
new/usr/src/cmd/ls/ls.c 1

**
 72740 Mon Jun 5 10:46:46 2017
new/usr/src/cmd/ls/ls.c
8175/8183: memory leak fixes + incorrect test of dereferenced pointer
**
______unchanged_portion_omitted_

219 /*
220 * A numbuf_t is used when converting a number to a string representation
221 */
222 typedef char numbuf_t[NUMBER_WIDTH];

224 static struct dchain *dfirst; /* start of the dir chain */
225 static struct dchain *cdfirst; /* start of the current dir chain */
226 static struct dchain *dtemp; /* temporary - used for linking */
227 static char *curdir; /* the current directory */

229 static int first = 1; /* true if first line is not yet printed */
230 static int nfiles = 0; /* number of flist entries in current use */
231 static int nargs = 0; /* number of flist entries used for arguments */
232 static int maxfils = 0; /* number of flist/lbuf entries allocated */
233 static int maxn = 0; /* number of flist entries with lbufs asigned */
234 static int quantn = 64; /* allocation growth quantum */
235 static size_t hlbfsz = 1;

237 static struct lbuf *nxtlbf; /* ptr to next lbuf to be assigned */
238 static struct lbuf **hlbf; /* lbuf bookkeeping */
239 static struct lbuf **flist; /* ptr to list of lbuf pointers */
240 static struct lbuf *gstat(char *, int, struct ditem *);
241 static char *getname(uid_t);
242 static char *getgroup(gid_t);
243 static char *makename(char *, char *);
244 static void pentry(struct lbuf *);
245 static void column(void);
246 static void pmode(mode_t aflag);
247 static void selection(int *);
248 static void new_line(void);
249 static void rddir(char *, struct ditem *);
250 static int strcol(unsigned char *);
251 static void pem(struct lbuf **, struct lbuf **, int);
252 static void pdirectory(char *, int, int, int, struct ditem *);
253 static struct cachenode *findincache(struct cachenode **, long);
254 static void freecachenodes(void);
255 static void csi_pprintf(unsigned char *);
256 static void pprintf(char *, char *);
257 static int compar(struct lbuf **pp1, struct lbuf **pp2);
258 static char *number_to_scaled_string(numbuf_t buf,
259 unsigned long long number,
260 long scale);
261 static void record_ancestry(char *, struct stat *, struct lbuf *,
262 int, struct ditem *);
263 static void ls_color_init(void);
264 static ls_color_t *ls_color_find(const char *, mode_t);
265 static void ls_start_color(ls_color_t *);
266 static void ls_end_color(void);

268 static int aflg;
269 static int atflg;
270 static int bflg;
271 static int cflg;
272 static int dflg;
273 static int eflg;
274 static int fflg;
275 static int gflg;
276 static int hflg;
277 static int iflg;

new/usr/src/cmd/ls/ls.c 2

278 static int lflg;
279 static int mflg;
280 static int nflg;
281 static int oflg;
282 static int pflg;
283 static int qflg;
284 static int rflg = 1; /* init to 1 for special use in compar */
285 static int sflg;
286 static int tflg;
287 static int uflg;
288 static int Uflg;
289 static int wflg;
290 static int xflg;
291 static int Aflg;
292 static int Bflg;
293 static int Cflg;
294 static int Eflg;
295 static int Fflg;
296 static int Hflg;
297 static int Lflg;
298 static int Rflg;
299 static int Sflg;
300 static int vflg;
301 static int Vflg;
302 static int saflg; /* boolean extended system attr. */
303 static int sacnt; /* number of extended system attr. */
304 static int copt;
305 static int vopt;
306 static int tmflg; /* create time ext. system attr. */
307 static int ctm;
308 static int atm;
309 static int mtm;
310 static int crtm;
311 static int alltm;
312 static long hscale;
313 static mode_t flags;
314 static int err = 0; /* Contains return code */
315 static int colorflg;
316 static int file_typeflg;
317 static int noflist = 0;

319 static uid_t lastuid = (uid_t)-1;
320 static gid_t lastgid = (gid_t)-1;
321 static char *lastuname = NULL;
322 static char *lastgname = NULL;

324 /* statreq > 0 if any of sflg, (n)lflg, tflg, Sflg, colorflg are on */
325 static int statreq;

327 static uint64_t block_size = 1;
328 static char *dotp = ".";

330 static u_longlong_t tblocks; /* number of blocks of files in a directory */
331 static time_t year, now;

333 static int num_cols = 80;
334 static int colwidth;
335 static int filewidth;
336 static int fixedwidth;
337 static int nomocore;
338 static int curcol;

340 static struct winsize win;

342 /* if time_fmt_new is left NULL, time_fmt_old is used for all times */
343 static const char *time_fmt_old = FORMAT_OLD; /* non-recent files */

new/usr/src/cmd/ls/ls.c 3

344 static const char *time_fmt_new = FORMAT_NEW; /* recent files */
345 static int time_custom; /* != 0 if a custom format */
346 static char time_buf[FMTSIZE]; /* array to hold day and time */

348 static int lsc_debug;
349 static ls_color_t *lsc_match;
350 static ls_color_t *lsc_colors;
351 static size_t lsc_ncolors;
352 static char *lsc_bold;
353 static char *lsc_underline;
354 static char *lsc_blink;
355 static char *lsc_reverse;
356 static char *lsc_concealed;
357 static char *lsc_none;
358 static char *lsc_setfg;
359 static char *lsc_setbg;
360 static ls_color_t *lsc_orphan;

362 #define NOTWORKINGDIR(d, l) (((l) < 2) || \
363 (strcmp((d) + (l) - 2, "/.") != 0))

365 #define NOTPARENTDIR(d, l) (((l) < 3) || \
366 (strcmp((d) + (l) - 3, "/..") != 0))
367 /* Extended system attributes support */
368 static int get_sysxattr(char *, struct lbuf *);
369 static void set_sysattrb_display(char *, boolean_t, struct lbuf *);
370 static void set_sysattrtm_display(char *, struct lbuf *);
371 static void format_time(time_t, time_t);
372 static void print_time(struct lbuf *);
373 static void format_attrtime(struct lbuf *);
374 static void *xmalloc(size_t, struct lbuf *);
375 static void free_sysattr(struct lbuf *);
376 static nvpair_t *pair;
377 static nvlist_t *response;
378 static int acl_err;

380 const struct option long_options[] = {
381 { "all", no_argument, NULL, ’a’ },
382 { "almost-all", no_argument, NULL, ’A’ },
383 { "escape", no_argument, NULL, ’b’ },
384 { "classify", no_argument, NULL, ’F’ },
385 { "human-readable", no_argument, NULL, ’h’ },
386 { "dereference", no_argument, NULL, ’L’ },
387 { "dereference-command-line", no_argument, NULL, ’H’ },
388 { "ignore-backups", no_argument, NULL, ’B’ },
389 { "inode", no_argument, NULL, ’i’ },
390 { "numeric-uid-gid", no_argument, NULL, ’n’ },
391 { "no-group", no_argument, NULL, ’o’ },
392 { "hide-control-chars", no_argument, NULL, ’q’ },
393 { "reverse", no_argument, NULL, ’r’ },
394 { "recursive", no_argument, NULL, ’R’ },
395 { "size", no_argument, NULL, ’s’ },
396 { "width", required_argument, NULL, ’w’ },

398 /* no short options for these */
399 { "block-size", required_argument, NULL, 0 },
400 { "full-time", no_argument, NULL, 0 },
401 { "si", no_argument, NULL, 0 },
402 { "color", optional_argument, NULL, 0 },
403 { "colour", optional_argument, NULL, 0},
404 { "file-type", no_argument, NULL, 0 },
405 { "time-style", required_argument, NULL, 0 },

407 {0, 0, 0, 0}
408 };

new/usr/src/cmd/ls/ls.c 4

410 int
411 main(int argc, char *argv[])
412 {
413 int c;
414 int i;
415 int width;
416 int amino = 0;
417 int opterr = 0;
418 int option_index = 0;
419 char *told = NULL;
420 struct lbuf *ep;
421 struct lbuf lb;
422 struct ditem *myinfo = NULL;

424 (void) setlocale(LC_ALL, "");
425 #if !defined(TEXT_DOMAIN) /* Should be defined by cc -D */
426 #define TEXT_DOMAIN "SYS_TEST" /* Use this only if it weren’t */
427 #endif
428 (void) textdomain(TEXT_DOMAIN);
429 #ifdef STANDALONE
430 if (argv[0][0] == ’\0’)
431 argc = getargv("ls", &argv, 0);
432 #endif

434 lb.lmtime.tv_sec = time(NULL);
435 lb.lmtime.tv_nsec = 0;
436 year = lb.lmtime.tv_sec - 6L*30L*24L*60L*60L; /* 6 months ago */
437 now = lb.lmtime.tv_sec + 60;
438 if (isatty(1)) {
439 Cflg = 1;
440 mflg = 0;
441 }

443 while ((c = getopt_long(argc, argv,
444 "+aAbBcCdeEfFghHiklLmnopqrRsStuUw:x1@vV/:%:", long_options,
445 &option_index)) != -1)
446 switch (c) {
447 case 0:
448 /* non-short options */
449 if (strcmp(long_options[option_index].name,
450 "color") == 0 ||
451 strcmp(long_options[option_index].name,
452 "colour") == 0) {
453 if (optarg == NULL ||
454 strcmp(optarg, "always") == 0 ||
455 strcmp(optarg, "yes") == 0 ||
456 strcmp(optarg, "force") == 0) {
457 colorflg++;
458 statreq++;
459 continue;
460 }

462 if (strcmp(optarg, "auto") == 0 ||
463 strcmp(optarg, "tty") == 0 ||
464 strcmp(optarg, "if-tty") == 0) {
465 if (isatty(1) == 1) {
466 colorflg++;
467 statreq++;
468 }
469 continue;
470 }

472 if (strcmp(optarg, "never") == 0 ||
473 strcmp(optarg, "no") == 0 ||
474 strcmp(optarg, "none") == 0) {
475 colorflg = 0;

new/usr/src/cmd/ls/ls.c 5

476 continue;
477 }
478 (void) fprintf(stderr,
479 gettext("Invalid argument ’%s’ for "
480 "--color\n"), optarg);
481 ++opterr;
482 continue;
483 }

485 if (strcmp(long_options[option_index].name,
486 "si") == 0) {
487 hflg++;
488 hscale = 1000;
489 continue;
490 }

492 if (strcmp(long_options[option_index].name,
493 "block-size") == 0) {
494 size_t scale_len = strlen(optarg);
495 uint64_t scale = 1;
496 uint64_t kilo = 1024;
497 char scale_c;

499 if (scale_len == 0) {
500 (void) fprintf(stderr, gettext(
501 "Invalid block size \’%s\’\n"),
502 optarg);
503 exit(1);
504 }

506 scale_c = optarg[scale_len - 1];
507 if (scale_c == ’B’) {
508 /* need at least digit, scale, B */
509 if (scale_len < 3) {
510 (void) fprintf(stderr, gettext(
511 "Invalid block size "
512 "\’%s\’\n"), optarg);
513 exit(1);
514 }
515 kilo = 1000;
516 scale_c = optarg[scale_len - 2];
517 if (isdigit(scale_c)) {
518 (void) fprintf(stderr,
519 gettext("Invalid block size"
520 " \’%s\’\n"), optarg);
521 exit(1);
522 }
523 /*
524 * make optarg[scale_len - 1] point to
525 * the scale factor
526 */
527 --scale_len;
528 }

530 switch (scale_c) {
531 case ’y’:
532 case ’Y’:
533 scale *= kilo;
534 /*FALLTHROUGH*/
535 case ’Z’:
536 case ’z’:
537 scale *= kilo;
538 /*FALLTHROUGH*/
539 case ’E’:
540 case ’e’:
541 scale *= kilo;

new/usr/src/cmd/ls/ls.c 6

542 /*FALLTHROUGH*/
543 case ’P’:
544 case ’p’:
545 scale *= kilo;
546 /*FALLTHROUGH*/
547 case ’T’:
548 case ’t’:
549 scale *= kilo;
550 /*FALLTHROUGH*/
551 case ’G’:
552 case ’g’:
553 scale *= kilo;
554 /*FALLTHROUGH*/
555 case ’M’:
556 case ’m’:
557 scale *= kilo;
558 /*FALLTHROUGH*/
559 case ’K’:
560 case ’k’:
561 scale *= kilo;
562 break;
563 default:
564 if (!isdigit(scale_c)) {
565 (void) fprintf(stderr,
566 gettext("Invalid character "
567 "following block size in "
568 "\’%s\’\n"), optarg);
569 exit(1);
570 }
571 }

573 /* NULL out scale constant if present */
574 if (scale > 1 && !isdigit(scale_c))
575 optarg[scale_len - 1] = ’\0’;

577 /* Based on testing, this is what GNU ls does */
578 block_size = strtoll(optarg, NULL, 0) * scale;
579 if (block_size < 1) {
580 (void) fprintf(stderr,
581 gettext("Invalid block size "
582 "\’%s\’\n"), optarg);
583 exit(1);
584 }
585 continue;
586 }

588 if (strcmp(long_options[option_index].name,
589 "file-type") == 0) {
590 file_typeflg++;
591 Fflg++;
592 statreq++;
593 continue;
594 }

597 if (strcmp(long_options[option_index].name,
598 "full-time") == 0) {
599 Eflg++;
600 statreq++;
601 eflg = 0;
602 time_fmt_old = FORMAT_ISO_FULL;
603 time_fmt_new = FORMAT_ISO_FULL;
604 continue;
605 }

607 if (strcmp(long_options[option_index].name,

new/usr/src/cmd/ls/ls.c 7

608 "time-style") == 0) {
609 /* like -E, but doesn’t imply -l */
610 if (strcmp(optarg, "full-iso") == 0) {
611 Eflg++;
612 statreq++;
613 eflg = 0;
614 time_fmt_old = FORMAT_ISO_FULL;
615 time_fmt_new = FORMAT_ISO_FULL;
616 continue;
617 }
618 if (strcmp(optarg, "long-iso") == 0) {
619 statreq++;
620 Eflg = 0;
621 eflg = 0;
622 time_fmt_old = FORMAT_ISO_LONG;
623 time_fmt_new = FORMAT_ISO_LONG;
624 continue;
625 }
626 if (strcmp(optarg, "iso") == 0) {
627 statreq++;
628 Eflg = 0;
629 eflg = 0;
630 time_fmt_old = FORMAT_ISO_OLD;
631 time_fmt_new = FORMAT_ISO_NEW;
632 continue;
633 }
634 /* should be the default */
635 if (strcmp(optarg, "locale") == 0) {
636 time_fmt_old = FORMAT_OLD;
637 time_fmt_new = FORMAT_NEW;
638 continue;
639 }
640 if (optarg[0] == ’+’) {
641 char *tnew;
637 char *told, *tnew;
642 char *p;
643 size_t timelen = strlen(optarg);

645 p = strchr(optarg, ’\n’);
646 if (p != NULL)
647 *p++ = ’\0’;

649 /*
650 * Time format requires a leading and
651 * trailing space
652 * Add room for 3 spaces + 2 nulls
653 * The + in optarg is replaced with
654 * a space.
655 */
656 timelen += 2 + 3;
657 told = realloc(told, timelen);
653 told = malloc(timelen);
658 if (told == NULL) {
659 perror("ls");
660 exit(2);
661 }

663 (void) memset(told, 0, timelen);
664 told[0] = ’ ’;
665 (void) strlcat(told, &optarg[1],
666 timelen);
667 (void) strlcat(told, " ", timelen);

669 if (p != NULL) {
670 size_t tnew_len;
671 size_t told_len =strlen(told);

new/usr/src/cmd/ls/ls.c 8

673 tnew = told + told_len + 1;
668 tnew = told + strlen(told) + 1;
674 tnew_len = timelen -
675 told_len - 1;
670 strlen(told) - 1;

677 tnew[0] = ’ ’;
678 (void) strlcat(tnew, p,
679 tnew_len);
680 (void) strlcat(tnew, " ",
681 tnew_len);
682 time_fmt_new =
683 (const char *)tnew;
684 } else {
685 time_fmt_new =
686 (const char *)told;
687 }

689 time_fmt_old = (const char *)told;
690 time_custom = 1;
691 continue;
692 }
693 continue;
694 }

696 continue;

698 case ’a’:
699 aflg++;
700 continue;
701 case ’A’:
702 Aflg++;
703 continue;
704 case ’b’:
705 bflg = 1;
706 qflg = 0;
707 continue;
708 case ’B’:
709 Bflg = 1;
710 continue;
711 case ’c’:
712 uflg = 0;
713 atm = 0;
714 ctm = 0;
715 mtm = 0;
716 crtm = 0;
717 cflg++;
718 continue;
719 case ’C’:
720 Cflg = 1;
721 mflg = 0;
722 #ifdef XPG4
723 lflg = 0;
724 #endif
725 continue;
726 case ’d’:
727 dflg++;
728 continue;
729 case ’e’:
730 eflg++;
731 lflg++;
732 statreq++;
733 Eflg = 0;
734 time_fmt_old = FORMAT_LONG;
735 time_fmt_new = FORMAT_LONG;

new/usr/src/cmd/ls/ls.c 9

736 continue;
737 case ’E’:
738 Eflg++;
739 lflg++;
740 statreq++;
741 eflg = 0;
742 time_fmt_old = FORMAT_ISO_FULL;
743 time_fmt_new = FORMAT_ISO_FULL;
744 continue;
745 case ’f’:
746 fflg++;
747 continue;
748 case ’F’:
749 Fflg++;
750 statreq++;
751 continue;
752 case ’g’:
753 gflg++;
754 lflg++;
755 statreq++;
756 continue;
757 case ’h’:
758 hflg++;
759 hscale = 1024;
760 continue;
761 case ’H’:
762 Hflg++;
763 /* -H and -L are mutually exclusive */
764 Lflg = 0;
765 continue;
766 case ’i’:
767 iflg++;
768 continue;
769 case ’k’:
770 block_size = 1024;
771 continue;
772 case ’l’:
773 lflg++;
774 statreq++;
775 Cflg = 0;
776 xflg = 0;
777 mflg = 0;
778 atflg = 0;
779 continue;
780 case ’L’:
781 Lflg++;
782 /* -H and -L are mutually exclusive */
783 Hflg = 0;
784 continue;
785 case ’m’:
786 Cflg = 0;
787 mflg = 1;
788 #ifdef XPG4
789 lflg = 0;
790 #endif
791 continue;
792 case ’n’:
793 nflg++;
794 lflg++;
795 statreq++;
796 Cflg = 0;
797 xflg = 0;
798 mflg = 0;
799 atflg = 0;
800 continue;
801 case ’o’:

new/usr/src/cmd/ls/ls.c 10

802 oflg++;
803 lflg++;
804 statreq++;
805 continue;
806 case ’p’:
807 pflg++;
808 statreq++;
809 continue;
810 case ’q’:
811 qflg = 1;
812 bflg = 0;
813 continue;
814 case ’r’:
815 rflg = -1;
816 continue;
817 case ’R’:
818 Rflg++;
819 statreq++;
820 continue;
821 case ’s’:
822 sflg++;
823 statreq++;
824 continue;
825 case ’S’:
826 tflg = 0;
827 Uflg = 0;
828 Sflg++;
829 statreq++;
830 continue;
831 case ’t’:
832 Sflg = 0;
833 Uflg = 0;
834 tflg++;
835 statreq++;
836 continue;
837 case ’U’:
838 Sflg = 0;
839 tflg = 0;
840 Uflg++;
841 continue;
842 case ’u’:
843 cflg = 0;
844 atm = 0;
845 ctm = 0;
846 mtm = 0;
847 crtm = 0;
848 uflg++;
849 continue;
850 case ’V’:
851 Vflg++;
852 /*FALLTHROUGH*/
853 case ’v’:
854 vflg++;
855 #if !defined(XPG4)
856 if (lflg)
857 continue;
858 #endif
859 lflg++;
860 statreq++;
861 Cflg = 0;
862 xflg = 0;
863 mflg = 0;
864 continue;
865 case ’w’:
866 wflg++;
867 num_cols = atoi(optarg);

new/usr/src/cmd/ls/ls.c 11

868 continue;
869 case ’x’:
870 xflg = 1;
871 Cflg = 1;
872 mflg = 0;
873 #ifdef XPG4
874 lflg = 0;
875 #endif
876 continue;
877 case ’1’:
878 Cflg = 0;
879 continue;
880 case ’@’:
881 #if !defined(XPG4)
882 /*
883 * -l has precedence over -@
884 */
885 if (lflg)
886 continue;
887 #endif
888 atflg++;
889 lflg++;
890 statreq++;
891 Cflg = 0;
892 xflg = 0;
893 mflg = 0;
894 continue;
895 case ’/’:
896 saflg++;
897 if (optarg != NULL) {
898 if (strcmp(optarg, "c") == 0) {
899 copt++;
900 vopt = 0;
901 } else if (strcmp(optarg, "v") == 0) {
902 vopt++;
903 copt = 0;
904 } else
905 opterr++;
906 } else
907 opterr++;
908 lflg++;
909 statreq++;
910 Cflg = 0;
911 xflg = 0;
912 mflg = 0;
913 continue;
914 case ’%’:
915 tmflg++;
916 if (optarg != NULL) {
917 if (strcmp(optarg, "ctime") == 0) {
918 ctm++;
919 atm = 0;
920 mtm = 0;
921 crtm = 0;
922 } else if (strcmp(optarg, "atime") == 0) {
923 atm++;
924 ctm = 0;
925 mtm = 0;
926 crtm = 0;
927 uflg = 0;
928 cflg = 0;
929 } else if (strcmp(optarg, "mtime") == 0) {
930 mtm++;
931 atm = 0;
932 ctm = 0;
933 crtm = 0;

new/usr/src/cmd/ls/ls.c 12

934 uflg = 0;
935 cflg = 0;
936 } else if (strcmp(optarg, "crtime") == 0) {
937 crtm++;
938 atm = 0;
939 ctm = 0;
940 mtm = 0;
941 uflg = 0;
942 cflg = 0;
943 } else if (strcmp(optarg, "all") == 0) {
944 alltm++;
945 atm = 0;
946 ctm = 0;
947 mtm = 0;
948 crtm = 0;
949 } else
950 opterr++;
951 } else
952 opterr++;

954 Sflg = 0;
955 statreq++;
956 mflg = 0;
957 continue;
958 case ’?’:
959 opterr++;
960 continue;
961 }

963 if (opterr) {
964 (void) fprintf(stderr, gettext(
965 "usage: ls -aAbBcCdeEfFghHiklLmnopqrRsStuUwxvV1@/%[c | v]"
966 "%%[atime | crtime | ctime | mtime | all]"
967 " [files]\n"));
968 exit(2);
969 }

971 if (fflg) {
972 aflg++;
973 lflg = 0;
974 sflg = 0;
975 tflg = 0;
976 Sflg = 0;
977 statreq = 0;
978 }

980 fixedwidth = 2;
981 if (pflg || Fflg)
982 fixedwidth++;
983 if (iflg)
984 fixedwidth += 11;
985 if (sflg)
986 fixedwidth += 5;

988 if (lflg) {
989 if (!gflg && !oflg)
990 gflg = oflg = 1;
991 else
992 if (gflg && oflg)
993 gflg = oflg = 0;
994 Cflg = mflg = 0;
995 }

997 if (!wflg && (Cflg || mflg)) {
998 char *clptr;
999 if ((clptr = getenv("COLUMNS")) != NULL)

new/usr/src/cmd/ls/ls.c 13

1000 num_cols = atoi(clptr);
1001 #ifdef TERMINFO
1002 else {
1003 if (ioctl(1, TIOCGWINSZ, &win) != -1)
1004 num_cols = (win.ws_col == 0 ? 80 : win.ws_col);
1005 }
1006 #endif
1007 }

1009 /*
1010 * When certain options (-f, or -U and -1, and not -l, etc.) are
1011 * specified, don’t cache each dirent as it’s read. This ’noflist’
1012 * option is set when there’s no need to cache those dirents; instead,
1013 * print them out as they’re read.
1014 */
1015 if ((Uflg || fflg) && !Cflg && !lflg && !iflg && statreq == 0)
1016 noflist = 1;

1018 if (num_cols < 20 || num_cols > 1000)
1019 /* assume it is an error */
1020 num_cols = 80;

1022 /* allocate space for flist and the associated */
1023 /* data structures (lbufs) */
1024 maxfils = quantn;
1025 if (((flist = malloc(maxfils * sizeof (struct lbuf *))) == NULL) ||
1026 ((nxtlbf = malloc(quantn * sizeof (struct lbuf))) == NULL)) {
1027 perror("ls");
1028 exit(2);
1029 }
1030 if ((hlbf = malloc(sizeof(*hlbf))) == NULL) {
1031 perror("ls");
1032 exit(2);
1033 }
1034 hlbf[0] = nxtlbf;
1035 if ((amino = (argc-optind)) == 0) {
1036 /*
1037 * case when no names are given
1038 * in ls-command and current
1039 * directory is to be used
1040 */
1041 argv[optind] = dotp;
1042 }

1044 if (colorflg)
1045 ls_color_init();

1047 for (i = 0; i < (amino ? amino : 1); i++) {

1049 /*
1050 * If we are recursing, we need to make sure we don’t
1051 * get into an endless loop. To keep track of the inodes
1052 * (actually, just the directories) visited, we
1053 * maintain a directory ancestry list for a file
1054 * hierarchy. As we go deeper into the hierarchy,
1055 * a parent directory passes its directory list
1056 * info (device id, inode number, and a pointer to
1057 * its parent) to each of its children. As we
1058 * process a child that is a directory, we save
1059 * its own personal directory list info. We then
1060 * check to see if the child has already been
1061 * processed by comparing its device id and inode
1062 * number from its own personal directory list info
1063 * to that of each of its ancestors. If there is a
1064 * match, then we know we’ve detected a cycle.
1065 */

new/usr/src/cmd/ls/ls.c 14

1066 if (Rflg) {
1067 /*
1068 * This is the first parent in this lineage
1069 * (first in a directory hierarchy), so
1070 * this parent’s parent doesn’t exist. We
1071 * only initialize myinfo when we are
1072 * recursing, otherwise it’s not used.
1073 */
1074 if ((myinfo = (struct ditem *)malloc(
1075 sizeof (struct ditem))) == NULL) {
1076 perror("ls");
1077 exit(2);
1078 } else {
1079 myinfo->dev = 0;
1080 myinfo->ino = 0;
1081 myinfo->parent = NULL;
1082 }
1083 }

1085 if (Cflg || mflg) {
1086 width = strcol((unsigned char *)argv[optind]);
1087 if (width > filewidth)
1088 filewidth = width;
1089 }
1090 if ((ep = gstat((*argv[optind] ? argv[optind] : dotp),
1091 1, myinfo)) == NULL) {
1092 if (nomocore)
1093 exit(2);
1094 err = 2;
1095 optind++;
1096 continue;
1097 }
1098 ep->ln.namep = (*argv[optind] ? argv[optind] : dotp);
1099 ep->lflags |= ISARG;
1100 optind++;
1101 nargs++; /* count good arguments stored in flist */
1102 if (acl_err)
1103 err = 2;
1104 }
1105 colwidth = fixedwidth + filewidth;
1106 if (!Uflg)
1107 qsort(flist, (unsigned)nargs, sizeof (struct lbuf *),
1108 (int (*)(const void *, const void *))compar);
1109 for (i = 0; i < nargs; i++) {
1110 if ((flist[i]->ltype == ’d’ && dflg == 0) || fflg)
1111 break;
1112 }

1114 pem(&flist[0], &flist[i], 0);
1115 for (; i < nargs; i++) {
1116 pdirectory(flist[i]->ln.namep, Rflg ||
1117 (amino > 1), nargs, 0, flist[i]->ancinfo);
1118 if (nomocore)
1119 exit(2);
1120 /* -R: print subdirectories found */
1121 while (dfirst || cdfirst) {
1122 /* Place direct subdirs on front in right order */
1123 while (cdfirst) {
1124 /* reverse cdfirst onto front of dfirst */
1125 dtemp = cdfirst;
1126 cdfirst = cdfirst -> dc_next;
1127 dtemp -> dc_next = dfirst;
1128 dfirst = dtemp;
1129 }
1130 /* take off first dir on dfirst & print it */
1131 dtemp = dfirst;

new/usr/src/cmd/ls/ls.c 15

1132 dfirst = dfirst->dc_next;
1133 pdirectory(dtemp->dc_name, 1, nargs,
1134 dtemp->cycle_detected, dtemp->myancinfo);
1135 if (nomocore)
1136 exit(2);
1137 free(dtemp->dc_name);
1138 free(dtemp);
1139 }
1140 }

1142 for (i = 0; i < hlbfsz; i ++)
1143 free(hlbf[i]);

1145 free(told);
1146 free(hlbf);
1147 free(flist);
1148 freecachenodes();

1150 return (err);
1151 }
______unchanged_portion_omitted_

1778 /*
1779 * get status of file and recomputes tblocks;
1780 * argfl = 1 if file is a name in ls-command and = 0
1781 * for filename in a directory whose name is an
1782 * argument in the command;
1783 * stores a pointer in flist[nfiles] and
1784 * returns that pointer;
1785 * returns NULL if failed;
1786 */
1787 static struct lbuf *
1788 gstat(char *file, int argfl, struct ditem *myparent)
1789 {
1790 struct stat statb, statb1;
1791 struct lbuf *rep;
1792 char buf[BUFSIZ];
1793 ssize_t cc;
1794 int (*statf)() = ((Lflg) || (Hflg && argfl)) ? stat : lstat;
1795 int aclcnt;
1796 int error;
1797 aclent_t *tp;
1798 o_mode_t groupperm, mask;
1799 int grouppermfound, maskfound;

1801 if (nomocore)
1802 return (NULL);

1804 if (nfiles >= maxfils) {
1805 /*
1806 * all flist/lbuf pair assigned files, time to get some
1807 * more space
1808 */
1809 maxfils += quantn;
1810 if (((flist = realloc(flist,
1811 maxfils * sizeof (struct lbuf *))) == NULL) ||
1812 ((nxtlbf = malloc(quantn *
1813 sizeof (struct lbuf))) == NULL)) {
1814 perror("ls");
1815 nomocore = 1;
1816 return (NULL);
1817 }
1818 if ((hlbf = realloc(hlbf, sizeof(*hlbf) * (hlbfsz + 1))) == NULL
1819 perror("ls");
1820 nomocore = 1;
1821 return (NULL);

new/usr/src/cmd/ls/ls.c 16

1822 }
1823 hlbf[hlbfsz++] = nxtlbf;
1824 }

1826 /*
1827 * nfiles is reset to nargs for each directory
1828 * that is given as an argument maxn is checked
1829 * to prevent the assignment of an lbuf to a flist entry
1830 * that already has one assigned.
1831 */
1832 if (nfiles >= maxn) {
1833 rep = nxtlbf++;
1834 flist[nfiles++] = rep;
1835 maxn = nfiles;
1836 } else {
1837 rep = flist[nfiles++];
1838 }

1840 /* Clear the lbuf */
1841 (void) memset((void *) rep, 0, sizeof (struct lbuf));

1843 /*
1844 * When noflist is set, none of the extra information about the dirent
1845 * will be printed, so omit remaining initialization of this lbuf
1846 * as well as the stat(2) call.
1847 */
1848 if (!argfl && noflist)
1849 return (rep);

1851 /* Initialize non-zero members */

1853 rep->lat.tv_sec = time(NULL);
1854 rep->lct.tv_sec = time(NULL);
1855 rep->lmt.tv_sec = time(NULL);

1857 if (argfl || statreq) {
1858 int doacl;

1860 if (lflg)
1861 doacl = 1;
1862 else
1863 doacl = 0;

1865 if ((*statf)(file, &statb) < 0) {
1866 if (argfl || errno != ENOENT ||
1867 (Lflg && lstat(file, &statb) == 0)) {
1868 /*
1869 * Avoid race between readdir and lstat.
1870 * Print error message in case of dangling link.
1871 */
1872 perror(file);
1873 err = 2;
1874 }
1875 nfiles--;
1876 return (NULL);
1877 }

1879 /*
1880 * If -H was specified, and the file linked to was
1881 * not a directory, then we need to get the info
1882 * for the symlink itself.
1883 */
1884 if ((Hflg) && (argfl) &&
1885 ((statb.st_mode & S_IFMT) != S_IFDIR)) {
1886 if (lstat(file, &statb) < 0) {
1887 perror(file);

new/usr/src/cmd/ls/ls.c 17

1888 err = 2;
1889 }
1890 }

1892 rep->lnum = statb.st_ino;
1893 rep->lsize = statb.st_size;
1894 rep->lblocks = statb.st_blocks;
1895 if (colorflg)
1896 rep->color = ls_color_find(file, statb.st_mode);

1898 switch (statb.st_mode & S_IFMT) {
1899 case S_IFDIR:
1900 rep->ltype = ’d’;
1901 if (Rflg) {
1902 record_ancestry(file, &statb, rep,
1903 argfl, myparent);
1904 }
1905 break;
1906 case S_IFBLK:
1907 rep->ltype = ’b’;
1908 rep->lsize = (off_t)statb.st_rdev;
1909 break;
1910 case S_IFCHR:
1911 rep->ltype = ’c’;
1912 rep->lsize = (off_t)statb.st_rdev;
1913 break;
1914 case S_IFIFO:
1915 rep->ltype = ’p’;
1916 break;
1917 case S_IFSOCK:
1918 rep->ltype = ’s’;
1919 rep->lsize = 0;
1920 break;
1921 case S_IFLNK:
1922 /* symbolic links may not have ACLs, so elide acl() */
1923 if ((Lflg == 0) || (Hflg == 0) ||
1924 ((Hflg) && (!argfl))) {
1925 doacl = 0;
1926 }
1927 rep->ltype = ’l’;
1928 if (lflg || colorflg) {
1929 cc = readlink(file, buf, BUFSIZ);
1930 if (cc < 0)
1931 break;

1933 /*
1934 * follow the symbolic link
1935 * to generate the appropriate
1936 * Fflg marker for the object
1937 * eg, /bin -> /sym/bin/
1938 */
1939 error = 0;
1940 if (Fflg || pflg || colorflg)
1941 error = stat(file, &statb1);

1943 if (colorflg) {
1944 if (error >= 0)
1945 rep->link_color =
1946 ls_color_find(file,
1947 statb1.st_mode);
1948 else
1949 rep->link_color =
1950 lsc_orphan;
1951 }

1953 if ((Fflg || pflg) && error >= 0) {

new/usr/src/cmd/ls/ls.c 18

1954 switch (statb1.st_mode & S_IFMT) {
1955 case S_IFDIR:
1956 buf[cc++] = ’/’;
1957 break;
1958 case S_IFSOCK:
1959 buf[cc++] = ’=’;
1960 break;
1961 case S_IFDOOR:
1962 buf[cc++] = ’>’;
1963 break;
1964 case S_IFIFO:
1965 buf[cc++] = ’|’;
1966 break;
1967 default:
1968 if ((statb1.st_mode & ~S_IFMT) &
1969 (S_IXUSR|S_IXGRP| S_IXOTH))
1970 buf[cc++] = ’*’;
1971 break;
1972 }
1973 }
1974 buf[cc] = ’\0’;
1975 rep->flinkto = strdup(buf);
1976 if (rep->flinkto == NULL) {
1977 perror("ls");
1978 nomocore = 1;
1979 return (NULL);
1980 }
1981 break;
1982 }

1984 /*
1985 * ls /sym behaves differently from ls /sym/
1986 * when /sym is a symbolic link. This is fixed
1987 * when explicit arguments are specified.
1988 */

1990 #ifdef XPG6
1991 /* Do not follow a symlink when -F is specified */
1992 if ((!argfl) || (argfl && Fflg) ||
1993 (stat(file, &statb1) < 0))
1994 #else
1995 /* Follow a symlink when -F is specified */
1996 if (!argfl || stat(file, &statb1) < 0)
1997 #endif /* XPG6 */
1998 break;
1999 if ((statb1.st_mode & S_IFMT) == S_IFDIR) {
2000 statb = statb1;
2001 rep->ltype = ’d’;
2002 rep->lsize = statb1.st_size;
2003 if (Rflg) {
2004 record_ancestry(file, &statb, rep,
2005 argfl, myparent);
2006 }
2007 }
2008 break;
2009 case S_IFDOOR:
2010 rep->ltype = ’D’;
2011 break;
2012 case S_IFREG:
2013 rep->ltype = ’-’;
2014 break;
2015 case S_IFPORT:
2016 rep->ltype = ’P’;
2017 break;
2018 default:
2019 rep->ltype = ’?’;

new/usr/src/cmd/ls/ls.c 19

2020 break;
2021 }
2022 rep->lflags = statb.st_mode & ~S_IFMT;

2024 if (!S_ISREG(statb.st_mode))
2025 rep->lflags |= LS_NOTREG;

2027 rep->luid = statb.st_uid;
2028 rep->lgid = statb.st_gid;
2029 rep->lnl = statb.st_nlink;
2030 if (uflg || (tmflg && atm))
2031 rep->lmtime = statb.st_atim;
2032 else if (cflg || (tmflg && ctm))
2033 rep->lmtime = statb.st_ctim;
2034 else
2035 rep->lmtime = statb.st_mtim;
2036 rep->lat = statb.st_atim;
2037 rep->lct = statb.st_ctim;
2038 rep->lmt = statb.st_mtim;

2040 /* ACL: check acl entries count */
2041 if (doacl) {

2043 error = acl_get(file, 0, &rep->aclp);
2044 if (error) {
2045 (void) fprintf(stderr,
2046 gettext("ls: can’t read ACL on %s: %s\n"),
2047 file, acl_strerror(error));
2048 rep->acl = ’ ’;
2049 acl_err++;
2050 return (rep);
2051 }

2053 rep->acl = ’ ’;

2055 if (rep->aclp &&
2056 ((acl_flags(rep->aclp) & ACL_IS_TRIVIAL) == 0)) {
2057 rep->acl = ’+’;
2058 /*
2059 * Special handling for ufs aka aclent_t ACL’s
2060 */
2061 if (acl_type(rep->aclp) == ACLENT_T) {
2062 /*
2063 * For files with non-trivial acls, the
2064 * effective group permissions are the
2065 * intersection of the GROUP_OBJ value
2066 * and the CLASS_OBJ (acl mask) value.
2067 * Determine both the GROUP_OBJ and
2068 * CLASS_OBJ for this file and insert
2069 * the logical AND of those two values
2070 * in the group permissions field
2071 * of the lflags value for this file.
2072 */

2074 /*
2075 * Until found in acl list, assume
2076 * maximum permissions for both group
2077 * a nd mask. (Just in case the acl
2078 * lacks either value for some reason.)
2079 */
2080 groupperm = 07;
2081 mask = 07;
2082 grouppermfound = 0;
2083 maskfound = 0;
2084 aclcnt = acl_cnt(rep->aclp);
2085 for (tp =

new/usr/src/cmd/ls/ls.c 20

2086 (aclent_t *)acl_data(rep->aclp);
2087 aclcnt--; tp++) {
2088 if (tp->a_type == GROUP_OBJ) {
2089 groupperm = tp->a_perm;
2090 grouppermfound = 1;
2091 continue;
2092 }
2093 if (tp->a_type == CLASS_OBJ) {
2094 mask = tp->a_perm;
2095 maskfound = 1;
2096 }
2097 if (grouppermfound && maskfound)
2098 break;
2099 }

2102 /* reset all the group bits */
2103 rep->lflags &= ~S_IRWXG;

2105 /*
2106 * Now set them to the logical AND of
2107 * the GROUP_OBJ permissions and the
2108 * acl mask.
2109 */

2111 rep->lflags |= (groupperm & mask) << 3;

2113 } else if (acl_type(rep->aclp) == ACE_T) {
2114 int mode;
2115 mode = grp_mask_to_mode(rep);
2116 rep->lflags &= ~S_IRWXG;
2117 rep->lflags |= mode;
2118 }
2119 }

2121 if (!vflg && !Vflg && rep->aclp) {
2122 acl_free(rep->aclp);
2123 rep->aclp = NULL;
2124 }

2126 if (atflg && pathconf(file, _PC_XATTR_EXISTS) == 1)
2127 rep->acl = ’@’;

2129 } else
2130 rep->acl = ’ ’;

2132 /* mask ISARG and other file-type bits */

2134 if (rep->ltype != ’b’ && rep->ltype != ’c’)
2135 tblocks += rep->lblocks;

2137 /* Get extended system attributes */

2139 if ((saflg || (tmflg && crtm) || (tmflg && alltm)) &&
2140 (sysattr_support(file, _PC_SATTR_EXISTS) == 1)) {
2141 int i;

2143 sacnt = attr_count();
2144 /*
2145 * Allocate ’sacnt’ size array to hold extended
2146 * system attribute name (verbose) or respective
2147 * symbol represenation (compact).
2148 */
2149 rep->exttr = xmalloc(sacnt * sizeof (struct attrb),
2150 rep);

new/usr/src/cmd/ls/ls.c 21

2152 /* initialize boolean attribute list */
2153 for (i = 0; i < sacnt; i++)
2154 rep->exttr[i].name = NULL;
2155 if (get_sysxattr(file, rep) != 0) {
2156 (void) fprintf(stderr,
2157 gettext("ls:Failed to retrieve "
2158 "extended system attribute from "
2159 "%s\n"), file);
2160 rep->exttr[0].name = xmalloc(2, rep);
2161 (void) strlcpy(rep->exttr[0].name, "?", 2);
2162 }
2163 }
2164 }
2165 return (rep);
2166 }
______unchanged_portion_omitted_

2248 void
2249 freecachenode(struct cachenode *node)
2250 {
2251 struct cachenode *current = node;
2252 if (current != NULL) {
2253 struct cachenode *grt = NULL;
2254 struct cachenode *lss = NULL;

2256 if (current->grtrchild != NULL) {
2257 grt = current->grtrchild;
2258 freecachenode(grt);
2259 }
2260 if (current->lesschild != NULL) {
2261 lss = current->lesschild;
2262 freecachenode(lss);
2263 }

2265 free(current);
2266 current = NULL;
2267 }
2268 }

2270 void
2271 freecachenodes(void)
2272 {
2273 freecachenode(groups);
2274 freecachenode(names);
2275 }

2278 /*
2279 * get name from cache, or passwd file for a given uid;
2280 * lastuid is set to uid.
2281 */
2282 static char *
2283 getname(uid_t uid)
2284 {
2285 struct passwd *pwent;
2286 struct cachenode *c;

2288 if ((uid == lastuid) && lastuname)
2289 return (lastuname);

2291 c = findincache(&names, uid);
2292 if (c->initted == 0) {
2293 if ((pwent = getpwuid(uid)) != NULL) {
2294 SCPYN(&c->name[0], pwent->pw_name);
2295 } else {
2296 (void) sprintf(&c->name[0], "%-8u", (int)uid);

new/usr/src/cmd/ls/ls.c 22

2297 }
2298 c->initted = 1;
2299 }
2300 lastuid = uid;
2301 lastuname = &c->name[0];
2302 return (lastuname);
2303 }
______unchanged_portion_omitted_

2669 /* Set extended system attribute timestamp display */

2671 void
2672 set_sysattrtm_display(char *name, struct lbuf *rep)
2673 {
2674 uint_t nelem;
2675 uint64_t *value;
2676 int i;
2677 size_t len;

2679 if (nvpair_value_uint64_array(pair, &value, &nelem) == 0) {
2680 if (value != NULL) {
2626 if (*value != NULL) {
2681 len = strlen(name);
2682 i = 0;
2683 while (rep->extm[i].stm != 0 && i < sacnt)
2684 i++;
2685 rep->extm[i].stm = value[0];
2686 rep->extm[i].nstm = value[1];
2687 rep->extm[i].name = xmalloc(len + 1, rep);
2688 (void) strlcpy(rep->extm[i].name, name, len + 1);
2689 }
2690 }
2691 }
______unchanged_portion_omitted_

