1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 /*
  26  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
  27  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
  28  * Copyright (c) 2013 by Delphix. All rights reserved.
  29  */
  30 
  31 #include <sys/types.h>
  32 #include <sys/utsname.h>
  33 #include <sys/sysmacros.h>
  34 #include <sys/proc.h>
  35 
  36 #include <alloca.h>
  37 #include <rtld_db.h>
  38 #include <libgen.h>
  39 #include <limits.h>
  40 #include <string.h>
  41 #include <stdlib.h>
  42 #include <unistd.h>
  43 #include <errno.h>
  44 #include <gelf.h>
  45 #include <stddef.h>
  46 #include <signal.h>
  47 
  48 #include "libproc.h"
  49 #include "Pcontrol.h"
  50 #include "P32ton.h"
  51 #include "Putil.h"
  52 
  53 /*
  54  * Pcore.c - Code to initialize a ps_prochandle from a core dump.  We
  55  * allocate an additional structure to hold information from the core
  56  * file, and attach this to the standard ps_prochandle in place of the
  57  * ability to examine /proc/<pid>/ files.
  58  */
  59 
  60 /*
  61  * Basic i/o function for reading and writing from the process address space
  62  * stored in the core file and associated shared libraries.  We compute the
  63  * appropriate fd and offsets, and let the provided prw function do the rest.
  64  */
  65 static ssize_t
  66 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
  67     ssize_t (*prw)(int, void *, size_t, off64_t))
  68 {
  69         ssize_t resid = n;
  70 
  71         while (resid != 0) {
  72                 map_info_t *mp = Paddr2mptr(P, addr);
  73 
  74                 uintptr_t mapoff;
  75                 ssize_t len;
  76                 off64_t off;
  77                 int fd;
  78 
  79                 if (mp == NULL)
  80                         break;  /* No mapping for this address */
  81 
  82                 if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
  83                         if (mp->map_file == NULL || mp->map_file->file_fd < 0)
  84                                 break;  /* No file or file not open */
  85 
  86                         fd = mp->map_file->file_fd;
  87                 } else
  88                         fd = P->asfd;
  89 
  90                 mapoff = addr - mp->map_pmap.pr_vaddr;
  91                 len = MIN(resid, mp->map_pmap.pr_size - mapoff);
  92                 off = mp->map_offset + mapoff;
  93 
  94                 if ((len = prw(fd, buf, len, off)) <= 0)
  95                         break;
  96 
  97                 resid -= len;
  98                 addr += len;
  99                 buf = (char *)buf + len;
 100         }
 101 
 102         /*
 103          * Important: Be consistent with the behavior of i/o on the as file:
 104          * writing to an invalid address yields EIO; reading from an invalid
 105          * address falls through to returning success and zero bytes.
 106          */
 107         if (resid == n && n != 0 && prw != pread64) {
 108                 errno = EIO;
 109                 return (-1);
 110         }
 111 
 112         return (n - resid);
 113 }
 114 
 115 /*ARGSUSED*/
 116 static ssize_t
 117 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
 118     void *data)
 119 {
 120         return (core_rw(P, buf, n, addr, pread64));
 121 }
 122 
 123 /*ARGSUSED*/
 124 static ssize_t
 125 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr,
 126     void *data)
 127 {
 128         return (core_rw(P, (void *)buf, n, addr,
 129             (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
 130 }
 131 
 132 /*ARGSUSED*/
 133 static int
 134 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data)
 135 {
 136         core_info_t *core = data;
 137 
 138         if (core->core_cred != NULL) {
 139                 /*
 140                  * Avoid returning more supplementary group data than the
 141                  * caller has allocated in their buffer.  We expect them to
 142                  * check pr_ngroups afterward and potentially call us again.
 143                  */
 144                 ngroups = MIN(ngroups, core->core_cred->pr_ngroups);
 145 
 146                 (void) memcpy(pcrp, core->core_cred,
 147                     sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
 148 
 149                 return (0);
 150         }
 151 
 152         errno = ENODATA;
 153         return (-1);
 154 }
 155 
 156 /*ARGSUSED*/
 157 static int
 158 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data)
 159 {
 160         core_info_t *core = data;
 161 
 162         if (core->core_priv == NULL) {
 163                 errno = ENODATA;
 164                 return (-1);
 165         }
 166 
 167         *pprv = malloc(core->core_priv_size);
 168         if (*pprv == NULL) {
 169                 return (-1);
 170         }
 171 
 172         (void) memcpy(*pprv, core->core_priv, core->core_priv_size);
 173         return (0);
 174 }
 175 
 176 /*ARGSUSED*/
 177 static const psinfo_t *
 178 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data)
 179 {
 180         return (&P->psinfo);
 181 }
 182 
 183 /*ARGSUSED*/
 184 static void
 185 Pfini_core(struct ps_prochandle *P, void *data)
 186 {
 187         core_info_t *core = data;
 188 
 189         if (core != NULL) {
 190                 extern void __priv_free_info(void *);
 191                 lwp_info_t *nlwp, *lwp = list_next(&core->core_lwp_head);
 192                 int i;
 193 
 194                 for (i = 0; i < core->core_nlwp; i++, lwp = nlwp) {
 195                         nlwp = list_next(lwp);
 196 #ifdef __sparc
 197                         if (lwp->lwp_gwins != NULL)
 198                                 free(lwp->lwp_gwins);
 199                         if (lwp->lwp_xregs != NULL)
 200                                 free(lwp->lwp_xregs);
 201                         if (lwp->lwp_asrs != NULL)
 202                                 free(lwp->lwp_asrs);
 203 #endif
 204                         free(lwp);
 205                 }
 206 
 207                 if (core->core_platform != NULL)
 208                         free(core->core_platform);
 209                 if (core->core_uts != NULL)
 210                         free(core->core_uts);
 211                 if (core->core_cred != NULL)
 212                         free(core->core_cred);
 213                 if (core->core_priv != NULL)
 214                         free(core->core_priv);
 215                 if (core->core_privinfo != NULL)
 216                         __priv_free_info(core->core_privinfo);
 217                 if (core->core_ppii != NULL)
 218                         free(core->core_ppii);
 219                 if (core->core_zonename != NULL)
 220                         free(core->core_zonename);
 221 #if defined(__i386) || defined(__amd64)
 222                 if (core->core_ldt != NULL)
 223                         free(core->core_ldt);
 224 #endif
 225 
 226                 free(core);
 227         }
 228 }
 229 
 230 /*ARGSUSED*/
 231 static char *
 232 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data)
 233 {
 234         core_info_t *core = data;
 235 
 236         if (core->core_platform == NULL) {
 237                 errno = ENODATA;
 238                 return (NULL);
 239         }
 240         (void) strncpy(s, core->core_platform, n - 1);
 241         s[n - 1] = '\0';
 242         return (s);
 243 }
 244 
 245 /*ARGSUSED*/
 246 static int
 247 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data)
 248 {
 249         core_info_t *core = data;
 250 
 251         if (core->core_uts == NULL) {
 252                 errno = ENODATA;
 253                 return (-1);
 254         }
 255         (void) memcpy(u, core->core_uts, sizeof (struct utsname));
 256         return (0);
 257 }
 258 
 259 /*ARGSUSED*/
 260 static char *
 261 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data)
 262 {
 263         core_info_t *core = data;
 264 
 265         if (core->core_zonename == NULL) {
 266                 errno = ENODATA;
 267                 return (NULL);
 268         }
 269         (void) strlcpy(s, core->core_zonename, n);
 270         return (s);
 271 }
 272 
 273 #if defined(__i386) || defined(__amd64)
 274 /*ARGSUSED*/
 275 static int
 276 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
 277 {
 278         core_info_t *core = data;
 279 
 280         if (pldt == NULL || nldt == 0)
 281                 return (core->core_nldt);
 282 
 283         if (core->core_ldt != NULL) {
 284                 nldt = MIN(nldt, core->core_nldt);
 285 
 286                 (void) memcpy(pldt, core->core_ldt,
 287                     nldt * sizeof (struct ssd));
 288 
 289                 return (nldt);
 290         }
 291 
 292         errno = ENODATA;
 293         return (-1);
 294 }
 295 #endif
 296 
 297 static const ps_ops_t P_core_ops = {
 298         .pop_pread      = Pread_core,
 299         .pop_pwrite     = Pwrite_core,
 300         .pop_cred       = Pcred_core,
 301         .pop_priv       = Ppriv_core,
 302         .pop_psinfo     = Ppsinfo_core,
 303         .pop_fini       = Pfini_core,
 304         .pop_platform   = Pplatform_core,
 305         .pop_uname      = Puname_core,
 306         .pop_zonename   = Pzonename_core,
 307 #if defined(__i386) || defined(__amd64)
 308         .pop_ldt        = Pldt_core
 309 #endif
 310 };
 311 
 312 /*
 313  * Return the lwp_info_t for the given lwpid.  If no such lwpid has been
 314  * encountered yet, allocate a new structure and return a pointer to it.
 315  * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
 316  */
 317 static lwp_info_t *
 318 lwpid2info(struct ps_prochandle *P, lwpid_t id)
 319 {
 320         core_info_t *core = P->data;
 321         lwp_info_t *lwp = list_next(&core->core_lwp_head);
 322         lwp_info_t *next;
 323         uint_t i;
 324 
 325         for (i = 0; i < core->core_nlwp; i++, lwp = list_next(lwp)) {
 326                 if (lwp->lwp_id == id) {
 327                         core->core_lwp = lwp;
 328                         return (lwp);
 329                 }
 330                 if (lwp->lwp_id < id) {
 331                         break;
 332                 }
 333         }
 334 
 335         next = lwp;
 336         if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
 337                 return (NULL);
 338 
 339         list_link(lwp, next);
 340         lwp->lwp_id = id;
 341 
 342         core->core_lwp = lwp;
 343         core->core_nlwp++;
 344 
 345         return (lwp);
 346 }
 347 
 348 /*
 349  * The core file itself contains a series of NOTE segments containing saved
 350  * structures from /proc at the time the process died.  For each note we
 351  * comprehend, we define a function to read it in from the core file,
 352  * convert it to our native data model if necessary, and store it inside
 353  * the ps_prochandle.  Each function is invoked by Pfgrab_core() with the
 354  * seek pointer on P->asfd positioned appropriately.  We populate a table
 355  * of pointers to these note functions below.
 356  */
 357 
 358 static int
 359 note_pstatus(struct ps_prochandle *P, size_t nbytes)
 360 {
 361 #ifdef _LP64
 362         core_info_t *core = P->data;
 363 
 364         if (core->core_dmodel == PR_MODEL_ILP32) {
 365                 pstatus32_t ps32;
 366 
 367                 if (nbytes < sizeof (pstatus32_t) ||
 368                     read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
 369                         goto err;
 370 
 371                 pstatus_32_to_n(&ps32, &P->status);
 372 
 373         } else
 374 #endif
 375         if (nbytes < sizeof (pstatus_t) ||
 376             read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
 377                 goto err;
 378 
 379         P->orig_status = P->status;
 380         P->pid = P->status.pr_pid;
 381 
 382         return (0);
 383 
 384 err:
 385         dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
 386         return (-1);
 387 }
 388 
 389 static int
 390 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
 391 {
 392         lwp_info_t *lwp;
 393         lwpstatus_t lps;
 394 
 395 #ifdef _LP64
 396         core_info_t *core = P->data;
 397 
 398         if (core->core_dmodel == PR_MODEL_ILP32) {
 399                 lwpstatus32_t l32;
 400 
 401                 if (nbytes < sizeof (lwpstatus32_t) ||
 402                     read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
 403                         goto err;
 404 
 405                 lwpstatus_32_to_n(&l32, &lps);
 406         } else
 407 #endif
 408         if (nbytes < sizeof (lwpstatus_t) ||
 409             read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
 410                 goto err;
 411 
 412         if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
 413                 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
 414                 return (-1);
 415         }
 416 
 417         /*
 418          * Erase a useless and confusing artifact of the kernel implementation:
 419          * the lwps which did *not* create the core will show SIGKILL.  We can
 420          * be assured this is bogus because SIGKILL can't produce core files.
 421          */
 422         if (lps.pr_cursig == SIGKILL)
 423                 lps.pr_cursig = 0;
 424 
 425         (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
 426         return (0);
 427 
 428 err:
 429         dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
 430         return (-1);
 431 }
 432 
 433 static int
 434 note_psinfo(struct ps_prochandle *P, size_t nbytes)
 435 {
 436 #ifdef _LP64
 437         core_info_t *core = P->data;
 438 
 439         if (core->core_dmodel == PR_MODEL_ILP32) {
 440                 psinfo32_t ps32;
 441 
 442                 if (nbytes < sizeof (psinfo32_t) ||
 443                     read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
 444                         goto err;
 445 
 446                 psinfo_32_to_n(&ps32, &P->psinfo);
 447         } else
 448 #endif
 449         if (nbytes < sizeof (psinfo_t) ||
 450             read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
 451                 goto err;
 452 
 453         dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
 454         dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
 455         dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
 456 
 457         return (0);
 458 
 459 err:
 460         dprintf("Pgrab_core: failed to read NT_PSINFO\n");
 461         return (-1);
 462 }
 463 
 464 static int
 465 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
 466 {
 467         lwp_info_t *lwp;
 468         lwpsinfo_t lps;
 469 
 470 #ifdef _LP64
 471         core_info_t *core = P->data;
 472 
 473         if (core->core_dmodel == PR_MODEL_ILP32) {
 474                 lwpsinfo32_t l32;
 475 
 476                 if (nbytes < sizeof (lwpsinfo32_t) ||
 477                     read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
 478                         goto err;
 479 
 480                 lwpsinfo_32_to_n(&l32, &lps);
 481         } else
 482 #endif
 483         if (nbytes < sizeof (lwpsinfo_t) ||
 484             read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
 485                 goto err;
 486 
 487         if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
 488                 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
 489                 return (-1);
 490         }
 491 
 492         (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
 493         return (0);
 494 
 495 err:
 496         dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
 497         return (-1);
 498 }
 499 
 500 static int
 501 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
 502 {
 503         prfdinfo_t prfd;
 504         fd_info_t *fip;
 505 
 506         if ((nbytes < sizeof (prfd)) ||
 507             (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
 508                 dprintf("Pgrab_core: failed to read NT_FDINFO\n");
 509                 return (-1);
 510         }
 511 
 512         if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
 513                 dprintf("Pgrab_core: failed to add NT_FDINFO\n");
 514                 return (-1);
 515         }
 516         (void) memcpy(&fip->fd_info, &prfd, sizeof (prfd));
 517         return (0);
 518 }
 519 
 520 static int
 521 note_platform(struct ps_prochandle *P, size_t nbytes)
 522 {
 523         core_info_t *core = P->data;
 524         char *plat;
 525 
 526         if (core->core_platform != NULL)
 527                 return (0);     /* Already seen */
 528 
 529         if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
 530                 if (read(P->asfd, plat, nbytes) != nbytes) {
 531                         dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
 532                         free(plat);
 533                         return (-1);
 534                 }
 535                 plat[nbytes - 1] = '\0';
 536                 core->core_platform = plat;
 537         }
 538 
 539         return (0);
 540 }
 541 
 542 static int
 543 note_utsname(struct ps_prochandle *P, size_t nbytes)
 544 {
 545         core_info_t *core = P->data;
 546         size_t ubytes = sizeof (struct utsname);
 547         struct utsname *utsp;
 548 
 549         if (core->core_uts != NULL || nbytes < ubytes)
 550                 return (0);     /* Already seen or bad size */
 551 
 552         if ((utsp = malloc(ubytes)) == NULL)
 553                 return (-1);
 554 
 555         if (read(P->asfd, utsp, ubytes) != ubytes) {
 556                 dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
 557                 free(utsp);
 558                 return (-1);
 559         }
 560 
 561         if (_libproc_debug) {
 562                 dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
 563                 dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
 564                 dprintf("uts.release = \"%s\"\n", utsp->release);
 565                 dprintf("uts.version = \"%s\"\n", utsp->version);
 566                 dprintf("uts.machine = \"%s\"\n", utsp->machine);
 567         }
 568 
 569         core->core_uts = utsp;
 570         return (0);
 571 }
 572 
 573 static int
 574 note_content(struct ps_prochandle *P, size_t nbytes)
 575 {
 576         core_info_t *core = P->data;
 577         core_content_t content;
 578 
 579         if (sizeof (core->core_content) != nbytes)
 580                 return (-1);
 581 
 582         if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
 583                 return (-1);
 584 
 585         core->core_content = content;
 586 
 587         dprintf("core content = %llx\n", content);
 588 
 589         return (0);
 590 }
 591 
 592 static int
 593 note_cred(struct ps_prochandle *P, size_t nbytes)
 594 {
 595         core_info_t *core = P->data;
 596         prcred_t *pcrp;
 597         int ngroups;
 598         const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
 599 
 600         /*
 601          * We allow for prcred_t notes that are actually smaller than a
 602          * prcred_t since the last member isn't essential if there are
 603          * no group memberships. This allows for more flexibility when it
 604          * comes to slightly malformed -- but still valid -- notes.
 605          */
 606         if (core->core_cred != NULL || nbytes < min_size)
 607                 return (0);     /* Already seen or bad size */
 608 
 609         ngroups = (nbytes - min_size) / sizeof (gid_t);
 610         nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
 611 
 612         if ((pcrp = malloc(nbytes)) == NULL)
 613                 return (-1);
 614 
 615         if (read(P->asfd, pcrp, nbytes) != nbytes) {
 616                 dprintf("Pgrab_core: failed to read NT_PRCRED\n");
 617                 free(pcrp);
 618                 return (-1);
 619         }
 620 
 621         if (pcrp->pr_ngroups > ngroups) {
 622                 dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
 623                     pcrp->pr_ngroups, ngroups);
 624                 pcrp->pr_ngroups = ngroups;
 625         }
 626 
 627         core->core_cred = pcrp;
 628         return (0);
 629 }
 630 
 631 #if defined(__i386) || defined(__amd64)
 632 static int
 633 note_ldt(struct ps_prochandle *P, size_t nbytes)
 634 {
 635         core_info_t *core = P->data;
 636         struct ssd *pldt;
 637         uint_t nldt;
 638 
 639         if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
 640                 return (0);     /* Already seen or bad size */
 641 
 642         nldt = nbytes / sizeof (struct ssd);
 643         nbytes = nldt * sizeof (struct ssd);
 644 
 645         if ((pldt = malloc(nbytes)) == NULL)
 646                 return (-1);
 647 
 648         if (read(P->asfd, pldt, nbytes) != nbytes) {
 649                 dprintf("Pgrab_core: failed to read NT_LDT\n");
 650                 free(pldt);
 651                 return (-1);
 652         }
 653 
 654         core->core_ldt = pldt;
 655         core->core_nldt = nldt;
 656         return (0);
 657 }
 658 #endif  /* __i386 */
 659 
 660 static int
 661 note_priv(struct ps_prochandle *P, size_t nbytes)
 662 {
 663         core_info_t *core = P->data;
 664         prpriv_t *pprvp;
 665 
 666         if (core->core_priv != NULL || nbytes < sizeof (prpriv_t))
 667                 return (0);     /* Already seen or bad size */
 668 
 669         if ((pprvp = malloc(nbytes)) == NULL)
 670                 return (-1);
 671 
 672         if (read(P->asfd, pprvp, nbytes) != nbytes) {
 673                 dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
 674                 free(pprvp);
 675                 return (-1);
 676         }
 677 
 678         core->core_priv = pprvp;
 679         core->core_priv_size = nbytes;
 680         return (0);
 681 }
 682 
 683 static int
 684 note_priv_info(struct ps_prochandle *P, size_t nbytes)
 685 {
 686         core_info_t *core = P->data;
 687         extern void *__priv_parse_info();
 688         priv_impl_info_t *ppii;
 689 
 690         if (core->core_privinfo != NULL ||
 691             nbytes < sizeof (priv_impl_info_t))
 692                 return (0);     /* Already seen or bad size */
 693 
 694         if ((ppii = malloc(nbytes)) == NULL)
 695                 return (-1);
 696 
 697         if (read(P->asfd, ppii, nbytes) != nbytes ||
 698             PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
 699                 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
 700                 free(ppii);
 701                 return (-1);
 702         }
 703 
 704         core->core_privinfo = __priv_parse_info(ppii);
 705         core->core_ppii = ppii;
 706         return (0);
 707 }
 708 
 709 static int
 710 note_zonename(struct ps_prochandle *P, size_t nbytes)
 711 {
 712         core_info_t *core = P->data;
 713         char *zonename;
 714 
 715         if (core->core_zonename != NULL)
 716                 return (0);     /* Already seen */
 717 
 718         if (nbytes != 0) {
 719                 if ((zonename = malloc(nbytes)) == NULL)
 720                         return (-1);
 721                 if (read(P->asfd, zonename, nbytes) != nbytes) {
 722                         dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
 723                         free(zonename);
 724                         return (-1);
 725                 }
 726                 zonename[nbytes - 1] = '\0';
 727                 core->core_zonename = zonename;
 728         }
 729 
 730         return (0);
 731 }
 732 
 733 static int
 734 note_auxv(struct ps_prochandle *P, size_t nbytes)
 735 {
 736         size_t n, i;
 737 
 738 #ifdef _LP64
 739         core_info_t *core = P->data;
 740 
 741         if (core->core_dmodel == PR_MODEL_ILP32) {
 742                 auxv32_t *a32;
 743 
 744                 n = nbytes / sizeof (auxv32_t);
 745                 nbytes = n * sizeof (auxv32_t);
 746                 a32 = alloca(nbytes);
 747 
 748                 if (read(P->asfd, a32, nbytes) != nbytes) {
 749                         dprintf("Pgrab_core: failed to read NT_AUXV\n");
 750                         return (-1);
 751                 }
 752 
 753                 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
 754                         return (-1);
 755 
 756                 for (i = 0; i < n; i++)
 757                         auxv_32_to_n(&a32[i], &P->auxv[i]);
 758 
 759         } else {
 760 #endif
 761                 n = nbytes / sizeof (auxv_t);
 762                 nbytes = n * sizeof (auxv_t);
 763 
 764                 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
 765                         return (-1);
 766 
 767                 if (read(P->asfd, P->auxv, nbytes) != nbytes) {
 768                         free(P->auxv);
 769                         P->auxv = NULL;
 770                         return (-1);
 771                 }
 772 #ifdef _LP64
 773         }
 774 #endif
 775 
 776         if (_libproc_debug) {
 777                 for (i = 0; i < n; i++) {
 778                         dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
 779                             P->auxv[i].a_type, P->auxv[i].a_un.a_val);
 780                 }
 781         }
 782 
 783         /*
 784          * Defensive coding for loops which depend upon the auxv array being
 785          * terminated by an AT_NULL element; in each case, we've allocated
 786          * P->auxv to have an additional element which we force to be AT_NULL.
 787          */
 788         P->auxv[n].a_type = AT_NULL;
 789         P->auxv[n].a_un.a_val = 0L;
 790         P->nauxv = (int)n;
 791 
 792         return (0);
 793 }
 794 
 795 #ifdef __sparc
 796 static int
 797 note_xreg(struct ps_prochandle *P, size_t nbytes)
 798 {
 799         core_info_t *core = P->data;
 800         lwp_info_t *lwp = core->core_lwp;
 801         size_t xbytes = sizeof (prxregset_t);
 802         prxregset_t *xregs;
 803 
 804         if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
 805                 return (0);     /* No lwp yet, already seen, or bad size */
 806 
 807         if ((xregs = malloc(xbytes)) == NULL)
 808                 return (-1);
 809 
 810         if (read(P->asfd, xregs, xbytes) != xbytes) {
 811                 dprintf("Pgrab_core: failed to read NT_PRXREG\n");
 812                 free(xregs);
 813                 return (-1);
 814         }
 815 
 816         lwp->lwp_xregs = xregs;
 817         return (0);
 818 }
 819 
 820 static int
 821 note_gwindows(struct ps_prochandle *P, size_t nbytes)
 822 {
 823         core_info_t *core = P->data;
 824         lwp_info_t *lwp = core->core_lwp;
 825 
 826         if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
 827                 return (0);     /* No lwp yet or already seen or no data */
 828 
 829         if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
 830                 return (-1);
 831 
 832         /*
 833          * Since the amount of gwindows data varies with how many windows were
 834          * actually saved, we just read up to the minimum of the note size
 835          * and the size of the gwindows_t type.  It doesn't matter if the read
 836          * fails since we have to zero out gwindows first anyway.
 837          */
 838 #ifdef _LP64
 839         if (core->core_dmodel == PR_MODEL_ILP32) {
 840                 gwindows32_t g32;
 841 
 842                 (void) memset(&g32, 0, sizeof (g32));
 843                 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
 844                 gwindows_32_to_n(&g32, lwp->lwp_gwins);
 845 
 846         } else {
 847 #endif
 848                 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
 849                 (void) read(P->asfd, lwp->lwp_gwins,
 850                     MIN(nbytes, sizeof (gwindows_t)));
 851 #ifdef _LP64
 852         }
 853 #endif
 854         return (0);
 855 }
 856 
 857 #ifdef __sparcv9
 858 static int
 859 note_asrs(struct ps_prochandle *P, size_t nbytes)
 860 {
 861         core_info_t *core = P->data;
 862         lwp_info_t *lwp = core->core_lwp;
 863         int64_t *asrs;
 864 
 865         if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
 866                 return (0);     /* No lwp yet, already seen, or bad size */
 867 
 868         if ((asrs = malloc(sizeof (asrset_t))) == NULL)
 869                 return (-1);
 870 
 871         if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
 872                 dprintf("Pgrab_core: failed to read NT_ASRS\n");
 873                 free(asrs);
 874                 return (-1);
 875         }
 876 
 877         lwp->lwp_asrs = asrs;
 878         return (0);
 879 }
 880 #endif  /* __sparcv9 */
 881 #endif  /* __sparc */
 882 
 883 static int
 884 note_spymaster(struct ps_prochandle *P, size_t nbytes)
 885 {
 886 #ifdef _LP64
 887         core_info_t *core = P->data;
 888 
 889         if (core->core_dmodel == PR_MODEL_ILP32) {
 890                 psinfo32_t ps32;
 891 
 892                 if (nbytes < sizeof (psinfo32_t) ||
 893                     read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
 894                         goto err;
 895 
 896                 psinfo_32_to_n(&ps32, &P->spymaster);
 897         } else
 898 #endif
 899         if (nbytes < sizeof (psinfo_t) || read(P->asfd,
 900             &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
 901                 goto err;
 902 
 903         dprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
 904         dprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
 905         dprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
 906 
 907         return (0);
 908 
 909 err:
 910         dprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
 911         return (-1);
 912 }
 913 
 914 /*ARGSUSED*/
 915 static int
 916 note_notsup(struct ps_prochandle *P, size_t nbytes)
 917 {
 918         dprintf("skipping unsupported note type\n");
 919         return (0);
 920 }
 921 
 922 /*
 923  * Populate a table of function pointers indexed by Note type with our
 924  * functions to process each type of core file note:
 925  */
 926 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
 927         note_notsup,            /*  0   unassigned              */
 928         note_notsup,            /*  1   NT_PRSTATUS (old)       */
 929         note_notsup,            /*  2   NT_PRFPREG (old)        */
 930         note_notsup,            /*  3   NT_PRPSINFO (old)       */
 931 #ifdef __sparc
 932         note_xreg,              /*  4   NT_PRXREG               */
 933 #else
 934         note_notsup,            /*  4   NT_PRXREG               */
 935 #endif
 936         note_platform,          /*  5   NT_PLATFORM             */
 937         note_auxv,              /*  6   NT_AUXV                 */
 938 #ifdef __sparc
 939         note_gwindows,          /*  7   NT_GWINDOWS             */
 940 #ifdef __sparcv9
 941         note_asrs,              /*  8   NT_ASRS                 */
 942 #else
 943         note_notsup,            /*  8   NT_ASRS                 */
 944 #endif
 945 #else
 946         note_notsup,            /*  7   NT_GWINDOWS             */
 947         note_notsup,            /*  8   NT_ASRS                 */
 948 #endif
 949 #if defined(__i386) || defined(__amd64)
 950         note_ldt,               /*  9   NT_LDT                  */
 951 #else
 952         note_notsup,            /*  9   NT_LDT                  */
 953 #endif
 954         note_pstatus,           /* 10   NT_PSTATUS              */
 955         note_notsup,            /* 11   unassigned              */
 956         note_notsup,            /* 12   unassigned              */
 957         note_psinfo,            /* 13   NT_PSINFO               */
 958         note_cred,              /* 14   NT_PRCRED               */
 959         note_utsname,           /* 15   NT_UTSNAME              */
 960         note_lwpstatus,         /* 16   NT_LWPSTATUS            */
 961         note_lwpsinfo,          /* 17   NT_LWPSINFO             */
 962         note_priv,              /* 18   NT_PRPRIV               */
 963         note_priv_info,         /* 19   NT_PRPRIVINFO           */
 964         note_content,           /* 20   NT_CONTENT              */
 965         note_zonename,          /* 21   NT_ZONENAME             */
 966         note_fdinfo,            /* 22   NT_FDINFO               */
 967         note_spymaster,         /* 23   NT_SPYMASTER            */
 968 };
 969 
 970 static void
 971 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
 972 {
 973         prkillinfo_t killinfo;
 974         siginfo_t *si = &killinfo.prk_info;
 975         char signame[SIG2STR_MAX], sig[64], info[64];
 976         void *addr = (void *)(uintptr_t)php->p_vaddr;
 977 
 978         const char *errfmt = "core file data for mapping at %p not saved: %s\n";
 979         const char *incfmt = "core file incomplete due to %s%s\n";
 980         const char *msgfmt = "mappings at and above %p are missing\n";
 981 
 982         if (!(php->p_flags & PF_SUNW_KILLED)) {
 983                 int err = 0;
 984 
 985                 (void) pread64(P->asfd, &err,
 986                     sizeof (err), (off64_t)php->p_offset);
 987 
 988                 Perror_printf(P, errfmt, addr, strerror(err));
 989                 dprintf(errfmt, addr, strerror(err));
 990                 return;
 991         }
 992 
 993         if (!(php->p_flags & PF_SUNW_SIGINFO))
 994                 return;
 995 
 996         (void) memset(&killinfo, 0, sizeof (killinfo));
 997 
 998         (void) pread64(P->asfd, &killinfo,
 999             sizeof (killinfo), (off64_t)php->p_offset);
1000 
1001         /*
1002          * While there is (or at least should be) only one segment that has
1003          * PF_SUNW_SIGINFO set, the signal information there is globally
1004          * useful (even if only to those debugging libproc consumers); we hang
1005          * the signal information gleaned here off of the ps_prochandle.
1006          */
1007         P->map_missing = php->p_vaddr;
1008         P->killinfo = killinfo.prk_info;
1009 
1010         if (sig2str(si->si_signo, signame) == -1) {
1011                 (void) snprintf(sig, sizeof (sig),
1012                     "<Unknown signal: 0x%x>, ", si->si_signo);
1013         } else {
1014                 (void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
1015         }
1016 
1017         if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1018                 (void) snprintf(info, sizeof (info),
1019                     "pid=%d uid=%d zone=%d ctid=%d",
1020                     si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
1021         } else {
1022                 (void) snprintf(info, sizeof (info),
1023                     "code=%d", si->si_code);
1024         }
1025 
1026         Perror_printf(P, incfmt, sig, info);
1027         Perror_printf(P, msgfmt, addr);
1028 
1029         dprintf(incfmt, sig, info);
1030         dprintf(msgfmt, addr);
1031 }
1032 
1033 /*
1034  * Add information on the address space mapping described by the given
1035  * PT_LOAD program header.  We fill in more information on the mapping later.
1036  */
1037 static int
1038 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1039 {
1040         core_info_t *core = P->data;
1041         prmap_t pmap;
1042 
1043         dprintf("mapping base %llx filesz %llu memsz %llu offset %llu\n",
1044             (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
1045             (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
1046 
1047         pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
1048         pmap.pr_size = php->p_memsz;
1049 
1050         /*
1051          * If Pgcore() or elfcore() fail to write a mapping, they will set
1052          * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
1053          */
1054         if (php->p_flags & PF_SUNW_FAILURE) {
1055                 core_report_mapping(P, php);
1056         } else if (php->p_filesz != 0 && php->p_offset >= core->core_size) {
1057                 Perror_printf(P, "core file may be corrupt -- data for mapping "
1058                     "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1059                 dprintf("core file may be corrupt -- data for mapping "
1060                     "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1061         }
1062 
1063         /*
1064          * The mapping name and offset will hopefully be filled in
1065          * by the librtld_db agent.  Unfortunately, if it isn't a
1066          * shared library mapping, this information is gone forever.
1067          */
1068         pmap.pr_mapname[0] = '\0';
1069         pmap.pr_offset = 0;
1070 
1071         pmap.pr_mflags = 0;
1072         if (php->p_flags & PF_R)
1073                 pmap.pr_mflags |= MA_READ;
1074         if (php->p_flags & PF_W)
1075                 pmap.pr_mflags |= MA_WRITE;
1076         if (php->p_flags & PF_X)
1077                 pmap.pr_mflags |= MA_EXEC;
1078 
1079         if (php->p_filesz == 0)
1080                 pmap.pr_mflags |= MA_RESERVED1;
1081 
1082         /*
1083          * At the time of adding this mapping, we just zero the pagesize.
1084          * Once we've processed more of the core file, we'll have the
1085          * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
1086          */
1087         pmap.pr_pagesize = 0;
1088 
1089         /*
1090          * Unfortunately whether or not the mapping was a System V
1091          * shared memory segment is lost.  We use -1 to mark it as not shm.
1092          */
1093         pmap.pr_shmid = -1;
1094 
1095         return (Padd_mapping(P, php->p_offset, NULL, &pmap));
1096 }
1097 
1098 /*
1099  * Given a virtual address, name the mapping at that address using the
1100  * specified name, and return the map_info_t pointer.
1101  */
1102 static map_info_t *
1103 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
1104 {
1105         map_info_t *mp = Paddr2mptr(P, addr);
1106 
1107         if (mp != NULL) {
1108                 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
1109                 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1110         }
1111 
1112         return (mp);
1113 }
1114 
1115 /*
1116  * libproc uses libelf for all of its symbol table manipulation. This function
1117  * takes a symbol table and string table from a core file and places them
1118  * in a memory backed elf file.
1119  */
1120 static void
1121 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
1122     GElf_Shdr *symtab, GElf_Shdr *strtab)
1123 {
1124         size_t size;
1125         off64_t off, base;
1126         map_info_t *mp;
1127         file_info_t *fp;
1128         Elf_Scn *scn;
1129         Elf_Data *data;
1130 
1131         if (symtab->sh_addr == 0 ||
1132             (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
1133             (fp = mp->map_file) == NULL) {
1134                 dprintf("fake_up_symtab: invalid section\n");
1135                 return;
1136         }
1137 
1138         if (fp->file_symtab.sym_data_pri != NULL) {
1139                 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
1140                     (long)symtab->sh_addr);
1141                 return;
1142         }
1143 
1144         if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1145                 struct {
1146                         Elf32_Ehdr ehdr;
1147                         Elf32_Shdr shdr[3];
1148                         char data[1];
1149                 } *b;
1150 
1151                 base = sizeof (b->ehdr) + sizeof (b->shdr);
1152                 size = base + symtab->sh_size + strtab->sh_size;
1153 
1154                 if ((b = calloc(1, size)) == NULL)
1155                         return;
1156 
1157                 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1158                     sizeof (ehdr->e_ident));
1159                 b->ehdr.e_type = ehdr->e_type;
1160                 b->ehdr.e_machine = ehdr->e_machine;
1161                 b->ehdr.e_version = ehdr->e_version;
1162                 b->ehdr.e_flags = ehdr->e_flags;
1163                 b->ehdr.e_ehsize = sizeof (b->ehdr);
1164                 b->ehdr.e_shoff = sizeof (b->ehdr);
1165                 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1166                 b->ehdr.e_shnum = 3;
1167                 off = 0;
1168 
1169                 b->shdr[1].sh_size = symtab->sh_size;
1170                 b->shdr[1].sh_type = SHT_SYMTAB;
1171                 b->shdr[1].sh_offset = off + base;
1172                 b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
1173                 b->shdr[1].sh_link = 2;
1174                 b->shdr[1].sh_info =  symtab->sh_info;
1175                 b->shdr[1].sh_addralign = symtab->sh_addralign;
1176 
1177                 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1178                     symtab->sh_offset) != b->shdr[1].sh_size) {
1179                         dprintf("fake_up_symtab: pread of symtab[1] failed\n");
1180                         free(b);
1181                         return;
1182                 }
1183 
1184                 off += b->shdr[1].sh_size;
1185 
1186                 b->shdr[2].sh_flags = SHF_STRINGS;
1187                 b->shdr[2].sh_size = strtab->sh_size;
1188                 b->shdr[2].sh_type = SHT_STRTAB;
1189                 b->shdr[2].sh_offset = off + base;
1190                 b->shdr[2].sh_info =  strtab->sh_info;
1191                 b->shdr[2].sh_addralign = 1;
1192 
1193                 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1194                     strtab->sh_offset) != b->shdr[2].sh_size) {
1195                         dprintf("fake_up_symtab: pread of symtab[2] failed\n");
1196                         free(b);
1197                         return;
1198                 }
1199 
1200                 off += b->shdr[2].sh_size;
1201 
1202                 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1203                 if (fp->file_symtab.sym_elf == NULL) {
1204                         free(b);
1205                         return;
1206                 }
1207 
1208                 fp->file_symtab.sym_elfmem = b;
1209 #ifdef _LP64
1210         } else {
1211                 struct {
1212                         Elf64_Ehdr ehdr;
1213                         Elf64_Shdr shdr[3];
1214                         char data[1];
1215                 } *b;
1216 
1217                 base = sizeof (b->ehdr) + sizeof (b->shdr);
1218                 size = base + symtab->sh_size + strtab->sh_size;
1219 
1220                 if ((b = calloc(1, size)) == NULL)
1221                         return;
1222 
1223                 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1224                     sizeof (ehdr->e_ident));
1225                 b->ehdr.e_type = ehdr->e_type;
1226                 b->ehdr.e_machine = ehdr->e_machine;
1227                 b->ehdr.e_version = ehdr->e_version;
1228                 b->ehdr.e_flags = ehdr->e_flags;
1229                 b->ehdr.e_ehsize = sizeof (b->ehdr);
1230                 b->ehdr.e_shoff = sizeof (b->ehdr);
1231                 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1232                 b->ehdr.e_shnum = 3;
1233                 off = 0;
1234 
1235                 b->shdr[1].sh_size = symtab->sh_size;
1236                 b->shdr[1].sh_type = SHT_SYMTAB;
1237                 b->shdr[1].sh_offset = off + base;
1238                 b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1239                 b->shdr[1].sh_link = 2;
1240                 b->shdr[1].sh_info =  symtab->sh_info;
1241                 b->shdr[1].sh_addralign = symtab->sh_addralign;
1242 
1243                 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1244                     symtab->sh_offset) != b->shdr[1].sh_size) {
1245                         free(b);
1246                         return;
1247                 }
1248 
1249                 off += b->shdr[1].sh_size;
1250 
1251                 b->shdr[2].sh_flags = SHF_STRINGS;
1252                 b->shdr[2].sh_size = strtab->sh_size;
1253                 b->shdr[2].sh_type = SHT_STRTAB;
1254                 b->shdr[2].sh_offset = off + base;
1255                 b->shdr[2].sh_info =  strtab->sh_info;
1256                 b->shdr[2].sh_addralign = 1;
1257 
1258                 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1259                     strtab->sh_offset) != b->shdr[2].sh_size) {
1260                         free(b);
1261                         return;
1262                 }
1263 
1264                 off += b->shdr[2].sh_size;
1265 
1266                 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1267                 if (fp->file_symtab.sym_elf == NULL) {
1268                         free(b);
1269                         return;
1270                 }
1271 
1272                 fp->file_symtab.sym_elfmem = b;
1273 #endif
1274         }
1275 
1276         if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1277             (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1278             (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1279             (data = elf_getdata(scn, NULL)) == NULL) {
1280                 dprintf("fake_up_symtab: failed to get section data at %p\n",
1281                     (void *)scn);
1282                 goto err;
1283         }
1284 
1285         fp->file_symtab.sym_strs = data->d_buf;
1286         fp->file_symtab.sym_strsz = data->d_size;
1287         fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1288         fp->file_symtab.sym_hdr_pri = *symtab;
1289         fp->file_symtab.sym_strhdr = *strtab;
1290 
1291         optimize_symtab(&fp->file_symtab);
1292 
1293         return;
1294 err:
1295         (void) elf_end(fp->file_symtab.sym_elf);
1296         free(fp->file_symtab.sym_elfmem);
1297         fp->file_symtab.sym_elf = NULL;
1298         fp->file_symtab.sym_elfmem = NULL;
1299 }
1300 
1301 static void
1302 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1303 {
1304         dst->p_type = src->p_type;
1305         dst->p_flags = src->p_flags;
1306         dst->p_offset = (Elf64_Off)src->p_offset;
1307         dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1308         dst->p_paddr = (Elf64_Addr)src->p_paddr;
1309         dst->p_filesz = (Elf64_Xword)src->p_filesz;
1310         dst->p_memsz = (Elf64_Xword)src->p_memsz;
1311         dst->p_align = (Elf64_Xword)src->p_align;
1312 }
1313 
1314 static void
1315 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1316 {
1317         dst->sh_name = src->sh_name;
1318         dst->sh_type = src->sh_type;
1319         dst->sh_flags = (Elf64_Xword)src->sh_flags;
1320         dst->sh_addr = (Elf64_Addr)src->sh_addr;
1321         dst->sh_offset = (Elf64_Off)src->sh_offset;
1322         dst->sh_size = (Elf64_Xword)src->sh_size;
1323         dst->sh_link = src->sh_link;
1324         dst->sh_info = src->sh_info;
1325         dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1326         dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1327 }
1328 
1329 /*
1330  * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1331  */
1332 static int
1333 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1334 {
1335 #ifdef _BIG_ENDIAN
1336         uchar_t order = ELFDATA2MSB;
1337 #else
1338         uchar_t order = ELFDATA2LSB;
1339 #endif
1340         Elf32_Ehdr e32;
1341         int is_noelf = -1;
1342         int isa_err = 0;
1343 
1344         /*
1345          * Because 32-bit libelf cannot deal with large files, we need to read,
1346          * check, and convert the file header manually in case type == ET_CORE.
1347          */
1348         if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1349                 if (perr != NULL)
1350                         *perr = G_FORMAT;
1351                 goto err;
1352         }
1353         if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1354             e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1355             e32.e_version != EV_CURRENT) {
1356                 if (perr != NULL) {
1357                         if (is_noelf == 0 && isa_err) {
1358                                 *perr = G_ISAINVAL;
1359                         } else {
1360                                 *perr = G_FORMAT;
1361                         }
1362                 }
1363                 goto err;
1364         }
1365 
1366         /*
1367          * If the file is 64-bit and we are 32-bit, fail with G_LP64.  If the
1368          * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1369          * and convert it to a elf_file_header_t.  Otherwise, the file is
1370          * 32-bit, so convert e32 to a elf_file_header_t.
1371          */
1372         if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1373 #ifdef _LP64
1374                 Elf64_Ehdr e64;
1375 
1376                 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1377                         if (perr != NULL)
1378                                 *perr = G_FORMAT;
1379                         goto err;
1380                 }
1381 
1382                 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1383                 efp->e_hdr.e_type = e64.e_type;
1384                 efp->e_hdr.e_machine = e64.e_machine;
1385                 efp->e_hdr.e_version = e64.e_version;
1386                 efp->e_hdr.e_entry = e64.e_entry;
1387                 efp->e_hdr.e_phoff = e64.e_phoff;
1388                 efp->e_hdr.e_shoff = e64.e_shoff;
1389                 efp->e_hdr.e_flags = e64.e_flags;
1390                 efp->e_hdr.e_ehsize = e64.e_ehsize;
1391                 efp->e_hdr.e_phentsize = e64.e_phentsize;
1392                 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1393                 efp->e_hdr.e_shentsize = e64.e_shentsize;
1394                 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1395                 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1396 #else   /* _LP64 */
1397                 if (perr != NULL)
1398                         *perr = G_LP64;
1399                 goto err;
1400 #endif  /* _LP64 */
1401         } else {
1402                 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1403                 efp->e_hdr.e_type = e32.e_type;
1404                 efp->e_hdr.e_machine = e32.e_machine;
1405                 efp->e_hdr.e_version = e32.e_version;
1406                 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1407                 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1408                 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1409                 efp->e_hdr.e_flags = e32.e_flags;
1410                 efp->e_hdr.e_ehsize = e32.e_ehsize;
1411                 efp->e_hdr.e_phentsize = e32.e_phentsize;
1412                 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1413                 efp->e_hdr.e_shentsize = e32.e_shentsize;
1414                 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1415                 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1416         }
1417 
1418         /*
1419          * If the number of section headers or program headers or the section
1420          * header string table index would overflow their respective fields
1421          * in the ELF header, they're stored in the section header at index
1422          * zero. To simplify use elsewhere, we look for those sentinel values
1423          * here.
1424          */
1425         if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1426             efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1427             efp->e_hdr.e_phnum == PN_XNUM) {
1428                 GElf_Shdr shdr;
1429 
1430                 dprintf("extended ELF header\n");
1431 
1432                 if (efp->e_hdr.e_shoff == 0) {
1433                         if (perr != NULL)
1434                                 *perr = G_FORMAT;
1435                         goto err;
1436                 }
1437 
1438                 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1439                         Elf32_Shdr shdr32;
1440 
1441                         if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1442                             efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1443                                 if (perr != NULL)
1444                                         *perr = G_FORMAT;
1445                                 goto err;
1446                         }
1447 
1448                         core_shdr_to_gelf(&shdr32, &shdr);
1449                 } else {
1450                         if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1451                             efp->e_hdr.e_shoff) != sizeof (shdr)) {
1452                                 if (perr != NULL)
1453                                         *perr = G_FORMAT;
1454                                 goto err;
1455                         }
1456                 }
1457 
1458                 if (efp->e_hdr.e_shnum == 0) {
1459                         efp->e_hdr.e_shnum = shdr.sh_size;
1460                         dprintf("section header count %lu\n",
1461                             (ulong_t)shdr.sh_size);
1462                 }
1463 
1464                 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1465                         efp->e_hdr.e_shstrndx = shdr.sh_link;
1466                         dprintf("section string index %u\n", shdr.sh_link);
1467                 }
1468 
1469                 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1470                         efp->e_hdr.e_phnum = shdr.sh_info;
1471                         dprintf("program header count %u\n", shdr.sh_info);
1472                 }
1473 
1474         } else if (efp->e_hdr.e_phoff != 0) {
1475                 GElf_Phdr phdr;
1476                 uint64_t phnum;
1477 
1478                 /*
1479                  * It's possible this core file came from a system that
1480                  * accidentally truncated the e_phnum field without correctly
1481                  * using the extended format in the section header at index
1482                  * zero. We try to detect and correct that specific type of
1483                  * corruption by using the knowledge that the core dump
1484                  * routines usually place the data referenced by the first
1485                  * program header immediately after the last header element.
1486                  */
1487                 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1488                         Elf32_Phdr phdr32;
1489 
1490                         if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1491                             efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1492                                 if (perr != NULL)
1493                                         *perr = G_FORMAT;
1494                                 goto err;
1495                         }
1496 
1497                         core_phdr_to_gelf(&phdr32, &phdr);
1498                 } else {
1499                         if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1500                             efp->e_hdr.e_phoff) != sizeof (phdr)) {
1501                                 if (perr != NULL)
1502                                         *perr = G_FORMAT;
1503                                 goto err;
1504                         }
1505                 }
1506 
1507                 phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1508                     (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1509                 phnum /= efp->e_hdr.e_phentsize;
1510 
1511                 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1512                         dprintf("suspicious program header count %u %u\n",
1513                             (uint_t)phnum, efp->e_hdr.e_phnum);
1514 
1515                         /*
1516                          * If the new program header count we computed doesn't
1517                          * jive with count in the ELF header, we'll use the
1518                          * data that's there and hope for the best.
1519                          *
1520                          * If it does, it's also possible that the section
1521                          * header offset is incorrect; we'll check that and
1522                          * possibly try to fix it.
1523                          */
1524                         if (phnum <= INT_MAX &&
1525                             (uint16_t)phnum == efp->e_hdr.e_phnum) {
1526 
1527                                 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1528                                     efp->e_hdr.e_phentsize *
1529                                     (uint_t)efp->e_hdr.e_phnum) {
1530                                         efp->e_hdr.e_shoff =
1531                                             efp->e_hdr.e_phoff +
1532                                             efp->e_hdr.e_phentsize * phnum;
1533                                 }
1534 
1535                                 efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1536                                 dprintf("using new program header count\n");
1537                         } else {
1538                                 dprintf("inconsistent program header count\n");
1539                         }
1540                 }
1541         }
1542 
1543         /*
1544          * The libelf implementation was never ported to be large-file aware.
1545          * This is typically not a problem for your average executable or
1546          * shared library, but a large 32-bit core file can exceed 2GB in size.
1547          * So if type is ET_CORE, we don't bother doing elf_begin; the code
1548          * in Pfgrab_core() below will do its own i/o and struct conversion.
1549          */
1550 
1551         if (type == ET_CORE) {
1552                 efp->e_elf = NULL;
1553                 return (0);
1554         }
1555 
1556         if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1557                 if (perr != NULL)
1558                         *perr = G_ELF;
1559                 goto err;
1560         }
1561 
1562         return (0);
1563 
1564 err:
1565         efp->e_elf = NULL;
1566         return (-1);
1567 }
1568 
1569 /*
1570  * Open the specified file and then do a core_elf_fdopen on it.
1571  */
1572 static int
1573 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1574 {
1575         (void) memset(efp, 0, sizeof (elf_file_t));
1576 
1577         if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1578                 if (core_elf_fdopen(efp, type, perr) == 0)
1579                         return (0);
1580 
1581                 (void) close(efp->e_fd);
1582                 efp->e_fd = -1;
1583         }
1584 
1585         return (-1);
1586 }
1587 
1588 /*
1589  * Close the ELF handle and file descriptor.
1590  */
1591 static void
1592 core_elf_close(elf_file_t *efp)
1593 {
1594         if (efp->e_elf != NULL) {
1595                 (void) elf_end(efp->e_elf);
1596                 efp->e_elf = NULL;
1597         }
1598 
1599         if (efp->e_fd != -1) {
1600                 (void) close(efp->e_fd);
1601                 efp->e_fd = -1;
1602         }
1603 }
1604 
1605 /*
1606  * Given an ELF file for a statically linked executable, locate the likely
1607  * primary text section and fill in rl_base with its virtual address.
1608  */
1609 static map_info_t *
1610 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1611 {
1612         GElf_Phdr phdr;
1613         uint_t i;
1614         size_t nphdrs;
1615 
1616         if (elf_getphdrnum(elf, &nphdrs) == -1)
1617                 return (NULL);
1618 
1619         for (i = 0; i < nphdrs; i++) {
1620                 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1621                     phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1622                         rlp->rl_base = phdr.p_vaddr;
1623                         return (Paddr2mptr(P, rlp->rl_base));
1624                 }
1625         }
1626 
1627         return (NULL);
1628 }
1629 
1630 /*
1631  * Given an ELF file and the librtld_db structure corresponding to its primary
1632  * text mapping, deduce where its data segment was loaded and fill in
1633  * rl_data_base and prmap_t.pr_offset accordingly.
1634  */
1635 static map_info_t *
1636 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1637 {
1638         GElf_Ehdr ehdr;
1639         GElf_Phdr phdr;
1640         map_info_t *mp;
1641         uint_t i, pagemask;
1642         size_t nphdrs;
1643 
1644         rlp->rl_data_base = NULL;
1645 
1646         /*
1647          * Find the first loadable, writeable Phdr and compute rl_data_base
1648          * as the virtual address at which is was loaded.
1649          */
1650         if (gelf_getehdr(elf, &ehdr) == NULL ||
1651             elf_getphdrnum(elf, &nphdrs) == -1)
1652                 return (NULL);
1653 
1654         for (i = 0; i < nphdrs; i++) {
1655                 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1656                     phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
1657                         rlp->rl_data_base = phdr.p_vaddr;
1658                         if (ehdr.e_type == ET_DYN)
1659                                 rlp->rl_data_base += rlp->rl_base;
1660                         break;
1661                 }
1662         }
1663 
1664         /*
1665          * If we didn't find an appropriate phdr or if the address we
1666          * computed has no mapping, return NULL.
1667          */
1668         if (rlp->rl_data_base == NULL ||
1669             (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
1670                 return (NULL);
1671 
1672         /*
1673          * It wouldn't be procfs-related code if we didn't make use of
1674          * unclean knowledge of segvn, even in userland ... the prmap_t's
1675          * pr_offset field will be the segvn offset from mmap(2)ing the
1676          * data section, which will be the file offset & PAGEMASK.
1677          */
1678         pagemask = ~(mp->map_pmap.pr_pagesize - 1);
1679         mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
1680 
1681         return (mp);
1682 }
1683 
1684 /*
1685  * Librtld_db agent callback for iterating over load object mappings.
1686  * For each load object, we allocate a new file_info_t, perform naming,
1687  * and attempt to construct a symbol table for the load object.
1688  */
1689 static int
1690 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
1691 {
1692         core_info_t *core = P->data;
1693         char lname[PATH_MAX], buf[PATH_MAX];
1694         file_info_t *fp;
1695         map_info_t *mp;
1696 
1697         if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
1698                 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
1699                 return (1); /* Keep going; forget this if we can't get a name */
1700         }
1701 
1702         dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
1703             lname, (void *)rlp->rl_base);
1704 
1705         if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
1706                 dprintf("no mapping for %p\n", (void *)rlp->rl_base);
1707                 return (1); /* No mapping; advance to next mapping */
1708         }
1709 
1710         /*
1711          * Create a new file_info_t for this mapping, and therefore for
1712          * this load object.
1713          *
1714          * If there's an ELF header at the beginning of this mapping,
1715          * file_info_new() will try to use its section headers to
1716          * identify any other mappings that belong to this load object.
1717          */
1718         if ((fp = mp->map_file) == NULL &&
1719             (fp = file_info_new(P, mp)) == NULL) {
1720                 core->core_errno = errno;
1721                 dprintf("failed to malloc mapping data\n");
1722                 return (0); /* Abort */
1723         }
1724         fp->file_map = mp;
1725 
1726         /* Create a local copy of the load object representation */
1727         if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
1728                 core->core_errno = errno;
1729                 dprintf("failed to malloc mapping data\n");
1730                 return (0); /* Abort */
1731         }
1732         *fp->file_lo = *rlp;
1733 
1734         if (lname[0] != '\0') {
1735                 /*
1736                  * Naming dance part 1: if we got a name from librtld_db, then
1737                  * copy this name to the prmap_t if it is unnamed.  If the
1738                  * file_info_t is unnamed, name it after the lname.
1739                  */
1740                 if (mp->map_pmap.pr_mapname[0] == '\0') {
1741                         (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
1742                         mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1743                 }
1744 
1745                 if (fp->file_lname == NULL)
1746                         fp->file_lname = strdup(lname);
1747 
1748         } else if (fp->file_lname == NULL &&
1749             mp->map_pmap.pr_mapname[0] != '\0') {
1750                 /*
1751                  * Naming dance part 2: if the mapping is named and the
1752                  * file_info_t is not, name the file after the mapping.
1753                  */
1754                 fp->file_lname = strdup(mp->map_pmap.pr_mapname);
1755         }
1756 
1757         if ((fp->file_rname == NULL) &&
1758             (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
1759                 fp->file_rname = strdup(buf);
1760 
1761         if (fp->file_lname != NULL)
1762                 fp->file_lbase = basename(fp->file_lname);
1763         if (fp->file_rname != NULL)
1764                 fp->file_rbase = basename(fp->file_rname);
1765 
1766         /* Associate the file and the mapping. */
1767         (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
1768         fp->file_pname[PRMAPSZ - 1] = '\0';
1769 
1770         /*
1771          * If no section headers were available then we'll have to
1772          * identify this load object's other mappings with what we've
1773          * got: the start and end of the object's corresponding
1774          * address space.
1775          */
1776         if (fp->file_saddrs == NULL) {
1777                 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
1778                     mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
1779 
1780                         if (mp->map_file == NULL) {
1781                                 dprintf("core_iter_mapping %s: associating "
1782                                     "segment at %p\n",
1783                                     fp->file_pname,
1784                                     (void *)mp->map_pmap.pr_vaddr);
1785                                 mp->map_file = fp;
1786                                 fp->file_ref++;
1787                         } else {
1788                                 dprintf("core_iter_mapping %s: segment at "
1789                                     "%p already associated with %s\n",
1790                                     fp->file_pname,
1791                                     (void *)mp->map_pmap.pr_vaddr,
1792                                     (mp == fp->file_map ? "this file" :
1793                                     mp->map_file->file_pname));
1794                         }
1795                 }
1796         }
1797 
1798         /* Ensure that all this file's mappings are named. */
1799         for (mp = fp->file_map; mp < P->mappings + P->map_count &&
1800             mp->map_file == fp; mp++) {
1801                 if (mp->map_pmap.pr_mapname[0] == '\0' &&
1802                     !(mp->map_pmap.pr_mflags & MA_BREAK)) {
1803                         (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
1804                             PRMAPSZ);
1805                         mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1806                 }
1807         }
1808 
1809         /* Attempt to build a symbol table for this file. */
1810         Pbuild_file_symtab(P, fp);
1811         if (fp->file_elf == NULL)
1812                 dprintf("core_iter_mapping: no symtab for %s\n",
1813                     fp->file_pname);
1814 
1815         /* Locate the start of a data segment associated with this file. */
1816         if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
1817                 dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
1818                     fp->file_pname, (void *)fp->file_lo->rl_data_base,
1819                     mp->map_pmap.pr_offset);
1820         } else {
1821                 dprintf("core_iter_mapping: no data found for %s\n",
1822                     fp->file_pname);
1823         }
1824 
1825         return (1); /* Advance to next mapping */
1826 }
1827 
1828 /*
1829  * Callback function for Pfindexec().  In order to confirm a given pathname,
1830  * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
1831  */
1832 static int
1833 core_exec_open(const char *path, void *efp)
1834 {
1835         if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
1836                 return (1);
1837         if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
1838                 return (1);
1839         return (0);
1840 }
1841 
1842 /*
1843  * Attempt to load any section headers found in the core file.  If present,
1844  * this will refer to non-loadable data added to the core file by the kernel
1845  * based on coreadm(1M) settings, including CTF data and the symbol table.
1846  */
1847 static void
1848 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
1849 {
1850         GElf_Shdr *shp, *shdrs = NULL;
1851         char *shstrtab = NULL;
1852         ulong_t shstrtabsz;
1853         const char *name;
1854         map_info_t *mp;
1855 
1856         size_t nbytes;
1857         void *buf;
1858         int i;
1859 
1860         if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
1861                 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
1862                     efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
1863                 return;
1864         }
1865 
1866         /*
1867          * Read the section header table from the core file and then iterate
1868          * over the section headers, converting each to a GElf_Shdr.
1869          */
1870         if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
1871                 dprintf("failed to malloc %u section headers: %s\n",
1872                     (uint_t)efp->e_hdr.e_shnum, strerror(errno));
1873                 return;
1874         }
1875 
1876         nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1877         if ((buf = malloc(nbytes)) == NULL) {
1878                 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
1879                     strerror(errno));
1880                 free(shdrs);
1881                 goto out;
1882         }
1883 
1884         if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
1885                 dprintf("failed to read section headers at off %lld: %s\n",
1886                     (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
1887                 free(buf);
1888                 goto out;
1889         }
1890 
1891         for (i = 0; i < efp->e_hdr.e_shnum; i++) {
1892                 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
1893 
1894                 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
1895                         core_shdr_to_gelf(p, &shdrs[i]);
1896                 else
1897                         (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
1898         }
1899 
1900         free(buf);
1901         buf = NULL;
1902 
1903         /*
1904          * Read the .shstrtab section from the core file, terminating it with
1905          * an extra \0 so that a corrupt section will not cause us to die.
1906          */
1907         shp = &shdrs[efp->e_hdr.e_shstrndx];
1908         shstrtabsz = shp->sh_size;
1909 
1910         if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
1911                 dprintf("failed to allocate %lu bytes for shstrtab\n",
1912                     (ulong_t)shstrtabsz);
1913                 goto out;
1914         }
1915 
1916         if (pread64(efp->e_fd, shstrtab, shstrtabsz,
1917             shp->sh_offset) != shstrtabsz) {
1918                 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
1919                     shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
1920                 goto out;
1921         }
1922 
1923         shstrtab[shstrtabsz] = '\0';
1924 
1925         /*
1926          * Now iterate over each section in the section header table, locating
1927          * sections of interest and initializing more of the ps_prochandle.
1928          */
1929         for (i = 0; i < efp->e_hdr.e_shnum; i++) {
1930                 shp = &shdrs[i];
1931                 name = shstrtab + shp->sh_name;
1932 
1933                 if (shp->sh_name >= shstrtabsz) {
1934                         dprintf("skipping section [%d]: corrupt sh_name\n", i);
1935                         continue;
1936                 }
1937 
1938                 if (shp->sh_link >= efp->e_hdr.e_shnum) {
1939                         dprintf("skipping section [%d]: corrupt sh_link\n", i);
1940                         continue;
1941                 }
1942 
1943                 dprintf("found section header %s (sh_addr 0x%llx)\n",
1944                     name, (u_longlong_t)shp->sh_addr);
1945 
1946                 if (strcmp(name, ".SUNW_ctf") == 0) {
1947                         if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
1948                                 dprintf("no map at addr 0x%llx for %s [%d]\n",
1949                                     (u_longlong_t)shp->sh_addr, name, i);
1950                                 continue;
1951                         }
1952 
1953                         if (mp->map_file == NULL ||
1954                             mp->map_file->file_ctf_buf != NULL) {
1955                                 dprintf("no mapping file or duplicate buffer "
1956                                     "for %s [%d]\n", name, i);
1957                                 continue;
1958                         }
1959 
1960                         if ((buf = malloc(shp->sh_size)) == NULL ||
1961                             pread64(efp->e_fd, buf, shp->sh_size,
1962                             shp->sh_offset) != shp->sh_size) {
1963                                 dprintf("skipping section %s [%d]: %s\n",
1964                                     name, i, strerror(errno));
1965                                 free(buf);
1966                                 continue;
1967                         }
1968 
1969                         mp->map_file->file_ctf_size = shp->sh_size;
1970                         mp->map_file->file_ctf_buf = buf;
1971 
1972                         if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
1973                                 mp->map_file->file_ctf_dyn = 1;
1974 
1975                 } else if (strcmp(name, ".symtab") == 0) {
1976                         fake_up_symtab(P, &efp->e_hdr,
1977                             shp, &shdrs[shp->sh_link]);
1978                 }
1979         }
1980 out:
1981         free(shstrtab);
1982         free(shdrs);
1983 }
1984 
1985 /*
1986  * Main engine for core file initialization: given an fd for the core file
1987  * and an optional pathname, construct the ps_prochandle.  The aout_path can
1988  * either be a suggested executable pathname, or a suggested directory to
1989  * use as a possible current working directory.
1990  */
1991 struct ps_prochandle *
1992 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
1993 {
1994         struct ps_prochandle *P;
1995         core_info_t *core_info;
1996         map_info_t *stk_mp, *brk_mp;
1997         const char *execname;
1998         char *interp;
1999         int i, notes, pagesize;
2000         uintptr_t addr, base_addr;
2001         struct stat64 stbuf;
2002         void *phbuf, *php;
2003         size_t nbytes;
2004 
2005         elf_file_t aout;
2006         elf_file_t core;
2007 
2008         Elf_Scn *scn, *intp_scn = NULL;
2009         Elf_Data *dp;
2010 
2011         GElf_Phdr phdr, note_phdr;
2012         GElf_Shdr shdr;
2013         GElf_Xword nleft;
2014 
2015         if (elf_version(EV_CURRENT) == EV_NONE) {
2016                 dprintf("libproc ELF version is more recent than libelf\n");
2017                 *perr = G_ELF;
2018                 return (NULL);
2019         }
2020 
2021         aout.e_elf = NULL;
2022         aout.e_fd = -1;
2023 
2024         core.e_elf = NULL;
2025         core.e_fd = core_fd;
2026 
2027         /*
2028          * Allocate and initialize a ps_prochandle structure for the core.
2029          * There are several key pieces of initialization here:
2030          *
2031          * 1. The PS_DEAD state flag marks this prochandle as a core file.
2032          *    PS_DEAD also thus prevents all operations which require state
2033          *    to be PS_STOP from operating on this handle.
2034          *
2035          * 2. We keep the core file fd in P->asfd since the core file contains
2036          *    the remnants of the process address space.
2037          *
2038          * 3. We set the P->info_valid bit because all information about the
2039          *    core is determined by the end of this function; there is no need
2040          *    for proc_update_maps() to reload mappings at any later point.
2041          *
2042          * 4. The read/write ops vector uses our core_rw() function defined
2043          *    above to handle i/o requests.
2044          */
2045         if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2046                 *perr = G_STRANGE;
2047                 return (NULL);
2048         }
2049 
2050         (void) memset(P, 0, sizeof (struct ps_prochandle));
2051         (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2052         P->state = PS_DEAD;
2053         P->pid = (pid_t)-1;
2054         P->asfd = core.e_fd;
2055         P->ctlfd = -1;
2056         P->statfd = -1;
2057         P->agentctlfd = -1;
2058         P->agentstatfd = -1;
2059         P->zoneroot = NULL;
2060         P->info_valid = 1;
2061         Pinit_ops(&P->ops, &P_core_ops);
2062 
2063         Pinitsym(P);
2064 
2065         /*
2066          * Fstat and open the core file and make sure it is a valid ELF core.
2067          */
2068         if (fstat64(P->asfd, &stbuf) == -1) {
2069                 *perr = G_STRANGE;
2070                 goto err;
2071         }
2072 
2073         if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2074                 goto err;
2075 
2076         /*
2077          * Allocate and initialize a core_info_t to hang off the ps_prochandle
2078          * structure.  We keep all core-specific information in this structure.
2079          */
2080         if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2081                 *perr = G_STRANGE;
2082                 goto err;
2083         }
2084 
2085         P->data = core_info;
2086         list_link(&core_info->core_lwp_head, NULL);
2087         core_info->core_size = stbuf.st_size;
2088         /*
2089          * In the days before adjustable core file content, this was the
2090          * default core file content. For new core files, this value will
2091          * be overwritten by the NT_CONTENT note section.
2092          */
2093         core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2094             CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2095             CC_CONTENT_SHANON;
2096 
2097         switch (core.e_hdr.e_ident[EI_CLASS]) {
2098         case ELFCLASS32:
2099                 core_info->core_dmodel = PR_MODEL_ILP32;
2100                 break;
2101         case ELFCLASS64:
2102                 core_info->core_dmodel = PR_MODEL_LP64;
2103                 break;
2104         default:
2105                 *perr = G_FORMAT;
2106                 goto err;
2107         }
2108 
2109         /*
2110          * Because the core file may be a large file, we can't use libelf to
2111          * read the Phdrs.  We use e_phnum and e_phentsize to simplify things.
2112          */
2113         nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
2114 
2115         if ((phbuf = malloc(nbytes)) == NULL) {
2116                 *perr = G_STRANGE;
2117                 goto err;
2118         }
2119 
2120         if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2121                 *perr = G_STRANGE;
2122                 free(phbuf);
2123                 goto err;
2124         }
2125 
2126         /*
2127          * Iterate through the program headers in the core file.
2128          * We're interested in two types of Phdrs: PT_NOTE (which
2129          * contains a set of saved /proc structures), and PT_LOAD (which
2130          * represents a memory mapping from the process's address space).
2131          * In the case of PT_NOTE, we're interested in the last PT_NOTE
2132          * in the core file; currently the first PT_NOTE (if present)
2133          * contains /proc structs in the pre-2.6 unstructured /proc format.
2134          */
2135         for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2136                 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2137                         (void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2138                 else
2139                         core_phdr_to_gelf(php, &phdr);
2140 
2141                 switch (phdr.p_type) {
2142                 case PT_NOTE:
2143                         note_phdr = phdr;
2144                         notes++;
2145                         break;
2146 
2147                 case PT_LOAD:
2148                         if (core_add_mapping(P, &phdr) == -1) {
2149                                 *perr = G_STRANGE;
2150                                 free(phbuf);
2151                                 goto err;
2152                         }
2153                         break;
2154                 }
2155 
2156                 php = (char *)php + core.e_hdr.e_phentsize;
2157         }
2158 
2159         free(phbuf);
2160 
2161         Psort_mappings(P);
2162 
2163         /*
2164          * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
2165          * was present, abort.  The core file is either corrupt or too old.
2166          */
2167         if (notes == 0 || notes == 1) {
2168                 *perr = G_NOTE;
2169                 goto err;
2170         }
2171 
2172         /*
2173          * Advance the seek pointer to the start of the PT_NOTE data
2174          */
2175         if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2176                 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2177                 *perr = G_STRANGE;
2178                 goto err;
2179         }
2180 
2181         /*
2182          * Now process the PT_NOTE structures.  Each one is preceded by
2183          * an Elf{32/64}_Nhdr structure describing its type and size.
2184          *
2185          *  +--------+
2186          *  | header |
2187          *  +--------+
2188          *  | name   |
2189          *  | ...    |
2190          *  +--------+
2191          *  | desc   |
2192          *  | ...    |
2193          *  +--------+
2194          */
2195         for (nleft = note_phdr.p_filesz; nleft > 0; ) {
2196                 Elf64_Nhdr nhdr;
2197                 off64_t off, namesz;
2198 
2199                 /*
2200                  * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2201                  * as different types, they are both of the same content and
2202                  * size, so we don't need to worry about 32/64 conversion here.
2203                  */
2204                 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2205                         dprintf("Pgrab_core: failed to read ELF note header\n");
2206                         *perr = G_NOTE;
2207                         goto err;
2208                 }
2209 
2210                 /*
2211                  * According to the System V ABI, the amount of padding
2212                  * following the name field should align the description
2213                  * field on a 4 byte boundary for 32-bit binaries or on an 8
2214                  * byte boundary for 64-bit binaries. However, this change
2215                  * was not made correctly during the 64-bit port so all
2216                  * descriptions can assume only 4-byte alignment. We ignore
2217                  * the name field and the padding to 4-byte alignment.
2218                  */
2219                 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2220                 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2221                         dprintf("failed to seek past name and padding\n");
2222                         *perr = G_STRANGE;
2223                         goto err;
2224                 }
2225 
2226                 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2227                     nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2228 
2229                 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2230 
2231                 /*
2232                  * Invoke the note handler function from our table
2233                  */
2234                 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
2235                         if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2236                                 *perr = G_NOTE;
2237                                 goto err;
2238                         }
2239                 } else
2240                         (void) note_notsup(P, nhdr.n_descsz);
2241 
2242                 /*
2243                  * Seek past the current note data to the next Elf_Nhdr
2244                  */
2245                 if (lseek64(P->asfd, off + nhdr.n_descsz,
2246                     SEEK_SET) == (off64_t)-1) {
2247                         dprintf("Pgrab_core: failed to seek to next nhdr\n");
2248                         *perr = G_STRANGE;
2249                         goto err;
2250                 }
2251 
2252                 /*
2253                  * Subtract the size of the header and its data from what
2254                  * we have left to process.
2255                  */
2256                 nleft -= sizeof (nhdr) + namesz + nhdr.n_descsz;
2257         }
2258 
2259         if (nleft != 0) {
2260                 dprintf("Pgrab_core: note section malformed\n");
2261                 *perr = G_STRANGE;
2262                 goto err;
2263         }
2264 
2265         if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2266                 pagesize = getpagesize();
2267                 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2268         }
2269 
2270         /*
2271          * Locate and label the mappings corresponding to the end of the
2272          * heap (MA_BREAK) and the base of the stack (MA_STACK).
2273          */
2274         if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2275             (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2276             P->status.pr_brksize - 1)) != NULL)
2277                 brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2278         else
2279                 brk_mp = NULL;
2280 
2281         if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2282                 stk_mp->map_pmap.pr_mflags |= MA_STACK;
2283 
2284         /*
2285          * At this point, we have enough information to look for the
2286          * executable and open it: we have access to the auxv, a psinfo_t,
2287          * and the ability to read from mappings provided by the core file.
2288          */
2289         (void) Pfindexec(P, aout_path, core_exec_open, &aout);
2290         dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2291         execname = P->execname ? P->execname : "a.out";
2292 
2293         /*
2294          * Iterate through the sections, looking for the .dynamic and .interp
2295          * sections.  If we encounter them, remember their section pointers.
2296          */
2297         for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2298                 char *sname;
2299 
2300                 if ((gelf_getshdr(scn, &shdr) == NULL) ||
2301                     (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2302                     (size_t)shdr.sh_name)) == NULL)
2303                         continue;
2304 
2305                 if (strcmp(sname, ".interp") == 0)
2306                         intp_scn = scn;
2307         }
2308 
2309         /*
2310          * Get the AT_BASE auxv element.  If this is missing (-1), then
2311          * we assume this is a statically-linked executable.
2312          */
2313         base_addr = Pgetauxval(P, AT_BASE);
2314 
2315         /*
2316          * In order to get librtld_db initialized, we'll need to identify
2317          * and name the mapping corresponding to the run-time linker.  The
2318          * AT_BASE auxv element tells us the address where it was mapped,
2319          * and the .interp section of the executable tells us its path.
2320          * If for some reason that doesn't pan out, just use ld.so.1.
2321          */
2322         if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2323             dp->d_size != 0) {
2324                 dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2325                 interp = dp->d_buf;
2326 
2327         } else if (base_addr != (uintptr_t)-1L) {
2328                 if (core_info->core_dmodel == PR_MODEL_LP64)
2329                         interp = "/usr/lib/64/ld.so.1";
2330                 else
2331                         interp = "/usr/lib/ld.so.1";
2332 
2333                 dprintf(".interp section is missing or could not be read; "
2334                     "defaulting to %s\n", interp);
2335         } else
2336                 dprintf("detected statically linked executable\n");
2337 
2338         /*
2339          * If we have an AT_BASE element, name the mapping at that address
2340          * using the interpreter pathname.  Name the corresponding data
2341          * mapping after the interpreter as well.
2342          */
2343         if (base_addr != (uintptr_t)-1L) {
2344                 elf_file_t intf;
2345 
2346                 P->map_ldso = core_name_mapping(P, base_addr, interp);
2347 
2348                 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2349                         rd_loadobj_t rl;
2350                         map_info_t *dmp;
2351 
2352                         rl.rl_base = base_addr;
2353                         dmp = core_find_data(P, intf.e_elf, &rl);
2354 
2355                         if (dmp != NULL) {
2356                                 dprintf("renamed data at %p to %s\n",
2357                                     (void *)rl.rl_data_base, interp);
2358                                 (void) strncpy(dmp->map_pmap.pr_mapname,
2359                                     interp, PRMAPSZ);
2360                                 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2361                         }
2362                 }
2363 
2364                 core_elf_close(&intf);
2365         }
2366 
2367         /*
2368          * If we have an AT_ENTRY element, name the mapping at that address
2369          * using the special name "a.out" just like /proc does.
2370          */
2371         if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2372                 P->map_exec = core_name_mapping(P, addr, "a.out");
2373 
2374         /*
2375          * If we're a statically linked executable, then just locate the
2376          * executable's text and data and name them after the executable.
2377          */
2378         if (base_addr == (uintptr_t)-1L) {
2379                 map_info_t *tmp, *dmp;
2380                 file_info_t *fp;
2381                 rd_loadobj_t rl;
2382 
2383                 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2384                     (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2385                         (void) strncpy(tmp->map_pmap.pr_mapname,
2386                             execname, PRMAPSZ);
2387                         tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2388                         (void) strncpy(dmp->map_pmap.pr_mapname,
2389                             execname, PRMAPSZ);
2390                         dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2391                 }
2392 
2393                 if ((P->map_exec = tmp) != NULL &&
2394                     (fp = malloc(sizeof (file_info_t))) != NULL) {
2395 
2396                         (void) memset(fp, 0, sizeof (file_info_t));
2397 
2398                         list_link(fp, &P->file_head);
2399                         tmp->map_file = fp;
2400                         P->num_files++;
2401 
2402                         fp->file_ref = 1;
2403                         fp->file_fd = -1;
2404 
2405                         fp->file_lo = malloc(sizeof (rd_loadobj_t));
2406                         fp->file_lname = strdup(execname);
2407 
2408                         if (fp->file_lo)
2409                                 *fp->file_lo = rl;
2410                         if (fp->file_lname)
2411                                 fp->file_lbase = basename(fp->file_lname);
2412                         if (fp->file_rname)
2413                                 fp->file_rbase = basename(fp->file_rname);
2414 
2415                         (void) strcpy(fp->file_pname,
2416                             P->mappings[0].map_pmap.pr_mapname);
2417                         fp->file_map = tmp;
2418 
2419                         Pbuild_file_symtab(P, fp);
2420 
2421                         if (dmp != NULL) {
2422                                 dmp->map_file = fp;
2423                                 fp->file_ref++;
2424                         }
2425                 }
2426         }
2427 
2428         core_elf_close(&aout);
2429 
2430         /*
2431          * We now have enough information to initialize librtld_db.
2432          * After it warms up, we can iterate through the load object chain
2433          * in the core, which will allow us to construct the file info
2434          * we need to provide symbol information for the other shared
2435          * libraries, and also to fill in the missing mapping names.
2436          */
2437         rd_log(_libproc_debug);
2438 
2439         if ((P->rap = rd_new(P)) != NULL) {
2440                 (void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2441                     core_iter_mapping, P);
2442 
2443                 if (core_info->core_errno != 0) {
2444                         errno = core_info->core_errno;
2445                         *perr = G_STRANGE;
2446                         goto err;
2447                 }
2448         } else
2449                 dprintf("failed to initialize rtld_db agent\n");
2450 
2451         /*
2452          * If there are sections, load them and process the data from any
2453          * sections that we can use to annotate the file_info_t's.
2454          */
2455         core_load_shdrs(P, &core);
2456 
2457         /*
2458          * If we previously located a stack or break mapping, and they are
2459          * still anonymous, we now assume that they were MAP_ANON mappings.
2460          * If brk_mp turns out to now have a name, then the heap is still
2461          * sitting at the end of the executable's data+bss mapping: remove
2462          * the previous MA_BREAK setting to be consistent with /proc.
2463          */
2464         if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2465                 stk_mp->map_pmap.pr_mflags |= MA_ANON;
2466         if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2467                 brk_mp->map_pmap.pr_mflags |= MA_ANON;
2468         else if (brk_mp != NULL)
2469                 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2470 
2471         *perr = 0;
2472         return (P);
2473 
2474 err:
2475         Pfree(P);
2476         core_elf_close(&aout);
2477         return (NULL);
2478 }
2479 
2480 /*
2481  * Grab a core file using a pathname.  We just open it and call Pfgrab_core().
2482  */
2483 struct ps_prochandle *
2484 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2485 {
2486         int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2487 
2488         if ((fd = open64(core, oflag)) >= 0)
2489                 return (Pfgrab_core(fd, aout, perr));
2490 
2491         if (errno != ENOENT)
2492                 *perr = G_STRANGE;
2493         else
2494                 *perr = G_NOCORE;
2495 
2496         return (NULL);
2497 }