new usr/src/cmd/Is/ls.c

R R R R

72740 Mon Jun

5 10: 46: 46

new usr/src/cnd/Is/ls.c
8175/ 8183: nenory |eak fixes + incorrect test of dereferenced pointer

R R R R

__unchanged_portion_onitted_

219
220
221
222

224
225
226
227

229
230
231
232
233
234
235

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

268
269
270
271
272
273
274
275
276
277

/*

* A nunbuf _t

*/

typedef char

static struct dchain *d
static struct dchain *c
static struct dchain *d
static char *curdir;
static int first =
static int nfiles =
static int nargs =
static int maxfils
static int maxn =
static int quant n
static size_t hl bf sz
static struct |buf
static struct | buf
static struct |buf
static struct |buf
static char

static char

static char

static void

static void

static void

static void

static void

static void

static int

static void

static void

static struct cachenode
static void

static void

static void

static int

static char

static void

static void

static |Is_color_t
static void

static void

static int

static int

static int

static int

static int

static int

static int

static int

static int

static int

2017

is used when converting a nunber to a string representation

nunbuf _t [NUVBER W DTH] ;

first; /* start of the dir chain */
dfirst; /* start of the current dir chain */
t enp; /* tenporary - used for linking */
/* the current directory */
1; /* true if first line is not yet printed */
= 0; /* nunber of flist entries in current use */
0; /* nunber of flist entries used for argunments */
= 0; /* nunber of flist/lbuf entries allocated */
0; /* nunber of flist entries with |bufs asigned */
= 64; /* allocation growh quantum */
= L
nxt | bf; / ptr to next |buf to be assigned */
**h| bf; /* | buf bookkeeping */
**flist; /* ptr to list of Ibuf pointers */
*gstat(char *, int, struct ditem*);

*getnanme(uid_t);
*getgroup(gid_t);
*makenane(char *, char *);
pentry(struct |buf *);
col um(voi d);
pnode(node_t afl ag);
sel ection(int *);
new_| i ne(void);
rddir(char *, struct ditem*);
strcol (unsi gned char *)
penm(struct [buf ** struct |buf ** int);
pdi rectory(char *, int, int, int, struct ditem*);
*findi ncache(struct cachenode **, |ong);
freecachenodes(voi d);
csi _pprintf(unsigned
pprintf(char *, char ;
conpar (struct **ppl, struct |buf **pp2);
*nunber _to_scal ed_string(nunbuf _t buf,
unsi gned | ong | ong nunber,
long scale);
record_ancestry(char *, struct stat *,
int, struct ditem?*);
I's_color_init(void);
*|'s_col or _find(const char *,
I's_start_color(ls_color_t *);
I's_end_col or (void);

char *);
* .

struct |buf *,

nmode_t);

new usr/src/cmd/Is/ls.c

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

319
320
321
322

324
325

327
328

330
331

333
334
335
336
337
338

340

342
343

static int I flg;

static int nflg;

static int nflg;

static int of | g;

static int pflg;

static int qf 1 g;

static int rflg =1, /* init to 1 for special use in conmpar */
static int sflg;

static int tflg;

static int uflg;

static int Ufl g;

static int wl g;

static int xflg;

static int Afl g;

static int Bf | g;

static int Ccflg;

static int Efl g;

static int Fflg;

static int Hf | g;

static int Lflg;

static int Rl g;

static int Sflg;

static int vilg;

static int Vfl g;

static int safl g; /* bool ean extended systemattr. */
static int sacnt ; /* nunber of extended systemattr. */
static int copt ;

static int vopt ;

static int tnflg; /* create tine ext. systemattr. */
static int ctm

static int atm

static int mm

static int crtm

static int alltm

static |ong hscal e;

static node_t fl ags;

static int err = 0; /* Contains return code */
static int colorflg;

static int file_typeflag;

static int noflist = 0;

static uid_t lastuid = (uid_t)-1;

static gid_t lastgid = (gid_t)-1;

static char *l astuname = NULL;

static char *| astgname = NULL;

/* statreq > 0 if any of sflg, (n)lflg, tflg, Sflg, colorflg are on */
static int statreq;

static uint64_t bl ock_si ze = 1;

static char *dotp = ".";

static u_l ongl ong_t tbl ocks; /* nunber of blocks of files in a directory */
static time_t year, now,

static int num col s = 80;

static int col wi dt h;

static int filewdth;

static int fi xedwi dt h;

static int nonocor e;

static int curcol ;

static struct Wi nsi ze win;

/* if tinme_fnt_newis left NULL, tines */

static const char

tine_fnm _old is used for all
old =

time_fnt_ FORMAT_OLD; / non-recent files */

new usr/src/cmd/Is/ls.c

344
345
346

348
349
350
351
352
353
354
355
356
357
358
359
360

362
363

365
366
367
368
369
370
371
372
373
374
375
376
377
378

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

398
399
400
401
402
403
404
405

407
408

static const char *time_fm_new = FORMAT_NEW /* recent files */
static int tine_custom /* 1=0if a customformt */
static char ti me_buf [FMTSI ZE] ; /* array to hold day and time */
static int | sc_debug;
static |Is_color_t *| sc_nat ch;
static Is_color_t *| sc_col ors;
static size_t | sc_ncol ors;
static char *| sc_bol d;
static char *| sc_underl i ne;
static char *| sc_blink;
static char *| sc_reverse;
static char *| sc_conceal ed;
static char *| sc_none;
static char *| sc_setfg;
static char *| sc_set bg;
static |Is_color_t *| sc_or phan;
#defi ne NOTWORKI NGDI R(d,) (((1y <2) 11\
(strenp((d) + (1) - 2, "/.") '=0))
#defi ne NOTPARENTDI R(d, |) (((1y <3) ||\
(stremp((d) + (1) - 3, “/..") 1=0))
/* Extended system attributes support */
static int get_sysxattr(char *, struct |buf *);
static void set_sysattrb_display(char *, boolean_t, struct |buf *);
static void set_sysattrtmdisplay(char *, struct |buf *);
static void format _time(time_t, time_t);
static void print_tinme(struct |buf *);
static void format_attrtime(struct | buf *);
static void *xmal |l oc(size_t, struct |buf *);
static void free_sysattr(struct |buf *);
static nvpair_t *pair;
static nvlist_t *response;
static int acl_err;
const struct option long_options[] = {
all", no _ar gunent , NULL, "a' },
"almost-all™, no_argunent, NULL, 'A 1},
"escape", no_argument, NULL, b},
"cl assi fy no_argunent, NULL, 'F 1},
" human- r eadabl e", no_argunment, NULL, 'h' },
"dereference", no_argunent, NULL, 'L’ },
"deref erence-command-|ine", no_argunent, NULL, 'H 1},
"ignore-backups", no_argunent, NULL, 'B },
"inode", no_argunent, NULL, "i’ },
"nureric-uid-gid', no_argunent, NULL, 'n’ },
"no-group”, no_argunent, NULL, "o’ },
"hi de-control -chars", no_argunent, NULL, 'q 1},
"reverse", no_argunent, NULL, 'r’ },
“recursive", no_argument, NULL, 'R 1},
"size", no_argunent, NULL, 's’ },
"w dth", required_argunment, NULL, 'w 1},
/* no short options for these */
"bl ock-size", required_argunent, NULL, O },
"full-tinme", no_argunent, NULL, O },
"si", no_argument, NULL, O },
“color", optional _argunent, NULL, 0 },
"col our", optional _argunent, NULL, O},
"file-type", no_argunent, NULL, O },
"time-style", required_argunent, NULL, O },
{0, 0, 0, 0O}

I

new usr/src/cmd/Is/ls.c

410
411
412
413
414
415
416
417
418
419
420
421
422

424
425
426
427
428
429
430
431
432

434
435
436
437
438
439
440
441

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

462
463
464
465
466
467
468
469
470

472
473
474
475

int
mai n(int

{

(voi d)
#i f !defi ned(TEXT_DOVAI N)
#defi ne TEXT_DOVAI N " SYS_TEST"

#endi f

#endi f

V\/nile ((c = getopt_|

" +aAbBc CdeEf thHI kl Lrmopqgr RsSt ulw: x1@V/ : % ",

&option | ndex))
SwWi t

argc,

int
int

nt

int
int
int
char
struct
struct
struct

char *argv[])

c;
[

wi dt h;

amno = 0;

opterr = 0;
option_index = 0;
*told = NULL;

| buf *ep;
| buf I b;
ditem *myinfo = NULL;

setl ocal e(LC_ALL, "");
/* Shoul d be defined by cc -D */
/* Use this only if it weren't */

(voi d) textdomai n(TEXT_DOVAIN);
#i f def STANDALONE
if (argv[0][0] == "'\0")

argc = getargv("ls", &argv, 0);

v_sec = tlma(NULL) ;
0;

v
ml me.tv_sec - 6L*30L*24L*60L*60L;
me.tv_sec + 60;

/* 6 nonths ago */

ong(argc, argv,
| ong_opti ons,
1= -1)

h (c) {

/* non-short options */

case O

if (strcnp(l ong optl ons[opti on_i ndex] . nane,
"color") =
strcrrp(l ong_ optl ons[option_i ndex] . nane,
"colour") ==
if (optarg == NULL ||
strcnp(optarg, "always") == 0 ||

strcnp(optarg,
strcnp(optarg,
col orfl g++;

statreq++;
conti nue;
}
if (strcnp(optarg, "auto") == 0 ||
strcnp(optarg, "tty") == |

strcnp(optarg, "if-tty") == 0) {
if (|satty(1) == 1) {
col orfl g++;

statreq++;
conti nue;
}
if (strcnp(optarg, "never") == 0 ||
strcnp(optarg, "no") == 0 ||
strcnp(optarg, "none") == 0) {

colorflg = 0;

new usr/src/cmd/Is/ls.c

476
477
478
479
480
481
482
483

485
486
487
488
489
490

492
493
494
495
496
497

499
500
501
502
503
504

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

530
531
532
533
534
535
536
537
538
539
540
541

conti nue;

}
(void) fprintf(stderr,
gettext("Invalid argument ' %’ for
-color\n"), optarg);
++opterr;
conti nue;

}

if (strcrrp(l ong_options[option_i ndex] . nane,
'si") ==) {
hfl g+
hscal e = 1000;
conti nue;

}

if (strcrrp(l ong_ optl ons[option_i ndex] . nang,
"bl ock-si ze")
size_t scal e_I en = strlen(optarg);
uint64_t scale = 1;
uint64_t kilo = 1024;
char scal e_c;

if (scale_len == 0) {
(v0|d) fprlntf(stderr gettext(
"I'nvalid block size \"%\’'\n"),
optarg);
exit(1);
}

scale_c = optarg[scale_len - 1];
if (scale_c == "B
/* need at least digit, scale, B */
if (scale_len < 3)
(void) fprintf(stderr, gettext(
"l nvalid block size "
"\"os\'\n"), optarg);
exit(1);

kilo = 1000;
scale_c = optarg[scale_len - 2];
if (isdigit(scale_c)) {

(void) fprintf(stderr,

gettext("Invalid block size"

" \"us\’\n"), optarg);
exit(1);
}
/*
* make optarg[scale_len - 1] point to
* the scale factor

*/
--scal e_l en;
}
sthch (scale c) {
case :
case 'Y :
scale *= kil o;
/ * FALLTHROUGH* /
case 'Z':
case 'z’:
scale *= kil o;
/ * FALLTHROUGH* /
case 'E:
case 'e’:

scale *= kil o;

new usr/src/cmd/Is/ls.c

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

573
574
575

577
578
579
580
581
582
583
584
585
586

588
589
590
591
592
593
594

597
598
599
600
601
602
603
604
605

607

/ * FALLTHROUGH* /
case 'P':
case

P

p': .
scale *= kil o;
/ * FALLTHROUGH* /

case 'T':

case 't’:

scale *= kil o;

/ * FALLTHROUGH* /

case :

case

scale *= kil o;
/ * FALLTHROUGH* /
case 'M:
case 'm:
scale *= kil o;
/ * FALLTHROUGH* /
case '’ :
case ’

’T?‘S

scale *= kil o;

if (lisdigit(scale_c)) {
(void) fprintf(stderr,
gettext(" Invalid character
followng bl ock size in "
"\"%s\'\n"), optarg);
exit(1);

}
/* NULL out scale constant if present */

if (scale > 1 && '|sd|g|t(sca|e c))
optarg[scale_len - 1]

/* Based on testing, this is what GNU | s does */

bl ock_size = strtoll (optarg, NULL, 0) * scale;
if (block_size < 1)

(void) fprintf(stderr,
gettext("Invalid block size "
"\"os\'\n"), optarg);

exit(1);

conti nue;

}

if (strcnp(long_options[option_index].nane,
"file-type") == 0)
file_typeflg++
Ffl g++;
statreq++;
conti nue;

I-time

Ef | g++;
statreq++;
eflg = 0;
tine_fnt_old
time_fnt_new
continue;

if (strcrrp(l ong_| optl ons[opti on_i ndex] . nane,
"fu me") 0) {

FORMAT | SO FULL;
FORMAT_| SO _FULL;

}

if (strcnp(long_options[option_index].nane,

new usr/src/cmd/Is/ls.c

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
637
642
643

645
646
647

649
650
651
652
653
654
655
656
657
653
658
659
660
661

663
664
665
666
667

669
670
671

e") ==0) {)
e -E, but doesn’t inply -1 */
if (strcnp(optarg, "full-iso") == 0) {

Ef | g++;
statreq++;
eflg = 0;
time_fmt_old
time_fm_new

FORMAT | SO FULL;
FORMAT_| SO_FULL;

conti nue;

}

if (strcnp(optarg, "long-iso") == 0) {
statreq++;
Eflg = 0O;
eflg = 0;
time fmt_old = FORMAT | SO LONG
time_fnt_new = FORVAT_I SO _LONG
conti nue;

}

if (strcnp(optarg, "iso") == 0) {
statreq++;
Eflg = 0O;
eflg = 0;
time fm_old = FORMAT | SO OLD;
time_fnt_new = FORMAT_| SO NEW

) conti nue;

/* shoul d be the default */

if (strcnp(optarg, "locale") == 0)
time_fm_old = FORVAT_OLD;
time_fnmt_new = FORVAT_NEW
conti nue;

}

if (optarg[0] =="+") {
char *tnew;
char *told, *tnew,
char *p

size_t timelen = strlen(optarg);

p = strchr(optarg, '\n’);
if (p !'= NULL)

*p++ = '\0;
/*
* Time format requires a | eading and
* trailing space
* Add roomfor 3 spaces + 2 nulls
* The + in optarg Is replaced with
* a space.
*/
tinelen += 2 + 3;
told = realloc(told, tinelen);
told = nalloc(tinelen);
if (told == NULL) {
perror("ls");
exit(2);
}
(void) nmenset(told, 0, tinelen);
told[0] ="' ";
(void) stricat(told, &optarg[1],
tinelen);
(void) strlcat(told, " ", tinelen);

if (p!= NULL)
size_t tnew_|len;
size_t told_len =strlen(told);

new usr/src/cmd/Is/ls.c

673
668
674
675
670

677
678
679
680
681
682
683
684
685
686
687

689
690
691
692
693
694

696
698 case

699
700

701 case ’

702
703

704 case ’

705
706
707

708 case ’

709

710

711 case
712

713

714

715

716

717

718

719 case
720

721

722 #ifdef XPGA

723

724 #endi f

725

726 case ’

727
728

729 case ’

730
731
732
733
734
735

old + told_len + 1;
old + strlen(told) + 1;
inelen -

tnew{0] =" ’;

(void) strlcat(tnew, p,
tnew_| en);

(void) strlcat(tnew, " ",
tnew_| en);

time_fm _new =
(const char *)tnew,

} else {

time_fnt_new =

(const char *)told;

}

time_fnm _old = (const char *)told;
time_custom= 1;
conti nue;

conti nue;

cont i nue;
af | g++;
conti nue;

Afl g++;
conti nue;

bflg = 1;

qgfl g 0;
conti nue;

Bflg = 1;

conti nue;

uflg = 0;
atm
ctm
nt m ;
crtm= 0;
cfl g++;

conti nue;
Clg
nflg

mniaun
coo

1;
0;

Iflg = 0;
conti nue;

dfl g++;
conti nue;

ef | g++;

I f1g++;
statreq++;
Eflg = 0;

FORMAT_LONG
FORMAT_LONG

new usr/src/cmd/Is/ls.c

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801

#i f def XPG4
#endi f

case

case

case

case

case

case

case

case

case

case

case

case

case

conti nue;
g++;
g++;
treqg++;
g =0;
ne_fnt_old
ne_fnt_new
ntinue;

fl
fl
ta
fl
FORMAT | SO FULL;
FORMAT_| SO FULL;

|
s
e
ti
ti
co
fflg++;

conti nue;

Ffl g++;
statreq++;
conti nue;

gf | g++;

I flg++;
statreq++;
conti nue;

hfl g++;
hscal e = 1024;
conti nue;

i—|f|g++;
/* -Hand -L are nutual ly exclusive */
Lflg = 0O;

conti nue;

i flg++;
conti nue;

bl ock_size = 1024;
cont i nue;

*

mninino+
a--

eeet

/* -Hand -L are nutual |y exclusive */

statreq++;
g =20

new usr/src/cmd/Is/ls.c

802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867

case

case

case

case

case

case

case

case

case

case

case

#if | defined(XP&4)

#endi f

case

—

"W

of | g++;

I f1g++;
statreq++;
conti nue;

pfl g++;
statreq++;
continue;

gflg = 1;
bflg =

continue;

'rfI g =-1;
cont i nue;

R :
Rf | g++;

statreq++;

cont i nue;

sfl g++;
statreq++;
conti nue;

conti nue;

uf I g++;
conti nue;

Vfl g++;

/ * FALLTHROUGH* /

;/fl g++;

if (1flg)

conti nue;

I f1g++;
statreq++;
Clg = 0;
xflg ;
nflg 0;
conti nue;

W | g++,
numcols =

atoi (optarg);

10

new usr/src/cmd/Is/ls.c

868

869 case ' x’
870

871

872

873 #ifdef XPG4

874

875 #endi f

876

877 case '1':

878
879

continue;

880 case ' @:

881 #if !defined(XPGA)
882

883

884

885

886

887 #endi f
888

889

890

891

892

893

894

* -1 has precedence over -@

if (1flg)
conti nue;

atfl g++;

| flg++;
statreq++
Clg
xflg
nflg ;
conti nue;

0;

895 case '/’

896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913

saf | g++;
if (optarg != NULL) {
if (strcnrp(optarg, "c") ==

914 case '%:

915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933

copt ++;
vopt = O;
} elseif (strcrrp(optarg
vopt ++;
copt = 0;
} else
opterr ++;
} else
opterr++;
I f1g++;
st atreq++
Cflg = O
xflg = 0;
nflg = 0;
conti nue;
tnfl g++;

if (optarg !'= NULL) {

if (strcnp(optarg,
ct me+;
atm = 0;
nmm= 0;
crtm= 0;

} elseif (strcnp(optarg,
at m+;
ctm= 0;
mm= 0,
crtm
uflg
cflg

} else |f (strcnp(optarg,

"etime"

eLe

atm-O
ctm = 0;
crtm= 0;

0 {

W) =0) {

) ==0) {
"atinme") == 0) {
"mime") == 0) {

11

new usr/src/cmd/Is/ls.c

934 uflg
935 Ig
936 } else if (st
937 crtmt
m:
m=
m=

+"II 1]

938 a
939 c
940 nmt
941 uf
942 cf
943 } elseif

944 al
945 atm
946 ctm
947 mm

948 crtm= 0;

949 } else

O‘

’

n’D(optarg,

950 opterr++;

951 } else
952 opterr++,;

954 Sflg = 0;
955 statreq++;
956 nflg = 0;
957 conti nue;
958 case ' ?':

959 opterr++;
960 conti nue;
961 }

963 if (opterr) {
964 (void) fprintf(stderr, gettext(

965 "usage: |s - aAbBc CdeEf FghHi ki eropqusStuUNval@%c |
"

966 "%®atime | crtine | ctinme |
967 " [files]\n"));

968 exit(2);

969 1

971 if (fflg)
972 al
973 |
974 S
975 t
976 Si
977 st
978 }

eeee

o
"=
e

@ 1

980 fixedwidth = 2;

981 if (pflg || Fflg)

982 fixedw dt h++;

983 if (iflg)

984 fixedwi dth += 11;
985 if (sflg)

986 fixedwi dth += 5;

988 if (Iflg) {

989 if (!gflg&&l 1g)

990 of g: flg = 1;
991 el se

992 if (gflg & oflg)
993 gflg = oflg
994 Cflg = nflg = 0O;
995 }

997 if('wflg&&(CfIgH nflg)) {
998 char *clptr
999 if ((cI ptr = getenv("COLUWS"))

"
e

ntine |

1= NULL)

(0|0t arg,

12

new usr/src/cmd/Is/ls.c

1000
1001
1002
1003
1004
1005
1006
1007

1009
1010
1011
1012
1013
1014
1015
1016

1018
1019
1020

1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

1044
1045

1047

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

numcols = atoi(clptr);

#i f def TERM NFO

#endi f

el se {
if (ioctl(1, TIOCCGN NSZ, &win) != -1)
numcols = (win.ws_col == 0 ? 80 : win.ws_col)

}
}
/*
* When certain options (-f, or -Uand -1, and not -1, etc.) are
* specified, don't cache each dirent as it’s read. This 'noflist’
* option is set when there’s no need to cache those dirents; instead,
* print themout as they' re read.
*/

if ((Ulg || fflg) & !Cflg && !1flg & !iflg && statreq == 0)
noflist = 1;

if (numcols < 20 || numcols > 1000)
/* assume it is an error */
num col s = 80;

/* allocate space for flist and the associated */

/* data structures (1 bufs) */
maxfils = quantn;
if (((flist = malloc(maxfils * sizeof (struct lbuf *))) == NULL)
((nxtlbf = malloc(quantn * sizeof (struct Ibuf))) == NULL)) {
perror("ls");
exit(2);
if ((hlbf = malloc(sizeof (*hlbf))) == NULL) {
perror("ls");
exit(2);
}
hl bf [0] = nxtl bf;
if ((amno = (argc-optind)) == 0) {
/*
* case when no nanes are given
* in |s-command and current
* directory is to be used
*
/
argv[optind] = dotp;
}
if (colorflg)
I's_color_init();
for (i =0; i < (amno ? amno : 1); i++) {

/
If we are recursing, we need to nmake sure we don’t

get into an endless |oop. To keep track of the inodes
(actually, just the directories) visited, we

nmaintain a directory ancestry list for a file

hi erarchy. As we go deeper into the hierarchy,

a parent directory passes its directory |ist

info (device id, Inode nunber, and a pointer to

its parent) to each of its children. As we

process a child that is a directory, we save

Its own personal directory list info. W then

check to see if the child has already been

processed by conparing its device id and inode

nunber fromits own personal directory list info

to that of each of its ancestors. |If there is a

mat ch, then we know we’ve detected a cycle.

* Ok % ok % ok 3k ok % ok kO Ok % ok

13

new usr/src/cmd/Is/ls.c

1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131

if (Rilg) {
/

This is the fi
(first in adi
this parent’s
only initializ
recursing, oth

* Ok ok k% ok F

if ((nyinfo = (st
si zeof (struc
perror ("l
exit(2);
} else {
nmyi nf o- >d
nyi nf o- >i
nyi nf o- >p

gs tat((argv[op

info)) == NULL)

f (normcore)
exit(2);

err = 2;

opti nd++;

conti nue;

ep->l n.namep = (*argv[opt
ep->l flags | = | SARG

_Ie\Mdt

rst parent in this |ineage

rectory hierarchy), so
parent doesn’t exist.
e nyinfo when we are
erwise it’s not used.

ruct ditem *)mall oc(
t ;ﬂten))) == NULL) {
s"

ev = 0;
no = O;
arent = NULL

EI nd] ? argv[optind]

W

do

tp),

ind] ? argv[optind] : dotp);

opti nd++;

nar gs++; /* count good argunments stored in flist

if (acl_err)
err = 2;

= fixedwidth + filewidth

9)

gsort(flist, (unsigned)nargs, sizeof (struct |buf *),

(int (*)(const void *, const void *))conpar);

0; i < nargs; i++)

if ((flist[i]->ltype =="d && dflg == 0) || fflg)
br eak;

per(& 1ist[0], & list[i], 0);

for (;

< nargs; i++)
pdirectory(flist[i]->In.n
(amno > 1), nargs, O
if (nonocore)

exit(2);
/* -R print subdirectori
while (dfirst || cdfirst)
/* Place direct s
while (cdfirst) {
/* revers
dtenmp = ¢
cdfirst =
dtenmp ->
dfirst

}
/* take off first
dtemp = dfirst;

amep Rilg
, flist[i]

'
v—
»—

es found */

ubdirs on front in right

or der

e cdfirst onto front of dfirst

dfirst;
cdfirst -> dc_next;
dc_next = dfirst;

= dtenp;

dir on dfirst & print

it

*/

*/

*/
*/

new

usr/src/cnd/1s/ls.c 15

1132 dfirst = dfirst->dc_next;
1133 pdi rectory(dtenp->dc_nane, 1, nargs,
1134 dt emp- >cycl e_det ect ed, dtenp->nyanci nfo);
1135 i f (nonocore)
1136 exit(2);
1137 free(dt enp->dc_nane);
1138 free(dtenp);
1139 }
1140 }
1142 for (i =0; i < hlbfsz; i ++)
1143 free(hlbf[i]);
1145 free(told);
1146 free(hl bf);
1147 free(flist);
1148 freecachenodes();
1150 return (err);
1151 }
__unchanged_portion_omtted_
1778 /| *
1779 * get status of file and reconputes thbl ocks;
1780 * argfl =1 if file is a nane in |Is-command and = 0
1781 * for filename in a directory whose nanme is an
1782 * argunent in the command;
1783 * stores a pointer in flist[nfiles] and
1784 * returns that pointer;
1785 * returns NULL if failed;
1786 */
1787 static struct |buf *
1788 ?st at(char *file, int argfl, struct ditem *nyparent)
1789
1790 struct stat statb, statbl;
1791 struct |buf *rep;
1792 char buf [BUFSI Z] ;
1793 ssize_t cc;
1794 int (*statf)() = ((Lflg) || (Hlg & argfl)) ? stat | stat;
1795 int aclcnt;
1796 int error;
1797 aclent_t *tp;
1798 o_node_t groupperm nask;
1799 int grouppernfound, maskfound;
1801 if (nonobcore)
1802 return (NULL);
1804 if (nfiles >= maxfils) {
1805 /*
1806 * all flist/lIbuf pair assigned files, time to get some
1807 * nmore space
1808 */
1809 maxfils += quantn
1810 if (((flist =realloc(flist,
1811 maxfils * sizeof (struct lbuf *))) == NULL) ||
1812 ((nxtlbf = malloc(quantn *
1813 si zeof (struct Ibuf))) == NULL)) {
1814 perror("ls");
1815 nonobcore = 1;
1816 return (NULL);
1817 }
1818 if ((hlbf = realloc(hlbf, sizeof(*hlbf) * (hlbfsz + 1))) == NULL
1819 perror("ls");
1820 nonocore = 1;
1821 return (NULL)

new usr/src/cmd/Is/ls.c

1822
1823
1824

1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838

1840
1841

1843
1844
1845
1846
1847
1848
1849

1851

1853
1854
1855

1857
1858

1860
1861
1862
1863

1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877

1879
1880
1881
1882
1883
1884
1885
1886
1887

}

hl bf [hl bf sz++] = nxtl bf;
}
/

16

nfiles is reset to nargs for each directory

that is given as an argunent maxn i
that already has one assigned.
/
if (nfiles >= maxn) {
rep = nxtl bf ++;
flist[nfiles++] = rep;
maxn = nfiles;
} else {
rep = flist[nfiles++];
}

/* Cdear the |buf */
(void) menset((void *) rep, 0, sizeof

/*

s checked

*
*
*
* to prevent the assignnment of an |buf to a flist entry
*
*
f

(struct |buf));

* When noflist is set, none of the extra information about the dirent

* will be printed, so omt remaining
* as well as the stat(2) call.
*/

if (targfl && noflist)
return (rep);

/* Initialize non-zero nmenbers */

rep->lat.tv_sec = tinme(NULL);
rep->lct.tv_sec = tinme(NULL);
rep->lnt.tv_sec = tinme(NULL);

if (argfl || statreq) {
int doacl;

if (1flg)
doacl

1
el se
doacl = 0;

if ((*statf
if || errno !=

)(file
(argfl
(Lflg && Istat(fil
/

*
* Avoid race
* Print error

perror(file);
err = 2;

nfiles--;
return (NULL);

for the symink itself.

if ((Hflg) & (argfl) &&
((statbh.st_nmode & S_I FMI)

* ok ok ok %
-~

initialization of this |buf

, &stathb) < 0) {

ENCENT | |
e, &tath) == 0)) {

bet ween readdir and Istat.
message in case of dangling |ink.

If -Hwas specified, and the file |linked to was
not a directory, then we need to get the info

!=S_IF?IR)){

if (Istat(file, &statb) < 0)

perror(file);

new usr/src/cmd/Is/ls.c 17

1888
1889
1890

1892
1893
1894
1895
1896

1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931

1933
1934
1935
1936
1937
1938
1939
1940
1941

1943
1944
1945
1946
1947
1948
1949
1950
1951

1953

err = 2;
}

rep->l num = statb. st_ino;
rep->l size = statbh. st_size;
rep->l bl ocks = statb. st_bl ocks;
if (colorflg)
rep->color = Is_color_find(file, stath.st_node);

switch (statbh.st_node & S_IFMI) {
case S IFDR
rep->ltype = 'd’;
if (Rilg) {
record_ancestry(file, &statb, rep,
argfl, nyparent);

break;
case S_| FBLK:
rep->ltype
rep- >l size
break;
case S_| FCHR:
rep->ltype
rep- >l size
br eak;
case S | FIFO
rep->ltype ps
br eak;
case S_| FSOCK:
rep->ltype
rep->| size
br eak;
case S | FLNK:
/* synbolic |inks may not have ACLs, so elide acl() */
If((Lf|9==0)I|(Hf 0) Il
((Hflg) &&('argfl))) n
doacl = 0;

(off_t)stat b. st _rdev;

o
(of f _t)stathb.st_rdev;

— .

rep->ltype ;
if (Iflg || colorflg) {
cc = readlink(file, buf, BUFSIZ);
if (cc <0)
br eak;

*

* follow the synbolic Iink

* to generate the appropriate
* Fflg marker for the object
* eg, /bin -> /sym bin/
*
r
f

r ;
Ff || pflg || colorflg)
error = stat(file, &statbil);

if (colorflg) {
if (error >= 0)
rep->link_color =
I's_color_find(file,
statbl. st _node);
el se
rep->link_color =
| sc_or phan;

}
if ((Fflg || pflg) &k error >= 0) {

new usr/src/cmd/Is/ls.c 18

1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982

1984
1985
1986
1987
1988

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019

switch (statbl.st_node & S_IFMI) {
case S IFD R
buf[cc++] ="1/";
br eak;
case S_| FSOCK:
buf[cc++] ="'=";
br eak;
case S_| FDOOR:
buf [cc++] = "'>";
break;
case S | FIFQ
buf [cc++] ="|";
br eak;
defaul t:
if ((statbl.st_node & ~S | FMI) &
(S_I'XUSR| S_ | XGRP| S IXOTH))
buf[cc++] ="
break;

}

}

buf[cc] ='\0

rep—>f|inkto = strdup(buf)

if (rep->flinkto == NULL) {
perror("ls");
nonocore = 1;
return (NULL);

}
br eak;

-

* ok kb ok

I's /sym behaves differently fromls /sym
when /symis a synbolic link. This is fixed
when explicit argunents are specified.
/

#i f def XPGG

#el se

#endi f /*

/* Do not fo
if ((targfl)
(stat(fi

Ilow a symink when -F is specified */
I|(rofl && Fflg) ||
le, &statbl) < 0))

/* Follow a symink when -F is specified */
if (targfl || stat(file, &statbl) < 0)
XPG */
bre
if ((statbl st node & S | FMIN) =
statb = statbi;
rep->ltype = 'd’
rep->l size = statbl st_si ze;
if (Rflg) {
record_ancestry(file, &stath, rep,
argfl, myparent);

= SIFDR) {

br eak;

case S_| FDOOR:
rep->ltype = 'D;
br eak;

case S | FREG
rep >ltype = '-7;
br eak;

case S_| FPORT:
rep->ltype = 'P;
break;

defaul t:
rep->ltype = '7?

new usr/src/cnd/1s/ls.c 19
2020 br eak;

2021 }

2022 rep->lflags = statbh.st_node & ~S_| FM;

2024 if (!S_| SREGstath.st_node))

2025 rep->lflags | = LS _NOTREG

2027 rep->luid = statb.st_uid;

2028 rep->lgid = statbh.st_gid;

2029 rep->lnl = stath. st_nl ink;

2030 if (uflg|| (tnflg atm)

2031 rep->Intime = statb.st_atim

2032 else if (cflg || (tnflg & ctny)

2033 rep->Intime = statb.st_ctim

2034 el se

2035 rep->Intime = statb.st_ntim

2036 rep->lat = statb.st_atim

2037 rep->lct = stath.st_ctim

2038 rep->lnmt = statb.st_ntim

2040 /* ACL: check acl entries count */

2041 if (doacl) {

2043 error = acl _get(file, 0, &rep->aclp);

2044 if (error)

2045 (voi d) fprintf(stderr,

2046 gettext(" can’t read ACL on %: %\n"),
2047 file, acl strerror(error))

2048 rep->acl ="' ’;

2049 acl _err++;

2050 return (rep);

2051 }

2053 rep->acl ="' ";

2055 if (rep->aclp &&

2056 ((acl flags(rep >ac| p) & ACL_IS TRIVIAL) == 0)) {
2057 rep->acl =

2058 /*

2059 * Special handling for ufs aka aclent_t ACL's
2060 *

2061 if (acl_type(rep->aclp) == ACLENT_T) {

2062 /*

2063 * For files with non-trivial acls, the
2064 * effective group perm ssions are the
2065 * intersection of the GROUP_OBJ val ue
2066 * and the CLASS _OBJ (acl nmsk) val ue.
2067 * Determ ne both the GROUP_OBJ and
2068 * CLASS_OBJ for this file and insert
2069 * the | ogical AND of those two val ues
2070 * in the group permssions field

2071 * of the Iflags value for this file.
2072 */

2074 /*

2075 * Until found in acl list, assune
2076 * maxi mum perm ssions for both group
2077 * a nd mask. (Just in case the acl
2078 * | acks either value for sone reason.)
2079 *

2080 groupperm = 07;

2081 mask = 07;

2082 groupper nf ound = O;

2083 maskfound = 0;

2084 acl cnt = acl _cnt(rep->aclp);

2085 for (tp =

new usr/src/cmd/Is/ls.c 20

2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099

2102
2103

2105
2106
2107
2108
2109

2111

2113
2114
2115
2116
2117
2118
2119

2121
2122
2123
2124

2126
2127

2129
2130

2132

2134
2135

2137

2139
2140
2141

2143
2144
2145
2146
2147
2148
2149
2150

(aclent_t *)acl _data(rep->aclp);
aclcnt--; tp++) {
if (tp->a_type == GROUP_OBJ) {
groupperm = tp->a perm
groupper nf ound =
continue;

}

if (tp->a type == CLASS 0BJ) {
mask = tp->a_perm
maskfound = 1;

}
i f (grouppernfound && maskfound)
br eak;

/* reset all the group bits */
rep->lflags & ~S_| R\KG

/*

* Now set themto the |ogical AND of

* the GROUP_OBJ permi ssions and the

* acl mask.

*/

rep->lflags | = (groupperm & nask) << 3;

} else if (acl_type(rep->ac| p) == ACE_T) {
node;
m)de = grp_mask_to rmde(rep)
rep->lflags & =S 1
rep->lflags | = rmde

}

if ('vflg & 'Vflg && rep->aclp) {
acl free(rep >acl p);
rep->acl p = NULL;

}

if (atflg && pat hconf(fl le, _PC XATTR EXI STS) == 1)
rep->acl ="'

} else

rep->acl = ;
/* mask | SARG and other file-type bits */

if (rep->ltype !'="b" && rep->ltype !="¢")
tbl ocks += rep- >l bl ocks;

/* Cet extended systemattributes */

if ((saflg || (tnflg & crtm) || (tnflg & alltm)) &&
(sysattr_support(file, _PC SATTR EXI STS) == 1)) {
int i;

sacnt = attr_count();

/*

* Allocate 'sacnt’ size array to hold extended

* systemattribute nane (verbose) or respective

* synbol represenation (conpact).

*/

rep->exttr = xmalloc(sacnt * sizeof (struct attrb),
rep)

new usr/src/cmd/Is/ls.c

2152 /* initialize boolean attribute list */
2153 for (i =0; i < sacnt; i++)

2154 rep->exttr[i].name = NULL;

2155 if (get_sysxattr(file, rep) !'=0) {

2156 (void) fprintf(stderr,

2157 gettext("lIs:Failed to retrieve "

2158 "extended systemattribute from"

2159 "os\n"), file);
2160 rep->exttr[0].name = xmalloc(2, rep

)
2161 (void) strlcpy(rep->exttr[0O].nane, "?", 2

2162 }

2163 }

2164 }

2165 return (rep);

2166 }
____unchanged_portion_onitted_

2248 void

2249 freecachenode(struct cachenode *node)
2250 {

2251 struct cachenode *current = node;
2252 if (current !'= NULL)

2253 struct cachenode *grt
2254 struct cachenode *Iss

= NULL;

= NULL;
2256 if (current->grtrchild !'= NULL) {
2257 grt = current->grtrchild;
2258 freecachenode(grt);

2259 }

2260 if (current->lesschild !'= NULL) {
2261 I'ss = current->l esschild;
2262 freecachenode(l ss);

2263 }

2265 free(current);
2266 current = NULL;
2267

2268 }

2270 void

2271 freecachenodes(void)

2272 {

2273 freecachenode(gr oups)
2274 freecachenode(nanes)
2275 }

2278 | *
2279 * get nane fromcache, or passwd file for a given uid;
2280 * lastuid is set to uid.
2281 */
2282 static char *
2283 ?et nanme(uid_t uid)
4

228

2285 struct passwd *pwent;

2286 struct cachenode *c;

2288 if ((uid == lastuid) & |astuname)

2289 return (lastunane);

2291 ¢ = findincache(&anes, uid);

2292 if (c->nitted == 0)

2293 if ((pwent = getpwuid(uid)) !'= NULL) {
2294 SCPYN(&c- >nane[0], pwent - >pw_nane) ;
2295 } else {

2296 (void) sprintf(&c->nanme[0], "% 8u", (int)uid);

)

new usr/src/cnd/Is/ls.c
2297
2298 c->initted = 1;
2299
2300 lastuid = uid;
2301 | astunane = &c->nane[0];
2302 return (lastunane);
2303 }
____unchanged_portion_onmitted_
2669 /* Set extended systemattribute tinmestanp display */
2671 void
2672 set_sysattrtmdi splay(char *nane, struct |buf *rep)
2673 {
2674 uint_t nel em
2675 ui nt 64_t *val ue;
2676 int i;
2677 size_t | en;
2679 if (nvpair_value_uint64_array(pair, &value, &elen) == 0) {
2680 if (value !'= NULL) {
2626 if (*value !'= NULL) {
2681 len = strlen(nane);
2682 i =0;
2683 while (rep->extnfi].stm!= 0 & i < sacnt)
2684 i ++;
2685 rep->extnii].stm= value[O0];
2686 rep->extnfi].nstm= value[1];
2687 rep->extnfi].name = xnmalloc(len + 1, rep);
2688 (void) strlcpy(rep->extnii].nanme, name, len + 1);
2689 }
2690 1
2691 }

____unchanged_portion_onmitted_

