1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2014, 2016 by Delphix. All rights reserved.
26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
27 */
28
29 /*
30 * Routines to manage ZFS mounts. We separate all the nasty routines that have
31 * to deal with the OS. The following functions are the main entry points --
32 * they are used by mount and unmount and when changing a filesystem's
33 * mountpoint.
34 *
35 * zfs_is_mounted()
36 * zfs_mount()
37 * zfs_unmount()
38 * zfs_unmountall()
39 *
40 * This file also contains the functions used to manage sharing filesystems via
41 * NFS and iSCSI:
42 *
43 * zfs_is_shared()
44 * zfs_share()
45 * zfs_unshare()
46 *
47 * zfs_is_shared_nfs()
48 * zfs_is_shared_smb()
49 * zfs_share_proto()
50 * zfs_shareall();
51 * zfs_unshare_nfs()
52 * zfs_unshare_smb()
53 * zfs_unshareall_nfs()
54 * zfs_unshareall_smb()
55 * zfs_unshareall()
56 * zfs_unshareall_bypath()
57 *
58 * The following functions are available for pool consumers, and will
59 * mount/unmount and share/unshare all datasets within pool:
60 *
61 * zpool_enable_datasets()
62 * zpool_disable_datasets()
63 */
64
65 #include <dirent.h>
66 #include <dlfcn.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libgen.h>
70 #include <libintl.h>
71 #include <stdio.h>
72 #include <stdlib.h>
73 #include <strings.h>
74 #include <unistd.h>
75 #include <zone.h>
76 #include <sys/mntent.h>
77 #include <sys/mount.h>
78 #include <sys/stat.h>
79 #include <sys/statvfs.h>
80
81 #include <libzfs.h>
82
83 #include "libzfs_impl.h"
84
85 #include <libshare.h>
86 #include <sys/systeminfo.h>
87 #define MAXISALEN 257 /* based on sysinfo(2) man page */
88
89 static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *);
90 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **,
91 zfs_share_proto_t);
92
93 /*
94 * The share protocols table must be in the same order as the zfs_share_prot_t
95 * enum in libzfs_impl.h
96 */
97 typedef struct {
98 zfs_prop_t p_prop;
99 char *p_name;
100 int p_share_err;
101 int p_unshare_err;
102 } proto_table_t;
103
104 proto_table_t proto_table[PROTO_END] = {
105 {ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
106 {ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
107 };
108
109 zfs_share_proto_t nfs_only[] = {
110 PROTO_NFS,
111 PROTO_END
112 };
113
114 zfs_share_proto_t smb_only[] = {
115 PROTO_SMB,
116 PROTO_END
117 };
118 zfs_share_proto_t share_all_proto[] = {
119 PROTO_NFS,
120 PROTO_SMB,
121 PROTO_END
122 };
123
124 /*
125 * Search the sharetab for the given mountpoint and protocol, returning
126 * a zfs_share_type_t value.
127 */
128 static zfs_share_type_t
129 is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto)
130 {
131 char buf[MAXPATHLEN], *tab;
132 char *ptr;
133
134 if (hdl->libzfs_sharetab == NULL)
135 return (SHARED_NOT_SHARED);
136
137 (void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET);
138
139 while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) {
140
141 /* the mountpoint is the first entry on each line */
142 if ((tab = strchr(buf, '\t')) == NULL)
143 continue;
144
145 *tab = '\0';
146 if (strcmp(buf, mountpoint) == 0) {
147 /*
148 * the protocol field is the third field
149 * skip over second field
150 */
151 ptr = ++tab;
152 if ((tab = strchr(ptr, '\t')) == NULL)
153 continue;
154 ptr = ++tab;
155 if ((tab = strchr(ptr, '\t')) == NULL)
156 continue;
157 *tab = '\0';
158 if (strcmp(ptr,
159 proto_table[proto].p_name) == 0) {
160 switch (proto) {
161 case PROTO_NFS:
162 return (SHARED_NFS);
163 case PROTO_SMB:
164 return (SHARED_SMB);
165 default:
166 return (0);
167 }
168 }
169 }
170 }
171
172 return (SHARED_NOT_SHARED);
173 }
174
175 static boolean_t
176 dir_is_empty_stat(const char *dirname)
177 {
178 struct stat st;
179
180 /*
181 * We only want to return false if the given path is a non empty
182 * directory, all other errors are handled elsewhere.
183 */
184 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
185 return (B_TRUE);
186 }
187
188 /*
189 * An empty directory will still have two entries in it, one
190 * entry for each of "." and "..".
191 */
192 if (st.st_size > 2) {
193 return (B_FALSE);
194 }
195
196 return (B_TRUE);
197 }
198
199 static boolean_t
200 dir_is_empty_readdir(const char *dirname)
201 {
202 DIR *dirp;
203 struct dirent64 *dp;
204 int dirfd;
205
206 if ((dirfd = openat(AT_FDCWD, dirname,
207 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
208 return (B_TRUE);
209 }
210
211 if ((dirp = fdopendir(dirfd)) == NULL) {
212 return (B_TRUE);
213 }
214
215 while ((dp = readdir64(dirp)) != NULL) {
216
217 if (strcmp(dp->d_name, ".") == 0 ||
218 strcmp(dp->d_name, "..") == 0)
219 continue;
220
221 (void) closedir(dirp);
222 return (B_FALSE);
223 }
224
225 (void) closedir(dirp);
226 return (B_TRUE);
227 }
228
229 /*
230 * Returns true if the specified directory is empty. If we can't open the
231 * directory at all, return true so that the mount can fail with a more
232 * informative error message.
233 */
234 static boolean_t
235 dir_is_empty(const char *dirname)
236 {
237 struct statvfs64 st;
238
239 /*
240 * If the statvfs call fails or the filesystem is not a ZFS
241 * filesystem, fall back to the slow path which uses readdir.
242 */
243 if ((statvfs64(dirname, &st) != 0) ||
244 (strcmp(st.f_basetype, "zfs") != 0)) {
245 return (dir_is_empty_readdir(dirname));
246 }
247
248 /*
249 * At this point, we know the provided path is on a ZFS
250 * filesystem, so we can use stat instead of readdir to
251 * determine if the directory is empty or not. We try to avoid
252 * using readdir because that requires opening "dirname"; this
253 * open file descriptor can potentially end up in a child
254 * process if there's a concurrent fork, thus preventing the
255 * zfs_mount() from otherwise succeeding (the open file
256 * descriptor inherited by the child process will cause the
257 * parent's mount to fail with EBUSY). The performance
258 * implications of replacing the open, read, and close with a
259 * single stat is nice; but is not the main motivation for the
260 * added complexity.
261 */
262 return (dir_is_empty_stat(dirname));
263 }
264
265 /*
266 * Checks to see if the mount is active. If the filesystem is mounted, we fill
267 * in 'where' with the current mountpoint, and return 1. Otherwise, we return
268 * 0.
269 */
270 boolean_t
271 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
272 {
273 struct mnttab entry;
274
275 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
276 return (B_FALSE);
277
278 if (where != NULL)
279 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
280
281 return (B_TRUE);
282 }
283
284 boolean_t
285 zfs_is_mounted(zfs_handle_t *zhp, char **where)
286 {
287 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
288 }
289
290 /*
291 * Returns true if the given dataset is mountable, false otherwise. Returns the
292 * mountpoint in 'buf'.
293 */
294 static boolean_t
295 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
296 zprop_source_t *source)
297 {
298 char sourceloc[MAXNAMELEN];
299 zprop_source_t sourcetype;
300
301 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type))
302 return (B_FALSE);
303
304 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
305 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
306
307 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
308 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
309 return (B_FALSE);
310
311 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
312 return (B_FALSE);
313
314 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
315 getzoneid() == GLOBAL_ZONEID)
316 return (B_FALSE);
317
318 if (source)
319 *source = sourcetype;
320
321 return (B_TRUE);
322 }
323
324 /*
325 * Mount the given filesystem.
326 */
327 int
328 zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
329 {
330 struct stat buf;
331 char mountpoint[ZFS_MAXPROPLEN];
332 char mntopts[MNT_LINE_MAX];
333 libzfs_handle_t *hdl = zhp->zfs_hdl;
334
335 if (options == NULL)
336 mntopts[0] = '\0';
337 else
338 (void) strlcpy(mntopts, options, sizeof (mntopts));
339
340 /*
341 * If the pool is imported read-only then all mounts must be read-only
342 */
343 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
344 flags |= MS_RDONLY;
345
346 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
347 return (0);
348
349 /* Create the directory if it doesn't already exist */
350 if (lstat(mountpoint, &buf) != 0) {
351 if (mkdirp(mountpoint, 0755) != 0) {
352 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
353 "failed to create mountpoint"));
354 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
355 dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
356 mountpoint));
357 }
358 }
359
360 /*
361 * Determine if the mountpoint is empty. If so, refuse to perform the
362 * mount. We don't perform this check if MS_OVERLAY is specified, which
363 * would defeat the point. We also avoid this check if 'remount' is
364 * specified.
365 */
366 if ((flags & MS_OVERLAY) == 0 &&
367 strstr(mntopts, MNTOPT_REMOUNT) == NULL &&
368 !dir_is_empty(mountpoint)) {
369 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
370 "directory is not empty"));
371 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
372 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
373 }
374
375 /* perform the mount */
376 if (mount(zfs_get_name(zhp), mountpoint, MS_OPTIONSTR | flags,
377 MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) {
378 /*
379 * Generic errors are nasty, but there are just way too many
380 * from mount(), and they're well-understood. We pick a few
381 * common ones to improve upon.
382 */
383 if (errno == EBUSY) {
384 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
385 "mountpoint or dataset is busy"));
386 } else if (errno == EPERM) {
387 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
388 "Insufficient privileges"));
389 } else if (errno == ENOTSUP) {
390 char buf[256];
391 int spa_version;
392
393 VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
394 (void) snprintf(buf, sizeof (buf),
395 dgettext(TEXT_DOMAIN, "Can't mount a version %lld "
396 "file system on a version %d pool. Pool must be"
397 " upgraded to mount this file system."),
398 (u_longlong_t)zfs_prop_get_int(zhp,
399 ZFS_PROP_VERSION), spa_version);
400 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf));
401 } else {
402 zfs_error_aux(hdl, strerror(errno));
403 }
404 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
405 dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
406 zhp->zfs_name));
407 }
408
409 /* add the mounted entry into our cache */
410 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint,
411 mntopts);
412 return (0);
413 }
414
415 /*
416 * Unmount a single filesystem.
417 */
418 static int
419 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags)
420 {
421 if (umount2(mountpoint, flags) != 0) {
422 zfs_error_aux(hdl, strerror(errno));
423 return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED,
424 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
425 mountpoint));
426 }
427
428 return (0);
429 }
430
431 /*
432 * Unmount the given filesystem.
433 */
434 int
435 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
436 {
437 libzfs_handle_t *hdl = zhp->zfs_hdl;
438 struct mnttab entry;
439 char *mntpt = NULL;
440
441 /* check to see if we need to unmount the filesystem */
442 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
443 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
444 /*
445 * mountpoint may have come from a call to
446 * getmnt/getmntany if it isn't NULL. If it is NULL,
447 * we know it comes from libzfs_mnttab_find which can
448 * then get freed later. We strdup it to play it safe.
449 */
450 if (mountpoint == NULL)
451 mntpt = zfs_strdup(hdl, entry.mnt_mountp);
452 else
453 mntpt = zfs_strdup(hdl, mountpoint);
454
455 /*
456 * Unshare and unmount the filesystem
457 */
458 if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0)
459 return (-1);
460
461 if (unmount_one(hdl, mntpt, flags) != 0) {
462 free(mntpt);
463 (void) zfs_shareall(zhp);
464 return (-1);
465 }
466 libzfs_mnttab_remove(hdl, zhp->zfs_name);
467 free(mntpt);
468 }
469
470 return (0);
471 }
472
473 /*
474 * Unmount this filesystem and any children inheriting the mountpoint property.
475 * To do this, just act like we're changing the mountpoint property, but don't
476 * remount the filesystems afterwards.
477 */
478 int
479 zfs_unmountall(zfs_handle_t *zhp, int flags)
480 {
481 prop_changelist_t *clp;
482 int ret;
483
484 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags);
485 if (clp == NULL)
486 return (-1);
487
488 ret = changelist_prefix(clp);
489 changelist_free(clp);
490
491 return (ret);
492 }
493
494 boolean_t
495 zfs_is_shared(zfs_handle_t *zhp)
496 {
497 zfs_share_type_t rc = 0;
498 zfs_share_proto_t *curr_proto;
499
500 if (ZFS_IS_VOLUME(zhp))
501 return (B_FALSE);
502
503 for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
504 curr_proto++)
505 rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto);
506
507 return (rc ? B_TRUE : B_FALSE);
508 }
509
510 int
511 zfs_share(zfs_handle_t *zhp)
512 {
513 assert(!ZFS_IS_VOLUME(zhp));
514 return (zfs_share_proto(zhp, share_all_proto));
515 }
516
517 int
518 zfs_unshare(zfs_handle_t *zhp)
519 {
520 assert(!ZFS_IS_VOLUME(zhp));
521 return (zfs_unshareall(zhp));
522 }
523
524 /*
525 * Check to see if the filesystem is currently shared.
526 */
527 zfs_share_type_t
528 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto)
529 {
530 char *mountpoint;
531 zfs_share_type_t rc;
532
533 if (!zfs_is_mounted(zhp, &mountpoint))
534 return (SHARED_NOT_SHARED);
535
536 if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto))
537 != SHARED_NOT_SHARED) {
538 if (where != NULL)
539 *where = mountpoint;
540 else
541 free(mountpoint);
542 return (rc);
543 } else {
544 free(mountpoint);
545 return (SHARED_NOT_SHARED);
546 }
547 }
548
549 boolean_t
550 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where)
551 {
552 return (zfs_is_shared_proto(zhp, where,
553 PROTO_NFS) != SHARED_NOT_SHARED);
554 }
555
556 boolean_t
557 zfs_is_shared_smb(zfs_handle_t *zhp, char **where)
558 {
559 return (zfs_is_shared_proto(zhp, where,
560 PROTO_SMB) != SHARED_NOT_SHARED);
561 }
562
563 /*
564 * Make sure things will work if libshare isn't installed by using
565 * wrapper functions that check to see that the pointers to functions
566 * initialized in _zfs_init_libshare() are actually present.
567 */
568
569 static sa_handle_t (*_sa_init)(int);
570 static sa_handle_t (*_sa_init_arg)(int, void *);
571 static void (*_sa_fini)(sa_handle_t);
572 static sa_share_t (*_sa_find_share)(sa_handle_t, char *);
573 static int (*_sa_enable_share)(sa_share_t, char *);
574 static int (*_sa_disable_share)(sa_share_t, char *);
575 static char *(*_sa_errorstr)(int);
576 static int (*_sa_parse_legacy_options)(sa_group_t, char *, char *);
577 static boolean_t (*_sa_needs_refresh)(sa_handle_t *);
578 static libzfs_handle_t *(*_sa_get_zfs_handle)(sa_handle_t);
579 static int (*_sa_zfs_process_share)(sa_handle_t, sa_group_t, sa_share_t,
580 char *, char *, zprop_source_t, char *, char *, char *);
581 static void (*_sa_update_sharetab_ts)(sa_handle_t);
582
583 /*
584 * _zfs_init_libshare()
585 *
586 * Find the libshare.so.1 entry points that we use here and save the
587 * values to be used later. This is triggered by the runtime loader.
588 * Make sure the correct ISA version is loaded.
589 */
590
591 #pragma init(_zfs_init_libshare)
592 static void
593 _zfs_init_libshare(void)
594 {
595 void *libshare;
596 char path[MAXPATHLEN];
597 char isa[MAXISALEN];
598
599 #if defined(_LP64)
600 if (sysinfo(SI_ARCHITECTURE_64, isa, MAXISALEN) == -1)
601 isa[0] = '\0';
602 #else
603 isa[0] = '\0';
604 #endif
605 (void) snprintf(path, MAXPATHLEN,
606 "/usr/lib/%s/libshare.so.1", isa);
607
608 if ((libshare = dlopen(path, RTLD_LAZY | RTLD_GLOBAL)) != NULL) {
609 _sa_init = (sa_handle_t (*)(int))dlsym(libshare, "sa_init");
610 _sa_init_arg = (sa_handle_t (*)(int, void *))dlsym(libshare,
611 "sa_init_arg");
612 _sa_fini = (void (*)(sa_handle_t))dlsym(libshare, "sa_fini");
613 _sa_find_share = (sa_share_t (*)(sa_handle_t, char *))
614 dlsym(libshare, "sa_find_share");
615 _sa_enable_share = (int (*)(sa_share_t, char *))dlsym(libshare,
616 "sa_enable_share");
617 _sa_disable_share = (int (*)(sa_share_t, char *))dlsym(libshare,
618 "sa_disable_share");
619 _sa_errorstr = (char *(*)(int))dlsym(libshare, "sa_errorstr");
620 _sa_parse_legacy_options = (int (*)(sa_group_t, char *, char *))
621 dlsym(libshare, "sa_parse_legacy_options");
622 _sa_needs_refresh = (boolean_t (*)(sa_handle_t *))
623 dlsym(libshare, "sa_needs_refresh");
624 _sa_get_zfs_handle = (libzfs_handle_t *(*)(sa_handle_t))
625 dlsym(libshare, "sa_get_zfs_handle");
626 _sa_zfs_process_share = (int (*)(sa_handle_t, sa_group_t,
627 sa_share_t, char *, char *, zprop_source_t, char *,
628 char *, char *))dlsym(libshare, "sa_zfs_process_share");
629 _sa_update_sharetab_ts = (void (*)(sa_handle_t))
630 dlsym(libshare, "sa_update_sharetab_ts");
631 if (_sa_init == NULL || _sa_init_arg == NULL ||
632 _sa_fini == NULL || _sa_find_share == NULL ||
633 _sa_enable_share == NULL || _sa_disable_share == NULL ||
634 _sa_errorstr == NULL || _sa_parse_legacy_options == NULL ||
635 _sa_needs_refresh == NULL || _sa_get_zfs_handle == NULL ||
636 _sa_zfs_process_share == NULL ||
637 _sa_update_sharetab_ts == NULL) {
638 _sa_init = NULL;
639 _sa_init_arg = NULL;
640 _sa_fini = NULL;
641 _sa_disable_share = NULL;
642 _sa_enable_share = NULL;
643 _sa_errorstr = NULL;
644 _sa_parse_legacy_options = NULL;
645 (void) dlclose(libshare);
646 _sa_needs_refresh = NULL;
647 _sa_get_zfs_handle = NULL;
648 _sa_zfs_process_share = NULL;
649 _sa_update_sharetab_ts = NULL;
650 }
651 }
652 }
653
654 /*
655 * zfs_init_libshare(zhandle, service)
656 *
657 * Initialize the libshare API if it hasn't already been initialized.
658 * In all cases it returns 0 if it succeeded and an error if not. The
659 * service value is which part(s) of the API to initialize and is a
660 * direct map to the libshare sa_init(service) interface.
661 */
662 static int
663 zfs_init_libshare_impl(libzfs_handle_t *zhandle, int service, void *arg)
664 {
665 if (_sa_init == NULL)
666 return (SA_CONFIG_ERR);
667
668 /*
669 * Attempt to refresh libshare. This is necessary if there was a cache
670 * miss for a new ZFS dataset that was just created, or if state of the
671 * sharetab file has changed since libshare was last initialized. We
672 * want to make sure so check timestamps to see if a different process
673 * has updated any of the configuration. If there was some non-ZFS
674 * change, we need to re-initialize the internal cache.
675 */
676 if (_sa_needs_refresh != NULL &&
677 _sa_needs_refresh(zhandle->libzfs_sharehdl)) {
678 zfs_uninit_libshare(zhandle);
679 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg);
680 }
681
682 if (zhandle && zhandle->libzfs_sharehdl == NULL)
683 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg);
684
685 if (zhandle->libzfs_sharehdl == NULL)
686 return (SA_NO_MEMORY);
687
688 return (SA_OK);
689 }
690 int
691 zfs_init_libshare(libzfs_handle_t *zhandle, int service)
692 {
693 return (zfs_init_libshare_impl(zhandle, service, NULL));
694 }
695
696 int
697 zfs_init_libshare_arg(libzfs_handle_t *zhandle, int service, void *arg)
698 {
699 return (zfs_init_libshare_impl(zhandle, service, arg));
700 }
701
702
703 /*
704 * zfs_uninit_libshare(zhandle)
705 *
706 * Uninitialize the libshare API if it hasn't already been
707 * uninitialized. It is OK to call multiple times.
708 */
709 void
710 zfs_uninit_libshare(libzfs_handle_t *zhandle)
711 {
712 if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) {
713 if (_sa_fini != NULL)
714 _sa_fini(zhandle->libzfs_sharehdl);
715 zhandle->libzfs_sharehdl = NULL;
716 }
717 }
718
719 /*
720 * zfs_parse_options(options, proto)
721 *
722 * Call the legacy parse interface to get the protocol specific
723 * options using the NULL arg to indicate that this is a "parse" only.
724 */
725 int
726 zfs_parse_options(char *options, zfs_share_proto_t proto)
727 {
728 if (_sa_parse_legacy_options != NULL) {
729 return (_sa_parse_legacy_options(NULL, options,
730 proto_table[proto].p_name));
731 }
732 return (SA_CONFIG_ERR);
733 }
734
735 /*
736 * zfs_sa_find_share(handle, path)
737 *
738 * wrapper around sa_find_share to find a share path in the
739 * configuration.
740 */
741 static sa_share_t
742 zfs_sa_find_share(sa_handle_t handle, char *path)
743 {
744 if (_sa_find_share != NULL)
745 return (_sa_find_share(handle, path));
746 return (NULL);
747 }
748
749 /*
750 * zfs_sa_enable_share(share, proto)
751 *
752 * Wrapper for sa_enable_share which enables a share for a specified
753 * protocol.
754 */
755 static int
756 zfs_sa_enable_share(sa_share_t share, char *proto)
757 {
758 if (_sa_enable_share != NULL)
759 return (_sa_enable_share(share, proto));
760 return (SA_CONFIG_ERR);
761 }
762
763 /*
764 * zfs_sa_disable_share(share, proto)
765 *
766 * Wrapper for sa_enable_share which disables a share for a specified
767 * protocol.
768 */
769 static int
770 zfs_sa_disable_share(sa_share_t share, char *proto)
771 {
772 if (_sa_disable_share != NULL)
773 return (_sa_disable_share(share, proto));
774 return (SA_CONFIG_ERR);
775 }
776
777 /*
778 * Share the given filesystem according to the options in the specified
779 * protocol specific properties (sharenfs, sharesmb). We rely
780 * on "libshare" to the dirty work for us.
781 */
782 static int
783 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
784 {
785 char mountpoint[ZFS_MAXPROPLEN];
786 char shareopts[ZFS_MAXPROPLEN];
787 char sourcestr[ZFS_MAXPROPLEN];
788 libzfs_handle_t *hdl = zhp->zfs_hdl;
789 sa_share_t share;
790 zfs_share_proto_t *curr_proto;
791 zprop_source_t sourcetype;
792 int ret;
793
794 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
795 return (0);
796
797 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
798 /*
799 * Return success if there are no share options.
800 */
801 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
802 shareopts, sizeof (shareopts), &sourcetype, sourcestr,
803 ZFS_MAXPROPLEN, B_FALSE) != 0 ||
804 strcmp(shareopts, "off") == 0)
805 continue;
806 ret = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_HANDLE,
807 zhp);
808 if (ret != SA_OK) {
809 (void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED,
810 dgettext(TEXT_DOMAIN, "cannot share '%s': %s"),
811 zfs_get_name(zhp), _sa_errorstr != NULL ?
812 _sa_errorstr(ret) : "");
813 return (-1);
814 }
815
816 /*
817 * If the 'zoned' property is set, then zfs_is_mountable()
818 * will have already bailed out if we are in the global zone.
819 * But local zones cannot be NFS servers, so we ignore it for
820 * local zones as well.
821 */
822 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
823 continue;
824
825 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mountpoint);
826 if (share == NULL) {
827 /*
828 * This may be a new file system that was just
829 * created so isn't in the internal cache
830 * (second time through). Rather than
831 * reloading the entire configuration, we can
832 * assume ZFS has done the checking and it is
833 * safe to add this to the internal
834 * configuration.
835 */
836 if (_sa_zfs_process_share(hdl->libzfs_sharehdl,
837 NULL, NULL, mountpoint,
838 proto_table[*curr_proto].p_name, sourcetype,
839 shareopts, sourcestr, zhp->zfs_name) != SA_OK) {
840 (void) zfs_error_fmt(hdl,
841 proto_table[*curr_proto].p_share_err,
842 dgettext(TEXT_DOMAIN, "cannot share '%s'"),
843 zfs_get_name(zhp));
844 return (-1);
845 }
846 share = zfs_sa_find_share(hdl->libzfs_sharehdl,
847 mountpoint);
848 }
849 if (share != NULL) {
850 int err;
851 err = zfs_sa_enable_share(share,
852 proto_table[*curr_proto].p_name);
853 if (err != SA_OK) {
854 (void) zfs_error_fmt(hdl,
855 proto_table[*curr_proto].p_share_err,
856 dgettext(TEXT_DOMAIN, "cannot share '%s'"),
857 zfs_get_name(zhp));
858 return (-1);
859 }
860 } else {
861 (void) zfs_error_fmt(hdl,
862 proto_table[*curr_proto].p_share_err,
863 dgettext(TEXT_DOMAIN, "cannot share '%s'"),
864 zfs_get_name(zhp));
865 return (-1);
866 }
867
868 }
869 return (0);
870 }
871
872
873 int
874 zfs_share_nfs(zfs_handle_t *zhp)
875 {
876 return (zfs_share_proto(zhp, nfs_only));
877 }
878
879 int
880 zfs_share_smb(zfs_handle_t *zhp)
881 {
882 return (zfs_share_proto(zhp, smb_only));
883 }
884
885 int
886 zfs_shareall(zfs_handle_t *zhp)
887 {
888 return (zfs_share_proto(zhp, share_all_proto));
889 }
890
891 /*
892 * Unshare a filesystem by mountpoint.
893 */
894 static int
895 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
896 zfs_share_proto_t proto)
897 {
898 sa_share_t share;
899 int err;
900 char *mntpt;
901
902 /*
903 * Mountpoint could get trashed if libshare calls getmntany
904 * which it does during API initialization, so strdup the
905 * value.
906 */
907 mntpt = zfs_strdup(hdl, mountpoint);
908
909 /*
910 * make sure libshare initialized, initialize everything because we
911 * don't know what other unsharing may happen later. Functions up the
912 * stack are allowed to initialize instead a subset of shares at the
913 * time the set is known.
914 */
915 if ((err = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_NAME,
916 (void *)name)) != SA_OK) {
917 free(mntpt); /* don't need the copy anymore */
918 return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED,
919 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
920 name, _sa_errorstr(err)));
921 }
922
923 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mntpt);
924 free(mntpt); /* don't need the copy anymore */
925
926 if (share != NULL) {
927 err = zfs_sa_disable_share(share, proto_table[proto].p_name);
928 if (err != SA_OK) {
929 return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED,
930 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
931 name, _sa_errorstr(err)));
932 }
933 } else {
934 return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED,
935 dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"),
936 name));
937 }
938 return (0);
939 }
940
941 /*
942 * Unshare the given filesystem.
943 */
944 int
945 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint,
946 zfs_share_proto_t *proto)
947 {
948 libzfs_handle_t *hdl = zhp->zfs_hdl;
949 struct mnttab entry;
950 char *mntpt = NULL;
951
952 /* check to see if need to unmount the filesystem */
953 rewind(zhp->zfs_hdl->libzfs_mnttab);
954 if (mountpoint != NULL)
955 mountpoint = mntpt = zfs_strdup(hdl, mountpoint);
956
957 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
958 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
959 zfs_share_proto_t *curr_proto;
960
961 if (mountpoint == NULL)
962 mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp);
963
964 for (curr_proto = proto; *curr_proto != PROTO_END;
965 curr_proto++) {
966
967 if (is_shared(hdl, mntpt, *curr_proto) &&
968 unshare_one(hdl, zhp->zfs_name,
969 mntpt, *curr_proto) != 0) {
970 if (mntpt != NULL)
971 free(mntpt);
972 return (-1);
973 }
974 }
975 }
976 if (mntpt != NULL)
977 free(mntpt);
978
979 return (0);
980 }
981
982 int
983 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint)
984 {
985 return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
986 }
987
988 int
989 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint)
990 {
991 return (zfs_unshare_proto(zhp, mountpoint, smb_only));
992 }
993
994 /*
995 * Same as zfs_unmountall(), but for NFS and SMB unshares.
996 */
997 int
998 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
999 {
1000 prop_changelist_t *clp;
1001 int ret;
1002
1003 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
1004 if (clp == NULL)
1005 return (-1);
1006
1007 ret = changelist_unshare(clp, proto);
1008 changelist_free(clp);
1009
1010 return (ret);
1011 }
1012
1013 int
1014 zfs_unshareall_nfs(zfs_handle_t *zhp)
1015 {
1016 return (zfs_unshareall_proto(zhp, nfs_only));
1017 }
1018
1019 int
1020 zfs_unshareall_smb(zfs_handle_t *zhp)
1021 {
1022 return (zfs_unshareall_proto(zhp, smb_only));
1023 }
1024
1025 int
1026 zfs_unshareall(zfs_handle_t *zhp)
1027 {
1028 return (zfs_unshareall_proto(zhp, share_all_proto));
1029 }
1030
1031 int
1032 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint)
1033 {
1034 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
1035 }
1036
1037 /*
1038 * Remove the mountpoint associated with the current dataset, if necessary.
1039 * We only remove the underlying directory if:
1040 *
1041 * - The mountpoint is not 'none' or 'legacy'
1042 * - The mountpoint is non-empty
1043 * - The mountpoint is the default or inherited
1044 * - The 'zoned' property is set, or we're in a local zone
1045 *
1046 * Any other directories we leave alone.
1047 */
1048 void
1049 remove_mountpoint(zfs_handle_t *zhp)
1050 {
1051 char mountpoint[ZFS_MAXPROPLEN];
1052 zprop_source_t source;
1053
1054 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
1055 &source))
1056 return;
1057
1058 if (source == ZPROP_SRC_DEFAULT ||
1059 source == ZPROP_SRC_INHERITED) {
1060 /*
1061 * Try to remove the directory, silently ignoring any errors.
1062 * The filesystem may have since been removed or moved around,
1063 * and this error isn't really useful to the administrator in
1064 * any way.
1065 */
1066 (void) rmdir(mountpoint);
1067 }
1068 }
1069
1070 void
1071 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
1072 {
1073 if (cbp->cb_alloc == cbp->cb_used) {
1074 size_t newsz;
1075 void *ptr;
1076
1077 newsz = cbp->cb_alloc ? cbp->cb_alloc * 2 : 64;
1078 ptr = zfs_realloc(zhp->zfs_hdl,
1079 cbp->cb_handles, cbp->cb_alloc * sizeof (void *),
1080 newsz * sizeof (void *));
1081 cbp->cb_handles = ptr;
1082 cbp->cb_alloc = newsz;
1083 }
1084 cbp->cb_handles[cbp->cb_used++] = zhp;
1085 }
1086
1087 static int
1088 mount_cb(zfs_handle_t *zhp, void *data)
1089 {
1090 get_all_cb_t *cbp = data;
1091
1092 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
1093 zfs_close(zhp);
1094 return (0);
1095 }
1096
1097 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
1098 zfs_close(zhp);
1099 return (0);
1100 }
1101
1102 /*
1103 * If this filesystem is inconsistent and has a receive resume
1104 * token, we can not mount it.
1105 */
1106 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
1107 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
1108 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
1109 zfs_close(zhp);
1110 return (0);
1111 }
1112
1113 libzfs_add_handle(cbp, zhp);
1114 if (zfs_iter_filesystems(zhp, mount_cb, cbp) != 0) {
1115 zfs_close(zhp);
1116 return (-1);
1117 }
1118 return (0);
1119 }
1120
1121 int
1122 libzfs_dataset_cmp(const void *a, const void *b)
1123 {
1124 zfs_handle_t **za = (zfs_handle_t **)a;
1125 zfs_handle_t **zb = (zfs_handle_t **)b;
1126 char mounta[MAXPATHLEN];
1127 char mountb[MAXPATHLEN];
1128 boolean_t gota, gotb;
1129
1130 if ((gota = (zfs_get_type(*za) == ZFS_TYPE_FILESYSTEM)) != 0)
1131 verify(zfs_prop_get(*za, ZFS_PROP_MOUNTPOINT, mounta,
1132 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
1133 if ((gotb = (zfs_get_type(*zb) == ZFS_TYPE_FILESYSTEM)) != 0)
1134 verify(zfs_prop_get(*zb, ZFS_PROP_MOUNTPOINT, mountb,
1135 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
1136
1137 if (gota && gotb)
1138 return (strcmp(mounta, mountb));
1139
1140 if (gota)
1141 return (-1);
1142 if (gotb)
1143 return (1);
1144
1145 return (strcmp(zfs_get_name(a), zfs_get_name(b)));
1146 }
1147
1148 /*
1149 * Mount and share all datasets within the given pool. This assumes that no
1150 * datasets within the pool are currently mounted. Because users can create
1151 * complicated nested hierarchies of mountpoints, we first gather all the
1152 * datasets and mountpoints within the pool, and sort them by mountpoint. Once
1153 * we have the list of all filesystems, we iterate over them in order and mount
1154 * and/or share each one.
1155 */
1156 #pragma weak zpool_mount_datasets = zpool_enable_datasets
1157 int
1158 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
1159 {
1160 get_all_cb_t cb = { 0 };
1161 libzfs_handle_t *hdl = zhp->zpool_hdl;
1162 zfs_handle_t *zfsp;
1163 int i, ret = -1;
1164 int *good;
1165
1166 /*
1167 * Gather all non-snap datasets within the pool.
1168 */
1169 if ((zfsp = zfs_open(hdl, zhp->zpool_name, ZFS_TYPE_DATASET)) == NULL)
1170 goto out;
1171
1172 libzfs_add_handle(&cb, zfsp);
1173 if (zfs_iter_filesystems(zfsp, mount_cb, &cb) != 0)
1174 goto out;
1175 /*
1176 * Sort the datasets by mountpoint.
1177 */
1178 qsort(cb.cb_handles, cb.cb_used, sizeof (void *),
1179 libzfs_dataset_cmp);
1180
1181 /*
1182 * And mount all the datasets, keeping track of which ones
1183 * succeeded or failed.
1184 */
1185 if ((good = zfs_alloc(zhp->zpool_hdl,
1186 cb.cb_used * sizeof (int))) == NULL)
1187 goto out;
1188
1189 ret = 0;
1190 for (i = 0; i < cb.cb_used; i++) {
1191 if (zfs_mount(cb.cb_handles[i], mntopts, flags) != 0)
1192 ret = -1;
1193 else
1194 good[i] = 1;
1195 }
1196
1197 /*
1198 * Then share all the ones that need to be shared. This needs
1199 * to be a separate pass in order to avoid excessive reloading
1200 * of the configuration. Good should never be NULL since
1201 * zfs_alloc is supposed to exit if memory isn't available.
1202 */
1203 for (i = 0; i < cb.cb_used; i++) {
1204 if (good[i] && zfs_share(cb.cb_handles[i]) != 0)
1205 ret = -1;
1206 }
1207
1208 free(good);
1209
1210 out:
1211 for (i = 0; i < cb.cb_used; i++)
1212 zfs_close(cb.cb_handles[i]);
1213 free(cb.cb_handles);
1214
1215 return (ret);
1216 }
1217
1218 static int
1219 mountpoint_compare(const void *a, const void *b)
1220 {
1221 const char *mounta = *((char **)a);
1222 const char *mountb = *((char **)b);
1223
1224 return (strcmp(mountb, mounta));
1225 }
1226
1227 /* alias for 2002/240 */
1228 #pragma weak zpool_unmount_datasets = zpool_disable_datasets
1229 /*
1230 * Unshare and unmount all datasets within the given pool. We don't want to
1231 * rely on traversing the DSL to discover the filesystems within the pool,
1232 * because this may be expensive (if not all of them are mounted), and can fail
1233 * arbitrarily (on I/O error, for example). Instead, we walk /etc/mnttab and
1234 * gather all the filesystems that are currently mounted.
1235 */
1236 int
1237 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
1238 {
1239 int used, alloc;
1240 struct mnttab entry;
1241 size_t namelen;
1242 char **mountpoints = NULL;
1243 zfs_handle_t **datasets = NULL;
1244 libzfs_handle_t *hdl = zhp->zpool_hdl;
1245 int i;
1246 int ret = -1;
1247 int flags = (force ? MS_FORCE : 0);
1248 sa_init_selective_arg_t sharearg;
1249
1250 namelen = strlen(zhp->zpool_name);
1251
1252 rewind(hdl->libzfs_mnttab);
1253 used = alloc = 0;
1254 while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
1255 /*
1256 * Ignore non-ZFS entries.
1257 */
1258 if (entry.mnt_fstype == NULL ||
1259 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
1260 continue;
1261
1262 /*
1263 * Ignore filesystems not within this pool.
1264 */
1265 if (entry.mnt_mountp == NULL ||
1266 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
1267 (entry.mnt_special[namelen] != '/' &&
1268 entry.mnt_special[namelen] != '\0'))
1269 continue;
1270
1271 /*
1272 * At this point we've found a filesystem within our pool. Add
1273 * it to our growing list.
1274 */
1275 if (used == alloc) {
1276 if (alloc == 0) {
1277 if ((mountpoints = zfs_alloc(hdl,
1278 8 * sizeof (void *))) == NULL)
1279 goto out;
1280
1281 if ((datasets = zfs_alloc(hdl,
1282 8 * sizeof (void *))) == NULL)
1283 goto out;
1284
1285 alloc = 8;
1286 } else {
1287 void *ptr;
1288
1289 if ((ptr = zfs_realloc(hdl, mountpoints,
1290 alloc * sizeof (void *),
1291 alloc * 2 * sizeof (void *))) == NULL)
1292 goto out;
1293 mountpoints = ptr;
1294
1295 if ((ptr = zfs_realloc(hdl, datasets,
1296 alloc * sizeof (void *),
1297 alloc * 2 * sizeof (void *))) == NULL)
1298 goto out;
1299 datasets = ptr;
1300
1301 alloc *= 2;
1302 }
1303 }
1304
1305 if ((mountpoints[used] = zfs_strdup(hdl,
1306 entry.mnt_mountp)) == NULL)
1307 goto out;
1308
1309 /*
1310 * This is allowed to fail, in case there is some I/O error. It
1311 * is only used to determine if we need to remove the underlying
1312 * mountpoint, so failure is not fatal.
1313 */
1314 datasets[used] = make_dataset_handle(hdl, entry.mnt_special);
1315
1316 used++;
1317 }
1318
1319 /*
1320 * At this point, we have the entire list of filesystems, so sort it by
1321 * mountpoint.
1322 */
1323 sharearg.zhandle_arr = datasets;
1324 sharearg.zhandle_len = used;
1325 ret = zfs_init_libshare_arg(hdl, SA_INIT_SHARE_API_SELECTIVE,
1326 &sharearg);
1327 if (ret != 0)
1328 goto out;
1329 qsort(mountpoints, used, sizeof (char *), mountpoint_compare);
1330
1331 /*
1332 * Walk through and first unshare everything.
1333 */
1334 for (i = 0; i < used; i++) {
1335 zfs_share_proto_t *curr_proto;
1336 for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
1337 curr_proto++) {
1338 if (is_shared(hdl, mountpoints[i], *curr_proto) &&
1339 unshare_one(hdl, mountpoints[i],
1340 mountpoints[i], *curr_proto) != 0)
1341 goto out;
1342 }
1343 }
1344
1345 /*
1346 * Now unmount everything, removing the underlying directories as
1347 * appropriate.
1348 */
1349 for (i = 0; i < used; i++) {
1350 if (unmount_one(hdl, mountpoints[i], flags) != 0)
1351 goto out;
1352 }
1353
1354 for (i = 0; i < used; i++) {
1355 if (datasets[i])
1356 remove_mountpoint(datasets[i]);
1357 }
1358
1359 ret = 0;
1360 out:
1361 for (i = 0; i < used; i++) {
1362 if (datasets[i])
1363 zfs_close(datasets[i]);
1364 free(mountpoints[i]);
1365 }
1366 free(datasets);
1367 free(mountpoints);
1368
1369 return (ret);
1370 }