
new/usr/src/cmd/Makefile 1

**
 10877 Sun May 4 18:28:35 2014
new/usr/src/cmd/Makefile
4833 Remove volrmmount
4845 rm(u)mount don’t always print mount/unmount errors
4846 HAL partition names don’t match real parition names
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright 2010 Nexenta Systems, Inc. All rights reserved.
24 # Copyright (c) 2012 Joyent, Inc. All rights reserved.
25 # Copyright (c) 2012 by Delphix. All rights reserved.
26 # Copyright (c) 2013 DEY Storage Systems, Inc. All rights reserved.
27 # Copyright 2014 Andrew Stormont.
28 #endif /* ! codereview */

30 include ../Makefile.master

32 #
33 # Note that the commands ’agents’, ’lp’, ’perl’, and ’man’ are first in
34 # the list, violating alphabetical order. This is because they are very
35 # long-running and should be given the most wall-clock time for a
36 # parallel build.
37 #
38 # Commands in the FIRST_SUBDIRS list are built before starting the build
39 # of other commands. Currently this includes only ’isaexec’ and
40 # ’platexec’. This is necessary because $(ROOT)/usr/lib/isaexec or
41 # $(ROOT)/usr/lib/platexec must exist when some other commands are built
42 # because their ’make install’ creates a hard link to one of them.
43 #
44 # Commands are listed one per line so that TeamWare can auto-merge most
45 # changes.
46 #

48 FIRST_SUBDIRS= \
49 isaexec \
50 platexec

52 COMMON_SUBDIRS= \
53 allocate \
54 availdevs \
55 lp \
56 perl \
57 man \

new/usr/src/cmd/Makefile 2

58 Adm \
59 abi \
60 adbgen \
61 acct \
62 acctadm \
63 arch \
64 asa \
65 ast \
66 audio \
67 auths \
68 autopush \
69 avs \
70 awk \
71 awk_xpg4 \
72 backup \
73 banner \
74 bart \
75 basename \
76 bc \
77 bdiff \
78 beadm \
79 bfs \
80 bnu \
81 boot \
82 busstat \
83 cal \
84 calendar \
85 captoinfo \
86 cat \
87 cdrw \
88 cfgadm \
89 checkeq \
90 checknr \
91 chgrp \
92 chmod \
93 chown \
94 chroot \
95 clear \
96 clinfo \
97 cmd-crypto \
98 cmd-inet \
99 col \
100 compress \
101 consadm \
102 coreadm \
103 cpio \
104 cpc \
105 cron \
106 crypt \
107 csh \
108 csplit \
109 ctrun \
110 ctstat \
111 ctwatch \
112 datadm \
113 date \
114 dc \
115 dd \
116 deroff \
117 devfsadm \
118 syseventd \
119 devctl \
120 devinfo \
121 devmgmt \
122 devprop \
123 dfs.cmds \

new/usr/src/cmd/Makefile 3

124 diff \
125 diff3 \
126 diffmk \
127 dircmp \
128 dirname \
129 dis \
130 diskmgtd \
131 dispadmin \
132 dladm \
133 dlstat \
134 dmesg \
135 dodatadm \
136 dtrace \
137 du \
138 dumpadm \
139 dumpcs \
140 echo \
141 ed \
142 eeprom \
143 egrep \
144 eject \
145 emul64ioctl \
146 enhance \
147 env \
148 eqn \
149 expand \
150 expr \
151 exstr \
152 factor \
153 false \
154 fcinfo \
155 fcoesvc \
156 fdetach \
157 fdformat \
158 fdisk \
159 filesync \
160 fgrep \
161 file \
162 filebench \
163 find \
164 flowadm \
165 flowstat \
166 fm \
167 fmt \
168 fmthard \
169 fmtmsg \
170 fold \
171 format \
172 fs.d \
173 fstyp \
174 fuser \
175 fwflash \
176 gcore \
177 gencat \
178 geniconvtbl \
179 genmsg \
180 getconf \
181 getdevpolicy \
182 getent \
183 getfacl \
184 getmajor \
185 getopt \
186 gettext \
187 gettxt \
188 grep \
189 grep_xpg4 \

new/usr/src/cmd/Makefile 4

190 groups \
191 grpck \
192 gss \
193 hal \
194 halt \
195 head \
196 hostid \
197 hostname \
198 hotplug \
199 hotplugd \
200 hwdata \
201 ibd_upgrade \
202 id \
203 idmap \
204 infocmp \
205 init \
206 initpkg \
207 install.d \
208 intrd \
209 intrstat \
210 ipcrm \
211 ipcs \
212 ipdadm \
213 ipf \
214 isainfo \
215 isalist \
216 itutools \
217 iscsiadm \
218 iscsid \
219 iscsitsvc \
220 isns \
221 itadm \
222 java \
223 kbd \
224 keyserv \
225 killall \
226 krb5 \
227 ksh \
228 kvmstat \
229 last \
230 lastcomm \
231 latencytop \
232 ldap \
233 ldapcachemgr \
234 lgrpinfo \
235 line \
236 link \
237 dlmgmtd \
238 listen \
239 loadkeys \
240 locale \
241 localedef \
242 lockstat \
243 locator \
244 lofiadm \
245 logadm \
246 logger \
247 login \
248 logins \
249 look \
250 ls \
251 luxadm \
252 lvm \
253 mach \
254 machid \
255 mail \

new/usr/src/cmd/Makefile 5

256 mailx \
257 makekey \
258 mdb \
259 mesg \
260 mkdir \
261 mkfifo \
262 mkfile \
263 mkmsgs \
264 mknod \
265 mkpwdict \
266 mktemp \
267 modload \
268 more \
269 mpathadm \
270 msgfmt \
271 msgid \
272 mt \
273 mv \
274 mvdir \
275 ndmpadm \
276 ndmpd \
277 ndmpstat \
278 netadm \
279 netfiles \
280 newform \
281 newgrp \
282 news \
283 newtask \
284 nice \
285 nl \
286 nlsadmin \
287 nohup \
288 nsadmin \
289 nscd \
290 oamuser \
291 oawk \
292 od \
293 pack \
294 pagesize \
295 passmgmt \
296 passwd \
297 pathchk \
298 pbind \
299 pcidr \
300 pcitool \
301 pfexec \
302 pfexecd \
303 pginfo \
304 pgstat \
305 pgrep \
306 picl \
307 plimit \
308 policykit \
309 pools \
310 power \
311 powertop \
312 ppgsz \
313 pg \
314 plockstat \
315 pr \
316 prctl \
317 print \
318 printf \
319 priocntl \
320 profiles \
321 projadd \

new/usr/src/cmd/Makefile 6

322 projects \
323 prstat \
324 prtconf \
325 prtdiag \
326 prtvtoc \
327 ps \
328 psradm \
329 psrinfo \
330 psrset \
331 ptools \
332 pwck \
333 pwconv \
334 pwd \
335 pyzfs \
336 raidctl \
337 ramdiskadm \
338 rcap \
339 rcm_daemon \
340 rctladm \
341 refer \
342 regcmp \
343 renice \
344 rexd \
345 rm \
346 rmdir \
347 rmformat \
348 rmmount \
349 rmt \
350 rmvolmgr \
351 roles \
352 rpcbind \
353 rpcgen \
354 rpcinfo \
355 rpcsvc \
356 runat \
357 sa \
358 saf \
359 sasinfo \
360 savecore \
361 sbdadm \
362 script \
363 scsi \
364 sdiff \
365 sdpadm \
366 sed \
367 sendmail \
368 setfacl \
369 setmnt \
370 setpgrp \
371 setuname \
372 sgs \
373 sh \
374 shcomp \
375 smbios \
376 smbsrv \
377 smserverd \
378 soelim \
379 sort \
380 spell \
381 split \
382 sqlite \
383 srchtxt \
384 srptadm \
385 srptsvc \
386 ssh \
387 stat \

new/usr/src/cmd/Makefile 7

388 stmfadm \
389 stmfproxy \
390 stmfsvc \
391 stmsboot \
392 streams \
393 strings \
394 su \
395 sulogin \
396 sunpc \
397 svc \
398 svr4pkg \
399 swap \
400 sync \
401 sysdef \
402 syseventadm \
403 syslogd \
404 tabs \
405 tail \
406 tar \
407 tbl \
408 tcopy \
409 tcpd \
410 terminfo \
411 th_tools \
412 tic \
413 time \
414 tip \
415 tnf \
416 touch \
417 tput \
418 tr \
419 trapstat \
420 troff \
421 true \
422 truss \
423 tsol \
424 tty \
425 ttymon \
426 tzreload \
427 uadmin \
428 ul \
429 uname \
430 units \
431 unlink \
432 unpack \
433 userattr \
434 users \
435 utmp_update \
436 utmpd \
437 valtools \
438 vgrind \
439 vi \
440 volcheck \
27 volrmmount \
441 vrrpadm \
442 vscan \
443 vt \
444 w \
445 wall \
446 which \
447 who \
448 whodo \
449 wracct \
450 write \
451 wusbadm \
452 xargs \

new/usr/src/cmd/Makefile 8

453 xstr \
454 yes \
455 ypcmd \
456 yppasswd \
457 zdb \
458 zdump \
459 zfs \
460 zhack \
461 zic \
462 zinject \
463 zlogin \
464 zoneadm \
465 zoneadmd \
466 zonecfg \
467 zonename \
468 zpool \
469 zlook \
470 zonestat \
471 zstreamdump \
472 ztest

474 i386_SUBDIRS= \
475 acpihpd \
476 addbadsec \
477 biosdev \
478 diskscan \
479 lms \
480 ntfsprogs \
481 parted \
482 rtc \
483 ucodeadm \
484 xvm

486 sparc_SUBDIRS= \
487 cvcd \
488 dcs \
489 device_remap \
490 drd \
491 fruadm \
492 ldmad \
493 oplhpd \
494 prtdscp \
495 prtfru \
496 scadm \
497 sckmd \
498 sf880drd \
499 virtinfo \
500 vntsd

502 #
503 # Commands that are messaged. Note that ’lp’ and ’man’ come first
504 # (see previous comment about ’lp’ and ’man’).
505 #
506 MSGSUBDIRS= \
507 lp \
508 man \
509 abi \
510 acctadm \
511 allocate \
512 asa \
513 audio \
514 audit \
515 auditconfig \
516 auditd \
517 auditrecord \
518 auditset \

new/usr/src/cmd/Makefile 9

519 auths \
520 autopush \
521 avs \
522 awk \
523 awk_xpg4 \
524 backup \
525 banner \
526 bart \
527 basename \
528 beadm \
529 bnu \
530 busstat \
531 cal \
532 cat \
533 cdrw \
534 cfgadm \
535 checkeq \
536 checknr \
537 chgrp \
538 chmod \
539 chown \
540 cmd-crypto \
541 cmd-inet \
542 col \
543 compress \
544 consadm \
545 coreadm \
546 cpio \
547 cpc \
548 cron \
549 csh \
550 csplit \
551 ctrun \
552 ctstat \
553 ctwatch \
554 datadm \
555 date \
556 dc \
557 dcs \
558 dd \
559 deroff \
560 devfsadm \
561 dfs.cmds \
562 diff \
563 diffmk \
564 dladm \
565 dlstat \
566 du \
567 dumpcs \
568 ed \
569 eject \
570 env \
571 eqn \
572 expand \
573 expr \
574 fcinfo \
575 fgrep \
576 file \
577 filesync \
578 find \
579 flowadm \
580 flowstat \
581 fm \
582 fold \
583 fs.d \
584 fwflash \

new/usr/src/cmd/Makefile 10

585 geniconvtbl \
586 genmsg \
587 getconf \
588 getent \
589 gettext \
590 gettxt \
591 grep \
592 grep_xpg4 \
593 grpck \
594 gss \
595 halt \
596 head \
597 hostname \
598 hotplug \
599 id \
600 idmap \
601 isaexec \
602 iscsiadm \
603 iscsid \
604 isns \
605 itadm \
606 kbd \
607 krb5 \
608 ksh \
609 last \
610 ldap \
611 ldapcachemgr \
612 lgrpinfo \
613 locale \
614 lofiadm \
615 logadm \
616 logger \
617 logins \
618 ls \
619 luxadm \
620 lvm \
621 mailx \
622 mesg \
623 mkdir \
624 mkpwdict \
625 mktemp \
626 more \
627 mpathadm \
628 msgfmt \
629 mv \
630 ndmpadm \
631 ndmpstat \
632 newgrp \
633 newtask \
634 nice \
635 nohup \
636 oawk \
637 pack \
638 passwd \
639 passmgmt \
640 pathchk \
641 pfexec \
642 pg \
643 pgrep \
644 picl \
645 pools \
646 power \
647 pr \
648 praudit \
649 print \
650 profiles \

new/usr/src/cmd/Makefile 11

651 projadd \
652 projects \
653 prstat \
654 prtdiag \
655 ps \
656 psrinfo \
657 ptools \
658 pwconv \
659 pwd \
660 pyzfs \
661 raidctl \
662 ramdiskadm \
663 rcap \
664 rcm_daemon \
665 refer \
666 regcmp \
667 renice \
668 roles \
669 rm \
670 rmdir \
671 rmformat \
672 rmmount \
673 rmvolmgr \
674 sasinfo \
675 sbdadm \
676 scadm \
677 script \
678 scsi \
679 sdiff \
680 sdpadm \
681 sgs \
682 sh \
683 shcomp \
684 smbsrv \
685 sort \
686 split \
687 srptadm \
688 ssh \
689 stat \
690 stmfadm \
691 stmsboot \
692 strings \
693 su \
694 svc \
695 svr4pkg \
696 swap \
697 syseventadm \
698 syseventd \
699 tabs \
700 tar \
701 tbl \
702 time \
703 tnf \
704 touch \
705 tput \
706 troff \
707 tsol \
708 tty \
709 ttymon \
710 tzreload \
711 ul \
712 uname \
713 units \
714 unlink \
715 unpack \
716 userattr \

new/usr/src/cmd/Makefile 12

717 valtools \
718 vgrind \
719 vi \
720 volcheck \
308 volrmmount \
721 vrrpadm \
722 vscan \
723 w \
724 who \
725 whodo \
726 wracct \
727 write \
728 wusbadm \
729 xargs \
730 yppasswd \
731 zdump \
732 zfs \
733 zic \
734 zlogin \
735 zoneadm \
736 zoneadmd \
737 zonecfg \
738 zonename \
739 zpool \
740 zonestat

742 sparc_MSGSUBDIRS= \
743 fruadm \
744 prtdscp \
745 prtfru \
746 virtinfo \
747 vntsd

749 i386_MSGSUBDIRS= \
750 ucodeadm

752 #
753 # commands that use dcgettext for localized time, LC_TIME
754 #
755 DCSUBDIRS= \
756 cal \
757 cfgadm \
758 diff \
759 ls \
760 pr \
761 ps \
762 tar \
763 w \
764 who \
765 whodo \
766 write

768 #
769 # commands that belong only to audit.
770 #
771 AUDITSUBDIRS= \
772 amt \
773 audit \
774 audit_warn \
775 auditconfig \
776 auditd \
777 auditrecord \
778 auditreduce \
779 auditset \
780 auditstat \
781 praudit

new/usr/src/cmd/Makefile 13

783 #
784 # commands not owned by the systems group
785 #
786 BWOSDIRS=

789 all := TARGET = all
790 install := TARGET = install
791 clean := TARGET = clean
792 clobber := TARGET = clobber
793 lint := TARGET = lint
794 _msg := TARGET = _msg
795 _dc := TARGET = _dc

797 .KEEP_STATE:

799 SUBDIRS = $(COMMON_SUBDIRS) $($(MACH)_SUBDIRS)

801 .PARALLEL: $(BWOSDIRS) $(SUBDIRS) $(MSGSUBDIRS) $(AUDITSUBDIRS)

803 all install clean clobber lint: $(FIRST_SUBDIRS) .WAIT $(SUBDIRS) \
804 $(AUDITSUBDIRS)

806 #
807 # Manifests cannot be checked in parallel, because we are using
808 # the global repository that is in $(SRC)/cmd/svc/seed/global.db.
809 # For this reason, to avoid .PARALLEL and .NO_PARALLEL conflicts,
810 # we spawn off a sub-make to perform the non-parallel ’make check’
811 #
812 check:
813 $(MAKE) -f Makefile.check check

815 #
816 # The .WAIT directive works around an apparent bug in parallel make.
817 # Evidently make was getting the target _msg vs. _dc confused under
818 # some level of parallelization, causing some of the _dc objects
819 # not to be built.
820 #
821 _msg: $(MSGSUBDIRS) $($(MACH)_MSGSUBDIRS) .WAIT _dc

823 _dc: $(DCSUBDIRS)

825 #
826 # Dependencies
827 #
828 fs.d: fstyp
829 ksh: shcomp isaexec
830 mdb: terminfo
831 print: lp

833 $(FIRST_SUBDIRS) $(BWOSDIRS) $(SUBDIRS) $(AUDITSUBDIRS): FRC
834 @if [-f $@/Makefile]; then \
835 cd $@; pwd; $(MAKE) $(TARGET); \
836 else \
837 true; \
838 fi

840 FRC:

new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c 1

**
 52155 Sun May 4 18:28:35 2014
new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c
4833 Remove volrmmount
4845 rm(u)mount don’t always print mount/unmount errors
4846 HAL partition names don’t match real parition names
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**

1 /***
2 *
3 * devinfo_storage.c : storage devices
4 *
5 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
6 * Copyright 2013 Garrett D’Amore <garrett@damore.org>
7 * Copyright 2014 Andrew Stormont.
8 #endif /* ! codereview */
9 *
10 * Licensed under the Academic Free License version 2.1
11 *
12 **/

14 #ifdef HAVE_CONFIG_H
15 # include <config.h>
16 #endif

18 #include <stdio.h>
19 #include <string.h>
20 #include <strings.h>
21 #include <ctype.h>
22 #include <libdevinfo.h>
23 #include <sys/types.h>
24 #include <sys/mkdev.h>
25 #include <sys/stat.h>
26 #include <sys/mntent.h>
27 #include <sys/mnttab.h>

29 #include "../osspec.h"
30 #include "../logger.h"
31 #include "../hald.h"
32 #include "../hald_dbus.h"
33 #include "../device_info.h"
34 #include "../util.h"
35 #include "../hald_runner.h"
36 #include "hotplug.h"
37 #include "devinfo.h"
38 #include "devinfo_misc.h"
39 #include "devinfo_storage.h"
40 #include "osspec_solaris.h"

42 #ifdef sparc
43 #define WHOLE_DISK "s2"
44 #else
45 #define WHOLE_DISK "p0"
46 #endif

48 /* some devices,especially CDROMs, may take a while to be probed (values in ms)
49 #define DEVINFO_PROBE_STORAGE_TIMEOUT 60000
50 #define DEVINFO_PROBE_VOLUME_TIMEOUT 60000

52 typedef struct devinfo_storage_minor {
53 char *devpath;
54 char *devlink;
55 char *slice;
56 dev_t dev;
57 int dosnum; /* dos disk number or -1 */

new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c 2

58 } devinfo_storage_minor_t;

60 HalDevice *devinfo_ide_add(HalDevice *parent, di_node_t node, char *devfs_path,
61 static HalDevice *devinfo_ide_host_add(HalDevice *parent, di_node_t node, char *
62 static HalDevice *devinfo_ide_device_add(HalDevice *parent, di_node_t node, char
63 static HalDevice *devinfo_ide_storage_add(HalDevice *parent, di_node_t node, cha
64 HalDevice *devinfo_scsi_add(HalDevice *parent, di_node_t node, char *devfs_path,
65 static HalDevice *devinfo_scsi_storage_add(HalDevice *parent, di_node_t node, ch
66 HalDevice *devinfo_blkdev_add(HalDevice *parent, di_node_t node, char *devfs_pat
67 static HalDevice *devinfo_blkdev_storage_add(HalDevice *parent, di_node_t node,
68 HalDevice *devinfo_floppy_add(HalDevice *parent, di_node_t node, char *devfs_pat
69 static void devinfo_floppy_add_volume(HalDevice *parent, di_node_t node);
70 static HalDevice *devinfo_lofi_add(HalDevice *parent, di_node_t node, char *devf
71 static void devinfo_lofi_add_minor(HalDevice *parent, di_node_t node, char *mino
72 static void devinfo_storage_minors(HalDevice *parent, di_node_t node, gchar *dev
73 static struct devinfo_storage_minor *devinfo_storage_new_minor(char *maindev_pat
74 char *devlink, dev_t dev, int dosnum);
75 static void devinfo_storage_free_minor(struct devinfo_storage_minor *m);
76 HalDevice *devinfo_volume_add(HalDevice *parent, di_node_t node, devinfo_storage
77 static void devinfo_volume_preprobing_done(HalDevice *d, gpointer userdata1, gpo
78 static void devinfo_volume_hotplug_begin_add (HalDevice *d, HalDevice *parent, D
79 static void devinfo_storage_hotplug_begin_add (HalDevice *d, HalDevice *parent,
80 static void devinfo_storage_probing_done (HalDevice *d, guint32 exit_type, gint
81 const gchar *devinfo_volume_get_prober (HalDevice *d, int *timeout);
82 const gchar *devinfo_storage_get_prober (HalDevice *d, int *timeout);

84 static char *devinfo_scsi_dtype2str(int dtype);
85 static char *devinfo_volume_get_slice_name (char *devlink);
86 static gboolean dos_to_dev(char *path, char **devpath, int *partnum);
87 static gboolean is_dos_path(char *path, int *partnum);

89 static void devinfo_storage_set_nicknames (HalDevice *d);

91 DevinfoDevHandler devinfo_ide_handler = {
92 devinfo_ide_add,
93 NULL,
94 NULL,
95 NULL,
96 NULL,
97 NULL
98 };
99 DevinfoDevHandler devinfo_scsi_handler = {
100 devinfo_scsi_add,
101 NULL,
102 NULL,
103 NULL,
104 NULL,
105 NULL
106 };
107 DevinfoDevHandler devinfo_blkdev_handler = {
108 devinfo_blkdev_add,
109 NULL,
110 NULL,
111 NULL,
112 NULL,
113 NULL
114 };
115 DevinfoDevHandler devinfo_floppy_handler = {
116 devinfo_floppy_add,
117 NULL,
118 NULL,
119 NULL,
120 NULL,
121 NULL
122 };
123 DevinfoDevHandler devinfo_lofi_handler = {

new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c 3

124 devinfo_lofi_add,
125 NULL,
126 NULL,
127 NULL,
128 NULL,
129 NULL
130 };
131 DevinfoDevHandler devinfo_storage_handler = {
132 NULL,
133 NULL,
134 devinfo_storage_hotplug_begin_add,
135 NULL,
136 devinfo_storage_probing_done,
137 devinfo_storage_get_prober
138 };
139 DevinfoDevHandler devinfo_volume_handler = {
140 NULL,
141 NULL,
142 devinfo_volume_hotplug_begin_add,
143 NULL,
144 NULL,
145 devinfo_volume_get_prober
146 };

148 /* IDE */

150 HalDevice *
151 devinfo_ide_add(HalDevice *parent, di_node_t node, char *devfs_path, char *devic
152 {
153 char *s;

155 if ((device_type != NULL) && (strcmp(device_type, "ide") == 0)) {
156 return (devinfo_ide_host_add(parent, node, devfs_path));
157 }

159 if ((di_prop_lookup_strings (DDI_DEV_T_ANY, node, "class", &s) > 0) &&
160 (strcmp (s, "dada") == 0)) {
161 return (devinfo_ide_device_add(parent, node, devfs_path));
162 }

164 return (NULL);
165 }

167 static HalDevice *
168 devinfo_ide_host_add(HalDevice *parent, di_node_t node, char *devfs_path)
169 {
170 HalDevice *d;

172 d = hal_device_new ();

174 devinfo_set_default_properties (d, parent, node, devfs_path);
175 hal_device_property_set_string (d, "info.product", "IDE host controller"
176 hal_device_property_set_string (d, "info.subsystem", "ide_host");
177 hal_device_property_set_int (d, "ide_host.number", 0); /* XXX */

179 devinfo_add_enqueue (d, devfs_path, &devinfo_ide_handler);

181 return (d);
182 }

184 static HalDevice *
185 devinfo_ide_device_add(HalDevice *parent, di_node_t node, char *devfs_path)
186 {
187 HalDevice *d;

189 d = hal_device_new();

new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c 4

191 devinfo_set_default_properties (d, parent, node, devfs_path);
192 hal_device_property_set_string (parent, "info.product", "IDE device");
193 hal_device_property_set_string (parent, "info.subsystem", "ide");
194 hal_device_property_set_int (parent, "ide.host", 0); /* XXX */
195 hal_device_property_set_int (parent, "ide.channel", 0);

197 devinfo_add_enqueue (d, devfs_path, &devinfo_ide_handler);

199 return (devinfo_ide_storage_add (d, node, devfs_path));
200 }

202 static HalDevice *
203 devinfo_ide_storage_add(HalDevice *parent, di_node_t node, char *devfs_path)
204 {
205 HalDevice *d;
206 char *s;
207 int *i;
208 char *driver_name;
209 char udi[HAL_PATH_MAX];

211 if ((driver_name = di_driver_name (node)) == NULL) {
212 return (NULL);
213 }

215 d = hal_device_new ();

217 devinfo_set_default_properties (d, parent, node, devfs_path);
218 hal_device_property_set_string (d, "info.category", "storage");

220 hal_util_compute_udi (hald_get_gdl (), udi, sizeof (udi),
221 "%s/%s%d", hal_device_get_udi (parent), driver_name, di_instance
222 hal_device_set_udi (d, udi);
223 hal_device_property_set_string (d, "info.udi", udi);
224 PROP_STR(d, node, s, "devid", "info.product");

226 hal_device_add_capability (d, "storage");
227 hal_device_property_set_string (d, "storage.bus", "ide");
228 hal_device_property_set_int (d, "storage.lun", 0);
229 hal_device_property_set_string (d, "storage.drive_type", "disk");

231 PROP_BOOL(d, node, i, "hotpluggable", "storage.hotpluggable");
232 PROP_BOOL(d, node, i, "removable-media", "storage.removable");

234 hal_device_property_set_bool (d, "storage.media_check_enabled", FALSE);

236 /* XXX */
237 hal_device_property_set_bool (d, "storage.requires_eject", FALSE);

239 hal_device_add_capability (d, "block");

241 devinfo_storage_minors (d, node, (char *)devfs_path, FALSE);

243 return (d);
244 }

246 /* SCSI */

248 HalDevice *
249 devinfo_scsi_add(HalDevice *parent, di_node_t node, char *devfs_path, char *devi
250 {
251 int *i;
252 char *driver_name;
253 HalDevice *d;
254 char udi[HAL_PATH_MAX];

new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c 5

256 driver_name = di_driver_name (node);
257 if ((driver_name == NULL) || (strcmp (driver_name, "sd") != 0)) {
258 return (NULL);
259 }

261 d = hal_device_new ();

263 devinfo_set_default_properties (d, parent, node, devfs_path);
264 hal_device_property_set_string (d, "info.subsystem", "scsi");

266 hal_util_compute_udi (hald_get_gdl (), udi, sizeof (udi),
267 "%s/%s%d", hal_device_get_udi (parent), di_node_name(node), di_i
268 hal_device_set_udi (d, udi);
269 hal_device_property_set_string (d, "info.udi", udi);

271 hal_device_property_set_int (d, "scsi.host",
272 hal_device_property_get_int (parent, "scsi_host.host"));
273 hal_device_property_set_int (d, "scsi.bus", 0);
274 PROP_INT(d, node, i, "target", "scsi.target");
275 PROP_INT(d, node, i, "lun", "scsi.lun");
276 hal_device_property_set_string (d, "info.product", "SCSI Device");

278 devinfo_add_enqueue (d, devfs_path, &devinfo_scsi_handler);

280 return (devinfo_scsi_storage_add (d, node, devfs_path));
281 }

283 static HalDevice *
284 devinfo_scsi_storage_add(HalDevice *parent, di_node_t node, char *devfs_path)
285 {
286 HalDevice *d;
287 int *i;
288 char *s;
289 char udi[HAL_PATH_MAX];

291 d = hal_device_new ();

293 devinfo_set_default_properties (d, parent, node, devfs_path);
294 hal_device_property_set_string (d, "info.category", "storage");

296 hal_util_compute_udi (hald_get_gdl (), udi, sizeof (udi),
297 "%s/sd%d", hal_device_get_udi (parent), di_instance (node));
298 hal_device_set_udi (d, udi);
299 hal_device_property_set_string (d, "info.udi", udi);
300 PROP_STR(d, node, s, "inquiry-product-id", "info.product");

302 hal_device_add_capability (d, "storage");

304 hal_device_property_set_int (d, "storage.lun",
305 hal_device_property_get_int (parent, "scsi.lun"));
306 PROP_BOOL(d, node, i, "hotpluggable", "storage.hotpluggable");
307 PROP_BOOL(d, node, i, "removable-media", "storage.removable");
308 hal_device_property_set_bool (d, "storage.requires_eject", FALSE);

310 /*
311 * We have to enable polling not only for drives with removable media,
312 * but also for hotpluggable devices, because when a disk is
313 * unplugged while busy/mounted, there is not sysevent generated.
314 * Instead, the HBA driver (scsa2usb, scsa1394) will notify sd driver
315 * and the latter will report DKIO_DEV_GONE via DKIOCSTATE ioctl.
316 * So we have to enable media check so that hald-addon-storage notices
317 * the "device gone" condition and unmounts all associated volumes.
318 */
319 hal_device_property_set_bool (d, "storage.media_check_enabled",
320 ((di_prop_lookup_ints(DDI_DEV_T_ANY, node, "removable-media", &i) >=
321 (di_prop_lookup_ints(DDI_DEV_T_ANY, node, "hotpluggable", &i) >= 0))

new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c 6

323 if (di_prop_lookup_ints(DDI_DEV_T_ANY, node, "inquiry-device-type",
324 &i) > 0) {
325 s = devinfo_scsi_dtype2str (*i);
326 hal_device_property_set_string (d, "storage.drive_type", s);

328 if (strcmp (s, "cdrom") == 0) {
329 hal_device_add_capability (d, "storage.cdrom");
330 hal_device_property_set_bool (d, "storage.no_partitions_
331 hal_device_property_set_bool (d, "storage.requires_eject
332 }
333 }

335 hal_device_add_capability (d, "block");

337 devinfo_storage_minors (d, node, devfs_path, FALSE);

339 return (d);
340 }

342 static char *
343 devinfo_scsi_dtype2str(int dtype)
344 {
345 char *dtype2str[] = {
346 "disk" , /* DTYPE_DIRECT 0x00 */
347 "tape" , /* DTYPE_SEQUENTIAL 0x01 */
348 "printer", /* DTYPE_PRINTER 0x02 */
349 "processor", /* DTYPE_PROCESSOR 0x03 */
350 "worm" , /* DTYPE_WORM 0x04 */
351 "cdrom" , /* DTYPE_RODIRECT 0x05 */
352 "scanner", /* DTYPE_SCANNER 0x06 */
353 "cdrom" , /* DTYPE_OPTICAL 0x07 */
354 "changer", /* DTYPE_CHANGER 0x08 */
355 "comm" , /* DTYPE_COMM 0x09 */
356 "scsi" , /* DTYPE_??? 0x0A */
357 "scsi" , /* DTYPE_??? 0x0B */
358 "array_ctrl", /* DTYPE_ARRAY_CTRL 0x0C */
359 "esi" , /* DTYPE_ESI 0x0D */
360 "disk" /* DTYPE_RBC 0x0E */
361 };

363 if (dtype < NELEM(dtype2str)) {
364 return (dtype2str[dtype]);
365 } else {
366 return ("scsi");
367 }

369 }

371 /* blkdev */

373 HalDevice *
374 devinfo_blkdev_add(HalDevice *parent, di_node_t node, char *devfs_path, char *de
375 {
376 int *i;
377 char *driver_name;
378 HalDevice *d;
379 char udi[HAL_PATH_MAX];

381 driver_name = di_driver_name (node);
382 if ((driver_name == NULL) || (strcmp (driver_name, "blkdev") != 0)) {
383 return (NULL);
384 }

386 d = hal_device_new ();

new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c 7

388 devinfo_set_default_properties (d, parent, node, devfs_path);
389 hal_device_property_set_string (d, "info.subsystem", "pseudo");

391 hal_util_compute_udi (hald_get_gdl (), udi, sizeof (udi),
392 "%s/%s%d", hal_device_get_udi (parent), di_node_name(node), di_i
393 hal_device_set_udi (d, udi);
394 hal_device_property_set_string (d, "info.udi", udi);
395 hal_device_property_set_string (d, "info.product", "Block Device");

397 devinfo_add_enqueue (d, devfs_path, &devinfo_blkdev_handler);

399 return (devinfo_blkdev_storage_add (d, node, devfs_path));
400 }

402 static HalDevice *
403 devinfo_blkdev_storage_add(HalDevice *parent, di_node_t node, char *devfs_path)
404 {
405 HalDevice *d;
406 char *driver_name;
407 int *i;
408 char *s;
409 char udi[HAL_PATH_MAX];

411 d = hal_device_new ();

413 devinfo_set_default_properties (d, parent, node, devfs_path);
414 hal_device_property_set_string (d, "info.category", "storage");

416 hal_util_compute_udi (hald_get_gdl (), udi, sizeof (udi),
417 "%s/blkdev%d", hal_device_get_udi (parent), di_instance (node));
418 hal_device_set_udi (d, udi);
419 hal_device_property_set_string (d, "info.udi", udi);

421 hal_device_add_capability (d, "storage");

423 hal_device_property_set_int (d, "storage.lun", 0);

425 PROP_BOOL(d, node, i, "hotpluggable", "storage.hotpluggable");
426 PROP_BOOL(d, node, i, "removable-media", "storage.removable");

428 hal_device_property_set_bool (d, "storage.requires_eject", FALSE);
429 hal_device_property_set_bool (d, "storage.media_check_enabled", TRUE);
430 hal_device_property_set_string (d, "storage.drive_type", "disk");

432 hal_device_add_capability (d, "block");

434 devinfo_storage_minors (d, node, devfs_path, FALSE);

436 return (d);
437 }

439 /* floppy */

441 HalDevice *
442 devinfo_floppy_add(HalDevice *parent, di_node_t node, char *devfs_path, char *de
443 {
444 char *driver_name;
445 char *raw;
446 char udi[HAL_PATH_MAX];
447 di_devlink_handle_t devlink_hdl;
448 int major;
449 di_minor_t minor;
450 dev_t dev;
451 HalDevice *d = NULL;
452 char *minor_path = NULL;
453 char *devlink = NULL;

new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c 8

455 driver_name = di_driver_name (node);
456 if ((driver_name == NULL) || (strcmp (driver_name, "fd") != 0)) {
457 return (NULL);
458 }

460 /*
461 * The only minor node we’re interested in is /dev/diskette*
462 */
463 major = di_driver_major(node);
464 if ((devlink_hdl = di_devlink_init(NULL, 0)) == NULL) {
465 return (NULL);
466 }
467 minor = DI_MINOR_NIL;
468 while ((minor = di_minor_next(node, minor)) != DI_MINOR_NIL) {
469 dev = di_minor_devt(minor);
470 if ((major != major(dev)) ||
471 (di_minor_type(minor) != DDM_MINOR) ||
472 (di_minor_spectype(minor) != S_IFBLK) ||
473 ((minor_path = di_devfs_minor_path(minor)) == NULL)) {
474 continue;
475 }
476 if ((devlink = get_devlink(devlink_hdl, "diskette.+" , minor_pat
477 break;
478 }
479 di_devfs_path_free (minor_path);
480 minor_path = NULL;
481 free(devlink);
482 devlink = NULL;
483 }
484 di_devlink_fini (&devlink_hdl);

486 if ((devlink == NULL) || (minor_path == NULL)) {
487 HAL_INFO (("floppy devlink not found %s", devfs_path));
488 goto out;
489 }

491 d = hal_device_new ();

493 devinfo_set_default_properties (d, parent, node, devfs_path);
494 hal_device_property_set_string (d, "info.category", "storage");
495 hal_device_add_capability (d, "storage");
496 hal_device_property_set_string (d, "storage.bus", "platform");
497 hal_device_property_set_bool (d, "storage.hotpluggable", FALSE);
498 hal_device_property_set_bool (d, "storage.removable", TRUE);
499 hal_device_property_set_bool (d, "storage.requires_eject", TRUE);
500 hal_device_property_set_bool (d, "storage.media_check_enabled", FALSE);
501 hal_device_property_set_string (d, "storage.drive_type", "floppy");

503 hal_device_add_capability (d, "block");
504 hal_device_property_set_bool (d, "block.is_volume", FALSE);
505 hal_device_property_set_int (d, "block.major", major(dev));
506 hal_device_property_set_int (d, "block.minor", minor(dev));
507 hal_device_property_set_string (d, "block.device", devlink);
508 raw = dsk_to_rdsk (devlink);
509 hal_device_property_set_string (d, "block.solaris.raw_device", raw);
510 free (raw);

512 devinfo_add_enqueue (d, devfs_path, &devinfo_storage_handler);

514 /* trigger initial probe-volume */
515 devinfo_floppy_add_volume(d, node);

517 out:
518 di_devfs_path_free (minor_path);
519 free(devlink);

new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c 9

521 return (d);
522 }

524 static void
525 devinfo_floppy_add_volume(HalDevice *parent, di_node_t node)
526 {
527 char *devlink;
528 char *devfs_path;
529 int minor, major;
530 dev_t dev;
531 struct devinfo_storage_minor *m;

533 devfs_path = (char *)hal_device_property_get_string (parent, "solaris.de
534 devlink = (char *)hal_device_property_get_string (parent, "block.device"
535 major = hal_device_property_get_int (parent, "block.major");
536 minor = hal_device_property_get_int (parent, "block.minor");
537 dev = makedev (major, minor);

539 m = devinfo_storage_new_minor (devfs_path, WHOLE_DISK, devlink, dev, -1)
540 devinfo_volume_add (parent, node, m);
541 devinfo_storage_free_minor (m);
542 }

544 /*
545 * After reprobing storage, reprobe its volumes.
546 */
547 static void
548 devinfo_floppy_rescan_probing_done (HalDevice *d, guint32 exit_type, gint return
549 char **error, gpointer userdata1, gpointer userdata2)
550 {
551 void *end_token = (void *) userdata1;
552 const char *devfs_path;
553 di_node_t node;
554 HalDevice *v;

556 if (!hal_device_property_get_bool (d, "storage.removable.media_available
557 HAL_INFO (("no floppy media", hal_device_get_udi (d)));

559 /* remove child (can only be single volume) */
560 if (((v = hal_device_store_match_key_value_string (hald_get_gdl(
561 "info.parent", hal_device_get_udi (d))) != NULL) &&
562 ((devfs_path = hal_device_property_get_string (v,
563 "solaris.devfs_path")) != NULL)) {
564 devinfo_remove_enqueue ((char *)devfs_path, NULL);
565 }
566 } else {
567 HAL_INFO (("floppy media found", hal_device_get_udi (d)));

569 if ((devfs_path = hal_device_property_get_string(d, "solaris.dev
570 HAL_INFO (("no devfs_path", hal_device_get_udi (d)));
571 hotplug_event_process_queue ();
572 return;
573 }
574 if ((node = di_init (devfs_path, DINFOCPYALL)) == DI_NODE_NIL) {
575 HAL_INFO (("di_init %s failed %d", devfs_path, errno));
576 hotplug_event_process_queue ();
577 return;
578 }

580 devinfo_floppy_add_volume (d, node);

582 di_fini (node);
583 }

585 hotplug_event_process_queue ();

new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c 10

586 }
587
588 /* lofi */

590 HalDevice *
591 devinfo_lofi_add(HalDevice *parent, di_node_t node, char *devfs_path, char *devi
592 {
593 return (devinfo_lofi_add_major(parent,node, devfs_path, device_type, FAL
594 }

596 HalDevice *
597 devinfo_lofi_add_major(HalDevice *parent, di_node_t node, char *devfs_path, char
598 gboolean rescan, HalDevice *lofi_d)
599 {
600 char *driver_name;
601 HalDevice *d = NULL;
602 char udi[HAL_PATH_MAX];
603 di_devlink_handle_t devlink_hdl;
604 int major;
605 di_minor_t minor;
606 dev_t dev;
607 char *minor_path = NULL;
608 char *devlink = NULL;

610 driver_name = di_driver_name (node);
611 if ((driver_name == NULL) || (strcmp (driver_name, "lofi") != 0)) {
612 return (NULL);
613 }

615 if (!rescan) {
616 d = hal_device_new ();

618 devinfo_set_default_properties (d, parent, node, devfs_path);
619 hal_device_property_set_string (d, "info.subsystem", "pseudo");

621 hal_util_compute_udi (hald_get_gdl (), udi, sizeof (udi),
622 "%s/%s%d", hal_device_get_udi (parent), di_node_name(nod
623 hal_device_set_udi (d, udi);
624 hal_device_property_set_string (d, "info.udi", udi);

626 devinfo_add_enqueue (d, devfs_path, &devinfo_lofi_handler);
627 } else {
628 d = lofi_d;
629 }

631 /*
632 * Unlike normal storage, as in devinfo_storage_minors(), where
633 * sd instance -> HAL storage, sd minor node -> HAL volume,
634 * lofi always has one instance, lofi minor -> HAL storage.
635 * lofi storage never has slices, but it can have
636 * embedded pcfs partitions that fstyp would recognize
637 */
638 major = di_driver_major(node);
639 if ((devlink_hdl = di_devlink_init(NULL, 0)) == NULL) {
640 return (d);
641 }
642 minor = DI_MINOR_NIL;
643 while ((minor = di_minor_next(node, minor)) != DI_MINOR_NIL) {
644 dev = di_minor_devt(minor);
645 if ((major != major(dev)) ||
646 (di_minor_type(minor) != DDM_MINOR) ||
647 (di_minor_spectype(minor) != S_IFBLK) ||
648 ((minor_path = di_devfs_minor_path(minor)) == NULL)) {
649 continue;
650 }
651 if ((devlink = get_devlink(devlink_hdl, NULL, minor_path)) == NU

new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c 11

652 di_devfs_path_free (minor_path);
653 continue;
654 }

656 if (!rescan ||
657 (hal_device_store_match_key_value_string (hald_get_gdl (),
658 "solaris.devfs_path", minor_path) == NULL)) {
659 devinfo_lofi_add_minor(d, node, minor_path, devlink, dev
660 }

662 di_devfs_path_free (minor_path);
663 free(devlink);
664 }
665 di_devlink_fini (&devlink_hdl);

667 return (d);
668 }

670 static void
671 devinfo_lofi_add_minor(HalDevice *parent, di_node_t node, char *minor_path, char
672 {
673 HalDevice *d;
674 char *raw;
675 char *doslink;
676 char dospath[64];
677 struct devinfo_storage_minor *m;
678 int i;

680 /* add storage */
681 d = hal_device_new ();

683 devinfo_set_default_properties (d, parent, node, minor_path);
684 hal_device_property_set_string (d, "info.category", "storage");
685 hal_device_add_capability (d, "storage");
686 hal_device_property_set_string (d, "storage.bus", "lofi");
687 hal_device_property_set_bool (d, "storage.hotpluggable", TRUE);
688 hal_device_property_set_bool (d, "storage.removable", FALSE);
689 hal_device_property_set_bool (d, "storage.requires_eject", FALSE);
690 hal_device_property_set_string (d, "storage.drive_type", "disk");
691 hal_device_add_capability (d, "block");
692 hal_device_property_set_int (d, "block.major", major(dev));
693 hal_device_property_set_int (d, "block.minor", minor(dev));
694 hal_device_property_set_string (d, "block.device", devlink);
695 raw = dsk_to_rdsk (devlink);
696 hal_device_property_set_string (d, "block.solaris.raw_device", raw);
697 free (raw);
698 hal_device_property_set_bool (d, "block.is_volume", FALSE);

700 devinfo_add_enqueue (d, minor_path, &devinfo_storage_handler);

702 /* add volumes: one on main device and a few pcfs candidates */
703 m = devinfo_storage_new_minor(minor_path, WHOLE_DISK, devlink, dev, -1);
704 devinfo_volume_add (d, node, m);
705 devinfo_storage_free_minor (m);

707 doslink = (char *)calloc (1, strlen (devlink) + sizeof ("pNN") + 1);
7 doslink = (char *)calloc (1, strlen (devlink) + sizeof (":NNN") + 1);

708 if (doslink != NULL) {
709 for (i = 1; i < 16; i++) {
710 snprintf(dospath, sizeof (dospath), "p%d", i);
711 sprintf(doslink, "%sp%d", devlink, i);
10 snprintf(dospath, sizeof (dospath), WHOLE_DISK":%d", i);
11 sprintf(doslink, "%s:%d", devlink, i);
712 m = devinfo_storage_new_minor(minor_path, dospath, dosli
713 devinfo_volume_add (d, node, m);
714 devinfo_storage_free_minor (m);

new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c 12

715 }
716 free (doslink);
717 }
718 }

______unchanged_portion_omitted_

797 /*
798 * Storage minor nodes are potential "volume" objects.
799 * This function also completes building the parent object (main storage device)
800 */
801 static void
802 devinfo_storage_minors(HalDevice *parent, di_node_t node, gchar *devfs_path, gbo
803 {
804 di_devlink_handle_t devlink_hdl;
805 gboolean is_cdrom;
806 const char *whole_disk;
807 int major;
808 di_minor_t minor;
809 dev_t dev;
810 char *minor_path = NULL;
811 char *maindev_path = NULL;
812 char *devpath, *devlink;
813 int doslink_len;
814 char *doslink;
815 char dospath[64];
816 char *slice;
817 int pathlen;
818 int i;
819 char *raw;
820 boolean_t maindev_is_d0;
821 GQueue *mq;
822 HalDevice *volume;
823 struct devinfo_storage_minor *m;
824 struct devinfo_storage_minor *maindev = NULL;

826 /* for cdroms whole disk is always s2 */
827 is_cdrom = hal_device_has_capability (parent, "storage.cdrom");
828 whole_disk = is_cdrom ? "s2" : WHOLE_DISK;

830 major = di_driver_major(node);

832 /* the "whole disk" p0/s2/d0 node must come first in the hotplug queue
833 * so we put other minor nodes on the local queue and move to the
834 * hotplug queue up in the end
835 */
836 if ((mq = g_queue_new()) == NULL) {
837 goto err;
838 }
839 if ((devlink_hdl = di_devlink_init(NULL, 0)) == NULL) {
840 g_queue_free (mq);
841 goto err;
842 }
843 minor = DI_MINOR_NIL;
844 while ((minor = di_minor_next(node, minor)) != DI_MINOR_NIL) {
845 dev = di_minor_devt(minor);
846 if ((major != major(dev)) ||
847 (di_minor_type(minor) != DDM_MINOR) ||
848 (di_minor_spectype(minor) != S_IFBLK) ||
849 ((minor_path = di_devfs_minor_path(minor)) == NULL)) {
850 continue;
851 }
852 if ((devlink = get_devlink(devlink_hdl, NULL, minor_path)) == NU
853 di_devfs_path_free (minor_path);
854 continue;
855 }

new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c 13

857 slice = devinfo_volume_get_slice_name (devlink);
858 if (strlen (slice) < 2) {
859 free (devlink);
860 di_devfs_path_free (minor_path);
861 continue;
862 }

164 /* ignore p1..N - we’ll use p0:N instead */
165 if ((strlen (slice) > 1) && (slice[0] == ’p’) && isdigit(slice[1
166 ((atol(&slice[1])) > 0)) {
167 free (devlink);
168 di_devfs_path_free (minor_path);
169 continue;
170 }

864 m = devinfo_storage_new_minor(minor_path, slice, devlink, dev, -
865 if (m == NULL) {
866 free (devlink);
867 di_devfs_path_free (minor_path);
868 continue;
869 }

871 /* main device is either s2/p0 or d0, the latter taking preceden
872 if ((strcmp (slice, "d0") == 0) ||
873 (((strcmp (slice, whole_disk) == 0) && (maindev == NULL))))
874 if (maindev_path != NULL) {
875 di_devfs_path_free (maindev_path);
876 }
877 maindev_path = minor_path;
878 maindev = m;
879 g_queue_push_head (mq, maindev);
880 } else {
881 di_devfs_path_free (minor_path);
882 g_queue_push_tail (mq, m);
883 }

885 free (devlink);
886 }
887 di_devlink_fini (&devlink_hdl);

889 if (maindev == NULL) {
890 /* shouldn’t typically happen */
891 while (!g_queue_is_empty (mq)) {
892 devinfo_storage_free_minor (g_queue_pop_head (mq));
893 }
894 goto err;
895 }

897 /* first enqueue main storage device */
898 if (!rescan) {
899 hal_device_property_set_int (parent, "block.major", major);
900 hal_device_property_set_int (parent, "block.minor", minor(mainde
901 hal_device_property_set_string (parent, "block.device", maindev-
902 raw = dsk_to_rdsk (maindev->devlink);
903 hal_device_property_set_string (parent, "block.solaris.raw_devic
904 free (raw);
905 hal_device_property_set_bool (parent, "block.is_volume", FALSE);
906 hal_device_property_set_string (parent, "solaris.devfs_path", ma
907 devinfo_add_enqueue (parent, maindev_path, &devinfo_storage_hand
908 }

910 /* add virtual dos volumes to enable pcfs probing */
911 if (!is_cdrom) {
912 doslink_len = strlen (maindev->devlink) + sizeof ("pNN") + 1;
220 doslink_len = strlen (maindev->devlink) + sizeof (":NNN") + 1;
913 if ((doslink = (char *)calloc (1, doslink_len)) != NULL) {

new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c 14

914 for (i = 1; i < 16; i++) {
915 snprintf(dospath, sizeof (dospath), "%sp%d", mai
916 snprintf(doslink, doslink_len, "%sp%d", maindev-
223 snprintf(dospath, sizeof (dospath), "%s:%d", mai
224 snprintf(doslink, doslink_len, "%s:%d", maindev-
917 m = devinfo_storage_new_minor(maindev_path, dosp
918 g_queue_push_tail (mq, m);
919 }
920 free (doslink);
921 }
922 }

924 maindev_is_d0 = (strcmp (maindev->slice, "d0") == 0);

926 /* enqueue all volumes */
927 while (!g_queue_is_empty (mq)) {
928 m = g_queue_pop_head (mq);

930 /* if main device is d0, we’ll throw away s2/p0 */
931 if (maindev_is_d0 && (strcmp (m->slice, whole_disk) == 0)) {
932 devinfo_storage_free_minor (m);
933 continue;
934 }
935 /* don’t do p0 on cdrom */
936 if (is_cdrom && (strcmp (m->slice, "p0") == 0)) {
937 devinfo_storage_free_minor (m);
938 continue;
939 }
940 if (rescan) {
941 /* in rescan mode, don’t reprobe existing volumes */
942 /* XXX detect volume removal? */
943 volume = hal_device_store_match_key_value_string (hald_g
944 "solaris.devfs_path", m->devpath);
945 if ((volume == NULL) || !hal_device_has_capability(volum
946 devinfo_volume_add (parent, node, m);
947 } else {
948 HAL_INFO(("rescan volume exists %s", m->devpath)
949 }
950 } else {
951 devinfo_volume_add (parent, node, m);
952 }
953 devinfo_storage_free_minor (m);
954 }

956 if (maindev_path != NULL) {
957 di_devfs_path_free (maindev_path);
958 }

960 return;

962 err:
963 if (maindev_path != NULL) {
964 di_devfs_path_free (maindev_path);
965 }
966 if (!rescan) {
967 devinfo_add_enqueue (parent, devfs_path, &devinfo_storage_handle
968 }
969 }

______unchanged_portion_omitted_

1395 static gboolean
1396 is_dos_path(char *path, int *partnum)
1397 {
1398 char *p;

1400 if ((p = strrchr (path, ’p’)) == NULL) {

new/usr/src/cmd/hal/hald/solaris/devinfo_storage.c 15

708 if ((p = strrchr (path, ’:’)) == NULL) {
1401 return (FALSE);
1402 }
1403 return ((*partnum = atoi(p + 1)) != 0);
1404 }

1406 static gboolean
1407 dos_to_dev(char *path, char **devpath, int *partnum)
1408 {
1409 char *p;

1411 if ((p = strrchr (path, ’p’)) == NULL) {
719 if ((p = strrchr (path, ’:’)) == NULL) {
1412 return (FALSE);
1413 }
1414 if ((*partnum = atoi(p + 1)) == 0) {
1415 return (FALSE);
1416 }
1417 p[0] = ’\0’;
1418 *devpath = strdup(path);
1419 p[0] = ’p’;
727 p[0] = ’:’;
1420 return (*devpath != NULL);
1421 }
______unchanged_portion_omitted_

new/usr/src/cmd/rmformat/Makefile 1

**
 1589 Sun May 4 18:28:35 2014
new/usr/src/cmd/rmformat/Makefile
4833 Remove volrmmount
4845 rm(u)mount don’t always print mount/unmount errors
4846 HAL partition names don’t match real parition names
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License, Version 1.0 only
6 # (the "License"). You may not use this file except in compliance
7 # with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #
22 #
23 # Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # Copyright 2014 Andrew Stormont.
27 #
28 #endif /* ! codereview */

30 PROG= rmformat

32 OBJS= rmf_main.o rmf_menu.o rmf_misc.o rmf_slice.o

34 include ../Makefile.cmd

36 SRCS= $(OBJS:.o=.c)

38 LDLIBS += -lsmedia -lvolmgt -ladm -lefi

26 CERRWARN += -_gcc=-Wno-uninitialized

40 LINTFLAGS += -u
41 CPPFLAGS += -D_FILE_OFFSET_BITS=64

43 $(ROOTBIN)/rmformat := FILEMODE = 04555

45 .KEEP_STATE:

47 all: $(PROG)

49 $(PROG): $(OBJS)
50 $(LINK.c) -o $(PROG) $(OBJS) $(LDLIBS)
51 $(POST_PROCESS)

53 install: all $(ROOTPROG)

55 clean:

new/usr/src/cmd/rmformat/Makefile 2

56 $(RM) $(OBJS)

58 lint: lint_SRCS

60 $(POFILE) : $(SRCS)
61 $(RM) $@
62 $(COMPILE.cpp) $(SRCS) | $(XGETTEXT) $(XGETFLAGS) -
63 $(SED) -e ’/^domain/d’ messages.po > $@
64 $(RM) messages.po

66 sb: $(SRCS)
67 $(COMPILE.c) -xsbfast $(SRCS)

69 include ../Makefile.targ

new/usr/src/cmd/rmformat/rmf_menu.c 1

**
 30055 Sun May 4 18:28:36 2014
new/usr/src/cmd/rmformat/rmf_menu.c
4833 Remove volrmmount
4845 rm(u)mount don’t always print mount/unmount errors
4846 HAL partition names don’t match real parition names
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 *
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 *
25 * Copyright 2014 Andrew Stormont.
26 #endif /* ! codereview */
27 */

29 /*
30 * rmf_menu.c :
31 * Command line options to rmformat are processed in this file.
32 */

34 #include "rmformat.h"
35 #include <sys/smedia.h>
36 #include <priv_utils.h>

38 extern int32_t D_flag;
39 extern int32_t e_flag;
40 extern int32_t H_flag;
41 extern int32_t U_flag;
42 extern int32_t V_flag;
43 extern int32_t b_flag;
44 extern int32_t w_flag;
45 extern int32_t W_flag;
46 extern int32_t s_flag;
47 extern int32_t c_flag;
48 extern int32_t F_flag;
49 extern int32_t R_flag;
50 extern int32_t p_flag;
51 extern int32_t l_flag;

53 extern char *myname;
54 extern char *slice_file;
55 extern diskaddr_t repair_blk_no;

new/usr/src/cmd/rmformat/rmf_menu.c 2

56 extern int32_t quick_format;
57 extern int32_t long_format;
58 extern int32_t force_format;
59 extern int32_t rw_protect_enable;
60 extern int32_t rw_protect_disable;
61 extern int32_t wp_enable_passwd;
62 extern int32_t wp_disable_passwd;
63 extern int32_t wp_enable;
64 extern int32_t wp_disable;
65 extern int32_t verify_write;
66 extern char *dev_name;
67 extern char *label;
68 extern int total_devices_found;
69 extern int removable_found;
70 char *global_intr_msg;
71 smmedium_prop_t med_info;
72 int vol_running;

74 extern void check_invalid_combinations();
75 extern void check_invalid_combinations_again(int32_t);
76 extern void process_options();
77 extern void get_passwd(struct smwp_state *wp, int32_t confirm);
78 extern int32_t valid_slice_file(smedia_handle_t, int32_t, char *,
79 struct extvtoc *);
80 extern void trap_SIGINT();
81 extern void release_SIGINT();
82 extern int32_t verify(smedia_handle_t handle, int32_t fd,
83 diskaddr_t start_sector, uint32_t nblocks,
84 char *buf, int32_t flag, int32_t blocksize, int32_t no_raw_rw);
85 extern void my_perror(char *err_string);
86 extern void write_default_label(smedia_handle_t, int32_t fd);
87 extern int find_device(int defer, char *tmpstr);

89 void overwrite_metadata(int32_t fd, smedia_handle_t handle);

91 int32_t write_sunos_label(int32_t fd, int32_t media_type);

93 int32_t my_open(char *device_name, int32_t flags);

24 int32_t check_and_unmount_vold(char *device_name, int32_t flag);
95 int32_t check_and_unmount_scsi(char *device_name, int32_t flag);

96 int32_t check_and_unmount_floppy(int32_t fd, int32_t flag);
97 int32_t get_confirmation(void);

100 static void process_F_flag(smedia_handle_t handle, int32_t fd);
101 static void process_w_flag(smedia_handle_t handle);
102 static void process_W_flag(smedia_handle_t handle);
103 static void process_R_flag(smedia_handle_t handle);
104 void process_p_flag(smedia_handle_t handle, int32_t fd);
105 static void process_c_flag(smedia_handle_t handle);
106 static void process_V_flag(smedia_handle_t handle, int32_t fd);
107 static void process_s_flag(smedia_handle_t, int32_t fd);
108 static void process_e_flag(smedia_handle_t handle);
109 static void process_H_flag(smedia_handle_t handle, int32_t fd);
110 static void process_D_flag(smedia_handle_t handle, int32_t fd);
111 static void process_b_flag(int32_t fd);
112 static void process_l_flag(void);

114 void
115 process_options()
116 {
117 int32_t fd;
118 smedia_handle_t handle;
50 int32_t m_scsi_umount = 0;

new/usr/src/cmd/rmformat/rmf_menu.c 3

119 int32_t m_flp_umount = 0;
120 int32_t v_device_umount = 0;
121 int32_t umount_required = 0;
122 int32_t removable;
123 int32_t umount_failed = 0;
124 struct dk_minfo media;

126 check_invalid_combinations();

128 if (l_flag && !dev_name) {
129 process_l_flag();
130 return;
131 }

133 if (U_flag) {
134 if (!(F_flag || H_flag || D_flag)) {
135 F_flag = 1;
136 long_format = 1;
137 }
138 }

140 if (F_flag || w_flag || W_flag || R_flag || D_flag || H_flag ||
141 V_flag || c_flag || b_flag || s_flag || e_flag) {
142 umount_required = 1;
143 }

145 fd = my_open(dev_name, O_RDONLY|O_NDELAY);
146 if (fd < 0) {
147 PERROR("Could not open device");
148 (void) close(fd);
149 exit(1);
150 }

152 if (ioctl(fd, DKIOCREMOVABLE, &removable) < 0) {
153 PERROR("DKIOCREMOVABLE ioctl failed");
154 (void) close(fd);
155 exit(1);
156 }
157 if (!removable) {
158 (void) fprintf(stderr,
159 gettext("Not a removable media device\n"));
160 (void) close(fd);
161 exit(1);
162 }

164 if (ioctl(fd, DKIOCGMEDIAINFO, &media) < 0) {
165 (void) fprintf(stderr,
166 gettext("No media in specified device\n"));
167 (void) close(fd);
168 exit(1);
169 }

171 /* Check if volume manager has mounted this */
172 if (umount_required) {
173 v_device_umount = check_and_unmount_scsi(dev_name, U_flag);
105 v_device_umount = check_and_unmount_vold(dev_name, U_flag);
174 if (v_device_umount != 1) {
175 m_flp_umount = check_and_unmount_floppy(fd, U_flag);
107 m_scsi_umount = check_and_unmount_scsi(dev_name,
108 U_flag);
109 if (m_scsi_umount != 1) {
110 m_flp_umount = check_and_unmount_floppy(fd,
111 U_flag);
176 if (m_flp_umount != 1) {
177 umount_failed = 1;
178 }

new/usr/src/cmd/rmformat/rmf_menu.c 4

179 }
180 }
117 }

182 if (umount_required && U_flag && umount_failed) {
183 if (v_device_umount || m_scsi_umount || m_flp_umount) {
184 (void) fprintf(stderr,
185 gettext("Could not unmount device.\n"));
186 (void) close(fd);
187 exit(1);
188 }
189 }

191 if (umount_required && !U_flag) {
192 if (v_device_umount || m_scsi_umount || m_flp_umount) {
193 (void) fprintf(stderr, gettext("Device mounted.\n"));
194 (void) fprintf(stderr,
195 gettext("Requested operation can not be \
196 performed on a mounted device.\n"));
197 (void) close(fd);
198 exit(1);
199 }
200 }
201 /* register the fd with the libsmedia */
202 handle = smedia_get_handle(fd);
203 if (handle == NULL) {
204 (void) fprintf(stderr,
205 gettext("Failed to get libsmedia handle.\n"));
206 (void) close(fd);
207 exit(1);
208 }

210 if (smedia_get_medium_property(handle, &med_info) < 0) {
211 (void) fprintf(stderr,
212 gettext("Get medium property failed \n"));
213 (void) smedia_release_handle(handle);
214 (void) close(fd);
215 exit(1);
216 }

218 DPRINTF1("media type %x\n", med_info.sm_media_type);
219 DPRINTF1("media block size %x\n", med_info.sm_blocksize);
220 DPRINTF1("media capacity %u\n", (uint32_t)med_info.sm_capacity);
221 DPRINTF3("media cyl %d head %d sect %d\n",
222 med_info.sm_pcyl, med_info.sm_nhead, med_info.sm_nsect);
223 check_invalid_combinations_again(med_info.sm_media_type);

225 /*
226 * Special handling for pcmcia, sometimes open the file in
227 * read-write mode.
228 */

230 if (med_info.sm_media_type == SM_PCMCIA_MEM) {
231 if (F_flag || H_flag || D_flag || (V_flag && verify_write)) {
232 (void) close(fd);
233 DPRINTF("Reopening device\n");
234 fd = my_open(dev_name, O_RDWR|O_NDELAY);
235 if (fd < 0) {
236 PERROR("Could not open device");
237 (void) smedia_release_handle(handle);
238 (void) close(fd);
239 exit(1);
240 }
241 }
242 }

new/usr/src/cmd/rmformat/rmf_menu.c 5

244 if (med_info.sm_media_type == SM_PCMCIA_ATA) {
245 if (V_flag || c_flag) {
246 (void) fprintf(stderr,
247 gettext("Option not supported on PC ATA cards\n"));
248 (void) smedia_release_handle(handle);
249 (void) close(fd);
250 exit(1);
251 }
252 if (F_flag) {
253 /* same text as used by the format command */
254 (void) fprintf(stderr,
255 gettext("Cannot format this drive. Please use your \
256 Manufacturer supplied formatting utility.\n"));
257 (void) smedia_release_handle(handle);
258 (void) close(fd);
259 exit(1);
260 }
261 }

263 if (F_flag)
264 process_F_flag(handle, fd);
265 if (w_flag)
266 process_w_flag(handle);
267 if (W_flag)
268 process_W_flag(handle);
269 if (R_flag)
270 process_R_flag(handle);
271 if (p_flag)
272 process_p_flag(handle, fd);
273 if (D_flag)
274 process_D_flag(handle, fd);
275 if (H_flag)
276 process_H_flag(handle, fd);
277 if (V_flag)
278 process_V_flag(handle, fd);
279 if (c_flag)
280 process_c_flag(handle);
281 if (b_flag)
282 process_b_flag(fd);
283 if (s_flag)
284 process_s_flag(handle, fd);
285 if (e_flag)
286 process_e_flag(handle);
287 if (l_flag) {
288 process_l_flag();
289 }

291 (void) smedia_release_handle(handle);
292 (void) close(fd);
293 }

295 /*
296 * This routine handles the F_flag.
297 * This options should not be used for floppy. However,
298 * if this option is used for floppy, the option will
299 * be forced to SM_FORMAT_HD and smedia_format is called.
300 * Note that smedia_format is a blocked mode format and it
301 * returns only after the complete formatting is over.
302 */

304 static void
305 process_F_flag(smedia_handle_t handle, int32_t fd)
306 {
307 uint32_t format_flag = 0;
244 uint32_t format_flag;
308 int32_t old_per = 0;

new/usr/src/cmd/rmformat/rmf_menu.c 6

309 int32_t new_per, ret_val;

311 if (force_format) {
312 (void) fprintf(stderr,
313 gettext("Formatting disk.\n"));
314 } else {
315 (void) fprintf(stderr,
316 gettext("Formatting will erase all the data on disk.\n"));
317 if (!get_confirmation())
318 return;
319 }

321 if (quick_format)
322 format_flag = SM_FORMAT_QUICK;
323 else if (long_format)
324 format_flag = SM_FORMAT_LONG;
325 else if (force_format)
326 format_flag = SM_FORMAT_FORCE;

328 if (med_info.sm_media_type == SM_FLOPPY)
329 format_flag = SM_FORMAT_HD;

331 if ((med_info.sm_media_type != SM_FLOPPY) &&
332 (med_info.sm_media_type != SM_PCMCIA_MEM) &&
333 (med_info.sm_media_type != SM_SCSI_FLOPPY)) {
334 global_intr_msg = "Interrupting format may render the \
335 medium useless";
336 } else {
337 global_intr_msg = "";
338 }
339 trap_SIGINT();

341 if (smedia_format(handle, format_flag, SM_FORMAT_IMMEDIATE) != 0) {
342 if (errno == EINVAL) {
343 (void) fprintf(stderr, gettext("Format failed.\n"));
344 (void) fprintf(stderr, gettext("The medium may not \
345 be compatible for format operation.\n"));
346 (void) fprintf(stderr, gettext("read/write surface \
347 scan may be used to get the effect of formatting.\n"));
348 } else {
349 PERROR("Format failed");
350 }
351 (void) smedia_release_handle(handle);
352 (void) close(fd);
353 exit(1);
354 }

356 /* CONSTCOND */
357 while (1) {
358 ret_val = smedia_check_format_status(handle);
359 if (ret_val == -1) {
360 if (errno != ENOTSUP) {
361 PERROR("Format failed");
362 (void) smedia_release_handle(handle);
363 (void) close(fd);
364 exit(1);
365 } else {
366 /* Background formatting is not supported */
367 break;
368 }
369 }
370 if (ret_val == 100) {
371 (void) printf("\n");
372 (void) fflush(stdout);
373 break;
374 }

new/usr/src/cmd/rmformat/rmf_menu.c 7

375 new_per = (ret_val * 80)/100;
376 while (new_per >= old_per) {
377 (void) printf(".");
378 (void) fflush(stdout);
379 old_per++;
380 }
381 (void) sleep(6);
382 }

384 if ((med_info.sm_media_type == SM_FLOPPY) ||
385 (med_info.sm_media_type == SM_PCMCIA_MEM) ||
386 (med_info.sm_media_type == SM_SCSI_FLOPPY)) {
387 (void) write_sunos_label(fd, med_info.sm_media_type);
388 } else {

390 /*
391 * Iomega drives don’t destroy the data in quick format.
392 * Do a best effort write to first 1024 sectors.
393 */

395 if (quick_format)
396 overwrite_metadata(fd, handle);

398 (void) write_default_label(handle, fd);
399 }

401 release_SIGINT();
402 }

404 /*
405 * List removable devices.
406 */
407 static void
408 process_l_flag()
409 {
410 int retry;
411 int removable;
412 int total_devices_found_last_time;
413 int defer = 0;
414 char *tmpstr = NULL;
351 char *tmpstr;

416 #define MAX_RETRIES_FOR_SCANNING 3

418 vol_running = volmgt_running();
419 if (vol_running)
420 defer = 1;
421 (void) printf(gettext("Looking for devices...\n"));
422 total_devices_found_last_time = 0;

424 /*
425 * Strip out any leading path. For example, /dev/rdsk/c3t0d0s2
426 * will result in tmpstr = c3t0d0s2. dev_name is given as input
427 * argument.
428 */
429 if (dev_name) {
430 if ((tmpstr = strrchr(dev_name, ’/’)) != NULL) {
431 tmpstr += sizeof (char);
432 } else {
433 tmpstr = dev_name;
434 }
435 }

437 for (retry = 0; retry < MAX_RETRIES_FOR_SCANNING; retry++) {
438 removable = find_device(defer, tmpstr);
439 if (removable == -1)

new/usr/src/cmd/rmformat/rmf_menu.c 8

440 break;

442 /*
443 * We’ll do a small sleep and retry the command if volume
444 * manager is running and no removable devices are found.
445 * This is because the device may be busy.
446 */
447 if (defer || (vol_running && (removable == 0))) {
448 if ((total_devices_found == 0) ||
449 (total_devices_found !=
450 total_devices_found_last_time)) {
451 total_devices_found_last_time =
452 total_devices_found;
453 (void) sleep(2);
454 } else {
455 /* Do the printing this time */
456 defer = 0;
457 removable_found = 0;
458 }

460 } else
461 break;
462 }
463 if (removable_found == 0)
464 (void) printf(gettext("No removables found.\n"));
465 }

______unchanged_portion_omitted_

new/usr/src/cmd/rmformat/rmf_misc.c 1

**
 43460 Sun May 4 18:28:36 2014
new/usr/src/cmd/rmformat/rmf_misc.c
4833 Remove volrmmount
4845 rm(u)mount don’t always print mount/unmount errors
4846 HAL partition names don’t match real parition names
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 *
20 */

22 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 *
25 * Copyright 2014 Andrew Stormont.
26 #endif /* ! codereview */
27 */

29 /*
30 * rmf_misc.c :
31 * Miscelleneous routines for rmformat.
32 */

34 #include <sys/types.h>
35 #include <stdio.h>
36 #include <sys/mnttab.h>
37 #include <volmgt.h>
38 #include <sys/dkio.h>
39 #include <sys/fdio.h>
40 #include <sys/vtoc.h>
41 #include <sys/termios.h>
42 #include <sys/mount.h>
43 #include <ctype.h>
44 #include <signal.h>
45 #include <sys/wait.h>
46 #include <dirent.h>
47 #include <priv_utils.h>
48 #include <stdarg.h>
49 #include "rmformat.h"

51 /*
52 * Definitions.
53 */
54 #define SENSE_KEY(rqbuf) (rqbuf[2] & 0xf) /* scsi error category */

new/usr/src/cmd/rmformat/rmf_misc.c 2

55 #define ASC(rqbuf) (rqbuf[12]) /* additional sense code */
56 #define ASCQ(rqbuf) (rqbuf[13]) /* ASC qualifier */

58 #define DEFAULT_SCSI_TIMEOUT 60
59 #define INQUIRY_CMD 0x12
60 #define RQBUFLEN 32
61 #define CD_RW 1 /* CD_RW/CD-R */
62 #define WRITE_10_CMD 0x2A
63 #define READ_INFO_CMD 0x51
64 #define SYNC_CACHE_CMD 0x35
65 #define CLOSE_TRACK_CMD 0x5B
66 #define MODE_SENSE_10_CMD 0x5A
67 #define DEVFS_PREFIX "/devices"

69 int uscsi_error; /* used for debugging failed uscsi */
70 char rqbuf[RQBUFLEN];
71 static uint_t total_retries;
72 static struct uscsi_cmd uscmd;
73 static char ucdb[16];
74 uchar_t uscsi_status, rqstatus, rqresid;
75 int total_devices_found = 0;
76 int removable_found = 0;

78 extern char *global_intr_msg;
79 extern int vol_running;
80 extern char *dev_name;
81 extern int32_t m_flag;

83 /*
84 * ON-private functions from libvolmgt
85 */
86 int _dev_mounted(char *path);

88 /*
89 * Function prototypes.
90 */
91 static int my_umount(char *mountp);
25 static int my_volrmmount(char *real_name);
92 static int vol_name_to_dev_node(char *vname, char *found);
93 static int vol_lookup(char *supplied, char *found);
94 static device_t *get_device(char *user_supplied, char *node);
95 static char *get_physical_name(char *path);
96 static int lookup_device(char *supplied, char *found);
97 static void fini_device(device_t *dev);
98 static int is_cd(char *node);
99 void *my_zalloc(size_t size);
100 void err_msg(char *fmt, ...);
101 int inquiry(int fd, uchar_t *inq);
102 struct uscsi_cmd *get_uscsi_cmd(void);
103 int uscsi(int fd, struct uscsi_cmd *scmd);
104 int get_mode_page(int fd, int page_no, int pc, int buf_len,
105 uchar_t *buffer);
106 int mode_sense(int fd, uchar_t pc, int dbd, int page_len,
107 uchar_t *buffer);
108 uint16_t read_scsi16(void *addr);
109 int check_device(device_t *dev, int cond);
110 static void get_media_info(device_t *t_dev, char *sdev,
111 char *pname, char *sn);

113 extern void process_p_flag(smedia_handle_t handle, int32_t fd);

115 void
116 my_perror(char *err_string)
117 {

119 int error_no;

new/usr/src/cmd/rmformat/rmf_misc.c 3

120 if (errno == 0)
121 return;

123 error_no = errno;
124 (void) fprintf(stderr, "%s", err_string);
125 (void) fprintf(stderr, gettext(" : "));
126 errno = error_no;
127 perror("");
128 }

______unchanged_portion_omitted_

161 int32_t
162 check_and_unmount_vold(char *device_name, int32_t flag)
163 {
164 char *real_name;
165 char *nm;
166 char tmp_path_name[PATH_MAX];
167 struct stat stat_buf;
168 int32_t ret_val = 0;
169 struct mnttab *mntp;
170 FILE *fp;
171 int nl;

173 DPRINTF1("Device name %s\n", device_name);

175 if (volmgt_running() == 0) {
176 DPRINTF("Vold not running\n");
177 return (0);
178 }
179 if ((nm = volmgt_symname(device_name)) == NULL) {
180 DPRINTF("path not managed\n");
181 real_name = media_findname(device_name);
182 } else {
183 DPRINTF1("path managed as %s\n", nm);
184 real_name = media_findname(nm);
185 DPRINTF1("real name %s\n", real_name);
186 }

188 if (real_name == NULL)
189 return (-1);

191 /*
192 * To find out whether the device has been mounted by
193 * volume manager...
194 *
195 * Convert the real name to a block device address.
196 * Do a partial match with the mnttab entries.
197 * Make sure the match is in the beginning to avoid if
198 * anybody puts a label similiar to volume manager path names.
199 * Then use "volrmmount -e <dev_name>" if -U flag is set.
200 */

202 nl = strlen("/vol/dev/");

204 if (strncmp(real_name, "/vol/dev/", nl) != 0)
205 return (0);
206 if (real_name[nl] == ’r’) {
207 (void) snprintf(tmp_path_name, PATH_MAX, "%s%s", "/vol/dev/",
208 &real_name[nl + 1]);
209 } else {
210 (void) snprintf(tmp_path_name, PATH_MAX, "%s", real_name);
211 }
212 DPRINTF1("%s \n", tmp_path_name);
213 ret_val = stat(tmp_path_name, &stat_buf);
214 if (ret_val < 0) {
215 PERROR("Could not stat");

new/usr/src/cmd/rmformat/rmf_misc.c 4

216 return (-1);
217 }

219 fp = fopen("/etc/mnttab", "r");

221 if (fp == NULL) {
222 PERROR("Could not open /etc/mnttab");
223 return (-1);
224 }

226 mntp = (struct mnttab *)malloc(sizeof (struct mnttab));
227 if (mntp == NULL) {
228 PERROR("malloc failed");
229 (void) fclose(fp);
230 return (-1);
231 }
232 errno = 0;
233 while (getmntent(fp, mntp) == 0) {
234 if (errno != 0) {
235 PERROR("Error with mnttab");
236 (void) fclose(fp);
237 return (-1);
238 }
239 /* Is it a probable entry? */
240 DPRINTF1(" %s \n", mntp->mnt_special);
241 if (strstr(mntp->mnt_special, tmp_path_name) !=
242 mntp->mnt_special) {
243 /* Skip to next entry */
244 continue;
245 } else {
246 DPRINTF1("Found!! %s\n", mntp->mnt_special);
247 ret_val = 1;
248 break;
249 }
250 }

252 if (ret_val == 1) {
253 if (flag) {
254 if (my_volrmmount(real_name) < 0) {
255 ret_val = -1;
256 }
257 } else {
258 ret_val = -1;
259 }
260 }
261 (void) fclose(fp);
262 free(mntp);
263 return (ret_val);
264 }

227 /*
228 * This routine checks if a device has mounted partitions. The
229 * device name is assumed to be /dev/rdsk/cNtNdNsN. So, this can
230 * be used for SCSI and PCMCIA cards.
231 * Returns
232 * 0 : if not mounted
233 * 1 : if successfully unmounted
234 * -1 : Any error or umount failed
235 */

237 int32_t
238 check_and_unmount_scsi(char *device_name, int32_t flag)
239 {

241 struct mnttab *mntrefp;
242 struct mnttab *mntp;

new/usr/src/cmd/rmformat/rmf_misc.c 5

243 FILE *fp;
244 char block_dev_name[PATH_MAX];
245 char tmp_name[PATH_MAX];
246 int32_t i, j;
247 int32_t unmounted = 0;

249 /*
250 * If the device name is not a character special, anyway we
251 * can not progress further
252 */

254 if (strncmp(device_name, "/dev/rdsk/c", strlen("/dev/rdsk/c")) != 0)
255 return (0);

257 (void) snprintf(block_dev_name, PATH_MAX, "/dev/%s",
258 &device_name[strlen("/dev/r")]);
259 fp = fopen("/etc/mnttab", "r");

261 if (fp == NULL) {
262 PERROR("Could not open /etc/mnttab");
263 return (-1);
264 }

266 mntrefp = (struct mnttab *)malloc(sizeof (struct mnttab));
267 if (mntrefp == NULL) {
268 PERROR("malloc failed");
269 (void) fclose(fp);
270 return (-1);
271 }

273 mntp = (struct mnttab *)malloc(sizeof (struct mnttab));
274 if (mntp == NULL) {
275 PERROR("malloc failed");
276 (void) fclose(fp);
277 free(mntrefp);
278 return (-1);
279 }

281 /* Try all the partitions */

283 (void) snprintf(tmp_name, PATH_MAX, "/dev/%s",
284 &device_name[strlen("/dev/r")]);

286 tmp_name[strlen("/dev/dsk/c0t0d0s")] = ’\0’;

288 errno = 0;
289 while (getmntent(fp, mntp) == 0) {
290 if (errno != 0) {
291 PERROR("Error with mnttab");
292 (void) fclose(fp);
293 return (-1);
294 }
295 /* Is it a probable entry? */
296 if (strncmp(mntp->mnt_special, tmp_name, strlen(tmp_name))) {
297 /* Skip to next entry */
298 continue;
299 }
300 for (i = 0; i < NDKMAP; i++) {
301 /* Check for ufs style mount devices */
302 (void) snprintf(block_dev_name, PATH_MAX,
303 "%s%d", tmp_name, i);

305 if (strcmp(mntp->mnt_special, block_dev_name) == 0) {
306 if (flag) {
307 if (my_umount(mntp->mnt_mountp) < 0) {
308 (void) fclose(fp);

new/usr/src/cmd/rmformat/rmf_misc.c 6

309 return (-1);
310 }
311 unmounted = 1;
312 } else {
313 (void) fclose(fp);
314 return (-1);
315 }
316 /* Skip to next entry */
317 continue;
318 }

320 /* Try for :1 -> :24 for pcfs */

322 for (j = 1; j < 24; j++) {
323 (void) snprintf(block_dev_name, PATH_MAX,
324 "%s%d:%d", tmp_name, i, j);

326 if (strcmp(mntp->mnt_special,
327 block_dev_name) == 0) {
328 if (flag) {
329 if (my_umount(mntp->mnt_mountp)
330 < 0) {
331 (void) fclose(fp);
332 return (-1);
333 }
334 unmounted = 1;
335 } else {
336 (void) fclose(fp);
337 return (-1);
338 }
339 /* Skip to next entry */
340 continue;
341 }
342 (void) snprintf(block_dev_name, PATH_MAX,
343 "%s%d:%c", tmp_name, i, ’b’ + j);

345 if (strcmp(mntp->mnt_special,
346 block_dev_name) == 0) {
347 if (flag) {
348 if (my_umount(mntp->mnt_mountp)
349 < 0) {
350 (void) fclose(fp);
351 return (-1);
352 }
353 unmounted = 1;
354 } else {
355 (void) fclose(fp);
356 return (-1);
357 }
358 /* Skip to next entry */
359 continue;
360 }
361 }
362 }

364 }

366 if (unmounted)
367 return (1);
368 return (0);
369 }

______unchanged_portion_omitted_

1005 static int
1006 my_volrmmount(char *real_name)
1007 {

new/usr/src/cmd/rmformat/rmf_misc.c 7

1008 int pid, rval;

1010 /* Turn on the privileges. */
1011 (void) __priv_bracket(PRIV_ON);

1013 pid = fork();

1015 /* Turn off the privileges. */
1016 (void) __priv_bracket(PRIV_OFF);

1018 /* create a child to unmount the path */
1019 if (pid < 0) {
1020 PERROR("fork failed");
1021 exit(0);
1022 }

1024 if (pid == 0) {
1025 /* the child */
1026 /* get rid of those nasty err messages */
1027 DPRINTF1("call_unmount_prog: calling %s \n",
1028 "/usr/bin/volrmmount");

1030 /* Turn on the privileges. */
1031 (void) __priv_bracket(PRIV_ON);
1032 if (execl("/usr/bin/volrmmount", "/usr/bin/volrmmount", "-e",
1033 real_name, NULL) < 0) {
1034 PERROR("volrmmount exec failed");
1035 /* Turn off the privileges */
1036 (void) __priv_bracket(PRIV_OFF);
1037 exit(-1);
1038 }
1039 } else if (waitpid(pid, &rval, 0) == pid) {
1040 if (WIFEXITED(rval)) {
1041 if (WEXITSTATUS(rval) == 0) {
1042 DPRINTF("volrmmount: Success\n");
1043 return (1);
1044 }
1045 }
1046 }
1047 return (-1);
1048 }

966 int
967 find_device(int defer, char *tmpstr)
968 {
969 DIR *dir;
970 struct dirent *dirent;
971 char sdev[PATH_MAX], dev[PATH_MAX], *pname;
972 device_t *t_dev;
973 int removable = 0;
974 int device_type = 0;
975 int hotpluggable = 0;
976 struct dk_minfo mediainfo;
977 static int found = 0;

979 dir = opendir("/dev/rdsk");
980 if (dir == NULL)
981 return (-1);

983 total_devices_found = 0;
984 while ((dirent = readdir(dir)) != NULL) {
985 if (dirent->d_name[0] == ’.’) {
986 continue;
987 }
988 (void) snprintf(sdev, PATH_MAX, "/dev/rdsk/%s",
989 dirent->d_name);

new/usr/src/cmd/rmformat/rmf_misc.c 8

990 #ifdef sparc
991 if (!strstr(sdev, "s2")) {
992 continue;
993 }
994 #else /* x86 */
995 if (vol_running) {
996 if (!(strstr(sdev, "s2") || strstr(sdev, "p0"))) {
997 continue;
998 }
999 } else {

1000 if (!strstr(sdev, "p0")) {
1001 continue;
1002 }
1003 }
1004 #endif
1005 if (!lookup_device(sdev, dev)) {
1006 continue;
1007 }
1008 if ((t_dev = get_device(NULL, dev)) == NULL) {
1009 continue;
1010 }
1011 total_devices_found++;

1013 if ((!defer) && !found) {
1014 char *sn, *tmpbuf = NULL;
1098 char *sn, *tmpbuf;
1015 /*
1016 * dev_name is an optional command line input.
1017 */
1018 if (dev_name) {
1019 if (strstr(dirent->d_name, tmpstr)) {
1020 found = 1;
1021 } else if (!vol_running) {
1022 continue;
1023 }
1024 }
1025 /*
1026 * volmgt_symname() returns NULL if the device
1027 * is not managed by volmgt.
1028 */
1029 sn = volmgt_symname(sdev);

1031 if (vol_running && (sn != NULL)) {
1032 if (strstr(sn, "dev") == NULL) {
1033 tmpbuf = (char *)my_zalloc(PATH_MAX);
1034 (void) strcpy(tmpbuf,
1035 "/vol/dev/aliases/");
1036 (void) strcat(tmpbuf, sn);
1037 free(sn);
1038 sn = tmpbuf;
1039 }
1040 if (dev_name && !found) {
1041 if (!strstr(tmpbuf, tmpstr)) {
1042 continue;
1043 } else {
1044 found = 1;
1045 }
1046 }
1047 }

1049 /*
1050 * Get device type information for CD/DVD devices.
1051 */
1052 if (is_cd(dev)) {
1053 if (check_device(t_dev,
1054 CHECK_DEVICE_IS_DVD_WRITABLE)) {

new/usr/src/cmd/rmformat/rmf_misc.c 9

1055 device_type = DK_DVDR;
1056 } else if (check_device(t_dev,
1057 CHECK_DEVICE_IS_DVD_READABLE)) {
1058 device_type = DK_DVDROM;
1059 } else if (check_device(t_dev,
1060 CHECK_DEVICE_IS_CD_WRITABLE)) {
1061 device_type = DK_CDR;
1062 } else {
1063 device_type = DK_CDROM;
1064 }
1065 } else {
1066 device_type = ioctl(t_dev->d_fd,
1067 DKIOCGMEDIAINFO, &mediainfo);
1068 if (device_type < 0)
1069 device_type = 0;
1070 else
1071 device_type = mediainfo.dki_media_type;
1072 }

1074 if (!ioctl(t_dev->d_fd, DKIOCREMOVABLE, &removable) &&
1075 !ioctl(t_dev->d_fd, DKIOCHOTPLUGGABLE,
1076 &hotpluggable)) {
1077 if (removable || hotpluggable) {
1078 removable_found++;
1079 pname = get_physical_name(sdev);
1080 if (sn) {
1081 (void) printf(" %4d. "
1082 "Volmgt Node: %s\n",
1083 removable_found, sn);
1084 (void) printf(" "
1085 "Logical Node: %s\n", sdev);
1086 (void) printf(" "
1087 "Physical Node: %s\n",
1088 pname);
1089 } else {
1090 (void) printf(" %4d. "
1091 "Logical Node: %s\n",
1092 removable_found, sdev);
1093 (void) printf(" "
1094 "Physical Node: %s\n",
1095 pname);
1096 }
1097 (void) printf(" Connected "
1098 "Device: %-8.8s %-16.16s "
1099 "%-4.4s\n",
1100 &t_dev->d_inq[8],
1101 &t_dev->d_inq[16],
1102 &t_dev->d_inq[32]);
1103 (void) printf(" Device "
1104 "Type: ");
1105 } else
1106 continue;
1107 } else
1108 continue;

1110 switch (device_type) {
1111 case DK_CDROM:
1112 (void) printf("CD Reader\n");
1113 break;
1114 case DK_CDR:
1115 case DK_CDRW:
1116 (void) printf("CD Reader/Writer\n");
1117 break;
1118 case DK_DVDROM:
1119 (void) printf("DVD Reader\n");
1120 break;

new/usr/src/cmd/rmformat/rmf_misc.c 10

1121 case DK_DVDR:
1122 case DK_DVDRAM:
1123 (void) printf("DVD Reader/Writer\n");
1124 break;
1125 case DK_FIXED_DISK:
1126 if (strstr((const char *)
1127 &t_dev->d_inq[16], "FD") ||
1128 strstr((const char *)
1129 &t_dev->d_inq[16], "LS-120"))
1130 (void) printf("Floppy "
1131 "drive\n");
1132 else
1133 (void) printf("Removable\n");
1134 break;
1135 case DK_FLOPPY:
1136 (void) printf("Floppy drive\n");
1137 break;
1138 case DK_ZIP:
1139 (void) printf("Zip drive\n");
1140 break;
1141 case DK_JAZ:
1142 (void) printf("Jaz drive\n");
1143 break;
1144 default:
1145 (void) printf("<Unknown>\n");
1146 DPRINTF1("\t %d\n", device_type);
1147 break;
1148 }
1149 get_media_info(t_dev, sdev, pname, sn);
1150 }
1151 fini_device(t_dev);
1152 }

1154 (void) closedir(dir);
1155 return (removable_found);
1156 }
______unchanged_portion_omitted_

new/usr/src/cmd/rmformat/rmf_slice.c 1

**
 39066 Sun May 4 18:28:36 2014
new/usr/src/cmd/rmformat/rmf_slice.c
4833 Remove volrmmount
4845 rm(u)mount don’t always print mount/unmount errors
4846 HAL partition names don’t match real parition names
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 *
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 *
25 * Copyright 2014 Andrew Stormont.
26 #endif /* ! codereview */
27 */

29 /*
30 * rmf_slice.c :
31 * This file contains the functions for parsing a slice file
32 * for rmformat.
33 */

35 #include <sys/types.h>
36 #include <ctype.h>
37 #include <sys/vtoc.h>
38 #include <stdlib.h>
39 #include <unistd.h>
40 #include <string.h>
41 #include <fcntl.h>
42 #include <errno.h>
43 #include <memory.h>
44 #include <dirent.h>
45 #include <sys/fcntl.h>
46 #include <sys/param.h>
47 #include <sys/stat.h>
48 #include <stdio.h>
49 #include <sys/dkio.h>
50 #include <priv_utils.h>
51 #include "rmformat.h"

53 extern void my_perror(char *err_string);

55 static int32_t last_token_type = 0;

new/usr/src/cmd/rmformat/rmf_slice.c 2

56 #define spc() (last_token_type)

59 /*
60 * This global is used to store the current line # in the
61 * data file. It must be global because the I/O routines
62 * are allowed to side effect it to keep track of backslashed
63 * newlines.
64 */

66 static int32_t data_lineno; /* current line # in data file */

68 #define CHG_MODE_UNDEFINED (-1) /* undefined value */
69 #define CHG_MODE_SET 0 /* set bits by or’ing */
70 #define CHG_MODE_CLR 1 /* clr bits by and’ing */
71 #define CHG_MODE_ABS 2 /* set absolute value */

74 #define TOKEN_SIZE 36 /* max length of a token */
75 typedef char TOKEN[TOKEN_SIZE+1]; /* token type */
76 #define DATA_INPUT 0 /* 2 modes of input */
77 #define CMD_INPUT 1
78 #define WILD_STRING "$" /* wildcard character */
79 #define COMMENT_CHAR ’#’ /* comment character */

81 /*
82 * List of strings with arbitrary matching values
83 */
84 typedef struct slist {
85 char *str;
86 char *help;
87 int32_t value;
88 } slist_t;

90 static slist_t ptag_choices[] = {
91 { "unassigned", "", V_UNASSIGNED },
92 { "boot", "", V_BOOT },
93 { "root", "", V_ROOT },
94 { "swap", "", V_SWAP },
95 { "usr", "", V_USR },
96 { "backup", "", V_BACKUP },
97 { "stand", "", V_STAND },
98 { "var", "", V_VAR },
99 { "home", "", V_HOME },
100 { "alternates", "", V_ALTSCTR },
101 { NULL }
102 };

105 /*
106 * Choices for the p_flag vtoc field
107 */
108 static slist_t pflag_choices[] = {
109 { "wm", "read-write, mountable", 0 },
110 { "wu", "read-write, unmountable", V_UNMNT },
111 { "rm", "read-only, mountable", V_RONLY },
112 { "ru", "read-only, unmountable", V_RONLY|V_UNMNT },
113 { NULL }
114 };

116 /*
117 * The definitions are the token types that the data file parser recognizes.
118 */
119 #define SUP_EOF -1 /* eof token */
120 #define SUP_STRING 0 /* string token */
121 #define SUP_EQL 1 /* equals token */

new/usr/src/cmd/rmformat/rmf_slice.c 3

122 #define SUP_COMMA 2 /* comma token */
123 #define SUP_COLON 3 /* colon token */
124 #define SUP_EOL 4 /* newline token */
125 #define SUP_OR 5 /* vertical bar */
126 #define SUP_AND 6 /* ampersand */
127 #define SUP_TILDE 7 /* tilde */

130 /*
131 * Prototypes for ANSI C compilers
132 */
133 static int32_t sup_prxfile(char *file_name, struct extvtoc *vt);
134 static int32_t sup_setpart(struct extvtoc *vt);
135 static void sup_pushchar(int32_t c);
136 static void clean_token(char *cleantoken, char *token);
137 static void clean_token(char *cleantoken, char *token);
138 static int32_t sup_inputchar();
139 static int32_t sup_gettoken(char *buf);
140 static int32_t sup_get_token(char *buf);
141 static int32_t find_value(slist_t *slist, char *str, int32_t *value);
142 static int32_t check_vtoc_sanity(smedia_handle_t, int32_t fd,
143 struct extvtoc *vt);
144 static uint64_t str2sector(char *str);
145 static int32_t strcnt(char *s1, char *s2);
146 static int32_t get_fdisk(smedia_handle_t, int32_t fd, int32_t offset,
147 struct fdisk_info *fdisk);
148 static void erase(smedia_handle_t handle, diskaddr_t offset, diskaddr_t size);

150 extern char *myname;
151 extern uint64_t my_atoll(char *ptr);
152 extern smmedium_prop_t med_info;

154 static FILE *data_file;

156 static int32_t
157 sup_prxfile(char *file_name, struct extvtoc *vt)
158 {
159 int32_t status, ret_val;
160 TOKEN token;
161 TOKEN cleaned;

163 /*
164 * Open the data file. Return 0 if unable to do so.
165 */
166 data_file = fopen(file_name, "r");
167 if (data_file == NULL) {
168 PERROR("Open failed");
169 return (-1);
170 }
171 /*
172 * Step through the data file a meta-line at a time. There are
173 * typically several backslashed newlines in each meta-line,
174 * so data_lineno will be getting side effected along the way.
175 */
176 data_lineno = 1;
177 for (;;) {

179 /*
180 * Get the keyword.
181 */
182 status = sup_gettoken(token);
183 /*
184 * If we hit the end of the data file, we’re done.
185 */
186 if (status == SUP_EOF)
187 break;

new/usr/src/cmd/rmformat/rmf_slice.c 4

188 /*
189 * If the line starts with some key character, it’s an error.
190 */
191 if (status != SUP_STRING) {
192 (void) fprintf(stderr,
193 gettext("Expecting keyword, found ’%s’"),
194 token);
195 (void) fprintf(stderr,
196 gettext("Line no %d\n"), data_lineno);
197 continue;
198 }
199 /*
200 * Clean up the token and see which keyword it is. Call
201 * the appropriate routine to process the rest of the line.
202 */
203 clean_token(cleaned, token);
204 if (strcmp(cleaned, "slices") == 0) {
205 ret_val = sup_setpart(vt);
206 (void) fclose(data_file);
207 return (ret_val);
208 } else {
209 (void) fprintf(stderr, gettext("Unknown keyword ’%s’"),
210 cleaned);
211 (void) fprintf(stderr,
212 gettext("Line no %d\n"), data_lineno);
213 (void) fclose(data_file);
214 return (-1);
215 }
216 }
217 /*
218 * Close the data file.
219 */
220 (void) fclose(data_file);

222 (void) fprintf(stderr,
223 gettext("Unexpected end of file (line no %d)\n"), data_lineno);
224 return (-1);
225 }

227 static int32_t
228 sup_gettoken(char *buf)
229 {
230 /*
231 * Skip end of lines and blank lines.
232 */
233 while ((last_token_type = sup_get_token(buf)) == SUP_EOL)
234 ;
235 return (last_token_type);
236 }

238 static int32_t
239 sup_get_token(char *buf)
240 {
241 char *ptr = buf;
242 int32_t c, quoted = 0;

244 /*
245 * Was an end of file detected last try?
246 */

248 if (feof(data_file)) {
249 return (SUP_EOF);
250 }

252 /*
253 * Zero out the returned token buffer

new/usr/src/cmd/rmformat/rmf_slice.c 5

254 */

256 bzero(buf, TOKEN_SIZE + 1);

258 /*
259 * Strip off leading white-space.
260 */
261 while (isspace(c = sup_inputchar()))
262 ;

264 /*
265 * Only white spaces and then end of file?
266 */

268 if (feof(data_file)) {
269 return (SUP_EOF);
270 }

272 /*
273 * Read in characters until we hit unquoted white-space.
274 */
275 for (; !isspace(c) || quoted; c = sup_inputchar()) {

277 /*
278 * If we hit eof, check if we have anything in buffer.
279 * if we have, return STRING, next time we will return EOF
280 * else, return EOF here...should not happen.
281 */
282 if (feof(data_file)) {
283 if (ptr - buf > 0) {
284 return (SUP_STRING);
285 } else {
286 return (SUP_EOF);
287 }
288 }

290 /*
291 * If we hit a double quote, change the state of quoting.
292 */
293 if (c == ’"’) {
294 quoted = !quoted;
295 continue;
296 }
297 /*
298 * If we hit a newline, that delimits a token.
299 */
300 if (c == ’\n’)
301 break;
302 /*
303 * If we hit any nonquoted special delimiters, that delimits
304 * a token.
305 */
306 if (!quoted && (c == ’=’ || c == ’,’ || c == ’:’ ||
307 c == ’#’ || c == ’|’ || c == ’&’ || c == ’~’))
308 break;
309 /*
310 * Store the character if there’s room left.
311 */
312 if (ptr - buf < TOKEN_SIZE)
313 *ptr++ = (char)c;
314 }
315 /*
316 * If we stored characters in the buffer, then we inputted a string.
317 * Push the delimiter back into the pipe and return the string.
318 */
319 if (ptr - buf > 0) {

new/usr/src/cmd/rmformat/rmf_slice.c 6

320 sup_pushchar(c);
321 return (SUP_STRING);
322 }
323 /*
324 * We didn’t input a string, so we must have inputted a known delimiter.
325 * store the delimiter in the buffer, so it will get returned.
326 */
327 buf[0] = c;
328 /*
329 * Switch on the delimiter. Return the appropriate value for each one.
330 */
331 switch (c) {
332 case ’=’:
333 return (SUP_EQL);
334 case ’:’:
335 return (SUP_COLON);
336 case ’,’:
337 return (SUP_COMMA);
338 case ’\n’:
339 return (SUP_EOL);
340 case ’|’:
341 return (SUP_OR);
342 case ’&’:
343 return (SUP_AND);
344 case ’~’:
345 return (SUP_TILDE);
346 case ’#’:
347 /*
348 * For comments, we flush out the rest of the line and return
349 * an eol.
350 */
351 while ((c = sup_inputchar()) != ’\n’ && !feof(data_file))
352 ;
353 if (feof(data_file))
354 return (SUP_EOF);
355 else
356 return (SUP_EOL);
357 /*
358 * Shouldn’t ever get here.
359 */
360 default:
361 return (SUP_STRING);
362 }
363 }
364 static int32_t
365 sup_inputchar()
366 {
367 int32_t c;

369 /*
370 * Input the character.
371 */
372 c = getc(data_file);
373 /*
374 * If it’s not a backslash, return it.
375 */

377 /*
378 * It was a backslash. Get the next character.
379 */

381 if (c == ’\\’)
382 c = getc(data_file);

384 /*
385 * If it was a newline, update the line counter and get the next

new/usr/src/cmd/rmformat/rmf_slice.c 7

386 * character.
387 */
388 if (c == ’\n’) {
389 data_lineno++;
390 }
391 /*
392 * Return the character.
393 */
394 return (c);
395 }

397 static void
398 sup_pushchar(int32_t c)
399 {

401 (void) ungetc(c, data_file);
402 if (c == ’\n’)
403 data_lineno--;
404 }

406 static void
407 clean_token(char *cleantoken, char *token)
408 {
409 char *ptr;

411 /*
412 * Strip off leading white-space.
413 */
414 for (ptr = token; isspace(*ptr) && (ptr <=
415 (token + strlen(token) - 1)); ptr++)
416 ;

418 /*
419 * Copy it into the clean buffer.
420 */
421 (void) strcpy(cleantoken, ptr);
422 /*
423 * Strip off trailing white-space.
424 */
425 for (ptr = cleantoken + strlen(cleantoken) - 1;
426 isspace(*ptr) && (ptr >= cleantoken); ptr--) {
427 *ptr = ’\0’;
428 }
429 }

431 static int32_t
432 sup_setpart(struct extvtoc *vt)
433 {
434 TOKEN token, cleaned, ident;
435 int32_t i, index, status;
436 uint64_t val1, val2;
437 ushort_t vtoc_tag = 0xFFFF;
438 ushort_t vtoc_flag = 0xFFFF;

440 /*
441 * Pull in some grammar.
442 */

444 status = sup_gettoken(token);

446 if (status != SUP_COLON) {
447 (void) fprintf(stderr,
448 gettext("Expecting ’:’, found ’%s’"), token);
449 (void) fprintf(stderr,
450 gettext("Line no %d\n"), data_lineno);
451 return (-1);

new/usr/src/cmd/rmformat/rmf_slice.c 8

452 }

454 for (;;) {
455 status = sup_gettoken(token);
456 if (status != SUP_STRING) {
457 (void) fprintf(stderr,
458 gettext("Expecting string, found ’%s’"), token);
459 (void) fprintf(stderr,
460 gettext("Line no %d\n"), data_lineno);
461 return (-1);
462 }
463 clean_token(ident, token);
464 /*
465 * Here’s the index of the partition we’re dealing with
466 */
467 index = (int32_t)my_atoll(ident);
468 if ((index < 0) || (index >= NDKMAP)) {
469 (void) fprintf(stderr,
470 gettext("Unknown partition %d"), index);
471 (void) fprintf(stderr,
472 gettext("Line no %d\n"), data_lineno);
473 return (-1);
474 }
475 /*
476 * Check for floppy and PCMCIA_MEM cards.
477 * for floppy, the partition no. can be 0 1 2.
478 * for PCMCIA, the partition no. can be 2
479 */
480 if (med_info.sm_media_type == SM_FLOPPY) {
481 if ((index < 0) || (index > 2)) {
482 (void) fprintf(stderr, gettext(
483 "Floppy can have partitions 0 1 and 2\n"));
484 return (-1);
485 }
486 }
487 if (med_info.sm_media_type == SM_PCMCIA_MEM) {
488 if (index != 2) {
489 (void) fprintf(stderr, gettext(
490 "PCMCIA Memory cards can have partition 2 only.\n"));
491 return (-1);
492 }
493 }

495 DPRINTF1("\n Partition %d: ", index);

497 status = sup_gettoken(token);
498 if (status != SUP_EQL) {
499 (void) fprintf(stderr,
500 gettext("Expecting ’=’, found ’%s’"), token);
501 (void) fprintf(stderr,
502 gettext("Line no %d\n"), data_lineno);
503 return (-1);

505 }

508 status = sup_gettoken(token);
509 /*
510 * If we hit a key character, it’s an error.
511 */
512 if (status != SUP_STRING) {
513 (void) fprintf(stderr,
514 gettext("Expecting value, found ’%s’"), token);
515 (void) fprintf(stderr,
516 gettext("Line no %d\n"), data_lineno);
517 return (-1);

new/usr/src/cmd/rmformat/rmf_slice.c 9

518 }
519 clean_token(cleaned, token);
520 /*
521 * <tag> may be one of: boot, root, swap, etc.
522 * <flag> consists of two characters:
523 * W (writable) or R (read-only)
524 * M (mountable) or U (unmountable)
525 *
526 * Start with the defaults assigned above:
527 */

529 /*
530 * All other attributes have a pair of numeric values.
531 * Convert the first value to a number. This value
532 * is the starting cylinder number of the partition.
533 */

535 /* Check for valid partition, e.g. > 8 or 16 */
536 val1 = str2sector(cleaned);
537 if (val1 == -1) {
538 (void) fprintf(stderr,
539 gettext("Invalid partition beggining %s \n"),
540 cleaned);
541 (void) fprintf(stderr,
542 gettext("Line no %d\n"), data_lineno);
543 }

545 DPRINTF1(" begins %s", cleaned);
546 /*
547 * Pull in some grammar.
548 */
549 status = sup_gettoken(token);
550 if (status != SUP_COMMA) {
551 (void) fprintf(stderr,
552 gettext("Expecting ’, ’, found ’%s’"), token);
553 (void) fprintf(stderr,
554 gettext("Line no %d\n"), data_lineno);
555 return (-1);
556 }
557 /*
558 * Pull in the second value.
559 */
560 status = sup_gettoken(token);
561 if (status != SUP_STRING) {
562 (void) fprintf(stderr,
563 gettext("Expecting value, found ’%s’"), token);
564 (void) fprintf(stderr,
565 gettext("Line no %d\n"), data_lineno);
566 return (-1);
567 }
568 clean_token(cleaned, token);

570 val2 = str2sector(cleaned);
571 if (val2 == -1) {
572 (void) fprintf(stderr,
573 gettext("Invalid partition size %s \n"),
574 cleaned);
575 (void) fprintf(stderr,
576 gettext("Line no %d\n"), data_lineno);
577 }
578 DPRINTF1(" ends %s ", cleaned);

580 /*
581 * Pull in some grammar.
582 */
583 status = sup_gettoken(token);

new/usr/src/cmd/rmformat/rmf_slice.c 10

585 if (status == SUP_COMMA) {
586 /* tags and flags */
587 status = sup_gettoken(token);
588 if (status != SUP_STRING) {
589 (void) fprintf(stderr,
590 gettext("Expecting value, found ’%s’"),
591 token);
592 (void) fprintf(stderr,
593 gettext("Line no %d\n"), data_lineno);
594 return (-1);
595 }
596 clean_token(cleaned, token);
597 if (find_value(pflag_choices, cleaned, &i) == 1) {
598 /*
599 * Found valid tag. Use it and advance parser
600 */
601 DPRINTF1(" flag = %s", cleaned);
602 vtoc_flag = (ushort_t)i;
603 status = sup_gettoken(token);
604 } else if (find_value(ptag_choices, cleaned, &i) == 1) {
605 DPRINTF1(" tag = %s", cleaned);
606 vtoc_tag = (ushort_t)i;
607 status = sup_gettoken(token);
608 if (status == SUP_COMMA) {
609 (void) fprintf(stderr,
610 gettext("Expecting : got %s\n"),
611 token);
612 (void) fprintf(stderr,
613 gettext("Line no %d\n"),
614 data_lineno);
615 return (-1);
616 }
617 } else {
618 (void) fprintf(stderr,
619 gettext("Invalid flag or tag\n"));
620 (void) fprintf(stderr,
621 gettext("Line no %d\n"), data_lineno);
622 return (-1);
623 }

626 if (status == SUP_COMMA) {
627 /* Can be tag only */

629 status = sup_gettoken(token);
630 if (status != SUP_STRING) {
631 (void) fprintf(stderr,
632 gettext("Expecting value"
633 ", found ’%s’"),
634 token);
635 (void) fprintf(stderr,
636 gettext("Line no %d\n"),
637 data_lineno);
638 return (-1);
639 }

641 clean_token(cleaned, token);
642 if (find_value(ptag_choices,
643 cleaned, &i) == 1) {
644 DPRINTF1(" tag = %s", cleaned);
645 vtoc_tag = (ushort_t)i;
646 }
647 status = sup_gettoken(token);
648 }
649 }

new/usr/src/cmd/rmformat/rmf_slice.c 11

651 /*
652 * Fill in the appropriate map entry with the values.
653 */
654 vt->v_part[index].p_start = val1;
655 vt->v_part[index].p_size = val2;
656 if (vtoc_tag != 0xFFFF) {
657 vt->v_part[index].p_tag = vtoc_tag;
658 vtoc_tag = 0xFFFF;
659 }
660 if (vtoc_flag != 0xFFFF) {
661 vt->v_part[index].p_flag = vtoc_flag;
662 vtoc_flag = 0xFFFF;
663 }
664 if (status == SUP_EOF) {
665 DPRINTF("\nEnd of file\n");
666 break;
667 }
668 if (status != SUP_COLON) {
669 (void) fprintf(stderr,
670 gettext("Expecting ’:’, found ’%s’"), token);
671 (void) fprintf(stderr,
672 gettext("Line no %d\n"), data_lineno);
673 return (-1);
674 }

676 }
677 return (0);
678 }

680 static int32_t
681 find_value(slist_t *slist, char *match_str, int32_t *match_value)
682 {
683 int32_t i;
684 int32_t nmatches;
685 int32_t length;
686 int32_t match_length;

688 nmatches = 0;
689 length = 0;

691 match_length = strlen(match_str);

693 for (; slist->str != NULL; slist++) {
694 /*
695 * See how many characters of the token match
696 */
697 i = strcnt(match_str, slist->str);
698 /*
699 * If it’s not the whole token, then it’s not a match.
700 */
701 if (i < match_length) {
702 continue;
703 }
704 /*
705 * If it ties with another input, remember that.
706 */
707 if (i == length)
708 nmatches++;
709 /*
710 * If it matches the most so far, record that.
711 */
712 if (i > length) {
713 *match_value = slist->value;
714 nmatches = 1;
715 length = i;

new/usr/src/cmd/rmformat/rmf_slice.c 12

716 }
717 }

719 return (nmatches);
720 }

722 static int32_t
723 strcnt(char *s1, char *s2)
724 {
725 int32_t i = 0;

727 while ((*s1 != ’\0’) && (*s1++ == *s2++))
728 i++;
729 return (i);
730 }

732 static uint64_t
733 str2sector(char *str)
734 {
735 int32_t mul_factor = 1;
736 char *s1, *s2, *base;
737 uint64_t num_sectors;
738 uint64_t size;

740 base = s2 = (char *)malloc(strlen(str) + 1);
741 if (s2 == NULL) {
742 PERROR("Malloc failed");
743 return (-1);
744 }
745 *s2 = ’\0’;

749 s1 = str;
750 while (*s1) {
751 if ((*s1 != ’x’) && ((*s1 < ’A’) || (*s1 > ’F’)) &&
752 ((*s1 < ’a’) || (*s1 > ’f’)) && ((*s1 < ’0’) ||
753 (*s1 > ’9’))) {
754 if (*s1 == ’G’) {
755 mul_factor = 1024*1024*1024;
756 s1++;
757 } else if (*s1 == ’M’) {
758 mul_factor = 1024*1024;
759 s1++;
760 } else if (*s1 == ’K’) {
761 mul_factor = 1024;
762 s1++;
763 }
764 if ((*s1 != ’B’) || (*(++s1) != NULL)) {
765 (void) fprintf(stderr,
766 gettext("Extra chars at the end\n"));
767 free(base);
768 return (-1);
769 }
770 break;
771 } else {
772 *s2++ = *s1++;
773 *s2 = ’\0’;
774 }
775 }
776 *s2 = NULL;

778 size = my_atoll(base);
779 if ((!mul_factor) || (size == -1)) {
780 free(base);
781 return (-1);

new/usr/src/cmd/rmformat/rmf_slice.c 13

782 }
783 num_sectors = size * (uint64_t)mul_factor /512;

785 free(base);
786 return (num_sectors);
787 }

790 int32_t
791 valid_slice_file(smedia_handle_t handle, int32_t fd, char *file_name,
792 struct extvtoc *vt)
793 {
794 struct stat status;
795 int32_t ret_val;
796 if (stat(file_name, &status)) {
797 PERROR(file_name);
798 return (-1);
799 }
800 (void) memset(vt, 0, sizeof (*vt));
801 /* Set default tag and flag */
802 #ifdef sparc
803 vt->v_part[0].p_tag = V_ROOT;
804 vt->v_part[1].p_tag = V_SWAP;
805 vt->v_part[2].p_tag = V_BACKUP;
806 vt->v_part[6].p_tag = V_USR;

808 vt->v_part[1].p_flag = V_UNMNT; /* Unmountable */
809 vt->v_part[2].p_flag = V_UNMNT; /* Unmountable */
810 #endif

812 ret_val = sup_prxfile(file_name, vt);
813 if (ret_val < 0)
814 return (-1);

816 #ifdef DEBUG
817 {
818 int32_t i;
819 for (i = 0; i < 8; i++) {
820 DPRINTF1("\npart %d\n", i);
821 DPRINTF1("\t start %llu", vt->v_part[i].p_start);
822 DPRINTF1("\t size %llu ", vt->v_part[i].p_size);
823 DPRINTF1("\t tag %d", vt->v_part[i].p_tag);
824 DPRINTF1("\t flag %d", vt->v_part[i].p_flag);
825 }
826 }
827 #endif /* DEBUG */
828 if (check_vtoc_sanity(handle, fd, vt) < 0) {
829 return (-1);
830 }
831 #ifdef DEBUG
832 {
833 int32_t i;
834 for (i = 0; i < 8; i++) {
835 DPRINTF1("\npart %d\n", i);
836 DPRINTF1("\t start %llu", vt->v_part[i].p_start);
837 DPRINTF1("\t size %llu ", vt->v_part[i].p_size);
838 DPRINTF1("\t tag %d", vt->v_part[i].p_tag);
839 DPRINTF1("\t flag %d", vt->v_part[i].p_flag);
840 }
841 }
842 #endif /* DEBUG */
843 return (0);
844 }

846 #define SWAP(a, b) {diskaddr_t tmp; tmp = (a); (a) = (b); (b) = tmp; }

new/usr/src/cmd/rmformat/rmf_slice.c 14

848 /*
849 * On x86 Solaris, the partitioning is done in two levels, fdisk and Solaris
850 * VTOC. Where as, on sparc solaris, it is only VTOC. On floppy and PCMCIA
851 * also it is assumed to be only VTOC, no fdisk.
852 *
853 * On sparc, the back up slice can cover the whole medium. But on x86
854 * (SCSI/ATAPI disks), the backup slice can cover the solaris partition
855 * in fdisk table.
856 * Following table describes how is it handled
857 * SPARC:
858 * SCSI/ATAPI, floppy, pcmcia : don’t check for fdisk.
859 * DKIOCGGEOM is sufficient.
860 * x86 : floppy, pcmcia : Don’t check for fdisk. DKIOCGGEOM is sufficient.
861 * SCSI/ATAPI : Check for fdisk.
862 * if not present, assume that the solaris
863 * partition covers 100% of the medium
864 * (minus one cylinder).
865 *
866 * if present :
867 * check for active solaris partition.
868 * if not found, take the first solaris
869 * partition.
870 * If there are no solaris partitions, its an error, stop.
871 */

873 static int32_t
874 check_vtoc_sanity(smedia_handle_t handle, int32_t fd, struct extvtoc *vt)
875 {

877 int32_t i, j;
878 struct dk_geom dkg;
879 int32_t num_backup = 0;
880 diskaddr_t backup_size = 0;
881 struct part_struct {
882 diskaddr_t start;
883 diskaddr_t end;
884 int32_t num;
885 } part[NDKMAP];
886 diskaddr_t min_val;
887 int32_t min_slice, num_slices;
888 diskaddr_t media_size;
889 uint32_t cyl_size = 0;
24 uint32_t cyl_size;
890 int sparc_style = 0; /* sparc_style handling ? */
891 struct fdisk_info fdisk;
892 int sol_part;
893 int total_parts = 0;

895 #ifdef sparc
896 sparc_style = 1;
897 #endif /* sparc */

899 if ((med_info.sm_media_type == SM_FLOPPY) ||
900 (med_info.sm_media_type == SM_PCMCIA_MEM) ||
901 (med_info.sm_media_type == SM_PCMCIA_ATA) ||
902 (med_info.sm_media_type == SM_SCSI_FLOPPY)) {
903 sparc_style = 1;
904 }

906 if (sparc_style) {
907 DPRINTF("sparc style true\n");
908 if (ioctl(fd, DKIOCGGEOM, &dkg) < 0) {
909 PERROR("DKIOCGGEOM Failed");
910 return (-1);
911 }
912 media_size = (diskaddr_t)dkg.dkg_ncyl * dkg.dkg_nhead *

new/usr/src/cmd/rmformat/rmf_slice.c 15

913 dkg.dkg_nsect;
914 cyl_size = dkg.dkg_nhead * dkg.dkg_nsect;
915 }

917 if (!sparc_style) {
918 /*
919 * Try to get the fdisk information if available.
920 */
921 if (get_fdisk(handle, fd, 0, &fdisk) >= 0) {
922 /* fdisk table on disk */
923 sol_part = 0xFF;
924 for (i = 0; i < FD_NUMPART; i++) {
925 if (fdisk.part[i].systid == SUNIXOS ||
926 fdisk.part[i].systid == SUNIXOS2) {
927 if (sol_part == 0xFF)
928 sol_part = i;
929 total_parts++;
930 if (fdisk.part[i].bootid == ACTIVE)
931 sol_part = i;
932 }
933 }
934 if (sol_part == 0xFF) {
935 /* No Solaris partition */

937 (void) fprintf(stderr, gettext("No FDISK \
938 Solaris partition found!\n"));
939 return (-1);
940 }
941 if (total_parts > 1)
942 (void) fprintf(stderr, gettext("Multiple FDISK \
943 Solaris partitions found.\n"));
944 media_size = (diskaddr_t)fdisk.part[sol_part].numsect;

946 DPRINTF1("sol_part %d\n", sol_part);
947 DPRINTF1("media_size %llu\n", media_size);
948 } else {
949 DPRINTF("Didn’t get fdisk\n");
950 /*
951 * No fdisk partition available. Assume a 100% Solaris.
952 * partition.
953 * Try getting disk geometry.
954 */
955 if (ioctl(fd, DKIOCGGEOM, &dkg) < 0)
956 if (ioctl(fd, DKIOCG_PHYGEOM, &dkg) < 0) {
957 DPRINTF("DKIOCG_PHYGEOM ioctl failed");
958 return (-1);
959 }
960 /* On x86 platform 1 cylinder is used for fdisk table */
961 dkg.dkg_ncyl = dkg.dkg_ncyl - 1;
962 media_size = (diskaddr_t)dkg.dkg_ncyl * dkg.dkg_nhead *
963 dkg.dkg_nsect;
964 }
965 }

967 #ifdef DEBUG
968 DPRINTF1("Ncyl %d\n", dkg.dkg_ncyl);
969 DPRINTF1("nhead %d\n", dkg.dkg_nhead);
970 DPRINTF1("nsect %d\n", dkg.dkg_nsect);
971 #endif /* DEBUG */

973 if (media_size == 0) {
974 media_size = (uint32_t)med_info.sm_capacity;
975 }

977 (void) memset(&part, 0, sizeof (part));
978 for (i = 0, j = 0; i < NDKMAP; i++) {

new/usr/src/cmd/rmformat/rmf_slice.c 16

979 if (vt->v_part[i].p_tag == V_BACKUP) {
980 if (vt->v_part[i].p_start != 0) {
981 (void) fprintf(stderr,
982 gettext(
983 "Backup slice should start at sector 0\n"));
984 return (-1);
985 }
986 backup_size = vt->v_part[i].p_size;
987 num_backup++;
988 continue;
989 }
990 if (vt->v_part[i].p_size) {

992 if (sparc_style) {
993 if (vt->v_part[i].p_start % cyl_size) {
994 (void) fprintf(stderr,
995 gettext(
996 "Slice %d does not start on cylinder boundary\n"), i);
997 (void) fprintf(stderr,
998 gettext(
999 "Cylinder size %d 512 byte sectors\n"), cyl_size);

1000 return (-1);
1001 }
1002 }
1003 part[j].start = vt->v_part[i].p_start;
1004 part[j].end = vt->v_part[i].p_start +
1005 vt->v_part[i].p_size -1;
1006 part[j].num = i;
1007 j++;
1008 }
1009 }
1010 if (num_backup > 1) {
1011 (void) fprintf(stderr,
1012 gettext("Maximum one backup slice is allowed\n"));
1013 (void) smedia_release_handle(handle);
1014 (void) close(fd);
1015 exit(1);
1016 }
1017 num_slices = j;

1019 for (i = 0; i < num_slices; i++) {
1020 min_val = part[i].start;
1021 min_slice = i;
1022 for (j = i+1; j < num_slices; j++) {
1023 if (part[j].start < min_val) {
1024 min_val = part[j].start;
1025 min_slice = j;
1026 }
1027 }
1028 if (min_slice != i) {
1029 SWAP(part[i].start, part[min_slice].start)
1030 SWAP(part[i].end, part[min_slice].end)
1031 SWAP(part[i].num, part[min_slice].num)
1032 }
1033 }

1035 #ifdef DEBUG
1036 for (i = 0; i < num_slices; i++) {
1037 DPRINTF4("\n %d (%d) : %llu, %llu", i, part[i].num,
1038 part[i].start, part[i].end);
1039 }
1040 #endif /* DEBUG */

1042 if (backup_size > media_size) {
1043 if (sparc_style) {
1044 (void) fprintf(stderr,

new/usr/src/cmd/rmformat/rmf_slice.c 17

1045 gettext(
1046 "Backup slice extends beyond size of media\n"));
1047 (void) fprintf(stderr,
1048 gettext("media size : %llu sectors \n"),
1049 media_size);
1050 } else {

1052 (void) fprintf(stderr,
1053 gettext("Backup slice extends beyond size of FDISK \
1054 Solaris partition\n"));
1055 (void) fprintf(stderr,
1056 gettext(
1057 "FDISK Solaris partition size : %llu sectors \n"),
1058 media_size);
1059 }
1060 return (-1);
1061 }

1063 /*
1064 * If we have only backup slice return success here.
1065 */
1066 if (num_slices == 0)
1067 return (0);

1069 if (backup_size) {
1070 if (part[num_slices - 1].end > backup_size) {
1071 (void) fprintf(stderr,
1072 gettext("Slice %d extends beyond backup slice.\n"),
1073 part[num_slices -1].num);
1074 return (-1);
1075 }
1076 } else {
1077 if (part[num_slices - 1].end > media_size) {
1078 if (sparc_style) {
1079 (void) fprintf(stderr,
1080 gettext(
1081 "Slice %d extends beyond media size\n"),
1082 part[num_slices -1].num);
1083 (void) fprintf(stderr,
1084 gettext("media size : %llu sectors \n"),
1085 media_size);
1086 } else {
1087 (void) fprintf(stderr,
1088 gettext("Slice %d extends beyond FDISK"
1089 " Solaris partition size\n"),
1090 part[num_slices -1].num);
1091 (void) fprintf(stderr, gettext(
1092 "FDISK Solaris partition size : %llu "
1093 "sectors \n"), media_size);
1094 }
1095 return (-1);
1096 }
1097 }

1101 for (i = 0; i < num_slices; i++) {
1102 if (i == 0)
1103 continue;
1104 if (part[i].start <= part[i-1].end) {
1105 (void) fprintf(stderr,
1106 gettext("Overlap between slices %d and %d\n"),
1107 part[i-1].num, part[i].num);
1108 (void) smedia_release_handle(handle);
1109 (void) close(fd);
1110 exit(1);

new/usr/src/cmd/rmformat/rmf_slice.c 18

1111 }
1112 }

1114 return (0);
1115 }
______unchanged_portion_omitted_

new/usr/src/cmd/rmvolmgr/rmm_common.c 1

**
 33521 Sun May 4 18:28:36 2014
new/usr/src/cmd/rmvolmgr/rmm_common.c
4833 Remove volrmmount
4845 rm(u)mount don’t always print mount/unmount errors
4846 HAL partition names don’t match real parition names
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 *
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 *
25 * Copyright 2014 Andrew Stormont.
26 #endif /* ! codereview */
27 */

29 #include <stdio.h>
30 #include <errno.h>
31 #include <string.h>
32 #include <strings.h>
33 #include <stdarg.h>
34 #include <fcntl.h>
35 #include <libintl.h>
36 #include <stdlib.h>
37 #include <unistd.h>
38 #include <ctype.h>
39 #include <sys/param.h>
40 #include <sys/types.h>
41 #include <sys/stat.h>
42 #include <sys/mnttab.h>

44 #include <dbus/dbus.h>
45 #include <dbus/dbus-glib.h>
46 #include <dbus/dbus-glib-lowlevel.h>
47 #include <libhal.h>
48 #include <libhal-storage.h>

50 #include "rmm_common.h"

52 #define RMM_PRINT_DEVICE_WIDTH 20

54 extern int rmm_debug;

new/usr/src/cmd/rmvolmgr/rmm_common.c 2

56 static const char *action_strings[] = {
57 "eject",
58 "mount",
59 "remount",
60 "unmount",
61 "clear_mounts",
62 "closetray"
63 };

66 LibHalContext *
67 rmm_hal_init(LibHalDeviceAdded devadd_cb, LibHalDeviceRemoved devrem_cb,
68 LibHalDevicePropertyModified propmod_cb, LibHalDeviceCondition cond_cb,
69 DBusError *error, rmm_error_t *rmm_error)
70 {
71 DBusConnection *dbus_conn;
72 LibHalContext *ctx;
73 char **devices;
74 int nr;

76 dbus_error_init(error);

78 /*
79 * setup D-Bus connection
80 */
81 if (!(dbus_conn = dbus_bus_get(DBUS_BUS_SYSTEM, error))) {
82 dprintf("cannot get system bus: %s\n", rmm_strerror(error, -1));
83 *rmm_error = RMM_EDBUS_CONNECT;
84 return (NULL);
85 }
86 rmm_dbus_error_free(error);

88 dbus_connection_setup_with_g_main(dbus_conn, NULL);
89 dbus_connection_set_exit_on_disconnect(dbus_conn, B_TRUE);

91 if ((ctx = libhal_ctx_new()) == NULL) {
92 dprintf("libhal_ctx_new failed");
93 *rmm_error = RMM_EHAL_CONNECT;
94 return (NULL);
95 }

97 libhal_ctx_set_dbus_connection(ctx, dbus_conn);

99 /*
100 * register callbacks
101 */
102 if (devadd_cb != NULL) {
103 libhal_ctx_set_device_added(ctx, devadd_cb);
104 }
105 if (devrem_cb != NULL) {
106 libhal_ctx_set_device_removed(ctx, devrem_cb);
107 }
108 if (propmod_cb != NULL) {
109 libhal_ctx_set_device_property_modified(ctx, propmod_cb);
110 if (!libhal_device_property_watch_all(ctx, error)) {
111 dprintf("property_watch_all failed %s",
112 rmm_strerror(error, -1));
113 libhal_ctx_free(ctx);
114 *rmm_error = RMM_EHAL_CONNECT;
115 return (NULL);
116 }
117 }
118 if (cond_cb != NULL) {
119 libhal_ctx_set_device_condition(ctx, cond_cb);
120 }

new/usr/src/cmd/rmvolmgr/rmm_common.c 3

122 if (!libhal_ctx_init(ctx, error)) {
123 dprintf("libhal_ctx_init failed: %s", rmm_strerror(error, -1));
124 libhal_ctx_free(ctx);
125 *rmm_error = RMM_EHAL_CONNECT;
126 return (NULL);
127 }
128 rmm_dbus_error_free(error);

130 /*
131 * The above functions do not guarantee that HAL is actually running.
132 * Check by invoking a method.
133 */
134 if (!(devices = libhal_get_all_devices(ctx, &nr, error))) {
135 dprintf("HAL is not running: %s", rmm_strerror(error, -1));
136 libhal_ctx_shutdown(ctx, NULL);
137 libhal_ctx_free(ctx);
138 *rmm_error = RMM_EHAL_CONNECT;
139 return (NULL);
140 } else {
141 rmm_dbus_error_free(error);
142 libhal_free_string_array(devices);
143 }

145 return (ctx);
146 }

149 void
150 rmm_hal_fini(LibHalContext *hal_ctx)
151 {
152 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);

154 (void) dbus_connection_unref(dbus_conn);
155 (void) libhal_ctx_free(hal_ctx);
156 }

159 /*
160 * find volume from any type of name, similar to the old media_findname()
161 * returns the LibHalDrive object and a list of LibHalVolume objects.
162 */
163 LibHalDrive *
164 rmm_hal_volume_find(LibHalContext *hal_ctx, const char *name, DBusError *error,
165 GSList **volumes)
166 {
167 LibHalDrive *drive;
168 char *p;
169 char lastc;

171 *volumes = NULL;

173 /* temporarily remove trailing slash */
174 p = (char *)name + strlen(name) - 1;
175 if (*p == ’/’) {
176 lastc = *p;
177 *p = ’\0’;
178 } else {
179 p = NULL;
180 }

182 if (name[0] == ’/’) {
183 if (((drive = rmm_hal_volume_findby(hal_ctx,
184 "info.udi", name, volumes)) != NULL) ||
185 ((drive = rmm_hal_volume_findby(hal_ctx,
186 "block.device", name, volumes)) != NULL) ||
187 ((drive = rmm_hal_volume_findby(hal_ctx,

new/usr/src/cmd/rmvolmgr/rmm_common.c 4

188 "block.solaris.raw_device", name, volumes)) != NULL) ||
189 ((drive = rmm_hal_volume_findby(hal_ctx,
190 "volume.mount_point", name, volumes)) != NULL)) {
191 goto out;
192 } else {
193 goto out;
194 }
195 }

197 /* try volume label */
198 if ((drive = rmm_hal_volume_findby(hal_ctx,
199 "volume.label", name, volumes)) != NULL) {
200 goto out;
201 }

203 drive = rmm_hal_volume_findby_nickname(hal_ctx, name, volumes);

205 out:
206 if (p != NULL) {
207 *p = lastc;
208 }
209 return (drive);
210 }

212 /*
213 * find default volume. Returns volume pointer and name in ’name’.
214 */
215 LibHalDrive *
216 rmm_hal_volume_find_default(LibHalContext *hal_ctx, DBusError *error,
217 const char **name_out, GSList **volumes)
218 {
219 LibHalDrive *drive;
220 static const char *names[] = { "floppy", "cdrom", "rmdisk" };
221 int i;

223 *volumes = NULL;

225 for (i = 0; i < NELEM(names); i++) {
226 if ((drive = rmm_hal_volume_findby_nickname(hal_ctx,
227 names[i], volumes)) != NULL) {
228 /*
229 * Skip floppy if it has no media.
230 * XXX might want to actually check for media
231 * every time instead of relying on volcheck.
232 */
233 if ((strcmp(names[i], "floppy") != 0) ||
234 libhal_device_get_property_bool(hal_ctx,
235 libhal_drive_get_udi(drive),
236 "storage.removable.media_available", NULL)) {
237 *name_out = names[i];
238 break;
239 }
240 }
241 rmm_dbus_error_free(error);
242 }

244 return (drive);
245 }

247 /*
248 * find volume by property=value
249 * returns the LibHalDrive object and a list of LibHalVolume objects.
250 * XXX add support for multiple properties, reduce D-Bus traffic
251 */
252 LibHalDrive *
253 rmm_hal_volume_findby(LibHalContext *hal_ctx, const char *property,

new/usr/src/cmd/rmvolmgr/rmm_common.c 5

254 const char *value, GSList **volumes)
255 {
256 DBusError error;
257 LibHalDrive *drive = NULL;
258 LibHalVolume *v = NULL;
259 char **udis;
260 int num_udis;
261 int i;
262 int i_drive = -1;

264 *volumes = NULL;

266 dbus_error_init(&error);

268 /* get all devices with property=value */
269 if ((udis = libhal_manager_find_device_string_match(hal_ctx, property,
270 value, &num_udis, &error)) == NULL) {
271 rmm_dbus_error_free(&error);
272 return (NULL);
273 }

275 /* find volumes and drives among these devices */
276 for (i = 0; i < num_udis; i++) {
277 rmm_dbus_error_free(&error);
278 if (libhal_device_query_capability(hal_ctx, udis[i], "volume",
279 &error)) {
280 v = libhal_volume_from_udi(hal_ctx, udis[i]);
281 if (v != NULL) {
282 *volumes = g_slist_prepend(*volumes, v);
283 }
284 } else if ((*volumes == NULL) &&
285 libhal_device_query_capability(hal_ctx, udis[i], "storage",
286 &error)) {
287 i_drive = i;
288 }
289 }

291 if (*volumes != NULL) {
292 /* used prepend, preserve original order */
293 *volumes = g_slist_reverse(*volumes);

295 v = (LibHalVolume *)(*volumes)->data;
296 drive = libhal_drive_from_udi(hal_ctx,
297 libhal_volume_get_storage_device_udi(v));
298 if (drive == NULL) {
299 rmm_volumes_free (*volumes);
300 *volumes = NULL;
301 }
302 } else if (i_drive >= 0) {
303 drive = libhal_drive_from_udi(hal_ctx, udis[i_drive]);
304 }

306 libhal_free_string_array(udis);
307 rmm_dbus_error_free(&error);

309 return (drive);
310 }

312 static void
313 rmm_print_nicknames_one(LibHalDrive *d, LibHalVolume *v,
314 const char *device, char **drive_nicknames)
315 {
316 const char *volume_label = NULL;
317 const char *mount_point = NULL;
318 boolean_t comma;
319 int i;

new/usr/src/cmd/rmvolmgr/rmm_common.c 6

321 (void) printf("%-*s ", RMM_PRINT_DEVICE_WIDTH, device);
322 comma = B_FALSE;

324 if (drive_nicknames != NULL) {
325 for (i = 0; drive_nicknames[i] != NULL; i++) {
326 (void) printf("%s%s", comma ? "," : "",
327 drive_nicknames[i]);
328 comma = B_TRUE;
329 }
330 }

332 if ((v != NULL) &&
333 ((volume_label = libhal_volume_get_label(v)) != NULL) &&
334 (strlen(volume_label) > 0)) {
335 (void) printf("%s%s", comma ? "," : "", volume_label);
336 comma = B_TRUE;
337 }

339 if ((v != NULL) &&
340 ((mount_point = libhal_volume_get_mount_point(v)) != NULL) &&
341 (strlen(mount_point) > 0)) {
342 (void) printf("%s%s", comma ? "," : "", mount_point);
343 comma = B_TRUE;
344 }

346 (void) printf("\n");
347 }

349 /*
350 * print nicknames for each available volume
351 *
352 * print_mask:
353 * RMM_PRINT_MOUNTABLE print only mountable volumes
354 * RMM_PRINT_EJECTABLE print volume-less ejectable drives
355 */
356 void
357 rmm_print_volume_nicknames(LibHalContext *hal_ctx, DBusError *error,
358 int print_mask)
359 {
360 char **udis;
361 int num_udis;
362 GSList *volumes = NULL;
363 LibHalDrive *d, *d_tmp;
364 LibHalVolume *v;
365 const char *device;
366 char **nicknames;
367 int i;
368 GSList *j;
369 int nprinted;

371 dbus_error_init(error);

373 if ((udis = libhal_find_device_by_capability(hal_ctx, "storage",
374 &num_udis, error)) == NULL) {
375 rmm_dbus_error_free(error);
376 return;
377 }

379 for (i = 0; i < num_udis; i++) {
380 if ((d = libhal_drive_from_udi(hal_ctx, udis[i])) == NULL) {
381 continue;
382 }

384 /* find volumes belonging to this drive */
385 if ((d_tmp = rmm_hal_volume_findby(hal_ctx,

new/usr/src/cmd/rmvolmgr/rmm_common.c 7

386 "block.storage_device", udis[i], &volumes)) != NULL) {
387 libhal_drive_free(d_tmp);
388 }

390 nicknames = libhal_device_get_property_strlist(hal_ctx,
391 udis[i], "storage.solaris.nicknames", NULL);

393 nprinted = 0;
394 for (j = volumes; j != NULL; j = g_slist_next(j)) {
395 v = (LibHalVolume *)(j->data);

397 if ((device = libhal_volume_get_device_file(v)) ==
398 NULL) {
399 continue;
400 }
401 if ((print_mask & RMM_PRINT_MOUNTABLE) &&
402 (libhal_volume_get_fsusage(v) !=
403 LIBHAL_VOLUME_USAGE_MOUNTABLE_FILESYSTEM)) {
404 continue;
405 }

407 rmm_print_nicknames_one(d, v, device, nicknames);
408 nprinted++;
409 }

411 if ((nprinted == 0) &&
412 (print_mask & RMM_PRINT_EJECTABLE) &&
413 libhal_drive_requires_eject(d) &&
414 ((device = libhal_drive_get_device_file(d)) != NULL)) {
415 rmm_print_nicknames_one(d, NULL, device, nicknames);
416 }

418 libhal_free_string_array(nicknames);
419 libhal_drive_free(d);
420 rmm_volumes_free(volumes);
421 volumes = NULL;
422 }

424 libhal_free_string_array(udis);
425 }

427 /*
428 * find volume by nickname
429 * returns the LibHalDrive object and a list of LibHalVolume objects.
430 */
431 LibHalDrive *
432 rmm_hal_volume_findby_nickname(LibHalContext *hal_ctx, const char *name,
433 GSList **volumes)
434 {
435 DBusError error;
436 LibHalDrive *drive = NULL;
437 LibHalDrive *drive_tmp;
438 char **udis;
439 int num_udis;
440 char **nicknames;
441 int i, j;

443 *volumes = NULL;

445 dbus_error_init(&error);

447 if ((udis = libhal_find_device_by_capability(hal_ctx, "storage",
448 &num_udis, &error)) == NULL) {
449 rmm_dbus_error_free(&error);
450 return (NULL);
451 }

new/usr/src/cmd/rmvolmgr/rmm_common.c 8

453 /* find a drive by nickname */
454 for (i = 0; (i < num_udis) && (drive == NULL); i++) {
455 if ((nicknames = libhal_device_get_property_strlist(hal_ctx,
456 udis[i], "storage.solaris.nicknames", &error)) == NULL) {
457 rmm_dbus_error_free(&error);
458 continue;
459 }
460 for (j = 0; (nicknames[j] != NULL) && (drive == NULL); j++) {
461 if (strcmp(nicknames[j], name) == 0) {
462 drive = libhal_drive_from_udi(hal_ctx, udis[i]);
463 }
464 }
465 libhal_free_string_array(nicknames);
466 }
467 libhal_free_string_array(udis);

469 if (drive != NULL) {
470 /* found the drive, now find its volumes */
471 if ((drive_tmp = rmm_hal_volume_findby(hal_ctx,
472 "block.storage_device", libhal_drive_get_udi(drive),
473 volumes)) != NULL) {
474 libhal_drive_free(drive_tmp);
475 }
476 }

478 rmm_dbus_error_free(&error);

480 return (drive);
481 }

483 void
484 rmm_volumes_free(GSList *volumes)
485 {
486 GSList *i;

488 for (i = volumes; i != NULL; i = g_slist_next(i)) {
489 libhal_volume_free((LibHalVolume *)(i->data));
490 }
491 g_slist_free(volumes);
492 }

494 /*
495 * Call HAL’s Mount() method on the given device
496 */
497 boolean_t
498 rmm_hal_mount(LibHalContext *hal_ctx, const char *udi,
499 char **opts, int num_opts, char *mountpoint, DBusError *error)
500 {
501 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);
502 DBusMessage *dmesg, *reply;
503 char *fstype;

505 dprintf("mounting %s...\n", udi);

507 if (!(dmesg = dbus_message_new_method_call("org.freedesktop.Hal", udi,
508 "org.freedesktop.Hal.Device.Volume", "Mount"))) {
509 dprintf(
510 "mount failed for %s: cannot create dbus message\n", udi);
511 return (B_FALSE);
512 }

514 fstype = "";
515 if (mountpoint == NULL) {
516 mountpoint = "";
517 }

new/usr/src/cmd/rmvolmgr/rmm_common.c 9

519 if (!dbus_message_append_args(dmesg, DBUS_TYPE_STRING, &mountpoint,
520 DBUS_TYPE_STRING, &fstype,
521 DBUS_TYPE_ARRAY, DBUS_TYPE_STRING, &opts, num_opts,
522 DBUS_TYPE_INVALID)) {
523 dprintf("mount failed for %s: cannot append args\n", udi);
524 dbus_message_unref(dmesg);
525 return (B_FALSE);
526 }

528 dbus_error_init(error);
529 if (!(reply = dbus_connection_send_with_reply_and_block(dbus_conn,
530 dmesg, RMM_MOUNT_TIMEOUT, error))) {
531 dprintf("mount failed for %s: %s\n", udi, error->message);
532 dbus_message_unref(dmesg);
533 return (B_FALSE);
534 }

536 dprintf("mounted %s\n", udi);

538 dbus_message_unref(dmesg);
539 dbus_message_unref(reply);

541 rmm_dbus_error_free(error);

543 return (B_TRUE);
544 }

547 /*
548 * Call HAL’s Unmount() method on the given device
549 */
550 boolean_t
551 rmm_hal_unmount(LibHalContext *hal_ctx, const char *udi, DBusError *error)
552 {
553 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);
554 DBusMessage *dmesg, *reply;
555 char **opts = NULL;

557 dprintf("unmounting %s...\n", udi);

559 if (!(dmesg = dbus_message_new_method_call("org.freedesktop.Hal", udi,
560 "org.freedesktop.Hal.Device.Volume", "Unmount"))) {
561 dprintf(
562 "unmount failed %s: cannot create dbus message\n", udi);
563 return (B_FALSE);
564 }

566 if (!dbus_message_append_args(dmesg, DBUS_TYPE_ARRAY, DBUS_TYPE_STRING,
567 &opts, 0, DBUS_TYPE_INVALID)) {
568 dprintf("unmount failed %s: cannot append args\n", udi);
569 dbus_message_unref(dmesg);
570 return (B_FALSE);
571 }

573 dbus_error_init(error);
574 if (!(reply = dbus_connection_send_with_reply_and_block(dbus_conn,
575 dmesg, RMM_UNMOUNT_TIMEOUT, error))) {
576 dprintf("unmount failed for %s: %s\n", udi, error->message);
577 dbus_message_unref(dmesg);
578 return (B_FALSE);
579 }

581 dprintf("unmounted %s\n", udi);

583 dbus_message_unref(dmesg);

new/usr/src/cmd/rmvolmgr/rmm_common.c 10

584 dbus_message_unref(reply);

586 rmm_dbus_error_free(error);

588 return (B_TRUE);
589 }

592 /*
593 * Call HAL’s Eject() method on the given device
594 */
595 boolean_t
596 rmm_hal_eject(LibHalContext *hal_ctx, const char *udi, DBusError *error)
597 {
598 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);
599 DBusMessage *dmesg, *reply;
600 char **options = NULL;
601 uint_t num_options = 0;

603 dprintf("ejecting %s...\n", udi);

605 if (!(dmesg = dbus_message_new_method_call("org.freedesktop.Hal", udi,
606 "org.freedesktop.Hal.Device.Storage", "Eject"))) {
607 dprintf("eject %s: cannot create dbus message\n", udi);
608 return (B_FALSE);
609 }

611 if (!dbus_message_append_args(dmesg,
612 DBUS_TYPE_ARRAY, DBUS_TYPE_STRING, &options, num_options,
613 DBUS_TYPE_INVALID)) {
614 dprintf("eject %s: cannot append args to dbus message ", udi);
615 dbus_message_unref(dmesg);
616 return (B_FALSE);
617 }

619 dbus_error_init(error);
620 if (!(reply = dbus_connection_send_with_reply_and_block(dbus_conn,
621 dmesg, RMM_EJECT_TIMEOUT, error))) {
622 dprintf("eject %s: %s\n", udi, error->message);
623 dbus_message_unref(dmesg);
624 return (B_FALSE);
625 }

627 dprintf("ejected %s\n", udi);

629 dbus_message_unref(dmesg);
630 dbus_message_unref(reply);

632 rmm_dbus_error_free(error);

634 return (B_TRUE);
635 }

637 /*
638 * Call HAL’s CloseTray() method on the given device
639 */
640 boolean_t
641 rmm_hal_closetray(LibHalContext *hal_ctx, const char *udi, DBusError *error)
642 {
643 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);
644 DBusMessage *dmesg, *reply;
645 char **options = NULL;
646 uint_t num_options = 0;

648 dprintf("closing tray %s...\n", udi);

new/usr/src/cmd/rmvolmgr/rmm_common.c 11

650 if (!(dmesg = dbus_message_new_method_call("org.freedesktop.Hal", udi,
651 "org.freedesktop.Hal.Device.Storage", "CloseTray"))) {
652 dprintf(
653 "closetray failed for %s: cannot create dbus message\n",
654 udi);
655 return (B_FALSE);
656 }

658 if (!dbus_message_append_args(dmesg,
659 DBUS_TYPE_ARRAY, DBUS_TYPE_STRING, &options, num_options,
660 DBUS_TYPE_INVALID)) {
661 dprintf("closetray %s: cannot append args to dbus message ",
662 udi);
663 dbus_message_unref(dmesg);
664 return (B_FALSE);
665 }

667 dbus_error_init(error);
668 if (!(reply = dbus_connection_send_with_reply_and_block(dbus_conn,
669 dmesg, RMM_CLOSETRAY_TIMEOUT, error))) {
670 dprintf("closetray failed for %s: %s\n", udi, error->message);
671 dbus_message_unref(dmesg);
672 return (B_FALSE);
673 }

675 dprintf("closetray ok %s\n", udi);

677 dbus_message_unref(dmesg);
678 dbus_message_unref(reply);

680 rmm_dbus_error_free(error);

682 return (B_TRUE);
683 }

685 /*
686 * Call HAL’s Rescan() method on the given device
687 */
688 boolean_t
689 rmm_hal_rescan(LibHalContext *hal_ctx, const char *udi, DBusError *error)
690 {
691 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);
692 DBusMessage *dmesg, *reply;

694 dprintf("rescanning %s...\n", udi);

696 if (!(dmesg = dbus_message_new_method_call("org.freedesktop.Hal", udi,
697 "org.freedesktop.Hal.Device", "Rescan"))) {
698 dprintf("rescan failed for %s: cannot create dbus message\n",
699 udi);
700 return (B_FALSE);
701 }

703 dbus_error_init(error);
704 if (!(reply = dbus_connection_send_with_reply_and_block(dbus_conn,
705 dmesg, -1, error))) {
706 dprintf("rescan failed for %s: %s\n", udi, error->message);
707 dbus_message_unref(dmesg);
708 return (B_FALSE);
709 }

711 dprintf("rescan ok %s\n", udi);

713 dbus_message_unref(dmesg);
714 dbus_message_unref(reply);

new/usr/src/cmd/rmvolmgr/rmm_common.c 12

716 rmm_dbus_error_free(error);

718 return (B_TRUE);
719 }

721 boolean_t
722 rmm_hal_claim_branch(LibHalContext *hal_ctx, const char *udi)
723 {
724 DBusError error;
725 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);
726 DBusMessage *dmesg, *reply;
727 const char *claimed_by = "rmvolmgr";

729 dprintf("claiming branch %s...\n", udi);

731 if (!(dmesg = dbus_message_new_method_call("org.freedesktop.Hal",
732 "/org/freedesktop/Hal/Manager", "org.freedesktop.Hal.Manager",
733 "ClaimBranch"))) {
734 dprintf("cannot create dbus message\n");
735 return (B_FALSE);
736 }

738 if (!dbus_message_append_args(dmesg, DBUS_TYPE_STRING, &udi,
739 DBUS_TYPE_STRING, &claimed_by, DBUS_TYPE_INVALID)) {
740 dprintf("cannot append args to dbus message\n");
741 dbus_message_unref(dmesg);
742 return (B_FALSE);
743 }

745 dbus_error_init(&error);
746 if (!(reply = dbus_connection_send_with_reply_and_block(dbus_conn,
747 dmesg, -1, &error))) {
748 dprintf("cannot send dbus message\n");
749 dbus_message_unref(dmesg);
750 rmm_dbus_error_free(&error);
751 return (B_FALSE);
752 }

754 dprintf("claim branch ok %s\n", udi);

756 dbus_message_unref(dmesg);
757 dbus_message_unref(reply);

759 return (B_TRUE);
760 }

762 boolean_t
763 rmm_hal_unclaim_branch(LibHalContext *hal_ctx, const char *udi)
764 {
765 DBusError error;
766 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);
767 DBusMessage *dmesg, *reply;
768 const char *claimed_by = "rmvolmgr";

770 dprintf("unclaiming branch %s...\n", udi);

772 if (!(dmesg = dbus_message_new_method_call("org.freedesktop.Hal",
773 "/org/freedesktop/Hal/Manager", "org.freedesktop.Hal.Manager",
774 "UnclaimBranch"))) {
775 dprintf("cannot create dbus message\n");
776 return (B_FALSE);
777 }

779 if (!dbus_message_append_args(dmesg, DBUS_TYPE_STRING, &udi,
780 DBUS_TYPE_STRING, &claimed_by, DBUS_TYPE_INVALID)) {
781 dprintf("cannot append args to dbus message\n");

new/usr/src/cmd/rmvolmgr/rmm_common.c 13

782 dbus_message_unref(dmesg);
783 return (B_FALSE);
784 }

786 dbus_error_init(&error);
787 if (!(reply = dbus_connection_send_with_reply_and_block(dbus_conn,
788 dmesg, -1, &error))) {
789 dprintf("cannot send dbus message\n");
790 dbus_message_unref(dmesg);
791 rmm_dbus_error_free(&error);
792 return (B_FALSE);
793 }

795 dprintf("unclaim branch ok %s\n", udi);

797 dbus_message_unref(dmesg);
798 dbus_message_unref(reply);

800 return (B_TRUE);
801 }

803 static boolean_t
804 rmm_action_one(LibHalContext *hal_ctx, const char *name, action_t action,
805 const char *dev, const char *udi, LibHalVolume *v,
806 char **opts, int num_opts, char *mountpoint)
807 {
808 char dev_str[MAXPATHLEN];
809 char *mountp;
810 DBusError error;
811 boolean_t ret = B_FALSE;

813 dprintf("rmm_action_one %s %s\n", name, action_strings[action]);

815 #endif /* ! codereview */
816 if (strcmp(name, dev) == 0) {
817 (void) snprintf(dev_str, sizeof (dev_str), name);
818 } else {
819 (void) snprintf(dev_str, sizeof (dev_str), "%s %s", name, dev);
820 }

822 dbus_error_init(&error);

824 switch (action) {
825 case EJECT:
826 ret = rmm_hal_eject(hal_ctx, udi, &error);
827 break;
828 case INSERT:
829 case REMOUNT:
24 if (libhal_volume_is_mounted(v)) {
25 goto done;
26 }
830 ret = rmm_hal_mount(hal_ctx, udi,
831 opts, num_opts, mountpoint, &error);
832 break;
833 case UNMOUNT:
31 if (!libhal_volume_is_mounted(v)) {
32 goto done;
33 }
834 ret = rmm_hal_unmount(hal_ctx, udi, &error);
835 break;
836 case CLOSETRAY:
837 ret = rmm_hal_closetray(hal_ctx, udi, &error);
838 break;
839 }

841 if (!ret) {

new/usr/src/cmd/rmvolmgr/rmm_common.c 14

842 (void) fprintf(stderr, gettext("%s of %s failed: %s\n"),
843 action_strings[action], dev_str, rmm_strerror(&error, -1));
844 goto done;
845 }

847 switch (action) {
848 case EJECT:
849 (void) printf(gettext("%s ejected\n"), dev_str);
850 break;
851 case INSERT:
852 case REMOUNT:
853 mountp = rmm_get_mnttab_mount_point(dev);
854 if (mountp != NULL) {
855 (void) printf(gettext("%s mounted at %s\n"),
856 dev_str, mountp);
857 free(mountp);
858 }
859 break;
860 case UNMOUNT:
861 (void) printf(gettext("%s unmounted\n"), dev_str);
862 break;
863 case CLOSETRAY:
864 (void) printf(gettext("%s tray closed\n"), dev_str);
865 break;
866 }

868 done:
869 rmm_dbus_error_free(&error);
870 return (ret);
871 }

873 /*
874 * top level action routine
875 *
876 * If non-null ’aa’ is passed, it will be used, otherwise a local copy
877 * will be created.
878 */
879 boolean_t
880 rmm_action(LibHalContext *hal_ctx, const char *name, action_t action,
881 struct action_arg *aap, char **opts, int num_opts, char *mountpoint)
882 {
883 DBusError error;
884 GSList *volumes, *i;
885 LibHalDrive *d;
886 LibHalVolume *v;
887 const char *udi, *d_udi;
888 const char *dev, *d_dev;
889 struct action_arg aa_local;
890 boolean_t ret = B_FALSE;

892 dprintf("rmm_action %s %s\n", name, action_strings[action]);

894 if (aap == NULL) {
895 bzero(&aa_local, sizeof (aa_local));
896 aap = &aa_local;
897 }

899 dbus_error_init(&error);

901 /* find the drive and its volumes */
902 d = rmm_hal_volume_find(hal_ctx, name, &error, &volumes);
903 rmm_dbus_error_free(&error);
904 if (d == NULL) {
905 (void) fprintf(stderr, gettext("cannot find ’%s’\n"), name);
906 return (B_FALSE);
907 }

new/usr/src/cmd/rmvolmgr/rmm_common.c 15

908 d_udi = libhal_drive_get_udi(d);
909 d_dev = libhal_drive_get_device_file(d);
910 if ((d_udi == NULL) || (d_dev == NULL)) {
911 goto out;
912 }

914 /*
915 * For those drives that do not require media eject,
916 * EJECT turns into UNMOUNT.
917 */
918 if ((action == EJECT) && !libhal_drive_requires_eject(d)) {
919 action = UNMOUNT;
920 }

922 /*
923 * We can’t mount or unmount a drive that has no volumes.
924 * Either the media isn’t inserted or it’s not formatted
925 */
926 if (volumes == NULL && (action != EJECT && action != CLOSETRAY)) {
927 (void) fprintf(stderr, libhal_drive_requires_eject(d) ?
928 gettext("no volumes in ’%s’ to %s\n") :
929 gettext("no volumes on ’%s’ to %s\n"),
930 name, action_strings[action]);
931 goto out;
932 }

934 #endif /* ! codereview */
935 /* per drive action */
936 if ((action == EJECT) || (action == CLOSETRAY)) {
937 ret = rmm_action_one(hal_ctx, name, action, d_dev, d_udi, NULL,
938 opts, num_opts, NULL);

940 if (!ret || (action == CLOSETRAY)) {
941 goto out;
942 }
943 }

945 /* per volume action */
946 for (i = volumes; i != NULL; i = g_slist_next(i)) {
947 v = (LibHalVolume *)i->data;
948 udi = libhal_volume_get_udi(v);
949 dev = libhal_volume_get_device_file(v);

951 if ((udi == NULL) || (dev == NULL)) {
952 continue;
953 }
954 if (aap == &aa_local) {
955 if (!rmm_volume_aa_from_prop(hal_ctx, udi, v, aap)) {
956 dprintf("rmm_volume_aa_from_prop failed %s\n",
957 udi);
958 continue;
959 }
960 }
961 aap->aa_action = action;

963 /* ejected above, just need postprocess */
964 if (action != EJECT) {
965 ret = rmm_action_one(hal_ctx, name, action, dev, udi, v,
966 opts, num_opts, mountpoint);
967 }
968 if (ret) {
969 (void) vold_postprocess(hal_ctx, udi, aap);
970 }

972 if (aap == &aa_local) {
973 rmm_volume_aa_free(aap);

new/usr/src/cmd/rmvolmgr/rmm_common.c 16

974 }
975 }

977 out:
978 if (volumes != NULL)
979 #endif /* ! codereview */
980 rmm_volumes_free(volumes);
981 if (d != NULL)
982 #endif /* ! codereview */
983 libhal_drive_free(d);

985 return (ret);
986 }

989 /*
990 * rescan by name
991 * if name is NULL, rescan all drives
992 */
993 boolean_t
994 rmm_rescan(LibHalContext *hal_ctx, const char *name, boolean_t query)
995 {
996 DBusError error;
997 GSList *volumes;
998 LibHalDrive *drive = NULL;
999 const char *drive_udi;

1000 char **udis;
1001 int num_udis;
1002 char *nickname;
1003 char **nicks = NULL;
1004 boolean_t do_free_udis = FALSE;
1005 int i;
1006 boolean_t ret = B_FALSE;

1008 dprintf("rmm_rescan %s\n", name != NULL ? name : "all");

1010 dbus_error_init(&error);

1012 if (name != NULL) {
1013 if ((drive = rmm_hal_volume_find(hal_ctx, name, &error,
1014 &volumes)) == NULL) {
1015 rmm_dbus_error_free(&error);
1016 (void) fprintf(stderr,
1017 gettext("cannot find ’%s’\n"), name);
1018 return (B_FALSE);
1019 }
1020 rmm_dbus_error_free(&error);
1021 g_slist_free(volumes);

1023 drive_udi = libhal_drive_get_udi(drive);
1024 udis = (char **)&drive_udi;
1025 num_udis = 1;
1026 } else {
1027 if ((udis = libhal_find_device_by_capability(hal_ctx,
1028 "storage", &num_udis, &error)) == NULL) {
1029 rmm_dbus_error_free(&error);
1030 return (B_TRUE);
1031 }
1032 rmm_dbus_error_free(&error);
1033 do_free_udis = TRUE;
1034 }

1036 for (i = 0; i < num_udis; i++) {
1037 if (name == NULL) {
1038 nicks = libhal_device_get_property_strlist(hal_ctx,
1039 udis[i], "storage.solaris.nicknames", NULL);

new/usr/src/cmd/rmvolmgr/rmm_common.c 17

1040 if (nicks != NULL) {
1041 nickname = nicks[0];
1042 } else {
1043 nickname = "";
1044 }
1045 }
1046 if (!(ret = rmm_hal_rescan(hal_ctx, udis[i], &error))) {
1047 (void) fprintf(stderr,
1048 gettext("rescan of %s failed: %s\n"),
1049 name ? name : nickname,
1050 rmm_strerror(&error, -1));
1051 libhal_free_string_array(nicks);
1052 continue;
1053 }
1054 if (query) {
1055 ret = libhal_device_get_property_bool(hal_ctx, udis[i],
1056 "storage.removable.media_available", NULL);
1057 if (ret) {
1058 printf(gettext("%s is available\n"),
1059 name ? name : nickname);
1060 } else {
1061 printf(gettext("%s is not available\n"),
1062 name ? name : nickname);
1063 }
1064 }
1065 libhal_free_string_array(nicks);
1066 }

1068 if (drive != NULL) {
1069 libhal_drive_free(drive);
1070 }
1071 if (do_free_udis) {
1072 libhal_free_string_array(udis);
1073 }

1075 return (ret);
1076 }

1079 /*
1080 * set action_arg from volume properties
1081 */
1082 boolean_t
1083 rmm_volume_aa_from_prop(LibHalContext *hal_ctx, const char *udi_arg,
1084 LibHalVolume *volume_arg, struct action_arg *aap)
1085 {
1086 LibHalVolume *volume = volume_arg;
1087 const char *udi = udi_arg;
1088 const char *drive_udi;
1089 char *volume_label;
1090 char *mountpoint;
1091 int len;
1092 int ret = B_FALSE;

1094 /* at least udi or volume must be supplied */
1095 if ((udi == NULL) && (volume == NULL)) {
1096 return (B_FALSE);
1097 }
1098 if (volume == NULL) {
1099 if ((volume = libhal_volume_from_udi(hal_ctx, udi)) == NULL) {
1100 dprintf("cannot get volume %s\n", udi);
1101 goto out;
1102 }
1103 }
1104 if (udi == NULL) {
1105 if ((udi = libhal_volume_get_udi(volume)) == NULL) {

new/usr/src/cmd/rmvolmgr/rmm_common.c 18

1106 dprintf("cannot get udi\n");
1107 goto out;
1108 }
1109 }
1110 drive_udi = libhal_volume_get_storage_device_udi(volume);

1112 if (!(aap->aa_symdev = libhal_device_get_property_string(hal_ctx,
1113 drive_udi, "storage.solaris.legacy.symdev", NULL))) {
1114 dprintf("property %s not found %s\n",
1115 "storage.solaris.legacy.symdev", drive_udi);
1116 goto out;
1117 }
1118 if (!(aap->aa_media = libhal_device_get_property_string(hal_ctx,
1119 drive_udi, "storage.solaris.legacy.media_type", NULL))) {
1120 dprintf("property %s not found %s\n",
1121 "storage.solaris.legacy.media_type", drive_udi);
1122 goto out;
1123 }

1125 /* name is derived from volume label */
1126 aap->aa_name = NULL;
1127 if ((volume_label = (char *)libhal_device_get_property_string(hal_ctx,
1128 udi, "volume.label", NULL)) != NULL) {
1129 if ((len = strlen(volume_label)) > 0) {
1130 aap->aa_name = rmm_vold_convert_volume_label(
1131 volume_label, len);
1132 if (strlen(aap->aa_name) == 0) {
1133 free(aap->aa_name);
1134 aap->aa_name = NULL;
1135 }
1136 }
1137 libhal_free_string(volume_label);
1138 }
1139 /* if no label, then unnamed_<mediatype> */
1140 if (aap->aa_name == NULL) {
1141 aap->aa_name = (char *)calloc(1, sizeof ("unnamed_floppyNNNN"));
1142 if (aap->aa_name == NULL) {
1143 goto out;
1144 }
1145 (void) snprintf(aap->aa_name, sizeof ("unnamed_floppyNNNN"),
1146 "unnamed_%s", aap->aa_media);
1147 }

1149 if (!(aap->aa_path = libhal_device_get_property_string(hal_ctx, udi,
1150 "block.device", NULL))) {
1151 dprintf("property %s not found %s\n", "block.device", udi);
1152 goto out;
1153 }
1154 if (!(aap->aa_rawpath = libhal_device_get_property_string(hal_ctx, udi,
1155 "block.solaris.raw_device", NULL))) {
1156 dprintf("property %s not found %s\n",
1157 "block.solaris.raw_device", udi);
1158 goto out;
1159 }
1160 if (!(aap->aa_type = libhal_device_get_property_string(hal_ctx, udi,
1161 "volume.fstype", NULL))) {
1162 dprintf("property %s not found %s\n", "volume.fstype", udi);
1163 goto out;
1164 }
1165 if (!libhal_device_get_property_bool(hal_ctx, udi,
1166 "volume.is_partition", NULL)) {
1167 aap->aa_partname = NULL;
1168 } else if (!(aap->aa_partname = libhal_device_get_property_string(
1169 hal_ctx, udi, "block.solaris.slice", NULL))) {
1170 dprintf("property %s not found %s\n",
1171 "block.solaris.slice", udi);

new/usr/src/cmd/rmvolmgr/rmm_common.c 19

1172 goto out;
1173 }
1174 if (!(mountpoint = libhal_device_get_property_string(hal_ctx, udi,
1175 "volume.mount_point", NULL))) {
1176 dprintf("property %s not found %s\n",
1177 "volume.mount_point", udi);
1178 goto out;
1179 }
1180 /*
1181 * aa_mountpoint can be reallocated in rmm_volume_aa_update_mountpoint()
1182 * won’t have to choose between free() or libhal_free_string() later on
1183 */
1184 aap->aa_mountpoint = strdup(mountpoint);
1185 libhal_free_string(mountpoint);
1186 if (aap->aa_mountpoint == NULL) {
1187 dprintf("mountpoint is NULL %s\n", udi);
1188 goto out;
1189 }

1191 ret = B_TRUE;

1193 out:
1194 if ((volume != NULL) && (volume != volume_arg)) {
1195 libhal_volume_free(volume);
1196 }
1197 if (!ret) {
1198 rmm_volume_aa_free(aap);
1199 }
1200 return (ret);
1201 }

1203 /* ARGSUSED */
1204 void
1205 rmm_volume_aa_update_mountpoint(LibHalContext *hal_ctx, const char *udi,
1206 struct action_arg *aap)
1207 {
1208 if (aap->aa_mountpoint != NULL) {
1209 free(aap->aa_mountpoint);
1210 }
1211 aap->aa_mountpoint = rmm_get_mnttab_mount_point(aap->aa_path);
1212 }

1214 void
1215 rmm_volume_aa_free(struct action_arg *aap)
1216 {
1217 if (aap->aa_symdev != NULL) {
1218 libhal_free_string(aap->aa_symdev);
1219 aap->aa_symdev = NULL;
1220 }
1221 if (aap->aa_name != NULL) {
1222 free(aap->aa_name);
1223 aap->aa_name = NULL;
1224 }
1225 if (aap->aa_path != NULL) {
1226 libhal_free_string(aap->aa_path);
1227 aap->aa_path = NULL;
1228 }
1229 if (aap->aa_rawpath != NULL) {
1230 libhal_free_string(aap->aa_rawpath);
1231 aap->aa_rawpath = NULL;
1232 }
1233 if (aap->aa_type != NULL) {
1234 libhal_free_string(aap->aa_type);
1235 aap->aa_type = NULL;
1236 }
1237 if (aap->aa_media != NULL) {

new/usr/src/cmd/rmvolmgr/rmm_common.c 20

1238 libhal_free_string(aap->aa_media);
1239 aap->aa_media = NULL;
1240 }
1241 if (aap->aa_partname != NULL) {
1242 libhal_free_string(aap->aa_partname);
1243 aap->aa_partname = NULL;
1244 }
1245 if (aap->aa_mountpoint != NULL) {
1246 free(aap->aa_mountpoint);
1247 aap->aa_mountpoint = NULL;
1248 }
1249 }

1251 /*
1252 * get device’s mount point from mnttab
1253 */
1254 char *
1255 rmm_get_mnttab_mount_point(const char *special)
1256 {
1257 char *mount_point = NULL;
1258 FILE *f;
1259 struct mnttab mnt;
1260 struct mnttab mpref = { NULL, NULL, NULL, NULL, NULL };

1262 if ((f = fopen(MNTTAB, "r")) != NULL) {
1263 mpref.mnt_special = (char *)special;
1264 if (getmntany(f, &mnt, &mpref) == 0) {
1265 mount_point = strdup(mnt.mnt_mountp);
1266 }
1267 fclose(f);
1268 }

1270 return (mount_point);
1271 }

1274 /*
1275 * get human readable string from error values
1276 */
1277 const char *
1278 rmm_strerror(DBusError *dbus_error, int rmm_error)
1279 {
1280 const char *str;

1282 if ((dbus_error != NULL) && dbus_error_is_set(dbus_error)) {
1283 str = dbus_error->message;
1284 } else {
1285 switch (rmm_error) {
1286 case RMM_EOK:
1287 str = gettext("success");
1288 break;
1289 case RMM_EDBUS_CONNECT:
1290 str = gettext("cannot connect to D-Bus");
1291 break;
1292 case RMM_EHAL_CONNECT:
1293 str = gettext("cannot connect to HAL");
1294 break;
1295 default:
1296 str = gettext("undefined error");
1297 break;
1298 }
1299 }

1301 return (str);
1302 }

new/usr/src/cmd/rmvolmgr/rmm_common.c 21

1304 void
1305 rmm_dbus_error_free(DBusError *error)
1306 {
1307 if (error != NULL && dbus_error_is_set(error)) {
1308 dbus_error_free(error);
1309 }
1310 }

1312 static int
1313 rmm_vold_isbadchar(int c)
1314 {
1315 int ret_val = 0;

1318 switch (c) {
1319 case ’/’:
1320 case ’;’:
1321 case ’|’:
1322 ret_val = 1;
1323 break;
1324 default:
1325 if (iscntrl(c) || isspace(c)) {
1326 ret_val = 1;
1327 }
1328 }

1330 return (ret_val);
1331 }

1333 char *
1334 rmm_vold_convert_volume_label(const char *name, size_t len)
1335 {
1336 char buf[MAXNAMELEN+1];
1337 char *s = buf;
1338 int i;

1340 if (len > MAXNAMELEN) {
1341 len = MAXNAMELEN;
1342 }

1344 for (i = 0; i < len; i++) {
1345 if (name[i] == ’\0’) {
1346 break;
1347 }
1348 if (isgraph((int)name[i])) {
1349 if (isupper((int)name[i])) {
1350 *s++ = tolower((int)name[i]);
1351 } else if (rmm_vold_isbadchar((int)name[i])) {
1352 *s++ = ’_’;
1353 } else {
1354 *s++ = name[i];
1355 }
1356 }
1357 }
1358 *s = ’\0’;
1359 s = strdup(buf);

1361 return (s);
1362 }

1364 /*
1365 * swiped from mkdir.c
1366 */
1367 int
1368 makepath(char *dir, mode_t mode)
1369 {

new/usr/src/cmd/rmvolmgr/rmm_common.c 22

1370 int err;
1371 char *slash;

1374 if ((mkdir(dir, mode) == 0) || (errno == EEXIST)) {
1375 return (0);
1376 }
1377 if (errno != ENOENT) {
1378 return (-1);
1379 }
1380 if ((slash = strrchr(dir, ’/’)) == NULL) {
1381 return (-1);
1382 }
1383 *slash = ’\0’;
1384 err = makepath(dir, mode);
1385 *slash++ = ’/’;

1387 if (err || (*slash == ’\0’)) {
1388 return (err);
1389 }

1391 return (mkdir(dir, mode));
1392 }

1395 void
1396 dprintf(const char *fmt, ...)
1397 {

1399 va_list ap;
1400 const char *p;
1401 char msg[BUFSIZ];
1402 char *errmsg = strerror(errno);
1403 char *s;

1405 if (rmm_debug == 0) {
1406 return;
1407 }

1409 (void) memset(msg, 0, BUFSIZ);

1411 /* scan for %m and replace with errno msg */
1412 s = &msg[strlen(msg)];
1413 p = fmt;

1415 while (*p != ’\0’) {
1416 if ((*p == ’%’) && (*(p+1) == ’m’)) {
1417 (void) strcat(s, errmsg);
1418 p += 2;
1419 s += strlen(errmsg);
1420 continue;
1421 }
1422 *s++ = *p++;
1423 }
1424 *s = ’\0’; /* don’t forget the null byte */

1426 va_start(ap, fmt);
1427 (void) vfprintf(stderr, msg, ap);
1428 va_end(ap);
1429 }

new/usr/src/cmd/rmvolmgr/vold.c 1

**
 29524 Sun May 4 18:28:37 2014
new/usr/src/cmd/rmvolmgr/vold.c
4833 Remove volrmmount
4845 rm(u)mount don’t always print mount/unmount errors
4846 HAL partition names don’t match real parition names
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 *
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 *
25 * Copyright 2014 Andrew Stormont
26 #endif /* ! codereview */
27 */

29 /*
30 * Vold compatibility for rmvolmgr: emulate old commands as well as
31 * action_filemgr.so to notify legacy apps via /tmp/.removable pipes.
32 * A lot of this code is copied verbatim from vold sources.
33 *
34 * Here’s the original description of action_filemgr.so:
35 *
36 * action_filemgr.so - filemgr interface routines for rmmount
37 *
38 * This shared object allows rmmount to communicate with filemgr.
39 * This is done by communicating over a named pipe that filemgr
40 * creates in directory NOTIFY_DIR. The name of the pipe must
41 * begin with NOTIFY_NAME. This source file contains #define
42 * compiler directives set the values of NOTIFY_DIR and NOTIFY_NAME.
43 *
44 * After a partition on a medium has been mounted as a result of
45 * either insertion or remounting of the medium, the action()
46 * method creates a file named with the symbolic name of the
47 * device in which the medium is inserted and the partition name
48 * (e.g. "jaz0-s2") in NOTIFY_DIR. The file consists of one text
49 * line containing a string naming the mount point of the partition,
50 * a string giving the raw device path to the partition, and a
51 * string naming the file system type on the partition. The action()
52 * method then sends a single character (’i’ for insertion, ’r’ for
53 * remounting) through the named pipe NOTIFY_NAME to tell filemgr to
54 * look for new files in NOTIFY_DIR.
55 *

new/usr/src/cmd/rmvolmgr/vold.c 2

56 * If a medium containing no mountable partitions is inserted
57 * or remounted in a device, the action() method creates a file
58 * named with the symbolic name of the device in NOTIFY_DIR.
59 * The file consists of one text line containing a string
60 * giving the symbolic name of the device and a string naming
61 * the reason that the medium couldn’t be mounted. The action
62 * method then sends either an ’i’ or an ’r’ through the named
63 * pipe to tell filemgr to look for new files in NOTIFY_DIR.
64 *
65 * When a medium is ejected or unmounted, the action() method
66 * removes the files that were created in NOTIFY_DIR when the medium
67 * was inserted or remounted and sends a single character (’e’ for
68 * ejection, ’u’ for unmounting) through the named pipe.
69 *
70 * The following environment variables must be set before calling action():
71 *
72 * VOLUME_ACTION action that occurred (e.g. "insert", "eject")
73 * VOLUME_SYMDEV symbolic name (e.g. "cdrom0", "floppy1")
74 * VOLUME_NAME volume name (e.g. "unnamed_cdrom", "s2")
75 */

78 #include <stdio.h>
79 #include <stdlib.h>
80 #include <unistd.h>
81 #include <fcntl.h>
82 #include <string.h>
83 #include <strings.h>
84 #include <dirent.h>
85 #include <signal.h>
86 #include <errno.h>
87 #include <libintl.h>
88 #include <zone.h>
89 #include <pwd.h>
90 #include <sys/types.h>
91 #include <sys/stat.h>
92 #include <sys/dkio.h>
93 #include <sys/cdio.h>
94 #include <sys/vtoc.h>
95 #include <sys/param.h>
96 #include <sys/wait.h>
97 #include <libcontract.h>
98 #include <sys/contract/process.h>
99 #include <sys/ctfs.h>
100 #include <tsol/label.h>

102 #include "vold.h"
103 #include "rmm_common.h"

105 int rmm_debug = 0;
106 boolean_t rmm_vold_actions_enabled = B_FALSE;
107 boolean_t rmm_vold_mountpoints_enabled = B_FALSE;

109 static char *prog_name = NULL;
110 static pid_t prog_pid = 0;
111 static int system_labeled = 0;
112 static uid_t mnt_uid = (uid_t)-1;
113 static gid_t mnt_gid = (gid_t)-1;
114 static zoneid_t mnt_zoneid = -1;
115 static char mnt_zoneroot[MAXPATHLEN];
116 static char mnt_userdir[MAXPATHLEN];

118 /*
119 * Private attribute types and attributes.
120 */
121 static const char notify_characters[] = {

new/usr/src/cmd/rmvolmgr/vold.c 3

122 ’e’,
123 ’i’,
124 ’r’,
125 ’u’
126 };

128 static const char *result_strings[] = {
129 "FALSE",
130 "TRUE"
131 };

133 #define NOTIFY_DIR "/tmp/.removable" /* dir where filemgr looks */
134 #define NOTIFY_NAME "notify" /* named pipe to talk over */

24 static void volrmmount_usage();
136 static void volcheck_usage();
137 static int vold_action(struct action_arg *aap);
138 static void vold_update_mountpoints(struct action_arg *aap);
139 static char *not_mountable(struct action_arg *aa);
140 static int create_one_notify_file(char *fstype,
141 char *mount_point,
142 char *notify_file,
143 char *raw_partitionp,
144 char *reason,
145 char *symdev);
146 static int create_notify_files(struct action_arg **aa);
147 static boolean_t notify_clients(action_t action, int do_notify);
148 static void popdir(int fd);
149 static int pushdir(const char *dir);
150 static boolean_t remove_notify_files(struct action_arg **aa);

152 /*
153 * should be called once from main()
154 */
155 /* ARGSUSED */
156 void
157 vold_init(int argc, char **argv)
158 {
159 system_labeled = is_system_labeled();
160 }

______unchanged_portion_omitted_

new/usr/src/cmd/rmvolmgr/vold.h 1

**
 1974 Sun May 4 18:28:37 2014
new/usr/src/cmd/rmvolmgr/vold.h
4833 Remove volrmmount
4845 rm(u)mount don’t always print mount/unmount errors
4846 HAL partition names don’t match real parition names
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 *
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 *
25 * Copyright 2014 Andrew Stormont.
26 #endif /* ! codereview */
27 */

29 #ifndef _VOLD_H
30 #define _VOLD_H

24 #pragma ident "%Z%%M% %I% %E% SMI"

32 #ifdef __cplusplus
33 extern "C" {
34 #endif

36 #include <libhal.h>

38 typedef enum {
39 EJECT,
40 INSERT,
41 REMOUNT,
42 UNMOUNT,
43 CLEAR_MOUNTS,
44 CLOSETRAY
45 } action_t;

______unchanged_portion_omitted_

59 extern int rmm_debug;
60 extern boolean_t rmm_vold_actions_enabled;
61 extern boolean_t rmm_vold_mountpoints_enabled;

63 void vold_init(int argc, char **argv);
64 int vold_postprocess(LibHalContext *hal_ctx, const char *udi,

new/usr/src/cmd/rmvolmgr/vold.h 2

65 struct action_arg *aap);
66 int vold_rmmount(int argc, char **argv);
61 int volrmmount(int argc, char **argv);
67 int volcheck(int argc, char **argv);

69 #ifdef __cplusplus
70 }

______unchanged_portion_omitted_

new/usr/src/man/man1/Makefile 1

**
 13118 Sun May 4 18:28:37 2014
new/usr/src/man/man1/Makefile
4833 Remove volrmmount
4845 rm(u)mount don’t always print mount/unmount errors
4846 HAL partition names don’t match real parition names
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet
9 # at http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011, Richard Lowe
14 # Copyright 2013 Nexenta Systems, Inc. All rights reserved.
15 # Copyright 2014 Andrew Stormont.
16 #endif /* ! codereview */
17 #

19 include $(SRC)/Makefile.master

21 MANSECT= 1

23 MANFILES= acctcom.1 \
24 adb.1 \
25 addbib.1 \
26 alias.1 \
27 allocate.1 \
28 amt.1 \
29 appcert.1 \
30 apptrace.1 \
31 apropos.1 \
32 ar.1 \
33 arch.1 \
34 asa.1 \
35 at.1 \
36 atq.1 \
37 atrm.1 \
38 audioconvert.1 \
39 audioctl.1 \
40 audioplay.1 \
41 audiorecord.1 \
42 audiotest.1 \
43 auths.1 \
44 awk.1 \
45 banner.1 \
46 basename.1 \
47 bc.1 \
48 bdiff.1 \
49 bfs.1 \
50 break.1 \
51 builtin.1 \
52 cal.1 \
53 calendar.1 \
54 cancel.1 \
55 cat.1 \
56 cd.1 \
57 cdrw.1 \

new/usr/src/man/man1/Makefile 2

58 checknr.1 \
59 chgrp.1 \
60 chkey.1 \
61 chmod.1 \
62 chown.1 \
63 ckdate.1 \
64 ckgid.1 \
65 ckint.1 \
66 ckitem.1 \
67 ckkeywd.1 \
68 ckpath.1 \
69 ckrange.1 \
70 ckstr.1 \
71 cksum.1 \
72 cktime.1 \
73 ckuid.1 \
74 ckyorn.1 \
75 clear.1 \
76 cmp.1 \
77 col.1 \
78 comm.1 \
79 command.1 \
80 compress.1 \
81 cp.1 \
82 cpio.1 \
83 cputrack.1 \
84 crle.1 \
85 crontab.1 \
86 crypt.1 \
87 csh.1 \
88 csplit.1 \
89 ctags.1 \
90 ctrun.1 \
91 ctstat.1 \
92 ctwatch.1 \
93 cut.1 \
94 date.1 \
95 dc.1 \
96 deallocate.1 \
97 deroff.1 \
98 dhcpinfo.1 \
99 diff.1 \
100 diff3.1 \
101 diffmk.1 \
102 digest.1 \
103 dircmp.1 \
104 dis.1 \
105 disown.1 \
106 dispgid.1 \
107 dispuid.1 \
108 dos2unix.1 \
109 download.1 \
110 dpost.1 \
111 du.1 \
112 dump.1 \
113 dumpcs.1 \
114 echo.1 \
115 ed.1 \
116 egrep.1 \
117 eject.1 \
118 elfdump.1 \
119 elfedit.1 \
120 elfsign.1 \
121 elfwrap.1 \
122 enable.1 \
123 encrypt.1 \

new/usr/src/man/man1/Makefile 3

124 enhance.1 \
125 env.1 \
126 eqn.1 \
127 exec.1 \
128 exit.1 \
129 expand.1 \
130 expr.1 \
131 exstr.1 \
132 factor.1 \
133 fdformat.1 \
134 fgrep.1 \
135 file.1 \
136 filebench.1 \
137 filesync.1 \
138 find.1 \
139 finger.1 \
140 fmt.1 \
141 fmtmsg.1 \
142 fold.1 \
143 ftp.1 \
144 ftpcount.1 \
145 ftpwho.1 \
146 gcore.1 \
147 gencat.1 \
148 genmsg.1 \
149 getconf.1 \
150 getfacl.1 \
151 getlabel.1 \
152 getopt.1 \
153 getoptcvt.1 \
154 getopts.1 \
155 gettext.1 \
156 gettxt.1 \
157 getzonepath.1 \
158 glob.1 \
159 gprof.1 \
160 grep.1 \
161 groups.1 \
162 hash.1 \
163 head.1 \
164 history.1 \
165 hostid.1 \
166 hostname.1 \
167 iconv.1 \
168 indxbib.1 \
169 Intro.1 \
170 ipcrm.1 \
171 ipcs.1 \
172 isainfo.1 \
173 isalist.1 \
174 jobs.1 \
175 join.1 \
176 kbd.1 \
177 kdestroy.1 \
178 keylogin.1 \
179 keylogout.1 \
180 kill.1 \
181 kinit.1 \
182 klist.1 \
183 kmdb.1 \
184 kmfcfg.1 \
185 kpasswd.1 \
186 krb5-config.1 \
187 ksh93.1 \
188 ktutil.1 \
189 lari.1 \

new/usr/src/man/man1/Makefile 4

190 last.1 \
191 lastcomm.1 \
192 ld.1 \
193 ldap.1 \
194 ldapdelete.1 \
195 ldaplist.1 \
196 ldapmodify.1 \
197 ldapmodrdn.1 \
198 ldapsearch.1 \
199 ldd.1 \
200 ld.so.1.1 \
201 let.1 \
202 lex.1 \
203 lgrpinfo.1 \
204 limit.1 \
205 line.1 \
206 list_devices.1 \
207 listusers.1 \
208 ln.1 \
209 loadkeys.1 \
210 locale.1 \
211 localedef.1 \
212 logger.1 \
213 login.1 \
214 logname.1 \
215 logout.1 \
216 look.1 \
217 lookbib.1 \
218 lorder.1 \
219 lp.1 \
220 lpstat.1 \
221 ls.1 \
222 m4.1 \
223 mac.1 \
224 mach.1 \
225 machid.1 \
226 madv.so.1.1 \
227 mail.1 \
228 mailcompat.1 \
229 mailq.1 \
230 mailstats.1 \
231 mailx.1 \
232 makekey.1 \
233 man.1 \
234 mconnect.1 \
235 mcs.1 \
236 mdb.1 \
237 mesg.1 \
238 mkdir.1 \
239 mkmsgs.1 \
240 mktemp.1 \
241 moe.1 \
242 more.1 \
243 mpss.so.1.1 \
244 msgcc.1 \
245 msgcpp.1 \
246 msgcvt.1 \
247 msgfmt.1 \
248 msggen.1 \
249 msgget.1 \
250 mt.1 \
251 mv.1 \
252 nawk.1 \
253 nc.1 \
254 nca.1 \
255 ncab2clf.1 \

new/usr/src/man/man1/Makefile 5

256 ncakmod.1 \
257 newform.1 \
258 newgrp.1 \
259 news.1 \
260 newtask.1 \
261 nice.1 \
262 nl.1 \
263 nm.1 \
264 nohup.1 \
265 nroff.1 \
266 od.1 \
267 on.1 \
268 optisa.1 \
269 pack.1 \
270 pagesize.1 \
271 pargs.1 \
272 passwd.1 \
273 paste.1 \
274 pathchk.1 \
275 pax.1 \
276 pfexec.1 \
277 pg.1 \
278 pgrep.1 \
279 pkginfo.1 \
280 pkgmk.1 \
281 pkgparam.1 \
282 pkgproto.1 \
283 pkgtrans.1 \
284 pktool.1 \
285 plabel.1 \
286 plgrp.1 \
287 plimit.1 \
288 pmadvise.1 \
289 pmap.1 \
290 postio.1 \
291 postprint.1 \
292 postreverse.1 \
293 ppgsz.1 \
294 ppriv.1 \
295 pr.1 \
296 praliases.1 \
297 prctl.1 \
298 preap.1 \
299 prex.1 \
300 print.1 \
301 printf.1 \
302 priocntl.1 \
303 proc.1 \
304 prof.1 \
305 profiles.1 \
306 projects.1 \
307 ps.1 \
308 ptree.1 \
309 pvs.1 \
310 pwd.1 \
311 ranlib.1 \
312 rcapstat.1 \
313 rcp.1 \
314 rdist.1 \
315 read.1 \
316 readonly.1 \
317 refer.1 \
318 regcmp.1 \
319 renice.1 \
320 rev.1 \
321 rlogin.1 \

new/usr/src/man/man1/Makefile 6

322 rm.1 \
323 rmformat.1 \
324 rmmount.1 \
325 roffbib.1 \
326 roles.1 \
327 rpcgen.1 \
328 rsh.1 \
329 runat.1 \
330 rup.1 \
331 ruptime.1 \
332 rusers.1 \
333 rwho.1 \
334 sar.1 \
335 scp.1 \
336 script.1 \
337 sdiff.1 \
338 sed.1 \
339 set.1 \
340 setfacl.1 \
341 setlabel.1 \
342 setpgrp.1 \
343 sftp.1 \
344 shcomp.1 \
345 shell_builtins.1 \
346 shift.1 \
347 size.1 \
348 sleep.1 \
349 smbutil.1 \
350 soelim.1 \
351 sort.1 \
352 sortbib.1 \
353 sotruss.1 \
354 spell.1 \
355 split.1 \
356 srchtxt.1 \
357 ssh.1 \
358 ssh-add.1 \
359 ssh-agent.1 \
360 ssh-http-proxy-connect.1 \
361 ssh-keygen.1 \
362 ssh-keyscan.1 \
363 ssh-socks5-proxy-connect.1 \
364 strchg.1 \
365 strings.1 \
366 strip.1 \
367 stty.1 \
368 sum.1 \
369 suspend.1 \
370 svcprop.1 \
371 svcs.1 \
372 symorder.1 \
373 sys-suspend.1 \
374 tabs.1 \
375 tail.1 \
376 talk.1 \
377 tar.1 \
378 tbl.1 \
379 tcopy.1 \
380 tee.1 \
381 telnet.1 \
382 test.1 \
383 tftp.1 \
384 time.1 \
385 times.1 \
386 timex.1 \
387 tip.1 \

new/usr/src/man/man1/Makefile 7

388 tnfdump.1 \
389 tnfxtract.1 \
390 touch.1 \
391 tput.1 \
392 tr.1 \
393 trap.1 \
394 troff.1 \
395 true.1 \
396 truss.1 \
397 tsort.1 \
398 tty.1 \
399 type.1 \
400 typeset.1 \
401 ul.1 \
402 umask.1 \
403 uname.1 \
404 unifdef.1 \
405 uniq.1 \
406 units.1 \
407 unix2dos.1 \
408 uptime.1 \
409 vacation.1 \
410 vgrind.1 \
411 volcheck.1 \
15 volrmmount.1 \
412 w.1 \
413 wait.1 \
414 wc.1 \
415 whatis.1 \
416 which.1 \
417 who.1 \
418 whocalls.1 \
419 whois.1 \
420 write.1 \
421 xargs.1 \
422 xgettext.1 \
423 xstr.1 \
424 yacc.1 \
425 yes.1 \
426 ypcat.1 \
427 ypmatch.1 \
428 yppasswd.1 \
429 ypwhich.1 \
430 zlogin.1 \
431 zonename.1

433 MANLINKS= batch.1 \
434 bg.1 \
435 case.1 \
436 chdir.1 \
437 checkeq.1 \
438 continue.1 \
439 decrypt.1 \
440 dirname.1 \
441 dirs.1 \
442 disable.1 \
443 dumpkeys.1 \
444 edit.1 \
445 errange.1 \
446 errdate.1 \
447 errgid.1 \
448 errint.1 \
449 erritem.1 \
450 errpath.1 \
451 errstr.1 \
452 errtime.1 \

new/usr/src/man/man1/Makefile 8

453 erruid.1 \
454 erryorn.1 \
455 eval.1 \
456 export.1 \
457 false.1 \
458 fc.1 \
459 fg.1 \
460 for.1 \
461 foreach.1 \
462 function.1 \
463 goto.1 \
464 hashcheck.1 \
465 hashmake.1 \
466 hashstat.1 \
467 helpdate.1 \
468 helpgid.1 \
469 helpint.1 \
470 helpitem.1 \
471 helppath.1 \
472 helprange.1 \
473 helpstr.1 \
474 helptime.1 \
475 helpuid.1 \
476 helpyorn.1 \
477 hist.1 \
478 i286.1 \
479 i386.1 \
480 i486.1 \
481 i860.1 \
482 iAPX286.1 \
483 if.1 \
484 intro.1 \
485 jsh.1 \
486 ksh.1 \
487 ldapadd.1 \
488 neqn.1 \
489 notify.1 \
490 onintr.1 \
491 page.1 \
492 pcat.1 \
493 pcred.1 \
494 pdp11.1 \
495 pfcsh.1 \
496 pfiles.1 \
497 pfksh.1 \
498 pflags.1 \
499 pfsh.1 \
500 pkill.1 \
501 pldd.1 \
502 popd.1 \
503 prun.1 \
504 psig.1 \
505 pstack.1 \
506 pstop.1 \
507 ptime.1 \
508 pushd.1 \
509 pwait.1 \
510 pwdx.1 \
511 red.1 \
512 rehash.1 \
513 remote_shell.1 \
514 remsh.1 \
515 repeat.1 \
516 return.1 \
517 rksh.1 \
518 rksh93.1 \

new/usr/src/man/man1/Makefile 9

519 rmail.1 \
520 rmdir.1 \
521 rmumount.1 \
522 select.1 \
523 setenv.1 \
524 settime.1 \
525 sh.1 \
526 snca.1 \
527 source.1 \
528 sparc.1 \
529 spellin.1 \
530 stop.1 \
531 strconf.1 \
532 sun.1 \
533 switch.1 \
534 u370.1 \
535 u3b.1 \
536 u3b15.1 \
537 u3b2.1 \
538 u3b5.1 \
539 ulimit.1 \
540 unalias.1 \
541 uncompress.1 \
542 unexpand.1 \
543 unhash.1 \
544 unlimit.1 \
545 unpack.1 \
546 unset.1 \
547 unsetenv.1 \
548 until.1 \
549 valdate.1 \
550 valgid.1 \
551 valint.1 \
552 valpath.1 \
553 valrange.1 \
554 valstr.1 \
555 valtime.1 \
556 valuid.1 \
557 valyorn.1 \
558 vax.1 \
559 vedit.1 \
560 whence.1 \
561 while.1 \
562 zcat.1

564 intro.1 := LINKSRC = Intro.1

566 unalias.1 := LINKSRC = alias.1

568 batch.1 := LINKSRC = at.1

570 dirname.1 := LINKSRC = basename.1

572 continue.1 := LINKSRC = break.1

574 chdir.1 := LINKSRC = cd.1
575 dirs.1 := LINKSRC = cd.1
576 popd.1 := LINKSRC = cd.1
577 pushd.1 := LINKSRC = cd.1

579 errdate.1 := LINKSRC = ckdate.1
580 helpdate.1 := LINKSRC = ckdate.1
581 valdate.1 := LINKSRC = ckdate.1

583 errgid.1 := LINKSRC = ckgid.1
584 helpgid.1 := LINKSRC = ckgid.1

new/usr/src/man/man1/Makefile 10

585 valgid.1 := LINKSRC = ckgid.1

587 errint.1 := LINKSRC = ckint.1
588 helpint.1 := LINKSRC = ckint.1
589 valint.1 := LINKSRC = ckint.1

591 erritem.1 := LINKSRC = ckitem.1
592 helpitem.1 := LINKSRC = ckitem.1

594 errpath.1 := LINKSRC = ckpath.1
595 helppath.1 := LINKSRC = ckpath.1
596 valpath.1 := LINKSRC = ckpath.1

598 errange.1 := LINKSRC = ckrange.1
599 helprange.1 := LINKSRC = ckrange.1
600 valrange.1 := LINKSRC = ckrange.1

602 errstr.1 := LINKSRC = ckstr.1
603 helpstr.1 := LINKSRC = ckstr.1
604 valstr.1 := LINKSRC = ckstr.1

606 errtime.1 := LINKSRC = cktime.1
607 helptime.1 := LINKSRC = cktime.1
608 valtime.1 := LINKSRC = cktime.1

610 erruid.1 := LINKSRC = ckuid.1
611 helpuid.1 := LINKSRC = ckuid.1
612 valuid.1 := LINKSRC = ckuid.1

614 erryorn.1 := LINKSRC = ckyorn.1
615 helpyorn.1 := LINKSRC = ckyorn.1
616 valyorn.1 := LINKSRC = ckyorn.1

618 uncompress.1 := LINKSRC = compress.1
619 zcat.1 := LINKSRC = compress.1

621 red.1 := LINKSRC = ed.1

623 disable.1 := LINKSRC = enable.1

625 decrypt.1 := LINKSRC = encrypt.1

627 checkeq.1 := LINKSRC = eqn.1
628 neqn.1 := LINKSRC = eqn.1

630 eval.1 := LINKSRC = exec.1
631 source.1 := LINKSRC = exec.1

633 goto.1 := LINKSRC = exit.1
634 return.1 := LINKSRC = exit.1

636 unexpand.1 := LINKSRC = expand.1

638 hashstat.1 := LINKSRC = hash.1
639 rehash.1 := LINKSRC = hash.1
640 unhash.1 := LINKSRC = hash.1

642 fc.1 := LINKSRC = history.1
643 hist.1 := LINKSRC = history.1

645 bg.1 := LINKSRC = jobs.1
646 fg.1 := LINKSRC = jobs.1
647 notify.1 := LINKSRC = jobs.1
648 stop.1 := LINKSRC = jobs.1

650 jsh.1 := LINKSRC = ksh93.1

new/usr/src/man/man1/Makefile 11

651 ksh.1 := LINKSRC = ksh93.1
652 rksh.1 := LINKSRC = ksh93.1
653 rksh93.1 := LINKSRC = ksh93.1
654 sh.1 := LINKSRC = ksh93.1

656 ldapadd.1 := LINKSRC = ldapmodify.1

658 ulimit.1 := LINKSRC = limit.1
659 unlimit.1 := LINKSRC = limit.1

661 dumpkeys.1 := LINKSRC = loadkeys.1

663 i286.1 := LINKSRC = machid.1
664 i386.1 := LINKSRC = machid.1
665 i486.1 := LINKSRC = machid.1
666 i860.1 := LINKSRC = machid.1
667 iAPX286.1 := LINKSRC = machid.1
668 pdp11.1 := LINKSRC = machid.1
669 sparc.1 := LINKSRC = machid.1
670 sun.1 := LINKSRC = machid.1
671 u370.1 := LINKSRC = machid.1
672 u3b.1 := LINKSRC = machid.1
673 u3b15.1 := LINKSRC = machid.1
674 u3b2.1 := LINKSRC = machid.1
675 u3b5.1 := LINKSRC = machid.1
676 vax.1 := LINKSRC = machid.1

678 rmail.1 := LINKSRC = mail.1

680 page.1 := LINKSRC = more.1

682 snca.1 := LINKSRC = nca.1

684 pcat.1 := LINKSRC = pack.1
685 unpack.1 := LINKSRC = pack.1

687 pfcsh.1 := LINKSRC = pfexec.1
688 pfksh.1 := LINKSRC = pfexec.1
689 pfsh.1 := LINKSRC = pfexec.1

691 pkill.1 := LINKSRC = pgrep.1

693 pcred.1 := LINKSRC = proc.1
694 pfiles.1 := LINKSRC = proc.1
695 pflags.1 := LINKSRC = proc.1
696 pldd.1 := LINKSRC = proc.1
697 prun.1 := LINKSRC = proc.1
698 psig.1 := LINKSRC = proc.1
699 pstack.1 := LINKSRC = proc.1
700 pstop.1 := LINKSRC = proc.1
701 ptime.1 := LINKSRC = proc.1
702 pwait.1 := LINKSRC = proc.1
703 pwdx.1 := LINKSRC = proc.1

705 rmdir.1 := LINKSRC = rm.1

707 rmumount.1 := LINKSRC = rmmount.1

709 remote_shell.1 := LINKSRC = rsh.1
710 remsh.1 := LINKSRC = rsh.1

712 export.1 := LINKSRC = set.1
713 setenv.1 := LINKSRC = set.1
714 unset.1 := LINKSRC = set.1
715 unsetenv.1 := LINKSRC = set.1

new/usr/src/man/man1/Makefile 12

717 case.1 := LINKSRC = shell_builtins.1
718 for.1 := LINKSRC = shell_builtins.1
719 foreach.1 := LINKSRC = shell_builtins.1
720 function.1 := LINKSRC = shell_builtins.1
721 if.1 := LINKSRC = shell_builtins.1
722 repeat.1 := LINKSRC = shell_builtins.1
723 select.1 := LINKSRC = shell_builtins.1
724 switch.1 := LINKSRC = shell_builtins.1
725 until.1 := LINKSRC = shell_builtins.1
726 while.1 := LINKSRC = shell_builtins.1

728 hashcheck.1 := LINKSRC = spell.1
729 hashmake.1 := LINKSRC = spell.1
730 spellin.1 := LINKSRC = spell.1

732 strconf.1 := LINKSRC = strchg.1

734 settime.1 := LINKSRC = touch.1

736 onintr.1 := LINKSRC = trap.1

738 false.1 := LINKSRC = true.1

740 whence.1 := LINKSRC = typeset.1

742 # Links to usr/has/man

744 edit.1 := LINKSRC = ../../../has/man/man1has/edit.1has

746 vedit.1 := LINKSRC = ../../../has/man/man1has/vi.1has

748 .KEEP_STATE:

750 include $(SRC)/man/Makefile.man

752 install: $(ROOTMANFILES) $(ROOTMANLINKS)

new/usr/src/man/man1/fdformat.1 1

**
 11823 Sun May 4 18:28:37 2014
new/usr/src/man/man1/fdformat.1
4833 Remove volrmmount
4845 rm(u)mount don’t always print mount/unmount errors
4846 HAL partition names don’t match real parition names
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**

1 ’\" te
2 .\" Copyright 2001, Sun Microsystems, Inc All Rights Reserved
3 .\" Copyright 2014 Andrew Stormont.
4 #endif /* ! codereview */
5 .\" The contents of this file are subject to the terms of the Common Development
6 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
7 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
8 .TH FDFORMAT 1 "May 2, 2014"
3 .TH FDFORMAT 1 "Feb 28, 2007"
9 .SH NAME

10 fdformat \- format floppy diskette or PCMCIA memory card
11 .SH SYNOPSIS
12 .LP
13 .nf
14 \fBfdformat\fR [\fB-dDeEfHlLmMUqvx\fR] [\fB-b\fR \fIlabel\fR] [\fB-B\fR \fIfilen
15 [\fB-t\fR \fIdostype\fR] [\fIdevname\fR]
16 .fi

18 .SH DESCRIPTION
19 .sp
20 .LP
21 The \fBfdformat\fR utility has been superseded by \fBrmformat\fR(1), which
22 provides most but not all of \fBfdformat\fR’s functionality.
23 .sp
24 .LP
25 \fBfdformat\fR is used to format diskettes and \fBPCMCIA\fR memory cards. All
26 new blank diskettes or \fBPCMCIA\fR memory cards must be formatted before they
27 can be used.
28 .sp
29 .LP
30 \fBfdformat\fR formats and verifies the media and indicates whether any bad
31 sectors were encountered. All existing data on the diskette or \fBPCMCIA\fR
32 memory card, if any, is destroyed by formatting. If no device name is given,
33 \fBfdformat\fR uses the diskette as a default.
34 .sp
35 .LP
36 By default, \fBfdformat\fR uses the configured capacity of the drive to format
37 the diskette. A \fB3.5\fR inch high-density drive uses diskettes with a
38 formatted capacity of \fB1.44MB\fR. A \fB5.25\fR inch high-density drive uses
39 diskettes with a formatted capacity of \fB1.2MB\fR. In either case, a density
40 option does not have to be specified to \fBfdformat\fR. However, a density
41 option must be specified when using a diskette with a lower capacity than the
42 drive’s default. Use the \fB-H\fR option to format high-density diskettes
43 (\fB1.44MB\fR capacity) in an extra-high-density (\fBED\fR) drive. Use the
44 \fB-D\fR option, the \fB-l\fR option, or the \fB-L\fR option to format double-
45 density (or low-density) diskettes (\fB720KB\fR capacity) in an \fBHD\fR or
46 \fBED\fR drive. To format medium-density diskettes (\fB1.2MB\fR capacity), use
47 the \fB-M\fR option with \fB-t\fR \fBnec\fR (this is the same as using the
48 \fB-m\fR option with \fB-t\fR \fBnec\fR).
49 .sp
50 .LP
51 Extended density uses double-sided, extended-density or extra-high-density
52 (\fBDS\fR/\fBED\fR) diskettes. Medium and high densities use the same media:
53 double-sided, high-density (\fBDS\fR/\fBHD\fR) diskettes. Double (low) density
54 uses double-sided, double-density (\fBDS\fR/\fBDD\fR
55 .sp
56 .LP

new/usr/src/man/man1/fdformat.1 2

57 \fBD\fR) diskettes. Substituting diskettes of one density for diskettes of
58 either a higher or lower density generally does not work. Data integrity cannot
59 be assured whenever a diskette is formatted to a capacity not matching its
60 density.
61 .sp
62 .LP
63 A \fBPCMCIA\fR memory card with densities from \fB512KB\fR to \fB64MB\fR may be
64 formatted.
65 .sp
66 .LP
67 \fBfdformat\fR writes new identification and data fields for each sector on all
68 tracks unless the \fB-x\fR option is specified. For diskettes, each sector is
69 verified if the \fB-v\fR option is specified.
70 .sp
71 .LP
72 After formatting and verifying, \fBfdformat\fR writes an operating-system label
73 on block \fB0\fR. Use the \fB-t\fR \fBdos\fR option (same as the \fB-d\fR
74 option) to put an \fBMS-DOS\fR file system on the diskette or \fBPCMCIA\fR
75 memory card after the format is done. Use the \fB-t\fR \fBnec\fR option with
76 the \fB-M\fR option (same as the \fB-m\fR option) to put an \fBNEC-DOS\fR file
77 system on a diskette. Otherwise, \fBfdformat\fR writes a \fBSunOS\fR label in
78 block \fB0\fR.
79 .SH OPTIONS
80 .sp
81 .LP
82 The following options are supported:
83 .sp
84 .ne 2
85 .na
86 \fB\fB-b\fR \fIlabel\fR\fR
87 .ad
88 .RS 15n
89 Labels the media with volume label. A SunOS volume label is restricted to 8
90 characters. A \fBDOS\fR volume label is restricted to 11 upper-case characters.
91 .RE

93 .sp
94 .ne 2
95 .na
96 \fB\fB-B\fR \fIfilename\fR\fR
97 .ad
98 .RS 15n
99 Installs special boot loader in filename on an \fBMS-DOS\fR diskette. This
100 option is only meaningful when the \fB-d\fR option (or \fB-t\fR \fBdos\fR) is
101 also specified.
102 .RE

104 .sp
105 .ne 2
106 .na
107 \fB\fB-D\fR\fR
108 .ad
109 .RS 15n
110 Formats a \fB720KB\fR (3.5 inch) or \fB360KB\fR (5.25 inch) double-density
111 diskette (same as the \fB-l\fR or \fB-L\fR options). This is the default for
112 double-density type drives. It is needed if the drive is a high- or
113 extended-density type.
114 .RE

116 .sp
117 .ne 2
118 .na
119 \fB\fB-e\fR\fR
120 .ad
121 .RS 15n
122 Ejects the diskette when done. This feature is not available on all systems.

new/usr/src/man/man1/fdformat.1 3

123 .RE

125 .sp
126 .ne 2
127 .na
128 \fB\fB-E\fR\fR
129 .ad
130 .RS 15n
131 Formats a \fB2.88MB\fR (3.5 inch) extended-density diskette. This is the
132 default for extended-density type drives.
133 .RE

135 .sp
136 .ne 2
137 .na
138 \fB\fB-f\fR\fR
139 .ad
140 .RS 15n
141 Forces formatting, that is, this option does not ask for confirmation before
142 starting format.
143 .RE

145 .sp
146 .ne 2
147 .na
148 \fB\fB-H\fR\fR
149 .ad
150 .RS 15n
151 Formats a \fB1.44MB\fR (3.5 inch) or \fB1.2MB\fR (5.25 inch) high-density
152 diskette. This is the default for high-density type drives; it is needed if the
153 drive is the extended-density type.
154 .RE

156 .sp
157 .ne 2
158 .na
159 \fB\fB-M\fR\fR
160 .ad
161 .RS 15n
162 Writes a \fB1.2MB\fR (3.5 inch) medium-density format on a high-density
163 diskette (use only with the -t nec option). This is the same as using \fB-m\fR.
164 .sp
165 This feature is not available on all systems.
166 .RE

168 .sp
169 .ne 2
170 .na
171 \fB\fB-q\fR\fR
172 .ad
173 .RS 15n
174 Quiet; does not print status messages.
175 .RE

177 .sp
178 .ne 2
179 .na
180 \fB\fB-t\fR \fBdos\fR\fR
181 .ad
182 .RS 15n
183 Installs an \fBMS-DOS\fR file system and boot sector formatting. This is
184 equivalent to the \fBDOS\fR format command or the \fB-d\fR option.
185 .RE

187 .sp
188 .ne 2

new/usr/src/man/man1/fdformat.1 4

189 .na
190 \fB\fB-t\fR \fBnec\fR\fR
191 .ad
192 .RS 15n
193 Installs an \fBNEC-DOS\fR file system and boot sector on the disk after
194 formatting. This should be used only with the \fB-M\fR option. This feature is
195 not available on all systems.
196 .RE

198 .sp
199 .ne 2
200 .na
201 \fB\fB-U\fR\fR
202 .ad
203 .RS 15n
204 Performs \fBumount\fR on any file systems and then formats. See
205 \fBmount\fR(1M).
206 .RE

208 .sp
209 .ne 2
210 .na
211 \fB\fB-v\fR\fR
212 .ad
213 .RS 15n
214 Verifies each block of the diskette after the format.
215 .RE

217 .sp
218 .ne 2
219 .na
220 \fB\fB-x\fR\fR
221 .ad
222 .RS 15n
223 Skips the format and only writes a SunOS label or an \fBMS-DOS\fR file system.
224 .RE

226 .SH OPERANDS
227 .sp
228 .LP
229 The following operands are supported:
230 .sp
231 .ne 2
232 .na
233 \fB\fIdevname\fR\fR
234 .ad
235 .RS 11n
236 Replaces \fIdevname\fR with \fBrdiskette0\fR (systems without volume
237 management) or \fBfloppy0\fR (systems with volume management) to use the first
238 drive or rdiskette1 (systems without volume management) or \fBfloppy1\fR
239 (systems with volume management) to use the second drive. If \fIdevname\fR is
240 omitted, the first drive, if one exists, is used. For \fBPCMCIA\fR memory
241 cards, replace \fIdevname\fR with the device name for the \fBPCMCIA\fR memory
242 card which resides in \fB/dev/rdsk/c\fIN\fRt\fIN\fRd\fIN\fRs\fIN\fR\fR or
243 /dev/dsk/c\fIN\fRt\fIN\fRd\fIN\fRs\fIN\fR. If \fIdevname\fR is omitted, the
244 default diskette drive, if one exists, is used.
245 .sp
246 If devname is omitted, the default diskette drive, if one exists, will be used.
247 \fIN\fR represents a decimal number and can be specified as follows:
248 .sp
249 .ne 2
250 .na
251 \fBc\fIN\fR\fR
252 .ad
253 .RS 6n
254 Controller \fIN\fR

new/usr/src/man/man1/fdformat.1 5

255 .RE

257 .sp
258 .ne 2
259 .na
260 \fBt\fIN\fR\fR
261 .ad
262 .RS 6n
263 Technology type \fIN\fR:
264 .sp
265 .in +2
266 .nf

268 0x1 ROM
269 0x2 OTPROM
270 0x3 EPROM
271 0x4 EEPROM
272 0x5 FLASH
273 0x6 SRAM
274 0x7 DRAM
275 .fi
276 .in -2
277 .sp

279 .RE

281 .sp
282 .ne 2
283 .na
284 \fBd\fIN\fR\fR
285 .ad
286 .RS 6n
287 Technology region in type \fIN\fR.
288 .RE

290 .sp
291 .ne 2
292 .na
293 \fBs\fIN\fR\fR
294 .ad
295 .RS 6n
296 Slice \fIN\fR.
297 .RE

299 The following options are provided for compatibility with previous versions of
300 \fBfdformat\fR. Their use is discouraged.
301 .sp
302 .ne 2
303 .na
304 \fB\fB-d\fR\fR
305 .ad
306 .RS 6n
307 Formats an \fBMS-DOS\fR floppy diskette or \fBPCMCIA\fR memory card (same as
308 \fB-t\fR \fBdos\fR). This is equivalent to the \fBMS-DOS FORMAT\fR command.
309 .RE

311 .sp
312 .ne 2
313 .na
314 \fB\fB-l\fR\fR
315 .ad
316 .RS 6n
317 Formats a \fB720KB\fR (3.5 inch) or \fB360KB\fR (5.25 inch) double-density
318 diskette (same as \fB-D\fR or \fB-L\fR). This is the default for double-density
319 type drives; it is needed if the drive is the high- or extended-density type.
320 .RE

new/usr/src/man/man1/fdformat.1 6

322 .sp
323 .ne 2
324 .na
325 \fB\fB-L\fR\fR
326 .ad
327 .RS 6n
328 Formats a \fB720KB\fR (3.5 inch) or \fB360KB\fR (5.25 inch) double-density
329 diskette (same as \fB-l\fR or \fB-D\fR). This is the default for double-density
330 type drives.
331 .RE

333 .sp
334 .ne 2
335 .na
336 \fB\fB-m\fR\fR
337 .ad
338 .RS 6n
339 Writes a \fB1.2 MB\fR (3.5 inch) medium- density format on a high-density
340 diskette (use only with the \fB-t\fR \fBnec\fR option). This is the same as
341 using \fB-M\fR. This feature is not available on all systems.
342 .RE

344 .RE

346 .SH FILES
347 .sp
348 .ne 2
349 .na
350 \fB/dev/diskette0\fR
351 .ad
352 .RS 24n
353 Directory providing block device access for the media in floppy drive \fB0\fR.
354 .RE

356 .sp
357 .ne 2
358 .na
359 \fB/dev/diskette0\fR
360 .ad
361 .RS 24n
362 Directory providing character device access for the media in floppy drive
363 \fB0\fR.
364 .RE

366 .sp
367 .ne 2
368 .na
369 \fB/dev/aliases/floppy0\fR
370 .ad
371 .RS 24n
372 Symbolic link to the character device for the media in floppy drive \fB0\fR.
373 .RE

375 .sp
376 .ne 2
377 .na
378 \fB/dev/rdiskette\fR
379 .ad
380 .RS 24n
381 Directory providing character device access for the media in the primary floppy
382 drive, usually drive \fB0\fR.
383 .RE

385 .sp
386 .ne 2

new/usr/src/man/man1/fdformat.1 7

387 .na
388 \fB/dev/dsk/c\fIN\fRt\fIN\fRd\fIN\fRs\fIN\fR\fR
389 .ad
390 .RS 24n
391 Directory providing block device access for the \fBPCMCIA\fR memory card. See
392 OPERANDS for a description of \fIN\fR.
393 .RE

395 .sp
396 .ne 2
397 .na
398 \fB/dev/rdsk/c\fIN\fRt\fIN\fRd\fIN\fRs\fIN\fR\fR
399 .ad
400 .RS 24n
401 Directory providing character device access for the \fBPCMCIA\fR memory card.
402 See OPERANDS for a description of \fIN\fR.
403 .RE

405 .sp
406 .ne 2
407 .na
408 \fB/dev/aliases/pcmem\fIS\fR\fR
409 .ad
410 .RS 24n
411 Symbolic link to the character device for the \fBPCMCIA\fR memory card in
412 socket \fIS\fR where \fIS\fR represents a \fBPCMCIA\fR socket number.
413 .RE

415 .sp
416 .ne 2
417 .na
418 \fB/dev/rdsk/c\fIN\fRt\fIN\fRd\fIN\fRs\fIN\fR\fR
419 .ad
420 .RS 24n
421 Directory providing character device access for the \fBPCMCIA\fR memory card.
422 See OPERANDS for a description of \fIN\fR.
423 .RE

425 .sp
426 .ne 2
427 .na
428 \fB/dev/dsk/c\fIN\fRt\fIN\fRd\fIN\fRs\fIN\fR\fR
429 .ad
430 .RS 24n
431 Directory providing block device access for the \fBPCMCIA\fR memory card. See
432 OPERANDS for a description of \fIN\fR.
433 .RE

435 .SH SEE ALSO
436 .sp
437 .LP
438 \fBcpio\fR(1), \fBeject\fR(1), \fBrmformat\fR(1), \fBtar\fR(1),
439 \fBvolcheck\fR(1), \fBmount\fR(1M), \fBnewfs\fR(1M), \fBprtvtoc\fR(1M),
440 \fBattributes\fR(5), \fBpcfs\fR(7FS)
434 \fBvolcheck\fR(1), \fBvolrmmount\fR(1), \fBmount\fR(1M), \fBnewfs\fR(1M),
435 \fBprtvtoc\fR(1M), \fBattributes\fR(5), \fBpcfs\fR(7FS)
441 .SS "x86 Only"
442 .sp
443 .LP
444 \fBfd\fR(7D)
445 .SH NOTES
446 .sp
447 .LP
448 A diskette or \fBPCMCIA\fR memory card containing a \fBufs\fR file system
449 created on a SPARC based system (by using \fBfdformat\fR and \fBnewfs\fR(1M)),
450 is not identical to a diskette or \fBPCMCIA\fR memory card containing a ufs

new/usr/src/man/man1/fdformat.1 8

451 file system created on an x86 based system. Do not interchange ufs diskettes or
452 memory cards between these platforms. Use \fBcpio\fR(1) or \fBtar\fR(1) to
453 transfer files on diskettes or memory cards between them. A diskette or
454 \fBPCMCIA\fR memory card formatted using the \fB-t\fR \fBdos\fR option (or
455 \fB-d\fR) for \fBMS-DOS\fR does not have the necessary system files, and is
456 therefore not bootable. Trying to boot from it on a \fBPC\fR produces the
457 following message:
458 .sp
459 .in +2
460 .nf
461 Non-System disk or disk error.
462 Replace and strike any key when ready
463 .fi
464 .in -2
465 .sp

467 .SH BUGS
468 .sp
469 .LP
470 Currently, bad sector mapping is not supported on floppy diskettes or
471 \fBPCMCIA\fR memory cards. Therefore, a diskette or memory card is unusable if
472 \fBfdformat\fR finds an error (bad sector).

new/usr/src/man/man1/rmformat.1 1

**
 14917 Sun May 4 18:28:38 2014
new/usr/src/man/man1/rmformat.1
4833 Remove volrmmount
4845 rm(u)mount don’t always print mount/unmount errors
4846 HAL partition names don’t match real parition names
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**

1 ’\" te
2 .\" Copyright (c) 2009, Sun Microsystems, Inc. All Rights Reserved.
3 .\" Copyright 2014 Andrew Stormont.
4 #endif /* ! codereview */
5 .\" The contents of this file are subject to the terms of the Common Development
6 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
7 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
8 .TH RMFORMAT 1 "May 2, 2014"
3 .TH RMFORMAT 1 "Feb 19, 2009"
9 .SH NAME

10 rmformat \- removable rewritable media format utility
11 .SH SYNOPSIS
12 .LP
13 .nf
14 \fBrmformat\fR [\fB-DeHUv\fR] [\fB-b\fR \fIlabel\fR] [\fB-c\fR \fIblockno\fR]
15 [\fB-F\fRquick | long | force] [\fB-s\fR \fIfilename\fR] [\fIdevname\fR]
16 .fi

18 .LP
19 .nf
20 \fBrmformat\fR \fB-V\fR read | write \fIdevname\fR
21 .fi

23 .LP
24 .nf
25 \fBrmformat\fR \fB-l\fR [\fIdevname\fR]
26 .fi

28 .SH DESCRIPTION
29 .sp
30 .LP
31 The \fBrmformat\fR utility is used to format, label, partition, and perform
32 other miscellaneous functions on removable, rewritable media that include
33 floppy drives, and the \fBPCMCIA\fR memory and \fBata\fR cards. The
34 \fBrmformat\fR utility should also be used with all USB mass storage devices,
35 including USB hard drives. This utility can also be used for the verification
36 and surface analysis and for repair of the bad sectors found during
37 verification if the drive or the driver supports bad block management.
38 .sp
39 .LP
40 After formatting, \fBrmformat\fR writes the label, which covers the full
41 capacity of the media as one slice on floppy and \fBPCMCIA\fR memory cards to
42 maintain compatibility with the behavior of \fBfdformat\fR. The partition
43 information can be changed with the help of other options provided by
44 \fBrmformat\fR.
45 .SH OPTIONS
46 .sp
47 .LP
48 The following options are supported:
49 .sp
50 .ne 2
51 .na
52 \fB\fB-b\fR \fIlabel\fR\fR
53 .ad
54 .sp .6
55 .RS 4n
56 Labels the media with a SUNOS label. A SUNOS volume label name is restricted to

new/usr/src/man/man1/rmformat.1 2

57 8 characters. For media size greater than 1 TB, an EFI label is created. For
58 writing a \fBDOS\fR Volume label, the user should use \fBmkfs_pcfs\fR(1M).
59 .RE

61 .sp
62 .ne 2
63 .na
64 \fB\fB-c\fR \fIblockno\fR\fR
65 .ad
66 .sp .6
67 .RS 4n
68 Corrects and repairs the given block. This correct and repair option may not be
69 applicable to all devices supported by \fBrmformat\fR, as some devices may have
70 a drive with bad block management capability and others may have this option
71 implemented in the driver. If the drive or driver supports bad block
72 management, a best effort is made to rectify the bad block. If the bad block
73 still cannot be rectified, a message is displayed to indicate the failure to
74 repair. The block number can be provided in decimal, octal, or hexadecimal
75 format.
76 .sp
77 The normal floppy and \fBPCMCIA\fR memory and ata cards do not support bad
78 block management.
79 .RE

81 .sp
82 .ne 2
83 .na
84 \fB\fB-D\fR\fR
85 .ad
86 .sp .6
87 .RS 4n
88 Formats a 720KB (3.5 inch) double density diskette. This is the default for
89 double density type drives. This option is needed if the drive is a high or
90 extended-density type.
91 .RE

93 .sp
94 .ne 2
95 .na
96 \fB\fB-e\fR\fR
97 .ad
98 .sp .6
99 .RS 4n
100 Ejects the media upon completion. This feature may not be available if the
101 drive does not support motorized eject.
102 .RE

104 .sp
105 .ne 2
106 .na
107 \fB\fB-F\fR quick | long | force\fR
108 .ad
109 .sp .6
110 .RS 4n
111 Formats the media.
112 .sp
113 The \fBquick\fR option starts a format without certification or format with
114 limited certification of certain tracks on the media.
115 .sp
116 The \fBlong\fR option starts a complete format. For some devices this might
117 include the certification of the whole media by the drive itself.
118 .sp
119 The \fBforce\fR option to format is provided to start a long format without
120 user confirmation before the format is started.
121 .sp
122 In legacy media such as floppy drives, all options start a long format

new/usr/src/man/man1/rmformat.1 3

123 depending on the mode (Extended Density mode, High Density mode, or Double
124 Density mode) with which the floppy drive operates by default. On \fBPCMCIA\fR
125 memory cards, all options start a long format.
126 .RE

128 .sp
129 .ne 2
130 .na
131 \fB\fB-H\fR\fR
132 .ad
133 .sp .6
134 .RS 4n
135 Formats a 1.44 MB (3.5 inch) high density diskette. This is the default for
136 high density type drives. It is needed if the drive is the Extended Density
137 type.
138 .RE

140 .sp
141 .ne 2
142 .na
143 \fB\fB-l\fR\fR
144 .ad
145 .sp .6
146 .RS 4n
147 Lists all removable devices. By default, without any options, \fBrmformat\fR
148 also lists all removable devices. If the \fBdev_name\fR is given,
149 \fBrmformat\fR lists the device associated with the \fBdev_name\fR. The output
150 shows the device pathname, vendor information, and the device type.
151 .RE

153 .sp
154 .ne 2
155 .na
156 \fB\fB-s\fR \fIfilename\fR\fR
157 .ad
158 .sp .6
159 .RS 4n
160 Enables the user to lay out the partition information in the SUNOS label.
161 .sp
162 The user should provide a file as input with information about each slice in a
163 format providing byte offset, size required, tags, and flags, as follows:
164 .sp
165 .in +2
166 .nf
167 slices: \fIn\fR = \fIoffset\fR, \fIsize\fR [, \fIflags\fR, \fItags\fR]
168 .fi
169 .in -2
170 .sp

172 where \fIn\fR is the slice number, \fIoffset\fR is the byte offset at which the
173 slice \fIn\fR starts, and \fIsize\fR is the required size for slice \fIn\fR.
174 Both \fIoffset\fR and \fIsize\fR must be a multiple of 512 bytes. These numbers
175 can be represented as decimal, hexadecimal, or octal numbers. No floating point
176 numbers are accepted. Details about maximum number of slices can be obtained
177 from the \fISystem Administration Guide: Basic Administration\fR.
178 .sp
179 To specify the \fIsize\fR or \fIoffset\fR in kilobytes, megabytes, or
180 gigabytes, add \fBKB\fR, \fBMB\fR, \fBGB\fR, respectively. A number without a
181 suffix is assumed to be a byte offset. The flags are represented as follows:
182 .sp
183 .in +2
184 .nf
185 \fBwm\fR = read-write, mountable
186 \fBwu\fR = read-write, unmountable
187 \fBru\fR = read-only, unmountable
188 .fi

new/usr/src/man/man1/rmformat.1 4

189 .in -2
190 .sp

192 The tags are represented as follows: \fBunassigned\fR, \fBboot\fR, \fBroot\fR,
193 \fBswap\fR, \fBusr\fR, \fBbackup\fR, \fBstand\fR, \fBvar\fR, \fBhome\fR,
194 \fBalternates\fR.
195 .sp
196 The tags and flags can be omitted from the four tuple when finer control on
197 those values is not required. It is required to omit both or include both. If
198 the tags and flags are omitted from the four tuple for a particular slice, a
199 default value for each is assumed. The default value for flags is \fBwm\fR and
200 for tags is \fBunassigned\fR.
201 .sp
202 Either full tag names can be provided or an abbreviation for the tags can be
203 used. The abbreviations can be the first two or more letters from the standard
204 tag names. \fBrmformat\fR is case insensitive in handling the defined tags &
205 flags.
206 .sp
207 Slice specifications are separated by :
208 .sp
209 For example:
210 .sp
211 .in +2
212 .nf
213 slices: 0 = 0, 30MB, "wm", "home" :
214 1 = 30MB, 51MB :
215 2 = 0, 100MB, "wm", "backup" :
216 6 = 81MB, 19MB
217 .fi
218 .in -2
219 .sp

221 \fBrmformat\fR does the necessary checking to detect any overlapping partitions
222 or illegal requests to addresses beyond the capacity of the media under
223 consideration. There can be only one slice information entry for each slice
224 \fIn\fR. If multiple slice information entries for the same slice \fIn\fR are
225 provided, an appropriate error message is displayed. The slice \fB2\fR is the
226 backup slice covering the whole disk capacity. The pound sign character,
227 \fB#\fR, can be used to describe a line of comments in the input file. If the
228 line starts with \fB#\fR, then \fBrmformat\fR ignores all the characters
229 following \fB#\fR until the end of the line.
230 .sp
231 Partitioning some of the media with very small capacity is permitted, but be
232 cautious in using this option on such devices.
233 .RE

235 .sp
236 .ne 2
237 .na
238 \fB\fB-U\fR\fR
239 .ad
240 .sp .6
241 .RS 4n
242 Performs \fBumount\fR on any file systems and then formats. See
243 \fBmount\fR(1M). This option unmounts all the mounted slices and issues a long
244 format on the device requested.
245 .RE

247 .sp
248 .ne 2
249 .na
250 \fB\fB-V\fR read | write\fR
251 .ad
252 .sp .6
253 .RS 4n
254 Verifies each block of media after format. The write verification is a

new/usr/src/man/man1/rmformat.1 5

255 destructive mechanism. The user is queried for confirmation before the
256 verification is started. The output of this option is a list of block numbers,
257 which are identified as bad.
258 .sp
259 The read verification only verifies the blocks and report the blocks which are
260 prone to errors.
261 .sp
262 The list of block numbers displayed can be used with the \fB-c\fR option for
263 repairing.
264 .RE

266 .SH OPERANDS
267 .sp
268 .LP
269 The following operand is supported:
270 .sp
271 .ne 2
272 .na
273 \fB\fIdevname\fR\fR
274 .ad
275 .sp .6
276 .RS 4n
277 \fIdevname\fR can be provided as absolute device pathname or relative pathname
278 for the device from the current working directory or the nickname, such as
279 \fBcdrom\fR or \fBrmdisk\fR.
280 .sp
281 For floppy devices, to access the first drive use \fB/dev/rdiskette0\fR (for
282 systems without volume management) or \fBfloppy0\fR (for systems with volume
283 management). Specify \fB/dev/rdiskette1\fR (for systems without volume
284 management) or \fBfloppy1\fR (for systems with volume management) to use the
285 second drive.
286 .sp
287 For systems without volume management running, the user can also provide the
288 absolute device pathname as \fB/dev/rdsk/c\fI?\fRt\fI?\fRd\fI?\fRs\fI?\fR\fR or
289 the appropriate relative device pathname from the current working directory.
290 .RE

292 .SH EXAMPLES
293 .LP
294 \fBExample 1 \fRFormatting a Diskette
295 .sp
296 .in +2
297 .nf
298 example$ \fBrmformat -F quick /dev/rdiskette\fR
299 Formatting will erase all the data on disk.
300 Do you want to continue? (y/n)\fBy\fR
301 .fi
302 .in -2
303 .sp

305 .LP
306 \fBExample 2 \fRFormatting a Diskette for a UFS File System
307 .sp
308 .LP
309 The following example formats a diskette and creates a UFS file system:

311 .sp
312 .in +2
313 .nf
314 example$ \fBrmformat -F quick /dev/aliases/floppy0\fR
315 Formatting will erase all the data on disk.
316 Do you want to continue? (y/n)\fBy\fR
317 example$ \fBsu\fR
318 # \fB/usr/sbin/newfs /dev/aliases/floppy0\fR
319 newfs: construct a new file system /dev/rdiskette: (y/n)? \fBy\fR
320 /dev/rdiskette: 2880 sectors in 80 cylinders of 2 tracks, 18 sectors

new/usr/src/man/man1/rmformat.1 6

321 1.4MB in 5 cyl groups (16 c/g, 0.28MB/g, 128 i/g)
322 super-block backups (for fsck -F ufs -o b=#) at:
323 32, 640, 1184, 1792, 2336,
324 #
325 .fi
326 .in -2
327 .sp

329 .LP
330 \fBExample 3 \fRFormatting Removable Media for a PCFS File System
331 .sp
332 .LP
333 The following example shows how to create an alternate \fBfdisk\fR partition:

335 .sp
336 .in +2
337 .nf
338 example$ \fBrmformat -F quick /dev/rdsk/c0t4d0s2:c\fR
339 Formatting will erase all the data on disk.
340 Do you want to continue? (y/n)\fBy\fR
341 example$ \fBsu\fR
342 # \fBfdisk /dev/rdsk/c0t4d0s2:c\fR
343 # \fBmkfs -F pcfs /dev/rdsk/c0t4d0s2:c\fR
344 Construct a new FAT file system on /dev/rdsk/c0t4d0s2:c: (y/n)? \fBy\fR
345 #
346 .fi
347 .in -2
348 .sp

350 .sp
351 .LP
352 The following example describes how to create a \fBPCFS\fR file system
353 \fBwithout\fR an \fBfdisk\fR partition:

355 .sp
356 .in +2
357 .nf
358 example$ \fBrmformat -F quick /dev/rdiskette\fR
359 Formatting will erase all the data on disk.
360 Do you want to continue? (y/n)\fBy\fR
361 example$ \fBsu\fR
362 # \fBmkfs -F pcfs -o nofdisk,size=2 /dev/rdiskette\fR
363 Construct a new FAT file system on /dev/rdiskette: (y/n)? \fBy\fR
364 #
365 .fi
366 .in -2
367 .sp

369 .LP
370 \fBExample 4 \fRListing All Removable Devices
371 .sp
372 .LP
373 The following example shows how to list removable devices. This output shows a
374 long listing of such devices.

376 .sp
377 .in +2
378 .nf
379 example$ rmformat -l
380 Looking for devices...
381 Logical Node: /dev/rdsk/c5t0d0s2
382 Physical Node: /pci@1e,600000/usb@b/hub@2/storage@4/disk@0,0
383 Connected Device: TEAC FD-05PUB 1026
384 Device Type: Floppy drive
385 Bus: USB
386 Size: 1.4 MB

new/usr/src/man/man1/rmformat.1 7

387 Label: floppy
388 Access permissions: Medium is not write protected.
389 .fi
390 .in -2
391 .sp

393 .SH FILES
394 .sp
395 .ne 2
396 .na
397 \fB\fB/dev/diskette0\fR\fR
398 .ad
399 .sp .6
400 .RS 4n
401 Directory providing block device access for the media in floppy drive 0.
402 .RE

404 .sp
405 .ne 2
406 .na
407 \fB\fB/dev/rdiskette0\fR\fR
408 .ad
409 .sp .6
410 .RS 4n
411 Directory providing character device access for the media in floppy drive 0.
412 .RE

414 .sp
415 .ne 2
416 .na
417 \fB\fB/dev/aliases\fR\fR
418 .ad
419 .sp .6
420 .RS 4n
421 Directory providing symbolic links to the character devices for the different
422 media under the control of volume management using appropriate alias.
423 .RE

425 .sp
426 .ne 2
427 .na
428 \fB\fB/dev/aliases/floppy0\fR\fR
429 .ad
430 .sp .6
431 .RS 4n
432 Symbolic link to the character device for the media in floppy drive 0.
433 .RE

435 .sp
436 .ne 2
437 .na
438 \fB\fB/dev/rdiskette\fR\fR
439 .ad
440 .sp .6
441 .RS 4n
442 Symbolic link providing character device access for the media in the primary
443 floppy drive, usually drive 0.
444 .RE

446 .sp
447 .ne 2
448 .na
449 \fB\fB/dev/dsk\fR\fR
450 .ad
451 .sp .6
452 .RS 4n

new/usr/src/man/man1/rmformat.1 8

453 Directory providing block device access for the \fBPCMCIA\fR memory and ata
454 cards and removable media devices.
455 .RE

457 .sp
458 .ne 2
459 .na
460 \fB\fB/dev/rdsk\fR\fR
461 .ad
462 .sp .6
463 .RS 4n
464 Directory providing character device access for the \fBPCMCIA\fR memory and ata
465 cards and removable media devices.
466 .RE

468 .sp
469 .ne 2
470 .na
471 \fB\fB/dev/aliases/pcmemS\fR\fR
472 .ad
473 .sp .6
474 .RS 4n
475 Symbolic link to the character device for the \fBPCMCIA\fR memory card in
476 socket S, where S represents a \fBPCMCIA\fR socket number.
477 .RE

479 .sp
480 .ne 2
481 .na
482 \fB\fB/dev/aliases/rmdisk0\fR\fR
483 .ad
484 .sp .6
485 .RS 4n
486 Symbolic link to the generic removable media device that is not a \fBCD-ROM\fR,
487 floppy, \fBDVD-ROM\fR, \fBPCMCIA\fR memory card, and so forth.
488 .RE

490 .sp
491 .ne 2
492 .na
493 \fB\fB/dev/rdsk\fR\fR
494 .ad
495 .sp .6
496 .RS 4n
497 Directory providing character device access for the \fBPCMCIA\fR memory and ata
498 cards and other removable devices.
499 .RE

501 .sp
502 .ne 2
503 .na
504 \fB\fB/dev/dsk\fR\fR
505 .ad
506 .sp .6
507 .RS 4n
508 Directory providing block device access for the \fBPCMCIA\fR memory and ata
509 cards and other removable media devices.
510 .RE

512 .SH SEE ALSO
513 .sp
514 .LP
515 \fBcpio\fR(1), \fBeject\fR(1), \fBfdformat\fR(1), \fBtar\fR(1),
516 \fBvolcheck\fR(1), \fBformat\fR(1M), \fBmkfs_pcfs\fR(1M), \fBmount\fR(1M),
517 \fBnewfs\fR(1M), \fBprtvtoc\fR(1M), \fBrmmount\fR(1M), \fBrpc.smserverd\fR(1M),
518 \fBattributes\fR(5), \fBscsa2usb\fR(7D), \fBsd\fR(7D), \fBpcfs\fR(7FS),

new/usr/src/man/man1/rmformat.1 9

519 \fBudfs\fR(7FS)
511 \fBvolcheck\fR(1), \fBvolrmmount\fR(1), \fBformat\fR(1M), \fBmkfs_pcfs\fR(1M),
512 \fBmount\fR(1M), \fBnewfs\fR(1M), \fBprtvtoc\fR(1M), \fBrmmount\fR(1M),
513 \fBrpc.smserverd\fR(1M), \fBattributes\fR(5), \fBscsa2usb\fR(7D), \fBsd\fR(7D),
514 \fBpcfs\fR(7FS), \fBudfs\fR(7FS)
520 .sp
521 .LP
522 \fISystem Administration Guide: Basic Administration\fR
523 .SH NOTES
524 .sp
525 .LP
526 A rewritable media or \fBPCMCIA\fR memory card or \fBPCMCIA\fR ata card
527 containing a \fBufs\fR file system created on a SPARC-based system (using
528 \fBnewfs\fR(1M)) is not identical to a rewritable media or \fBPCMCIA\fR memory
529 card containing a \fBufs\fR file system created on an x86 based system. Do not
530 interchange any removable media containing \fBufs\fR between these platforms;
531 use \fBcpio\fR(1) or \fBtar\fR(1) to transfer files on diskettes or memory
532 cards between them. For interchangeable filesystems refer to \fBpcfs\fR(7FS)
533 and \fBudfs\fR(7FS).
534 .sp
535 .LP
536 \fBrmformat\fR might not list all removable devices in virtualization
537 environments.
538 .SH BUGS
539 .sp
540 .LP
541 Currently, bad sector mapping is not supported on floppy diskettes or
542 \fBPCMCIA\fR memory cards. Therefore, a diskette or memory card is unusable if
543 \fBrmformat\fR finds an error (\fBbad sector\fR).

new/usr/src/man/man1m/rmmount.1m 1

**
 5890 Sun May 4 18:28:38 2014
new/usr/src/man/man1m/rmmount.1m
4833 Remove volrmmount
4845 rm(u)mount don’t always print mount/unmount errors
4846 HAL partition names don’t match real parition names
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**

1 ’\" te
2 .\" Copyright (c) 2004, Sun Microsystems, Inc. All Rights Reserved
3 .\" Copyright 2014 Andrew Stormont.
4 #endif /* ! codereview */
5 .\" The contents of this file are subject to the terms of the Common Development
6 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
7 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
8 .TH RMMOUNT 1M "May 2, 2014"
3 .TH RMMOUNT 1M "Mar 1, 2007"
9 .SH NAME

10 rmmount \- removable media mounter for CD-ROM, floppy, Jaz drive, and others
11 .SH SYNOPSIS
12 .LP
13 .nf
14 \fB/usr/sbin/rmmount\fR [\fB-D\fR]
15 .fi

17 .SH DESCRIPTION
18 .sp
19 .LP
20 The \fBrmmount\fR utility is a removable media mounter that is executed by
21 volume management whenever a removable medium, such as a \fBCD-ROM\fR or a
22 floppy, is inserted. Removable media is managed by an application or a volume
23 manager.
18 manager. \fBrmmount\fR can also be called by using \fBvolrmmount\fR(1).
24 .sp
25 .LP
26 Upon insertion of a medium and following invocation of the \fBvolcheck\fR(1)
27 command, \fBrmmount\fR determines what type of file system (if any) is on that
28 medium. If a file system is present, \fBrmmount\fR mounts the file system in
29 one of the locations listed below.
30 .sp
31 .LP
32 For a diskette (floppy):
33 .sp
34 .ne 2
35 .na
36 \fB\fB/floppy/floppy0\fR\fR
37 .ad
38 .RS 26n
39 symbolic link to mounted floppy in local floppy drive
40 .RE

42 .sp
43 .ne 2
44 .na
45 \fB\fB/floppy/floppy_name\fR\fR
46 .ad
47 .RS 26n
48 mounted named floppy
49 .RE

51 .sp
52 .ne 2
53 .na
54 \fB\fB/floppy/unnamed_floppy\fR\fR
55 .ad

new/usr/src/man/man1m/rmmount.1m 2

56 .RS 26n
57 mounted unnamed floppy
58 .RE

60 .sp
61 .LP
62 For a CD-ROM or a DVD-ROM:
63 .sp
64 .ne 2
65 .na
66 \fB\fB/cdrom/cdrom0\fR\fR
67 .ad
68 .sp .6
69 .RS 4n
70 symbolic link to mounted \fBCD-ROM\fR in local \fBCD-ROM\fR drive
71 .RE

73 .sp
74 .ne 2
75 .na
76 \fB\fB/cdrom/CD-ROM_name\fR\fR
77 .ad
78 .sp .6
79 .RS 4n
80 mounted named \fBCD-ROM\fR
81 .RE

83 .sp
84 .ne 2
85 .na
86 \fB\fB/cdrom/CD-ROM_name/partition\fR\fR
87 .ad
88 .sp .6
89 .RS 4n
90 mounted named \fBCD-ROM\fR with partitioned file system
91 .RE

93 .sp
94 .ne 2
95 .na
96 \fB\fB/cdrom/unnamed_cdrom\fR\fR
97 .ad
98 .sp .6
99 .RS 4n
100 mounted unnamed \fBCD-ROM\fR
101 .RE

103 .sp
104 .LP
105 For a Zip drive:
106 .sp
107 .ne 2
108 .na
109 \fB\fB/rmdisk/zip0\fR\fR
110 .ad
111 .RS 30n
112 symbolic link to mounted Zip medium in local Zip drive
113 .RE

115 .sp
116 .ne 2
117 .na
118 \fB\fB/rmdisk/\fIZip_name\fR\fR\fR
119 .ad
120 .RS 30n
121 mounted named Zip medium

new/usr/src/man/man1m/rmmount.1m 3

122 .RE

124 .sp
125 .ne 2
126 .na
127 \fB\fB/rmdisk/\fIZip_name\fR/partition\fR\fR
128 .ad
129 .RS 30n
130 mounted named Zip medium with partitioned file system
131 .RE

133 .sp
134 .ne 2
135 .na
136 \fB\fB/rmdisk/unnamed_zip\fR\fR
137 .ad
138 .RS 30n
139 mounted unnamed Zip medium
140 .RE

142 .sp
143 .LP
144 For a Jaz drive:
145 .sp
146 .ne 2
147 .na
148 \fB\fB/rmdisk/jaz0\fR\fR
149 .ad
150 .RS 30n
151 symbolic link to mounted Jaz medium in local Jaz drive
152 .RE

154 .sp
155 .ne 2
156 .na
157 \fB\fB/rmdisk/\fIJaz_name\fR\fR\fR
158 .ad
159 .RS 30n
160 mounted named Jaz medium
161 .RE

163 .sp
164 .ne 2
165 .na
166 \fB\fB/rmdisk/\fIJaz_name\fR/partition\fR\fR
167 .ad
168 .RS 30n
169 mounted named Jaz medium with partitioned file system
170 .RE

172 .sp
173 .ne 2
174 .na
175 \fB\fB/rmdisk/unnamed_Jaz\fR\fR
176 .ad
177 .RS 30n
178 mounted unnamed Jaz medium
179 .RE

181 .sp
182 .LP
183 For a generic "rmdisk" drive:
184 .sp
185 .ne 2
186 .na
187 \fB\fB/rmdisk/rmdisk0\fR\fR

new/usr/src/man/man1m/rmmount.1m 4

188 .ad
189 .sp .6
190 .RS 4n
191 symbolic link to mounted removable medium in local removable medium drive
192 .RE

194 .sp
195 .ne 2
196 .na
197 \fB\fB/rmdisk/\fIrmdisk_name\fR\fR\fR
198 .ad
199 .sp .6
200 .RS 4n
201 mounted named removable medium
202 .RE

204 .sp
205 .ne 2
206 .na
207 \fB\fB/rmdisk/\fIrmdisk_name\fR/partition\fR\fR
208 .ad
209 .sp .6
210 .RS 4n
211 mounted named removable medium with partitioned file system
212 .RE

214 .sp
215 .ne 2
216 .na
217 \fB\fB/rmdisk/unnamed_rmdisk\fR\fR
218 .ad
219 .sp .6
220 .RS 4n
221 mounted unnamed removable medium
222 .RE

224 .sp
225 .LP
226 If the media is read-only (for example, a \fBCD-ROM\fR or a floppy with
227 write-protect tab set), the file system is mounted read-only.
228 .sp
229 .LP
230 If a file system is not identified, \fBrmmount\fR does not mount a file system.
231 See the \fI\fR for more information on the location of \fBCD-ROM\fR, floppy,
232 and other media without file systems.
233 .sp
234 .LP
235 If a file system type has been determined, it is then checked to see that it is
236 "clean." If the file system is "dirty," \fBfsck\fR \fB-p\fR (see
237 \fBfsck\fR(1M)) is run in an attempt to clean it. If \fBfsck\fR fails, the file
238 system is mounted read-only.
239 .sp
240 .LP
241 After the mount is complete, "actions" associated with the media type are
242 executed. These actions allow for the notification to other programs that new
243 media are available.
244 .sp
245 .LP
246 Actions are executed in the order in which they appear in the configuration
247 file. The action function can return either \fB1\fR or \fB0\fR. If it returns
248 \fB0\fR, no further actions will be executed. This allows the function to
249 control which applications are executed.
250 .sp
251 .LP
252 In order to execute an action, \fBrmmount\fR performs a \fBdlopen\fR(3C) on the
253 shared object and calls the action function defined within it. The definition

new/usr/src/man/man1m/rmmount.1m 5

254 of the interface to actions can be found in \fB/usr/include/rmmount.h\fR.
255 .sp
256 .LP
257 File systems mounted by \fBrmmount\fR are always mounted with the \fBnosuid\fR
258 flag set, thereby disabling setuid programs and access to block or character
259 devices in that file system. Upon ejection, \fBrmmount\fR unmounts mounted file
260 systems and executes actions associated with the media type. If a file system
261 is "busy" (that is, it contains the current working directory of a live
262 process), the ejection will fail.
263 .SH OPTIONS
264 .sp
265 .ne 2
266 .na
267 \fB\fB-D\fR\fR
268 .ad
269 .RS 6n
270 Turn on the debugging output from the \fBrmmount\fR \fBdprintf\fR calls.
271 .RE

273 .SH FILES
274 .sp
275 .ne 2
276 .na
277 \fB\fB/usr/lib/rmmount/*.so.1\fR\fR
278 .ad
279 .RS 27n
280 shared objects used by \fBrmmount\fR.
281 .RE

283 .SH SEE ALSO
284 .sp
285 .LP
286 \fBvolcheck\fR(1), \fBfsck\fR(1M), \fBdlopen\fR(3C),
281 \fBvolcheck\fR(1), \fBvolrmmount\fR(1), \fBfsck\fR(1M), \fBdlopen\fR(3C),
287 \fBattributes\fR(5)
288 .sp
289 .LP
290 \fI\fR

new/usr/src/pkg/manifests/service-storage-media-volume-manager.mf 1

**
 2802 Sun May 4 18:28:38 2014
new/usr/src/pkg/manifests/service-storage-media-volume-manager.mf
4833 Remove volrmmount
4845 rm(u)mount don’t always print mount/unmount errors
4846 HAL partition names don’t match real parition names
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright 2012 Nexenta Systems, Inc. All rights reserved.
25 # Copyright 2014 Andrew Stormont.
26 #endif /* ! codereview */
27 #

29 set name=pkg.fmri value=pkg:/service/storage/media-volume-manager@$(PKGVERS)
30 set name=pkg.description value="Non-graphical removable volume manager"
31 set name=pkg.summary value="Removable volume manager"
32 set name=info.classification value=org.opensolaris.category.2008:System/Media
33 set name=variant.arch value=$(ARCH)
34 dir path=lib variant.opensolaris.zone=global
35 dir path=lib/svc variant.opensolaris.zone=global
36 dir path=lib/svc/manifest group=sys variant.opensolaris.zone=global
37 dir path=lib/svc/manifest/system group=sys variant.opensolaris.zone=global
38 dir path=lib/svc/manifest/system/filesystem group=sys \
39 variant.opensolaris.zone=global
40 dir path=lib/svc/method variant.opensolaris.zone=global
41 dir path=usr group=sys
42 dir path=usr/bin
43 dir path=usr/lib
44 dir path=usr/sbin
45 dir path=usr/share/man/man1
46 dir path=usr/share/man/man1m
47 file path=lib/svc/manifest/system/filesystem/rmvolmgr.xml group=sys mode=0444 \
48 variant.opensolaris.zone=global
49 file path=lib/svc/method/svc-rmvolmgr mode=0555 \
50 variant.opensolaris.zone=global
51 file path=usr/bin/rmformat mode=4555
52 file path=usr/bin/rmmount mode=0555
53 file path=usr/bin/volcheck mode=0555
25 file path=usr/bin/volrmmount mode=0555
54 file path=usr/lib/rmvolmgr mode=0555
55 file path=usr/share/man/man1/rmformat.1
56 file path=usr/share/man/man1/rmmount.1

new/usr/src/pkg/manifests/service-storage-media-volume-manager.mf 2

57 file path=usr/share/man/man1/volcheck.1
30 file path=usr/share/man/man1/volrmmount.1
58 file path=usr/share/man/man1m/rmmount.1m
59 file path=usr/share/man/man1m/rmvolmgr.1m
60 legacy pkg=SUNWrmvolmgr desc="Non-graphical removable volume manager" \
61 name="Removable volume manager"
62 legacy pkg=SUNWrmvolmgrr desc="Non-graphical removable volume manager (Root)" \
63 name="Removable volume manager (Root)"
64 license cr_Sun license=cr_Sun
65 license lic_CDDL license=lic_CDDL
66 link path=usr/bin/rmumount target=./rmmount
67 link path=usr/sbin/rmmount target=../bin/rmmount
68 link path=usr/share/man/man1/rmumount.1 target=rmmount.1

