new usr/src/ man/ man3nsl /rpc_svc_cal | s. 3nsl 1

R R R R

12532 Mon Cct 28 19:32:57 2013
new usr/src/ man/ man3nsl /rpc_svc_cal | s. 3nsl

4239

rpc_svc_cal I s(3nsl): Typo service service

R R R R R R

OCONNOUTARWNE

"\" te

.\" Copyright 1989 AT&T

.\" Copyright (C) 2004 Sun Mcrosystens, Inc. All Rights Reserved

.\" The contents of this file are subject to the terns of the Common Devel opnent
.\" You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE or http:
.\" Wen distributing Covered Code, include this CDDL HEADER in each file and in
. TH RPC_SVC _CALLS 3NSL "COct 28, 2013"

. TH RPC_SVC _CALLS 3NSL "Jan 26, 2004"

. SH NAME

rpc_svc_calls, svc_dg_enabl ecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreg_common, svc_getreq_poll, svc_getregset,

svc_getrpccal l er, svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply,
svc_getcal | erucred, svc_fd_negotiate_ucred \- library routines for RPC servers
. SH SYNOPSI S

.LP

. nf
\fBcc\fR [\fIiflag\fR ..] \fifile\fR .. \fB-InsI\fR[\fllibrary\fR ..]
#i ncl ude <rpc/rpc. h>

\fBint\fR \fBsvc_dg_enabl ecache\ f R(\ f BSVCXPRT *\fR flxprt\fR \fBconst uint_t\fR
i

.LP

. nf
\fBint\fR \fBsvc_done\ f R(\ f BSVCXPRT *\fR flxprt\fR);
i

.LP

. nf
\fBvoid\fR \fBsvc_exi t\fR(\fBvoi d\fR);
fi

.LP
. nf
\fBvoid\fR \fBsvc_fd_negotiate_ucred\fR(\fBint\fR\fIfd\fR);
i

.LP

. nf

\ fBbool _t\fR \fBsvc_freeargs\fR(\fBconst SVCXPRT *\fR\ flxprt\fR, \fBconst txdrpr
\fBcaddr _t\fR\flin\fR);

i

.LP

. nf

\fBbool _t\fR \fBsvc_getargs\fR(\fBconst SVCXPRT *\fR flxprt\fR \fBconst xdrproc
\fBcaddr _t\fR\flin\fR);

i

.LP

. nf
\fBint\fR \fBsvc_getcal |l erucred\fR(\fBconst SVCXPRT *\fR\ flxprt\fR, \fBucred_t *
fi

.LP

. nf
\fBvoid\fR \ fBsvc_getreq_common\fR(\fBconst int\fR\flIfd\fR);
fi

.LP
. nf

new usr/src/ man/ man3nsl /rpc_svc_cal | s. 3nsl

61
62

\fBvoid\f R \fBsvc_getregset\fR(\fBfd_set *\fR flrdfds\fR);
i

.LP

. nf
\fBvoid\fR \fBsvc_getreq_pol I\fR(\fBstruct pollfd *\fR flpfdp\fR, \fBconst int\f
fi

.LP
. nf
\fBstruct netbuf *\fR fBsvc_getrpccaller\fR(\fBconst SVCXPRT *\fR flxprt\fR);
fi

.LP
. nf
\fBvoid\fR \ fBsvc_run\fR(\fBvoi d\fR);
i

.LP

. nf

\fBbool _t\fR \fBsvc_sendrepl y\f R(\ f Bconst SVCXPRT *\fR\flxprt\fR \fBconst xdrpr
\fBcaddr _t\fR \flout\fRi nt svc_max_pol | fd;

fd_set svc_fdset;

poll fd_t *svc_pollfd;

fi

. SH DESCRI PTI ON

.sp
.LP

These routines are part of the \fBRPC\fR |ibrary which allows C |anguage
progranms to make procedure calls on other nachines across the network.
.sp

.LP

These routines are associated with the server side of the \fBRPC fR nmechani sm

Some of themare called by the server side dispatch function. Qhers, such as
\fBsvc_run()\fR, are called when the server is initiated.

.sp

.LP

Because the service transport handl e \fBSVCXPRT\fR contains a single data area
for decoding argunents and encoding results, the structure cannot freely be
shared between threads that call functions to decode argunents and encode
results. When a server is operating in the Autonatic or User MI nodes, however,
a copy of this structure is passed to the service dispatch procedure in order
to enabl e concurrent request processing. Under these circunstances, sone
routines which would otherwi se be Unsafe, becone Safe. These are marked as
such. Also marked are routines that are Unsafe for nultithreaded applications,
and are not to be used by such applications. See \fBrpc\fR(3NSL) for the
definition of the \fBSVCXPRT\fR data structure.

.sp

.LP

The \fBsvc_dg_enabl ecache()\fR function allocates a duplicate request cache for
the service endpoint \flxprt\fR |arge enough to hold \flcache_size\fR entries.
Once enabled, there is no way to disable caching. The function returns \fBI\fR

if space necessary for a cache of the given size was successfully allocated,
and \fBO\fR otherwi se. This function is Safe in nultithreaded applications.
.sp
.LP

The \fBsvc_done()\fR function frees resources allocated to service a client
request directed to the service endpoint \flxprt\fR This call pertains only to
servers executing in the User MI node. In the User MI node, service procedures
nmust invoke this call before returning, either after a client request has been
serviced, or after an error or abnornal condition that prevents a reply from
being sent. After \fBsvc_done\fR() is invoked, the service endpoint \flxprt\fR
shoul d not be referenced by the service procedure. Server multithreadi ng nodes
and paraneters can be set using the \fBrpc_control\fR() call. This function is
Safe in nmultithreaded applications. It wll have no effect if invoked in nodes

new usr/src/ man/ man3nsl /rpc_svc_cal | s. 3nsl

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

ot her than the User MI node.

.sp

LP

The \fBsvc _exit()\fR function when called by any of the RPC server procedures
or otherw se, destroys all services registered by the server and causes
\fBsvc_run()\fR to return. If RPC server activity is to be resuned, services
nust be reregistered with the RPC library either through one of t he
\fBrpc_svc_create\fR(3NSL) functions, or using \fBxprt_register\fR(3NSL). The
\fBsvc_exit()\fR function has gl obal scope and ends all RPC server activity.
.sp

.LP

The \fBsvc_freeargs()\fR function macro frees any data allocated by the

\f BRPC/ XDR\ f R system when it decoded the argunents to a service procedure using
\fBsvc_getargs()\fR This routine returns \fBTRUEN\fR if the results were
successfully freed, and \fBFALSE\fR otherw se. This function macro is Safe in
mul tithreaded applications utilizing the Automatic or User MI npdes.

.sp

.LP

The \fBsvc_getargs()\fR function macro decodes the argunments of an \fBRPC\fR
request associated with the \fBRPC\fR service transport handle \flxprt\fR The
paranmeter \flin\fR is the address where the argunents will be placed;
\flinproc\fRis the \fBXDRfR routine used to decode the argunments. This
routine returns \fBTRUE\fR i f decodi ng succeeds, and \fBFALSE\fR ot herwi se.
This function nmacro is Safe in nmultithreaded applications utilizing the
Automatic or User MI nodes.

.sp

.LP

The \fBsvc_getreq_common()\fR function is called to handle a request on a file
descriptor.

.sp

.LP

The \fBsvc_getreq_pol |l ()\fR function is only of interest if a service

i npl ement or does not call \fBsvc_run()\fR but instead inplenents custom
asynchronous event processing. It is called when \fBpoll\fR(2) has determ ned
that an RPC request has arrived on some RPC file descriptors; \flpollretval\fR
is the return value from\fBpolI\fR(2) and \flpfdp\fR is the array of

\flpoll fd\fR structures on which the \fBpol|I\fR(2) was done. It is assuned to
be an array |arge enough to contain the maxi mal nunber of descriptors allowed.
The \fBsvc_getreq_pol | ()\fR function macro is Unsafe in nultithreaded

appl i cations.

.sp

.LP

The \fBsvc_getreqgset ()\fR function is only of interest if a service inplenentor
does not call \fBsvc_run()\fR, but instead inplenments custom asynchronous event
processing. It is called when \fBsel ect\fR(3C) has determ ned that an \fBRPC\fR
request has arrived on some \fBRPC\fR file descriptors; \flrdfds\fR is the
resultant read file descriptor bit mask. The routine returns when all file
descriptors associated with the value of \flrdfds\fR have been serviced. This
function macro is Unsafe in nmultithreaded applications.

- Sp

.LP

The \fBsvc_getrpccaller()\fR function is the approved way of getting the
networ k address of the caller of a procedure associated with the \fBRPC\fR
service transport handle \flxprt\fR This function macro is Safe in

nmul tithreaded applications.

.sp

.LP

The \fBsvc_run()\fR function never returns. In single-threaded node, the
function waits for \fBRPC\fR requests to arrive. Wien an RPC request arrives,
the \fBsvc_run()\fR function calls the appropriate service procedure. This
procedure is usually waiting for the \fBpolI\fR(2) library call to return.

.sp

.LP

Applications that execute in the Automatic or the User MI node shoul d invoke
the \fBsvc_run()\fR function exactly once. In the Automatic MI node, the
\fBsvc_run()\fR function creates threads to service client requests. In the

new usr/src/ man/ man3nsl /rpc_svc_cal | s. 3nsl

193
194
195
196
197
198
199

User MI node, the function provides a framework for service devel opers to
create and manage their own threads for servicing client requests.
SD

The \fBsvc_fdset\fR gl obal variable reflects the \fBRPC\fR server’s read file
descriptor bit mask. This is only of interest if service inplenmentors do not
call \fBsvc_run()\fR, but rather do their own asynchronous event processing.

200 This variable is read-only may change after calls to \fBsvc_getreqgset()\fR or
201 after any creation routine. Do not pass its address to \fBselect\fR(3C).

202 Instead, pass the address of a copy. nultithreaded applications executing in
203 either the Automatic MI npde or the user MI node shoul d never read this

204 variable. They should use auxiliary threads to do asynchronous event

205 processing. The \fBsvc_fdset\fR variable is limted to 1024 file descriptors
206 and is considered obsolete. Use of \fBsvc_pollfd\fR is reconmmended instead.
207 .sp

208 . L

209
210
211
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

P
The \fBsvc_pol | fd\fR gl obal variable points to an array of \fBpollfd_t\fR
structures that reflect the \fBRPC\fR server’s read file descriptor array. This
is only of interest if service inplenentors do not call \fBsvc_run()\fR

is only of interest if service service inplenmentors do not call \fBsvc_run()\fR
but rather do their own asynchronous event processing. This variable is
read-only, and it may change after calls to \fBsvc_getreg_poll ()\fR or any
creation routines. Do no pass its address to \fBpolI\fR(2). Instead, pass the
address of a copy. By default, \fBsvc_pollfd\fRis limted to 1024 entries. Use
\fBrpc_control\fR(3NSL) to renmpbve this limtation. nultithreaded applications
executing in either the Automatic MI node or the user MI node should never be
read this variable. They should use auxiliary threads to do asynchronous event
processi ng.

.sp

The \fBsvc_nmax_pol | fd\fR gl obal variable contains the maxi numlength of the
\fBsvc_pol Tfd\fR array. This variable is read-only, and it may change after
calls to \fBsvc_getreg_poll ()\fR or any creation routines.

.sp

.LP

The \fBsvc_sendrepl y()\fR function is called by an \fBRPC\fR service dispatch

228 routine to send the results of a rempte procedure call. The \flxprt\fR

229 paraneter is the transport handl e of the request. The \floutproc\fR paraneter
230 1s the \fBXDR\fR routine used to encode the results. The \flout\fR paraneter is
231 the address of the results. This routine returns \fBTRUENfR if it succeeds,

232 \fBFALSE\fR ot herwi se. The \fBsvc_sendreply()\fR function macro is Safe in

233 nultithreaded applications that use the Autonmatic or the User MI node.

234 .sp

235 . LP

236 The \fBsvc_fd_negotiate_ucred()\fR function is called by an RPC server to

237 informthe underlying transport that the function wishes to receive

238 \fBucreds\fR for local calls, including those over |P transports.

239 .sp

240 . LP

241 The \fBsvc_getcal l erucred()\fR function attenpts to retrieve the \fBucred_t\fR
242 associated with the caller. The function returns \fB\fR0O when successful and
243 \fB-1\f R when not.

244 .sp

245 | LP

246 \When successful, the \fBsvc_getcal |l erucred()\fR function stores the pointer to

247
248
249
250
251
252
253
254
255
256

a freshly allocated \fBucred_t\fR in the nenory | ocation pointed to by the
\flucred\fR argunent if that menory location contains the null pointer. If the
nenory |location is non-null, the function reuses the existing \fBucred_t\fR
When \flucred\fR is no |longer needed, a credential allocated by

\fBsvc_getcal |l erucred()\fR should be freed with \fBucred_free\fR(3C).

. SH ATTRI BUTES

.sp

.LP

See \fBattributes\fR(5) for descriptions of attribute types and val ues.

.sp

new usr/src/ man/ man3nsl /rpc_svc_cal | s. 3nsl

258
259
260
261
262
263
264
265
266

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

.sp
. TS

box;

c| c

.

ATTRI BUTE TYPE ATTRI BUTE VALUE

M- Level See bel ow.
.TE

. sp

.LP

The \fBsvc_fd_negotiate_ucred()\fR \fBsvc_dg_enabl ecache()\fR,
\fBsvc_getrpccaller()\fR, and \fBsvc_getcallerucred()\fR functions are Safe in
nmul tithreaded applications. The \fBsvc_freeargs()\fR \fBsvc_getargs()\fR and
\fBsvc_sendreply()\fR functions are Safe in nultithreaded applications that use
the Automatic or the User MI node. The \fBsvc_getreq_comon()\fR
\fBsvc_getreqgset ()\fR and \fBsvc_getreqg_poll ()\fR functions are Unsafe in

mul tithreaded applications and should be called only fromthe main thread.

. SH SEE ALSO

.sp

. LP

\fBrpcgen\fR(1), \fBpoll\fR(2), \fBgetpeerucred\fR(3C), \fBrpc\fR(3NSL),
\fBrpc_control\fR(3NSL), \fBrpc_svc_create\fR(3NSL), \fBrpc_svc_err\fR(3NSL),
\fBrpc_svc_reg\fR(3NSL), \fBselect\fR(3C), \fBucred_free\fR(30C)),
\fBxprt_register\fR(3NSL), \fBattributes\fR(5)

