new usr/src/cnd/ Makefile

R R R R

10877 Sun May 4 18:28:35 2014
new usr/src/cnd/ Makefile
4833 Renove vol r mount
4845 rm(u) nount don’t always print nount/unnmount errors
4846 HAL partition nanes don't match real parition nanes
Revi ewed by: Dan McDonal d <danntd@miti.conp
Revi ewed by: Josef ’'Jeff’ Sipek <jeffpc@ osefsipek.net>

R R R R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing permn ssions

11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each

14 # file and include the License file at usr/src/ OPENSOCLARI S. LI CENSE.
15 # |If applicable, add the followi ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]

18 #

19 # CDDL HEADER END

20 #

22 # Copyright (c) 1989, 2010, Oracle and/or its affiliates. Al rights reserved.
23 # Copyright 2010 Nexenta Systens, Inc. All rights reserved.

24 # Copyright (c) 2012 Joyent, Inc. Al rights reserved.

25 # Copyright (c) 2012 by Del phix. Al rights reserved.

26 # Copyright (c) 2013 DEY Storage Systens, Inc. Al rights reserved.
27 # Copyright 2014 Andrew Stornont.

28 #endif /* | codereview */

30 include ../ Mkefile.mster

32 #

33 # Note that the commands 'agents’, 'Ip’, 'perl’, and 'man’ are first in

34 # the list, violating al phabetical order. This is because they are very
35 # I ong-runni ng and shoul d be given the nost wall-clock tinme for a

36 # paral l el build.

37 #

38 # Commands in the FIRST_SUBDIRS |ist are built before starting the build
39 # of other commands. Currently this includes only ’'isaexec’ and

40 # "platexec’. This is necessary because $(ROOT)/usr/lib/isaexec or

41 # $(ROOT) / usr/1i b/ pl at exec nust exist when some other commands are built
42 # because their 'make install’ creates a hard |ink to one of them

43 #

44 # Comrands are listed one per line so that Team\re can aut o- merge nost

45 # changes.

46 #

48 FI RST_SUBDI RS= \

49 i saexec \

50 pl at exec

52 COMMON_SUBDI RS= \

53 al | ocate \

54 avai | devs \

55 Ip \

56 perl \

57 man \

new usr/src/cnd/ Makefile

58 Adm
59 abi
60 adbgen
61 acct
62 acctadm
63 arch
64 asa
65 ast
66 audi o
67 aut hs
68 aut opush
69 avs
70 awk
71 awk_xpg4
72 backup
73 banner
74 bart
75 basenane
76 bc
77 bdi f f
78 beadm
79 bf s
80 bnu
81 boot
82 busst at
83 cal
84 cal endar
85 captoi nfo
86 cat
87 cdrw
88 cf gadm
89 checkeq
90 checknr
91 chgrp
92 chnod
93 chown
94 chr oot
95 cl ear
96 clinfo
97 cmd-crypto
98 cmd- i net
99 col
100 conpr ess
101 consadm
102 coreadm
103 cpio
104 cpc
105 cron
106 crypt
107 csh
108 csplit
109 ctrun
110 ctstat
111 ctwat ch
112 dat adm
113 date
114 dc
115 dd
116 der of f
117 devf sadm
118 syseventd
119 devct |
120 devi nfo
121 devngmt
122 devprop
123 df s. cnds

o o o e e e e e e e e e e e e e e o e e e e e e e

new usr/src/cnd/ Makefile

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

diff
diff3

di ffnk
dircnp

di rnanme
dis

di skngt d
di spadm n
dl adm

dl st at
drmesg
dodat adm
dtrace
du
dunpadm
dunpcs
echo

ed
eeprom
egrep

ej ect
emul 64i oct
enhance

gencat

geni convtb
gennsg

get conf
getdevpolicy
get ent

get facl

get maj or
get opt
get t ext
get t xt
grep
grep_xpg4

e e o e e e e e e e e e e e e o e o e e e o e e e e e

new usr/src/cnd/ Makefile

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

groups
gr pck
gss

ha

hal t
head
hosti d
host nanme
hot pl ug
hot pl ugd
hwdat a
i bd_upgr ade
id

dmap

nf ocnp
nit

ni t pkg
nstall.d
ntrd
ntrstat
pcrm

pcs
pdadm

pf

sai nfo
sal i st
tutool s
scsi adm
scsid
scsitsve
sns

tadm
java

kbd
keyserv
killal

kr b5

ksh
kvmst at

| ast

| ast comm

| at encyt op
| dap

| dapcachengr
I grpi nfo
I'ine

I'i nk

dl ngnt d
listen

| oadkeys

| ocal e

| ocal edef

| ockst at

| ocat or

| of i adm

| ogadm

| ogger
login

| ogi ns

| ook

I's

| uxadm
Ivm

mach
machi d
nai |

o o o e e e e e e o e e e e e o e o e o e o o e e e e e

new usr/src/cnd/ Makefile

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

mai | x
makekey
ndb
nesg
nkdir
nkfifo
nkfile

netfiles
newf orm
newgr p
news
newt ask
ni ce

n

nl sadm n
nohup
nsadm n
nscd
oanuser
oawk

od

pack
pagesi ze
passngnt
passwd
pat hchk
pbi nd
pci dr

pci too
pf exec
pf execd
pgi nfo
pgst at
pgr ep
picl
plimt
pol i cyki t
pool s
power
power t op
ppgsz

P9

pl ockst at
pr

prctl
print
printf
priocntl
profiles
proj add

o o e e e e e e e e e e e e e e e o e o e e e e e e

new usr/src/cnd/ Makefile

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

projects
prstat
prtconf
prtdi ag
prtvtoc
ps
psradm
psrinfo
psrset
pt ool s
pwek
pwconv

p

pyzfs
rai dct
randi skadm
rcap
rcm daenon
rctladm
refer
regenp
reni ce
rexd

rm
rndir

r nf or mat
r nmount
rmt

rmvol mgr
rol es
rpchi nd
rpcgen
rpcinfo
rpcsve
runat

sa

saf

sasi nfo
savecor e
sbdadm
script
scsi

sdi ff
sdpadm
sed
sendnai |
set facl
set mt
set pgrp
set uname
sgs

sh
shconp
snbi os
snmbsrv
smserverd
soelim
sort
spel |
split
sglite
srcht xt
srptadm
srptsvc
ssh

st at

e o o e e e e e e o e e e o e o e o e o e o o o e e e e e

new usr/src/cnd/ Makefile

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

27
441
442
443
444
445
446
447
448
449
450
451
452

st nfadm
st nf pr oxy
stnfsvc
st neboot
streans
strings
su

sul ogi n
sunpc

sysdef
sysl ogd

trapst at
troff

true

truss

tsol

tty

ttynon
tzrel oad
uadni n

u

uname

units
unl i nk
unpack
userattr
users

ut np_updat e
ut npd
val t ool s
vgrind

\Y

vol check
vol r mount
vrrpadm
vscan

vt

P

new usr/src/cnd/ Makefile

453 xstr \
454 yes \
455 ypcnd \
456 yppasswd \
457 zdb \
458 zdunp \
459 zfs \
460 zhack \
461 zic \
462 zi nj ect \
463 zl ogin \
464 zoneadm \
465 zoneadnd \
466 zonecfg \
467 zonenane \
468 zpool \
469 zl ook \
470 zonest at \
471 zstr eandunp \
472 zt est

474 i 386_SUBDI RS= \
475 acpi hpd \
476 addbadsec \
477 bi osdev \
478 di skscan \
479 I ns \
480 nt f sprogs \
481 parted \
482 rtc \
483 ucodeadm \
484 xvm

486 spar c_SUBDI RS= \
487 cved \
488 dcs \
489 devi ce_renmap \
490 drd \
491 fruadm \
492 | dmad \
493 opl hpd \
494 prtdscp \
495 prtfru \
496 scadm \
497 scknd \
498 sf 880drd \
499 virtinfo \
500 vnt sd

502 #

503 # Conmands that are nessaged
504 # (see previous coment about
505 #

506 MSGSUBDI RS= \
507 I'p \
508 man \
509 abi \
510 acctadm \
511 al | ocate \
512 asa \
513 audi o \
514 audi t \
515 auditconfig \
516 audi td \
517 audi trecord \
518 audi t set \

Note that 'Ip

p

and 'man’)

and ' man

conme first

new usr/src/cnd/ Makefile

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

aut hs
aut opush
avs

awk
awk_xpg4
backup
banner
bart
basenane
beadm
bnu
busst at
cal

cat

cdrw

cf gadm
checkeq
checknr
chgrp
chnod
chown
cmd-crypto
cmd- i net
col

conpr ess
consadm
coreadm
cpio

cpc

cron

csh
csplit
ctrun
ctstat
ctwat ch
dat adm
date

dc

dcs

dd

der of f
devfsadm
df s. cnds
diff

di ffnk

dl adm

dl stat

e e e e e e e e e e e e e o e e o e o e o e e e e e

new usr/src/cnd/ Makefile

585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

geni convtb
gennsg
get conf
getent
get t ext
get t xt
grep
grep_xpg4
gr pck
gss

hal t
head
host nanme
hot pl ug
id

i dmap

i saexec
i scsiadm
iscsid

i sns
itadm
kbd

kr b5

ksh

| ast

| dap

| dapcachengr
I grpi nfo
| ocal e

| of i adm
| ogadm

| ogger

| ogi ns
I's

| uxadm
Ivm
mai | x
nesg
nkdir
mkpwdi ct
nkt enp
nore
nmpat hadm
msgf nt
nv
ndnpadm
ndnpst at
newgr p
newt ask
ni ce
nohup
oawk
pack
passwd
passngnt
pat hchk
pf exec

profiles

e e o e e e e e e e e e e e e e o e o e e e e e

10

new usr/src/cnd/ Makefile 11 new usr/src/cnd/ Makefile
651 proj add \ 717 val tool s \
652 projects \ 718 vgrind \
653 prstat \ 719 Vi \
654 prtdi ag \ 720 vol check \
655 ps \ 308 vol r mount \
656 psrinfo \ 721 vrrpadm \
657 ptool s \ 722 vscan \
658 pwconv \ 723 w \
659 pwd \ 724 who \
660 pyzfs \ 725 whodo \
661 raidctl \ 726 wr acct \
662 randi skadm \ 727 wite \
663 rcap \ 728 wusbadm \
664 rcm daenon \ 729 xar gs \
665 refer \ 730 yppasswd \
666 regenp \ 731 zdunp \
667 renice \ 732 zfs \
668 rol es \ 733 zic \
669 rm \ 734 zl ogi n \
670 rndir \ 735 zoneadm \
671 rnf or mat \ 736 zoneadnd \
672 r nmount \ 737 zonecfg \
673 r mvol mgr \ 738 zonenane \
674 sasi nfo \ 739 zpool \
675 sbhdadm \ 740 zonest at
676 scadm \
677 script \ 742 spar c_MSGSUBDI RS= \
678 scsi \ 743 fruadm \
679 sdiff \ 744 prtdscp \
680 sdpadm \ 745 prtfru \
681 sgs \ 746 virtinfo \
682 sh \ 747 vnt sd
683 shconp \
684 snbsrv \ 749 i 386_MSGSUBDI RS= \
685 sort \ 750 ucodeadm
686 split \
687 srptadm \ 752 #
688 ssh \ 753 # commands that use dcgettext for localized tinme, LC TIME
689 stat \ 754 #
690 st nf adm \ 755 DCSUBDI RS= \
691 st neboot \ 756 cal \
692 strings \ 757 cf gadm \
693 su \ 758 di ff \
694 svec \ 759 I's \
695 svr 4pkg \ 760 pr \
696 swap \ 761 ps \
697 sysevent adm \ 762 tar \
698 syseventd \ 763 w \
699 tabs \ 764 who \
700 tar \ 765 whodo \
701 t bl \ 766 wite
702 tine \
703 t nf \ 768 #
704 touch \ 769 # commands that belong only to audit.
705 t put \ 770 #
706 troff \ 771 AUDI TSUBDI RS= \
707 tsol \ 772 amt \
708 tty \ 773 audi t \
709 ttynon \ 774 audi t _warn \
710 tzrel oad \ 775 audi tconfig \
711 ul \ 776 audi td \
712 uname \ 777 audi trecord \
713 units \ 778 audi treduce \
714 unl i nk \ 779 audi t set \
715 unpack \ 780 audi t st at \
716 userattr \ 781 praudi t

new usr/src/cnd/ Makefile 13

783 #

784 # commands not owned by the systens group
785 #

786 BWOSDI RS=

789 all := TARGET = all

790 install := TARGET = install
791 clean : = TARCET = cl ean
792 cl obber : = TARCET = cl obber
793 lint : = TARGET = |int
794 _msg = TARCET = _nsg
795 _dc := TARCET = _dc

797 . KEEP_STATE:
799 SUBDI RS = $(COMMON_SUBDI RS) $($(MACH) _SUBDI RS)
801 . PARALLEL: $(BWOSDI RS) $(SUBDI RS) $(MSGSUBDI RS) $(AUDI TSUBDI RS)

803 all install clean clobber lint: $(FIRST_SUBDI RS) .WAI T $(SUBDI RS) \
804 $(AUDI TSUBDI RS)

806 #

807 # Mani fests cannot be checked in parallel, because we are using
808 # the global repository that is in $(SRC)/cnd/ svc/ seed/ gl obal . db.
809 # For this reason, to avoid . PARALLEL and . NO PARALLEL conflicts,
810 # we spawn off a sub-make to performthe non-parallel 'make check’
811 #

812 check:

813 $(MAKE) -f Makefile.check check

815 #

816 # The .WAIT directive works around an apparent bug in parallel make.
817 # Evi dently make was getting the target _nmsg vs. _dc confused under
818 # sone |level of paralielization, causing some of the _dc objects
819 # not to be built.

820 #

821 _nsg: $(MSGSUBDI RS) $($(MACH) _MSGSUBDI RS) . WAI T _dc
823 _dc: $(DCSUBDI RS)

825 #

826 # Dependenci es

827 #

828 fs.d: fstyp

829 ksh: shconp i saexec
830 ndb: termnfo

831 print: Ip
833 $(FI RST_SUBDI RS) $(BWOSDI RS) $(SUBDI RS) $(AUDI TSUBDI RS) : FRC
then \

834 “@f [-f $@Makefile J; en

835 cd $@ pwd; $(WE) $(TARCET); \
836 else \

837 true; \

838 fi

840 FRC:

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nfo_storage. c

R R R R

52155 Sun May 4 18:28:35 2014

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nf o_st orage. c

4833 Renove vol r mount

4845 rm(u) nount don’t always print nount/unnmount errors
4846 HAL partition nanes don't match real parition nanes
Revi ewed by: Dan McDonal d <danntd@miti.conp

Revi ewed by: Josef ’'Jeff’ Sipek <jeffpc@ osefsipek.net>

R R R R R R R

ARk kR kK Kk Kk KKk Kk kKK KKk KK KKk kA kKK Kk KAk Ak kA IR KKK R Kk Kk KKk k kA Kk Kk k ok kk kK Kk

2 *
3 * devinfo_storage.c : storage devices
4 *
5 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. Al rights reserved.
6 * Copyright 2013 Garrett D Ampbre <garrett @anore. org>
7 * Copyright 2014 Andrew Stornont.
8 #endif /* | codereview */
9 *
10 * Licensed under the Acadenic Free License version 2.1
*
i% **/

14 #ifdef HAVE _CONFI G H
15 # include <config.h>
16 #endi f

18 #incl ude <stdio. h>

19 #include <string. h>

20 #include <strings. h>

21 #include <ctype. h>

22 #include <libdevinfo.h>
23 #include <sys/types. h>
24 #include <sys/nkdev. h>
25 #include <sys/stat.h>
26 #include <sys/mtent. h>
27 #include <sys/mttab. h>

29 #include "../osspec.h"

30 #include "../logger.h"

31 #include "../hald.h"

32 #include "../hal d_dbus. h"
33 #incl ude "../device_info.h"
34 #include "../util.h"

35 #include "../hald_runner.h"
36 #incl ude "hotplug h"

37 #include "devinfo.h"

38 #include "devinfo_m sc.h"
39 #include "devinfo_storage. h"
40 #include "osspec_sol aris.h"

42 #ifdef sparc

43 #define WHOLE_DI SK "s2"
44 #el se
45 #define WHOLE_DI SK " p0"
46 #endi f

48 /* sone devices, especially CDROVs, may take a while to be probed (values in ns)
49 #define DEVI NFO PROBE_STORAGE_TI MEQUT 60000
50 #define DEVI NFO_PROBE_VOLUME_TI MEQUT 60000

52 typedef struct devinfo_storage_m nor {

53 char *devpat h;

54 char *devl i nk;

55 char *slice;

56 dev_t dev;

57 int dosnum /* dos disk nunber or -1 */

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nfo_storage. c 2

} devinfo_storage_m nor_t;

Hal Devi ce *devi nfo_i de_add(Hal Devi ce *parent, di_node_t node, char *devfs_path,
static Hal Devi ce *devi nfo_i de_host_add(Hal Devi ce *parent, di_node_t node, char *
static Hal Devi ce *devinfo_i de_devi ce_add(Hal Devi ce *parent, di _node_t node, char
static Hal Devi ce *devinfo_i de_storage_add(Hal Devi ce *parent di _node_t node, cha
Hal Devi ce *devi nfo_scsi add(HaI Devi ce *parent, di_node_t node, char *devfs_path,
static Hal Device *devi nfo_scsi _storage_. add(HaI Devi ce *parent, di_node_t node, ch
Hal Devi ce *devi nfo_bl kdev_add(Hal Devi ce *parent, di _node_t node, char *devfs_pat
static Hal Devi ce *devi nfo_bl kdev_st or age_add(Hal Device *parent, di _node_t node,
Hal Devi ce *devi nfo_f| oppy_add(Hal Devi ce *parent, di_node_t node char *devfs_pat
static void devinfo_floppy _add_vol une(Hal Devi ce *parent, di _node_t node) ;
static Hal Device *devinfo_| ofi _add(Hal Devi ce *parent, di _node_t node, char *devf
static void devinfo_| ofi_add_m nor(Hal Devi ce *parent, di_node_t node, char *m no
static void devinfo_storage_m nors(Hal Device *parent, di_node_t node, gchar *dev
static struct devinfo_storage_m nor *devi nfo_storage_new ni nor(char *mai ndev_pat
char *devlink, dev_t dev, int dosnum;
static void devinfo _storage_ free_m nor(struct devi nf o_storage_mi nor *nm;
Hal Devi ce *devi nfo_vol ume_add(Hal Devi ce *parent, di_node_t node, devinfo_storage
static void devinfo_vol unme_preprobi ng_done(Hal Devi ce *d, gpointer userdatal, gpo
static void devinfo_vol ume_hot pl ug_begi n_add (Hal Devi ce *d, Hal Device *parent, D
static voi d devinfo_storage_hot pl ug_begi n_add (Hal Devi ce *d, Hal Devi ce *parent,
static void devinfo_storage_probi ng_done (Hal Device *d, guint32 exit_type, gint
const gchar *devi nfo_vol une_get _prober (Hal Device *d, int *tinmeout);
const gchar *devi nfo_storage_get_prober (Hal Device *d int *tineout);

static char *devinfo_scsi_dtype2str(int dtype);

static char *devinfo_vol ume_get _slice_name (char *devlink);

static gbool ean dos_to_dev(char *path, char **devpath, int *partnun;
static gbool ean is_dos_path(char *path, int *partnum;

static void devinfo_storage_set_nicknanes (Hal Device *d);

Devi nf oDevHandl er devi nfo_i de_handler = {
devi nf o_i de_add,
NULL,
NULL,
NULL,
NULL,
NULL

e
Devi nf oDevHandl er devi nfo_scsi _handl er = {
devi nf o_scsi _add,
NULL,
NULL,
NULL,
NULL,
NULL

e
Devi nf oDevHandl er devi nfo_bl kdev_handl er = {
devi nf o_bl kdev_add,
NULL,
NULL,
NULL,
NULL,
NULL

%
Devi nf oDevHandl er devi nfo_fl oppy_handl er = {
devi nf o_f | oppy_add,
NULL,
NULL,
NULL,
NULL,
NULL

e
Devi nf oDevHandl er devi nfo_l ofi _handler = {

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nfo_storage. c

124 devi nfo_| of i _add,
125 NULL,

126 NULL,

127 NULL,

128 NULL,

129 NULL

130 }

131 Devi nf oDevHandl er devi nf o_storage_handler = {
132 NULL,

133 NULL,

134 devi nf o_st orage_hot pl ug_begi n_add,
135 NULL,

136 devi nf o_st or age_pr obi ng_done,

137 devi nf o_st orage_get _pr ober

138 }

139 Devi nf oDevHandl er devi nf o_vol ume_handl er = {
140 NULL,

141 NULL,

142 devi nf o_vol unme_hot pl ug_begi n_add,
143 NULL,

144 NULL,

145 devi nf o_vol ume_get _pr ober

146 };

148 /* 1DE */

150 Hal Devi ce *

151 devinfo_i de_add(Hal Devi ce *parent, di_node_t node,

char *devfs_path,

char *devic

152 {

153 char *s;

155 if ((device_type !'= NULL) && (strcnp(device_type, "ide") == 0)) {
156 return (devinfo_ide_host_add(parent, node, devfs_path));
157 }

159 if ((di_prop_l ookup_strings (DDl _DEV_T_ANY, node, "class", &) > 0) &&
160 (strcnp (s, "dada") == 0))

161 return (devinfo_ide_device_add(parent, node, devfs_path));
162 }

164 return (NULL);

165 }

167 static Hal Device *

168 devi nfo_i de_host _add(Hal Devi ce *parent, di_node_t node,

char *devfs_path)

169 {

170 Hal Devi ce *d;

172 d = hal _device_new ();

174 devi nf o_set _defaul t _properties (d, parent, node, devfs_path);

175 hal _devi ce_property_set_string (d, "info.product", "IDE host controller"
176 hal _devi ce_property_set_string (d, "info.subsysten, "ide_host");

177 hal _devi ce_property_set_int (d, "ide_host.nunmber", 0); /* XXX */

179 devi nf o_add_enqueue (d, devfs_path, &devinfo_ide_handler);

181 return (d);

182 }

184 static Hal Device *

185 devi nfo_i de_devi ce_add(Hal Devi ce *parent,
186 {

187 Hal Devi ce *d;

di _node_t node,

189 d = hal _device_new();

char *devfs_path)

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nfo_storage. c 4
191 devi nfo_set _defaul t _properties (d, parent, node, devfs_path);
192 hal _devi ce_property_set_string (parent, "info.product", "IDE device");
193 hal _devi ce_property_set_string (parent, "info.subsystent, "ide");
194 hal _devi ce_property_set_int (parent, "ide.host", 0); /* XXX */
195 hal _devi ce_property_set_int (parent, "ide.channel", 0);
197 devi nf o_add_enqueue (d, devfs_path, &devinfo_ide_handler);
199 return (devinfo_ide_storage_add (d, node, devfs_path));
200 }
202 static Hal Device *
203 devi nfo_i de_storage_add(Hal Devi ce *parent, di _node_t node, char *devfs_path)
204 {
205 Hal Devi ce *d;
206 char *s;
207 int *i;
208 char *driver _naneg;
209 char udi [HAL_PATH_MAX] ;
211 if ((driver_name = di_driver_nane (node)) == NULL) {
212 return (NULL);
213 }
215 d = hal _device_new ();
217 devi nfo_set _defaul t _properties (d, parent, node, devfs_path);
218 hal _devi ce_property_set_string (d, "info.category", "storage");
220 hal _util_conpute_udi (hald_get_gdl (), udi, sizeof (udi),
221 "8/ %%l", hal _device_get_udi (parent), driver_nane, di_instance
222 hal _devi ce_set _udi (d, udi);
223 hal _devi ce_property_set_string (d, "info.udi", udi);
224 PROP_STR(d, node, s, "devid", "info.product");
226 hal _devi ce_add_capability (d, "storage");
227 hal _devi ce_property_set_string (d, "storage.bus", "ide");
228 hal _devi ce_property_set_int (d, "storage.lun", 0);
229 hal _devi ce_property_set_string (d, "storage.drive_type", "disk");
231 PROP_BOOL(d, node, i, "hotpluggable", "storage.hotpluggable");
232 PROP_BOOL(d, node, i, "renovabl e-nedia", "storage.renpvable");
234 hal _devi ce_property_set_bool (d, "storage.nedi a_check_enabl ed", FALSE);
236 [* XXX */
237 hal _devi ce_property_set_bool (d, "storage.requires_eject", FALSE);
239 hal _devi ce_add_capability (d, "block");
241 devi nfo_storage_minors (d, node, (char *)devfs_path, FALSE);
243 return (d);
244 }
246 [* SCSI */
248 Hal Device *
249 devi nf o_scsi _add(Hal Devi ce *parent, di _node_t node, char *devfs_path, char *devi
250 {
251 int @i g
252 char *driver_naneg;
253 Hal Devi ce *d;
254 char udi [HAL_PATH_MAX] ;

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nfo_storage. c

256 driver_nane = di _driver_nanme (node);

257 if ((driver_name == NULL) || (strcnp (driver_nanme, "sd") !=0)) {
258 return (NULL);

259 }

261 d = hal _device_new ();

263 devi nfo_set _defaul t _properties (d, parent, node, devfs _pat h)

264 hal _devi ce_property_set_string (d, "info. subsystem' "scsi)'

266 hal _util_conpute_udi (hald_get_gdl (), udi, sizeof (udi),

267 "8/ %%l", hal _devi ce_get_udi (parent), di_node_nane(node),
268 hal _devi ce_set _udi (d, udi);

269 hal _devi ce_property_set_string (d, "info.udi", udi);

271 hal _devi ce_property_set_int (d, "scsi.host"

272 hal _devi ce_property_get _| | nt (par ent "scsi _host. host"));
273 hal _devi ce_property_set_int (d, "scsi.bus", 0);

274 PROP_I NT(d, node, 1, "target", "scsi.tar get "),

275 PROP_I NT(d, node, i, "lun", "scsi.l un ")

276 hal _devi ce_property_set_string (d, "i nfo. product"”, "SCSI Device");
278 devi nf o_add_enqueue (d, devfs_path, &devinfo_scsi_handler);

280 return (devinfo_scsi_storage_add (d, node, devfs_path));

281 }

283 static Hal Device *

284 devinfo_scsi _storage_add(Hal Devi ce *parent, di_node_t node, char *devfs_path)

285 {

286 Hal Devi ce *d;

287 int *i;

288 char *s;

289 char udi [HAL_PATH_MAX] ;

291 d = hal _device_new ();

293 devi nfo_set _defaul t _properties (d, parent, node, devfs_path);

294 hal _devi ce_property_set_string (d, "info.category", "storage");

296 hal _util _conmpute_udi (hald_get_gdl (), udi, sizeof (udi),

297 "%/ sd%", hal _device_get_udi (parent), di_instance (node));
298 hal _devi ce_set _udi (d, udi);

299 hal _devi ce_property_ set _string (d, "info. ud| udi) ;

300 PROP_STR(d, node, s, "inquiry-product-id", "info. product ")

302 hal _devi ce_add_capability (d, "storage");

304 hal _devi ce_property_set_int (d, "storage.lun",

305 hal _devi ce_property_get_int (parent, "scsi.lun"));

306 PROP_BOOL(d, node, 1, "hotpluggable", "storage.hotpluggable");

307 PROP_BOOL(d, node, i, "renovabl e-nedia", "storage.renpvable");

308 hal _devi ce_property_set_bool (d, "storage.requires_eject", FALSE);
310 /*

311 * W have to enable polling not only for drives with renovabl e nedi a,
312 * but also for hotpluggabl e devices, because when a disk is

313 * unpl ugged whil e busy/nount ed, there is not sysevent gener at ed.

314 * |Instead, the HBA driver (scsa2usb| scsal394) will notify sd driver
315 * and the latter will report DKI O DEV_GONE via DKI OCSTATE ioctl .

316 * So we have to enabl e nedi a check so that hal d-addon-storage notices
317 * the "device gone" condition and unnmounts all associ ated vol unes.
318 */

319 hal _devi ce_property_set_bool (d, "storage.nedi a_check_enabl ed",

320 ((di _prop_l ookup_i nts(DDI _DEV_T_ANY, node, "renovabl e-nedia"

321 (di _prop_Tookup_ints(DDl _DEV_T_ANY, node, "hot pl uggable",

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nfo_storage. c 6
323 if (di _prop_l ookup_ints(DDI _DEV_T_ANY, node, "inquiry-device-type",

324 &)Y > 0) {

325 s = devinfo_scsi_dtype2str (*i);

326 hal _devi ce_property_set_string (d, "storage.drive_type", s);

328 if (strenp (s, "cdront) ==

329 hal _devi ce_add_capability (d, "st or age. cdront');

330 hal _devi ce_property_set_bool (d, "storage.no_partitions
331 hal _devi ce_property_set _bool (d, "storage.requires_eject
332 }

333 }

335 hal _devi ce_add_capability (d, "block");

337 devi nfo_storage_mi nors (d, node, devfs_path, FALSE);

339 return (d);

340 }

342 static char *
343 devi nfo_scsi _dtype2str(int dtype)

344 {

345 char *dtype2str[] = {

346 "di sk" /* DTYPE_DI RECT

347 "t ape" . /* DTYPE_SEQUENTI AL
348 pri nter" /* DTYPE_PRI NTER
349 "pr ocessor " /* DTYPE_PROCESSOR
350 "wornt /* DTYPE_WORM

351 "cdront’ /* DTYPE_RODI RECT
352 "scanner", /* DTYPE_SCANNER
353 "cdront' , /* DTYPE_OPTI CAL
354 "changer" /* DTYPE_CHANGER
355 "corrm' , /* DTYPE_COW

356 "scsi' s [* DTYPE_???

357 "scsi' | * DTYPE_???

358 array ctrl” /* DTYPE_ARRAY_CTRL
359 "esi , /* DTYPE_ESI

360 "di sk” /* DTYPE_RBC

361 pe

363 if (dtype < NELEM dtype2str)) {

364 return (dtype2str[dtype]);

365 } else {

366 return ("scsi");

367 }

369 }

371 /* bl kdev */
373 Hal Device *

374 devi nfo_bl kdev_add(Hal Devi ce *parent, di_node_t node, char

375 {

376 int *i;

377 char *driver _nang;

378 Hal Devi ce *d;

379 char udi [HAL PATH_MAX] ;

381 driver_nane = di drlver name (node);

382 if ((driver_name == NULL) || (strcrrp (driver_nane,
383 return (NULL);

384 }

386 d = hal _device_new ();

0x00 */
0x01 */
0x02 */
0x03 */
0x04 */
0x05 */
0x06 */
0x07 */
0x08 */
0x09 */
Ox0A */
0x0B */

*devfs_path, char *de

“bl kdev") != 0)) {

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nfo_storage. c

388 devi nf o_set _defaul t _properties (d, parent, node, devfs_path);

389 hal _devi ce_property_set_string (d, "info.subsysten, "pseudo");

391 hal _util _conpute_udi (hald_get_gdl (), udi, sizeof (udi),

392 "%/ % %", hal _device_get_udi (parent), di_node_nanme(node), di _i
393 hal _devi ce_set_udi (d, udi);

394 hal _devi ce_property_set_string (d, "info.udi", udi);

395 hal _devi ce_property_set_string (d, "info.product", "Block Device");
397 devi nf o_add_enqueue (d, devfs_path, &devinfo_bl kdev_handl er);

399 return (devinfo_bl kdev_storage_add (d, node, devfs_path));

400 }

402 static Hal Device *

403 devi nfo_bl kdev_st or age_add(Hal Devi ce *parent, di_node_t node, char *devfs_path)
404 {

405 Hal Devi ce *d;

406 char *driver_naneg;

407 int *i;

408 char *s;

409 char udi [HAL_PATH_MAX] ;

411 d = hal _device_new ();

413 devi nfo_set _defaul t _properties (d, parent, node, devfs_path);

414 hal _devi ce_property_set_string (d, "info.category", "storage");

416 hal _util _conpute_udi (hald_get_gdl (), udi, sizeof (udi),

417 "%/ bl kdevyd", hal _device_get_udi (parent), di_instance (node));
418 hal _devi ce_set_udi (d, udi);

419 hal _devi ce_property_set_string (d, "info.udi", udi);

421 hal _devi ce_add_capability (d, "storage");

423 hal _devi ce_property_set_int (d, "storage.lun", 0);

425 PROP_BOOL(d, node, i, "hotpluggable", "storage.hotpluggable");

426 PROP_BOOL(d, node, i, "renovabl e-nedia", "storage.renpvable");

428 hal _devi ce_property_set_bool (d, "storage.requires_eject", FALSE);

429 hal _devi ce_property_set_bool (d, "storage.nedi a_check_enabl ed", TRUE);
430 hal _devi ce_property_set_string (d, "storage.drive_type", "disk");

432 hal _devi ce_add_capability (d, "block");

434 devi nfo_storage_minors (d, node, devfs_path, FALSE);

436 return (d);

437 }

439 /* floppy */

441 Hal Device *

442 devinfo_f| oppy_add(Hal Devi ce *parent, di _node_t node, char *devfs_path, char *de
443 {

444 char *driver _nang;

445 char *raw,

446 char udi [HAL_PATH_MAX] ;

447 di _devl i nk_handl e_t devlink_hdl;

448 int maj or;

449 di _mi nor_t mnor;

450 dev_t dev;

451 Hal Devi ce *d = NULL;

452 char *m nor _path = NULL;

453 char *devl i nk = NULL;

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nfo_storage. c

455
456
457
458

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

486
487
488
489

491

493
494
495
496
497
498
499
500
501

503
504
505
506
507
508
509
510

512

514
515

517
518
519

out :

driver_nane = di _driver_nane (node);

if ((driver_nane == NULL) || (strcnp (driver_nane, "fd") !=0)) {
return (NULL);

}

/*

* The only minor node we're interested in is /dev/diskette*

*/

maj or = di _driver_mgj or (node);

if ((devlink_hdl = di_devlink_init(NULL, 0)) == NULL) {
return (NULL);

}
mnor = DI_M NOR_NIL;

while ((mnor = di _mnor_next(node, mnor)) != DI_MNORNL) {
dev = di _mi nor_devt(mnor);
if ((major !'= major(dev)) ||
(di _m nor_type(mi nor) !'= DDM M NOR)
(di _m nor_spectype(mnor) != S | FBLK) ||
((mnor_path = di _devfs_m nor_path(mnor)) == NULL)) {
cont i nue;

}
1f ((devlink = get_devlink(devlink_hdl, "diskette.+" , mnor_pat
br ;

}
di _devfs_path_free (mnor_path);
m nor_path = NULL;
free(devlink);
devlink = NULL;

}

di _devlink_fini (&devlink_hdl);

if ((devlink == NULL) || (minor_path == NULL)) {
HAL_I NFO (("fl oppy devlink not found %", devfs_path));
goto out;

}
d = hal _device_new ();

devi nfo_set _defaul t _properties (d, parent, node, devfs_path);

hal _devi ce_property_set_string (d, "info.category", "storage");
hal _devi ce_add_capability (d, "storage");

hal _devi ce_property_set_string (d, "storage.bus", "platforni);
hal _devi ce_property_set_bool (d, "storage.hotpluggabl e", FALSE);

hal _devi ce_property_set_bool (d, "storage.renpovable", TRUE);

hal _devi ce_property_set_bool (d, "storage.requires_eject", TRUE);

hal _devi ce_property_set_bool (d, "storage.nedi a_check_enabl ed", FALSE);
hal _devi ce_property_set_string (d, "storage.drive_type", "floppy");

hal _devi ce_add_capability (d, "block");

hal _devi ce_property_set _bool (d, "block.is_volune", FALSE);
_device_property_set_int (d, "block.nmajor", najor(dev));

hal _devi ce_property_set_int (d, "block.m nor", mnor(dev));

hal _devi ce_property_set_string (d, "bl ock.device", devlink);

raw = dsk_to_rdsk (devlink);

hal _devi ce_property_set_string (d, "block.solaris.raw device", raw);

free (raw;

devi nf o_add_enqueue (d, devfs_path, &devinfo_storage_handler);
/* trigger initial probe-volunme */
devi nf o_f | oppy_add_vol une(d, node);

di _devfs_path_free (m nor_path);
free(devlink);

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nfo_storage. c 9

521
522

524
525

527
528
529
530
531

533
534
535
536
537

539
540
541
542

544
545
546
547
548
549
550
551
552
553
554

556
5517

559
560
561
562
563
564
565
566
567

569
570
571
572
573
574
575
576
577
578

580

582
583

585

}

return (d);

static void
devi nf o_f | oppy_add_vol une(Hal Devi ce *parent, di_node_t node)
526 {

}

/*

* After reprobing storage,
*

/

char *devl i nk;
char *devfs_pat h;
int m nor, major;

dev_t dev;
struct devinfo_storage_minor *m

devfs_path = (char *)hal _device_property_get_string (parent, "solaris.de
devlink = (char *)hal _device_property_get_string (parent, "block.device"
mej or = hal _device_property_get_int (parent, "block.mgjor");

mnor = hal _device _property_get_int (parent, "block.mnor");

dev = makedev (maj or, mnor);

m = devi nf o_st orage_new_m nor (devfs path, WHOLE_DI SK, devlink, dev, -1)

devi nf o_vol unme_add (parent, node,
devi nfo_storage_free_minor (m;

reprobe its vol unes.

static void
devi nfo_f| oppy_rescan_probi ng_done (Hal Device *d, guint32 exit_type, gint return

{

char **error,

gpoi nter userdatal, gpointer user dat a2 2)

voi d *end_token = (void *) userdatal;
const char *devfs_path;

di _node_t node;

Hal Devi ce *v;

if (!hal _device_property_get_bool (d, "storage.renovabl e. medi a_avail abl e
HAL_I NFO (("no fl oppy nedi a", hal _device_get_udi (d)));

/* renove child (can only be single volunme) */
if (((v = hal deV|ce store_mat ch_key_val ue_string (hal d_get_gdl (
"info.parent", hal _device_get _udi (d))) != NULL) &&
((devfs_| path = hal _devi ce_property_get_string (v,
"sol aris.devfs _path")) !'= NULL))
devi nf o_renove_enqueue ((char *)devfs_path, NULL);
} else {
HAL_I NFO (("fl oppy nedi a found", hal _device_get_udi (d)));

if ((devfs_path = hal _device_property_get_string(d, "solaris.dev
HAL_I NFO (("no devfs_path", hal_device_get_udi (d)));
hot pl ug_event _process_queue ();
return;

}

if ((node = di_init (devfs_path, DI NFOCPYALL)) == DI_NODE_NIL) {
HAL_INFO (("di _init % failed %", devfs_path, errno));
hot pl ug_event _process_queue ();
return;

}
devi nf o_f | oppy_add_vol une (d,

di _fini (node);

node) ;

}

hot pl ug_event _process_queue ();

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nfo_storage. c

586 }
587
588 /* lofi */

590 Hal Device *

591 devi nfo_| ofi _add(Hal Devi ce *parent, di_node_t node,
592 {

593 return (devinfo_l ofi_add_maj or (parent, node,
594 }

596 Hal Device *
597 devinfo_| ofi _add_naj or (Hal Devi ce *parent, di _node_t node,
598 gbool ean rescan, Hal Device *|ofi _d)

devfs_path,

char *devfs_path,

char *d

devi ce_type,

char *devfs_path, c

10

evi

FAL

har

599 {

600 char *dri ver_nane;

601 Hal Device *d = NULL;

602 char udi [HAL_PATH_MAX] ;

603 di _devlink_handl e_t devli nk hdl ;

604 int maj or;

605 di _m nor_t mnor;

606 dev_t dev;

607 char *m nor _path = NULL;

608 char *devlink = NULL;

610 driver_nane = di _driver_nanme (node);

611 if ((driver_nane == NULL) || (strcnp (driver_nane, "lofi") !'=0)) {
612 return (NULL);

613 }

615 if (!rescan) {

616 d = hal _devi ce_new ();

618 devi nfo_set _defaul t_properties (d, parent, node, devfs_path);
619 hal _devi ce_property_set_string (d, "info.subsystent, "pseudo");
621 hal _util_conmpute_udi (hald_get_gdl (), udi, sizeof (udi),
622 "Us/ %s%l", hal _device_get _udi (parent), di_node nane(nod
623 hal _devi ce_set_udi (d, udi);

624 hal _devi ce_property_set_string (d, "info.udi", udi);

626 devi nf o_add_enqueue (d, devfs_path, &devinfo_lofi_handler);
627 } else {

628 d = lofi_d;

629 1

631 /*

632 * Unli ke normal storage, as in devinfo_storage_m nors(), where
633 * sd instance -> HAL storage, sd mnor node -> HAL vol une,

634 * | ofi always has one instance, lofi mnor -> HAL storage.

635 * |lofi storage never has slices, but it can have

636 * enbedded pcfs partitions that fstyp would recognize

637 */

638 maj or = di _driver I’THJ or (node) ;

639 if ((devlink_hdl = di_devlink_init(NULL, 0)) == NULL) {

640 return (d);

641 }

642 mnor = DI_MNOR NIL;

643 while ((mnor = di _mnor_next(node, mnor)) !'= DI_MNOR_NL) {

644 dev = di _m nor_devt (m nor);

645 if ((major !'= major(dev)) ||

646 (di _m nor_type(mnor) = DDM M NOR) ||

647 (di _m nor_spectype(mnor) != S IFBLK) ||

648 ((mnor_path = di _devfs_mi nor_path(mnor)) == NULL)) {
649 cont i nue;

650

}
651 if ((devlink = get_devlink(devlink_hdl, NULL, m nor

_path)) ==

NU

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nfo_storage. c 11

652
653
654

656
657
658
659
660

662
663
664
665

667
668

670
671

}

di _devfs_path_free (mnor_path);
cont i nue;

}

if (!rescan ||

(hal device_store_natch_key_val ue_string (hal d_get_gdl (),
"sol aris. devfs_path", mnor_path) == NULL)) {

devinfo_l of i add _minor (d,

node, mnor_path, devlink, dev

}

di _devfs_path_free (m nor_path);
free(devlink);

}

di _devlink_fini (&devlink_hdl);

return (d);

static void

devi nfo_|l ofi

672 {

673
674
675
676
677
678

680
681

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698

702

_add_mi nor (Hal Devi ce *parent, di_node_t node, char *m nor_path, char
Hal Devi ce *d;

char *raw,

char *dosl i nk;

char dospat h[64] ;

struct devinfo_storage_mi nor *m

int i;

/* add storage */

d = hal _device_new ();

devi nfo_set _defaul t _properties (d, parent, node, minor_path);

hal _devi ce_property_set_string (d, "info.category", "storage");
hal _devi ce_add_capability (d, "storage");

hal _devi ce_property_set_string (d, "storage.bus", "lofi");

hal _devi ce_property_set_bool (d, "storage. hotpl uggabl e", TRUE);
hal _devi ce_property_set_bool (d, "storage.renovable", FALSE);

hal _devi ce_property_set_bool (d, "storage.requires_eject", FALSE)
hal _devi ce_property_set_string (d, "storage.drive_type", "disk");

hal _devi ce_add_capability (d, "block");

hal _devi ce_property_set_int (d, "bl ock.nmajor"
hal _devi ce_property_set_int (d, "block.m nor"
hal _devi ce_property_set_string (d,
raw = dsk_to_rdsk (devlink);

hal _devi ce_property_set_string (d,
free (raw);

hal _devi ce_property_set _bool (d,

maj or (dev));

m nor(dev))

"bl ock. devi ce", devli nk)
"bl ock. sol ari s. raw_devi ce",

raw) ;

"bl ock.is_vol ume", FALSE);

devi nf o_add_enqueue (d, m nor_path, &devinfo_storage_handler);

/* add vol unes: one on main device and a few pcfs candi dates */

m = devi nf o_st orage_new_mi nor (m nor _path, WHOLE_DI SK, devlink, dev, -1);
devi nfo_vol une_add (d, node, m;

devi nf o_st or age_f r ee_ni nor (m,

strlen (devlink) + sizeof ("pNN') + 1);

doslink = (char *)calloc (1,
= strlen (devlink) + sizeof (":NNN') + 1);

doslink = (char *)calloc (1,
if (doslink != NULL) {
for (i =1; i < 16; i++) {
t

snprintf(dospath, sizeof (dospat h) "po", i);

sprintf(doslink, "%p%l", devlink, i);
snprintf (dospat h si zeof (dospat h) WHOLE_DI SK": %d", i);
sprintf(doslink, "%:9%", devlink, i);

m = devi nf o_storage_new_m nor (m nor_path, dosl i
devi nfo_vol ume_add (d, node, m;

devi nfo_st orage_free_m nor (nj,

dospat h,

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nfo_storage. c

715
716
717

718 }
__unchanged_portion_omtted_

797 |*

798
799
800

* Storage minor nodes are potential

}
free (doslink);

"vol ume" obj ects.

12

* This function also conpletes building the parent object (main storage device)

*/

801 static void

802 devi nfo_storage_m nors(Hal Device *parent, di
803 {

804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

826
827
828

830

832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855

_node_t node, gchar *devfs_path,

di _devl i nk_handl e_t devlink_hdl;
gbool ean is_cdrom
const char *whol e_di sk;

int

maj or;

di _mi nor_t minor;

dev_t
char
char
char
int
char
char
char
int
int
char
bool ean

Queue

dev;

*m nor _path = NULL;
*mai ndev_path = NULL;
*devpat h, *devli nk;
dosl i nk_l en;
*dosl i nk;

dospat h[64]

*slice;

pat hl en;

13

*raw,

_t maindev_i s_dO;

Tx

Hal Devi ce *vol une;
struct devinf o_storage_m' nor *m
struct devinfo_storage_m nor *mai ndev = NULL;

/* for cdronms whole disk is always s2 */

is_cdrom = hal
whol e_di sk =

maj or

_device_has_capability (parent, "storage.cdront);
: WHOLE_DI SK;

is_cdrom? "s2"

= di _driver_mgj or (node);

/* the "whol e di sk" pO/s2/d0 node nust come first in the hotplug queu

* so we put other mnor nodes on the |ocal

queue and nove to the

* hot pl ug queue up in the end
*
/

if ((nmy

}
if ((devlink_hdl = di

m nor =

while ((minor = di

= g_queue_new()) == NULL) {
goto err;

_devlink_init(NULL, 0)) == NULL) {
g_queue_free (mm);

goto err;
DI _M NOR_NI'L;
_mnor_next(node, mnor)) !'= DI_MNORNL) {

dev = di _m nor_devt (m nor);
if ((major !'= major(dev)) | |

(di _m nor_type(mnor) = DDM M NOR) ||

(di _m nor_spectype(mnor) != S IFBLK) ||

s

)
((m nor_path = di _devfs_minor_path(mnor)) == NULL)) {

cont i nue;

}

if ((devlink = get_devlink(devlink_hdl,
di _devfs_path_free (mnor_path);
conti nue;

NULL, minor_path)) ==

gbo

e

NU

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nfo_storage. c 13

857
858
859
860
861
862

164
165
166
167
168
169
170

864
865
866
867
868
869

871
872
873
874
875
876
877
878
879
880
881
882
883

885
886
887

889
890
891
892
893
894
895

897
898
899
900
901
902
903
904
905
906
907
908

910
911
912
220
913

b
di

slice = devinfo_vol ume_get _slice_nanme (devlink);
if (strlen (slice) < 2)

free (devlink);

di _devfs_path_free (mnor_path);

conti nue;

}

/* ignore pl..N - we'll use pO:N instead *l
if ((strlen (slice) > 1) & & (slice[0] == "p’) && isdigit(slice[l
((atol (&slice[1])) > 0)) {
free (devlink);
di _devfs_path_free (mnor_path);

conti nue;
}
m = devi nf o_storage_new_m nor (m nor _path, slice, devlink, dev, -
if (m== NULL)
free (devlink);
di _devfs_path_free (m nor_path);
conti nue;
}

/* main device is elther 32/ pO or d0, the latter taking preceden
if ((strcnp (slice, "d0") == 0)
(((strcrrp (slice, whole dlsk) = 0) && (nmmindev == NULL))))
f (maindev_path != NULL) {
di _devfs_path_free (mai ndev_path);

nmai ndev_path = mi nor_path;

mai ndev = m

g_queue_push_head (nqg, naindev);
} else {

di _devfs_path_free (mnor_path);

g_queue_push_tail (ng, m;

free (devlink);

_devlink_fini (&devlink_hdl);

if (maindev == NULL)

}

{
/* shouldn't typically happen */
while (!g_queue_is_enpty (mg)) {
devi nfo_storage_free_m nor (g_queue_pop_head (nq));

goto err;

/* first enqueue main storage device */
if (!rescan) {

}

hal _devi ce_property_set _int (parent, "block.mjor", major);

hal _devi ce_property_set_int (parent, "block.m nor", m nor(mainde
hal _devi ce_property_set_string (parent, "block.device", maindev-
raw = dsk_to_rdsk (maindev->devlink);

hal _devi ce_property_set_string (parent "bl ock. sol aris. raw_devic
free (raw;

hal _devi ce_property_set_bool (parent, "block.is_volume", FALSE);
hal _devi ce_property_set_string (parent, "solaris.devfs_path", ma
devi nf o_add_enqueue (parent, naindev_path, &devinfo_storage_hand

/* add virtual dos volunmes to enable pcfs probing */
if (lis_cdrom {

doslink_l en
doslink_l en
if ((doslink

= strlen (maindev->devlink) + sizeof ("pNN') + 1;
= strlen (naindev->devlink) + sizeof (":NNN') + 1;
= (char *)calloc (1, doslink_len)) != NULL) {

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nfo_storage. c

914 for (i =1; i < 16; i++) {

915 snpri ntf(dospat h, sizeof (dospath),

916 snprintf(doslink, doslink_len, "%p%",
223 snprintf (dospat h, si zeof (dospath),

224 snprintf(doslink, doslink_len, "%:

917 m = devi nf o_st orage_new_m nor (mai ndev_pat h, dosp
918 g_queue_push_tail (rmgy, m;

919 }

920 free (doslink);

921 }

922 1

924 mai ndev_is_d0 = (strcnp (mai ndev->slice, "d0") == 0);

926 /* enqueue all vol unes */

927 while (!'g_queue_is_enpty (ng)) {

928 m = g_queue_pop_head (nm);

930 /* if main device is dO, we'll throw away s2/p0 */

931 if (maindev_is dO&&(strcnp (m>slice, whole_disk)
932 devi nfo_storage_free_mnor (m;

933 conti nue;

934 }

935 /* don’t do pO on cdrom */

936 if (is_cdrom&S& (strcnp (m>slice, "p0") == 0)) {

937 devi nfo_storage_free_mnor (m;

938 conti nue;

939 }

940 if (rescan) {

941 /* in rescan node, don’t reprobe existing volunmes */
942 [* XXX det ect volume renoval ? */

943 vol une = hal _devi ce_store_mat ch_key_! val ue_string (hald_g
944 "sol aris. devfs_path", m>devpath

945 if ((volume == NULL) || I hal _devi ce_has_capabl lity(volum
946 devi nfo_vol une_add (parent, node, ;
947 } else {

948 HAL_I NFQ(("rescan vol une exists %",
949 }

950 } else {

951 devi nfo_vol ume_add (parent, node, m;

952

953 devi nfo_storage_free_minor (m;

954 }

956 if (maindev_path !'= NULL)

957 di _devfs_path_free (mindev_path);

958 }

960 return;

962 err:

963 if (maindev_path !'= NULL) {

964 di _devfs_path_free (maindev_path);

965 }

966 if (!rescan)

967 devi nf o_add_enqueue (parent, devfs_path, &devinfo_storage_handl e
968

969 }

__unchanged_portion_omtted_

1395 static gbool ean
1396 is_dos_path(char *path, int *partnum

1397 {
1398 char *p;
1400 if ((p=strrchr (path, 'p’)) == NULL) {

new usr/src/cnd/ hal / hal d/ sol ari s/ devi nfo_storage. c 15
708 if ((p =strrchr (path, ’:’)) == NULL) {
1401 return (FALSE);

1402 }

1403 return ((*partnum= atoi(p + 1)) != 0);
1404 }

1406 static gbool ean

1407 dos_to_dev(char *path, char **devpath, int *partnum
1408 {

1409 char *p;

1411 if ((p = strrchr (path, 'p’)) == NULL) {
719 if ((p =strrchr (path, ':’)) == NULL) {
1412 return (FALSE);

1413 1

1414 if ((*partnum= atoi(p + 1)) == 0) {
1415 return (FALSE);

1416

1417 p[0] = '\O;

1418 *devpath = strdup(path);

1419 p[0] ="'p’;

727 p[O] =":";

1420 return (*devpath !'= NULL);

1421 }

____unchanged_portion_onitted_

new usr/src/crd/ rnformat/ Makefile

R R R R

1589 Sun May 4 18:28:35 2014
new usr/src/ cnd/ rnformat/ Makefile
4833 Renove vol r mount
4845 rm(u) nount don’t always print nount/unnmount errors
4846 HAL partition nanes don't match real parition names
Revi ewed by: Dan McDonal d <danntd@miti.conp
Revi ewed by: Josef ’'Jeff’ Sipek <jeffpc@ osefsipek.net>

R R R R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License, Version 1.0 only

6 # (the "License"). You nay not use this file except in conpliance
7 # with the License.

8 #

9 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
10 # or http://ww. opensol aris.org/os/licensing.

11 # See the License for the specific |anguage governing perni ssions
12 # and limtations under the License.

13 #

14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/ OPENSOCLARI S. LI CENSE.
16 # |f applicable, add the follow ng below this CDDL HEADER with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy]l [nane of copyright owner]
19 #

20 # CDDL HEADER END

21 #

22 #

23 # Copyright 2005 Sun Mcrosystens, Inc. Al rights reserved.

24 # Use is subject to license terns.

25 #

26 # Copyright 2014 Andrew Stornont.

27 #

28 #endif /* | codereview */

30 PROG= rnf or mat

32 OBIS= rnf_main.o rnf_nmenu.o rnf_msc.o rnf_slice.o
34 include ../ Mkefile.cnd

36 SRCS= $(0OBJS:.o0=.c)

38 LDLIBS += -lsnmedia -lvolngt -ladm -1 efi
26 CERRWARN += - _gcc=-Who-uninitialized

40 LI NTFLAGS += -u
41 CPPFLAGS += -D_FI LE_OFFSET_BI TS=64

43 $(ROOTBIN)/rnformat := FI LEMODE = 04555
45 . KEEP_STATE:

47 all: $(PROG

49 $(PROG: $(0OBIS)

50 $(LINK. ¢) -0 $(PROG) $(OBJS) $(LDLIBS)
51 $(POST_PROCESS)

53 install: all $(ROOTPROG)

55 cl ean:

new usr/src/cnd/ rnformat/ Makefile

$(RM $(0BIS)

lint: Iint_SRCS
$(POFILE) : $(SRCS)
$(RV) $

$(COVPI LE. cpp) $(SRCS) | $(XGETTEXT) $(XGETFLAGS) -
$(SED) -e '/~donmin/d nessages.po > $@
$(RM nessages. po

sb: $(SRCS)

i ncl ude

$(COWPI LE. ¢) -xsbfast $(SRCS)
../ Makefile.targ

new usr/src/cnd/ rnformat/rnf_nmenu. c 1 new usr/src/cnd/ rnformat/rnf_menu. c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 56 extern |nt32 t qUICk forn«at’
30055 Sun May 4 18:28:36 2014 57 extern int32_t |ong_fornat;
new usr/src/crmd/ rnformat/rnf_nenu. c 58 extern int32_t force_fornmat;
4833 Renove vol r nmount 59 extern int32_t rw_protect_enabl e;
4845 rm(u) nount don’t always print nount/unnmount errors 60 extern int32_t rw_protect_disable;
4846 HAL partition nanes don't match real parition names 61 extern int32_t wp_enabl e_passwd;
Revi ewed by: Dan McDonal d <danncd@mmiti. come 62 extern int32_t wp_di sabl e_passwd;
Revi ewed by: Josef ’'Jeff’ Sipek <jeffpc@ osefsipek.nnet> 63 extern int32_t wp_enabl e;
IR RS S SRS RS R R SRR SRR R R R SRR EEE SRS EEEEEEEEEEEREEERERSE] 64 extern |nt32 t Vm dl Sable
1/* 65 extern int32_t verify wite;
2 * CDDL HEADER START 66 extern char *dev_nane;
3 * 67 extern char *|abel ;
4 * The contents of this file are subject to the terms of the 68 extern int total _devi ces_found;
5 * Common Devel opnent and Distribution License (the "License"). 69 extern int renovabl e_found;
6 * You may not use this file except in conpliance with the License. 70 char *global _intr_mnsg;
7 * 71 srmedlumpropt med_i nf o;
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 72 int vol _running;
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governing perm ssions 74 extern void check_invalid_conbinations();
11 * and limtations under the License. 75 extern void check_invalid_conbi nations_agai n(int32_t);
12 * 76 extern void process_options();
13 * When distributing Covered Code, include this CDDL HEADER in each 77 extern void get_passwd(struct smwp_state *wp, int32_t confirm;
14 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 78 extern int32_t valid_slice file(snedia_handle_t, int32_t, char *,
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the 79 struct extvtoc *);
16 * fields enclosed by brackets "[]" replaced with your own identifying 80 extern void trap_SI G NT();
17 * information: Portions Copyright [yyyy] [name of copyright owner] 81 extern void rel ease_SI G NT();
18 * 82 extern int32_t verify(snedia_handle_t handle, int32_t fd,
19 * CDDL HEADER END 83 di skaddr _t start_sector, uint32_t nblocks,
20 * 84 char *buf, int32_t flag, int32_t blocksize, int32_t no_raw.rw;
21 = 85 extern void ny_perror(char *err_string);
20 */ 86 extern void wite_default_| abel (snmedia_handle_t, int32_t fd);
21 /* 87 extern int find_device(int defer, char *tnpstr);
22 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
23 * Use is subject to |license terns. 89 void overwite_netadata(int32_t fd, snedia_handle_t handle);
24 *
25 * Copyright 2014 Andrew Stornont. 91 int32_t wite_sunos_|label (int32_t fd, int32_t nedia_type);
26 #endif /* | codereview */
27 x| 93 int32_t ny_open(char *device_nanme, int32_t flags);
29 /* 24 int32_t check_and_unnount _vol d(char *devi ce_nane, int32_t flag);
30 * rnf_nenu.c : 95 int32_t check_and_unnount_scsi (char *device_nane, int32_t flag);
31 = Command |ine options to rnfornat are processed in this file.
32 */ 96 int32_t check_and_unnount _floppy(int32_t fd, int32_t flag);
97 int32_t get_confirmation(void);
34 #include "rnfornmat. h"
35 #include <sys/snedia. h>
36 #include <priv_utils.h> 100 static void process_F_fl ag(snmedi a_handl e_t handle, int32_t fd);
101 static void process_w fl ag(snedi a_handl e_t handl e);
38 extern int32_t D flag; 102 static void process_WT | ag(snedi a_handl e_t handl e);
39 extern int32_t e_flag; 103 static void process_R fl ag(smedi a_handl e_t handl e);
40 extern int32_t H flag; 104 void process_p_fl ag(snedi a_handl e_t handle, int32_t fd);
41 extern int32_t U flag; 105 static void process_c_fl ag(smedi a_handl e_t handl e);
42 extern int32_t V_flag; 106 static void process_V flag(smedi a_handle_t handle, int32_t fd);
43 extern int32_t b_flag; 107 static void process_s_f | ag(smedi a_handl e_t, int32_t fd);
44 extern int32_t w_ flag; 108 static void process_e_fl ag(snedi a_handl e_t handl e);
45 extern int32_t Wfl ag; 109 static void process_H flag(snedi a_handle_t handle, int32_t fd);
46 extern int32_t s_flag; 110 static void process_D flag(smedia_handle_t handle, int32_t fd);
47 extern int32_t c_flag; 111 static void process_b_flag(int32_t fd);
48 extern int32_t F_flag; 112 static void process_| _flag(void);
49 extern int32_t R flag;
50 extern int32_t p_flag; 114 void
51 extern int32_t | _flag; 115 ?r ocess_options()
116
53 extern char *nynane, 117 int32_t fd;
54 extern char *slice_file; 118 snedi a_ handl e _t handl e;

55 extern diskaddr_t repai r_bI k_no; 50 int32_t mscsi_unount = 0;

new usr/src/crmd/ rnformat/rnf_nenu. c 3 new usr/src/cnd/ rnformat/rnf_nenu. c
119 int32_t mflp_unmount = O; 179 }
120 int32_t v_device_unount = 0; 180 }
121 int32_t unount_required = O; 117 }
122 int32_t renovabl e;
123 int32_t umount failed = 0; 182 if (umount _required & U flag && unount_failed) {
124 struct dk_minfo media; 183 if (v_device_unmount [| mscsi_unmount || mflp_umount) {
184 (voi d) fprlntf(stderr
126 check_i nval i d_conbi nations(); 185 gettext("Coul d not unnmount device.\n"));
186 (voi d) cl ose(fd);
128 if (I_flag & !dev_nane) { 187 exit(1);
129 process_| _flag(); 188 }
130 return; 189 }
131 }
191 if (umount_required & 'U flag) {
133 if (Uflag) { 192 if (v_device_unmount || m.scsi_unount || mflp_unmount) {
134 |f (I(Fflag|| Hflag || D flag)) { 193 (void) fprintf(stderr, gettext("Device nounted.\n"));
135 F flag = 1; 194 (void) fprintf(stderr,
136 long_format = 1; 195 gettext(Request ed operation can not be \
137 } 196 performed on a nounted device.\n"));
138 } 197 (voi d) cl ose(f d);
198 exit(1);
140 if (Fflag || wflag || Wflag || Rflag || Dflag || Hflag || 199 }
141 V flag || c_flag || b_flag || s_flag || e_flag) { 200
142 unount _required = 1; 201 /* register the fd with the libsnedia */
143 } 202 handl e = snedi a_get _handl e(fd);
203 if (handle == NULL) {
145 fd = ny_open(dev_nanme, O RDONLY| O NDELAY); 204 (void) fpri ntf(st derr,
146 if (fd <0) { 205 gettext("Failed to get libsnmedia handle.\n"));
147 PERROR(" Coul d not open device"); 206 (v0| d) close(fd);
148 (void) close(fd); 207 exit(1);
149 exit(1); 208 }
150 1
210 if (smedia_get_nedium property(handle, &ed_info) < 0) {
152 if (ioctl(fd, DKIOCREMOVABLE, & enpbvable) < 0) { 211 (void) fprintf(stderr,
153 PERROR(" DKI OCREMOVABLE i octl failed"); 212 gettext (" Get medium property failed \n"));
154 (void) close(fd); 213 (voi d) snedi a_rel ease_handl e(handl e) ;
155 exit(1); 214 (void) close(fd);
156 } 215 exit(1);
157 if (!renmovable) { 216 }
158 (void) fprintf(stderr,
159 gettext("Not a renovabl e nedia device\n")); 218 DPRI NTF1("nmedi a type %\ n", ned_i nfo.sm nedia_type);
160 (void) close(fd); 219 DPRI NTF1("rmedi a bl ock size %\n", ned_info.smblocksize);
161 exit(1); 220 DPRI NTF1("medi a capacity %\n", (uint32_t)ned_info.smcapacity);
162 } 221 DPRI NTF3("nmedi a cyl %l head % sect %d\n",
222 med_i nfo.sm pcyl, med_info.smnhead, nmed_info.smnsect);
164 if (ioctl(fd, DKIOCGVEDI Al NFO, &mredia) < 0) { 223 check_i nval i d_conbi nati ons_agai n(med_i nf o. sm nedi a_t ype);
165 (void) fprintf(stderr,
166 gettext("No nmedia in specified device\n")); 225 I*
167 (void) close(fd); 226 * Special handling for pcntia, sonetines open the file in
168 exit(1); 227 * read-wite node.
169 } 228 */
171 /* Check if volunme manager has nounted this */ 230 if (med_info.smnedia_type == SM PCMCI A MEM {
172 if (umount_required) { 231 if (F_flag || Hflag || Dflag J[| (V_flag & verify wite)) {
173 v_devi ce_unpunt = check_and_unnount _scsi (dev_nanme, U flag); 232 (void) close(fd);
105 v_devi ce_unount = check_and_unnount _vol d(dev_nane, U flag); 233 DPRI NTF(Reopeni ng device\n");
174 if (v_device_unmount = 1) { 234 fd = ny_open(dev_nane, O RDV\R|O NDELAY) ;
175 m fl p_unount = check_and_unnount _floppy(fd, Uflag); 235 if (fd < 0)
107 m scsi_unount = check_and_unnount _scsi (dev_nane, 236 PERROR(" Coul d not open device");
108 U flag); 237 (voi d) snedia_rel ease_handl e(handl e);
109 if (mscsi_umunt !'= 1) { 238 (void) close(fd);
110 m fl p_umount = check_and_unnount _f | oppy(fd, 239 exit(l);
111 U flag); 240 }
176 if (mflp_umunt '= 1) { 241 }
177 unmount _failed = 1; 242 }
178 }

new usr/src/cnd/ rnformat/rnf_nmenu. c

244 if (med_info. smmadlatype == SM_PCMCI A_ATA) {
245 if (V_f ag||cf|ag){

246 (void) fprintf(stderr,

247 gettext ("Option not supported on PC ATA cards\n"));
248 (voi d) snedi a_rel ease_handl e(handl e);
249 (void) close(fd);

250 exit(1);

251 }

252 if (F_flag) {

253 /* sanme text as used by the format command */
254 (voi d) fprintf(stderr,

255 get t ext (" Cannot format this drive. Please use your \
256 Manufacturer supplied formatting utility.\n"

257 (void) smedia_rel ease_| hand! e(handl e);
258 (void) cl ose(fd);

259 exit(1);

260 }

261 }

263 if (F_flag)

264 process_F_flag(handle, fd);

265 if (w_flag)

266 process_w_fl ag(handl e);

267 if (Wflag)

268 process_Wfl ag(handl e);

269 if (Rflag)

270 process_R fl ag(handl e);

271 if (p_flag)

272 process_p_flag(handle, fd);

273 if (D_flag)

274 process_D flag(handl e, fd);

275 if (H.flag)

276 process_H flag(handle, fd);

277 if (V_flag)

278 process_V_flag(handl e, fd);

279 if (c_flag)

280 process_c_flag(handl e);

281 if (b_flag)

282 process_b_flag(fd);

283 if (s_flag)

284 process_s_flag(handl e, fd);

285 if (e_flag)

286 process_e_fl ag(handl e);

287 if (I_flag) {

288 process_| _flag();

289 }

291 (void) snedia_rel ease_handl e(handl e);

292 (void) close(fd);

293 }

295 /*

296 * This routine handles the F_flag.

297 * This options should not be used for floppy. However,
298 * if this option is used for floppy, the option will

299 * be forced to SM FORVAT_HD and snedi a_format is called.
300 * Note that snedia_fornmat is a blocked node format and it
301 * returns only after the conplete fornatting is over.
302 */

304 static void

305 ?r ocess_F_flag(snedia_handl e_t handle, int32_t fd)

306

307 uint32_t format_flag = 0;

244 uint32_t format_flag;

308 int32_t old_per = 0;

new usr/src/cnd/ rnformat/rnf_nmenu. c

309 int32_t new_per, ret_val;

311 if (force_format) {

312 (void) fprintf(stderr,

313 gettext("Formatting disk.\n"));
314 } else {

315 (void) fprintf(stderr,

316 gettext("Formatting will erase all the data on disk.\n"));
317 if ('get_confirmation())

318 return;

319 1

321 if (quick_format

322 format _fl ag

= SM_FORMAT_QUI CK;

323 else if (long_format)

324 format _flag = SM_FORVAT_LONG

325 else if (force_format)

326 format _flag = SM FORVAT_FORCE;

328 if (med_info.smnedia_type == SM FLOPPY)

329 format _flag = SM_FORVAT_HD;

331 if ((med_info.smnmedia_type | = SM FLOPPY) &&

332 (nmed_i nfo.sm nedi a_type != SM PCMCI A_MEM) &&

333 (nmed_i nfo. sm nedi a _type ! = SM_SCSI _FLOPPY))

334 global _intr_nsg = "Interrupting format nmay render the \

335 medi um usel ess”;

336 } else {

337 global _intr_msg = "";

338 }

339 trap_SI A NT();

341 if (smedia_fornmat(handle, format_flag, SM FORVAT_I MVEDI ATE) != 0) {

342 if (errno == EINVAL) {

343 (void) fprintf(stderr, gettext("Format failed.\n"));
344 (void) fopri ntf(stderr gettext (" The nedi um nay not \

345 be conpatible for format operation.\n"));

346 (void) fpri ntf(stderr, gettext("read/wite surface \
347 scan may be used to get the effect of formatting.\n"));

348 } else {

349 PERROR("Format failed");

350

351 (voi d) snedi a_rel ease_handl e(handl e) ;

352 (void) close(fd);

353 exit(1);

354 }

356 /* CONSTCOND */

357 while (1) {

358 ret _val = snedi a_check_format_status(handle);

359 if (ret_val == -1) {

360 if (errno':ENOTS P) {

361 PERROR("Format failed");

362 (void) snedia_rel ease_| handl e(handl e);
363 (void) close(fd);

364 exit(1);

365 } else

366 /* Background formatting is not supported */
367 br eak;

368 }

369

370 if (ret_val == 100) {

371 (voi d) p ntf("\n");

372 (void) fflush(st dout)

373 break;

374 }

new usr/src/cnd/ rnformat/rnf_nmenu. c

375 new _per = (ret_val * 80)/100;

376 whil e (new per >= old per) {

377 (void) printf(".");

378 (void) ffl ush(st dout)

379 ol d_per ++;

380 }

381 (void) sleep(6);

382 }

384 if ((med_info.smnmedia_type == SM FLOPPY) ||

385 (med_i nfo.sm nmedi a_type == SM PCMCI A MEM ||

386 (med_i nfo.sm nedi a_type == SM_SCSI FLODPY))

387 (void) wite_sunos_| abel (fd, med_info.sm nedia_type);
388 } else {

390 /*

391 * |lonmega drives don’t destroy the data in quick format.
392 * a best effort wite to first 1024 sectors.
393 */

395 if (quick_format)

396 overwite_netadata(fd, handle);

398 (void) wite_default_| abel (handle, fd);

399 }

401 rel ease_SI G NT();

402 }

404 | *

405 * List renovabl e devices.

406 */

407 static void

408 process_| _flag()

409 {

410 int retry;

411 int renovabl e;

412 int total _devices_found_| ast_ting;

413 int defer = 0;

414 char *tnpstr = NULL;

351 char *tnpstr;

416 #define MAX_RETRIES_FOR _SCANNI NG 3

418 vol _running = vol ngt _runni ng();

419 if (vol _running)

420 defer = 1,

421 (void) pri ntf(gettext(Looki ng for devices...\n"));

422 total _devices_found_last_time = O;

424 /*

425 * Strip out any |eading pat h. For exanple, /dev/rdsk/c3t0d0s2
426 *will result in tnpstr = c3t0d0s2. dev_nane is given as input
427 * argunent .

428 */

429 if (dev_nane) {

430 if ((tnpstr = strrchr(dev_nane, '/')) != NULL) {
431 tnpstr += sizeof (char)

432 } else {

433 tnpstr = dev_nane;

434 }

435 }

437 for (retry = 0; retry < MAX_RETRI ES_FOR _SCANNING retry++) {
438 removabl e = find_device(defer, tnpstr);

439 if (removable == -1)

new usr/src/cnd/ rnformat/rnf_nmenu.c

440

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

460
461
462
463
464

465 }
__unchanged_portion_onitted_

br eak;
/*
* W'l|l do a small sleep and retry the command if vol ume
* manager is running and no renovabl e devices are found.
* This is because the device nay be busy.

if (defer || (vol _running && (rermvable == 0))) {
if ((total _devices_found == 0) ||
(total _devices found !=

total _devi ces found_last_tine)) {
total _devices_found_Tast_tinme =
total _devi ces_f ound;

(void) sleep(2);

} else {
/* Do the printing this time */
defer = 0;
renovabl e_found = 0;

}

} else
break;

}
if (renmovabl e_found == 0)
(void) printf(gettext("No removables found.\n"));

new usr/src/crmd/ rnformat/rnf_msc.c 1

R R R R

43460 Sun May 4 18:28:36 2014
new usr/src/cnmd/ rnformat/rnf_msc.c
4833 Renove vol r mount
4845 rm(u) nount don’t always print nount/unnmount errors
4846 HAL partition nanes don't match real parition names
Revi ewed by: Dan McDonal d <danntd@miti.conp
Revi ewed by: Josef ’'Jeff’ Sipek <jeffpc@ osefsipek.net>

R R R R R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governing perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 =
19 * CDDL HEADER END
20 *
21 *
20 */
22 | *

22 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
23 * Use is subject to license terns.

24 *

25 * Copyright 2014 Andrew Stornont.

26 #endif /* | codereview */

27 x|

29 [*

30 * rnf_misc.c :

31 * M scel | eneous routines for rnfornat.
32 =/

34 #include <sys/types. h>
35 #include <stdio.h>

36 #include <sys/mttab. h>
37 #include <vol ngt. h>

38 #incl ude <sys/dkio. h>
39 #include <sys/fdio.h>
40 #include <sys/vtoc. h>
41 #include <sys/term os. h>
42 #include <sys/nount.h>
43 #incl ude <ctype. h>

44 #incl ude <signal . h>

45 #incl ude <sys/wait.h>
46 #include <dirent.h>

47 #include <priv_utils.h>
48 #include <stdarg. h>

49 #include "rnformat. h"

51 /*
52 * Definitions.
53 */

54 #define SENSE_KEY(rqbuf) (rgbuf[2] & Oxf) /* scsi error category */

new usr/src/cnmd/ rnformat/rnf_msc.c

55
56

#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

i nt
char

static uint_t
static struct

static char ucdb[16] ;
uchar _t uscsi _status, rqstatus, rqresid;
int total _devices_found = 0;
int renovabl e_f ound = O;
extern char *gl obal _intr_msg;
extern int vol _runni ng;
extern char *dev_nane;
extern int32_t mflag;
/*
* ON-private functions fromlibvol ngt
*
/
int _dev_nount ed(char *path);
/*
* Function prototypes.
*
/
static int ny_unount (char *nount p) ;
static int ny_vol rnmount (char *real _nane);
static int vol _nane_t o_dev_node(char *vname, char *found);
static int vol _| ookup(char *supplied, char *found);
static device_t *get _devi ce(char *user_supplied, char *node);
static char *get _physi cal _name(char *path);
static int | ookup_devi ce(char *supplied, char *found);
static void fini_device(device_t *dev);
static int i s_cd(char *node);
voi d *my_zal | oc(size_t size);
voi d err_msg(char *fnt, ...);
int inquiry(int fd, uchar_t *inq);
struct uscsi_cnd *get _uscsi _cnd(void);
i nt uscsi (int fd, struct uscsi_cnd *scnd);
int get _node_page(int fd, int page_no, int pc, int buf_len,
uchar_t *buffer);
int node_sense(int fd, uchar_t pc, int dbd, int page_len,
uchar_t *buffer);
ui nt 16_t read_scsi 16(voi d *addr);
int check_devi ce(device_t *dev, int cond);
static void get _medi a_i nfo(device_t *t_dev, char *sdev,

extern void

voi d

ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ASC(r gbuf)
ASCQ(r gqbuf)

DEFAULT_SCSI _TI MEQUT
I NQUI RY_CMVD

RQBUFLEN

CD_RW

VRI TE_10_CMVD

READ_T NFO_CMVD
SYNC_CACHE_CMVD
CLOSE_TRACK_CVD
MODE_SENSE_10_CVD
DEVFS_PREFT X

uscsi _error;

r gbuf [RQBUFLEN] ;
total _retries;
uscsi _cnmd uscnd;

(rqbuf[12]) /* additional sense code */
(rgbuf[13]) /* ASC qualifier */

60

0x12

32

1 /* CDRWCD-R */
Ox2A

0x51

0x35

0x5B

Ox5A

"/ devi ces"

/* used for debugging failed uscsi */

char *pnane, char *sn);

ny_perror(char *err_string)
{

int error_no;

process_p_flag(snmedi a_handl e_t handle, int32_t fd);

new usr/src/cnmd/ rnformat/rnf_msc.c

120 if (errno == 0)
121 return;
123 error_no = errno;
124 (void) fprintf(stderr, "9%", err strlng)
125 (voi d) fprintf(stderr, gettext("))
126 errno = error_no;
127 perror("");
128 }
__unchanged_portion_onitted_
161 int32_t
162 check_and_unmount _vol d(char *devi ce_nane, int32_t flag)
163 {
164 char *real _naneg;
165 char *nm
166 char tnp_pat h_nang[PATH_MAX] ;
167 struct stat stat_ u
168 int32_t ret_val = 0,
169 struct mttab *mtp;
170 FI LE *fp;
171 int nl;
173 DPRI NTF1(" Devi ce name %\n", device_nane);
175 if (volngt_running() == 0) {
176 DPRI NTF(" Vol d not running\n");
177 return (0);
178 }
179 if ((nm= vol ngt _symane(devi ce_nane)) == NULL) {
180 DPRI NTF(" pat h not managed\n");
181 real _nanme = nedi a_fi ndnane(devi ce_nane);
182 } else {
183 DPRI NTF1("path managed as %\n", nm;
184 real _nanme = nedi a_fi ndname(nm;
185 DPRI NTF1("real name %\n", real _nane);
186 }
188 if (real_name == NULL)
189 return (-1);
191 /*
192 * To find out whether the device has been nounted by
193 * vol une nanager. ..
194 *
195 * Convert the real nane to a block device address.
196 * Do a partial match with the mttab entries.
197 * Make sure the match is in the beginning to avoid if
198 * anybody puts a label simliar to volume manager path nanes.
199 * Then use "vol rrmount -e <dev_name>" if -Uflag is set.
200 */
202 nl = strlen("/vol/dev/");
204 if (strncnp(real _name, "/vol/dev/", nl) != 0)
205 return (O)
206 if (real_name[nl] =="r") {
207 (void) snprintf(tmp_path_name, PATH MAX, "9%%", "/vol/dev/",
208 &real _nane[nl]);
209 } else {
210 (void) snprintf(tnp_path_nane, PATH MAX, "%", real _nane);
211
212 DPRI NTF1("% \n", tnp_path_nane);
213 ret_val = stat(tnp_path_name, &stat_buf);
214 if (ret_val < 0)

215 PERROR(" Coul d not stat");

new usr/src/cnmd/ rnformat/rnf_msc.c

216 return (-1);

217 1

219 fp = fopen("/etc/mttab", "r");

221 if (fp == NULL)

222 PERROR(" Coul d not open /etc/mttab");

223 return (-1);

224 }

226 mtp = (struct mttab *)mall oc(sizeof (struct mttab));
227 if (mtp == NULL) {

228 PERROR("mal | oc failed");

229 (void) fclose(fp);

230 return (-1);

231 }

232 errno = 0;

233 while (getmmtent (fp, mtp) == 0) {

234 if (errno = 0)

235 PERROR("Error with mttab");

236 (void) fclose(fp);

237 return (-1);

238 }

239 /* Is it a probable entry? */

240 DPRI NTF1(" % \n", mmtp->mt_special);

241 if (strstr(mtp->mt_special, tnp_path_nane) !=
242 mmt p- >mt _speci al)

243 /* Skip to next entry */

244 conti nue;

245 } else {

246 DPRI NTF1(" Found!! %s\n", mtp->mt_special);
247 ret_val = 1;

248 br eak;

249 }

250 }

252 if (ret_val == 1) {

253 if (fI ag) {

254 I f (my_vol rmmount (real _nanme) < 0) {
255 ret_val = -1;

256 }

257 } else {

258 ret_val = -1;

259 }

260

261 (void) fclose(fp);

262 free(mtp);

263 return (ret_val);

264 }

227 |+

228 * This routine checks if a device has nounted partitions. The
229 * device name is assuned to be /dev/rdsk/cNtNdNsN. So, this can
230 * be used for SCSI and PCMClI A cards.

231 * Returns

232 * 0 : if not nounted

233 * 1: if successfully unnmounted

234 * -1 : Any error or umount failed

235 */

237 int32_t

238 check_and_unmount _scsi (char *device_nane, int32_t flag)
239 {

241 struct mttab *mtrefp;
242 struct mttab *mtp;

new usr/src/crmd/ rnformat/rnf_msc.c 5 new usr/src/cnd/rnformat/rnf_msc.c
243 FI LE *fp; 309 return (-1);
244 char bl ock_dev_nane[PATH _MAX] ; 310 }
245 char tnp_ name[PATH_MAX] ; 311 unnmounted = 1;
246 int32_t i, j; 312 } else {
247 int32_t unnmount ed = 0; 313 (void) fclose(fp);
314 return (-1);
249 /* 315 }
250 * |f the device nane is not a character special, anyway we 316 /* Skip to next entry */
251 * can not progress further 317 conti nue;
252 */ 318 }
254 if (strncnp(device_name, "/dev/rdsk/c", strlen("/dev/rdsk/c")) != 0) 320 /* Try for :1 -> :24 for pcfs */
255 return (0);
322 for (j = 1; j < 24; j++)
257 (void) snprintf(block_dev_nanme, PATH MAX, "/dev/%", 323 (v0| d) snprintf(block_dev_nane, PATH MAX
258 &devi ce_nane[strlen("7dev/ r")]) 324 "Us%l: %", tnp_name, i, |);
259 fp = fopen("/etc/mttab”, "r");
326 if (strcmp(mtp->mt_special,
261 if (fp == NULL) { 327 bl ock_dev_nane) == 0)
262 PERROR(" Coul d not open /etc/ mttab"); 328 if (fTag) {
263 return (-1); 329 i f (rry unount (Mt p- >mMt _nount p)
264 } 330 0) {
331 (void) fclose(fp);
266 mtrefp = (struct mttab *)mall oc(sizeof (struct mttab)); 332 return (-1);
267 if (rmtrefp == NULL) { 333 }
268 PERROR("mal | oc failed"); 334 unnmounted =
269 (void) fclose(fp); 335 } else {
270 return (-1); 336 (void) fclose(fp);
271 } 337 return (-1);
338 }
273 mtp = (struct mttab *)mall oc(sizeof (struct mttab)); 339 /* Skip to next entry */
274 if (mtp == NULL) { 340 continue;
275 PERROR("mal | oc failed"); 341 }
276 (void) fclose(fp); 342 (void) snprintf(block_dev_nanme, PATH_MAX,
277 free(mtrefp); 343 "%%l: %", tnp_name, i, 'b’ +j);
278 return (-1);
279 } 345 if (strcnp(mtp->mt_special,
346 bl ock_dev_nane) == 0) {
281 /* Try all the partitions */ 347 if (fTag) {
348 i f (rry unount (mt p- >mt _nount p)
283 (void) snprintf(tnmp_nane, PATH MAX, "/dev/%", 349 0) {
284 &devi ce_nang[strl en("/dev/ r")]) 350 (void) fclose(fp);
351 return (-1);
286 tnp_nane[strlen("/dev/dsk/c0t0d0s")] = '\0"; 352 }
353 unnmounted = 1;
288 errno = 0; 354 } else {
289 while (getmmtent (fp, mtp) == 0) { 355 (void) fcl ose(fp)
290 if (errno !=0) { 356 return (-
291 PERROR("Error with mttab"); 357 }
292 (void) fclose(fp); 358 /* Skip to next entry */
293 return (-1); 359 conti nue;
294 } 360 }
295 /* Is it a probable entry? */ 361 }
296 if (strncnp(mtp->mt_special, tnp_name, strlen(tnp_nane))) { 362 }
297 /* Skip to next entry */
298 conti nue; 364 }
299 }
300 for (i = 0; i < NDKMAP; i++) { 366 i f (unnmount ed)
301 /* Check for ufs style nmount devices */ 367 return (1);
302 (voi d) snprl ntf (bl ock_dev_nane, PATH_MAX, 368 return (0);
303 "U%s%l", tnp_name, i); 369 }
__unchanged_portion_onitted_
305 if (strenp(tp >mt _speci al, bl ock_dev_nanme) == 0) {
306 if (flag) { 1005 static int
307 1 f (my_unmount (Mt p->mt _nountp) < 0) { 1006 ny_vol rmmount (char *real _nane)
308 (void) fclose(fp); 1007 {

new usr/src/cnmd/ rnformat/rnf_msc.c

1008

1010
1011

1013

1015
1016

1018
1019
1020
1021
1022

1024
1025
1026
1027
1028

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

966
967
968
969
970
971
972
973
974
975
976
977

979
980
981

983
984
985
986
987
988
989

}

in
fi
{

int pid, rval;
/* Turn on the privileges. */
(void) __priv_bracket (PRI V_ON);

pid = fork();

/* Turn off the privileges. */
(void) __priv_bracket (PR V_OFF);

/* create a child to unmount the path */
if (pid <0) {

PERROR("fork failed");

exit(0);
}

if (pid==0) {

/* the child */

/* get rid of those nasty err

DPRI NTF1("cal | _unnmount _prog:
"/usr/bin/vol rmount");

nessages */
calling % \n",

/* Turn on the privileges. */

(void) __priv_bracket (PRI V_ON);

if (execl ("/usr/bin/volrmmount",

real _name, NULL) < 0) {

PERROR(" vol rmmount exec failed");
/* Turn off the privileges */
(voi ?) pr| v_bracket (PRI V_OFF) ;
exit

}
} else if (waitpid(pid, &val, 0) == pid) {
if (WFEXI TED(rval
i f (WEXI TSTATUS(rval) == 0) {
DPRI NTF(" vol r mount :
return (1);

Success\n");

}

}
return (-1);

d devi ce(int defer, char *tnpstr)

DR *dir;

struct dirent *dirent;

char sdev[PATH_MAX], dev[PATH MAX],
device_t *t dev

int renovable = 0;

int device_type = 0;

int hotpluggable = 0;

struct dk_m nfo nediai nfo;

static int found = 0;

*pname;

dir = opendlr(/ dev/rdsk");
if (dir == NULL)
return(1);

tot al _devi ces fou d = 0;
while ((dirent = readdir(dir)) != NULL) {
if (dirent->d_nane[0] == ".") {
conti nue;

}
(void) snprintf(sdev,
di rent - >d_nane);

PATH _MAX, "/dev/rdsk/ %",

"/ usr/bin/vol rmount"

-e

new usr/src/cmd/ rnformat/rnf_msc.c

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

1013
1014
1098
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047

1049
1050
1051
1052
1053
1054

#i f def sparc

#el se /* x86 */

#endi f

if (!strstr(sdev, "s2")) {
conti nue;

if (vol _running) {
if (!(strstr(sdev, "s2") || strstr(sdev, "p0"))) {

conti nue;

} else {

if (!strstr(sdev, "p0")) {
conti nue;

}

}

if (!l ookup_device(sdev, dev)) {
conti nue;

}

1f ((t_dev = get_device(NULL, dev)) == NULL) {
conti nue;

}

total _devi ces_found++;

if ((!defer) && !found) {
char *sn, *tnpbuf = NULL;
char *sn, *tnpbuf;
/*

* dev_nane is an optional command |ine input.
*

if (dev_name) {

if (strstr(dirent->d_name, tnpstr)) {
found = 1;
} else if (!vol _running) {
conti nue;
}
}
/*
* vol ngt _symmane() returns NULL if the device
* is not nanaged by vol ngt.
*
/
sn = vol ngt _symane(sdev);
if (vol_running && (sn != NULL)) {
if (strstr(sn, dev) == NULL) {
tmpbuf = (char *)ny_zal | oc(PATH_MAX) ;
(void) strcpy(tnpbuf,
"/vol /dev/ali ases/ "),
(void) strcat(tnpbuf, sn);
free(sn);
sn = tnpbuf;
}
if (dev_name && !found) {
if (!strstr(tnmpbuf, tnpstr)) {
conti nue;
} else {
found = 1;
}
}
}
/*
* Get device type information for CD/DVD devices.
*/

if (is_ cd(dev))
if (check_device(t_dev,
CHECK_DEVI CE_I'S_ DVD) WRI TABLE)) {

new usr/src/crmd/ rnformat/rnf_msc.c 9

1055 devi ce_type = DK_DVDR
1056 } else if (check_device(t_dev,
1057 CHECK_DEVI CE_|I S_DVD_READABLE)) {

1058 devi ce_type = DK_DVDROM

1059 } else if (check_device(t_dev,

1060 CHECK_DEVI CE_I S_CD_WRI TABLE)) {

1061 devi ce_type = DK _CDR

1062 } else {

1063 devi ce_type = DK_CDROM

1064

1065 } else {

1066 device_type = ioctl (t_dev->d_fd,

1067 DKI OCGMVEDI Al NFO, &mredi ai nf o) ;

1068 if (device_type < 0)

1069 devi ce_type = O;

1070 el se

1071 devi ce_type = nedi ai nfo. dki _nedi a_type;
1072 }

1074 if (lioctl(t_dev->d_fd, DKI OCCREMOVABLE, &renovable) &&
1075 lioctl (t_dev->d_fd, DKI OCHOTPLUGGABLE,

1076 &hot pl uggabl e)) {

1077 1f (renmovable || hotpluggable) {

1078 renovabl e_f ound++;

1079 pnane = get_physical _nane(sdev);
1080 if (sn) {

1081 (void) printf(" 9%id.

1082 "Vol ngt Node: 9%\ n",
1083 renovabl e_f ound, sn);
1084 (void) printf(" "
1085 "Logi cal Node: %s\n", sdev);
1086 (void) printf(" "
1087 "Physi cal Node: %\n",
1088 pnane) ;

1089 } else {

1090 (void) printf(" 9%d. "
1091 "Logi cal Node: 9%s\n",
1092 renovabl e_f ound, sdev);
1093 (void) printf(" "
1094 "Physi cal Node: %\n",
1095 pnane) ;

1096 }

1097 (void) printf(" Connected "
1098 "Device: %8.8s % 16. 16s "
1099 "% 4. 4s\n",

1100 &t _dev->d_inq[8],

1101 &t _dev->d_i nq[16],

1102 & _dev->d_inq[32]);

1103 (void) printf(" Device "
1104 "Type: ");

1105 } else

1106 conti nue;

1107 } else

1108 conti nue;

1110 switch (device_type) {

1111 case DK_CDROM

1112 (void) printf("CD Reader\n");

1113 br eak;

1114 case DK_CDR

1115 case DK_CDRW

1116 (void) printf("CD Reader/Witer\n");

1117 br eak;

1118 case DK_DVDROM

1119 (void) printf("DVD Reader\n");
1120 br eak;

new usr/src/crmd/ rnformat/rnf_msc.c

1121 case DK_DVDR:

1122 case DK_DVDRAM

1123 (void) printf("DVD Reader/Witer\n");
1124 br eak;

1125 case DK_FI XED_DI SK:

1126 if (strstr((const char *)

1127 & dev->d_ing[16], "FD') ||
1128 strstr((const char *

1129 & _dev->d_inqg[16], "LS-120"))
1130 (void) printf("Floppy "
1131 "drive\n");

1132 el se

1133 (void) printf("Renmovable\n");
1134 br eak;

1135 case DK_FLOPPY:

1136 (void) printf("Floppy drive\n");
1137 br eak;

1138 case DK_ZIP:

1139 (void) printf("Zip drive\n");
1140 br eak;

1141 case DK _JAZ:

1142 (void) printf("Jaz drive\n");
1143 br eak;

1144 defaul t

1145 (void) printf("<Unknown>\n");
1146 DPRI NTF1("\t %\ n", device_type);
1147 br eak;

1148 }

1149 get _nedi a_info(t_dev, sdev, pnanme, sn);

1150

1151 fini_device(t_dev);

1152 1

1154 (void) closedir(dir);

1155 return (renovabl e_found);

1156 }

__unchanged_portion_onitted_

10

new usr/src/cnd/ rnformat/rnf_slice.c 1 new usr/src/cnmd/ rnformat/rnf_slice.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 56 #defl ne SpC() (|aSI IOken type)
39066 Sun May 4 18:28:36 2014 - -
new usr/src/cnd/ rnformat/rnf_slice.c

4833 Renove vol r mount 59 /*
4845 rm(u) nount don’t always print nount/unnmount errors 60 * This global is used to store the current line # in the
4846 HAL partition nanes don't match real parition nanes 61 * data file. It nust be global because the 1/0O routines
Revi ewed by: Dan McDonal d <danncd@mmiti. come 62 * are allowed to side effect it to keep track of backsl ashed
Revi ewed by: Josef ’'Jeff’ Sipek <jeffpc@ osefsipek.net> 63 * newines.
IR RS S SRS RS R R SRR SRR R R R SRR EEE SRS EEEEEEEEEEEREEERERSE] 64 */
1/*
2 * CDDL HEADER START 66 static int32_t data_lineno; /* current line # in data file */
3 *
4 * The contents of this file are subject to the terms of the 68 #defi ne CHG MODE_UNDEFI NED (-1) /* undefined val ue */
5 * Common Devel opnent and Distribution License (the "License"). 69 #define CHG MODE_SET 0 /* set bits by or’ing */
6 * You may not use this file except in conpliance with the License. 70 #define CHG MODE_CLR 1 /* clr bits by and’ing */
7 * 71 #define CHG MODE_ABS 2 /* set absol ute value */
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governing perm ssions 74 #define TOKEN_SI ZE /* max | ength of a token */
11 * and limtations under the License. 75 typedef char TOKEN] TOKEN_SI ZE+1] ; /* token type */
12 * 76 #define DATA_ | NPUT 0 /* 2 nodes of input */
13 * When distributing Covered Code, include this CDDL HEADER in each 77 #define CVD_I NPUT 1
14 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 78 #define WLD STRI NG " g /* wildcard character */
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the 79 #define COMMENT_CHAR T# /* comment character */
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner] 81 /*
18 * 82 * List of strings with arbitrary matchi ng val ues
19 * CDDL HEADER END 83 */
20 * 84 typedef struct slist {
21 * 85 char *str;
20 */ 86 char *hel p;
21 1= 87 int32_t val ue;
22 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved. 88 } slist_t;
23 * Use is subject to |license terns.
24 % 90 static slist_t ptag_choices[] = {
25 * Copyright 2014 Andrew Stornont. 91 "unassi gned", "", V_UNASSI GNED 1,
26 #endif /* | codereview */ 92 "boot ", "y V_BCOOT 1,
27 */ 93 "root", "y V_ROOT Iz
94 "swap", .y V_SWAP Iz
29 /* 95 "usr”, V_USR 1,
30 * rnf_slice.c : 96 "backup", " V_BACKUP },
31 = This file contains the functions for parsing a slice file 97 "stand", "y V_STAND 1,
32 * for rnformat. 98 “var", e V_VAR },
33 */ 99 "hone", "y V_HOVE },
100 "alternates", "", V_ALTSCTR 1,
35 #include <sys/types. h> 101 NULL }
36 #include <ctype. h> 102 };
37 #include <sys/vtoc. h>
38 #include <stdlib.h>
39 #include <unistd. h> 105 /*
40 #include <string.h> 106 * Choices for the p_flag vtoc field
41 #include <fcntl. h> 107 */
42 #include <errno. h> 108 static slist_t pflag_choices[] = {
43 #incl ude <menory. h> 109 { "wnl', "read-wite, nountable", 0 },
44 #include <dirent.h> 110 { "wu", "read-wite, unnmountable", V_UNMWNT },
45 #include <sys/fcntl. h> 111 { "rn, "read-only, nountable", V_RONLY 1},
46 #i ncl ude <sys/param h> 112 { "ru", "read-only, unnountable", V_RONLY| V_UNWNT 1},
47 #include <sys/stat.h> 113 { NULL }
48 #incl ude <stdio. h> 114 };
49 #i ncl ude <sys/dkio. h>
50 #include <priv_utils.h> 116 /*
51 #include "rnformat.h" 117 */The definitions are the token types that the data file parser recognizes.
118 *
53 extern void ny_perror(char *err_string); 119 #define SUP_EOF -1 /* eof token */
120 #define SUP_STRI NG 0 /* string token */

55 static int32_t ||ast_token_type = 0; 121 #define SUP_EQL 1 /* equal s token */

new usr/src/cnd/ rnformat/rnf_slice.c

122 #define SUP_COWA 2 /* comma token */
123 #define SUP_COLON 3 /* colon token */
124 #define SUP_EQOL 4 /* newl ine token */
125 #define SUP_OR 5 /* vertical bar */
126 #define SUP_AND 6 /* anpersand */

127 #define SUP_TI LDE 7 /* tilde */

130 /*

131 * Prototypes for ANSI C conpilers

132 */

133 static int32_t sup_prxfile(char *file_nanme, struct extvtoc *vt);
134 static int32_t sup_setpart(struct extvtoc *vt);

135 static void sup_pushchar (i nt32_t c);

136 static void cl ean_t oken(char *cl eant oken, char *token);

137 static void clean_token(char *cl eant oken, char *token);

138 static int32_t sup_inputchar();

139 static int32_t sup_gettoken(char *buf);

140 static int32_t sup_get_token(char *buf);

141 static int32_t find_value(slist_t *slist, char *str, int32_t *val ue);
142 static int32_t check_vtoc_sanity(snmedia_handle_t, int32_t fd,

143 struct extvtoc *vt);

144 static uint64_t str2sector(char *str);

145 static int32_t strcnt(char *sl1, char *s2);

146 static int32_t get_fdisk(smedia_handle_t, int32_t fd, int32_t offset,
147 struct fdisk_info *fdisk);

148 static void erase(snedi a_handl e_t handl e, diskaddr_t offset, diskaddr_t size);
150 extern char *nynane;

151 extern uint64_t ny_atoll (char *ptr);

152 extern smmedi um prop_t med_i nfo;

154 static FILE *data file;

156 static int32_t

157 sup_prxfile(char *file_name, struct extvtoc *vt)

158 {

159 int32_t status, ret_val;

160 TOKEN t oken;

161 TOKEN cl eaned;

163 /*

164 * Open the data file. Return O if unable to do so.

165 */

166 data_file = fopen(file_name, "r");

167 if (data_file == NULL) {

168 PERROR(" Open fail ed");

169 return (-1);

170 }

171 /*

172 * Step through the data file a neta-line at a time. There are
173 * typically several backslashed new ines in each neta-line,
174 */so data_lineno will be getting side effected al ong the way.
175 *

176 data_lineno = 1;

177 for (;;) {

179 /*

180 * Get the keyword.

181 */

182 status = sup_gettoken(token);

183 /*

184 * If we hit the end of the data file, we're done.
185 */

186 if (status == SUP_EOF)

187

br eak;

new usr/src/cnd/ rnformat/rnf_slice.c

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

222
223
224
225

227
228

/*
* If the line starts with sone key character,
*
/
if (status = SUP_STRING {
(void) fprintf(stderr,
gettext ("Expecting keyword,
t oken) ;
(void) fprintf(stderr,
gettext("Line no %\ n"),
cont i nue;

data_l i neno);
}
/

* Clean up the token and see which keyword it is.

it’s an

found ' %’ "

Cal |

error.

the appropriate routine to process the rest of the line.
*/

cl ean_t oken(cl eaned, token);
if (strcnp(cleaned, "slices") == 0) {
ret_val = sup_setpart(vt);
(void) fclose(data_ file);
return (ret_val);
} else {
(void) fprintf(stderr,
cl eaned) ;
(void) fprintf(stderr,
gettext("Line no %\n"),
(void) fclose(data_file);
return (-1);

data_l i neno);

}

/*
* Close the data file.
*

(void) fclose(data_file);

(void) fprintf(stderr,
gettext ("Unexpected end of file (line no %d)\n"),
return (-1);

}

static int32_t
sup_get t oken(char *buf)

229 {

230
231
232
233
234
235
236

238
239

/*
* Skip end of lines and bl ank |ines.
*

while ((last_token_type = sup_get_token(buf)) == SUP_EQL)

return (last_t okén_t ype) ;

}

static int32_t
sup_get _t oken(char *buf)

240 {

241
242

244
245
246

248
249
250

252
253

char *ptr = buf;

int32_t c, quoted = 0;

/*

* Was an end of file detected last try?
*/

if (feof(data_file)) {
i return (SUP_ECF);

/*
* Zero out the returned token buffer

gettext (" Unknown keyword

o "

data_l i neno);

new usr/src/cnd/ rnformat/rnf_slice.c 5 new usr/src/cnd/ rnformat/rnf_slice.c
254 */ 320 sup_pushchar (c);
321 return (SUP_STRI NG ;
256 bzero(buf, TOKEN SIZE + 1); 322 }
323 /*
258 /* 324 * We didn’t input a string, so we nmust have inputted a known delimter.
259 * Strip off |eading white-space. 325 * store the delimter in the buffer, so it will get returned.
260 */ 326 */
261 whil e (isspace(c = sup_inputchar())) 327 buf[0] = c;
262 ; 328 /*
329 * Switch on the delimter. Return the appropriate value for each one.
264 I* 330 */
265 * Only white spaces and then end of file? 331 switch (c) {
266 */ 332 case '=":
333 return (SUP_EQL);
268 if (feof (data_file)) { 334 case ':':
269 return (SUP_EOF); 335 return (SUP_COLON);
270 } 336 case ', :
337 return (SUP_COMA) ;
272 /* 338 case '\n’:
273 * Read in characters until we hit unquoted white-space. 339 return (SUP_EQL);
274 */ 340 case '|’:
275 for (; !'isspace(c) || quoted; c = sup_inputchar()) { 341 return (SUP_OR);
342 case '&:
277 & 343 return (SUP_AND);
278 * |f we hit eof, check if we have anything in buffer. 344 case '~ :
279 * if we have, return STRING next time we will return EOF 345 return (SUP_TI LDE);
280 * else, return ECF here...should not happen. 346 case '#':
281 * 347 /*
282 if (feof(data_file)) { 348 * For comments, we flush out the rest of the line and return
283 if (ptr - buf > 0) { 349 * an eol .
284 return (SUP_STRI NG ; 350 */
285 } else { 351 while ((c = sup_inputchar()) !'="\n" &R !feof(data_file))
286 return (SUP_ECF); 352 ;
287 } 358 if (feof(data_file))
288 } 354 return (SUP_EOF);
355 el se
290 = 356 return (SUP_EQL);
291 * |f we hit a double quote, change the state of quoting. 357 /*
292 */ 358 * Shoul dn’t ever get here.
293 if (c ==""") { 359 */
294 quot ed = ! quot ed; 360 defaul t:
295 conti nue; 361 return (SUP_STRI NG ;
296 } 362 }
297 /* 363 }
298 * If we hit a newine, that delimts a token. 364 static int32_t
299 */ 365 sup_i nput char ()
300 if (c =="\n") 366 {
301 break; 367 int32_t c;
302 /*
303 * |f we hit any nonquoted special delimters, that delinmts 369 /*
304 * a token. 370 * |nput the character.
305 */ 371 */
306 if (lquoted & (¢ =="'=" || ¢ =="," [| ¢ ==":" || 372 c = getc(data_file);
307 c="# || c="]" || c="& || c =="~")) 373 /*
308 br eak; 374 * If it’s not a backslash, returnit.
309 /* 375 */
310 * Store the character if there’s roomleft.
311 =Y 377 /*
312 if (ptr - buf < TOKEN_SI ZE) 378 * |t was a backslash. Get the next character.
313 *ptr++ = (char)c; 379 */
314 1
315 /* 381 if (c =="\\")
316 * |f we stored characters in the buffer, then we inputted a string. 382 c = getc(data_file);
317 * Push the delimter back into the pipe and return the string.
318 */ 384 /*
319 if (ptr - buf > 0) { 385 * |f it was a newine, update the line counter and get the next

new usr/src/cnd/ rnformat/rnf_slice.c

386 * character.

387 */

388 if (c =="\n")

389 data_l i neno++;
390 }

391 [*

392 * Return the character.
393 */

394 return (c);

395 }

397 static void
398 sup_pushchar (int32_t c)

399 {

401 (void) ungetc(c, data_file);
402 if (c =="\n

403 data_l i neno--;

404 }

406 static void
407 cl ean_t oken(char *cl eant oken, char *token)

408 {

409 char *ptr;

411 /*

412 * Strip off |eading white-space.

413 */

414 for (ptr = token; isspace(*ptr) & (ptr <=

415 (token + strlen(token) - 1)); ptr++)

416 |

418 /*

419 * Copy it into the clean buffer.

420 */

421 (void) strcpy(cleantoken, ptr);

422 /*

423 * Strip off trailing white-space.

424 */

425 for (ptr = cleantoken + strlen(cleantoken) - 1;
426 i sspace(*ptr) && (ptr >= cleantoken); ptr--) {
427 *ptr = '\0;

428 }

429 }

431 static int32_t

432 sup_setpart(struct extvtoc *vt)

433 {

434 TOKEN token, cleaned, ident;

435 int32_t i, index, status;

436 ui nt 64_t val 1, val 2;

437 ushort _t vtoc_tag = OXFFFF;

438 ushort _t vtoc_flag = OxFFFF;

440 /*

441 * Pull in sone grammar.

442 */

444 status = sup_gettoken(token);

446 if (status !'= SUP_COLON) {

447 (void) fprintf(stderr,

448 gettext("Expecting ':’, found "%’ "),
449 (void) fprintf(stderr,

450 gettext("Line no %\ n"), data_lineno);

451 return (-1);

t oken);

new usr/src/cnd/ rnformat/rnf_slice.c

452 }

454 for (;;) {

455 status = sup_gettoken(token);

456 if (status != SUP_STRI NG

457 (void) fprintf(stderr,

458 gettext ("Expecting string, found "%’ "), token);
459 (void) fprintf(stderr,

460 gettext("Line no %\ n"), data_lineno);
461 return (-1);

462 }

463 cl ean_t oken(i dent, token);

464 /*

465 * Here’'s the index of the partition we're dealing with
466 */

467 index = (int32_t)my_atoll (ident);

468 if ((index < 0) || (index >= NDKMAP)) {

469 (void) fprintf(stderr,

470 gettext ("Unknown partition %"), index);
471 (void) fprintf(stderr,

472 gettext("Line no %\ n"), data_lineno);
473 return (-1);

474 }

475 /*

476 * Check for floppy and PCMCl A_MEM cards.

477 * for floppy, the partition no. can be 0 1 2.

478 * for PCMCIA, the partition no. can be 2

479 *

480 if (med_info.smnedia_type == SM FLOPPY) {

481 if ((index <0) || (index > 2)) {

482 (void) fprintf(stderr, gettext(

483 "Fl oppy can have partitions 0 1 and 2\n"));
484 return (-1);

485 }

486 }

487 1f (med_info.smnedia_type == SM PCMCI A MEM {

488 if (index != 2)

489 (void) fprintf(stderr, gettext(

490 "PCMCI A Menory cards can have partition 2 only.\n"));
491 return (-1);

492 }

493 }

495 DPRI NTF1("\n Partition %l: i ndex) ;

497 status = sup_gettoken(token);

498 if (status = SUP_EQ) {

499 (void) fprintf(stderr,

500 gettext ("Expecting '=, found "%’ "), token);
501 (void) fprintf(stderr,

502 gettext("Line no %\ n"), data_lineno);
503 return (-1);

505 }

508 status = sup_gettoken(token);

509 /*

510 * |f we hit a key character, it’s an error.

511 */

512 if (status != SUP_STRING {

513 (void) fprintf(stderr,

514 gettext ("Expecting value, found '%' "), token);
515 (void) fprintf(stderr,

516 gettext("Line no %@\ n"), data_lineno);
517 return (-1);

new usr/src/cnd/ rnformat/rnf_slice.c

518
519
520
521
522
523
524
525
526
527

529
530
531
532
533

535
536
537
538
539
540
541
542
543

545
546
547
548
549
550
55118
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

570
571
572
573
574
575
576
577
578

580
581
582
583

}
cl ean_t oken(cl eaned, token);
/*

* <tag> may be one of: boot, root, swap, etc.
* <flag> consists of two characters:

* W (witable) or R (read-only)

* M (rmount abl e) or U (unnount abl e)
*
*
*

Start with the defaults assigned above:
/

Al'l other attributes have a pair of nuneric val ues.
Convert the first value to a nunber. This value
is the starting cylinder nunber of the partition.

/

* ok Ok ok %

/* Check for valid partition, e.g. > 8 or 16 */
val 1 = str2sector(cl eaned);
if (vall == -1) {
(void) fprintf(stderr,
gettext("Invalid partition beggining % \n"),
cl eaned) ;
(void) fprintf(stderr,
gettext("Line no %\ n"), data_lineno);

}

DPRI NTF1(" begins %", cleaned);
*

* Pull in some granmar.

)

status = sup_gettoken(token);
if (status != SUP_COWA
(void) fprintf(stderr,
gettext("Expecting ', ', found '%’ "), token);
(void) fprintf(stderr,
gettext("Line no %@\ n"), data_lineno);
return (-1);
}
/
/PuII in the second val ue.

*
*
*
status = sup_gettoken(token);
if (status != SUP_STRI NG
(void) fprintf(stderr,
gettext ("Expecting value, found '% "), token);
(void) fprintf(stderr,
gettext("Line no %@\ n"), data_lineno);
return (-1);

}
cl ean_t oken(cl eaned, token);

val 2 = str2sector (cl eaned);
if (val2 == -1)
(void) fprintf(stderr,
gettext("Invalid partition size % \n"),
cl eaned) ;
(void) fprintf(stderr,
gettext("Line no %\ n"), data_lineno);

}
DPRI NTF1(" ends % ", cleaned);

/*
* Pull in some grammar.
*/

status = sup_gettoken(token);

new usr/src/crmd/ rnformat/rnf_slice.c 10
585 if (status == SUP_COWA) ({

586 /* tags and flags */

587 status = sup_gettoken(token);

588 if (status !'= SUP_STRING ({

589 (void) fprintf(stderr,

590 gettext ("Expecting value, found "% "),
591 t oken) ;

592 (void) fprintf(stderr,

593 gettext("Line no %\ n"), data_lineno);
594 return (-1);

595 }

596 cl ean_t oken(cl eaned, token);

597 if (find_value(pflag_choices, cleaned, &) == 1) {
598 I*

599 * Found valid tag. Use it and advance parser
600 */

601 DPRI NTF1(" flag = %", cleaned);

602 vtoc_flag = (ushort_t)i;

603 status = sup_gettoken(token);

604 } else if (find_value(ptag_choices, cleaned, &) == 1) {
605 DPRI NTF1(" tag = %", cleaned);

606 vtoc_tag = (ushort _t)i;

607 status = sup_gettoken(token);

608 if (status == SUP_COWMVA

609 (void) fprintf(stderr,

610 gettext ("Expecting : got %\n"),
611 t oken) ;

612 (void) fprintf(stderr,

613 gettext("Line no %\ n"),

614 data_l i neno);

615 return (-1);

616

617 } else {

618 (void) fprintf(stderr,

619 gettext("Invalid flag or tag\n"));

620 (void) fprintf(stderr,

621 gettext("Line no %\n"), data_lineno);
622 return (-1);

623 }

626 if (status == SUP_COWMVA)

627 /* Can be tag only */

629 status = sup_gettoken(token);

630 if (status = SUP_STRING {

631 (void) fprintf(stderr,

632 gett ext (" Expecting val ue"
633 ", found '%'"),

634 t oken);

635 (void) fprintf(stderr,

636 gettext("Line no %\n"),
637 data_l i neno);

638 return (-1);

639 }

641 cl ean_t oken(cl eaned, token);

642 if (find_val ue(ptag_choices,

643 cleaned, &) == 1) {

644 DPRI NTF1(" tag = %", cleaned);
645 vtoc_tag = (ushort_t)i;

646 }

647 status = sup_gettoken(token);

648

649 }

new usr/src/cnd/ rnformat/rnf_slice.c

651 /*

652 * Fill in the appropriate map entry with the val ues.
653 */

654 vt->v_part[index].p_start = val 1;

655 vt->v_part[index].p_size = val 2;

656 if (vtoc_tag != OxFFFF) {

657 vt->v_part[index].p_tag = vtoc_tag;

658 vtoc_tag = OXFFFF;

659 }

660 1f (vtoc_flag != OxFFFF) {

661 vt->v_part[index].p_flag = vtoc_flag;

662 vtoc_flag = OxFFFF;

663 }

664 if (status == SUP_EOF)

665 DPRI NTF("\nEnd of file\n");

666 br eak;

667 }

668 if (status !'= SUP_COLON)

669 (void) fprintf(stderr,

670 gettext("Expecting ':’, found "%’ "), token);
671 (void) fprintf(stderr,

672 gettext("Line no %\ n"), data_lineno);
673 return (-1);

674 }

676 }

677 return (0);

678 }

680 static int32_t
681 find_value(slist_t *slist, char *match_str, int32_t *match_val ue)

682 {

683 int32_t i;

684 int32_t nmatches;

685 int32_t length;

686 int32_t match Iength

688 nmat ches = 0;

689 length = 0;

691 match_l ength = strlen(match_str);

693 for (; slist->str !'= NULL; slist++) {

694 i

695 */See how many characters of the token match
696 *

697 i = strent(match_str, slist->str);

698 /*

699 * |f it’s not the whole token, then it’s not a match.
700 */

701 if (i < match_length) {

702 conti nue;

703 }

704 1=

705 * If it ties with another input, renenber that.
706 */

707 if (i == length)

708 nmat ches++;

709 /*

710 * |f it matches the nost so far, record that.
711 */

712 if (i >length) {

713 *mat ch_val ue = slist->val ue;

714 nmat ches = 1;

715 length = i;

11

new usr/src/cnd/ rnformat/rnf_slice.c

716 }

717 1

719 return (nmatches);
720 }

722 static int32_t

723 strcnt(char *s1, char *s2)
724 {

725 int32_t i = 0;

727 while ((*s1 !="'\0") && (*sl++ == *s2++))
728 i++;

729 return (i);

730 }

732 static uint64_t

733 str2sector(char *str)

734 {

735 int32_t mul _factor = 1;
736 char *sl1, *s2, *base;
737 uint64_t num sectors;
738 uint64_t size;

740 base = s2 = (char *)malloc(strlen(str) + 1);
741 if (s2 == NULL)

742 PERROR(" Mal | oc failed");

743 return (-1);

744 }

745 *s2 = '\0";

749 sl = str;

750 while (*s1) {

751 if ((*s1!=
752 ((*s1 <
753 (*s1l >
754 if ({

755 mul _factor = 1024*1024*1024;
756 S1++;

757 }elself(sl——'M){

758 mul _factor = 1024*1024;

759 S1l++;

760 } elseif (*sl =="'K) {

761 mul _factor = 1024;

762 S1++;

763 }

764 if ((*sl1="B) || (*(++s1) != NULL)) {
tf(stderr,
Ex

iy
N

*s A) || (*s1 >"'F)) &
sl >"'f")) && ((*s1 <'0") ||

765 (void) fpri
766 gettext
767 free(base);
768 return (-1);
769 }

770 br eak;

771 } else {

772 *S2++ = *sl++;

773 *s2 = '\0";

774 }

775

776 *s2 = NULL;

n
(

778 size = ny_atol |l (base);

779 if (('mul_factor) || (size == -1)) {
780 free(base);

781 return (-1);

tra chars at the end\n"));

12

new usr/src/cnd/ rnformat/rnf_slice.c

782

783 num sectors = size * (uint64_t)nul _factor /512;

785 free(base);

786 return (numsectors);

787 }

790 int32_t

791 valid_slice_file(snmedia_handle_t handle, int32_t fd, char *file_nane,
792 struct extvtoc *vt)

793 {

794 struct stat status;

795 int32_t ret_val;

796 if (stat(file_name, &status)) {

797 PERRCR(fi | e_nane) ;

798 return (-1);

799

800 (void) memset(vt, 0, sizeof (*vt));

801 /* Set default tag and flag */

802 #ifdef sparc

803 vt->v_part[0].p_tag = V_ROOT;

804 vt->v_part[1].p_tag = V_SWAP;

805 vt->v_part[2].p_tag = V_BACKUP;

806 vt->v_part[6].p_tag = V_USR

808 vt->v_part[1].p_flag = V_UNWT; /* Unnountable */

809 vt->v_part[2].p_flag = V_UNWT; /* Unnountable */

810 #endi f

812 ret_val = sup_prxfile(file_name, vt);

813 if (ret_val < 0)

814 return (-1);

816 #ifdef DEBUG

817 {

818 int32_t i;

819 for (i =0; i <8; i++) {

820 DPRI NTF1("\npart %\n", i);

821 DPRI NTF1("\t start %1lu", vt->v_part[i].p_start);
822 DPRINTF1("\t size %lu ", vt->v_part[i].p_size);
823 DPRI NTF1("\t tag %", vt->v_part[i].p_tag);
824 DPRI NTF1("\t flag %1" vt->v_part[i].p_flag);
825 1

826 }

827 #endif /* DEBUG */

828 if (check_vtoc_sanity(handle, fd, vt) < 0) {

829 return (-1);

830 }

831 #ifdef DEBUG

832 {

833 int32_t i;

834 for (i =0; i <8; i++) {

835 DPRI NTF1("\npart %\ n", i);

836 DPRINTF1("\t start %Ilu", vt->v_part[i].p_start);
837 DPRINTF1("\t size %lu ", vt->v_part[i].p_size);
838 DPRINTF1("\t tag %", vt->v_part[i].p_tag);
839 DPRINTF1("\t flag %", vt->v_part[i].p_flag);
840 }

841 }

842 #endif /* DEBUG */

843 return (0);

844 }

846 #define SWAP(a, b) {diskaddr _t tnp; tnp = (a); (a) = (b); (b) = tnp;

13

new usr/src/crmd/ rnformat/rnf_slice.c 14
848 [*

849 * (On x86 Solaris, the partitioning is done in tw |evels, fdisk and Sol aris
850 * VTOC. Where as, on sparc solaris, it is only VIOC. On floppy and PCMCI A
851 * also it is assuned to be only VIOC, no fdisk.

852 *

853 * On sparc, the back up slice can cover the whole nmedium But on x86

854 * (. SCSI/ATAPI disks), the backup slice can cover the solaris partition

855 * in fdisk table.

856 * Fol owi ng tabl e describes howis it handl ed

857 * SPARC:

858 * SCSI / ATAPI, floppy, pcntia : don't check for fdisk.

859 * DKI OCGGEOM i s sufficient.

860 * x86 : floppy, pcntia : Don't check for fdisk. DKIOCGGEOM is sufficient.
861 * SCSI / ATAPI Check for fdisk.

862 * if not present, assune that the solaris

863 * partition covers 100% of the nedi um

864 * (m nus one cylinder).

865 *

866 * if present

867 * check for active solaris partition.

868 * if not found, take the first solaris

869 * partition.

870 * If there are no solaris partitions, its an error, stop.
871 */

873 static int32_t

874 check_vtoc_sanity(snmedi a_handl e_t handl e,

875 {

877
878
879
880
881
882
883
884
885
886
887
888
889

24
890
891
892
893

int32_t fd, struct extvtoc *vt)

int32_t i, j;
struct dk_geom dkg;
int32_t numbackup = 0;
di skaddr _t backup_size = 0;
struct part_struct {
di skaddr _t start;
di skaddr _t end;
int32_t num
} part [NDKMAP] ;
di skaddr _t min_val;
int32_t mn_slice, numslices;
di skaddr _t medi a_ SI ze;
uint32_t cyl_size = 0;
uint32_t cyl _size;
int sparc_style = 0;
struct fdisk_info deSk
int sol _part;
int total_parts = 0;

/* sparc_style handling ? */

895 #ifdef sparc

896

sparc_style = 1;

897 #endif /* sparc */

899
900
901
902
903
904

906
907
908
909
910
911
912

if ((med_info.smnmedia_type =
(nmed_i nfo.sm nedi a_type =
(med_i nfo. sm nedi a_type == SM PCMCI A_ATA)
(med_i nfo.sm nedi a_type == SM _SCSI _
sparc_style = 1;

= SMFLCPPY) ||

}

if (sparc_style)
DPRI NTF("sparc style true\n");
if (ioctl(fd, DKIOCGGEOM &dkg) < 0) {
PERROR(" DKI OCGGEOM Fai | ed") ;
return (-1);
= (di skaddr_t)dkg. dkg_ncyl

medi a_si ze * dkg. dkg_nhead *

new usr/src/cnd/ rnformat/rnf_slice.c

913
914
915

917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

937
938
939
940
941
942
943
944

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965

967
968
969
970
971

973
974
975

977
978

dkg. dkg_nsect ;
cyl _size = dkg. dkg_nhead * dkg.dkg_nsect;
}

if (!sparc_style) {
/*
* Try to get the fdisk information if available.
if (get fdlsk(handle fd, 0, &disk) >=0) {
fdi sk table on disk */

soI _part = OxFF;
for (i = 0; i < FD NUWPART; i++)

15

)_| {
if (fdisk.part[i].systid == SUNI XCS ||
fdisk.part[i].systid == SUNI X0S82) {

if (sol_part == OxFF)
sol _part =i;

total _parts++;

if (fdisk.part[i].bootid
sol _part =1i;

}

}
if (sol_part == OxFF) {
/* No Solaris partition */

(void) fprintf(stderr,
Sol aris partition found!'\n"));
return (-1);

}
if (total _parts > 1)
(void) fprintf(stderr,
Solaris partitions found.\n"));

ACTI VE)

gettext("No FDI SK \

gettext("Mltiple FD SK \

nedi a_si ze = (di skaddr_t)fdisk.part[sol _part].nunsect;

DPRI NTFl("soI _part 9%\ n", sol _part);
DPRI NTF1(" medi a_size % un”

} else {
DPRINTF("Didn't get fdisk\n");
/*
* No fdisk partition avail able.
* partition.
*/Try getting disk geonetry.
*

if (ioctl(fd, DKIOCGGEOM &dkg) < 0)

if (ioctl(fd, DKIOCG PHYGEOM &dkg)

medi a_si ze) ;

Assune a 100% Sol ari s.

< 0)

{
DPRI NTF(" DKI OCG_PHYGEOM i oct| failed");

return (-1);

}
/* On x86 pl atforml cylinder is used for fdisk table */

dkg. dkg_ ncyI = dkg. dkg_ncyl - 1;

nedi a_si ze = (diskaddr_t)dkg. dkg ncyl * dkg.dkg_nhead *

dkg. dkg_nsect ;

}

#i f def DEBUG
DPRI NTF1(" Ncyl 9@\ n",
DPRI NTF1(" nhead %\ n",
DPRI NTF1("nsect %\ n",
#endi f /* DEBUG */

dkg. dkg_ncyl);
dkg. dkg_nhead) ;
dkg. dkg_nsect);

if (media_size == 0) {
nmedi a_si ze = (uint32_t)ned_info.smcapacity;
}

(void) menset(&part, 0, sizeof (part));
for (1 =0, j =0; i < NDKMAP; i ++) {

new usr/src/cnd/ rnformat/rnf_slice.c

979
980
981
982
983
984
985
986
987
988
989
990

992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

1035
1036
1037
1038
1039
1040

1042
1043
1044

if (vt—>v part[i].p_tag == V_BACKUP) {
if (vt->v_part[i].p_start != 0)
(void) fprintf(stderr,
gettext(
"Backup slice should start at sector 0\n"));
return (-1);

backup_size = vt->v_part[i].p_size;
num backup++;
conti nue;

i}f (vt->v_part[i].p_size) {

if (sparc_style) {
if (vt->v_part[i].p_start %cyl_size) {
(void) fprintf(stderr,
gettext(

"Slice %l does not start on cylinder boundary\n"),

(void) fprintf(stderr,
get text(

"Cylinder size % 512 byte sectors\n"), cyl_size);

return (-1);

}

}

part[j].start = vt->v_part[i].p_start;

part[j].end = vt->v_part[i].p_start +
vt->v_part[i].p_size -1;

part[j].num= 1i;

] ++;

}

}
if (numbackup > 1) {
(void) fprintf(stderr,
gett ext (" Maxi mum one backup slice is allowed\n"));
(voi d) snedi a_rel ease_handl e(handl e) ;
(void) close(fd);
exit(1);

numslices = j;

#i f def DEBUG

for (i =0; i <numslices; i++) {
mn_val = part[i].start;
mn_slice =i;
for (j =i+l; j < numslices; j++) {
if (part[j].start < min_val) {
mn_val = part[j].start;
mn_ _slice = j;
}
if (min_slice!=1i) {
SWAP(part[i].start, part[mn_slice].start)
SWAP(part[i].end, part[mn_slice].end)
SWAP(part[i].num part[mn_slice].num
}
for (i =0; i <numslices; i++) {
DPRINTF4("\n % (%) : %1lu, %lu", i, part[i].num

part[i].start, part[i].end);

}
#endi f /* DEBUG */

if (backup_size > nedia_size) {
if (sparc_style) {
(void) fprintf(stderr,

i)

16

new usr/src/crmd/ rnformat/rnf_slice.c 17

1045
1046
1047
1048
1049
1050

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

1063
1064
1065
1066
1067

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110

gettext(
"Backup slice extends beyond size of nedia\n"));
(void) fprintf(stderr,
gettext("nedia size : %lu sectors \n"),
nedi a_si ze);
} else {

(void) fprintf(stderr
gettext ("Backup slice extends beyond size of FDI SK\

Solaris partition\n"));

(void) fprintf(stderr,
get text(

"FDI SK Sol aris partition size : %Ilu sectors \n"),
medi a_si ze) ;

}
return (-1);

}
/*
* |f we have only backup slice return success here.
*
if (numslices == 0)
return (0);

if (backup size) {
if (part[numslices - 1].end > backup_size) {
(void) fopri ntf(stderr
gettext("Slice % extends beyond backup slice.\n"),
part[n;im slices -1].num;

return (-1
} else {
if (part[umslices - 1].end > nedi a_size) {
i f (sparc_style) {
(void) fprintf(stderr,
get text (
"Slice % extends beyond nedi a size\n"),
part[numslices -1].num;
(void) fprintf(stderr,
gettext ("nedia size : %Ilu sectors \n"),
nmedi a_si ze);
} else {
(void) fprintf(stderr,
gettext("Slice % extends beyond FDI SK"
" Solaris partition size\n"),
part[numslices -1].num;
(void) fprintf(stderr, gettext(
"FDI SK Solaris partition size : %lu "
) "sectors \n"), nedia_size);
return (-1);
}
}
for (i =0; i <numslices; i++) {
if (i ==0)
conti nue;

if (part[i].start <= part[i-1].end) {
(voi d) fprintf(stderr,
gettext("COverlap between slices % and %\ n"),
part[i-1].num part[i].
(voi d) smedia_rel ease_handl e(handl e);
(void) close(fd);
exit(1);

new usr/src/cnd/rnformat/rnf_slice.c

1111
1112

1114

1115 }
__unchanged_portion_onitted_

}
}

return (0);

18

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

R R R R

33521 Sun May 4 18:28:36 2014
new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢
4833 Renove vol r mount
4845 rm(u) nount don’t always print nount/unnmount errors
4846 HAL partition nanes don't match real parition nanes
Revi ewed by: Dan McDonal d <danntd@miti.conp
Revi ewed by: Josef ’'Jeff’ Sipek <jeffpc@ osefsipek.net>

R R R R R R R

1/*

Copyri ght 2009 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terms.

2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governing perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 =
19 * CDDL HEADER END
20 *
21 *
20 */
21 /*
*
*
*

25 * Copyright 2014 Andrew Stornont.
26 #endif /* | codereview */
27 */

29 #include <stdio. h>

30 #include <errno. h>

31 #include <string.h>

32 #include <strings. h>
33 #include <stdarg. h>

34 #include <fcntl.h>

35 #include <libintl.h>
36 #include <stdlib.h>

37 #include <unistd. h>

38 #include <ctype. h>

39 #include <sys/param h>
40 #incl ude <sys/types. h>
41 #include <sys/stat.h>
42 #include <sys/mttab. h>

44 #include <dbus/dbus. h>

45 #i ncl ude <dbus/ dbus-glib. h>

46 #i ncl ude <dbus/dbus-glib-1ow evel. h>
47 #include <libhal.h>

48 #include <libhal -storage. h>

50 #i nclude "rnmm . comon. h"

52 #define RMM PRI NT_DEVI CE_WDTH 20

54 extern int rnm.debug;

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

56 static const char *action_strings[] =

57

120

}s

"eject"”,

"nmount ",
"remount"”,
"unmount ",

"cl ear _nmounts",
"cl osetray"

Li bHal Cont ext *

rmm_hal _i ni t (Li bHal Devi ceAdded devadd_cb, Li bHal Devi ceRenpved devrem cb,
Li bHal Devi cePropertyMdi fied propnod_cb, LibHal Devi ceCondition cond_cbh,
DBusError *error,

DBusConnecti on
Li bHal Cont ext
char

int

rmmerror_t

*dbus_conn;
*ctx;
**devi ces;
nr;

dbus_error_init(error);

/*

* setup D-Bus connection
*

if (!(dbus_conn = dbus_bus_get (DBUS_BUS_SYSTEM error)
dprintf("cannot get system bus:

{

*rmmerror)

*rommerror = RVM EDBUS_CONNECT;
return (NULL);

rmm dbus_error_free(error);

dbus_connecti on_setup_wi t h_g_nai n(dbus_conn,)
dbus_connecti on_set _exit_on_di sconnect (dbus_conn, B_TRUE);

if ((ctx = libhal _ctx_new()) == NULL) {
dprintf("libhal _ctx_new failed");

*rnmm.error

return (NULL);

}

I'i bhal _ct x_set _dbus_connecti on(ctx,

/*

* register callbacks
S

if (devadd_cb != NULL)

{
i bhal _ct x_set _devi ce_added(ct x,

}
if (devremcb !'= NULL) {

i bhal _ctx_set_devi ce_renpved(ct x,

}
if (propnod_cb != NULL) {

i bhal _ctx_set_devi ce_property_nodified(ctx,

= RVM EHAL_CONNECT;

%s\ n"

)) A
, rommstrerro

NULL) ;

dbus_conn);

devadd_cbh);

devrem cb);

if (!libhal _device_property_watch_all(ctx, error)) {

}

dprintf("property_watch_all

rmmstrerror(error, -1));
l'i bhal _ctx_free(ctx);
*rmm.error = RVM EHAL_CONNECT;

return (NULL);

}
if (cond_cb !'= NULL)
I'i bhal _ct x_set _devi ce_condi tion(ctx,

}

failed %",

cond_ch);

r(error,

propnod_cb) ;

=)

new usr/s

122
123
124
125
126
127
128

130
131
132
133
134
135
136
137
138
139
140
141
142
143

145
146 }

149 voi d

150 rmm |

151 {
152

154
155
156 }

159 /*

160 * f

161 * r
*

rc/ cmd/ rmvol nmgr/ rmm_conmon. ¢

if (!libhal _ctx_init(ctx, error))

{
dprintf("libhal _ctx_init failed: %", rnmstrerror(error, -1));

1 bhal _ctx_free(ctx);
*rmm.error = RVM EHAL_CONNECT;
return (NULL);

rmm dbus_error_free(error);

/*

* The above functions do not guarantee that HAL is actually running.

* Check by invoking a nethod.
*

if (!(devices = libhal __get_all_devices(ctx, &r, error))) {
dprintf("HAL is not running: %", rnmstrerror(error, -
1 bhal _ct x_shut down(ctx, NULL);
i bhal _ctx_free(ctx);
*rmm_error = RVM EHAL_CONNECT;
return (NULL);
} else {
rnm dbus_error_free(error);
i bhal _free_string_array(devices);

}

return (ctx);

hal _fini (Li bHal Cont ext *hal _ctx)
DBusConnecti on

(voi d) dbus_connection_unref(dbus_conn);
(void) libhal _ctx_free(hal _ctx);

*dbus_conn = |ibhal _ctx_get_dbus_connecti on(hal _

1))

ctx);

ind volume fromany type of name, similar to the old nedia_findnane()

eturns the LibHal Drive object and a list of LibHal Volume objects.

163 Li bHal Drive *

164 rmm_

166 {
167
168
169

171

173
174
175
176
177
178
179
180

182
183
184
185
186
187

hal _vol ume_fi nd(Li bHal Cont ext *hal _ctx, const char *name, DBusError
GSLi st **vol unes)

Li bHal Dri ve *drive;
char *p;
char | astc;

*vol umes = NULL;

/* tenporarily renmove trailing slash */
p = (char *)nane + strlen(nane) - 1;
if(fp=1") {

lastc = *p;

ko= N0

} else {
p = NULL;
}
if (name[0] == "/")
if (((drive = rnmhal _vol ume_findby(hal _ctx,
"info.udi ", name, volunes)) != NULL) ||
((drive = rmm_hal _vol une_fi ndby(hal _ctx,
"bl ock. devi ce", nane, volunes)) != NULL) ||

((drive = rmm hal _vol une_fi ndby(hal _ctx,

*error,

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

188
189
190
191
192
193
194
195

197
198
199
200
201

203

205
206
207
208
209
210

212 /

213
214
215
216
217

"bl ock. sol ari s. raw_device",
((drive = rmm_hal _vol une_fi ndby(hal _ctx,
"vol ume. nount _poi nt", name, volumes)) !'= NULL)) {
goto out;
} else {
goto out;
}

}

/* try volunme |abel */
if ((drive = rmm hal _vol ume_fi ndby(hal _ctx,
"vol une. | abel ", nane, volumes)) != NULL) {
goto out;

}

drive = rnmm_ hal _vol ume_fi ndby_ni cknane(hal _ctx, nane, vol unes);

out:
if (p!'= NULL) {
*p = lastc;

return (drive);
}
*

* find default volume. Returns volunme pointer and name in 'nane’.
=Y

Li bHal Dri ve *
rmm_hal _vol une_fi nd_def aul t (Li bHal Cont ext *hal _ctx,
const char **nane_out, GSList **vol unes)

DBusError *error,

218 {

219
220
221

223

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

244
245

247
248
249
250
251
252
253

Li bHal Dri ve *drive;
static const char *nanes[] = { "floppy", "cdront, "rndisk" };
i nt i

*vol unes = NULL;

for (i =0; i < NELEMnanes); i++) {
if ((drive = rmm hal _vol une_fi ndby_ni cknane(hal _ctx,
nanes[i], volumes)) != NULL) {
/*

* Skip floppy if it has no nedia.

* XXX might want to actually check for nedia
* every tine instead of relying on vol check.
*

if ((strcnp(nanes[i], "floppy") !'=0) ||
I'i bhal _devi ce_get _property_bool (hal _ctx,
I'i bhal _drive_get_udi (drive),

"storage. renovabl e. nedi a_avai | abl e", NULL)) {

*nane_out = nanes[i];
br eak;

}

rmm dbus_error _free(error);

}

return (drive);

}

/*
* find vol une by property=val ue
* returns the LibHal Drive object and a |ist of LibHal Volune objects.
* XXX add support for multiple properties, reduce D-Bus traffic
*/
Li bHal Dri ve *
rmm_hal _vol ume_fi ndby(Li bHal Cont ext *hal _ctx, const char *property,

name, volumes)) != NULL)

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

254 const char *val ue, GSList **vol unmes)

255 {

256 DBuUsEr r or error;

257 Li bHal Dri ve *drive = NULL;

258 Li bHal Vol une *v = NULL;

259 char **udi s;

260 int num udi s;

261 int i;

262 int i_drive = -1;

264 *vol unmes = NULL;

266 dbus_error_init(&error);

268 /* get all devices with property=val ue */

269 if ((udis = libhal _manager_find_device_string_nmatch(hal _
270 val ue, &umudis, &error)) == NULL) {

271 rmm dbus_error_free(&error);

272 return (NULL);

273 }

275 /* find volumes and drives anong these devices */

276 for (i =0; i < numudis; i++)

277 rmm dbus_error free(&error)

278 if (libhal _devi ce_query_capabi lity(hal _ctx, udis[i],
279 &error)) {

280 v = libhal _vol une_fromudi (hal _ctx, udis[i]);
281 if (v != NOLL)

282 *vol umes = g_slist_prepend(*vol ures,
283 }

284 } else if ((*volunes == NULL) &&

285 i bhal _devi ce_query_capability(hal _ctx, udis[i],
286 &error)) {

287 i_drive =i;

288 }

289 1

291 if (*volunmes !'= NULL) {

292 /* used pr epend, preserve original order */

293 *vol unes g_slist_reverse(*vol unes);

295 v = (LibHal Vol ume *)(*vol unes) - >dat a;

296 drive = libhal _drive_fromudi (hal _ctx,

297 i bhal _vol ume_get _st orage_devi ce_udi (Vv));

298 if (drive == NULL)

299 rmm vol unes_free (*vol unmes);

300 *vol umes = NULL;

301 }

302 } else if (i_drive >= 0) {

303 drive = libhal _drive_fromudi (hal _ctx, udis[i_drive]);
304 }

306 libhal _free_string_array(udis);

307 rnm dbus_error_free(&error);

309 return (drive);

310 }

312 static void
313 rmm pri nt _ni cknanmes_one(Li bHal Drive *d, LibHal Vol ume *v,

314 const char *device, char **drive_ni cknanmes)
315 {

316 const char *vol ume_| abel = NULL;
317 const char *nmount _poi nt = NULL;
318 bool ean_t comma;

319 int i;

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

321 (void) printf("%* RVM_PRI NT_DEVI CE_W DTH, devi ce);

322 comma = B_FALSE;

324 if (drive_nicknames != NULL) {

325 for (i = 0; drive nlcknanEs[l] I—NULL i++) {

326 (v0| d) printf("%%", conmma ? "," : ""

327 drl ve_ni cknanes[i i 1)

328 conma = B_TRUE;

329 }

330 1

332 if ((v 1= NULL) &&

333 (vol urme_l abel = libhal _vol ume_get _| abel (v)) != NULL) &&
334 (strlen(volurre Iabel) >0)) {

335 (void) pri ntf(" %%", comma ? "," : "", volune_|l abel);
336 comma = B_TRUE;

337 }

339 if ((v!= NULL) &&

340 ((rmount _point = libhal _vol une_get_nount_point(v)) !'= NULL) &&
341 (strlen(nmount_poi nt) > 0))

342 (void) printf("%%", comma ? "," : "", nount_point);
343 comma = B_TRUE;

344 }

346 (void) printf("\n");

347 }

349 [*

350 * print nicknanmes for each avail abl e vol une

351 *

352 * print_mask:

3563 * RMM_PRI NT_MOUNTABLE print only nountabl e vol unes

354 * RVM_PRI NT_EJECTABLE print volune-1less ejectable drives
355 */

356 void

357 rmm print_vol ume_ni cknanes(Li bHal Context *hal _ctx, DBusError *error,
358 Int print_mask)

359 {

360 char **udi s;

361 int num udi s;

362 GSLi st *vol unmes = NULL;

363 Li bHal Dri ve *d, *d_tnp;

364 Li bHal Vol une *V;

365 const char *devi ce;

366 char **ni cknanes;

367 int i;

368 GSLi st *j;

369 int nprint ed;

371 dbus_error_init(error);

373 if ((udis = libhal _find_device_by_capability(hal _ctx, "storage",
374 &umudis, error)) == NULL) {

375 rmm dbus_error_free(error);

376 return;

377 }

379 for (i =0; i <numudis; i++) {

380 if ((d = 1libhal_drive_fromudi(hal _ctx, udis[i])) == NULL)
381 conti nue;

382 }

384 /* find volunes belonging to this drive */

385 if ((d_tnp = rmm_hal _vol ume_fi ndby(hal _ctx,

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

386 "bl ock. st or age_devi ce", ud| s[i], &olunmes)) != NULL) {
387 I'i bhal _drive_free(d_tnp);

388 }

390 ni cknanmes = Ilbhal devi ce_get _property_strlist(hal _ctx,
391 udi s[i], "storage.solaris.nicknames", NULL);

393 nprinted =

394 for (j —vqunes j !'= NULL = g_slist_next(j)) {

395 v—(leHaIVquma *)(J—>aa)

397 if ((device = libhal _volunme_get_device_file(v)) ==
398 NULL) {

399 conti nue;

400 }

401 if ((print_mask & RWM PRI NT_MOUNTABLE) &&

402 (1i bhal _vol ume_get _f susage(v) !=

403 LI BHAL_VOLUVE_USAGE_MOUNTABLE_FI LESYSTEM)) {
404 cont i nue;

405 }

407 rmm print_ni cknames_one(d, v, device, nicknanes);
408 nprint ed++;

409 }

411 if ((nprinted == 0) &&

412 (print_mask & RWM PRI NT_EJECTABLE) &&

413 |1 bhal _dri ve_requires_eject(d) &

414 ((device = libhal _drive_get_device_file(d)) !'= NULL)) {
415 rmm print _ni cknames_one(d, NULL, device, nicknanes);
416 }

418 |l'i bhal _free_string_array(ni cknames);

419 |'i bhal _drive_free(d);

420 rnm vol unes_free(vol umas) ;

421 vol umes = NULL;

422 }

424 I'i bhal _free_string_array(udis);

425 }

427 [*

428 * find vol une by nicknanme

429 * returns the LibHal Drive object and a |ist of LibHal Vol ume objects.
430 *

431 LibHal Drive *

432 rmm_hal _vol ume_fi ndby_ni cknanme(Li bHal Cont ext *hal _ctx, const char *nane,
433 GSLi st **vol unes)

434 {

435 DBusEr r or error;

436 Li bHal Dri ve *drive = NULL;

437 Li bHal Dri ve *drive_t np;

438 char **udi s;

439 int num udi s;

440 char **ni cknanes;

441 int i, s

443 *vol umes = NULL;

445 dbus_error_init(&error);

447 if ((udis = libhal _find_device_by_capability(hal _ctx, "storage",
448 &umudis, &error)) == NULL)

449 rmm dbus_error_free(&error);

450 return (NULL);

451 }

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

453 /* find a drive by nickname */

454 for (i =0; (i < numudis) & (drive == NULL); i++)

455 if ((ni cknamas = libhal _devi ce_get _property_strlist(hal_ctx,
456 udi s[i], "storage.solaris.nicknames", &error)) == NULL) {
457 rmm dbus_error_free(&error);

458 conti nue;

459 }

460 for (j = 0; (nicknames[j] != NULL) && (drive == NULL); j++) {
461 if (strcnp(nicknanmes[j], name) == 0) {

462 drive = libhal _drive_fromudi (hal _ctx, udis[i]);
463 }

464

465 l'i bhal _free_string_array(nicknanes);

466 1

467 libhal _free_string_array(udis);

469 if (drive !'= NULL) {

470 /* found the drive, now find its vol unes */

471 if ((drive_tnmp = rmm_hal _ voI une_f i ndby(hal _ctx,

472 "bl ock. st orage_devi ce", |ibhal _drive_get_ udi (drive),

473 vol unes)) !'= NULL)

474 I'i bhal _drive_free(drive_tnp);

475 }

476 }

478 rmm dbus_error_free(&error);

480 return (drive);

481 }

483 void

484 rnmm vol unes_free(GSLi st *vol unes)

485 {

486 GSList *i;

488 for (i = volunes; i != NULL; i = g_slist_next(i)) {

489 I'i bhal voI ume_free((Li bHal Vol ume *) (i ->data));

490 }

491 g_slist_free(vol unes);

492 }

494 [*

495 * Call HAL’s Munt () nethod on the given device

496 *

497 bool ean_t

498 rnm hal _nount (Li bHal Cont ext *hal _ctx, const char *udi,

499 char **opts, int numopts, char * mount poi nt, DBusError *error)

500 {

501 DBusConnecti on *dbus_conn = |ibhal _ctx_get_dbus_connection(hal _ctx);
502 DBusMessage *dmesg, *reply;

503 char *f stype;

505 dprintf("mounting %...\n", udi);

507 if (!(dmesg = dbus_nessage_new_net hod_cal | ("org. freedesktop. Hal ", udi,
508 "org. freedeskt op. Hal . Devi ce. Vol ume", "Munt"))) {

509 dprintf(

510 "mount failed for %: cannot create dbus nessage\n", udi);
511 return (B_FALSE);

512 1

514 fstype = "";

515 if (mount p0| nt == NULL) {

516 mountpoint = "";

517 }

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

519
520
521
522
523
524
525
526

528
529
530
531
532
533
534

536

538
539

541

543
544

547
548
549
550
55118
552
553
554
555

557

559
560
561
562
563
564

566
567
568
569
570
571

573
574
575
576
577
578
579

581
583

if (!dbus_nessage_append_ar gs(dnesg,
DBUS_TYPE_STRI NG, &f st ype,
DBUS_TYPE_ARRAY, DBUS_ TYPE STRING, &opts,
DBUS_TYPE_I NVALI D))
dprintf("nount failed for %:
dbus_nessage_unr ef (dnesg) ;
return (B_FALSE);

DBUS_TYPE_STRI NG, &nmount poi nt,
num opt s,

cannot append args\n", udi);

}

dbus_error_init(error);
if (!(reply = dbus_connection_send_with_reply_and_bl ock(dbus_conn,
dmesg, RVM _MOUNT_TI MEQUT, error)))
dprintf("mount failed for %:
dbus_nessage_unr ef (dnesg) ;
return (B_FALSE);

%\ n", udi, error->nessage);

}

dprintf("nmounted %\n", udi);

dbus_nessage_unr ef (dmesg) ;
dbus_nessage_unref (reply);

rmm dbus_error_free(error);

return (B_TRUE);

}
/*
* Call HAL's Unnount () nethod on the given device
*
bool ean_t
rmm_hal _unnount (Li bHal Cont ext *hal _ctx, const char *udi, DBusError *error)
{
DBusConnecti on *dbus_conn = |ibhal _ctx_get _dbus_connecti on(hal _ctx);
DBusMessage *dnesg, *reply;
char **opts = NULL;
dprintf("unnounting %...\n", udi);
if (!(dnesg = dbus_nessage_new_net hod_cal | ("org. freedesktop. Hal ", udi,
"org. freedeskt op. Hal . Devi ce. Vol ume", "Unnount"))) {
dprintf(
"unnount failed %: cannot create dbus message\n", udi);

return (B_FALSE);
}

if (!dbus_nessage_append_args(dnesg,
&opts, O, DBUS_TYPE_I NVALID)) {
dprintf("unmount failed %:
dbus_nessage_unr ef (dnesg) ;
return (B_FALSE);

DBUS_TYPE_ARRAY, DBUS_TYPE_STRI NG

cannot append args\n", udi);

}

dbus_error_init(error);

if (!(reply = dbus_connection_send_wi th_reply_and_bl ock(dbus_conn,

dnesg, RIVM_UNNCUNT_TI MEQUT, error)))

dprintf("unmount failed for %: %\n", udi, error->nmessage);
dbus_nessage_unr ef (dnesg) ;
return (B_FALSE);

}

dprintf("unnounted %\n", udi);

dbus_nessage_unr ef (dnesg) ;

new usr/src/ crmd/ rmvol mgr/ r nm common. ¢ 10

584

dbus_nessage_unref (reply);

586 rmm dbus_error_free(error);

588 return (B_TRUE);

589 }

592 /*

593 * Call HAL's Eject() nethod on the given device

594 */

595 bool ean_t

596 rmm hal _ej ect (Li bHal Context *hal _ctx, const char *udi, DBusError *error)

597 {

598 DBusConnection *dbus_conn = |ibhal _ctx_get_dbus_connection(hal _ctx);
599 DBusMessage *dnesg, *reply;

600 char **options = NULL;

601 uint_t numoptions = 0;

603 dprintf("ejecting %...\n", udi);

605 if (!(dmesg = dbus_nessage_new_net hod_cal | ("org. freedesktop. Hal ", udi,
606 "org. freedeskt op. Hal . Devi ce. St orage", "Eject")))

607 dprintf("eject %: cannot create dbus message\n", udi);

608 return (B_FALSE);

609 }

611 if (!dbus_nessage_append_args(dnesg,

612 DBUS_TYPE_ARRAY, DBUS_TYPE_STRI NG &options, numoptions,

613 DBUS_TYPE_I NVALID)) {

614 dprintf("eject %: cannot append args to dbus nessage ", udi);
615 dbus_nessage_unr ef (dnesg) ;

616 return (B_FALSE);

617 }

619 dbus_error_init(error);

620 if (!(reply = dbus_connection_send_wi th_reply_and_bl ock(dbus_conn,
621 dnesg, RM\/I_E.JECT_TI MEQUT, error)))

622 dprintf("eject %: %\n", udi, error->nessage);

623 dbus_nessage_| unref(dmesg)

624 return (B_FALSE);

625 }

627 dprintf("ejected %\n", udi);

629 dbus_nessage_unr ef (dnmesg) ;

630 dbus_nessage_unref (reply);

632 rmm dbus_error_free(error);

634 return (B_TRUE);

635 }

637 [*

638 * Call HAL's CloseTray() nethod on the given device

639 */

640 bool ean_t

641 rmm hal _cl osetray(Li bHal Cont ext *hal _ctx, const char *udi, DBusError *error)
642 {

643 DBusConnection *dbus_conn = |ibhal _ctx_get _dbus_connection(hal _ctx);
644 DBusMessage *dnesg, *reply;

645 char **options = NULL;

646 uint_t num options = O;

648 dprintf("closing tray %...\n", udi);

650
651

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢
if (!(dnesg = dbus_nessage_new_net hod_cal | ("org. freedesktop. Hal ", udi,
"org. freedesktop. Hal . Devi ce. St orage", "CloseTray"))) {
dpri ntf(

652
653
654
655
656

658
659
660
661
662
663
664
665

667
668
669
670
671
672
673

675

677
678

680

682
683

685
686
687
688
689

691
692

694

696
697
698
699
700
701

703
704
705
706
707
708
709

711

713
714

"cl osetray failed for %: cannot create dbus nmessage\n",
udi
return (B FALSE) ;
}

if (!dbus_nessage_append_args(dnesg,
DBUS_TYPE_ARRAY, DBUS TYPE _STRI NG &opti ons,
DBUS_TYPE_| NVALI D))
dprintf("closetray %:
udi) ;
dbus_nessage_unr ef (dnesg) ;
return (B_FALSE);

num opti ons,

cannot append args to dbus nessage ",

}
dbus_error_init(error);
if (!(reply = dbus_connection_send_wi th_reply_and_bl ock(dbus_conn,
dmesg, RVM CLOSETRAY_TI MECQUT, error)))
dprintf("closetray failed for %: %\n", udi, error->nessage);
dbus_nessage_unr ef (dnesg) ;
return (B_FALSE);
}
dprintf("closetray ok %\n", udi);
dbus_nessage_unr ef (dnesg) ;
dbus_nessage_unref (reply);
rmm dbus_error_free(error);
return (B_TRUE);
}
/*
* Call HAL’s Rescan() nethod on the given device
*/
bool ean_t
rmm_hal _rescan(Li bHal Cont ext *hal _ctx, const char *udi, DBusError *error)
DBusConnecti on *dbus_conn = |ibhal _ctx_get_dbus_connection(hal _ctx);
DBusMessage *dnesg, *reply;
dprintf("rescanning %...\n", udi);
if (!(dnesg = dbus_massage_new_mat hod_cal | ("org.freedesktop. Hal ", udi,

"org. freedeskt op. Hal . Devi ce"
dprintf("rescan failed for :

"Rescan"))) {
cannot create dbus nessage\n",

udi);
return (B FALSE) ;

}

dbus_error_init(error);

if (!(reply = dbus_connection_send_with_reply_and_bl ock(dbus_conn,

dmesg, -1, error))) {

dprintf("rescan failed for %: %\n", udi, error->nessage);
dbus_nessage_unr ef (dnesg) ;
return (B_FALSE);

}

dprintf("rescan ok %\n", udi);

dbus_nessage_unr ef (dnesg) ;
dbus_nessage_unref (reply);

11

new usr/src/ cnd/ rmvol mgr/ r nm common. ¢ 12

716

rnm dbus_error_free(error);

718 return (B_TRUE);

719 }

721 bool ean_t

722 rmm_hal _cl ai m branch(Li bHal Context *hal _ctx, const char *udi)

723 {

724 DBusError error;

725 DBusConnection *dbus_conn = |ibhal _ctx_get _dbus_connection(hal _ctx);
726 DBusMessage *dnesg, *reply;

727 const char *clained_by = "rmvol ngr";

729 dprintf("claimng branch %...\n", udi);

731 if (!(dmesg = dbus_nessage_new_net hod _call ("org. freedesktop. Hal ",
732 "/ or g/ freedesktop/ Hal / Manager", "org.freedesktop. Hal . Manager "
733 "dal nBranch"))) {

734 dprintf("cannot create dbus nessage\n");

735 return (B_FALSE);

736 }

738 if (!dbus_nessage_append_args(dmesg, DBUS TYPE _STRING &udi,

739 DBUS_TYPE_STRING, &clai med_by, DBUS_TYPE | NVALID)) {

740 dprintf("cannot append args to dbus message\n");

741 dbus_nessage_unr ef (dnesg) ;

742 return (B_FALSE);

743 }

745 dbus_error_init(&error);

746 if (!(reply = dbus_connection_send_wi th_reply_and_bl ock(dbus_conn,
747 dmesg, -1, &error))) {

748 dprintf("cannot send dbus message\n");

749 dbus_nessage_unr ef (dnesg) ;

750 rmm dbus_error_free(&error);

751 return (B_FALSE);

752 }

754 dprintf("claimbranch ok %\n", udi);

756 dbus_nessage_unr ef (dnesg) ;

757 dbus_nessage_unref (reply);

759 return (B_TRUE);

760 }

762 bool ean_t

763 rmm _hal _uncl ai m branch(Li bHal Cont ext *hal _ctx, const char *udi)

764 {

765 DBusError error;

766 DBusConnecti on *dbus_conn = |ibhal _ctx_get_dbus_connection(hal _ctx);
767 DBusMessage *dnmesg, *reply;

768 const char *clained_by = "rmvol ngr";

770 dprintf("unclaimng branch %...\n", udi);

772 if (!(dmesg = dbus_nessage_new_net hod _call ("org. freedesktop. Hal "
773 "/ org/freedesktop/ Hal / Manager", "org. freedesktop. Hal . Manager
774 "Uncl ai nBranch"))) {

775 dprintf("cannot create dbus nessage\n");

776 return (B_FALSE);

777 }

779 if (!dbus_message_append_ar gs(dnesg, DBUS_TYPE_STRI NG &udi,

780 DBUS_TYPE_STRING, &clai med_by, DBUS TYPE INVALID)) {

781 dprintf("cannot append args to dbus message\n");

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

782 dbus_nessage_unr ef (dnesg) ;

783 return (B_FALSE);

784 }

786 dbus_error_init(&error)

787 if (!(reply = dbus_connection_send_wi th_reply_and_bl ock(dbus_conn,
788 dmesg, -1, &error))) {

789 dprlntf(cannot send dbus nessage\n");
790 dbus_nessage_unr ef (dnesg) ;

791 rnm_dbus_error_free(&error),

792 return (B_FALSE);

793 }

795 dprintf("unclaimbranch ok %\n", udi);

797 dbus_nessage_unr ef (dnesg) ;

798 dbus_nessage_unref (reply);

800 return (B_TRUE);

801 }

803 static bool ean_t

804 rmm acti on_one(Li bHal Context *hal _ctx, const char *nane, action_t action,
805 const char *dev, const char *udi, LibHal Volunme *v,

806{ char **opts, int numopts, char *nountpoint)

807

808 char dev_str [MAXPATHLEN] ;

809 char *nount p;

810 DBuUSEr r or error;

811 bool ean_t ret = B_FALSE;

813 dprintf("rmm.action_one % %\n", nane, action_strings[action]);
815 #endif /* ! codereview */

816 if (strcnp(nanme, dev) == 0) {

817 (void) snprintf(dev_str, sizeof (dev_str), nane);
818 } else {

819 (void) snprintf(dev_str, sizeof (dev_str), "% %", nane,
820 }

822 dbus_error_init(&error);

824 switch (action) {

825 case EJECT:

826 ret = rmm hal _eject(hal _ctx, udi, &error);

827 br eak;

828 case | NSERT:

829 case REMOUNT

24 if (I i bhal _vol ume_i s_nmounted(v)) {

25 goto done;

26

830 ret = rmm_hal _nmount (hal _ctx, udi,

831 opts, numopts, mountpoint, &error);

832 br eak;

833 case UNMOUNT:

31 if (!libhal _volume_is_mounted(v)) {

32 got o done;

33 }

834 ret = rmm hal _unnount (hal _ctx, udi, &error);

835 br eak;

836 case CLOSETRAY:

837 ret = rmmhal _cl osetray(hal _ctx, udi, &error);
838 br eak;

839 }

841 if (lret) {

13

dev);

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

842 (void) fprintf(stderr, gettext("% of % failed: %\n"),
843 action_stri ngs[actl on], dev_str, rmm strerror(&error
844 got o done;

845 }

847 switch (action) {

848 case EJECT:

849 (void) printf(gettext("% ejected\n"), dev_str);

850 br eak;

851 case | NSERT:

852 case REMOUNT:

853 mountp = rnm get _mttab_nount _poi nt (dev);

854 if (mountp !'= NULL)

855 (void) printf(gettext("% nounted at %\n"),
856 dev_str, nountp);

857 free(nount p);

858

859 break;

860 case UNMOUNT:

861 (v0| d) printf(gettext("% unmounted\n"), dev_str);
862 br eak

863 case CLOSETRAY:

864 (void) printf(gettext("% tray closed\n"), dev_str);
865 br eak;

866 }

868 done:

869 rmm dbus_error_free(&error);

870 return (ret);

871 }

873 | *

874 * top level action routine

875 *

876 * If non-null 'aa' is passed, it will be used, otherw se a |ocal copy
877 * will be created.

878 *

879 bool ean_t

880 rmm acti on(Li bHal Context *hal _ctx, const char *name, action_t action,
881 struct action_arg *aap, char **opts, int numopts, char *nountpoint)
882

883 DBusEr ror error;

884 GSLi st *vol unes, *i;

885 Li bHal Dri ve *d;

886 Li bHal Vol une *V;

887 const char *udi, *d_udi;

888 const char *dev, *d_dev;

889 struct action_arg aa_l ocal ;

890 bool ean_t ret = B _FALSE;

892 dprintf("rmmaction % %\n", name, action_strings[action]);
894 if (aap == NULL)

895 bzero(&aa_| ocal, sizeof (aa_local));

896 aap = &aa_l ocal;

897 }

899 dbus_error_init(&error);

901 /* find the drive and its vol umes */

902 d = rmm_hal _vol une_find(hal _ctx, nane, &error, &volunes);
903 rrrm_dbus error_free(&error);

904 if (d NULL) {

905 (voi d) fpri tf(stderr, gettext("cannot find '%’\n"),
906 return (B_FALSE);

907 }

14

-1));

nane) ;

new usr/src/ cnd/ rmvol mgr/ r nm_common. ¢ 15
908 d_udi = libhal _drive_get_udi(d);
909 d_dev = libhal _drive_get_device_file(d);
910 if ((d_udi == NULL) || (d_dev == NULL)) {
911 goto out;
912 }
914 /*
915 * For those drives that do not require nedia eject,
916 * EJECT turns into UNMOUNT.
917 */
918 if ((action == EJECT) && !libhal _drive_requires_eject(d)) {
919 action = UNMOUNT;
920 }
922 I*
923 * We can’t nount or unmount a drive that has no vol unes.
924 * Either the nmedia isn't inserted or it’s not formatted
925 */
926 if (volumes == NULL && (action != EJECT && action != CLOSETRAY)) {
927 (void) fprintf(stderr, libhal _drive_requires_eject(d) ?
928 gettext("no volunes in "%’ to %\n") :
929 gettext("no volunmes on '%’ to 9%\n"),
930 nane, action_strings[action]);
931 goto out;
932 }
934 #endif /* ! codereview */
935 /* per drive action */
936 if ((action == EJECT) || (action == CLOSETRAY))
937 ret = rmm.action_one(hal _ctx, name, action, d_dev, d_udi, NULL,
938 opts, numopts, NULL);
940 if (!ret || (action == CLOSETRAY)) {
941 goto out;
942 }
943
945 /* per volune action */
946 for (i = volumes; i !'= NULL; i = g_slist_next(i)) {
947 v = (LibHal Vol une *)i->dat a;
948 udi = |ibhal _vol ume_get _udi (Vv);
949 dev = |ibhal _vol unme_get _device_file(v);
951 if ((udi == NULL) || (dev == NULL)) {
952 conti nue;
953 }
954 if (aap == &aa_local) {
955 if (!rmmvolume_aa_fromprop(hal _ctx, udi, v, aap)) {
956 dprintf("rnmmyvolune_aa_fromprop failed %\n",
957 udi) ;
958 continue;
959 }
960
961 aap->aa_action = action;
963 /* ejected above, just need postprocess */
964 if (action != EJECT) {
965 ret = rnm.action_one(hal _ctx, nanme, action, dev, udi, v,
966 opts, numopts, nountpoint);
967 }
968 i1f (ret) {
969 (voi d) vol d_postprocess(hal _ctx, udi, aap);
970 }
972 if (aap == &aa_local) {

973 rmm vol une_aa_free(aap);

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

974 }

975 1

977 out:

978 if (volumes != NULL)

979 #endif /* | codereview */

980 rmm vol umes_free(vol unes);
981 if (d!= NULL)

982 #endif /* ! codereview */

983 l'ibhal _drive_free(d);
985 return (ret);

986 }

989 /*

990 * rescan by nane

991 * if name is NULL, rescan all drives

992 */

993 bool ean_t

994 rmm rescan(Li bHal Context *hal _ctx, const char *name, bool ean_t query)

995 {
996 DBuUSETr r or error;
997 GSLi st *vol unes;
998 Li bHal Dri ve *drive = NULL;
999 const char *drive_udi;
1000 char **udi s;
1001 int num udi s;
1002 char *ni cknane;
1003 char **ni cks = NULL;
1004 bool ean_t do_free_udis = FALSE;
1005 int i;
1006 bool ean_t ret = B_FALSE;
1008 dprintf("rmmrescan %\n", nane != NULL ? nanme : "all");
1010 dbus_error_init(&error);
1012 if (name != NULL)
1013 if ((drive = rmm hal _vol une_find(hal _ctx, nane, &error,
1014 &vol umes)) == NULL)
1015 rmm dbus_error_free(&error);
1016 (void) fprintf(stderr,
1017 gettext("cannot find '%’'\n"), nane);
1018 return (B_FALSE);
1019
1020 rnm dbus_error_free(&error);
1021 g_slist_free(vol unes);
1023 drive_udi = libhal _drive_get_udi (drive);
1024 udis = (char **)&drive_udi;
1025 numudis = 1;
1026 } else {
1027 if ((udis = libhal _find_device_by_capability(hal_ctx,
1028 "storage", &umudis, &error)) == NULL) {
1029 rmm dbus_error_free(&error);
1030 return (B_TRUE);
1031
1032 rnm dbus_error_free(&error);
1033 do_free_udis = TRUE;
1034 1
1036 for (i =0; i < numudis; i++) {
1037 if (name == NULL)
1038 ni cks = |ibhal _device_get_property_strlist(hal _ctx,
1039 udi s[i], "storage.solaris.nicknanmes", NULL);

16

new usr/src/ cnd/ rmvol mgr/ r nm_common. ¢ 17

1040 if (nicks !'= NULL) {

1041 ni ckname = ni cks[0];

1042 } else {

1043 ni ckname = "";

1044 }

1045

1046 if (!(ret = rmmhal _rescan(hal _ctx, udis[i], &error))) {
1047 (void) fprintf(stderr,

1048 gettext("rescan of % failed: %\n"),
1049 nanme ? nane : ni cknane,

1050 rmmstrerror(&error, -1));

1051 I'i bhal _free_string_array(nicks);

1052 conti nue;

1053 }

1054 1f (query) {

1055 ret = |ibhal _device_get_property_bool (hal _ctx, udis[i],
1056 "storage. renovabl e. medi a_avai |l abl e", NULL);
1057 if (ret) {

1058 printf(gettext("% is available\n"),
1059 nane ? nanme : ni cknane);

1060 } else {

1061 printf(gettext("% is not available\n"),
1062 nanme ? nane : ni cknane);

1063 }

1064

1065 i bhal _free_string_array(nicks);

1066 }

1068 if (drive !'= NULL) {

1069 i bhal _drive_free(drive);

1070

1071 if (do_free_udis)

1072 i bhal _free_string_array(udis);

1073 }

1075 return (ret);

1076 }

1079 /*

1080 * set action_arg fromvol une properties

1081 *

1082 bool ean_t

1083 rmm vol une_aa_from prop(Li bHal Context *hal _ctx, const char *udi _arg,
1084 (Li bHal Vol ume *vol unme_arg, struct action_arg *aap)

1085

1086 Li bHal Vol ure *vol ume = vol ume_arg;

1087 const char *udi = udi _arg;

1088 const char *drive_udi;

1089 char *vol une_| abel ;

1090 char *ount poi nt ;

1091 int | en;

1092 int ret = B_FALSE;

1094 /* at |least udi or volume nust be supplied */

1095 if ((udi == NULL) && (volume == NULL)) {

1096 return (B_FALSE);

1097 }

1098 if (volume == NULL) {

1099 if ((volume = libhal _volune_fromudi(hal _ctx, udi)) == NULL) {
1100 dprintf("cannot get volune %\n", udi);

1101 goto out

1102 }

1103 }

1104 if (udi == NULL) {

1105 if ((udi = libhal _volune_get_udi (volurme)) == NULL) {

new usr/src/cnd/ rmvol mgr/ r mm common. ¢ 18
1106 dprintf("cannot get udi\n");

1107 goto out;

1108 }

1109 }

1110 drive_udi = |ibhal _vol une_get _storage_devi ce_udi (vol une);

1112 if (!(aap->aa_syndev = |ibhal _device_get_property_string(hal _ctx,
1113 drive_udi, "storage.solaris.|egacy.syndev", NULL))) {

1114 dprintf("property % not found %\n",

1115 "storage.sol aris.|egacy. syndev", drive_udi);

1116 goto out;

1117 1

1118 if (!(aap->aa_nedia = |ibhal _device_get_property_string(hal _ctx,
1119 drive_udi, "storage.solaris.|egacy. media_type", NULL))) {

1120 dprintf("property % not found %\n",

1121 "storage.solaris.|egacy. nedia_type", drive_udi);

1122 goto out;

1123 }

1125 /* nane is derived fromvolune |abel */

1126 aap- >aa_nanme = NULL;

1127 if ((volunme_l abel = (char *)libhal _device_get_property_string(hal _ctx,
1128 udi, "volune.label", NULL)) != NULL)

1129 if ((len = strlen(volune_label)) > 0) {

1130 aap->aa_nane = rnm.yvol d_convert_vol une_| abel (

1131 vol une_| abel , len);

1132 if (strlen(aap->aa_nane) == 0) {

1133 free(aap->aa_nane);

1134 aap->aa_nanme = NULL;

1135 }

1136 }

1137 libhal _free_string(vol unme_| abel);

1138 }

1139 /* if no |abel, then unnaned_<nedi atype> */

1140 if (aap->aa_name == NULL)

1141 aap- >aa_nanme = (char *)calloc(1, sizeof ("unnaned_floppyNNNN"));
1142 if (aap->aa_nane == NULL) {

1143 goto out;

1144

1145 (void) snprintf(aap->aa_nane, sizeof ("unnaned_floppyNNNN'"),
1146 "unnanmed_9%", aap->aa_nedia);

1147 }

1149 if (!(aap->aa_path = |ibhal _device_get_property_string(hal _ctx, udi,
1150 "bl ock. devi ce", NULL)))

1151 dprintf("property % not found %\n", "block.device", udi);
1152 goto out;

1153

1154 if (!(aap->aa_rawpath = |ibhal _device_get_property_string(hal _ctx, udi,
1155 "bl ock. sol aris.raw device", NULL))) {

1156 dprintf("property % not found %\n",

1157 "bl ock. sol ari s. raw_devi ce", udi);

1158 goto out;

1159

1160 if (!(aap->aa_type = |libhal __device_get_property_string(hal _ctx, udi,
1161 "vol une. f stype", NULL)))

1162 dprintf("property % not found %\n", "volune.fstype", udi);
1163 goto out;

1164 }

1165 if (!libhal _device_get_property_bool (hal _ctx, udi,

1166 "volune.is_partition"”, NULL)) {

1167 aap- >aa_partname = NULL;

1168 } else if (!(aap->aa_partnanme = |ibhal _devi ce_get_property_string(
1169 hal _ctx, udi, "block.solaris.slice", NULL)))

1170 dprintf("property % not found %\n",

1171 "bl ock.solaris.slice", udi);

new usr/src/ cnd/ rmvol mgr/ r nm_common. ¢ 19

1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189

1191

1193
1194
1195
1196
1197
1198
1199
1200
1201

1203
1204
1205
1206
1207

out :

}

goto out;

if (!'(mountpoint = |ibhal_device_get_property_string(hal _ctx, udi,
"vol une. mount _poi nt", NULL)))
dpri ntf("property % not found %\n",
"vol une. nount _point", udi);
goto out;

}
/*

* aa_nount poi nt can be reallocated in rnmmyvol ume_aa_updat e_nount poi nt ()
* won't have to choose between free() or libhal _free_string() later on
*/

aap- >aa_nount poi nt = strdup(nmunt point);

I'i bhal _free_string(nountpolnt);

i f (aap->aa_nountpoint == NULL)
dprintf("mountpoint is NULL %\n", udi);
goto out;

}

ret = B_TRUE

if ((volume !'= NULL) && (volume != volune_arg)) {
i bhal _vol ume_free(vol une);

}
if (lret) {
rmm vol une_aa_free(aap);

}
return (ret);

/* ARGSUSED */

voi d

rmm vol une_aa_updat e_nount poi nt (Li bHal Cont ext *hal _ctx,
struct action_arg *aap)

{
1208

1209
1210
1211
1212

1214
1215

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237

}

voi d

const char *udi,

if (aap->aa_mountpoint != NULL) {
free(aap- >aa_nount poi nt);

aap- >aa_nount poi nt = rnm_get _mmttab_nount _poi nt (aap- >aa_path);

rmm vol ume_aa_free(struct action_arg *aap)
1216 {

if (aap->aa_syndev != NULL)
i bhal _free_string(aap->aa_syndev);
aap- >aa_syndev = NULL;

}

if (aap->aa_nane != NULL) {
free(aap- >aa_nane);
aap->aa_nanme = NULL;

}

if (aap->aa_path !'= NULL) {
i bhal _free_string(aap->aa_path);
aap->aa_path = NULL;

}

if (aap->aa_rawpath != NULL) {
i bhal _free_string(aap->aa_rawpath);
aap- >aa_rawpath = NULL;

}

if (aap->aa_type != NULL) {
i bhal _free_string(aap->aa_type);
aap->aa_type = NULL;

}
if (aap->aa_nedia != NULL) {

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

1238 |I'i bhal _free_string(aap->aa_nedia);

1239 aap- >aa_nedi a = NULL;

1240

1241 if (aap->aa_partname != NULL) {

1242 i bhal _free_string(aap->aa_partnane);
1243 aap- >aa_partname = NULL;

1244 1

1245 if (aap- >aa mount point !'= NULL) {

1246 free(aap- >aa_nount p0| nt);

1247 aap- >aa_nount poi nt = NULL;

1248 1

1249 }

1251 /*

1252 * get device’'s mount point frommttab

1253 */

1254 char *

1255 rmm get _mmt t ab_nount _poi nt (const char *speci al)

1256 {

1257 char *mount _poi nt = NULL;

1258 FI LE *f

1259 struct mttab mt ;

1260 struct mttab mpref = { NULL, NULL, NULL, NULL, NULL };
1262 if ((f = fopen(MNTTAB, "r")) != NULL)

1263 nmpref. mt_special = (char *)special;

1264 if (getmtany(f, &mt, &npref) == 0)
1265 nmount _poi nt = strdup(mt. mt_nountp);
1266 }

1267 fclose(f);

1268 }

1270 return (rmount_point);

1271 }

1274 | *

1275 * get hunan readabl e string fromerror val ues

1276 */

1277 const char *

1278 rmm strerror (DBusError *dbus_error, int rmmerror)

1279 {

1280 const char *str;

1282 if ((dbus_error != NULL) && dbus_error_is_set(dbus_error)) {
1283 str = dbus_error->nessage;

1284 } else {

1285 switch (rnmerror) {

1286 case RW ECXK:

1287 str = gettext("success");

1288 br eak;

1289 case RVM EDBUS_CONNECT:

1290 str = gettext("cannot connect to D Bus");
1291 br eak;

1292 case RWL EHAL CONNECT:

1293 str = gettext("cannot connect to HAL");
1294 br eak

1295 defaul t:

1296 str = gettext("undefined error");
1297 break;

1298 }

1299 }

1301 return (str);

1302 }

new usr/src/ cnd/ rmvol mgr/ r nm_common. ¢ 21

1304 void

1305 rmm dbus_error_free(DBusError *error)

1306 {

1307 if (error !'= NULL && dbus_error_is_set(error)) {
1308 dbus_error_free(error)

1309

1310 }

1312 static int

1313 rmm.vol d_i sbadchar (i nt c)
1314 {

1315 int ret_val =0

1318 switch (c) {

1319 case '/’:

1320 case ';’:

1321 case '|’':

1322 ret_val = 1;

1323 br eak

1324 defaul t:

1325 if (iscntrl(c) || i
1326 ret_val = 1;
1327 }

1328 }

sspace(c)) {

1330 return (ret_val);
1331 }

1333 char *

1334 rmm.vol d_convert _vol unme_| abel (const char *nane, size_t |en)
1335 {

1336 char buf[NAXNANELEN+ﬂ

1337 char *s = buf;

1338 int i;

1340 if (len > MAXNAMELEN) {
1341 len = MAXNAMELEN:
1342 }

1344 for (i =0; i <len; i++)

1345 if (nane[i] == '\O) {
1346 br eak;

1347 }

1348 if (isgraph((int)nane[i])

1349 if (isupper((int) i

1350 *s++ = to ((int)nane[i]);

1351 } elseif (rnn1vo _i sbadchar ((int)name[i])) {
1352 *s++ = 7
1353 } else {

1354 *s++ = naneli];
1355 }

1356 }

1357 }

1358 *s = '\0";

1359 s = strdup(buf)

)) |

1361 return (s);
1362 }

1364 /*

1365 * swiped fromnkdir.c

1366 */

1367 int

1368 makepat h(char *dir, node_t node)
1369 {

new usr/src/ cnd/ rmvol mgr/ r nm common. ¢ 22
1370 int err;

1371 char *sl ash;

1374 if ((nkdlr(dlr node) == 0) || (errno == EEXIST)) {
1375 return (0)

1376 }

1377 if (errno !'= ENCENT) {

1378 return (-1)

1379 }

1380 if ((slash = strrchr(dir, '/’)) == NULL) {
1381 return (-1);

1382 }

1383 *slash = "\ 0’

1384 err = nakepath(d|r node)

1385 *slash++ = "/’ ;

1387 if (err || (*slash =="'\0")) {

1388 return (err)

1389 }

1391 return (nkdir(dir, node))

1392 }

1395 voi d

1396 dprintf(const char *fnt, ...)

1397 {

1399 va_list ap;

1400 const char *p

1401 char nmsg[BUFSI Z] ;

1402 char *errnsg = strerror(errno)
1403 char *s;

1405 if (rmmdebug == 0) {

1406 return

1407 }

1409 (void) nmenset(nmsg, 0, BUFSIZ);

1411 /* scan for %n and replace with errno nsg */
1412 s = &msg[strlen(nsg)]

1413 p = fnt;

1415 while (*p I'= ’\Oﬂ

1416 1 ((*p == "%) && (*(p+l) =="'m)) {
1417 (void) strcat(s, errmsg)
1418 p += 2;

1419 s += strlen(errnsg)

1420 conti nue

1421 }

1422 *S++ = *p++

1423 }

1424 *s = '\0"; /* don't forget the null byte */
1426 va_start(ap, fnt);

1427 (void) vfprintf(stderr, nmsg, ap)

1428 va_end(ap)

1429 }

new usr/src/cnmd/ rmvol ngr/vol d. ¢

R R R R

29524 Sun May 4 18:28:37 2014
new usr/src/cnd/ rmvol ngr/vol d. ¢
4833 Renove vol r mount
4845 rm(u) nount don’t always print nount/unnmount errors
4846 HAL partition nanes don't match real parition nanes
Revi ewed by: Dan McDonal d <danntd@miti.conp
Revi ewed by: Josef ’'Jeff’ Sipek <jeffpc@ osefsipek.net>

R R R R R R R

1/*

Copyri ght 2009 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terms.

2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governing perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 =
19 * CDDL HEADER END
20 *
21 *
20 */
21 /*
*
*
*

25 * Copyright 2014 Andrew Stornont
26 #endif /* | codereview */

27 */
29 /*
30 * Vold conpatibility for rnvol ngr: enulate old commands as well as
31 * action_filengr.so to notify |egacy apps via /tnp/.renovabl e pipes.
32 * Alot of this code is copied verbatimfromvold sources.
33 *
34 * Here's the original description of action_filengr.so:
35 *
36 * action_filengr.so - filengr interface routines for rnmount
37 *
38 * This shared object allows rmmunt to conmmunicate with filengr.
39 * This is done by conmunicating over a named pipe that filengr
40 * creates in directory NOTIFY_DIR The name of the pipe nust
41 * begin with NOTIFY_NAME. This source file contains #define
42 * conpiler directives set the values of NOTIFY_DI R and NOTI FY_NAME.
43 *
44 * After a partition on a nedium has been nmounted as a result of
45 * either insertion or renpunting of the medium the action()
46 * nethod creates a file nanmed with the synbolic name of the
47 * device in which the mediumis inserted and the partition name
48 * (e.g. "jaz0-s2") in NOTIFY_DIR The file consists of one text
49 * |ine containing a string nam ng the nount point of the partition,
50 * a string giving the raw device path to the partition, and a
51 * string naming the file systemtype on the partition. The action()
52 * method then sends a single character ('i’ for insertion, 'r’ for
53 * renounting) through the nanmed pi pe NOTI FY_NAME to tell filengr to
*
*

l ook for new files in NOTI FY_D R

new usr/src/cnd/ rmvol ngr/vol d. ¢

121

If a medium containing no nountable partitions is inserted
or remounted in a device, the action() nethod creates a file
naned with the synbolic name of the device in NOTIFY_D R
The file consists of one text line containing a string

gi ving the synbolic nane of the device and a string nam ng
the reason that the medium couldn’t be mounted. The action
met hod then sends either an 'i’ or an 'r’ through the nanmed
pipe to tell filengr to ook for new files in NOTIFY_D R

Wien a nediumis ejected or unnounted, the action() nethod
renoves the files that were created in NOTI FY_DI R when the nmedi um
was inserted or rempunted and sends a single character ('e for
ejection, 'u for unmounting) through the named pipe.

The foll owi ng environnent variables nust be set before calling action():
VOLUME_ACTI ON

VOLUVE_SYMDEV
VOLUVE_NANE

action that occurred (e.g. "insert", "eject")
synbolic nane (e.g. "cdronD", "floppyl")
vol une nane (e.g. "unnaned_cdront, "s2")

* Ok ok ok Sk R % O S O 3k b kb k% ok % b ¥

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>
#include <fcntl.h>

#i ncl ude <string. h>

#i ncl ude <strings. h>
#incl ude <dirent.h>

#i ncl ude <signal . h>

#i ncl ude <errno. h>

#i nclude <libintl.h>

#i ncl ude <zone. h>

#i ncl ude <pwd. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#i ncl ude <sys/ dki o. h>
#i ncl ude <sys/cdio. h>
#i ncl ude <sys/vtoc. h>
#i ncl ude <sys/param h>
#i ncl ude <sys/wait.h>
#include <libcontract. h>
#i ncl ude <sys/contract/ process. h>
#i ncl ude <sys/ctfs. h>
#i ncl ude <tsol /| abel.h>

#i ncl ude "vol d. h"
#i ncl ude "rnm common. h"

i nt rnm debug = 0;
bool ean_t rmm vol d_acti ons_enabl ed = B_FALSE;
bool ean_t rmm_vol d_nount poi nts_enabl ed = B_FALSE;
static char *prog_nane = NULL;
static pid_t prog_pid = O;
static Int system | abel ed = O;
static uid_t mt_uid = (uid_t)-1;
static gid_t mt_gid = (gid_t)-1;
static zoneid_t mmt_zoneid = -1;
static char mt _zoner oot [MAXPATHLEN] ;
static char mt _user di r [MAXPATHLEN] ;
/*
* Private attribute types and attributes.
*/
static const char notify_characters[] = {

new usr/src/cnmd/ rmvol ngr/vol d. ¢

122
123
124
125
126

128
129
130
131

133
134

24
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

152
153
154
155
156
157

159

}s

c- o

static const char *result_strings[] = {

b3

#def i
#def i

stati
stati
stati
stati
stati
stati

stati
stati
stati
stati
stati

/*

" FALSE",
" TRUE"
ne NOTI FY_DI R "/tnp/.renovabl e" /* dir where filengr
ne NOTI FY_NAME "notify"
c void vol r mmount _usage() ;
c void vol check_usage() ;
cint vol d_action(struct action_arg *aap);
c void vol d_updat e_nount poi nt s(struct action_arg *aap);
¢ char *not _nount abl e(struct action_arg *aa);
c int create_one_notify_file(char *fstype,
char *nount _poi nt,
char *notify_file,
char *raw_partitionp,
char *reason,
char *syndev);
cint create_notify_files(struct action_arg **aa);
¢ boolean_t notify_clients(action_t action, int do_notify);
c void popdir(int fd);
cint pushdi r(const char *dir);
¢ bool ean_t renpve_notify_files(struct action_arg **aa);

* should be called once from main()
*/

/* ARGSUSED */

voi d

vold_init(int argc, char **argv)
158 {

160 }
__unchanged_portion_onitted_

system | abel ed = is_system | abel ed();

| ooks */

/* naned pipe to talk over */

new usr/src/cnd/ rmvol ngr/vol d. h

R R R R

1974 Sun May 4 18:28:37 2014
new usr/src/cnd/ rmvol ngr/vol d. h
4833 Renove vol r mount
4845 rm(u) nount don’t always print nount/unnmount errors
4846 HAL partition nanes don't match real parition names
Revi ewed by: Dan McDonal d <danntd@miti.conp
Revi ewed by: Josef ’'Jeff’ Sipek <jeffpc@ osefsipek.net>

R R R R R R R

1/*

Copyri ght 2006 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terms.

2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governing perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 =
19 * CDDL HEADER END
20 *
21 *
20 */
21 /*
*
*
*

25 * Copyright 2014 Andrew Stornont.
26 #endif /* | codereview */
27 */

29 #ifndef _VOLD H
30 #define _VOLD H

24 #pragne ident " %YW % % %E% SM "
32 #ifdef __cplusplus

33 extern "C' {

34 #endif

36 #include <libhal.h>

38 typedef enum {

39 EJECT,
40 I NSERT,

41 REMOUNT,

42 UNMOUNT,

43 CLEAR MOUNTS,
44 CLOSETRAY

45 } action_t;
____unchanged_portion_onitted_

59 extern int rnm.debug;
60 extern bool ean_t rmmyvol d_acti ons_enabl ed;
61 extern bool ean_t rnmvol d_nount poi nts_enabl ed;

63 void vold_init(int argc, char **argv);
64 int vol d_postprocess(Li bHal Context *hal _ctx, const char *udi,

new usr/src/cnd/ rmvol ngr/vol d. h

65 struct action_arg *aap);

66 int vold_rmmunt(int argc, char **argv);
61 int vol rnmount (int argc, char **argv);
67 int vol check(int argc, char **argv);

69 #ifdef __ cplusplus

__unchanged_portion_omtted_

new usr/src/ man/ manl/ Makefil e

R R R R

13118 Sun May 4 18:28:37 2014
new usr/ src/ man/ manl/ Makefil e
4833 Renove vol r mount
4845 rm(u) nount don’t always print nount/unnmount errors
4846 HAL partition nanes don't match real parition nanes
Revi ewed by: Dan McDonal d <danntd@miti.conp
Revi ewed by: Josef ’'Jeff’ Sipek <jeffpc@ osefsipek.net>

R R R R R R R

1#

2 # This file and its contents are supplied under the ternms of the
3 # Common Devel oprment and Distribution License ("CDDL"), version 1.0
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet
9 # at http://ww.illunos.org/license/ CDDL

10 #

12 #

13 # Copyright 2011, Richard Lowe

14 # Copyright 2013 Nexenta Systens, Inc. Al rights reserved
15 # Copyright 2014 Andrew Stor nont

16 #endif /* | codereview */

17 #

19 include $(SRC) / Makefil e. mast er
21 MANSECT= 1
23 MANFI LES= acctcom 1 \
24 adb. 1 \
25 addbi b. 1 \
26 alias.1 \
27 all ocate. 1 \
28 ant. 1 \
29 appcert. 1 \
30 apptrace. 1 \
31 apropos. 1 \
32 ar. 1 \
33 arch. 1 \
34 asa. 1 \
35 at. 1 \
36 atqg. 1 \
37 atrm1 \
38 audi oconvert.1 \
39 audi octl .1 \
40 audi opl ay. 1 \
41 audi orecord. 1 \
42 audiotest. 1 \
43 auths. 1 \
44 awnk. 1 \
45 banner. 1 \
46 basenane. 1 \
47 bc. 1 \
48 bdiff.1 \
49 bfs. 1 \
50 break. 1 \
51 builtin.1 \
52 cal .1 \
53 cal endar. 1 \
54 cancel . 1 \
55 cat.1 \
56 cd. 1 \
57 cdrw. 1 \

new usr/src/ man/ manl/ Makefil e

checknr. 1
chgrp. 1
chkey. 1
chnod. 1
chown. 1
ckdate. 1
ckgid. 1
ckint.1
ckitem1
ckkeywd. 1
ckpath. 1
ckrange. 1
ckstr.1
cksum 1
cktime.1
ckuid. 1
ckyorn. 1
clear.1
cnp. 1
col.1
comm 1
command. 1
conpress. 1
cp. 1
cpio. 1
cputrack. 1
crle. 1
crontab. 1
crypt.1
csh. 1
csplit.1
ctags.1
ctrun. 1
ctstat.1
ctwatch. 1
cut.1
date. 1
dc. 1
deal | ocate. 1
deroff.1
dhcpinfo. 1
diff.1
diff3.1
di ffrk.1
digest.1
dircnp. 1
dis. 1

di sown. 1
di spgid. 1
di spuid. 1
dos2uni x. 1
downl oad. 1
dpost . 1
du. 1
dunp. 1
dunpcs. 1
echo. 1
ed. 1
egrep. 1
eject.1
el fdunp. 1
elfedit.1
el fsign. 1
el fwap. 1
enabl e. 1
encrypt.1

e e o e e e e e e e e e e e e o e o e o e o o e e e e e

new usr/ src/ man/ manl/ Makefil e 3 new usr/ src/ man/ manl/ Makefil e
124 enhance. 1 \ 190 last.1
125 env. 1 \ 191 I astcomm 1
126 eqn. 1 \ 192 1d. 1
127 exec. 1 \ 193 | dap. 1
128 exit.1 \ 194 | dapdel ete. 1
129 expand. 1 \ 195 I daplist.1
130 expr.1 \ 196 | daprodi fy. 1
131 exstr.1 \ 197 | dapnodrdn. 1
132 factor.1 \ 198 | dapsearch. 1
133 fdformat. 1 \ 199 ldd. 1
134 fgr ep. 1 \ 200 ld.so.1.1
135 file. 1 \ 201 let.1
136 fil ebench 1 \ 202 lex. 1
137 filesync.1 \ 203 lgrpinfo.1
138 find. 1 \ 204 limt.1
139 finger.1 \ 205 line. 1
140 ft.1 \ 206 list_devices.1
141 fmnsg. 1 \ 207 i st users. 1
142 fold. 1 \ 208 I n.
143 ftp.1 \ 209 Ioadkeys 1
144 ftpcount.1 \ 210 locale. 1
145 ft pwho. 1 \ 211 | ocal edef . 1
146 gcore. 1 \ 212 | ogger. 1
147 gencat. 1 \ 213 login.1
148 gennsg. 1 \ 214 | ognane. 1
149 getconf. 1 \ 215 | ogout . 1
150 getfacl .1 \ 216 | ook. 1
151 getl abel . 1 \ 217 | ookbi b. 1
152 getopt.1 \ 218 lorder.1
153 getoptcvt. 1 \ 219 Ip. 1
154 getopts. 1 \ 220 | pstat.1
155 gettext.1 \ 221 Is. 1
156 gettxt.1 \ 222 m. 1
157 get zonepat h. 1 \ 223 mac. 1
158 glob. 1 \ 224 mach. 1
159 gprof.1 \ 225 machi d. 1
160 grep.1 \ 226 madv. so. 1.1
161 groups. 1 \ 227 mail.1
162 hash. 1 \ 228 mai | conpat . 1
163 head. 1 \ 229 mailqg.1
164 history. 1 \ 230 mai | stats. 1
165 hostid. 1 \ 231 mail x. 1
166 host nane. 1 \ 232 makekey. 1
167 iconv.1 \ 233 man. 1
168 i ndxbi b. 1 \ 234 nconnect. 1
169 Intro.1 \ 235 nts. 1
170 ipcrm1 \ 236 mdb. 1
171 ipcs.1 \ 237 mesg. 1
172 isainfo. 1l \ 238 nkdir.1
173 isalist.1 \ 239 mknsgs. 1
174 jobs. 1 \ 240 mkt enp. 1
175 join.1 \ 241 noe. 1
176 kbd. 1 \ 242 nmore. 1
177 kdestroy. 1 \ 243 mpss.so. 1.1
178 keyl ogin. 1 \ 244 nmsgcc. 1
179 keyl ogout . 1 \ 245 msgcpp. 1
180 kill.1 \ 246 msgcvt. 1
181 kinit.1 \ 247 megfnt. 1
182 klist.1 \ 248 nmsggen. 1
183 kmdb. 1 \ 249 msgget . 1
184 knfcfg. 1 \ 250 m.1
185 kpasswd. 1 \ 251 nm.1
186 krb5-config. 1 \ 252 nawk. 1
187 ksh93. 1 \ 253 nc. 1
188 ktutil.1 \ 254 nca. 1l
189 lari.1 \ 255 ncab2cl f. 1

o e o e e e e e e e e e e e e o e o e o e o o e e e e e

new usr/ src/ man/ manl/ Makefil e 5 new usr/ src/ man/ manl/ Makefil e
256 ncaknod. 1 \ 322 rm1
257 newf orm 1 \ 323 rnformat. 1
258 newgrp. 1 \ 324 rmount . 1
259 news. 1 \ 325 roffbib. 1
260 newt ask. 1 \ 326 roles.1
261 nice. 1 \ 327 rpcgen. 1
262 nl.1 \ 328 rsh.1
263 nm 1 \ 329 runat.1
264 nohup. 1 \ 330 rup. 1
265 nroff.1 \ 331 ruptime. 1
266 od. 1 \ 332 rusers. 1
267 on.1 \ 333 rwho. 1
268 optisa.1l \ 334 sar. 1
269 pack. 1 \ 335 scp. 1
270 pagesi ze. 1 \ 336 script.1
271 pargs.1 \ 337 sdiff.1
272 passwd. 1 \ 338 sed. 1
273 paste. 1 \ 339 set. 1
274 pat hchk. 1 \ 340 setfacl .1
275 pax. 1 \ 341 setl abel . 1
276 pfexec. 1 \ 342 setpgrp. 1
277 pg. 1 \ 343 sftp. 1
278 pgrep. 1 \ 344 shconp. 1
279 pkgi nfo. 1 \ 345 shell _builtins.1
280 pkgnk. 1 \ 346 shift.1
281 pkgparam 1 \ 347 size. 1l
282 pkgproto. 1 \ 348 sleep. 1
283 pkgtrans. 1 \ 349 snbutil.1
284 pktool . 1 \ 350 soelim1
285 pl abel . 1 \ 351 sort. 1
286 plgrp.1 \ 352 sorthib. 1
287 plimt.1 \ 353 sotruss. 1
288 pmadvi se. 1 \ 354 spell.1
289 pnmap. 1 \ 355 split.1
290 postio. 1 \ 356 srchtxt.1
291 postprint.1 \ 357 ssh. 1
292 postreverse. 1 \ 358 ssh-add. 1
293 ppgsz. 1 \ 359 ssh-agent. 1
294 ppriv.1 \ 360 ssh- htt p- proxy-connect. 1
295 pr.1 \ 361 ssh-keygen. 1
296 praliases.1 \ 362 ssh-keyscan. 1
297 prctl.1 \ 363 ssh-socks5- proxy-connect . 1
298 preap. 1 \ 364 strchg. 1
299 prex.1 \ 365 strings. 1
300 print.1 \ 366 strip.1
301 printf.1 \ 367 stty. 1
302 priocntl.1 \ 368 sum 1
303 proc.1 \ 369 suspend. 1
304 prof.1 \ 370 svcprop. 1
305 profiles. 1 \ 371 sves. 1
306 projects. 1 \ 372 synorder. 1
307 ps. 1 \ 373 sys-suspend. 1
308 ptree. 1 \ 374 tabs. 1
309 pvs. 1 \ 375 tail.1l
310 pwd. 1 \ 376 talk. 1
311 ranlib.1 \ 377 tar.1
312 rcapstat.1 \ 378 thl.1
313 rcp. 1 \ 379 tcopy. 1
314 rdist.1 \ 380 tee.1
315 read. 1 \ 381 telnet.1
316 readonly. 1 \ 382 test.1
317 refer.1 \ 383 tftp. 1
318 regcnp. 1 \ 384 time. 1
319 renice. 1 \ 385 times. 1
320 rev.1 \ 386 tinmex. 1
321 rlogin.1 \ 387 tip.1

e e o e o e e e e e e e e o e o e o e o e o o e e e e e

new usr/src/ man/ manl/ Makefil e

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

15
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

MANL I NKS=

tnfdunp. 1
tnfxtract.1
touch. 1
tput.1l
tr. 1
trap.1
troff.1
true. 1
truss. 1
tsort.1
tty. 1
type. 1
typeset. 1
ul. 1
umask. 1
unane. 1
uni fdef. 1
unig. 1
units.1
uni x2dos. 1
uptine. 1
vacation. 1
vgrind. 1
vol check. 1
vol rnmmount . 1
w. 1

who. 1
whocal I's. 1
whoi s. 1
wite. 1l
xargs. 1
xgettext.1
xstr. 1
yacc. 1
yes. 1
ypcat. 1
ypmatch. 1
yppasswd. 1
ypwhi ch. 1
zlogin. 1
zonenane. 1

batch. 1
bg. 1
case. 1
chdir.1
checkeq. 1
continue. 1
decrypt. 1
di rnane. 1
dirs.1
disable. 1
dunpkeys. 1
edit.1
errange. 1
errdate. 1
errgid. 1
errint.1
erriteml
errpath. 1
errstr.1
errtime. 1

e —

e e e o e e e e e e e e e e e e e e e e e

new usr/src/ man/ manl/ Makefil e

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

erruid. 1
erryorn. 1
eval . 1
export.1
false. 1
fc.1

fg. 1

for.1
foreach. 1
function. 1
goto.1
hashcheck. 1
hashmake. 1
hashstat. 1
hel pdate. 1
hel pgi d. 1
hel pint.1
hel pitem 1
hel ppath. 1
hel prange. 1
hel pstr. 1
hel ptinme. 1
hel puid. 1
hel pyorn. 1
hist.1
i286.1
i386.1
i486.1
i860.1

i APX286. 1
if.1

ksh. 1

| dapadd. 1
neqn. 1
notify.1
onintr.1
page. 1
pcat.1
pcred. 1
pdpll.1
pfcsh. 1
pfiles. 1
pfksh. 1
pflags. 1
pfsh. 1
pkill.1
pldd. 1
popd. 1
prun.1
psig. 1
pstack. 1
pstop. 1
ptine.1
pushd. 1
pwait.1
pwdx. 1
red. 1
rehash. 1
remote_shel | .1

rksh93. 1

o e o e e e e e e e e e e o o o e e e

new usr/src/ man/ manl/ Makefil e

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

564
566
568
570
572
574
575
576
577
579
580
581

583
584

intro.1
unalias.1
batch. 1
di rnane. 1
continue. 1
chdir.1
dirs.1
popd. 1
pushd. 1
errdate. 1
hel pdate. 1
val date. 1

errgid. 1
hel pgid. 1

rmai | .1
rmdir. 1
rmunount . 1
select.1
setenv. 1
settine. 1
sh. 1
snca. 1
source. 1
sparc. 1
spellin.1
stop. 1
strconf.1
sun. 1
switch. 1
u370.1
u3b. 1
u3bis. 1
u3b2.1
u3b5. 1
ulimt.1
unalias. 1
unconpress. 1
unexpand. 1
unhash. 1
unlimt.1
unpack. 1
unset. 1
unsetenv. 1
until.1
val date. 1
valgid. 1
valint.1
val path. 1
val range. 1
val str.1
valtine. 1
valuid. 1
val yorn. 1
vax. 1
vedit.1l
whence. 1
while. 1l
zcat.1

1= LINKSRC =
:= LINKSRC =
1= LINKSRC =
LI NKSRC =

LI NKSRC =

LI NKSRC
LI NKSRC
LI NKSRC
LI NKSRC

LI NKSRC
LI NKSRC
LI NKSRC

LI NKSRC
LI NKSRC

o e e e o o e e e e e e e e e o o e —

Intro. 1
alias. 1
at.1
basenane. 1
break. 1
cd. 1
cd. 1
cd. 1
cd. 1
ckdate. 1
ckdate. 1
ckdate. 1

ckgid. 1
ckgid. 1

new usr/src/ man/ manl/ Makefil e

585 valgid. 1 = LINKSRC =
587 errint.1 = LI NKSRC
588 hel pint.1 = LI NKSRC
589 valint.1 = LI NKSRC
591 erritem1 = LI NKSRC
592 helpitem1 = LI NKSRC
594 errpath. 1 = LI NKSRC
595 hel ppath. 1 = LI NKSRC
596 val path. 1 = LI NKSRC
598 errange. 1 = LI NKSRC
599 hel prange. 1 = LI NKSRC
600 val range. 1 = LI NKSRC
602 errstr.1 = LI NKSRC
603 hel pstr.1 = LI NKSRC
604 val str.1 = LI NKSRC
606 errtine.1 = LI NKSRC
607 hel ptine. 1 = LI NKSRC
608 valtine. 1 = LI NKSRC
610 erruid. 1 = LI NKSRC
611 hel puid. 1 = LI NKSRC
612 valuid. 1 = LI NKSRC
614 erryorn. 1 = LI NKSRC
615 hel pyorn. 1 = LI NKSRC
616 valyorn.1 = LI NKSRC
618 unconpress. 1 = LI NKSRC
619 zcat.1 = LI NKSRC
621 red. 1 = LI NKSRC
623 disable. 1 = LI NKSRC
625 decrypt.1 = LI NKSRC
627 checkeq. 1 = LI NKSRC
628 neqgn. 1 = LI NKSRC
630 eval .1 = LI NKSRC
631 source. 1 = LI NKSRC
633 goto. 1 = LI NKSRC
634 return.1 = LI NKSRC
636 unexpand. 1 = LINKSRC =
638 hashstat.1 = LI NKSRC
639 rehash. 1 = LI NKSRC
640 unhash. 1 = LI NKSRC
642 fc.1 = LI NKSRC
643 hist.1 = LI NKSRC
645 bg. 1 = LI NKSRC
646 fg.1 = LI NKSRC
647 notify.1 = LI NKSRC
648 stop.1 = LI NKSRC
650 jsh. 1 = LINKSRC =

ckrange. 1
ckrange. 1
ckrange. 1

ckstr.1
ckstr.1
ckstr.1

cktime. 1
cktime.1
cktime.1

ckuid. 1
ckuid. 1
ckuid. 1

ckyorn. 1
ckyorn. 1
ckyorn. 1

conpress. 1
conpress. 1

ed. 1
enabl e. 1
encrypt.1

eqn. 1
eqn. 1

exec. 1
exec. 1

exit.1
exit.1

expand. 1

hash. 1
hash. 1
hash. 1

history. 1
history. 1

j obs.
j obs.
| obs.
| obs.

RPRREe

ksh93. 1

10

new usr/src/ man/ manl/ Makefil e

651 ksh. 1 = LI NKSRC
652 rksh.1 = LI NKSRC
653 rksh93.1 = LI NKSRC
654 sh. 1 = LI NKSRC
656 | dapadd. 1 = LINKSRC =
658 ulimt.1 = LI NKSRC
659 unlimt.1 = LI NKSRC
661 dunpkeys. 1 = LINKSRC =
663 i286.1 = LI NKSRC
664 i386.1 = LI NKSRC
665 i486.1 = LI NKSRC
666 i860.1 = LI NKSRC
667 i APX286. 1 = LI NKSRC
668 pdpll.1 = LI NKSRC
669 sparc.1 = LI NKSRC
670 sun. 1 = LI NKSRC
671 u370.1 = LI NKSRC
672 u3b. 1 = LI NKSRC
673 u3bl5. 1 = LI NKSRC
674 u3b2.1 = LI NKSRC
675 u3b5. 1 = LI NKSRC
676 vax.1 = LI NKSRC
678 rmail. 1 = LINKSRC =
680 page. 1 = LI NKSRC
682 snca. 1 = LI NKSRC
684 pcat. 1 = LI NKSRC
685 unpack. 1 = LI NKSRC
687 pfcsh. 1 = LI NKSRC
688 pfksh.1 = LI NKSRC
689 pfsh.1 = LI NKSRC
691 pkill.1 = LI NKSRC
693 pcred. 1 = LI NKSRC
694 pfiles.1 = LI NKSRC
695 pflags.1 = LI NKSRC
696 pldd. 1 = LI NKSRC
697 prun.1 = LI NKSRC
698 psig.1 = LI NKSRC
699 pstack.1 = LI NKSRC
700 pstop.1 = LI NKSRC
701 ptine. 1 = LI NKSRC
702 pwait.1 = LI NKSRC
703 pwdx. 1 = LI NKSRC
705 rndir. 1 = LI NKSRC
707 rmunmount . 1 = LINKSRC =
709 renote_shell.1 = LI NKSRC
710 rensh. 1 = LI NKSRC
712 export.1 = LI NKSRC
713 setenv.1 = LI NKSRC
714 unset. 1 = LI NKSRC
715 unsetenv. 1 = LI NKSRC

ksh93. 1
ksh93. 1
ksh93. 1
ksh93. 1

| dapnodi fy. 1

limt. 1
limt.1

| oadkeys. 1

machi d
machi d
machi d
machi d
machi d
machi d
machi d
machi d
machi d
machi d
machi d.
machi d
machi d
machi d

RPRRRRPRRRRERRRERRE

mil.1
nmore. 1
nca.l

pack. 1
pack. 1

pfexec. 1
pfexec. 1
pfexec. 1

pgrep. 1

he]
=
o
3]
RPRRRRRRRER R

rmmount . 1

rsh.
rsh.

set.
set.
set.
set.

RPRRRE PR

11

new usr/src/ man/ manl/ Makefil e

717
718
719
720
721
722
723
724
725
726

728

729
730

740
742
744
746

748 . KEEP_STATE

750
752

case. 1
for.1
foreach. 1
function. 1
if.1
repeat.1
select.1
switch.1
until. 1
while. 1l

hashcheck. 1
hashmake. 1
spellin.1
strconf. 1
settime. 1
onintr.1

false. 1

whence. 1

= LINKSRC = shell _builtins.1
= LINKSRC = shell _builtins.1
= LINKSRC = shell _builtins.1
= LINKSRC = shell _builtins.1
= LINKSRC = shell _builtins.1
= LINKSRC = shell _builtins.1
= LINKSRC = shell _builtins.1
= LINKSRC = shell _builtins.1
= LINKSRC = shell _builtins.1
= LINKSRC = shell _builtins.1
= LINKSRC = spell.1

= LINKSRC = spell.1

= LINKSRC = spell.1

= LINKSRC = strchg. 1

LINKSRC = touch. 1
= LINKSRC = trap.1
= LINKSRC = true. 1
:= LINKSRC = typeset.1

Links to usr/has/man

edit.1
vedit.1

i ncl ude

install

:= LI NKSRC

./..I1../has/ man/ manlhas/ edit. 1has

1= LI NKSRC ./..1../has/ man/ manlhas/vi . lhas

$(SRC) / man/ Makefi | e. man
$(ROOTMANFI LES) $(ROOTMANLI NKS)

12

new usr/src/ man/ manl/ fdf ormat. 1 1

R R R R

11823 Sun May 4 18:28:37 2014
new usr/src/ man/ manl/ fdf ormat. 1

4833
4845
4846

Renove vol r mount
rm(u) munt don’t always print nount/unnmount errors
HAL partition names don’t match real parition nanes

Revi ewed by: Dan McDonal d <danntd@miti.conp

Revi ewed by: Josef 'Jeff’

Si pek <jeffpc@ osefsi pek. net>

R R R R R R R

OWONOUTARWNE

"\ te

.\" Copyright 2001, Sun M crosystens,
.\" Copyright 2014 Andrew Stornont.
#endif /* | codereview */

.\" The contents of this file are subject to the terns of the Conmon Devel opnment
.\" You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE or http:
.\" Wen distributing Covered Code, include this CDDL HEADER in each file and in
. TH FDFORVAT 1 "May 2, 2014"

. TH FDFORVAT 1 “Feb 28, 2007"

Inc All Rights Reserved

SH NAME

fdformat \- format fl oppy diskette or PCMCI A nmenory card

. SH SYNOPSI S

LP

. nf

\ f Bf df or ma B- dDeEf H LnMUgux\ fR] [\fB-b\fR \fllabel\fR] [\fB-B\fR \flIfilen

mat\fR [\
[\fB-t\fR \fldostype\fR] [\fldevhane\fR]
i

. SH DESCRI PTI ON
Sp

The \fBfdformat\fR utility has been superseded by \fBrnformat\fR(1),
provi des nost but not all of \fBfdformat\fR s functionality.

.sp

.LP

\fBfdformat\fR i s used to format di skettes and \fBPCMCIA\fR nmenory cards. All
new bl ank di skettes or \fBPCMCI A fR nenory cards nust be formatted before they
can be used.

.sp

LP

\fBfdformat\fR formats and verifies the media and i ndicates whet her any bad
sectors were encountered. All existing data on the diskette or \fBPCMCI A fR
nenory card, if any, is destroyed by formatting. If no device name is given,
\fBfdformat\f R uses the diskette as a default.

.sp

. LP

By default, \fBfdformat\fR uses the configured capacity of the drive to format
the diskette. A\fB3.5\fR inch high-density drive uses diskettes with a
formatted capacity of \fBl.44MB\fR A \fB5.25\fR inch high-density drive uses
diskettes with a fornmatted capacity of \fBl.2MB\fR In either case, a density
option does not have to be specified to \fBfdformat\fR However, a density
option nmust be specified when using a diskette with a |ower capacity than the
drive’'s default. Use the \fB-H\fR option to format high-density diskettes
(\fB1.44MB\fR capacity) in an extra-high-density (\fBED\fR) drive. Use the
\fB-D\fR option, the \fB-I\fR option, or the \fB-L\fR option to fornmat doubl e-
density (or |lowdensity) diskettes (\fB720KB\fR capacity) in an \fBHD\fR or
\fBED\fR drive. To format medi umdensity diskettes (\fBl.2MB\fR capacity), use
the \fB-MfR option with \fB-t\fR \fBnec\fR (this is the same as using the
\fB-mfR option with \fB-t\fR \fBnec\fR).

.sp

.LP

Ext ended density uses doubl e-si ded, extended-density or extra-high-density
(\fBDS\f RI\fBED\fR) di skettes. Medium and high densities use the sane nedi a:
doubl e-si ded, high-density (\fBDS\f R/\fBHD\fR) di skettes. Double (low) density
uses doubl e-si ded, double-density (\fBDS\fR/\fBDD\ fR

.sp

. LP

whi ch

new usr/src/ man/ manl/ fdf ormat. 1

114

116
117

\fBD\fR) diskettes. Substituting diskettes of one density for diskettes of
either a higher or lower density generally does not work. Data integrity cannot
be assured whenever a diskette is formatted to a capacity not matching its
density.

.sp

.LP

A \fBPCMCIA\fR menory card with densities from\fB512KB\fR to \fB64MB\fR may be
formatted.

.sp

.LP

\fBfdformat\fR writes new identification and data fields for each sector on all
tracks unless the \fB-x\fR option is specified. For diskettes, each sector is
verified if the \fB-v\fR option is specified.

.sp

.LP

After formatting and verifying, \fBfdformat\fR wites an operating-system | abel
on block \fBO\fR Use the \fB-t\fR \fBdos\fR option (sane as the \fB-d\fR
option) to put an \fBMS-DOS\fR file systemon the diskette or \fBPCMClI A fR
menory card after the format is done. Use the \fB-t\fR \fBnec\fR option with
the \fB-MfR option (same as the \fB-mifR option) to put an \fBNEC-DOS\fR file
systemon a diskette. Otherwise, \fBfdformat\fR wites a \fBSunOS\fR | abel in
bl ock \fBO\fR

. SH OPTI ONS

.sp

.LP

The fol |l owi ng options are supported:

.sp

.ne 2

.na
\fB\fB-b\fR \fllabel \fRfR

.ad

. RS 15n

Label s the media with volune |abel. A SunCS volune |abel is restricted to 8
characters. A \fBDOS\fR volune |abel is restricted to 11 upper-case characters.
RE

.sp
.ne 2

.na
\fB\fB-B\fR \flfilenane\fRfR

. al
.RS 15n

Installs special boot |oader in filenane on an \fBM5-DOS\fR di s
option is only neaningful when the \fB-d\fR option (or \fB-t\
al so specified.

.RE

.sp
.ne 2

.na
\fB\fB-DIfRfR

.ad

. RS 15n

Formats a \fB720KB\fR (3.5 inch) or \fB360KB\fR (5.25 inch) double-density
di skette (same as the \fB-I\fR or \fB-L\fR options). This is the default for
doubl e-density type drives. It is needed if the drive is a high- or

ext ended-density type.

. RE

.sp
.ne 2

118 .na

119
120
121
122

\fB\fB-e\fRfR
.ad
. RS 15n

Ej ects the diskette when done. This feature is not available on all systens.

new usr/src/ man/ manl/ fdf ormat. 1

123

125
126
127
128
129
130
131
132
133

135
136

. RE

.sp
.ne 2

.na
\fB\fB-E\fRfR

.ad

RS 15n

Formats a \fB2.88MB\fR (3.5 inch) extended-density diskette.
default for extended-density type drives.

. RE

This is the

.sp
.ne 2

137 .na

138
139
140
141
142

\fB\fB-fA\fRfR

.ad

. RS 15n

Forces formatting, that is, this option does not ask for confirmation before
starting fornmat.

143 . RE

145
146
147
148
149
150
151
152
153

.sp
.ne 2

.na
\fB\fB-HfRfR

.ad

RS 15n

Formats a \fBl.44MB\fR (3.5 inch) or \fBLl. 2MB\fR (5.25 inch) high-density

di skette. This is the default for high-density type drives; it is needed if the
drive is the extended-density type.

154 . RE

156
157
158
159
160
161
162
163
164
165

.sp
.ne 2

. ha
\fB\fB-MfRfR
.ad
RS 15n
Wites a \fBl. 2MB\fR (3.5 inch) nmediumdensity format on a high-density
di skette (use only with the -t nec option). This is the same as using \fB-nHR

Sp
This feature is not available on all syst emns.

166 . RE

168
169
170
171
172
173
174

.sp
ne 2

\fB\fB-q\fR'\fR
ad

_RS 15n
QJI et;

does not print status nmessages.

175 . RE

177
178

.sp
.ne 2

179 .na

180
181
182
183
184

\fB\fB-t\fR \fBdos\fR fR

.ad

. RS 15n

Installs an \fBMS-DOS\fR file system and boot sector formatting. This is
equivalent to the \fBDOS\fR format command or the \fB-d\fR option.

185 . RE

187
188

.sp
.ne 2

new usr/src/ man/ manl/ fdf ormat. 1

189
190
191
192
193
194
195

.na
\fB\fB-t\fR \fBnec\fRfR

.ad

.RS 15n

Installs an \fBNEC-DOS\fR file system and boot sector on the disk after
formatting. This should be used only with the \fB-MfR option. This feature is
not available on all systens.

196 . RE

198
199
200
201
202
203
204
205

.sp
.ne 2

. na
\fB\fB-WfRfR

.ad

. RS 15n

Performs \fBumbunt\fR on any file systens and then formats. See
\ f Bount\ f R(1M) .

206 . RE

208
209

.sp
.ne 2

210 .na

211
212
213
214

\fB\fB-VAfRfR

.ad

.RS 15n

Verifies each block of the diskette after the format.

215 . RE

217
218

.sp
.ne 2

219 .na

220

\fB\fB-xX\fRfR

221 .ad

222
223

.RS 15n
Skips the format and only wites a SunCS | abel or an \fBM5-DOS\fR file system

224 . RE

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

. SH OPERANDS

.sp

.LP

The fol |l owi ng operands are supported:

.sp
.ne 2

.na
\fB\fldevnane\fRfR

.ad

RS 11n

Repl aces \fldevnane\fR with \fBrdi sketteO\fR (systenms w thout vol unme
managenent) or \fBfl oppyO\fR (systenms with vol une nanagenent) to use the first
drive or rdiskettel (systenms without volune managenent) or \fBfloppyl\fR
(systems with vol ume managenent) to use the second drive. If \fldevnane\fR is
omtted, the first drive, if one exists, is used. For \fBPCMCI A fR nmenory
cards, replace \fldevnane\fR with the device nanme for the \fBPCMCl A\ fR nmenory
card which resides in \fB/dev/rdsk/c\fINNfTRENFINNfFRA\fINfRS\fINNfRfR or

243 /dev/dsk/c\fINNfRINFINFRAVFINTRS\fINNfR |If \fldevhame\fR is onmitted, the
244 default diskette drive, if one exists, is used.

245 .sp

246 If devname is omtted, the default diskette drive, if one exists, will be used.
247 \fINNfR represents a deci mal nunber and can be specified as follows:

248 .sp

249 .ne 2

250 . na

251 \fBc\fINNfR fR

252 . ad

253 . RS 6n

254 Controller \fINNfR

new usr/src/ man/ manl/ fdf ormat. 1

255

257
258
259
260
261
262
263
264
265
266

268
269
270
271
272
273
274
275
276
277

281
282
283
284
285
286
287
288

290
291
292
293
294
295
296
297

299
300
301
302
303
304
305
306
307
308
309

311
312
313
314
315
316
317
318
319

. RE

.sp
.ne 2

.na
\fBE\fFINNFRfR

.ad

. RS 6n

Technol ogy type \fINNfR
.sp

.in +2
. nf

0x1 ROV
0x2 OTPROM
0x3 EPROM
0x4 EEPROM
0x5 FLASH
0x6 SRAM
0x7 DRAM
i

in -2

.sp

.RE

.sp
.ne 2

.na

\fBA\fINNFRfR

.ad

.RS 6n

Technol ogy region in type \fINNfR
.RE

.sp
.ne 2

.na
\fBs\fINMNfRfR
.ad

. RS 6n
Slice \fINfR
. RE

The follow ng options are provided for conpatibility with previous versions of
\fBfdformat\fR Their use is discouraged.

.sp
.ne 2

.na
\fB\fB-d\fRfR

.ad

.RS 6n

Formats an \fBVMS-DOS\fR fl oppy diskette or \fBPCMCI A\fR nenory card (sanme as
\fB-t\fR \fBdos\fR). This is equivalent to the \fBMs-DOS FORVAT\ f R command.
. RE

.sp
.ne 2

.na
\fB\fB-I\fRfR

.ad

. RS 6n

Formats a \fB720KB\fR (3.5 inch) or \fB360KB\fR (5.25 inch) double-density

di skette (same as \fB-DiIfR or \fB-L\fR). This is the default for doubl e-density
type drives; it is needed if the drive is the high- or extended-density type.

320 . RE

new usr/src/ man/ manl/ fdf ormat. 1

322
323
324
325
326
327
328
329
330

.sp
.ne 2

.na
\fB\fB-LAfRfR

.ad

. RS 6n

Formats a \fB720KB\fR (3.5 i
di skette (same as \fB-1\fR o
type drives.

f B360KB\f R (5.25 inch) doubl e-density
This is the default for double-density

331 . RE

333
334
335
336
337
338
339
340
341
342

344 .

346
347
348
349
350
351
352
353
354

356
357

358 .

359
360
361
362
363
364

366
367
368
369
370
371
372
373

375
376

377 .

378
379
380
381
382

.sp
.ne 2

. ha
\fB\fB-mMfRfR

. al
. RS 6n

Wites a \fB1.2 MB\fR (3.5 inch) nmedium density format on a high-density
di skette (use only with the \fB-t\fR \fBnec\fR option). This is the sane as
using \fB-MfR This feature is not available on all systens.

. RE

RE

. SH FI LES

.sp
.ne 2

.na
\f B/ dev/ di sketteO\fR

.ad

. RS 24n

Directory providing block device access for the nedia in floppy drive \fBO\fR
.RE

.sp
.ne 2

na
\ f B/ dev/ di sketteO\fR

.ad

. RS 24n

Directory providing character device access for the nedia in floppy drive
\fBO\fR

. RE

.sp
.ne 2

.ha
\fB/ dev/aliases/floppy0O\fR

.ad

. RS 24n

Synbolic link to the character device for the media in floppy drive \fBO\fR
.RE

.sp
.ne 2

na
\fB/ dev/rdi skette\fR

.ad

. RS 24n

Directory providing character device access for the nedia in the primary floppy
drive, usually drive \fBO\fR

383 . RE

385
386

.sp
.ne 2

new usr/src/ man/ manl/ fdf ormat. 1

387
388
389
390
391
392
393

395
396
397
398
399
400
401
402
403

405
406
407
408
409
410
411
412
413

415
416

417 .

418
419
420
421
422
423

425
426
427
428
429
430
431
432
433

435
436
437
438
439
440
434
435
441
442
443
444
445
446
447
448
449
450

na
\fB/dev/dsk/c\fINNFRINFINNFRA\VFINNFRS\fIN\fR fR

.ad

. RS 24n

Directory providing block device access for the \fBPCMCI A\ fR nenory card. See
OPERANDS for a description of \fINNfR

. RE

.sp
.ne 2

.na
\fg:/dev/rdsk/c\fleRt\flN\fRd\fIN\fRs\fIN\fR\fR

. al
. RS 24n

Directory providing character device access for the \fBPCMCI A fR nenory card.
See OPERANDS for a description of \fINNfR

.RE

.sp
.ne 2

.na
\fB/dev/aliases/pcmemfl S\fRfR

.ad

. RS 24n

Synbolic link to the character device for the \fBPCMCI A fR nmenory card in
socket \fIS\fR where \fIS\fR represents a \fBPCMCI A\ f R socket nunber.

. RE

.sp
.ne 2

na
\fB/dev/rdsk/c\fINNfRINFINVfRA\fFINfRS\fIN\f R fR

. al
. RS 24n

Directory providing character device access for the \fBPCMCI A fR nenory card.
See OPERANDS for a description of \fINNfR

.RE

.sp
.ne 2

.na
\fB/dev/dsk/c\fINNTRINFINNFRAVFINNFRS\fINVfR fR

.ad

. RS 24n

Directory providing block device access for the \fBPCMCI A\ fR nenory card. See
OPERANDS for a description of \fINNfTR

. RE

. SH SEE ALSO
.sp

.LP

\ fBcpi o\ fR(1),
\ f Bvol check\ f R(
\fBattributes\f
\ f Bvol check\ f R(
\fBprtvtoc\fR(1M
.SS "x86 Only"
.sp

.LP

\f Bf d\ f R(7D)

. SH NOTES

.sp

.LP

A diskette or \fBPCMCI AAfR menory card containing a \fBufs\fR file system
created on a SPARC based system (by using \fBfdformat\fR and \fBnewfs\fR(1M),
is not identical to a diskette or \fBPCMCI A fR nenory card containing a ufs

Bej ect\fR(1),
f

fBtar\fR(1)
Bnount \ f R()

] R(1),
2 U \fBprtvtoc\fR(1M,
5), \fBpcfs\fR
, \fBvol r moun
, \f

Battribute

\ f
1)
R(
1) I\S/; \f Bnewf s\fR(1M,

P AN
©

(2]

=

1]

2

=

-

e

new usr/src/ man/ manl/ fdf ormat. 1

451
452
453
454
455
456
457
458
459
460
461
462
463
464

465 .

467 .
468 .

469
470
471
472

file systemcreated on an x86 based system Do not interchange ufs diskettes or
nmenory cards between these platforms. Use \fBcpio\fR(1) or \fBtar\fR(1) to
transfer files on diskettes or nmenory cards between them A diskette or
\fBPCMCI A\ fR nmenory card formatted using the \fB-t\fR \fBdos\fR option (or
\fB-d\fR) for \fBMsS-DOS\fR does not have the necessary systemfiles, and is
therefore not bootable. Trying to boot fromit on a \fBPC fR produces the
foll owi ng nessage:

.sp

.in +2

. nf

Non- System di sk or disk error.

R?pl ace and strike any key when ready

Cfi

in -2

Currently, bad sector mapping is not supported on floppy diskettes or
\fBPCMCI A\ f R nenory cards. Therefore, a diskette or nenory card is unusable if
\fBfdformat\fR finds an error (bad sector).

8

new usr/src/ man/ manl/rnformat. 1 1

R R R R

14917 Sun May 4 18:28:38 2014
new usr/src/ man/ manl/rnfornmat. 1

4833
4845
4846

Renove vol r mount
rm(u) munt don’t always print nount/unnmount errors
HAL partition names don’t match real parition nanes

Revi ewed by: Dan McDonal d <danntd@miti.conp

Revi ewed by: Josef 'Jeff’

Si pek <jeffpc@ osefsi pek. net>

R R R R R R R

OWONOUTARWNE

"\" te

.\" Copyright (c) 2009, Sun Mcrosystens, Inc. All Rights Reserved.

.\" Copyright 2014 Andrew Stornont.

#endif /* I codereview */

.\" The contents of this file are subject to the terns of the Conmon Devel opnment
.\" You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE or http:
.\" Wen distributing Covered Code, include this CDDL HEADER in each file and in
. TH RVFORVAT 1 "May 2, 2014"

. TH RVFORVAT 1 “Feb 19, 2009"

. SH NAME

rnformat \- renovable rewitable nedia format utility

. SH SYNOPSI S

LP

. nf

\fBrnformat\fR [\fB-DeHW\fR [\fB-b\fR \fllabel\fR [\fB-c\fR \flblockno\fR]

I\f
[\fB— fRquick | long | force] [\fB-s\fR\flIfilenane\fR] [\fldevnanme\fR]

Cfi
.LP

. nf
\fBrnformat\fR\fB-WfR read | wite \fldevnane\fR
fi

.LP
. nf
\fBrnformat\fR \fB-I1\fR [\fldevnane\fR]
fi

. SH DESCRI PTI ON
.sp

.LP

The \fBrnformat\fR utility is used to format, |abel, partition, and perform
ot her miscell aneous functions on renpvable, rewitable nedia that include
floppy drives, and the \fBPCMCl AfR nmenory and \fBata\fR cards. The
\fBrnformat\fR utility should also be used with all USB mass storage devices,
including USB hard drives. This utility can also be used for the verification
and surface analysis and for repair of the bad sectors found during
verification if the drive or the driver supports bad bl ock managenent.

.sp

.LP

After formatting, \fBrnformat\fR wites the |abel, which covers the full
capacity of the nedia as one slice on floppy and \fBPCMCI A\ fR nenory cards to
mai ntain conpatibility with the behavior of \fBfdformat\fR The partition
informati on can be changed with the help of other options provided by
\fBrnformat\fR

. SH OPTI ONS

.sp

.LP

The foll owi ng options are supported:

.sp

.ne 2

.na
\fB\fB-b\fR \fllabel\fRfR
.ad

.sp .6

. RS 4n

Label s the media with a SUNOS | abel . A SUNCS vol une | abel nane is restricted to

new usr/src/ man/ manl/rnformat. 1

57
58
59

61

104
105

8 characters. For nedia size greater than 1 TB, an EFl |abel is created. For
witing a \fBDOS\fR Vol une | abel, the user should use \fBnkfs_pcfs\fR(1M.
. RE

.sp
.ne 2

.na
\fB\fB-c\fR \fl bl ockno\fRfR
ad

.sp .6

. RS 4n

Corrects and repairs the given block. This correct and repair option may not be
applicable to all devices supported by \fBrnformat\fR, as sone devices may have
a drive with bad bl ock nanagenent capability and others may have this option

implemented in the driver. If the drive or driver supports bad bl ock
managenent, a best effort is made to rectify the bad block. If the bad bl ock
still cannot be rectified, a message is displayed to indicate the failure to
repai r. The bl ock nunmber can be provided in decinal, octal, or hexadeci mal
format.

.sp
The normal floppy and \fBPCMCI A\ fR nmenory and ata cards do not support bad
bl ock managenent .

. RE

.sp
.ne 2

. na
\fB\fB-DIfRfR
ad

.sp .6

RS 4n

Formats a 720KB (3.5 inch) double density diskette. This is the default for
doubl e density type drives. This option is needed if the drive is a high or
ext ended-density type.

RE

.sp
ne 2

\fB\fB—e\fR\fR
ad

sp .6

RS 4n

Ej ects the media upon conpletion. This feature may not be available if the
drive does not support notorized eject.

.RE

.sp
.ne 2

106 .na

107
108
109
110
111
112
113
114

\fB\fB-F\fR quick | long | force\fR
.ad

.sp .6

. RS 4n

Formats the nedia.

.sp
The \fBquick\fR option starts a format without certification or format with
limted certification of certain tracks on the nedia.

115 .s

116
117

p
The \fBlong\fR option starts a conplete format. For sone devices this m ght
include the certification of the whole nedia by the drive itself

118 .s

119
120
121
122

p
The \fBforce\fR option to format is provided to start a long format w thout
user confirmation before the format I's started.
.sp
In |l egacy nedia such as floppy drives, all options start a |long format

new usr/src/ man/ manl/rnformat. 1

123
124
125

dependi ng on the node (Extended Density node,
Density node) with which the floppy drive operates by default.
nenory cards, all options start a long fornat.

Hi gh Density node, or Double
On \fBPCMCI A\ f R

126 . RE

128
129
130
131

.sp
.ne 2

.na
\fB\fB-H\fRfR
d

132 . a

133
134
135
136
137

.sp .6

. RS 4n

Formats a 1.44 MB (3.5 inch) high density diskette. This is the default for
hi gh density type drives. It is needed if the drive is the Extended Density
type.

138 . RE

140
141
142
143

.sp
.ne 2

.na
\fB\fB-1\fRfR
d

144 . a

145
146
147
148
149
150
151

153
154
155
156
157
158
159
160

.sp .6

. RS 4n

Lists all renovabl e devices. By default, without any options, \fBrnformat\fR
also lists all removable devices. If the \fBdev_nane\fR is gi ven,
\fBrnformat\fR lists the device associated with the \fBdev_name\fR The out put
shows the device pathnanme, vendor information, and the device type.

.RE

.sp
.ne 2

.na
\fB\fB-s\fR \flfilenane\fRfR

.ad

.sp .6

. RS 4n

Enabl es the user to lay out the partition information in the SUNCS | abel .

161 .s

162
163
164
165
166
167

168 . f

169
170

172
173
174
175
176
177
178
179
180
181
182

183 .i

184
185
186
187
188

p
The user should provide a file as input with informati on about each slice in a
format providing byte offset, size required, tags, and flags, as follows:

.sp
in 42

. nf
slices:
i
in -2
.sp

where \fIn\fRis the slice nunber, \floffset\fRis the byte offset at which the
slice \fInNfR starts, and \flsize\fRis the required size for slice \fIn\fR
Both \floffset\fR and \flsize\fR nust be a nultiple of 512 bytes. These nunbers
can be represented as deci mal, hexadecimal, or octal nunbers. No floating point
nunbers are accepted. Details about maximum nunber of slices can be obtained
fromthe \flSystem Adm ni stration Guide: Basic Adm nistration\fR

\VfINVfR = \floffset\fR, \flsize\fR [, \flflags\fR \fltags\fR]

.sp
To specify the \flsize\fR or \floffset\fR in kil obytes, negabytes, or

gi gabytes, add \fBKB\fR, \fBMB\fR, \fBGB\fR respectively. A nunber without a
suffix is assumed to be a byte offset. The flags are represented as foll ows:
.sp

n +2

f

Bwm
\
u\

read-write, nountable
read-wite, unnmountable

fR
fR
fR read-only, unnountable

i
n
Vi
\ f Bwu
\ fBr
Lfi

new usr/src/ man/ manl/rnformat. 1

189
190

192
193
194
195
196
197
198
199
200

.in -2
.sp

The tags are represented as follows: \fBunassigned\fR \fBboot\f
\fBswap\fR, \fBusr\fR, \fBbackup\fR \fBstand\fR \fBvar\fR \fB
\fBalternates\fR

Sp
The tags and flags can be omtted fromthe four tuple when finer control on
those values is not required. It is required to omt both or include both. If
the tags and flags are omtted fromthe four tuple for a particular slice, a
default value for each is assuned. The default value for flags is \fBwm fR and
for tags is \fBunassigned\fR

201 .s

202

p
Either full tag names can be provided or an abbreviation for the tags can be

203 used. The abbreviations can be the first two or nore letters fromthe standard
204 tag names. \fBrnformat\fR is case insensitive in handling the defined tags &
205 fl ags.

206 . sp

207 Slice specifications are separated by :

208 .sp

209 For exanpl e:

210 .sp

211 .in +2

212 . nf

213 slices: 0 = 0, 30MB, "wnf, "hone"

214 1 = 30MB, 51MB :

215 2 =0, 100MB, "wni', "backup"

216 6 = 81MB, 19MB

217 . fi

218 .in -2

219 .sp

221 \fBrnformat\fR does the necessary checking to detect any overlapping partitions
222 or illegal requests to addresses beyond the capacity of the nmedia under

223 consi deration. There can be only one slice information entry for each slice
224 \fIn\fR If nultiple slice information entries for the same slice \fIn\fR are
225 provided, an appropriate error nessage is displayed. The slice \fB2\fR is the
226 backup slice covering the whol e disk capacity. The pound sign character,

227 \fB#\fR, can be used to describe a line of coments in the input file. If the
228 line starts with \fBAfR, then \fBrnformat\fR i gnores all the characters

229 following \fB#A\fR until the end of the line.

230 .sp

231 Partitioning some of the nedia with very small capacity is permtted, but be
232 cautious in using this option on such devices.

233 .RE

235 .sp

236 .ne 2

237 .na

238 \fB\fB-WfRfR

239 . ad

240 .sp .6

241 . RS 4n

242 Perfornms \fBurmount\fR on any file systens and then formats. See

243
244
245

247
248

\fBmount\f R(1M. This option unnounts all the nounted slices and issues a |ong
fornmat on the device requested.
. RE

.sp
.ne 2

249 .na

250
251
252
253
254

\fB\fB-\WfRread | wite\fR
. ad

.sp .6

. RS 4n

Verifies each block of media after format. The wite verificationis a

new usr/src/ man/ manl/rnformat. 1

255 destructive mechanism The user is queried for confirmation before the

256 verification is started. The output of this option is a list of block nunbers,
257 which are identified as bad.

258 .sp

259 The read verification only verifies the blocks and report the bl ocks which are
260 prone to errors.

261 .sp

262 The list of block nunbers displayed can be used with the \fB-c\fR option for
263 repairing.

264 .RE

266 . SH OPERANDS

267 .sp

268 . LP

269 The fol | ow ng operand is supported:

270 .sp

271 .ne 2

272 .na

273 \fB\fldevnane\fRfR

274 . ad

275 .sp .6

276 . RS 4n

277 \fldevnane\fR can be provi ded as absol ute device pathnane or rel ative pathnanme
278 for the device fromthe current working directory or the nickname, such as
279 \fBcdrom fR or \fBrndisk\fR

280 .sp

281 For floppy devices, to access the first drive use \fB/dev/rdisketteO\fR (for
282 systens w thout volume managenent) or \fBfloppyO\fR (for systems with vol ume
283 mamnagenent). Specify \fB/dev/rdiskettel\fR (for systems without vol ume

284 managenent) or \fBfloppyl\fR (for systens with vol une managenent) to use the
285 second drive.

286 .sp

287 For systems without volune managenent running, the user can al so provide the
288 absol ute device pathname as \fB/dev/rdsk/c\fI2A\fR\fI2AfRAAFI2ATRS\fI?\fRfR or
289 the appropriate relative device pathnane fromthe current working directory.
290 . RE

292 . SH EXAMPLES

293 . LP

294 \fBExanple 1 \fRFornatting a Diskette

295 .sp

296 .in +2

297 . nf

298 exanpl e$ \fBrnformat -F quick /dev/rdiskette\fR

299 Formatting will erase all the data on disk.

300 Do you want to continue? (y/n)\fBy\fR

301 .fi

302 .in -2

303 .sp

305 . LP

306 \fBExanple 2 \fRFornatting a Diskette for a UFS File System

307 .sp

308 . LP

309 The foll owi ng exanple formats a diskette and creates a UFS file system

311 .sp

312 .in +2

313 .nf

314 exanpl e$ \fBrnformat -F quick /dev/aliases/floppyO\fR

315 Formatting will erase all the data on di sk.

316 Do you want to continue? (y/n)\fBy\fR

317 exanpl e$ \fBsu\fR

318 # \fB/usr/sbin/newfs /dev/aliases/floppyO\fR

319 newfs: construct a new file system/dev/rdiskette: (y/n)? \fBy\fR

320 /dev/rdiskette: 2880 sectors in 80 cylinders of 2 tracks, 18 sectors

new usr/src/ man/ manl/rnformat. 1

321
322
323
324
325
326
327

329
330
331

332 .

333

335
336
337
338
339
340
341
342
343
344

1.4MB in 5 cyl groups (16 c/g, 0.28MB/g, 128 i/Q)

super - bl ock backups (for fsck -F ufs -0 b=#) at:

32, 640, 1184, 1792, 2336,
#
i
.in -2
.sp
.LP
\fBExanple 3 \fRFormatti ng Renovabl e Media for a PCFS File System
.sp

LP
The fol |l owi ng exanpl e shows how to create an alternate \fBfdisk\fR partition:
.sp
Lin 42

. nf

exanpl e$ \fBrnfornmat -F quick /dev/rdsk/cOt4d0s2: c\fR
Formatting will erase all the data on disk.

Do you want to continue? (y/n)\fBy\fR

exanpl e$ \fBsu\fR

\fBfdi sk /dev/rdsk/cOt4d0s2: c\fR

\fBnkfs -F pcfs /dev/rdsk/cOt4d0s2: c\fR

Construct a new FAT file systemon /dev/rdsk/cOt4d0s2:c: (y/n)? \fBy\fR

345 #

346
347
348

350
351
352
353

355
356
357
358
359
360
361
362

fi
.in -2
.sp

.sp

.LP

The foll owi ng exanpl e describes how to create a \fBPCFS\fR file system
\fBwi thout\fR an \fBfdisk\fR partition:

.sp

Lin 42

. nf

exanpl e$ \fBrnformat -F quick /dev/rdiskette\fR
Formatting will erase all the data on disk.

Do you want to continue? (y/n)\fBy\fR

exanpl e$ \fBsu\fR

\fBnkfs -F pcfs -o nofdisk, size=2 /dev/rdiskette\fR

363 Construct a new FAT file systemon /dev/rdiskette: (y/n)? \fBy\fR
364 #

365 . fi

366 .in -2

367 .sp

369 .LP

370 \fBExanpl e 4 \fRListing All Renpvabl e Devi ces

371 .sp

372 . LP

373 The foll owi ng exanpl e shows how to |ist renmpvabl e devices. This output shows a
374 long listing of such devices.

376 .sp

377 .in +2

378 . nf

379 exanpl e$ rnformat -|

380 Looki ng for devices...

381 Logi cal Node: /dev/rdsk/c5t0d0s2

382 Physi cal Node: /pci @e, 600000/ usb@/ hub@/ st or age@/ di sk@, 0
383 Connected Device: TEAC FD- 05PUB 1026

384 Device Type: Floppy drive

385 Bus: USB

386 Size: 1.4 MB

new usr/src/ man/ manl/rnformat. 1

387
388
389
390
391

393
394
395

Label : fl oppy

Access perm ssions: Mediumis not wite protected.
i

.in -2

.sp

. SH FI LES

.sp
.ne 2

396 .na

397
398
399
400
401

\fB\f B/ dev/di sketteO\fRfR

.ad

.sp .6

. RS 4n

Directory providing block device access for the nedia in floppy drive 0.

402 . RE

404
405
406
407

.sp
.ne 2

. na
\fB\fB/dev/rdisketteO\fR fR
d

408 . a

409
410
411

.sp .6
. RS 4n
Directory providing character device access for the nedia in floppy drive O.

412 . RE

414
415

.sp
.ne 2

416 .na

417
418
419
420
421
422

\fB\fB/dev/aliases\fRfR

.ad

.Sp .6

.RS 4n

Directory providing synbolic links to the character devices for the different
nmedi a under the control of volume managenent using appropriate alias.

423 . RE

425
426
427
428
429
430
431
432

.sp
.ne 2

.na
\fB\fB/dev/aliases/floppyO\fRfR

.ad

.sp .6

. RS 4n

Synbolic link to the character device for the media in floppy drive 0.

433 . RE

435
436

.sp
.ne 2

437 .na

438

\fB\fB/dev/rdiskette\fRfR
d

439 . a

440
441
442
443
444

446
447

.sp .6

.RS 4n

Syrrbol ic link providing character device access for the nedia in the primry
floppy drive, usually drive O.

.sp
.ne 2

448 . na

449
450
451
452

\fB\fB/dev/dsk\fRfR
.ad

.sp .6

. RS 4n

new usr/src/ man/ manl/rnformat. 1

453
454

Directory providing block device access for the \fBPCMCI A\ fR nenory and ata
cards and renovabl e nedi a devices.

455 . RE

457
458

.sp
.ne 2

459 . na

460

\fB\fB/dev/rdsk\fR fR
d

461 . a

462
463
464
465

.sp .6

. RS 4n

Directory providing character device access for the \fBPCMCIAfR nenory and ata
cards and renopvabl e nedi a devi ces.

466 . RE

468
469

.sp
.ne 2

470 . na

471
472
473
474
475
476
477

479
480
481
482
483
484
485
486
487

\fB\f B/ dev/al i ases/ pcrenS\f R f R
.ad

"RS 4n

Synbollc link to the character device for the \fBPCMCIA\fR nenory card in
socket S, where S represents a \fBPCMCI A\fR socket nunber.

.RE

.sp
.ne 2

.na
\fB\fB/dev/aliases/rndi skO\f R fR

.ad

.sp .6

RS 4n

Syrrbollc li k to the generic renovable nedia device that is not a \fBCD-ROMfR,
floppy, \fBDVD-ROMfR, \fBPCMCI AAfR nmenory card, and so forth.

488 . RE

490
491
492
493

.sp
.ne 2

.na
\fB\fB/dev/rdsk\fRfR
d

494 . a

495
496
497
498

.sp .6

. RS 4n

Directory providing character device access for the \fBPCMCIAfR nenory and ata
cards and other renpvabl e devices.

499 . RE

501
502

.sp
.ne 2

503 .na

504

\fB\fB/dev/dsk\fRfR
d

505 . a

506
507
508
509
510

512

513 .

514
515
516
517
518

.Sp .6

.RS 4n

Di rect ory providing block device access for the \fBPCMCI AfR nenory and ata
cards and other renovable nmedia devices.

.RE

. SH SEE ALSO
sp

LP

fBcpio\fR(1), \
f Bvol check\ f R(1
f Bnewf s\ f R(1M ,
fBattributes\fR

Bej ect\fR(1),

f \fB fR(1),
), \fBfornmat\fR(1M
(

\
, \me}unt\fR(ll\/p

f Brpc. snserverd\fR(lM
fBpcfs\fR(7FS),

—— e —

\f B Bprtvtoc\fR(1
5), \fBscsa2u sb\fR(? D), \fBsd\f

new usr/src/ man/ manl/rnformat. 1

519
511
512
513
514
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

Budf s\ f R(7FS)
Bvol check\fR(1), \fBvol rmmount\fR(1), \fBfor \fR(1M, \fBnkfs

\ f

\ f mat _pcfs\fR(1M,
\fBmount\ fR(1M), \fBnewfs\fR(1M, \fBprtvtoc\fR(1M, \fBrmount\fR(1
\ f \ f
\

Bsd\ f R(7D)

=

Brpc. snserverd\fR(1M, \fBattributes\fR(5), \fBscsa2usb\fR(7D),
fBpcfs\fR(7FS), \fBudfs\fR(7FS)
.sp
. LP
\fl System Admi ni strati on Cuide: Basic Adm nistration\fR
. SH NOTES
.sp
.LP
Arewitable nedia or \fBPCMCI AfR nenory card or \fBPCMCIA\fR ata card
containing a \fBufs\fR file systemcreated on a SPARC based system (using
\fBnewfs\fR(1M) is not identical to a rewitable nmedia or \fBPCMCI A fR nenory
card containing a \fBufs\fR file systemcreated on an x86 based system Do not
i nterchange any renovabl e nedia containing \fBufs\fR between these platforns;
use \fBcpio\fR(1) or \fBtar\fR(1) to transfer files on diskettes or nmenory
cards between them For interchangeable filesystems refer to \fBpcfs\fR(7FS)
and \ f Budf s\ f R(7FS) .
.sp
.LP
\fBrnformat\fR might not list all renpvabl e devices in virtualization
envi ronnments.
. SH BUGS
.sp
.LP
Currently, bad sector napping is not supported on floppy diskettes or
\fBPCMCI A\ f R nmenory cards. Therefore, a diskette or nenory card is unusable if
\fBrnformat\fR finds an error (\fBbad sector\fR).

new usr/ src/ man/ manlni r mount . 1m 1

R R R R

5890 Sun May 4 18:28:38 2014
new usr/src/ man/ manlnl r mount . 1m
4833 Renove vol r mount
4845 rm(u) nount don’t always print nount/unnmount errors
4846 HAL partition nanes don't match real parition names
Revi ewed by: Dan McDonal d <danntd@miti.conp
Revi ewed by: Josef ’'Jeff’ Sipek <jeffpc@ osefsipek.net>
IR RS S SRS RS R R SRR SRR R R R SRR EEE SRS EEEEEEEEEEEREEERERSE]
"\ te
.\" Copyright (c) 2004, Sun Mcrosystens, Inc. Al Rights Reserved
.\" Copyright 2014 Andrew Stornont.
#endif /* | codereview */
.\" The contents of this file are subject to the terns of the Conmon Devel opnment
.\" You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE or http:
.\" Wen distributing Covered Code, include this CDDL HEADER in each file and in
. TH RWOUNT 1M "May 2, 2014"
. TH RWOUNT 1M "Mar 1, 2007"
. SH NAME
10 rmmount \- renovabl e nedia nounter for CD-ROM floppy, Jaz drive, and others
11 . SH SYNOPSI S

LP

OWONOUTARWNE

13 . nf
14 \fB/usr/sbin/rmount\fR [\fB-D\fR]
i

17 . SH DESCRI PTI ON
18 .sp

.LP
20 The \fBrmmount\fR utility is a renpvabl e nedia nounter that is executed by
21 vol une nanagenent whenever a renopvable medium such as a \fBCD-ROMfR or a
22 floppy, is inserted. Renpvable nedia is managed by an application or a vol une
23 manager .
18 manager. \fBrmmount\fR can al so be called by using \fBvol rmmount\fR(1).
24 .sp
25 . LP
26 Upon insertion of a mediumand follow ng invocation of the \fBvol check\fR(1)
27 command, \fBrnmount\fR determ nes what type of file system (if any) is on that
28 medium If a file systemis present, \fBrmmount\fR nmounts the file systemin
29 one of the locations |isted bel ow
30 .sp
31 .LP
32 For a diskette (floppy):
33 .sp
34 .ne 2

.na
36 \fB\fB/fl oppy/floppyO\fR fR
.ad
38 . RS 26n
39 synbolic link to mounted floppy in local floppy drive
. RE
42 .sp
43 .ne 2
.na
45 \fB\f B/ f | oppy/ f | oppy_nane\ f R fR
.ad
47 . RS 26n
48 nount ed naned fl oppy
. RE
51 .sp
52 .ne 2
.na
54 \fB\f B/ fl oppy/ unnaned_f | oppy\f R fR
.ad

new usr/src/ man/ manlni r rmount . 1m

56
57

.RS 26n
nmount ed unnaned fl oppy

58 . RE

121

.sp
.LP

For a CD-ROM or a DVD- ROM
.sp

.ne 2

.na
\fB\fB/ cdrom cdronD\f R fR

.ad

.sp .6

.RS 4n

synbolic link to nounted \fBCD-ROMfR in local \fBCD-ROMfR drive
.RE

.sp
.ne 2

. na
\ f B\ f B/ cdrom CD- ROM nane\f R f R
.ad

.sp .6

. RS 4n

nount ed named \fBCD- ROM f R
. RE

.sp
.ne 2

.na
\ f B\ f B/ cdrom CD- ROM nane/ partiti on\fR fR

.ad

.Sp .6

.RS 4n

mounted nanmed \fBCD-ROMfR with partitioned file system
.RE

.sp
.ne 2

.na
\ f B\ f B/ cdr oml unnaned_cdrom f R f R
.ad

.sp .6

. RS 4n

nount ed unnaned \fBCD- ROM f R
. RE

.sp
. LP

For a Zip drive:

.sp
.ne 2

. na
\fB\fB/rndi sk/zi pO\f R fR

.ad

. RS 30n

synbolic link to nounted Zip nediumin local Zip drive
.RE

.sp
.ne 2

.na
\fB\fB/rndisk/\flZip_name\fRfR fR
.ad

. RS 30n

nount ed named Zi p medi um

new usr/ src/ man/ manlni r mount . 1m

122

124
125
126
127
128
129
130

. RE

.sp
.ne 2

.na
\fB\fB/rndi sk/\flZi p_name\fR/ partition\fRfR

.ad

. RS 30n

nmount ed named Zip mediumwi th partitioned file system

131 .RE

133
134

135 .

136
137
138
139

.sp
.ne 2

na
\ f B\ f B/ r ndi sk/ unnaned_zi p\fR fR
.ad

. RS 30n

nmount ed unnamed Zi p nmedi um

140 .RE

142 .
143 .

144
145
146
147
148
149
150
151

For a Jaz drive:

.sp
.ne 2

.na
\fB\fB/rndi sk/jazO\fR fR

.ad

. RS 30n

synbolic link to nounted Jaz nediumin |local Jaz drive

152 . RE

154
155

156 .

157
158
159
160

.sp
.ne 2

na
\fB\fB/rndi sk/\flJaz_name\fRfR fR

.a
. RS 30n
nmount ed named Jaz medi um

161 .RE

163
164
165
166
167
168
169

.sp
.ne 2

.na
\fB\fB/rndi sk/\flJaz_name\fR/ partition\fRfR

.ad

. RS 30n

mount ed nanmed Jaz nmediumw th partitioned file system

170 . RE

172
173
174
175
176
177
178
179

181 .
182 .

183

184 .
185 .

186
187

.sp
.ne 2

.na

\fB\f B/ rndi sk/ unnaned_Jaz\f R f R
.ad

. RS 30n

nount ed unnanmed Jaz nedi um

. RE

For a generic "rndisk" drive:

. ha
\fB\f B/ rndi sk/rndi skO\fR fR

new usr/src/ man/ manlni r rmount . 1m

188
189
190
191

.ad

.sp .6

. RS 4n

synbolic link to nounted renpvabl e nediumin | ocal renpvabl e nediumdrive

192 . RE

194
195
196
197
198
199
200
201

.Sp
.ne 2

. na
\fB\fB/rndi sk/\flrndi sk_name\fRfR fR
.ad

.sp .6

.RS 4n

nmount ed named renovabl e medi um

202 . RE

204
205

206 .

207
208
209
210
211
212

214
215
216
217
218
219
220
221

.sp
.ne 2

na
\fB\fB/rndi sk/\flrndi sk_name\fR/ partition\fRfR
. ad

.sp .6

. RS 4n

nount ed named renovable mediumwi th partitioned file system
.RE

.sp
.ne 2

. na
\ fB\f B/ rmdi sk/ unnanmed_r ndi sk\ f R f R
.ad

.sp .6

. RS 4n

nount ed unnaned renopvabl e nedi um

222 .RE

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

.sp
.LP

If the media is read-only (for exanple, a \fBCD-ROMfR or a floppy with
wite-protect tab set), the file systemis nounted read-only.

.sp

.LP

If afile systemis not identified, \fBrmmount\fR does not nount a file system
See the \fI\fR for nore information on the |ocation of \fBCD-ROMfR, fl oppy,
and other nmedia without file systens.

.sp

.LP

If afile systemtype has been determined, it is then checked to see that it is
"clean." If the file systemis "dirty," \fBfsck\fR\fB-p\fR (see
\fBfsck\fR(1M) is run in an attenpt to clean it. If \fBfsck\fR fails, the file
systemis nounted read-only.

.sp

. LP

After the nount is conplete, "actions" associated with the nedia type are
executed. These actions allow for the notification to other prograns that new
nedi a are avail abl e.

.sp

.LP

Actions are executed in the order in which they appear in the configuration
file. The action function can return either \fBI\fR or \fBO\fR If it returns
\fBO\fR, no further actions will be executed. This allows the function to
control which applications are executed.

.sp

.LP

In order to execute an action, \fBrmount\fR perforns a \fBdl open\fR(3C) on the
shared object and calls the action function defined within it. The definition

new usr/ src/ man/ manlni r mount . 1m

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

273
274
275
276
277
278
279
280

of the interface to actions can be found in \fB/usr/include/rmount.h\fR

.sp

. LP

File systems nounted by \fBrnmount\fR are al ways nmounted with the \fBnosuid\fR
flag set, thereby disabling setuid prograns and access to bl ock or character
devices in that file system Upon ejection, \fBrmmount\fR unmounts nmounted file
systenms and executes actions associated with the nedia type. If a file system
is "busy" (that is, it contains the current working directory of a live
process), the ejection will fail.

. SH OPTI ONS

.sp

.ne 2

.na
\fB\fB-DIfRfR

.ad

. RS 6n

Turn on the debuggi ng output fromthe \fBrmount\fR \fBdprintf\fR calls.
. RE

. SH FI LES

.sp

.ne 2

. na

\fB\fB/usr/lib/rmount/*.so. 1\fRfR

. al
. RS 27n
shared obj ects used by \fBrmount\fR

281 . RE

283
284
285
286
281
287
288
289
290

. SH SEE ALSO
.sp

. LP

\f Bvol check\fR(1),
\ fBvol check\fR(1),
\fBattributes\fR(5)
.sp

. LP

\fIVfR

\fBf sck\ f R(1M, \fBdl open\fR(3C),
\fBvol rmmount\ f R(1), \fBfsck\fR(1M, \fBdl open\fR(3C),

new usr/ src/ pkg/ mani f est s/ servi ce- st or age- nedi a- vol une- nanager . nf

R R R R

2802 Sun May 4 18:28:38 2014
new usr/src/ pkg/ mani f est s/ servi ce- st or age- nedi a- vol une- manager . nf
4833 Renove vol r mount
4845 rm(u) nount don’t always print nount/unnmount errors
4846 HAL partition nanes don't match real parition names
Revi ewed by: Dan McDonal d <danntd@miti.conp
Revi ewed by: Josef ’'Jeff’ Sipek <jeffpc@ osefsipek.net>

R R R R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing permn ssions

11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each

14 # file and include the License file at usr/src/ OPENSOCLARI S. LI CENSE.
15 # |If applicable, add the followi ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]

18 #

19 # CDDL HEADER END

20 #

22 #

23 # Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved.
24 # Copyright 2012 Nexenta Systens, Inc. Al rights reserved.

25 # Copyright 2014 Andrew Stornont.

26 #endif /* | codereview */

29 set nane=pkg.fnri val ue=pkg:/service/storage/ nedi a- vol unme- manager @/(PKGVERS)
30 set nane=pkg. description val ue="Non-graphi cal renovabl e vol umre manager"

31 set nane=pkg. summary val ue="Renpbvabl e vol ume manager"

32 set nane=i nfo.classification val ue=org. opensol ari s. cat egory. 2008: Syst emf Medi a
33 set name=vari ant.arch val ue=$(ARCH)

34 dir path=lib variant.opensol ari s.zone=gl obal

ir path=lib/svc variant.opensol aris. zone=gl obal

r path=lib/svc/ mani fest group=sys variant.opensol ari s. zone=gl obal

37 dir path=lib/svc/ manifest/system group=sys variant.opensol ari s. zone=gl obal
ir path=lib/svc/manifest/systen filesystem group=sys \

39 vari ant . opensol ari s. zone=gl obal

40 dir path=lib/svc/ method variant.opensol aris. zone=gl obal
41 dir pat h=usr group=sys
42 dir path=usr/bin
43 dir path=usr/lib
44 dir pat h=usr/sbhin
45 dir pat h=usr/share/ man/ manl
r

pat h=usr/ shar e/ man/ manlm
47 file path=lib/svc/ manifest/systen filesysten rmvol ngr.xm group=sys node=0444 \
48 vari ant . opensol ari s. zone=gl obal
49 file path=lib/svc/method/svc-rnvol ngr node=0555 \
50 vari ant . opensol ari s. zone=gl obal

file path=usr/bin/rnformt node=4555

file path=usr/bin/rmount node=0555

file path=usr/bin/vol check nbde=0555
25 file path=usr/bin/vol rmmount node=0555

file path=usr/lib/rmol mgr nmde=0555

file path=usr/share/ man/ manl/rnformat.1

file path=usr/share/ man/ manl/ r mount. 1

new usr/ src/ pkg/ mani f est s/ servi ce- st or age- nedi a- vol une- nanager . nf

(Root)" \

57 file path=usr/share/ man/ manl/ vol check. 1

30 file path=usr/share/ man/ manl/ vol r mount . 1

58 file path=usr/share/ man/ manlni r mount. 1m

59 file path=usr/share/ man/ manlnf r mvol ngr. 1m

60 | egacy pkg=SUNW nvol ngr desc="Non- graphi cal renovabl e vol une manager"” \
61 name="Renovabl e vol ume manager"

62 | egacy pkg=SUNW nvol ngrr desc="Non-graphi cal renovable vol ume manager
63 nane="Renovabl e vol une manager (Root)"

64 |icense cr_Sun |icense=cr_Sun

65 cense |ic_CDDL |icense=lic_CDDL

67 nk pat h=usr/sbi n/rmmount target=../bin/rmount

l'i
li
66 |ink path=usr/bin/rmunmount target=./rmount
l'i
68 |ink path=usr/share/ man/ manl/rnunount. 1 target=rmount.1

