1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
28 * Copyright (c) 2012 by Delphix. All rights reserved.
29 */
30
31 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
32 /* All Rights Reserved */
33
34 /*
35 * University Copyright- Copyright (c) 1982, 1986, 1988
36 * The Regents of the University of California
37 * All Rights Reserved
38 *
39 * University Acknowledgment- Portions of this document are derived from
40 * software developed by the University of California, Berkeley, and its
41 * contributors.
42 */
43
44 #include <stdio.h>
45 #include <sys/types.h>
46 #include <stdlib.h>
47 #include <unistd.h>
48 #include <string.h>
49 #include <syslog.h>
50 #include <rpc/rpc.h>
51 #include <rpcsvc/sm_inter.h>
52 #include <rpcsvc/nsm_addr.h>
53 #include <memory.h>
54 #include <net/if.h>
55 #include <sys/sockio.h>
56 #include <sys/socket.h>
57 #include <netinet/in.h>
58 #include <arpa/inet.h>
59 #include <netdb.h>
60 #include <netdir.h>
61 #include <synch.h>
62 #include <thread.h>
63 #include <ifaddrs.h>
64 #include <errno.h>
65 #include <assert.h>
66 #include "sm_statd.h"
67
68 static int local_state; /* fake local sm state */
69 /* client name-to-address translation table */
70 static name_addr_entry_t *name_addr = NULL;
71
72
73 #define LOGHOST "loghost"
74
75 static void delete_mon(char *mon_name, my_id *my_idp);
76 static void insert_mon(mon *monp);
77 static void pr_mon(char *);
78 static int statd_call_lockd(mon *monp, int state);
79 static int hostname_eq(char *host1, char *host2);
80 static char *get_system_id(char *hostname);
81 static void add_aliases(struct hostent *phost);
82 static void *thr_send_notice(void *);
83 static void delete_onemon(char *mon_name, my_id *my_idp,
84 mon_entry **monitor_q);
85 static void send_notice(char *mon_name, int state);
86 static void add_to_host_array(char *host);
87 static int in_host_array(char *host);
88 static void pr_name_addr(name_addr_entry_t *name_addr);
89
90 extern int self_check(char *hostname);
91 extern struct lifconf *getmyaddrs(void);
92
93 /* ARGSUSED */
94 void
95 sm_stat_svc(sm_name *namep, sm_stat_res *resp)
96 {
97
98 if (debug)
99 (void) printf("proc sm_stat: mon_name = %s\n",
100 namep->mon_name);
101
102 resp->res_stat = stat_succ;
103 resp->state = LOCAL_STATE;
104 }
105
106 /* ARGSUSED */
107 void
108 sm_mon_svc(mon *monp, sm_stat_res *resp)
109 {
110 mon_id *monidp;
111 monidp = &monp->mon_id;
112
113 rw_rdlock(&thr_rwlock);
114 if (debug) {
115 (void) printf("proc sm_mon: mon_name = %s, id = %d\n",
116 monidp->mon_name, * ((int *)monp->priv));
117 pr_mon(monp->mon_id.mon_name);
118 }
119
120 /* only monitor other hosts */
121 if (self_check(monp->mon_id.mon_name) == 0) {
122 /* store monitor request into monitor_q */
123 insert_mon(monp);
124 }
125
126 pr_mon(monp->mon_id.mon_name);
127 resp->res_stat = stat_succ;
128 resp->state = local_state;
129 rw_unlock(&thr_rwlock);
130 }
131
132 /* ARGSUSED */
133 void
134 sm_unmon_svc(mon_id *monidp, sm_stat *resp)
135 {
136 rw_rdlock(&thr_rwlock);
137 if (debug) {
138 (void) printf(
139 "proc sm_unmon: mon_name = %s, [%s, %d, %d, %d]\n",
140 monidp->mon_name, monidp->my_id.my_name,
141 monidp->my_id.my_prog, monidp->my_id.my_vers,
142 monidp->my_id.my_proc);
143 pr_mon(monidp->mon_name);
144 }
145
146 delete_mon(monidp->mon_name, &monidp->my_id);
147 pr_mon(monidp->mon_name);
148 resp->state = local_state;
149 rw_unlock(&thr_rwlock);
150 }
151
152 /* ARGSUSED */
153 void
154 sm_unmon_all_svc(my_id *myidp, sm_stat *resp)
155 {
156 rw_rdlock(&thr_rwlock);
157 if (debug)
158 (void) printf("proc sm_unmon_all: [%s, %d, %d, %d]\n",
159 myidp->my_name,
160 myidp->my_prog, myidp->my_vers,
161 myidp->my_proc);
162 delete_mon((char *)NULL, myidp);
163 pr_mon(NULL);
164 resp->state = local_state;
165 rw_unlock(&thr_rwlock);
166 }
167
168 /*
169 * Notifies lockd specified by name that state has changed for this server.
170 */
171 void
172 sm_notify_svc(stat_chge *ntfp)
173 {
174 rw_rdlock(&thr_rwlock);
175 if (debug)
176 (void) printf("sm_notify: %s state =%d\n",
177 ntfp->mon_name, ntfp->state);
178 send_notice(ntfp->mon_name, ntfp->state);
179 rw_unlock(&thr_rwlock);
180 }
181
182 /* ARGSUSED */
183 void
184 sm_simu_crash_svc(void *myidp)
185 {
186 int i;
187 struct mon_entry *monitor_q;
188 int found = 0;
189
190 /* Only one crash should be running at a time. */
191 mutex_lock(&crash_lock);
192 if (debug)
193 (void) printf("proc sm_simu_crash\n");
194 if (in_crash) {
195 cond_wait(&crash_finish, &crash_lock);
196 mutex_unlock(&crash_lock);
197 return;
198 } else {
199 in_crash = 1;
200 }
201 mutex_unlock(&crash_lock);
202
203 for (i = 0; i < MAX_HASHSIZE; i++) {
204 mutex_lock(&mon_table[i].lock);
205 monitor_q = mon_table[i].sm_monhdp;
206 if (monitor_q != (struct mon_entry *)NULL) {
207 mutex_unlock(&mon_table[i].lock);
208 found = 1;
209 break;
210 }
211 mutex_unlock(&mon_table[i].lock);
212 }
213 /*
214 * If there are entries found in the monitor table,
215 * initiate a crash, else zero out the in_crash variable.
216 */
217 if (found) {
218 mutex_lock(&crash_lock);
219 die = 1;
220 /* Signal sm_retry() thread if sleeping. */
221 cond_signal(&retrywait);
222 mutex_unlock(&crash_lock);
223 rw_wrlock(&thr_rwlock);
224 sm_crash();
225 rw_unlock(&thr_rwlock);
226 } else {
227 mutex_lock(&crash_lock);
228 in_crash = 0;
229 mutex_unlock(&crash_lock);
230 }
231 }
232
233 /* ARGSUSED */
234 void
235 nsmaddrproc1_reg(regargs, regresp)
236 reg1args *regargs;
237 reg1res *regresp;
238 {
239 nsm_addr_res status;
240 name_addr_entry_t *entry;
241 char *tmp_n_bytes;
242 addr_entry_t *addr;
243
244 rw_rdlock(&thr_rwlock);
245 if (debug) {
246 int i;
247
248 (void) printf("nap1_reg: fam= %d, name= %s, len= %d\n",
249 regargs->family,
250 regargs->name,
251 regargs->address.n_len);
252 (void) printf("address is: ");
253 for (i = 0; i < regargs->address.n_len; i++) {
254 (void) printf("%d.",
255 (unsigned char)regargs->address.n_bytes[i]);
256 }
257 (void) printf("\n");
258 }
259
260 /*
261 * Locate the entry with the name in the NSM_ADDR_REG request if
262 * it exists. If it doesn't, create a new entry to hold this name.
263 * The first time through this code, name_addr starts out as NULL.
264 */
265 mutex_lock(&name_addrlock);
266 for (entry = name_addr; entry; entry = entry->next) {
267 if (strcmp(regargs->name, entry->name) == 0) {
268 if (debug) {
269 (void) printf("nap1_reg: matched name %s\n",
270 entry->name);
271 }
272 break;
273 }
274 }
275
276 if (entry == NULL) {
277 entry = (name_addr_entry_t *)malloc(sizeof (*entry));
278 if (entry == NULL) {
279 if (debug) {
280 (void) printf(
281 "nsmaddrproc1_reg: no memory for entry\n");
282 }
283 status = nsm_addr_fail;
284 goto done;
285 }
286
287 entry->name = strdup(regargs->name);
288 if (entry->name == NULL) {
289 if (debug) {
290 (void) printf(
291 "nsmaddrproc1_reg: no memory for name\n");
292 }
293 free(entry);
294 status = nsm_addr_fail;
295 goto done;
296 }
297 entry->addresses = NULL;
298
299 /*
300 * Link the new entry onto the *head* of the name_addr
301 * table.
302 *
303 * Note: there is code below in the address maintenance
304 * section that assumes this behavior.
305 */
306 entry->next = name_addr;
307 name_addr = entry;
308 }
309
310 /*
311 * Try to match the address in the request; if it doesn't match,
312 * add it to the entry's address list.
313 */
314 for (addr = entry->addresses; addr; addr = addr->next) {
315 if (addr->family == (sa_family_t)regargs->family &&
316 addr->ah.n_len == regargs->address.n_len &&
317 memcmp(addr->ah.n_bytes, regargs->address.n_bytes,
318 addr->ah.n_len) == 0) {
319 if (debug) {
320 int i;
321
322 (void) printf("nap1_reg: matched addr ");
323 for (i = 0; i < addr->ah.n_len; i++) {
324 (void) printf("%d.",
325 (unsigned char)addr->ah.n_bytes[i]);
326 }
327 (void) printf(" family %d for name %s\n",
328 addr->family,
329 entry->name);
330 }
331 break;
332 }
333 }
334
335 if (addr == NULL) {
336 addr = (addr_entry_t *)malloc(sizeof (*addr));
337 tmp_n_bytes = (char *)malloc(regargs->address.n_len);
338 if (addr == NULL || tmp_n_bytes == NULL) {
339 if (debug) {
340 (void) printf(
341 "nap1_reg: no memory for addr\n");
342 }
343
344 /*
345 * If this name entry was just newly made in the
346 * table, back it out now that we can't register
347 * an address with it anyway.
348 *
349 * Note: we are making an assumption about how
350 * names are added to (the head of) name_addr here.
351 */
352 if (entry == name_addr && entry->addresses == NULL) {
353 name_addr = name_addr->next;
354 free(entry->name);
355 free(entry);
356 if (tmp_n_bytes)
357 free(tmp_n_bytes);
358 if (addr)
359 free(addr);
360 status = nsm_addr_fail;
361 goto done;
362 }
363 }
364
365 /*
366 * Note: this check for address family assumes that we
367 * will get something different here someday for
368 * other supported address types, such as IPv6.
369 */
370 addr->ah.n_len = regargs->address.n_len;
371 addr->ah.n_bytes = tmp_n_bytes;
372 addr->family = regargs->family;
373 if (debug) {
374 if ((addr->family != AF_INET) && \
375 (addr->family != AF_INET6)) {
376 (void) printf(
377 "nap1_reg: unknown addr family %d\n",
378 addr->family);
379 }
380 }
381 (void) memcpy(addr->ah.n_bytes, regargs->address.n_bytes,
382 addr->ah.n_len);
383
384 addr->next = entry->addresses;
385 entry->addresses = addr;
386 }
387
388 status = nsm_addr_succ;
389
390 done:
391 regresp->status = status;
392 if (debug) {
393 pr_name_addr(name_addr);
394 }
395 mutex_unlock(&name_addrlock);
396 rw_unlock(&thr_rwlock);
397 }
398
399 /*
400 * Insert an entry into the monitor_q. Space for the entry is allocated
401 * here. It is then filled in from the information passed in.
402 */
403 static void
404 insert_mon(monp)
405 mon *monp;
406 {
407 mon_entry *new, *found;
408 my_id *my_idp, *nl_idp;
409 mon_entry *monitor_q;
410 unsigned int hash;
411 name_addr_entry_t *entry;
412 addr_entry_t *addr;
413
414 /* Allocate entry for new */
415 if ((new = (mon_entry *) malloc(sizeof (mon_entry))) == 0) {
416 syslog(LOG_ERR,
417 "statd: insert_mon: malloc error on mon %s (id=%d)\n",
418 monp->mon_id.mon_name, * ((int *)monp->priv));
419 return;
420 }
421
422 /* Initialize and copy contents of monp to new */
423 (void) memset(new, 0, sizeof (mon_entry));
424 (void) memcpy(&new->id, monp, sizeof (mon));
425
426 /* Allocate entry for new mon_name */
427 if ((new->id.mon_id.mon_name = strdup(monp->mon_id.mon_name)) == 0) {
428 syslog(LOG_ERR,
429 "statd: insert_mon: malloc error on mon %s (id=%d)\n",
430 monp->mon_id.mon_name, * ((int *)monp->priv));
431 free(new);
432 return;
433 }
434
435
436 /* Allocate entry for new my_name */
437 if ((new->id.mon_id.my_id.my_name =
438 strdup(monp->mon_id.my_id.my_name)) == 0) {
439 syslog(LOG_ERR,
440 "statd: insert_mon: malloc error on mon %s (id=%d)\n",
441 monp->mon_id.mon_name, * ((int *)monp->priv));
442 free(new->id.mon_id.mon_name);
443 free(new);
444 return;
445 }
446
447 if (debug)
448 (void) printf("add_mon(%x) %s (id=%d)\n",
449 (int)new, new->id.mon_id.mon_name, * ((int *)new->id.priv));
450
451 /*
452 * Record the name, and all addresses which have been registered
453 * for this name, in the filesystem name space.
454 */
455 record_name(new->id.mon_id.mon_name, 1);
456 if (regfiles_only == 0) {
457 mutex_lock(&name_addrlock);
458 for (entry = name_addr; entry; entry = entry->next) {
459 if (strcmp(new->id.mon_id.mon_name, entry->name) != 0) {
460 continue;
461 }
462
463 for (addr = entry->addresses; addr; addr = addr->next) {
464 record_addr(new->id.mon_id.mon_name,
465 addr->family, &addr->ah);
466 }
467 break;
468 }
469 mutex_unlock(&name_addrlock);
470 }
471
472 SMHASH(new->id.mon_id.mon_name, hash);
473 mutex_lock(&mon_table[hash].lock);
474 monitor_q = mon_table[hash].sm_monhdp;
475
476 /* If mon_table hash list is empty. */
477 if (monitor_q == (struct mon_entry *)NULL) {
478 if (debug)
479 (void) printf("\nAdding to monitor_q hash %d\n", hash);
480 new->nxt = new->prev = (mon_entry *)NULL;
481 mon_table[hash].sm_monhdp = new;
482 mutex_unlock(&mon_table[hash].lock);
483 return;
484 } else {
485 found = 0;
486 my_idp = &new->id.mon_id.my_id;
487 while (monitor_q != (mon_entry *)NULL) {
488 /*
489 * This list is searched sequentially for the
490 * tuple (hostname, prog, vers, proc). The tuples
491 * are inserted in the beginning of the monitor_q,
492 * if the hostname is not already present in the list.
493 * If the hostname is found in the list, the incoming
494 * tuple is inserted just after all the tuples with the
495 * same hostname. However, if the tuple matches exactly
496 * with an entry in the list, space allocated for the
497 * new entry is released and nothing is inserted in the
498 * list.
499 */
500
501 if (str_cmp_unqual_hostname(
502 monitor_q->id.mon_id.mon_name,
503 new->id.mon_id.mon_name) == 0) {
504 /* found */
505 nl_idp = &monitor_q->id.mon_id.my_id;
506 if ((str_cmp_unqual_hostname(my_idp->my_name,
507 nl_idp->my_name) == 0) &&
508 my_idp->my_prog == nl_idp->my_prog &&
509 my_idp->my_vers == nl_idp->my_vers &&
510 my_idp->my_proc == nl_idp->my_proc) {
511 /*
512 * already exists an identical one,
513 * release the space allocated for the
514 * mon_entry
515 */
516 free(new->id.mon_id.mon_name);
517 free(new->id.mon_id.my_id.my_name);
518 free(new);
519 mutex_unlock(&mon_table[hash].lock);
520 return;
521 } else {
522 /*
523 * mark the last callback that is
524 * not matching; new is inserted
525 * after this
526 */
527 found = monitor_q;
528 }
529 } else if (found)
530 break;
531 monitor_q = monitor_q->nxt;
532 }
533 if (found) {
534 /*
535 * insert just after the entry having matching tuple.
536 */
537 new->nxt = found->nxt;
538 new->prev = found;
539 if (found->nxt != (mon_entry *)NULL)
540 found->nxt->prev = new;
541 found->nxt = new;
542 } else {
543 /*
544 * not found, insert in front of list.
545 */
546 new->nxt = mon_table[hash].sm_monhdp;
547 new->prev = (mon_entry *) NULL;
548 if (new->nxt != (mon_entry *) NULL)
549 new->nxt->prev = new;
550 mon_table[hash].sm_monhdp = new;
551 }
552 mutex_unlock(&mon_table[hash].lock);
553 return;
554 }
555 }
556
557 /*
558 * Deletes a specific monitor name or deletes all monitors with same id
559 * in hash table.
560 */
561 static void
562 delete_mon(mon_name, my_idp)
563 char *mon_name;
564 my_id *my_idp;
565 {
566 unsigned int hash;
567
568 if (mon_name != (char *)NULL) {
569 record_name(mon_name, 0);
570 SMHASH(mon_name, hash);
571 mutex_lock(&mon_table[hash].lock);
572 delete_onemon(mon_name, my_idp, &mon_table[hash].sm_monhdp);
573 mutex_unlock(&mon_table[hash].lock);
574 } else {
575 for (hash = 0; hash < MAX_HASHSIZE; hash++) {
576 mutex_lock(&mon_table[hash].lock);
577 delete_onemon(mon_name, my_idp,
578 &mon_table[hash].sm_monhdp);
579 mutex_unlock(&mon_table[hash].lock);
580 }
581 }
582 }
583
584 /*
585 * Deletes a monitor in list.
586 * IF mon_name is NULL, delete all mon_names that have the same id,
587 * else delete specific monitor.
588 */
589 void
590 delete_onemon(mon_name, my_idp, monitor_q)
591 char *mon_name;
592 my_id *my_idp;
593 mon_entry **monitor_q;
594 {
595
596 mon_entry *next, *nl;
597 my_id *nl_idp;
598
599 next = *monitor_q;
600 while ((nl = next) != (struct mon_entry *)NULL) {
601 next = next->nxt;
602 if (mon_name == (char *)NULL || (mon_name != (char *)NULL &&
603 str_cmp_unqual_hostname(nl->id.mon_id.mon_name,
604 mon_name) == 0)) {
605 nl_idp = &nl->id.mon_id.my_id;
606 if ((str_cmp_unqual_hostname(my_idp->my_name,
607 nl_idp->my_name) == 0) &&
608 my_idp->my_prog == nl_idp->my_prog &&
609 my_idp->my_vers == nl_idp->my_vers &&
610 my_idp->my_proc == nl_idp->my_proc) {
611 /* found */
612 if (debug)
613 (void) printf("delete_mon(%x): %s\n",
614 (int)nl, mon_name ?
615 mon_name : "<NULL>");
616 /*
617 * Remove the monitor name from the
618 * record_q, if id matches.
619 */
620 record_name(nl->id.mon_id.mon_name, 0);
621 /* if nl is not the first entry on list */
622 if (nl->prev != (struct mon_entry *)NULL)
623 nl->prev->nxt = nl->nxt;
624 else {
625 *monitor_q = nl->nxt;
626 }
627 if (nl->nxt != (struct mon_entry *)NULL)
628 nl->nxt->prev = nl->prev;
629 free(nl->id.mon_id.mon_name);
630 free(nl_idp->my_name);
631 free(nl);
632 }
633 } /* end of if mon */
634 }
635
636 }
637 /*
638 * Notify lockd of host specified by mon_name that the specified state
639 * has changed.
640 */
641 static void
642 send_notice(mon_name, state)
643 char *mon_name;
644 int state;
645 {
646 struct mon_entry *next;
647 mon_entry *monitor_q;
648 unsigned int hash;
649 moninfo_t *minfop;
650 mon *monp;
651
652 SMHASH(mon_name, hash);
653 mutex_lock(&mon_table[hash].lock);
654 monitor_q = mon_table[hash].sm_monhdp;
655
656 next = monitor_q;
657 while (next != (struct mon_entry *)NULL) {
658 if (hostname_eq(next->id.mon_id.mon_name, mon_name)) {
659 monp = &next->id;
660 /*
661 * Prepare the minfop structure to pass to
662 * thr_create(). This structure is a copy of
663 * mon info and state.
664 */
665 if ((minfop =
666 (moninfo_t *)xmalloc(sizeof (moninfo_t))) !=
667 (moninfo_t *)NULL) {
668 (void) memcpy(&minfop->id, monp, sizeof (mon));
669 /* Allocate entry for mon_name */
670 if ((minfop->id.mon_id.mon_name =
671 strdup(monp->mon_id.mon_name)) == 0) {
672 syslog(LOG_ERR,
673 "statd: send_notice: malloc error on mon %s (id=%d)\n",
674 monp->mon_id.mon_name,
675 * ((int *)monp->priv));
676 free(minfop);
677 continue;
678 }
679 /* Allocate entry for my_name */
680 if ((minfop->id.mon_id.my_id.my_name =
681 strdup(monp->mon_id.my_id.my_name)) == 0) {
682 syslog(LOG_ERR,
683 "statd: send_notice: malloc error on mon %s (id=%d)\n",
684 monp->mon_id.mon_name,
685 * ((int *)monp->priv));
686 free(minfop->id.mon_id.mon_name);
687 free(minfop);
688 continue;
689 }
690 minfop->state = state;
691 /*
692 * Create detached threads to process each host
693 * to notify. If error, print out msg, free
694 * resources and continue.
695 */
696 if (thr_create(NULL, NULL, thr_send_notice,
697 (void *)minfop, THR_DETACHED,
698 NULL)) {
699 syslog(LOG_ERR,
700 "statd: unable to create thread to send_notice to %s.\n",
701 mon_name);
702 free(minfop->id.mon_id.mon_name);
703 free(minfop->id.mon_id.my_id.my_name);
704 free(minfop);
705 continue;
706 }
707 }
708 }
709 next = next->nxt;
710 }
711 mutex_unlock(&mon_table[hash].lock);
712 }
713
714 /*
715 * Work thread created to do the actual statd_call_lockd
716 */
717 static void *
718 thr_send_notice(void *arg)
719 {
720 moninfo_t *minfop;
721
722 minfop = (moninfo_t *)arg;
723 if (statd_call_lockd(&minfop->id, minfop->state) == -1) {
724 if (debug && minfop->id.mon_id.mon_name)
725 (void) printf("problem with notifying %s failure, "
726 "give up\n", minfop->id.mon_id.mon_name);
727 } else {
728 if (debug)
729 (void) printf("send_notice: %s, %d notified.\n",
730 minfop->id.mon_id.mon_name, minfop->state);
731 }
732
733 free(minfop->id.mon_id.mon_name);
734 free(minfop->id.mon_id.my_id.my_name);
735 free(minfop);
736
737 thr_exit((void *) 0);
738 #ifdef lint
739 /*NOTREACHED*/
740 return ((void *)0);
741 #endif
742 }
743
744 /*
745 * Contact lockd specified by monp.
746 */
747 static int
748 statd_call_lockd(monp, state)
749 mon *monp;
750 int state;
751 {
752 enum clnt_stat clnt_stat;
753 struct timeval tottimeout;
754 struct sm_status stat;
755 my_id *my_idp;
756 char *mon_name;
757 int i;
758 int rc = 0;
759 CLIENT *clnt;
760
761 mon_name = monp->mon_id.mon_name;
762 my_idp = &monp->mon_id.my_id;
763 (void) memset(&stat, 0, sizeof (stat));
764 stat.mon_name = mon_name;
765 stat.state = state;
766 for (i = 0; i < 16; i++) {
767 stat.priv[i] = monp->priv[i];
768 }
769 if (debug)
770 (void) printf("statd_call_lockd: %s state = %d\n",
771 stat.mon_name, stat.state);
772
773 tottimeout.tv_sec = SM_RPC_TIMEOUT;
774 tottimeout.tv_usec = 0;
775
776 clnt = create_client(my_idp->my_name, my_idp->my_prog, my_idp->my_vers,
777 "ticotsord", &tottimeout);
778 if (clnt == NULL) {
779 return (-1);
780 }
781
782 clnt_stat = clnt_call(clnt, my_idp->my_proc,
783 xdr_sm_status, (char *)&stat,
784 xdr_void, NULL, tottimeout);
785 if (debug) {
786 (void) printf("clnt_stat=%s(%d)\n",
787 clnt_sperrno(clnt_stat), clnt_stat);
788 }
789 if (clnt_stat != (int)RPC_SUCCESS) {
790 syslog(LOG_WARNING,
791 "statd: cannot talk to lockd at %s, %s(%d)\n",
792 my_idp->my_name, clnt_sperrno(clnt_stat), clnt_stat);
793 rc = -1;
794 }
795
796 clnt_destroy(clnt);
797 return (rc);
798
799 }
800
801 /*
802 * Client handle created.
803 */
804 CLIENT *
805 create_client(char *host, int prognum, int versnum, char *netid,
806 struct timeval *utimeout)
807 {
808 int fd;
809 struct timeval timeout;
810 CLIENT *client;
811 struct t_info tinfo;
812
813 if (netid == NULL) {
814 client = clnt_create_timed(host, prognum, versnum,
815 "netpath", utimeout);
816 } else {
817 struct netconfig *nconf;
818
819 nconf = getnetconfigent(netid);
820 if (nconf == NULL) {
821 return (NULL);
822 }
823
824 client = clnt_tp_create_timed(host, prognum, versnum, nconf,
825 utimeout);
826
827 freenetconfigent(nconf);
828 }
829
830 if (client == NULL) {
831 return (NULL);
832 }
833
834 (void) CLNT_CONTROL(client, CLGET_FD, (caddr_t)&fd);
835 if (t_getinfo(fd, &tinfo) != -1) {
836 if (tinfo.servtype == T_CLTS) {
837 /*
838 * Set time outs for connectionless case
839 */
840 timeout.tv_usec = 0;
841 timeout.tv_sec = SM_CLTS_TIMEOUT;
842 (void) CLNT_CONTROL(client,
843 CLSET_RETRY_TIMEOUT, (caddr_t)&timeout);
844 }
845 } else
846 return (NULL);
847
848 return (client);
849 }
850
851 /*
852 * ONLY for debugging.
853 * Debug messages which prints out the monitor table information.
854 * If name is specified, just print out the hash list corresponding
855 * to name, otherwise print out the entire monitor table.
856 */
857 static void
858 pr_mon(name)
859 char *name;
860 {
861 mon_entry *nl;
862 int hash;
863
864 if (!debug)
865 return;
866
867 /* print all */
868 if (name == NULL) {
869 for (hash = 0; hash < MAX_HASHSIZE; hash++) {
870 mutex_lock(&mon_table[hash].lock);
871 nl = mon_table[hash].sm_monhdp;
872 if (nl == (struct mon_entry *)NULL) {
873 (void) printf(
874 "*****monitor_q = NULL hash %d\n",
875 hash);
876 mutex_unlock(&mon_table[hash].lock);
877 continue;
878 }
879 (void) printf("*****monitor_q:\n ");
880 while (nl != (mon_entry *)NULL) {
881 (void) printf("%s:(%x), ",
882 nl->id.mon_id.mon_name, (int)nl);
883 nl = nl->nxt;
884 }
885 mutex_unlock(&mon_table[hash].lock);
886 (void) printf("\n");
887 }
888 } else { /* print one hash list */
889 SMHASH(name, hash);
890 mutex_lock(&mon_table[hash].lock);
891 nl = mon_table[hash].sm_monhdp;
892 if (nl == (struct mon_entry *)NULL) {
893 (void) printf("*****monitor_q = NULL hash %d\n", hash);
894 } else {
895 (void) printf("*****monitor_q:\n ");
896 while (nl != (mon_entry *)NULL) {
897 (void) printf("%s:(%x), ",
898 nl->id.mon_id.mon_name, (int)nl);
899 nl = nl->nxt;
900 }
901 (void) printf("\n");
902 }
903 mutex_unlock(&mon_table[hash].lock);
904 }
905 }
906
907 /*
908 * Only for debugging.
909 * Dump the host name-to-address translation table passed in `name_addr'.
910 */
911 static void
912 pr_name_addr(name_addr_entry_t *name_addr)
913 {
914 name_addr_entry_t *entry;
915 addr_entry_t *addr;
916 struct in_addr ipv4_addr;
917 char *ipv6_addr;
918 char abuf[INET6_ADDRSTRLEN];
919
920 assert(MUTEX_HELD(&name_addrlock));
921 (void) printf("name-to-address translation table:\n");
922 for (entry = name_addr; entry != NULL; entry = entry->next) {
923 (void) printf("\t%s: ",
924 (entry->name ? entry->name : "(null)"));
925 for (addr = entry->addresses; addr; addr = addr->next) {
926 switch (addr->family) {
927 case AF_INET:
928 ipv4_addr = *(struct in_addr *)addr->ah.n_bytes;
929 (void) printf(" %s (fam %d)",
930 inet_ntoa(ipv4_addr), addr->family);
931 break;
932 case AF_INET6:
933 ipv6_addr = (char *)addr->ah.n_bytes;
934 (void) printf(" %s (fam %d)",
935 inet_ntop(addr->family, ipv6_addr, abuf,
936 sizeof (abuf)), addr->family);
937 break;
938 default:
939 return;
940 }
941 }
942 printf("\n");
943 }
944 }
945
946 /*
947 * First, try to compare the hostnames as strings. If the hostnames does not
948 * match we might deal with the hostname aliases. In this case two different
949 * aliases for the same machine don't match each other when using strcmp. To
950 * deal with this, the hostnames must be translated into some sort of universal
951 * identifier. These identifiers can be compared. Universal network addresses
952 * are currently used for this identifier because it is general and easy to do.
953 * Other schemes are possible and this routine could be converted if required.
954 *
955 * If it can't find an address for some reason, 0 is returned.
956 */
957 static int
958 hostname_eq(char *host1, char *host2)
959 {
960 char *sysid1;
961 char *sysid2;
962 int rv;
963
964 /* Compare hostnames as strings */
965 if (host1 != NULL && host2 != NULL && strcmp(host1, host2) == 0)
966 return (1);
967
968 /* Try harder if hostnames do not match */
969 sysid1 = get_system_id(host1);
970 sysid2 = get_system_id(host2);
971 if ((sysid1 == NULL) || (sysid2 == NULL))
972 rv = 0;
973 else
974 rv = (strcmp(sysid1, sysid2) == 0);
975 free(sysid1);
976 free(sysid2);
977 return (rv);
978 }
979
980 /*
981 * Convert a hostname character string into its network address.
982 * A network address is found by searching through all the entries
983 * in /etc/netconfig and doing a netdir_getbyname() for each inet
984 * entry found. The netbuf structure returned is converted into
985 * a universal address format.
986 *
987 * If a NULL hostname is given, then the name of the current host
988 * is used. If the hostname doesn't map to an address, a NULL
989 * pointer is returned.
990 *
991 * N.B. the character string returned is allocated in taddr2uaddr()
992 * and should be freed by the caller using free().
993 */
994 static char *
995 get_system_id(char *hostname)
996 {
997 void *hp;
998 struct netconfig *ncp;
999 struct nd_hostserv service;
1000 struct nd_addrlist *addrs;
1001 char *uaddr;
1002 int rv;
1003
1004 if (hostname == NULL)
1005 service.h_host = HOST_SELF;
1006 else
1007 service.h_host = hostname;
1008 service.h_serv = NULL;
1009 hp = setnetconfig();
1010 if (hp == (void *) NULL) {
1011 return (NULL);
1012 }
1013 while ((ncp = getnetconfig(hp)) != (struct netconfig *)NULL) {
1014 if ((strcmp(ncp->nc_protofmly, NC_INET) == 0) ||
1015 (strcmp(ncp->nc_protofmly, NC_INET6) == 0)) {
1016 addrs = NULL;
1017 rv = netdir_getbyname(ncp, &service, &addrs);
1018 if (rv != 0) {
1019 continue;
1020 }
1021 if (addrs) {
1022 uaddr = taddr2uaddr(ncp, addrs->n_addrs);
1023 netdir_free(addrs, ND_ADDRLIST);
1024 endnetconfig(hp);
1025 return (uaddr);
1026 }
1027 }
1028 else
1029 continue;
1030 }
1031 endnetconfig(hp);
1032 return (NULL);
1033 }
1034
1035 void
1036 merge_hosts(void)
1037 {
1038 struct lifconf *lifc = NULL;
1039 int sock = -1;
1040 struct lifreq *lifrp;
1041 struct lifreq lifr;
1042 int n;
1043 struct sockaddr_in *sin;
1044 struct sockaddr_in6 *sin6;
1045 struct sockaddr_storage *sa;
1046 int af;
1047 struct hostent *phost;
1048 char *addr;
1049 size_t alen;
1050 int errnum;
1051
1052 /*
1053 * This function will enumerate all the interfaces for
1054 * this platform, then get the hostent for each i/f.
1055 * With the hostent structure, we can get all of the
1056 * aliases for the i/f. Then we'll merge all the aliases
1057 * with the existing host_name[] list to come up with
1058 * all of the known names for each interface. This solves
1059 * the problem of a multi-homed host not knowing which
1060 * name to publish when statd is started. All the aliases
1061 * will be stored in the array, host_name.
1062 *
1063 * NOTE: Even though we will use all of the aliases we
1064 * can get from the i/f hostent, the receiving statd
1065 * will still need to handle aliases with hostname_eq.
1066 * This is because the sender's aliases may not match
1067 * those of the receiver.
1068 */
1069 lifc = getmyaddrs();
1070 if (lifc == (struct lifconf *)NULL) {
1071 goto finish;
1072 }
1073 lifrp = lifc->lifc_req;
1074 for (n = lifc->lifc_len / sizeof (struct lifreq); n > 0; n--, lifrp++) {
1075
1076 (void) strncpy(lifr.lifr_name, lifrp->lifr_name,
1077 sizeof (lifr.lifr_name));
1078
1079 af = lifrp->lifr_addr.ss_family;
1080 sock = socket(af, SOCK_DGRAM, 0);
1081 if (sock == -1) {
1082 syslog(LOG_ERR, "statd: socket failed\n");
1083 goto finish;
1084 }
1085
1086 /* If it's the loopback interface, ignore */
1087 if (ioctl(sock, SIOCGLIFFLAGS, (caddr_t)&lifr) < 0) {
1088 syslog(LOG_ERR,
1089 "statd: SIOCGLIFFLAGS failed, error: %m\n");
1090 goto finish;
1091 }
1092 if (lifr.lifr_flags & IFF_LOOPBACK)
1093 continue;
1094
1095 if (ioctl(sock, SIOCGLIFADDR, (caddr_t)&lifr) < 0) {
1096 syslog(LOG_ERR,
1097 "statd: SIOCGLIFADDR failed, error: %m\n");
1098 goto finish;
1099 }
1100 sa = (struct sockaddr_storage *)&(lifr.lifr_addr);
1101
1102 if (sa->ss_family == AF_INET) {
1103 sin = (struct sockaddr_in *)&lifr.lifr_addr;
1104 addr = (char *)(&sin->sin_addr);
1105 alen = sizeof (struct in_addr);
1106 } else if (sa->ss_family == AF_INET6) {
1107 sin6 = (struct sockaddr_in6 *)&lifr.lifr_addr;
1108 addr = (char *)(&sin6->sin6_addr);
1109 alen = sizeof (struct in6_addr);
1110 } else {
1111 syslog(LOG_WARNING,
1112 "unexpected address family (%d)",
1113 sa->ss_family);
1114 continue;
1115 }
1116
1117 phost = getipnodebyaddr(addr, alen, sa->ss_family, &errnum);
1118
1119 if (phost)
1120 add_aliases(phost);
1121 }
1122 /*
1123 * Now, just in case we didn't get them all byaddr,
1124 * let's look by name.
1125 */
1126 phost = getipnodebyname(hostname, AF_INET6, AI_ALL, &errnum);
1127
1128 if (phost)
1129 add_aliases(phost);
1130
1131 finish:
1132 if (sock != -1)
1133 (void) close(sock);
1134 if (lifc) {
1135 free(lifc->lifc_buf);
1136 free(lifc);
1137 }
1138 }
1139
1140 /*
1141 * add_aliases traverses a hostent alias list, compares
1142 * the aliases to the contents of host_name, and if an
1143 * alias is not already present, adds it to host_name[].
1144 */
1145
1146 static void
1147 add_aliases(struct hostent *phost)
1148 {
1149 char **aliases;
1150
1151 if (!in_host_array(phost->h_name)) {
1152 add_to_host_array(phost->h_name);
1153 }
1154
1155 if (phost->h_aliases == NULL)
1156 return; /* no aliases to register */
1157
1158 for (aliases = phost->h_aliases; *aliases != NULL; aliases++) {
1159 if (!in_host_array(*aliases)) {
1160 add_to_host_array(*aliases);
1161 }
1162 }
1163 }
1164
1165 /*
1166 * in_host_array checks if the given hostname exists in the host_name
1167 * array. Returns 0 if the host doesn't exist, and 1 if it does exist
1168 */
1169 static int
1170 in_host_array(char *host)
1171 {
1172 int i;
1173
1174 if (debug)
1175 (void) printf("%s ", host);
1176
1177 if ((strcmp(hostname, host) == 0) || (strcmp(LOGHOST, host) == 0))
1178 return (1);
1179
1180 for (i = 0; i < addrix; i++) {
1181 if (strcmp(host_name[i], host) == 0)
1182 return (1);
1183 }
1184
1185 return (0);
1186 }
1187
1188 /*
1189 * add_to_host_array adds a hostname to the host_name array. But if
1190 * the array is already full, then it first reallocates the array with
1191 * HOST_NAME_INCR extra elements. If the realloc fails, then it does
1192 * nothing and leaves host_name the way it was previous to the call.
1193 */
1194 static void
1195 add_to_host_array(char *host) {
1196
1197 void *new_block = NULL;
1198
1199 /* Make sure we don't overrun host_name. */
1200 if (addrix >= host_name_count) {
1201 host_name_count += HOST_NAME_INCR;
1202 new_block = realloc((void *)host_name,
1203 host_name_count*sizeof (char *));
1204 if (new_block != NULL)
1205 host_name = new_block;
1206 else {
1207 host_name_count -= HOST_NAME_INCR;
1208 return;
1209 }
1210 }
1211
1212 if ((host_name[addrix] = strdup(host)) != NULL)
1213 addrix++;
1214 }
1215
1216 /*
1217 * Compares the unqualified hostnames for hosts. Returns 0 if the
1218 * names match, and 1 if the names fail to match.
1219 */
1220 int
1221 str_cmp_unqual_hostname(char *rawname1, char *rawname2)
1222 {
1223 size_t unq_len1, unq_len2;
1224 char *domain;
1225
1226 if (debug) {
1227 (void) printf("str_cmp_unqual: rawname1= %s, rawname2= %s\n",
1228 rawname1, rawname2);
1229 }
1230
1231 unq_len1 = strcspn(rawname1, ".");
1232 unq_len2 = strcspn(rawname2, ".");
1233 domain = strchr(rawname1, '.');
1234 if (domain != NULL) {
1235 if ((strncmp(rawname1, SM_ADDR_IPV4, unq_len1) == 0) ||
1236 (strncmp(rawname1, SM_ADDR_IPV6, unq_len1) == 0))
1237 return (1);
1238 }
1239
1240 if ((unq_len1 == unq_len2) &&
1241 (strncmp(rawname1, rawname2, unq_len1) == 0)) {
1242 return (0);
1243 }
1244
1245 return (1);
1246 }
1247
1248 /*
1249 * Compares <family>.<address-specifier> ASCII names for hosts. Returns
1250 * 0 if the addresses match, and 1 if the addresses fail to match.
1251 * If the args are indeed specifiers, they should look like this:
1252 *
1253 * ipv4.192.9.200.1 or ipv6.::C009:C801
1254 */
1255 int
1256 str_cmp_address_specifier(char *specifier1, char *specifier2)
1257 {
1258 size_t unq_len1, unq_len2;
1259 char *rawaddr1, *rawaddr2;
1260 int af1, af2, len;
1261
1262 if (debug) {
1263 (void) printf("str_cmp_addr: specifier1= %s, specifier2= %s\n",
1264 specifier1, specifier2);
1265 }
1266
1267 /*
1268 * Verify that:
1269 * 1. The family tokens match;
1270 * 2. The IP addresses following the `.' are legal; and
1271 * 3. These addresses match.
1272 */
1273 unq_len1 = strcspn(specifier1, ".");
1274 unq_len2 = strcspn(specifier2, ".");
1275 rawaddr1 = strchr(specifier1, '.');
1276 rawaddr2 = strchr(specifier2, '.');
1277
1278 if (strncmp(specifier1, SM_ADDR_IPV4, unq_len1) == 0) {
1279 af1 = AF_INET;
1280 len = 4;
1281 } else if (strncmp(specifier1, SM_ADDR_IPV6, unq_len1) == 0) {
1282 af1 = AF_INET6;
1283 len = 16;
1284 }
1285 else
1286 return (1);
1287
1288 if (strncmp(specifier2, SM_ADDR_IPV4, unq_len2) == 0)
1289 af2 = AF_INET;
1290 else if (strncmp(specifier2, SM_ADDR_IPV6, unq_len2) == 0)
1291 af2 = AF_INET6;
1292 else
1293 return (1);
1294
1295 if (af1 != af2)
1296 return (1);
1297
1298 if (rawaddr1 != NULL && rawaddr2 != NULL) {
1299 char dst1[16];
1300 char dst2[16];
1301 ++rawaddr1;
1302 ++rawaddr2;
1303
1304 if (inet_pton(af1, rawaddr1, dst1) == 1 &&
1305 inet_pton(af2, rawaddr1, dst2) == 1 &&
1306 memcmp(dst1, dst2, len) == 0) {
1307 return (0);
1308 }
1309 }
1310 return (1);
1311 }
1312
1313 /*
1314 * Add IP address strings to the host_name list.
1315 */
1316 void
1317 merge_ips(void)
1318 {
1319 struct ifaddrs *ifap, *cifap;
1320 int error;
1321
1322 error = getifaddrs(&ifap);
1323 if (error) {
1324 syslog(LOG_WARNING, "getifaddrs error: '%s'",
1325 strerror(errno));
1326 return;
1327 }
1328
1329 for (cifap = ifap; cifap != NULL; cifap = cifap->ifa_next) {
1330 struct sockaddr *sa = cifap->ifa_addr;
1331 char addr_str[INET6_ADDRSTRLEN];
1332 void *addr = NULL;
1333
1334 switch (sa->sa_family) {
1335 case AF_INET: {
1336 struct sockaddr_in *sin = (struct sockaddr_in *)sa;
1337
1338 /* Skip loopback addresses. */
1339 if (sin->sin_addr.s_addr == htonl(INADDR_LOOPBACK)) {
1340 continue;
1341 }
1342
1343 addr = &sin->sin_addr;
1344 break;
1345 }
1346
1347 case AF_INET6: {
1348 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
1349
1350 /* Skip loopback addresses. */
1351 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) {
1352 continue;
1353 }
1354
1355 addr = &sin6->sin6_addr;
1356 break;
1357 }
1358
1359 default:
1360 syslog(LOG_WARNING, "Unknown address family %d for "
1361 "interface %s", sa->sa_family, cifap->ifa_name);
1362 continue;
1363 }
1364
1365 if (inet_ntop(sa->sa_family, addr, addr_str, sizeof (addr_str))
1366 == NULL) {
1367 syslog(LOG_WARNING, "Failed to convert address into "
1368 "string representation for interface '%s' "
1369 "address family %d", cifap->ifa_name,
1370 sa->sa_family);
1371 continue;
1372 }
1373
1374 if (!in_host_array(addr_str)) {
1375 add_to_host_array(addr_str);
1376 }
1377 }
1378
1379 freeifaddrs(ifap);
1380 }