 inst->op = (int)divss + simd + dbl;
169 br eak;

171 case Ox5F:

172 inst->op = (int)maxss + simd + dbl;
173 br eak;

175 case 0xC2:

176 inst->op = (int)cnpss + sinmd + dbl;
177 br eak;

179 case OxE6:

180 if (simd) {

181 if (dbl)

182 inst->op = cvttpd2dg;
183 el se

184 return O;

185 } else {

186 inst->op = (dbl)? cvtpd2dq :
187 }

188 br eak;

190 defaul t:

191 return O;

192 }

194 /* | ocate operands */

new usr/src/lib/libm comon/nBx/__fex_sse.c

195 modrm = i p[i++];

197 if (inst->op == cvtss2si || inst->op == cvttss2si ||

198 i nst ->op cvtsd2si || inst->op == cvttsd2si ||

199 inst->op == cvtss2siq || inst->op == cvttss2siq ||

200 inst->op == cvtsd2siq || inst->op == cvttsd2siq) {

201 /* opl is a gp register */

202 ((rex &4) << 1) | ((mdrm>> 3) & 7);

203 |nst >opl = (sseoperand_t *)&uap->uc_ntontext. gregs[regno(r)]
204 } else if (inst->op == cvtps2pi || Inst->op == cvttps2pi

205 inst->op == cvtpd2pi || inst->op == cvttpd2pi) {

206 /* opl is a nmmx register */

207 #ifdef __and64

208 inst->opl = (sseoperand_t *)&uap->uc_ntontext.fpregs.fp_reg_set.
209 fpchip_state.st[(nmpdrm>> 3) & 7];

210 t#el se

211 inst->opl = (sseoperand_t *)(10 * ((npdrm>> 3) & 7) +
212 (char *)&uap->uc_ntontext.fpregs.fp_reg_set.

213 fpchip_state.state[7]);

214 #endi f

215 } else {

216 /* opl is a xnmregister */

217 r = ((rex & 4) << 1) | ((npodrm>> 3) & 7);

218 inst->o0pl = (sseoperand_t *)&uap->uc_ntontext. fpregs.
219 fp_reg_set.fpchip_state.xmir];

220 }

222 if ((mdrm>> 6) ==) {

223 if (inst->op == cvtsi2ss || inst->op == cvtsi2sd ||

224 inst->op == cvtsi2ssq || inst->op == cvtsi2sdq) {
225 /* op2 is a gp register */

226 r = ((rex &1) << 3) | (mdrm& 7);

227 i nst->0p2 = (sseoperand_t *)&uap->uc_nctontext.
228 gregs[regno(r)];

229 } else if (inst->op == cvtpi2ps || inst->op == cvtpi2pd) {
230 /* op2 is a mx register */

231 #ifdef __and64

232 i nst->0p2 = (sseoperand_t *)&uap->uc_ntontext.fpregs.
233 fp_reg_set.fpchip_state.st[mdrm& 7];

234 el se

235 inst->o0p2 = (sseoperand_t *)(10 * (nodrm & 7) +
236 (char *)&uap->uc_ntontext.fpregs.fp_reg_set.
237 fpchip_state.state[7]);

238 #endi f

239 } else {

240 /* op2 is a xmmregister */

241 r = ((rex &1) << 3) | (mdrm& 7);

242 i nst->o0p2 = (sseoperand_t *)&uap->uc_nctontext. fpregs.
243 fp_reg_set.fpchip_state.xmir];

244 }

245 } else if ((npdrm & Oxc7) == 0x05) {

246 #ifdef __and64

246 #if defined(__and64)

247 /* address of next instruction + offset */

248 r =i + 4

249 if (inst->op == cnpss || inst->op == cnpps ||

250 inst->op == cnpsd || inst->op == cnppd)

251 r++;

252 inst->o0p2 = (sseoperand_t *)(ip +r + *(int *)(ip +1i));
253 t#el se

254 /* absol ute address */

255 inst->0p2 = (sseoperand_t *)(*(int *)(ip +1i));

256 #endi f

257 i += 4

258 } else {

259 /* conpl ex address */

new usr/src/lib/libm comon/nBx/__fex_sse.c

260 if ((mdrm& 7) == 4) {
261 /* parse sib byte */
262 5|b = ipli++];
263 if ((sib &7) ==5 & (nodrm >> 6))
264 /* start with absolute address */
265 addr = (char *)(uintptr_t)(*(int
265 addr = (char *)(uintptr_t)(ip +i);
266 i += 4
267 } else {
268 /* start with base */
269 r = ((rex &1) << 3) | (sib &7);
270) addr = (char *)uap->uc_ntontext.gregs[regno(r)];
271
272 r = ((rex &2) << 2) | ((sib>>3) &7);
273 if (r 1= 4)
274 /* add scal ed index */
275 addr += uap->uc_ntont ext. gregs[regno(r)]
276 << (sib >> 6);
277 }
278 } else {
279 r—((ex & 1) << 3) | (modrm& 7);
280 addr = (char *)uap->uc_ntont ext. gregs[regno(r)]
281 }
283 /* add displacenment, if any */
284 if ((modrm>> 6) == 1) {
285 addr += (char)l pli++];
286 } else if ((nodrm>> 6) == 2) {
287 addr += *(int *)(|p+|)
288 i += 4
289 }
290 inst->0p2 = (sseoperand_t *)addr;
291 }
293 if (inst->op == cnpss || inst->op == cnpps || inst->op == cnpsd ||
294 inst->op == cnppd)
295 /* get the immediate operand */
296 inst->imm=ip[i++];
297 }
299 return i;
300 }
__unchanged_portion_onitted_
338 /*

339 * Inspect a scalar SSE instruction that incurred an invalid operation

340 * exception to deternine which type of exception it was.
341 */

342 static enum fex_exception

343 __fex_get_sse_invalid_type(sseinst_t *inst)

344 |

345 enum fp_cl ass_type t1, t2;

347 /* check op2 for signaling nan */

348 t2 = ((int)inst->op & DOUBLE)? ny_fp_cl ass(& nst->o0p2->d[0])
349 my_fp_cl assf (& nst->o0p2->f[0]);

350 if (t2 == fp_signaling)

351 return fex_inv_snan;

353 /* elimnate all single-operand instructions */
354 switch (inst->op) {

355 case cvtsd2ss:

356 case cvtss2sd:

357 /* hmm this shouldn’t have happened */
358 return (enum fex_exception) -1;

new usr/src/lib/libm comon/nBx/__fex_sse.c

360 case sqrtss:

361 case sqrtsd:

362 return fex_inv_sqrt;

364 case cvtss2si:

365 case cvtsd2si:

366 case cvttss2si:

367 case cvttsd2si:

368 case cvtss2siq:

369 case cvtsd2siq:

370 case cvttss2siq:

371 case cvttsd2siq

372 return fex_inv_int;

373 defaul t:

374 br eak;

375 #endif /* | codereview */

376

378 /* check opl for signaling nan */

379 = ((int)inst->op & DOUBLE)? ny_fp_cl ass(& nst->opl->d[0])
380 ny_fp_classf (& nst->opl->f[0]);

381 if (t1 == fp_signaling)

382 return fex_inv_snan;

384 /* check two-operand instructions for other cases */
385 switch (inst->op) {

386 case cnpss:

387 case cnpsd:

388 case mnss:

389 case m nsd:

390 case maxss:

391 case maxsd:

392 case com ss:

393 case com sd:

394 return fex_inv_cnp;

396 case addss:

397 case addsd:

398 case subss:

399 case subsd:

400 if (t1 ==fp_infinity & t2 == fp_infinity)
401 return fex_inv_isi;

402 br eak;

404 case nul ss:

405 case nul sd:

406 if ((t1 == fp_zero & t2 == fp_infinity) ||
407 (t2 == fp_zero & t1 == fp_infinity))
408 return fex_inv_zm ;

409 br eak;

411 case divss:

412 case divsd:

413 if (t1 == fp_zero & t2 == fp_zero)

414 return fex_inv_zdz;

415 if (t1 == fp_infinity & t2 == fp_infinity)
416 return fex_inv_idi;

417 defaul t:

418 br eak;

419 #endif /* | codereview */

420

422 return (enum fex_exception)-1;

423 }

425 /* inline tenpl ates */

new usr/src/lib/libm comon/nBx/__fex_sse.c

426 extern void sse_cnpegss(float *, float *, int *);

427 extern void sse_cnpltss(float *, float *, int *);

428 extern void sse_cnpless(float *, float *, int *);

429 extern void sse cnpunordss(float *, float *, int *);

430 extern void sse_mnss(float *, float *, float *);

431 extern void sse_naxss(float *, float *, float *);

432 extern void sse_addss(float *, float *, float *);

433 extern void sse_subss(float *, float *, float *);

434 extern void sse_mulss(float *, float *, float *);

435 extern void sse_divss(float *, float *, float *);

436 extern void sse_sqrtss(float *, float *);

437 extern void sse_ucom ss(float *, float *);

438 extern void sse_coniss(float *, float *);

439 extern void sse_cvtss2sd(float *, double *);

440 extern void sse_cvtsi2ss(int *, float *);

441 extern void sse_cvttss2si(float *, int *);

442 extern void sse_cvtss2si(float *, int *);

443 #ifdef __and64

444 extern void sse_cvtsi2ssq(long long *, float *);

445 extern void sse_cvttss2siq(float long long *);

446 extern void sse_cvtss2sig(float *, long long *);

447 #endi f

448 extern void sse_cnpeqsd(double *, double *, long long *);

449 extern void sse_cnpltsd(double *, double *, long long *);

450 extern void sse_cnpl esd(double *, double *, long long *);

451 extern voi d sse_cnpunordsd(double *, double *, long long *);

452 extern void sse_m nsd(double *, double *, double *);

453 extern void sse_naxsd(double *, double *, double *);

454 extern voi d sse_addsd(double *, double *, double *);

455 extern void sse_subsd(double *, double *, double *);

456 extern void sse_nul sd(double *, double *, double *);

457 extern void sse_di vsd(double *, double *, double *);

458 extern void sse_sqgrtsd(double *, double *);

459 extern void sse_ucom sd(double *, double *);

460 extern void sse_com sd(double *, double *);

461 extern void sse_cvtsd2ss(double *, float *);

462 extern void sse_cvtsi2sd(int *, double *);

463 extern void sse_cvttsd2si (double *, int *);

464 extern void sse_cvtsd2si (double *, int *);

465 #ifdef _ and64

466 extern void sse_cvtsi2sdq(long long *, double *);

467 extern void sse_cvttsd2sig(double *, long |ong *);

468 extern void sse_cvtsd2si g(double *, long long *);

469 #endi f

471 [*

472 * Fill in *info with the operands, default untrapped result, and
473 * flags produced by a scalar SSE instruction, and return the type
474 * of trapped exception (if any). On entry, the nxcsr nust have
475 * all exceptions masked and all flags clear. The sane conditions
476 * will hold on exit.

477 *

478 * This routine does not work if the instruction specified by *inst
479 * is not a scalar instruction.

480 */

481 enum fex_exception

482 _ fex_get _sse_op(ucontext_t *uap, sseinst_t *inst, fex_info_t *info)
483 {

484 unsi gned i nt e, te, nxcsr, oldnxcsr, subnorm

486 I*

487 * Performthe operation with traps di sabl ed and check the
488 * exception flags. |If the underflow trap was enabl ed, also
489 * check for an exact subnormal result.

490 */

491 __fenv_get nxcsr (&ol dnxcsr) ;

new usr/src/lib/libm comon/nBx/__fex_sse.c

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

525
526
527
528

530
531
532
533

535
536
537
538
539
540
541

543
544
545
546
547

549
550
551
552
553

555
556
557

subnorm = 0;
if ((int)inst->op & DOUBLE) {
1f (inst->op == cvtsi2sd) {
i nf o- >0p1. type = fex_int;

i nf o->opl.val.i = inst->op2-
i nfo->op2.type = fex_nodata;

} else if (inst->op == cvtsi2sdq) {
i nfo->opl.type = fex_|Iong;

i nfo->opl.val.l = inst->o0p2->[0];
i nfo->op2.type = fex_nodata;

} else if (inst->op == sqrtsd || inst->op == cvtsd2ss ||
inst->op == cvttsd2si || inst->op == cvtsd2si ||
inst->op == cvttsd2siq || inst->op == cvtsd2siq) {

i nfo->opl.type = fex doubl e;

i nfo->opl.val.d = inst->op2->d[0];
i nf o- >0p2. type = fex_nodat a;

} else {

i nfo->opl.type = fex_doubl e;

i nfo->opl.val.d = inst->opl->d[0];
i nfo->op2.type = fex_doubl e;

i nf o->o0p2.val.d = inst->o0p2->d[0];

I nfo->res.type = fex_doubl e;

switch (inst->op) {

case cnpsd:
i nfo->op = fex_cnp;
info->res.type = fex_llong;
switch (inst->mm& 3) {

sse_cnpeqgsd(& nfo->opl.val.d, & nfo->op2.val.

sse_cnpl t sd(& nf o->opl.val .d, & nfo->o0p2.val.

sse_cnpl esd(& nf o- >op1 val .d, & nfo->op2.val.

>i[0];

case O:
& nfo->res.val .l);
br eak;
case 1:
& nfo->res.val .l);
br eak;
case 2:
& nfo->res. val .
br eak;
case 3:

sse_cnpunor dsd(& nf o->opl. val . d,

& nf o->op2.val .

|}f (inst->nmm & 4)

info->res.val .| ~= Oxffffffffffffffffull;

br eak;

case m nsd:
info->op = fex_other;
sse_mi nsd(& nf o->opl.val.d,
& nfo->res.val.d);
break;

case maxsd:
i nfo->op = fex_other;
sse_maxsd(& nf o->opl. val . d,
& nfo->res.val.d);
br eak;

case addsd:
i nfo->op = fex_add;
sse_addsd(& nf o- >0p1 val . d,

& nf o- >op2. val .

& nf o- >0p2. val .

& nf o->op2.val .

d, & nfo->res.val.

d,

d,

d,

new usr/src/lib/libm comon/ ndx/

558
559
560
561

563
564
565
566
567
568
569

571
572
573
574
575
576
577

579
580
581
582
583
584
585

587
588
589
590

592
593
594
595
596
597
598

600
601
602
603

605
606
607
608
609

611
612
613
614
615

617
618
619
620
621

623

#i f def

__amd64

case

case

case

case

case

case

case

case

case

case

__fex_sse.c

& nfo->res.val.d);
if (my_fp_class(& nfo->res.val.
subnorm = 1;

d) == fp_subnormal)
br eak;

subsd:
i nfo->op = fex_sub;
sse_subsd(& nfo->opl. val
& nfo->res.val .
if (my_fp_class(& nfo->res. val .
subnorm = 1;

d, & nfo->op2.val.d,
d) == fp_subnormal)
br eak;

mul sd:
info->op = fex_mul;
sse_nul sd(& nf o- >op1 val
“& nfo->res.val .
if (my_fp_class(& nfo->res. val .
subnorm = 1;

d, & nfo->op2.val.d,
d) == fp_subnormal)
br eak;

di vsd:
info->op = fex_div;
sse_di vsd(& nf o- >op1 val
“& nfo->res.val .
if (nmy_fp_class(& nfo->res. val .
subnorm = 1;

d, & nfo->op2.val.d,

d) == fp_subnornal)
br eak;

sqgrtsd:
info->op = fex_sqrt;

sse_sqrtsd(& nfo- >op1 val .
br eak;

d, & nfo->res.val.d);

cvtsd2ss:
i nfo->op = fex_cnvt;
info->res.type = fex_fl oat;
sse_cvt sd2ss(& nfo->opl.val.d, & nfo->res.val.f);
if (my_fp_classf(& nfo->res.val.f) == fp_subnornal)
subnorm = 1;
br eak;

cvtsi 2sd:
info->op = fex_cnvt;
sse_cvt si 2sd(& nf o->opl.val.i,
br eak;

& nfo->res.val.d);

cvttsd2si:
i nfo->op = fex_cnvt;
info->res.type = fex_i nt;
sse_cvt tsd2si (& nfo->opl.val .
break;

d, & nfo->res.val.i);

cvtsd2si:
i nfo->op = fex_cnvt;
info->res.type = fex_int;
sse_cvt sd2si (& nf o->opl. val .
br eak;

d, & nfo->res.val.i);

cvt si 2sdq:
info->op = fex_cnvt;
sse_cvt si 2sdq(& nf o->opl.val .|,
break;

& nfo->res.val.d);

cvttsd2siq:

new usr/src/lib/libm comon/ nx/

624
625
626
627

629
630
631
632
633
634

636
637
638
639
640

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

683
684
685
686

688
689

i nfo->op = fex_cnvt;

info->res.type = fex_l1ong;

sse_cvttsd2si q(& nfo->opl.val.d, & nfo->res.val.l);
br eak;

case cvtsd2siq:

i nfo->op = fex_cnvt;
info->res.type = fex_||ong;
sse_cvtsd2si q(& nfo->opl.val.d, & nfo->res.val.l);
break;
#endi f
case ucomi sd:
i nfo->op = fex_cnp;
info->res.type = fex_nodata;
sse_ucom sd(& nf o->opl.val .d, & nfo->o0p2.val.d);
br eak;

case com sd:

i nfo->op = fex _cnp;

i nfo->res.type = fex_nodat a;

sse_comi sd(& nf o->op1.val .d, & nfo->op2.val.d);
break;

defaul t:

br eak;
#endif /* | codereview */
} else {
if (inst->op == cvtsi 2ss) {
i nf o- >op1. type = fex int;
info->opl.val.i = inst- >0p2— > [0];
i nf o->op2. type = fex_nodat a;

} else if (inst->op == cvtS|Zssq) {
i nf o->opl.type = fex_|I|ong;
i nfo->opl.val.l = inst->o0p2->I[0];
i nfo->o0p2.type = fex_nodata;

} else if (inst->op == sqrtss || inst->0p == cvtss2sd ||
inst->op == cvttss2si || inst->op == cvtss2si ||
inst->op == cvttss2siq || inst->op == cvtss2siq) {

i nfo->opl.type = fex_float;
i nfo->opl.val.f = inst->o0p2->f[0];
i nf o- >0p2. type = fex_nodat a;
} else {
i nfo->opl.type = fex float;
i nfo->opl.val.f = inst- >opl >f[0];
i nf o->0p2.type = fex_float;
i nf o->op2.val .f = inst- >op2— >f[0];

}

info->res.type = fex_float;

switch (inst->op) {

case cnpss:

i nfo->op = fex_cnp;
info->res.type = fex_int;
switch (inst->mmé& 3) {
case O:
sse_cnpeqss(& nf o- >op1 val . f, & nfo->op2.val.
& nfo->res. val .
br eak;
case 1:
sse_cnpl t ss(& nfo->opl.val.f, & nfo->o0p2.val
& nfo->res.val .i);
br eak;
case 2:
sse_cnpl ess(& nfo->opl.val.f, & nfo->o0p2.val

__fex_sse.c

10

fl,

f,

.f,

new usr/src/lib/libm comon/nBx/__fex_sse.c 11 new usr/src/lib/libm comon/nBx/__fex_sse.c 12
690 & nfo->res.val .i); 756 case cvtsi 2ss:
691 break; 757 i nfo->op = fex_cnvt;
758 sse_cvt si 2ss(& nf o- >op1. val .i, & nfo->res.val.f);
693 case 3: 759 br eak;
694 sse_cnpunor dss(& nfo->opl.val.f,
695 & nfo->op2.val .f, & nfo->res.val.i); 761 case cvttss2si:
696 } 762 i nfo->op = fex_cnvt;
697 if (inst->inmm& 4) 763 info->res.type = fexm
698 info->res.val.i A= Oxffffffffu; 764 sse_cvttss2si (& nfo- >op1 val .f, & nfo->res.val.i);
699 break; 765 break;
701 case mnss: 767 case cvtss2si:
702 i nfo->op = fex_other; 768 i nfo->op = fex_cnvt;
703 sse_m nss(& nfo->opl.val.f, & nfo->op2.val.f, 769 info->res.type = fex_i nt;
704 & nfo->res.val .f); 770 sse_cvt ss2si (& nf o->opl. val . f, & nfo->res.val.i);
705 br eak; 771 br eak;
707 case maxss: 773 #ifdef __and64
708 i nfo->op = fex_other; 774 case cvtsi2ssq:
709 sse_nmaxss(& nfo->opl.val.f, & nfo->op2.val.f, 775 info->op = fex_cnvt;
710 & nfo->res.val.f); 776 sse_cvtsi 2ssq(& nfo->opl.val.l, & nfo->res.val.f);
711 break; 777 break;
713 case addss: 779 case cvttss2siq:
714 i nfo->op = fex_add; 780 i nfo->op = fex_cnvt;
715 sse_addss(& nf o- >op1l. val . & nfo->op2.val . f, 781 info->res.type = fex_l | ong;
716 & nfo->res.val .f); 782 sse_cvttss2si q(& nfo->opl.val.f, & nfo->res.val.l);
717 if (my_fp_classf(& nfo->res.val.f) == fp_subnornal) 783 br eak;
718 subnorm = 1;
719 br eak; 785 case cvtss2siqQ:
786 i nfo->op = fex_cnvt;
721 case subss: 787 info->res.type = fex_llong;
722 i nfo->op = fex_sub; 788 sse_cvtss2si (& nfo->opl.val.f, & nfo->res.val.l);
723 sse_subss(& nfo->opl.val.f, & nfo->op2.val.f, 789 br eak;
724 & nfo->res.val .f); 790 #endi f
725 if (nmy_fp_classf(& nfo->res.val.f) == fp_subnornal)
726 subnorm = 1; 792 case ucomi ss:
727 br eak; 793 i nfo->op = fex_cnp;
794 info->res.type = fex_nodata;
729 case mul ss: 795 sse_ucom ss(& nfo->opl.val.f, & nfo->op2.val.f);
730 info->op = fex_mul; 796 br eak;
731 sse_nul ss(& nf o- >op1 val . f, & nfo->op2.val.f,
732 “&nfo->res.val.f); 798 case com ss:
733 if (my_fp_classf(& nfo->res.val.f) == fp_subnornal) 799 i nfo->op = fex _cnp;
734 subnorm = 1; 800 info->res.type = fex_nodata;
735 br eak; 801 sse_comi ss(& nfo->op1.val . f, & nf o->o0p2.val .f);
802 br eak;
737 case divss: 803 defaul t:
738 info->op = fex_div; 804 br eak;
739 sse_di vss(& nfo->opl.val.f, & nfo->op2.val.f, 805 #endif /* ! codereview */
740 & nfo->res.val.f); 806 }
741 if (nmy_fp_classf(& nfo->res. val . f) == fp_subnornal) 807 }
742 subnorm = 1; 808 __fenv_get nxcsr (&mxcsr);
743 br eak; 809 info->flags = nxcsr & 0x3d;
810 __fenv_set mxcsr (&ol dnxcsr);
745 case sqrtss:
746 info->op = fex_sqrt; 812 /* determ ne which exception would have been trapped */
747 sse_sqrtss(& nfo- >op1 val .f, & nfo->res.val.f); 813 te = ~(uap->uc_nctontext.fpregs.fp_reg_set.fpchip_state.nxcsr
748 br eak; 814 >> 7) & 0x3d;
815 = nxcsr & te;
750 case cvtss2sd: 816 |f (e & FE_ | NVALI D)
751 i nfo->op = fex_cnvt; 817 return _ fex_get_sse_invalid_type(inst);
752 i nfo->res.type = fex_doubl e; 818 if (e & FE_DI VBYZERO
753 sse_cvtss2sd(& nfo->opl.val.f, & nfo->res.val.d); 819 return fex_division;
754 br eak; 820 if (e & FE_OVERFLOW
821 return fex_overflow

new usr/src/lib/libm comon/nBx/__fex_sse.c

822 if ((e & FE_UNDERFLOW || (subnorm && (te & FE_UNDERFLOW))
823 return fex_underfl ow,

824 if (e & FE_I NEXACT)

825 return fex_inexact;

826 return (enum fex_exception)-1;

827 }

829 /*

830 * Enulate a SIMD SSE instruction to determne which exceptions occur
831 * in each part. For i =0, 1, 2, and 3, set e[i] to indicate the
832 * trapped exception that would occur if the i-th part of the SIM
833 * instruction were executed in isolation; set e[i] to -1 if no

834 * trapped exception would occur in this part. Also fill ininfo[i]
835 * with the correspondi ng operands, default untrapped result, and
836 * flags.

837 *

838 * This routine does not work if the instruction specified by *inst
839 * is not a SIMD instruction.

840 */

841 void

842 _ fex_get_sind_op(ucontext_t *uap, sseinst_t *inst, enum fex_exception *e,
843 fex_info_t *info)

844 {

845 ssei nst _t dunmy;

846 int i;

848 e[0] = e[1] =e[2] =e[3] = -1;

850 /* performeach part of the SIMD operation */

851 switch (inst->op) {

852 case cnpps:

853 dunmy. op = cnpss;

854 dummy.imm = inst->i mm

855 for (i =0; i < 4; i++) {

856 dunmmy. opl = (sseoperand_t *)& nst->opl->f[i];
857 dunmmy. op2 = (sseoperand_t *) & nst->op2->f[i];
858 e[i] = __fex_get_sse_op(uap, &Jummy, & nfol[i]);
859

860 br eak;

862 case mnps:

863 dummy. op = minss;

864 for (i =0; i < 4; i++)

865 dunmmy. opl = (sseoperand_t *)& nst->opl->f[i];
866 dummy. op2 = (sseoperand_t *)& nst->op2->f[i];
867) e[i] = __fex_get_sse_op(uap, &Jumy, & nfoli]);
868

869 br eak;

871 case maxps:

872 dummy. op = maxss;

873 for (i =0; i < 4; i++)

874 dummy. opl = (sseoperand_t *)& nst->opl->f[i];
875 dumTy op2 = (sseoperand_t *)& nst->op2->f[i];
876 e[i] = __fex_get_sse_op(uap, &Jumy, & nfoli]);
877 }

878 br eak;

880 case addps:

881 dunmmy. op = addss;

882 for (i =0; i <4; i++) {

883 dummy. opl = (sseoperand_t *)& nst->opl->f[i];
884 dunmmy. op2 = (sseoperand_t *)& nst->op2->f[i];
885 e[i] = __fex_get_sse_op(uap, &dumy, &Jnfo[l]),
886 }

887 br eak;

13

new usr/src/lib/libm comon/nBx/__fex_sse.c

889
890
891
892
893
894
895
896

898
899
900
901
902
903
904
905

907
908
909
910
911
912
913
914

916
917
918
919
920
921
922
923

925
926
927
928
929
930
931
932

934
935
936
937
938
939
940
941

943
944
945
946
947
948
949
950

952
953

case

case

case

case

case

case

case

case

subps:
dummy. op = subss;
for (i =0; i < 4; i++)
dumry.opl = (sseoperand_t *)& nst->opl->f[i];
dummy. op2 = (sseoperand_t *)&i nst->op2- >f[|],
e[i] = fex_get _sse_op(uap, &Jumy, & nfo[i]);
}
br eak;
mul ps:
dunmmy. op = mul ss;
for (i =0; i < 4; i++)
dunmmy. opl = (sseoperand_t *)& nst->opl->f[i];
dummy. op2 = (sseoperand_t *)&i nst->op2->f[i];
e[i] = __fex_get_sse_op(uap, &umy, & nfo[i]);
br eak;
di vps:
dummy. op = divss;
for (i =0; i <4; i++) {
dunmmy. opl = (sseoperand_t *)& nst->opl->f[i];
dunmmy. op2 = (sseoperand_t *) & nst->op2->f[i];
e[i] = __fex_get_sse_op(uap, &Jumry, & nfoli]);
br eak;
sqrtps:
dummy. op = sqrtss;
for (i =0; i < 4; i++)
dummy. opl = (sseoperand_t *)&i nst->opl->f[i];
dummy. op2 = (sseoperand_t *)& nst->op2->f[i];
e[i] = __fex_get_sse_op(uap, &Jumy, & nfo[i]);
}
br eak;
cvtdg2ps:
dummy. op = cvtsi 2ss;
for (i =0; i < 4; i++)
dummy. opl = (sseoperand_t *)&i nst->opl->f[i];
durmy.opz = (sseoperand_t *)& nst->op2->i[i];
e[i] = fex_get _sse_op(uap, &dumy, &Jnfo[l]);
}
br eak;
cvtt ps2dq:
dummy. op = cvttss2si;
for (i =0; i < 4 |++){
durmy opl = (sseoperand_t *)& nst->opl->i[i];
dunmmy. op2 = (sseoperand_t *)& nst->op2->f[i];
e[i] = __fex_get_sse_op(uap, &dumy, &lnfo[l]);
br eak;
cvt ps2dq:
dunmmy. op = cvtss2si;
for (i =0; i <4; i++) {
dunmmy. opl = (sseoperand_t *)& nst->opl->i[i];
dunmmy. op2 = (sseoperand_t *) & nst->op2->f[i];
e[i] = __fex_get_sse_op(uap, &umy, & nfo[i]);
}
br eak;
cvt pi 2ps:

dunmy. op = cvtsi 2ss;

14

new usr/src/lib/libm comon/ ndx/

954
955
956
957
958
959

961
962
963
964
965
966
967
968

970
971
972
973
974
975
976
977

979
980
981
982
983
984
985
986
987

989
990
991
992
993
994
995
996

998

999
1000
1001
1002
1003
1004
1005

1007
1008
1009
1010
1011
1012
1013
1014

1016
1017
1018
1019

case

case

case

case

case

case

case

for (i

br eak;

cvtt ps2pi:

du .
for (i

br eak;
cvt ps2pi :

dunmy.
for (i

}
br eak;

cnppd:

du
for (|

}
br eak;
m npd:

for (i

br eak;

maxpd:
dummy.
for (i

br eak;

addpd:

dummy.
for (i

__fex_sse.c
=0; i <2 i++)
dummy. opl = (sseoperand_t
dummy. op2 = (sseoperand_t
e[i] = __fex_get_sse_op(uap,
p = cvttss2si;
=0; i <2 |++) {
durmy opl = (sseoperand_t
dunmy. op2 = (sseoper and_t *)&i nst->op2->f[i
e[i] = __fex_get_sse_op(uap,
op = cvtss2si;
=0; i <2; i++) {
dum'ry opl = (sseoperand_t *)&i nst->opl->i[i
dummy.
e[i] = __fex_get_sse_op(uap,
op = cnpsd;
mn i nst->i nm

=0; i <2

{
dum’ry opl = (sseoperand_t *)& nst->opl->d[i

op2 = (sseoperand_t *)&i nst—>0p2 >f[i

i ++)

dummy. op2 = (sseoperand_t

e[i] = __fex_get_sse_op(uap,

.0p = = m nsd;

=0; i < 2 i++) {
dunmmy. opl = (sseoperand_t
dunmmy. op2 = (sseoperand_t
e[i] = __fex_get_sse_op(uap,

op = maxsd;

= i< 2; i++)

duﬁny.opl = (sseoperand_t *)& nst->opl->d[i
dummy. op2 = (sseoperand_t *)&i nst->op2->d[i
i &Jummy, & nfoli

e[i] = __fex_get_sse_op(uap,
op = addsd;
=0; i <2; i++)
dunmmy. opl = (sseoperand_t
dummy. op2 = (sseoperand_t *)& nst->op2->d[i
e[i] = __fex_get_sse_op(uap,
op = subsd;
=0; i <2; i++) {
dummy. opl = (sseoperand_t *)&i nst->opl->d[i];

*) & nst - >opl- >f
*) & nst - >op2- >i
&dumy, & nf

*) & nst->opl->i[i

&Jummy, & nfoli

*) & nst->o0p2->d[i
&Jumy, & nfo

*) & nst ->opl->d[i
*) & nst - >op2->d[i
&Jumy, & nfoli

*) & nst ->opl->d[i

&Jummy, & nfoli

new usr/src/lib/libm comon/ ndx/

1020
1021
1022
1023

1025
1026
1027
1028
1029
1030
1031
1032

1034
1035
1036
1037
1038
1039
1040
1041

1043
1044
1045
1046
1047
1048
1049
1050

1052
1053
1054
1055
1056
1057
1058
1059
1060

1062
1063
1064
1065
1066
1067
1068
1069
1070

1072
1073
1074
1075
1076
1077
1078
1079
1080

1082
1083
1084
1085

case

case

case

case
case

case
case

case
case

case

i
&dummy, & nfo[

i
*) & nst->o0p2->d[i
&dunmmy, & nfo[

*) & nst ->opl->d[i
*) & nst - >op2->d[i
&dummy, & nfo[

*) & nst ->opl->d[i
*) & nst ->op2->d[i
&dummy, & nf o[

i
i
&dunmmy, & nfo[

i
*) & nst - >op2->d[i
&Jumy, & nfoli

*) & nst ->opl->i[i

i
i
&dummy, & nf o[

16

IE
i)

1
1;
i1);

IE
IF
i1);

K
IE
i1);

1
l;
i)

1
I
i

R

1K
IE
i1);

_ fex_sse.c
dummy. op2 = (sseoperand_t *)& nst->op2->d[i
e[i] = __fex_get_sse_op(uap,
}
br eak;
mul pd:
dumy. = mul sd;
for (i 0; i < 2; i++)
dummy. opl (sseoperand_t *) & nst->opl->d[i
dunmy. op2 (sseoperand_t
e[i] = __fex_get_sse_op(uap,
}
br eak;
di vpd:
dummy. op = divsd;
for (i =0; i < 2; i++)
dummy. opl = (sseoperand_t
dummy. op2 = (sseoperand_t
e[i] = __fex_get_sse_op(uap,
br eak;
sqrt pd:
du = sqrtsd;
for (| 0; i <2; i++) {
dunmmy. opl (sseoperand_t
dunmmy. op2 (sseoperand_t
e[i] = __fex_get_sse_op(uap,
br eak;
cvt pi 2pd:
cvtdg2pd:
dunmmy. op = cvtsi 2sd;
for (i O|<2|++){
dunmmy. opl = (sseoperand_t *)&i nst->opl->d[i
dummy. op2 = (sseoperand_t *)&i nst->op2->i[i
e[i] = __fex_get_sse_op(uap,
}
br eak;
cvtt pd2pi:
cvtt pd2dq:
dunmy.op = cvttsd2si;
for (i =0; i <2; i++) {
durmy opl = (sseoperand_t *)& nst->opl->i[i
dummy. op2 = (sseoperand_t
e[i] = __fex_get_sse_op(uap,
br eak;
cvt pd2pi :
cvt pd2dq:
dummy. op = cvtsd2si;
for (i 0; i <2 |++)
dummy. opl (sseoperand_t
dummy. op2 (sseoperand_t *) & nst->op2->d[i
e[i] = __fex_get_sse_op(uap,
}
br eak;
cvt ps2pd:
dunmmy. op = cvtss2sd;
for (i =0; i < 2 |++){

durrrry opl = (sseoperand_t *)&i nst->opl->d[i];

new usr/src/lib/libm comon/nBx/__fex_sse.c 17

1086 dummy. op2 = (sseoperand_t *)& nst->op2->f[i];
1087 e[i] = __fex_get_sse_op(uap, &Jumy, & nfol[i]);
1088

1089 br eak;

1091 case cvtpd2ps:

1092 dunmmy. op = cvtsd2ss;

1093 for (i =0; i <2; i++) {

1094 dummy. opl = (sseoperand_t *)& nst->opl->f[i];
1095 dunmmy. op2 = (sseoperand_t *) & nst->op2->d[i];
1096 e[i] = __fex_get_sse_op(uap, &ummy, & nfol[i]);
1097

1098 defaul t:

1099 br eak;

1100 #endif /* ! codereview */

1101

1102 }

1104 /*

1105 * Store the result value from*info in the destination of the scalar
1106 * SSE instruction specified by *inst. |If no result is given but the
1107 * exception is underflow or overflow, supply the default trapped result.
1108 *

1109 * This routine does not work if the instruction specified by *inst
1110 * is not a scalar instruction.

1111 */

1112 void

1113 _ fex_st_sse_resul t(ucontext_t *uap, sseinst_t *inst, enum fex_exception e,
1114 fex_info_t *info)

1115 {

1116 int i =0;

1117 I ong | ong | = 0L;;

1118 fl oat f =0.0, fscl;

1119 doubl e d = 0.0L, dscl

373 int i;

374 I ong | ong I

375 fl oat f, fscl;

376 doubl e d, dscl;

1121 /* for conpares that wite eflags, just set the flags

1122 to indicate "unordered" */

1123 if (inst->op == uconmiss || inst->op == comiss ||

1124 inst->op == ucomi sd || inst->op == comisd) {

1125 uap- >uc_ncont ext . gregs[REG PS] | = 0x45;

1126 return;

1127 }

1129 /* if info doesn't specify a result value, try to generate
1130 the default trapped result */

1131 if (info->res.type == fex_nodata) {

1132 /* set scale factors for exponent w apping */

1133 switch (e)

1134 case fex_overflow

1135 fscl = 1.262177448e-29f; [* 27-96 */

1136 dscl = 6.441148769597133308e-232; /* 2"-768 */
1137 break;

1139 case fex_underflow

1140 fscl = 7.922816251e+28f; /* 2796 */

1141 dscl = 1.552518092300708935e+231; /* 2"768 */
1142 break;

1144 defaul t:

1145 (void) _ fex_get_sse_op(uap, inst, info);
1146 if (info->res.type == fex_nodata)

1147 return;

new usr/src/lib/libm comon/nBx/__fex_sse.c 18
1148 goto stuff;

1149 }

1151 /* generate the wapped result */

1152 if (inst->op == cvtsd2ss)

1153 i nfo->opl.type = fex_doubl e;

1154 i nfo->opl.val.d = inst->o0p2->d[0];

1155 i nf o- >0p2. type = fex_nodat a;

1156 info->res.type = fex_float;

1157 info->res.val.f = (float)(fscl * (fscl *

1158 i nfo->opl.val.d));

1159 } else if ((int)inst->op & DOUBLE) {

1160 i nf o->opl.type = fex_doubl e;

1161 i nfo->opl.val.d = inst->opl->d[0];

1162 i nfo->op2.type = fex_doubl e;

1163 i nf o->op2.val.d = inst->o0p2->d[0];

1164 i nfo->res.type = fex_doubl e;

1165 switch (inst->op) {

1166 case addsd:

1167 info->res.val.d = dscl * (dscl *

1168 info->opl.val.d + dscl * info->op2.val.d);
1169 br eak;

1171 case subsd:

1172 info->res.val.d = dscl * (dscl *

1173 info->opl.val.d - dscl * info->op2.val.d);
1174 br eak;

1176 case mul sd:

1177 info->res.val.d = (dscl * info->opl.val.d) *
1178 (dscl * info->op2.val.d);

1179 break;

1181 case divsd:

1182 info->res.val.d = (dscl * info->opl.val.d) /
1183 (info->op2.val.d / dscl);

1184 br eak;

1186 defaul t:

1187 return;

1188

1189 } else {

1190 i nfo->opl.type = fex_float;

1191 i nfo->opl.val.f = inst->opl->f[0];

1192 i nf o->op2.type = fex_float;

1193 i nf o->op2.val.f = inst->o0p2->f[0];

1194 info->res.type = fex_float;

1195 switch (inst->op) {

1196 case addss:

1197 info->res.val .f = fscl * (fscl *

1198 info->opl.val.f + fscl * info->op2.val.f);
1199 br eak;

1201 case subss:

1202 info->res.val .f = fscl * (fscl *

1203 info->opl.val.f - fscl * info->op2.val.f);
1204 break;

1206 case mul ss:

1207 info->res.val.f = (fscl * info->opl.val.f) *
1208 (fscl * info->op2.val.f);

1209 br eak;

1211 case divss:

1212 info->res.val.f = (fscl * info->opl.val.f) /
1213 (info->op2.val.f / fscl);

new usr/src/lib/libm comon/nBx/__fex_sse.c 19 new usr/src/lib/libm comon/nBx/__fex_sse.c
1214 br eak; 1280 inst->opl->1[0] =1;
1281 } else if ((((int)inst->op & DOUBLE) && inst->op != cvtsd2ss) ||
1216 defaul t: 1282 inst->op == cvtss2sd) {
1217 return; 1283 switch (info->res.type) {
1218 } 1284 case fex_int:
1219 } 1285 d = info->res.val.i;
1220 } 1286 br eak;
1222 /* put the result in the destination */ 1288 case fex_|long:
1223 stuff: 1289 d = info->res.val.l;
1224 if (inst->op == cnpss || inst->op == cvttss2si || inst->op == cvtss2si 1290 br eak;
1225 || inst->op == cvttsd2si || inst->op == cvtsd2si) {
1226 switch (info->res.type) { 1292 case fex_float:
1227 case fex_int: 1293 d = info->res.val.f;
1228 i = info->res.val.i; 1294 br eak;
1229 br eak;
1296 case fex_doubl e:
1231 case fex_l1ong: 1297 d = info->res.val.d;
1232 i = info->res.val.l; 1298 br eak;
1233 br eak;
1300 case fex_| doubl e:
1235 case fex_float: 1301 d = info->res.val.q;
1236 i = info->res.val.f; 1302 br eak;
1237 br eak;
1304 defaul t:
1239 case fex_doubl e: 1305 br eak;
1240 i = info->res.val.d; 1306 #endif /* ! codereview */
1241 br eak; 1307 }
1308 inst->o0pl->d[0] = d;
1243 case fex_| double: 1309 } else {
1244 i = info->res.val.q; 1310 switch (info->res.type) {
1245 break; 1311 case fex_int:
1312 f = info->res.val.i;
1247 defaul t: 1313 br eak;
1248 break;
1249 #endif /* | codereview */ 1315 case fex_l1ong:
1250 } 1316 f =info->res.val.l;
1251 inst->o0pl->i[0] =i; 1317 br eak;
1252 } else if (inst->op == cnpsd || inst->op == cvttss2siq ||
1253 inst->op == cvtss2siq || 1nst->op == cvttsd2siq || 1319 case fex_float:
1254 inst->op == cvtsd2siq) { 1320 f = info->res.val.f;
1255 switch (info->res.type) { 1321 br eak;
1256 case fex_int:
1257 | = info->res.val.i; 1323 case fex_doubl e:
1258 br eak; 1324 f = info->res.val.d;
1325 br eak;
1260 case fex_|long:
1261 | = info->res.val.l; 1327 case fex_| doubl e:
1262 br eak; 1328 f = info->res.val.q;
1329 br eak;
1264 case fex_float:
1265 | = info->res.val.f; 1331 defaul t:
1266 br eak; 1332 br eak;
1333 #endif /* ! codereview */
1268 case fex_doubl e: 1334 }
1269 I = info->res.val.d; 1335 inst->o0pl->f[0] = f;
1270 br eak; 1336 }
1337 }
1272 case fex_| doubl e:
1273 I = info->res.val.q; 1339 /*
1274 break; 1340 * Store the results froma SIMD instruction. For each i, store
1341 * the result value frominfo[i] in the i-th part of the destination
1276 defaul t: 1342 * of the SIMD SSE instruction specified by *inst. If no result
1277 br eak; 1343 * is given but the exception indicated by e[i] is underflow or
1278 #endif /* | codereview */ 1344 * overflow, supply the default trapped result.
1279 } 1345 *

new usr/src/lib/libm comon/ ndx/

1346 * This routine does not work if the instruction specified by *inst

1347 * is not a SIMD instruction.

1348 */

1349 voi d

1350 _ fex_st_sind_result(ucontext_t *uap, sseinst_t *inst, enum fex_exception *e,
1351 fex_info_t *info)

1352

1353 ssei nst _t dummy;

1354 int i;

1356 /* store each part */

1357 switch (inst->op) {

1358 case cnpps:

1359 dunmmy. op = cnpss;

1360 dummy.imm = inst->i mm

1361 for (i =0; i <4; i++) {

1362 dummy. opl = (sseoperand_t *)& nst->opl->f[i];
1363 dunmmy. op2 = (sseoperand_t *) & nst->op2- > [|],
1364 __fex_st_sse_result(uap, &umy, e[i], & nfo[i]);
1365 }

1366 br eak;

1368 case m nps:

1369 dunmy. op = minss;

1370 for (i =0; i < 4; i++)

1371 dummy. opl = (sseoperand_t *)& nst->opl->f[i];
1372 dummy. op2 = (sseoperand_t *)&i nst->op2->f[i];
1373 _ fex_st_sse_result(uap, &Jumy, e[i], & nfo[i]);
1374 }

1375 br eak;

1377 case maxps:

1378 dummy. op = maxss;

1379 for (i =0; i < 4; i++) {

1380 dunmmy. opl = (sseoperand_t *)& nst->opl->f[i];
1381 dummy. op2 = (sseoperand_t *)&i nst->op2- >f[|],
1382 fex_st_sse_result(uap, &umy, e[i], nfol[i]);
1383

1384 br eak;

1386 case addps:

1387 dummy. op = addss;

1388 for (i =0; i < 4; i++)

1389 dummy. opl = (sseoperand_t *)& nst->opl->f[i];
1390 dummy. op2 = (sseoperand_t *)&i nst- >op2->f[i];
1391 __fex_st_sse_resul t(uap, &dummy, e[i], & nfo[i]);
1392 }

1393 br eak;

1395 case subps:

1396 dummy. op = subss;

1397 for (i =0; i < 4; i++)

1398 dummy. opl = (sseoperand_t *)& nst->opl->f[i];
1399 dummy. op2 = (sseoperand_t *)& nst->op2->f[i];
1400 __fex_st_sse_resul t(uap, &Jumy, e[i], & nfo[i]);
1401 }

1402 br eak;

1404 case nul ps:

1405 dunmmy. op = mul ss;

1406 for (i =0; i <4; i++) {

1407 dunmmy. opl = (sseoperand_t *)&i nst->opl->f[i];
1408 dummy. op2 = (sseoperand_t *)&i nst->op2- >f[|];
1409 __fex_st_sse_resul t(uap, &umy, e[i], & nfo[i]);
1410 }

1411 br eak;

__fex_sse.c

new usr/src/lib/libm comon/ nx/

1413
1414
1415
1416
1417
1418
1419
1420

1422
1423
1424
1425
1426
1427
1428
1429

1431
1432
1433
1434
1435
1436
1437
1438

1440
1441
1442
1443
1444
1445
1446
1447

1449
1450
1451
1452
1453
1454
1455
1456

1458
1459
1460
1461
1462
1463
1464
1465

1467
1468
1469
1470
1471
1472
1473
1474

1476
1477

case

case

case

case

case

case

case

case

__fex_sse.c
di vps:
dummy. op = divss;
for (i =0; i < 4; i++)
dummy. opl = (sseoperand_t *)& nst->opl-
dummy. op2 = (sseoperand_t *)&i nst->op2-
__fex_st_sse_result(uap, &umy, e[i],
}
br eak;
sqrtps:
dunmy. op = sqrtss;
for (i =0; i < 4; i++)
dunmmy. opl = (sseoperand_t *) & nst->opl-
dunmy. op2 = (sseoperand_t *) & nst->op2-
_ fex_st_sse_resul t(uap, &Jumy, e[i],
br eak;
cvt dg2ps:
dummy. op = cvtsi 2ss;
for (i =0; i < 4 |++){
durmy opl = (sseoperand_t *)&i nst->opl-
dunmy. op2 = (sseoperand_t *) & nst->op2-
__fex_st_sse_resul t (uap, &dummy, e[i],
br eak;
cvtt ps2dq:
dummy. op = cvttss2si;
for (i =0; i < 4; i++)
dunmmy. opl = (sseoperand_t *) & nst->opl-
dummy. op2 = (sseoperand_t *)&i nst->op2-
__fex_st_sse_resul t(uap, &Jumy, e[i],
}
br eak;
cvt ps2dq:
dunmmy. op = cvtss2si;
for (i =0; i < 4 |++) {
dunmmy. opl = (sseoperand_t *)&i nst->opl-
dummy. op2 = (sseoperand_t *)&i nst->op2-
__fex_st_sse resul t(uap, &Jumy, e[i],
}
br eak;
cvt pi 2ps:
dunmmy. op = cvtsi 2ss;
for (i =0; i <2 |++){
dumTy opl = (sseoperand_t *)&i nst->opl-
dummy. op2 = (sseoperand_t *)&i nst->op2-
__fex_st_sse_result(uap, &umy, e[i],
}
br eak;
cvttps2pi:
dunmy. op = cvttss2si;
for (i =0; i <2; i++) {
durmy opl = (sseoperand_t *)& nst->opl-
dunmy. op2 = (sseoperand_t *) & nst->op2-
__fex_st_sse_result(uap, &umy, e[i],
}
br eak;
cvt ps2pi:

dunmy. op = cvtss2si;

>[l]
> (il
& nfoli]);

>fli];
>F[i];
& nfo

fi1);

>fli];
>|[|];
nfoli]);

Si[i];
>f[|];
& nfoli]);

>i[i];
>f[|];
&nfol[i]);

>F[i];
>|[|];
o

& nfo[i]);

>[l]
> (il
& nfoli]);

new usr/src/lib/libm comon/nBx/__fex_sse.c 23 new usr/src/lib/libm comon/nBx/__fex_sse.c

1478 for (i =0; i <2; i++) { 1544 dunmy. op2 = (sseoperand_t *) & nst->op2- >d[1;
1479 dunmmy. opl = (sseoperand_t *)& nst->opl->i[i]; 1545 __fex_st_sse_resul t(uap, &Jumy, e[i], nfoli]);
1480 dunmmy. op2 = (sseoperand_t *)& nst->op2->f[i]; 1546 }
1481) __fex_st_sse_resul t(uap, &dummy, e[i], & nfo[i]); 1547 br eak;
1482
1483 br eak; 1549 case sqrtpd:
1550 dummy. op = sqrtsd;
1485 case cnppd: 1551 for (i =0; i <2; i++)
1486 dummy. op = cnpsd; 1552 dunmmy. opl = (sseoperand_t *)& nst->opl->d[i];
1487 dummy.imm = inst->i mm 1553 dummy. op2 = (sseoperand_t *)&i nst- >0p2- >d[il;
1488 for (i =0; i <2; i++) { 1554 __fex_st_sse_resul t(uap, &Jumy, e[i], nfoli]);
1489 dunmmy. opl = (sseoperand_t *)&i nst->opl->d[i]; 1555 }
1490 dummy. op2 = (sseoperand_t *)& nst->op2->d[i]; 1556 br eak;
1491 _ fex_st_sse_result(uap, &Jumy, e[i], & nfo[i]);
1492 1 1558 case cvt pi 2pd:
1493 br eak; 1559 case cvtdqg2pd:
1560 dummy. op = cvtsi 2sd
1495 case m npd: 1561 for (i =0; i <2; i++) {
1496 dunmmy. op = m nsd; 1562 dunmy. opl = (sseoperand_t *)& nst->opl->d[i];
1497 for (i =0; i <2; i++) { 1563 dummy. op2 = (sseoperand_t *)&i nst->o0p2- >| [i];
1498 dummy. opl = (sseoperand_t *)& nst->opl->d[i]; 1564 __fex_st_sse_resul t(uap, &Jumy, e[i], nfoli]);
1499 dummy. op2 = (sseoperand_t *) & nst->op2- >d[|], 1565 }
1500 _ fex_st_sse_result(uap, &Jumy, e[i], nfol[i]); 1566 br eak;
1501 }
1502 br eak; 1568 case cvttpd2pi:
1569 case cvttpd2dqg:
1504 case maxpd: 1570 dunmmy. op = cvttsd2si;
1505 dummy. op = maxsd; 1571 for (i =0; i < 2; i++)
1506 for (i =0; i <2; i++) { 1572 dummy. opl = (sseoperand_t *)& nst->opl->i[i];
1507 dummy. opl = (sseoperand_t *)& nst->opl->d[i]; 1573 dummy. op2 = (sseoperand_t *)& nst->op2->d[i];
1508 dummy. op2 = (sseoperand_t *)&i nst - >op2- >d[|], 1574 __fex_st_sse_result(uap, &umy, e[i], & nfo[i]);
1509 _ fex_st_sse_result(uap, &Jumy, e[i], nfol[i]); 1575 }
1510 } 1576 /* for cvttpd2dg, zero the high 64 bits of the destination */
1511 br eak; 1577 if (inst->op == cvttpd2dq)
1578 inst->opl->[1] = 0l1;
1513 case addpd: 1579 br eak;
1514 dunmmy. op = addsd;
1515 for (i = 0; i < 2 i++) { 1581 case cvtpd2pi:
1516 dummy. opl = (sseoperand_t *)& nst->opl->d[i]; 1582 case cvtpd2dq:
1517 dummy. op2 = (sseoperand_t *)&i nst->op2- >d[|], 1583 dunmy. op = cvtsd2si;
1518 __fex_st_sse_result(uap, &umy, e[i], nfol[i]); 1584 for (i =0; i < 2 |++) {
1519 } 1585 durmy opl = (sseoperand_t *)& nst->opl->i[i];
1520 br eak; 1586 dummy. op2 = (sseoperand_t *) & nst->op2- >d[|],
1587 _ fex_st_sse_resul t(uap, &Jumy, e[i], nfol[i]);
1522 case subpd: 1588 }
1523 dummy. op = subsd; 1589 /* for cvtpd2dg, zero the high 64 bits of the destination */
1524 for (i =0; i <2; i++) { 1590 if (inst->op == cvtpd2dq)
1525 dunmmy. opl = (sseoperand_t *)& nst->opl->d[i]; 1591 inst->opl->[1] = 0ll;
1526 dunmy. op2 = (sseoperand_t *)& nst->op2- >d[|]; 1592 br eak;
1527 __fex_st_sse_resul t (uap, &dummy, e[i], nfoli]);
1528 } 1594 case cvtps2pd:
1529 br eak; 1595 dunmmy. op = cvtss2sd;
1596 for (i =0; i <2; |++){
1531 case nul pd: 1597 dummy. opl = (sseoperand_t *)& nst->opl->d[i];
1532 dummy. op = mul sd; 1598 dummy. op2 = (sseoperand_t *)& nst->op2->f[i];
1533 for (i =0; i <2; i++) { 1599 __fex_st_sse_result(uap, &umy, e[i], &i nfo[l]);
1534 dummy. opl = (sseoperand_t *)&i nst->opl->d[i]; 1600 }
1535 dummy. op2 = (sseoperand_t *) & nst- >0p2- >d[|]; 1601 br eak;
1536 __fex_st_sse_resul t (uap, &dummy, e[i], nfoli]);
1537 1 1603 case cvtpd2ps:
1538 br eak; 1604 dunmy. op = cvtsd2ss;
1605 for (i =0; i <2; i++) {
1540 case divpd: 1606 dummy. opl = (sseoperand_t *)& nst->opl->f[i];
1541 dummy. op = divsd; 1607 dunmmy. op2 = (sseoperand_t *) & nst->op2- >d[|],
1542 for (i =0; i <2; i++) { 1608 _ fex_st_sse_resul t(uap, &umy, e[i], & nfo[i]);
1543 dummy. opl = (sseoperand_t *)&i nst->opl->d[i]; 1609 }

new usr/src/lib/libm comon/nBx/__fex_sse.c

1610 /* zero the high 64 bits of the destination */
1611 inst->opl->I[1] = 0Oll;

1613 defaul t:

1614 br eak;

1615 #endif /* | codereview */

1616

1617 }

1619 #endif /* | codereview */

new usr/src/lib/libm comon/nBx/fdimc

R R R R

1487 Sun May 4 03:06:20 2014
new usr/src/lib/libm comon/nBx/fdimc

hkkkkkkkkkkkkkkkkkkkkhkhkkkhkkkkkkkkkkkkkkkkhkkkkkk ok kk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #if defined(ELFOBJ)

31 #pragma weak fdim= __fdim

32 #endi f

34 /*

35 * fdim(x,y) returns x - yif x >y, 40 if x <=y, and NaNif x and
36 * y are unordered.

37 *

38 * fdimx,y) raises overflow or inexact if x >y and x - y overflows
39 * or is inexact. It raises invalid if either operand is a signaling
40 * NaN. Otherwise, it raises no exceptions.

41 */

43 #include "libmh" /* for islessequal macro */

45 doubl e

46 __fdi m(doubl e x, double y) {

47 #if defi ned(COVPARI SON_MACRO_BUG)

48 if (x == x &y ==y && x <= y) { [* } */
49 f#el se

47 if (islessequal (x, y)) {

51 #endif

48 X
49 y

0.0;
-X;

}
51 return (x - y);

}
____unchanged_portion_onitted_

new usr/src/lib/libm comon/nBx/fdinf.c

R R R R

1549 Sun May 4 03:06:21 2014

new usr/src/lib/libm comon/nBx/fdinf.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkkkk ok k ok k k%

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

/*
* Copyright 2011 Nexenta Systenms, Inc. Al rights reserved.
*
/*
* Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
* Use is subject to license terns.
*
/
#if defined(ELFOBJ)
#pragma weak fdinf = _ fdinf
#endi f
#include "libmh" /* for islessequal nmacro */
f1 oat
_ fdinf(float x, float y) {
/*
* On SPARC v8plus/v9, this could be inplemented as foll ows
* (assuming %0 = x, %1 =y, return value left in %0):
*
* fcnps % cc0,%0,% 1
* st %0, [scrat ch] ! use fzero instead of st/ld
* |d [scratch], %2 I if VISis available
* fnegs % 2,%3
* frovsl e % cc0,%2,%0
* frovsl e % cc0,%3,%1
* fsubs %0,%1,%0
*
/
#i f defi ned(COMPARI SON_MACRO_BUG)
if (x == x &y ==y && x <= y) { /> } %
#el se
if (islessequal (x, y)) {
#endi f
x = 0.0f;
y = -X;
return (x - y);

__unchanged_portion_onitted_

new usr/src/lib/libm comon/nBx/fdin.c

R R R R

1223 Sun May 4 03:06:23 2014

new usr/src/lib/libm comon/nBx/fdin.c

hkkkkkkkkkkkkkkkkkkhkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkkkk ok k ok k k%

/*

* CDDL HEADER START

*

* The contents of this file are subject to the terns of the

* Common Devel opnent and Distribution License (the "License").

* You may not use this file except in conpliance with the License.
*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions
* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each
* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [nane of copyright owner]
*

* CDDL HEADER END

*/

/*

* Copyright 2011 Nexenta Systenms, Inc. Al rights reserved.

*

/*

* Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.

* Use is subject to license terns.

*/

#if defined(ELFOBJ)

#pragma weak fdim = _ fdin

#endi f

#include "libmh" /* for islessequal nmacro */

| ong doubl e

_ fdim (long double x, long double y) {
#i f defi ned(COVPARI SON_MACRO BUG
if (x ==x &Yy ==y & x <=y) {
#el se
if (islessequal (x, y)) {
#endi f
x = 0.0l;
y = -X;
return (x - vy);

__unchanged_portion_onitted_

new usr/src/lib/libm comon/nBx/fenv_inlines.h

R R R R

12598 Sun May 4 03:06:24 2014
new usr/src/lib/libm comon/nBx/fenv_inlines.h

hkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkk Tk kkkkkkhkkkkkkkk ok k ok k k%

____unchanged_portion_onitted_

42 extern __inline__ void

43 __fenv_get cwsw(unsigned int *val ue)

44

45 union fp_cwsw *u = (union fp_cwsw *)val ue;

45 union fp_cwsw ret;

a7 _asm _ __volatile__(

48 "fstsw 9®O\n\t"

49 "fstecw %d\n\t"

50 : "=n' (u->words.cw), "=n' (u->words.sw));

50 "=t (ret.words.cw), "=nf (ret.words.sw));
51 *val ue = ret.cwsw,

51 }

53 extern __inline__ void

54 __fenv_setcwsw(const unsigned int *val ue)

55

56 uni on fp_cwsw cwsw;,

57 short fenv[16];

59 cWswW. cwsw = *val ue;

61 _asm_ __volatile__(

62 "fstenv %@\ n\t"

63 " movw o, %A\ n\t"

64 "movw 93, R\ n\t"

65 "fldenv 90\ n\t"

66 "fwait\n\t"

67 o "=nt (fenv), "=ni (fenv[O0]), "=nm' (fenv[2])
68 Do"r" (cwsw o words.cw), "r" (cwsw. words. sw)

69 ;o "d" (cwsw. words.cw), "c" (cwsw. words.sw)

69 /* For practical purposes, we clobber the whole FPU */
70 : "ec", "st", "st(1)", "st(2)", "st(3)", "st(4)", "st(5)"
71 "st(6)", "st(7)");

72}

74 extern __inline__ void

75 __fenv_getnxcsr(unsigned int *val ue)

76

77 _asm _ _ volatile__("stnmxcsr %" "=mi' (*val ue));
78 _asm_ __volatile__("stnmxcsr 94" "+nt (*val ue));
78 }

____unchanged_portion_onitted_

86 extern __inline__ long double

87 f2xml(l ong double x)

88 {

89 I ong double ret;

91 _asm_ _ volatile__ ("f2xmL" =t" (ret) "0" (x) : "cc");
92 _asm_ _ volatile__ ("f2xml" =t" (ret) "0" (x));
92 return (ret);

93 }

95 extern __inline__ long double

96 fyl 2x(1ong double y, [ong double x)

97 {

98 | ong double ret;

100 asm _ __volatile__("fyl2x"

new usr/src/lib/libm comon/nBx/fenv_inlines.h

101 DoU=stt (ret)

102 t0" (x), "u" o (y)

103 ;o "st(1)", "cc");

101 _asm_ __volatile__("fyl2x" "=ttt (ret): "0" (x), "u" (y) : "st(1)");
104 return (ret);

105 }

107 extern __inline__ long double

108 fptan(l ong doubl e x)

109 {

110 I*

111 * fptan pushes 1.0 then the result on conpletion, so we want to pop
112 * the FP stack twice, so we need a dunmy value into which to pop it.
113 *

114 I ong double ret;

115 | ong doubl e dunmmy;

117 _asm_ _ volatile_ ("fptan"

118 "=t (dummy), “=u" (ret)

119 ©"0" ()

120 © "cc");

115 _asm_ _ volatile_ ("fptan" "=t" (dummy), "=u" (ret) : "0" (X));
121 return (ret);

122 }

124 extern __inline__ | ong doubl e

125 fpatan(long double x, |ong double y)

126 {

127 I ong doubl e ret;

129 _asm_ _ volatile_ ("fpatan

130 CTT=t (ret)

131 Dot (y), "ut ()

132 ©o"st(1)", "cc");

127 st (1)");

133 return (ret);

134 }

136 extern __inline__ |long double

137 fxtract (1l ong double x)

138 {

139 _asm_ _ volatile__("fxtract" "+ (x) o "ec");

140 return (Xx);

134 | ong double ret;

136 _asm_ __volatile__("fxtract" "=t" (ret) "0" (Xx));

137 return (ret);

141 }

143 extern __inline__ | ong double

144 fpremi(long doubl e idend, |ong double div)

145 {

146 _asm _ _ volatile__("fpreml” : "+t" (div) : "u" (idend) : "cc");
147 return (div);

143 | ong doubl e ret;

145 _asm_ _ volatile_ ("fpreml" : "=t" (ret) : "0" (div), "u" (idend));
146 return (ret);

148 }

150 extern __inline__ long double

151 fpren(long doubl e idend, |ong double div)

152 {

153 _asm_ _ volatile_ ("fprent "+t" (div) : "u" (idend) : "cc");
154 return (div);

152 I ong double ret;

new usr/src/lib/libm comon/nBx/fenv_inlines.h

154 asm _ _ volatile__("fprent
155 return (ret);

155 }

157 extern inline | ong doubl e

158 fyl 2xp1(Tong doubl e y, |ong double x)
159 {

160 | ong doubl e ret;

162 _asm_ _ volatile__ ("fyl 2xp1"
163 otett (ret)

164 M0 (x), " (y)

165 Do "st(1)",

166 2 "st(l)");

166 return (ret);

167 }

169 extern __inline__ long double

170 fsqrt(l ong doubl e x)

171 {

172 asm _ _ volatile__ ("fsqrt"
173 return (x);

173 | ong double ret;

175 asm _ __volatile__("fsqrt"
176 return (ret);

174 }

176 extern inline | ong doubl e

177 fsincos(long doubl e x)

178 {

179 _asm_ _ volatile__("fsincos"
180 return (x);

182 | ong double ret;

184 _asm_ _ volatile_ ("fsincos"
185 return (ret);

181 }

183 extern inline | ong doubl e

184 frndint(Tong doubl e x)

185 {

186 asm _ _ volatile_ ("frndint"
187 return (x);

191 I ong doubl e ret;

193 asm _ _ volatile_ ("frndint"
194 return (ret);

188 }

190 extern __inline | ong doubl e

191 fscal e(Tong double x, |ong double y)
192 {

193 | ong doubl e ret;

195 _asm _ _ volatile_ ("fscale"
202 _asm_ __volatile__("fscale"
196 return (ret);

197 }

199 extern __inline__ | ong double

200 fsin(long double x)

201 {

202 _asm__ _ volatile_ ("fsin"
203 return (x);

"H (%)

(ret) : "0" (div), "u" (idend));

"ee’);

(ret) : "0" (x));

"+t (x) o "ec");

"=t (ret) @ "0" (x));

"+ () "cc");

(ret) : "0" (x));

"ee"):

new usr/src/lib/libm comon/nBx/fenv_inlines.h

209 | ong doubl e ret;

211 _asm_ __volatile__("fsin"
212 return (ret);

204 }

206 extern __inline__ long double

207 fcos(long doubl e x)

208 {

209 asm _ _ volatile__("fcos"
210 return (x);

218 | ong double ret;

220 asm _ _ volatile__("fcos"
221 return (ret);

211 }

213 extern inline voi d

214 sse_cnpeqss(float *f1, float *f2, int
215 {

216 _asm_ __volatile_ (

217 "cnpegss %R, Yd\n\t"
218 m)vss o, %"

219 s (*i1), "4x" (*f1)
220 "x" (*f2)

221 "cc");

230 "—m (*| 1)

231 "x"(*f1), "x" (*f2));
222 }

224 extern nli voi d

225 sse crrpltss(at *f1, float *f2, int
226 {

227 _asm_ volatile_ (

228 cnpl tss %2, %d\n\t"

229 " novss o, %"

230 "=nf (*il), "ax" (*f1)
231 "x" (*f2)

232 "cc");

240 "=t (*i1)

241 "x" o (*f1), "x" (*f2));
233 }

235 extern inline voi d

236 sse_cnpless(float *f1, float *f2, int
237 {

238 _asm_ _ volatile_ (

239 "cnpless %R, %d\n\t"

240 " movss %W, %"

241 : "—m‘ (*ll), "Hx" (*f1)
242 (*f2)

243 "c ")

250 "=nf (*| 1)

251 "x" (*f1), "x" (*f2));
244 }

246 extern inline voi d

247 sse_cnpunordss(flToat *f1, float *f2, i
248 {

249 __asm volatile__(

250 crrpunordss %R, \n\t"
251 "nmovss 0/6., %"

252 "=nf (*|1) "Hx" (*f1)
253 "x" (f2

254

260 " :n1' (*i 1)

"=t" (ret)

(%)

"=t" (ret)

*i1)

*i1)

*i1)

nt *il)

(X))

“ee"):

(X))

new usr/src/lib/libm comon/nBx/fenv_inlines.h

261 X" (*f1), "x" (*f2));
255 }

257 extern __inline oid

258 sse_ninss(float *f 1 float *f2, float
259 {

260 _asm _ __volatile__(

261 "mnss %, %d\n\t"

262 %"

263 , Xt (*f1)
264

270

271 "x" (*f2));
265 }

267 extern __inline oid

268 sse_naxss(float *f 1 float *f2, float
269 {

270 _asm__ _ volatile_ (

271 9%, d\n\t"

272 %W, %"

273 nf (*f3), "+x" (*f1l)
274 (*f2));

280 *f3)

281 "o(*f1), "x" (*f2));
275 }

277 extern inline oid

278 sse_addss(oat *f 1 float *f2, float
279 {

280 _asm__ _ volatile_ (

281 "addss 92, wd\n\t"

282 "movss %d, %0"

283 "=nf (*f3) "Hx" (*f1)
284 !

290 (*f

291 "x"(*f1), "x" (*f2));
285 }

287 extern inli voi d

288 sse_subss(flo *f 1, float *f2, float
289 {

290 _asm_ _ volatile_ (

291 "subss 9%, vd\n\t"

292 "nmovss %d, %"

293 "—m‘ (* f3) "Xt (*f1)
294 (*f2));

300 *f3)

301 (*f1), "x" (*f2));
295 }

297 extern inline voi d

298 sse_nulss(float *f1, float *f2, float
299 {

300 _asm_ __volatile__(

301 “"mul ss %2, %d\n\t"

302 "novss %, %"

303 = (*f3), "4x" (*f1l)
304 "x" (*f2));

310 "=t (*f

311 X" (*f1), "x" (*f2));
305 }

307 extern inli voi d

308 sse_divss(flo *f 1, float *f2, float
309 {

*f3)

*f3)

*f3)

*f3)

*f 3)

*f3)

new usr/src/lib/libm comon/nBx/fenv_inlines.h

310 __asm __volatile_ (
311 "divss 92, %d\n\t"
312 %W, %"
313 (*f3) "x" (*f1)
314 (*f2));
320 =nt" (*f3)
321 "Xt (*f1), "x" (*f2));
315 }
317 extern nI voi d
318 sse_sqrtss(f t *f1, float *f2)
319 {
320 doubl e t np;
322 #endif /* | codereview */
323 _asm_ _ volatile (
324 "sqrtss 9%, %d\n\t
325 "movss %, %"
326 " =nf (*f2) "=x" (tnp)
327 ot (*F1));
327 "sqrtss %, 99D\ n\ t "
328 "movss %&mmD, %0
329 =t (*f2)
330 "nf (*f1)
331 "xmm0") ;
328 }
__unchanged_portion_onitted_
343 extern inline__ void
344 sse_cvtss2sd(float *f1, double *d1)
345 {
346 doubl e t np;
348 #endif /* ! codereview */
349 _asm__ _ volatile__(
350 "cvtss2sd %@, %d\n\t"
351 " nmovsd %W, %"
352 "=pf (*d1), "=x" (tnp)
353 Cot'm (*f1));
350 "cvtss2sd %4, 9@&KmMmMO\n\t"
351 " nmovsd wWxmo, 90"
352 "=mt (*d1)
353 "t (*f1)
354 "xmm0") ;
354 }
356 extern __inline__ void
357 sse_cvtsi2ss(int *il, float *f1)
358 {
359 doubl e tnp;
361 #endif /* | codereview */
362 _asm_ __volatile__(
363 "cvtsi2ss %R, Yd\n\t"
364 "movss %A, A&)“
365 Y=t (*f1), " (tnp)
366 ot (*i1));
360 "cvtsi2ss %, WxmMO\n\t"
361 "movss Wxmo, %"
362 o=t (*f1)
363 m(*i1)
364 "xmm0") ;
367 }
369 extern inline voi d
370 sse_cvttss2si(float *f1, int *il)

new usr/src/lib/libm comon/nBx/fenv_inlines.h

371 {

372 int tnp;

374 #endif /* ! codereview */

375 _asm_ __volatile__(

376 "cvttss2si %R, %d\n\t"
377 " movl o, %"

378 ot=nd (*i1), "=r" (tnp)
379 oot (*f1));

370 "cvttss2si %, %ecx\n\t"
371 " movl %ecx, 90"
372 D=t (*01)

373 cot'm (1)

374 : "ecx");

380 }

382 extern __inline__ void

383 sse_cvtss2si(float *f1, int *il)

384 {

385 int tnp;

387 #endif /* | codereview */

388 _asm__ _ volatile_ (

389 "cvtss2si R, %\n\t"

390 " movl %W, %"

391 cot=nd (*il), "=r" (tnp)
392 o' (*f1));

380 "cvtss2si 94, Wecx\n\t"
381 " movl Wecx, 90"

382 Dot=End (*il)

383 Dot (*f1)

384 : "ecx");

393 }

395 #if defined(__and64)

396 extern __inline__ void

397 sse_cvtsi2ssq(long long *I11, float *f1)
398 {

399 doubl e tnp;

401 #endif /* | codereview */

402 _asm_ __volatile__(

403 "cvtsi2ssq R, %d\n\t"
404 " novss i, %"

405 ot=nd (*f1), "=x" (tnp)
406 o'm (*L11));

391 "cvtsi2ssq %, 9%9&mO\n\t"
392 " novss %®Wxmo, 99"
393 o=t (*f1)

394 ot (*L11)

395 ©oUxmmDt)

407 }

409 extern __inline__ void

410 sse_cvttss2siqg(float *f1, long long *I11)
411 {

412 uint64_t tnp;

414 #endif /* | codereview */

415 _asm __ _ volatile_ (

416 "cvttss2siq %, %d\n\t"
417 "nmovq o, 90"

418 cot=nd (*111), "=rt o (tnp)
419 o' (*f1));

401 "cvttss2siq %, %Wescx\n\t"

402 "novq %6 cx, Y0

new usr/src/lib/libm comon/nBx/fenv_inlines.h

403 o= (%1 11)

404 ot (*f1)

405 :o"rex");

420 }

422 extern __inline__ void

423 sse_cvtss2siq(float *f1, long long *I11)
424 {

425 uint64_t tnp;

427 #endif /* | codereview */

428 _asm__ _ volatile_ (

429 "cvtss2siq R, %d\n\t"
430 "movq %, %"

431 ot=nd (*111), "=rt (tnp)
432 ot (*f1));

411 "cvtss2siq %, 9Wecx\n\t"
412 "movq %% cx, %0

413 Cot=mt (*111)

414 ot (*f1)

415 co"rex");

433 }

435 #endi f

437 extern __inline__ void

438 sse_cnpeqsd(doubl e *d1, double *d2, long long *I11)
439 {

440 _asm_ __volatile__(

441 "cnpeqsd %2, %\ n\t"

442 "movsd %, %"

443 o= (*111), "=x" (*dl)
444 X" (*d2));

426 o= (%11 1)

427 DoUx" (*d1), “"x" (*d2));
445 }

447 extern __inline__ void

448 sse_cnpl t sd(doubl e *d1, double *d2, long long *II1)
449 {

450 _asm _ _ volatile__(

451 "cnpltsd %2, %\ n\t"

452 "nmovsd %, 90"

453 o= (*111), "=x" (*dl1)
454 : (*d2));

436 = *111)

437 " (*d1), "x" (*d2));
455 }

457 extern __inline__ void

458 sse_cnpl esd(doubl e *d1, double *d2, long long *II1)
459 {

460 __asm_ __volatile__

461 "cnpl esd %2, %\ n\t"

462 "novsd %, %"

463 o= (*I11), "=x" (*dl1)
464 (*d2));

446 Dov=mt (*111)

447 CoUx" (*d1), "x" (*d2));
465 }

467 extern __inline__ void

468 sse_cnpunor dsd(doubl e *d1, double *d2, long long *I11)
469 {

470 _asm _ _ volatile__

471 "cnpunordsd %, %d\n\t"

new usr/src/lib/libm comon/nBx/fenv_inlines.h

472 rmvsd o, 90"

473 o= (*I11), "=x" (*dl1)
474 " (*d2));

456 =" (*111)

457 "x" (*d1), "x" (*d2));
475 }

478 extern __inline__ void

479 sse_minsd(doubl e *d1, double *d2, double *d3)
480 {

481 _asm_ _ volatile

482 "m nsd 9%, %4\ n\t"

483 "movsd %, 90"

484 "=nf (*d3), "=x" (*dl)
485 "x" (*d2));

467 = (*

468 " (*d1), "x" (*d2));
486 }

488 extern inline__ void

489 sse_mmxsd(doubl e *d1, double *d2, double *d3)
490 {

491 __asm_ __volatile

492 "maxsd 9@, %\ n\t"

493 rmvsd %, %"

494 : "=x" (*dl)
495

477 =

478 "x" (*d1), "x" (*d2));
496 }

498 extern __inline__ void

499 sse_addsd(doubl e *d1, double *d2, double *d3)
500 {

501 asm vol atile

502 "addsd 9%, %d\ n\t"

503 " rmvsd %, %"

504 :) "=x" (*dl)
505

487

488 "x" (*d2));
506 }

508 extern __inline__ void

509 {sse_subsd(doubl e *dl, double *d2, double *d3)
510

511 _asm vol atile

512 "subsd 9%, %d\ n\t

513 "novsd %, 90"

514 ;o =t (*d3), "=x" (*dl)
515 " (*d2));

497 = (*d3)

498 "x" (*d1), "x" (*d2));
516 }

518 extern __inline__ void

519 {sse_nul sd(doubl e *d1, double *d2, double *d3)
520

521 _asm__ _ volatile__(

522 "mul sd 9%, %d\n\t"

523 "novsd %, 90"

524 "=nf (*d3) "=x" (*dl)
525 "x" (*d2))

507 =t (*d3)

508 "x" (*d1), "x" (*d2));

new usr/src/lib/libm comon/nBx/fenv_inlines.h

526 }
528 extern __inline__ void
529 {sse di vsd(doubl e *d1, double *d2, double *d3)
530
531 __asm vol ati | e_(
532 "divsd %, %\n\t"
533 "nmovsd %, 90"
534 c =t (*d3) "=x" (*dl)
585 (*d2))
517 "=t (*d3)
518 "x" (*d1), "x" (*d2)
519 "xmD");
536 }
538 extern __inline__ void
539 sse_sqrtsd(doubl e *dl1, double *d2)
540 {
541 doubl e t np;
543 #endif /* ! codereview */
544 __asm vol atile (
545 "sqrtsd %@, %d\n\t
546 "movsd %, 90"
547 "=nf' (*d2) "=x" (tnp)
548 o't (*dl));
525 "sqrtsd %A, 98O\ N\ t "
526 "nmovsd %P/o(mTO %"
527 "=pi' (*d2)
528 "t (*d1)
529 "xmm0") ;
549 }
__unchanged_portion_omtted_
563 extern __inline__ void
564 sse_cvtsd2ss(double *dl, float *f1)
565 {
566 doubl e t np;
568 #endif /* | codereview */
569 _asm_ volatile__(
570 "cvtsd2ss 9@, %d\n\t"
571 "movss wu, %"
572 "=p (*f1l), "=x" (tnp)
573 o't (*d1));
547 "cvtsd2ss °/c1, 9xmMmO\ n\t "
548 " nmovss %m0, %0"
549 ot (*f1)
550 " (*d1)
5518 "xmD");
574 }
576 extern __inline__ void
577 sse_cvtsi2sd(int *il, double *dl)
578 {
579 doubl e t np;
580 #endif /* ! codereview */
581 _asm_ _ volatile
582 "cvtsi2sd 9%, %\ n\t"
583 "movsd %, 90"
584 "=nf (*dl), "=x" (tnp)
585 ot (*il));
558 "cvtsi2sd %, %@&xmMO\ n\t"
559 "movsd %m0, %"
560 "=ni' (*dl1)

10

new usr/src/lib/libm comon/nBx/fenv_inlines.h

561 ot (*i1)
562 o txmmD") ;

586 }

588 extern inline voi d

589 sse_cvttsd2si (double *d1, int *i1)
590 {

591 int tnp;

593 #endif /* | codereview */

594 __asm vol atile

595 "cvttsd2si 9R, %\ n\t"
596 " movl %, %"

597 cot=nd (*il), "=r" (tnp)
598 ot (*d1));

568 "cvtt sd2si %’L Wecx\n\t"
569 rva wWecx, 90"

570 Dottt (*il)

571 St (*d1)

572 : "ecx");

599 }

601 extern __inline__ void

602 sse_cvtsd2si (double *dl, int *il)
603 {

604 int tnp;

606 #endif /* ! codereview */

607 _asm_ volatile_ (

608 "cvtsd2si 9@, %d\n\t"
609 " movl wu, %"

610 potEnt (*i1), "=t (tnp)
611 co'm (*dl

578 "cvtsd2si °/d., %Wecx\n\t"
579 " movl %ecx, %0

580 Cotemt (*Q1)

581 o' (*dl)

582 : "ecx");

612 }

614 #if defined(__and64)

615 extern __inline__ void

616 sse_cvtsi 2sdq(long long *I11, double *d1l)
617 {

618 doubl e tnp;

620 #endif /* ! codereview */

621 _asm _ __volatile

622 "cvtsi 2sdg 9@, Y\ n\t"
623 rmvsd %, /6)

624 "=t (*d1), "=x" (tnp)
625 ot (*II1))

589 "cvtsi2sdq %, MO\ n\t"
590 "nmovsd 9wxmmo, 90"
591 "=t (*dl)

592 o' (*L11)

593 o "xmmD") ;

626 }

628 extern inline voi d

629 sse_cvttsd2si g(double *d1, long long *I11)
630 {
631 uint64_t tnp;

633 #endif /* | codereview */
634 _asm _ _ volatile_ (

11

new usr/src/lib/libm comon/nBx/fenv_inlines.h

635 "cvttsd2siq "/Q %d\n\t"
636 " movq a, %"

637 o=t (*IIl) "=r" (tnp)
638 o't (*dl));

599 "cvttsd2siq °/r1 W cx\n\t"
600 "movq %% cx, 90"

601 ot=End (*111)

602 o't (*d1)

603 o"rext);

639 }

641 extern __inline__ void

642 sse_cvtsd2sigq(double *d1, long long *I11)
643 {

644 uint64_t tnp;

646 #endif /* | codereview */

647 _asm volatile__(

648 "cvtsd2siq %R, %\ n\t"

649 " novq %L, 99"

650 ot=pd (*I11), "=rt (tnp)
651 o't (*dl));

609 "cvtsd2siq %, Wscx\n\t"
610 " nmovq %6 cx, 90"

611 ot=En (%1 11)

612 o't (*d1)

613 ©o"rex");

652 }

653 #endi f

655 #endif /* | codereview */
656 #elif defined(__sparc)

657 extern inline voi d

658 __fenv_getfsr(unsigned long *I)
659 {

660 _volatile_ (

661 #if defi ned(spar ar cv9)

662 "stx 986 sr, 9®\n\t"
663 #el se

664 "st %G sr,%\n\t"
665 #endi f

666 DotEn (%))

667 }

669 extern __inline__ void

670 __fenv_setfsr(const unsigned long *I)
671 {

672 _volatile__(

673 #if defi ned(_“sparcv9)

674 "ldx %0, 986 sr\n\t"
675 #el se

676 "Id %0, %WEsr\n\t"
677 #endi f

678 st (1) @ Mec");
616 o't (*I))

679 }

__unchanged_portion_onitted_

12

new usr/src/lib/libnm comon/nBx/fex_handl er.h

R R R R

6089 Sun May 4 03:06:27 2014
new usr/src/lib/libm comon/nBx/fex_handl er. h

hkkkkkkkkkkkkkkkkhkkhkkhkhkkkhkkkkkkk kR kkkkkkkkkkkkkkkk ok k ok k k%

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License")

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing perm ssions

11 * and limtations under the License.

12 *

13 * Wen distributing Covered Code, include this CDDL HEADER i n each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]

18 =

19 * CDDL HEADER END

20 */

22 /*

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*

26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 /* #include <sys/isa_defs.h> */

30 /* the followi ng enuns nust match the bit positions in fenv.h */
31 enum fex_exception {

32 fex_i nexact =0,

33 fex_division =1,

34 fex_underflow = 2,

35 fex_overfl ow =3,

36 fex_inv_zdz = 4,

37 fex_inv_idi =5,

38 fex_inv_isi = 6,

39 fex_inv_zm =17,

40 fex_inv_sqgrt = 8,

41 fex_inv_snan =9,

42 fex_inv_int = 10,
43 fex_inv_cnp =11
44 };

47 |* auxiliary functions in __fex_hdlr.c */
48 extern struct fex_handl er_data *__ fex_get_thr_handl ers(void);
49 extern void _ fex_update_te(void);

51 /* auxiliary functions in _ fex_symc */
52 extern void __fex_sym.init(void);
53 extern char *__fex_syn(char *, char **);

55 /* auxiliary functions in fex_log.c */

56 extern void __ fex_nklog(ucontext_t *, char *, int, enum fex_exception,

57 int, void *);

59 /* system dependent auxiliary functions */

60 extern enum fex_exception __fex_get_invalid_type(siginfo_t *, ucontext_t

*)s

new usr/src/lib/libm comon/nBx/fex_handl er.h

61 extern void _ fex_get_op(siginfo_t *, ucontext_t *, fex_info_t *);
62 extern void _ fex_st_result(siginfo_t *, ucontext_t *, fex_info_t *);

64 /* inline tenplates and nacros for accessmg fp state */
65 extern void __fenv_getfsr(unsigned |ong *

66 extern void _ _fenv_setfsr(const unsigned Iong *);

68 extern void _ _fenv_setfsr(unsigned const long *);

68 #if defined(__sparc)

70 #define _ fenv_get_rd(X) ((X>>30) &0x3)
71 #define _ fenv_set_rd(XY) X=(X&-0xc0000000ul) | ((Y) <<30)
73 #define __fenv_get_te(X) ((X>>23) &0x1f)
74 #define __fenv_set_te(X YY) X=(X&-0x0f 800000ul) | ((Y) <<23)
76 #define __fenv_get_ex(X) ((X>>5) &0x1f)
77 #define __fenv_set_ex(X V) X=(X&-0x000003e0ul) | ((Y) <<5)

79 #elif defined(__ x86)

81 extern void fenv_get cwsw(unsi gned int *);
82 extern void __fenv_setcwsw(const unsigned int *);

84 extern void __fenv_getnxcsr(unsigned int *);
85 extern void __fenv_setnxcsr(const unsigned int *);

87 #define __fenv_get_rd(X) ((X>>26) &3)

88 #define __fenv_set_rd(XY) X=(X&-0x0c000000) | ((Y) <<26)

90 #define __fenv_get_rp(X) ((X>>24) &3)

91 #define __fenv_set_rp(XY) X=(X&-0x03000000) | ((Y) <<24)

93 #define __fenv_get_te(X) ((X>>16) &0x3d)

94 #define __fenv_set_te(XY) X=(X&-0x003d0000) | ((Y) <<16)

96 #define __fenv_get_ex(X) (X&0x3d)

97 #define __fenv_set_ex(XY) X=(X&-0x0000003d) | (Y)

99 /*

100 * These nacros define some useful distinctions between various
101 * SSE instructions. |In some cases, distinctions are nade for
102 * the purpose of sinplifying the decoding of instructions, while
103 * in other cases, they are made for the purpose of sinplying the
104 * enulation. Note that these values serve as bit flags within
105 * the enumvalues in sseinst_t.

106 */

107 #define DOUBLE 0x100

108 #define SIMD 0x080

109 #define | NTREG 0x040

111 typedef union {

112 doubl e d[2] ;

113 long | ong 1[2];

114 fl oat fl4];

115 int i[4];

116 } sseoperand_t;
__unchanged_portion_omtted_

new usr/src/lib/libm comon/nBx/fex_| og.c

R R R R

9376 Sun May 4 03:06:29 2014
new usr/src/lib/libm comon/nBx/fex_| og.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkkkhkkkkkkk kkkkkkkkkhkkkkkkkk ok k ok k k%

__unchanged_portion_omtted_

108 #ifdef __sparcv9
109 #define FRAMEP(X)
110 #el se
111 #define FRAMEP(X)
112 #endif

114 #ifdef _LP64

115 #define PD G "16"
116 #el se

117 #define PD G " 8"
118 #endi f

(struct frame *)(X)

120 /* look for a matching exc_list; return 1 if one is found,
121 otherwi se add this one to the list and return 0 */

(struct frame *)((char*) (X +(((long)(X)&1)?2047:0))

122 static int check_exc_list(char *addr, unsigned |ong code, char *stk,

123 struct frame *fp)

124 {

125 struct exc_list *I, *Il = NULL;
125 struct exc_list *I, *II;

126 struct franme *f;

127 int i, n;

129 if (list) {

130 for (I =1list; I; Il =1, | =1->next)

131 if (I->addr != addr || |->code != code)
132 conti nue;

133 if (log_depth < 1 || I->nstack < 1)
134 return 1,

135 if (I->stack[0] != stk)

136 cont i nue;

137 n
138 fo =1, f =fp; i <
139 f && f->fr_savpc; i+
140 if (l1->stack[i]
141 n = 0;
142 br eak;
143

144 if (n)

145 return 1;

146 }

147 }

= 1;
ro(i

|
+
!

149 /* create a new exc_list structure and tack it on the list
150 for (n =1, f =fp; n <log_depth & f && f->fr_savpc;

151 n++, f = FRAMEP(f->fr_savfp)) ;

152 if ((I = (struct exc_list *)malloc(sizeof (struct exc_|ist)
153 (n - 1) * sizeof(char *))) != NULL) {

154 | - >next NULL;

155 | - >addr addr;

156 | - >code code;

157 | ->nstack = ((log_depth < 1)? 0 : n);

158 | ->stack[0] = stk;

159 for (i =1; i < n; i++)

160 >stack[i] = (char *)fp->fr_savpc;

161 = FRAMEP(f p->fr_savfp);

162 }

163 if (list)

164 I'l->next =1;

165 el se

166 list =1;

ﬁ__
-

f = FRAMEP(f->fr_savfp))

og_depth & i < |->nstack &&
= (char *)f->fr_savpc) {

*/

+

new usr/src/lib/libm comon/nBx/fex_| og.c

167 }
168 return 0;
169 }

__unchanged_portion_omtted_

new usr/src/lib/libm comon/nBx/fna.c 1

R R R R

11316 Sun May 4 03:06:31 2014
new usr/src/lib/libm comon/nBx/fna.c

hkkkkkkkkkkkkkkkkhkkkkhkhkhkhkkkkkkkkkkkkkkkkkkkkkk ok kk k ok k k%

__unchanged_portion_omtted_

56 #define half
57 #define two
58 #define two52
59 #define two27
60 #define twonR6
61 #define twonB2
62 #define twonb4
63 #define huge
64 #define tiny
65 #define tiny2

0000000000
LONRORONEO
cccocoocaan

67 static const unsigned int fsr_rm= 0xc0000000u;

69 /*

70 * fma for SPARC. 64-bit double precision, big-endian

71 */

72 doubl e

73 __fma(double x, double y, double z) {

74 uni on {

75 unsi gned i[2];

76 doubl e d;

77 } oxx, vy, zz;

78 doubl e xhi, yhi, xlo, ylo, t;

79 unsi gned int xy0, xyl, xy2, xy3, zO0, zl, z2, z3, fsr, rm sticky;
79 unsi gned xy0, xyl1, xy2, xy3, z0, z1, z2, z3, rm sticky;

80 unsigned int fsr;

80 int hx, hy, hz, ex, ey, ez, exy, sxy, sz, e, ibit;

81 vol atil e double dummy;

83 /* extract the high order words of the argunents */

84 xx.d = x;

85 yy.d =y;

86 zz.d = z;

87 hx = xx.i[0] & ~0x80000000;

88 hy = yy.i[0] & ~0x80000000;

89 hz = zz.i[0] & ~0x80000000;

91 /* dispense with inf, nan, and zero cases */

92 if (hx >= 0x7ff00000 || hy >= 0x7ff00000 || (hx | xx.i[1]) == 0 ||
93 (hy | yy.i[1]) == 0) /* x or y is inf, nan, or zero */
94 return (x * y + z);

96 if (hz >= Ox7ff00000) /* z is inf or nan */

97 return (x + z); /* avoid spurious under/overflowin x * y */
99 if ((hz | zz.i[1]) == 0) /* z is zero */

100 /*

101 * X * yisnt zero but could underflow to zero,

102 * so don’t add z, lest we perturb the sign

103 */

104 return (x * vy);

106 /*

107 * now X, y, and z are all finite and nonzero; save the fsr and
108 * set round-to-negative-infinity nmbde (and cl ear nonstandard
109 */m)de before we try to scal e subnornal operands)

110 *

111 _ fenv_getfsr32(&fsr);

112 _ fenv_setfsr32(& sr_rm;

new usr/src/lib/libm comon/nBx/fna.c

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

151
152
153
154
155
156
157
158
159
160
161

163
164
165
166
167
168
169
170
171
172
173
174
175

177
178
179

/* extract signs and exponents, and nornalize subnormals */
sxy = (xx.i[0] ~ yy.i[0]) & 0x80000000;

sz = zz.i[0] & 0x80000000;
ex = hx >> 20;
if (lex) {
xx.d = x * two52;
ex = ((xx.i[0] & ~0Ox80000000) >> 20) - 52;
}
ey = hy >> 20;
it (tey) {
yy.d =y * tw52
) ey = ((yy.i[0] & ~0x80000000) >> 20) - 52;
ez = hz >> 20;
if (lez) {
zz. d =z * twb
ez = ((zz.i[0] & ~0x80000000) >> 20) - 52;
}

I * nultiply x*y to 106 bits */
exy = ex + ey - Ox3ff;

xx.i[0] = (xx.i[0] & Oxfffff) | Ox3ff00000;
yy.i[0] = (yy.i[0] & Oxfffff) | Ox3ff00000;
X = xx.d;
y =yy.d;
xhi = ((x + twonR6) + two27) - two27;
yhi = ((y + twonR26) + two27) - two27;
xlo = x - xhi;
ylo =y - yhi;
X *=y;
y = ((xhi * yhi - x) + xhi * ylo + xlo * yhi) + xlo * ylo;
if (x >=tw) {
x *= hal f;
y *= hal f
exy++;
}
/* extract the significands */
xx.d = x;
xy0 = (xx i[0] & Oxfffff) | Ox100000
xyl = xx.i[1];
yy.d =t =y + twonB2
Xy2 =yy.i[1];
yy.d = (y - (t - twonB2)) + twonb4;
xy3 = yy.i[1]
z0 = (zz.i[0] & Oxfffff) | Ox100000;
z1 = zz.i[1];
z2 = 23 = 0;
/*

* now x*y is represented by sxy, exy, and xy[0-3], and z is
* represented |ikewise; swap if need be so |xy| <= |z|

|f (exy > ez || (exy == ez && (xy0 > z0 || (xy0 == z0 &&
(Xyl > z1 || (xyl ==z1 && (xy2 | xy3) !=0)))))) {

= SXy; SXy = sz; Sz = g
e = exy; exy = ez; ez = g
e = xy0; xy0 = 20; z0 = e;
e = xyl; xyl = z1; z1 = e;
z2 = Xxy2; xy2 = 0;
z3 = xy3; xy3 = 0;

}

/* shift the significand of xy keeping a sticky bit */
e = ez - exy;
if (e > 116) {

new usr/src/lib/libm comon/nBx/fna.c

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

213
214
215
216
217
218
219
220
221
222
223

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

244
245

xyO0
xy3 = 1;
} else if (e >= 96) {
sticky = xy3 | xy2 | xyl | ((xy0 << 1) << (127 - e));
Xy3 = xy0 >> (e - 96);
if (sticky)
xy3 | = 1;
xy0 = xyl = xy2 = 0;
} else if (e >= 64) {
sticky = xy3 | xy2 | (
xy3 = (xyl >> (e - 64)
if (stlcky)

xyl = xy2 = 0;

(xyl << 1) << (95 - e));
) | ((xy0 << 1) << (95 - €));

xy3 | = 1;
xy2 = xy0 >> (e - 64);
xy0 = xyl = 0;
} elseif (e >= 32) {
stlcky = xy3 | ((xy2 << 1) << (63 - €));
= (xy2 >> (e - 32)) | ((xyl << 1) << (63 - e));

|f (st|cky)
xy3 | =
Xy2 = (Xyl >> (e - 32)) | ((xy0 << 1) << (63 - e));
xyl = xy0 >> (e 32)
xy0 = 0;
} elseif (e) {
sticky = (xy3 << 1) << (31 - e);
Xy3 = (xy3 >>e) | ((xy2 << 1) << (31 - e));
if (sticky)
xy3 | = 1;
Xy2 = (xy2 >>e) | ((xyl << 1) << (31 - e));
xyl = (xyl >>e) | ((xy0 << 1) << (31 - e));
xy0 >>= eg;

}

/* if this is a magnitude subtract, negate the significand of
if (sxy n sz) {

Xy0 = ~xyO0;
Xyl = ~xyl;
Xy2 = ~xy2;
xy3 = -xy3;
if (xy3 ==

if (?o»+xy2 == 0)
if (++xyl == 0)

XyO++;
}
/* add, propagating carries */
z3 += xy3;
= (z3 < xy3);
z2 += xy2;
if (e) {
Z2++;
= (22 <= xy2);
} else
= (z2 < xy2);
z1 += xyl;
if (e {
z1++;
e = (z1 <= xyl);
} else
= (21 < xyl);
z0 += xyO0;
if (e)

z0++;

/* postnornalize and collect rounding information into z2 */
if (ez <1) {

xy */

new usr/src/lib/libm comon/nBx/fna.c

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

301
302
303

305
306
307
308
309
310
311

4

/* result is tiny; shift right until exponent is wthin range */

e =1- ez

if (e>56){
=1; /* result can’t be exactly zero */
zO=zl=0,
} elseif (e >= 32)

sticky = z3 |{ z2 | ((z1 << 1) << (63 - €));

z2 = (z1 >> (e - 32)) | ((z0 << 1) << (63 - €));

if (sticky)
z2 | = 1;

z0 >> (e - 32);

z1 =
Z =
} else {
sticky = z3 | (z2 << 1) << (31 - e);
z2 = (z2 > ¢e) | ((z1 << 1) << (31 - €));
if (sticky)
z2 | = 1;
z1 = (z1 >>e) | ((z0 << 1) << (31 - €));
z0 >>= g;

}
ez = 1;
} else if (z0 >= 0x200000) {
/* carry out; shift right by one */
sticky = (z2 & 1) | z3;
z2 = (z2 >> 1) | (z1 << 31);
if (sticky)
2 =1
(zl >> 1) | (z0 << 31);
zO >>= 1;
ez++;
} else {
if (z0O < 0x100000 && (z0 | z1 | z2 | z3) '=0) {
*

* borrow cancel | ation; shift left as nuch as
* exponent all ows

mle (l(zO | (z1 & Oxffe00000)) && ez >= 33) {
z1;

zl = z2;
z2 = 23;
z3 = 0;

ez -= 32;

}
while (z0 < 0x100000 && ez > 1) {
(z0 << 1) | (z1 >> 31);

z0 =
z1 = (z1 << 1) | (z2 >> 31);
z2 = (z2 << 1) | (z3 >> 31);
23 <<= 1,
ez--;
}
}
1f (z3)
2 =1

}

/* get the rounding node and cl ear current exceptions */
rm= fsr >> 30;
fsr & ~FSR_CEXC;

/* strip off the integer bit, if there is one */
ibit = z0 & 0x100000;
if (ibit)
z0 -= 0x100000;
el se {
ez = 0;
if (l(zO| z1 | z2)) { /* exact zero */

new usr/src/lib/libm comon/nBx/fna.c 5 new usr/src/lib/libm comon/nBx/fna.c 6

312 zz.i[0] = rm == FSR_RM ? 0x80000000 : O; 378 dummy *= tiny;
313 zz.i[1] = 379 el se
314 _fenv setfsr32(&fsr); 380 dumy -= tiny2;
315 return (zz.d); 381 } else {
316 } 382 dummy = huge;
317 } 383 dummy += tiny;

384 }
319 /* 385 } else {
320 * flip the sense of directed roundings if the result is negative; 386 fsr |= (fsr & Ox1f) << 5;
321 * the logic below applies to a positive result 387 _ fenv_setfsr32(&fsr);
322 */ 388 }
323 if (sz) 389 return (zz.d);
324 rm”=rm>> 1; 390 }

__unchanged_portion_onitted_

326 /* round and raise exceptions */
327 if (z2) { 496 #if 0
328 fsr | = FSR_NXC, 497 [*

498 * another frma for x86: assumes return value will be left in
330 /* deci de whet her to round the fraction up */ 499 * |ong double (80-bit double extended) precision
331 if (rm== FSR RP || (rm== FSR RN && (z2 > 0x80000000u | | 500 */
332 (z2 == 0x80000000u && (zl & 1))))) { 501 | ong doubl e
333 /* round up and renormalize if necessary */ 502 _ _frma(doubl e x, double y, double z) {
334 if (++z1 == 0) { 503 uni on {
335 if (++z0 == 0x100000) ({ 504 unsigned i[3];
336 z0 = 0; 505 | ong doubl e e;
337 ez++; 506 }oxx, yy, zz, tt;
338 } 507 | ong doubl e xe ye, xhi, xlo, yhi, ylo, zhi, zlo;
339 } 508 int ex, ey,
340 } 509 unsi gned cwsw "ol dewsw, s;
341 }

511 /* convert the operands to doubl e extended */
343 /* check for under/overflow */ 512 xx.e = (long double) x;
344 if (ez >= O0x7ff) { 513 yy.e = (long double) y;
345 if (rm==FSRRN || rm==FSR RP) { 514 z.e = (long double) z;
346 zz.i[0] = sz | Ox7ff00000;
347 zz.i[1] = 0; 516 /* extract the exponents of the argunments */
348 } else { 517 ex = i[2] & Ox7fff;
349 zz.i[0] = sz | Ox7fefffff; 518 ey = yy.i[2] & Ox7fff;
350 zz.i[1] = Oxffffffff; 519 ez = zz.i[2] & Ox7fff;
351 }
352 fsr |= FSR_OFC | FSR_NXC 521 /* dispense with inf, nan, and zero cases */
353 } else { 522 if (ex == Ox7fff || ey == Ox7fff || ex == 0 || ey == 0)
354 zz.i[0] = sz | (ez << 20) | zO; 523 /* x or y i1s inf, nan, or zero */
355 zz. i[1] = z1; 524 return (xx.e * yy.e + zz.e);
357 /* 526 if (ez >= Ox7fff) /* z is inf or nan */
358 * libit => exact result was tiny before rounding, 527 return (xx.e + zz.e); /* avoid spurious inexact in x *y */
359 * z2 nonzero => result delivered is inexact
360 */ 529 if (ez ==0) /* zis zero */
361 if (libit) { 530 return (xx.e * yy.e); /* x * yisn't zero; no need to add z */
362 if (z2)
363 fsr | = FSR_UFC | FSR_NXC; 532 /*
364 else if (fsr & FSR_UFM 533 * save the control and status words, mask all exceptions, and
365 fsr | = FSR_UFC; 534 * set rounding to 64-bit precision and to-nearest
366 } 535 */
367 } 536 __fenv_get cwsw(&ol dcwsw) ;

537 cwsw = (ol dewsw & Oxf OcOffff) | 0x033f 0000;
369 /* restore the fsr and enmul ate exceptions as needed */ 538 __fenv_set cwsw &wsw) ;
370 if ((fsr & FSR CEXC) & (fsr >> 23)) {
371 _ fenv_setfsr32(&fsr); 540 I* rmltlply X*y to 106 bits */
372 if (fsr & FSR OFC) { 541 Xe = XX.e;
373 dummy = huge; 542 xx.i[0] = O;
374 dummy *= huge; 543 xhi = xx.e; /* hi 32 bits */
375 } elself (fsr &FSRUFC) { 544 xlo = xe - xhi; /* lo 21 bits */
376 dumy = ny; 545 ye = yy.e;

377 if (fsr & PSR _NXC) 546 yy.i[0] = o;

new usr/src/lib/libm comon/nBx/fna.c

547 yhi = yy.e;

548 ylo = ye - yhi

549 XX.e = xe * ye

550 XX.i[0] &= ~Ox7ff; /* 53 bits of x*y */

551 yy.e = ((xhi * yhi - xx.e) + xhi * ylo + xlo * yhi) + xlo * ylo;
553 /* reduce to a sumof two terms */

554 if (yy.e !=0.0) {

555 ex = xx.i[2] & Ox7fff;

556 if (ez - ex > 10) {

557 /* collapse y into a single bit and add to x */
558 yy.i[0] =

559 yy.i[1] = 0x80000000

560 yy.i[2] = (yy.i[2] & 0x8000) | (ex - 60)
561 XX.e += yy.e

562 } else if (ex - ez <= 10)

563 XX.e += zz.e; [* exact */

564 zz.e = yy.e

565 } else if (ex - ez <= 42)

566 /* split z into two pieces */

567 tt.i[0] =0

568 tt.i[1] = 0x80000000

569 tt.i[2] = ex + 11

570 zhi = (zz.e + tt.e) - tt.e

571 zlo = zz.e - zhi

572 XX. e += zhi

573 zz.e = yy.e + zlo

574 } elseif (ex - ez <= 63)

575 zz.e += yy.e; [* exact */

576 } elseif (ex - ez <= 106) {

577 /*

578 * collapse the tail of z into a sticky bit and add z
579 * toy wthout error

580 */

581 if (ex - ez <= 81) {

582 s =1 << (ex - ez - 50)

583 if (zz.i[0] & (s - 1))

584 zz.i[0] |=s;

585 zz.i[0] & ~(s - 1)

586 } else {

587 s =1 << (ex - ez - 82)

588 if ((zz.i[1] & (s - 1)) | zz.i[0])
589 zz.1[1] | = s;

590 zz.i[1] & ~(s - 1)

591 zz.i[0] =0

592 }

593 zz.e += yy.e;

594 } else {

595 * collapse z into a single bit and add to y */
596 zz.i[0] =

597 zz.i[1] = 0x80000000

598 zz.i[2] = (zz.i[2] & 0x8000) | (ex - 113)
599 zz.e += yy.e

600 }

601 }

603 /* restore the control and status words, and sum */

604 __fenv_set cwsw(&ol dcwsw) ;

605 return (xx.e + zz.e)

606 }

607 #endi f

495 #el se

496 #error Unknown architecture

497 #endi f

new usr/src/lib/libm comon/ mdx/fmal.c

R R R R

28135 Sun May 4 03:06:33 2014
new usr/src/lib/libm comon/ nmdx/fmal.c

hkkkkkkkkkkkkkkkkhkkkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkk ok kkk ok k k%

__unchanged_portion_omtted_

62 #define hal f
63 #define two

64 #define twonil6
65 #define twonk4
66 #define two20
67 #define twonR8
68 #define twonvé
69 #define twoml24
70 #define two36
71 #define twonB2
72 #define huge
73 #define tiny
74 #define tiny2
75 #define zero
76 #define inf

77 #define snan

T 0000000000

0000000000000000
ccoanoa

RPRRRPRRPEROO~NDUTAWN RO

T W N |2 O

79 static const unsigned int fsr_rm= 0xc0000000u;

81 /*

82 * fmal for SPARC: 128-bit quad precision, big-endian
*
/

84 | ong doubl e
85 __fmal (I ong double x, |ong double y, |long double z) {

86 uni on {

87 unsigned int i[4];

87 unsigned i[4];

88 | ong doubl e qg;

89 } oxx, yy, zz;

90 uni on {

91 unsigned int i[2];

91 unsi gned i[2];

92 doubl e d;

93 } oy

94 doubl e dx[5], dy[5], dxy[9], c, s;

95 unsigned int xy0, xyl, xy2, xy3, xy4, xy5, xy6, Xy7;
96 unsi gned int z0, z1, z2, z3, z4, 25, 26, z7,

97 unsigned int rm sticky;

95 unsi gned xy0, xyl, xy2, xy3, xy4, xy5, xy6, xy7;
96 unsi gned z0, z1, z2, z3, z4, z5, z6, z7;

97 unsigned rm sticky;

98 unsigned int fsr;

99 int hx, hy, hz, ex, ey, ez, exy, sxy, sz, e, ibit;
100 int cx, cy, cz;

101 vol atil e double dummy;

103 /* extract the high order words of the argunents */
104 XX. q = X;

105 yy.q =y,

106 zz.q = z;

107 hx = xx.i[0] & ~0x80000000;

108 hy = yy.i[0] & ~0x80000000;

109 hz = zz.i[0] & ~0x80000000;

111 /*

112 * distinguish zero, finite nonzero, infinite, and quiet nan
113 * argunents; raise invalid and return for signaling nans
114 *

115 if (hx >= Ox7fff0000) {

116 if ((hx & OXFFff) | xx.i[1] | xx.i[2] | xx.i[3]) {

new usr/src/lib/libm comon/ mdx/fmal.c

117 if (!'(hx & 0x8000)) {

118 /* signaling nan, raise invalid */
119 dummy = snan;

120 dummy += snan;

121 xx.i[0] |= 0x8000;

122 return (xx.q);

123 }

124 cx = 3; /* quiet nan */

125 } else

126 cX = I* inf */

127 } else if (hx == 0) {

128 cx = (xx.i[1] | xx.i[2] | xx.i[3]) ? 1 :
129 /* subnornal or zero */
130 } else

131 cx = 1; /* finite nonzero */
133 if (hy >= Ox7fff0000) {

134 if ((hy & Oxffff) | yy.i[1] | yy.i[2] |
135 if (!(hy & 0x8000)) {

136 dummy = snan

137 dumy += sna

138 yy.i[0] |= 0x8000

139 return (yy.q);

140 }

141 cy = 3;

142 } else

143 cy =2

144 } elseif (hy ==0) {))

145 cy = (yy.i[1] | yy.i[2] | yy.i[3]) ? 1:
146 } else

147 cy = 1;

149 if (hz >= Ox7fff0000) {

150 if ((hz & Oxffff) | zz.i[1] | zz.i[2] |
151 if (! (hz & 0x8000)) {

152 dummy = snan;

153 dummy += snan;

154 zz.i[0] |= 0x8000

155 return (zz.q);

156 }

157 cz = 3;

158 } else

159 cz = 2;

160 } else|f (hz == 0) {

161 (zz.i[1] | zz.i[2] | zz.i[3]) ? 1:
162 } else

163 cz = 1;

165 /* get the fsr and clear current exceptions */
166 __fenv_getfsr32(&sr);

167 fsr & ~FSR_CEXC;

169 /* handl e all other ze o, inf, and nan cases */
170 if (ex!=1]] cy!= ||cz|=1){

171 /* if x or yis a quiet nan, return it */
172 if (cx == 3) {

173 _ fenv_setfsr32(&fsr);

174 return (x);

175 }

176 if (cy == 3) {

177 _ fenv_setfsr32(&fsr);

178 return (y);

179 }

181 /* if x*y is O*inf, raise invalid and return the defaul t
182 if ((cx == 0 & cy ==2) || (cx == 2 & cy == 0)) {

nan */

new usr/src/lib/libm comon/ mdx/fmal.c

183 dummy = zero;

184 dunmmy *= inf;

185 zz.i[0] = OXTRFEffff;

186 zz.i[1] = zz.i[2] =zz.i[3]
187 return (zz.q);
188 }

190 /* if zis a quiet nan, return it */
191 if (cz == 3)

192 _ fenv_setfsr32(&fsr);

193 return (z);

194 }

196 /*

197 * now none of X, y, or z is nan;

198 * is inf

199 */

200 if (cx == 2 ||

201 /*

202 *

203 *

204

205 if (cz ==2) {

206 if ((|nt) ((xx.i[0
dummy in

i

cy = 2) {

z is also inf,

207 =
208 dummy -
209 zz.i[0]
210 zz.i[1] i
211 Ooxf ff
212 return (zz.q);
213
214 _ fenv_setfsr32(&fsr);
215 return (z);

216 }

-

218 /* othervmsetheresult is i

= Oxffffffff;

handl e cases where x or y

if either we have inf-inf or
the result is the same as z depending on signs
*/

yy-i[0]) ~ zz.i[0]) < 0) {

h appropriate sign */

inf wt
219 zz.i[0] = ((xx. |[0] N yy.i[0]) & 0x80000000)

220 ox7fff0

221 zz.i[1] -22|[2] =zz.i[3] =
222 _ fenv_setfsr32(&fsr);

223 return (zz.q);

224 }

226 [* if zis inf,
227 if (cz == 2)
228 __fenv_setfsr32(&sr);
229 return (z);

230 }

return it */

232 /*

233 * now x, y, and z are all finite;
234 * is zero

235 */

236 if (cx ==0]] cy ==0) {

0;

handl e cases where x or y

237 /* either we have 0-0 or the result is the sane as z */

238 if (cz ==0 && (int) ((xx.i[0]
239 0

240 zz.1[0]
241

242 fenv setfsr32(&fsr)
243 return (zz.q);

244
245 __fenv_setfsr32(&fsr);
246 return (z);

247 }

(fsr >> 30)

-

~yy i[0]) N ozz.i[0]) <
== FSR_RM ? 0x80000000 :

new usr/src/lib/libm comon/mdx/fmal.c

249 /* if we get here, x and y are nonzero finite,
250 return (x * vy);

251 }

253 /*

254 * now x, y, and z are all finite and nonzero; set round-to-
255 * negative-infinity node

256 */

257 __fenv_setfsr32(& sr_rm;

259 I*

260 * get the signs and exponents and normalize the significands
261 * of x and y

262 */

263 SXy = (XX.i [O] N yy.i[0]) & 0x80000000;

264 ex = hx >> 16;

265 hx &= Oxffff;

266 if (lex) {

267 if (hx | (xx.i[1] & Oxfffe0000)) {

268 ex = 1;

269 } else if (xx.i[1] | (xx.i[2] & Oxfffe0000)) {
270 hx = xx.i[1];

271 xxX.i[1] = xx.i[2];

272 xx.i[2] = xx.i[3];

273 xx.i[3] = 0;

274 ex = -31;

275 } else if (xx.i[2] | (xx.i[3] & Oxfffe0000)) {
276 hx = xx.i[2];

277 xX.i[1] = xx.i[3];

278 xX.i[2] = xx.i[3] = 0;

279 ex = -63;

280 } else {

281 hx = xx.i[3];

282 xX.i[1] = xx.i[2] = xx.i[3] = 0;

283 ex = -95;

284 }

285 while ((hx & 0x10000) == 0) {

286 hx = (hx << 1) | (xx.i[1] >> 31);

287 XX.i[1] = (xx.i[1] << 1) | (xx.1[2] >> 31);
288 XX. i [2] :(XX|[2] << 1) | (xx.i[3] >> 31);
289 xX.i[3] 1;

290 ex--;

291

292 } else

293 hx | = 0x10000;

294 ey = hy >> 16;

295 hy &= Oxffff;

296 if (ltey) {

297 if (hy | (yy |[1] & Oxfffe0000)) {

298

299 } else |f (yy |[1] | (yy.i[2] & Oxfffe0000)) {
300 =vyy.i[1];

301 yy-![l] =yy.i[2];

302 yy.i[2] =vyy.i[3];

303 yy.i[3] = 0;

304 ey = -31;

305 } else if (yy.i[2] | (yy.i[3] & Oxfffe0000)) {
306 hy = yy.i[2];

307 yy.i[1] = yy.i[3]

308 yy.-i[2] =vyy.i[3] =0;

309 ey = -63;

310 } else {

311 hy = yy.i[3];

312 yy-i[1] =yy.i[2] =yy.i[3] =0;

313 ey = -95;

314 }

4

z nust be zero */

new usr/src/lib/libm comon/ mdx/fmal.c

315 whi | e ((hy & OxlOOOO) == 0) {

316 hy = (hy << 1) | (yy.i[1] >> 31);

317 yy.i[1] = (yy.i[1] << 1) | (yy.1[2] >> 31);
318 yy.i[2] = (yy.i[2] << 1) | (yy.i[3] >> 31);
319 yy.i[3] <<= 1;

320 ey--;

321

322 } else

323 hy | = 0x10000;

324 exy = ex + ey - Ox3fff;

326 I* convert the significands of x and y to doubles */

327 c = tworl6;

328 dx[0] = (double) ((int) hx) * c;

329 dy[0] = (double) ((int) hy) * c;

331 c *= twonk4;

332 dx[1] = (double) ((int) (xx.i[1] >> 8)) * c;

333 dy[1] = (double) ((int) (yy.i[1] >> 8)) * c;

335 c *= twonk4;

336 dx[2] = (double) ((int) (((xx.i[1] << 16) | (xx.i[2] >> 16)) &
337 oxffffff)) * c;

338 dy[2] = (double) ((int) (((yy.i[1] << 16) | (yy.i[2] >> 16)) &
339 oxffffff)) * c;

341 c *= twonR4;

342 dx[3] = (double) ((int) (((xx.i[2] << 8) | (xx.i[3] >> 24)) &
343 oxffffff)) * c;

344 dy[3] = (double) ((int) (((yy.i[2] <<8) | (yy.i[3] >> 24)) &
345 oxffffff)) * c;

347 c *= twonk4;

348 dx[4] :(double) ((int) (xx.i[3] & Oxffffff)) * c;

349 dy[4] = (double) ((int) (yy.i[3] & Oxffffff)) * c;

351 /* formthe "digits" of the product */

352 dxy[0] = dx[O0] * dy[O];

353 dxy[1] = dx[O] * dy[1] + dx[1] * dy[O];

354 dxy[2] = dx[O0] * dy[2] + dx[1] * dy[1] + dx[2] * dy[O];
355 dxy[3] = dx[O] * dy[3] + dx[1] * dy[2] + dx[2] * dy[1] +
356 dx[3] * dy[O];

357 dxy[4] = dx[O] * dy[4] + dx[1] * dy[3] + dx[2] * dy[2] +
358 dx[3] * dy[1] + dx[4] * dy[O];

359 dxy[5] = dx[1] * dy[4] + dx[2] * dy[3] + dx[3] * dy[2] +
360 dx[4] * dy[1];

361 dxy[6] = dx[2] * dy[4] + dx[3] * dy[3] + dx[4] * dy[2];
362 dxy[7] = dx[3] * dy[4] + dx[4] * dy[3];

363 dxy[8] = dx[4] * dy[4];

365 /* split odd-nunbered terns and conbine into even-nunbered ternms */
366 c = (dxy[1] + two20) - two20;

367 dxy[0] += c;

368 dxy[1] -= c;

369 c = (dxy[3] + twonR8) - twon28;

370 dxy[2] += c + dxy[1];

371 dxy[3] -= c;

372 c = (dxy[5] + twon¥6) - twonv6;

373 dxy[4] += c + dxy[3];

374 dxy[5] -= c;

375 c = (dxy[7] + twonl24) - twonil24;

376 dxy[6] += c + dxy[5];

377 dxy[8] += (dxy[7] - c);

379 opagate carries, adjusting the exponent if need be */

/ r
380 dxy[7] = dxy[6] + dxy[8];

new usr/src/lib/libm comon/ mdx/fmal.c

381 dxy[5] = dxy[4] + dxy[7];
382 dxy[3] = dxy[2] + dxy[5];
383 dxy[1] = dxy[O0] + dxy[3];
384 if (dxy[1] >= two) {

385 dxy[0] *= half;
386 dxy[1] *= half;
387 dxy[2] *= half;
388 dxy[3] *= half;
389 dxy[4] *= half
390 dxy[5] *= half;
391 dxy[6] *= half;
392 dxy[7] *= half;
393 dxy[8] *= half
394 exy++;

395 1

397 /* extract the significand of x*y */
398 s = two36;

399 u.d = c = dxy[1] + s;
400 xy0 = u.i[1];

401 c -=s;

402 dxy[1] -= c;

403 dxy[0] -= c;

405 s *= twonB2;

406 u.d =c = dxy[1l] + s;
407 xyl = u.i[1];

408 c-=s;

409 dxy[2] += (dxy[0] - c);
410 dxy[3] = dxy[2] + dxy[5];
412 s *= twonB2;

413 u.d =c = dxy[3] + s;
414 xy2 = u.i[1];

415 c -=s;

416 dxy[4] += (dxy[2] - c);
417 dxy[5] = dxy[4] + dxy[7];
419 s *= twonB2;

420 u.d = ¢ = dxy[5] + s;
421 xy3 = u.i[1];

422 c -=s;

423 dxy[4] -

424 dxy[5] dxy[4] + dxy[7]
426 s *= twonB2;

427 u.d = c = dxy[5] + s;
428 xy4 = u.i[1];

429 cC -=5s;

430 dxy[6] += (dxy[4] - c¢);
431 dxy[7] = dxy[6] + dxy[8];
433 s *= twonB2;

434 u.d =c =dxy[7] + s;
435 xy5 = u.i[1];

436 cC -=5;

437 dxy[8] += (dxy[6] - c);
439 s *= twonB2;

440 u.d =c = dxy[8] + s;
441 xy6 = u.i[1];

442 c -=s;

443 dxy[8] -= c;

445 s *= twonB2;

446 u.d =c = dxy[8] + s;

new usr/src/lib/libm comon/ mdx/fmal.c

447 Xy7 = u.i[1];

449 /* extract the sign, exponent, and significand of z */
450 sz = zz.i[0] & 0x80000000;

451 ez = hz >> 16;

452 z0 = hz & Oxffff;

453 if (lez) {

454 if (z0 | (zz i[1] & Oxfffe0000)) {

455 z1 = zz.i[1];

456 z2 = z2z.i[2];

457 z3 = zz.i[3];

458 ez = 1;

459 } elseif (zz.i[1 (zz.i[2] & Oxfffe0000)) {
460 z0 = zz.i[1];

461 z1 = zz.i[2];

462 z2 = zz.i[3];

463 z3 = 0;

464 ez = —31;

465 } elseif (zz.i[2 (zz.i[3] & Oxfffe0000)) {
466 z0 = zz.i 2];

467 z1 = zz.i[3];

468 z2 = z3 = 0;

469 ez = -63;

470 } else {

471 z0 = zz.i[3];

472 z1 = z2 = z3 = 0;

473 ez = -95;

474 }

475 while ((z0 & 0x10000) == 0) {

476 z0 = (z0 << 1) | (z1 >> 31);

477 z1 = (z1 << 1) | (z2 >> 31);

478 z2 = (z2 << 1) | (z3 >> 31);

479 z3 <<= 1,

480 ez--;

481 }

482 } else {

483 z0 | = 0x10000;

484 z1 = zz.i[1];

485 z2 = zz.i[2];

486 z3 :zz.i[S];

487 }

488 z4 =25 = 26 = 27 = 0;

490 I*

491 * now x*y is represented by sxy, exy, and xy[0-7], and z is
492 * represented |1 kewise; swap if need be so |xy| <= |z|
493 */

494 if (exy > ez || (exy == ez&&(xy0>zo|| (xy0 == zO&&(xy1>zl||
495 (xyl == z1 && (xy2 > z2 || (xy2 == z2 && (xy3 > z3
496 (xy3 == z3 && (xy4 | Xy5 | xy6 | xy7) != 0)))))))))) {
497 e = SXY; SXy = sz; = e;

498 e = exy; exy = ez; ez = e;

499 e = xy0; xy0 = zO; z0 = e

500 e = xyl;, xyl = z1; z1 = e;

501 e = Xy2; xy2 = z2; z2 = e,

502 e = xy3; xy3 = z3; z3 = g;

503 z4 = xy4; xy4 = 0;

504 z5 = xy5; xy5 = O;

505 z6 = xy6; xy6 = O;

506 z7 = xy7; xy7 = 0;

507 1

509 /* shift the significand of xy keeping a sticky bit */
510 = ez - exy,;

511 |f (e > 236) {

512 xy0 xyl = xy2 = xy3

= Xxy4 = xy5 = xy6 = O;

new usr/src/lib/libm comon/ mdx/fmal.c

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

} else

} else

} else

} else

} else

} else

} else

xy7 = 1;
f (e >= 224) {
sticky = xy7 | xy6 |
((xy0 << 1) <<(2 e));
Xy7 = xy0 >> (e - 224);

if (sticky)

0 = xyl = X)_/2 = xy3 = xy4 = xy5 = xy6 = 0;
o |
ti

cky = xy7 xy6 | xy5 | xy4 | xy3 | xy2 |
((xyl << 1) << (223 -

= (xyl >> (e - 192)) | ((xyO << 1) << (223

|f (stlcky)
Xy7 | = 1;

xy0 >> (e - 192);

yo xyl = xy2 = xy3 = xy4 = xy5 = 0;

f (e >= 160)

sticky = xy7 | xy6 | xy5 | xy4 | xy3 |
((xy2 << 1) << (191 - e));

Xy7 = (xy2 >> (e - 160)) | ((xyl << 1) << (191

xy6

if (sticky)

xy7 | = 1;
xy6 = (xyl >> (e - 160)) | ((xy0 << 1) << (191
xy5:xy0 >> (e - 1

xyl —xy2=xy3—xy4—0

f (e >= 128)

stlcky = xy7 | xy6 | xy5
(xy3 >> (e - 128))

((xy2 << 1) << (159

|f (stlcky) Y=

=1
Xy6 = (xy2 >> (e - 128)) | ((xyl << 1) << (159
xy5 = (xyl >> (e - 128)) | ((xy0 << 1) << (159
xy4 = xy0 >> (e - 128);
xy0 = xyl = xy2 = xy3 = 0;

f (e >= 96) {
sticky = xy7 | xy6 | xy5 | ((xyd4 << 1) << (127

Xy7 = (xyd >> (e - 96)) | ((xy3 << 1) << (127 -
if (sticky)

xy7 | = 1;
Xy6 = (xy3 >> (e - 96)) | ((xy2 << 1) << (127 -
xy5 = (xy2 >> (e - 96)) | ((xyl << 1) << (127 -
xyd = (xyl >> (e - 96)) | ((xy0 << 1) << (127 - e));
xy3 = xy0 >> (e - 96);
xy0 = xyl = xy2 = 0;
f (e >=64) {
sticky = xy7 | xy6 | ((xy5 << 1) << (95 - e€));
Xy7 = (xy5 >> (e - 64)) | ((xy4 << 1) <<(95—
if (sticky)

Xy7 | =1
Xy6 = (xy4d >> (e - 64)) | ((xy3 << 1) << (95 -
xy5 = (xy3 >> (e - 64)) | ((xy2 << 1) << (95 -
xy4d = (xy2 >> (e - 64)) | ((xyl << 1) << (95 -
xy3 = (xyl >> (e - 64)) | ((xy0 << 1) << (95 -
xy2 = xy0 >> (e - 64);
xy0 = xyl = 0;
f (e >=32) {
sticky = xy7 | ((xy6 << 1) << (63 - ¢)
xy7 = (xy6 >> (e - 32)) | ((xyb5 << 1) << (63 -
if (sticky)

xXy7 | = 1;
Xy6 = (xy5 >> (e - 32)) | ((xy4 << 1) << (63 -
xy5 = (xy4 >> (e - 32)) | ((xy3 << 1) << (63 -
xy4 = (xy3 >> (e - 32)) | ((xy2 << 1) << (63 -
xy3 = (xy2 >> (e - 32)) | ((xyl << 1) << (63 -
xy2 = (xyl >> (e - 32)) | ((xy0 << 1) << (63 -
xyl = xy0 >> (e - 32);

xy5 | Xy4 | xy3 | xy2 | xyl |

-)

- €);

- €);

-9));
- e));

- 9));
e));

e));
e));

xy4 | ((xy3 << 1) << (159 -
-)

e));

new usr/src/lib/libm conmon/ mdx/fmal.c 9 new usr/src/lib/libn conmon/ mdx/fmal.c
579 xy0 = 0; 645 } else
580 } else if (e) { 646 e = (z2 < xy2);
581 sticky = (xy7 << 1) << (31 - e); 647 z1 += xyl;
582 Xy7 = (xy7 >>e) | ((xy6 << 1) << (31 - e)); 648 if (e) {
583 if (sticky) 649 z1++;
584 xy7 | = 1; 650 e = (z1 <= xyl);
585 Xy6 = (xy6 >> e) | ((xy5b << 1) << (31 - e)); 651 } else
586 xy5 = (xy5 >> e) | ((xyd4 << 1) << (31 - e)); 652 e = (z1 < xyl);
587 xy4 = (xyd >> e) | ((xy3 << 1) << (31 - e)); 653 z0 += xy0;
588 xy3 = (xy3 >> e) | ((xy2 << 1) << (31 - €)); 654 if (e)
589 xy2 = (xy2 >>e) | ((xyl << 1) << (31 - e)); 655 z0++;
590 xyl = (xyl >>e) | ((xy0 << 1) << (31 - e));
591 Xy0 >>= g; 657 /* postnormalize and collect rounding information into z4 */
592 } 658 if (ez < 1)
659 /* result is tiny; shift right until exponent is within range
594 /* if this is a magnitude subtract, negate the significand of xy */ 660 e =1- ez;
595 if (sxy ”~ sz) { 661 if (e > 116) {
596 xy0 = ~xyO0; 662 z4 = 1; /* result can't be exactly zero */
597 Xyl = ~xyl; 663 z0 = z1 = z2 = z3 = 0O;
598 Xy2 = ~xy2; 664 } elseif (e >= 96) {
599 xy3 = ~xy3; 665 sticky = z7 | z6 | z5 | z4 | z3 | z2 |
600 Xy4 = ~xy4; 666 ((z1 << 1) << (127 - €));
601 xy5 = ~xy5; 667 z4 = (z1 >> (e - 96)) | ((z0 << 1) << (127 - e));
602 Xy6 = ~Xy6; 668 if (sticky)
603 Xy7 = -xy7; 669 z4 | = 1;
604 if (xy7 == 0) 670 z3 = z0 >> (e - 96);
605 if (++xy6 == 0) 671 z0 = z1 = z2 = O;
606 if (++xy5 == 0) 672 } elseif (e >= 64) {
607 if (++xy4 == 0) 673 sticky = z7 | z6 | z5 | z4 | z3 |
608 if (++xy3 == 0) 674 ((z2 << 1) << (95 - €));
609 if (++xy2 == 0) 675 z4 = (z2 >> (e - 64)) | ((z1 << 1) << (95 - €));
610 if (++xyl == 0) 676 if (sticky)
611 XyO++; 677 z4 | = 1,
612 } 678 z3 = (z1 >> (e - 64)) | ((z0 << 1) << (95 - €));
679 z2 = 20 >> (e - 64);
614 /* add, propagating carries */ 680 z0 = z1 = O;
615 z7 += xy7; 681 } elseif (e >= 32) {
616 e = (z7 < xy7); 682 sticky = z7 | z6 | z5 | z4 | ((z3 << 1) << (63 - €));
617 z6 += Xxy6; 683 z4 = (z3 > (e - 32)) | ((z2 << 1) << (63 - €));
618 if (e) { 684 if (sticky)
619 z26++; 685 z4 | = 1;
620 e = (z6 <= xy6); 686 z3 = (z2 >> (e - 32)) | ((z1 << 1) << (63 - €));
621 } else 687 z2 = (z1 >> (e - 32)) | ((z0 << 1) << (63 - €));
622 e = (z6 < xy6); 688 z1 = z0 >> (e - 32);
623 z5 += xy5; 689 z0 = 0;
624 if (e) { 690 } else {
625 z5++; 691 sticky =27 | z6 | z5 | (z4 << 1) << (31 - e);
626 e = (z5 <= xyb); 692 z4 = (z4 > e) | ((z3 << 1) << (31 - €));
627 } else 693 if (sticky)
628 e = (z5 < xy5); 694 z4 | = 1;
629 z4 += xy4; 695 z3 = (z3 >>e) | ((z2 << 1) << (31 - €));
630 if (e) { 696 z2 = (z2 > ¢e) | ((z1 << 1) << (31 - €));
631 Z4++; 697 z1 = (z1 > ¢e) | ((z0 << 1) << (31 - €));
632 e = (z4 <= xy4); 698 z0 >>= e;
633 } else 699
634 e = (z4 < xyd); 700 ez = 1;
635 z3 += Xxy3; 701 } else if (z0 >= 0x20000) {
636 if (e) { 702 /* carry out; shift right by one */
637 Z3++; 703 sticky = (z4 & 1) | z5 | z6 | z7;
638 e = (z3 <= xy3); 704 z4 = (z4 >> 1) | (z3 << 31);
639 } else 705 if (sticky)
640 e = (z3 < xy3); 706 z4 | = 1;
641 z2 += Xy2; 707 z3 = (z3 >> 1) | (z2 << 31);
642 if (e) { 708 z2 = (z2 >> 1) | (z1 << 31);
643 Z2++; 709 z1 = (z1 >> 1) | (z0 << 31);
644 e = (z2 <= xy2); 710 z0 >>= 1;

new usr/src/lib/libm comon/ mdx/fmal.c

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

746
747

749
750
751
752
753
754
755
756
757
758
759
760
761

763
764
765
766
767
768

770
771
772

774
775
776

ez++;
} else {

if (zO < 0x10000 && (zO | z1 | z2 | z3 | z4 | z5 | z6 | z7)
I =
120 |
* borrow cancel lation; shift left as much as
* exponent all ows
*

while (!(z0 | (z1 & Oxfffe0000)) && ez >= 33) {
z0 = z1;
z1 = z2;
z2 = z3;
z3 = z4;
z4 = z5;
z5 = z6;
z6 = z7;
z7 = 0;
ez -= 32;

}

while (z0 < 0x10000 && ez > 1) {
z0 = (z0 << 1) | (z1 >> 31);
z1 = (z1 << 1) | (z2 >> 31);
z2 = (22 << 1) | (z3 >> 31);
z3 = (z3 << 1) | (z4 >> 31);
z4 = (z4 << 1) | (z5 >> 31);
z5 = (z5 << 1) | (z6 >> 31);
z6 = (26 << 1) | (z7 >> 31);
z7 <<= 1;
ez--;

}

}
if (z56 | z6 | z7
z4 | = 1;

}

/* get the roundi ng node */
rm= fsr >> 30;

/* strip off the integer bit, if there is one */
ibit = z0O & 0x10000;
if (ibit)

z0 -= 0x10000;

el se {
ez = 0;
if (1(z0 | z1 | z2 | z3 | z4)) { /* exact zero */
zz.i[0] = rm== FSR_RM ? 0x80000000 : O;
zz.i[1] = 2zz.i[2] = zz.i[3] = O
_ fenv_setfsr32(&fsr);
return (zz.q);
}
}

*
* flip the sense of directed roundings if the result is negative;
* the logic below applies to a positive result
*/
if (sz)
rmA=rm>> 1;

/* round and raise exceptions */

if (z4)
fsr | = FSR_NXC,
/* decide whether to round the fraction up */
if (rm==FSRRP || (rm== FSR RN & (z4 > 0x80000000u ||
(z4 == 0x80000000u && (z3 & 1))))) {

11

new

777
778
779
780
781
782
783
784
785
786

788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

804
805
806
807
808
809
810
811
812
813
814

816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

usr/src/lib/libm comon/ mdx/fmal.c

/* round up and renormalize if necessary */
if (++z3 ==
if (++z2 == 0)
if (++z1 ==

ez++;

}
}

/* check for under/overflow */
if (ez >= Ox7fff) {
if (rm==FSRRN || rm== FSR RP) {
zz.i[0] sz | Ox7fff0000;
zz.1[2] = zz.i[3]

0;

sz | Ox7ffeffff;
zz.1[2] = zz.i[3] = Oxffffffff;

}
fsr | = FSR_OFC | FSR_NXC
} else {
[sz | (ez << 16) | zO0;
[z1;
[z2;
[z3;

Li[O
Ji[1
Li[2
Li[3
/*
* libit => exact result was tiny before rounding,
* z4 nonzero => result delivered is inexact
*
/
if (libit) {
if (z4)
fsr | = FSR_UFC | FSR_NXC
else if (fsr & FSR_UFM
fsr | = FSR_UFC,

}

/* restore the fsr and emul ate excepti ons as needed */
if ((fsr & FSR CEXC) & (fsr >> 23)) {
__fenv_setfsr32(&f sr);
if (fsr & FSR_ OFC) {
dunmmy = huge;
dummy *= huge;
} elseif (fsr & FSR.UFC) {
dummy = tiny;
if (fsr & FSR NXC)
dumy *= tiny;

dumy -= tiny2;
} else {

dummy = huge;
dummy += tiny;

el se

} else {
fsr |= (fsr & Ox1f) << 5;
__fenv_setfsr32(&f sr);

}
return (zz.q);

837 }

1225
1226
1227

__unchanged_portion_onitted_

#el se
#error Unknown architecture
#endi f

)
if (++z0 == 0x10000)
z0 = 0;

12

new usr/src/lib/libm comon/ mdx/ fmax. c

R R R R

2009 Sun May 4 03:06:35 2014
new usr/src/lib/libm comron/ nm®x/ fmax. c

hkkkkkkkkkkkkkkkkhkkkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkkkk ok k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #if defined(ELFOBJ)

31 #pragma weak fmax = _ fmax

32 #endi f

34 /*

35 * fmax(x,y) returns the larger of x and y. |f just one of the
36 * argunents is NaN, fmax returns the other argunment. |If both
37 * argunents are NaN, fnmax returns NaN.

38 *

39 * See fnaxf.c for a discussion of inplementation trade-offs.
40 */

42 #include "libmh"
43 #include <fenv. h>

/* for isgreaterequal macro */

45 doubl e

46 __frmax(doubl e x, double y) {

47 uni on {

48 unsigned i[2];

49 doubl e d;

50 } xx, yy;

51 unsi gned s;

53 /* if yis nan, replace it by x */
54 if (y'!=y)

55 y = X;

57 /* if x is nan, replace it by y */
58 if (x!=x

59 X =y

61 /* At this point, x and y are either both nuneric, or both NaN */

62 if (lisnan(x) && !isgreaterequal (x, y))

new usr/src/lib/libm comon/ nmdx/ fmax. c

61 /* if x is less thany or x and y are unordered, replace x by y */
62 #if defi ned(COVPARI SON_ MACRO BUG)

63 if (x <vy)

64 #el se

65 if (!isgreaterequal (x, y))

66 #endi f

63 X =y,

65 /*

66 * clear the sign of the result if either x or y has its sign clear
70 * now x and y are either both NaN or both nuneric; clear the
71 */sign of the result if either x or y has its sign clear

67 *

68 xx d = X;

69 =y,

70 #if defi ned(__sparc)

71 s = ~(xx. |[0] & yy.i[0]) & 0x80000000;

72 xx.i[0] &=

73 #elif def| ned(x86)

74 = ~(xx. |[1] & yy.i[1]) & 0x80000000;

75 xx i[1] & ~

76 #el se

77 #error Unknown architecture

78 #endi f

80 return (xx.d);

81

__unchanged_portion_onitted_

new usr/src/lib/libm comon/nBx/fmaxf.c

R R R R

4325 Sun May 4 03:06:36 2014
new usr/src/lib/libm comon/nBx/fmaxf.c

hkkkkkkkkkkkkkkkkhkkkkhkhkhkhkkkkkkkkkkkkkkkkkkkkkk ok kk k ok k k%

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww.opensolaris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

an inplenentati on on SPARC V9 shoul d avoid branching, using
condi tional noves instead where necessary, and be as efficient

22 /*
23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
24 */
25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.
28 */
30 #if defined(ELFOBJ)
31 #pragma weak frmaxf = _ fnaxf
32 #endi f
34 /*
35 * fmax(x,y) returns the larger of x and y. |f just one of the
36 * argunents is NaN, fmax returns the other argunment. |If both
37 * argunents are NaN, fmax returns NaN (ideally, one of the
38 * argunent NaNs).
39 *
40 * (C99 does not require that fmax(-0,+0) = fmax(+0,-0) = +0, but
41 * ideally fmax should satisfy this.
42 *
43 * C99 nekes no nention of exceptions for frmax. | suppose ideally
44 * either fnax never raises any exceptions or else it raises the
45 * invalid operation exception if and only if sonme argunent is a
46 * signaling NaN. In the former case, fnmax should al ways return
47 * one of its arguments. In the latter, frmax shouldn't return a
48 * signaling NaN, although when both argunments are signaling NaNs,
49 * this ideal is at odds with the stipulation that fmax should
50 * always return one of its arguments.
51 *
52 * Commutativity of frmax follows fromthe properties |isted above
53 * except when both argunents are NaN. In that case, frmax may be
54 * declared commutative by fiat because there is no portable way
55 * to tell different NaNs apart. Ideally frmax would be truly com
56 * nutative for all argunents.
57 *
58 * On SPARC V8, fmax nust involve tests and branches. Ideally,

*

*

*

*

as possible in its use of other resources.

new usr/src/lib/libm comon/nBx/fmaxf.c

120

122
123
124

126
127
128

* |t appears to be inpossible to attain all of the aforenentioned
* jdeals sinultaneously. The inplenentation bel ow satisfies the
* follow ng (on SPARC):
*
* 1. fmax(x,y) returns the larger of x and y if neither x nor y
* is NaN and the non-NaN argunment if just one of x or y is NaN
* If both x and y are NaN, fmax(x,y) returns x unchanged.
* 2. fmax(-0,+0) = fmax(+0,-0) =
* 3. If either argurment is a S|gnaI|ng NaN, fnex raises the invalid
* operation exception. Oherwise, it raises no exceptions.
*
/
#include "libmh" /* for isgreaterequal macro */
fl oat
__fmaxf(float x, float y) {
*
* O1$PARCV8pIus/v9 this could be inplenented as follows
* (assuming %0 = x, 1 =y, return value left in %0):
*
* fcnps %cc0,%1,%1
* frovsu % cc0,%0,%1
* fcnps % cc0,%0,9% 1
* frovsul % cc0,%1,%0
* st %0,[)(]
* st %1, [y]
* 1d [x],%0
* 1d [y], %1
* and %0 %1,%2
* set hi %1|(0x80000000) % 3
* andn %W3,%2 %2
* andn %0,%2,%0
* st %0, [x]
* 1d [x],%0
*
* |If VIS instructions are available, use this code instead:
*
* fcnps %cc0,%1,%1
* frovsu % cc0,%0,%1
* fenps % cc0,%0,9% 1
* fmovsul % cc0,%1,%0
* fands %0,%1,%2
* fzeros % 3
* fnegs % 3,% 3
* fandnot2s % 3, % 2, % 2
* fandnot2s % 0,% 2, %0
*
* If VIS 3.0 instructions are avail able, use this:
*
* flcnps % cc0,%0,% 1
* fmovsl g % cc0,% 1,% 0 ! move if %ccOis 1 or 2
*
/
uni on {
unsi gned i ;
float f;
}oxx, vy
unsi gned s;
/* if yis nan, replace it by x */
if (y'l=y)
y =X
/* if x is nan, replace it by y */
if (x !'=x)
X =Yy

new usr/src/lib/libm comon/nBx/fmaxf.c

130
131
130
131
132
133
134
135
132

134
135
139
140
136
137
138
139
140

142

#if defi
#el se

#endi f

143 }
__unchanged_portion_onitted_

/* At this point, x and y are either both nuneric, or both NaN */
if (lisnan(x) && !isgreaterequal (x, y))

/* if x is less than'y or x and y are unordered, replace x by y */
ned(COVPARI SON_MACRO_BUG)

if (x <vy)

if (lisgreaterequal (x, y))
X =Yy
/*
* clear the sign of the result if either x or y has its sign clear

* now x and y are either both NaN or both nuneric; clear the
* sign of the result if either x or y has its sign clear
*/

xx. f = x;

yy. f =y)
S = ~(xx.i & yy.i) & 0x80000000;
XX. 1 & ~s;

return (xx.f);

new usr/src/lib/libm comon/nBx/fmaxl.c

R R R R

1874 Sun May 4 03:06:38 2014
new usr/src/lib/libm comon/nBx/fmaxl.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkhkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #if defined(ELFOBJ)

31 #pragma weak frmaxl = _ fnmaxl

32 #endi f

34 #include "libmh" /* for isgreaterequal macro */

36 | ong doubl e
37 __fmaxl (1 ong double x, Iong double y) {

38 uni on {

39 #if defined(__sparc)

40 unsigned i[4];

41 #elif defined(__x86)

42 unsigned i[3];

43 #el se

44 #error Unknown architecture

45 #endi f

46 I ong double Id;

47 } oxx,)

48 unsi gned s;

50 /* if yis nan, replace it by x */

51 if (y'!=y)

52 y = X;

54 /* if x is nan, replace it by y */

55 if (x!'=x)

56 X =y,

58 /* At this point, x and y are either both nuneric, or both NaN */
59 if (lisnan(x) && !isgreaterequal (x, y))

54 /* if x is less than y or x and y are unordered, replace x by y */

55 #if defined(COMPARI SON_MACRO BUG)
56 if (x!=x]] x<vy)

new usr/src/lib/libm comon/nBx/fmaxl.c

57 #el se

58 if (!isgreaterequal (x, y))

59 #endi f

60 X =y,

62 /*

63 * clear the sign of the result if either x or y has its sign clear
63 * now x and y are either both NaN or both nuneric; clear the
64 * sign of the result if either x or y has its sign clear
64 */

65 xx.ld = x;

66 yy.ld = vy;

67 #if defined(__sparc)

68 s = ~(xx.i[0] &yy.i[0]) & 0x80000000;

69 xx.i[0] &= ~s;

70 #elif defined(__x86)

71 s = ~(xx.i[2] &yy.i[2]) & 0x8000;

72 Xx.i[2] &= ~s;

73 t#el se

74 #error Unknown architecture

75 #endi f

77 return (xx.ld);

78

}
__unchanged_portion_omtted_

new usr/src/lib/libm comon/mx/fmn.c 1 new usr/src/lib/libm comon/mx/fmn.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 63 X = yv
2006 Sun May 4 03:06:39 2014
new usr/src/lib/libm comon/nBx/fmn.c 65 /* At this point, x and y are either both nuneric, or both NaN */
IR R R R R R R R R R R RS R R R R RS R R RS R R RS REREREREEEEEEE] 66 If (||Snan(x) && ||S|essequa|(x’ y))
1/* 44 /* if x is greater than y or x and y are unordered, replace x by y */
2 * CDDL HEADER START 45 #if defi ned(COMPARI SON_MACRO BUG)
3 * 46 if (x!=x]] x>y)
4 * The contents of this file are subject to the terms of the 47 #el se
5 * Common Devel opnent and Distribution License (the "License"). 48 if (!islessequal (x, y))
6 * You may not use this file except in conpliance with the License. 49 #endi f
7 * 67 X =y,
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing. 69 /*
10 * See the License for the specific |anguage governing perm ssions 70 * set the sign of the result if either x or y has its sign set
11 * and linitations under the License. 53 * now x and y are either both NaN or both nuneric; set the
12~ 54 * sign of the result if either x or y has its sign set
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 71 */
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 72 xx.d = x;
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 73 yy.d = vy;
16 * fields enclosed by brackets "[]" replaced with your own identifying 74 #if defined(_BI G_ENDI AN)
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 75 s = (xx.i[0] | yy.i[0O]) & 0x80000000;
18 * 76 xx.i[0] |=s;
19 * CDDL HEADER END 77 #el se
20 */ 78 s = (xx.i[1] | yy.i[1]) & 0x80000000;
79 xx.i[1] |=s;
22 /* 80 #endi f
23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
24 */ 82 return (xx.d);
25 [* 83 }
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved. __unchanged_portion_omtted_
27 * Use is subject to license terns.
28 */
30 #if defined(ELFOBJ)
31 #pragma weak fmin = _ fmin
32 #endi f
34 /*
35 * fmin(x,y) returns the smaller of x and y. |If just one of the
36 * argunents is NaN, fmin returns the other argument. |If both
37 * argunents are NaN, fmin returns NaN.
38 *
39 * See fnaxf.c for a discussion of inplementation trade-offs.
40 */
42 #include "libmh" /* for islessequal nmacro */

44 #include "fenv_inlines.h"
45 #incl ude <stdio. h>

46 #endif /* | codereview */
47 #include <sys/isa_defs. h>

49 doubl e

50 __fmn(double x, double y) {

51 uni on {

52 unsigned i[2];

53 doubl e d;

54 } oxx, yy;

55 unsi gned s;

56

57 /* if yis nan, replace it by x */
58 if (y'!=y)

59 y = X;

61 /* if x is nan, replace it by y */

62 if (x !'=x)

new usr/src/lib/libm comon/nBx/fmnf.c

R R R R

2413 Sun May 4 03:06:40 2014
new usr/src/lib/libm comon/nBx/fmnf.c

hkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkkkkkkkkkkkkk ok kk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #if defined(ELFOBJ)

31 #pragma weak fminf = _ fminf

32 #endif

34 #include "libmh" /* for islessequal nmacro */
36 fl oat

37 __fmnf(float x, float y) {

38 /*

39 * On SPARC v8plus/v9, this could be inplemented as foll ows
40 * (assuming %0 = x, %1 =y, return value left in %0):
41 *

42 * fcnps % cc0,%1,% 1

43 * fnovsu % cc0,9%0,% 1

44 * fcnps % cc0,%0,% 1

45 * fnovsug % cc0,% 1,%0

46 * st % 0, [x]

47 * st % 1,[y]

48 * 1 d [x],%0

49 * 1d [y], %1

50 * or %0,%1, %2

51 * set hi %1|(0x80000000) % 3

52 * and %3,%2, %2

53 * or %0,%2,%0

54 * st %0, [x]

55 * 1d [x],%0

56 *

57 * |If VISinstructions are available, use this code instead:
58 *

59 * fcnps % cc0,%1,% 1

60 * fnovsu % cc0,9%0,% 1

61 * fcnps % cc0,%0,% 1

62 * fnovsug % cc0,% 1,%0

new usr/src/lib/libm comon/nBx/fmnf.c

63 * fors %0,%1,%2

64 * fzeros % 3

65 * fnegs % 3,% 3

66 * fands % 3,%2,% 2

67 * fors %0,%2,%0

68 *

69 * 1f VIS 3.0 instructions are available, use this:

70 *

71 * flcnps % cc0,%0,% 1

72 * fnovsge % cc0,% 1,%0 ! nove if %ccOis O or 2
73 */

75 uni on {

76 unsi gned i;

77 float f;

78 }oxx, yy;

79 unsi gned s;

81 /* if y is nan, replace it by x */

82 if (yl!l=y)

83 y =X

85 /* if x is nan, replace it by y */

86 if (x!=x

87 X =y,

89 /* At this point, x and y are either both nuneric, or both NaN */
90 if (!isnan(x) && !islessequal (x, y))

89 /* if x is greater than y or x and y are unordered, replace x by y */
90 #if defined(COVPARI SON_MACRO_BUG)

91 if (x >vy)

92 #el se

93 if (lislessequal (x, y))

94 #endi f

91 X =y,

93 /*

94 * set the sign of the result if either x or y has its sign set
98 * now x and y are either both NaN or both nuneric; set the
99 * sign of the result if either x or y has its sign set
95 */

96 xx. f = x;

97 yy.f =y,

98 s = (xx.i | yy.i) & 0x80000000;

99 XX.i |=s;

101 return (xx.f);

102

__unchanged_portion_onitted_

new usr/src/lib/libm comon/nBx/fmnl.c

R R R R

1860 Sun May 4 03:06:43 2014
new usr/src/lib/libm comon/nBx/fmnl.c

hkkkkkkkkkkkkkkkkhkkhkkhkhkhkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #if defined(ELFOBJ)

31 #pragma weak fminl = _ fminl

32 #endi f

34 #include "libmh" /* for islessequal nmacro */

36 | ong doubl e
37 __fminl(long double x, Iong double y) {

38 uni on {

39 #if defined(__sparc)

40 unsigned i[4];

41 #elif defined(__x86)

42 unsigned i[3];

43 #el se

44 #error Unknown architecture

45 #endi f

46 I ong double Id;

47 } oxx,

48 unsi gned S;

50 /* if yis nan, replace it by x */

51 if (yl=y)

52 y = X;

54 /* if x is nan, replace it by y */

55 if (x!'=x)

56 X =y,

58 /* At this point, x and y are either both nuneric, or both NaN */
59 if (lisnan(x) && !islessequal (x, y))

54 /* if x is greater than y or x and y are unordered, replace x by y */

55 #if defined(COMPARI SON_MACRO BUG)
56 if (x!=x]] X >y)

new usr/src/lib/libm comon/nmBx/fmnl.c

57 #el se

58 if (!islessequal (x, Yy))

59 #endi f

60 X =y,

62 /*

63 * set the sign of the result if either x or y has its sign set
63 * now x and y are either both NaN or both nuneric; set the
64 * sign of the result if either x or y has its sign set
64 */

65 xx Id = X;

66 Id =vy;

67 #if defi ned(__sparc)

68 s = (xx.i[0] | yy.i[0]) & 0x80000000;

69 Li[0] | =s;

70 #elif def| ned(__x86)

71 = (xx.i[2] | yy.i[2]) & 0x8000;

72 xx.i[2] | =s;

73 t#el se

74 #error Unknown architecture

75 #endi f

77 return (xx.ld);

78 }

__unchanged_portion_omtted_

new usr/src/lib/libm comon/nmBx/IIrintl.c

R R R R

4344 Sun May 4 03:06:44 2014
new usr/src/lib/libm comon/nmBx/IIrintl.c

hkkkkkkkkkkkkkkkkkkkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkk ok kk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */
30 #if defined(ELFOBJ)
31 #pragma weak Ilrintl = Ilrintl

32 #if defined(__sparcv9) [| defined(__and64)
33 #pragma weak Irintl = __llrintl

34 #pragma weak __lrintl = __Ilrintl

35 #endi f

36 #endif

38 #include "libmh"
40 #if defined(__sparc)

42 #include "fna. h"
43 #include "fenv_inlines.h"

45 1 ong | ong

46 Ilrintl(long double x) {

47 uni on {

48 unsi gned i[4];

49 | ong double q;

50 } oxx;

51 uni on {

52 unsigned i[2];

53 long long I;

54 } zz;

55 uni on {

56 unsi gned i;

57 float f;

58 }ott;

59 unsi gned int hx, sx, frac, fsr;
59 unsi gned int hx, sx, frac;
60 unsigned int fsr;

60 int rm j;

new usr/src/lib/libm comon/nmBx/IIrintl.c

61

121

123
124
125
126

vol atile float dummy;

XX. q = X;
SX xX.i[0] & 0x80000000;

hx XxX.i[0] & ~0x80000000;
/* handle trivial cases */
if (hx > 0x403e0000) { /* |x| > 2763 + ... or x is nan */
/* convert an out-of-range float */
tt.i = sx | O0x7f000000;
return ((long long) tt.f);
} elseif ((hx | xx.i[1] | xx.i[2] | xx.i[3]) == 0) /* x is zero */

return (OLL);

/* get the roundi ng node */
_ fenv_getfsr32(&fsr);
rm= fsr >> 30;

/* flip the sense of directed roundings if x is negative */
if (sx)
rm7=rm>> 1;

/* handle | x| <1 */
if (hx < 0x3fff0000) {
dummy = 1.0e30f; /* x is nonzero, so raise inexact */
dummy += 1. Oe- 30f;
if (rm==FSRRP ||
((hx & Oxfff
return (sx ?
return (OLL);

(rm == FSR_RN && (hx >= 0x3ffe0000 &&
f)y | xx.i[1] | xx.i[2] | xx.i[3]))))
-1LL @ 1LL);

}

/* extract the integer and fractional parts of x */
j = 0x406f - (hx >> 16);
xX.i[0] = 0x10000 | (xx.i[0] & Oxffff);
if (J >=96) {
zz.1[0] 0;
zz.i[1] XX.i[0] >> (j - 96);
frac = ((xx.i[0] << 1) << (127 - j)) |
if (((xx.i[1] << 1) << (127 - j)) | xx.
frac |= 1;

(xx.i[1] >> (] - 96));
i[2] | xx.i[3])
}else if (j >= 64) { '

zz.1[0] = xx.i[0] >> (j - 64);
< 1) << (95 - j))

zz.i[1] = ((xx.i[0] < | (xx.i[1] >> (j - 64));
frac = ((xx.i[1] << 1) << (95 - j)) | (xx.i[2] >> (j - 64));
P (((xx.i[2] << 1) << (95 - j)) | xx.i[3])
frac | = 1,
} else {
zz.i[0] = ((xx.i[0] << 1) << (63 - j)) | (xx.i[1] >> (j - 32));
zz. i[1] = ((xx.i[1] <<) << (63 - J)) | (xx.i[2] >> (] - 32));
frac -((xx i[2] <<1 63 -)) | (xx.i[3] >> (j - 32))
if ((xx.i[3] << 1) << (63 -)
frac | = 1;
}
/* round */
if (frac &&(rm:: FSR RP | (rm—— FSR RN && (frac > 0x80000000u ||
(frac == 0x80000000 &% (zz.i[1] & 1)))))) {

if (++zz.i[1] == 0)
zz.i[0]++;

}

/* check for result out of range (note that z is |[x| at this point)
if (zz.i[0] > 0x80000000u || (zz.i[O] == 0x80000000 && (zz.i[1] ||
1sx)))
tt.1 = sx | Ox7f000000;

new usr/src/lib/libm comon/nmBx/IIrintl.c

127 return ((long long) tt.f);
128 1

130 /* raise inexact if need be */
131 if (frac)

132 dummy = 1. 0e30F;

133 dummy += 1. Oe- 30F;

134 }

136 /* negate result if need be */
137 if (sx) {

138 zz.i[0] = ~zz.i[O];
139 zz.i[1] = -zz.i[1];
140 if (zz.i[1] == 0)

141 zz.i[0] ++

142 1

143 return (zz.l);

144 }

____unchanged_portion_ontted_

new usr/src/lib/libmconmon/mdx/Irintl.c 1 new usr/src/lib/libmconmon/mdx/Irintl.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 hx = XXI[O] & ~0X80000000
3910 Sun May 4 03:06:46 2014
new usr/src/lib/libm conmon/mdx/Irintl.c 61 /* handle trivial cases */
IR R R R R R R R R R R RS R R R R RS R R RS R R RS REREREREEEEEEE] 62 If (hx > 0)(40160000) { /* |X| > 2/\31 + - or X |S nan */
1/* 63 1= convert an out-of-range float */
2 * CDDL HEADER START 64 tt.i = sx | O0x7f000000;
3 * 65 return ((long) tt.f);
4 * The contents of this file are subject to the terms of the 66 } else if ((hx | xx.i[1] | xx.i[2] | xx.i[3]) == 0) /* x is zero */
5 * Common Devel opnent and Distribution License (the "License"). 67 return (OL);
6 * You may not use this file except in conpliance with the License.
7 * 69 /* get the roundi ng node */
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 70 __fenv_getfsr32(&fsr);
9 * or http://ww.opensol aris.org/os/licensing. 71 rm= fsr >> 30;
10 * See the License for the specific |anguage governing perm ssions
11 * and limtations under the License. 73 /* flip the sense of directed roundings if x is negative */
12~ 74 if (sx)
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 75 rmA7=rm>> 1;
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 77 /* handle | x| <1 */
16 * fields enclosed by brackets "[]" replaced with your own identifying 78 if (hx < Ox3fff0000) {
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 79 dummy = 1.0e30F; /* x is nonzero, so raise inexact */
18 * 80 dummy += 1. Oe- 30F;
19 * CDDL HEADER END 81 if (rm==FSRRP || (rm== FSR RN && (hx >= 0x3ffe0000 &&
20 */ 82 ((hx & Oxffff) | xx.i[1] | xx.i[2] | xx.i[3]))))
83 return (sx ? -1L : 1L);
22 | * 84 return (OL);
23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved. 85 }
24 */
25 [* 87 /* extract the integer and fractional parts of x */
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved. 88 j = 0x406f - (hx >> 16); /* 91 <= j <= 112 */
27 * Use is subject to license terns. 89 xx.i[0] = 0x10000 | (xx.i[0] & Oxffff);
28 */ 90 if (j >= 96) { /* 96 <= j <= 112 */
91 I =xx.i[0] >> (j - 96);
30 #if defined(ELFOBJ) 92 frac = ((xx.i[0] << 1) <<(127— i)) | (xx.i[1] >> (j - 96));
31 #pragma weak Irintl = __Irintl 93 if (((xx.i[1] << 1) << (127 - j)) | xx.i[2] | xx.i[3])
32 #endif 94 frac |= 1
95 } else { /* 91 <= | <= 95 */
34 #include <sys/isa_defs. h> /* _ILP32 */ 96 I = (xx.i[0] << (96 - j)) | (xx.i[1] >> (] - 64));
35 #include "l'i bmh" 97 frac = (xx.i[1] << (96 - j)) | (xx.i[2] >> (] - 64));
98 if ((xx.i[2] << (96 - j)) | xx.i[3])
37 #if defined(_ILP32) 99 frac | = 1;
38 #if defined(__sparc) 100 }
40 #include "fma. h" 102 /* round */
41 #include "fenv_inlines.h" 103 if (frac &&(rm:: FSR RP || (rm== FSR RN && (frac > 0x80000000U ||
104 (frac == 0x80000000 && (I & 1))))))
43 | ong 105 | ++;
44 |rintl (long double x) {
45 uni on { 107 /* check for result out of range (note that z is |[x| at this point) */
46 unsigned int i[4]; 108 if (I > 0x80000000U || (I == 0x80000000U && !sx)) {
46 unsi gned i[4]; 109 tt.i = sx | Ox7f000000;
a7 | ong doubl e q; 110 return ((long) tt.f);
48 } oxx; 111 }
49 uni on {
50 unsigned int i; 113 /* raise inexact if need be */
50 unsi gned i ; 114 if (frac) {
51 float f; 115 dummy = 1. 0e30F;
52 }ott; 116 dummy += 1. Oe- 30F;
53 unsigned int hx, sx, frac, |, fsr; 117 }
53 unsi gned hx, sx, frac, I|;
54 unsigned int fsr; 119 /* negate result if need be */
54 int rm j; 120 if (sx)
55 vol atile float dummy; 121 I =-1;
122 return ((long) 1);
57 XX. q = 123 }
58 SX = XX. |[O] & 0x80000000; __unchanged_portion_onitted_

new usr/src/lib/libm comon/nBx/ nan. c 1

R R R R

1527 Sun May 4 03:06:48 2014
new usr/src/lib/libm comon/nBx/ nan. c

hkkkkkkkkkkkkkkkkhkkhkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k ok k k%

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing perm ssions
11 * and limtations under the License.
12 *
13 * Wen distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */

22 /*

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #if defined(ELFOBJ)

31 #pragnma weak nan = __nan

32 #endi f

34 /*

35 * nan(c) returns a NaN. This inplenmentation ignores c.
36 */

38 #include "libmh"
39 #include <sys/isa_defs. h>

41 #if defined(__sparc)
41 #if defined(_Bl G_ENDI AN)

43 static const union {

44 unsigned i[2];

45 doubl e d;

46 } __nan_union = { Ox7fffffff, Oxffffffff };

48 #elif defined(__i386) || defined(__anu64)

48 #el se

50 static const union {

51 unsigned i[2];

52 doubl e d;

53 } __nan_union = { Oxffffffff, Ox7fffffff };
55 #el se

56 #error Unknown architecture
57 #endif /* ! codereview */
58 #endi f

60 /* ARGSUSEDO */

new usr/src/lib/libm comon/nBx/ nan. c

61 doubl e

62 __nan(const char *c) {

63 return (__nan_union.d);
64 }

new usr/src/lib/libm comon/ nBx/ nearbyint.c

R R R R

5109 Sun May 4 03:06:50 2014
new usr/src/lib/libnm comon/ nBx/ nearbyint.c

hkkkkkkkkkkkkkkkkkkhkkhkhkhkhkhkkkkkkkkkhhkkkkkkkkkk ok kk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */
30 #if defined(ELFOBJ)
31 #pragma weak nearbyint = __ nearbyint
32 #endi f
34 /*
35 * nearbyint(x) returns the nearest fp integer to x in the direction
36 * corresponding to the current rounding direction w thout raising
37 * the inexact exception.
38 *
39 * nearbyint(x) is x unchanged if x is +/-0 or +/-inf. If x is NaN
40 * nearbyint(x) is also NaN
*

/

43 #include "libmh"
44 #include "fenv_synonyns. h"
45 #incl ude <fenv. h>

47 doubl e

48 __nearbyi nt (doubl e x) {

49 uni on {

50 unsigned i[2];

51 doubl e d;

52 } oxx;

53 unsi gned hx, sx, i, frac;

54 int rm j;

56 xx.d = Xx;

57 sx = xX.i[H WORD] & 0x80000000;

58 hx = xx.i[H WORD] & ~0x80000000;

60 /* handle trivial cases */

61 if (hx >= 0x43300000) { /* x is nan, inf, or already integral */
62 if (hx >= Ox7ff00000) /* x is inf or nan */

new usr/src/lib/libm comon/ nBx/ nearbyint.c

63 #if defi ned(FPADD_TRAPS_| NCOVPLETE_ON_NAN)

64 “return (hx >= 0x7ff80000 ? x : X + X);

65 /* assunes sparc-like QNaN */

66 #el se

67 return (x + x);

68 #endi f

69 return (x);

70 } elseif ((hx | xx.i[LOAORD]) == 0) /* x is zero */
71 return (x);

73 /* get the roundi ng node */

74 rm = fegetround();

76 /* flip the sense of directed roundings if x is negative */
77 if (sx & (rm== FE_UPWARD || rm == FE_DOANWARD))

78 rm = (FE_UPWARD + FE_DOWNWARD) - rm

80 /* handle | x| <1 */

81 if (hx < 0x3ff00000) {

82 if (rm== FE_UPWARD || (rm == FE_TONEAREST &&

83 (hx >= Ox3fe0000&&((hx&0xfffff) |

84 xx.i [HHWORD] = sx | 0x3ff00000;

85 el se

86 XX. |[HI WORD] = sX;

87 xX.i [LOAORD] = O;

88 return (xx.d);

89 }

91 /* round x at the |nteger bit */

92 j = 0x433 - (hx >> 20);

93 if (] >= 32) {

94 i =1<<(j - 32);

95 frac = ((xx.i[HIWORD] << 1) << (63 - j)) |

96 (xx.i[LONORD] >> (] - 32));

97 if (xx.1[LONORD] & (I - 1))

98 frac | = 1,

99 if (!frac)

100 return (x)

101 xX.i [LONORD] = O;

102 xx. i [HWORD &= ~(i - 1);

103 if ((rm== FE_UPWARD) || ((rm == FE_TONEAREST) &&
104 ((frac > 0x80000000u) || ((frac == 0x80000000) &&
105 (xx.i[HHWORD] & i)))))

103 if (rm== FE_UPWARD || (rm == FE_TONEAREST &&

104 (frac > 0x80000000u || (frac == 0x80000000) &&
105 (xx.i[HHWORD] & i))))

106 XX. 1 [HWORD] +=i;

107 } else {

108 i =1<<j;

109 frac = (xx.i[LOAORD] << 1) << (31 - j);

110 if (!frac)

111 return (x);

112 xx.i[LOAORD] & ~(i - 1);

113 if ((rm== FE_UPWARD) || ((rm == FE_TONEAREST) &&
114 (frac > 0x80000000u || ((frac == 0x80000000) &&
115 (xx.i[LOMORD] & i))))) {

113 if (rm== FE_UPWARD || (rm == FE_TONEAREST &&
114 (frac > 0x80000000u || (frac == 0x80000000) &&
115 (xx. |[LO/‘O?D] i)))) {

116 XX. i [LONORD] |,

117 if (xx. |[LO/\£RD] == 0)

118 XX. i [H WORD] ++;

119 }

120 }

121 return (xx.d);

122 }

__unchanged_portion_omtted_

xx. i [LOAORD]))))

new usr/src/lib/libm comon/ nBx/ nearbyintf.c

R R R R

4024 Sun May 4 03:06:51 2014
new usr/src/lib/libnm comon/ nBx/ nearbyintf.c

hkkkkkkkkkkkkkkkkhkkkkhkhkhkhkkkkkkkkkkkkkkkkhkkkkkk ok kkk ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.

*

* \Wen distributing Covered Code, include this CDDL HEADER i n each

* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
*
*
*
*
*

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*

26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #if defined(ELFOBJ)

31 #pragma weak nearbyintf = _ nearbyintf

32 #endi f

34 #include "libmh"

35 #include "fenv_synonyns. h"

36 #include <fenv. h>

38 float

39 _ _nearbyintf(float x) {

40 uni on {

41 unsi gned i;

42 float f;

43 } oxx;

44 unsi gned hx, sx, i, frac;

45 int rm

47 xx. f = x;

48 sX = xX.i & 0x80000000;

49 hx = xx.i & ~0x80000000;

51 /* handle trivial cases */

52 if (hx >= 0x4b000000) { /* x is nan, inf, or already integral */
53 if (hx > 0x7f800000) /* x is nan */
54 return (x * x); /* + ->* for Cheetah */
55 return (x);

56 } else if (hx == 0) /* x is zero */
57 return (x);

59 /* get the rounding node */

60 rm = fegetround();

62 /* flip the sense of directed roundings if x is negative */

new usr/src/lib/libm comon/ nBx/ nearbyintf.c

63
64

if (sx & (rm== FE_UPWARD || rm == FE_DOWWARD))
rm= (FE_UPWARD + FE_DOWNWARD) - rm

/* handle | x| <1 */
if (hx < Ox3f 800000) {
if

(rm== FE_UPWARD || (rm == FE_TONEAREST && hx > Ox3f 000000))

xx.1 = sx | 0x3f800000;
el se

XX. 1 = sX;
return (xx.f);

1 << (0x96 - (hx >> 23));

}

/* round x at the integer bit */
i =

fra

i

rac = hx & (i - 1);
f (!frac)

return (x);
hx &= ~(i -

if (rm== FE LPMRD|| (rm == FE_TONEAREST && (frac > (i
((fr (i >> 1)) & (hx &I)))))
(frac == (| >> 1)) && (hx
xx.i =sx | (hx +1i);
el se
xx.i = sx | hx;
return (xx.f);

__unchanged_portion_onitted_

>> 1)

new usr/src/lib/libm comon/ mx/scal blnl.c

R R R R

2430 Sun May 4 03:06:53 2014
new usr/src/lib/libm comon/ nm®x/scal blnl.c

hkkkkkkkkkkkkkkkkkkkkhkhkhkhkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k k%

__unchanged_portion_omtted_

new usr/src/lib/libm comon/nBx/tgamma. c 1 new usr/src/lib/libm comon/nBx/tgamma. c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 1451 case 3 /* (X+2)*(X+l)*yy */
68985 Sun May 4 03:06:55 2014 1452 z1 = x + one;
new usr/src/lib/libm comon/ nBx/tgama. c 1453 z2 = X + 2.0;
IR R R R R R R R R R R RS R R R RS RS E R E RS R RS ERREREREEEEEEEE] 1454 Z = Zl * 22
__unchanged_portion_omtted_ 1455 xh = (double) ((float) z);
1456 zh = (double) ((float) zl1);
1392 /* | NDENT OFF */ 1457 xI = (x - (zh - one)) * (z2 + zh) - (xh - zh * (zh + one));
1393 static const double 1458 rr.h = xh * yy. h;
1394 /* 0.134861805732790769689793935774652917006 */ 1459 rr.l =z * yy.l +xI * yy.h
1395 t0z1 = 0.1348618057327907737708, 1460 br eak;
1396 t0z1_| = -4.0810077708578299022531e- 18,
1397 /* 0.461632144968362341262659542325721328468 */ 1462 case 4: /* (x+1) (x+3) *(x+2) *yy */
1398 t0z2 = 0.4616321449683623567850, 1463 z1 = x + 2.0
1399 t0z2_| = -1.5522348162858676890521e- 17, 1464 z2 = (x + one) * (x + 3.0);
1400 /* 0.819773101100500601787868704921606996312 */ 1465 zh = zl,
1401 t0z3 = 0.8197731011005006118708, 1466 _Laz = 0;
1402 t0z3_| = -1.0082945122487103498325e- 17; 1467 __H (zh) & Oxfffffff8; /* zh 18 bits mantissa */
1403 /* 1.134861805732790769689793935774652917006 */ 1468 zI =x - (zh - 2.0);
1404 /* | NDENT ON */ 1469 z =2z1* z2;
1470 xh = (doubl e) ((float) z);
1406 /* gamma(x+i) for 0 <= x <1 */ 1471 x|l = * (z2 + zh * (zl+zh)) (xh - zh * (zh * zh - one));
1407 static struct Double 1472 rr.h = xh * yy. h;
1408 gamn(int i, double x) { 1473 rr.l =z * yy.l +xl * yy. h;
1409 struct Double rr = {0.0L, 0.0L}, vyy; 1474 br eak;
1409 struct Double rr, yy; 1475 case 5: [* ((x+1) *(x+4) *(x+2) *(x+3)) *yy */
1410 double r1, r2, t2, z, xh, xI, yh, yl, zh, z1, z2, zl, x5, wh, w; 1476 z1 = x + 2.0;
1477 z2 = x + 3.0;
1412 /* conpute yy = gamma(x+1l) */ 1478 z =2z1* ;
1413 if (x > 0.2845) { 1479 zh = (double) ((float) zl1);
1414 if (x >0.6374) { 1480 yh = (double) ((float) z);
1415 rl = x - t0z3; 1481 yl = (x - (zh - 2.0)) * (22+zh) - (yh - zh * (zh + one));
1416 r2:(double) ((float) (r1 - t0z3_1)); 1482 z2 =z - 2.0;
1417 t2 = r2; 1483 z *= z2;
1418 yy:GT3(r2 t2 - t0z3_1); 1484 xh = (double) ((float) z);
1419 } else { 1485 xI =yl * (z2 + yh) - (xh - yh * (yh - 2.0));
1420 rl = 1486 rr.h = xh * yy. h;
1421 r2=(d0ub|e) ((float) (r1 - t0z2_1)); 1487 rr.l =z * yy. I +xlI * yy. h;
1422 t2 =rl1 - r2; 1488 br eak;
1423 yy = GT2(r2 t2 - t0z2_1); 1489 case 6: [* ((X+1) *(x+2) *(x+3) *(x+4) *(x+5)) *yy */
1424 } 1490 z1 = x + 2.0;
1425 } else { 1491 z2 = X + 3.0;
1426 rl = x - t0zl; 1492 z =z1* z22;
1427 r2=(doub|e) ((float) (r1 - t0zl_l)); 1493 zh = (double) ((float) z1);
1428 t2 = r2; 1494 yh = (double) ((float) z);
1429 yy:GTl(rZ t2 - t0zl_1); 1495 z1 = x - (zh - 2.0);
1430 } 1496 yl =2z1 * (z2 + zh) - (yh - zh * (zh + one))
1497 z2 =z - 2.0;
1432 /* conpute gamma(x+i) = (x+i-1)*...*(x+1)*yy, O0<i<8 */ 1498 x5 = x + 5.0;
1433 switch (i) { 1499 z *= z2;
1434 case O: I* yylx */ 1500 xh = (doubl e) ((float) z);
1435 rl = one / Xx; 1501 zh += 3.0;
1436 xh = (double) ((float) x); /* X is not tiny */ 1502 x| yI * (z2 + yh) - (xh - yh * (yh - 2.0));
1437 rr.h = (double) ((float) ((yy. h +yy. 1) *rl)); 1503 /* xh+xl (x+1)* LR (x+4)
1438 rr.l =rl1* (yy.h - rr.h * xh) 1504 [* wh+w =(x+5) *yy */
1439 ((r2 * rr.h) * (x - xh) - rl o xoyy.l); 1505 wh = (doubl e) ((float) (x5* (yyh+yy|)))
1440 br eak; 1506 w = (z1 * yy.h + x5 * 1) (wh - zh * yy.h);
1441 case 1: I* yy */ 1507 rr.h = wh * xh;
1442 rr.h =yy. h; 1508 rr.l =z *wW + xlI * wy
1443 rre.l =yy. | 1509 br eak;
1444 br eak; 1510 case 7: % ((X+1) *(x+2) *(x+3) *(x+4) * (x+5) *(x+6)) *yy */
1445 case 2: [* (x+1)*yy */ 1511 z1 = x + 3.0;
1446 z = X + one; /* may not be exact */ 1512 z2 = X + 4.0;
1447 = (doubl e) ((float) z); 1513 z =22 * z1;
1448 rr.h = zh * yy. h; 1514 zh = (double) ((float) z1);
1449 rr.l =z * yy.l + (x - (zh - one)) * yy.h; 1515 yh = (double) ((float) z); /* yh+yl = (x+3) (x+4) */
1450 br eak; 1516 yl = (x - (zh - 3.0)) * (z2 + zh) - (yh - (zh * (zh * one)));

new usr/src/lib/libm comon/nBx/tgamma. c 3 new usr/src/lib/libn comon/nBx/tgamma. c
1517 z1 = X + 6.0; 1582 xk = -2 + (Ix & 1);
1518 z2 =z - 2.0; [* 22 = (x+2)*(x+5) */ 1583 } else if (ix >= 0x3ff00000) {
1519 z *= z2 1584 = (ix >> 20) - Ox3ff;
1520 xh = (d ble) ((float) z) 1585 |f (k > 20) {
1521 xI =yl * (z2 + yh) - (xh - yh * (yh - 2.0)); 1586 j = 1Ix > (52 - ;
1522 /* xh+xl (x+2)* L F(x+B) 1587 if o((j << (52 - k)) ==1x)
1523 [% whwl =(x+1) (x+6) * yy */ 1588 xk = -2 +(j &1);
1524 z2 -= 4.0; [* 22 = (x+1)(x+6) */ 1589 el se
1525 wh = (do uble) ((float) (22* (yyh+yy|))) 1590 xk = &1;
1526 w = (z2 * + yl * (y 0) * yy.h); 1591 } else {
1527 rr.h = wh 1592 i =ix >> (20 - k);
1528 rr.I:z*V\A+xI*V\h; 1593 if o((] <<(20-k)) == ix && Ix == 0)
1529 } 1594 xk = -2 + (] &1);
1530 return (rr); 1595 el se
1531 } 1596 xk = | & 1;
1597 }
1533 doubl e 1598 }
1534 tganmma(doubl e x) { 1599 1f (xk < 0)
1535 struct Double ss, ww 1600 /* ideally gamma(-n)= (-1)**(n+l) * inf, but c99 expect NaN */
1536 double t, t1, t2, t3, t4, t5 w vy, z, z1, z2, z3, z5; 1601 return ((x - x) / (x - x)); /* 0/0 = NaN */
1537 int i, j, k, m ix, hx, xk;
1538 unsi gned | x;
1604 /* negative underflow thresold */
1540 hx = __H(x); 1605 if (ix > 0x4066e000 || (ix == 0x4066e000 && Ix > 11)) {
1541 Ix = __LA(X); 1606 /* x < -183.0 - 11u| p */
1542 ix = hx & Ox7fffffff; 1607 z=t|ny/ X;
1543 y = X; 1608 if (xk == 1)
1609
1545 if (ix < 0x3ca00000) 1610 return (z * t| ny)
1546 return (one / x); /* | x| < 2**-53 */ 1611 }
1547 if (ix >= 0x7ff00000)
1548 /* +Inf -> +Inf, -Inf or NaN -> NaN */ 1613 /* now conpute gama(x) by -1/((sin(pi*y)/pi)*gamma(l+y)), y = -x */
1549 return (x * ((hx<0)’700: X))
1550 if (hx > 0x406573fa || /* x > 171.62... overflow to +inf */ 1615 /*
1551 (hx == 0x406573fa && | x > OxE561F647)) { 1616 * First conpute ss = -sin(pi*y)/pi , so that
1552 z = x| tiny; 1617 * gamma(x) = 1/ (ss*gama(l+y))
1553 return (z * z); 1618 *
1554 } 1619 y = -X;
1555 if (hx >= Ox40200000) { I* x >= 8 */ 1620 j = (int) vy;
1556 = | arge_| gan{x &m ; 1621 z =y - (double) j;
1557 w = ww h + wwl; 1622 if (z > 0.3183098861837906715377675)
1558 __H(w +=m << 20; 1623 if (z > 0.6816901138162093284622325)
1559 return (w); 1624 ss = kpsin(one - 2z);
1560 } 1625 el se
1561 if (hx > 0) { /* 0 <x <8 * 1626 ss = kpcos(0.5 - z);
1561 if (hx >0) { /* x fromO to 8 */ 1627 el se
1562 i = (int) x; 1628 ss = kpsin(z);
1563 ww = gamn(i, X - (double) i); 1629 if (xk == O)
1564 return (h + wwl); 1630 ss.h = -ss. h;
1565 } 1631 ss.| = -ss.|;
1632 }
1567 /* negative x */
1568 /* 1 NDENT OFF */ 1634 /* Then conpute ww = gamma(1l+y), note that result scale to 2**m*/
1569 /* 1635
1570 * conpute: xk = 1636 |f (] <7 {
1571 * -2 ... xis an even int (-inf is even) 1637 ww = gamn(j + 1, z);
1572 * -1 . X is an odd int 1638 } else {
1573 * +0 ... x is not an int but chopped to an even int 1639 w =y + one;
1574 * +1 ... x is not an int but chopped to an odd int 1640 if ((Ix & 1) == 0) { /* y+1 exact (note that y<184)
1575 */ 1641 = Iarge gam(w, &m;
1576 I * I NDENT ON */ 1642 } else {
1577 xk = 0; 1643 t = w- one;
1578 if (ix >= 0x43300000) ({ 1644 if (t ==y) { /* y+one exact */
1579 if (ix >= 0x43400000) 1645 ww = | ar ge_gan(w &m ;
1580 xk = -2; 1646 } else { /* use y* garma(y) */
1581 el se 1647 if (j ==7)

new usr/src/lib/libm comon/ nmdx/tgama. c

1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659

1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676

1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704 }

el se
ww = | arge_gam(y, &m;
t4d = wwh + wwl;
tl = (double) ((float) vy);
t2 = (double) ((float) t4);
/* t4 will not be too large */
wwl =y * (wl - (t2 - wh)) + (y - t1) * t2;
ww. h =t1 * t2;
}
}
}
/* conpute 1/(ss*ww) */
t3 =ss.h + ss.|;
t4d = ww.h + wwl;
tl = (double) ((float) t3);
t2 = (double) ((float) t4);
z1 = ss.| - (t1l - ss.h); /* (tl,z1) = ss */
z2 = ww. | - (t2 - ww h); [* (t2,22) = ww */
t3 =t3 * t4; [* t3 = ss*ww */
z3 = one / t3; /[* 23 = 1/ (ss*ww) */
t5 =tl1 * t2;
z5 =z1 * t4 +tl1 * z2; /* (t5,2z5) = ss*ww */
tl = (double) ((float) t3); /* (t1,z1) = ss*ww */
z1 =25 - (tl1 - t5);
t2 = (double) ((float) z3); /* leading 1/(ss*ww) */
z2 =23 * (t2* z1 - (one - t2 * t1))
z =12 - 22
/* check whet her z*2**-m underflow */
if (m!=0)
hx = __H(z)
i = hx & 0x80000000
ix = hx N i;
j =ix >> 20
if (j>m{
ix -= m<< 20;

_H{((z) =ix"™i;
} elseif ((m-j) >52) {
/* underflow */
if (xk == 0)
z = -tiny * tiny;

el se
z = tiny * tiny;

} else {

/* subnornmal */

m -= 60;

t = one;

__Hi(t) -= 60 << 20;

iX -= m<< 20;

_H{((z) =ix"™i;

z *=t;

}

}
return (z);

__unchanged_portion_omtted_

new usr/src/lib/libm comon/ nBx/tgammaf.c 1 new usr/src/lib/libm comon/ nBx/tgammaf.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 449 ret urn (rr)
15261 Sun May 4 03:06:56 2014 450 }
new usr/src/lib/libm comon/ nBx/tgammaf.c
IR R R R R R R R R R R RS R R R RS RS E R E RS R RS ERREREREEEEEEEE] 452 flo
__unchanged_portion_omtted_ 453 tgammf(float xf) {
454 | oat zf;
390 /* | NDENT OFF */ 455 doubl e ss, ww,
391 static const double 456 double x, y, z;
392 t0z1 = 0.134861805732790769689793935774652917006, 457 int i, j, k, ix, hx, xk;
393 t0z2 = 0.461632144968362341262659542325721328468,
394 t0z3 = 0.819773101100500601787868704921606996312; 459 hx = *(int *) &xf;
395 /* 1.134861805732790769689793935774652917006 */ 460 ix = hx & Ox7fffffff;
396 /* | NDENT ON */
462 X = (double) xf;
398 /* 463 if (ix < 0x33800000)
399 * gamma(x+i) for 0 <= x <1 464 return (1.0F / xf); [* | x] < 2**-24 */
400 *
401 static double 466 if (ix >= 0x7f800000)
402 gamn(int i, double x) { 467 return (xf * ((hx <0)? 0.0F : xf)); /* +-Inf or NaN */
403 double rr = 0.0L, vyy;
403 double rr, yy; 469 if (hx > 0x420C290F) /* x > 35.040096283... overflow */
404 doubl e z1, z2; 470 return (float)(x / tiny);
406 /* conpute yy = gama(x+1l) */ 472 if (hx >= 0x41000000) /* x >= 8 */
407 if (x > 0.2845) { 473 return ((float) large_gamx));
408 if (x >0. 6374)
409 yy = GI3(x - t0z3); 475 if (hx >0) { /* 0 <x < 8*/
410 el se 475 if (hx >0) { /* x fromO to 8 */
411 yy = GI2(x - t0z2); 476 i = (int) xf;
412 } else 477 return((float) gamn(i, x - (double) i));
413 yy = GI1(x - t0zl); 478 }
415 /* compute gamma(x+i) = (x+i-1)*...*(x+1)*yy, 0<i<8 */ 480 /* negative x */
416 switch (i) { 481 /* | NDENT OFF */
417 case O: I* yylx */ 482 I*
418 rr =yy |l x; 483 * conpute xk =
419 br eak; 484 * -2 X is an even int (-inf is considered even)
420 case 1: I* yy */ 485 * -1 ... xis an odd int
421 rro=yy; 486 * +0 ... x is not an int but chopped to an even int
422 br eak; 487 * +1 ... x is not an int but chopped to an odd int
423 case 2: [* (x+1)*yy */ 488 */
424 rr = (x + one) * yy; 489 /* | NDENT ON */
425 br eak; 490 xk = 0;
426 case 3: [* (x+2) *(x+1)*yy */ 491 i f (|x >= 0x4b000000) {
427 rr = (x +one) * (x + tw) * yy; 492 if (ix > Ox4b000000)
428 br eak; 493 xk = -2;
494 el se
430 case 4: [* (X+1) *(x+3) *(x+2) *yy */ 495 xk = -2 + (ix & 1);
431 rr = (x +one) * (x +tw) * ((x + 3.0) * yy); 496 } else if (ix >= 0x3f800000) {
432 br eak; 497 k = (ix >> 23) - Ox7f;
433 case 5: /* ((x+1)* (x+4) (x+2) (x+3)) yy */ 498 j =ix >> (23 - k);
434 z1 = (x +two) * (x + 3.0) 499 1t ((j <<(23— k)) == ix)
435 22:(x+one)*(x+4.0); 500 -2+ (] &1);
436 rro=2z1* z2; 501 el se
437 br eak; 502 xk = &1;
438 case 6: [* ((X+1) *(x+2) *(x+3) *(x+4) *(x+5)) *yy */ 503 }
439 z1 = (x + two) * (x + 3.0); 504 |f(xk<0){
440 z2 = (x + 5.0) * yy; 505 * 0/0 invalid NaN, ideally gamma(-n)= (-1)**(n+l) * inf */
441 rr=2z1* (z1 - two) * z2; 506 zf = xf - xf;
442 break; 507 return (zf | zf);
443 case 7: [* ((x+1)* (x+2) (X+3) *(x+4) * (x+5) *(x+6)) *yy */ 508 }
444 z1 = (x + two) * (x + 3.0);
445 z2 = (x +5.0) * (x +6.0) * yy; 510 /* negative underflow thresold */
446 rr =z1* (z1 - two) * z2; 511 if (ix > 0x4224000B) { /* x < -(41+11ulp) */
447 br eak; 512 if (xk == 0)

448 } 513 z = -tiny;

new usr/src/lib/libm comon/ nBx/tgammaf.c

514 el se

515 z = tiny;

516 return ((float)z);

517 }

519 /* 1 NDENT OFF */

520 5* now conpute gamma(x) by -1/((sin(pi*y)/pi)*gama(l+y)),
521 *

522 * First conpute Ss = -si n(pl*y)/pl , SO that
523 * gamma(x) = 1/(ss* gan'na(1+y))

524 */

525 /* | NDENT ON */

526 y = -X;

527] = (int) vy;

528 z =y - (double) j;

529 if (z > 0.3183098861837906715377675)
530 if (z>0. 6816901138162093284622325)
531 ss = kpsin(one - 2z);
532 el se

533 ss = kpcos(0.5 - z);
534 el se

535 ss = kpsin(z);

536 if (xk == 0)

537 SS = -ss;

539 /* Then conmpute ww = gammma(1l+y) */
540 if (j <7)

541 ww = gamn(j + 1, z);

542 el se

543 ww = | arge_gam(y + one);

545 /* return 1/ (ss*ww) */

546 return ((float) (one / (ww * ss)));
547 }

__unchanged_portion_onitted_

y

-x */

new usr/src/lib/libm comon/ nBx/tgammal . c

R R R R

40087 Sun May 4 03:06:58 2014
new usr/src/lib/libn comon/nBx/tgammal . c

hkkkkkkkkkkkkkkkkkkkkhkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkk k ok k k%

__unchanged_portion_omtted_

850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875

/* | NDENT OFF */
static const |ong double

/* 0.13486180573279076968979393577465291700642511139552429398233 */
#i f defined(__x86)

t0z1 = 0.1348618057327907696779385054997035808810L,

t0z1 | = 1.1855430274949336125392717150257379614654e- 20L,
#el se

t0z1 = 0.1348618057327907696897939357746529168654L,

t0z1 | = 1.4102088588676879418739164486159514674310e- 37L,
#endi f

/* 0.46163214496836234126265954232572132846819620400644635129599 */
#i f defined(__x86)

t0z2 = 0.4616321449683623412538115843295472018326L,
t0z2_| = 8.84795799617412663558532305039261747030640e- 21L,
#el se

t0z2 = 0.46163214496836234126265954232572132343318L,
t0z2_| = 5.03501162329616380465302666480916271611101e- 36L,
#endi f

/* 0. 81977310110050060178786870492160699631174407846245179119586 */
#if defi ned(_ 6)
t0z3 = 0.81977310110050060178773362329351925836817L,

t0z3_| = 1. 350816280877379435658077052534574556256230e- 22L
#el se

t0z3 = 0.8197731011005006017878687049216069516957449L,
t0z3_| = 4.461599916947014419045492615933551648857380e- 35L
#endi f

876 ;

877

879
880
881
882
883
884
884
885

887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908

/* | NDENT ON */

/*
* gamma(x+i) for 0 <= x <1
*/

static struct LDouble

gamn(int i, long double x) {
struct LDouble rr = {0.0L, 0.0L}, vyy;
struct LDouble rr, yy;

long double r1, r2, t2, z, xh, x|, yh, yl, zh, z1, z2, zl, x5, wh, W;

/* conpute yy = gama(x+1l) */
if (x > 0.2845L)
if (x> 0 6374L) {

= x - t0z3;

r2 = CH(PPED((rl - t0z3_1));
t2 =rl1- r2
yy = GI3(r2, t2 - t0z3_l);

} else {
rl =x - t0z2;
r2 = CHOPPED((r1 - t0z2_l));
t2 =rl1- r2
yy = GI2(r2, t2 - t0z2_1);

} else {

rl = x - t0z1;

r2 = CHOPPED((r1 - t0z1_1));

t2 =r1 - r2;

yy = GIi(r2, t2 - t0z1_1);

/* conpute gamma(x+i) = (x+i-1)*...
switch (i) {
case O:

*(x+1)*yy, O<i<8 */
I* yylx */

new usr/src/lib/libm comon/nBx/tgammal . c

909 rl = one / Xx;

910 xh = CHOPPED((X)) ; /* x is not tiny */
911 rr.h:CI-KPPED(((yy.h+ny) * rl))

912 re.l =r1* (yy.h - rr.h xh) ((rl *rr.h) * (x - xh) -
913 rl * yy.l)

914 br eak;

915 case 1: I* yy */

916 rr.h =yy. h;

917 rre.l o =yy. |

918 break;

919 case 2: [* (x+1)*yy */

920 Z = X + one; /* may not be exact */

921 zh = CH(PPED((Z))

922 rr.h = zh .

923 re.l =z * yy.l +(x- (zh - one)) * yy.h;
924 br eak;

925 case 3: [* (x+2) *(x+1) *yy */

926 z1l = x + one;

927 z2 = x + 2.0L;

928 z =21 * z2;

929 xh = CHOPPED((z

930 zh = CHOPPED((z1));

931 xI = (x - (zh - one)) * (z2 + zh) - (xh - zh * (zh + one));
933 rr.h = xh * yy. h;

934 rr.l =z * yy. I +xlI * yy. h;

935 break;

937 case 4: [* (x+1) *(x+3) *(x+2) *yy */

938 z1 = x + 2.0L;

939 z2 = (x + one) * (x + 3.0L);

940 zh = CHOPPED(z1);

941 zI = x - (zh - 2.0L);

942 xh = CHOPPED(z2);

943 xI =zl * (zh + z1) - (xh - (zh * zh - one));
945 [* wh+w =(x+2) *yy */

946 wh = CHOPPED((z1 * (yy.h + yy.1)));

947 w = (zl * yy.h +z1 * yy.1) - (wh - zh * yy.h);
949 rr.h = xh * wh;

950 rr.l =z2*wW + xI * wh

952 br eak;

953 case 5: [* ((X+1) *(x+4) *(x+2) *(x+3)) *yy */
954 z1 = x + 2.0L;

955 z2 = + 3. 0L;

956 z = zl * z22;

957 zh = CHCPPED((zl))

958 yh = CHOPPED(z))

959 yl = (x - (zh - 2.0L)) * (z2 + zh) - (yh - zh * (zh + one));
960 z2 =z - 2.0L;

961 z *= z2;

962 xh = CHOPPED((z));

963 xI =yl * (z2 + yh) (xh - yh * (yh - 2.0L));
964 rr.h = xh * yy. h;

965 rr.l =z * yy.l +xl * yy. h;

966 br eak;

967 case 6: [* ((x+1) *(x+2) *(x+3) *(x+4) *(x+5)) *yy */
968 z1 = x + 2.0L;

969 z2 = x + 3.0L;

970 z =21 * z22;

971 zh = CHOPPED((z1));

972 yh = CHOPPED((z));

973 z1 = x - (zh - 2.0L);

974 yl =21 * (z2 + zh) - (yh - zh * (zh + one));

new usr/src/lib/libm comon/ nBx/tgammal . c

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

1011
1012
1013
1014
1015
1016

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

1035
1035
1036
1037
1038
1039

z2 =z - 2.0L;
x5 = X + 5.0L;
z *=
xh = CI-KPPED(Z)
zh += 3.0;
xI =yl * (z2 + yh) - (xh - yh * (yh - 2.0L));
/* xh+xl (x+l)* Lox(x+4) x/
/* wh+w =(x+5) *yy */
wh = CHOPPED((x5 * (yy.h + - I)))
W= (Zl * yy h + x5 * yy.l) - zh * yy.h)
rr.h = wh
rr.l =z * mA + x|l * wh;
br eak;
case 7: % ((X+1) *(x+2) *(x+3) *(x+4) * (x+5) *(x+6)) *yy */
z1 = x + 3.0L
z2 = x + 4.0L
z =22 * z1;
zh = CHOPPED((z1));
yh = CHOPPED((z)); /* yh+yl = (x+3)(x+4) */
yl = (x - (zh - 3.0L)) * (z2 + zh) - (yh - (zh * (zh + one)))
z1 = x + 6.0L;
z2 =z - 2.0L; [* z2 = (x+2)*(x+5) */
z *= z2;
xh = CHOPPED((2));
xI =yl * (22+yh) - (xh - yh* (yh— 2.0L));
xh+xl =(x+2) *...*(x+5) */
/* +\M (x+1)(x+6) yy */
z2 -= 4.0L; [* z2 = (x+1)(x+6) */
wh = CHOPPED((22 * (yy h +yy.1)));
M = (z2 * yy.l + y.h) - (wh - (yh - 6.0L) * yy.h)
.h = wh * xh;
=z *wW + xI * wh;

}
return (rr);

| ong doubl e
tgamal (1 ong doubl e x) {

struct LDouble ss, ww,

long double t, t1, t2, t3, t4, t5, w vy, z, z1, z2, z3, z5;
int i, j, m ix, hx, xk;

unsi gned | x;

hx = HO_WORD(x) ;

Ix = H3 V!}IXX);

ix = hx Ox7fffffff

y =X

if (ix < 0x3f8e0000) { /* x < 2**-113 */
return (one / Xx);

}

if (ix >= 0x7fff0000)
return (x * ((hx < 0)? zero : Xx));
if (x > overflow) /* overflow threshold */
return (x * 1.0e4932L);
if (hx >= 0x40020000) { /* x >= 8 */
= Iarge gar’r(x &m ;
w—ww. VW,
return (scalbnl(w m);

/* Inf or NaN */

}

if (hx > 0) { /* 0 <x <8 *

if (hx >0) { /* x fromO0 to 8 */
i = (int) x;
ww = gamn(i, X - (long double) i);
return (ww.h + ww.1);

new usr/src/lib/libm comon/ nBx/tgammal . c

| NDENT OFF */
negative x */

1040 /*
1041 I*
1042 /*
1043 * conpute xk =
1044 * -2 ...
* -1 ...
* +0 ...
* +1 ...

1045

1046

1047

1048 */

1049 /* 1 NDENT ON */

1050 xk = 0;

1051 #if defined(__x86)

1052 if (ix >= 0x403e0000) { /* x >= 2**63 } */

1053 if (ix >= 0x403f0000)

1054 xk = -2;

1055 el se

1056 xk = -2 + (Ix &1);

1057 #el se

1058 if (ix >= 0x406f0000) { /* x >= 2**112 */

1059 if (ix >= 0x40700000)

1060 xk = -2;

1061 el se

1062 xk = -2 + (Ix & 1);

1063 #endi f

1064 } else if (ix >= 0x3fff0000) {

1065 w = -

1066 tl

1067 t2
t3
if

an odd int
not an int but chopped to an even int
not an int but chopped to an odd int

X X X X

1068
1069
1070
1071 xk = -2
1072 el se

1073 xk = -
1074 } else {

1075 if (t2 == t3)
1076 xk =0
1077 el se

1078 xk =1
1079 }

1080 }

1082 if (xk < 0)

{
1083 /* return NaN. ldeally gamma(-n)= (-1)**(n+l) * inf */

1084 return (x - x) / (x - x)
1085 }

1087 I*

1088 * negative underflow thresold -(1774+9ul p)

1089 */

1090 if (x < -1774.0000000000000000000000000000017749370L) {
1091 z =tiny / Xx;

1092 if (xk == 1)

1093 z = -2;

1094 return (z * tiny)

1095 }

1097 /* | NDENT OFF */

1098 I

1099 * now conpute ganmma(x) by -1/ ((sin(pi*y)/pi)*gamma(l+y))
1100 */

1101 /*

1102 * First conpute ss = —S|n(p|*y)/p| so that

1103 * gamma(x) = 1/ (ss*gamma(1l+y))

1104 */

1105 /* | NDENT ON */

an even int (-inf is considered an even #)

new usr/src/lib/libm comon/ nBx/tgammal . c

1106 y
1107 j
1108

X3
int
>

Ys

ong double) j;

1109 |f (3183098861837906715377675L)

1110 f (z > 0. 6816901138162093284622325L)
1111 ss = kpsin(one - 2z);

1112 el se

1113 ss = kpcos(0.5L - z);

1114 el se

1115 ss = kpsin(z);

1116 if (xk == 0)
1117 ss. h
1118 ss. |
1119 }

(int)
y - (!
z 0.
i

-ss. h;
-ss.|;

1121 /* Then conpute ww = gamma(1l+y), note that result scale to 2**m*/
1122

1123 |f (j <7) {

1124 ww = gamn(j + 1, z);

1125 } else {

1126 w =y + one,

1127 if ((Ix &1) ==0) { /* y+1 exact (note that y<184) */
1128 ww = | arge_gamw, &nm);

1129 } else {

1130 t = w- one;

1131 if (t ==vy) { /* y+one exact */

1132 ww = | arge_ garr(w &m ;

1133 } else { [* use y*gamma(y) */

1134 if (j ==7)

1135 ww = gamn(j, z);

1136 el se

1137 ww = | a

1138 A
1139

1140

1141

1142

1143

1144 }
1145 }

1146

—......,
INTEYN
mian
T
m
2
<
AT

2 - wwh)) + (y - t1)

1148
1149

}

/ onpute 1/(ss*ww) */

t
1150 t

t

t

z

z

ss.h + ss.|;

1151
1152
1153
1154
1155 t3
1156 z3
1157 t5
1158 z5
1159 t1
1160 z1
1161 t2
1162 z2
1163 z =t2 - z2;

55
=
—~——
* Ok kK

*
N
N

~—

* %

; /* leading 1/(ss*ww) */
- (one - t2 * t1));

2

1165 return (scalbnl(z, -m);
1166 }
__unchanged_portion_onitted_

4 will not be too large */
t

* 12

new usr/src/lib/libmi386/src/libminlines.h

R R R R

5896 Sun May 4 03:06:59 2014
new usr/src/lib/libmi386/src/libm.inlines.h

hkkkkkkkkkkkkkkkkkkkkhkhkhkkkkkkkkkkkkkkkkkkkkkkkk ok kk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensolaris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
24 * Use is subject to license terns.

25 */

27 |*

28 * Copyright 2011, Richard Lowe

29 */

31 /* Functions in this file are duplicated in locallibmil.
31 /* Functions in this file are duplicated in libmmi. Keep themin sync */
33 #ifndef _LIBM I NLINES_H

34 #define _LIBM_INLINES_H

36 #ifdef __GNUC__

38 #ifdef __cplusplus

39 extern "C'

40 #endi f

42 #include <sys/types. h>

43 #include <sys/ieeefp. h>

45 #define LOV‘O?D(X) ((uint32_t *)&x)[0]

46 #define _WORD(x) ((uint32_t *)&x)[1]

47 #define HIERWRD(X) ((uint32_t *)&x)[2]

49 extern __inline__ double

50 __ieee754_sqgrt(double a)

51 |

52 doubl e ret;

54 asm _ __volatile__("fsqgrt\n\t" "=t" (ret) "0" (a));
55 return (ret);

56 }

58 extern __inline__ double

50 __inline_sqrt(double a)

51 {

52 doubl e ret;

Keep themin sync */

new usr/src/lib/libmi386/src/libm.inlines.h

QQ

QQ

54 _asm_ _ volatile_ ("fsqrt\n\t" : "=t" (ret)
63 —asm_ __volatile__("fsgrt\n\t" : "=t" (ret)
55 return (ret);
56 }
58 extern __inline__ double
59 __ieee754_sqrt(double a)
68 __d_sqrt_(double *a)
60 {
61 return (__inline_sqrt(a));
70 doubl e ret;
72 asm _ _ volatile__("fsqrt\n\t" : "=t" (ret)
73 return (ret);
62 }
64 extern __inline__ float
65 __inline_sqrtf(float a)
66 {
67 float ret;
69 _asm_ _ volatile_ ("fsqrt\n\t" : "=t" (ret)
81 —asm_ __volatile_ ("fsgrt\n\t" : "=t" (ret)
70 return (ret);
71}
73 extern in I ne__ double
74 __inline_rint(double a)
75 {
88 doubl e ret;
76 _asm_ volatile__
77 “andl $Ox7ffffTff, od\n\t"
78 "cnpl $0x43300000, %d\n\t"
91 "andl $Ox7fffffff,o@\n\t"
92 "cnpl $0x43300000, %2\ n\t"
79 "jae 1f\n\t"
80 "frndint\n\t"
81 "1 fwait\n\t"
82 ©OTHt" (a), "+&" (_H _WORD(a))
83 :
84 :o"ec");
96 !
97 "rt (_H _WORD(a)));
86 return (a);
99 return (ret);
100 }
102 extern __inline__ short
103 __inline_fstswvoid)
104 |
105 short ret;
107 asm _ _ volatile__ ("fstsw %\n\t" : "=r" (ret));
108 return (ret);
87 }
__unchanged_portion_omtted_
133 extern inline__ double
134 ceil (doubl e d)
135 {
158 doubl e ret;
136 short rd = __swap87RD(fp_positive);

(a) :
(a));

(*a));

“ee'):

new usr/src/lib/libmi386/src/libminlines.h

138 _asm _ __volatile__("frndint"
161 _asm_ _ volatile_ ("frndint"
139 __swap87RD(rd);

141 return (d);

164 return (ret);

142 }

144 extern __inline__ double

145 copysi gn(doubl e d1, double d2)

146 {

147 _asm __ _ volatile_ (

148 "andl $Ox7fffffff,o@\n\t"
149 "andl $0x80000000, %4\ n\t"
150 "orl 9, %®\n\t"

151 D& (_H _WORD(d1)), "+r"
152 :

153 :o"cc");

174 ©otHrt T (_H O WORD(d1))

175 Sotrt (_H_VORD(d2)))

155 return (dl);

156 }

158 extern __inline__ double

159 fabs(doubl e d)

160 {

161 _asm_ _ volatile__("fabs\n\t"
162 return (d);

183 doubl e ret;

185 _asm__ _ volatile_ ("fabs\n\t"
186 return (ret);

163 }

165 extern __inline__ float

166 fabsf(float d)

167 {

168 _asm_ _ volatile__("fabs\n\t"
169 return (d);

192 float ret;

194 _asm_ _ volatile__("fabs\n\t"
195 return (ret);

170 }

172 extern __inline__ |ong double

173 fabsl (1 ong doubl e d)

174 {

175 _asm_ _ volatile__("fabs\n\t"
176 return (d);

201 | ong double ret;

203 _asm_ __volatile__("fabs\n\t"
204 return (ret);

177 }

179 extern __inline__ int

180 finite(doubl e d)

181 {

182 int ret = _H _WORD(d);

210 int ret;

184 _asm_ _ volatile__(

185 "notl 9%®\n\t"

186 "andl $0x7ff00000, %O\ n\t"

"+t (d), "+r" (rd) : : “"cc");
"=t" (ret) : "0" (d));

[* 9% <-- hi_32(abs(d)) */

[* 9%4[31] <-- sign_bit(d2) */

/* 9% <-- hi_32(copysign(x,y)) */
(_H _WORD(d2))

"+t" (d) o "cc");

"=t (ret) : "0" (d));

"+t (d) @ @ "cc");

"=t" (ret) : "0" (d));

"+ttt (d) o "cc");

"st" (ret) : "0" (d));

new usr/src/lib/libmi386/src/libm.inlines.h

187 "negl %O\ n\t"

188 "shrl $31,9%\n\t"

189 "4t (ret)

190 :

191 : o "ec");

213 "notl %d\n\t"

214 "andl $0x7ff00000, %d\n\t"

215 "negl %\n\t"

216 "shrl $31,%\n\t"

217 Dot=rt (ret)

218 D "0" (_H_WORD(d)))

192 return (ret);

193 }

195 extern __inline__ double

196 fl oor (doubl e d)

197 {

225 doubl e ret;

198 short rd = __swap87RD(fp_negative);
200 _asm_ __volatile__("frndint" : "+t"
228 _asm_ _ volatile_ ("frndint" : "=t"
201 __swap87RD(rd);

203 return (d);

231 return (ret);

232 }

234 | *

235 * branchl ess __isnan

236 * ((0x7ff00000-[((!

237 */

238 extern __inline__ int

239 i snan(doubl e d)

240 {

241 int ret;

243 _asm_ __volatile__(

244 “movl 9%, W®ecx\n\t"

245 "negl %ecx\n\t" /* ecx <-- -
246 "orl 9%ecx,%d\n\t"

247 "shrl $31,9%\n\t" /* 1 iff Ix
248 "andl $Ox7fffffff, %@\ n\t" /* ecx <-- h
249 "orl 9R,%\n\t"

250 "subl $0x7ff00000, %d\n\t"

251 "negl %d\n\t"

252 "shrl $31,%\n\t"

253 Dot"=rt (ret)

254 ©"0" (_H _WORD(d)), "r" (_LO WORD(d))
255 : "ecx");

257 return (ret);

204 }

206 extern __inline__ int

207 isnanf(float f)

208 {

263 int ret;

209 _asm__ _ volatile_ (

210 "andl $Ox7fffffff,o@\n\t"

211 "negl %O\ n\t"

212 "addl $0x7f 800000, %O\ n\t"

213 "shrl $31,%\n\t"

214 Dot4rt ()

215 :

(d), +r ‘(Ird)

(ret)

x| -1x)>>31) &1] | ahx) >>31)&1 = 1 iff x is NaN

o 32(x) */

=0 */

i _32(abs(x)) */

new usr/src/lib/libmi386/src/libminlines.h

216
270
271

273
274

276
277
278
279

218
281
282
283
284
285
286
287
288
289
290
291
292
293

295
219

221
222
223
300

302
303
304
305
306
307
308
309

311
224

226
227
228
229
317

231
232
320
233
234
235
236
237
323
324

239
326

"cc")
t=rt (re)
"0" (1)):
return (ret);
}
extern inline__ int
i si nf (doubl e d)
{
int ret;
return (f);
asm vol atile

Tandl " SOX7fffffff, A\ n\t"
"cnpl $0x7ff 00000, %4\ n\t"

/* set first bit to 0 */

"pushfl\n\t"

"popl 9%®\n\t"

"cnpl $0, %R\ n\t" /* is 10_32(x) = 0? */
"pushfl\n\t"

"popl %R\ n\t" /* bit 6 of ecx <-- 10_32(x) == 0 */

"andl 9%, %O\ n\t"
"andl $0x40, %0\ n\t"
"shrl $6,9%0\n\t"

“=r" (ret)
"0" (_H _WORD(d)), "r" (_LOWORD(d)));
return (ret);
}
extern inline__ double

rint(double a) {
return (__inline_rint(a));
doubl e ret;

_asm _ _ volatile_ (
Tandl $Ox7FIfffff,oR\n\t"
"crpl $0x43300000, %2\ n\t"
"jae 1f\n\t"
"frndint\n\t"
"1 fwait\n\t"
"=t" (ret)
"0" (a), “r* (_H

return (ret);

I _WORD(a))) ;

}

extern inline doubl e
scal bn(doubl e d, int n)

doubl e dummy;
doubl e ret, dumy;

asm_ volatile__ (
"f| Idl 9R\n\t" /* Convert N to extended */
"fildl 9@\n\t" /* Convert N to extended */
"fxch\n\t"
"fscale\n\t"
"+t (d), "=u"
"m' (n)

(dumy)
"—t")(ret)| "=u" (dumy)
"0t (d), it (m);

return (d);
return (ret);

new usr/src/lib/libmi386/src/libm.inlines.h

240 }
__unchanged_portion_onitted_
254 extern inline__ double
255 sqrt (doubl e d)
256 {
257 return (__inline_sqrt(d));
344 doubl e ret;
345 asm _ vol atile __("fsqrt”
346 return (ret);
258 }
260 extern inline__ float
261 sqrtf(float f)
262 {
263 return (__inline_sqrtf(f));
352 float ret;
353 asm _ _ volatile__ ("fsqrt"
354 return (ret);
264 }
266 extern __inline | ong doubl e
267 sqrtl(long double Id)
268 {
269 _asm_ _ volatile__("fsqrt"
270 return (1d);
360 | ong double ret;
361 __asm_ __vol atile __("fsqrt”
362 return (ret);
271 }
273 extern __inline__ int
274 isnanl (1 ong double Id)
275 {
276 int ret = HERWRDId);
368 int ret;
278 _asm_ __volatile__(
279 “andl $Ox00007fff 9%\ n\t"
280 "jz 1f\n\t”
281 "xorl $0x00007fff, %O\ n\t"
282 "jz 2f\n\t"
283 "test| $0x80000000, %\ n\t"
371 "andl $0x00007fff,o%d\n\t"
372 "jz 1f\n\t"
373 "xorl $0x00007fff,o%d\n\t"
374 "jz 2f\n\t"
375 "test|l $0x80000000, %2\ n\t"
284 "jz 3fin\it”
285 "nmovl $0, 90\ n\t"
377 "nmovl $0, %d\n\t"
286 " 1f\ n\t"
287 "2:\n\t
288 "cnpl $Ox80000000 9\ n\t"
379 "2: \n\t"
380 "cnpl $0x80000000, %2\ n\t "
289 "jnz 3fin\t”
290 "testl $Oxffffffff,o@\n\t"
382 "testl $Oxffffffff,oB\n\t"
291 "jnz 3fin\t”
292 "jmp 1f\n\t"
293 "3An\t”
294 "nmovl $1,9%0\n\t"
386 "movl $1,%\n\t"
295 "Li\n\t"
296 "+& " (ret)

"=ttt (ret) : "0" (d));

=t" (ret) : "0" (f));

"+t (ld) o "cc");

=t" (ret) : "0" (1d));

/* junp if exp is all
/* junp if exp is all

/* junp if __exp is all

/* junp if __exp is all

/* junp if leading bit

/* note that %
/* what is first half

0 */
1*/

0 */

1/
is 0 */

= 0 frombefore */

of significand? */

/* note that %ax = 0 from before */

/* what is first half of

significand? *

/* junp if not equal to 0x80000000 */
/* is second half of significand 0?2 */

/* is second half of

__significand 0? */

/* junp if not equal to O */

new usr/src/lib/libmi386/src/libminlines.h

297 St (_H_WORD(1d)), t"rt (_LO_WORD(1d))

298 © o "ec");

388 Do"=r" (ret)

389 :"0" (_HIER.WORD(1d)), "r" (_H _WORD(Id)), "r" (_LOWMORD(Id)));
300 return (ret);

301 }

____unchanged_portion_onmitted_

new usr/src/lib/libmi386/src/locallibmil

R R R R

7507 Sun May 4 03:07:01 2014
new usr/src/lib/libmi386/src/locallibmil

hkkkkkkkkkkkkkkkkhkkhkkhkhkhkhkhkkkkkkkhkkkkkkkkkkkk ok kk k ok k k%

1/
2 | CDDL HEADER START
3/
4 | The contents of this file are subject to the terns of the
5 / Common Devel oprent and Distribution License (the "License").
6 / You may not use this file except in conpliance with the License.
71
8 / You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 / or http://ww.opensol aris.org/os/licensing.
10 / See the License for the specific |anguage governing perm ssions
11 / and limtations under the License.
12 /
13 / Wen distributing Covered Code, this CDDL HEADER in each
14 / file and the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 / If applicable, add the follow ng below this CDDL HEADER, with the
16 / fields enclosed by brackets "[]" replaced with your own identifying
17 / information: Portions Copyright [yyyy] [nane of copyright owner]
18 /
19 / CDDL HEADER END
20 /
21 / Copyright 2011 Nexenta Systems, Inc. Al rights reserved.
22/
23 / Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
24 | Use is subject to license terns.
/

27 | Portions of this file are duplicated as GCC inline assenbly in
28 / libminlines.h. Keep themin sync.

30 .inline __ieee754_sqrt,0
31 fldl (%esp)

32 fsqrt

33 .end

35 .inline __inline_rint,0
36 fldl (%esp)

37 nmov| 4(%esp) , Yeax

38 and| $Ox7fFFffff, Yeax
39 cnpl $0x43300000, Yeax
40 jae 1f

41 frndint

42 1:

43 fwai t / in case we junped around the frndint
44 .end

46 .inline __inline_sqrtf,0
47 flds (%esp)

48 fsqrt

49 .end

51 .inline __inline_sqgrt,0
52 fldl (%esp)

53 fsqrt

54 .end

56 .inline __inline_fstsw, 0
57 fstsw %x

58 .end

60 /

61 / 00 - 24 bits
62 / 01 - reserved

new usr/src/lib/libmi386/src/locallibmil

63 / 10 - 53 bits
64 / 11 - 64 bits

65 /
66 .inline __swapRP, 0
67 subl $4, Y%esp
68 fstew (%sp)
69 nmovw (%esp) , Yax
70 nmovw %ax, Yex
71 andw $0xfcff, %ex
72 nmovl 4(%esp) , Yedx 11
73 and| $0x3, %edx
74 shlw $8, %ix
75 orw %x, ¥Ex
76 nmovl %ecx, (Yesp)
77 fldew (%sp)
78 shrw $8, Yax
79 and| $0x3, Yeax
80 add| $4, Y%esp
81 .end
83 /
84 / 00 - Round to nearest, with even preferred
85 / 01 - Round down
86 / 10 - Round up
87 / 11 - Chop
88 /
89 .inline _ _swap87RD, 0
90 subl $4, %esp
91 fstcw (%sp)
92 nmovw (%esp) , Yax
93 nmovw %ax, Yex
94 andw $0xf 3f f, %Eex
95 nmov| 4(Y%esp) , Y%edx
96 and| $0x3, %edx
97 shlw $10, %ax
98 orw %lx, Yex
99 novl %ecx, (Yesp)
100 fldew (%esp)
101 shrw $10, Yax
102 and| $0x3, Yeax
103 addl $4, Yesp
104 .end
106 /
107 / Convert Top-of-Stack to |ong
108 /
109 .inline __xtol,0
110 subl $8, Y%esp / 8 bytes of stack space
111 fstcw 2(%esp) / byte[2:3] = old_cw
112 nmovw 2(%esp) , Yax
113 andw $0xf 3f f , %ax
114 orw $0x0c00, %ax / RD set to Chop
115 nmovw %ax, (Yesp) / byte[0:1] = new_ cw
116 fldew (% sp) | set new_cw
117 fistpl 4(%sp) / byte[4:7] = converted |ong
118 fstew (% sp) / restore old RD
119 nmovw (%esp) , Yax
120 andw $0xf 3f f, %ax
121 novw 2(%esp) , v@x
122 andw $0x0c00, Yax
123 orw %ax, Yax
124 nmvw %lx, 2(Yesp)
125 fldew 2(%sp)
126 nmovl 4(%esp) , Yeax
127 addl $8, %esp
128 .end

new usr/src/lib/libmi386/src/locallibmil

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

167
168
169
170
171

173
174
175
176

178
179
180
181

183
184
185
186

188
189
190
191
192
193
194

—~—

.inline __ceil,0

subl $8, %esp
fstcw (%sp)

fldl 8(%esp)
nmvw (%esp), %ex
orw $0x0c00, %ex

Xor w $0x0400, %X
novw %X, 4(Yesp)
fldcw 4(%esp)
frndint

fstcw 4(%esp)
nmovw 4(%esp) , Yax
andw $0xf 3f f, %ax
nmvw (%esp), %ex
andw $0x0c00, %X
orw %X, ¥ex
nmvw %X, (Yesp)
fldew (%sp)

addl $8, %esp

end
.inline _ _copysign,0
nmov| 4(%esp) , Yeax
nov| 12(%esp) , Yecx
and| $Ox7fffffff, Yeax
and| $0x80000000, %ecx
orl %ecx, Yeax
nov| (%esp), %ecx
subl $8, %esp
nmovl %ecx, (Yesp)
novl Y%eax, 4(Yesp)
fldl (%esp)
fwai t
addl $8, %esp

end

.inline __d_sqgrt_,0

nmovl (%esp) , Yeax
fldl (%eax)
fsqrt

.end

.inline _ fabs,0
fldl (%esp)

f abs

.end

.inline _ fabsf,0
flds (%esp)

f abs

.end

.inline __fabsl,0
fldt (%esp)
f abs

.end

branchless _finite

.inline _finite,0

nmovl 4(%esp) , Yeax

not | Yeax

and| $0x7f f 00000, Yeax

Iy

/| set RD = up

/| restore RD

/11 eax <-- hi_32(x)
/11 ecx <-- hi_32(y)
/| eax <-- hi_32(abs(x))
/ ecx[31] <-- sign_bit(y)
/ eax <-- hi_32(__copysign(x,y))
/11 ecx <-- lo_32(x

= 10_32(__copysign(x,y))
set up | oading dock for result
copy lo_32(result) to |oading dock
copy hi_32(result) to |oading dock
| oad __copysign(x,y)
in case fldl causes exception
restore stack-pointer

—~——— — — —

Iy

/1] eax <-- hi_32(x)
/ not(bexp) =0 iff bexp = all 1's

new usr/src/lib/libmi386/src/locallibmil

195
196
197

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

220
221
222
223
224
225
226

246
247
248
249
250
251
252
253
254
255
256
257
258

—~———

negl Yeax

shrl $31, %eax
.end

.inline __floor,0
subl $8, %esp
fstcw (%sp)

fldl 8(%esp)
nmovw (%esp), %ex
orw $0x0c00, %ex

Xor w $0x0800, %X
nmovw %X, 4(Yesp)
fldew 4(%sp)
frndint

fstcw 4(%esp)
nmvw 4(Y%esp) , Yax
andw $0xf 3f f, %dx
mvw (%esp), %ex
andw $0x0c00, %ex
orw %X, Yex
novw %X, (Yesp)
fldew (%esp)

Iy

/ set RD = down

/ restore RD

/ restore RD

((0x7f £00000- ((1 x| -1x)>>31) &1] | ahx)>>31)&1 = 1 iff x is NaN

addl $8, %esp

.end

branchl ess i snan
.inline __isnan, 0

nmovl (%esp) , Yeax

mov| %eax, Yecx

negl Yecx

orl %ecx, Yeax

shrl $31, %eax

nmovl 4(%esp) , Yecx

and| $Ox7fffffff, %ecx
orl %ecx, Yeax

subl $0x7f f 00000, Yeax
negl Yeax

shrl $31, %eax

.end

.inline __isnanf,0

nov| (%esp), Y%eax

and| $ox7fffffff, Yeax
negl Yeax

addl $0x7f 800000, Yeax
shrl $31, %eax

.end

.inline __isinf,0

nmov| 4(%esp), Yeax

andl $Ox7fffffff, Upax
cnpl $0x7f f 00000, %eax
pushfl

popl Yeax

cnpl $0, (%esp)

pushfl

popl %ecx

andl| %ecx, Yeax

and| $0x40, Yeax

shrl $6, Y%eax

.end

.inline __isnormal, 0

/1] eax <-- 10_32(x)
/ ecx <-- -10_32(x)
[1iff Ix!=0

/11 ecx <-- hi_32(x)
/ ecx <-- hi_32(abs(x))

/| eax <-- hi_32(x)
/| set first bit to O

/ is 10_32(x) = 0?
/ bit 6 of ecx <-- 10_32(x) == 0

new usr/src/lib/libmi386/src/locallibmil

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

265
266
267
268
269
270
271
272
273

275
276
277
278
279

281
282
283
284
285
286
287
288
289
290

292
293
294
295

.inline

nov|
nmovl
andl|
cnp
adcl
orl

.inline
nov|
and|

orl
pushfl
popl
and|
shrl
.end

.inline
nmovl
flds
fsqrt
.end

.inline
fldl
nov|
and|
cnpl
jae
frndint

fwai t
.end

4(%esp) , Yeax
$0x7f f 00000, Yeax

%€ecx
$0x7f f 00000, Yeax

Yeax

%ecx, Yeax
$0x40, Y%eax
$0x40, %eax
$6, Y%eax

__issubnormal, 0

$0, %eax

4(%esp) , Yecx
$Ox7fffffff, %ecx
$0x00100000, %ecx
$0, %eax

(%esp), Y%ecx

%ecx
$0x40, %ecx
$0x40, %ecx
$6, Y%ecx
%ecx, Yeax

iszero, 0
4(%sp), @@ax
SOXTFFFFfFf, Yeax
(%esp), Yeax

Yeax
$0x40, Yeax
$6, Y%eax

r_sqrt_,
(Y%esp) , Weax
(%eax)

_rint,0

(%esp)
4(%esp) , Yeax
$Ox7fffffff, Yeax
$0x43300000, Yeax
1f

__scalbn,0
8(%esp)
(%esp)

—~———— —

—~———— —

TRUE iff (x is _finite, but
nei t her subnormal nor +/-0)
iff (0 < bexp(x) < O0x7ff)
eax <-- hi_32(x)
eax[20..30] <-- bexp(x)
rest_of (eax) <-- 0

bit 6 of ecx <-- not bexp(x)

bit 6 of eax <-- not bexp(x)

TRUE i ff (bexp(x) = 0 and
frac(x) /= 0)

ecx <-- hi_32(x)

ecx <-- hi_32(abs(x))

is bexp(x) =

junp if bexp(x) =0

= iff sgnfcnd(x) =0
iff x = +/- 0.0 here

eax <-- h| _32(x)
eax <-- hi 32(abs(x))
=0 iff x = +/-

in case we junped around frndint

/11 convert N to extended
11

push x

new usr/src/lib/libmi386/src/locallibmil

296
297

299
300
301
302

304
305
306
307

309
310
311
312

314
315
316
317

319
320
321
322

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

345
346
347
348
349
350
351
352
353
354
355
356
357

359
360
361

fstp
.end

.inline
nov|
shrl
.end

.inline
nmovl
shrl
.end

.inline
fldl
fsqrt
.end

.inline
flds
fsqrt
.end

.inline
fldt
fsqrt
.end

.inline
nov|
andl|

jz

xor |
jz
testl
jz
mov|
jnp
cnpl
jnz
testl
jnz
jnp
nov|
.end

.inline
sub
nov
nov
and
nov
nov
and
or
nov
flds
add
.end

.inline
nov
fldl

st (1)

__signbit,0
4(%esp) , Yeax
$31, %eax

__signbitf,0
(%esp), Yeax
$31, %eax

_sgrt,0
(%esp)

_sgrtf,0
(%esp)

_sgrtl,0
(%esp)

__isnanl,0
8(%esp) , Yeax
$0x00007f f f, %eax

1f

$0x00007f f f, %eax

2f

$0x80000000 4(Yesp)
$0 Yeax

$0x80000000 4(%esp)
$0xffffffff (%esp)
1

$1, Yeax

__f95_signf,0
$4, %esp

4(Y%esp) , Yedx
(%edx) , Y%eax
$ox7fffffff, Yeax
8(%esp), %edx
(%edx), %ecx
$0x80000000, Y%ecx
%ecx, Yeax

Y%eax, (Yesp)
(%esp)

$4, %esp

f95_sign, 0
(%esp), Y%edx
(%edx)

/11 high part of x

/
/
/
/

ax <-- sign bit and __exp
jump if __expis all 0O
jump if
junp if leading bit is 0

_expisall 1

note that %ax = 0 from before

what is first half of __significand?
jump if not equal to 0x80000000

is second half of __significand 0?
junp if not equal to O

new usr/src/lib/libmi386/src/locallibmil

362 f abs

363 v 4(Y%esp) , Yedx
364 nmov 4(%edx) , Yeax
365 t est Y%eax, Yeax
366 jns 1f

367 fchs

368 1:

369 .end

new usr/src/lib/libmsparc/src/libminlines.h 1 new usr/src/lib/libmsparc/src/libminlines.h
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 60 return (ret)
6972 Sun May 4 03:07:04 2014 61 }
new usr/src/lib/libmsparc/src/libminlines.h
IR R R R R R R R R R R R S S R R RS RS E R E RS E R RS R R R ERREREREEEEEEESE] 63 extern | | _ enumfp Cl ass type
1/* 64 fp_classf(flo
2 * CDDL HEADER START 65 {
3 * 66 enum fp_cl ass_type ret;
4 * The contents of this file are subject to the terms of the 67 uint32_t tnp;
5 * Common Devel opnent and Distribution License (the "License"). 68 #endif /* ! codereview */
6 * You may not use this file except in conpliance with the License.
7 * 70 /* XXX: Separate input and output */
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 71 #endif /* | codereview */
9 * or http://ww.opensol aris.org/os/licensing. 72 _asm_ _ volatile__(
10 * See the License for the specific |anguage governing perm ssions 73 "sethi %hi (OXSOOOOOOO) %\ n\t"
11 * and limtations under the License. 74 "andncc %8, 9%, 9O\ n\t"
12 = 67 "sethi %hi (Ox80000000) , Wo2\n\t"
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 68 "andncc %0, W02, YO\ n\t"
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 75 "bne 1f\in\t"
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 76 "nop\n\t"
16 * fields enclosed by brackets "[]" replaced with your own identifying 77 " mov 0,90\ n\t"
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 78 "ba 2f\n\t" /* xis 0 */
18 * 79 "nop\n\t"
19 * CDDL HEADER END 80 "Li\n\t"
20 */ 81 "sethi 98 (0x7f800000), %d\n\t"
82 "andcc 90, %, 98@0\n\t"
22 /* 75 "sethi 9%i (0x7f800000), W®®2\ n\t"
23 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved. 76 "andcc %, W2, WEO\n\t"
24 * Use is subject to license terns. 83 "bne fintt"
25 */ 84 nop\ n\t"
85 " nov 1, 9%\ n\t"
27 | * 86 "ba 2f\n\t" /* x is subnormal */
28 * Copyright 2011, Richard Lowe. 87 "nop\n\t"
29 */ 88 "1:An\t"
89 "cnp %, %4\ n\t"
31 /* Functions in this file are duplicated in locallibmil. Keep themin sync */ 83 "cnp %, Wo2\n\t"
31 /* Functions in this file are duplicated in libmmi. Keep themin sync */ 90 "bge 1IfAn\t"
91 "nop\n\t"
33 #ifndef _LIBM I NLINES_H 92 " nov 2,9%\n\t"
34 #define _LIBM I NLI NES_H 93 "ba 2f\n\t” /* x is normal */
94 "nop\n\t"
36 #ifdef __GNUC _ 95 "L:\n\t"
96 "bg 1fAn\t"
38 #include <sys/types. h> 97 "nop\n\t"
39 #include <sys/ieeefp.h> 98 " mov 3,%0\n\t"
99 "ba 2f\n\t" /* x is __infinity */
41 #ifdef __cplusplus 100 "nop\n\t"
42 extern "C' { 101 "Li\n\t”
43 #endi f 102 "sethi 9%fhi (0x00400000), %4\ n\t"
103 "andcc %, %, %®@O\n\t"
45 extern __inline__ double 96 "sethi %hi (0x00400000), W®2\ n\t"
46 __inline_sqrt(double d) 97 "andcc %), Weo2, Wgo\n\t"
47 { 104 "m)v 4, 9%\ n\ t" /* x is quiet NaN */
48 doubl e ret; 105 "bne 2f\mt”
106 nop\ n\t"
50 _asm _ __volatile__("fsqgrtd %,%\n\t" : "=e" (ret) : "e" (d)); 107 " mov 5,9\ n\t" /* x is signaling NaN */
50 asm_ _ volatile_("fsqrtd 99, %\n\t" : "=e" (ret) : "0" (d)); 108 "2:\n\t"
51 return (ret); 109 Dot4r" (ret), "=&" (tnp)
52 } 110 Cotrt (f)
111 : "ec");
54 extern inline fl oat 103 : "=r" (ret)
55 __inline_sqrtf(float f) 104 "0t (f)
56 { 105 :"o2");
57 float ret; 112 return (ret);
113 }
59 _asm __ _ volatile_ ("fsqrts %, %\n\t" : "=f" (ret) : "f" (f));
59 _asm__ _ volatile_ ("fsqgrts %O,%\n\t" : "=f" (ret) : "0" (f)); 115 #define _H _WORD(x) ((uint32_t *)&x)[0]

new usr/src/lib/libmsparc/src/libminlines.h

116 #define _LO WORD(X)

118 extern

((uint32_t *)&x)[1]

inline__ enumfp_class_type

119 fp_cl ass(doubl e d)

120 {

121
122

enum fp_cl ass_type ret;
uint32_t tnp;

123 #endif /* | codereview */

125
126
127
128
116
117
118
129
130
131
132
133
134
135
136
125
126
137
138
139
140
141
142
143
133
144
145
146
147
148
149
150
151
140
141
152
153
154
155
156
157
158
159
148
149
160
161
162
163
164
165
166
167
168
169
170
158

_asm__ _ volatile__(
"set hi 9%hi (0x80000000), %d\ n\t"
"andn 92, 9%, %0\ n\t"
"orcc %0, %3, %B@O\n\t"
"set hi %hi (0x80000000), ¥®@®@2\ n\t"
"andn %), W02, %O\ n\t"
"orcc %0, %, %@gO0\n\t"
"bne 1f\n\t"
"nop\n\t"
"mov 0,9%0\n\t"
"ba 2f\n\t”
"nop\n\t"
"Li\n\t”
"sethi %hi (Ox7ff00000), %d\n\t"
"andcc %0, %, %@@0\ n\t"
"set hi %hi (Ox7ff00000), W@2\n\t"
"andcc %0, W2, 9O\ n\t"
"bne 1fin\t"
"nop\n\t"
" mov 1,9%\n\t"
"ba 2f\n\t”
"nop\n\t"
"1iAn\t"
"cnmp 90, %\n\t"
"cnp %9, W2\ n\t"
"bge 1fAn\t"

" mov 2,9\ n\t"

"ba 2f\n\t”

"nop\n\t"

"1aAn\t”

"andn 90, 9%, %0\ n\t"
"orcc %0, %3, %B@O\n\t"
"andn %), W02, %O\ n\t"
"orcc %0, %, %®@@O\n\t"
"bne 1f\n\t"

"nop\n\t"

" mov 3,%\n\t"

"ba 2f\n\t"

"nop\n\t"

"1:An\t"

"set hi %hi (0x00080000), %d\n\t"
"andcc %, %, %@g0\ n\t"
"set hi 9%hi (0x00080000), ®®2\ n\t"
"andcc %0, W2, 98O\ n\t"
"be 1f\n\t"

"nop\n\t"

" mov 4,90\ n\t"

"ba 2f\n\t”

"nop\n\t"

"Li\n\t"

" mov 5,90\n\t"
"2:\n\t"

Do "=&r" (ret), "=&" (t

/* 9% gets 80000000 */
/* 9%R-9% gets abs(x) */
/* set cc as x is zero/nonzero *
/* 02 gets 80000000 */
/* 00-0l1 gets abs(x) */
/* set cc as x is zero/nonzero */
/* branch if x is nonzero */

/* x is 0 */

/* 94 gets 7ff00000 */
/* cc set by __exp field of x */
/* 02 gets 7ff00000 */
/* cc set by __exp field of x */
/* branch if normal or max __exp

/* x is subnormal */

/* branch if x is max __exp */
/* x is normal */

/* o0 gets nsw __significand fie
/* set cc by OR __significand */
/* 00 gets nsw __significand field
/* set cc by OR __significand */
/* Branch if __nan */

/* x is _infinity */

/* set cc by quiet/sig bit */

/* set cc by quiet/sig bit */
/* Branch if signaling */

/* x is quiet NaN */

/* x is signaling NaN */

np)
T (_H_WORD(d)), “r* (_LOVORD(d))

cc’);
"=r" (ret)

new usr/src/lib/libmsparc/src/libminlines.h
159 "0" (_H _WORD(d)), "r" (_LO WORD(d))
160 "02");
172 return (ret);
173 }
175 extern __inline__ int
176 __swapEX(int i)
177 {
178 int ret;
179 uint32_t fsr;
180 uint32_t tnpl, tnp2;
181 #endif /* ! codereview */
183 _asm__ _ volatile__(
184 "and %4, Ox1f, 9%8\n\t"
185 "sll 98,5, 9%\n\t" /* shift input to aexc bit
170 "and 9%, Ox1f, %®@1\n\t"
171 "sll %®1,5, Wol\n\t" /* input to aexc bit
186 ".volatile\n\t"
187 " st 96 sr,%d\n\t"
188 "Ild %,%\n\t" /* %9 = fsr */
189 "andn %), 0x3e0, %\ n\t"
190 "or 93, %4, 9B\ n\t" /* 98 = new fsr */
191 " st 98, %\ n\t"
192 "Id od, 96 sr\n\t"
173 "st %4 sr, %R\ n\t"
174 "lId %R, o\ n\t" [* = fsr */
175 "andn %), 0x3e0, %9®2\n\t"
176 "or Wol, Weo2, Wel\n\t" /* ol = new fsr */
177 " st %Wol, R\ n\t"
178 "ld %R, %WEsr\n\t"
193 "srl 9%9,5,9%\n\t"
194 "and %0, Ox1f, %@\ n\t"
195 ".nonvol atile\n\t"
196 "=r" (ret), "=n¥ (fsr), "=r" (tnpl), "=r" (tnp2)
197 rto(i)
198 "cc");
182 ‘=r" (ret)
183 "0" (i), "nmt' (fsr)
184 "ol", "02");
200 return (ret);
201 }
____unchanged_portion_onitted_
214 extern __inline__ enum fp_direction_type
215 _ swapRD(enum fp_direction_type d)
216 {
217 enum fp_direction_type ret;
218 uint32_t fsr;
219 uint32_t tnpl, tnmp2, tnp3;
220 #endif /* | codereview */
222 _asm_ __volatile__(
223 "and 9%, 0x3, %O\ n\t"
224 "sll 90,30, %\n\t" /* shift input to RD bit
205 "and %9, 0x3, %0\ n\t"
206 "sll %), 30, Wol\n\t" /* input to RD bit
225 ".volatile\n\t"
226 "st 994 sr, %\ n\t"
227 "ld o%d, 9O\ n\ t" [* 99 = fsr */
228 "set 0xc0000000, %\ n\t"
229 "andn %9, %!, %8\ n\t"
230 "or R, 98, R\ n\t" /* 9% = new fsr */
231 "st %R, 9\ n\t"

I ocation */

l ocation */

l ocation */

| ocation */

/* mask of rounding direction bits */

new usr/src/lib/libmsparc/src/libminlines.h

232 "Id od, 986 sr\n\t"

208 "st o4 sr, %R\ n\t"

209 "Id %R, %\n\t"

210 "set 0xc0000000, @4\ n\t" /* mask of
211 "andn %), %04, W2\ n\t"
212 "or Wol, We2, Wol\n\t"
213 " st %Wol, R\ n\t"

214 "ld 92, 986 sr\n\t"

233 "srl %0, 30,%\n\t"

234 "and 9%, 0x3, %O\ n\t"

235 ".nonvolatile\n\t"

236 "=r" (ret), "=m' (fsr),
237 "rto(d)

238 "cc");

218 "=r" (ret)

219 "0" (d), "nmt' (fsr)

220 "ol", "o02", "04");

240 return (ret);

241 }

243 extern __inline__ int

244 _ swapTE(int i)

245 |

246 int ret;

247 uint32_t fsr, tnpl, tnp2;

229 uint32 t fsr;

249 _asm_ __volatile__(

250 "and %4, Ox1f, %O\ n\t"

251 "sll %0, 23,%\n\t"

232 "and %0, Ox1f, %@\ n\t"

233 "sll %9, 23, Wol\n\t"

252 “.volatile\n\t"

253 "st 994 sr, %\ n\t"

254 "ld o, O\ n\t"

235 " st 986 sr, %2\ n\t"

236 "Id %R, 9%\n\t"

255 "set 0xO0f 800000, %®®@4\ n\t"
256 "andn %0, W®©4, Y8\ n\t"

257 "or R, 98, %R\ n\t"

258 " st R, %\ n\t"

259 "Id %, 9%bsr\n\t"

238 "andn %), W04, W2\ n\t"
239 "or %Wol, W2, Wol\n\t"
240 "st Wol, R\n\t"

241 "Id %2, G sr\n\t"

260 "srl 9%, 23,%\n\t"

261 "and %0, Ox1f, %@\ n\t"

262 ".nonvol atile\n\t"

263 o"=r" (ret), "=m" (fsr),
264 rto(i)

265 "cc");

245 "=r" (ret)

246 0" (i), "m¥ (fsr)

247 "ol", "o02", "o04");

267 return (ret);

268 }

270 extern __inline__ double

271 sqrt(double d)

272 {

273 return (__inline_sqrt(d));

255

doubl e ret;

/* 00 = fsr */
rounding direction bits */

/* ol = new fsr */

"srvo(tnpl), "s=r (tnp2), "=r" (tnp3)
/* shift input to TEM bit |ocation */
/* input to TEMbit l|ocation */

/* %9 = fsr */

/* 00 = fsr */
/* mask of TEM (Trap Enable Mde bits) *

/* %% = new fsr */

/* ol = new fsr */

"It (tnpl), "= (tnp2)

new

usr/src/lib/libmsparc/src/libminlines.h

257 _asm_ _ volatile__("fsgrtd %0, %0\n\t" "=f" (ret) "0" (d));
258 return (ret);

274 }

276 extern __inline__ float

277 sqrtf(float f)

278 {

279 return (__inline_sqrtf(f));

264 float ret;

266 _asm_ _ volatile__("fsqrts %0, %®\n\t" "=f" (ret) : "0" (f));
267 return (ret);

280 }

282 extern __inline__ double

283 fabs(doubl e d)

284 {

285 doubl e ret;

287 _asm __ _ volatile_ ("fabsd %, %\n\t" : "=e" (ret) : "e" (d));
275 _asm__ _ volatile__("fabsd %0, %0\ n\t" "=e" (ret) : "0" (d));
288 return (ret);

289 }

291 extern __inline__ float

292 fabsf(float f)

293 {

294 float ret;

296 _asm _ __volatile__("fabss %, %®\n\t" : "=f" (ret) tro(f));
284 _asm__ _ volatile__("fabss %0, %\n\t" : "=f" (ret) : "0" (f));
297 return (ret);

298 }

____unchanged_portion_onmitted_

new usr/src/lib/libmsparc/src/locallibmil 1 new usr/src/lib/libmsparc/src/locallibmil
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 63 nop
32674 Sun May 4 03:07:06 2014 64 fba 5f
new usr/src/lib/libmsparc/src/locallibmil 65 nop
IR R R R R R R R R R R RS R R R SRS E RS E R R R SRR R REREREEEEEEEE] 66 4.
1! 67 Id [%01] , % 3
2 | CDDL HEADER START 68 fsnuld 9%0,%0,%0
3! 69 fsmuld %3,%3,%2
4 ! The contents of this file are subject to the terns of the 70 faddd 9%2,%0,%0
5 ! Common Devel oprent and Distribution License (the "License"). 71 fsqrtd 9%0,%0
6 ! You may not use this file except in conpliance with the License. 72 fdtos % 0, % 0
7! 73 5:
8 ! You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 .end
9 ! or http://ww.opensol aris.org/os/licensing.
10 ! See the License for the specific |anguage governing permn ssions 76 .inline __c_abs,1
11 ! and limtations under the License. 77 Id [%00] , %04
12 ! 78 set hi ox1fffff, %5
13 ! Wen distributing Covered Code, this CDDL HEADER in each 79 or %05, 1023, %05
14 ! file and the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 and %04, %05, Y04
15 ! If applicable, add the followi ng below this CDDL HEADER, with the 81 set hi 0x1f e000, %03
16 ! fields enclosed by brackets "[]" replaced with your own identifying 82 cnp %04, Y03
17 ! information: Portions Copyright [yyyy] [nane of copyright owner] 83 Id [%00], % 0
18 ! 84 bne 2f
19 ! CDDL HEADER END 85 nop
20 ! 86 fabss % 0,%0
21 ! Copyright 2011 Nexenta Systems, Inc. Al rights reserved. 87 Id [%©0+4] , % 1
22 ! 88 .volatile
23 ! Copyright 2006 Sun M crosystens, Inc. Al rights reserved. 89 fcnps %0, % 1 ! generate invalid for Snan
24 ! Use is subject to license terns. 90 .nonvol atile
25! 91 nop
92 f ba 5f
27 ! Portions of this file are duplicated as GCC inline assenbly in 93 nop
28 ! libminlines.h. Keep themin sync. 94 2:
95 Id [%00+4] , Y04
30 .inline __r_hypot_,2 96 set hi Ox1fffff, %5
31 Id [%00] , %04 97 or %05, 1023, %05
32 set hi Oox1fffff, %5 98 and %04, %05, Y04
33 or %5, 1023, %05 99 set hi 0x1f e000, %03
34 and %4, %05, Y04 100 cnp %4, %03
35 set hi 0x1f e000, %03 101 bne 4f
36 cnp %4, %03 102 nop
37 Id [%0], % 0 ! load result with first argunent 103 Id [%00+4] , % 0
38 bne 2f 104 fabss % 0,%0
39 nop 105 Id [%0], % 1
40 f abss % 0, % 0 106 .volatile
41 Id [%1],% 1 107 fcnps %0,% 1 ! generate invalid for Snan
42 .volatile 108 .nonvol atile
43 fcnps %0, 9% 1 ! generate invalid for Snan 109 nop
44 .nonvol atile 110 f ba 5f
45 nop 111 nop
46 f ba 5f 112 ! store to 8-aligned address
47 nop 113 4:
48 2: 114 I d [%00+4] , % 3
49 Id [%01] , Y04 115 fsmuld 9%0,%0,%0
50 set hi Ox1fffff, %5 116 fsmuld 9%3,%3,% 2
51 or %05, 1023, %05 117 faddd %2,%0,%0
52 and %04, %05, Y04 118 fsqrtd 9%0,%0
53 set hi 0x1f e000, %03 119 fdtos % 0,% 0
54 cnp %4, %03 120 5:
55 bne 4f 121 .end
56 nop 122 V- - - - - - - - oo oo oo e e e o oo - -
57 Id [%1],% 0 ! second argunent inf 123 ! void
58 f abss 9% 0, % 0 124" __Fc_mlt(c, a, b)
59 Id [%0], % 1 125 ! conplex *c, *a, *b;
60 .volatile 126 !
61 fcnps %0, % 1 ! generate invalid for Snan
62 .nonvol atile 128 .inline __Fc_milt,3

new usr/src/lib/libmsparc/src/locallibmil

129 ! 21 c->real = (a->real *
130 I d [Y1+4], % 0 I f0 =
131 I d [%02+4] , % 1 1 f1 =
132 Id [%01], % 2 1 f2 =
133 fsnuld 9%0,%1, %4 ! f4
134 Id [%02], % 3 I f3 =
135 fsnuld %2,%1, %6 I f6 =
136 fsmuld %2,%3,%8 1 f8 =
137 fsnuld 9%0,9% 3, % 10 I f10
138 fsubd 9%8,%4,%0 I f0 =
139 faddd 9% 6, % 10, % 2 1 f2 =
140 fdtos %0, % 4

141 fdtos % 2,%6

142 st % 4, [%00]

143 st % 6, [Y%00+4]

144 .end

145 1 }

146 '- - - - - - - - - - - - - - - - oo
147 ! void

148 | __Fc_div(c, a, b)

149 ! conplex *c, *a, *b;

150 ! {

151 .inline __Fc_div,3

152 I d [Y02+4] , %3

153 set hi O%hi (Ox7fffffff), Y04
154 or %04, B o(Ox7fffffff), %
155 andcc %3, Y04, g0

156 Id [%©2], % 6

157 bne 1f

158 nop

159 Id [%@1], % 0

160 I d [%02], % 1

161 fdivs %0,%1,%0

162 st % 0, [%00]

163 Id [%01+4],% 3

164 fdivs 9%3,%1,%3

165 st % 3, [Y00+4]

166 ba 2f

167 nop

168 1:

169 set hi 9% i (0x3f f 00000) , Y04
170 or %90, 0, %05

171 std %4, [Ysp+0x48]

172 | dd [%sp+0x48] , % 8

173 I d [%w2+4] , % 10

174 fsnuld %6, 9% 6, % 16

175 I d [Y1+4], % 4

176 fsmuld 9% 10, % 10, % 12

177 Id [%01], % 19

178 fsnuld 9% 4,9% 10, %0

179 fsnuld 9% 19,%6, %2

180 faddd 9612, 9% 16, % 12

181 fdivd % 8, % 12, % 12

182 faddd 9%2,%0, % 2

183 fsnuld 9% 4,9%6, % 24

184 fruld 92, %12, %2

185 fsmuld 9% 19, 9% 10, % 10

186 fsubd 9% 24, 9% 10, % 10

187 fmuld 9% 10, % 12, % 12

188 fdtos %2,%7

189 fdtos % 12, % 15

190 st % 7, [%00]

191 st % 15, [%00+4]

192 2:

193 .end

194 1}

b->real) - (a->i mag *

b- >i mag)

a- >i mag
b- >i mag
a- >r eal

= (a->img *

b- >i mag)

b- >r eal

a->real * b->img
a->real * b->real

= a->imag * b->real
ar*br - ai*bi

ai *br + ar*bi

4

[internal]

f6 gets reb

[internal]

0 gets inb

6/ 17 gets reb**2

gets ima

2/13 gets inmb**2

9 gets rea

/f1 gets ima*inb

/3 gets rea*reb

2/ 13 gets reb**2+i nb**2
2/ 13 gets 1/ (reb**2+i nb**2)
/3 gets rea*reb+i na*inb
4/5 gets ima*reb

/3 gets rec

0/11 gets rea*inb

0/11 gets ima*reb-rea*inb
2 gets int

gets rec

5 gets int

i —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h
PNRPRERENNNRPRNORRE AR

new usr/src/lib/libmsparc/src/locallibmil

196 .inline .mul, 2

197 .volatile

198 smul %0, %01, %00
199 rd %, %01

200 sra %00, 31, %02
201 cnp %1, Y02

202 .nonvol atile

203 .end

205 .inline .umul, 2
206 .volatile

207 unul %0, %01, %00
208 rd %, %01

209 t st %01

210 .nonvol atile

211 .end

213 .inline .div,2

214 sra %00, 31, Y04
215 .volatile

216 wr %4, %90, %y
217 cnp %1, Oxffffffff
218 be, a 1f

219 .volatile

220 subcc %90, %00, %00
221 nop

222 sdiv %0, %01, %00
223 .nonvol atile

224 1:

225 .end

227 .inline .udiv,2
228 .volatile

229 wr %0, %90, %y
230 nop

231 nop

232 nop

233 udi v %00, %01, %00
234 .nonvol atile

235 .end

237 .inline .rem?2

238 sra %00, 31, %04
239 .volatile

240 wr %4, %90, %y
241 cnp %01, OXffffffff
242 be, a 1f

243 .volatile

244 or %0, %90, %00
245 nop

246 sdi v %00, %1, %02
247 .nonvol atile

248 smul %02, %01, Y04
249 sub %0, %04, %00
250 1:

251 .end

253 .inline .urem?2
254 .volatile

255 wr %0, %0, %y
256 nop

257 nop

258 nop

259 udi v %00, %1, Y02
260 .nonvol atile

extend sign

is divisor -1?

if yes

sinply negate dividend

RT620 FABs A 0/A. 1
o0 contains quotient a/b

00 contains quotient a/b

extend sign

is divisor -1?

if yes

simply return 0

RT620 FABs A.0/A. 1

02 contains quotient a/b

04 contains g*b
o0 gets a-g*b

02 contains quotient a/b

new usr/src/lib/libmsparc/src/locallibmil

261
262
263

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

284
285
286
287
288
289
290
291
292
293
294

296
297
298
299
300

302
303
304
305
306

308
309
310
311
312

314
315
316
317
318

320
321
322
323
324

326

umul %2, %01, Y04
sub %00, %04, Y00
.end

.inline .div_o03,2
sra %00, 31, %04
.volatile

wr %4, %90, %y
cnp %01, OXffffffff
be, a 1f

.vol atile

subcc %0, %00, %0
nmv %0, %03

sdi v %00, %01, %00
.nonvol atile

smul %00, %01, Y04
ba 2f

sub %03, %04, Y03
nmv %90, %03
.end

.inline .udiv_o3,2

.volatile

wr %0, %90, %y
nmov %00, %03
nop

no

P
udi v %0, %01, %00
.nonvol atile

unul %00, %1, Y04

sub %3, Y04, %03
.end

.inline __ieee754_sqrt,2
std %00, [¥%sp+0x48]

| dd [%sp+0x48], % 0
fsqrtd 9%0,%0

.end

.inline __inline_sqrtf,1
st %0, [¥sp+0x44]
Id [¥%sp+0x44], % 0
fsqrts 9%0,%0

.end

.inline __inline_sqgrt,?2
std %00, [¥%sp+0x48]

| dd [%sp+0x48], % 0
fsqrtd 9%0,%0

.end

.inline __sqrtf,1

st %0, [Ysp+0x44]
Id [%sp+0x44], % 0
fsqrts 9%0,%0

.end

.inline sqrt, 2

std %00, [¥%sp+0x48]
I dd [¥%8p+0x48], % 0
fsqrtd 9%0,%0

.end

.inline _r_sqgrt_,1

04 contains g*b
o0 gets a-q*b

extend sign

is divisor -1?

if yes

sinmply negate dividend
03 gets __remai nder

00 contains quotient a/b
04 contains g*b

03 gets a-q*b

__remainder is O

03 gets __renminder

00 contains quotient a/b

04 contains g*b
03 gets a-qg*b

| store to 8-aligned address

! store to 8-aligned address

! store to 8-aligned address

new usr/src/lib/libmsparc/src/locallibmil

327
328
329

331
332
333
334
335

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

382
383
384
385
386
387
388
389
390
391
392

Id [%00], % 0
fsqrts %0,%0
.end

inline __d_sqrt_,1
d [%0] , % 0

d [%00+4] , 9% 1
sqrtd 9%0,%0

end

|
|
f
.inline __ceil,2

std %00, [¥%sp+0x48]

set hi % i (0x80000000) , %5
andn %00, %05, %02

sethi %i (0x43300000), %3
st %0, [¥sp+0x54]
subcc %2, %03, %g0

bl 1f

nop
set hi 9% i (0x3f f 00000) , Y%®©2
st %2, [¥%sp+0x50]

| dd [%8p+0x48] , % 0

| dd [%8 p+0x50], % 2
fruld 9%0,%2 %0

ba 4f

nop

tst %0

st %03, [#%sp+0x50]

| dd [%sp+0x50] , % 2

bge 2f

nop

fnegs % 2, 9% 2

| dd [¥%8p+0x48], % 4
faddd 9%4,%2,%0

fsubd 9%0,%2,%0

fcrpd %0,%4

set hi %hi (0x3ff00000), %02

st %02, [¥%sp+0x50]
and %0, %05, Y04

f bge 3f

nop

| dd [%sp+0x50] , % 4
faddd 9%0,%4,%0

st % 0, [¥%sp+0x48]
Id [%8 p+0x48] , %03
andn %3, %5, Y03

or %4, %03, Y03

st %03, [¥sp+0x48]
Id [¥%sp+0x48], % 0
.end

.inline __floor,2

std %00, [¥%sp+0x48]

set hi % i (0x80000000) , %5
andn %0, %05, Y02

set hi % i (0x43300000), %03

st %0, [¥%sp+0x54]
subcc %2, %03, ¥g0

bl 1f

nop

sethi %i (0x3ff00000), %2
st %02, [¥%sp+0x50]

new usr/src/lib/libmsparc/src/locallibmil 7 new usr/src/lib/libmsparc/src/locallibmi
393 | dd [#%sp+0x48], % 0 459 0:
394 | dd [%sp+0x50] , % 2 460 sub %3, 0x3f f, %0
395 fruld 9%0,%2,%0 461 2:
396 ba 4f 462 .end
397 nop
398 1: 464 .inline __rint,2
399 tst %0 465 std %00, [¥%sp+0x48]
400 st %3, [%8 p+0x50] 466 set hi % i (0x80000000) , %®©2
401 | dd [%sp+0x50] , % 2 467 andn %0, %02, %02
402 bge 2f 468 | dd [%sp+0x48], % 0
403 nop 469 sethi %i (0x43300000), %3
404 f negs % 2, % 2 470 st %90, [¥%sp+0x50]
405 2: 471 st %90, [¥sp+0x54]
406 | dd [¥%sp+0x48], % 4 472 subcc %2, %03, Y90
407 faddd 9%4,%2,%0 473 bl 1f
408 f subd %0,% 2,%0 474 nop
409 fecnpd %0,%4 475 set hi %hi (0x3ff00000), %02
410 set hi %i (0x3ff00000), %02 476 st %2, [#%sp+0x50]
411 st %2, [%sp+0x50] 477 | dd [%sp+0x50] , % 2
412 | dd [%sp+0x50] , % 4 478 fruld 90,%2,%0
413 and %0, %05, Y04 479 ba 3f
414 fble 3f 480 nop
415 nop 481 1:
416 fsubd 9%0,%4,%0 482 tst %0
417 3: 483 st %03, [#%sp+0x48]
418 st % 0, [¥%sp+0x48] 484 st %90, [¥sp+0x4c]
419 Id [#%sp+0x48] , %03 485 | dd [%sp+0x48] , % 2
420 andn %03, %05, %03 486 bge 2f
421 or %4, %03, Y03 487 nop
422 st %03, [Y%sp+0x48] 488 fnegs % 2, % 2
423 Id [#%sp+0x48], % 0 489 2:
424 4: 490 faddd %0,%2,%0
425 .end 491 fecnpd 9%0,%2
492 fbne of
427 .inline __ilogh,2 493 nop
428 sethi i (0x7f f 00000), Y04 494 | dd [%sp+0x50] , % O
429 andcc %04, %00, %92 495 bge 3f
430 bne 1f 496 nop
431 nop 497 fnegs % 0, % 0
432 set hi %i (0x43500000) , %©3 498 ba 3f
433 std %00, [¥%sp+0x48] 499 nop
434 st %03, [¥%sp+0x50] 500 O:
435 st %0, [¥sp+0x54] 501 fsubd 9%0,%2, %0
436 | dd [%sp+0x48] , % 0 502 3:
437 | dd [%sp+0x50] , % 2 503 .end
438 fruld 9%0,%2,%0
439 set hi %hi (0x80000001) , %00 505 .inline __rintf,1
440 or %00, % o(0x80000001) , %00 506 st %00, [¥%sp+0x48]
441 st % 0, [¥%sp+0x48] 507 set hi % i (0x80000000) , ¥%®©2
442 Id [%sp+0x48] , Y02 508 andn %0, %02, %02
443 andcc %02, Y04, Y902 509 I d [%sp+0x48], % 0
444 srl %2, 20, %02 510 set hi %i (0x4b000000) , %03
445 be 2f 511 st %90, [#%sp+0x50]
446 nop 512 subcc %2, %3, %90
447 sub %2, 0x435, %00 513 bl 1f
448 ba 2f 514 nop
449 nop 515 sethi %i (0x3f 800000), %2
450 1: 516 st %2, [¥%sp+0x50]
451 subcc %4, %02, ¥g0 517 Id [%sp+0x50] , % 2
452 srl %02, 20, %03 518 frmul s 9% 0,% 2,%0
453 bne of 519 ba 3f
454 nop 520 nop
455 set hi O%hi (Ox7fffffff), %0 521 1:
456 or %00, % o(Ox7fffffff), %0 522 tst %00
457 ba 2f 523 st %3, [%sp+0x48]
458 nop 524 Id [%sp+0x48] , % 2

new usr/src/lib/libmsparc/src/locallibmil

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542

544
545
546
547
548
549
550
551

553
554
555
556
557
558
559
560

562
563
564
565
566

568
569
570
571
572

574
575
576
577
578
579
580
581

583
584
585
586
587
588
589
590

bge
nop
f negs

fadds
fcnps
fbne
nop
Id
bge
nop

f negs
ba
nop

f subs

ne

ine

ine

ine

ine

ine

2f
% 2,9%2

%0,%2,%0
%0, % 2
of

[%sp+0x50] , % 0
3f

%0,%0
3f
%0,%2,%0

__min_subnormal , 0
0x0, %00

%0, [¥%sp+0x44]

[¥%sp+0x44], % 0
0x1, %00

%0, [Ysp+0x44]

[%sp+0x44], % 1

__d_min_subnormal _, 0
0x0, %00

%00, [¥sp+0x44]

[¥%8p+0x44], % 0

0x1, %00

%0, [Ysp+0x44]

[¥%sp+0x44],% 1

__mn_subnormal f,0
0x1, %0

%00, [¥%sp+0x44]

[%sp+0x44], %0

__r_mn_subnormal _, 0
0x1, %00

%0, [¥sp+0x44]

[%sp+0x44], % 0

__max_subnormal , 0
0x000fffff, %0
%00, [¥%sp+0x44]
[%sp+0x44], 9% 0
oxffffffff, %0
%0, [Ysp+0x44]
[¥%sp+0x44], % 1

__d_max_subnormal _, 0
0x000f ffff, %0
%00, [¥%sp+0x44]
[%sp+0x44], % 0
Oxffffffff, %0
%0, [Ysp+0x44]
[¥%sp+0x44], % 1

new usr/src/lib/libmsparc/src/locallibmil

592
593
594
595
596

598
599
600
601
602

604
605
606
607
608
609

611
612
613
614
615
616
617
618

620
621
622
623
624

626
627
628
629
630

632
633
634
635
636
637

639
640
641
642
643
644
645
646

648
649
650
651
652

654
655
656

cinli

ne

__max_subnormal f, 0
0x007fffff, %00
%0, [Ysp+0x44]
[%sp+0x44], % 0

__r_max_subnormal _, 0
0x007fffff, %0
%0, [¥%sp+0x44]
[¥%8p+0x44], % 0

__mn_normal,0
0x00100000, %0
0x0, %01

%0, [¥%sp+0x48]
[¥%sp+0x48], % 0

_d mn_normal _,0
0x00100000, %0
%00, [¥%sp+0x44]

[%sp+0x44], % 0
0x0, %00

%0, [Ysp+0x44]

[¥%sp+0x44], % 1

__mn_normal f,0
0x00800000, %00
%00, [¥%sp+0x44]
[#sp+0x44] , % 0

_r_mn_normal _,0
0x00800000, %00
%0, [Ysp+0x44]
[¥%sp+0x44], % 0

__max_normal , 0
ox7fefffff, %0
Oxffffffff, %l
%00, [¥%sp+0x48]
[%sp+0x48], % 0

_d_max_normal _, 0
Ox7fefffff, %0
%0, [¥sp+0x44]
[¥%sp+0x44], % 0
Oxffffffff, %0
%0, [s p+0x44]
[%sp+0x44], % 1

__max_normal f,0
Ox7f7fffff, %0
%00, [¥sp+0x44]
[¥%8p+0x44], % 0

_r_max_normal _, 0
ox7f7fffff, %00
%00, [Ysp+0x44]

10

new usr/src/lib/libmsparc/src/locallibmil

657
658

660
661
662
663
664
665

667
668
669
670
671
672

674
675
676
677
678
679
680
681

683
684
685
686
687

689
690
691
692
693

695
696
697
698
699
700

702
703
704
705
706
707
708
709

711
712
713
714
715

717
718
719
720
721

Id
.end

cinli
set
set
std
I dd
.end

cinli
set
set
std

[%sp+0x44], % 0

__infinity,0
0x7f f 00000, %0
0x0, %01
%0, [¥%sp+0x48]
[%sp+0x48], % 0

_infinity,0
0x7f f 00000, %0
0x0, %01
%00, [¥%sp+0x48]
[¥%sp+0x48], % 0

d.infinity,0
0x7f f 00000, %00
%0, [Ysp+0x44]

[%sp+0x44], % 0
0x0, %0

%00, [¥%sp+0x44]

[¥%8p+0x44], % 1

_infinityf,0

0x7f 800000, %00
%0, [Ysp+0x44]
[%sp+0x44], % 0

_r_infinity_,0
0x7f 800000, %0
%0, [¥sp+0x44]
[¥%8p+0x44], % 0

__signaling_nan, 0
0x7f f 00000, %00
0x1, %ol

%0, [¥%sp+0x48]

[%sp+0x48], % 0

__d_signaling_nan_, 0
0x7f £ 00000, %00

%00, [¥%sp+0x44]

[%sp+0x44], % 0

0x1, %00

%0, [Ysp+0x44]

[¥%sp+0x44], % 1

__signaling_nanf, 0
0x7f 800001, %00
%00, [¥%sp+0x44]
[#sp+0x44], % 0

__r_signaling_nan_,0
0x7f 800001, %00
%0, [Ysp+0x44]
[¥%sp+0x44], % 0

11

new usr/src/lib/libmsparc/src/locallibmil

723
724
725
726
727
728
729
730

732
733
734
735
736
737
738
739

741
742
743
744
745

747
748
749
750
751

753
754
755
755
756
757
758
759
760
761
762
763
764
765
766

768
769
770
771
772

774
775
776

778
779
780
780
781
782
783
784
785
786

.inline
set
st

.inline
and
sl |
sl
.vol atil

__quiet_nan, 0
Ox7fffffff, %0
%00, [Ysp+0x44]
[%sp+0x44], % 0
Oxffffffff, %0
%00, [¥%sp+0x44]
[¥%8p+0x44], % 1

o

_d_quiet_nan_,
Ox7fffffff, %0
%0, [Ysp+0x44]

[%sp+0x44], % 0
Oxffffffff, %0
%00, [¥%sp+0x44]

[¥%8p+0x44], % 1

__quiet_nanf,0
ox7fffffff, %0
%0, [Ysp+0x44]
[¥%sp+0x44], % 0

o

__r_quiet_nan_,
ox7fffffff, %0
%00, [¥%sp+0x44]

[%sp+0x44], %0

__swapEX, 1
%00, Ox1f, %01
%01, 5, %0l
%1, 5, %01

(0]

% sr, [Ysp+0x44]
[%8 p+0x44] , %00
%00, 0x3e0, %92
%1, %02, Y0l
%1, [Ysp+0x44]
[Y8 p+0x44], % sr
%0, 5, %00

%00, 0x1f , %00

.nonvol atile

.end

.inline
st

Id

srl
.end

.inline
or
.end

.inline
and

sl |

sl |

.vol atil
st

Id

set

andn

or

_QetRD, 0

% sr, [Ysp+0x44]
[%8 p+0x44] , %00
%0, 30, %0

_QuetRP, 0
%0, %90, %00

__swapRD, 1
%00, 0x3, %00
%0, 30, %01
%00, 30, %01

[0

% sr, [Ysp+0x44]
[%sp+0x44] , %00
0xc0000000, Y04
%00, %04, Y02
%1, %02, Y0l

shift input to aexc bit |ocation
input to aexc bit |ocation
00 = fsr

0l = new fsr

00 = fsr
return __round control value

shift input to RD bit |ocation
input to RD bit |ocation

00 = fsr
mask of rounding direction bits

0l = new fsr

12

new usr/src/lib/libmsparc/src/locallibmil

787
788
789
790
791
792
793

794 1|
795 |

797
798
799

801
802
803
803
804
805
806
807
808
809
810
811
812
813
814
815

817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851

st
Id
srl
and

%1, [Ysp+0x44]
[Y8 p+0x44], % sr
%0, 30, %0

%0, 0x3, %0

.nonvol atile

.end
On t he SPARC,
.inline

or
.end

__swapRP is a no-op;

__swapRP, 1
%0, %90, %00

__swapTE, 1
%00, Ox1f , %00
%0, 23, %01
%00, 23, %01

[¢)

% sr, [Ysp+0x44]
[%sp+0x44] , %00
0x0f 800000, Y04
%00, %04, Y02
%1, %02, %01
%1, [Ysp+0x48]
[%sp+0x48], % sr
%00, 23, %00

%0, 0x1f , %00

.nonvol atile

.end

.inline
set hi
andn
orcc
bne

nop

nov

ba

nop

set hi
andcc
bne
nop
nov
ba
nop

cmp
bge
nop
nov
ba

nop

andn
orcc
bne
nop
nov
ba
nop

set hi
andcc

_ fp_class, 2

% i (0x80000000) , %©2
%0, %02, %00

%0, %1, g0

1f

0, %00
2f

% i (0x7ff00000), %2
%0, %02, Y90
1f

1, %0
2f

%0, %02
1f

2, %00
2f

%0, %02, %00
%0, %1, %90
1f

3, %00
2f

% i (0x00080000) , %©2
%00, %2, %90

shift input to TEM bit |ocation
input to TEM bit |ocation

! 00 = fsr

mask of TEM (Trap Enabl e Mdde bits)

0l = new fsr

02 gets 80000000

00-01 gets abs(x)

set cc as x is zero/nonzero
branch if x is nonzero

X is O

02 gets 7ff00000
cc set by __exp field of x
branch if normal or nmax __exp

X i s subnorma

branch if x is max __exp

X i's norna

00 gets msw __significand field
set cc by OR __significand
Branch if _ nan

x is __infinity

set cc by quiet/sig bit

13

al ways return 0 for backward conpatibility

new usr/src/lib/libmsparc/src/locallibmil

852
853
854
855
856
857
858
859
860

862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

be
nop
nov
ba
nop

nov
.end

.inline
set hi
andncc
bne

nop

nov

ba

nop

.end

.inline
Id

set hi
andncc
bne

nop

nov

ba

nop

set hi
andcc
bne
nop

ba
nop

1f

4, %0
2f

5, %00

_ fp_classf,1

% i (0x80000000) , %©2
%0, %02, %00

1f

0, %00
2f

Y%i (0x7f 800000) , %02
%0, %2, Y90
1f

1, %00
2f

%00, %02
1f

2, %0
2f

1f

3, %00
2f

9%hi (0x00400000) , %02
%0, %02, Y90

4, %00

2f

5, %0

__ir_fp_class_,1

[%00] , %00

%hi (0x80000000) , %02
%0, %02, %00

1f

0, %0
2f

%i (0x7f 800000) , %02
%0, %2, %0
1f

1, %00
2f

14
Branch if signaling

X is quiet NaN

x is signaling NaN

X i s subnornal

X i's norna

x is __infinity

X is quiet NaN

x is signaling NaN

xis O

X i s subnornma

new usr/src/lib/libmsparc/src/locallibmil

918 1:
919
920
921
922
923
924
925 1:
926
927
928
929
930
931 1:
932
933
934
935
936
937
938 2:
939

941
942
943
944
945
946
947
948

950
951
952
953
954
955
956
957

959
960
961
962
963
964
965
966
967
968

970
971
972
973
974
975
976
977
978 1:
979

981
982
983

cnp
bge
nop
nov
ba

nop

bg
nop
nmv
ba
nop

set hi
andcc
nov
bne
nop
nov

.end

.inline
set

and
andn

or

std

| dd
.end

.inline
set
and

%0, %02
1f

2, %0
2f

1f

3, %00
2f

%hi (0x00400000) , %02
%0, %2, %90

4, %0

2f

5, %00

__copysign, 4
0x80000000, %03
%02, %03, Y02
%00, %3, %00
%0, %02, %00
%00, [¥sp+0x48]
[%sp+0x48], % 0

__copysignf, 2
0x80000000, %02
%00, %02, %00
%1, %2, %01
%0, %1, %00
%0, [Ysp+0x44]
[¥%sp+0x44], % 0

__r_copysign_, 2
[%00] , %0
[%1] , %01
0x80000000, %2
%0, %02, %00
%1, %02, Yol
%00, %01, %00
%0, [Ysp+0x44]

[%sp+0x44], % 0

_finite, 2

0x7f f 00000, %01
%0, %1, %00
%00, %01

1, %0

1f

0, %0

_finitef,2
0x7f 800000, %01
%00, %01, %00

15

is norma

is __infinity

is quiet NaN

is signaling NaN

new usr/src/lib/libmsparc/src/locallibmil

984
985
986
987
988
989
990

992
993
994
995
996
997
998
999
1000
1001
1002

1004
1005
1006

1008
1009
1010

1012
1013
1014
1015

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1045
1046
1047
1048
1049

cnp
nov
bne
nop
nov

.end
cinli
Id

set

and
cnp
nov
bne
nop
nov

.end

cinli
srl
.end

Linli
srl
.end

.inli

srl
.end

cinli
tst
set hi
bne
nop
andn
set hi

nov
be
nop

.end

cinli
set hi
andn
set hi
cnp
nov
bne
nop
nov

.end
cinli
set hi

andn
set hi

%00, %01
1, %0
1f

0, %00

ne __ir_finite_,1
[%00] , %00
0x7f 800000, %01
%0, %1, %00
%0, %01
1, %00
1f

0, %00

ne __signbit,1
%00, 31, %00

ne __signbitf,1
%00, 31, %00

ne __ir_signbit_,1
[%00] , %00
%00, 31, %0

ne __isinf,2
%1
%i (0x80000000) , %2
1f

%00, %02, %00

9%i (0x7ff00000), %©2
%00, %02

1, %0

2f

0, %00

ne __isinff,1
% i (0x80000000) , %©2
%00, %02, %00
9%i (0x7f 800000) , %®©2
%00, %902
0, %00
1f

1, %0

ne __ir_isinf_,1
[%00] , %00
%hi (0x80000000) , %02
%0, %02, %00
%i (0x7f 800000) , %02

00 gets abs(x)

Branch if not

00 gets abs(x)

inf.

16

new usr/src/lib/libmsparc/src/locallibmil

1050
1051
1052
1053
1054
1055
1056

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068

1070
1071
1072
1073
1074
1075
1076

1078
1079
1080
1081
1082
1083
1084
1085

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

cnp
nov
bne
nop
nov

.end

cinli
set hi
andn
sub

ne

ine

ine

ne

ne

%00, %02
0, %00
1f

1, %0

__isnan,2

% i (0x80000000) , %02
%00, %02, %00

%0, %1, %03

%1, %03, %01

%01, 31, %01

%00, %1, %00

9% i (0x7f f00000), %04
%4, %00, %00

%00, 31, %00

__isnanf, 1
% i (0x80000000) , %©2
%00, %2, %00
9% i (0x7f 800000), %1
%1, %0, %00
%00, 31, %00

_ir_isnan_,1

[%00] , %00

% i (0x80000000) , %02
%00, %2, Y00

%i (0x7f 800000), %01
%1, %0, %00

%00, 31, %00

__isnormal, 2

% i (0x80000000) , %02
%00, %2, %00

%i (0x7ff00000), %02
%0, %02

% i (0x00100000) , %©2
1f

%0, %02
1, %00
2f

0, %0

__isnormal f, 1

%i (0x80000000) , %02
%00, %02, %00

%i (0x7f 800000) , %02
%0, %02

%i (0x00800000) , %02
1f

%0, %02
1, %00
2f

Branch if not

inf.

new usr/src/lib/libmsparc/src/locallibmil

1116 1:

1117
1118
1119

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137

1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

1175
1176
1177
1178
1179
1180
1181

2

nmv 0, %00

.end

.inline __ir_isnormal _, 1

Id [%0] , %00

set hi % i (0x80000000) , %®©2
andn %0, %02, %00

set hi % i (0x7f 800000) , %02
chp %0, %02

set hi % i (0x00800000) , %®©2
bge 1f

nop

chp %0, %02

mv 1, %00

bge 2f

nop

nmv 0, %00

.end

.inline __issubnormal,?2

set hi % i (0x80000000) , %©2
andn %00, %02, %00

set hi % i (0x00100000) , %©2
cnp %0, %02

bge 1f

nop

orcc %0, %1, g0

be 1f

nop

nmv 1, %0

ba 2f

nop

nmv 0, %00

end

.inline __issubnormalf,1
set hi % i (0x80000000) , %©2
andn %00, %02, %00

set hi % i (0x00800000) , %®©2
cnp %0, %02

bge 1f

nop

orcc %0, %90, %90

be 1f

nop

nmov 1, %00

ba 2f

nop

nmov 0, %0

end

.inline __ir_issubnormal _, 1
Id [%00] , %00

set hi % i (0x80000000) , %®©2
andn %0, %02, %00

set hi % i (0x00800000) , %©2
chp %0, %02

bge 1f

02 gets 80000000
00/ 01 gets abs(x)
02 gets 00100000

branch if x normor max

Branch if x zero

X i s subnornal

02 gets 80000000
00 gets abs(x)
02 gets 00800000

branch if x normor nax

Branch if x zero

X i s subnornma

02 gets 80000000
00 gets abs(x)
02 gets 00800000

branch if x normor nmax

__&exp

_exp

_exp

18

new usr/src/lib/libmsparc/src/locallibmil

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192

1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

1205
1206
1207
1208
1209
1210
1211
1212
1213

1215
1216
1217
1218
1219
1220
1221
1222
1223
1224

1226
1227
1228
1229
1230

1232
1233
1234
1235
1236
1237

1239
1240
1241
1242
1243

1245
1246
1247

nop
orcc
be
nop
nov
ba
nop

nov
.end

.inline
set hi
andn
orcc
nov

be

nop

nov

.end

.inline
set hi
andncc
nov

be

nop

nov

.end

.inline
sra

xor

sub
.end

.inline
st

st

| dd
fabsd
.end

.inline
st

Id

f abss
.end

.inline
Id

fabss

%0, %g0, %g0
1f

1, %0
2f
0, %0

__iszero, 2

% i (0x80000000) , %02
%00, %2, %00

%0, %1, %90

1, %0

1f

0, %0

__iszerof,1

% i (0x80000000) , %®©2
%00, %02, Y00

1, %00

1f

0, %00

__ir_iszero_,1

[%00] , %00

i (0x80000000) , %2
%0, %02, %00

1, %0

1f

0, %0

abs, 1

%0, 31, %01
%00, %01, %00
%0, %01, %00

__fabs, 2
%00, [¥%sp+0x48]
%1, [Ysp+0x4c]
[#%sp+0x48] , % 0
% 0,%0

__fabsf, 1

%0, [Ysp+0x44]
[¥%8p+0x44], % 0
%0, %0

Branch if x zero

X i s subnornal

19

new usr/src/lib/libmsparc/src/locallibmil

1248
1249
1250
1251

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308

1310
1311
1312
1313

.end

_nintf

.inline
srl
set hi
st
and
or
set hi
subcc
and

b

nop
set hi
set hi

xor
and
add

.end

.inline
Id

sra
srlx

- 77 NI NT(REAL*4)

_nintf,1

%0, 30- 7, %g1

%hi (Ox7fffff), %02
%0, [¥sp+0x44]

%1, Oxff, %g1

%2, % o(Ox7fffff), %@2
i (1<<22), %04

%1, 127+31, %g0

%00, %02, %03

of

9%hi (O0xcf 000000), %02
%hi (0x80000000), %g1
%0, %02, g0

%1, %90, %00

of

[¥%sp+0x44], % 0
%0,%0

% 0, [Ysp+0x44]
[%sp+0x44] , %00
of

%4, Y04, Y05
%03, %05, Y03
%00, 31- 0, %02
%1, 127, %g1
%4, %91, Y04
1f

%1, -1, %90
%90, 0, %00
2f

%90, 1, %00
2f

%03, %04, %93
%90, 23, %00
%00, %91, %00
1f

%3, %00, %00
2f

%0, %0, %00
%3, %00, %00

%00, %02, %00
%02, 1, Y02
%0, %02, %00

il _nint,1
[%00] , %00
%00, 0, %00
%0, 31- 8, %g1

new usr/src/lib/libmsparc/src/locallibmil

1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379

or
sl x
and

sl x
subcc

srlx
.end

__i_dnnt

.inline
|

%0, 1, %02
%2, 23- 1, Y04
%1, Oxff, %gl
%72, 63- 0, %02
%1, 127+63, %g0
of

%0, [%5 p+0x48]
[%sp+0x48], % 0
%0, %0

% 0, [¥%sp+0x48]
[%sp+0x48] , %01
of

%04, %04, Y05
%2, 63- 23, %92
%1, 127+23, %01
%2, %g0, %02
%00, %02, %93
%3, %05, %03
%0, 63- 0, %02
%1, 127, %91

1f

%1, -1, %90
%0, 0, %00
2f

%0, 1, %00
2f

%1, 3f

%1, 23, %00
%03, %00, %00
2f

%04, %91, Y04
%3, Y04, Y03
%0, 23, %0
%00, %91, %00
%3, %0, %00

%00, %02, %00
%0, %02, Y0l

%1, 32, %0
- £77 NI NT(REAL*8)

_i_dnnt,1

[%00], %01
%1, 32, %01

[%00+4] , %0
%00, %01, %00
%0, 63-11, %g1
%90, 1, Y02
%0, [¥%sp+0x48]
%02, 52- 1, %04
%1, Ox7ff, %gl
%72, 63- 0, %02

21

new usr/src/lib/libmsparc/src/locallibmil

1380
1381
1382
1383
1384
1385
1386 0:
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404 1:
1405
1406
1407
1408
1409
1410 2:
1411
1412
1413
1414
1415
1416
1417
1418 8:
1419
1420
1421
1422 9
1423

1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445 0:

subcc
b

nop

| dd

ba
nop

add

%1, 1023+32, %g0
of

[%sp+0x48], % 0
8f

%04, Y04, Y05
%2, 63-52, %92
%1, 1023+30, %01
%72, %g0, %02
%00, %02, %93
%3, %05, %03
%00, 63- 0, %02
%1, 1023, g1

1f

%1, -1, %90
%0, 0, %00
2f

%0, 1, %00
2f

%4, %91, Y04
%03, %04, Y03
%90, 52, %00
%0, %91, %00
%3, %00, %00

%0, %02, %00
%00, %02, %00
%1, of

%00, [¥%sp+0x48]
[%sp+0x48], % 0
%0,9%0

%0, %0
% 0, [Ysp+0x44]
[%sp+0x44] , %00

il _dnnt,1

[%00], %01
%1, 32, %01

[%©0+4] , %0
%0, %1, %00
%0, 63- 11, %g1
%0, 1, %02
%2, 52- 1, Y04
%1, Ox7ff, %gl
%72, 63- 0, %02
%1, 1023+63, %g0
of

%0, [¥%sp+0x48]
[%sp+0x48], % 0
%0, %0

% 0, [Ysp+0x48]
[%sp+0x48] , %01
of

new usr/src/lib/libmsparc/src/locallibmil

1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481

1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510

add
Srax
sub
xnor
and
or
Srax
subcc
bge
nop
subcc
or
bne
nop

%04, Y04, Y05
%2, 63-52, %92
%1, 1023+52, %01
%2, %90, Y02
%0, %02, %03
%03, %05, %03
%0, 63- 0, %02
%1, 1023, %g1

1f

%1, - 1, %g0
%90, 0, %0
2f

%90, 1, %0
f

%1, 3f

%1, 52, %00
%03, %00, %00
2f

%4, %91, Y04
%03, %04, Y03
%90, 52, %00

%0, %91, %00
%3, %00, %00

%0, %02, %00
%00, %02, %01

%1, 32, %00

.inline __anintf,1

%0, 1, %01
%0, 23, %91
%1, Oxf f, %gl
%0, %91, %91
%1, 0x95, %g1
%1, 23, %90
%1, %91, %ol
%1, 1, %02

1f

2f

3f

9 i (0x80000000), @1
%0, %1, %00

3f

%00, %01, %01

%00, %01, %00
%00, %02, %00

%0, [¥%sp+0x48]
[%sp+0x48], % 0

23

new usr/src/lib/libmsparc/src/locallibmil

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532

1533 1:

1534

1535 2:

1536
1537

1538 3:

1539
1540
1541

1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558

1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575

1577

.inline __anint,2
sl x %00, 32, %00

or %0, %01, %00
or %0, 1, %01
srlx %0, 52, %g1
and %1, Ox7ff, %gl
sub %90, %91, Y91
add %g1, 0x432, Y%gl

subcc %1, 52, %90
sl x %1, %91, %01

sub %1, 1, %02
bcs, pt % cc, 1f
nop

be, pt % cc, 2f
nop

bl , pt % cc, 3f
nop

srlx %00, 63, %00
sl | x %00, 63, %00

ba 3f

nop

and %00, %1, %01

add %0, %01, %00

andn %00, %02, %00

st x %00, [¥%sp+0x48]

| dd [%sp+0x48], % 0
end

inline _ Fz_mnus,3
d [%1] , %0

d [%1+0x4] , % 1
d [%02], % 4

d [Y©2+0x4] , % 5
subd 9%0,%4,%0

d [%01+8], % 2

d [Y01+0xc], % 3
d [Y%02+8], % 6

d [Y©2+0xc], % 7
fsubd 9%2,%6,%2

st % 0, [%90+0x0]
st % 1, [Y%00+0x4]
st % 2, [Y00+0x8]
st % 3, [¥%00+0xc]
.end

inline _ Fz_add, 3
d [%1] , %0

d [%1+0x4] , % 1
d [%02], % 4

d [%02+0x4] , % 5
addd 9% 0,%4,%0

d [%01+8], % 2

d [Y©1+0xc], % 3
d [Y%02+8], % 6

d [%©2+0xc] , % 7
faddd 9%2,%6,% 2

st % 0, [%00+0x0]

st % 1, [Y%00+0x4]

st % 2, [Y%00+0x8]

st % 3, [¥%00+0xc]
end

.inline __Fz_neg, 2

new usr/src/lib/libmsparc/src/locallibmil

1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588

1590
1591
1592
1593
1594
1595
1596
1597
1598

1600
1601
1602
1603
1604

1606
1607
1608
1609
1610
1611
1612

1614
1615
1616
1617
1618
1619
1620
1621
1622

1624
1625
1626
1627

1629
1630
1631
1632
1633
1634

1636
1637
1638
1639
1640
1641
1642
1643

egs

[%1],% 0

% 0,%0

[%01+0x4] , % 1
% 1, [Y%90+0x4]
[%01+8], % 2

% 2, % 2

[Y%©1+0xc], % 3
% 3, [Y%00+0xc]
% 0, [%00]

% 2, [¥%90+0x8]

__Ff _conv_z,2
%1, [Ysp+0x44]
[¥%8p+0x44], % 0
% 0,%0

%90, [Y%90+0x8]
%0, [%00+0xc]
% 1, [Y%00+0x4]
% 0, [%00]

__Fz_conv_f,1
[%0] , % 0

[%00+4] , % 1
% 0,%0

__Fz conv_i,1
[%0], % 0

[%00+4] , % 1
%0, %0

% 0, [Ysp+0x44]
[%sp+0x44] , %00

__Fi_conv_z,2
%1, [Ysp+0x44]
[%sp+0x44], % 0
%0, %0

%90, [%00+0x8]
%90, [%00+0xC]
% 1, [%00+0x4]
% 0, [%00]

__Fz_conv_d, 1
[%0] , % 0
[%0+4] , % 1

__Fd_conv_z,3
%1, [%00]

%2, [Y%©00+0x4]
%90, [%00+0x8]
%0, [%00+0xc]

__Fz_conv_c, 2
[%01], %0

% 0,9% 0

% 0, [%00]

[%©1+0x8] , % 2
%2,%1

% 1, [Y%00+0x4]

25

new usr/src/lib/libmsparc/src/locallibmil

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687

1689
1690
1691
1692
1693
1694

1696
1697
1698
1699
1700
1701
1702
1703
1704
1705

1707
1708
1709

.inline

.inline
Id

f negs

__Fz eq,2
%0] , % 0
%0+4], % 1
%1], % 2
%01+4],% 3

9% 0, % 2

%0, %02

0, %00

1f

%02+8],% 0
%02+12],% 1
%1+8], % 2
%1+12],% 3
% 0, % 2

1f
1, %0

[%©2+8], % 0
[%2+12] ,% 1
[Y%01+8], % 2
[%01+12], % 3
9% 0, % 2

1f
0, %00

__c_cnplx,3
[%1] , %01
%1, [%00]
[%02], Y02
%2, [Y%00+4]

_d_cnplx,3
[%01], % 0

% 0, [%00]
[%01+4], % 1
% 1, [Y%00+4]
[%02], % 0

% 0, [Y%90+0x8]
[%02+4], % 1
% 1, [Y%00+0xc]

_r_cnjg,2
[Y%01+0x4], % 1
%1,%1

new usr/src/lib/libmsparc/src/locallibmil

1710
1711
1712
1713

1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725

1727
1728
1729
1730
1731
1732
1733
1734
1735
1736

1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749

1751
1752
1753

1755
1756
1757
1758

1760
1761
1762
1763
1764
1765
1766
1767

1769
1770
1771
1772
1773
1774
1775

Id [%01], % 0
st % 0, [%00]
st % 1, [Y%00+4]
.end

.inline __d_cnjg,2
Id [%©1+0x8], % 0
fnegs % 0,%0

Id [%)1+Oxc] , %1

st % 1, [Y%00+0xc]

Id [%91+0x0], % 1

st % 1, [Y%00+0x0]

Id [%1+0x4], % 1

st % 1, [Y%00+0x4]

st % 0, [%00+0x8]
end

.inline __r_dim2

st %90, [¥%sp+0x48]
Id [%8 p+0x48], % 4
Id [%0], % 0

Id [%01], % 2

fc 9% cc0, % 0, % 2
frmvsule % cc0, % 4, % 2
f subs % 0, %2 % 0
frovsul e % ccO, % 4, %0
.end

inline d_dim
st x %0, | [%sp+0x48]
I dd [%sp+0x48], % 4
Id [%©0], % 0
Id [%00+4] , % 1
Id [%01], % 2
Id [Y01+4],% 3
fcnpd % ccO, %0 % 2
f movdul e %CCO %4 % 2
fsubd %0, %2 % 0
frmovdul e % cc0, % 4, % 0
.end

.inline r_imag, 1

Id [%0+4] , % 0

inline __d_img, 1

i
Id [%0+8], % 0
Id [%)O+Oxc] , %1
.end

.inline __f95_signf,2
Id [%0] , % 0

Id [%1], Y01

fabss %0, 9% 0
fnegs %0, 9% 1

sra %01, 0, %01
frovrslz %1,% 1, %0
.end

inline _ f95_sign,2
Id [%0], % 0

Id [%00+4] , % 1
Id [%01], Y01
fabsd 9%0,%0
fnegd % 0, % 2

sra %1, 0, %01

27

new usr/src/lib/libmsparc/src/locallibmil

1776
1777

1779
1780
1781
1782
1783
1784
1785
1786
1787
1788

1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802

1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828

1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841

voi d

frovrdl z %01, % 2, %0
.end

.inline __r_sign,?2
Id [%00] , % 0
Id [%1] , %01
fabss 9% 0,9% 0
fnegs %0, 9% 1

sub %1, 1, %0
and %1, %0, %01
sra %1, 0, %01

frovrslz %1,% 1,%0
.end

.inline __d_sign,2
d [%©0], % 0

d [%00+4] , % 1
d [%01], %00
I'lx %00, 32, %00
d [%1+4] , %1
or %1, %0, %01
f absd % 0,% 0
fnegd % 0, % 2

sub %1, 1, %0
and %1, %00, %ol
frovrdl z %01, % 2, %0
.end

inline _Fz milt,3
[%1] , %0

[Y%01+0x4], % 1
[%02], % 4
[%02+0x4] , % 5
%0,%4,%8

[%01+0x8], % 2
[Y01+0xc], % 3
[Y%©2+0x8] , % 6
[%©2+0xc] , % 7
% 2,% 6, % 10
9% 8, % 10, % 12
st % 12, [%00]

st % 13, [Y00+4]
fruld 9%0,9%6,% 14
fruld 9%2,%4, %16
faddd 914, % 16, %2

g Q.Q.Qag jeNeNoNeN
a

st % 2, [%00+8]
st % 3, [%00+12]
end

__Fc_minus(c, a, b)
conpl ex *c, *a, *b;

30

31

.inline __Fc_mnus,3

c->real = a->real
Id [%01], %0
Id [%02],% 1

f subs %0,% 1, % 2

f8 =r1*r2

f10= i1*i2
fl12= r1*r2-i1*i 2

c->mag = a->img -
Id [Yo1+4],% 3
Id [%02+4] , % 4
f subs %3,%4,%5
st % 2, [%00]
st % 5, [Y%00+4]
end

4= r1*i2
6= r2*i1l
= rl1*i2+r2*i 1

b->real

b- >i mag

28

new usr/src/lib/libmsparc/src/locallibmil

1842
1843
1844
1845
1846
1847

1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866

1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884

1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897

1899
1900
1901
1902
1903
1904
1905
1906
1907

.inline
39

40

}
voi d
__Fc_neg(c, a)

__Fc_add, 3

c->real = a->real + b->real
[%01], %0

[%02], % 1

%0,%1,%2

c->imag = a->imag + b->i mag
[%01+4], % 3

[Y02+4],% 4

%3,%4,%5

% 2, [%00]

% 5, [Y00+4]

conpl ex *c, *a;

.inline
48

49

voi d
__Ff_conv_c(c,
conpl ex *c;

__Fc_neg, 2

c->real = - a->real
[%1] ,% 0

%0,% 1

c->mg = - a->inag
[Yo1+4], % 2

% 2,%3

% 1, [%00]

% 3, [%00+4]

x)

FLOATPARAMETER x;

{
.inline
59
st
60
st
.end
}

FLOATFUNCTI ONTYPE

__Fc_conv_f(c)
conpl ex *c;

.inline
69

Id

.end
}
int
__Fc_conv_i(c)
conpl ex *c;

__Ff_conv_c, 2
c->real = x
%1, [%00]
c->img = 0.0
%90, [Y%00+4]

__Fc_conv_f,1
RETURNFLOAT(c- >r eal)
[%0], % 0

29

new usr/src/lib/libmsparc/src/locallibmil

1908

1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923

1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939

1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952

1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970

1972
1973

{

78

voi d

__Fi ¢
conpl e
int i;

{

88

89

}
doubl e
__Fc_c
conpl e
{

98

}

voi d
__Fd_c
conpl e
doubl e
{

109

110

voi d

__Fc_c
dconpl
{conpl e

120

.inline __Fc_conv_i,1

return (int)c->real
Id [%0], % 0
fstoi 9% 0,% 1
st % 1, [Ysp+68]
Id [%sp+68] , %00
.en

onv_c(c, i)
X *c;

.inline __Fi_conv_c,?2

c->real = (float)i
st %1, [Ysp+68]
Id [%sp+68], % 0
fitos 9% 0,% 1
st % 1, [%00]
c->img = 0.0
st %90, [Y%00+4]
.end
onv_d(c)
X *c;
.inline __Fc_conv_d,1
return (doubl e)c->real
Id [%00] , % 2
fstod 9%2,%0
.end

onv_c(c, Xx)
X *c;
X

.inline __Fd_conv_c, 2

st %1, [Ysp+72]

st %2, [Ysp+76]
c->real = (float)(x)

| dd [%sp+72],% 0

fdtos 9% 0, % 1

st % 1, [%00]
c->img = 0.0

st %90, [Y%00+4]

.end

onv_z(result, c)
ex *result;
X *c;

.inline __Fc_conv_z,?2
resul t - >dreal

= (doubl e) c->real

30

new usr/src/lib/libmsparc/src/locallibmil 31

1974 Id [%1],% 0
1975 fstod 9%0,%2
1976 st % 2, [%00]
1977 st % 3, [Y%00+4]
1978 ! 121 resul t->di mag = (doubl e)c->i nag
1979 Id [%®1+4],% 3
1980 fstod 9%3,%4
1981 st % 4, [%00+8]
1982 st %5, [%00+12]
1983 .end

1984 ! }

1986 ! int

1987 ! __Fc_eq(x, y)

1988 ! conplex *x, *y;

1989 ! {

1991 inline __Fc_eq,?2
1992 ! return (x->real == y->real) && (x->inmag == y->inag);
1993 Id [%0] , % 0
1994 Id [%01] , % 2
1995 nmov %00, %02
1996 fcnps % 0, % 2
1997 nov 0, %00

1998 fbne 1f

1999 nop

2000 Id [%®2+4],% 0
2001 Id [%01+4] , 9% 2
2002 fcnps 9% 0, % 2
2003 nop

2004 fbne 1f

2005 nop

2006 nmv 1, %0

2007 1:

2008 .end

2009 ! }

2011 ! int

2012 ! __Fc_ne(x, vy)

2013 ! conplex *x, *y;

2014 !

2016 inline __Fc_ne, 2
2017 ! return (x->real !=y->real) || (x->inmag != y->inag);
2018 Id [%0] , % 0
2019 Id [%01] , % 2
2020 nmov %00, %02
2021 fcnps 9% 0, % 2
2022 nov 1, %0

2023 fbne 1f

2024 nop

2025 Id [%®2+4],% 0
2026 Id [%01+4] , 9% 2
2027 fcnps 9% 0, % 2
2028 nop

2029 fbne 1f

2030 nop

2031 nmv 0, %0

2032 1:

2033 .end

2034 1}

new usr/src/lib/libmsparcv9/src/libminlines.h

R R R R

6471 Sun May 4 03:07:08 2014
new usr/src/lib/libmsparcv9/src/libminlines.h

hkkkkkkkkkkkkkkkkkkhkkhkhkkkkkkkkkkkkkhkkkkkkkkkkkk ok k ok k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensolaris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
24 * Use is subject to license terns.

25 */

27 |*

28 * Copyright 2011, Richard Lowe.

29 */

31 /* Functions in this file are duplicated in locallibmil. Keep themin sync */
31 /* Functions in this file are duplicated in libmmi. Keep themin sync */

33 #ifndef _LIBM I NLINES_H

34 #define _LIBM I NLI NES_H

36 #ifdef __GNUC__

38 #include <sys/types. h>
39 #include <sys/ieeefp.h>

41 #ifdef __cplusplus
42 extern "C' {

43 #endi f

45 extern inlin enum f p_cl ass_t ype
46 fp_classf(f Ioat)

47 {

48 enum fp_class_type ret;

49 int fint; /* scratch for f as int */
50 uint64_t tnp

51 #endif /* | codereview */

53 _asm_ __volatile__(

54 "fabss 98,9%8\n\t"

55 " st 93, %\ n\t"

50 "fabss 9%2,9%\n\t"

51 " st 92,9\ n\t"

56 "ld %, %0\ n\t"

57 "orcc %g0, %9, ®go\ n\t"
58 "be,pn %t cc,2f\n\t"

59 "nop\n\t"

new usr/src/lib/libmsparcv9/src/libminlines.h

60 "1:\n\t"

61 "sethi 9%fhi (0x7f 800000), %2\ n\t"
62 "andcc %, %R, %®@O0\n\t"

57 "sethi 9% (0x7f800000), o1\ n\t"
58 "andcc %9, Wel, ¥¥gO\n\t"

63 "bne, pt %t cc, 1f\n\t"

64 "nop\n\t"

65 "or %90, 1, 90\ n\ t "

66 "ba 2f\n\t" /* subnormal */
62 "ba 2f\n\t"

67 "nop\n\t"

68 "1An\t"”

69 "subcc 90, %R, @O\ n\t"

65 "subcc %, Wol, WEO\n\t"

70 "bge, pn %6 cc, 1f\n\t"

71 "nop\n\t"

72 "or %90, 2, 9O\ n\ t "

73 "ba 2f\n\t" /* normal */
69 "ba 2f\n\t"

74 "nop\n\t"

75 "1:\n\t"

76 "bg, pn % cc, Lf\n\t"

77 "nop\n\t"

78 "or %90, 3, %0\ n\ t"

79 "ba 2f\n\t" /* infinity */
75 "ba 2f\n\t"

80 "nop\n\t"

81 "Li\n\t"

82 "sethi 9%%hi (Ox00400000) %R\ n\t"
83 "andcc %9, %R, %@0\ n\ t

78 "sethi 9%i (0x00400000), o1\ n\t"
79 "andcc %, Wol, %®¥@O\n\t"

84 990, 4, 9O\ n\ t "

85 %h cc, 2f\n\t" /* quiet NaN */
81 %% cc, 2f\ n\t"

86 "

87 %@0,5, %\ n\t" /* signalling NaN */
83 %@0, 5, 9\ n\t"

88 "

89 (ret), "=m" (fint), "=r" (tnp)
85 (ret), "=nt (fint)

90 f)

91 ;

87 ;

93 return (ret);

94 }

96 extern inline enum f p_cl ass_t ype

97 fp_cl ass(doubl e d)

98 {

99 enum fp_class_type ret;

100 uint64_t dint; /* Scratch for d-as-long */
101 uint64_t tnp;

102 #endif /* ! codereview */

104 __asm volatile__(

105 "fabsd 9%, 98\n\t"

106 "std 98, 9\ n\t"

97 "fabsd 9%&,9%2\n\t"

98 "std 9%, %\ n\t"

107 "1 dx %, 90\ n\t"

108 "orcc %990, %0, %?/ng\ n\t"

109 "be, pn %#xcc, 2f\n\t"

110 nop\ n\t"

111 "sethi 9%i (0x7ff00000), %2\ n\t"

new usr/src/lib/libmsparcv9/src/libminlines.h

112 "sllx 0w, 32, %R\ n\t"

113 "andcc %, %R, %®¥@O\n\t"

103 "sethi 9%hi (0x7ff00000), Wol\n\t"
104 "sl I x %Weol, 32, Wolln\t"

105 "andcc %9, ¥Wel, ¥9@O0\n\t"

114 "bne, pt %xcc, 1f\n\t"

115 "nop\n\t"

116 "or 9%9@0, 1, 90\ n\ t"

117 "ba 2f\n\t"

118 "nop\n\t"

119 "Li\n\t"

120 "subcc %0, %R, %®@O\n\t"

112 "subcc %0, Wol, ¥W@O\n\t"

121 "bge, pn %#xcc, 1f\n\t"

122 "nop\n\t"

123 "or 990, 2, 9O\ n\ t "

124 "ba 2f\n\t”

125 "nop\n\t"

126 "Li\n\t"

127 "andncc 90, %2, %0\ n\t"

119 "andncc %9, ¥Wol, %O\ n\t"

128 "bne, pn %#xcc, 1f\n\t"

129 "nop\n\t"

130 "or %90, 3, 9O\ n\ t "

131 "ba 2f\n\t”

132 "nop\n\t"

133 "L:\n\t"

134 "sethi %hi (0x00080000), %2\ n\t"
135 "sl I x 9,32, %2\ n\t"

136 "andcc %0, %R, %@0\n\t"

126 "sethi 9% (0x00080000), W®@©1\n\t"
127 "sllx Wo1l, 32, Wol\n\t"

128 "andcc 99, o1, ¥WgO0\n\t"

137 "or %g0, 4, 90\ n\ t"

138 "bne, pt %#xcc, 2f\n\t"

139 nop\ n\t"

140 %0, 5, 9\ n\ t"

141 "

142 "=pt (dint), "=r" (tnp)
134 "=nt (dint)

143

144

136

146 return (ret);

147 }

149 extern __inline__ float

150 __inline_sqrtf(float f)

151 {

152 float ret;

154 _asm_ __volatile__("fsqrts %,9%®\n\t" : "=f" (ret) : "f"
146 _asm _ __volatile__("fsqrts %0,%®\n\t" : "=f" (ret) : "f"
155 return (ret);

156 }

158 extern __inline__ double

159 __inline_sqrt(double d)

160 {

161 doubl e ret;

163 _asm_ __volatile__("fsqgrtd %,%®\n\t" : "=f" (ret) : "f
155 _asm_ _ volatile_ ("fsqgrtd %0, %\n\t" : "=f" (ret) : "0O"
164 return (ret);

165 }

new usr/src/lib/libmsparcv9/src/libminlines.h 4
167 extern __inline__ int
168 __swapEX(int i)
169 {
170 int ret;
171 uint32_t fsr;
172 uint64_t tnpl, tnp2;
173 #endif /* ! codereview */
175 _asm_ _ volatile__
176 "and %, Ox1f, %2\ n\t"
177 "sll 9,5 %\n\t" /* shift input to aexc bit location */
164 "and %), Ox1f, W®@1\n\t"
165 "sll %®©1,5, Wel\n\t" /* input to aexc bit location */
178 ".volatile\n\t"
179 " st 996 sr,%d\n\t"
180 "Id A, 9®\n\t" /* 9% = fsr */
181 "andn %0, 0x3e0, %8\ n\t"
182 "or R, 98, %®R\n\t" /* %R = new fsr */
183 " st R, 9\ n\t"
184 "Id o, 9%Gsr\n\t"
167 "st 996 sr, %2\ n\t"
168 "Id %R, %\n\t" /* = fsr */
169 "andn %), 0x3e0, %9®2\n\t"
170 "or Wol, W2, Wel\n\t" /* ol = new fsr */
171 " st Wol, R\ n\t"
172 "1d 92, WG sr\in\t”
185 "srl 9%9,5,9%0\n\t"
186 "and %0, Ox1f, %O\ n\t"
187 ".nonvol atile\n\t"
188 o=t (ret), "=n (fsr), "=r" (tnpl), "=r" (tnp2)
189 trto(i)
190 : "ec");
176 o"=r" (ret)
177 D0 (i), "mtt (fsr)
178 : "ol", "o02");
192 return (ret);
193 }
____unchanged_portion_onitted_
206 extern __inline__ enumfp_direction_type
207 __swapRD(enum fp_direction_type d)
208 |
209 enum fp_direction_type ret;
210 uint32_t fsr;
211 uint64_t tnpl, tnp2, tnp3;
212 #endif /* | codereview */
214 _asm_ __volatile__(
215 "and 9%, 0x3, YO\ n\ t "
216 “sll %0, 30, %2\ n\t" /* shift input to RD bit |ocation */
199 "and %0, 0x3, YO\ n\ t "
200 "sll %, 30, Wol\n\t" /* input to RD bit location */
217 ".volatile\n\t"
218 "st 986 sr, %\ n\t"
219 "ld %, YO\ n\t" /* 99 = fsr */
220 /* mask of rounding direction bits */
221 "sethi %hi (0xc0000000), %\ n\t*"
222 "andn %0, %4, %8\ n\t"
223 "or 02, 98, Y2\ n\t" /* 9% = new fsr */
224 "st %R, %\ n\t"
225 "ld %, %6 sr\n\t”
202 "st o846 sr, %2\ n\t"
203 "ld %R, %0\ n\t" /* 00 = fsr */
204 "set hi 9%/i (0xc0000000), W4\ n\t" /* mask of rounding direction bits

new usr/src/lib/libmsparcv9/src/libminlines.h 5

205 "andn 9%, W04, XWo®2\n\t"

206 "or Wol, Wo2, Wol\n\t" /* 01 = new fsr */
207 "st %Weol, %R\ n\t"

208 "ld 92, %G sr\n\t"”

226 "srl %, 30, %O\ n\ t "

227 "and %0, 0x3, %O\ n\t "

228 ".nonvol atile\n\t"

229 c"=r" (ret), "=m (fsr), "=r" (tnpl), "=r" (tnp2), "=r" (tnp3)
230 "rto(d)

231 "cc");

212 "=r" (ret)

213 "0" (d), "m (fsr)

214 "ol", "o02", "04");

233 return (ret);

234 }

236 extern __inline__ int

237 __swapTE(int i)

238 {

239 int ret;

240 uint32_t fsr;

241 uint64_t tnpl, tnp2, tnp3;

242 #endif /* | codereview */

244 _asm_ __volatile__(

245 "and 9%, Ox1f, %O\ n\t "

246 "sll %, 23, %2\ n\t" /* shift input to TEM bit |ocation */
224 "and %0, Ox1f, 90\ n\ t "

225 "sll %, 23, Wol\n\t" /* input to TEMbit |ocation */
247 ".volatile\n\t"

248 "st 9946 sr, %\ n\t"

249 "ld %, YO\ n\t" /* 9 = fsr */

250 /* mask of TEM (Trap Enabl e Mode bits) */

251 "set hi %hi (0x0f 800000), %\ n\t"

252 "andn 9%, %, 9B\ n\t"

253 "or "R, 93, %R\ n\t" /* %2 = new fsr */

254 " st %R, %\ n\t"

255 “1d o4, ¥4 sr\n\t"

227 "st o946 sr, %2\ n\t"

228 "ld 92, 9O\ n\t" /* 00 = fsr */
229 "set hi %hi (0x0f 800000), We4\n\t" /* mask of TEM (Trap Enabl e Mdde b
230 "andn 9%, W04, WW©2\n\t"

231 "or Wol, Wo2, Wol\n\t" /* 01 = new fsr */
232 "st Weol, %R\ n\t"

233 "ld 92, %G sr\n\t"”

256 "srl %, 23, %O\ n\t "

257 "and %, Ox1f, %O\ n\ t"

258 ".nonvol atile\n\t"

259 "=r" (ret), "=nt (fsr), "=r" (tnpl), "=r" (tnmp2), "=r" (tnp3)
260 rto(i)

261 "cc");

237 "=r" (ret)

238 0" (i), "m¥ (fsr)

239 "ol", "o02", "04");

263 return (ret);

264 }

267 extern __inline__ double

268 sqrt(double d)

269 {

270 return (__inline_sqrt(d));

248 doubl e ret;

new usr/src/lib/libmsparcv9/src/libminlines.h

250 _asm_ _ volatile__("fsgrtd %0, %0\n\t"
251 return (ret);

271 }

273 extern __inline__ float

274 sqrtf(float f)

275 {

276 return (__inline_sqrtf(f));

257 float ret;

259 _asm_ _ volatile__("fsqrts %0, %®\n\t"
260 return (ret);

277 }

279 extern __inline__ double

280 fabs(double d)

281 {

282 doubl e ret;

284 _asm _ _ volatile_ ("fabsd %, %0\ n\t"
268 _asm__ _ volatile__("fabsd %0, %0\ n\t"
285 return (ret);

286 }

288 extern __inline__ float

289 fabsf(float f)

290 {

291 float ret;

293 _asm_ __volatile__("fabss %, %®\n\t"
277 _asm _ _ volatile__("fabss %0, %®\n\t"
294 return (ret);

295 }

____unchanged_portion_onmitted_

"=f" (ret)

"=f" (ret) : "0

0" (d);

(f));

"=e" (ret "e" (d));

"' (ret) : ')'0':' (d));

"=t (ret) @ "f" (f));
(ret) @ 0" (f));

new usr/src/lib/libmec/ Makefile.com

R R R R

5808 Sun May 4 03:07:10 2014
new usr/src/lib/libmec/ Makefile.com

kkkkkkkkkkkkkkkkkkkhkkhkhkhkhkhkhkkkkkhkhkkkkkkkkkkkk ok k ok k k%

1#
2 # This file and its contents are supplied under the terms of the
3 # Common Devel oprent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://ww. illunps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

14 #

16 LI BMDIR = $(SRO)/1ib/libm

18 nvecOBIS =\

19 __VTBL_atanl.o \

20 __VTBL_atan2.0 \

21 __VvTBL_rsqrt.o \

22 __VTBL_sincos.o \

23 __VTBL_sincos2.0 \

24 __VvTBL_sqrtf.o \

25 __vatan.o \

26 __vatan2.0 \

27 __vatan2f.o \

28 __vatanf.o \

29 __vc_abs.o \

30 __vc_exp.o \

31 _vc_log.o \

32 __vc_pow. o \

33 __vcos.o \

34 __vcoshig.o \

35 __vcoshigf.o \

36 __vcosf.o \

37 __vexp.o \

38 __vexpf.o \

39 __vhypot.o \

40 vhypotf.o \

41 __vlog.o \

42 vl ogf.o \

43 __vpow. o \

44 __vpowf.o \

45 __vrempio2mo \

46 __vrhypot.o \

47 __vrhypotf.o \

48 _vrsgrt.o \

49 _vrsqgrtf.o \

50 _vsin.o \

51 __vsinbig.o \

52 __vsinbigf.o \

53 __vsincos.o \

54 __vsincoshig.o \

55 __vsincoshigf.o \

56 __vsincosf.o \

57 _vsinf.o\

58 _vsgrt.o \

59 _vsgrtf.o \

60 __vz_abs.o \

61 _vz_exp.o \

62 vz_log.o \

new usr/src/lib/libmec/ Makefile.com

128

nmvecvi sCOBJS

nmvecvi sSOBJS

__vz_pow.o \
vatan2_.o \
vatan2f _.o \
vatan_.o \
vat anf _.
vc_abs_.

<
o
[¢]
<
k=]
—~—0000O0
—————

vsincosf_.o \

vsinf_.o \
vsgrt_.o \
vsgrtf_.o \
vz_abs_.o \
vz_exp_.0 \
vz_log_.o \
vz_pow_ .o \
#end

=\
__VvTBL_atanl.o \
__VTBL_atan2.0 \
__VTBL_rsqgrt.o \
__VTBL_sincos.o \
__VTBL_sincos2.0 \
__VvTBL_sqrtf.o \
__vcosbhig.o \
__vcoshigf.o \
__vrempio2mo \
__vsinbig.o \
__vsinbigf.o \
__vsincoshig.o \
__vsincoshigf.o \
#end

=\
__vatan.o \
__vatan2.0 \
__vatan2f.o \
__vatanf.o \
__vcos.o \
__vcosf.o \

__vexpf.o \
__vhypot.o \
__vhypotf.o \
_vlog.o \
_vliogf.o \
__vpow. o \
__vpowf.o \

new usr/src/lib/libmec/ Makefile.com

129 __vrhypot.o \

130 __vrhypotf.o \

131 _vrsgrt.o \

132 _vrsgrtf.o\

133 __vsin.o\

134 __vsincos.o \

135 __vsincosf.o \

136 _vsinf.o \

137 _vsgrt.o \

138 _vsgrtf.o \

139 #end

141 nvecvi s2C0BJS =\

142 __VTBL_sincos.o \

143 _ _VTBL_sincos2.0 \

144 __VvTBL_sqrtf.o \

145 __vcoshig.o \

146 __vcoshig_ultra3.o \

147 __vrempio2mo \

148 __vsinbig.o \

149 __vsinbig_ultra3.o \

150 #end

152 nvecvi s2SOBJS =\

153 __vcos_ultra3.o \

154 _vlog_ultra3.o \

155 _vsin_ultra3.o \

156 _vsgrtf_ultra3.o \

157 #end

159 i ncl ude $(SRC)/1i b/ Makefile.lib

160 i ncl ude $(SRC)/1i b/ Makefile.rootfs
161 incl ude $(LI BVDI R)/ Makefile.libmcom
163 LIBS = $(DYNLI B)

164 SRCDI R = ../ comon/

165 DYNFLAGS += -zignore

167 LI NTERROFF = -errof f =E_FP_DI VI SI ON_BY_ZERO
168 LI NTERROFF += -errof f=E_FP_I NVALID_

169 LI NTERROFF += -errof f =E_BAD_PTR_CAST_ALI G\
170 LI NTERROFF += -errof f =E_ASSI GVENT_CAUSE_L0SS_PREC
171 LI NTERROFF += -errof f =E_FUNC_SET_NOT_USED
173 CERRWARN += -_gcc=- Who- par ent heses

174 CERRWARN += -_gcc=-Who- unused-vari abl e
176 #endif /* ! codereview */

177 LI NTFLAGS += $(LI NTERROFF)

178 LI NTFLAGS64 += $(LI NTERROFF)

179 LI NTFLAGS64 += -errchk=l ongptr64

181 CLAGS += $(LI NTERROFF)

182 CFLAGS64 += $(LI NTERROFF)

184 ASDEF += - DLI BWEC_SO BUI LD

186 FLTRPATH sparc
187 FLTRPATH sparcv9
188 FLTRPATH i 386
189 FLTRPATH

$SORI G N cpu/ $$1 SALI ST/ | i bnvec_i sa. so. 1

$SORI G N . ./ cpu/ $$I SALI ST/ sparcv9/ | i bnvec_i sa. so. 1
$$ORI G N/ | i bnvec/ $$HWCAP

$(FLTRPATH_$(TARGET_ARCH))

191 sparc_CFLAGS += -_cc=-W), -xintrinsic
192 sparcv9_CFLAGS += -_cc=-W), -xintrinsic
193 CPPFLAGS i 386 += -Df abs=__f abs

new usr/src/lib/libmec/ Makefile.com

195 CPPFLAGS += - DLI BWEC_SO BUI LD
197 SRCS_nvec_i 386 =\

198 ../common/__vsqrtf.c \

199 #end

201 SRCS nvec_sparc =\

202 $(SRCS_nvec_i 386) \

203 #end

204 SRCS nvec_sparcv9 =\

205 $(SRCS_nvec_i 386) \

206 #end

208 SRCS_nvec =\

209 $(SRCS_mvec_$(TARGETMACH)) \
210 ./ common/ __vTBL_atanl.c \
211 ../ conmon/ —_VvTBL_at an2. c \
212 ../ comon/ __vTBL_ _rsqrt.

213 ../ comon/ __vTBL_si ncos c \
214 ../comon/ __vTBL_sincos2.c \
215 ../common/__vTBL_sqrtf.c \
216 ../comon/ __vatan.c \

217 ../comon/ __vatan2.c \

218 ../ comon/__vatan2f.c \
219 ../comon/ _vatanf.c \

220 ../ common/__vc_abs.c \

221 ../ comon/ __vc_exp.c \

222 ../comon/__vc_log.c \

223 ../ common/__vc_pow.c \

224 ../ conmmon/__vcos.c \

225 ../ comon/__vcosbhig.c \
226 ../ comon/ __vcosbigf.c \
227 ../ common/ __vcosf.c \

228 ../ conmon/__vexp.c \

229 ../ common/ __vexpf.c \

230 ../ comon/ __vhypot.c \

231 ../ common/ __vhypotf.c \
232 ../common/__vlog.c \

233 ../comon/ __vlogf.c \

234 ../ comon/ __vpow. c \

235 ../ common/ __vpowf.c \

236 ../ conmmon/__vrem pio2mc \
237 ../ common/ __vrhypot.c \
238 ../ comon/ __vrhypotf.c \
239 ../comon/ __vrsgrt.c \

240 ../common/__vrsqrtf.c \
241 ../common/__vsin.c \

242 ../comon/ __vsinbig.c \
243 ../comon/ __vsinbigf.c \
244 ../ common/ __vsincos.c \
245 ../ conmmon/ __vsincosbhig.c \
246 ../ common/ __vsi ncosbigf.c \
247 ../ comon/__vsincosf.c \
248 ../comon/ __vsinf.c \

249 ../common/__vsqgrt.c \

250 ../comon/__vz_abs.c \

251 ../comon/ __vz_exp.c \

252 ../common/__vz_log.c \

253 ../ common/__vz_pow.c \

254 ../comon/vatan2_.c \

255 ../ comon/ vat an2f _.c \

256 ../comon/vatan_.c \

257 ../common/vatanf_.c \

258 ../comon/vc_abs_.c \

259 ../ comon/vc_exp_.c \

260 ../comon/vc_log_.c \

new usr/src/lib/libmec/ Makefile.com

261 ../ common/vc_pow_.c \
262 ../ comon/vcos_.c \
263 ../ comon/vcosf_.c \
264 ../ conmmon/vexp_.c \
265 ../ conmon/ vexpf _.c \
266 ../ common/ vhypot _.c \
267 ../ comon/ vhypotf_.c \
268 ../ common/vlog_.c \
269 ../ conmmon/ vl ogf _.c \
270 ../ common/ vpow_. c \
271 ../ common/ vpowf _.c \
272 ../ common/ vr hypot _.c \
273 ../ common/ vrhypotf_.c \
274 ../comon/vrsqgrt_.c \
275 ../comon/vrsqgrtf_.c \
276 ../comon/vsin_.c \
277 ../ common/ vsi ncos_.c \
278 ../ common/ vsi ncosf_.c \
279 ../comon/vsinf_.c \
280 ../comon/vsgrt_.c \
281 ../common/vsqgrtf_.c \
282 ../comon/vz_abs_.c \
283 ../comon/vz_exp_.c \
284 ../comon/vz_log_.c \
285 ../ common/vz_pow_.c \
286 #end

288 . KEEP_STATE:

290 all: $(LI BS)

292 lint: i nt check

294 pics/%o: ../ $(TARGET_ARCH)/src/ % S
295 $(COWPI LE. s) -0 $@ $<

296 $(POST_PROCESS_0O)

298 pics/%o: ../comon/$$(CHP)/ %S
299 $(COWPILE.s) -0 $@ $<
300 $(POST_PROCESS_O)

new usr/src/lib/libmec/ Makefile.com

R R R R

5808 Sun May 4 03:07:11 2014
new usr/src/lib/libmec/ Makefile.com

kkkkkkkkkkkkkkkkkkkhkkhkhkhkhkhkhkkkkkhkhkkkkkkkkkkkk ok k ok k k%

1#
2 # This file and its contents are supplied under the terms of the
3 # Common Devel oprent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://ww. illunps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

14 #

16 LI BMDIR = $(SRO)/1ib/libm

18 nvecOBIS =\

19 __VTBL_atanl.o \

20 __VTBL_atan2.0 \

21 __VvTBL_rsqrt.o \

22 __VTBL_sincos.o \

23 __VTBL_sincos2.0 \

24 __VvTBL_sqrtf.o \

25 __vatan.o \

26 __vatan2.0 \

27 __vatan2f.o \

28 __vatanf.o \

29 __vc_abs.o \

30 __vc_exp.o \

31 _vc_log.o \

32 __vc_pow. o \

33 __vcos.o \

34 __vcoshig.o \

35 __vcoshigf.o \

36 __vcosf.o \

37 __vexp.o \

38 __vexpf.o \

39 __vhypot.o \

40 vhypotf.o \

41 __vlog.o \

42 vl ogf.o \

43 __vpow. o \

44 __vpowf.o \

45 __vrempio2mo \

46 __vrhypot.o \

47 __vrhypotf.o \

48 _vrsgrt.o \

49 _vrsqgrtf.o \

50 _vsin.o \

51 __vsinbig.o \

52 __vsinbigf.o \

53 __vsincos.o \

54 __vsincoshig.o \

55 __vsincoshigf.o \

56 __vsincosf.o \

57 _vsinf.o\

58 _vsgrt.o \

59 _vsgrtf.o \

60 __vz_abs.o \

61 _vz_exp.o \

62 vz_log.o \

new usr/src/lib/libmec/ Makefile.com

128

nmvecvi sCOBJS

nmvecvi sSOBJS

__vz_pow.o \
vatan2_.o \
vatan2f _.o \
vatan_.o \
vat anf _.
vc_abs_.

<
o
[¢]
<
k=]
—~—0000O0
—————

vsincosf_.o \

vsinf_.o \
vsgrt_.o \
vsgrtf_.o \
vz_abs_.o \
vz_exp_.0 \
vz_log_.o \
vz_pow_ .o \
#end

=\
__VvTBL_atanl.o \
__VTBL_atan2.0 \
__VTBL_rsqgrt.o \
__VTBL_sincos.o \
__VTBL_sincos2.0 \
__VvTBL_sqrtf.o \
__vcosbhig.o \
__vcoshigf.o \
__vrempio2mo \
__vsinbig.o \
__vsinbigf.o \
__vsincoshig.o \
__vsincoshigf.o \
#end

=\
__vatan.o \
__vatan2.0 \
__vatan2f.o \
__vatanf.o \
__vcos.o \
__vcosf.o \

__vexpf.o \
__vhypot.o \
__vhypotf.o \
_vlog.o \
_vliogf.o \
__vpow. o \
__vpowf.o \

new usr/src/lib/libmec/ Makefile.com

129 __vrhypot.o \

130 __vrhypotf.o \

131 _vrsgrt.o \

132 _vrsgrtf.o\

133 __vsin.o\

134 __vsincos.o \

135 __vsincosf.o \

136 _vsinf.o \

137 _vsgrt.o \

138 _vsgrtf.o \

139 #end

141 nvecvi s2C0BJS =\

142 __VTBL_sincos.o \

143 _ _VTBL_sincos2.0 \

144 __VvTBL_sqrtf.o \

145 __vcoshig.o \

146 __vcoshig_ultra3.o \

147 __vrempio2mo \

148 __vsinbig.o \

149 __vsinbig_ultra3.o \

150 #end

152 nvecvi s2SOBJS =\

153 __vcos_ultra3.o \

154 _vlog_ultra3.o \

155 _vsin_ultra3.o \

156 _vsgrtf_ultra3.o \

157 #end

159 i ncl ude $(SRC)/1i b/ Makefile.lib

160 i ncl ude $(SRC)/1i b/ Makefile.rootfs
161 incl ude $(LI BVDI R)/ Makefile.libmcom
163 LIBS = $(DYNLI B)

164 SRCDI R = ../ comon/

165 DYNFLAGS += -zignore

167 LI NTERROFF = -errof f =E_FP_DI VI SI ON_BY_ZERO
168 LI NTERROFF += -errof f=E_FP_I NVALID_

169 LI NTERROFF += -errof f =E_BAD_PTR_CAST_ALI G\
170 LI NTERROFF += -errof f =E_ASSI GVENT_CAUSE_L0SS_PREC
171 LI NTERROFF += -errof f =E_FUNC_SET_NOT_USED
173 CERRWARN += -_gcc=- Who- par ent heses

174 CERRWARN += -_gcc=-Who- unused-vari abl e
176 #endif /* ! codereview */

177 LI NTFLAGS += $(LI NTERROFF)

178 LI NTFLAGS64 += $(LI NTERROFF)

179 LI NTFLAGS64 += -errchk=l ongptr64

181 CLAGS += $(LI NTERROFF)

182 CFLAGS64 += $(LI NTERROFF)

184 ASDEF += - DLI BWEC_SO BUI LD

186 FLTRPATH sparc
187 FLTRPATH sparcv9
188 FLTRPATH i 386
189 FLTRPATH

$SORI G N cpu/ $$1 SALI ST/ | i bnvec_i sa. so. 1

$SORI G N . ./ cpu/ $$I SALI ST/ sparcv9/ | i bnvec_i sa. so. 1
$$ORI G N/ | i bnvec/ $$HWCAP

$(FLTRPATH_$(TARGET_ARCH))

191 sparc_CFLAGS += -_cc=-W), -xintrinsic
192 sparcv9_CFLAGS += -_cc=-W), -xintrinsic
193 CPPFLAGS i 386 += -Df abs=__f abs

new usr/src/lib/libmec/ Makefile.com

195 CPPFLAGS += - DLI BWEC_SO BUI LD
197 SRCS_nvec_i 386 =\

198 ../common/__vsqrtf.c \

199 #end

201 SRCS nvec_sparc =\

202 $(SRCS_nvec_i 386) \

203 #end

204 SRCS nvec_sparcv9 =\

205 $(SRCS_nvec_i 386) \

206 #end

208 SRCS_nvec =\

209 $(SRCS_mvec_$(TARGETMACH)) \
210 ./ common/ __vTBL_atanl.c \
211 ../ conmon/ —_VvTBL_at an2. c \
212 ../ comon/ __vTBL_ _rsqrt.

213 ../ comon/ __vTBL_si ncos c \
214 ../comon/ __vTBL_sincos2.c \
215 ../common/__vTBL_sqrtf.c \
216 ../comon/ __vatan.c \

217 ../comon/ __vatan2.c \

218 ../ comon/__vatan2f.c \
219 ../comon/ _vatanf.c \

220 ../ common/__vc_abs.c \

221 ../ comon/ __vc_exp.c \

222 ../comon/__vc_log.c \

223 ../ common/__vc_pow.c \

224 ../ conmmon/__vcos.c \

225 ../ comon/__vcosbhig.c \
226 ../ comon/ __vcosbigf.c \
227 ../ common/ __vcosf.c \

228 ../ conmon/__vexp.c \

229 ../ common/ __vexpf.c \

230 ../ comon/ __vhypot.c \

231 ../ common/ __vhypotf.c \
232 ../common/__vlog.c \

233 ../comon/ __vlogf.c \

234 ../ comon/ __vpow. c \

235 ../ common/ __vpowf.c \

236 ../ conmmon/__vrem pio2mc \
237 ../ common/ __vrhypot.c \
238 ../ comon/ __vrhypotf.c \
239 ../comon/ __vrsgrt.c \

240 ../common/__vrsqrtf.c \
241 ../common/__vsin.c \

242 ../comon/ __vsinbig.c \
243 ../comon/ __vsinbigf.c \
244 ../ common/ __vsincos.c \
245 ../ conmmon/ __vsincosbhig.c \
246 ../ common/ __vsi ncosbigf.c \
247 ../ comon/__vsincosf.c \
248 ../comon/ __vsinf.c \

249 ../common/__vsqgrt.c \

250 ../comon/__vz_abs.c \

251 ../comon/ __vz_exp.c \

252 ../common/__vz_log.c \

253 ../ common/__vz_pow.c \

254 ../comon/vatan2_.c \

255 ../ comon/ vat an2f _.c \

256 ../comon/vatan_.c \

257 ../common/vatanf_.c \

258 ../comon/vc_abs_.c \

259 ../ comon/vc_exp_.c \

260 ../comon/vc_log_.c \

new usr/src/lib/libmec/ Makefile.com

261 ../ common/vc_pow_.c \
262 ../ comon/vcos_.c \
263 ../ comon/vcosf_.c \
264 ../ conmmon/vexp_.c \
265 ../ conmon/ vexpf _.c \
266 ../ common/ vhypot _.c \
267 ../ comon/ vhypotf_.c \
268 ../ common/vlog_.c \
269 ../ conmmon/ vl ogf _.c \
270 ../ common/ vpow_. c \
271 ../ common/ vpowf _.c \
272 ../ common/ vr hypot _.c \
273 ../ common/ vrhypotf_.c \
274 ../comon/vrsqgrt_.c \
275 ../comon/vrsqgrtf_.c \
276 ../comon/vsin_.c \
277 ../ common/ vsi ncos_.c \
278 ../ common/ vsi ncosf_.c \
279 ../comon/vsinf_.c \
280 ../comon/vsgrt_.c \
281 ../common/vsqgrtf_.c \
282 ../comon/vz_abs_.c \
283 ../comon/vz_exp_.c \
284 ../comon/vz_log_.c \
285 ../ common/vz_pow_.c \
286 #end

288 . KEEP_STATE:

290 all: $(LI BS)

292 lint: i nt check

294 pics/%o: ../ $(TARGET_ARCH)/src/ % S
295 $(COWPI LE. s) -0 $@ $<

296 $(POST_PROCESS_0O)

298 pics/%o: ../comon/$$(CHP)/ %S
299 $(COWPILE.s) -0 $@ $<
300 $(POST_PROCESS_O)

new usr/src/lib/libmec/common/__vatan.c

R R R R

11255 Sun May 4 03:07:13 2014
new usr/src/lib/libmec/common/__vatan.c

hkkkkkkkkkkkkkkkkhkkkkhkhkkkkkkk Kk kkkkkkkkkkkkkkkkkk ok kk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensolaris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/
25 [*
26 * Copyright 2006 Sun M crosystens, Inc. All
27 * Use is subject to license terns.
28 */

rights reserved.

30 #include <sys/isa_defs. h>
31 #include "l'ibm.inlines.h"

33 #i f def
34 #define H (x)
35 #define LQ(x)
36 #el se

37 #define H (x)
38 #define LQ(x)

_LITTLE_ENDI AN
(1+(int)x)
(unsi gned) x

(int)x
(1+(unsi gned) x)

39 #endif

41 #ifdef _ RESTRICT

42 #define restrict _Restrict

43 #el se

44 #define restrict

45 #endi f

47 void

48 __vatan(int n, double * restrict x, int stridex, double * restrict vy,
49 {

50 double f , z, ans = 0.0L, ansu , ansl , tnp , poly , conup , conlo ,
50 double f , z, ans, ansu, ansl , tnmp , poly , conup , conlo , dumy;
51 double f1, ansl, ansul, ansll1, tnpl, polyl, conupl, conlol;

52 double f2, ans2, ansu2, ansl2, tnp2, poly2, conup2, conlo02;

53 int index, sign, intf, intflo, intz, argcount;

54 i nt index1, si gnl = 0;

55 int index2, sign2 = 0;

56 doubl e yaddr *yaddrl = 0, *yaddr2 = 0;
54 int indexl, signl ;

55 int index2, sign2 ;

56 doubl e *yaddr, *yaddr1, *yaddr2

57 extern const doubl e vlibm TBL atanl[];
58 extern double fabs(double);

int strid

dummy;

new usr/src/lib/libmec/ common/__vatan.c

60 /*
61 *

Power series atan(x) = x + pl*x**
Error = -3.08254E-18 On the int

63 /* define dummy nanes for readability.

64 #define p3 parray[0]
65 #define p2 parray[1]
66 #define pl parray|[2]

68 static const double parray[] = {
69 -1.428029046844299722E- 01,

70 1. 999999917247000615E- 01,

71 - 3. 333333333329292858E- 01,

72 1.0,

73 -1.0,

74 4

76 if(n<=0) return; /* if no.

77 do

—_
o
o nan

& 0x80000000
& ~0x80000000

87 if((intf > 0x43600000) |
89 i
{

(intf <0

(intf > 0x7ff00000) || ((intf

91 ans =f - f;
}
93 else if(intf < 0x3e300000)

{
95 dummy = 1.0e37 + f;
96 dumy = dummy;
97 ans =f;

}
99 else if(intf > 0x43600000)

101 index = 2;
102 ans = _ vlibmTBL_atanl[i ndex]

y = (sign) ? -ans: ans;
+= stridex;
+= stridey;

107 argcount = O;

108 if (--n <=0) break;

109 got o LOOPO;

[
o
)]
<X A

k40500000)

nHovi
=
NTrOoO

Ise if(intf >= 0x3f 900000)

(in
) =i
) =0

(f - z)/ (2.0 + f*z);
(intz - 0x3f900000) >> 15;
i ndex + 4;

ntf + 0x00008000) & Ox7
ntz;

0]
x
nan

3 + P2¥X**5 + p3rx**7
erval |x| < 1/64 */

Use parray to hel p conpiler optimze |loa

/* p[3] */

[* p[2] */

[* p[1] */

/* not used for p[0], though
/* used to flip sign of answer

of elements is O or neg, do nothing */

/* fetch argunent
/* upper half of x, as integer */
/* lower half of x, as integer */

/* sign of argunent

/* abs(upper argunent)
x3e300000)) /* filter out special cases
== 0x7ff00000) && (intflo !=0)))

/* return NaN if x=NaN+/

/* avoid underflow for small arg

/* avoid underflow for big arg

+ __vlibmTBL_atanl[index+1];/* pi/2 up

/* store answer, with sign bit

initialize argcount
we are done
ot herwi se,

—~—
* ok

exam ne next arg

/* points to 0,0 in table
/* if(|x] > 64

/* point to pi/2 upper, |ower

[* if | x| >= (1/64)...
fff0000;/* round arg, keep upper
/* store as a double (z)
[* ...l ower
/* get reduced argunent
/* (index >> 16) << 1)
/*

skip over 0,0,pi/2,pi/2

125
126
127
128
129
130
131
132
133
134
135
136
137

139
140
141

143

145
146
147
148
149

new usr/src/lib/libmec/common/__vatan.c 3
} .
yaddr =y; /* address to store this answer
X += stridex; /* point to next arg
y += stridey; /* point to next result
argcount = 1; /* we now have 1 good argunent
if (--n<=0)
fl = 0.0; /* put dummy values in args 1,2
f2 = 0.0;
indexl = 0;
index2 = 0;
goto UNROLL3; /* finish up with 1 good arg
¥ e e e e e e e e e e e e e e
¥ e e e e e e e e e e e eeieeeaaas
52
LOOPL:
f1 = fabs(*x); /* fetch argunent
intf = Hl(x); /* upper half of x, as integer */
intflo = LQ(x); /* lower half of x, as integer */
signl = intf & 0x80000000; /* sign of argunent
intf = intf & ~0x80000000; /* abs(upper argunent)

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

}

i
[

{
}
e
{

f((intf > 0x43600000) ||
if((intf > 0x7ff00000) ||
{

ans =f1- f1;

(intf < 0x3e300000))
((intf == Ox7ff00000) && (intflo !=0)))
/* return NaN if x=NaN*‘/

/* filter out special cases

}
else if(intf < 0x3e300000) /* avoid underflow for small arg
{

dummy = 1.0e37 + f1,
dumy = dumy;
ans =f1;
}
else if(intf > 0x43600000) /* avoid underflow for big arg
indexl = 2;
ans = __vlibmTBL_atanl[index1] + __vlibmTBL_atanl[index1+1];/* pi/2
}
y = (signl) ? -ans: ans; / store answer, with sign bit
X += stridex;
y += stridey;
argcount = 1; /* we still have 1 good arg
if (--n<=0)
{
f1 = 0.0; /* put dummy values in args 1,2
f2 = 0.0;
indexl = 0;
index2 = 0;
got o UNROLLS3; /* finish up with 1 good arg
}
goto LOOP1; /* otherw se, exam ne next arg
indexl = 0; /* points to 0,0 in table
if (intf > 0x40500000) /* i f(]x] > 64
fl=-1.0/f1,
index1l = 2; /* point to pi/2 upper, |ower
Ise if(intf >= 0x3f900000) [* if | x| >= (1/64)...
intz = (intf + Ox00008000) & Ox7fff0000;/* round arg, keep upper

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

208
209
210

212

214
215
216
217

new usr/src/lib/libmec/common/__vatan.c 4
HI (&z) =|ntz /* store as a double (z)
LO(&z) = I* | ower
fl = (fl - z)/ (1.0 + f1*z); /* get reduced argunent
indexl = (intz - 0x3f900000) >> 15; /* (index >> 16) << 1)
indexl = indexl + 4; /* skip over 0,0,pi/2,pi/2
}
yaddr 1 =y, /* address to store this answer
X += stridex; /* point to next arg
y += stridey; /* point to next result
argcount = 2; /* we now have 2 good argunents
if (--n<=0)
{
f2 = 0.0; /* put dummy value in arg 2 */
index2 = 0;
goto UNRO_LS /* finish up with 2 good args
RO G G
T
5
LOOP2:
f2 = fabs(*x); /* fetch argunent
intf = Hi(x); /* upper half of x, as integer */
intflo = LAx); /* lower half of x, as integer */
si gn2 = intf & 0x80000000; /* sign of argunent
intf = intf & ~0x80000000; /* abs(upper argunent)

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

f((intf > 0x43600000) ||
if((intf > Ox7ff00000) |

(intf < 0x3e300000)) /* filter out special cases

((intf == O0x7ff00000) && (intflo !=0)))

ans =f2 - 12 /* return NaN if x=NaN+/

}
else if(intf < 0x3e300000) /* avoid underflow for small arg

dumy = 1.0e37 + f2;
dumy = dumy;

ans = f2;
}
else if(intf > 0x43600000) /* avoid underflow for big arg
index2 = 2;
ans = __vlibmTBL_atanl[index2] + __vlibmTBL_atanl[index2+1];/* pi/2
}
y = (sign2) ? -ans: ans; / store answer, with sign bit
X += stridex;
y += stri dey;
argcount = 2; /* we still have 2 good args
if (--n<=0)
{
f2 :00' /* put dummy value in arg 2 */
index2 =
goto UNRO_L3 /* finish up with 2 good args
}
goto LOOP2; /* otherw se, exam ne next arg
ndex2 = 0; /* points to 0,0 in table
f (intf > 0x40500000) /* i f(|x| > 64
f2 =-1.0/f2;
index2 = 2; /* point to pi/2 upper, |ower
Ise if(intf >= 0x3f900000) [* if | x| >= (1/64)...

new usr/src/lib/libmec/common/

__vatal

n.c

257 intz = (intf + 0x00008000) & Ox7fff0000;/*
258 H (&) = intz; /*
259 LO(&) = O; [*
260 f2 =(f2 - 2)/(1.0 + f2*z); /*
261 index2 = (intz - 0x3f900000) >> 15; /*
262 index2 = index2 + 4; /*
263

264 yaddr 2 =y, /*
265 X += stridex; /*
266 y += stridey; I*
267 argcount = 3; /*
270 /* here is the 3 way unrolled section

271 note, we may actually only have

272 1,2, or 3 'real’ argunents at this point

273 */

275 UNROLL3:

277 conup = __vlibmTBL_atanl[index]; /*
278 conupl = __vlibmTBL_atanl[index1]; I*
279 conup2 = vl i bm TBL_at anl[i ndex2]; I*
281 conl o = __vlibmTBL_atanl[index +1]; /*
282 conlol = __vlibmTBL_atanl[index1+1]; /*
283 conl 02 = vl i bm TBL_at anl[i ndex2+1]; /*
285 tmp =f *f

286 tmpl = f1*f 1,

287 tmp2 = f2*f2;

289 poly =f *((p3*tnp + p2)*tnp + pl)y*tnp ;
290 pol y1 = f1*((p3*tnpl + p2)*tnpl + pl)*tnpl;
291 pol y2 = f2*((p3*tnp2 + p2)*tnp2 + pl)*tnp2;
293 ansu = conup + f ; I *
294 ansul = conupl + f1; /*
295 ansu2 = conup2 + f2; /*
297 ansl| = (((conup - ansu) + f) + poly) +
298 ansl 1 = (((conupl - ansul) + f1) + polyl) +
299 ansl 2 = (((conup2 - ansu2) + f2) + poly2) +
301 ans = ansu + ansl

302 ansl = ansul + ansl1

303 ans2 = ansu2 + ansl 2

305 /* now check to see if these are 'real’ or 'dummy
307 *yaddr = sign ? -ans: ans; /*
308 if(argcount < 3) break; /*
309 *yaddr 1 = signl ? -ansl: ansl

310 *yaddr2 = sign2 ? -ans2: ans2

312 '} while (--n > 0)

314 if(argcount == 2)

315 { *yaddrl = signl ? -ansl: ansl

316

317 }

__unchanged_portion_onitted_

round arg, keep upper
store as a double (2z)
...l ower

get reduced argunent

(i ndex >> 16) << 1)
skip over 0,0,pi/2,pi/2

address to store this answer
point to next arg

point to next result

we now have 3 good argunents

tabl e
tabl e
tabl e

upper
upper
upper

| ower
| ower
| ower

tabl e
tabl e
tabl e

conpute atan(f) upper
conpute atan(f) upper
conpute atan(f) upper
conl o
conl o1
conl 02

argunments BEFORE storing */

this one is always good
end |l oop and finish up

new usr/src/lib/libmec/common/__vatan2f.c 1 new usr/src/lib/libmec/ common/__vatan2f.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 61 float baseo = 0 0' baSel, basez’
8571 Sun May 4 03:07:14 2014 61 fl oat base0, basel, base2;
new usr/src/lib/libmec/comon/__vatan2f.c 62 doubl e nunO, nunl, nun®;
IR R R R R R R R R R R RS R R R R RS RS R R RS SRR SRR R ERREREREEEEEEEE] 63 doubl e den()l denl’ denZ’
1/* 64 doubl e dx0, dx1, dx2;
2 * CDDL HEADER START 65 doubl e dy0, dyl, dy2;
3 = 66 doubl e db0, dbil, db2;
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License"). 68 do
6 * You may not use this file except in conpliance with the License. 69
7 * 70 1 00p0:
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 71 hy0 = *(int*)y;
9 * or http://ww.opensol aris.org/os/licensing. 72 hx = *(int*)x;
10 * See the License for the specific |anguage governing perm ssions 73 sign0 = one;
11 * and limtations under the License. 74 sy = hy0 & 0x80000000;
12 = 75 hy0 &= ~0x80000000;
13 * Wen distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 77 sx = hx & 0x80000000;
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 78 hx &= ~0x80000000;
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 80 if (hy0 > hx)
18 = 81 {
19 * CDDL HEADER END 82 X0 = *y;
20 */ 83 y0 = *x;
84 i = hx;
22 | * 85 hx = hyO;
23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved. 86 hy0 = 1;
24 *] 87 if (sy)
25 [* 88
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved. 89 x0 = -x0;
27 * Use is subject to license terns. 90 sign0 = -signoO;
28 */ 91 }
92 if (sx)
30 #ifdef __RESTRICT 93 {
31 #define restrict _Restrict 94 y0 = -yO0;
32 #el se 95 ah0 = pio2;
33 #define restrict 96 }
34 #endif 97 el se
98 {
36 extern const double __vlibmTBL_atanl[]; 99 ah0 = -pio2;
100 sign0 = -signoO;
38 static const double 101 }
39 pio4 = 7.8539816339744827900e- 01, 102 }
40 pi o2 = 1.5707963267948965580e+00, 103 el se
41 pi = 3.1415926535897931160e+00; 104 {
105 yo = *y;
43 static const float 106 X0 = *X;
44 zero = 0.0f, 107 if (sy)
45 one = 1.0f, 108 {
46 ql = -3.3333333333296428046e- 01f, 109 y0 = -yO0;
47 g2 = 1.9999999186853752618e- 01f , 110 sign0 = -signo;
48 twop24 = 16777216.0f; 111 }
112 if (sx)
50 void 113 {
51 __vatan2f(int n, float * restrict y, int stridey, float * restrict x, 114 x0 = -x0;
52 int stridex, float * restrict z, int stridez) 115 ah0 = -pi;
53 { 116 sign0 = -signoO;
54 fl oat x0, x1, x2, yO0, yl, y2, *pz0 = 0, *pzl, *pz2, 117 }
54 fl oat x0, x1, x2, yO, yl, y2, *pz0, *pzl, *pz2; 118 el se
55 doubl e ah0, ahl, ah2; 119 ah0 = zero;
56 doubl e to, t1, t2; 120 }
57 doubl e sx0, sx1, sx2;
58 doubl e sign0, signl, sign2; 122 if (hx >= 0x7f800000 || hx - hyO0 >= 0x0c800000
59 int i, kO =0, k1, k2, hx, sx, sy; 123 {
59 int i, kO, k1, k2, hx, sx, sy; 124 if (hx >= 0x7f800000)
60 int hy0, hyl, hy2; 125 {

~

new usr/src/lib/libmec/common/__vatan2f.c 3 new usr/src/lib/libmec/ common/__vatan2f.c
126 if (hx ~ 0x7f800000) /* nan */ 192 hx &= ~0x80000000;
127 ah0 = x0 + yO0;
128 else if (hy0O >= 0x7f 800000) 194 if (hyl > hx)
129 ah0 += pi o4; 195 {
130 } 196 x1l = *y;
131 else if ((int) ah0O == 0) 197 yl = *x;
132 ah0O = y0 / xO; 198 i = hx;
133 *z = (sign0 == one) ? ah0 : -ahO; 199 hx = hyl;
134 /* sign0*ahO woul d change nan behavior relative to previous rel ease */ 200 hyl = i;
135 X += stridex; 201 if (sy)
136 y += stridey; 202 {
137 z += stridez; 203 x1 = -x1;
138 i =0; 204 signl = -signi;
139 if (--n<=0) 205 }
140 br eak; 206 if (sx)
141 goto | oopO; 207 {
142 } 208 yl = -yl;
143 if (hy0 < 0x00800000) { 209 ahl = pio2;
144 if (hyo ==0) 210 }
145 { 211 el se
146 *z = sign0 * (float) ahO; 212 {
147 X += stridex; 213 ahl = -pio2;
148 y += stridey; 214 signl = -signi;
149 z += stridez; 215 }
150 i =0; 216 }
151 if (--n<=0) 217 el se
152 br eak; 218 {
153 goto | oopO; 219 yl = *y;
154 } 220 x1l = *x;
155 y0 *= twop24; /* scale subnormal y */ 221 if (sy)
156 X0 *= twop24; /* scal e possibly subnormal x */ 222 {
157 hy0 = *(int*)&y0; 223 yl = -yl
158 hx = *(int*)&x0; 224 signl = -signi,;
159 } 225 }
160 pz0 = z; 226 if (sx)
227 {
162 kO = (hy0 - hx + 0x3f800000) & Oxfff80000; 228 x1 = -x1,;
163 if(kO >= 0x3C800000) [* if |x] >= (1/64)... */ 229 ahl = -pi;
164 { 230 signl = -signl;
165 *(int*)&based = kO; 231 }
166 kO = (kO - 0x3C800000) >> 18; /* (index >> 19) << 1) */ 232 el se
167 kO += 4; 233 ahl = zero;
168 /* skip over 0,0,pi/2,pi/2 */ 234 }
169 }
170 el se /* | x] < 1/64 */ 236 if (hx >= 0x7f800000 || hx - hyl >= 0x0c800000)
171 { 237 {
172 ko = 0; 238 if (hx >= 0x7f800000)
173 base0 = zero; 239 {
174 } 240 if (hx ~ 0x7f800000) /* nan */
241 ahl = x1 + y1;
176 X += stridex; 242 else if (hyl >= 0x7f 800000)
177 y += stridey; 243 ahl += pio4;
178 z += stridez; 244 }
179 i =1 245 else if ((int) ahl ==0)
180 if (--n<=0) 246 ahl = y1 / x1;
181 br eak; 247 *z = (signl == one)? ahl : -ahil;
248 X += stridex;
249 y += stridey;
184 | oopl: 250 z += stridez;
185 hyl = *(int*)y; 251 i =1,
186 hx = *(int*)Xx; 252 if (--n<=0)
187 signl = one; 253 br eak;
188 sy = hyl & 0x80000000; 254 goto | oopl;
189 hyl & ~0x80000000; 255 }
256 if (hyl < 0x00800000) {
191 sx = hx & 0x80000000; 257 if (hyl ==0)

new usr/src/lib/libmec/common/__vatan2f.c

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

275
276
277
278
279
280
281
282
283
284
285
286
287

289
290
291
292
293
294

296
297
298
299
300
301

303
304

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

| oop2:

{

N

signl * (float) ahi;
stridex;
stridey;
stridez;
1;
(--n<=0)
br eak;
goto | oopl;

—TNS X *
I+ + +
N

—-

}
yl~
x1 *

twop24; /* scale subnormal y */

twop24; /* scal e possibly subnormal x */
hyl = *(int*)&y1l;

hx = *(int*)&x1;

pzl = z;

ki = (hyl - hx + 0x3f800000) & Oxfff80000;
i f(k1 >= 0x3C800000) I* 0f x| >= (1/64)... */
{

(|nt)&base1 = k1
kl = (k1 - 0x30800000) >> 18; /* (index >> 19) << 1) */
k1 +_ 4,

/* skip over 0,0,pi/2,pi/2 */

}
el se /* | x| < 1/64 */

kil = 0;
basel = zero;

}

X += stridex;

y += stridey;

z += stridez;

i =2

if (--n<=0)
br eak;

hy2 = *(|nt*)y,

hx = *(int*)x;

sign2 = one;

sy = hy2 & 0x80000000;
hy2 &= ~0x80000000;

sx = hx & 0x80000000;
hx &= ~0x80000000;

i{f(hy2>hx)

X2 = *y;
y2 = *X;
i = hx;
hx = hy2;
hy2 = i;
it (sy)
X2 = -X2;
sign2 = -sign2;
}
if (sx)
{
y2 = -y2;
ah2 = pio2;
el se

new usr/src/lib/libmec/ common/__vatan2f.c

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

386

388
389

{
ah2 = -pio2;
sign2 = -sign2;
}
el se
{
y2 = *y;
X2 = *X;
if (sy)
{
y2 = -y2'
sign2 = -sign2;
}
if (sx)
{
X2 = -x2
ah2 = -pi;
sign2 = -sign2;
el se
ah2 = zero;
}

if (hx >= 0x7f800000 || hx - hy2 >= 0x0c800000)
{
if (hx >= Ox7f800000)

if (hx ~ 0Ox7f800000) /* nan */
ah2 = x2 +

else if (hy2 >= Ox7f 800000)
ah2 += pi o4;

}
else if ((int) ah2 == 0)
ah2 = y2 | x2;
*z = (sign2 == one)? ah2 : -ah2;
X += stridex;
y += stridey;
z += stridez;

it (Cen<=0)

br eak;
goto | oop2;
}
if (hy2 < 0x00800000) {
if (hy2 0)
{
*z = sign2 * (float) ah2;
X += stridex;
y += stridey;

z += stridez;

i 2;

if (--n<=0)
br eak;

goto | oop2;

y2 *= twop24; /* scale subnormal y */
x2 *= twop24; /* scale possibly subnormal x */
hy2 = *(int*)&y2;
X = *(int*)&x2;
}

pz2 = z;

k2 = (hy2 - hx + 0x3f800000) & Oxfff80000;
if(k2 >= 0x3C800000) 1% i f | x| >= (1/64)...

*/

new usr/src/lib/libmec/common/__vatan2f.c

390 {
391 *(int*)&base2 = k2;
392 k2 = (k2 - 0x3C800000) >> 18; /* (index >> 19) << 1)
393 k2 += 4;
394 /* skip over 0,0,pi/2,pi/2 */
395 }
396 el se /* | x| < 1/64 */
397 {
398 k2 = 0;
399 base2 = zero;
400 }
402 got o endl oop;
404 endl oop:
406 ah2 += __vlibmTBL_atanl[k2];
407 ahl += __vlibmTTBL_atanl[k1];
408 ah0 += __vlibm TBL_atanl[kO];
410 db2 = base2;
411 dbl = basel;
412 db0 = baseO;
413 dy2 = y2;
414 dyl = y1;
415 dy0 = yO0;
416 dx2 = x2;
417 dx1 = x1;
418 dx0 = xO;
420 nun2 = dy2 - dx2 * db2;
421 den2 = dx2 + dy2 * db2;
423 numl = dyl - dx1 * dbl;
424 denl = dx1 + dyl * dbil;
426 nunD = dy0 - dx0 * dbO;
427 den0 = dx0 + dy0 * dbO;
429 t2 = nun2 / den2;
430 tl = numl / deni;
431 t0 = nunD / denO;
433 SX2 = t2 * t2;
434 sx1 =t1 * t1;
435 sx0 =t0 * tO0;
436
437 t2 +=t2 * sx2 * (ql + sx2 * g2);
438 tl +=t1 * sx1 * (ql + sx1 * g2);
439 t0 += t0 * sxO0 * (q1 + sx0 * g2);
441 t2 += ah2;
442 t1l += ahil;
443 t0 += ahO;
445 *pz2 = sign2 * t2;
446 *pz1 = signl * t1;
447 *pz0 = sign0 * tO;
449 X += stridex;
450 y += stridey;
451 z += stridez;
452 i =0;
(

453 } while (--n'>0);

455 if (i >1)

*/

new usr/src/lib/libmec/common/__vatan2f.c

456 {

457 ahl += __vlibmTBL_atanl[k1];

458 tl = (yl - x1 * (doubl e)basel) /
459 (x1 + yl * (double)basel);
460 sx1 =1tl1 * tl;

461 tl +=tl1 * sx1 * (ql + sx1 * g2);
462 t1l += ahi;

463 *pz1l = signl * t1;

464 }

466 if (i >0)

467

468 ah0 += __vlibm TBL_atanl[k0] ;

469 t0 = (yO - x0 * (doubl e)base0) /
470 (x0 + y0O * (doubl e)base0);
471 sx0 =t0 * tO;

472 t0 += t0 * sxO0 * (q1 + sx0 * g2);
473 t0 += ahO;

474 *pz0 = sign0 * tO;

475 }

476 }

__unchanged_portion_omtted_

new usr/src/lib/libmec/ common/__vatanf.c

R R R R

12272 Sun May 4 03:07:16 2014
new usr/src/lib/libmec/comon/__vatanf.c

hkkkkkkkkkkkkkkkkkkkkhkhkkk kA kk Kk kkkkkkkkkkkkkkkkkkkk ok k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensolaris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*
26 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #ifdef __RESTRICT

31 #define restrict _Restrict

32 t#el se

33 #define restrict

34 #endif

36 void

37 __vatanf(int n, float * restrict x, int stridex, float * restrict y, int
38

39 extern const double __vlibmTBL_atanl[];
40 doubl e conup0O, conupl, conup2;

41 float dummy, ansf = 0.0;

41 float dumy, ansf;
42 float fo, f1, f2;

43 float ans0O, ansl, ans2;

44 float pol yO pol yl poI y2;

45 float sign0, signl, sign2;

46 int intf, intz, argcount;

a7 int i ndexO i ndexl i ndex2

48 float z, *yaddrO *yaddrl *yaddr2
49 int pz-(|nt *)

50 #ifdef UNROLL4

51 doubl e conup3;
52 int index3;

53 float f3, ans3, poly3, sign3, *yaddr3;
54 #endif
56 /* Power series atan(x) = X + pl*x**3 + p2*x**5 + p3*x**7

57 * Error = -3.08254E-18 On the interval |x| < 1/64 */

59 static const float pl = -0.33329644f /* -3.333333333329292858E-01f */
60 static const float pone = 1.0f;

stride

62
63

new usr/src/lib/libmec/comon/__vatanf.c 2
if(n<=0) return; /* if no. of elenments is 0 or neg, do nothing */
do
{

LOOPO:
intf = *(int *) x; /* upper half of x, as integer */
fo = *x;
sign0 = pone;
if (intf < 0) {
intf = intf & ~0x80000000; /* abs(upper argunent) */
fo =-f0
sign0 = “si gno;
}
if((intf > 0x5B000000) || (intf < Ox31800000)) /* filter out special cases
{

if(intf > 0x7f800000)
{
ansf = f0- fO; /* return NaN i f x=NaN+/

}
else if(intf < 0x31800000) /* avoid underflow for snmall arg
{

dummy = 1.0e37 + fO;
dumy = dumy;
ansf = f0;

}
else if(intf > Ox5B000000) /* avoid underflow for big arg

i ndex0= 2;
ansf = _ vlibmTBL_atanl[indexO0];/* pi/2 up */
}
*y = si gn0*ansf; /* store answer, with sign bit */
X += stridex;
y += stridey;

argcount = O; /* initialize argcount
if (--n <=0) break; /* we are done
got o LOOPO; /* otherw se, exam ne next arg
}
if (intf > 0x42800000) /* if(|x| > 64
fO = -pone/fO0;
index0 = 2; /* point to pi/2 upper, |ower
}
else if(intf >= 0x3C800000) I* if | x| >= (1/64)...
intz = (intf + 0x00040000) & Ox7ff80000;/* round arg, keep upper
pz[O] = intz; /* store as a float (z)
fo = (fo - z)/(pone + f0*z);
index0 = (intz - 0x3C800000) >> 18; /* (index >> 19) << 1)
i ndex0 = index0+ 4; /* skip over 0,pi/2,pil2
}
el se I* | x| < 1/64 */
{
index0 = 0; /* points to 0,0 in table
}
yaddr 0 =y; /* address to store this answer
X += stridex; /* point to next arg
y += stridey; /* point to next result
argcount = 1; /* we now have 1 good argumnent
if (--n<=0)
goto UNROLL; /* finish up with 1 good arg

new usr/src/lib/libmec/ common/__vatanf.c 3 new usr/src/lib/libmec/ common/__vatanf.c 4
128 R e e T T 194 goto UNROLL; /* finish up with 2 good args
129 A R T R TR 195 }

131 LOOP1: 197 A e R LT
198 A e L P LT

133 intf = *(int *) x; /* upper half of x, as integer */ 199 A e I e T

134 f1 = *x;

135 signl = pone; 201 LOOP2:

136 if (intf <0) {

137 intf = |ntf & ~0x80000000; /* abs(upper argunent) */ 203 intf = *(int *) x; /* upper half of x, as integer */

138 fl=-f1 204 f2 = *x;

139 signl = “si gnl; 205 sign2 = pone;

140 } 206 if (intf <0) {

141 207 intf = |ntf & ~0x80000000; /* abs(upper argunent) */

142 if((intf > 0x5B000000) || (intf < Ox31800000)) /* filter out special cases 208 f2 =-f2

143 { 209 sign2 = “si gn2;

144 if(intf > 0x7f800000) 210 }

145 { 211

146 ansf =f1- f1; /* return NaN if x=NaN*‘/ 212 if((intf > 0x5B000000) || (intf < Ox31800000)) /* filter out special cases

147 } 213 {

148 c{sl se if(intf < 0x31800000) /* avoid underflow for snmall arg 214 if(intf > 0x7f800000)

149 215 {

150 dummy = 1.0e37 + f1, 216 ansf =f2 - f2; /* return NaN i f x=NaN+/

151 dumy = dumy; 217 }

152) ansf =f1; 218 c{sl se if(intf < 0x31800000) /* avoid underflow for snmall arg

153 219

154 else if(intf > Ox5B000000) /* avoid underflow for big arg 220 dumy = 1.0e37 + f2;

155 { 221 dummy = dumy;

156 indexl = 2; 222 ansf =f2;

157 ansf = __vlibmTBL_atanl[index1] ;/* pi/2 up */ 223 }

158 } 224 else if(intf > Ox5B000000) /* avoid underflow for big arg

159 *y = signl * ansf; /* store answer, with sign bit */ 225 {

160 X += stridex; 226 index2 = 2;

161 y += stridey; 227 ansf = __vlibmTBL_atanl[index2] ;/* pi/2 up */

162 argcount = 1; /* we still have 1 good arg 228 }

163 if (--n<=0) 229 *y = sign2 * ansf; /* store answer, with sign bit */

164 { 230 X += stridex;

165 goto UNROLL; /* finish up with 1 good arg 231 y += stridey;

166 } 232 argcount = 2; /* we still have 2 good args

167 goto LOOP1; /* otherw se, exam ne next arg 233 if (--n<=0)

168 } 234 {

169 235 goto UNROLL; /* finish up with 2 good args

170 if (intf > 0x42800000) /* if(]x] > 64 236

171 { 237 goto LOOP2; /* otherw se, exam ne next arg

172 f1 = -pone/fl; 238 }

173 index1l = 2; /* point to pi/2 upper, |ower 239

174 } 240 if (intf > 0x42800000) /* if(]x] > 64

175 else if(intf >= 0x3C800000) [* if | x| >= (1/64)... 241 {

176 { 242 f2 = -pone/f2;

177 intz = (int f + 0x00040000) & Ox7ff80000;/* round arg, keep upper 243 index2 = 2; /* point to pi/2 upper, |ower

178 pz[0] =intz /* store as a float (z) 244 }

179 fli=(f1 - z)/(pone+f1*)' 245 else if(intf >= 0x3C800000) [* if | x| >= (1/64)...

180 indexl = (intz - 0x3C800000) >> 18; /* (index >> 19) << 1) 246 {

181 indexl = indexl + 4; /* skip over 0,0,pi/2,pi/2 247 intz = (i ntf + 0x00040000) & Ox7ff80000;/* round arg, keep upper

182 } 248 pz[0] =intz /* store as a float (z)

183 el se 249 f2 = (f2 - z)/(pone+f2*)

184 { 250 index2 = (intz - 0x3C800000) >> 18; /* (index >> 19) << 1)

185 indexl = 0; /* points to 0,0 in table 251 index2 = index2 + 4; /* skip over 0,0,pi/2,pil2

186 } 252 }
253 el se

188 yaddr 1 =y; /* address to store this answer 254

189 X += stridex; /* point to next arg 255 index2 = 0; /* points to 0,0 in table

190 y += stridey; /* point to next result 256 }

191 argcount = 2; /* we now have 2 good arguments 257 yaddr 2 =y; /* address to store this answer

192 if (--n<=0) 258 X += stridex; /* point to next arg

193 { 259 y += stridey; /* point to next result

new usr/src/lib/libmec/ common/__vatanf.c
260 argcount = 3;

261 if (--n<=0)

262 {

263 goto UNROLL;

264 }

267 e
268 e
269 [% e e e e

271 #ifdef UNROLL4
272 LOOP3:

274 i
275 f
276 s
277 i
278 i
279 f
280 si
281 }

282

= -f3
gn3 = -sign3;

284

285 if(intf > 0x7f800000)
286 {

287 ansf
288

289 else if(intf < 0x31800000)
290 {

291 dummy = 1.0e37 + f3;

292 dummy = dummy;

293 ansf =13

294 }

295 else if(intf > Ox5B000000)
296

297 i ndex3
298 ansf
299
300
301
302
303
304
305
306 got o UNRCLL;

307

308 goto LOOPS3;

309 }

310

311 if (intf > 0x42800000)

312 {

313 n3 = -pone;

314 d3 = f3;

315 f3 = n3/d3;

316 index3 = 2;

317 }

318 else if(intf >= 0x3C800000)
319 {

320 intz
321 pz[O]
322 n3
323 d3
324 f3 = n3/d3;

325 index3 = (intz - 0x3C800000) >> 18;

=f3 - f3;

y = sign3 * ansf;
+= stridex;
+= stridey;
rgcount = 3;
if (--n<=0)

—T X A

1
1] I| -

in
ntz

(f3 - 2);
(pone + f3*z)

/* upper half of x,

= intf & ~0x80000000;

__vlibmTBL_atanl[i ndex3]

/* store answer,

5

/* we now have 3 good argunents

/* finish up with 2 good args

as integer */

/* abs(upper argunent) */

283 if((intf > 0x5B000000) || (intf < Ox31800000)) /* filter out special cases
{

/* return NaN if x=NaN*/

/* avoid underflow for snmall arg

/* avoid underflow for big arg

i1 pil2 up */
with sign bit */
/* we still have 3 good args

/* finish up with 3 good args

/* otherw se, exam ne next arg

I* if(|x] > 64

/* point to pi/2 upper, |ower

I* it x| >= (1/64)...

tf + 0x00040000) & Ox7ff80000;/* round arg, keep upper
/*

store as a float (2z)
/* get reduced argunent

/* (index >> 19) << 1)

new usr/src/lib/libmec/ common/__vatanf.c
326 index3 = index3 + 4;
327 }

328 el se

329 {

330 n3 = f3;

331 d3 = pone;

332 i ndex3 = 0;

333 }

334 yaddr3 =y;

335 X += stridex;
336 y += stridey;
337 argcount = 4;

338 if (--n<=0)

339

340 got o UNROLL;

341

}
342 #endif /* UNROLLA */

344 /* here is the n-way unrolled section,

345 but we may actually have less than n

346 argurments at this point

347 */

349 UNROLL:

351 #ifdef UNROLL4

352 if (argcount == 4)

353

354 conupO0 = __vlibmTBL_atanl[index0];

355 conupl = __vlibm TBL atani[i ndex1];

356 conup2 = __vlibmTBL_atani[i ndex2];

357 conup3 = __vlibm TBL_atani[i ndex3];

358 pol yo = pl*f0*f0*f0 + fO;

359 ansO = sign0 * (float)(conup0 + polyO0);
360 pol y1 = pl*fl*fl*fl + f1;

361 ansl = signl * (fl oat)(conupl + polyl);
362 pol y2 = plAf2¥f2*f2 + 12,

363 ans2 = sign2 * (fl oat)(conup2 + poly2);
364 pol y3 = p1*f3*f3*f3 + f3;

365 ans3 = sign3 * (float)(conup3 + poly3);
366 *yaddrO0 = ansoO;

367 *yaddrl = ansl;

368 *yaddr2 = ans2;

369 *yaddr3 = ans3;

370 }

371 el se

372 #endi f

373 if (argcount == 3)

374 {

375 conupO0 = __vlibmTBL_atanl[index0];

376 conupl = __vlibmTBL_atanl[index1];

377 conup2 = __vlibm TBL_atani[i ndex2];

378 pol y0 = pl*fO*f0*f0 + fO;

379 polyl = pl*f1*f1*f1 + f1;

380 pol y2 = pl*f2*f2*f2 + f2;

381 ans0 = sign0 * (float)(conup0 + poly0);
382 ansl = signl * (float)(conupl + polyl);
383 ans2 = sign2 * (float)(conup2 + poly2);
384 *yaddrO0 = anso;

385 *yaddrl = ansl;

386 *yaddr2 = ans2;

387 }

388 el se

389 if (argcount == 2)

390 {

391 conupO = __vlibmTBL_atanl[i ndex0];

skip over 0,0,pi/2,pi/2

points to 0,0 in table

address to store this answer
point to next arg

point to next result

we now have 4 good argunents

finish up with 3 good args

new

usr/src/lib/libnvec/ common/__vatanf.c

392 conupl = __vlibmTBL_atanl[index1];

393 pol yO = p1*f0*f0*f0 + fO;

394 pol y1 = pl*f1*f1*f1 + f1;

395 ansO = sign0 * (float)(conup0 + polyO);
396 ansl = signl * (float)(conupl + polyl);
397 *yaddrO = ansoO;

398 *yaddrl = ansl;

399

400 el se

401 if (argcount == 1)

402

403 conup0 = _ vlibmTBL_atanl[i ndex0];

404 pol yo = pl*f0*f0*f0 + fO;

405 ans0 = sign0 * (float)(conup0 + poly0);
406 *yaddrO = ansoO;

407

409 } while (n > 0);

411 }

__unchanged_portion_omtted_

new usr/src/lib/libmec/ common/__vcos.c

R R R R

29704 Sun May 4 03:07:18 2014
new usr/src/lib/libmec/comon/__vcos.c

hkkkkkkkkkkkkkkkkhkkkkhkhkkkkkkk Kk kkkkkkkkkkkkkkkkkk ok kk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensolaris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*

26 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #include <sys/isa_defs. h>
31 #include <sys/cconpile.h>
32 #endif /* | codereview */

34 #ifdef _LITTLE _ENDI AN

35 #define H (x) *(1+(int*)x)
36 #define LQ(x) *(unsi gned*) x
37 #el se

38 #define H (x)
39 #define LQ(x)

(int)x
(1+(unsi gned) x)

40 #endi f

42 #ifdef __RESTRICT

43 #define restrict _Restrict

44 #el se

45 #define restrict

46 #endi f

48 [*

49 * vcos.l.c

50 *

51 * Vector cosine function. Just slight nodifications to vsin.8.c, nmainly
52 * in the primary range part

53 *

54 * Modification to primary range processing. |f an argument that does not
55 * fall in the primary range is encountered, then processing is continued
56 * in the nediumrange.

57 *

58 */

60 extern const double __vlibmTBL_sincos_hi[], __vlibmTBL_sincos_lo[];

62 static const double

new usr/src/lib/libmec/comon/__vcos.c 2

116

125

static const unsigned thresh[2]

| *

hal f[2] = { 0.5, 0.8 1,
one = 0
i nvpi 02 = O.636619772367581343075535 /* 53 bits of pi/2 */
pio2_1 = 1.570796326734125614166, /* first 33 bits of pi/2 */
pi02_2 = 6.077100506303965976596e-11, /* second 33 bits of pi/2 */
pi 0273 = 2.022266248711166455796e-21, /* third 33 bits of pi/2 */
pi 02 3t = 8.478427660368899643959-32. /* pi/2 - pio2_3 */
ppl = -1. 666666666605760465276263943134982554676e- 0001
pp2 = 8.333261209690963126718376566146180944442e- 0003
qql = -4.999999999977710986407023955908711557870e- 0001,
qq2 = 4.166654863857219350645055881018842089580e- 0002,
pol y1[2] = { -1.666666666666629669805215138920301589656€- 0001,
-4.999999999999931701464060878888294524481e- 0001
poly2[2] = { 8.333333332390951295683993455280336376663e- 0003,
4. 1666666663948619175356405939637082223196 0002
pol y3[2] = { -1.984126237997976692791551778230098403960e- 0004,
-1. 388888552656142867832756687736851681462e- 0003
pol ya[2] = { 2.753403624854277237649987622848330351110e- 0006,

2. 478519423681460796618128289454530524759¢- 0005
= { 0x3fc90000, 0x3fc40000 };

Don’ t the followi ng; aconp will handle it */

extern doubl e fabs(doublie);

extern void

__vlibmyvcos_bi g(int, double *, int, double *, int, int);

/*
* y[i*stridey] := cos(x[i*stridex]), for i = 0..n.
*
* Calls __vlibmvcos_big to handle all elts which have abs >~ 1.647e+06.
* Argunent reduction is done here for elts pi/4 < arg < 1.647e+06.
*
* elts < 27-27 use the approximation 1.0 ~ cos(x).
*/
voi d
_vcos(int n, double * restrict x, int stridex, double * restrict vy,
int stridey)
{
doubl e x0_or _one[4], x1_or_one[4], x2_or_one[4];
doubl e y0_or _zero[4], yl or_zero[4], y2_ or_zero[4];
doubl e x0, x1, x2, *py0 = 0, *pyl = 0, *py2, *xsave, *ysave;
unsi gned hx0, hx1, hx2, xsb0, xsbl = 0, xsb2;
doubl e x0, x1, x2, *pyO, *pyl, *py2, *xsave, *ysave;
unsi gned th hx1 hx2, xsb0, xsbl, xsb2;
int i, bl guns, nsave, sxsave, sysave;
nsave = n;
xsave = X;
sxsave = stridex;
ysave =y;
sysave = stridey;
bi guns = 0;
do /* MAIN LOOP */
{
/* CGotos here so _break_ exits MAIN LOOP. */

LOOPO: /* Find first arg in right range. */

xsb0 = HI(x); /* get nost significant word */

hx0 = xsb0 & ~0x80000000; /* mask off sign bit */

if (hxO > 0x3fe921fb)
/* Too big: arg reduction needed, so |eave for second pa
bi guns = 1;
got o MEDI UM

}
if (hx0 < 0x3e400000) {
/* Too small. cos x ~ 1. */

new usr/src/lib/libmec/ common/__vcos.c

55
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

142
143
144
145
146
147
148
149
150
151

82
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

168
169
170
171
172
173
174
175
176
177
109
178
179
180
181
182
183
184
185
186
187

volatile int v = *x;

*y = 1.0;

X += stridex;

y += stridey;

i =0;

if (--n<=0)
br eak;

got o LOOPO;

X0 = *x;
pyo =y;
X += stridex;
y += strldey

|f (--n <=0)
br eak;

/* Cet second arg, sane as above. */

xsbl = H (x);
hx1l = xsbl & ~0x80000000;
if (hx1l > Ox3fe921fb)

bi guns = 2;
goto MEDI UM

if (hx1l < 0x3e400000)
{

volatile int v = *x;
*y = 1.0;

X += stridex;

y += strldey,

|f (‘n<=0)
br eak;
goto LOOP1;

X1l = *X;
pyl =vy;
X += stridex;
y += stndey,

|f (Tn<=o0)
br eak;

/* Get third arg, sane as above. */

xsb2 = H (x);
hx2 = xsbh2 & ~0x80000000;
if (hx2 > 0x3fe921fb)

bi guns = 3;
got o MEDI UM

}
if (hx2 < 0x3e400000)
{
volatile int v = *x;

* -

X += stridex;

y += strldey,
= 2;
|f (--n <=0)
br eak;

goto LOOP2;

}

X2 = *X;

py2 =vy;

new usr/src/lib/libmec/common/__vcos.c

189
190
191
192
193
194
195
196
197
198
199
200
201

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

239
240
241
242

244
245
246
247
248
249
250
251
252
253
254

/*
* 0x3fc40000 = 5/32 ~ 0.15625
* Get msb after subtraction. WII be 1 only if
*/th - 5/32 is negative.
*
i = (hx0 - 0x3fc40000) >> 31;
i |=((hx1 - 0x3fc40000) >> 30) & 2;
i |=((hx2 - 0x3fc40000) >> 29) & 4;
swtch (i)
{
doubl e a0, al, a2, wo, wl, wZ;
doubl e to, t1, t2, z0, z1, z2;
unsi gned jo, j1, j2;
case 0: /* Al are > 5/32 */
jO = (xsbO + 0x4000) & Oxffff8000;
j1 = (xsbl + 0x4000) & Oxffff8000;
j2 = (xsb2 + 0x4000) & Oxffff8000;
HI (& 0) = jO;
H (& 1) =]1;
H(&2) =j2;
LO(& 0) = O;
LO(&t 1) = O;
LO(& 2) = 0;
x0 -=t0;
x1 -=11;
X2 -=12;
z0 = x0 * xO;
z1 = x1 * x1;
z2 = X2 * x2;
t0 =20 * (qql + z0 * qQg2);
tl =2z1* (qql + z1 * qQ92);
t2 =z2* (qql + z2 * 2);
wo = x0 * (one +z0 * (ppl + z0 * pp2));
wl =x1* (one +z1* (ppl + z1 * pp2));
w2 =x2 * (one +2z2* (ppl +2z2* pp2));
jO=(((jO & ~0x80000000) - 0x3fc40000) >> 13) & ~
j1=(((J1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
j2 =(((]2 & ~0x80000000) - O0x3fc40000) >> 13) & ~
xsb0 = (xsb0 >> 30) & 2;
xsbl = (xsbl >> 30) & 2;
xsb2 = (xsb2 >> 30) & 2;
a0 = __vlibmTBL_sincos_hi[jO+1]; /* cos_hi(t) */
al = vl i bm TBL_sincos_hi[] 1+1];
a2 = __vlibm TBL_sincos_hi[]2+1];

/* cos_lo(t) sin_hi(t) */
t0 = __vlibmTBL_sincos_|lo[jO0+1] - (__vlibmTBL_sincos_
tl = __vlibmTBL sincos_lo[j1+1] - (__vlibm TBL_si ncos_
t2 = vlibm TBL_sincos_lo[]2+1] - (__vlibmTBL_sincos_
*py0 = a0 + tO0;

*pyl = al + t1;
*py2 = a2 + t2;
br eak
case 1:
j1 = (xsbl + 0x4000) & Oxffff8000;
j2 = (xsb2 + 0x4000) & Oxffff8000;
H(&1) =j1;
H (& 2) =]2;
LO(&t 1) = O;
LO(&t2) = 0;
x1 -=11;
X2 -=12;
z0 = x0 * xO;
z1 = x1 * x1;

new usr/src/lib/libmec/ common/__vcos.c 5
255 z2 = X2 * X2;

256 t0 = z0 * (poly3[1] + z0 * poly4[1]);

257 tl =2z1* (qql + z1 * qQ92);

258 t2 =z2* (. qql + z2 * Q2);

259 t0 = z0 * (polyl[1l] + z0 * (poly2[1] +t0))

260 lexl*(one+zl*(ppl+zl*p),

261 w2 = x2* (one +z2* (ppl +2z2* pp2));

262 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
263 j2 =(((]2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
264 xsbl = (xsbl >> 30) & 2;

265 xsbh2 = (xsb2 >> 30) & 2;

266 al = __vlibmTBL_sincos_hi[j1+1];

267 a2 = __vlibmTBL_sincos_hi[] 2+1] ;

268 tl = __vlibmTBL sincos_|o[j1+1] - (vl i bm TBL_si ncos_
269 t2 = __vlibmTBL sincos_lo[j2+1] - (__vlibmTBL_sincos_
270 *py0 = one + tO;

271 *pyl = al +tl

272 *py2 = a2 + t2;

273 break;

275 case 2:

276 jO = (xsbO + 0x4000) & Oxffff8000;

277 j2 = (xsh2 + 0x4000) & Oxffff8000;

278 H (& 0) = jO;

279 H(&2) =j2;

280 LO(& 0) = O;

281 LO(&t2) = 0O;

282 x0 -=10;

283 X2 -=12;

284 z0 = x0 * x0;

285 z1 = x1 * x1;

286 z2 = X2 * x2;

287 t0 =z0* (qql + z0 * qqg2);

288 tl =z1* (poly3[1] + z1 * poly4[1]);

289 t2 =z2* (. qql + z2 * qQ2);

290 wO:xo*(one+zO*(pp1+zo*p2))

291 tl =2z1* (polyl[1l] + z1 * (poly2[1] +t1))

292 w2 = x2 * (one +z2 * (ppl + z2 * pp2

293 jO=(((jO & ~0x80000000) - 0x3fc40000) >> 13) & ~
294 j2=(((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
295 xsb0 = (xsh0 >> 30) & 2;

296 xsb2 = (xsb2 >> 30) & 2;

297 a0 = __vlibmTBL_sincos_hi[]j0+1];

298 a2 = __vlibm TBL_sincos_hi[]2+1];

299 t0 = __vlibmTBL_sincos_|o[]0+1] - (vlibm TBL_si ncos_
300 t2 = __vlibmTBL_sincos_lo[j2+1] - (__vlibmTBL_sincos_
301 *py0 = a0 + tO;

302 *pyl = one + tl;

303 *py2 = a2 + t2;

304 br eak;

306 case 3:

307 j2 = (xsb2 + 0x4000) & Oxffff8000;

308 H (& 2) =j2;

309 LO(&t2) = O;

310 X2 -=12;

311 z0 = x0 * xO;

312 z1 = x1 * x1;

313 z2 = X2 * x2;

314 t0 = z0 * (poly3[1] + z0 * poly4[1]);

315 tl1=z1* (poly3[1] + z1 * poly4[1]);:

316 t2 =z2* (. qql + z2 * qQ2);

317 t0 = z0 * (polyl[1l] + zO0 * (poly2[1] + t0));

318 tl =2z1* (polyl[1l] + z1 * (poly2[1l] +t1));

319 w2 = x2 * (one +z2* (ppl +2z2* pp2));

320 j2 =(((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~

new usr/src/lib/libmec/ cormon/__vcos.c

321 xsb2 = (xsh2 >>30) & 2;

322 a2 = __vlibmTBL_sincos hi [j2+1];

323 t2 = __vlibmTBL sincos_lo[j2+1] - (__vlibmTBL_sincos_
324 *py0 = one + tO;

325 *pyl = one + t1;

326 *py2 = a2 + t2;

327 br eak;

329 case 4:

330 jO = (xsbO + 0x4000) & Oxffff8000;

331 i1 = (xshl + 0x4000) & Oxffff8000;

332 H (& 0) =j0;

333 H (& 1) =j1;

334 LO(& 0) = O;

335 L&t 1) = 0;

336 x0 -=10;

337 x1l -=1t1;

338 z0 = x0 * xO0;

339 z1 = x1 * x1;

340 z2 = X2 * Xx2;

341 t0 =z0 * (qql1 + z0 * qQg2);

342 tl =2z1* (qql + z1 * qQ2);

343 t2 =22 * (poly3[1] + z2 * poly4[1]);

344 w0 = x0 * (one +z0 * (ppl + z0 * pp2));

345 wl =x1* (one +z1* (ppl +z1 * pp2));

346 t2 =z2 * (polyl[1l] + z2 * (poly2[1l] +t2));

347 jO = ((j 0 & ~0x80000000) - 0x3fc40000) >> 13) &
348 j1=((j1 & ~0x80000000) - 0x3fc40000) >> 13) &
349 xsb0 = (xsb0 >> 30) & 2;

350 xsbl = (xsbhl >> 30) & 2;

351 a0 = __vlibmTBL_sincos_hi[]j0+1];

352 al = __vlibm TBL_sincos_hi[] 1+1];

353 t0 = __vlibmTBL_sincos_lo[]j0+1] - (vl i bm TBL_sincos_
354 tl = __vlibmTBL sincos_lo[j1+1] - (__vlibm TBL_sincos_
355 *py0 = a0 + t0

356 *pyl = al + t1;

357 *py2 = one + t2;

358 br eak

360 case 5:

361 j1 = (xsbl + 0x4000) & Oxffff8000;

362 H(&1) =j1;

363 LO(&t 1) = O;

364 x1 -=1t1;

365 z0 = x0 * xO;

366 z1 = x1 * x1;

367 z2 = X2 * X2;

368 t0 = z0 * (poly3[1] + z0 * poly4[1]);

369 tl=2z1* (qgql + z1 * qq2);

370 t2 =z2 * (poly3[1l] + z2 * poly4[1]);

371 t0 = z0 * (polyl[1l] + zO0 * (poly2[1] + t0));

372 wl =x1* (one +z1* (ppl + z1* pp2));

373 t2 = z2 * (polyl[1] + 22 * (poly2[1] +t2));

374 j1 =(((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
375 xsbl = (xsbhl >> 30) & 2;

376 al = __vlibmTBL_sincos_hi[]1+1];

377 tl = __vlibmTBL_sincos_lo[j1+1] - (__vlibmTBL_sincos_
378 *py0 = one + tO;

379 *pyl = al + t1;

380 *py2 = one + t2;

381 break;

383 case 6:

384 jO = (xsbO + 0x4000) & Oxffff8000

385 H (& 0) = joO;

386 LO(&t 0) = O;

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

new usr/src/lib/libmec/comon/__vcos.c 7
x0 -=10;
z0 = x0 * xO0;
z1 = x1 * x1;
z2 = X2 * x2;
t0 =z0* (qql1 + z0 * qgQg2);
tl =2z1* (poly3[1] + z1 * poly4[1]);
t2 =z2 * (poly3[1l] + z2 * poly4[1]);
wo = x0 * (one + z0 * (ppl + z0 * pp2));
tl =z1* (polyl[1l] + z1 * (poly2[1] + t1));
t2 =z2 * (polyl[1l] + z2 * (poly2[1l] +t2));
jOo = (((jO & ~0x80000000) - 0x3fc40000) >> 13) & ~
xsb0 = (xsh0 >> 30) & 2;
a0 = __vlibmTBL_sincos_hi[j0+1];
t0 = __vlibmTBL_sincos_|lo[j0+1] - (__vlibmTBL_sincos_
*py0 = a0 + tO;
*pyl = one + t1,;
*py2 = one + t2;
break;

404

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

422
423
424
425

427
428
429
430
431
432
433
434

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

case 7: /* Al are < 5/32 */
— * .

z0 = x0 x0;
z1 = x1 * x1;
z2 = X2 * X2
t0 = z0 * (poly3[1] + z0 * poly4[1]);
tl =z1* (poly3[1l] + z1 * poly4[1]);
t2 =z2 * (poly3[1l] + z2 * poly4[1]);
t0 = z0 * (polyl[1l] + zO0 * (poly2[1] + tO
tl =2z1* (polyl[1l] + z1 * (poly2[1] + t1
t2 =z2 * (polyl[1l] + z2 * (poly2[1] + t2
*py0 = one + tO;
*pyl = one + t1;
*py2 = one + t2;
br eak;
}
X += stridex;
y += stridey;
1 =0;
} while (--n >0); /* END MAIN LOCP */
*
* CLEAN UP last 0, 1, or 2 elts.
*
/
if (i >0) /* Clean up elts at tail. i < 3. */
{
doubl e a0, al, w0, wil;
doubl e to, t1, zO0, z1;
unsi gned jo, j1;
if (i >1)

if (hxl < 0x3fc40000)
{

z1 = x1 * x1;
tl =z1 * (poly3[1] + z1 * poly4[1]);
tl =2z1* (polyl[1l] + z1 * (poly2[1] +t1));
tl = one + t1;
*pyl = t1;
el se
j1 = (xsbl + 0x4000) & Oxffff8000;
H(&1) =j1;
LO(&t 1) = O;
X1 -=1t1;
z1 = x1 * x1;

new usr/src/lib/libmec/ common/__vcos.c

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

488

490
491
492
493
494
495
496

498

500
501
502
503
504
505
506
507
508
509
510
511

513
514
515
516
517
518

MEDI UM

pp2));

)
0x3f c40000) >>

+t0));

)
- 0x3fc40000) >> 13) & ~

- (__vlibmTBL_sincos_

tl =z1* (gqql + z1 * qQg2);
wl =x1* (one + z1* (ppl + z1 *
j1=(((j1 & ~0x80000000) -
xsbl = (xsbl >> 30) & 2;
al = __vlibmTBL_sincos_hi[j1+1];
tl = __vlibmTBL_sincos_lo[]1+1]
- (__vlibmTBL_sincos_hi[j1l+xsbl]*wl -
*pyl = al + t1;
) }
1f (hx0 < 0x3fc40000)
{
z0 = x0 * xO0;
t0 = z0 * (poly3[1] + z0 * poly4[1]);
t0 = z0 * (polyl[1l] + z0 * (poly2[1]
t0 = one + tO;
*py0 = tO0;
el se
{
jO = (_ xsb0 + 0x4000) & Oxffff8000;
H (& 0) = jO0;
L&t 0) = 0;
x0 -=10;
z0 = x0 * xO0;
t0 =z0 * (qq1 + z0 * qgQg2);
wo = x0 * (one + z0 * (ppl + z0 * pp2 ;
jO=(((jO & ~0x80000000)
xsb0 = (xsb0 >> 30) & 2;
a0 = __vlibmTBL_sincos_hi[]j0+1];
t0 = __vlibmTBL_sincos_|o[]0+1]
*py0 = a0 + tO;

}
} /* END CLEAN UP */

return;

/*

* Take care of BI GUNS.

*

* We have junped here in the middle of processing after having

* encountered a nmediumrange argunment. Therefore things are in a
* bit of a tizzy.

*

/

x0_or_one[1
x1_or_one[1
x2_or_one[1
x0_or _one[3
x1_or_one[3
3
[
[
[
[
[
[

[eXeo)e]

LLeLeeeeee T

PR R

CooooorkERE -

x2_or _one[
y0_or _zero
yl_ or_zero

y2_or_zero
y0_or _zero
yl_or_zero
y2_or_zero

i{f (biguns == 3)

bi guns = 0;
xsb0 = xsh0 >> 31;
xsbl = xsbl >> 31;
goto | oop2;

new usr/src/lib/libmec/ common/__vcos.c

519 }

520 else if (biguns == 2)
521 {

522 xsb0 = xsb0 >> 31;
523 bi guns = 0;

524 goto | oopl;

525 }

526 bi guns = 0;

528 do
529 {

530 doubl e fno, fnl, fn2, a0, al, a2, w0, wi, w2, yO, y1l,

531 unsi gned hx; '
532 int

534 /*

536

538 | oopO:

539 hx = H (x);

540 xsbh0 = hx >> 31;
541 hx &= ~0x80000000;

n0, nl, n2;

535 * Find 3 nore to work on: Not already done, not too big.
*
/

542 if (hx > 0x413921fb) /* (1.6471e+06) Too big: leave it. */

543

545
546 x0
*

547 y = x

548

549 el se

550 bi guns
551 X += stridex;
552 y += stridey;
553 i =0;

554 if (--n<=0)

555 br eak;
556 goto | oopO;
557 }

558 X0 = *Xx;

559 pyo =y

560 X += stridex;

561 y += stridey;

562 1 =1;

563 if (--n<=0)

564 br eak;

566 | oopl:

567 hx = H (x);

568 xsbhl = hx >> 31,

569 hx &= ~0x80000000;

570 if (hx > 0x413921fb)
571

573

574 x1
575 *y
576 }

577 el se

578 bi guns
579 X += stridex;
580 y += stridey;
581 i =1;

582 it (t-n<=0)

583 break;
584 goto | oopl;

544 if (hx >= 0x7ff00000) /* Inf or NaN */
{

572 if (hx >= Ox7ff00000)
{

1;

new usr/src/lib/libmec/comon/__vcos.c 10
585 }

586 X1 = *x;

587 pyl =vy;

588 X += stridex;

589 y += stridey;

590 i =2

591 if (--n<=0)

592 br eak;

594 | oop2:

595 hx = H (x);

596 xsbh2 = hx >> 31;

597 hx &= ~0x80000000;

598 if (hx > 0x413921fb)

599 {

600 if (hx >= 0x7ff00000)
601

602 X2 = *X;

603 *y = x2 - Xx2;
604 }

605 el se

606 bi guns = 1;
607 X += stridex;

608 y += stridey;

609 i =2

610 if (--n<=0)

611 break;

612 goto | oop2;

613 }

614 X2 = *X;

615 py2 =y

617 n0 = (int) (xO * invpio2 + hal f[xsb0]);
618 nl = (int) (x1 * invpio2 + hal f[xsbl]);
619 n2 = (int) (x2 * invpio2 + hal f[xsb2]);
620 fn0 = (doubl e) noO;

621 fnl = (double) ni;

622 fn2 = (double) n2;

623 n0 = (n0 +1) & 3; /* Add 1 (before the npod) to nake sin into co
624 nl =(nl +1) &3

625 n2 = (n2 + 1) & 3;

626 a0 = x0 - fn0 * pio2_1;

627 al = x1 - fnl * pio2_1;

628 a2 = x2 - fn2 * pio2_1;

629 w0 = fn0 * pio2_2;

630 wl = fnl * pio2_2;

631 w2 = fn2 * pio2_2;

632 X0 = a0 - wo,

633 x1 = al - wi;

634 X2 = a2 - wz;

635 yo = (a0 - x0) - wo;

636 yl =(al - x1) - wi;

637 y2 = (a2 - x2) - w2;

638 a0 = xO0;

639 al = x1;

640 a2 = x2;

641 w0 = fn0 * pio2_3 - y0

642 wl = fnl * pio2_3 - yl,;

643 w2 = fn2 * pio2_3 - y2;

644 x0 = a0 - wo;

645 x1 = al - wil,

646 X2 = a2 - w2;

647 y0o = (a0 - x0) - wo;

648 yl =(al - x1) - wi;

649 y2 = (a2 - x2) - wz;

650 a0 = xO0;

new usr/src/lib/libmec/comon/__vcos.c 11

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

al = x1,;

a2 = x2;

wo = fnO * pio2_3t - yo0;
wl = fnl * pio2_3t - yl;
w2 = fn2 * pio2_3t - y2;
x0 = a0 - ;

x1 = al - wi;

X2 = a2 - w2;

y0o = (a0 - x0) - wo;
yl =(al - x1) - wi;
y2 = (a2 - x2) - wz;
xsb0 = HI (&x

0);
i = ((xsbo & ~0x80000000) - thresh[n0&l]) >> 31;
xsbl = H (&
i |—(((xsbl & ~0x80000000) - thresh[nl1&l]) >> 30) & 2;
xsb2 = H (&2);
il=(((xsb2 & ~0x80000000) - thresh[n2&l]) >> 29) & 4;

swtch (i
doubl e to, t1, t2, z0, z1, z2;
unsi gned jo, j1, j2;
case 0O:
jO = (xsbO + 0x4000) & Oxffff8000;
j1 = (xsbl + 0x4000) & Oxffff8000;
j2 = (_xsb2 + 0x4000) & Oxffff8000;
H (& 0) = j0;
H(&t1) =j1;
H(&2) =j2;
LOQ(& 0) = O;
LO(&t 1) = O;
LO(& 2) = O;
x0 = (x0 - t0) + y0;
x1 = (x1-tl1) + yl;
X2 = (X2 - t2) +y2;
z0 = x0 * xO;
z1 = x1 * x1;
z2 = X2 * X2;
t0 =20 * (qql + z0 * qQg2);
tl =2z1* (qql + z1 * qQ2);
t2 =z2* (. qql + z2 * qQ92);
wo = x0 * (one +z0 * (ppl + z0 * pp2));
wl =x1* (one +z1* (ppl + z1 * pp2));
w2 = x2 * (one +2z2* (ppl +2z2* pp2));
jO=(((jO & ~0x80000000) - 0x3fc40000) >> 13) & ~
j1=(((]J1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
Jj2 =(((]2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
xsb0 = (xsb0 >> 30) & 2;
xsbl = (xsbl >> 30) & 2;
xsb2 = (xsb2 >> 30) & 2;
n0 "= (xsh0 & ~(n0 << 1));
nl A= (xshl & ~(nl << 1));
n2 "= (xsh2 & ~(n2 << 1));
xsbh0 | = 1;
xsbl | = 1;
xsb2 | = 1,
a0 = __vlibmTBL_sincos_hi[j0+n0];
al = __vlibm TBL_si ncos_hi[] 1+n1];
a2 = __vlibm TBL_sincos_hi[]2+n2];
to = (vl i bm TBL_si ncos_hi []O+((n0+xsb0)&3)] * w0 + a0
t1 = (__vlibmTBL_sincos_hi[]1+((nl+xsb1)&3)] * wi + al
t2 (__vlibmTBL_si ncos_hi[] 2+((n2+xsb2) &3)] * w2 + a2
*py0 = (a0 + t0);
*pyl = (al +t1);
*py2 = (a2 +t2);
br eak;

new usr/src/lib/libmec/ common/

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

case 1:

case 2:

12

j >>13) & -
) >> 13) & ~

*wl + al
* w2 + a2

__vcos.c

jO = n0 & 1;

j1 = (xsbl + 0x4000) & Oxffff8000;

J2 = (xsb2 + 0x4000) & Oxffff8000;
Ho(&1) =j1;

H(&2) =j2;

LQ(&t 1) = O;

LO(&t2) = O;

x0_or _one[0] = xO;

x0_or _one[2] = -xO0;

y0_or _zero[0] = y0,

y0_or_zero[2] = -yO0;

x1 =(x1-1t1l) + yl;

X2 = (X2 - t2) +y2;

z0 = x0 * xO;

z1 = x1 * x1;

z2 = X2 * x2;

0 =20 * (poly3[jO] + z0O * pon4[JO])
tl =2z1* (qql + z1 * Qg2
t2=22*(qq1+22*qq2)

t0 = z0 * (polyl[jO] + zO * (poly2[jO] + tO));
wl =x1* (one +2z1* (ppl + z1 * pp2 ;
w2 = x2 * (one +2z2* (ppl +z2 * pp2)
j1 = (((j1 & ~0x80000000) - 0x3fc40000
j2 =(((]2 & ~0x80000000) - 0x3fc40000
xsbl = (xsbl >> 30) & 2;

xsb2 = (xsb2 >> 30) & 2;

nl "= (xshl & ~(n1 << 1));

n2 "= (xsh2 & ~(n2 << 1));

xsbl | = 1,

xsh2 | = 1,

al = __vlibmTBL_sincos_hi[j1+nl];

a2 = __vlibmTBL_sincos_hi[]2+n2];

t0 = x0_or_one[n0] + (yO_or_zero[n0] + x0_or_one[n0] *
tl = (__vlibmTBL_sincos_hi[]1+((nl+xsbl)&3)]
t2 = (__vlibm TBL_si ncos_hi[] 2+((n2+xsh2)&3)]
*py0 = t0;

*pyl = (al +t1);

*py2 = (a2 +t2);

br eak;

jo = (xst + 0x4000) & Oxffff8000;

jl1 =n1

]2 = (xsb2 + 0x4000) & Oxffff8000;

H (& 0) = j0;

H(&2) =j2;

LQ(&t 0) = O;

LO(&t2) = 0;

x1_or_one[0] = x1;

x1_or_one[2] = -x1,;

x0 = (x0 - t0) + yO;

yl_or_zero[0] = y1,;

yl_or_zero[2] = -yl1;

x2—(x2 t2) +y2;

z0 = x0 Xx0;

z1 = x1 * x1;

z2 = X2 * x2;

t0 =20 * (qql + z0 * qQg2);

tl =2z1* (poly3[j1l] + z1 * poly4[j1]);
t2 =z2* (. qql + z2 * qQ2);
V\,O:XO*(one+ZO*(pp1+zO*pp2))
tl =2z1* (polyl[j1l] + z1 * (poly2[)1] + tl));
w2 = x2 * (one + z2 * (ppl + z2 * pp2
jO=(((jO & ~0x80000000)

- 0x3fc40000) >> 13) & ~

new usr/src/lib/libmec/comon/__vcos.c 13

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835

837
838
839
840
841
842
843
844
845
846
847
848

case 3:

case 4:

j2 = (((j2 & ~0x80000000) - O0x3fc40000) >> 13) & ~
xsb0 = (xsb0 >> 30) & 2;

xsb2 = (xsh2 >> 30) & 2;

n0 "= (xsh0 & ~(n0 << 1));

n2 "= (xsh2 & ~(n2 << 1));

xsbh0 | = 1,

xsh2 | = 1

a0 = __vlibmTBL_sincos_hi[j0+n0];

a2 = __vlibm TBL_sincos_hi[]2+n2];

t0 = (__vlibmTBL_sincos_hi []O+((n0+xsb0) &3)] * w0 + a0
t1 = x1_or_one[ni] +(y1l_or_zero[nl] + x1_or_one[nl] *
t2 = (__vIibmTBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
*py0 = (a0 + t0);

*pyl = t1;

*py2 = (a2 +t2)

br eak;

jO =no &1

j1=n1é&l

j2 = (xsb2 + 0x4000) & OxffffB8000;

H (& 2) =j2;

LO(&t 2) = O;

x0_or_one[0] = xO;

x0_or _one[2] = -xO0;

x1_or_one[0] = x1;

x1_or_one[2] = -x1,;

y0_or _zero[0] = yO;

y0_or_zero[2] = -yO0;

y1l_or_zero[0] = y1;

yl or_zero[2] = -yl1;

x2 = (x2- t2) +y2;

z0 = x0 * xO;

z1 = x1 * x1;

z2 = X2 * X2;

t0 =20 * (poly3[]o] + z0 * poly4[j0O]);

tl =2z1* (poly3[j1] + z1 * poly4[j1]);

t2 =z2* (. qql + z2 * qQ2);

t0 = z0 * (polyl[jO] + zO * (poly2[jO] +tO));

tl =2z1* (polyl[j1] + z1 * (poly2[j1] +t1));

w2 = x2* (one +z2* (ppl +2z2* pp2));

j2 =(((j2 & ~0x80000000) - O0x3fc40000) >> 13) & ~
xsb2 = (xsb2 >> 30) & 2;

n2 "= (xsb2&~(n2<<1))

xsbh2 | =

a2 = vI i bm TBL_si ncos_hi [j 2+n2] ;

t0 = x0_or_one[n0] + (yO_or_zero[n0] + x0_or_one[n0] *
tl = x1_or_one[nl] + (yl or_zero[nl] + x1_or_one[nl] *
t2 = (__vliibmTBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
*py0 = t0;

*pyl = t1;

*py2 = (a2 +t2);

br eak;

jO = (xsbO + 0x4000) & Oxffff8000;

i1 = (xshl + 0x4000) & Oxffff8000;

j2 =n2 & 1;

HI (&t 0) —JO,

Ho(&1) =j1;

LO(& 0) = O;

LO(&t 1) = O;

x2_or_one[0] = x2;

X2_or_one[2] = -x2;

x0 = (x0 - t0) + yO;

x1 = (x1-tl1) + yl;

new usr/src/lib/libmec/ common/

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913

case 5:

__vcos.c 14
y2_or_zero[0] = y2;
y2_or_zero[2] = -y2;
z0 = x0 * xO;
z1 = x1 * x1;
z2 = X2 * x2;
t0 =20 * (qql + z0 * qQg2);
tl =2z1* (qql + z1 * qQ92);
t2 =z2 * (poly3[j2] + z2 * pon4[12]);
w0 = x0 * (one +z0 * (ppl + z0 * pp2),
wl =x1* (one +z1* (ppl +z1* pp2));
t2 =22 * (polyl[j2] + z2 * (poly2[]2] +t2));
jO=(((jO & ~0x80000000) - 0x3fc40000) >> 13) & ~
j1 =(((J1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
xsb0 = (xsb0 >> 30) & 2;
xsbl = (xsbl >> 30) & 2;
n0 "= (xsh0 & ~(n0 << 1));
nl "= (xsbhl & ~(n1 << 1));
xsbh0 | = 1,
xsbl | = 1
a0 = __vlibmTBL_sincos_hi[j0+n0];
al = __vlibmTBL_sincos_hi[]1+n1];
t0 = (__vlibmTBL_sincos h|[]0+((n0+xsb0)&3)] * w0 + a0
t1 = (__vlibmTBL_sincos_hi[]1+((nl+xsb1)&3)] * wi + al
t2 = x2_or one[n2] +(y2_or_zero[n2] + x2_or_one[n2] *
*py0 = (a0 + ;
*pyl = (a1+t1)
*py2 = t2;
br eak;
jO =n0 &
i1 = xsbl + 0x4000) & Oxffff8000;
j2 =n2 &1;
H (& 1) :Jl;
LO(&t 1) = O;
x0_or _one[0] = xO;
x0_or _one[2] = -xO0;
x2_or_one[0] = x2;
Xx2_or_one[2] = -x2;
y0_or _zero[0] = yO;
y0_or _zero[2] = -yO0;
x1 = (x1-1t1) +yl
y2_or_zero[0] = y2;
y2_ or _zero[2] = -y2;
z0 = x0 * xO;
z1 = x1 * x1;
z2 = X2 * X2;
t0 = z0 * (poly3[j0O] + z0 * pon4[JO])
tl =2z1* (qql + z1 * qgQg2
t2 =z2 * (poly3[j2] + z2 *' pol y4[j2]);
t0 = z0 * (polyl[jO] + z0 * (ponZ[JO] + tO));
wl =x1* (one +z1* (ppl + z1 * 2)
t2 =z2* (polyl[j2] + z2 * (poly2[]?2] +t2))
1= CCj1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
xsbl = (xsbl >> 30) & 2;
nl A= (xshl & ~(nl << 1));
xsbl | = 1;
al = __vlibmTBL_sincos_hi[j1+nl];
t0 = x0_or_one[n0] + (yO_or_zero[nO] + x0_or_one[n0] *
t1l = (__vlibmTBL_sincos_hi[j1+((nl+xsb1)&3)] * wi + al
t2 = x2 or _one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
*py0 = t|
*pyl = (a1+t1)
*py2 = t2;
break;

new usr/src/lib/libmec/comon/__vcos.c 15
915 case 6:

916 jO = (xsbO + 0x4000) & Oxffff8000

917 j1=nl&1;

918 j2=n2 &1

919 H (& 0) = jO0;

920 LO(&t 0) = O;

921 x1_or_one[0] = x1

922 x1_or_one[2] = -x1;

923 x2_or_one[0] = x2

924 Xx2_or_one[2] = -x2

925 x0 = x0-t0) + y0

926 yl_or_zero[0] = y1;

927 yl_or_zero[2] = -yl

928 y2_or_zero[0] = y2

929 y2_or_zero[2] = -y2

930 z0 = x0 x0;

931 z1 = x1 * x1

932 z2 = X2 * x2

933 t0 =20 * (qql + z0 * qQg2);

934 tl =2z1* (poly3[j1l] + z1 * poly4[j1]);

935 t2 =z2 * (poly3[j2] + z2 * pon4[2]);

936 wo = x0 * (one +z0 * (ppl +z0 * pp2))

937 tl =2z1* (polyl[j1l] + z1 * (poly2[J1] +t1))

938 t2 =z2 * (polyl[j2] + z2 * (poly2[j2] +t2))

939 jo=(C((jo & ~0x80000000) - 0x3fc40000) >> 13) & ~
940 xsb0 = (xsb0 >> 30) &

941 n0 *= (xsh0 & ~(n0 << 1))

942 xsh0 | = 1;

943 a0 = vllbn1TBL sincos_hi[j0+n0];

944 t0 = (__vlibmTBL_sincos h|[]0+((n0+xsb0)&3)] * w0 + a0
945 tl = x1_or_one[nl] + (yl_or_zero[nl] + x1_or_one[nl] *
946 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
947 *py0 = (a0 + t0);

948 *pyl = t1;

949 *py2 = t2

950 break;

952 case 7:

953 jO=n0 &1

954 j1 =n1 & 1;

955 j2 =n2 &1;

956 x0_or _one[0] = xO0

957 x0_or_one[2] = -x0

958 x1_or_one[0] = x1

959 x1_or_one[2] = -x1;

960 x2_or_one[0] = x2

961 X2_or_one[2] = -x2

962 y0_or _zero[0] = yO

963 y0_or _zero[2] = -yO0

964 yl_or_zero[0] =yl

965 yl_or_zero[2] = -yl

966 y2_or_zero[0] = y2

967 y2_or_zero[2] = -y2

968 z0 = x0 * x0

969 z1 = x1 * x1

970 z2 = X2 * x2

971 t0 = z0 * (poly3[jO] + zO0 * poly4[j0])

972 tl =z1* (poly3[j1] + z1 * poly4[]j1])

973 t2 =z2 * (poly3[]j2] + z2 * poly4[]2]);

974 t0 = z0 * (polyl[j0O] + z0O * (poly2[j0O] +tO))

975 tl =2z1* (polyl[j1] + z1 * (poly2[j1] +t1))

976 t2 =z2 * (polyl[j2] + z2 * (poly2[j2] +t2))

977 t0 = x0_or_one[n0] + (yO_or_zero[nO] + xO_or_one[n0] *
978 tl = x1_or_one[nl] + (yl_ or_zero[nl] + x1_or_one[nl] *
979 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
980 *py0 = t0;

new usr/src/lib/libmec/ cormon/__vcos.c
981
982
983
984 }

986
987
988
989

*pyl
*py2
br eak;

tl;
t2;

X += stridex;
y += str|dey,
= 0;
} while (--n >0);
991 if (i
992 {
993 doubl e fno
994 doubl e to,
995 unsi gned jo

>0)

fnl, a0, al, w0, wi, yO0, yl
t1, z0, z1
iy

16

996 int

998
999
1000 nl

1001 fnl
1002

1003 al

1004 wl

1005 x1

1006 yl

1007 al

1008 wl

1009 x1

1010 yl

1011 al

1012 wl

1013 x1

1014 yl =
1015 xsbl
1016 if (

{

if (i >1)
{

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045 }
1046 }

}
el se

n0, ni;

= (int) (x1 * invpio2 + half[xsbl])

(doubl e) n1;

(nl +1) &3; /* Add 1 (before the npod) to make sin
x1 - fnl * p|02_1
fnl * pio2_2

= Hi(
(xsbl & ~0x80000000) < thresh[nl1&1])

jl =n1 & 1;
x1_or _one[O
x1_or_one[2

| = x1;

]
yl_or_zero[O

2

1;

-x1
vyl
-yl;

yl_ or _zero[
=x1* x
z1 * (poly3[j1] + z1 * poly4[j1l
z1 * (polyl[j1] + z1 * (poly2[
x1_or_one[nl] + (yl_or_zero[nl]
=t1;

1)
j1] +t1)
+ x1_or_on

. —-
IrrrR
T

y

[

xsbl + 0x4000) & Oxffff8000;
=iy

_0’
t1) +yl
1

1
*
*
*

aR

X

~NX T
HF*HSQI

q2);

)
1+ z1* pp2))
- 0x3fc40000) >>

RRR

X

(qql +z1 * g
(one + z1 * (
((j1 & ~0x800000
(xsbl >> 30) & 2;
shl & ~(nl << 1)

=

2
pp
00

X N X o

X3 x—
A=Y ON™
o o

)
X)i
1;
vI|bn1TBL sincos_hi[j1+nl];
_ vlibm TBL_sincos_hi[j 1+((nl+xsb1) &3)] *
(a1l +1t1)

~Q
(S
T HITHIIH nuon
"=

*
el
<
||,\|

new usr/src/lib/libmec/comon/__vcos.c 17

1047 n0 = (int) (x0 * invpio2 + hal f[xsbh0]);

1048 fn0 = (doubl e) noO;

1049 n0 = (n0 + 1) & 3; /* Add 1 (before the nod) to nmeke sin into co
1050 a0 = x0 - fnO * p| 02_1;

1051 wO=fn0*p|02 ;

1052 x0 = a0 -

1053 y0o = (a 0 X0) - wo;

1054 a0 = x

1055 w0 = fn0 * pio2_3 - yO;

1056 x0 = aO - WO,

1057 y0o = (a0 - x0) - wo;

1058 a0 = x0;

1059 wo = an * pio2_3t - yoO;

1060 x0 = wo;

1061 yO:(aO-xO)-WO;

1062 xsb0 = HI (&x0);

1063 if ((xsbo & ~0x80000000) < thresh[n0&1])

1064 {

1065 jO = n0 & 1;

1066 x0_or _one[0] = xO;

1067 x0_or _one[2] = -xO0;

1068 y0_or _zero[0] = yO;

1069 y0_ or _zero[2] = -yO0;

1070 z0 = x0 * xO;

1071 t0 = z0 * (poly3[]0] + z0 * poly4[jo0]);

1072 t0 = z0 * (polyl[jO] + zO * (poly2[jO] +t0));

1073 t0 = x0_or_one[n0] + (yO_or_zero[nO] + xO_or one[nO] *
1074 *py0 = tO0;

1075 }

1076 el se

1077 {

1078 jO = (xshO + 0x4000) & Oxffff8000

1079 H (& 0) =j0;

1080 LO(& 0) =

1081 x0 = (x0 - t0) + yO;

1082 z0 = x0 * xO;

1083 t0 =z0 * (qql + z0 * qQg2);

1084 wo = x0 * (one +z0 * (ppl + z0 * pp2));

1085 jO=(((jO & ~0x80000000) - 0x3fc40000) >> 13) & ~
1086 xsb0 = (xsb0 >> 30) & 2;

1087 n0 "= (xsh0 & ~(n0 << 1));

1088 xsh0 | = 1;

1089 a0 = vl i bm TBL_si ncos_hi[j0+n0];

1090 to = (__vlibm TBL_si ncos_hi [] 0+((n0+xsb0) &3)] * w0 + a0
1091 *py0 = (a0 + 10);

1092 }

1093 }

1095 if (biguns)

1096} __vlibmyvcos_big(nsave, xsave, sxsave, ysave, sysave, 0x413921f
1097

__unchanged_portion_onitted_

new usr/src/lib/libmec/common/__vcosf.c 1 new usr/src/lib/libmec/common/__vcosf.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 136 Z##N * (Cl + Z##N * Q))))
10431 Sun May 4 03:07:21 2014 137 } else { /* conpute siny *
new usr/src/lib/libmec/comon/__vcosf.c 138 f##N = (fl oat)(y##N + y##N * z##N * (SO + z##N * (S1 +
IR R R R R R R R R R R RS R R R R RS RS R R RS SRR SRR R ERREREREEEEEEEE] 139 Z##N* Sz)))’
__unchanged_portion_omtted_ 140 }
141 *y = (n##N & 2)? -f##N ¢ f#EN;
76 #define SO 0] 142 y += stridey
77 #define S1 1]
78 #define S2 q 2] 144 void
79 #define one d 3] 145 _ vcosf(int n, float *restrict x, int stridex, float *restrict vy,
80 #define nhal f d 4] 146 int stridey)
81 #define Q0 d 5] 147 {
82 #define Cl C 6] 148 doubl e y0, y1, y2, y3;
83 #define C2 q7] 149 doubl e z0, z1, z2, z3;
84 #define invpio2 (8] 150 fl oat fo, f1, f2, 3, t;
85 #define c3two51 (9] 151 int n0 =0, nl =0, n2=0, n3, hx, ix, nmedium
86 #define pio2_1 (10] 151 int n0, n1, n2, n3, hx, ix, medium
87 #define pio2_t (f11]
153 y -= stridey;
89 #define PREPROCESS(N, index, |abel) \
90 hx = *(int *)x; \ 155 for (;;) {
91 ix=hx&0x7fffffff \ 156 begin:
92 t = *x; \ 157 y += stridey;
93 x += stridex \
94 if (ix <= Ox3f490fdb) { I* |x] <pild* \ 159 if (--n<0)
95 if (ix ==0) { \ 160 br eak;
96 y[index] = one; \
97 goto | abel ; \ 162 medi um = 0;
98 } \ 163 PREPROCESS(0, 0, begin);
99 y##N = (double)t; \
100 n##N = 1; \ 165 if (--n<0)
101 } elseif (ix <= Ox49c90fdb) { /* | x| < 2719*pi */ \ 166 goto processl;
102 y#H#N = (doubl e)t \
103 medi um = \ 168 PREPROCESS(1, stridey, processl);
104 } else { \
105 if (ix >= 0x7f800000) { /* inf or nan */ \ 170 if (--n<0)
106 ylindex] =t / t; \ 171 goto process2;
107 goto | abel; \
108 } \ 173 PREPROCESS(2, (stridey << 1), process2);
109 Z##N = y##N = (doubl e)t; \
110 hx = H (y##N); \ 175 if (--n <0)
111 n##N = ((hx >> 20) & Ox7ff) - 1046; \ 176 goto process3;
112 Hi (z##N) = (hx & Oxfffff) | 0x41600000; \
113 n##N = vI i bmrem pi o2m(& ##N, &y##N, n##N, 1, 0) + 1; \ 178 PREPROCESS(3, (stridey << 1) + stridey, process3);
114 z##N = y#HN * yH##EN \
115 if (n##N & 1) { /* conpute cos y */ \ 180 if (medi un) {
116 f##N = (float)(one + z##N * (nmhal f + z##N * \ 181 z0 = y0 * invpio2 + c3two51;
117 (C0 + z##N * (CL + z##N * C2)))); \ 182 z1 =yl * invpio2 + c3two51;
118 } else { /* conpute siny */ \ 183 z2 = y2 * invpio2 + c3two51;
119 #N = (roat)(y##N + y##N * z##N * (SO + \ 184 z3 = y3 * invpio2 + c3two51;
120 Z##N * (Sl + z##N * S2))); \
121 } \ 186 n0 = LQ(z0) + 1;
122 y[index] = (n##N & 2)? -f##N : f##N, \ 187 nl = LQ(z1) + 1;
123 goto | abel ; \ 188 n2 = LQ(z2) + 1;
124 } 189 n3 = LQ(z3) + 1;
126 #defi ne PROCESS(N) \ 191 z0 -= c3two51,;
127 if (mediun { \ 192 z1 -= c3two51;
128 z##N = y##N * invpi 02 + c3two51; \ 193 z2 -= c3two51
129 n##N = LQ(z##N) + 1; \ 194 z3 -= c3twob51;
130 z##N - = c3twob51; \
131 y##N = (y##N - z##N * pio2_1) - z##N * pio2_t; \ 196 y0o = (y0 - zO * pio2_1) - zO * pio2_t;
132 } \ 197 yl = (yl - z1 * pio2_1) - z1 * pio2_t
133 Z##N = y##N * y##N, \ 198 y2 = (y2 - z2 * pio2_1) - z2 * pio2_t;
134 if (n##N & 1) { /* conpute cos y */ \ 199 y3 = (y3 - z3 * pio2_1) - z3 * pio2_t;
135 f##N = (float)(one + z##N * (mhalf + z##N * (CO + \ 200 }

e e

new usr/src/lib/libmec/common/__vcosf.c 3 new usr/src/lib/libmec/common/__vcosf.c 4
202 z0 = y0 * yo0; 268 case 7:
203 z1 =yl * yi; 269 fO = (float)(one + z0 * (mhalf + z0 * (CO +
204 z2 = y2 * y2; 270 z0 * (C1 +z0 * C2))));
205 z3 = y3 * y3; 271 f1 = (float)(one + z1 * (nhalf +z1 * (C0 +
272 z1 * (Cl +z1 * C2)
207 hx = (n0 & 1) | ((n1 &1) << 1) | ((n2 &1) << 2) | 273 f2 = (float)(one + z2 * (nhalf +z2 * (Q0 +
208 ~((n3 & 1) << 3); 274 z2 * (Cl + z2 * C2))));
g(l)g swtcg(hx) { 372 f3 = (fl a)(y3+y3*z3* (SO + z3 * (S1 + z3 * S2)));
case O: 7 break;
211 fO = (float)(y0 + y0O * z0 * (SO + z0 * (Sl + z0 * S2)));
212 fl1 = (float)(yl +yl * z1 * (SO + z1 * (Sl + z1 * S2))); 278 case 8:
213 f2 = (float)(y2 + y2 * z2 * (SO + z2 * (S1 + z2 * S2))); 279 fO = (float)(y0 + yO * zO * (SO + z0 * (S1 + z0 * S2)));
gizsl LB =k(float)(y3+y3* z3 * (SO + z3 * (S1 + z3 * S2))); 280 fl = (float)(yl +yl * z1 * (SO + z1 * (S1 + z1 * S2)));
reak; 281 f2 = (float)(y2 + y2 * z2 * (SO + z2 * (S1 + z2 * S2 ;
282 f3 = (float)(one + z3 * alf + z3 * ((CO+)
217 case 1: 283 z3 * (C1 + 23 * C2))))
gig fo = gflo?t)(one + z0 ;)§;Thalf + 20 * (CO + 284 br eak;
z0 * (C1 + z0 * C ;
220 fl1 = (float)(yl +yl * z1 * (SO + z1 * (Sl + z1 * S2))); 286 case 9:
221 f2 = (float)(y2 + y2 * z2 * (SO + z2 * (S1 + z2 * S2))); 287 fo (float)(one + zO * (mhalf + z0 * (CO +
222 f3 = (float)(y3 + y3 * z3 * (SO + z383 * (S1 + z3 * S2))); 288 z0 * (ClL + z0 * C2))));
223 br eak; 289 fl=(float)(yl + yl1 * 71 * (SO + z1 * (S1 + z1 * S2)));
290 f2 = (float)(y2 + y2 * z2 * (SO + z2 * (S1 + z2 * S2)));
225 case 2: 291 f3 = (float)(one + z3 * (nhalf + z3 * (g:0+)
226 fO = (float)(y0 + yO * z0 * (SO + z0 * (S1 + z0 * S2))); 292 z3 * (C1 + 23 * C2))));
gg fl= (flo?t)(one + z1 ;)g;malf +z1* (CO + 293 br eak;
z1 * (C1 +z1 * ;
229 f2 = (float)(y2 + y2 * z2 * (SO + z2 * (S1 + z2 * S2))); 295 case 10:
gg(l) LS =k(float)(y3+y3* z3 * (SO + z3 * (S1 + z3 * S2))); 296 fO = (float)(y0 + yO * z0O * (SO + z0 * (S1 + z0 * S2)));
reak; 297 fl1 = (float)(one + z1 * (mhalf + z1 * (CO +
298 z1 * (Cl + z1 * C2)))); (
233 case 3: 299 f2 = (float)(y2 + y2 * z2 * (SO + z2 * (S1 + z2 * S2)));
234 fOo = (float)(one + zO * (mhalf + z0 * (CO + 300 f3 = (float)(one + z3 * (nmhalf + z3 * (CO +
235 z0 * (C1 +z0 * C2)))); 301 z3 * (Cl + 23 * C2))));
ggg fl= (lfLo?t)(one + z1 ;)g;rhalf +z1 * (C0 + 302 br eak;
z ClL +z1* ;
238 f2 = (float)(y2 + y2 * z2 * (SO + z2 * (S1 + z2 * S2))); 304 case 11:
34318 LB =k(float)(y3+y3* z3 * (SO + 23 * (S1 + z3 * S2))); 305 fo = (float)(one + z0 * (mhalf + z0 * (CO +
reak; 306 z0 * (C1L +z0 * C2))));
307 fl1 = (float)(one + z1 * (n‘nalf +z1 * (C0 +
242 case 4: 308 z1 * (C1 +z1 * C2))));
243 fOo = (float)(y0 + yO * z0 * (SO + zO * (S1 + z0 * S2))); 309 f2=(f|oat)(y2+y2*22* (SO + z2 * (S1L + z2 * S2)));
244 f1 = (float)(yl + yl * z1 * (SO + z1 * (S1 + z1 * S2))); 310 f3 = (float)(one + z3 * (mhalf + z3 * (CO +
245 f2 = (float)(one + z2 * (mhalf + z2 * (C0 + 311 z3 * (Cl + z3 * C2))));
246 z2 * (C1 + 22 * C2)))); 312 br eak;
247 f3 = (float)(y3 + y3 * z3 * (SO + z383 * (Sl + z3 * S2)));
248 break; 314 case 12:
315 fO = (float)(y0 + yO * zO * (SO + zO * (S1 + z0 * S2)));
250 case 5: 316 fl1 = (float)(yl +yl * z1 * (SO + z1 * (S1 + z1 * S2)));
251 fOo = (float)(one + z0O * (mhalf + z0 * (CO + 317 f2 = (float)(one + z2 * (mhalf + z2 * (CO +
252 z0 * (C1 +z0 * C2)))): 318 z2 * (Cl + 22 * C2))));
253 f1 = (float)(yl + y1 * z1'* (SO + z1 * (S1 + z1 * S2))); 319 f3 = (float)(one + z3 * (mhalf + z3 * (C0 +
254 f2 = (float)(one + z2 * (mhalf + z2 * (C0 + 320 z3 * (Cl + 23 * C2))));
255 z2 * (C1 + 22 * C2)))); 321 br eak;
256 f3 = (float)(y3 +y3*23* (SO + z3 * (S1 + z3 * S2)));
257 break; 323 case 13:
324 fo = (float)(one + zO * (nhalf + z0 * (CO +
259 case 6: 325 z0 * (C1 + z0 * C2))));
260 fo = (float)(y0 + yO * z0 * (SO + zO * (S1 + z0 * S2))); 326 fl=(f|oat)(yl+y1*zl* (SO + z1 * (S1L + z1 * S2)));
261 fl1 = (float)(one + z1 * (rrhalf +z1* (C0 + 327 f2 = (float)(one + z2 * (rrhalf +z2 * (Q0 +
262 z1 * (Cl + z1 * C2)))) 328 z2 * (Cl + z2 * C2))))
263 f2=(f|0at)(one+22* (nhalf +z2 * (QC0 + 329 f3 = (float)(one + z3 * (nhalf +2z3 * (C0 +
264 z2 * (Cl +2z2 * C2)))): 330 z3 * (Cl + 23 * C2))));
ggg {)3 :k(float)(y3+y3* z3 * (SO + z3 * (SL + z3 * S2))); 331 br eak;
r eak;

new usr/src/lib/libmec/common/__vcosf.c

333 case 14:

334 fO = (float)(y0 + yO * z0 * (SO + z0 * (Sl+zO* S2)));
335 fi1 = (float)(one + z1 * (nhalf + z1 * (CO +
336 z1 * (Cl +z1 * C2))));

337 f2 = (float)(one + z2 * (nhalf z2 * (CO +
338 z2 * (Cl + 22 *)

339 f3 = (float)(one + z3 * (nhalf +2z3* (C0 +
340 z3 * (C1 + 23 * C2))));

341 br eak;

343 defaul t:

344 fO = (float)(one + z0 * (mhalf + z0 * (CO +
345 z0 * (C1 + z0 *);

346 fl=(|at)(one+zl*(nh|f+zl*(CO+
347 z1 * (Cl + z1 * Q2))));

348 f2 = (flo at)(one+22*(nhalf +2z2 * (Q0 +
349 z2 * (Cl +2z2 * C2))));

350 f3=(|at)(one+z3*(nhlf+z3*(CO+
351 z3 * (Cl + 23 * @))));

352 }

354 *y = (n0 & 2)? -f0 : fO;

355 y += stridey;

356 *y = (n1 &2)? -f1: f1;

357 y += stridey;

358 *y = (n2 & 2)? -f2: f2;

359 y += stridey;

360 *y = (n3 &2)? -f3: f3;

361 conti nue;

363 processl:

364 PROCESS(0) ;

365 conti nue;

367 process2:

368 PROCESS(0) ;

369 PROCESS(1) ;

370 conti nue;

372 process3:

373 PROCESS(0) ;

374 PROCESS(1) ;

375 PROCESS(2) ;

376 1

377 }

__unchanged_portion_omtted_

new usr/src/lib/libmec/ cormon/__vpow. ¢ 1 new usr/src/lib/libmec/ cormon/__vpow. ¢ 2
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 605 {

56146 Sun May 4 03:07:23 2014 606 /* | X] =0, 1, Inf */
new usr/src/lib/libmec/comon/__vpow.c 607 if (Ix==0&& (hx == 0 || hx == 0x3ff00000 || hx == 0x7ff00000
IR R R R R R R R R R R R S R R R R SRR R R RS S SR SRR R ERREREREEEEEEEE] 608 {

__unchanged_portion_omitted_ 609 Hi (pz) = hx;

546 yisint## =0, /* Y - non-integer */ 610 LQ(pz) = Ix;
547 exp = hy >> 20; /* Y exponent */ 611 if (sy)
548 ull_y0 & LMVANT; 612 *pz = DONE / *pz;
549 ul | _x##1 = (ull_y0 | LDONE); 613 }
549 ul | _x##| = ull_yO0 | LDONE; 614 el se
550 x##1 = *(doubl e*)&ul | _x##l ; 615 {
551 ul | _ax##l = ((ull_x##1 + LMROUND) & LMHI 20); 616 y0 = ((hx < Ox3ff00000) != sy) ? _TINY : _HUGE
551 ul | _ax##l = (ull_x## + LMROUND) & LMHI 20; 617 *pz = y0 * yO;
552 ax##l = *(doubl e¥)&ul | _ax##l ; 618 }
553 if (hx >= 0x7ff 00000 Tl exp >= 0x43e) /* X=Inf,Nan or |Y|>2"63, I nf, Nan 619 RET_SC(1)
554 { 620 }
555 0 = *px; 621 }
556 if (hx>0x7ff00000|| (hx == Ox7ff00000 && | x !'= 0) || 622 if ((sx || (hx | Ix)) ==0) /* X <=0 */
557 hy > 0x7ff00000 || (hy == O0x7ff00000 & |y != 0)) /* |Xl or |Y = 622 if (sx || (hx | Ix) ==10) /* X <=0)
558 RETURN (I, yO0 + *py) 623 {
559 if (hy == 0x7ff00000 && (Iy ==0)) [* Y] = 1Inf */ 624 if (exp >= 0x434) /* Y] >= 2753 */
560 { 625 yisint## =2; [* Y - even */
561 if (hx == 0x3f{f00000 && (Ix == 0)) I* +-1 ** +|nf 626 el se
562 *pz = *py - *py; 627 {
563 else if ((hx < 0x3ff00000) != sy) 628 if (exp >= Ox3ff) [* 1Y >=1 */
564 *pz = DZERQ 629 {
565 el se 630 if (exp > (20 + Ox3ff))
566 { 631 {
567 Hi (pz) = hy; 632 i0 =1y > (52 - (exp - Ox3ff));
568 LQ(pz) = 1ly; 633 if ((O<<(52— (exp - 0x3f))) =1ly)
569 } 634 yisint##l =2 - (i0 & 1);
570 RET_SC(1) 635 }
571 } 636 elseif (ly ==0)
572 if (exp < 0x43e) /* 1Y < 2763 */ 637 {
573 { 638 i0 = hy > (20 - (exp - Ox3ff));
574 if (sx) /* X = -Inf */ 639 if ((i0 << (20 - (exp - Ox3ff))) == hy)
575 { 640 yisint##l =2 - (i0 & 1);
576 if (exp >= 0x434) [* Y] >= 2753 */ 641 }
577 yisint##l =2, [/* Y - even */ 642 }
578 el se 643 }
579 { 644 if ((hx] Ix) ==0) /[* X == */
580 if (exp >= Ox3ff) I* 1Y >=1 */ 645 {
581 { 646 y0 = DZERO
582 if (exp > (20 + Ox3ff)) 647 if (sy)
583 { 648 y0 = DONE / yO;
584 i0 =1y > (52 - (exp - O0x3ff)); 649 if (sx &ylsmt##l)
585 if ((10 << (52 - (exp - 0x3ff)) 650 yoO;
586 yisint#l =2 - (i0 & 1) 651 RETURN (| yO)
587 } 652 }
588 elseif (ly ==0) 653 if (yisint##l == 0) /* pow(neg, non-integer) */
589 { 654 RETURN (1, DZERO / DZERO) /* NaN */
590 i0 = hy > (20 - (exp - Ox3ff)); 655 }
591 if ((i0 << (20 - (exp - Ox3ff)) 656 exp = (hx >> 20);
592 yisint##l =2 - (i0 & 1) 657 exp##l = exp - 2046;
593 } 658 py##l = py,;
594 } 659 pz##l = pz;
595 } 660 ux##l = x##| + axi##l;
596 } 661 if (lexp)
597 if (sy) 662 {
598 hx = 1x = 0; 663 ax##l = (double) ull_yO0;
599 hx += yisint##l << 31; 664 ul I_ax##l = *(unsigned | ong | ong*) &x##l ;
600 H (pz) = hx; 665 ul | _x##l = ((ull _ax##| & LMVANT) | LDCNE)
601 LQ(pz) = Ix; 665 ul | “x##1 = ul |l _ax##l & LMVANT | LDONE;
602 RET_SC(1) 666 x##l = *(doubl e*) &ul | _x##l ;
603 } 667 exp##l = ((unsigned int*) & ull _axi##l)[0];
604 el se [* Y] >= 2763 */ 668 exp##l = (exp##l >> 20) - (2046 + 1023 + 51);

new usr/src/lib/libmec/ cormon/__vpow. ¢

669
669
670
671
672
673
674
675

677
678
679
680
681
682
683
684
681
682
683
684
685
686
687
686
687
688
689
690
691
692
693
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

717
718
719
720

722
723
724
725

}

ul | _x##1
hx##l =
yd##l =
voi d
__vpow

{

ul | _ax##l = (ul
ul | _ax##l = ull_
ax##| = *(doubl e*) &ul | _ax##l

ux##l =

X##|

_x##
X

+ (LMROUND & LMHI 20));
+ LMROUND & LMHI 20;

+ ax##l

= *(unsigned | ong | ong *) &ux##l

H (&l |

DONE / u

int n,
int stri

doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e

if (stri
{

ax#il)
X##l

double * restrict px,

dey, dou

long lo
long lo
long lo
long lo
long lo

dex == 0

unsi gned
unsi gned

/* if x
cal |
if (hx >

int stridex, double * restrict py

ble * restrict pz, int stridez)

*py0 = 0, *pyl =0, *py2;

*pz0 = 0, *pzl = 0, *pz2

y0, ydO = 0.0L, u0, sO, s_I0, mhO

yl, ydl = 0.0L, ul, s1, s_|I1, mhil

*py0, *pyl, *py2;

*pz0, *pzl, *pz2

y0, ydO, u0, sO, s_I0, mhO

yl, ydl, ul, s1, s_I1, mhil

y2, yd2, u2, s2, s_|2, mh2

ax0 = 0.0L, xO = 0.0L, s_hO, uxO

axl = 0.0L, x1 = 0.0L, s_h1l, uxl

ax0, x0, s_hO, uxO0

ax1l, x1, s_h1, uxl;

ax2, x2, s_h2, ux2;

efl ag0, gflag0O, indO, iO;

eflagl, gflagl, indl, il;

eflag2, gflag2, ind2, i2;

hx0 = 0, yisint0O = 0, exp0 =0

hxl = 0, yisintl =0, expl =0

hx0, yisint0, expO;

hx1, yisintl, expl;

hx2, yisint2, exp2;

exp, I =0

hx, Ix, sx, hy, ly, sy
ng ull _y0, ull_x0, ull_x1, ull_x2, ull_ax0
ng LDONE = ((unsigned |l ong | ong*) LCONST)[1];
ng LMVANT = ((unsigned | ong | ong*)LCONST)[4

1;

ng LMROUND = ((unsigned | ong | ong*)LCONST)[5]

ng LMHI 20 (unsi gned | ong | ong*) LCONST) [6] ;
DONE = oubl e*) LCONST) [1] ;

KB5 = ((doubl e*) LCONST) [15]
KB4 = ((doubl e*) LCONST) [16]
KB3 = ((doubl e*)LCONST)[17]
KB2 = ((doubl e*)LCONST)[18]
KB1 = ((doubl e*)LCONST)[19]
)
hx = H (px);
I'x = LA(px);
is a positive normal number not equal to one
vpowx */

="0x00100000 & hx < Ox7ff00000 &%
(hx !'= 0x3ff00000 || Ix != 0))

ul | _ax1

new usr/src/lib/libmec/ common/__vpow. ¢

726 {

727 __vpowx(n, px, py, stridey
728 return;

729 }

730 }

732 do

733 {

734 /* performsi + ydi = 256%| 0g2(xi)*y
735 startO

736 PREP(0)

737 px += stridex;

738 py += stridey

739 pz += stridez

740 1 =1;

741 if (--n<=0)

742 br eak;

744 startl:

745 PREP(1)

746 px += stridex

747 py += stridey;

748 pz += stridez

749 1= 2;

750 if (--n<=0)

751 br eak;

753 start2

754 PREP(2)

756 u0 = x0 - ax0

757 ul = x1 - axl

758 u2 = x2 - ax2

760 sO = u0 * ydO

761 LQO(&ux0) = 0;

762 sl = ul * ydi;

763 LO(&ux1) = 0;

764 s2 = u2 * yd2

765 LO(&ux2) = 0;

767 y0 = s0 * sO

768 s_h0 = sO

769 LQ(&s_h0) = 0;

770 yl = sl * sl

771 s_hl = sl

772 LQ(&s_h1l) = 0;

773 y2 = s2 * s2

774 s_h2 = s2

775 LQ(&s_h2) = 0;

777 sO = (KA5 * y0 + KA3) * y0 * sO
778 sl = (KA5 * y1 + KA3) * yl1 * s1;
779 s2 = (KA5 * y2 + KA3) * y2 * s2
781 s_10 = (x0 - (ux0 - ax0))

782 s 11 =(x1- (uxl - axl))

783 s_12 = (x2 - (ux2 - ax2))

785 s 10 =u0 - s_hO * uxO - s_h0 * s_|0
786 s 11 =ul- s hl*uxl- s hl=* s |1;
787 s 12 =u2 - s_h2 * ux2 - s_h2 * s_12;
789 s |0 =KAL * ydO * s_|I0

790 i0 = (hx0 >> 8) & OxffO;

791 exp0 += (hx0 >> 20)

pz,

*/

stridez);

new usr/src/lib/libmec/comon/__vpow. c 5 new usr/src/lib/libmec/comon/__vpow. c 6
858 s0 = HTHRESH,
793 s 11 =KAL * ydl * s_|1; 859 yd0 = DZERQ,
794 il = (hxl >> 8) & OxffoO; 860 }
795 expl += (hx1 >> 20); 861 i{f (s1 > HTHRESH)
862
797 s |12 = KAL * yd2 * s_|2; 863 sl = HTHRESH;
798 i2 = (hx2 >> 8) & OxffoO; 864 ydl = DZERG,
799 exp2 += (hx2 >> 20); 865 }
866 if (s2 > HTHRESH)
801 yd0 = KAL_H * s_hO; 867 {
802 ydl = KA1_H * s_hl; 868 s2 = HTHRESH,;
803 yd2 = KA1I_H * s_h2; 869) yd2 = DZERG
870
805 y0 = *(double *)((char*)__TBL_log2 + i0);
806 yl = *(double *)((char*)__TBL_log2 + il); 872 if (sO < LTHRESH)
807 y2 = *(double *)((char*)__TBL_log2 + i2); 873
874 sO = LTHRESH;
809 y0 += (doubl e) (exp0 << 8); 875 yd0 = DZERG,
810 yl += (doubl e) (expl << 8); 876 }
811 y2 += (doubl e) (exp2 << 8); 877 ind0 = (int) (sO + ydO);
878 if (s1 < LTHRESH)
813 mhO = y0 + ydO; 879 {
814 mhl =yl + ydi; 880 s1 = LTHRESH,
815 mh2 = y2 + yd2; 881 ydl = DZERG,
882 }
817 y0 = sO - ((mhO - y0O - yd0) - s_|0); 883 indl = (int) (sl + ydl);
818 yl =sl - ((mhl - yl - ydl) - s_I11); 884 if (s2 < LTHRESH)
819 y2 =s2 - ((mh2 - y2 - yd2) - s_12); 885 {
886 s2 = LTHRESH;
821 y0 += *(double *)((char*)__TBL_log2 + i0 + 8) + KAL_LO * s_hO; 887 yd2 = DZERG
822 yl += *(double *)((char*)__TBL_log2 + il + 8) + KA1_LO * s_hil; 888
823 y2 += *(double *)((char*)__TBL_log2 + i2 + 8) + KA1_LO * s_h2; 889 ind2 = (int) (s2 + yd2);
825 s_h0 = y0 + m hO; 891 i0 = (ind0 & Oxff) << 4;
826 s_hl =yl + mhi; 892 u0 = (doubl e) indO;
827 s_h2 = y2 + mh2; 893 ind0 >>= 8;
829 LQ(&s_h0) = 0; 895 il =(indl & Oxff) << 4;
830 LO(&s_hl) = 0; 896 ul = (doubl e)indl;
831 LQ(&s_h2) = 0; 897 indl >>= 8;
833 yd0 = *pyO0; 899 i2 = (ind2 & Oxff) << 4;
834 ydl = *pyl; 900 u2 = (double) ind2;
835 yd2 = *py2; 901 ind2 >>= 8;
836 s0 = ydO;
837 sl = ydi; 903 y0 = s0 - u0 + ydO;
838 s2 = yd2; 904 yl = sl - ul + ydi,
839 LO(&s0) = 0; 905 y2 = s2 - u2 + ydz;
840 LQ(&s1) = 0;
841 LO(&s2) = 0; 907 u0 = *(doubl e*) ((char*)__TBL_exp2 + i0);
908 y0 = ((((KB5 * y0 + KB4) * y0 + KB3) * y0 + KB2) * y0 + KBL) * y
843 y0 = y0 - (s_hO - mho0); 909 ul = *(doubl e*)((char*)__TBL_exp2 + il);
844 yl =yl - (s_hl - mhil); 910 y1 = ((((KB5 * y1 + KB4) * yI + KB3) * yl + KB2) * yl1 + KBL) * y
845 y2 =y2 - (s_h2 - mh2); 911 u2 = *(doubl e*)((char*)__TBL_exp2 + i2);
912 y2 = ((((KB5 * y2 + KB4) * y2 + KB3) * y2 + KB2) * y2 + KBl) * y
847 yd0 = (ydO - s0) * s_hO + yd0 * yO;
848 ydl = (ydl - s1) * s_hl + ydl * y1; 914 eflagd = (ind0 + 1021) >> 31;
849 yd2 = (yd2 - s2) * s_h2 + yd2 * y2; 915 gflag0 = (1022 - ind0) >> 31;
916 eflagl = (indl + 1021) >> 31;
851 sO0 = s_hO * sO; 917 gflagl = (1022 - indl) >> 31;
852 sl = s hl * si; 918 eflag2 = (ind2 + 1021) >> 31;
853 s2 = s_h2 * s2; 919 gflag2 = (1022 - ind2) >> 31;
855 /* perform2 ** ((si+ydi)/256) */ 921 ind0 = (yisint0 << 11) + ind0 + (54 & eflag0) - (52 & gflago0);
856 if (sO > HTHRESH) 922 ind0 <<= ;
857 { 923 indl = (yisintl << 11) + indl + (54 & eflagl) - (52 & gflagl);

new usr/src/lib/libmec/ cormon/__vpow. ¢

924
925
926

928
929
930

932
933
934

936
937
938

940
941
942

944
945
946

948
949
950
951

953

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982

984
985
986
987
988
989

indl <<= 20;

ind2 = (y|S| nt2 << 11) + ind2 + (54
ind2 <<= 20;

u0 = *(doubl e*)((char*)__TBL_exp2 + i
ul = *(doubl e*)((char*)__TBL_exp2 +
u2 = *(doubl e*)((char*)__TBL_exp2 + i

ul = *(unsi gned I ong | ong*) &uO;
HI (&ul | _x0) += 1nd0
u0 = *(doubl e*) &ul | _ xO

ul = *(unsi gned I ong | ong*) &u1;
HI (&uII _x1) += indi,;
ul = *(doubl e*) &ul | _x1;

= *(unsi gned I ong | ong*) &u2;
HI (&uII _X2) += ind2
u2 = *(doubl e*) &ul | _ x2

*pz0 = u0 * SCALE _ARR[eflag0 - gflag
*pzl = ul * SCALE_ARR[efl agl - gflag
*pz2 = u2 * SCALE_ARR[efl ag2 - gflag

px += stridex;
py += stridey;
pz += stridez;

i =0;
} while (--n >0);
if (i >0)
{
/* performsi + ydi = 256%| 0g2(xi)*y
u0 = x0 - axO0;
s0 = u0 * ydoO;

LO(&ux0) = 0;
y0 = sO * sO;

»
=
S)

|
o)
e

:0;
KA5 * y0 + KA3) * y0 * sO;
(ux0 - ax0));

oql
&
2

+’“ i n_l

o~
o X
, ©

KA1 * yd0 * s_|0;

th >> 8) & Oxffo;

= (hx0 >> 20);

= KA1_H * s_hO;

y0 = *(double *)((char*)__TBL_|l og2 +
y0 += (doubl e) (exp0 << 8);

mhO = y0 + ydO;

0 =s0 - ((mhO - yO - yd0) - s_10);

olloool

QX ol |

<O ~Tnmnnonr
oT

~<

y0 += *(double *)((char*)__TBL log2 + i0 + 8) + KA1 _LO * s_ho;
m_hO;

s_h0O = y0 +

LQ(&s_h0) = 0

y0 = yO0 - (s_hO - mho);

sO = yd0 = *pyO0;

LQ(&s0) = 0;

yd0 = (yd0 - sO) * s_hO + yd0 * yO;
s0 = s_h0 * sO;

/* perform2 ** ((3| +ydi)/ 256) */
if (sO > HTHRESH)
{

s0 = HTHRESH,
yd0 = DZERQ,

& eflag2) - (52 & gflag2);

i0 +8) + u0d * y0 + u0;
il+8) +ul * yl + ul;
i2 +8) +u2* y2 + uz

0]
1]
2]

iox/

s_hO * ux0 - s_hO * s_|0O;

i0);

new usr/src/lib/libmec/ cormon/__vpow. ¢ 8
990 if (sO < LTHRESH)

991

992 sO = LTHRESH;

993 yd0 = DZERQ,

994 }

995 ind0 = (int) (sO + ydO);

996 i0 = (ind0 & Oxff) << 4;

997 u0 = (doubl e) indO;

998 ind0 >>= 8;

999 y0 = sO - u0 + ydO;

1000 u0 = *(doubl e*)((char*)__TBL_exp2 + i0);

1001 y0 = ((((KB5 * y0O + KB4) * y0 + KB3) * y0 + KB2) * y0 + KBL) * y
1002 eflag0 = (ind0 + 1021) >> 31;

1003 gflag0 = (1022 - ind0) >> 31;

1004 u0 = *(double*)((char*)__TBL_exp2 + i0 + 8) + u0 * y0 + u0;
1005 ind0 = (yisint0 << 11) + ind0 + (54 & eflag0) - (52 & gflag0);
1006 ind0 <<= 20;

1007 ull _x0 = *(unsigned | ong | ong*) &uO;

1008 H (&ul | _x0) += indO;

1009 u0 = *(doubl e*) &ul | _x0;

1011 *pz0 = u0 * SCALE_ARR[efl ag0 - gfl ag0];

1013 if (i >1)

1014 {

1015 /* performsi + ydi = 256%lo0g2(xi)*yi */
1016 u0 = x1 - axl;

1017 sO = u0 * ydi;

1018 LO(&ux1) = 0;

1019 y0 = sO * sO;

1020 s_h0 = sO;

1021 LO(&s_h0) = 0;

1022 sO = (KA5 * y0 + KA3) * y0 * sO;

1023 s_I10 = (x1 - (uxl - axl));

1024 s_IO=uO—sh0*uxl—sh0*sI0
1025 s 10 = KAL * yd1 * s |0;

1026 i0 = (hxl >> 8) & 0xffoO;

1027 expl += (hx1l >> 20)

1028 ydO = KAL_H * s_hO;

1029 = *(doubl e *)((char*) __TBL_log2 + i0);
1030 yO += (doubl e)(expl << 8);

1031 mh0 = y0 + ydO;

1032 y0 = s0 - ((th— y0 - yd0) - s_10);
1033 y0 += *(double *)((char*)__TBL_log2 + i0 + 8) + KAL_LO *
1034 s_h0 = y0 + m hO;

1035 LO(&s h0) = 0;

1036 y0 = y0 - (s_hO - mhO0);

1037 s0 = yd0 = *pyl;

1038 LO(&s) = 0;

1039 yd0 = (ydO - sO) * s_hO + yd0 * yO;

1040 sO = s_h0 * sO

1041 /* perform2 % ((si+ydi)/256) */

1042 if (sO > HTHRESH)

1043 {

1044 s0 = HTHRESH;

1045 yd0 = DZEROQ,

1046

1047 if (sO < LTHRESH)

1048

1049 sO = LTHRESH;

1050 yd0 = DZERG

1051 }

1052 ind0 = (int) (sO + ydO)

1053 i0 = (ind0 & Oxff) << 4

1054 u0 = (double) indO;

1055 ind0 >>= 8;

new usr/src/lib/libmec/ cormon/__vpow. ¢ 9 new usr/src/lib/libmec/ cormon/__vpow. ¢
1056 y0 = s0 - u0 + ydO; 1161 ull _ax0 = ull_x0 + (LMROUND & LIMHI 20);
1057 u0 = *(doubl e*)((char*)_TBL exp2 + i0); 1161 ull _ax0 = ull _x0 + LMROUND & LMHI 20;
1058 y0 = ((((KB5 * yO + KB4) * y0 + KB3) * yO + KB2) * y0 + 1162 ax0 = *(doubl e*) &ul | _ax0;
1059 eflag0 = (ind0 + 1021) >> 31; 1163 hx0 = HI (&ax0);
1060 gflag0 = (1022 - ind0) >> 31; 1164 ux0 = x0 + axO;
1061 u0 = *(doubl e*)((char*)__TBL_exp2 + i0 + 8) + u0 * y0 + 1165 yd0 = DONE / uxO;
1062 |ndO = (yisintl << 11) + ind0 + (54 & eflag0) - (52 & gof 1166 u0 = x0 - ax0;
1063 |nd0 <<= 20; 1167 sO = u0 * ydO;
1064 ul | = *(unS| gned | ong | ong*) &uO; 1168 LO(&ux0) = 0;
1065 HI(II_xO) += 1 nd0 1169 y0 = s0 * sO;
1066 u0 = *(doubl e*) &ul | _x0; 1170 s_h0 = sO;
1067 *pz1l = u0 * SCALE _ARR[ef | ag0 - gflag0]; 1171 LOQ(&s_h0) = 0;
1068 } 1172 sO = (KA5 * y0 + KA3) * y0 * sO;
1069 } 1173 s_10 = (x0 - (ux0 - ax0));
1070 } 1174 s 10=u0- s hO* uxO - s hO * s_|0;
__unchanged_portion_onitted_ 1175 s_|10 = KAL * ydO * s_|0;
1176 i0 = (hx0 >> 8) & Oxffo;
1115 #define LMVANT ((unsigned |ong | ong*) LCONST) [4] /* OxO00fffffffffffff 1177 exp0 += (hx0 >> 20);
1116 #define LMROUND ((unsigned | ong | ong*)LCONST)[5] /* 0x0000080000000000 1178 yd0 = KAL_H * s_hO;
1117 #define LMHI 20 ((unsigned |ong | ong*)LCONST)][6] /* Oxfffff00000000000 1179 y0 = *(doubl e *)((char*) TBL_log2 + i0);
1118 #define MVANT ((doubl e*)LCONST)[4] /* OxO00f ffffffffffff 1180 y0 += (doubl e)(expo << 8);
1119 #define MROUND ((doubl e*) LCONST)[5] /* 0x0000080000000000 1181 mh0 = y0 + ydO
1120 #define MHI20 ((doubl e*) LCONST) [6] /* Oxfffff00000000000 1182 y0 = s0 - ((mhO - yO - yd0) - s_10);
1121 #define KA5 ((doubl e*) LCONST) [8] /* 5.7707860486089373798 1183 y0 += *(doubl e *)((char*) _TBL_log2 + i0 + 8) + KA1_LO * s_hO;
1122 #define KA3 ((doubl e*) LCONST) [9] /* 9.6179669392576554942 1184 s_h0O = yO + m.hoO;
1123 #define KA1_LO ((doubl e*) LCONST) [10] /* 1.4105215426814730956 1185 LQ(&s_h0) = 0;
1124 #define KA1_H ((doubl e*) LCONST) [11] /* 2.8853759765625e+00%* 2 1186 yr = yo0 - (s ho - m_h0) ;
1125 #define KAl ((doubl e*) LCONST) [12] /* 2.885390081777926774e
1188 do
1189 {
1128 static void 1190 /* perform2 ** ((s_hO+yr)*yi/256) */
1129 _ vpowx(int n, double * restrict px, double * restrict py, 1191 startO:
1130 int stri dey, double * restrict pz, int stridez) 1192 PREP_X(0)
1131 { 1193 py += stridey;
1132 doubl e *py0O, *pyl = 0, *py2; 1194 pz +- strl dez;
1133 doubl e *pz0, *pzl = 0, *pz2; 1195
1132 doubl e *py0, *pyl, *py2; 1196 |f (--n <=0)
1133 doubl e *pz0, *pzl, *pz2; 1197 br eak;
1134 doubl e ux0, y0, ydO, uO, sO;
1135 doubl e y1l, ydl, ul, si; 1199 start1:
1136 doubl e y2, yd2, u2, s2; 1200 PREP_X(1)
1137 doubl e yr, s_hO, s_10, mhO, x0, axO; 1201 py += stridey;
1138 unsi gned | ong | ong ull _y0, ull_x0, ull_x1, ull_x2, ull_axO0; 1202 pz +- strl dez;
1139 int efl ag0, gflagO, indO, i0, expO; 1203
1140 int eflagl, gflagl, indl, il; 1204 |f (in<=0)
1141 int ef | agZ gflag2, ind2, i2; 1205 br eak;
1142 int i =0;
1143 unsi gned hx th hy, ly 1207 start2:
1144 doubl e DONE = ((doubl e*) LOO\IST)[1]; 1208 PREP_X(2)
1145 unsi gned | ong | ong LDONE = ((unsigned |ong Iong)LCONST) [1] ;
1146 doubl e DZERO = ((doubl e*) LCONST)[7]; 1210 s0 = yd0 = *py0;
1147 doubl e HTHRESH = ((doubl e*)LCG\lST)[lS]; 1211 sl = ydl = *pyl
1148 doubl e LTHRESH = ((doubl e*) LCONST) [14] ; 1212 s2 = yd2 = *py2;
1149 doubl e KB5 = ((doubl e*) LCONST) [15] ;
1150 doubl e KB4 = ((doubl e*) LCONST) [16] ; 1214 LQ(&s0) = 0O;
1151 doubl e KB3 = ((doubl e*) LCONST) [17]; 1215 LO(&s1l) = 0;
1152 doubl e KB2 = ((doubl e*) LCONST) [18] ; 1216 LQ(&s2) = O;
1153 doubl e KB1 = ((doubl e*) LCONST)[19];
1218 yd0 = (ydO - sO) * s_hO + yd0 * yr;
1155 /* performs_h + yr = 256*1 0g2(x) */ 1219 ydl = (ydl - sl1) * s_hO + ydl * yr;
1156 ull _y0 = *(unsigned | ong | ong*) px; 1220 yd2 = (yd2 - s2) * s_hO + yd2 * yr;
1157 hx = H (px);
1158 ull _x0 = (ull _y0 & LMVANT) | LDONE; 1222 s0 = s_h0 * sO;
1158 ull ”x0 = ull _y0 & LMVANT | LDONE; 1223 sl = s_h0 * s1;
1159 x0 = *(doubl e*) &ul | _x0; 1224 s2 = s_h0 * s2;
1160 expO = (hx >> 20) - 2046;

new usr/src/lib/libmec/common/

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259

1261
1262
1263

1265
1266
1267

1269
1270
1271

1273
1274
1275

1277
1278
1279
1280
1281
1282

1284
1285
1286
1287
1288
1289

1291

__vpow.c
if (sO > HTHRESH)
{

sO = HTHRESH;
yd0 = DZERO

}
if (s1 > HTHRESH)

s1 = HTHRESH,
ydl = DZERO

}

if (s2 > HTHRESH)
$2 = HTHRESH;
yd2 = DZERO

if (sO < LTHRESH)
sO = LTHRESH,
yd0 = DZERQ,

i}ndO = (int) (sO + yd0);
i{f (sl < LTHRESH)

sl = LTHRESH;
ydl = DZERQ,
ndl =
f (s2 < LTHRESH)

s2 = LTHRESH,
yd2 = DZERQ

(int) (sl + ydl);

ind2 = (int) (s2 + yd2);

i0 = (ind0 & Oxff) << 4
uo = (doubl e) indo;
ind0 >>= 8;

il =(indl & Oxff) << 4

ul = (doubl e) indl;
indl >>= §;

i2 =(ind2 & Oxff) << 4
u2 = (double) ind2;
ind2 >>= 8;

yO0 sO - u0 + ydO;

yl ;sl - ul + ydi;

y2 s2 - u2 + yd2;

u0 = *(doubl e*)((char*)
y0 = ((((KB5 * y0 + KB4)
ul = *(doubl e*) ((char*)
yl = ((((KB5 * yl + KB4)
u2 = *(doubl e*)((char*)__
y2 = ((((KB5 * y2 + KB4)
eflag0 = (ind0 + 1021) >>
gflagd = (1022 - ind0) >>
eflagl = (indl + 1021) >>
gflagl = (1022 - indl) >>
eflag2 = (ind2 + 1021) >>
gflag2 = (1022 - ind2) >>

0 = *(doubl e*)((char*)__TBL_exp2 + i0 + 8) + u0

__TBL_exp2 + i0);

* y0 + KB3) * y0 + KB2)

__TBL_exp2 + il)

* yl + KB3) *
TBL_exp2 + i2);
* y2 + KB3) * y2 + KB2)

yl + KB2)

31,
31;
31;
31;
31,
31;

*

*

*

*

yo
yl
y2

yo

+

+

+

KB1)
KB1)
KB1)

uo0;

*

*

11

y

new usr/src/lib/libmec/ common/

1292
1293
1294
1295
1296

1298
1299
1300
1301
1302
1303

1305
1306
1307
1308
1309
1310

1312
1313
1314

1316
1317
1318

1320

1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354

1356
1357

__vpow. c

ind0 = ind0 + (54 & eflag0)
ind0 <<= 20;

ull _x0 = *(unsugned I ong | ong*) &uoO;
H (&ul | xO) += ind

u0 = *(doubl e*) &ul | _ xO

1 = *(doubl e*) ((char*)
indl = indl + (54 & eflagl)
indl <<= 20;
ull _x1 = *(unsigned | ong | ong*) &u1;
H (&ul 1 _x1) += indl
ul = *(doubl e*) &ul | _x1;

(52 & gflag0);

(52 & gflagl);

__TBL_exp2 + il +8) + ul * yl + ul

2 = *(doubl e*)((char*)__TBL_exp2 + i2 + 8) + u2 * y2 + u2;

ind2 =ind2 + (54 & eflag2) - (52 & gflag2);
ind2 <<= 20;

ull _x2 = *(un5|gned I ong | ong*) &u2;

HI (&ul | _x2) += ind2

u2 = *(double*)&ull_xz

*pz0 = u0 * SCALE_ARR[efl ag0 - gfl ag0];
*pzl = ul * SCALE_ARR[efl agl - gflagl];
*pz2 = u2 * SCALE_ARR[efl ag2 - gflag2];

py += stridey;
pz += stridez;
I = 0;
} while (--n >0);
if (i >0)
{
/* perforn12 ** ((s_hO+yr)*yi/256) *
0= Py

1]
o
1
<
1

6- s0) * s_hO + y0 * yr;
0 * sO;
>HTHRESH)

sO = HTHRESH;
yd0 = DZERQ,

if (sO < LTHRESH)

sO = LTHRESH;
yd0 = DZERO

) (sO0 + ydo0);
i & Oxff) << 4
(doubl e) indo0;

sO - uo + ydo;

(doubl e)((char*)_TBL exp2 + i0);

((((KB5 * y0 + KB4) * yO + KB3) * yO + KB2) *
eflag0 = (ind0 + 1021) >> 31;

gflag0 = (1022 - ind0) >> 31;

[elol=NoXoks]
Q.
nmnmnonino
A
\
|
o

y0 + KBL)

u0 = *(double*)((char*)__TBL_exp2 + i0 + 8) + u0 * y0 + u0;

ind0 = ind0 + (54 & eflag0)
ind0 <<= 20;

ull _x0 = *(unsi gned I ong | ong*) &u0;

HI (&ul | _x0) += 1ndO;

u0 = *(doubl e*) &ul | _x0;

*pz0 = u0 * SCALE_ARR eflag0 - gflag0];

(52 & gflag0);

if (i >1)
{

new usr/src/lib/libmec/comon/__vpow. c 13

1358 /* performz ** ((s_hO+yr)*yi/256) */
1359 s0 = y0 = *pyl;

1360 LQ(&s0) = O;

1361 yd0 = (yO0 - sO) * s_hO + y0 * yr;

1362 sO = s_h0o *

1363 if (sO > HRESH)

1364 {

1365 sO = HTHRESH;

1366 yd0 = DZERQ

1367

1368 if (sO < LTHRESH)

1369 {

1370 sO0 = LTHRESH,

1371 yd0 = DZERO,

1372 }

1373 ind0 = (int) (sO + ydO)

1374 i0 = (ind0 & Oxff) << 4;

1375 u0 = (doubl e) indO;

1376 ind0 >>= 8;

1377 y0 = sO0 - u0 +

1378 u0 = *(doubl e*)((char*) TBL_exp2 + i0);
1379 y0 = ((((KB5 * y0 + KB4) * y0 + KB3) *yO+KBZ) * y0 +
1380 eflag0 = (ind0 + 1021) >> 31;

1381 gflagd = (1022 - ind0) >> 31;

1382 u0 = *(doubl e*)((char*)__TBL_exp2 + i0 + 8) + u0 * y0 +
1383 indo = ind0 + (54 & eflag0) - (52 & gflag0);
1384 ind0 <<= 20;

1385 ull _x0 = *(unsigned | ong | ong*) &u0O;
1386 HI (&ul 1 _x0) += indO;

1387 u0 = *(doubl e*) &ul | _xO0;

1388 *pz1l = u0 * SCALE_ARR eflag0 - gflag0];
1389 }

1390 }

1391 }

__unchanged_portion_onitted_

new usr/src/lib/libmec/common/__vrhypot.c 1

R R R R

11672 Sun May 4 03:07:25 2014
new usr/src/lib/libmec/comon/__vrhypot.c
IR R R R R R R R R R R RS R R R R RS RS R R RS SRR SR SRR EREREREREEEEEE]
unchanged portion_omtted_
"206 O = hy##l - (diff0 & j0);
207 j 0 &= 0Ox7ff00000;
208 Hi (&scl ##1) = 0x7ff00000 - jO;

210 void

211 _ vrhypot(int n, double * restrict px, int stridex, double * restrict py,
212 int stridey, double * restrict pz, int stridez)
213 {

214 int i =0;

215 doubl e X, Y;

216 doubl e x_hi0, x_lo0, y_hiO, y_lo0, scl0 = 0;
217 doubl e x0, y0, resO, ddo;

218 doubl e resO_hi,res0_| o, dresO;

219 doubl e x_hi 1, x_I ol, y_hil, y_ lol, scll = 0;
220 doubl e x1 = 0.0L, yl1 = 0.0L, resl, ddi;
220 doubl e x1, y1, resl, ddi;

221 doubl e resl_hi,resl_|lo, dresi;

222 doubl e x_hi2, x 102, y_hi2, y_ lo2, scl2 =0;
223 doubl e X2, y2, res2, ddz;

224 doubl e res2_hi,res2_lo, dres2;

226 int hx0, hyO, jO, diffoO;

227 int iarr0, iexp0, itblO;

228 int hx1, hyl;

229 int iarrl, iexpl, ithl1;

230 int hx2, hy2;

231 int iarr2, iexp2, ithl2;

233 int Ix, ly;

235 doubl e DONE = ((doubl e*) LCONST) [0] ;

236 doubl e DTWD = ((doubl e*) LCONST)[1];

237 doubl e D20ON36 = ((doubl e*) LCONST) [2];
238 doubl e D2C]\11022 = ((doubl e*) LCONST) [3] ;
239 doubl e D2ONMG2 = ((doubl e*) LCONST) [4] ;
241 doubl e *pz0, *pzl = 0, *pz2;

241 doubl e *pz0, *pzl, *pz2;

243 do

244

245 startO:

246 PREP(0)

247 px += stridex;

248 py += stridey;

249 pz_+= stridez;

250 i =1

251 if (--n<=0)

252 br eak;

254 start1:

255 PREP(1)

256 px += stridex;

257 py += stridey;

258 pz +- strl dez;

259

260 |f (in<=0)

261 br eak;

263 start2:

264 PREP(2)

new usr/src/lib/libmec/common/__vrhypot.c

266 x0 *= scl 0;

267 y0 *= scl 0

268 x1 *= scl 1;

269 yl *= scl1

270 x2 *= scl 2;

271 y2 *= scl 2;

273 x_hi0 = (xO + D20ON36) - D2ON36;

274 y_hi0 = (yO + D20ON36) - D2ON36;

275 X_hil = (X1 + D20N36) - D2ON36;

276 y_hil = (yl + D20ON36) - D2ON36;

277 x_hi2 = (x2 + D20ON36) - D2ON36;

278 y_hi2 = (y2 + D20ON36) - D2ON36;

279 x_lo0 = x0 - x_hiO;

280 y_lo0 = y0 - y_hiO;

281 x_lol = x1 - x_hil;

282 y_lol =yl - y_hil,

283 x_lo2 = x2 - x_hi2;

284 y_lo2 =y2 - y hi2

285 resO_hi = (x_hi0 * x_hi0O +y_hi0 * y_hi0);

286 resl_hi = (x_hil * x_hil +y_hil* y_ hil);

287 res2_hi = (x_hi2 * x_hi2 +y_hi2 * y_hi2);

288 resO_lo = ((x0 + x_hi0) * x_1o0 + (y0O + y_hi0) * y_100);
289 resl_lo = ((x1 + x_hil) * x_lol + (yl1 +y_hil) * y_lol);
290 res2_lo = ((x2 + x_hi2) * x_102 + (y2 +y_hi2) * y_lo2);
292 dresO = resO_hi + res0O_lo;

293 dresl = resl_hi + resl_|lo;

294 dres2 = res2_hi + res2_lo

296 iarr0 = H (&dres0);

297 iarrl = H (&resl);

298 iarr2 = H (&dres2);

299 iexp0 = iarr0 & Oxfff00000;

300 iexpl = iarrl & Oxfff00000;

301 iexp2 = iarr2 & Oxfff00000;

303 iarr0 = (iarr0 >> 11) & Oxlfc;

304 ifarrl = (iarrl >> 11) & Oxlfc;

305 iarr2 = (iarr2 >> 11) & Oxlfc;

306 ithlO = ((int*)((char*)__vli bm TBL_r hypot + iarr0))[0];
307 ithl1 = ((int*)((char*)__vlibm TBL rhypot + iarr1))[0];
308 ithl2 = ((int*)((char*)__vlibmTBL_rhypot + iarr2))[0];
309 ithl0 -=iexp0;

310 ithll -= iexpl;

311 ithl2 -=iexp2;

312 H (&dd0) = itblo0;

313 H (&dd1l) = ithl1;

314 H (&dd2) = ithl2

315 LQ(&dd0) = 0;

316 L &dd1) = 0;

317 LO(&dd2) = 0;

319 dd0 = ddO * (DTWO - ddO * dres0);

320 ddl = dd1 * (DTWO - ddl * dresl);

321 dd2 = dd2 * (DTWO - dd2 * dres2);

322 dd0 = dd0 * (DTWO - ddO * dresO);

323 ddl = dd1 * (DTWO - ddl * dresl);

324 dd2 = dd2 * (DTWO - dd2 * dres2);

325 dresO = dd0 * (DTWD - ddO * dresO);

326 dresl = dd1 * (DTWD - ddl * dresl);

327 dres2 = dd2 * (DTWD - dd2 * dres2);

329 H (& es0) = HI (&dres0) & Oxffffff0o0;

330 H (& esl) = Hi (& resl) & OxffffffOO;

new usr/src/lib/libmec/common/__vrhypot.c

331
332
333
334
335
336
337
338
339
340

342
343
344

346
347
348

350
351
352
353

355

357
358
359
360

362
363
364
365
366
367

369

371
372

374
375
376
377
378

380
381
382

384
385
386
387

389
391
393
394

395
396

H (& es2) = Hi (& res2) & OxffffffOo;
LO(&res0) = 0;
LQ(&resl) = 0;
LO(&res2) = 0;
resO += (DONE - resO_hi * resO - resO_lo * res0) * dresO;
resl += (DONE - resl_hi * resl - resl lo * resl) * dresi;
res2 += (DONE - res2_hi * res2 - res2_lo * res2) * dres2;
resO = sqrt (resO);
resl = sqgrt (resl);
res2 = sqrt (res2);
resO = scl0 * resO;
resl = scll * resl
res2 = scl2 * res2;
*pz0 = resoO;
*pzl = resl
*pz2 = resz,
px += stridex;
py += stridey;
pz += stridez;
1 =0;
} while (--n >0);
if (i >0)
{
x0 *= scl 0;
y0 *= scl 0
x_hi0 = (xO + D20ON36) - D2ON36;
y_hi0 = (yO + D20N36) - D2ON36;
x_l o0 = x0 - x_hiO0;
y_lo0 = y0 - y_hiO;

resO_hi = (x_hi0 * x_hi0 +y_hi0 * y_hi

= 0);
o0 =((x0 + x_hi0) * x_1o0 + (y0O + y_hi0) * y_100);

dresO = resO_hi + resO_lo;

iarr0 = H (&dres0);

iexp0 = iarr0 & Oxfff00000;

iarr0 = (|arr0 >> 11) & Ox1fc

ithlO = ((int*)((char*)__ vI|meBL _rhypot + iarr0))[0];
ithl 0 -= iexp0;

Hl (&Jd0) = itbl0;

LQ(&dd0) = 0;

dd0 = dd0 * (DTWD - ddO * dresO0);
dd0 = dd0 * (DTWD - ddO * dresO);
dresO = dd0 * (DTWD - ddO * dresO);

H (& es0) = Hi (& Jres0) & Oxffffffoo;
LO(&res0) = 0;

res0
resO

resO
*pz0
if (
{

+

= (DO\JE'— resO_hi * resO - resO_lo * res0) * dresO;
sqrt (resO);

scl0 * resO;
reso;
> 1)

x1 *= scl 1;
yl *= scl 1;

398
399
400
401
402
403

405

407
408

410
411
412
413
414

416
417

(x1 + x_hi1l) * xTol + (yI +y_hil) * y lol);

viibm 1 TBL_rhypot + iarrl))[0];

new usr/src/lib/libmec/common/__vrhypot.c
x_hil = (x1 + D20N36) - D2ON36;
y_hil = (yl + D20N36) - D2ON36;
x_lol = x1 - x_hil;
y_lol =yl - y_hil;
resl_hi = (x_hil * x_hil +y_hil* y_hil);
resl_lo = (
dresl = resl_hi + resl_|o;
iarrl = H (&dresl);
iexpl = iarrl & Oxfff00000;
ifarrl = (iarrl >> 11) & Oxifc;
ithll = ((int*)((char*)__
ithll -=iexpl;
H (&dd1) = |th1
LO(&dd1) = 0;
ddl = ddl1 * (DTWD - ddl * dresl);
ddl = dd1 * (DTV‘D ddl * dresl);
dresl = ddil (DTWO - dd1 * dresl);

418

420
421
422
423

425
427

428
429

430 }
__unchanged_portion_onitted_

H (& esl) = Hi(&Jresl) & OxffffffO0O;
LO(& esl) = 0;
+= (DONE - resl_hi * resl -
=sqgrt (resl);

resl
resl

resl
*pzl
}

scll * resl;

resi;

resl_lo * resl) * dresl

new usr/src/lib/libmec/common/__vsin.c 1 new usr/src/lib/libmec/common/__vsin.c 2
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 63 _4 99999999999993170146406087888829452448le_0001
28751 Sun May 4 03:07:26 2014 64 poly2[2] = { 8.333333332390951295683993455280336376663e- 0003,
new usr/src/lib/libmec/comon/__vsin.c 65 4.166666666394861917535640593963708222319¢- 0002
IR R R R R R R R R R R RS R R R R RS RS R R RS SRR SRR R ERREREREEEEEEEE] 66 pol y3[2]: { _1. 984126237997976692791551778230098403960e 0004
1/* 67 -1.388888552656142867832756687736851681462e- 0003
2 * CDDL HEADER START 68 pol y4[2] = { 2.753403624854277237649987622848330351110e- 0006,
3 = 69 2. 478519423681460796618128289454530524759e- 0005
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License"). 71 static const unsigned thresh[2] = { 0x3fc90000, 0x3fc40000 };
6 * You may not use this file except in conpliance with the License.
7 * 73 /* Don’t __ the follow ng; aconp will handle it */
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 extern doubl e fabs(double);
9 * or http://ww. opensol aris.org/os/licensing. 75 extern void __vlibmyvsin_big(int, double *, int, double *, int, int);
10 * See the License for the specific |anguage governing perm ssions
11 * and limtations under the License. 77 void
12~ 78 __vsin(int n, double * restrict x, int stridex, double * restrict vy,
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 79 int stridey)
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 {
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 81 doubl e x0_or _one[4], x1_or_one[4], x2_or_one[4];
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 doubl e y0_or _zero[4], yl or_zero[4], y2 or_zero[4];
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 83 doubl e x0, x1, x2, *py0 = 0, *pyl = 0, py2 *xsave, *ysave;
18 * 84 unsi gned hx0, hx1l, hx2, xsb0, xsbl = 0, xsb
19 * CDDL HEADER END 31 doubl e x0, x1, x2, *py0, *pyl, *py2, *xsave, *ysave;
20 */ 32 unsi gned hx0, hx1, hx2, xsb0, xsbl, xsb2;
, 85 int i, bi guns, nsave, sxsave, sysave;
22 | *
23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved. 86 nsave = n;
24 */ 87 xsave = X;
25 [* 88 sxsave = stridex;
26 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved. 89 ysave = y;
27 * Use is subject to license terns. 90 sysave = stridey;
28 */ 91 bi guns = 0;
30 #include <sys/isa_defs. h> 93 do
31 #include <sys/cconpile.h> 94 {
32 #endif /* | codereview */ 95 LOOPO:
96 xsb0 = HI (x);
34 #ifdef _LITTLE _ENDI AN 97 hx0 = xsbh0 & ~0x80000000;
35 #define HI (x) *(1+(int*)x) 98 if (hx0O > 0x3fe921fb)
36 #define LQ(x) *(unsi gned*) x 99
37 #el se 100 bi guns = 1;
38 #define H (x) *(int*)x 101 goto MEDI UM
39 #define LQ(x) *(1+(unsi gned*) x) 102
40 #endi f 103 1f (hx0 < 0x3e400000)
104 {
42 #ifdef _ RESTRICT 54 volatile int v = *x;
43 #define restrict _Restrict 105 *y = *X;
44 #el se 106 X += stridex;
45 #define restrict 107 y += stridey;
46 #endi f 108 i =0;
109 if (--n<=0)
48 extern const double __vlibmTBL_sincos_hi[], _ vlibmTBL_sincos_lo[]; 110 br eak;
111 got o LOOPO;
50 static const double 112 }
51 hal f[2] = { 0.5, -0.5 1}, 113 X0 = *x;
52 one = 1.0, 114 py0o =vy;
53 invpi 02 = 0.636619772367581343075535, 115 X += stridex;
54 pio2_1 = 1.570796326734125614166, 116 y += stridey;
55) pio2_2 = 6.077100506303965976596e- 11, 117 =1,
56 pi02_3 = 2.022266248711166455796e- 21, 118 if (--n<=0)
57 pi 02_3t = 8.478427660368899643959%¢- 32, 119 br eak;
58 ppl = -1.666666666605760465276263943134982554676e- 0001,
59 pp2 = 8.333261209690963126718376566146180944442e- 0003, 121 LOOP1:
60 qql = -4.999999999977710986407023955908711557870e- 0001, 122 xsbl = HI(x);
61 qq2 = 4.166654863857219350645055881018842089580e- 0002, 123 hx1l = xsbhl & ~0x80000000;
62 polyl[2]={ -1. 666666666666629669805215138920301589656e 0001, 124 if (hx1l > Ox3fe921fb)

new usr/src/lib/libmec/common/__vsin.c

125 {

126 bi guns = 2;

127 got o MEDI UM
128 }

129 if (hx1l < 0x3e400000)
130 {

81 volatile int v = *x;
131 Yy = *X;

132 X += stridex;
133 y += stri dey,
134 i 1;

135 |f(--n<_0)
136 br eak;
137 goto LOOP1;

138 }

139 x1 = *x;

140 pyl =vy;

141 X += stridex;

142 y += str| dey,

143

144 |f (n<=o0)

145 br eak;

147 LOOP2:
148 xsb2 = H (x);

149 hx2 = xsb2 & ~0x80000000;
150 if (hx2 > 0x3fe921fb)

151

152 bi guns = 3;

153 goto MEDI UM

154

155 if (hx2 < 0x3e400000)

156 {

108 volatile int v = *x;
157 *y = *x;

158 X += stridex;

159 y += stri dey,

160 = 2;

161 |f(——n<-0)

162 br eak;

163 goto LOOP2;

164 }
165 X
166 p
168

169

170

i = (hxO - 0x3fc90000) >>
| =
1 =

171 swtc
{

X

(hx1 - 0x3fc90000)
(hx2 - 0x3fc90000)
(i)

172

173 doubl e ao,
174 doubl e to,
175 unsi gned jo,

177 case 0:
178
179
180
181
182
183
184
185
186
187
188

N~ O

L EREREE I

III o

0;
] 1,
] 2;

A~~~

N ON R O~
O__QQ'—‘_’_

. — T

e

X X e
PoQQQ

31;
>>
>>

al,
tl1,
jl

xsb0 + 0x4000)
xsbl + 0x4000)
xsh2 + 0x4000)

30) &
29) &

a2,
t2, zO,
i2;

new usr/src/lib/libmec/common/__vsin.c 4
189 X2 -=12;

190 z0 = x0 * xO;

191 z1 = x1 * x1;

192 z2 = X2 * x2;

193 t0 =z0 * (qq1 + z0 * qgqg2)

194 tl =2z1* (qql + z1 * qQ2);

195 t2 =22 * (. qql + z2 * qQ2);

196 wo = x0 * (one +z0 * (ppl + z0 * pp2));

197 wl =x1* (one +z1* (ppl +z1 * pp2));

198 W2=x2*(one+22*(ppl+22*p2),

199 jO = (((jO & ~0x80000000) - 0x3fc40000) >> 13) & ~
200 j1=(((]1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
201 j2 =(((]2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
202 xsb0 = (xsb0 >> 30) & 2;

203 xsbl = (xsbl >> 30) & 2;

204 xsb2 = (xsb2 >> 30) & 2;

205 a0 = __vlibmTBL_sincos_hi[]j0+xsb0];

206 al = __vlibm TBL_sincos_hi[] 1+xsb1];

207 a2 = __vlibm TBL_si ncos_hi [] 2+xsb2] ;

208 t0 = (__vlibmTBL_sincos_hi[jO+1] * wO + a0 * t0) + __
209 tl = (__vlibmTBL_sincos_hi[j1+1] * wl + al * t1) + __
210 t2 = (vlibm T TBL_sincos_hi[]2+1] * w2 + a2 * t2) + _
211 *py0 = a0 + tO0;

212 *pyl = al + t1;

213 *py2 = a2 + t2;

214 br eak;

216 case 1:

217 j1 = (xsbl + 0x4000) & Oxffff8000;

218 J2 = (xsb2 + 0x4000) & Oxffff8000;

219 Ho(&1) =j1;

220 H (& 2) =j2;

221 LQ(&t 1) = O;

222 LO(&t2) = 0;

223 x1 -=11;

224 X2 -=t2;

225 z0 = x0 * xO;

226 z1 = x1 * x1;

227 z2 = X2 * X2;

228 t0 = z0 * (poly3[0] + z0 * poly4[0]);

229 tl =2z1* (qql + z1 * qQ92);

230 t2 =z2* (. qql + z2 * qQ2);

231 t0 = z0 * (polyl[0] + z0 * (poly2[0] + t0));

232 vﬂ:xl*(one+zl*(pp1+zl*pp2)),

233 w2 = x2* (one +z2* (ppl +2z2* pp2));

234 j1 =(((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
235 j2 =(((]2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
236 xsbl = (xsbl >> 30) & 2;

237 xsb2 = (xsh2 >> 30) & 2;

238 al = __vlibmTBL_sincos_hi[]j1l+xsbl];

239 a2 = __vlibm TBL_si ncos_hi [] 2+xsb2] ;

240 t0 = x0 + x0 * t0;

241 tlz(_vI|meBLS|ncosh|[]1+1]*Wl+al*tl)+_
242 t2 = (__vlibmTBL_sincos_hi[j2+1] * w2 + a2 * t2) + __
243 *py0 = t0;

244 *pyl = al + t1;

245 *py2 = a2 + t2;

246 br eak;

248 case 2:

249 jO = (xshO + 0x4000) & Oxffff8000;

250 j2 = (xsb2 + 0x4000) & Oxffff8000;

251 H (& 0) = j0;

252 H(&2) =]2;

253 LO(& 0) = O;

254 LO(&t2) = 0;

new usr/src/lib/libmec/common/__vsin.c

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

case 3:

case 4:

5
x0 -=10;
X2 -=1t2;
z0 = x0 * xO;
z1 = x1 * x1;
z2 = X2 * X2;
t0 =20 * (qql + z0 * qQg2);
tl =2z1* (poly3[0] + z1 * poly4[0])
t2 =z2* (. qql + z2 *
wo = x0 * (one + z0 * (ppl +zO*pp2))
tl =2z1* (polyl[0] + z1 * (poly2[0] +t1));
w2 = x2 * (one + z2 * ppl + z2 * pp2));
jO=(((jO & ~0x80000000) - 0x3fc40000) >> 13) & ~
j2 =(((]2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
xsb0 = (xsb0 >> 30) & 2;
xsbhb2 = (xsb2 >> 30) & 2;
a0 = __vlibmTBL_sincos_hi[j0+xsb0];
a2 = __vlibmTBL_sincos_hi[]2+xsb2];
t0 = (__vlibmTBL_sincos_hi[jO0+1] * wO + a0 * t0) + _
tl1 = x1 + x1 * t1;
t2 = (__vlibmTBL_sincos_hi[j2+1] * w2 + a2 * t2) + __
*py0 = a0 + tO0;
*pyl = t1;
*py2 = a2 + t2;
br eak;
j2 = (xsb2 + 0x4000) & Oxffff8000;
H(&2) =j2;
LO(&t2) = 0;
X2 -=12
z0 = x0 * xO0;
z1 = x1 * x1;
z2 = X2 * x2;
t0 = z0 * (poly3[0] + zO * poly4[0]);
tl =2z1* (poly3[0] + z1 * poly4[0]),
t2 =22 * (qql + z2 * qQ2);
t0 = z0 * (polyl[0] + zO0 * (poly2[0] to);
tl =z1 * (polyl[0] + z1 * (poly2[0] tl1));
W2 = x2 * (one + z2* (ppl + z2 * pp2)),
j2 = (((]2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
xsh2 = (xsb2 >> 30) &2
a2 = __vlibmTBL_sincos h|[]2+xsb2]
t0 = x0 + x0 * tO;
tl =x1 + x1 * t1;
t2 = (__inbm_TBL_si ncos_hi[j2+1] * w2 + a2 * t2) + __
*py0 = t0;
*pyl = tl
*py2 = a2 + t2;
br eak;
jO = (xsbO + 0x4000) & Oxffff8000;
j1 = (xsbl + 0x4000) & Oxffff8000;
H (& 0) = j0;
H(&1) =j1;
LO(& 0) = O;
LO(& 1) = O;
x0 -=10;
x1 -=t1;
z0 = x0 * xO0;
z1 = x1 * x1;
z2 = X2 * x2;
t0 =z0 * (qql1 + z0 * qQg2);
tl =2z1* (qql + z1 * qQ2);
t2 = z2 * (poly3[0] + z2 * poly4[0]);
wo = x0 * (one +z0 * (ppl + z0 * pp2));

new usr/src/lib/libmec/comon/__v

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

case 5:

case 6:

wl
t2

tl

ESR

gy X e
RPORPOEN
o

t2

z2

-
él\)l—‘o
L 1 I IO T R

-y X e
RPOOWONEF
o

-
N
|

*

*
TTT
<<<
NP O

*

sin.c 6

x1 * (one + z1 * (ppl + z1 * pp2));
2 * (polyl[0] + z2 * (poly2[0] +t2)

z)s

(((O & ~0x80000000) - Ox3fc40000) >> 13) &
(((]J1 & ~0x80000000) - Ox3fc40000) >> 13) &
= (xsh0 >> 30) & 2;

= (xshl >> 30) & 2;

__vlibmTBL_sincos_hi[]j 0+xsb0];
__vlibmTBL_sincos_hi[] 1+xsbl];

(__vlibmTBL_sincos_hi[jO+1] * w0 + a0 * t0) + __
(_vlibmTBL_sincos_hi[j1+1] * wl + al * t1) + _
X2 + X2 * t2;

= a0 + to;

=al +1t1,

=12

(xsbl + 0x4000) & Oxffff8000;

1) =iy

1) =0;

t1

x0 * x0;

x1 * x1;

X2 * X2;

z0 * (poly3[0] + zO * poly4[0]);

z1 * (ggl + z1 * qg2

z2 * (poly3[0] + z2 * poly4[0]);

z0 * (polyl[0O] + zO0 * (poly2[0] + tO))

x1 * (one + z1 * (ppl + z1 * pp2

z2 * (polyl[0] + z2 * (poly2[0] + 12’))

((('j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~

= (xsbl >> 30) & 2
_vI i bm TBL_si ncos_| hi [j 1+xsbl];
x0 + x0 * t0;
(ImeBLS|ncosh|[]1+l]*Wl+al*t1)+_
X2 + x2 *t
=10;
=al +1tl
=12
(xsb0 + 0x4000) & Oxffff8000;
0) =ij0;
0) —O;
t0;
x0 * x0;
x1 * x1;
X2 * X2;
z0 * (gqql + z0 * qg2);
z1 * (poly3[0] + z1 * poly4[0]);
z2 * (poly3[0] + z2 * poly4[0]);
x0 * (one + z0 * (ppl + z0 * pp2));
z1 * (polyl[0] + z1 * (poly2[0] +t1));
z2 * (polyl[0] + z2 * (poly2[0] +t2)
(((jO & ~0x80000000) - Ox3fc40000) >> 13) & ~

= (xsb0 >> 30) & 2
vl i bm TBL_si ncos_ hi [j O+xsb0] ;
(& 77V|ImeBL sincos_hi [j 0+1] * W0 + a0 * to) +

break;

new usr/src/lib/libmec/common/__vsin.c

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

406
407
408
409

411
412
413
414
415

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

case 7:
z0 = x0 * xO0;
z1 = x1 * x1;
z2 = X2 * x2;
t0 = z0 * (poly3[0] + zO * poly4[0]);
tl =2z1* (poly3[0] + z1 * poly4[0]);
t2 =z2 * (poly3[0] + z2 * poly4[0]);
t0 = z0 * (polyl[0] + zO * (poly2[0] + tO0))
tl =z1* (polyl[0] + z1 * (poly2[0] + t1))
t2 = z2 * (polyl[0] + z2 * (poly2[0] +t2))
t0 = x0 + x0 * tO;
tl = x1 +x1 * t1;
t2 = x2 + x2 * t2;
*py0 = t0;
*pyl = t1,
*py2 = t2;
br eak
}
X += stridex;
y += stridey;
1 = 0;
} while (--n>0);
i{f (i >0)
doubl e a0, al, w0, wi;
doubl e to, t1, zO0, z1;
unsi gned jo, j1;
if (i >1)
i{f (hx1 < 0x3fc90000)
z1 = x1 * x1;
tl =2z1* (poly3[0] + z1 * poly4[0]);
tl =z1* (polyl[0] + z1 * (poly2[0]
tl =x1 + x1 * t1;
*pyl = t1;
el se
j1 = (xsbl + 0x4000) & Oxffff8000;
H(&1) =j1;
LQ(&t 1) = 0;
x1 -=1t1;
z1 = x1 * x1;
tl =2z1* (qql + z1 * Qg2);
wl =x1* (one +z1* (ppl + z1 * pp2
jl1 =(((j1 & ~0x80000000) - 0x3fc40
xsbl = (xsbl >> 30) & 2;
al = __vlibmTBL_sincos_hi[j1l+xsbl];
tl = (__vlibmTBL_sincos_hi[j1+1] * wl + al * t
*pyl = al + t1;
) }
if (hx0 < 0x3fc90000)
{
z0 = x0 * xO0;
t0 = z0 * (poly3[0] + z0 * poly4[0]);
t0 = z0 * (polyl[0] + zO * (poly2[0] +t0O))
t0 = x0 + x0 * tO;
*py0 = tO;

el se

+t1));

))
000) >>

new usr/src/lib/libmec/common/__vsin.c

453
454
455
456
457
458
459
460
461
462
463
464
465
466

468

470
471
472
473
474
475

477

479
480
481
482
483
484
485
486
487
488
489
490

492
493
494
495
496
497
498
499
500
501
502
503
504
505

507
508
509
510
511

513
514
515
516
517
518

MEDI UM

| oop0:

jO = (xsb0 + 0x4000) & Oxffff8000;

H (& 0) = jO0;
LO(& 0) = O;
x0 -=1t0;
z0 = x0 * xO0;
t0 =20 * (qql + z0 * qQg2);
wo = x0 * (one +z0 * (ppl + z0 *
jO=(((jO & ~0x8000000
xsb0 = (xsb0 >> 30) & 2;
a0 = __vlibmTBL_sincos_hi[]j0+xsb0];
t0 = (__vlibm
*py0O = a0 + tO;
}

}

return;

/*

* MEDI UM RANGE PROCESSI NG
* Junp here at first sign of mediumrange argunent.
* confused due to the junp.. fix up several
* the nth | oop, sane as was bei ng processed above.
*

/

[eXeo)e)

LLeLeeeeee T

1
1
x2_or_one[1
x0_or _one[3
x1_or_one[3
3
[
[
[
[
[
[

PR R

CooooorkERE -

x2_or _one[
y0_or _zero
yl_ or_zero

y2_or_zero
y0_or
yl_or_zero
y2_or_zero

if (biguns == 3)

{
bi guns = 0;
xsb0 = xsh0 >> 31;
xsbhl = xsbl >> 31;
goto | oop2;

}

else if (biguns == 2)

xsb0 = xsb0 >> 31;

bi guns = 0;
goto | oopl;
}
bi guns = 0;
do
{
doubl e fn0, fnl, fn2, a0, al, a2,
unsi gned hx;
int no, nl, n2;
hx = H (x);

xsb0 = hx >> 31;

hx &= ~0x80000000;

if (hx < 0x3e400000)
{

p pp2)
0) - Ox3fc40000)

>> 13) & ~

W are a bit

variables and junp into

wo, wi, w2, y0, yil, vy

new usr/src/lib/libmec/common/__vsin.c

471 volatile int v = *x;
519 *y = *x;

520 X += stridex;

521 y += stridey;

522 i =0;

523 if (--n<=0)

524 br eak;

525 goto | oopO;

526 }

527 if (hx > 0x413921fb)

528 {

529 if (hx >= 0x7ff00000)
530

531 x0 = *Xx;
532 *y = x0 - xO0;
533 }

534 el se

535 bi guns = 1;
536 X += stridex;

537 y += stridey;

538 i =0;

539 if (--n<=0)
540 br eak;

541 goto | oopO;

542 }

543 X0 = *x;

544 pyo =y;

545 X += stridex;

546 y += stridey;

547 1= 1;

548 if (--n<=0)

549 break;

551 | oopl:

552 hx = H (x);

553 xshl = hx >> 31;

554 hx &= ~0x80000000;

555 if (hx < 0x3e400000)

556 {

510 volatile int v = *x;
557 *y = *x;

558 X += stridex;

559 y += stridey;

560 i =1;

561 if (--n<=0)
562 br eak;

563 goto | oopl;

564 }

565 if (hx > 0x413921fb)

566 {

567 if (hx >= 0x7ff00000)
568 {

569 x1 = *x;
570 *y = x1 - x1;
571 }

572 el se

573 bi guns = 1;
574 X += stridex;

575 y += stridey;

576 = 1;

577 if (--n<=0)
578 br eak;

579 goto | oopl;

580 }

581 X1 = *X;

582 pyl =vy;

new usr/src/lib/libmec/common/__vsin.c

583 X += stridex;

584 y += stridey;

585 i =2

586 if (--n<=0)

587 br eak;

589 | oop2:

590 hx = H (x);

591 xsh2 = hx >> 31;

592 hx &= ~0x80000000;

593 if (hx < 0x3e400000)

594 {

549 volatile int v = *x;
595 Yy = *x;

596 X += stridex;

597 y += stridey;

598 i =2

599 if (--n<=0)
600 break;

601 goto | oop2;

602 }

603 if (hx > 0x413921fb)

604 {

605 if (hx >= 0x7ff00000)
606 {

607 X2 = *X;
608 *y = x2 - x2;
609 }

610 el se

611 bi guns = 1;
612 X += stridex;

613 y += stridey;

614 i =2;

615 if (--n<=0)
616 break;

617 goto | oop2;

618 }

619 X2 = *X;

620 py2 =vy;

622 n0 = (int) (x0 * invpio2 + hal f[xsbh0]);
623 nl = (int) (x1 * invpio2 + hal f[xsbl]);
624 n2 = (int) (x2 * invpio2 + hal f[xsb2]);
625 fn0 = (doubl e) noO;

626 fnl = (double) ni;

627 fn2 = (double) n2;

628 n0 &= 3;

629 nl & 3;

630 n2 &= 3;

631 a0 = x0 - fn0 * pio2_1;

632 al = x1 - fnl * pio2_1;

633 a2 = x2 - fn2 * pio2_1;
634 wo = fn0O * pio2_2;

635 wl = fnl * pio2_2;

636 w2 = fn2 * pio2_2

637 x0 = a0 - wo;

638 x1 = al - wil,;

639 X2 = a2 - wW2;

640 y0o = (a0 - x0) - wo;
641 yl =(al - x1) - wi;
642 y2 = (a2 - x2) - wz;
643 a0 = xO0;

644 al = x1;

645 a2 = x2;

646 w0 = fn0 * pio2_3 - yo;

647 wl = fnl * pio2_3 - yl;

10

new usr/src/lib/libmec/common/__vsin.c 11 new usr/src/lib/libmec/ common/__vsin.c 12
648 w2 = fn2 * pio2_3 - y2; 714 a2 = __vlibmTBL_sincos_hi[]j2+n2];
649 x0 = a0 - wo; 715 t0 = (__vlibmTBL_sincos_hi[]j O+((n0+xsb0) &3)] * w0 + a0
650 x1 = al - wil; 716 tl1 = (__vlibmTBL_sincos_hi[]1+((nl+xsb1)&3)] * wi + al
651 X2 = a2 - wz; 717 t2 = (__vlibmTBL_sincos_hi[]2+((n2+xsh2)&3)] * w2 + a2
652 y0o = (a0 - x0) - wo; 718 *py0 = (a0 + t0);
653 yl =(al - x1) - wi; 719 *pyl:(al+t1;
654 y2 = (a2 - x2) - w2 720 *py2 = (a2 +t2);
655 a0 = x0; 721 br eak;
656 al = x1;
657 a2 = x2; 723 case 1:
658 w0 = fn0 * pio2 3t - yo; 724 jO = no & 1;
659 wl = fnl * pio2_3t - yl; 725 j1 = (xsbl + 0x4000) & Oxffff8000;
660 w2 = fn2 * pio2_3t - y2; 726 j2 = (xsb2 + 0x4000) & Oxffff8000;
661 x0 = a0 - wo; 727 H (& 1) =j1;
662 x1 = al - wi; 728 H(&2) =j2;
663 X2 = a2 - wg; 729 LO(&t 1) = 0O;
664 y0 = (a0 - x0) - wo; 730 LO(&t2) = O;
665 yl =(al - x1) - wi; 731 x0_or _one[0] = xO;
666 y2 = (a2 - x2) - wz; 732 x0_or _one[2] = -xO0;
667 xst = H (&x0); 733 y0_or _zero[0] = yO;
668 i = ((xsbO & ~0x80000000) - thresh[n0&l]) >> 31; 734 y0_or_zero[2] = -yO0;
669 xsbl = H (&x1); 735 x1 =(x1-1tl) +yl;
670 =0 xsbl & ~0x80000000) - thresh[nl&l]) >> 30) & 2; 736 X2 = (x2-1t2) +y2
671 xsb2 = H (&x2); 737 z0 = x0 * xO;
672 i|= (((xsh2 & ~0x80000000) - thresh[n2&l]) >> 29) & 4; 738 z1 = x1 * x1;
673 swtch (i) 739 z2 = X2 * x2;
674 { 740 t0 =20 * (poly3[]0] + z0 * poly4[j0O]);
675 doubl e to, t1, t2, z0, z1, z2; 741 tl =2z1* (qql + z1 * Qg2);
676 unsi gned jo, j1, j2; 742 t2 =z2* (. qql + z2 * qQ2);
743 tO=zO*(pon1[]O] +zO*(pon2[JO] +t0));
678 case 0: 744 wl =x1* (one +z1* (ppl + z1 * pp2)),
679 jO = (xshO + 0x4000) & Oxffff8000; 745 w2 = x2 * (one +z2* (ppl + z2 * pp2));
680 j1 = (xsbl + 0x4000) & Oxffff8000; 746 j1 =(((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
681 J2 = (_xsb2 + 0x4000) & Oxffff8000; 747 j2 =(((]2 & ~0x80000000) - O0x3fc40000) >> 13) & ~
682 H (& 0) = jO0; 748 xsbl = (xsbl >> 30) & 2;
683 H (& 1) =j1; 749 xsb2 = (xsh2 >> 30) & 2;
684 H (& 2) =]2; 750 nl "= (xsbl & ~(n1 << 1));
685 LQ(&t 0) = O; 751 n2 ~= (xsh2 & ~(n2 << 1));
686 LO(&t 1) = O; 752 xsbhl | = 1;
687 LO(&t 2) = O; 753 xsb2 | = 1:
688 x0 = (x0 - t0) + y0; 754 al = __vlibmTBL_sincos_hi[j1+nl];
689 x1 = (x1 - tl1) + yl; 755 a2 = __vlibm TBL_sincos_hi[]2+n2];
690 X2 = (X2 - t2) +y2; 756 t0 = x0_or_one[n0] + (yO_or_zero[n0] + x0_or_one[n0] *
691 z0 = x0 * xO0; 757 tl = (vlibm TBL_si ncos_hi [j 1+((nl+xsbl)&3)] * wl + al
692 z1 = x1 * x1; 758 t2 = (__vlibm TBL_sincos_hi[]2+((n2+xsb2)&3)] * w2 + a2
693 z2 = X2 * Xx2; 759 *py0 = t0;
694 t0 =20 * (qql + z0 * qQ2); 760 *pyl = (al +t1);
695 tl =2z1* (qql + z1 * qQ2); 761 *py2 = (a2 +t2);
696 t2 =z2* (. qql + z2 * Q2); 762 br eak;
697 wo = x0 * (one +z0 * (ppl + z0 * pp2));
698 wl =x1* (one +z1* (ppl +z1 * pp2)); 764 case 2:
699 W2 = x2 * (one +z2* (ppl +2z2* pp2)); 765 jO = (xsh0 + 0x4000) & Oxffff8000;
700 jO=(((jO & ~0x80000000) - 0x3fc40000) >> 13) & ~ 766 j1 =nl & 1;
701 j1=(((]J1 & ~Ox80000000) - 0x3fc40000) >> 13) & ~ 767 j2 =(xsb2 + 0x4000) & Oxffff8000;
702 j2 =(((]2 & ~0x80000000) - 0x3fc40000) >> 13) & ~ 768 H (& 0) = j0;
703 xsb0 = (xsb0 >> 30) & 2; 769 H(&2) =]2;
704 xsbl = (xshl >> 30) & 2; 770 LO(&t 0) = 0;
705 xsbh2 = (xsbh2 >> 30) & 2; 771 LO(&t2) = 0;
706 n0 "= (xsh0 & ~(n0 << 1)); 772 x1_or_one[0] = x1;
707 nl A= (xshl & ~(nl << 1)); 773 x1_or_one[2] = -x1,;
708 n2 A= (xsh2 & ~(n2 << 1)); 774 x0 = x0 - t0) + yO;
709 xsbh0 | = 1; 775 yl_or_zero[0] = y1;
710 xshl | = 1; 776 y1 or_zero[2] = -yl;
711 xsbh2 | = 777 =(x2 - t2) +y2;
712 a0 = _vI i bm TBL_si ncos_hi [j 0+n0] ; 778 zO = x0 * xO0;
713 al = __vlibmTBL_sincos_hi[]1+n1]; 779 z1 = x1 * x1;

new usr/src/lib/libmec/comon/__vsin.c 13

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803

805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

842
843
844
845

case 3:

case 4:

z2 = X2 * X2;

tO:ZO*(qql+zO*qq2)'

tl =2z1* (poly3[j1l] + z1 * pon4[Jl])

t2 =z2* (qq1 + z2 * qQ2
V\,O=x0*(one+zo*(pl+20* pp2));

tl =2z1* (polyl[j1l] + z1 * (ponZ[Jl] + tl));

w2 = x2 * (one +z2* (ppl +z2 * pp2)

jO=(((jO & ~0x80000000) - 0x3fc40000) >> 13) & ~
j2 =(((]2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
xsb0 = (xsb0 >> 30) & 2;

xsbh2 = (xsb2 >> 30) & 2;

n0 "= (xsh0 & ~(n0 << 1));

n2 "= (xsh2 & ~(n2 << 1));

xsbh0 | = 1,

xsh2 | = 1

a0 = __vlibmTBL_sincos_hi[j0+n0];

a2 = __vlibm TBL_sincos_hi[]2+n2];

t0 = (__vlibmTBL_sincos_hi []O+((n0+xsb0) &3)] * w0 + a0
t1l = x1_or_one[nl] + (yl_ or_zero[nl] + x1_or_one[nl] *
t2 = (__vlibmTBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
*py0 = (a0 + t0)

*pyl = t1;

*py2 = (a2 +t2);

br eak;

jO =n0 & 1

jl =nl &1

j2 = (xsb2 + 0x4000) & Oxffff8000;

H (& 2) =j2;

LO(&t2) = 0O;

x0_or _one[0] = xO;

x0_or_one[2] = -xO0;

x1_or_one[0] = x1;

x1_or_one[2] = -x1,;

y0_or _zero[0] = yO;

y0_or _zero[2] = -yO0;

yl_or_zero[0] = y1;

yl or_zero[2] = -yl1;

x2—(x2— t2) +y2;

z0 = x0 * xO;

z1 = x1 * x1;

z2 = X2 * X2;

t0 = z0 * (poly3[jO] + zO * poly4[jO]);

tl =2z1* (poly3[j1] + z1 * poly4[j1]);

t2 =z2* (. qql + z2 * qQ2);

t0 =20 * (polyl[jO] + z0 * (poly2[jO] +t0));

tl = zl * (polyl[j1] + z1 * (poly2[j1l] +t1));
W2 = x2* (one + z2* (ppl +z2 * pp2));

j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
xsh2 = (xsb2 >> 30) & 2;

n2 "= (xsb2&~(n2<<1))

xsbh2 | =

a2 = vI i bm TBL_si ncos_hi [j 2+n2];

t0 = x0_or_one[n0] + (yO_or zero[nO] + x0_or_one[n0] *
tl = x1 or_one[nl] + (yl or_zero[n + x1_or_one[nl] *
t2 = (__vlibmTBL_sincos_hi []2+((n2+xsb2) &3)] * w2 + a2
*py0 = t0;

*pyl = t1;

*py2 = (a2 +t2);

break;

jO = (xsbO + 0x4000) & Oxffff8000;

i1 = (xshl + 0x4000) & Oxffff8000;

j2 =n2 &1;

new usr/src/lib/libmec/ common/__vsin.c

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911

case 5:

y2_or_zero[0
y2_ or _zero[2
z0 = x0 * xO;

T

14

&._
& ~

*

z1 = x1 * x1;
z2 = X2 * X2;
t0 =20 * (qql + z0 * qQg2);
tl =2z1* (qql + z1 * qQ2);
t2 =z2 * (poly3[j2] + z2 * pon4[j2])
wo = x0 * (one +z0 * (ppl + z0 * pp2)
wl =x1* (one +z1* (ppl +z1™* pp2));
t2 =z2 * (polyl[j2] + z2 * (poly2[)2] + t2))
jO=(((jO & ~0x80000000) - 0x3fc40000) >> 13)
j1 =(((J1 & ~0x80000000) - 0x3fc40000) >> 13)
xsb0 = (xsb0 >> 30) & 2;
xsbl = (xsbl >> 30) & 2;
n0 *= (xsh0 & ~(n0 << 1));
nl "= (xshl & ~(n1 << 1));
xsh0 | = 1;
xsbl | = 1
a0 = __vlibmTBL_sincos_hi[j0+n0];
al = __vli bm_TBL sincos_hi[] 1+nl];
t0 = (__vlibmTBL_sincos_hi []0+((n0+xsb0) &3)] * w0 + a0
tl = (__vlibmTBL_sincos_hi[]1+((nl+xsb1)&3)] * wi + al
t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2]
*py0 = (a0 + t0);
*pyl = (al +t1);
py2 = t2;
break;
jO =n0 &
i1 =¢(xsbl + 0x4000) & Oxffff8000;
i2 =n2&1;
H (& 1) =j1;
LO(&t 1) = O;
x0_or _one[0] = xO;
x0_or _one[2] = -xO0;
x2_or_one[0] = x2;
X2_or_one[2] = -x2;
y0_or_zero[0] = yO;
y0_or _zero[2] = -yO0;
x1 = (x1-tl1) + yl;
y2_or_zero[0] = y2;
y2 or zero[2] = -y2;
= x0 * xO0;
zl = x1 * x1;
z2 = X2 * x2;
t0 = z0 * (poly3[j0] + zO0 * pon4[JO]);
tl =2z1* (qql + z1 * qgQg2
t2 =z2 * (poly3[j2] + z2 *! poly4[j2]);
t0 = z0 * (polyl[jO] + zO0 * (pon2[JO] + tO))
wl =x1* (one +z1* (ppl + z1 * 2)
t2 =z2 * (polyl[j2] + z2 * (poly2[]2] +t2))
1= Cj1 & ~0x80000000) - 0x3fc40000) >> 13)
xsbl = (xsbl >> 30) & 2;

nl A= (xshl & ~(nl << 1));
xsbl |— 1;
al = __vlibmTBL_sincos_hi[j1+nl];

new usr/src/lib/libmec/common/

912
913
914
915
916
917
918

920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977

case 6:

case 7:

__vsin.c 15
t0 = x0_or_one[n0] + (yO_or_zero[nO] + x0_or_one[n0] *
tl = _vlibm TBL_sincos_hi[j 1+((nl+xsb1)&3)] * wi + al
t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *

*py0 = t0;

*pyl = (al +tl1);

*py2 = t2;

br eak;

jO = (xsbO + 0x4000) & Oxffff8000;

il =n1&1;

j2 =n2 &1;

H (& 0) = j0;

LO(&t 0) = O;

x1_or_one[0] = x1;

x1_or_one[2] = -x1;

x2_or_one[0] = x2;

X2_or_one[2] = -x2;

x0 = (x0 - t0) + yO;

yl_or_zero[0] = y1;

yl_or_zero[2] = -y1;

y2_or_zero[0] = y2;

y2_ or _zero[2] = -y2;

z0 = x0 * xO;

z1 = x1 * x1;

z2 = X2 * X2;

tOzzO*(qql+zO*qq2)'

tl =2z1* (poly3[j1l] + z1 * poly4[j1]);

t2 =z2 * (poly3[j2] + z2 * pon4[2]);

w0 = x0 * (one + z0 * ppl + z0 * pp2));

tl =2z1* (polyl[j1] + z1 * (ponZ[Jl] +t1));
t2 =z2 * (polyl[j2] + z2 * (poly2[j2] +t2));
jO=(((jO & ~0x80000000) - Ox3f c40000) >> 13) & ~
xsb0 = (xsb0 >> 30) & 2;

no ~= (xsb0&~(n0 << 1));

xsh0 | =

a0 = _ vl i bm TBL_si ncos_hi [j 0+n0] ;

t0 = (__vlibmTBL_sincos_hi[j0+((n0+xsbh0)&3)] * w0 + a0
tl = x1_or_one[nl] + (yl_or_zero[nl] + x1_or_one[nl] *
t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
*py0 = (a0 +t0);

*pyl = t1;

py2 = t2;

break;

jO =n0 & 1;

j1 =n1 & 1;

i2=n2&1;

x0_or _one[0] = xO;

x0_or _one[2] = -xO0;

x1_or_one[0] = x1;

x1_or_one[2] = -x1;

x2_or_one[0] = x2;

x2_or_one[2] = -x2;

y0_or _zero[0] = yO;

y0_or _zero[2] = -yO0;

yl_or_zero[0] = y1,;

yl_or_zero[2] = -yl;

y2_or_zero[0] = y2;

y2_or_zero[2] = -y2;

z0 = x0 * xO;

z1 = x1 * x1;

z2 = X2 * X2;

t0 = z0 * (poly3[j0O] + zO * poly4[jO]);

tl =2z1* (poly3[j1] + z1 * poly4[j1]);

new usr/src/lib/libmec/ common/

978
979
980
981
982
983
984
985
986
987
988
989

991
992
993
994

996
997
998
999
1000
1001

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

if(
{

__vsin.c 16
t2 =z2 * (poly3[j2] + z2 * poly4[j2]);
t0 = z0 * (polyl[j0O] + zO0 * (poly2[j0O] +tO));
tl =2z1* (polyl[j1] + z1 * (poly2[j1] +t1));
t2 =z2 * (polyl[j2] +z2 * (poly2[j2] +t2));
t0 = x0_or_one[n0] + (yO_or_zero[n0O] + x0_or_one[n0]
t1l = x1_or_one[nl] + (yl_ or_zero[nl] + x1_or_one[ni]
t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
*py0 = tO0;
*pyl = t1,
*py2 = t2;
break;
}
X += stridex;
y += stndey,
1 =0;
}Wmle(—-n>0)
>0)
doubl e fno, fnl, a0, al, w0, wl, yO, yl;
doubl e to, t1, zO, z1;
unsi gned jo, j1;
int n0, ni;
if (> 1)
{
= (int) (x1 * invpio2 + half[xsbl]);
fnl = (doubl e) nil;
alle— fnl * p|021
wl = fnl * pio2_2;
x1 = al - ;
yl =(al- x1) - wl
al = x1,;
wl = fnl * pio2_3 - yl
x1 = al - ;
yl =(al- x1) - wl
al = x1;
wl = fnl * pio2_3t - yl;
x1 = al - wi;
1=(Cal-x1)-wl
xsbl = H (&x1);
if ((xshbl & ~0x80000000) < thresh[nl1l&l])
{
jl =n1&1;
x1_or _one[0] = x1,;
x1_or_one[2] = -x1;
yl_or_zero[0] = y1;
yl_or_zero[2] = -yl
z1 = x1 * x1;
tl =2z1* (poly3[j1l] + z1 * poly4[j1]);
tl =2z1* (polyl[j1] + z1 * (poly2[jl] +t1)
tl = x1_or_one[nl] + (yl_or_zero[nl] + x1_or_on
*pyl = t1;
el se
{
j1 = (xsbl + 0x4000) & Oxffff8000;
H(&1) =j1;
LO(&t 1) = 0O;
x1 = (x1-tl1) + yl;
z1 = x1 * x1;
tl =2z1* (qql + z1 * Q2);
wl =x1* (one +z1 * (1+zl*pp2));
j1 =(((j1 & ~Ox80000000) - 0x3fc40000) >>

new usr/src/lib/libmec/comon/__vsin.c 17

1044 xsbl = (xsbhl >> 30) &

1045 nl A= (xsbl & ~(ni <<1))

1046 xshl | = 1;

1047 al = __vlibmTBL_sincos_hi[j1+nl];

1048 tl = (__vlibmTBL_sincos_hi[]j 1+((n1+xsb1) &3)] *
1049 *pyl = (al + t1);

1050 }

1051 }

1052 nO = (t) (xO * invpio2 + hal f[xsbh0]);

1053 (doubl e) nO;

1054 n0 &— 3;

1055 a0 = x0 - fnOo * p| 02_1;

1056 \M):fno*ploz ;

1057 x0 = wo;

1058 yO:(aO-xO)-WO;

1059 a0 = x0;

1060 V\D=fn0*p|023—y0

1061 x0 = wo;

1062 yO:(aO—xO)—WO;

1063 a0 = x0;

1064 wo = an * pio2_3t - yoO;

1065 x0 = wo;

1066 yO:(aO—xO)—WO;

1067 xsb0 = HI (&x0);

1068 if ((xsbO & ~0x80000000) < thresh[n0&l])

1069 {

1070 jO = n0 & 1;

1071 x0_or _one[0] = xO;

1072 x0_or _one[2] = -xO0;

1073 y0_or _zero[0] = yO;

1074 yO or _zero[2] = -yO0;

1075 z0 = x0 * xO;

1076 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);

1077 t0 = z0 * (polyl[jO] + zO * (poly2[jO] +t0));
1078 to = xO_or_one[nO] + (yO_or_zero[nO] + x0_or_one[n0] *
1079 *py0 = t0;

1080 }

1081 el se

1082 {

1083 jO = (xshO + 0x4000) & Oxffff8000;

1084 H (& 0) = j

1085 LO(& 0) =

1086 x0=(x0—0)+y0

1087 z0 = x0 * x

1088 t0 = z0 * (ql+zO*qq2),

1089 V\,O=x0*(one+20*(pp1+zO*pp2));
1090 jO=(((jO & ~0x80000000) - O0x3fc40000) >> 13) & ~
1091 xsb0 = (xsb0 >> 30) & 2;

1092 nO"—(xst& ~(noO <<l))

1093 xst =1

1094 a0 = _ viibm TBL_sincos _hi[j0+n0];

1095 t0 = (__vlibmTBL_sincos_hi[]j O+((n0+xsb0) &3)] * w0 + a0
1096 *py0 = (a0 + 10);

1097 }

1098 }

1100 if (biguns)

1101} __vlibmyvsin_big(nsave, xsave, sxsave, ysave, sysave, 0x413921f
1102

__unchanged_portion_onitted_

new usr/src/lib/libmec/ common/__vsincos.c

R R R R

39377 Sun May 4 03:07:29 2014
new usr/src/lib/libmec/comon/__vsincos.c

hkkkkkkkkkkkkkkkkhkkkkhkhkkkkkkkkkkkkkkkkkkkkkkkkkk ok kk k ok k k%

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensolaris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

25 [*

26 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
27 * Use is subject to license terns.

28 */

30 #include <sys/isa_defs. h>
31 #include <sys/cconpile.h>
32 #endif /* | codereview */

34 #ifdef _LITTLE _ENDI AN

35 #define H (x) *(1+(int*)x)
36 #define LQ(x) *(unsi gned*) x
37 #el se

38 #define H (x)
39 #define LQ(x)
40 #endi f

(int)x
(1+(unsi gned) x)

42 #ifdef __RESTRICT

43 #define restrict _Restrict
44 #el se

45 #define restrict

46 #endi f

48 | *
49 * vsincos.c
*

51 * Vector sine and cosine function. Just slight nodifications to vcos.c.
&/

54 extern const double __vlibmTBL_sincos_hi[], __vlibmTBL_sincos_lo[];

56 static const double

57 half[2] ={ 0.5, -0.51},

58 one = 1.0,

59 i nvpi 02 = 0.636619772367581343075535, /* 53 bits of pi/2 */

60 pio2_1 = 1.570796326734125614166, /* first 33 bits of pi/2 */

61 pi 02_2 = 6.077100506303965976596e-11, /* second 33 bits of pi/2 */

62 pi 02_3 2.022266248711166455796e-21, /* third 33 bits of pi/2 */

new usr/src/lib/libmec/common/__vsincos.c 2
63 pi02_3t = 8. 4784276603688996439599 32, /* pi/2 - pio2_3 */
64 ppl = -1. 66666666660576046527626394313498255467Ge 0001,
65 pp2 = 8.333261209690963126718376566146180944442e- 0003,
66 qql = -4.999999999977710986407023955908711557870e- 0001,
67 qq2 = 4.166654863857219350645055881018842089580e- 0002,
68 polyl[2]= { -1. 666666666666629669805215138920301589656e 0001,
69 -4.999999999999931701464060878888294524481e- 0001
70 poly2[2] = { 8.333333332390951295683993455280336376663e- 0003,
71 4.166666666394861917535640593963708222319e- 0002
72 pol y3[2] = { -1.984126237997976692791551778230098403960e- 0004,
73 -1.388888552656142867832756687736851681462e- 0003
74 pol y4[2] = { 2.753403624854277237649987622848330351110e- 0006,
75 2.478519423681460796618128289454530524759e- 0005
77 /* Don’t __ the follow ng; aconp will handle it */
78 extern double fabs(double);
79 extern void __vlibmyvsincos_big(int, double *, int, double *, int, double *, in
81 /*
82 * y[i*stridey] := sin(x[i*stridex]), for i = 0..n.
83 * c[i*stridec] := cos(x[i*stridex]), for i = 0..n.
84 *
85 * Calls __vlibmuvsincos_big to handle all elts which have abs >~ 1.647e+06.
86 * Argunent reduction is done here for elts pi/4 < arg < 1.647e+06.
87 *
88 * elts < 27-27 use the approximation 1.0 ~ cos(Xx).
89 */
90 void
91 __vsincos(int n, double * restrict x, int stridex,
92 double * restrict y, int stridey,
93 double * restrict c, int stridec)
94 {
95 doubl e x0_or _one[4], x1_or_one[4], x2_or_one[4];
96 doubl e y0_or_zero[4], yl_or_zero[4], y2_or_zero[4];
97 doubl e x0, x1, x2,
98 *py0, *pyl, *py2,
99 *pcO, *pcl, *pc2,
100 *Xsave, *ysave, *csave;
101 unsi gned hx0, hxl hx2, xsb0, xsbl, xsb2;
102 int i, b| guns, nsave, sxsave, sysave, scsave;
103 nsave = n;
104 xsave = X;
105 sxsave = stridex;
106 ysave = y;
107 sysave = stridey;
108 csave = c;
109 scsave = stridec;
110 bi guns = 0;
112 do /* MAIN LOOP */
113 {
115 /* CGotos here so _break_ exits MAIN LOOP. */
116 LOOPO: /* Find first arg in right range. */
117 xsb0 = HI(x); /* get npbst significant word */
118 hx0 = xsb0 & ~0x80000000; /* mask off sign bit */
119 if (hx0 > 0x3fe921fb) {
120 /* Too big: arg reduction needed, so | eave for second pa
121 bi guns = 1;
122 X += stridex;
123 y += stridey;
124 ¢ += stridec;
125 i =0;
126 if (--n<=0)
127 br eak;

new usr/src/lib/libmec/ common/__vsincos.c

128 got o LOOPO;

129

130 if (hx0 < 0x3e400000) {
131 /* Too small. cos x ~ 1, sin x ~ x. */
61 volatile int v = *x;
132 *c = 1.0;

133 *y = *x;

134 X += stridex;

135 y += stridey;

136 c += stridec;

137 i =0;

138 if (--n<=0)
139 br eak;
140 got o LOOPO;

141 }

142 X0 = *x;

143 pyo =vy;

144 pcO0 = c;

145 X += stridex;

146 y += stridey;

147 c += stridec;

148 i =1

149 if (--n<=0)

150 br eak;

152 LOOP1: /* Get second arg, sane as above. */
153 xsbl = H (x);

154 hx1l = xsbl & ~0x80000000;
155 if (hxl > 0x3fe921fb)
156 {

157 bi guns = 1;

158 X += stridex;

159 y += stridey;

160 c += stridec;

161 i =1,

162 if (--n<=0)
163 br eak;
164 goto LOOP1;

165 }

166 if (hxl < 0x3e400000)
167 {

98 volatile int v = *x;
168 *c = 1.0;

169 *y = *X;

170 X += stridex;

171 y += stridey;

172 c += stridec;

173 i =1,

174 if (--n<=0)
175 br eak;
176 goto LOOP1;

177 }

178 X1 = *x;

179 pyl =vy;

180 pcl = c;

181 X += stridex;

182 y += stridey;

183 ¢ += stridec;

184 i = 2;

185 if (--n<=0)

186 break;

188 LOOP2: /* Get third arg, same as above. */
189 xsb2 = H (x);

190 hx2 = xsh2 & ~0x80000000;

191 if (hx2 > 0x3fe921fb)

new usr/src/lib/libmec/ common/__vsincos.c

192 {

193 bi guns = 1;

194 X += stridex;

195 y += stridey;

196 ¢ += stridec;

197 i =2

198 if (--n<=0)

199 br eak;

200 goto LOOP2;

201 }

202 if (hx2 < 0x3e400000)

203 {

135 volatile int v = *x;

204 *c = 1.0;

205 *y = *Xx;

206 X += stridex;

207 y += stridey;

208 c += stridec;

209 i = 2;

210 if (--n<=0)

211 br eak;

212 goto LOOP2;

213 }

214 X2 = *X;

215 py2 =y,

216 pc2 = c;

218 /*

219 * 0x3fc40000 = 5/32 ~ 0.15625

220 * Get meb after subtraction. WII

221 * hx0 - 5/32 is negative.

222 */

223 i = (hx2 - 0x3fc40000) >> 31;

224 i |=((hx1 - 0x3fc40000) >> 30)
225 i |=((hx0O - 0x3fc40000) >> 29)
226 swtch (i)

227 {

228 doubl e al 0, al_ 1,

229 doubl e wo, wl, w2;

230 doubl e to, t1, t2,

231 doubl e z0, z1, z2;

232 unsi gned jo, j1, j2

234 case 0: /* Al are > 5/32 */

235 jO = (xsbO + 0x4000) & Oxf
236 j1 = (xsbl + 0x4000) & Oxf
237 j2 = (xsb2 + 0x4000) & Oxf
239 H (& 0) = jO;

240 H(&1) =j1;

241 H (& 2) =]2;

242 LO(& 0) = 0;

243 LQ(&t 1) = O;

244 LO(& 2) = 0;

246 x0 -=10;

247 x1l -=1t1;

248 X2 -=12;

250 z0 = x0 * xO0;

251 z1 = x1 * x1;

252 z2 = X2 * Xx2;

254 t0 =20 * (qql + z0 * Qg2)
255 tl =2z1 (ggl + z1 * qg2)
256 t2 =z2* (. qql1 + z2 * qQ2)

be 1 only if

& 2;
& 4;

al 2,
t1.0,

’
’
,

a2_o,
t1 1,

a2_1,
t1 2,

a2_2;
t2_0,

t2_

1

new usr/src/lib/libmec/common/

258
259
260

262
263
264

266
267
268

270
271
272

274
275
276
277
278
279
280

282
283
284

286
287
288

290
291
292

294
295
296

298

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

case 1:

__vsincos.c 5
wo = x0 * (one +z0 * (ppl + z0 * pp2));
wl =x1* (one +2z1* (ppl +z1 * pp2));
w2 = x2 * (one +2z2* (ppl +2z2 * pp2));
jO=(((jO & ~0x80000000) - 0x3fc40000) >> 13) & ~
j1=(((]1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
j2 =(((]2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
xsb0 = (xsb0 >> 30) & 2;
xsbl = (xsbl >> 30) & 2;
xsb2 = (xsb2 >> 30) & 2;
al_0 = __vlibmTBL_sincos_hi[jO+xsb0]; /* sin_hi(t) */
al 1 = __vlibmTBL_sincos_hi[]1+xsbl];
al_2 = __vlibmTBL_sincos_hi[]2+xsb2];
a2_0 = __vlibmTBL_sincos_hi[]j0+1]; /* cos_hi(t) */
a2 1 = __vlibmTBL_sincos_hi[] 1+1];
a2_2 = vl i bm TBL_si ncos_hi[] 2+1];

“T* cos_lo(t) */

t2_.0 = __vlibmTBL_sincos_|lo[j0+1] - (al_0*wW0 - a2_0*tO
t2-1 = __vlibmTBL_sincos_|lo[j1+1] - (al_1*wl - a2 _1*t1
t2_2 = __vlibmTBL_sincos_lo[j2+1] - (al_2*w2 - a2_2*t2
*pcO = a2_0 + t2_0;
*pcl = a2_1 + t2_1;
*pc2 = a2_2 + t2_2;
t1_0 = a2_0*w0 + al_0*tO;
t1-1 = a2_1*wl + al_1*t1;
t1- 2 = a2_2*w2 + al_2*t2;
t1_0 += __vlibmTBL_sincos_|o[j0+xsbh0]; /* sin_lo(t)
t1_1 += __vlibm T TBL_sincos_|lo[] 1+xsbl];
t1 2 += __vlibm TBL_sincos_l o[] 2+xsb2];
*pyO = al_ 0 + t1_0;
*pyl = al_1 + t1_1,;
*py2 = al_2 + t1_2;
br eak
jO = (xsb0 + 0x4000) & Oxffff8000;
j1 = (xsbl + 0x4000) & Oxffff8000;
H (& 0) = jO0;
H (& 1) =]1;
LQ(&t 0) = O;
LO(&t 1) = O;
x0 -=10;
x1 -=1t1;
z0 = x0 * xO;
z1 = x1 * x1;
z2 = X2 * x2;
t0 =20 * (qql + z0 * qQg2);
tl =2z1* (qql + z1 * qQ2);
t2 =z2 * (poly3[1] + z2 * poly4[1]);
wo = x0 * (one +z0 * (ppl + z0 * pp2));
wl =x1* (one +z1* (ppl +z1™* pp2));
t2 =z2 * (polyl[1l] + z2 * (poly2[1l] +t2));
jO=(((jO & ~0x80000000) - 0x3fc40000) >> 13) & ~
j1 =(((J1 & ~0x80000000) - O0x3fc40000) >> 13) & ~
xsb0 = (xsb0 >> 30) & 2;
xsbl = (xsbl >> 30) & 2;

new usr/src/lib/libmec/common/

323
324

326
327
328
329
330

332
333
334

336
337
338

340
341
342

344
345
346
347

349

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

374
375

377
378
379
380
381

383
384
385

387
388

case 2:

__vsincos.c 6
al_ 0 = __vlibmTBL_sincos_hi[jO+xsb0]; /* sin_hi(t)
al_1 = __vlibmTBL_sincos_hi[]1+xsbl];
a2_0 = __vlibmTBL_sincos_hi[jO0+1]; /* cos_hi(t)
a2_1 = __vlibmTBL si ncos_hi []1+1];

“T* cos_lo(t) */
t2.0 = __vlibmTBL_sincos_lo[j0+1] - (al_0*w0 - a2_0*t0
t2_1 = __vlibmTBL_sincos_lo[j1+1] - (al_i*wl - a2_1*t1l
*pcO = a2_0 + t2_0;
*pcl = a2 1 + t2_1:
*pc2 = one + t2;
t1. 0 = a2_0*w0 + al_0*tO;
t1-1 = a2 1*wl + al _1*t1;
t2 = z2 * (poly3[0] + z2 * poly4[0]);
t1 0 += vl i bm TBL_sincos_| o[j O+xsb0]; /* sin_lo(t) */
t1_1 += __vlibm TBL_sincos_l o[] 1+xsb1];
t2 =22 ¥ (polyl[O] + z2 ¥ (poly2[0] +t2));
*py0 = al_ 0 + t1_0;
*pyl = al 1 + t1 1;
t2 = x2 + x2 * t2;
*py2 = t2;
break;
jO = (xsb0 + 0x4000) & Oxffff8000;
j2 = (xsb2 + 0x4000) & Oxffff8000;
H (& 0) =jo;
H(&2) =j2;
LO(& 0) = O;
LO(&t2) = 0O;
x0 -=1t0;
X2 -=12;
z0 = x0 * x0;
z1 = x1 * x1;
z2 = X2 * x2;
t0 =20 * (qql + z0 * qq2);
tl =z1* (poly3[1] + z1 * poly4[1]);
t2 =z2* (qql + z2 * qQ2);
wO:xO*(one+zO*(pp1+zo*p2))
tl =2z1* (polyl[1l] + z1 * (poly2[1] + t1))
w2 = x2* (one +z2* (ppl +2z2 * pp2));
jO=(((jO & ~0x80000000) - 0x3fc40000) >> 13) & ~
i2=(((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
xsb0 = (xsh0 >> 30) & 2;
xsb2 = (xsb2 >> 30) & 2;
al_0 = __vlibmTBL_sincos_hi[jO+xsb0]; /* sin_hi(t) */
al_2 = __vlibmTBL_sincos_hi[]2+xsb2];
a2_0 = __vlibmTBL_sincos_hi[jO0+1]; /* cos_hi(t)
a2_2 = vl i bm TBL_si ncos_hi [] 2+1] ;
“T* cos_lo(t) */

t2_.0 = __vlibmTBL_sincos_lo[j0+1] - (al_0*w0 - a2_0*t0
t2_ 2 = __vlibmTBL_sincos_lo[j2+1] - (al_2*w2 - a2 2*t2
pcO = a2 0 + t2_0;
*pcl = one + t1;

pc2 = a2_2 + t2_2;
t1 0 = a2 0*w0 + al _0*tO0;
tl =z1* (poly3[0] + z1 * poly4[0]);

new usr/src/lib/libmec/ common/__vsincos.c 7 new usr/src/lib/libmec/common/__vsincos.c 8
389 t1 2 = a2_2*w2 + al_2*t2; 455 z2 = X2 * X2;
456 t0 = z0 * (poly3[1] + z0 * poly4[1]);
391 t1_0 += __vlibmTBL_sincos_|lo[j0+xsb0]; /* sin_lo(t) */ 457 tl =2z1* (qql + z1 * Qg2);
392 tl =21 % (polyl[O] + z1 * (poly2[0] + t1)); 458 t2 =z2* (. qql + z2 * Q2);
393 t1_2 += _ vlibmTBL_sincos_| o[] 2+xsb2]; 459 t0 = z0 * (polyl[1l] + z0 * (poly2[1] + t0));
460 lexl*(one+zl*(ppl+zl*p),
395 *py0O = al 0 + t1_0; 461 w2 = x2 * (one +z2* (ppl +2z2* pp2));
396 tl1 = x1 + x1 * t1; 462 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
397 *pyl = t1; 463 j2 =(((]2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
398 *py2 = al_2 + tl_2; 464 xsbl = (xsbl >> 30) & 2;
465 xsbhb2 = (xsb2 >> 30) & 2;
400 br eak;
467 al_1 = __vlibmTBL_sincos_hi[j1l+xsbhl];
402 case 3: 468 al_2 = __vlibmTBL_sincos_hi[]2+xsb2];
403 jO = (xshO + 0x4000) & Oxffff8000;
404 H (& 0) = jO; 470 a2_1 = __vlibmTBL_sincos_hi[j1+1];
405 LO(& 0) = O; 471 a2_2 = __vlibmTBL_sincos_hi[]2+1];
406 x0 -=10; 472 T* cos_lo(t) */
407 z0 = x0 * xO0; 473 t2 1 = _vlibmTBL_sincos |o[j1+1] - (al 1*wl - a2_1*t1l
408 z1 = x1 * x1; 474 t2_2 = __vlibmTBL_sincos_lo[j2+1] - (al_2*w2 - a2_2*t2
409 z2 = X2 * x2;
410 t0 =z0* (qql1 + z0 * qQg2); 476 *pcO = one + tO;
411 tl =2z1* (poly3[1] + z1 * poly4[1]); 477 *pcl = a2_1 + t2_1;
412 t2 =z2 * (poly3[1] + z2 * poly4[1]); 478 *pc2 = a2_2 + t2_2,;
413 wo = x0 * (one +z0 * (ppl + z0 * pp2));
414 tl =z1* (polyl[1l] + z1 * (poly2[1] + t1)); 480 t0 = z0 * (poly3[0] +zO* pol y4[0]);
415 t2 = z2 * (polyl[1l] + z2 * (poly2[1l] +t2)); 481 t1 1 = a2_1*wl + al_1*t1
416 jo=(C((jo0 & 0x80000000) - 0x3fc40000) >> 13) & ~ 482 t1. 2 = a2_2*w2 + al_2*t2
417 xsbh0 = (xsb0 >> 30) & 2
418 al 0 = __vlibmTBL_si ncos. _hi[jO+xsb0]; /* sin_hi(t) */ 484 t0 = z0 * (polyl[0] + zO * (poly2[0] + t0O));
485 t1 1 += _ vlibmTBL_sincos_|o[] 1+xsbl];
420 a2_0 = __vlibmTBL_sincos_hi[jO0+1]; /* cos_hi(t) */ 486 t1 2 += _ vlibmTBL_sincos_Il o] 2+xsb2];
422 t2_0 = __vlibmTBL_sincos_lo[j0+1] - (al_0*w0 - a2_0*tO0 488 t0 = x0 + x0 * tO;
489 *py0 = tO0;
424 *pcO = a2 0 + t2_0; 490 *pyl = al 1 + t1_1;
425 *pcl = one + t1; 491 *py2 = al_ 2 +t1l_2;
426 *pc2 = one + t2;
493 break;
428 t1 0 = a2 0*w0 + al _0*tO0;
429 tl =2z1* (poly3[0] + z1 * poly4[0]); 495 case 5:
430 t2 =z2 * (poly3[0] + z2 * poly4[0]); 496 j1 = (xsbl + 0x4000) & Oxffff8000;
497 H(&1) =j1;
432 t1 0 += _ vlibmTBL_sincos_lo[]j0+xsh0]; /* sin_lo(t) */ 498 LO(& 1) = 0;
433 t1 =21 % (polyl[O] + z1 * (poly2[0] + t1)); 499 x1l -=1t1;
434 t2 = z2 * (polyl[0] + z2 * (poly2[0] +t2)); 500 z0 = x0 * xO0;
501 z1 = x1 * x1;
436 *py0 = al 0 + t1 0; 502 72 = x2 * x2;
437 tl =x1 + x1 * t1; 503 t0 = z0 * (poly3[1] +zO*p0Iy4[l])
438 *pyl = t1; 504 tl1 =2z1* (qq1 + z1 * qq
439 t2 = x2 + x2 * t2; 505 t2 = z2 * (poly3[1] +22*poly4[]);
440 *py2 = t2; 506 t0 = z0 * (polyl[1l] + z0 * (poly2[1] +t0));
507 vﬂ:xl*(one+zl*(ppl+zl*p
442 br eak; 508 t2 =z2 * (poly +z2 * (poly2[1] + 12))
509 i1 =(((il & ~0x80000000) - 0x3fc40000) >> 13) & ~
444 case 4: 510 xsbl = (xsbl >> 30) & 2;
445 i1 = (xshl + 0x4000) & Oxffff8000;
446 j2 = (xsb2 + 0x4000) & Oxffff8000; 512 al_1 = __vlibmTBL_sincos_hi[j1l+xsbl];
447 H (& 1) =j1;
448 H (& 2) =j2; 514 a2_1 = __vlibmTBL_sincos_hi[]1+1];
449 LO(& 1) = O;
450 LO(& 2) = 0; 516 t2_1 = __vlibmTBL_sincos_lo[j1+1] - (al_1*wl - a2_1*t1l
451 x1 -=11;
452 X2 -=12; 518 *pcO = one + tO;
453 z0 = x0 * xO0; 519 *pcl = a2 1 + t2_1;
454 z1 = x1 * x1; 520 *pc2 = one + t2;

new usr/src/lib/libmec/ common/__vsincos.c 9

522
523
524

526
527
528

530
531
532
533
534

536

538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

556
558

560
561
562

564
565
566

568
569
570

572
573
574
575
576

578

580
581
582
583
584
585
586

case 6:

case 7:

new usr/src/lib/libmec/common/__vsincos.c

587
588
589
590
591
592
593
594
595
596

z0 * (polyl
z1 * (polyl
z2 * (polyl
one + tO0;
one + t1;

000
[l

NN LI
O

+

* ok

t0 = z0 * (poly3[0] + zO0 * poly4[0]);

tl1 1 = a2 1*wl + al 1*t1;

t2 = z2 * (poly3[0] + z2 * poly4[0]);

t0 = z0 * (polyl[0] + zO0 * (poly2[0] +t0O));
t1_1 += __vlibmTBL_sincos_| o[] 1+xsb1];

t2 = z2 * (polyl[0] + z2 * (poly2[0] + t2));
t0 = x0 + x0 * tO;

*py0 = tO;

*pyl = al_1 + t1_1,

t2 = x2 + x2 * t2;

*py2 = t2;

br eak;

j2 = (xsh2 + 0x4000) & Oxffff8000;

H (& 2) =j2;

LO(&t2) = 0O;

X2 -=12;

z0 = x0 * x0;

z1 = x1 * x1;

z2 = X2 * x2;

t0 = z0 * (poly3[1l] + z0 * poly4[1]);

tl =2z1* (poly3[1] + z1 * poly4[1]);

t2 =22 * (. qql + z2 * qQ2);

t0 = z0 * (polyl[1l] + zO0 * (poly2[1] + t0));
tl =z1* (polyl[1l] + z1 * (poly2[1] + t1));
W2 = x2 * (one +2z2* (ppl +2z2* pp2));

i2 =(((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
xsb2 = (xsb2 >> 30) & 2;

al_2 = __vlibmTBL_sincos_hi[]j2+xsbh2];

a2_2 = __vlibmTBL_sincos_hi[]2+1];

t2_2 = __vlibmTBL_sincos_lo[j2+1] - (al_2*w2 - a2_2*t2
*pcO = one + tO;

*pcl = one + t1;

*pc2 = a2_2 + t2_2,;

t0 = z0 * (poly3[0] + zO0 * poly4[0]);

tl =z1* (poly3[0] + z1 * poly4[0]);

t1_2 = a2_2*w2 + al_2*t2;

t0 = z0 * (polyl[0] + zO0 * (poly2[0] +t0O));
tl =2z1* (polyl[0] + z1 * (poly2[0] +t1));
t1_2 += __vlibmTBL_sincos_| o[] 2+xsb2];

t0 = x0 + x0 * tO;

*py0 = tO0;

tl = x1 +x1 * t1;

*pyl = t1;

*py2 = al_2 + tl_2;

br eak;

/* Al are < 5/32 */

z0 = x0 * xO;

z1 = x1 * x1;

z2 = X2 * X2;

t0 = z0 * (poly3[1] + z0 * poly4[1]);

tl =2z1* (poly3[1] + z1 * poly4[1]);

t2 =z2 * (poly3[1l] + z2 * poly4[1]);

597
598
599
600
601
602
603
604
605
606

608
609
610
611
612

614
615
616
617
618
619
620
621
622
623

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

et iai el I et
NFRPONFONRFROTTTNFRO
Wi nmNERol I

I
x
N

NI O+ + 4+ * % % % % %

-

+= stridex;
+= stridey;
+= stridec;

o X

= 0;
} while --n>0); /* END
/*

* CLEAN UP last 0, 1, or 2
*/

if (i >0) /* Cean up elt
{

doubl e
doubl e ,
doubl e to,
doubl e z0,
unsi gned jo,

al 0
wo

if (i >1)

if (hx1 <O
{

kN
TrrRTRRRR
e T T T TINTIRTINT]

<

}
el se

S HNX T
EHHHQEH
PREREEI I el

QX
NN PO -
o

o

=2

<

w
[=X=X=X=X=X=!
+ 4+ 4+ ++

N

N
EE T

MAIN LOOP */

elts.

s at tail. i < 3. */
, al_1, a2_0, a2_1;
wl;

t1, t1.0, t1 1, t2 0,

z1;
iy

x3f c40000)

x1 * x1;

z1 * (poly3[1] + z1 *

z1 * (polyl[1] + z1
one + t1;
=t1;

z1 * (poly3[0]
z1 * (polyl[O]
x1 + x1 *t1l
=t1;

+

z1

IS

1l
Bl

[AYReSw TS S

;‘xl;
*(qql +z1 * qq
* (one + z1 * (

o /XN X

(
(xsbl >>30) &2

2

*

-
N O
———

L
+ 4+ +

A=)
+ 4+ +
-
N O
—_———

pol y4[1]);
(poly2[1]

* poly4[0]);

*

1)
(poly2[0Q]

xsbl + 0x4000) & Oxffff8000;

)
ppl + z1 * pp2
(j1 & ~0x80000000) -

0x3f c40

vl i bm TBL_si ncos_hi[j 1+xsb1];
vl i bm TBL_sincos_hi [] 1+1];
vlibm T TBL_sincos_lo[]1+1] - (al_1*wl -

10

+tl1));

+t1));

)
000) >>

new usr/src/lib/libmec/common/

653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

692
693

695
696
697
698
699
700
701
702
703
704
705

707
708
709
710
711
712
713
714
715
716
717
718

_Vv

sincos. ¢ 11
*pcl a2_1 + t2_1;
t1.1 az2_1*wl + al 1*t1l

=+ 1n
1

t1_1 0
*pyl al 1 +t1.1;"
) }
if (hx0 < 0x3fc40000)
{
z0 = x0 * xO;
t0 = z0 * (poly3[1] + z0 * poly4[1]);
t0 = z0 * (polyl[1l] + zO0 * (poly2[1l] +t0));
t0 = one + tO;
*pcO = tO0;
t0 = z0 * (poly3[0] + z0 * poly4[0]);
t0 = z0 * (polyl[0] + zO0 * (poly2[0] +t0O));
t0 = x0 + x0 * tO;
*py0 = tO0;
el se
{
jO = (xsbO + 0x4000) & Oxffff8000;
H (& 0) = jO;
LO(& 0) = O;
x0 -=10;
z0 = x0 * xO;
t0 =z0* (qq1 + z0 * qgQg2);
wo =x0 * (one +z0 * (ppl + 20 * pp2));
jO=(((jO & ~0x80000000) - 0x3fc40000) >> 13) & ~
xsbh0 = (xsb0 >> 30) & 2;
al_ 0 = __vlibmTBL_sincos_hi[jO+xsb0]; /* sin_hi(t) */
a2 0 = __vlibmTBL_sincos_hi[]0+1]; /* cos_hi(t) */
t2.0 = __vlibmTBL_sincos_|l o[j 0+1] - (al_0*w0 - a2 0*t0
*pcO = a2_ 0 + t2_0;
t1_0 = a2_0*w0 + al_0*tO;
t1 0 += __vlibmTBL_sincos_lo[j0+xsb0]; /* sin_lo(t) */
*py0 = al_ 0 + t1_0;
}
} /* END CLEAN UP */
if (!'biguns)
return;
/*
* Take care of BI GUNS.
*
/
n = nsave;
X = Xsave;
stridex = sxsave;
y = ysave;
stridey = sysave;
Cc = csave;
stridec = scsave;
bi guns = 0;
x0_or _one[1] = 1.0;
x1_or_one[1l] = 1.0;
x2_or_one[1] = 1.0;
x0_or_one[3] = -1.0;
x1_or_one[3] = -1.0;
x2_or_one[3] = -1.0;
y0_or _zero[1] = 0.0;
yl_or_zero[1l] = 0.0;
y2_or_zero[1l] = 0.0;
y0_or _zero[3] = 0.0;
yl or_zero[3] = 0.0;
y2_or_zero[3] = 0.0;

new usr/src/lib/libmec/ common/

720
721
722
723
724

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

772
773
774
775
776
777
778
779
780
781
782
783
784

| oop0:

| oopl:

__vsincos.c
doubl e fno, fnl, fn2, a0, al,
unsi gned hx;
int no, ni, n2;
/*
Not al ready

* Find 3 nore to work on:
*/

hx = H (x);
xst = hx >> 31;
hx &= ~0x80000000;

if (hx <= 0x3f €921f b) /* Done above.
{

X += stridex;
y += stridey;
C += stridec;

i =0

if (--n<=0)
br eak;

goto | oopO;

}
if (hx > 0x413921fb) /* (1.6471e+06)
{
if (hx >= Ox7ff00000) /* Inf
{

x0 = *x;
*y = x0 - xO;
*c = x0 - xO0;
}
el se {
bi guns = 1;
X += stridex;
y += stridey;
¢ += stridec;
i =0;
if (--n<=0)
br eak;
goto | oopO;
}
X0 = *Xx;
pyo =y;
pcO0 = c;
X += stridex;
y += stridey;

c += stridec;
i =1;
if (--n<=0)

break;
hx = H (x);
xshl = hx >> 31;

hx &= ~0x80000000;
if (hx <= 0x3fe921fb)
{

X += stridex;
y += stridey;
¢ += stridec;

i =1;

if (--n<=0)
break;

goto | oopl;

12

a2, wo, wi, w2, yo, yi1, y

done, not too big.

*/

Too big: leave it. */
or NaN */

new usr/src/lib/libmec/ common/__vsincos.c

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

| oop2:

}
1f (hx > 0x413921fb)
{
i{f (hx >= 0x7ff00000)

x1 = *x;

*y = x1 - x1;

*c¢ = x1 - x1;
el se {

bi guns = 1;

X += stridex;
y += stridey;
C += stridec;

i =1;

if (--n<=0)
break;

goto | oopl;

X5

pyl =vy;

pcl = c;

X += stridex;

y += stridey;

c += stridec;

= 2

|f (--n <=0)

br eak;

hx = H (x);

xsbh2 = hx >> 31;

hx &= ~0x80000000;

if (hx <= 0x3fe921fb)
{

X += stridex;
y += stridey;
c += stridec;

|)

if (--n<=0)
br eak;

goto | oop2;

}

if (hx > 0x413921fb)

{
if (hx >= 0x7ff00000)
{

X5

*
x2—x2
X2 - X2,

* %X

2
y
c

}
el se {
bi guns = 1;

X += stridex;

y += stridey;

¢ += stridec;

i = 2;

if (--n<=0)
break;

goto | oop2;

X2 = *x
py2
pc2

no
=2

C;

13

new usr/src/lib/libmec/common/__vsincos.c

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908

910
911
912
913
914
915
916

n0 = (int) (x0 * invpio2 + hal f[xsb0]);
nl = (int) (x1 * invpio2 + hal f[xsbl]);
n2 = (int) (x2 * invpio2 + hal f[xsb2]);
fn0 = (doubl e) nO;

fnl = (double) ni,;

fn2 = (double) n2;

n0 &= 3;

nl & 3;

n2 &= 3;

a0 = x0 - fn0 * pio2_1;
al = x1 - fnl * pio2_1;
a2 = x2 - fn2 * pio2_1;
w0 = fn0 * pio2_2;

wl = fnl * pio2_2;

w2 = fn2 * pio2_2;

x0 = a0 - wo;

x1 = al - wi,

X2 = a2 - w2

y0o = (a0 - x0) - wo;
yl =(al - x1) - wil;
y2 = (a2 - x2) - w2;
a0 = x0;

al = x1;

a2 = x2;

w0 = fn0 * pio2_3 - yo0;
wl = fnl * pio2_3 - yl,;
w2 = fn2 * pio2_3 - y2;
x0 = a0 - wo;

x1 = al - wil;

X2 = a2 - wW2;

y0o = (a0 - x0) - wo;
yl =(al - x1) - wi;
y2 = (a2 - x2) - w2;
a0 = xO0;

al = x1;

a2 = x2;

w0 = fn0 * pio2_3t - yO;
wl = fnl * pio2_3t - yl,;
w2 = fn2 * pio2_3t - y2;
x0 = a0 - wo;

x1 = al - wil;

X2 = a2 - wW2;

y0o = (a0 - x0) - wo;
yl =(al - x1) - wil;
y2 = (a2 - x2) - w2;
xsb2 = H (&x2);

= ((xsb2 & ~0x80000000) - O0x3fc40000) >> 31;
Xsbl = HI (&

i 1= ((xsbl & ~0x80000000) - 0x3fc40000) >> 30) & 2;

xsb0 = H (&x0);

=0 xsb0 & ~0x80000000) - O0x3fc40000) >> 29) & 4;
)

swtch (i
doubl e al 0, al_1, al_2, a2_0, a2
doubl e to, t1, t2, t1.0, t1_ 1, t1
doubl e z0, z1, z2;
unsi gned jo, j1, jz;
case O:
jO = (xshO + 0x4000) & Oxffff8000;
j1 = (xsbl + 0x4000) & Oxffff8000;
j2 = (xsb2 + 0x4000) & Oxffff8000;
H (& 0) =j0;
H(& 1) =j1;
H(&2) =j2;

t2

14

new usr/src/lib/libmec/ common/__vsincos.c

917 LO(& 0) = O;

918 LO(&t 1) = O;

919 LO(&t2) = 0O;

920 x0 = (x0 - t0) + y0;

921 x1 = (x1-tl1) + yl;

922 X2 = (X2 - t2) +y2;

923 z0 = x0 * xO;

924 z1 = x1 * x1;

925 z2 = X2 * X2;

926 t0 =20 * (qql + z0 * qQg2);

927 tl =2z1* (qql + z1 * qQ92);

928 t2 =z2* (. qql + z2 * qQ2);

929 wo = x0 * (one +z0 * (ppl + z0 * pp2));

930 wl=x1*(one+zl*(ppl+zl*pp2));
931 w2 = x2 * (one +2z2* (ppl +2z2* pp2));
932 jO=(((jO & ~0x80000000) - 0Ox3fc40000)
933 j1=(((J1 & ~0x80000000) - 0x3fc40000)
934 j2 =(((]2 & ~0x80000000) - 0x3fc40000)
935 xsb0 = (xsb0 >> 30) & 2;

936 xsbl = (xsbhl >> 30) & 2;

937 xsb2 = (xsb2 >> 30) & 2;

938 n0 *= (xsh0 & ~(n0 << 1));

939 nl A= (xshl & ~(nl << 1));

940 n2 "= (xsh2 & ~(n2 << 1));

941 xsbh0 | = 1;

942 xsbl | = 1;

943 xsbh2 | = 1,

945 al_ 0 = __vlibmTBL_sincos_hi[j0+n0];

946 al_1 = __vlibmTBL sincos_hi[]1+n1];

947 al_2 = __vlibmTBL_sincos_hi[]2+n2];

949 a2_0 = __vlibmTBL_sincos_hi[jO0+((n0+xsb0) &3
950 a2_1 = __vlibm TBL_sincos_hi[] 1+((nl+xsbl) &3
951 a2_2 = __vlibmTBL_sincos_hi[]2+((n2+xsb2) &3
953 t2_.0 = __vlibmTBL_sincos_| o[j 0+((n0+xsbh0) &3
954 t2_1 = __vlibm TBL_sincos_l o[j 1+((nl+xsb1l) &3
955 t2_2 = __vlibmTBL_sincos_l o[] 2+((n2+xsb2) &3
957 w0 *= a2_0;

958 wl *= a2_1

959 w2 *= a2_2;

961 *pcO0 = a2_0 + t2_0;

962 *pcl = a2_1 + t2_1,;

963 *pc2 = a2_2 + t2_2;

965 t1_0 = w0 + al_0*tO;

966 t1_1 = wl + al_1*t1;

967 t1.2 = w2 + al_2*t2;

969 t1_0 += vl i bm TBL_si ncos_I| o[j 0+n0] ;

970 t1-1 += __vlibm TBL_si ncos_| o[1+n1];

971 t1_2 += __vlibm TBL_si ncos_| o[] 2+n2];

973 *py0 = al 0 + t1_0;

974 *pyl = al_1 + t1_1,

975 *py2 = al_2 + tl_2;

977 break;

979 case 1:

980 jO = (xsbO + 0x4000) & Oxffff8000;

981 i1 = (xshl + 0x4000) & Oxffff8000;

982 j2 =n2 &1;

>> 13)

15

new usr/src/lib/libmec/common/__vsincos.c 16
983 H (& 0) =j0;

984 H(&1) =j1;

985 LQ(&t 0) = O;

986 LO(&t 1) = O;

987 x2_or_one[0] = x2;

988 X2_or_one[2] = -x2;

989 x0 = (x0 - t0) + yO;

990 x1 =(x1-tl) +yl,

991 y2_or_zero[0] = y2;

992 y2_ or _zero[2] = -y2;

993 z0 = x0 * xO;

994 z1 = x1 x1;

995 z2 = X2 * X2;

996 t0 =20 * (qql + z0 * qQg2);

997 tl =2z1* (qql + z1 * qQ2);

998 t2 =z2 * (poly3[j2] + z2 * pon4[j2])

999 wo = x0 * (one +z0 * (ppl + z0 * pp2)

1000 wl =x1* (one +z1* (ppl +z1™* pp2));

1001 t2 = z2 * (polyl[j2] + z2 * (poly2[]2] +t2))

1002 j0 = ((j 0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1003 J1 = ((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1004 xsb0 = (xsb0 >> 30) & 2;

1005 xsbl = (xsbl >> 30) & 2;

1006 n0 "= (xsh0 & ~(n0 << 1));

1007 nl = (xshl & ~(n1 << 1));

1008 xsh0 | = 1;

1009 xsbl | = 1,

1010 al_0 = __vlibmTBL_sincos_hi[j0+n0];

1011 al_1 = __vlibmTBL_sincos_hi[]1+n1];

1013 a2_0 = __vlibmTBL_sincos_hi[]jO0+((n0+xsb0)&3)];

1014 a2_1 = __vlibm TBL_sincos_hi[] 1+((nl+xsbl) &3)];

1016 t2_0 = __vlibmTBL_sincos_|o[j0+((n0+xsbh0)&3)] - (al_oO*
1017 t2-1 = __vlibmTBL_sincos_| o[] 1+((nl+xsb1)&3)] - (al_1*
1018 t2 = x2_or_one[n2] + (y2_or zero[nZ] + x2_or_one[n2] *
1020 *pcO = a2_0 + t2_0;

1021 *pcl = a2_1 + t2_1,

1022 *py2 = t2]

1024 n2 = (n2 1) & 3;

1025 j2=1(j2 1) &1,

1026 tZ:ZZ*(poly3[j2] + z2 * poly4[j2]);

1028 t1_0 = a2_0*w0 + al_0*tO;

1029 t1-1 = a2_1*wl + al_1*t1;

1030 t2 = z2 * (polyl[j2] + z2 * (poly2[j2] +t2));
1032 t1_0 += __vlibmTBL_sincos_| o[j0+n0];

1033 t1_1 += _ vlibmTBL_sincos_| o[j 1+nl];

1034 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
1036 *py0 = al_0 + t1_0;

1037 *pyl = al_1 + t1_1;

1038 *pc2 = t2;

1040 br eak;

1042 case 2:

1043 jO = (xsbO + 0x4000) & Oxffff8000;

1044 jl1=nl1 &1

1045 j2 = (xsb2 + 0x4000) & Oxffff8000;

1046 H (& 0) = j0;

1047 H(&2) =j2;

1048 LO(&t 0) = 0;

new usr/src/lib/libmec/ common/__vsincos.c

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

1074
1075

1077
1078

1080
1081
1082

1084
1085
1086

1088
1089
1090

1092
1093
1094

1096
1097
1098

1100
1101
1102

1104

1106
1107
1108
1109
1110
1111
1112
1113
1114

case 3:

LO(&t2) =

x1_or one[O ;
xl_or_one[2 1
x0 = (x0 - t +
yl_or_zero[0] = y1;
yl_ or _zero[2] = -y

X2
z0
z1

BEooon

Sy

N O

(x2-t2) +y2
x1 * x1,
(qql + z0 *

N
N
* Ok K Kk Ok *

sb2 >> 30)

= __vlibmTBL_sincos_hi[]j0+n0];

—vlibm TBL_sincos_hi[]2+n2];

= __vlibmTBL_sincos_| o[j 0+((n0+xsb0) &3)
y1_or_zero[nl] _
— vlibm TBL_si ncos_I| o[j 2+((n2+xsb2) &3)] - (al_2*

x1_or one[nl] +

jO & ~0x80000000) - 0x3fc40000) >> 13) &
]2 & ~0x80000000) - 0x3fc40000) >> 13) &

E
xsh0 >> 30) & 2;
X
s
s

b0 & ~(n0O << 1));
b2 & ~(n2 << 1));

_vlibmTBL_sincos_hi[]j 0+((n0+xsb0) &3)]
__vlibmTBL_sincos_hi[]2+((n2+xsb2)&3)];
]

= a2 0 +1t20;
*pyl =

=}

a.

t17

a2_2 + t2_2;
ni) & 3
i1

N A—~—

+
+

—_—

-
e e
N

—-
NITO NIlO

=al 0 + t1_0;
*pcl = t1;
=al 2 +tl1_2;

nl & 1;
n2 & 1;
H (& 0) = j
LO(&t 0) = O;
x1_or_one[0

2

0

0;

x1_or _one[
x2_or_one[

nnn
'
x

]
|
]

a2 0*wW0 + al 0*tO;
*7(polyl[jI] + 71 * (poly2[j1] +tl1));
a _2*W2 + al_2*t2;

+= _ vlibmTBL_sincos_I| o[j 0+n0];

x1_or_one[nl] + (yl_or_zero[nl]
+= __vlibmTBL_sincos_|o[j2+n2];

(xshO + 0x4000) & Oxffff8000;

17

q92);

poly3[j1] + z1 * p0|y4U 1])
(gql + z2 * qq2

(one + z0 * (pp2.));

(polyl[j1] + z1 * (poly2[]1] +t1));
(one + z2 * (2

2

- (al_o*
+ x1_or_one[nl] *

z1 * (pon3[]1] + z1 * poly4[j1]);

+ x1_or_one[nl] *

new usr/src/lib/libmec/ cormon/__vsincos.

1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1135
1136

1138
1139
1140

1142
1143
1144

1146
1147
1148
1149

1151
1152
1153

1155
1156
1157

1159
1160

1162
1163
1164

1166

1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180

case 4:

c 18
x2_or_one[2] = -x2;
=(x0 - t0) + yO;
yl_or_zero[0] = y1;
yl_or_zero[2] = -yl;
y2_or_zero[0] = y2;
y2_or_zero[2] = -y2;
z0 = x0 * x0
z1l = x1 * x1
z2 = X2 * x2;
t0 =20 * (qql + z0 * qQg2);
tl =2z1* (poly3[j1l] + z1 * poly4[j1]);
t2 =z2 * (poly3[j2] + z2 * pon4[12])
wo = x0 * (one +z0 * (ppl + z0 * pp2));
tl =2z1* (polyl[j1l] + z1 * (poly2[J1] +t1));
t2 =z2 * (polyl[j2] + z2 * (poly2[j2] +t2));
jo=(C(C(ijo & ~0x80000000) - 0x3fc40000) >> 13) & ~
xsb0 = (xsb0 >> 30) & 2;
n0 A= (xsh0 & ~(n0 << 1));
xsbh0 | = 1,
al_ 0 = __vlibmTBL_sincos_hi[j0+n0];
a2 0 = __vlibm T TBL_sincos_hi[] 0+((n0+xsb0) &3)1;
t2_0 = __vlibmTBL_sincos_|o[j0+((n0+xsb0)&3)] - (al_oO*
t1 = x1_or_one[nl] + (yl_ or_zero[nl] + x1_or_one[nl] *
t2 = x2_or_one[n2] + (y2_ or_zero[n2] + x2_or_one[n2] *
*pcO = a2_0 + t2_0;
*pyl = t1,
*py2 = t2
nl = (nl + 1) & 3;
n2 = (n2 +1) &3;
j1=(j1+1) &1,
j2=(2+1) &1
t1_0 = a2_0*w0 + al_0*tO;
tl =2z1* (poly3[j1] + z1 * poly4[j1]);
t2 =z2 * (poly3[j2] + z2 * poly4[j2]);
t1_0 += __vlibmTBL_sincos_| o[j0+n0];
tl1 =21 % (polyl[jI] + z1 * (" poly2[j1] +t1));
t2 =22 * (polyl[j2] +z2* (poly2[j2] +t2))
tl = x1_or_one[nl] + (yl_or_zero[nl] + x1_or_one[nl] *
t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
*py0 = al 0 +t1 0
*pcl = t1
*pc2 = t2;
break;
jO =n0 & 1;
j1 = (xsbl + 0x4000) & Oxffff8000;
i2 = (xsh2 + 0x4000) & Oxffff8000
H(&1) =j1;
H(&2) =j2;
LO(&t 1) = O;
LO(&t 2) = 0;
x0_or_one[0] = xO;
x0_or _one[2] = -xO0;
y0_or _zero[0] = yO;
yO or _zero[2] = -yO0;

=(x1-1t1) +yl

new usr/src/lib/libmec/ common/__vsincos.c 19 new usr/src/lib/libmec/common/__vsincos.c 20
1181 X2 = (X2 - t2) +y2; 1247 z0 = x0 * xO0;
1182 z0 = x0 * xO; 1248 z1 = x1 * x1;
1183 z1 = x1 * x1; 1249 z2 = X2 * Xx2;
1184 z2 = X2 * x2; 1250 t0 = z0 * (pol y3[j0] + z0 * poI ya[j o]);
1185 t0 = z0 * (pon3[]O] + z0 * poly4[jo0]); 1251 tl1 =2z1* (qql + z1 * 2
1186 tl =2z1* (qql + z1 * qQ2); 1252 t2 = z2 * (poly3[j2] +22*poly4[12]);
1187 t2 =z2* (qql + z2 * qq2); 1253 to = z0 * (poly1[jO0] +ZO*(p0Iy2[JO] +10));
1188 t0 = z0 * (polyl[jO] +ZO*(pO|y2[]O] +t0)); 1254 vﬂ:xl*(one+zl*(pp1+zl*p))
1189 wl = x1* (one +z1* (ppl +z1 * pp2)); 1255 t2 =z2 * (polyl[j2] +z2 * (p y2[12]+t2))
1190 W2 = x2 * (one +2z2* (ppl +2z2* pp2)); 1256 j1=00¢ Jl & ~0x80000000) - Ox3fc40000) >> 13) & ~
1191 i1 =(((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~ 1257 xsbl = (xshl >> 30) & 2;
1192 j2 =(((]2 & ~0x80000000) - 0x3fc40000) >> 13) & ~ 1258 nl ~= (x sbl & ~(nl << 1));
1193 xsbl = (xsbl >> 30) & 2; 1259 xsbl |=1
1194 xsbhb2 = (xsb2 >> 30) & 2;
1195 nl A= (xshbl & ~(nl << 1)); 1261 al_ 1 = __vlibmTBL_sincos_hi[j1+nl];
1196 n2 "= (xsh2 & ~(n2 << 1)); 1262 a2_1 = __vlibmTBL_sincos_hi[]1+((nl+xsbl)&3)];
1197 xsbl | = 1;
1198 xsbh2 | = 1, 1264 t0 = x0_or_one[n0] + (yO_or_zero[nO] + xO_or_one[n0] *
1265 t2_1 = __vlibmTBL_sincos_lo[j1+((nl+xsbhl)&3)] - (al_1*
1200 al_1 = __vlibmTBL_sincos_hi[j1+nl]; 1266 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
1201 al_2 = __vlibm TBL_si ncos_hi[]2+n2];
1268 *py0 =t
1203 a2_1 = __vlibmTBL_sincos_hi[]j1+((nl+xsbl)&3)]; 1269 *pcl = a2 1+ t2.1;
1204 a2_2 = __vlibmTBL_sincos_hi[]2+((n2+xsb2)&3)]; 1270 *py2 = t2;
1206 t0 = x0_or_one[n0] + (yO_or_zero[nO] + x0_or_one[n0] * 1272 n0 = (n0 + 1) & 3;
1207 t2_1 = __vlibmTBL_sincos_|lo[]j1+((nl+xshl)&3)] - (al_1* 1273 n2 = (n2 +1) & 3;
1208 t2_2 = __vlibmTBL_sincos_lo[]2+((n2+xsb2)&3)] - (al_2* 1274 joO=(j0 + 1) & 1;
1275 j2=(2+1 &1,
1210 *py0 = tO0;
1211 *pcl = a2_1 + t2_1, 1277 t0 = z0 * (poly3[jO] + zO * poly4[joO]);
1212 *pc2 = a2 2 + t2_2; 1278 tl1 1 = a2 _1*wl + al_1*t1
1279 t2 = z2 * (poly3[j2] +z2 % polya[j2]);
1214 n0 = (n0 + 1) & 3;
1215 j0=(j0+1)&1, 1281 t0 = z0 * (polyl[jO] +20 * (poly2[j0O] +tO));
1216 t0 = z0 * (poly3[j0O] + zO * poly4[jO]); 1282 tl1 1 += _ vlibmTTBL_sincos_lo[j1+nl];
1283 t2 =22 ¥ (polyl[j2] + z2 * (pon2[J2] +t2));
1218 t0 = z0 * (polyl[jO] +zO*(poly2[j0O] +t0));
1219 tl1 1 = a2_1*wl + al_1*t1 1285 t0 = x0_or_one[n0] + (yO_or_zero[n0] + xO_or_one[n0] *
1220 t1 2 = a2 2*w2 + a1_2*t2 1286 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
1222 t0 = x0_or_one[n0] + (yO_or_zero[n0] + xO_or_one[n0] * 1288 *pc0 = tO;
1223 t1 1 += _ vlibmTTBL_sincos_|o[j1+nl]; 1289 *pyl = al_1 + t1_1,
1224 t1l 2 += _ vlibmTBL_sincos_Ilo[]2+n2]; 1290 *pc2 = t2;
1226 *pyl = al_1 + t1_1; 1292 br eak;
1227 *py2 = al_2 + t1l_2;
1228 *pcO = tO0; 1294 case 6:
1295 jO =n0 & 1;
1230 br eak; 1296 j1 =n1 & 1;
1297 J2 = (_xsb2 + 0x4000) & Oxffff8000;
1232 case 5: 1298 H (& 2) =j2;
1233 jO =n0 & 1299 LO(& 2) = 0;
1234 j1 = xsbl + 0x4000) & Oxffff8000; 1300 x0_or _one[0] = xO;
1235 j2 =n2 & 1; 1301 x0_or _one[2] = -xO0;
1236 H (& 1) =j1; 1302 x1_or_one[0] = x1;
1237 LO(& 1) = O; 1303 x1_or_one[2] = -x1;
1238 x0_or _one[0] = xO; 1304 y0_or_zero[0] = yO;
1239 x0_or _one[2] = -xO0; 1305 y0_or_zero[2] = -yO0;
1240 x2_or_one[0] = x2; 1306 yl or_zero[0] = y1,
1241 X2_or_one[2] = -x2; 1307 yl or_zero[2] = -y1;
1242 y0_or_zero[0] = yO; 1308 X2 = (X2 -t2) +y2;
1243 yO or_zero[2] = -yO0; 1309 z0 = x0 * xO0;
1244 x1 = (1—t1)+y1 1310 z1 = x1 * x1;
1245 y2_or_zero[0] = y2; 1311 z2 = X2 * Xx2;
1246 y2_or_zero[2] = -y2; 1312 t0 = z0 * (pol y3[j0] + zO0 * poly4[jO]);

new usr/src/lib/libmec/common/

1313
1314
1315
1316
1317
1318
1319
1320
1321

1323
1324

1326
1327
1328

1330
1331
1332

1334
1335
1336
1337

1339
1340
1341

1343
1344
1345

1347
1348

1350
1351
1352

1354

1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378

-
NI i n

-

PO RPRO RRO B
NI

- -

__vsincos.c 21
z1 * (poly3[j1] + z1 * poly4[j1]);
z2 * (qql + z2 * qQ2
z0 * (polyl[jO] +zO*(p0Iy2[JO] +t0));
z1 * (polyl[j1] + z1 * (poly2[j1] + t1));
x2 * (one + z2 * + z2 * pp2 ;

ppl p);
(((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
= (xsb2 >>30) &2
= (sb2&~(n2<<1))

= _ vlibmTBL_sincos_hi[]2+n2];

= __vIianTBL_sincos_hi[j2+((n2+xsb2)&3ﬂ

x0_or _one[n0] + (yO_or_zero[n0] + x0_or_one[n0] *
x1_or_one[nl] + (yl or_zero[nl] + x1_or_one[nl] *
= __vlibmTBL_sincos_| o[2+((n2+xsb2)&3)] - (al_2*

=10;

= t1;

= a2 2 +1t22

(n0 + 1) & 3;

(nl1 + 1) & 3;

(jOo+1) &1;

(j1 +1) &1;

z0 * (pO y3[j0] + z0 * poly4d[jO]);

z1 * (poly3[j1] + z1 * poly4[j1]);

= a2_2*w2 + al _2*t2;

z0 * (polyl[jO] + z0 * (poly2[jO] +t0));
z1 * (polyl[j1] + z1 * (poly2[j1] +t1));
+= __vlibmTBL_sincos_| o[j2+n2];

x0_or _one[n0] + (yO_or_zero[n0] + x0_or_one[n0] *
x1_or_one[nl] + (yl_or_zero[nl] + x1_or_one[nl] *

=10;
=t1;
=al 2 +tl1 2
n0 & 1;
nl & 1;
n2 & 1;
or_one[0] = xO0;
or_one[2] = -x0
or_one[0] = x1;
or_one[2] = -x1;
or_one[0] = x2;
or_one[2] = -x2;
or_zero[0] = yO;
or_zero[2] = -yO0;
or_zero[0] = y1;
or_zero[2] = -y1;
or_zero[0] = y2;
or_zero[2] = -y2
= x0 * x0;
= x1 * x1
= x2 * x2
=20 * (poly3[jO] + zO0 * poly4[jO]);
=z1* (poly3[j1] + z1 * poly4[j1]);
=z2 * (poly3[j2] + z2 * poly4[]2]);
=20 * (polyl[jO] + zO * (poly2[jO] +tO));

new usr/src/lib/libmec/ common/

1379
1380
1381
1382
1383
1384
1385
1386

1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407

1409
1410
1411
1412
1413

1415
1416
1417
1418
1419
1420
1421
1422

1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444

__vsincos.c
tl =z1* (polyl[j1] + z1 * (poly2[j1l] +t1));
t2 =z2 * (polyl[j2] + z2 * (poly2[}2] +t2));
t0 = x0_or_one[n0] + (yO_or_zero[nO] + x0_or_one[n0]
tl = x1_or_one[nl] + (yl_ or_zero[nl] + x1_or_one[n1]
t2 = x2_or “one[n2] + (y2_or_zero[n2] + x2_or_one[n2]
*py0 = t0;
*pyl = t1,
*py2 = t2
n0 = (n0 + 1) & 3;
nl =(nl + 1) & 3;
n2 = (n2 +1) & 3;
joO=(jo0 + 1) &1;
j1=(j1+1) &1
i2=(j2+1) &1,
t0 = z0 * (poly3[jO] + zO * poly4[jO]);
tl =z1* (poly3[j1] + z1 * poly4[]1]);
t2 =z2 * (poly3[J2] + z2 * poly4[]2]);
t0 = z0 * (polyl[jO] + zO0 * (poly2[j0O] +t0O));
tl =z1* (polyl[j1] + z1 * (poly2[j1l] +tl1))
t2 =z2 * (polyl[j2] + z2 * (poly2[j2] +t2));
t0 = x0_or_one[n0] + (yO_or_zero[n0O] + x0_or_one[n0]
tl = x1_or_one[nl] + (yl_ or_zero[nl] + x1_or_one[nl]
t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2]
*pcO = t0;
*pcl = t1;
*pc2 = t2;
br eak;

+= stridex;
+= stridey;
+= stridec;
= 0

—n'>0);

al_0, al_1, a2_0, a2_1;

to, t1, t1.0, t1.1, t2.0, t2_1;
fn0, fnil, a0, al, w0, wl, yO0, yi;
z0, z1;

j0, j1;

n0, nil;

> 1)

= (int x1 * invpio2 + hal f[xsbl]);

) (
fnl = (doubl e) ni;

nl
al
wl
x1
yl
al
wl
x1
yl
al
wl
x1
yl

xsh

if

&=
= x1 - fnl * p|02_1;
=fnl * p|02 ;

= al - ;
=(al-x1l)-w

= x1;

= fnl * p|023— y1;
= al - ;
=(al-x1)-w

= x1;

=fnl * pio2_3t - yil;
=al - wl;

= al - xl) - wl

1 HI (&x1);

((_ xsbl & ~0x80000000) < 0x3fc40000)
jl1 =nl1 & 1;

*

new usr/src/lib/libmec/ common/__vsincos.c

1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510

23
x1_or _one[0] = x1;
x1_or_one[2] = -x1;
yl_or_zero[0] = y1;
yl_or_zero[2] = -yl;
z1 = x1 * x1;
tl =2z1* (poly3[j1l] + z1 * poly4[j1]);
tl =2z1* (polyl[Jl] +z1 * (poly2[j1l] +t1)
tl = x1_or_one[nl] + (yl_or_zero[nl] + x1_or_on
*pyl = t1;
nl = (nl + 1) & 3;
jr1=(1+1) &1
tl =2z1* (poly3[j1l] + z1 * poly4[j1]);
tl =z1 * (polyl[j1l] + z1 * (poly2[] 1] +t1)
tl = x1_or_one[nl] + (yl_or_zero[nl] + x1_or_on
*pcl = t1
el se
j1 = (xsbl + 0x4000) & Oxffff8000;
H(&1) =j1;
LO(&t 1) = O;
x1 = (x1 - tl) + y1;
z1 = x1 * x
tl =z1* (qq1+zl* q92);
wl =x1* (one +z1* (ppl +z1* pp2));
jl =(((j1 & ~0x80000000) - 0x3fc40000) >>
xsbl = (xsbhl >> 30) & 2;
nl "= (xshl & ~(nl <<1))
xshl | = 1;
al_1 = __vlibmTBL_sincos_hi[j1+nl
a2_1 = __vlibmTBL_sincos_hi[] l+((n1+xsb1) &3)1;
t2-1 = __vlibm TBL_sincos_l o[] 1+((nl+xsbh1)&3)] -
*pcl = a2_1 + t2_1;
t1_1 = a2_1*wl + a1 1*t 1,
t1_1 += __vlibmTBL_sincos_| o[1+n1];
*pyl = al_1 + t1_1,
) }
0—(|nt) x0 * invpio2 + hal f[xsbh0]);
fn0 = (doubl e) noO;
n0 &= 3;
a0 = x0 - fnO * p| 02_1;
w0 = fn0 * pio2_2;
x0 = a0 - wo,
y0o = (a0 - xO) - WO;
a0 = x0;
w0 = fnO * pio2_3 - yO0;
x0 = a0 - wo,
y0o = (a0 - xO) - WO0;
a0 = x0;
W0 = fnO * pi 02_3t - yO;
x0 = a0 - wo;
yO:(a0 - xO) - WO0;

xsb0 = H (&x0);
if ((xsb0o & ~0x80000000) < 0x3fc40000)
{

jOo =no & 1;

x0_or _one[0] = xO;

x0_or _one[2] = -xO0;
y0_or _zero[0] = yO;
y0_or _zero[2] = -yO0;

z0 = x0 * xO;

t0 = z0 * (ponS[jO] + z0 * poly4[jO]);

t0 = z0 * (polyl[j0O] + zO0O * (poly2[jJ0O] +tO));

t0 = x0_or_one[n0] + (yO_or_zero[nO] + xO_or_one[n0] *
*py0o = t0

new usr/src/lib/libmec/common/__vsincos.c 24

1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

1541
1542
1543
1544 }

el se

}
if (biguns) {

n0 = (n0 + 1) & 3;

jo=(jo + 1) &1

t0 = z0 * (poly3[jO] + z0O * poly4[jO]);

t0 = z0 * (polyl[jO] + zO * (poly2[jO] +t0));

t0 = x0_or_one[n0] + (yO_or_zero[nO] + xO_or_one[n0] *
*pco = t0;

jO = (xsbO + 0x4000) & Oxffff8000

H (& 0) = jO0;

LO(&t 0) =

x0 = (x0 - t0) + yO

z0 = x0 * xO;

t0 =20 * (qql + z0 * qQg2);

wo = x0* (one +z0* (ppl +z0 * pp2));

jo = (j 0 & ~0x80000000) - 0x3fc40000) >> 13) & ~

((
xsb0 = (xsb0 >> 30) & 2;
n0 "= (xsh0 & ~(n0<<1))

xsbh0 | = 1;

al 0 = _ vl bm TBL_si ncos_hi [j 0+n0] ;

a2 0 = __vlibm T TBL_sincos_hi[] 0+((n0+xsb0) &3)];

t2-0 = __vlibmTBL_sincos_| o[j 0+((n0+xsbh0)&3)] - (al_O*
*pcO = a2_0 + t2_0;

t1.0 = a2_0*w0 + al 0*t0;

t1_0 += __vlibm TBL_sincos_| o[j 0+n0] ;

*py0O = al 0 + t1_0O;

__vlibmuvsincos_big(nsave, xsave, sxsave, ysave, sysave, csave,

}

__unchanged_portion_onitted_

new usr/src/lib/libmec/common/__vsincosf.c 1 new usr/src/lib/libmec/common/__vsincosf.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 136 }
7042 Sun May 4 03:07:30 2014
new usr/src/lib/libmec/comon/__vsincosf.c 138 #defi ne PROCESS(N) \
IR R R R R R R R R R R RS R R R R RS RS R R RS SRR SRR R ERREREREEEEEEEE] 139 If (n-EdI urr) { \
__unchanged_portion_omtted_ 140 z##N = y##N * invpi 02 + c3two51; \
141 n##N = LO(z##N) ; \
76 #define SO d 0] 142 z##N - = c3two51; \
77 #define Sl d 1] 143 y##N = (y##N - ZHHN * pi02_1) - z##N * pio2_t; \
78 #define S2 qd 2] 144 \
79 #define one d 3] 145 Z##N = y##N * y##N, \
80 #define nhalf [4] 146 F##N = (float) (y##N + y##N * z##N * (SO + z##N * (S1 + z##N * S2)));\
81 #define CO q 5] 147 g##N = (float)(one + z##N * (nmhal f + z##N * (CO + z##N * \
82 #define Cl C 6] 148 (CL + z##N * C2)))); \
83 #define C2 q 7] 149 if (n##N & 2) \
84 #define invpio2 (8] 150 f##N = - f ##N; \
85 #define c3two51 (9] 151 g##N = - g##N; \
86 #define pio2_1 (10] 152 \
87 #define pio2_t (f11] 153 1f (n##N & 1) { \
154 *s = g##N; \
89 #define PREPROCESS(N, sindex, cindex, |abel) \ 155 *c = -f##N, \
90 hx = *(int *)x; \ 156 } else { \
91 iX = hx & OX7fifffff; \ 157 *s = f##N \
92 t = *x; \ 158 *c = g##N, \
93 x += stridex \ 159 \
94 if (ix <= Ox3f490fdb) { /* |x|] <pi/ld* \ 160 s += strides; \
95 if (ix 0) { \ 161 c += stridec
96 S[SI ndex] =t; \
97 c[cindex] = one; \ 163 void
98 goto | abel; \ 164 __vsincosf(int n, float *restrict x, int stridex,
99 \ 165 float *restrict s, int strides, float *restrict c, int stridec)
100 y#H#N = (doubl e)t; \ 166 {
101 n##N = \ 167 doubl e y0, y1, y2, y3;
102 } else if (ix <= Ox49<:90fdb) { /* | x| < 2719*pi */ \ 168 doubl e z0, z1, z2, z3;
103 y##N = (doubl e)t \ 169 fl oat fo, f1, f2, 3, t;
104 medi um = 1; \ 170 fl oat g0, 91, 92, ¢3;
105 } else { \ 171 int n0 =0, nl =0, n2=0, n3, hx, ix, nedium
106 if (ix >= 0x7f800000) { /* inf or nan */ \ 171 int n0, nl, n2, n3, hx, ix, nedium
107 s[sindex] = c[cindex] =1t / t; \
108 goto | abel ; \ 173 s -= strides;
109 } \ 174 c -= stri dec,
110 Z##N = y##N = (doubl e)t; \
111 hx = H (y##N); \ 176 for (;;) {
112 n##N = ((hx >> 20) & Ox7ff) - 1046; \ 177 begin:
113 H (z##N) = (hx & Oxfffff) | 0x41600000; \ 178 s += strides;
114 n##N = vI i bm rem pi o2m(& ##N, &y##N, n##N, 1, 0); \ 179 c += stridec;
115 if (hx <0) { \
116 y#HN = - y##N,; \ 181 if (--n < 0)
117 n##N = - n##N, \ 182 break;
118 } \
119 Z##N = y##N * y#EN; \ 184 nmedi um = 0;
120 F##N = (f1oat) (y##N + y##N * z##N * (S0 + z##N * \ 185 PREPROCESS(0, 0, 0, begin);
121 (S1 + z##N * S2))); \
122 g##N—(roat)(one+z##N* (mhal f + z##N * (CO + \ 187 if (--n<0)
123 z##N * (Cl + z##N * C2)))); \ 188 goto processl;
124 if (n##N & 2) { \
125 f# = - f ##N, \ 190 PREPROCESS(1, strides, stridec, processl);
126 g##N = - g##N; \
127 } \ 192 if (--n <0
128 1f (n##N & 1) { \ 193 goto process2;
129 s[si ndex] = g##N; \
130 c[cindex] = -f##N, \ 195 PREPROCESS(2, (strides << 1), (stridec << 1), process2);
131 } else { \
132 s[sindex] = f##N \ 197 if (--n<0)
133 c[ci ndex] = g##N; \ 198 goto process3;
134 } \
135 goto | abel ; \ 200 PREPROCESS(3, (strides << 1) + strides,

new usr/src/lib/libmec/common/__vsincosf.c 3 new usr/src/lib/libmec/common/__vsincosf.c
201 (stridec << 1) + stridec, process3); 267
268 s += strides;
203 if (medium { 269 ¢ += stridec;
204 z0 = y0 * invpio2 + c3two51;
205 z1 = yl1 * invpio2 + c3two51; 271 if (n1 &1) {
206 z2 = y2 * invpio2 + c3two51; 272 *s = g1,
207 z3 = y3 * invpio2 + c3two51; 273 *c = -f1;
274 } else {
209 n0 = LQ(z0); 275 *s = f1;
210 nl = LQ(z1); 276 *c = g1,
211 n2 = LQ(z2); 277
212 n3 = LQ(z3); 278 s += strides;
279 c += stridec;
214 z0 -= c3twob51;
215 z1 -= c3two51; 281 if (n2 & 1) {
216 z2 -= c3twob51; 282 *s = g2;
217 z3 -= c3two51; 283 *c = -f
284 } else {
219 y0 = (y0 - z0 * pio2_1) - z0 * pio2_t; 285 *s = f2;
220 yl = (yl - z1 * pio2_1) - z1 * pio2_t; 286 *c = g2;
221 y2 = (y2 - z2 * pio2_1) - z2 * pio2_t; 287 }
222 y3 = (y3 - z3 * pio2_1) - z3 * pio2_t; 288 s += strides;
223 } 289 c += stridec;
225 z0 = y0 * yO0; 291 if (n3 &1) {
226 z1 =yl * yi; 292 *s = g3;
227 z2 = y2 * y2; 293 *c = -f3;
228 z3 = y3 * y3; 294 } else {
295 *s = f3;
230 fOo = (float)(y0 + yO * zO * (SO + z0 * (S1 + z0 * S2))) 296 *c = g3;
231 fl = (float)(yl +yl * z1 * (SO + z1 * (S1 + z1 * S2))); 297 }
232 f2 = (float)(y2 + y2 * z2 * (SO + z2 * (S1 + z2 * S2))); 298 conti nue;
233 f3 = (float)(y3 + y3 * z3 * (SO + z3 * (S1 + z3 * S2)));
300 processl:
235 g0 = (float)(one + zO * (nhalf + z0 * (CO + z0 * 301 PROCESS(0) ;
236 (C1L +2z0 * C)))); 302 conti nue;
237 gl = (float)(one + z1 * (mhalf + z1 * (CO + z1 *
238 (CL +z1 * C2)))); 304 process2:
239 g2 = (float)(one + z2 * (nhalf + z2 * (CO + z2 * 305 PROCESS(0) ;
240 (CL + 22 * C)))); 306 PROCESS(1) ;
241 g3 = (float)(one + z3 * (nhalf + z3 * (CO0 + z3 * 307 conti nue;
242 (C1 + 23 * C2))));
309 process3:
244 if (n0 & 2) { 310 PROCESS(0) ;
245 fo = -f0; 311 PROCESS(1) ;
246 g0 = -g0; 312 PROCESS(2) ;
247 } 313 }
248 if (n1&2) { 314 }
249 fli=-f1; __unchanged_portion_omtted_
250 gl = -91;
251 }
252 if (n2 &2) {
253 f2 =-f2;
254 g2 = -92;
255 }
256 if (n3 &2) {
257 f3 =-13;
258 g3 = -9g3;
259 }
261 if (n0 & 1) {
262 *s = g0;
263 *c = -f0
264 } else {
265 *s = fO0;
266 *c = g0;

new usr/src/lib/libmec/comon/__vsinf.c 1 new usr/src/lib/libmec/comon/__vsinf.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 136 }
10486 Sun May 4 03:07:31 2014 137 ZH##N = y##N * y##N,
new usr/src/lib/libmec/common/__vsinf.c 138 if (n##N & 1) { /* conpute cos y */
IR R R R R R R R R R R RS R R R R RS RS R R RS SRR SRR R ERREREREEEEEEEE] 139 f##N = (fl Oat)(One + Z##N * (rmalf + Z##N * (m +
__unchanged_portion_omtted_ 140 Z##N * (CL + z##N * Q2))));
141 } else { /* conpute siny */
76 #define SO 0] 142 f##N = (float) (Y##N + y##N * z##N * (SO + z##N * (S1 +
77 #define S1 1] 143 zZ##N * S2)));
78 #define S2 qd 2] 144 }
79 #define one d 3] 145 *y = (n##N & 2)? -f##N : f##N
80 #define nhal f d 4] 146 y += stridey
81 #define Q0 d 5]
82 #define Cl C 6] 148 voi d
83 #define C2 q7] 149 _ vsinf(int n, float *restrict x, int stridex, float *restrict vy,
84 #define invpio2 (8] 150 int stridey)
85 #define c3two51 (9] 151 {
86 #define pio2_1 (10] 152 doubl e y0, y1, y2, y3;
87 #define pio2_t (f11] 153 doubl e z0, z1, z2, z3;
154 fl oat fo, f1, f2, 3, t;
89 #defi ne PREPROCESS(N, index, |abel) \ 155 int n0 =0, nl =0, n2=0, n3, hx, ix, medium
90 hx = *(int *)x; \ 155 int n0, n1, n2, n3, hx, ix, medium
91 iX = hx & OX7fifffff; \
92 t = *x; \ 157 y -= stridey;
93 x += stridex \
94 if (ix <= Ox3f490fdb) { /* |x] <pi/ld* \ 159 for (;;) {
95 if (ix ==0) { \ 160 begin:
96 ylindex] =t; \ 161 y += stridey;
97 goto | abel ; \
98 } \ 163 if (--n<0)
99 y##N = (double)t; \ 164 br eak;
100 n##N = 0; \
101 } elseif (ix <= Ox49c90fdb) { /* | x| < 2719*pi */ \ 166 nmedi um = O;
102 y##N = (doubl e)t \ 167 PREPROCESS(0, 0, begin);
103 nedi um = \
104 } else { \ 169 if (--n<0)
105 if (ix >= 0x7f800000) { /* inf or nan */ \ 170 goto processl;
106 ylindex] =t / t; \
107 goto | abel; \ 172 PREPROCESS(1, stridey, processl);
108 } \
109 Z##N = y##N = (doubl e)t; \ 174 if (--n < 0)
110 hx = H (y## \ 175 goto process2;
111 n##N = ((hx >> 20) & Ox7ff) - 1046; \
112 H (z##N) = (hx & Oxfffff) | 0x41600000; \ 177 PREPROCESS(2, (stridey << 1), process2);
113 n##N = _vI i bmrem pi o2m(&z ##N, &y##N, n##N, 1, 0); \
114 if (hx <0) { \ 179 if (--n <0)
115 y##N = - y##N, \ 180 goto process3;
116 N##N = - n##N; \
117 } \ 182 PREPROCESS(3, (stridey << 1) + stridey, process3);
118 ZH#HN = y##N * y#H#N, \
119 if (n##N & 1) { /* conpute cos y */ \ 184 if (medi un) {
120 f##N = (float)(one + z##N * (mhal f + z##N * \ 185 = y0 * invpio2 + c3two51;
121 (C0 + z##N * (CL + z##N * Q2)))); \ 186 zl =yl * invpio2 + c3two51;
122 } else { /* conpute siny */ \ 187 z2 = y2 * invpio2 + c3two51;
123 #N = (roat)(y##N + y##N * zZ##N * (SO + \ 188 z3 = y3 * invpio2 + c3two51;
124 Z##N * (S1 + z##N * S2))); \
125 } \ 190 n0 = LQ(z0);
126 y[index] = (n##N & 2)? -f##N : f##N \ 191 nl = LQ(z1);
127 goto | abel ; \ 192 n2 = LQ(z2);
128 } 193 n3 = LQ(z3)
130 #define PROCESS(N) \ 195 z0 -= c3two51,;
131 if (medium { \ 196 z1 -= c3two51;
132 z##N = y##N * invpi 02 + c3two51; \ 197 z2 -= c3two51;
133 n##N = LOQ(z##N) ; \ 198 z3 -= c3twob51;
134 z##N - = c3twob51; \
135 y##N = (y##N - z##N * pio2_1) - z##N * pio2_t; \ 200 y0 = (y0 - z0 * pio2_1) - z0 * pio2_t;

P

new usr/src/lib/libmec/comon/__vsinf.c 3 new usr/src/lib/libmec/common/__vsinf.c 4
201 yl = (yl - z1 * pio2_1) - z1 * pio2_t; 267 (roat)(one+22* (mhal f + z2 * (CO +
202 y2 = (y2 - z2 * pio2_1) - z2 * pio2_t; 268 * (CL + 22 * C2))));
203 y3 = (y3 - z3 * pio2_1) - z3 * pio2_t; 269 (float)(y3+y3* 23 * (SO + z3 * (S1 + z3 * S2)));
204 } 270 break
206 z0 = y0 * yO0; 272 case 7:
207 z1 =yl * yl; 273 fo = (float)(one + zO * (nhalf + z0 * (CO +
208 z2 = y2 * y2; 274 z0 * (C1 + z0 * C2))));
209 z3 = y3 * y3; 275 f1 = (float)(one + z1 * (nhalf +z1 * (C0 +
276 z1 * (Cl +z1 * C2)
211 hx = (n0 & 1) | ((n1 &1) << 1) | ((n2 &1) << 2) | 277 f2 = (float)(one + z2 * (rrhalf +z2 * (C0 +
212 ((n3 & 1) << 3); 278 z2 * (CL + z2 * C2))));
213 switch (hx) { 279 f3 = (fl a)(y3+y3*23* (SO + z3 * (S1 + z3 * S2)));
214 case O: 280 break;
215 fO = (float)(y0 + y0O * z0 * (SO + z0 * (Sl + z0 * S2)));
216 fl1 = (float)(yl +yl * z1 * (SO + z1 * (Sl + z1 * S2))); 282 case 8:
217 f2 = (float)(y2 + y2 * z2 * (SO + z2 * (S1 + z2 * S2))); 283 fO = (float)(y0 + yO * z0O * (SO + z0 * (S1 + z0 * S2)));
218 f3 = (float)(y3 + y3 * z3 * (SO + z383 * (Sl + z3 * S2))); 284 fl = (float)(yl +yl * z1 * (SO + z1 * (S1 + z1 * S2)));
219 br eak; 285 f2 = (float)(y2 + y2 * z2 * (SO + z2 * (S1 + z2 * S2)));
286 f3 = (float)(one + z3 * alf +z3 * (CO +
221 case 1: 287 z3 * (C1 + 23 * C2))))
222 fOo = (float)(one + zO * (mhalf + z0 * (CO + 288 br eak;
223 z0 * (Cl + 20 * 2))));
224 fl1 = (float)(yl +yl * z1 * (SO + z1 * (Sl + z1 * S2))); 290 case 9:
225 f2 = (float)(y2 + y2 * z2 * (SO + z2 * (S1 + z2 * S2))); 291 fo (float)(one + zO * (mhalf + z0 * (CO +
226 f3 = (float)(y3 + y3 * z3 * (SO + z3 * (S1 + z3 * S2))); 292 z0 * (C1 + z0 * C2))));
227 br eak; 293 fl = (float)(yl + yl * z1 * (SO + z1 * (S1 + z1 * S2)));
294 f2 = (float)(y2 + y2 * z2 * (SO + z2 * (S1 + z2 * S2)));
229 case 2: 295 f3 = (float)(one + z3 * (nhalf + z3 * (CO +
230 fO = (float)(y0 + yO * z0 * (SO + z0 * (S1 + z0 * S2))); 296 z3 * (C1 + 23 * C2))));
231 fl1 = (float)(one + z1 * (nmhalf + z1 * (CO + 297 br eak;
232 z1 * (Cl + z1 * C2))));
233 f2 = (float)(y2 + y2 * z2 * (SO + z2 * (S1 + z2 * S2))); 299 case 10:
234 f3 = (float)(y3 + y3 * z3 * (SO + z3 * (S1 + z3 * S2))); 300 fO = (float)(y0 + yO * z0O * (SO + z0 * (S1 + z0 * S2)));
235 br eak; 301 fl1 = (float)(one + z1 * (nmhalf + z1 * (CO +
302 z1 * (Cl + z1 * C2))));
237 case 3: 303 f2 = (float)(y2 + y2 * 72 * (SO + z2 * (S1 + z2 * S2)));
238 fOo = (float)(one + z0O * (nmhalf + z0 * (CO + 304 f3 = (float)(one + z3 * (nmhalf + z3 * (CO +
239 z0 * (C1 +z0 * C2)))); 305 z3 * (Cl + 23 * C2))));
240 fl1 = (float)(one + z1 * (rrhalf +z1 * (Q0 + 306 br eak;
241 z1 * (Cl + z1 * C2))));
242 f2 = (float)(y2 + y2 * z2 * (SO * (S1 + z2 * S2))); 308 case 11:
243 f3 = (float)(y3 + y3 * z3 * (3*(Sl+z3*82))): 309 fo = (float)(one + z0 * (mhalf + zO * (CO +
244 br eak; 310 z0 * (Cl + z0 * C2))));
311 flz(floa)(one+zl*(n‘nalf +z1 * (C0 +
246 case 4: 312 z1 * (C1 +z1 * C2))));
247 fOo = (float)(y0 + yO * z0 * (SO + zO * (S1 + z0 * S2))); 313 f2 = (float)(y2 + y2 * z2 * (SO + z2 * (S1 + z2 * S2)));
248 fl = (float)(yl +yl * z1 * (SO + z1 * (S1 + z1 * S2))); 314 f3 = (float)(one + z3 * (nmhalf + z3 * (CO +
249 f2 = (float)(one + z2 * (nhalf + z2 * (CO + 315 z3 * (C1 + 23 * C2))));
250 z2 * (C1 + 22 * C2)))); 316 br eak;
251 f3 = (float)(y3 + y3 * z3 * (SO + z3 * (S1 + z3 * S2)));
252 break; 318 case 12:
319 fO = (float)(y0 + yO * zO * (SO + zO * (S1 + z0 * S2)));
254 case 5: 320 fl1 = (float)(yl +yl * z1 * (SO + z1 * (Sl + z1 * S2)));
255 fOo = (float)(one + z0O * (mhalf + z0 * (CO + 321 f2 = (float)(one + z2 * (nmhalf + z2 * (CO +
256 z0 * (C1 +z0 * C2)))); 322 z2 * (Cl + 22 * C2))));
257 f1 = (float)(yl + y1 * z1 * (SO + z1 * (SL + z1 * S2))); 323 f3 = (float)(one + z3 * (mhalf + z3 * (CO +
258 f2 = (float)(one + z2 * (rThaIf +z2 * (CO + 324 z3 * (Cl + 23 * C2))));
259 z2 * (C1 + z2 * C2)) 325 br eak;
260 f3—(f|oat)(y3+y3*23* (SO + z3 * (S1 + z3 * S2)));
261 break; 327 case 13:
328 fO = (float)(one + z0 * (mhalf + z0 * (CO +
263 case 6: 329 z0 * (C1 + z0 * C2))));
264 fOo = (float)(y0 + yo * z0 * (SO + zO * (S1 + z0 * S2))); 330 fl=(f|oat)(yl+y1*zl* (SO + z1 * (S1L + z1 * S2)));
265 fl1 = (float)(one + z1 * (nmhalf + z1 * (CO + 331 f2 = (float)(one + z2 * (mhalf + z2 * (CO +
266 z1 * (Cl +z1 * C2)))); 332 z2 * (CL + z2 * C2))));

new usr/src/lib/libmec/comon/__vsinf.c

333
334
335

337
338
339
340
341
342
343
344
345

347
348
349
350
351
352
353
354
355
356

358
359
360
361
362
363
364
365

367
368
369

371
372
373
374

376
377
378
379
380

processl:

process2:

process3:

381 }
__unchanged_portion_omtted_

}

f3 = (float)(one + z3 * (mhalf + z3 * (CO +
z3 * (Cl + 23 * C2))));
br eak;
case 14:
fOo = (float)(y0 + yo * z0 * (SO + zO * (S1 + z0 * S2)));
fl1 = (float)(one + z1 * (nhalf + z1 * (CO +
z1 * (Cl + z1 * C2))));
f2 = (float)(one + z2 * (nmhalf + z2 * (CO +
z2 * (C1 + z2 *) ;
f3 = (float)(one + z3 * (nmhalf + z3 * (CO +
z3 * (Cl + 23 * @))));
br eak
defaul t:
fo = (float)(one + zO * (nhalf + z0 * (CO +
z0 * (C1 + z0 *)
fl1 = (float)(one + z1 * (nhlf +2z1* (CO +
z1 * (CL + z1 * C2))));
f2 = (float)(one + z2 * (nhalf +2z2 * (Q0 +
z2 * (Cl +2z2 * C2))));
f3 = (float)(one + z3 * (nhlf + 23 * (CO +
z3 * (Cl + 23 * C2))));
}
*y = (n0 & 2)? -f0 : fO0;
y += stridey;
*y =(nl &2)? -f1: 1,
y += stridey;
*y = (n2 &2)? -f2: f2;
y += stridey;
*y = (n3 & 2)? -f3: 3;
conti nue;
PROCESS(0) ;
conti nue;
PROCESS(0) ;
PROCESS(1) ;
conti nue;
PROCESS(0) ;
PROCESS(1) ;
PROCESS(2) ;

new usr/src/ man/ Makefile 1 new usr/src/ man/ Makefile
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 63 nangpam \
1868 Sun May 4 03:07:33 2014 64 man3papi \
new usr/src/ man/ Makefil e 65 man3per | \
IR R R R R R R R R R R RS R R R R RS R R RS R R RS REREREREEEEEEE] 66 rrans |CI \
14# 67 man3pi cltree \
2 # This file and its contents are supplied under the terms of the 68 man3pool \
3 # Common Devel oprent and Distribution License ("CDDL"), version 1.0. 69 man3pr oc \
4 # You may only use this file in accordance with the terns of version 70 man3pr oj ect \
5 # 1.0 of the CDDL. 71 man3r esol v \
6 # 72 man3r pc \
7 # A full copy of the text of the CDDL shoul d have acconpanied this 73 man3rsm \
8 # source. A copy of the CDDL is also available via the Internet 74 man3sasl \
9 # at http://ww.illunps.org/license/ CODL. 75 man3scf \
10 # 76 man3sec \
77 man3secdb \
12 # 78 man3si p \
13 # Copyright 2011, Richard Lowe 79 man3sl p \
14 # Copyright (c) 2012, Igor Kozhukhov <i kozhukhov@nuil .cone 80 man3socket \
15 #endif /* | codereview */ 81 man3st nf \
16 # Copyright 2013 Nexenta Systens, Inc. Al rights reserved. 82 man3sysevent \
17 # 83 man3tecl a \
84 man3t nf \
19 SUBDI RS= manl \ 85 man3t sol \
20 manlb \ 86 man3uui d \
21 manlc \ 87 man3vol ngt \
22 manlhas \ 88 man3xcur ses \
23 manlm \ 89 man3xnet \
24 man2 \ 90 man4 \
25 man3 \ 91 man5 \
26 man3bsm \ 92 man7 \
27 man3c \ 93 man7d \
28 man3c_db \ 94 man7f s \
29 man3cf gadm \ 95 man7i \
30 man3commput i | \ 96 man7i pp \
31 man3cont ract \ 97 man7m \
32 man3cpc \ 98 man7p \
33 man3cur ses \ 99 man9 \
34 man3dat \ 100 man9e \
35 man3devi d \ 101 man9f \
36 man3devi nf o \ 102 man9p \
37 man3dl| pi \ 103 man9s
38 man3dns_sd \
39 man3el f \ 105 . PARALLEL: $(SUBDI RS)
40 man3exacct \
41 man3ext \ 107 all = TARCET = all
42 man3f coe \ 108 cl ean = TARCET = cl ean
43 man3f styp \ 109 cl obber = TARCGET = cl obber
44 man3gen \ 110 install = TARCET = install
45 man3gss \
46 man3head \ 112 all clean clobber install: $(SUBDI RS)
a7 man3i scsi t \
48 man3kst at \ 114 $(SUBDI RS): FRC
49 man3kvm \ 115 @d $@ pwd; $(MAKE) $(TARGET)
50 man3| dap \
51 man3l grp \ 117 FRC
52 man3l i b \
53 man3m \
54 #endif /* | codereview */
55 man3mai | \
56 man3mal | oc \
57 man3np \
58 man3npapi \
59 man3nvec \
60 #endif /* | codereview */
61 man3nsl \
62 man3nvpair \

new usr/ src/ pkg/ mani f est s/ SUNWi bm nf

R R R R

1146 Sun May 4 03:07:35 2014
new usr/ src/ pkg/ mani f est s/ SUNWi bm nf

hkkkkkkkkkkkkkkkkhkkkkhkhkhkhkkkkkkkkkkkkkkkkkkkkkkkk ok k ok k k%

1#

2 # This file and its contents are supplied under the terms of the

3 # Common Devel oprent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://ww. illunps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

14 #

16 # was renaned to systenlibrary/ mat h/ header-mat h

17 # both obsol ete now

16 set name=pkg.fnri val ue=pkg:/ SUNWi bm@. 5. 11, 5. 11- 0. 132

17 set name=pkg. description \

18 val ue="Math & M crotasking Library Headers & Lint Files"

19 # license |icense=SUNW i bm copyri ght

20 # license |icense=SUNW I bnr. copyri ght

21 set nane=pkg.renaned val ue=true

22 # set nane=pkg.renaned val ue=true

23 set nane=pkg.summary val ue="Math & M crotasking Library Headers & Lint Files"
19 set nanme=pkg.description value="Math Library Headers & Lint Files"

20 set nane=pkg. obsol ete val ue=true

21 set nane=pkg. summary val ue="Math Library Headers & Lint Files"

24 set nane=info.classification \

25 val ue=or g. opensol ari s. cat egory. 2008: Systeni Li brari es

26 # set nane=org.opensol ari s. consol i dati on val ue=sunpro

27 #endif /* | codereview */

28 set nane=variant.arch val ue=$(ARCH)

29 set nane=vari ant.opensol ari s. zone val ue=gl obal val ue=nongl obal

30 depend fnri=pkg:/systen |ibrary/ math/header - mat h@(PKGVERS) type=require
31 #endif /* | codereview */

new usr/ src/ pkg/ mani f est s/ SUNW i bns. nf

R R R R

1098 Sun May 4 03:07:37 2014
new usr/ src/ pkg/ mani f est s/ SUNW i bns. nf

hkkkkkkkkkkkkkkkkhkkhkkhkhkhkkkkkkkkkkkkkkkkkkkkkkkk ok kk k ok k k%

1#

2 # This file and its contents are supplied under the terms of the

3 # Common Devel oprent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://ww. illunps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

14 #

16 set nanme=pkg.fnri val ue=pkg:/SUNW i bns@. 5. 11, 5. 11-0. 132

17 set nane=pkg. description value="Math & M crotasking Libraries"
17 set name=pkg. description value="Math Libraries"

18 # license |icense=SUNW I bns. copyri ght

19 # license |icense=SUNW i bnsr. copyri ght

20 set nane=pkg.renanmed val ue=true

21 # set name=pkg.renaned val ue=true

22 set nane=pkg. summary val ue="Math & M crotaski ng Libraries”

23 set nane=description value="Math & M crotasking Libraries"

22 set nane=pkg.summary val ue="Math Libraries"

23 set nane=description val ue="Math Libraries"

24 set nane=info.classification \

25 val ue=or g. opensol ari s. cat egory. 2008: Systeni Li brari es

26 set name=variant.arch val ue=$(ARCH)

27 set nane=variant.opensol ari s. zone val ue=gl obal val ue=nongl obal
28 depend fnri=pkg:/systen |ibrary/ mat h@(PKGVERS) type=require

new usr/src/tool s/ aw aw. ¢

R R R R

17025 Sun May 4 03:07:39 2014
new usr/src/tool s/ aw aw. ¢

hkkkkkkkkkkkkkkhkkhkkhkkhkhkhkhkhkkkkkkkkkkkkkkkkkkkkkk ok k ok k k%

__unchanged_portion_omtted_

480 int

481 muin(int argc, char *argv[])

482 {

483 struct aelist *cpp = NULL;

484 struct aelist *md = NULL;

485 struct aelist *as = newael ();

486 char **asargv;

487 char *outfile = NULL;

488 char *srcfile = NULL;

489 const char *dir, *cnd;

490 static char as pgn{ MAXPATHLEN] ;

491 static char as64_pgn{ I\/AXPATHLEN];

492 static char m4_pgni MAXPATHLEN] ;

493 static char mi_cndef s| MAXPATHLEN] ;

494 static char cpp_pgn{ MAXPATHLEN ;

495 int as64 = 0;

496 int code;

498 if ((progname = strrchr(argv[0], '/")) == NULL)

499 prognane = argv[O0];

500 el se

501 prognane++;

503 /*

504 * Hel pful when debuggi ng, or when changi ng tool versions..
505 */

506 if ((cmd = getenv("AWAS")) != NULL)

507 stricpy(as_pgm cnd, sizeof (as_pgm);

508 el se {

509 if ((dir = getenv("AWAS DIR')) == NULL)

510 dir = DEFAULT_AS_DIR; /* [usr/sfwbin */
511 (void) snprintf(as_pgm sizeof (as_pgnm), "%/gas", dir);
512 }

514 if ((cmd = getenv("AWAS64")) != NULL)

515 stricpy(as64_pgm cnd, sizeof (as64_pgm);

516 el se {

517 if ((dir = getenv("AWAS64 DIR')) == NULL)

518 dir = DEFAULT_AS64_DIR /* /usr/sfw’bl n */
519 (voi d) snprlntf(a564 pgm sizeof (as_pgn), "%/gas", dir);
520 }

522 if ((cmd = getenv("AWM")) != NULL)

523 stricpy(mi_pgm cnd, sizeof (mi_pgm);

524 el se {

525 if ((dir = getenv("AWM_DIR")) == NULL)

526 d|r = DEFAULT_M4_DI R; /* [usr/ccs/bin */
527 (void) snpri ntf(mﬁ pgm sizeof (md_pgm), "%/ m4", dir);
528 }

530 if ((cnd = getenv("AWMLIB")) != NULL)

531 stricpy(mi_cndefs, cnd, sizeof (mi_cndefs));

532 el se {

533 if ((dir = getenv("AW MLIB_DIR")) == NULL)

534 dir = DEFAULT_MALIB DI R; /* Jusr/ccs/lib */
535 (void) snprintf(mi_cndefs, sizeof (mi_cndefs),
536 "%/ cmddefs”, dir);

537 }

539 if ((cmd = getenv("AWCPP")) != NULL)

new usr/src/tool s/ aw aw. ¢

540
541
542
543
544
545

547
548
549
550

552
553
554
555
556
557

559
560

562
563

565
566
567
568
569
570
571
572
573
574
Br®
576
574
5145]
576
577
578
579
580
581
582
583
584
585
586
587
588

590
591
592
593
594
595
596

598
599

601
602

strlcpy(cpp_pgm cnd, sizeof (cpp_pgm);

el se {

if ((dir = getenv("AWCPP DIR')) == NULL)

ir DEFAULT_CPP_DIR~ /* /usr/ccs/lib */

(void) snpri ntf(cpp_pgm sizeof (cpp_pgm), "%/ cpp", dir);
}
newae(as, as_pgm;
newae(as, "——warn"
newae(as, "--fatal - war ni ngs");
newae(as, "--traditional- forrmt");

*
* Walk the argunent list, translating as we go ..

*

/

while (--argc > 0) {
char *arg;
int arglen;

arg = *++argyv;
arglen = strlen(arg);

if (*arg !="-") {
char *fil enane;

/
filenanes ending in ’'.s’ are taken to be
assenbler files, and provide the defaul t
basenanme of the output file.

preprocessor, if present, or to gas if not.
/
|

enane = arg;
((arglen > 2) &&

((strcnp(arg + arglen - 2, ".s") ==0) ||
(strcmp(arg + arglen - 2, ".S") 0))) {
if (arglen > 2 &&

(strcmp(arg + arglen - 2, ".s") == 0) ||
(strcmp(arg + arglen - 2, ".S") == 0)) {

/*

*
*
*
*
*
* other files are passed through to the
*
*
i
f

fi
i

* Though "as’ allows multiple assenbler
* files to be processed in one invocation
* of the assenbler, ON only processes one
* file at a tinme, which nakes things a |ot
* sinpler!
*

/

if (srcfile == NULL)
srcfile = arg;

el se

return (usage(

"one assenbler file at a tine"));

/*
* |f we haven't seen a -0 option yet,
* default the output to the basenane
* of the input, substituting a .o on the end
*
f (outfile == NULL) {

char *argcopy;

argcopy = strdup(arg)
argcopy[arglen - 1] ‘o'

if ((outfile = strrchr(
argcopy, '/’)) == NULL)

new usr/src/tool s/ aw aw. ¢

603 outfile = argcopy;

604 el se

605 outfil et++;

606 }

607 }

608 if (cpp)

609 newae(cpp, filenane);

610 else if (m)

611 newae(n4, filenane);

612 el se

613 newae(as, filenane);

614 conti nue;

615 } else

616 arglen--;

618 switch (arg[1]) {

619 case 'K :

620 /*

621 * -K pic

622 * -KPIC

623 */

624 if (arglen == 1) {

625 if ((arg = *++argv) == NULL || *arg == '\0")
626 return (usage("mal formed -K"));
627 argc--;

628 } else {

629 arg += 2;

630 }

631 if (strcnp(arg, "PIC') I= 0 && strcnp(arg, "pic") != 0)
632 return (usage("nmal fornmed -K"));

633 br eak; /* just ignore -Kpic for gce */
634 case 'Q:

635 if (strcrrp(arg, "-Qn") == 0)

636

637 /*FALLTHRQJGH"/

638 case 'b’':

639 case 's’:

640 case 'T':

641 /*

642 * -b Extra synbol table for source browser ..
643 * not relevant to gas, thus should error.
644 * -5 Put stabs in .stabs section not stabs.excl
645 * not clear if there's an equival ent

646 * -T 4.x migration option

647 */

648 defaul t:

649 return (error(arg));

650 case 'Xx':

651 *

652 * Accept -xarch special case to invoke alternate
653 * assenblers or assenbler flags for different
654 * architectures.

655 *

656 if (strcnp(arg, "-xarch an64") == 0 ||

657 strcnp(arg, "-xarch=generic64") == 0) {
658 as64++;

659 fixae_arg(as->ael _head, as64_pgnm;

660 br eak;

661 }

662 /*

663 * XX64: |s this useful to gas?

664 */

665 if (strcrrp(arg, "-xnodel =kernel ") == 0)

666 br eak;

668 /*

new usr/src/tool s/ aw aw. ¢

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730 }
731 }

733
734

case

case

case

case

case
case

case

case

#if defined(__i386)
if (as64)

* -xF Generates perfornmance anal ysis data

* no equi val ent
*/
return (error(arg));

newae(as,
br eak;

arg);

[T

case

case

case

ver bose++;
break;

L :

newae(as,
br eak;

"--keep- | ocal

newae(as,
br eak;

"--no-warn");

if (arglen !'= 1)
return (usage(
if ((arg = *++argv) ==
return (usage("
outfile = arg;
argc--;
arglen =
br eak;

if (cpp)
return (usage("
if (md == NULL)

m = newael ();

newae(nmd, nd pgrr),
_cndefs);

newae(nmd, nd
br eak;

if (m)

return (usage("
if (cpp == NULL) {
cpp = newael ();
newae(cpp, cpp_|
newae(cpp, "-D_

break;

if (cpp)
newae(cpp,
else if (m

newae(nm4, arg);
el se

newae(as, arg);
break;

it (cpp)

el se

newae(cpp,
newae(as, arg);

/* a gas-specifi
arg);

br eak;

ne\/\ae(as,
br eak;

s");

bad -o flag"));
NULL || *arg == "\0")
bad -0 flag"));

strlen(arg + 1);

-mconflicts with -P"));

-P conflicts with -ni"));

pgm ;

"GNUC_AS__");

arg);

arg);

ic option */

new usr/src/tool s/ aw aw. ¢

735
736
737
738

740
741
742
743
744
745

747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

#endi f

newae(as, "--64");
el se
newae(as, "--32");

if (srcfile == NULL)
return (usage("no source file(s) specified"));
if (outfile == NULL)
outfile = "a.out";
newae(as, "-0");
newae(as, outfile);

asargv = ael toargv(as);
if (cpp) {

#i f defined(__sparc)

#elif defined(__i386) ||

#el se
#error
#endi f

newae(cpp, "-Dsparc");
newae(cpp, "-D__sparc");
if (as64)
newae(cpp, "-D__sparcv9");
el se
newae(cpp, "-D__sparcv8");
defined(__x86)
if (as64) {
newae(cpp, "-D_x86_64");
newae(cpp, "-D__and64");
} else {
newae(cpp, "-Di386");
y newae(cpp, "-D__i386");

"need isa-dependent defines"

code = pipeline(ael toargv(cpp), asargv);
} else if (M)

code = pipeline(aeltoargv(mt), asargv);

/

el se {

*

* XXX should arrange to fork/exec so that we

* can unlink the output file if errors are

* det ected. .

*/

(voi d) execvp(asargv[O0], asargv);

perror("execvp");

(void) fprintf(stderr, "%: couldn’t run %\n",
prognane, asargv[O0]);

code = 7;

}
if (code !'=0)

(void) unlink(outfile);
return (code);

}
__unchanged_portion_onitted_

new usr/src/tool s/ cw cw. c 1 new usr/src/tool s/ cw cw. c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 * _fprec's'on:<p> Set FP rOUndI ng prec's'on nDde p(Sl ngl e‘ doubl e' extended)
45780 Sun May 4 03:07:41 2014 60 * -fround=<r> Select the | EEE rounding node in effect at startup
new usr/src/tool s/ cw cw. c 61 * -fsinple[=<n>] Select floating-point optinization preferences <n>
IR R R R R R R R R R R RS R R R R RS R R RS R R RS REREREREEEEEEE] 62 * -fSII"Ig|e USE S' ngle prec's'on arlthn’Eth (Xt and xs I’TDdeS Onl y)
1/* 63 * -ftrap=<t> Select floating-point trapping node in effect at startup
2 * CDDL HEADER START 64 * -fstore force floating pt. values to target precision on assignnent
3 * 65 * -G Build a dynam c shared library
4 * The contents of this file are subject to the terns of the 66 * -g Conpi | e for debugging
5 * Common Devel opnent and Distribution License (the "License"). 67 * -H Print path nane of each file included during conpilation
6 * You may not use this file except in conpliance with the License. 68 * -h <nanme> Assign <nane> to generated dynam c shared library
7 * 69 * -l<dir> Add <dir> to preprocessor #include file search path
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 70 * - Passed to linker to ignore any LD LI BRARY_PATH setting
9 * or http://ww. opensol aris.org/os/licensing. 71 * -keeptnp Keep tenporary files created during conpilation
10 * See the License for the specific |anguage governing perm ssions 72 * -KPIC Conpi | e position independent code with 32-bit addresses
11 * and limtations under the License. 73 * -Kpic Conpi |l e position independent code
12 * 74 * -L<dir> Pass to linker to add <dir> to the library search path
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 75 * -|<name> Link with library |ib<name>.a or |ib<nane>. so
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 76 * -nc Renove duplicate strings from.comrent section of output files
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 77 * -nr Renpve all strings from.coment section of output files
16 * fields enclosed by brackets "[]" replaced with your own identifying 78 * -nr,"string" Renove all strings and append "string" to .comment section
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 79 * -nmt Speci fy options needed when conpiling multi-threaded code
18 * 80 * -native Fi nd avail abl e processor, generate code accordingly
19 * CDDL HEADER END 81 * -nofstore Do not force floating pt. values to target precision
20 */ 82 * on assi gnnent
83 * -nolib Same as -xnolib
22 | * 84 * -noqueue Di sabl e queui ng of conpiler |icense requests
23 * Copyright 2011, Richard Lowe. 85 * -norunpath Do not build in a runtinme path for shared libraries
24 */ 86 * -0 Use default optimzation level (-xQ2 or -xO3. Check nman page.)
25 [* 87 * -0 <outputfile> Set name of output file to <outputfile>
23 * Copyright 2010 Sun M crosystens, Inc. Al rights reserved. 88 * -P Conpi | e source through preprocessor only, output to .i file
24 * Use is subject to license terns. 89 * -PIC Alias for -KPIC or -xcode=pic32
25 */ 90 * -p Conpile for profiling with prof
91 * ic Alias for -Kpic or -xcode=picl3
27 | * 92 * -Qy|n] Emt/don't emt identification info to output file
28 * Wapper for the GNU C conpiler to make it accept the Sun C conpiler 93 * -qgp Conpile for profiling with prof
29 * argunents where possible. 94 * -Rdir[:dir]> Build runtine search path list into executable
30 * 95 * - Conpil e and only generate assenbly code (.s)
31 * Since the translation is inexact, this is sonething of a work-in-progress. 96 * -s Strip synbol table fromthe executable file
32 * 97 * -t Turn of f duplicate synbol warnings when |inking
33 */ 98 * -lknane> Delete initial definition of preprocessor synmbol <nane>
99 * -V Report version nunber of each conpil ation phase
35 /* If you nodify this flle you nust increment CW VERSION */ 100 * -v Do stricter semantic checking
36 #define CW VERSI ON "1.29" 101 * -Wkc>,<arg> Pass <arg> to specified conponent <c> (a,l,mp,0,2,h,i,u)
39 #define CW VERSI ON "1.30" 102 * -w Suppr ess conpi | er warni ng messages
103 * -Xa Conpi | e assum ng ANSI C confornmance, allow K & R extensions
38 /* 104 * (defaul t node)
39 * -# Ver bose node 105 * -Xc Conpi | e assum ng strict ANSI C confornance
40 * - ### Show conpi | er comrands built by driver, no conpilation 106 * -Xs Conpil e assum ng (pre-ANSI) K & R C style code
41 * -A<nane[(tokens)]> Preprocessor predicate assertion 107 * -Xt Conpi | e assum ng K & R confornance, allow ANSI C
42 * -B<[static|dynam c]> Specify dynamc or static binding 108 * -x386 Generate code for the 80386 processor
43 * -C Prevent preprocessor fromrenoving comments 109 * -x486 Generate code for the 80486 processor
44 * -c Conpile only - produce .o files, suppress |inking 110 * -xarch=<a> Specify target architecture instruction set
45 * -¢g92 Alias for -xtarget=ss1000 111 * -xbuiltin[=] Wen profitable inline, or substitute intrinisic functions
46 * -D<nane[=t oken] > Associ ate nane with token as if by #define 112 * for system functions, b={%ll, %one}
47 * -d[y]|n] dynam c [-dy] or static [-dn] option to |inker 113 * -xCC Accept C++ style comments
48 * -E Conpi | e source through preprocessor only, output to stdout 114 * -xchar_byte_order=<o0> Specify multi-char byte order <o> (default, high, |ow)
49 * -erroff=<t> Suppress warnings specified by tags t(%one, %ll, <tag list>) 115 * -xchi p=<c> Specify the target processor for use by the optim zer
50 * -errtags=<a> Display nmessages with tags a(no, yes) 116 * -xcode=<c> Cenerate different code for form ng addresses
51 * -errwarn=<t> Treats warnings specified by tags t(%one, %all, <tag |ist>) 117 * -xcrossfile[=<n>] Enabl e optim zation and inlining across source files,
52 * as errors 118 * n={ 0] 1}
53 * -fast Optimze using a selection of options 119 * -xe Performonly syntax/semantic checking, no code generation
54 * -fd Report ol d-style function definitions and decl arations 120 * -xF Conpile for later mapfile reordering or unused section
55 * -features=zla Al ow zero-1ength arrays 121 * el imnation
56 * -flags Show this sumrary of conpiler options 122 * -xhel p=<f> Di splay on-line help information f(flags, readme, errors)
57 * -fnonstd Initialize floating-point hardware to non-standard preferences 123 * -xildoff Cancel -xildon
58 * -fns[=<yes|no>] Select non-standard floating point node 124 * -xildon Enabl e use of the increnental linker, ild

new usr/src/tool s/ cw cw. c

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

/*

-xinline=[<a>,.

-xlibm eee

-xlibml

-xlic_lib=sunperf

-xlicinfo
-xM
- xML

-xmaxopt =[of f, 1,2, 3,4,5] maxi num optim zation | eve

-xnolib
-xnol i bm |
- xO<n>
-xP
-xpentium

-Xpg
-xprofil e=<p>

- Xr egs=<r>

-xsb
- xsbf ast
- xsf pconst

- Xspace
-xstrconst
-xtarget=<t> Specify target systemfor optim zation
-xtenp=<dir> Set directory for tenporary files to <dir>
-xtine
-xtransition Emt warnings for differences between K&R C and ANSI C
-xtrigraphs[=<yes|no>] Enabl e|disable trigraph translation
-xunrol | =n
-Y<c>, <di r>
- YA, <dir>
-Yl, <dir>
-YP, <dir>
-YS, <dir>

.,<a>] Attenpt inlining of specified user routines
<a>={%aut o, f unc, no% unc}

Force | EEE 754 return values for nath routines in
exceptional cases

Inline selected |ibmmath routines for optimnzation
Link in the Sun supplied performance libraries
Show | i cense server information
Generate nekefile dependencies
Generate nekefile dependencies, but exclude /usr/include

al | oned on #pragnma opt
Do not link with default systemlibraries

Cancel -xlibm | on command |ine

Generate optimzed code (n={1]2|3|4|5})

Print prototypes for function definitions

Generate code for the pentium processor

Conpil e for profiling with gprof

Col l ect data for a profile or use a profile to optim ze
<p>={{col | ect, use}[: <path>], tcov}

Control register allocation

Al | ow debuggi ng wi t hout object (.0) files

Conpil e for use with the WorkShop source browser

Generate only WrkShop source browser info, no conpilation
Represent unsuffixed floating point constants as single
precision

Do not do optimzations that increase code size

Pl ace string literals into read-only data segnent

Report the execution time for each conpilation phase

Enabl e unrolling loops n tinmes where possible

Specify <dir> for |ocation of component <c> (a,l,mp,0,h,i,u)
Change default directory searched for conponents

Change default directory searched for include files

Change default directory for finding libraries files

Change default directory for startup object files

* Translation table:

® Ok ok ok E Rk O Sk O R b ok b R ok ok Ok Rk b % b % o
-~

-# -V

- #it# error

- A<nane[(t okens)] > pass-thru

-B<[static| dynam c] > pass-thru (syntax error for anything el se)

- pass-thru

-C pass-thru

-cg92 -nmB2 -ntpu=v8 - ntune=supersparc (SPARC only)
- D<nane[=t oken] > pass-thru

-dy or -dn -W,-dy or -W,-dn

-E pass-thru

-errof f =E_EMPTY_TRANSLATION_UNI T i gnore
vl |

-errtags=%al
-errwar n=%al

-\Werror else -Wo-error

- fast error
-fd error
-features=zl a i gnore
-flags --help
-fnonstd error
-fns[=<yes| no>] error
-fpreci si on=<p> error
-fround=<r> error
-fsinpl e[=<n>] error
-fsingl e[=<n>] error

new usr/src/tool s/ cw cw. c

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

-ftrap=<t>
-fstore
-G

-9

-H

-h <name>
-l <dir>

-i

- keept mp
-KPIC
-Kpi c
-L<dir>

- | <name>
-ntT
-nr,"string"
-
-native
-nof store
-nolib

- noqueue
-norunpath

-0 <outputfile>
P

-PIC

-p

-pic

-Qyln]

-gp” _
-Rdir[:dir]>

-s

-1

- U<name>

-V

-V

-\, <arg>

-\, <ar g>

-W, <ar g>
-Wmo,2h,i,u>
- Wi, - xnodel =ker ne
- xnodel =ker ne

- Wi, -save_args
-w

- Xa

- Xc

- Xt

- Xs

-x386

- X486

- xar ch=<a>
-xbui I ti n[=]
-xCC

- xchar _byt e_or der =<o>
- xchi p=<c>

- xcode=<c>

- xdebugf or mat =<f or mat >
-xcrossfil e[=<n>]

- xe
-xF

- xhel p=<f >
-xi | dof f
-xi |l don
-xinline
-xl'i bm eee

error
error
pass-thru
pass-thru
pass-thru
pass-thru
pass-thru
pass-thru
-save-tenps
-fPIC

-fpic
pass-thru
pass-thru
error

error

error

- D_REENTRANT
error

error

-nodefaul tlibs
i gnore

ignore

-0l (Check the nan page to be certain)
pass-thru

-E -0 filenane.
-fPIC (C++ only)
pass-thru

-fpic (C++ only)
error

pass-thru
pass-thru

-W, -s

-W, -t

pass-thru
--version

-\l

pass-thru
pass-thru except -xc99=<a>
pass-thru

error/ignore

-ffreestandi ng - ntnodel =ker ne
-ffreestandi ng -ntnodel =ker ne

(or error)

- mo-r ed- zone
-mo-r ed- zone

- nsave- ar gs
pass-thru

- std=i s09899: 199409 or -ans
-ansi -pedantic

error

-traditional -std=c89

-mar ch=i 386 (x86 only)

-mar ch=i 486 (x86 only)

tabl e

-fbuiltin (-fno-builtin otherw se)
i gnore

error

tabl e

tabl e

ignore (always use dwarf-2 for gcc)
i gnore

error

error

error

i gnore

i gnore

ignore

error

new usr/src/tool s/ cw cw. c

257 * -xlibml

258 * -xlic_lib=sunperf
259 * -xM

260 * -xML

261 * -xmaxopt=[...]
262 * -xnolib

263 * -xnolibnil

264 * -xO<n>

265 * -xP

266 * -xpentium

267 * -xpg

268 * -xprofile=<p>
269 * -xregs=<r>
270 * -xs

271 * -xsb

272 * -xsbfast

273 * -xsfpconst

274 * -xspace

275 * -xstrconst

276 * -xtarget=<t>
277 * -xtenp=<dir>
278 * -xtime

279 * -xtransition
280 * -xtrigraphs=<yes|no>
281 * -xunroll=n
282 * -W, - xdbggen=no%usedonl y
283 *

284 * -Y<c>, <dir>
285 * -YA <dir>

286 * -VYI,<dir>

287 * -YP,<dir>

288 * -YS, <dir>

289 */

291 #include <stdio. h>

292 #include <sys/types. h>
293 #include <unistd. h>

294 #include <string. h>

295 #include <stdlib. h>

296 #include <ctype. h>

297 #include <fcntl.h>

298 #include <errno. h>

299 #include <stdarg. h>

300 #include <sys/utsnane. h>
301 #include <sys/param h>
302 #include <sys/isa_defs. h>
303 #include <sys/wait.h>
304 #include <sys/stat.h>

306 #define CWF_CXX 0x01
307 #define CW F_SHADOW 0x02
308 #define CWF_EXEC 0x04
309 #define CWF_ECHO 0x08
310 #define CWF_XLATE 0x10
311 #define CWF_PROG 0x20

313 typedef enum cw_conpiler {
314 CwWCCC=0

315 CW C _GCC

316 } cw_conpiler_t
____unchanged_portion_onitted_

error
error

-M

- W

error

-nodefaul tlibs

error

- O<n>

error

- mar ch=penti um (x86 only)
error

error

tabl e

error

error

error

error

ignore (-not -0s)

ignore

tabl e

error

error

-Wransition

-trigraphs -notrigraphs
error

-fno-elim nate-unused- debug- synbol s
-fno-el i m nat e- unused- debug-t ypes
error

error

-nostdinc -1<dir>

error

error

