
new/usr/src/cmd/mv/mv.c 1

**
 50718 Mon Apr 15 19:11:53 2013
new/usr/src/cmd/mv/mv.c
667 cp support for -a flag
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
24 */

26 /*
27 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
28 * Use is subject to license terms.
29 */

31 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
32 /* All Rights Reserved */

34 /*
35 * University Copyright- Copyright (c) 1982, 1986, 1988
36 * The Regents of the University of California
37 * All Rights Reserved
38 *
39 * University Acknowledgment- Portions of this document are derived from
40 * software developed by the University of California, Berkeley, and its
41 * contributors.
42 */

44 /*
45 * Combined mv/cp/ln command:
46 * mv file1 file2
47 * mv dir1 dir2
48 * mv file1 ... filen dir1
49 */
50 #include <sys/time.h>
51 #include <signal.h>
52 #include <locale.h>
53 #include <stdarg.h>
54 #include <sys/acl.h>
55 #include <libcmdutils.h>
56 #include <aclutils.h>
57 #include "getresponse.h"

59 #define FTYPE(A) (A.st_mode)
60 #define FMODE(A) (A.st_mode)
61 #define UID(A) (A.st_uid)

new/usr/src/cmd/mv/mv.c 2

62 #define GID(A) (A.st_gid)
63 #define IDENTICAL(A, B) (A.st_dev == B.st_dev && A.st_ino == B.st_ino)
64 #define ISDIR(A) ((A.st_mode & S_IFMT) == S_IFDIR)
65 #define ISDOOR(A) ((A.st_mode & S_IFMT) == S_IFDOOR)
66 #define ISLNK(A) ((A.st_mode & S_IFMT) == S_IFLNK)
67 #define ISREG(A) (((A).st_mode & S_IFMT) == S_IFREG)
68 #define ISDEV(A) ((A.st_mode & S_IFMT) == S_IFCHR || \
69 (A.st_mode & S_IFMT) == S_IFBLK || \
70 (A.st_mode & S_IFMT) == S_IFIFO)
71 #define ISSOCK(A) ((A.st_mode & S_IFMT) == S_IFSOCK)

73 #define DELIM ’/’
74 #define EQ(x, y) (strcmp(x, y) == 0)
75 #define FALSE 0
76 #define MODEBITS (S_ISUID|S_ISGID|S_ISVTX|S_IRWXU|S_IRWXG|S_IRWXO)
77 #define TRUE 1

79 static char *dname(char *);
80 static int lnkfil(char *, char *);
81 static int cpymve(char *, char *);
82 static int chkfiles(char *, char **);
83 static int rcopy(char *, char *);
84 static int chk_different(char *, char *);
85 static int chg_time(char *, struct stat);
86 static int chg_mode(char *, uid_t, gid_t, mode_t);
87 static int copydir(char *, char *);
88 static int copyspecial(char *);
89 static int getrealpath(char *, char *);
90 static void usage(void);
91 static void Perror(char *);
92 static void Perror2(char *, char *);
93 static int use_stdin(void);
94 static int copyattributes(char *, char *);
95 static int copy_sysattr(char *, char *);
96 static tree_node_t *create_tnode(dev_t, ino_t);

98 static struct stat s1, s2, s3, s4;
99 static int cpy = FALSE;
100 static int mve = FALSE;
101 static int lnk = FALSE;
102 static char *cmd;
103 static int silent = 0;
104 static int fflg = 0;
105 static int iflg = 0;
106 static int pflg = 0;
107 static int Rflg = 0; /* recursive copy */
108 static int rflg = 0; /* recursive copy */
109 static int sflg = 0;
110 static int Hflg = 0; /* follow cmd line arg symlink to dir */
111 static int Lflg = 0; /* follow symlinks */
112 static int Pflg = 0; /* do not follow symlinks */
113 static int atflg = 0;
114 static int attrsilent = 0;
115 static int targetexists = 0;
116 static int cmdarg; /* command line argument */
117 static avl_tree_t *stree = NULL; /* source file inode search tree */
118 static acl_t *s1acl;
119 static int saflg = 0; /* ’cp’ extended system attr. */
120 static int srcfd = -1;
121 static int targfd = -1;
122 static int sourcedirfd = -1;
123 static int targetdirfd = -1;
124 static DIR *srcdirp = NULL;
125 static int srcattrfd = -1;
126 static int targattrfd = -1;
127 static struct stat attrdir;

new/usr/src/cmd/mv/mv.c 3

129 /* Extended system attributes support */

131 static int open_source(char *);
132 static int open_target_srctarg_attrdirs(char *, char *);
133 static int open_attrdirp(char *);
134 static int traverse_attrfile(struct dirent *, char *, char *, int);
135 static void rewind_attrdir(DIR *);
136 static void close_all();

139 int
140 main(int argc, char *argv[])
141 {
142 int c, i, r, errflg = 0;
143 char target[PATH_MAX];
144 int (*move)(char *, char *);

146 /*
147 * Determine command invoked (mv, cp, or ln)
148 */

150 if (cmd = strrchr(argv[0], ’/’))
151 ++cmd;
152 else
153 cmd = argv[0];

155 /*
156 * Set flags based on command.
157 */

159 (void) setlocale(LC_ALL, "");
160 #if !defined(TEXT_DOMAIN) /* Should be defined by cc -D */
161 #define TEXT_DOMAIN "SYS_TEST" /* Use this only if it weren’t */
162 #endif
163 (void) textdomain(TEXT_DOMAIN);
164 if (init_yes() < 0) {
165 (void) fprintf(stderr, gettext(ERR_MSG_INIT_YES),
166 strerror(errno));
167 exit(3);
168 }

170 if (EQ(cmd, "mv"))
171 mve = TRUE;
172 else if (EQ(cmd, "ln"))
173 lnk = TRUE;
174 else if (EQ(cmd, "cp"))
175 cpy = TRUE;
176 else {
177 (void) fprintf(stderr,
178 gettext("Invalid command name (%s); expecting "
179 "mv, cp, or ln.\n"), cmd);
180 exit(1);
181 }

183 /*
184 * Check for options:
185 * cp [-r|-R [-H|-L|-P]] [-afip@/] file1 [file2 ...] target
186 * cp [-afiprR@/] file1 [file2 ...] target
185 * cp -r|-R [-H|-L|-P] [-fip@/] file1 [file2 ...] target
186 * cp [-fiprR@/] file1 [file2 ...] target
187 * ln [-f] [-n] [-s] file1 [file2 ...] target
188 * ln [-f] [-n] [-s] file1 [file2 ...]
189 * mv [-f|i] file1 [file2 ...] target
190 * mv [-f|i] dir1 target
191 */

new/usr/src/cmd/mv/mv.c 4

193 if (cpy) {
194 while ((c = getopt(argc, argv, "afHiLpPrR@/")) != EOF)
194 while ((c = getopt(argc, argv, "fHiLpPrR@/")) != EOF)
195 switch (c) {
196 case ’f’:
197 fflg++;
198 break;
199 case ’i’:
200 iflg++;
201 break;
202 case ’p’:
203 pflg++;
204 #ifdef XPG4
205 attrsilent = 1;
206 atflg = 0;
207 saflg = 0;
208 #else
209 if (atflg == 0)
210 attrsilent = 1;
211 #endif
212 break;
213 case ’H’:
214 /*
215 * If more than one of -H, -L, or -P are
216 * specified, only the last option specified
217 * determines the behavior.
218 */
219 Lflg = Pflg = 0;
220 Hflg++;
221 break;
222 case ’L’:
223 Hflg = Pflg = 0;
224 Lflg++;
225 break;
226 case ’P’:
227 Lflg = Hflg = 0;
228 Pflg++;
229 break;
230 case ’R’:
231 /*
232 * The default behavior of cp -R|-r
233 * when specified without -H|-L|-P
234 * is -L.
235 */
236 Rflg++;
237 /*FALLTHROUGH*/
238 case ’r’:
239 rflg++;
240 break;
241 case ’a’:
242 Lflg = Hflg = 0;
243 pflg++;
244 Pflg++;
245 Rflg++;
246 rflg++;
247 break;
248 case ’@’:
249 atflg++;
250 attrsilent = 0;
251 #ifdef XPG4
252 pflg = 0;
253 #endif
254 break;
255 case ’/’:
256 saflg++;

new/usr/src/cmd/mv/mv.c 5

257 attrsilent = 0;
258 #ifdef XPG4
259 pflg = 0;
260 #endif
261 break;
262 default:
263 errflg++;
264 }

266 /* -R or -r must be specified with -H, -L, or -P */
267 if ((Hflg || Lflg || Pflg) && !(Rflg || rflg)) {
268 errflg++;
269 }

271 } else if (mve) {
272 while ((c = getopt(argc, argv, "fis")) != EOF)
273 switch (c) {
274 case ’f’:
275 silent++;
276 #ifdef XPG4
277 iflg = 0;
278 #endif
279 break;
280 case ’i’:
281 iflg++;
282 #ifdef XPG4
283 silent = 0;
284 #endif
285 break;
286 default:
287 errflg++;
288 }
289 } else { /* ln */
290 while ((c = getopt(argc, argv, "fns")) != EOF)
291 switch (c) {
292 case ’f’:
293 silent++;
294 break;
295 case ’n’:
296 /* silently ignored; this is the default */
297 break;
298 case ’s’:
299 sflg++;
300 break;
301 default:
302 errflg++;
303 }
304 }

306 /*
307 * For BSD compatibility allow - to delimit the end of
308 * options for mv.
309 */
310 if (mve && optind < argc && (strcmp(argv[optind], "-") == 0))
311 optind++;

313 /*
314 * Check for sufficient arguments
315 * or a usage error.
316 */

318 argc -= optind;
319 argv = &argv[optind];

321 if ((argc < 2 && lnk != TRUE) || (argc < 1 && lnk == TRUE)) {
322 (void) fprintf(stderr,

new/usr/src/cmd/mv/mv.c 6

323 gettext("%s: Insufficient arguments (%d)\n"),
324 cmd, argc);
325 usage();
326 }

328 if (errflg != 0)
329 usage();

331 /*
332 * If there is more than a source and target,
333 * the last argument (the target) must be a directory
334 * which really exists.
335 */

337 if (argc > 2) {
338 if (stat(argv[argc-1], &s2) < 0) {
339 (void) fprintf(stderr,
340 gettext("%s: %s not found\n"),
341 cmd, argv[argc-1]);
342 exit(2);
343 }

345 if (!ISDIR(s2)) {
346 (void) fprintf(stderr,
347 gettext("%s: Target %s must be a directory\n"),
348 cmd, argv[argc-1]);
349 usage();
350 }
351 }

353 if (strlen(argv[argc-1]) >= PATH_MAX) {
354 (void) fprintf(stderr,
355 gettext("%s: Target %s file name length exceeds PATH_MAX"
356 " %d\n"), cmd, argv[argc-1], PATH_MAX);
357 exit(78);
358 }

360 if (argc == 1) {
361 if (!lnk)
362 usage();
363 (void) strcpy(target, ".");
364 } else {
365 (void) strcpy(target, argv[--argc]);
366 }

368 /*
369 * Perform a multiple argument mv|cp|ln by
370 * multiple invocations of cpymve() or lnkfil().
371 */
372 if (lnk)
373 move = lnkfil;
374 else
375 move = cpymve;

377 r = 0;
378 for (i = 0; i < argc; i++) {
379 stree = NULL;
380 cmdarg = 1;
381 r += move(argv[i], target);
382 }

384 /*
385 * Show errors by nonzero exit code.
386 */

388 return (r?2:0);

new/usr/src/cmd/mv/mv.c 7

389 }
______unchanged_portion_omitted_

1307 static void
1308 usage(void)
1309 {
1310 /*
1311 * Display usage message.
1312 */

1314 if (mve) {
1315 (void) fprintf(stderr, gettext(
1316 "Usage: mv [-f] [-i] f1 f2\n"
1317 " mv [-f] [-i] f1 ... fn d1\n"
1318 " mv [-f] [-i] d1 d2\n"));
1319 } else if (lnk) {
1320 #ifdef XPG4
1321 (void) fprintf(stderr, gettext(
1322 "Usage: ln [-f] [-s] f1 [f2]\n"
1323 " ln [-f] [-s] f1 ... fn d1\n"
1324 " ln [-f] -s d1 d2\n"));
1325 #else
1326 (void) fprintf(stderr, gettext(
1327 "Usage: ln [-f] [-n] [-s] f1 [f2]\n"
1328 " ln [-f] [-n] [-s] f1 ... fn d1\n"
1329 " ln [-f] [-n] -s d1 d2\n"));
1330 #endif
1331 } else if (cpy) {
1332 (void) fprintf(stderr, gettext(
1333 "Usage: cp [-a] [-f] [-i] [-p] [-@] [-/] f1 f2\n"
1334 " cp [-a] [-f] [-i] [-p] [-@] [-/] f1 ... fn d1\n"
1335 " cp [-r|-R [-H|-L|-P]] [-a] [-f] [-i] [-p] [-@] "
1336 "[-/] d1 ... dn-1 dn\n"));
1326 "Usage: cp [-f] [-i] [-p] [-@] [-/] f1 f2\n"
1327 " cp [-f] [-i] [-p] [-@] [-/] f1 ... fn d1\n"
1328 " cp -r|-R [-H|-L|-P] [-f] [-i] [-p] [-@] [-/] "
1329 "d1 ... dn-1 dn\n"));
1337 }
1338 exit(2);
1339 }
______unchanged_portion_omitted_

new/usr/src/man/man1/cp.1 1

**
 14126 Mon Apr 15 19:11:53 2013
new/usr/src/man/man1/cp.1
667 cp support for -a flag
**

1 ’\" te
2 .\" Copyright 2013 Nexenta Systems, Inc. All rights reserved.
3 .\" Copyright (c) 1992, X/Open Company Limited All Rights Reserved
4 .\" Copyright 1989 AT&T
5 .\" Portions Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved
6 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
7 .\" http://www.opengroup.org/bookstore/.
8 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
9 .\" This notice shall appear on any product containing this material.

10 .\" The contents of this file are subject to the terms of the Common Development
11 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
12 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
13 .TH CP 1 "Apr 15, 2013"
12 .TH CP 1 "Oct 30, 2007"
14 .SH NAME
15 cp \- copy files
16 .SH SYNOPSIS
17 .LP
18 .nf
19 \fB/usr/bin/cp\fR [\fB-afip@/\fR] \fIsource_file\fR \fItarget_file\fR
18 \fB/usr/bin/cp\fR [\fB-fip@/\fR] \fIsource_file\fR \fItarget_file\fR
20 .fi

22 .LP
23 .nf
24 \fB/usr/bin/cp\fR [\fB-afip@/\fR] \fIsource_file\fR... \fItarget\fR
23 \fB/usr/bin/cp\fR [\fB-fip@/\fR] \fIsource_file\fR... \fItarget\fR
25 .fi

27 .LP
28 .nf
29 \fB/usr/bin/cp\fR [\fB-r\fR | \fB-R\fR [\fB-H\fR | \fB-L\fR | \fB-P\fR]] [\fB-af
28 \fB/usr/bin/cp\fR \fB-r\fR | \fB-R\fR [\fB-H\fR | \fB-L\fR | \fB-P\fR] [\fB-fip@
30 .fi

32 .LP
33 .nf
34 \fB/usr/bin/cp\fR [\fB-R\fR | \fB-R\fR [\fB-H\fR | \fB-L\fR | \fB-P\fR]] [\fB-af
33 \fB/usr/bin/cp\fR \fB-R\fR | \fB-R\fR [\fB-H\fR | \fB-L\fR | \fB-P\fR] [\fB-fip@
35 .fi

37 .LP
38 .nf
39 \fB/usr/xpg4/bin/cp\fR [\fB-afip@/\fR] \fIsource_file\fR \fItarget_file\fR
38 \fB/usr/xpg4/bin/cp\fR [\fB-fip@/\fR] \fIsource_file\fR \fItarget_file\fR
40 .fi

42 .LP
43 .nf
44 \fB/usr/xpg4/bin/cp\fR [\fB-afip@/\fR] \fIsource_file\fR... \fItarget\fR
43 \fB/usr/xpg4/bin/cp\fR [\fB-fip@/\fR] \fIsource_file\fR... \fItarget\fR
45 .fi

47 .LP
48 .nf
49 \fB/usr/xpg4/bin/cp\fR [\fB-r\fR | \fB-R\fR [\fB-H\fR | \fB-L\fR | \fB-P\fR]] [\
48 \fB/usr/xpg4/bin/cp\fR \fB-r\fR | \fB-R\fR [\fB-H\fR | \fB-L\fR | \fB-P\fR] [\fB
50 .fi

52 .LP
53 .nf

new/usr/src/man/man1/cp.1 2

54 \fB/usr/xpg4/bin/cp\fR [\fB-R\fR | \fB-R\fR [\fB-H\fR | \fB-L\fR | \fB-P\fR]] [\
53 \fB/usr/xpg4/bin/cp\fR \fB-R\fR | \fB-R\fR [\fB-H\fR | \fB-L\fR | \fB-P\fR] [\fB
55 .fi

57 .SH DESCRIPTION
58 .sp
59 .LP
60 In the first synopsis form, neither \fIsource_file\fR nor \fItarget_file\fR are
61 directory files, nor can they have the same name. The \fBcp\fR utility copies
62 the contents of \fIsource_file\fR to the destination path named by
63 \fItarget_file\fR. If \fItarget_file\fR exists, \fBcp\fR overwrites its
64 contents, but the mode (and \fBACL\fR if applicable), owner, and group
65 associated with it are not changed. The last modification time of
66 \fItarget_file\fR and the last access time of \fIsource_file\fR are set to the
67 time the copy was made. If \fItarget_file\fR does not exist, \fBcp\fR creates a
68 new file named \fItarget_file\fR that has the same mode as \fIsource_file\fR
69 except that the sticky bit is not set unless the user is super-user. In this
70 case, the owner and group of \fItarget_file\fR are those of the user, unless
71 the setgid bit is set on the directory containing the newly created file. If
72 the directory’s setgid bit is set, the newly created file has the group of the
73 containing directory rather than of the creating user. If \fItarget_file\fR is
74 a link to another file, \fBcp\fR overwrites the link destination with the
75 contents of \fIsource_file\fR; the link(s) from \fItarget_file\fR remains.
76 .sp
77 .LP
78 In the second synopsis form, one or more \fIsource_file\fRs are copied to the
79 directory specified by \fItarget\fR. It is an error if any \fIsource_file\fR is
80 a file of type directory, if \fItarget\fR either does not exist or is not a
81 directory.
82 .sp
83 .LP
84 In the third or fourth synopsis forms, one or more directories specified by
85 \fIsource_dir\fR are copied to the directory specified by \fItarget\fR. Either
86 the \fB-r\fR or \fB-R\fR must be specified. For each \fIsource_dir\fR, \fBcp\fR
87 copies all files and subdirectories.
88 .SH OPTIONS
89 .sp
90 .LP
91 The following options are supported for both \fB/usr/bin/cp\fR and
92 \fB/usr/xpg4/bin/cp\fR:
93 .sp
94 .ne 2
95 .na
96 \fB\fB-a\fR\fR
97 .ad
98 .RS 6n
99 Archive mode. Same as -RpP.
100 .RE

102 .sp
103 .ne 2
104 .na
105 \fB\fB-f\fR\fR
106 .ad
107 .RS 6n
108 Unlink. If a file descriptor for a destination file cannot be obtained, this
109 option attempts to unlink the destination file and proceed.
110 .RE

112 .sp
113 .ne 2
114 .na
115 \fB\fB-H\fR\fR
116 .ad
117 .RS 6n
118 Takes actions based on the type and contents of the file referenced by any

new/usr/src/man/man1/cp.1 3

119 symbolic link specified as a \fIsource_file\fR operand.
120 .sp
121 If the \fIsource_file\fR operand is a symbolic link, then \fBcp\fR copies the
122 file referenced by the symbolic link for the \fIsource_file\fR operand. All
123 other symbolic links encountered during traversal of a file hierarchy are
124 preserved.
125 .RE

127 .sp
128 .ne 2
129 .na
130 \fB\fB-i\fR\fR
131 .ad
132 .RS 6n
133 Interactive. \fBcp\fR prompts for confirmation whenever the copy would
134 overwrite an existing \fItarget\fR. An affirmative response means that the copy
135 should proceed. Any other answer prevents \fBcp\fR from overwriting
136 \fItarget\fR.
137 .RE

139 .sp
140 .ne 2
141 .na
142 \fB\fB-L\fR\fR
143 .ad
144 .RS 6n
145 Takes actions based on the type and contents of the file referenced by any
146 symbolic link specified as a \fIsource_file\fR operand or any symbolic links
147 encountered during traversal of a file hierarchy.
148 .sp
149 Copies files referenced by symbolic links. Symbolic links encountered during
150 traversal of a file hierarchy are not preserved.
151 .RE

153 .sp
154 .ne 2
155 .na
156 \fB\fB-p\fR\fR
157 .ad
158 .RS 6n
159 Preserve. The \fBcp\fR utility duplicates not only the contents of
160 \fIsource_file\fR, but also attempts to preserve its ACL, access and
161 modification times, extended attributes, extended system attributes, file mode,
162 and owner and group ids.
163 .sp
164 If \fBcp\fR is unable to preserve the access and modification times, extended
165 attributes, or the file mode, \fBcp\fR does not consider it a failure. If
166 \fBcp\fR is unable to preserve the owner and group id, the copy does not fail,
167 but \fBcp\fR silently clears the \fBS_ISUID\fR and \fBS_ISGID\fR bits from the
168 file mode of the target. The copy fails if \fBcp\fR is unable to clear these
169 bits. If \fBcp\fR is unable to preserve the ACL or extended system attributes,
170 the copy fails. If the copy fails, then a diagnostic message is written to
171 \fBstderr\fR and (after processing any remaining operands) \fBcp\fR exits with
172 a \fBnon-zero\fR exit status.
173 .RE

175 .sp
176 .ne 2
177 .na
178 \fB\fB-P\fR\fR
179 .ad
180 .RS 6n
181 Takes actions on any symbolic link specified as a \fIsource_file\fR operand or
182 any symbolic link encountered during traversal of a file hierarchy.
183 .sp
184 Copies symbolic links. Symbolic links encountered during traversal of a file

new/usr/src/man/man1/cp.1 4

185 hierarchy are preserved.
186 .RE

188 .sp
189 .ne 2
190 .na
191 \fB\fB-r\fR\fR
192 .ad
193 .RS 6n
194 Recursive. \fBcp\fR copies the directory and all its files, including any
195 subdirectories and their files to \fItarget\fR. Unless the \fB-H\fR, \fB-L\fR,
196 or \fB-P\fR option is specified, the \fB-L\fR option is used as the default
197 mode.
198 .RE

200 .sp
201 .ne 2
202 .na
203 \fB\fB-R\fR\fR
204 .ad
205 .RS 6n
206 Same as \fB-r\fR, except pipes are replicated, not read from.
207 .RE

209 .sp
210 .ne 2
211 .na
212 \fB\fB-@\fR\fR
213 .ad
214 .RS 6n
215 Preserves extended attributes. \fBcp\fR attempts to copy all of the source
216 file’s extended attributes along with the file data to the destination file.
217 .RE

219 .sp
220 .ne 2
221 .na
222 \fB\fB-/\fR\fR
223 .ad
224 .RS 6n
225 Preserves extended attributes and extended system attributes. Along with the
226 file’s data, the \fBcp\fR utility attempts to copy extended attributes and
227 extended system attributes from each source file, and extended system
228 attributes associated with extended attributes to the destination file. If
229 \fBcp\fR is unable to copy extended attributes or extended system attributes,
230 then a diagnostic message is written to \fBstderr\fR and (after processing any
231 remaining operands) exits with a \fBnon-zero\fR exit status.
232 .RE

234 .sp
235 .LP
236 Specifying more than one of the mutually-exclusive options \fB-H\fR, \fB-L\fR,
237 and \fB-P\fR is not considered an error. The last option specified determines
238 the behavior of the utility.
239 .SS "/usr/bin/cp"
240 .sp
241 .LP
242 If the \fB-p\fR option is specified with either the \fB-@\fR option or the
243 \fB-/\fR option, \fB/usr/bin/cp\fR behaves as follows
244 .RS +4
245 .TP
246 .ie t \(bu
247 .el o
248 When both \fB-p\fR and \fB-@\fR are specified in any order, the copy fails if
249 extended attributes cannot be copied.
250 .RE

new/usr/src/man/man1/cp.1 5

251 .RS +4
252 .TP
253 .ie t \(bu
254 .el o
255 When both \fB-p\fR and \fB-/\fR are specified in any order, the copy fails if
256 extended system attributes cannot be copied.
257 .RE
258 .SS "/usr/xpg4/bin/cp"
259 .sp
260 .LP
261 If the \fB-p\fR option is specified with either the \fB-@\fR option or the
262 \fB-/\fR option, /\fBusr/xpg4/bin/cp\fR behaves as follows:
263 .RS +4
264 .TP
265 .ie t \(bu
266 .el o
267 When both \fB-p\fR and \fB-@\fR are specified, the last option specified
268 determines whether the copy fails if extended attributes cannot be preserved.
269 .RE
270 .RS +4
271 .TP
272 .ie t \(bu
273 .el o
274 When both \fB-p\fR and \fB-/\fR are specified, the last option specified
275 determines whether the copy fails if extended system attributes cannot be
276 preserved.
277 .RE
278 .SH OPERANDS
279 .sp
280 .LP
281 The following operands are supported:
282 .sp
283 .ne 2
284 .na
285 \fB\fIsource_file\fR\fR
286 .ad
287 .RS 15n
288 A pathname of a regular file to be copied.
289 .RE

291 .sp
292 .ne 2
293 .na
294 \fB\fIsource_dir\fR\fR
295 .ad
296 .RS 15n
297 A pathname of a directory to be copied.
298 .RE

300 .sp
301 .ne 2
302 .na
303 \fB\fItarget_file\fR\fR
304 .ad
305 .RS 15n
306 A pathname of an existing or non-existing file, used for the output when a
307 single file is copied.
308 .RE

310 .sp
311 .ne 2
312 .na
313 \fB\fItarget\fR\fR
314 .ad
315 .RS 15n
316 A pathname of a directory to contain the copied files.

new/usr/src/man/man1/cp.1 6

317 .RE

319 .SH USAGE
320 .sp
321 .LP
322 See \fBlargefile\fR(5) for the description of the behavior of \fBcp\fR when
323 encountering files greater than or equal to 2 Gbyte (2^31 bytes).
324 .SH EXAMPLES
325 .LP
326 \fBExample 1 \fRCopying a File
327 .sp
328 .LP
329 The following example copies a file:

331 .sp
332 .in +2
333 .nf
334 example% cp goodies goodies.old

336 example% ls goodies*
337 goodies goodies.old
338 .fi
339 .in -2
340 .sp

342 .LP
343 \fBExample 2 \fRCopying a List of Files
344 .sp
345 .LP
346 The following example copies a list of files to a destination directory:

348 .sp
349 .in +2
350 .nf
351 example% cp ~/src/* /tmp
352 .fi
353 .in -2
354 .sp

356 .LP
357 \fBExample 3 \fRCopying a Directory
358 .sp
359 .LP
360 The following example copies a directory, first to a new, and then to an
361 existing destination directory

363 .sp
364 .in +2
365 .nf
366 example% ls ~/bkup
367 /usr/example/fred/bkup not found

369 example% cp \fB-r\fR ~/src ~/bkup

371 example% ls \fB-R\fR ~/bkup
372 x.c y.c z.sh

374 example% cp \fB-r\fR ~/src ~/bkup

376 example% ls \fB-R\fR ~/bkup
377 src x.c y.c z.sh
378 src:
379 x.c y.c z.s
380 .fi
381 .in -2
382 .sp

new/usr/src/man/man1/cp.1 7

384 .LP
385 \fBExample 4 \fRCopying Extended File System Attributes
386 .sp
387 .LP
388 The following example copies extended file system attributes:

390 .sp
391 .in +2
392 .nf
393 $ ls -/ c file1
394 -rw-r--r-- 1 foo staff 0 Oct 29 20:04 file1
395 {AH-----m--}

397 $ cp -/ file1 file2
398 $ ls -/c file2
399 -rw-r--r-- 1 foo staff 0 Oct 29 20:17 file2
400 {AH-----m--}
401 .fi
402 .in -2
403 .sp

405 .LP
406 \fBExample 5 \fRFailing to Copy Extended System Attributes
407 .sp
408 .LP
409 The following example fails to copy extended system attributes:

411 .sp
412 .in +2
413 .nf
414 $ ls -/c file1
415 -rw-r--r-- 1 foo staff 0 Oct 29 20:04 file1
416 {AH-----m--}

418 $ cp -/ file1 /tmp
419 cp: Failed to copy extended system attributes from file1 to /tmp/file1

422 $ ls -/c /tmp/file1
423 -rw-r--r-- 1 foo staff 0 Oct 29 20:09 /tmp/file1
424 {}
425 .fi
426 .in -2
427 .sp

429 .SH ENVIRONMENT VARIABLES
430 .sp
431 .LP
432 See \fBenviron\fR(5) for descriptions of the following environment variables
433 that affect the execution of \fBcp\fR: \fBLANG\fR, \fBLC_ALL\fR,
434 \fBLC_COLLATE\fR, \fBLC_CTYPE\fR, \fBLC_MESSAGES\fR, and \fBNLSPATH\fR.
435 .sp
436 .LP
437 Affirmative responses are processed using the extended regular expression
438 defined for the \fByesexpr\fR keyword in the \fBLC_MESSAGES\fR category of the
439 user’s locale. The locale specified in the \fBLC_COLLATE\fR category defines
440 the behavior of ranges, equivalence classes, and multi-character collating
441 elements used in the expression defined for \fByesexpr\fR. The locale specified
442 in \fBLC_CTYPE\fR determines the locale for interpretation of sequences of
443 bytes of text data a characters, the behavior of character classes used in the
444 expression defined for the \fByesexpr\fR. See \fBlocale\fR(5).
445 .SH EXIT STATUS
446 .sp
447 .LP
448 The following exit values are returned:

new/usr/src/man/man1/cp.1 8

449 .sp
450 .ne 2
451 .na
452 \fB\fB0\fR\fR
453 .ad
454 .RS 6n
455 All files were copied successfully.
456 .RE

458 .sp
459 .ne 2
460 .na
461 \fB\fB>0\fR\fR
462 .ad
463 .RS 6n
464 An error occurred.
465 .RE

467 .SH ATTRIBUTES
468 .sp
469 .LP
470 See \fBattributes\fR(5) for descriptions of the following attributes:
471 .SS "/usr/bin/cp"
472 .sp

474 .sp
475 .TS
476 box;
477 c | c
478 l | l .
479 ATTRIBUTE TYPE ATTRIBUTE VALUE
480 _
481 CSI Enabled
482 _
483 Interface Stability Committed
484 .TE

486 .SS "/usr/xpg4/bin/cp"
487 .sp

489 .sp
490 .TS
491 box;
492 c | c
493 l | l .
494 ATTRIBUTE TYPE ATTRIBUTE VALUE
495 _
496 CSI Enabled
497 _
498 Interface Stability Committed
499 .TE

501 .SH SEE ALSO
502 .sp
503 .LP
504 \fBchmod\fR(1), \fBchown\fR(1), \fBsetfacl\fR(1), \fButime\fR(2),
505 \fBfgetattr\fR(3C), \fBattributes\fR(5), \fBenviron\fR(5), \fBfsattr\fR(5),
506 \fBlargefile\fR(5), \fBlocale\fR(5), \fBstandards\fR(5)
507 .SH NOTES
508 .sp
509 .LP
510 The permission modes of the source file are preserved in the copy.
511 .sp
512 .LP
513 A \fB--\fR permits the user to mark the end of any command line options
514 explicitly, thus allowing \fBcp\fR to recognize filename arguments that begin

new/usr/src/man/man1/cp.1 9

515 with a \fB-\fR.

