1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 /*
  26  * lofi (loopback file) driver - allows you to attach a file to a device,
  27  * which can then be accessed through that device. The simple model is that
  28  * you tell lofi to open a file, and then use the block device you get as
  29  * you would any block device. lofi translates access to the block device
  30  * into I/O on the underlying file. This is mostly useful for
  31  * mounting images of filesystems.
  32  *
  33  * lofi is controlled through /dev/lofictl - this is the only device exported
  34  * during attach, and is minor number 0. lofiadm communicates with lofi through
  35  * ioctls on this device. When a file is attached to lofi, block and character
  36  * devices are exported in /dev/lofi and /dev/rlofi. Currently, these devices
  37  * are identified by their minor number, and the minor number is also used
  38  * as the name in /dev/lofi. If we ever decide to support virtual disks,
  39  * we'll have to divide the minor number space to identify fdisk partitions
  40  * and slices, and the name will then be the minor number shifted down a
  41  * few bits. Minor devices are tracked with state structures handled with
  42  * ddi_soft_state(9F) for simplicity.
  43  *
  44  * A file attached to lofi is opened when attached and not closed until
  45  * explicitly detached from lofi. This seems more sensible than deferring
  46  * the open until the /dev/lofi device is opened, for a number of reasons.
  47  * One is that any failure is likely to be noticed by the person (or script)
  48  * running lofiadm. Another is that it would be a security problem if the
  49  * file was replaced by another one after being added but before being opened.
  50  *
  51  * The only hard part about lofi is the ioctls. In order to support things
  52  * like 'newfs' on a lofi device, it needs to support certain disk ioctls.
  53  * So it has to fake disk geometry and partition information. More may need
  54  * to be faked if your favorite utility doesn't work and you think it should
  55  * (fdformat doesn't work because it really wants to know the type of floppy
  56  * controller to talk to, and that didn't seem easy to fake. Or possibly even
  57  * necessary, since we have mkfs_pcfs now).
  58  *
  59  * Normally, a lofi device cannot be detached if it is open (i.e. busy).  To
  60  * support simulation of hotplug events, an optional force flag is provided.
  61  * If a lofi device is open when a force detach is requested, then the
  62  * underlying file is closed and any subsequent operations return EIO.  When the
  63  * device is closed for the last time, it will be cleaned up at that time.  In
  64  * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is
  65  * detached but not removed.
  66  *
  67  * Known problems:
  68  *
  69  *      UFS logging. Mounting a UFS filesystem image "logging"
  70  *      works for basic copy testing but wedges during a build of ON through
  71  *      that image. Some deadlock in lufs holding the log mutex and then
  72  *      getting stuck on a buf. So for now, don't do that.
  73  *
  74  *      Direct I/O. Since the filesystem data is being cached in the buffer
  75  *      cache, _and_ again in the underlying filesystem, it's tempting to
  76  *      enable direct I/O on the underlying file. Don't, because that deadlocks.
  77  *      I think to fix the cache-twice problem we might need filesystem support.
  78  *
  79  * Interesting things to do:
  80  *
  81  *      Allow multiple files for each device. A poor-man's metadisk, basically.
  82  *
  83  *      Pass-through ioctls on block devices. You can (though it's not
  84  *      documented), give lofi a block device as a file name. Then we shouldn't
  85  *      need to fake a geometry, however, it may be relevant if you're replacing
  86  *      metadisk, or using lofi to get crypto.
  87  *      It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1
  88  *      and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home.
  89  *      In fact this even makes sense if you have lofi "above" metadisk.
  90  *
  91  * Encryption:
  92  *      Each lofi device can have its own symmetric key and cipher.
  93  *      They are passed to us by lofiadm(1m) in the correct format for use
  94  *      with the misc/kcf crypto_* routines.
  95  *
  96  *      Each block has its own IV, that is calculated in lofi_blk_mech(), based
  97  *      on the "master" key held in the lsp and the block number of the buffer.
  98  */
  99 
 100 #include <sys/types.h>
 101 #include <netinet/in.h>
 102 #include <sys/sysmacros.h>
 103 #include <sys/uio.h>
 104 #include <sys/kmem.h>
 105 #include <sys/cred.h>
 106 #include <sys/mman.h>
 107 #include <sys/errno.h>
 108 #include <sys/aio_req.h>
 109 #include <sys/stat.h>
 110 #include <sys/file.h>
 111 #include <sys/modctl.h>
 112 #include <sys/conf.h>
 113 #include <sys/debug.h>
 114 #include <sys/vnode.h>
 115 #include <sys/lofi.h>
 116 #include <sys/fcntl.h>
 117 #include <sys/pathname.h>
 118 #include <sys/filio.h>
 119 #include <sys/fdio.h>
 120 #include <sys/open.h>
 121 #include <sys/disp.h>
 122 #include <vm/seg_map.h>
 123 #include <sys/ddi.h>
 124 #include <sys/sunddi.h>
 125 #include <sys/zmod.h>
 126 #include <sys/id_space.h>
 127 #include <sys/mkdev.h>
 128 #include <sys/crypto/common.h>
 129 #include <sys/crypto/api.h>
 130 #include <sys/rctl.h>
 131 #include <LzmaDec.h>
 132 
 133 /*
 134  * The basis for CRYOFF is derived from usr/src/uts/common/sys/fs/ufs_fs.h.
 135  * Crypto metadata, if it exists, is located at the end of the boot block
 136  * (BBOFF + BBSIZE, which is SBOFF).  The super block and everything after
 137  * is offset by the size of the crypto metadata which is handled by
 138  * lsp->ls_crypto_offset.
 139  */
 140 #define CRYOFF  ((off_t)8192)
 141 
 142 #define NBLOCKS_PROP_NAME       "Nblocks"
 143 #define SIZE_PROP_NAME          "Size"
 144 #define ZONE_PROP_NAME          "zone"
 145 
 146 #define SETUP_C_DATA(cd, buf, len)              \
 147         (cd).cd_format = CRYPTO_DATA_RAW;       \
 148         (cd).cd_offset = 0;                     \
 149         (cd).cd_miscdata = NULL;                \
 150         (cd).cd_length = (len);                 \
 151         (cd).cd_raw.iov_base = (buf);           \
 152         (cd).cd_raw.iov_len = (len);
 153 
 154 #define UIO_CHECK(uio)  \
 155         if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \
 156             ((uio)->uio_resid % DEV_BSIZE) != 0) { \
 157                 return (EINVAL); \
 158         }
 159 
 160 static dev_info_t *lofi_dip = NULL;
 161 static void *lofi_statep = NULL;
 162 static kmutex_t lofi_lock;              /* state lock */
 163 static id_space_t *lofi_minor_id;
 164 static list_t lofi_list;
 165 static zone_key_t lofi_zone_key;
 166 
 167 /*
 168  * Because lofi_taskq_nthreads limits the actual swamping of the device, the
 169  * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively
 170  * high.  If we want to be assured that the underlying device is always busy,
 171  * we must be sure that the number of bytes enqueued when the number of
 172  * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for
 173  * the duration of the sleep time in taskq_ent_alloc().  That is, lofi should
 174  * set maxalloc to be the maximum throughput (in bytes per second) of the
 175  * underlying device divided by the minimum I/O size.  We assume a realistic
 176  * maximum throughput of one hundred megabytes per second; we set maxalloc on
 177  * the lofi task queue to be 104857600 divided by DEV_BSIZE.
 178  */
 179 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE;
 180 static int lofi_taskq_nthreads = 4;     /* # of taskq threads per device */
 181 
 182 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC;
 183 
 184 /*
 185  * To avoid decompressing data in a compressed segment multiple times
 186  * when accessing small parts of a segment's data, we cache and reuse
 187  * the uncompressed segment's data.
 188  *
 189  * A single cached segment is sufficient to avoid lots of duplicate
 190  * segment decompress operations. A small cache size also reduces the
 191  * memory footprint.
 192  *
 193  * lofi_max_comp_cache is the maximum number of decompressed data segments
 194  * cached for each compressed lofi image. It can be set to 0 to disable
 195  * caching.
 196  */
 197 
 198 uint32_t lofi_max_comp_cache = 1;
 199 
 200 static int gzip_decompress(void *src, size_t srclen, void *dst,
 201         size_t *destlen, int level);
 202 
 203 static int lzma_decompress(void *src, size_t srclen, void *dst,
 204         size_t *dstlen, int level);
 205 
 206 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = {
 207         {gzip_decompress,       NULL,   6,      "gzip"}, /* default */
 208         {gzip_decompress,       NULL,   6,      "gzip-6"},
 209         {gzip_decompress,       NULL,   9,      "gzip-9"},
 210         {lzma_decompress,       NULL,   0,      "lzma"}
 211 };
 212 
 213 /*ARGSUSED*/
 214 static void
 215 *SzAlloc(void *p, size_t size)
 216 {
 217         return (kmem_alloc(size, KM_SLEEP));
 218 }
 219 
 220 /*ARGSUSED*/
 221 static void
 222 SzFree(void *p, void *address, size_t size)
 223 {
 224         kmem_free(address, size);
 225 }
 226 
 227 static ISzAlloc g_Alloc = { SzAlloc, SzFree };
 228 
 229 /*
 230  * Free data referenced by the linked list of cached uncompressed
 231  * segments.
 232  */
 233 static void
 234 lofi_free_comp_cache(struct lofi_state *lsp)
 235 {
 236         struct lofi_comp_cache *lc;
 237 
 238         while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) {
 239                 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
 240                 kmem_free(lc, sizeof (struct lofi_comp_cache));
 241                 lsp->ls_comp_cache_count--;
 242         }
 243         ASSERT(lsp->ls_comp_cache_count == 0);
 244 }
 245 
 246 static int
 247 is_opened(struct lofi_state *lsp)
 248 {
 249         ASSERT(MUTEX_HELD(&lofi_lock));
 250         return (lsp->ls_chr_open || lsp->ls_blk_open || lsp->ls_lyr_open_count);
 251 }
 252 
 253 static int
 254 mark_opened(struct lofi_state *lsp, int otyp)
 255 {
 256         ASSERT(MUTEX_HELD(&lofi_lock));
 257         switch (otyp) {
 258         case OTYP_CHR:
 259                 lsp->ls_chr_open = 1;
 260                 break;
 261         case OTYP_BLK:
 262                 lsp->ls_blk_open = 1;
 263                 break;
 264         case OTYP_LYR:
 265                 lsp->ls_lyr_open_count++;
 266                 break;
 267         default:
 268                 return (-1);
 269         }
 270         return (0);
 271 }
 272 
 273 static void
 274 mark_closed(struct lofi_state *lsp, int otyp)
 275 {
 276         ASSERT(MUTEX_HELD(&lofi_lock));
 277         switch (otyp) {
 278         case OTYP_CHR:
 279                 lsp->ls_chr_open = 0;
 280                 break;
 281         case OTYP_BLK:
 282                 lsp->ls_blk_open = 0;
 283                 break;
 284         case OTYP_LYR:
 285                 lsp->ls_lyr_open_count--;
 286                 break;
 287         default:
 288                 break;
 289         }
 290 }
 291 
 292 static void
 293 lofi_free_crypto(struct lofi_state *lsp)
 294 {
 295         ASSERT(MUTEX_HELD(&lofi_lock));
 296 
 297         if (lsp->ls_crypto_enabled) {
 298                 /*
 299                  * Clean up the crypto state so that it doesn't hang around
 300                  * in memory after we are done with it.
 301                  */
 302                 if (lsp->ls_key.ck_data != NULL) {
 303                         bzero(lsp->ls_key.ck_data,
 304                             CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
 305                         kmem_free(lsp->ls_key.ck_data,
 306                             CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
 307                         lsp->ls_key.ck_data = NULL;
 308                         lsp->ls_key.ck_length = 0;
 309                 }
 310 
 311                 if (lsp->ls_mech.cm_param != NULL) {
 312                         kmem_free(lsp->ls_mech.cm_param,
 313                             lsp->ls_mech.cm_param_len);
 314                         lsp->ls_mech.cm_param = NULL;
 315                         lsp->ls_mech.cm_param_len = 0;
 316                 }
 317 
 318                 if (lsp->ls_iv_mech.cm_param != NULL) {
 319                         kmem_free(lsp->ls_iv_mech.cm_param,
 320                             lsp->ls_iv_mech.cm_param_len);
 321                         lsp->ls_iv_mech.cm_param = NULL;
 322                         lsp->ls_iv_mech.cm_param_len = 0;
 323                 }
 324 
 325                 mutex_destroy(&lsp->ls_crypto_lock);
 326         }
 327 }
 328 
 329 static void
 330 lofi_destroy(struct lofi_state *lsp, cred_t *credp)
 331 {
 332         minor_t minor = getminor(lsp->ls_dev);
 333         int i;
 334 
 335         ASSERT(MUTEX_HELD(&lofi_lock));
 336 
 337         list_remove(&lofi_list, lsp);
 338 
 339         lofi_free_crypto(lsp);
 340 
 341         /*
 342          * Free pre-allocated compressed buffers
 343          */
 344         if (lsp->ls_comp_bufs != NULL) {
 345                 for (i = 0; i < lofi_taskq_nthreads; i++) {
 346                         if (lsp->ls_comp_bufs[i].bufsize > 0)
 347                                 kmem_free(lsp->ls_comp_bufs[i].buf,
 348                                     lsp->ls_comp_bufs[i].bufsize);
 349                 }
 350                 kmem_free(lsp->ls_comp_bufs,
 351                     sizeof (struct compbuf) * lofi_taskq_nthreads);
 352         }
 353 
 354         (void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag,
 355             1, 0, credp, NULL);
 356         VN_RELE(lsp->ls_vp);
 357         if (lsp->ls_stacked_vp != lsp->ls_vp)
 358                 VN_RELE(lsp->ls_stacked_vp);
 359 
 360         taskq_destroy(lsp->ls_taskq);
 361 
 362         if (lsp->ls_kstat != NULL)
 363                 kstat_delete(lsp->ls_kstat);
 364 
 365         /*
 366          * Free cached decompressed segment data
 367          */
 368         lofi_free_comp_cache(lsp);
 369         list_destroy(&lsp->ls_comp_cache);
 370 
 371         if (lsp->ls_uncomp_seg_sz > 0) {
 372                 kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz);
 373                 lsp->ls_uncomp_seg_sz = 0;
 374         }
 375 
 376         rctl_decr_lofi(lsp->ls_zone.zref_zone, 1);
 377         zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
 378 
 379         mutex_destroy(&lsp->ls_comp_cache_lock);
 380         mutex_destroy(&lsp->ls_comp_bufs_lock);
 381         mutex_destroy(&lsp->ls_kstat_lock);
 382         mutex_destroy(&lsp->ls_vp_lock);
 383 
 384         ASSERT(ddi_get_soft_state(lofi_statep, minor) == lsp);
 385         ddi_soft_state_free(lofi_statep, minor);
 386         id_free(lofi_minor_id, minor);
 387 }
 388 
 389 static void
 390 lofi_free_dev(dev_t dev)
 391 {
 392         minor_t minor = getminor(dev);
 393         char namebuf[50];
 394 
 395         ASSERT(MUTEX_HELD(&lofi_lock));
 396 
 397         (void) ddi_prop_remove(dev, lofi_dip, ZONE_PROP_NAME);
 398         (void) ddi_prop_remove(dev, lofi_dip, SIZE_PROP_NAME);
 399         (void) ddi_prop_remove(dev, lofi_dip, NBLOCKS_PROP_NAME);
 400 
 401         (void) snprintf(namebuf, sizeof (namebuf), "%d", minor);
 402         ddi_remove_minor_node(lofi_dip, namebuf);
 403         (void) snprintf(namebuf, sizeof (namebuf), "%d,raw", minor);
 404         ddi_remove_minor_node(lofi_dip, namebuf);
 405 }
 406 
 407 /*ARGSUSED*/
 408 static void
 409 lofi_zone_shutdown(zoneid_t zoneid, void *arg)
 410 {
 411         struct lofi_state *lsp;
 412         struct lofi_state *next;
 413 
 414         mutex_enter(&lofi_lock);
 415 
 416         for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) {
 417 
 418                 /* lofi_destroy() frees lsp */
 419                 next = list_next(&lofi_list, lsp);
 420 
 421                 if (lsp->ls_zone.zref_zone->zone_id != zoneid)
 422                         continue;
 423 
 424                 /*
 425                  * No in-zone processes are running, but something has this
 426                  * open.  It's either a global zone process, or a lofi
 427                  * mount.  In either case we set ls_cleanup so the last
 428                  * user destroys the device.
 429                  */
 430                 if (is_opened(lsp)) {
 431                         lsp->ls_cleanup = 1;
 432                 } else {
 433                         lofi_free_dev(lsp->ls_dev);
 434                         lofi_destroy(lsp, kcred);
 435                 }
 436         }
 437 
 438         mutex_exit(&lofi_lock);
 439 }
 440 
 441 /*ARGSUSED*/
 442 static int
 443 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp)
 444 {
 445         minor_t minor;
 446         struct lofi_state *lsp;
 447 
 448         /*
 449          * lofiadm -a /dev/lofi/1 gets us here.
 450          */
 451         if (mutex_owner(&lofi_lock) == curthread)
 452                 return (EINVAL);
 453 
 454         mutex_enter(&lofi_lock);
 455 
 456         minor = getminor(*devp);
 457 
 458         /* master control device */
 459         if (minor == 0) {
 460                 mutex_exit(&lofi_lock);
 461                 return (0);
 462         }
 463 
 464         /* otherwise, the mapping should already exist */
 465         lsp = ddi_get_soft_state(lofi_statep, minor);
 466         if (lsp == NULL) {
 467                 mutex_exit(&lofi_lock);
 468                 return (EINVAL);
 469         }
 470 
 471         if (lsp->ls_vp == NULL) {
 472                 mutex_exit(&lofi_lock);
 473                 return (ENXIO);
 474         }
 475 
 476         if (mark_opened(lsp, otyp) == -1) {
 477                 mutex_exit(&lofi_lock);
 478                 return (EINVAL);
 479         }
 480 
 481         mutex_exit(&lofi_lock);
 482         return (0);
 483 }
 484 
 485 /*ARGSUSED*/
 486 static int
 487 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp)
 488 {
 489         minor_t minor;
 490         struct lofi_state *lsp;
 491 
 492         mutex_enter(&lofi_lock);
 493         minor = getminor(dev);
 494         lsp = ddi_get_soft_state(lofi_statep, minor);
 495         if (lsp == NULL) {
 496                 mutex_exit(&lofi_lock);
 497                 return (EINVAL);
 498         }
 499 
 500         if (minor == 0) {
 501                 mutex_exit(&lofi_lock);
 502                 return (0);
 503         }
 504 
 505         mark_closed(lsp, otyp);
 506 
 507         /*
 508          * If we forcibly closed the underlying device (li_force), or
 509          * asked for cleanup (li_cleanup), finish up if we're the last
 510          * out of the door.
 511          */
 512         if (!is_opened(lsp) && (lsp->ls_cleanup || lsp->ls_vp == NULL)) {
 513                 lofi_free_dev(lsp->ls_dev);
 514                 lofi_destroy(lsp, credp);
 515         }
 516 
 517         mutex_exit(&lofi_lock);
 518         return (0);
 519 }
 520 
 521 /*
 522  * Sets the mechanism's initialization vector (IV) if one is needed.
 523  * The IV is computed from the data block number.  lsp->ls_mech is
 524  * altered so that:
 525  *      lsp->ls_mech.cm_param_len is set to the IV len.
 526  *      lsp->ls_mech.cm_param is set to the IV.
 527  */
 528 static int
 529 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno)
 530 {
 531         int     ret;
 532         crypto_data_t cdata;
 533         char    *iv;
 534         size_t  iv_len;
 535         size_t  min;
 536         void    *data;
 537         size_t  datasz;
 538 
 539         ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock));
 540 
 541         if (lsp == NULL)
 542                 return (CRYPTO_DEVICE_ERROR);
 543 
 544         /* lsp->ls_mech.cm_param{_len} has already been set for static iv */
 545         if (lsp->ls_iv_type == IVM_NONE) {
 546                 return (CRYPTO_SUCCESS);
 547         }
 548 
 549         /*
 550          * if kmem already alloced from previous call and it's the same size
 551          * we need now, just recycle it; allocate new kmem only if we have to
 552          */
 553         if (lsp->ls_mech.cm_param == NULL ||
 554             lsp->ls_mech.cm_param_len != lsp->ls_iv_len) {
 555                 iv_len = lsp->ls_iv_len;
 556                 iv = kmem_zalloc(iv_len, KM_SLEEP);
 557         } else {
 558                 iv_len = lsp->ls_mech.cm_param_len;
 559                 iv = lsp->ls_mech.cm_param;
 560                 bzero(iv, iv_len);
 561         }
 562 
 563         switch (lsp->ls_iv_type) {
 564         case IVM_ENC_BLKNO:
 565                 /* iv is not static, lblkno changes each time */
 566                 data = &lblkno;
 567                 datasz = sizeof (lblkno);
 568                 break;
 569         default:
 570                 data = 0;
 571                 datasz = 0;
 572                 break;
 573         }
 574 
 575         /*
 576          * write blkno into the iv buffer padded on the left in case
 577          * blkno ever grows bigger than its current longlong_t size
 578          * or a variation other than blkno is used for the iv data
 579          */
 580         min = MIN(datasz, iv_len);
 581         bcopy(data, iv + (iv_len - min), min);
 582 
 583         /* encrypt the data in-place to get the IV */
 584         SETUP_C_DATA(cdata, iv, iv_len);
 585 
 586         ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key,
 587             NULL, NULL, NULL);
 588         if (ret != CRYPTO_SUCCESS) {
 589                 cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)",
 590                     lblkno, ret);
 591                 if (lsp->ls_mech.cm_param != iv)
 592                         kmem_free(iv, iv_len);
 593 
 594                 return (ret);
 595         }
 596 
 597         /* clean up the iv from the last computation */
 598         if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv)
 599                 kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len);
 600 
 601         lsp->ls_mech.cm_param_len = iv_len;
 602         lsp->ls_mech.cm_param = iv;
 603 
 604         return (CRYPTO_SUCCESS);
 605 }
 606 
 607 /*
 608  * Performs encryption and decryption of a chunk of data of size "len",
 609  * one DEV_BSIZE block at a time.  "len" is assumed to be a multiple of
 610  * DEV_BSIZE.
 611  */
 612 static int
 613 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext,
 614     caddr_t ciphertext, size_t len, boolean_t op_encrypt)
 615 {
 616         crypto_data_t cdata;
 617         crypto_data_t wdata;
 618         int ret;
 619         longlong_t lblkno = bp->b_lblkno;
 620 
 621         mutex_enter(&lsp->ls_crypto_lock);
 622 
 623         /*
 624          * though we could encrypt/decrypt entire "len" chunk of data, we need
 625          * to break it into DEV_BSIZE pieces to capture blkno incrementing
 626          */
 627         SETUP_C_DATA(cdata, plaintext, len);
 628         cdata.cd_length = DEV_BSIZE;
 629         if (ciphertext != NULL) {               /* not in-place crypto */
 630                 SETUP_C_DATA(wdata, ciphertext, len);
 631                 wdata.cd_length = DEV_BSIZE;
 632         }
 633 
 634         do {
 635                 ret = lofi_blk_mech(lsp, lblkno);
 636                 if (ret != CRYPTO_SUCCESS)
 637                         continue;
 638 
 639                 if (op_encrypt) {
 640                         ret = crypto_encrypt(&lsp->ls_mech, &cdata,
 641                             &lsp->ls_key, NULL,
 642                             ((ciphertext != NULL) ? &wdata : NULL), NULL);
 643                 } else {
 644                         ret = crypto_decrypt(&lsp->ls_mech, &cdata,
 645                             &lsp->ls_key, NULL,
 646                             ((ciphertext != NULL) ? &wdata : NULL), NULL);
 647                 }
 648 
 649                 cdata.cd_offset += DEV_BSIZE;
 650                 if (ciphertext != NULL)
 651                         wdata.cd_offset += DEV_BSIZE;
 652                 lblkno++;
 653         } while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len);
 654 
 655         mutex_exit(&lsp->ls_crypto_lock);
 656 
 657         if (ret != CRYPTO_SUCCESS) {
 658                 cmn_err(CE_WARN, "%s failed for block %lld:  (0x%x)",
 659                     op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()",
 660                     lblkno, ret);
 661         }
 662 
 663         return (ret);
 664 }
 665 
 666 #define RDWR_RAW        1
 667 #define RDWR_BCOPY      2
 668 
 669 static int
 670 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
 671     struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn)
 672 {
 673         ssize_t resid;
 674         int isread;
 675         int error;
 676 
 677         /*
 678          * Handles reads/writes for both plain and encrypted lofi
 679          * Note:  offset is already shifted by lsp->ls_crypto_offset
 680          * when it gets here.
 681          */
 682 
 683         isread = bp->b_flags & B_READ;
 684         if (isread) {
 685                 if (method == RDWR_BCOPY) {
 686                         /* DO NOT update bp->b_resid for bcopy */
 687                         bcopy(bcopy_locn, bufaddr, len);
 688                         error = 0;
 689                 } else {                /* RDWR_RAW */
 690                         error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len,
 691                             offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
 692                             &resid);
 693                         bp->b_resid = resid;
 694                 }
 695                 if (lsp->ls_crypto_enabled && error == 0) {
 696                         if (lofi_crypto(lsp, bp, bufaddr, NULL, len,
 697                             B_FALSE) != CRYPTO_SUCCESS) {
 698                                 /*
 699                                  * XXX: original code didn't set residual
 700                                  * back to len because no error was expected
 701                                  * from bcopy() if encryption is not enabled
 702                                  */
 703                                 if (method != RDWR_BCOPY)
 704                                         bp->b_resid = len;
 705                                 error = EIO;
 706                         }
 707                 }
 708                 return (error);
 709         } else {
 710                 void *iobuf = bufaddr;
 711 
 712                 if (lsp->ls_crypto_enabled) {
 713                         /* don't do in-place crypto to keep bufaddr intact */
 714                         iobuf = kmem_alloc(len, KM_SLEEP);
 715                         if (lofi_crypto(lsp, bp, bufaddr, iobuf, len,
 716                             B_TRUE) != CRYPTO_SUCCESS) {
 717                                 kmem_free(iobuf, len);
 718                                 if (method != RDWR_BCOPY)
 719                                         bp->b_resid = len;
 720                                 return (EIO);
 721                         }
 722                 }
 723                 if (method == RDWR_BCOPY) {
 724                         /* DO NOT update bp->b_resid for bcopy */
 725                         bcopy(iobuf, bcopy_locn, len);
 726                         error = 0;
 727                 } else {                /* RDWR_RAW */
 728                         error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len,
 729                             offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
 730                             &resid);
 731                         bp->b_resid = resid;
 732                 }
 733                 if (lsp->ls_crypto_enabled) {
 734                         kmem_free(iobuf, len);
 735                 }
 736                 return (error);
 737         }
 738 }
 739 
 740 static int
 741 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
 742     struct lofi_state *lsp)
 743 {
 744         int error;
 745         offset_t alignedoffset, mapoffset;
 746         size_t  xfersize;
 747         int     isread;
 748         int     smflags;
 749         caddr_t mapaddr;
 750         size_t  len;
 751         enum seg_rw srw;
 752         int     save_error;
 753 
 754         /*
 755          * Note:  offset is already shifted by lsp->ls_crypto_offset
 756          * when it gets here.
 757          */
 758         if (lsp->ls_crypto_enabled)
 759                 ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size);
 760 
 761         /*
 762          * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on
 763          * an 8K boundary, but the buf transfer address may not be
 764          * aligned on more than a 512-byte boundary (we don't enforce
 765          * that even though we could). This matters since the initial
 766          * part of the transfer may not start at offset 0 within the
 767          * segmap'd chunk. So we have to compensate for that with
 768          * 'mapoffset'. Subsequent chunks always start off at the
 769          * beginning, and the last is capped by b_resid
 770          *
 771          * Visually, where "|" represents page map boundaries:
 772          *   alignedoffset (mapaddr begins at this segmap boundary)
 773          *    |   offset (from beginning of file)
 774          *    |    |       len
 775          *    v    v        v
 776          * ===|====X========|====...======|========X====|====
 777          *         /-------------...---------------/
 778          *              ^ bp->b_bcount/bp->b_resid at start
 779          *    /----/--------/----...------/--------/
 780          *      ^       ^       ^   ^           ^
 781          *      |       |       |   |           nth xfersize (<= MAXBSIZE)
 782          *      |       |       2nd thru n-1st xfersize (= MAXBSIZE)
 783          *      |       1st xfersize (<= MAXBSIZE)
 784          *    mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter)
 785          *
 786          * Notes: "alignedoffset" is "offset" rounded down to nearest
 787          * MAXBSIZE boundary.  "len" is next page boundary of size
 788          * PAGESIZE after "alignedoffset".
 789          */
 790         mapoffset = offset & MAXBOFFSET;
 791         alignedoffset = offset - mapoffset;
 792         bp->b_resid = bp->b_bcount;
 793         isread = bp->b_flags & B_READ;
 794         srw = isread ? S_READ : S_WRITE;
 795         do {
 796                 xfersize = MIN(lsp->ls_vp_comp_size - offset,
 797                     MIN(MAXBSIZE - mapoffset, bp->b_resid));
 798                 len = roundup(mapoffset + xfersize, PAGESIZE);
 799                 mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp,
 800                     alignedoffset, MAXBSIZE, 1, srw);
 801                 /*
 802                  * Now fault in the pages. This lets us check
 803                  * for errors before we reference mapaddr and
 804                  * try to resolve the fault in bcopy (which would
 805                  * panic instead). And this can easily happen,
 806                  * particularly if you've lofi'd a file over NFS
 807                  * and someone deletes the file on the server.
 808                  */
 809                 error = segmap_fault(kas.a_hat, segkmap, mapaddr,
 810                     len, F_SOFTLOCK, srw);
 811                 if (error) {
 812                         (void) segmap_release(segkmap, mapaddr, 0);
 813                         if (FC_CODE(error) == FC_OBJERR)
 814                                 error = FC_ERRNO(error);
 815                         else
 816                                 error = EIO;
 817                         break;
 818                 }
 819                 /* error may be non-zero for encrypted lofi */
 820                 error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize,
 821                     RDWR_BCOPY, mapaddr + mapoffset);
 822                 if (error == 0) {
 823                         bp->b_resid -= xfersize;
 824                         bufaddr += xfersize;
 825                         offset += xfersize;
 826                 }
 827                 smflags = 0;
 828                 if (isread) {
 829                         smflags |= SM_FREE;
 830                         /*
 831                          * If we're reading an entire page starting
 832                          * at a page boundary, there's a good chance
 833                          * we won't need it again. Put it on the
 834                          * head of the freelist.
 835                          */
 836                         if (mapoffset == 0 && xfersize == MAXBSIZE)
 837                                 smflags |= SM_DONTNEED;
 838                 } else {
 839                         /*
 840                          * Write back good pages, it is okay to
 841                          * always release asynchronous here as we'll
 842                          * follow with VOP_FSYNC for B_SYNC buffers.
 843                          */
 844                         if (error == 0)
 845                                 smflags |= SM_WRITE | SM_ASYNC;
 846                 }
 847                 (void) segmap_fault(kas.a_hat, segkmap, mapaddr,
 848                     len, F_SOFTUNLOCK, srw);
 849                 save_error = segmap_release(segkmap, mapaddr, smflags);
 850                 if (error == 0)
 851                         error = save_error;
 852                 /* only the first map may start partial */
 853                 mapoffset = 0;
 854                 alignedoffset += MAXBSIZE;
 855         } while ((error == 0) && (bp->b_resid > 0) &&
 856             (offset < lsp->ls_vp_comp_size));
 857 
 858         return (error);
 859 }
 860 
 861 /*
 862  * Check if segment seg_index is present in the decompressed segment
 863  * data cache.
 864  *
 865  * Returns a pointer to the decompressed segment data cache entry if
 866  * found, and NULL when decompressed data for this segment is not yet
 867  * cached.
 868  */
 869 static struct lofi_comp_cache *
 870 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index)
 871 {
 872         struct lofi_comp_cache *lc;
 873 
 874         ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
 875 
 876         for (lc = list_head(&lsp->ls_comp_cache); lc != NULL;
 877             lc = list_next(&lsp->ls_comp_cache, lc)) {
 878                 if (lc->lc_index == seg_index) {
 879                         /*
 880                          * Decompressed segment data was found in the
 881                          * cache.
 882                          *
 883                          * The cache uses an LRU replacement strategy;
 884                          * move the entry to head of list.
 885                          */
 886                         list_remove(&lsp->ls_comp_cache, lc);
 887                         list_insert_head(&lsp->ls_comp_cache, lc);
 888                         return (lc);
 889                 }
 890         }
 891         return (NULL);
 892 }
 893 
 894 /*
 895  * Add the data for a decompressed segment at segment index
 896  * seg_index to the cache of the decompressed segments.
 897  *
 898  * Returns a pointer to the cache element structure in case
 899  * the data was added to the cache; returns NULL when the data
 900  * wasn't cached.
 901  */
 902 static struct lofi_comp_cache *
 903 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index,
 904     uchar_t *data)
 905 {
 906         struct lofi_comp_cache *lc;
 907 
 908         ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
 909 
 910         while (lsp->ls_comp_cache_count > lofi_max_comp_cache) {
 911                 lc = list_remove_tail(&lsp->ls_comp_cache);
 912                 ASSERT(lc != NULL);
 913                 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
 914                 kmem_free(lc, sizeof (struct lofi_comp_cache));
 915                 lsp->ls_comp_cache_count--;
 916         }
 917 
 918         /*
 919          * Do not cache when disabled by tunable variable
 920          */
 921         if (lofi_max_comp_cache == 0)
 922                 return (NULL);
 923 
 924         /*
 925          * When the cache has not yet reached the maximum allowed
 926          * number of segments, allocate a new cache element.
 927          * Otherwise the cache is full; reuse the last list element
 928          * (LRU) for caching the decompressed segment data.
 929          *
 930          * The cache element for the new decompressed segment data is
 931          * added to the head of the list.
 932          */
 933         if (lsp->ls_comp_cache_count < lofi_max_comp_cache) {
 934                 lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP);
 935                 lc->lc_data = NULL;
 936                 list_insert_head(&lsp->ls_comp_cache, lc);
 937                 lsp->ls_comp_cache_count++;
 938         } else {
 939                 lc = list_remove_tail(&lsp->ls_comp_cache);
 940                 if (lc == NULL)
 941                         return (NULL);
 942                 list_insert_head(&lsp->ls_comp_cache, lc);
 943         }
 944 
 945         /*
 946          * Free old uncompressed segment data when reusing a cache
 947          * entry.
 948          */
 949         if (lc->lc_data != NULL)
 950                 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
 951 
 952         lc->lc_data = data;
 953         lc->lc_index = seg_index;
 954         return (lc);
 955 }
 956 
 957 
 958 /*ARGSUSED*/
 959 static int
 960 gzip_decompress(void *src, size_t srclen, void *dst,
 961     size_t *dstlen, int level)
 962 {
 963         ASSERT(*dstlen >= srclen);
 964 
 965         if (z_uncompress(dst, dstlen, src, srclen) != Z_OK)
 966                 return (-1);
 967         return (0);
 968 }
 969 
 970 #define LZMA_HEADER_SIZE        (LZMA_PROPS_SIZE + 8)
 971 /*ARGSUSED*/
 972 static int
 973 lzma_decompress(void *src, size_t srclen, void *dst,
 974         size_t *dstlen, int level)
 975 {
 976         size_t insizepure;
 977         void *actual_src;
 978         ELzmaStatus status;
 979 
 980         insizepure = srclen - LZMA_HEADER_SIZE;
 981         actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE);
 982 
 983         if (LzmaDecode((Byte *)dst, (size_t *)dstlen,
 984             (const Byte *)actual_src, &insizepure,
 985             (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status,
 986             &g_Alloc) != SZ_OK) {
 987                 return (-1);
 988         }
 989         return (0);
 990 }
 991 
 992 /*
 993  * This is basically what strategy used to be before we found we
 994  * needed task queues.
 995  */
 996 static void
 997 lofi_strategy_task(void *arg)
 998 {
 999         struct buf *bp = (struct buf *)arg;
1000         int error;
1001         int syncflag = 0;
1002         struct lofi_state *lsp;
1003         offset_t offset;
1004         caddr_t bufaddr;
1005         size_t  len;
1006         size_t  xfersize;
1007         boolean_t bufinited = B_FALSE;
1008 
1009         lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev));
1010         if (lsp == NULL) {
1011                 error = ENXIO;
1012                 goto errout;
1013         }
1014         if (lsp->ls_kstat) {
1015                 mutex_enter(lsp->ls_kstat->ks_lock);
1016                 kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat));
1017                 mutex_exit(lsp->ls_kstat->ks_lock);
1018         }
1019         bp_mapin(bp);
1020         bufaddr = bp->b_un.b_addr;
1021         offset = bp->b_lblkno * DEV_BSIZE;   /* offset within file */
1022         if (lsp->ls_crypto_enabled) {
1023                 /* encrypted data really begins after crypto header */
1024                 offset += lsp->ls_crypto_offset;
1025         }
1026         len = bp->b_bcount;
1027         bufinited = B_TRUE;
1028 
1029         if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1030                 error = EIO;
1031                 goto errout;
1032         }
1033 
1034         /*
1035          * If we're writing and the buffer was not B_ASYNC
1036          * we'll follow up with a VOP_FSYNC() to force any
1037          * asynchronous I/O to stable storage.
1038          */
1039         if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC))
1040                 syncflag = FSYNC;
1041 
1042         /*
1043          * We used to always use vn_rdwr here, but we cannot do that because
1044          * we might decide to read or write from the the underlying
1045          * file during this call, which would be a deadlock because
1046          * we have the rw_lock. So instead we page, unless it's not
1047          * mapable or it's a character device or it's an encrypted lofi.
1048          */
1049         if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) ||
1050             lsp->ls_crypto_enabled) {
1051                 error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW,
1052                     NULL);
1053         } else if (lsp->ls_uncomp_seg_sz == 0) {
1054                 error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp);
1055         } else {
1056                 uchar_t *compressed_seg = NULL, *cmpbuf;
1057                 uchar_t *uncompressed_seg = NULL;
1058                 lofi_compress_info_t *li;
1059                 size_t oblkcount;
1060                 ulong_t seglen;
1061                 uint64_t sblkno, eblkno, cmpbytes;
1062                 uint64_t uncompressed_seg_index;
1063                 struct lofi_comp_cache *lc;
1064                 offset_t sblkoff, eblkoff;
1065                 u_offset_t salign, ealign;
1066                 u_offset_t sdiff;
1067                 uint32_t comp_data_sz;
1068                 uint64_t i;
1069                 int j;
1070 
1071                 /*
1072                  * From here on we're dealing primarily with compressed files
1073                  */
1074                 ASSERT(!lsp->ls_crypto_enabled);
1075 
1076                 /*
1077                  * Compressed files can only be read from and
1078                  * not written to
1079                  */
1080                 if (!(bp->b_flags & B_READ)) {
1081                         bp->b_resid = bp->b_bcount;
1082                         error = EROFS;
1083                         goto done;
1084                 }
1085 
1086                 ASSERT(lsp->ls_comp_algorithm_index >= 0);
1087                 li = &lofi_compress_table[lsp->ls_comp_algorithm_index];
1088                 /*
1089                  * Compute starting and ending compressed segment numbers
1090                  * We use only bitwise operations avoiding division and
1091                  * modulus because we enforce the compression segment size
1092                  * to a power of 2
1093                  */
1094                 sblkno = offset >> lsp->ls_comp_seg_shift;
1095                 sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1);
1096                 eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift;
1097                 eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1);
1098 
1099                 /*
1100                  * Check the decompressed segment cache.
1101                  *
1102                  * The cache is used only when the requested data
1103                  * is within a segment. Requests that cross
1104                  * segment boundaries bypass the cache.
1105                  */
1106                 if (sblkno == eblkno ||
1107                     (sblkno + 1 == eblkno && eblkoff == 0)) {
1108                         /*
1109                          * Request doesn't cross a segment boundary,
1110                          * now check the cache.
1111                          */
1112                         mutex_enter(&lsp->ls_comp_cache_lock);
1113                         lc = lofi_find_comp_data(lsp, sblkno);
1114                         if (lc != NULL) {
1115                                 /*
1116                                  * We've found the decompressed segment
1117                                  * data in the cache; reuse it.
1118                                  */
1119                                 bcopy(lc->lc_data + sblkoff, bufaddr,
1120                                     bp->b_bcount);
1121                                 mutex_exit(&lsp->ls_comp_cache_lock);
1122                                 bp->b_resid = 0;
1123                                 error = 0;
1124                                 goto done;
1125                         }
1126                         mutex_exit(&lsp->ls_comp_cache_lock);
1127                 }
1128 
1129                 /*
1130                  * Align start offset to block boundary for segmap
1131                  */
1132                 salign = lsp->ls_comp_seg_index[sblkno];
1133                 sdiff = salign & (DEV_BSIZE - 1);
1134                 salign -= sdiff;
1135                 if (eblkno >= (lsp->ls_comp_index_sz - 1)) {
1136                         /*
1137                          * We're dealing with the last segment of
1138                          * the compressed file -- the size of this
1139                          * segment *may not* be the same as the
1140                          * segment size for the file
1141                          */
1142                         eblkoff = (offset + bp->b_bcount) &
1143                             (lsp->ls_uncomp_last_seg_sz - 1);
1144                         ealign = lsp->ls_vp_comp_size;
1145                 } else {
1146                         ealign = lsp->ls_comp_seg_index[eblkno + 1];
1147                 }
1148 
1149                 /*
1150                  * Preserve original request paramaters
1151                  */
1152                 oblkcount = bp->b_bcount;
1153 
1154                 /*
1155                  * Assign the calculated parameters
1156                  */
1157                 comp_data_sz = ealign - salign;
1158                 bp->b_bcount = comp_data_sz;
1159 
1160                 /*
1161                  * Buffers to hold compressed segments are pre-allocated
1162                  * on a per-thread basis. Find a pre-allocated buffer
1163                  * that is not currently in use and mark it for use.
1164                  */
1165                 mutex_enter(&lsp->ls_comp_bufs_lock);
1166                 for (j = 0; j < lofi_taskq_nthreads; j++) {
1167                         if (lsp->ls_comp_bufs[j].inuse == 0) {
1168                                 lsp->ls_comp_bufs[j].inuse = 1;
1169                                 break;
1170                         }
1171                 }
1172 
1173                 mutex_exit(&lsp->ls_comp_bufs_lock);
1174                 ASSERT(j < lofi_taskq_nthreads);
1175 
1176                 /*
1177                  * If the pre-allocated buffer size does not match
1178                  * the size of the I/O request, re-allocate it with
1179                  * the appropriate size
1180                  */
1181                 if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) {
1182                         if (lsp->ls_comp_bufs[j].bufsize > 0)
1183                                 kmem_free(lsp->ls_comp_bufs[j].buf,
1184                                     lsp->ls_comp_bufs[j].bufsize);
1185                         lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount,
1186                             KM_SLEEP);
1187                         lsp->ls_comp_bufs[j].bufsize = bp->b_bcount;
1188                 }
1189                 compressed_seg = lsp->ls_comp_bufs[j].buf;
1190 
1191                 /*
1192                  * Map in the calculated number of blocks
1193                  */
1194                 error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign,
1195                     bp, lsp);
1196 
1197                 bp->b_bcount = oblkcount;
1198                 bp->b_resid = oblkcount;
1199                 if (error != 0)
1200                         goto done;
1201 
1202                 /*
1203                  * decompress compressed blocks start
1204                  */
1205                 cmpbuf = compressed_seg + sdiff;
1206                 for (i = sblkno; i <= eblkno; i++) {
1207                         ASSERT(i < lsp->ls_comp_index_sz - 1);
1208                         uchar_t *useg;
1209 
1210                         /*
1211                          * The last segment is special in that it is
1212                          * most likely not going to be the same
1213                          * (uncompressed) size as the other segments.
1214                          */
1215                         if (i == (lsp->ls_comp_index_sz - 2)) {
1216                                 seglen = lsp->ls_uncomp_last_seg_sz;
1217                         } else {
1218                                 seglen = lsp->ls_uncomp_seg_sz;
1219                         }
1220 
1221                         /*
1222                          * Each of the segment index entries contains
1223                          * the starting block number for that segment.
1224                          * The number of compressed bytes in a segment
1225                          * is thus the difference between the starting
1226                          * block number of this segment and the starting
1227                          * block number of the next segment.
1228                          */
1229                         cmpbytes = lsp->ls_comp_seg_index[i + 1] -
1230                             lsp->ls_comp_seg_index[i];
1231 
1232                         /*
1233                          * The first byte in a compressed segment is a flag
1234                          * that indicates whether this segment is compressed
1235                          * at all.
1236                          *
1237                          * The variable 'useg' is used (instead of
1238                          * uncompressed_seg) in this loop to keep a
1239                          * reference to the uncompressed segment.
1240                          *
1241                          * N.B. If 'useg' is replaced with uncompressed_seg,
1242                          * it leads to memory leaks and heap corruption in
1243                          * corner cases where compressed segments lie
1244                          * adjacent to uncompressed segments.
1245                          */
1246                         if (*cmpbuf == UNCOMPRESSED) {
1247                                 useg = cmpbuf + SEGHDR;
1248                         } else {
1249                                 if (uncompressed_seg == NULL)
1250                                         uncompressed_seg =
1251                                             kmem_alloc(lsp->ls_uncomp_seg_sz,
1252                                             KM_SLEEP);
1253                                 useg = uncompressed_seg;
1254                                 uncompressed_seg_index = i;
1255 
1256                                 if (li->l_decompress((cmpbuf + SEGHDR),
1257                                     (cmpbytes - SEGHDR), uncompressed_seg,
1258                                     &seglen, li->l_level) != 0) {
1259                                         error = EIO;
1260                                         goto done;
1261                                 }
1262                         }
1263 
1264                         /*
1265                          * Determine how much uncompressed data we
1266                          * have to copy and copy it
1267                          */
1268                         xfersize = lsp->ls_uncomp_seg_sz - sblkoff;
1269                         if (i == eblkno)
1270                                 xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff);
1271 
1272                         bcopy((useg + sblkoff), bufaddr, xfersize);
1273 
1274                         cmpbuf += cmpbytes;
1275                         bufaddr += xfersize;
1276                         bp->b_resid -= xfersize;
1277                         sblkoff = 0;
1278 
1279                         if (bp->b_resid == 0)
1280                                 break;
1281                 } /* decompress compressed blocks ends */
1282 
1283                 /*
1284                  * Skip to done if there is no uncompressed data to cache
1285                  */
1286                 if (uncompressed_seg == NULL)
1287                         goto done;
1288 
1289                 /*
1290                  * Add the data for the last decompressed segment to
1291                  * the cache.
1292                  *
1293                  * In case the uncompressed segment data was added to (and
1294                  * is referenced by) the cache, make sure we don't free it
1295                  * here.
1296                  */
1297                 mutex_enter(&lsp->ls_comp_cache_lock);
1298                 if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index,
1299                     uncompressed_seg)) != NULL) {
1300                         uncompressed_seg = NULL;
1301                 }
1302                 mutex_exit(&lsp->ls_comp_cache_lock);
1303 
1304 done:
1305                 if (compressed_seg != NULL) {
1306                         mutex_enter(&lsp->ls_comp_bufs_lock);
1307                         lsp->ls_comp_bufs[j].inuse = 0;
1308                         mutex_exit(&lsp->ls_comp_bufs_lock);
1309                 }
1310                 if (uncompressed_seg != NULL)
1311                         kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz);
1312         } /* end of handling compressed files */
1313 
1314         if ((error == 0) && (syncflag != 0))
1315                 error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL);
1316 
1317 errout:
1318         if (bufinited && lsp->ls_kstat) {
1319                 size_t n_done = bp->b_bcount - bp->b_resid;
1320                 kstat_io_t *kioptr;
1321 
1322                 mutex_enter(lsp->ls_kstat->ks_lock);
1323                 kioptr = KSTAT_IO_PTR(lsp->ls_kstat);
1324                 if (bp->b_flags & B_READ) {
1325                         kioptr->nread += n_done;
1326                         kioptr->reads++;
1327                 } else {
1328                         kioptr->nwritten += n_done;
1329                         kioptr->writes++;
1330                 }
1331                 kstat_runq_exit(kioptr);
1332                 mutex_exit(lsp->ls_kstat->ks_lock);
1333         }
1334 
1335         mutex_enter(&lsp->ls_vp_lock);
1336         if (--lsp->ls_vp_iocount == 0)
1337                 cv_broadcast(&lsp->ls_vp_cv);
1338         mutex_exit(&lsp->ls_vp_lock);
1339 
1340         bioerror(bp, error);
1341         biodone(bp);
1342 }
1343 
1344 static int
1345 lofi_strategy(struct buf *bp)
1346 {
1347         struct lofi_state *lsp;
1348         offset_t        offset;
1349 
1350         /*
1351          * We cannot just do I/O here, because the current thread
1352          * _might_ end up back in here because the underlying filesystem
1353          * wants a buffer, which eventually gets into bio_recycle and
1354          * might call into lofi to write out a delayed-write buffer.
1355          * This is bad if the filesystem above lofi is the same as below.
1356          *
1357          * We could come up with a complex strategy using threads to
1358          * do the I/O asynchronously, or we could use task queues. task
1359          * queues were incredibly easy so they win.
1360          */
1361         lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev));
1362         if (lsp == NULL) {
1363                 bioerror(bp, ENXIO);
1364                 biodone(bp);
1365                 return (0);
1366         }
1367 
1368         mutex_enter(&lsp->ls_vp_lock);
1369         if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1370                 bioerror(bp, EIO);
1371                 biodone(bp);
1372                 mutex_exit(&lsp->ls_vp_lock);
1373                 return (0);
1374         }
1375 
1376         offset = bp->b_lblkno * DEV_BSIZE;   /* offset within file */
1377         if (lsp->ls_crypto_enabled) {
1378                 /* encrypted data really begins after crypto header */
1379                 offset += lsp->ls_crypto_offset;
1380         }
1381         if (offset == lsp->ls_vp_size) {
1382                 /* EOF */
1383                 if ((bp->b_flags & B_READ) != 0) {
1384                         bp->b_resid = bp->b_bcount;
1385                         bioerror(bp, 0);
1386                 } else {
1387                         /* writes should fail */
1388                         bioerror(bp, ENXIO);
1389                 }
1390                 biodone(bp);
1391                 mutex_exit(&lsp->ls_vp_lock);
1392                 return (0);
1393         }
1394         if (offset > lsp->ls_vp_size) {
1395                 bioerror(bp, ENXIO);
1396                 biodone(bp);
1397                 mutex_exit(&lsp->ls_vp_lock);
1398                 return (0);
1399         }
1400         lsp->ls_vp_iocount++;
1401         mutex_exit(&lsp->ls_vp_lock);
1402 
1403         if (lsp->ls_kstat) {
1404                 mutex_enter(lsp->ls_kstat->ks_lock);
1405                 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
1406                 mutex_exit(lsp->ls_kstat->ks_lock);
1407         }
1408         (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
1409         return (0);
1410 }
1411 
1412 /*ARGSUSED2*/
1413 static int
1414 lofi_read(dev_t dev, struct uio *uio, struct cred *credp)
1415 {
1416         if (getminor(dev) == 0)
1417                 return (EINVAL);
1418         UIO_CHECK(uio);
1419         return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio));
1420 }
1421 
1422 /*ARGSUSED2*/
1423 static int
1424 lofi_write(dev_t dev, struct uio *uio, struct cred *credp)
1425 {
1426         if (getminor(dev) == 0)
1427                 return (EINVAL);
1428         UIO_CHECK(uio);
1429         return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio));
1430 }
1431 
1432 /*ARGSUSED2*/
1433 static int
1434 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp)
1435 {
1436         if (getminor(dev) == 0)
1437                 return (EINVAL);
1438         UIO_CHECK(aio->aio_uio);
1439         return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio));
1440 }
1441 
1442 /*ARGSUSED2*/
1443 static int
1444 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp)
1445 {
1446         if (getminor(dev) == 0)
1447                 return (EINVAL);
1448         UIO_CHECK(aio->aio_uio);
1449         return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio));
1450 }
1451 
1452 /*ARGSUSED*/
1453 static int
1454 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1455 {
1456         switch (infocmd) {
1457         case DDI_INFO_DEVT2DEVINFO:
1458                 *result = lofi_dip;
1459                 return (DDI_SUCCESS);
1460         case DDI_INFO_DEVT2INSTANCE:
1461                 *result = 0;
1462                 return (DDI_SUCCESS);
1463         }
1464         return (DDI_FAILURE);
1465 }
1466 
1467 static int
1468 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1469 {
1470         int     error;
1471 
1472         if (cmd != DDI_ATTACH)
1473                 return (DDI_FAILURE);
1474 
1475         lofi_minor_id = id_space_create("lofi_minor_id", 1, L_MAXMIN32 + 1);
1476 
1477         if (!lofi_minor_id)
1478                 return (DDI_FAILURE);
1479 
1480         error = ddi_soft_state_zalloc(lofi_statep, 0);
1481         if (error == DDI_FAILURE) {
1482                 id_space_destroy(lofi_minor_id);
1483                 return (DDI_FAILURE);
1484         }
1485         error = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0,
1486             DDI_PSEUDO, NULL);
1487         if (error == DDI_FAILURE) {
1488                 ddi_soft_state_free(lofi_statep, 0);
1489                 id_space_destroy(lofi_minor_id);
1490                 return (DDI_FAILURE);
1491         }
1492         /* driver handles kernel-issued IOCTLs */
1493         if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1494             DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
1495                 ddi_remove_minor_node(dip, NULL);
1496                 ddi_soft_state_free(lofi_statep, 0);
1497                 id_space_destroy(lofi_minor_id);
1498                 return (DDI_FAILURE);
1499         }
1500 
1501         zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL);
1502 
1503         lofi_dip = dip;
1504         ddi_report_dev(dip);
1505         return (DDI_SUCCESS);
1506 }
1507 
1508 static int
1509 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1510 {
1511         if (cmd != DDI_DETACH)
1512                 return (DDI_FAILURE);
1513 
1514         mutex_enter(&lofi_lock);
1515 
1516         if (!list_is_empty(&lofi_list)) {
1517                 mutex_exit(&lofi_lock);
1518                 return (DDI_FAILURE);
1519         }
1520 
1521         lofi_dip = NULL;
1522         ddi_remove_minor_node(dip, NULL);
1523         ddi_prop_remove_all(dip);
1524 
1525         mutex_exit(&lofi_lock);
1526 
1527         if (zone_key_delete(lofi_zone_key) != 0)
1528                 cmn_err(CE_WARN, "failed to delete zone key");
1529 
1530         ddi_soft_state_free(lofi_statep, 0);
1531 
1532         id_space_destroy(lofi_minor_id);
1533 
1534         return (DDI_SUCCESS);
1535 }
1536 
1537 /*
1538  * With addition of encryption, be careful that encryption key is wiped before
1539  * kernel memory structures are freed, and also that key is not accidentally
1540  * passed out into userland structures.
1541  */
1542 static void
1543 free_lofi_ioctl(struct lofi_ioctl *klip)
1544 {
1545         /* Make sure this encryption key doesn't stick around */
1546         bzero(klip->li_key, sizeof (klip->li_key));
1547         kmem_free(klip, sizeof (struct lofi_ioctl));
1548 }
1549 
1550 /*
1551  * These two just simplify the rest of the ioctls that need to copyin/out
1552  * the lofi_ioctl structure.
1553  */
1554 int
1555 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp,
1556     int flag)
1557 {
1558         struct lofi_ioctl *klip;
1559         int     error;
1560 
1561         klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP);
1562         error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag);
1563         if (error)
1564                 goto err;
1565 
1566         /* ensure NULL termination */
1567         klip->li_filename[MAXPATHLEN-1] = '\0';
1568         klip->li_algorithm[MAXALGLEN-1] = '\0';
1569         klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
1570         klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
1571 
1572         if (klip->li_minor > L_MAXMIN32) {
1573                 error = EINVAL;
1574                 goto err;
1575         }
1576 
1577         return (0);
1578 
1579 err:
1580         free_lofi_ioctl(klip);
1581         return (error);
1582 }
1583 
1584 int
1585 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip,
1586         int flag)
1587 {
1588         int     error;
1589 
1590         /*
1591          * NOTE: Do NOT copy the crypto_key_t "back" to userland.
1592          * This ensures that an attacker can't trivially find the
1593          * key for a mapping just by issuing the ioctl.
1594          *
1595          * It can still be found by poking around in kmem with mdb(1),
1596          * but there is no point in making it easy when the info isn't
1597          * of any use in this direction anyway.
1598          *
1599          * Either way we don't actually have the raw key stored in
1600          * a form that we can get it anyway, since we just used it
1601          * to create a ctx template and didn't keep "the original".
1602          */
1603         error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag);
1604         if (error)
1605                 return (EFAULT);
1606         return (0);
1607 }
1608 
1609 static int
1610 lofi_access(struct lofi_state *lsp)
1611 {
1612         ASSERT(MUTEX_HELD(&lofi_lock));
1613         if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone)
1614                 return (0);
1615         return (EPERM);
1616 }
1617 
1618 /*
1619  * Find the lofi state for the given filename. We compare by vnode to
1620  * allow the global zone visibility into NGZ lofi nodes.
1621  */
1622 static int
1623 file_to_lofi_nocheck(char *filename, struct lofi_state **lspp)
1624 {
1625         struct lofi_state *lsp;
1626         vnode_t *vp = NULL;
1627         int err = 0;
1628 
1629         ASSERT(MUTEX_HELD(&lofi_lock));
1630 
1631         if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW,
1632             NULLVPP, &vp)) != 0)
1633                 goto out;
1634 
1635         if (vp->v_type == VREG) {
1636                 vnode_t *realvp;
1637                 if (VOP_REALVP(vp, &realvp, NULL) == 0) {
1638                         VN_HOLD(realvp);
1639                         VN_RELE(vp);
1640                         vp = realvp;
1641                 }
1642         }
1643 
1644         for (lsp = list_head(&lofi_list); lsp != NULL;
1645             lsp = list_next(&lofi_list, lsp)) {
1646                 if (lsp->ls_vp == vp) {
1647                         if (lspp != NULL)
1648                                 *lspp = lsp;
1649                         goto out;
1650                 }
1651         }
1652 
1653         err = ENOENT;
1654 
1655 out:
1656         if (vp != NULL)
1657                 VN_RELE(vp);
1658         return (err);
1659 }
1660 
1661 /*
1662  * Find the minor for the given filename, checking the zone can access
1663  * it.
1664  */
1665 static int
1666 file_to_lofi(char *filename, struct lofi_state **lspp)
1667 {
1668         int err = 0;
1669 
1670         ASSERT(MUTEX_HELD(&lofi_lock));
1671 
1672         if ((err = file_to_lofi_nocheck(filename, lspp)) != 0)
1673                 return (err);
1674 
1675         if ((err = lofi_access(*lspp)) != 0)
1676                 return (err);
1677 
1678         return (0);
1679 }
1680 
1681 /*
1682  * Fakes up a disk geometry, and one big partition, based on the size
1683  * of the file. This is needed because we allow newfs'ing the device,
1684  * and newfs will do several disk ioctls to figure out the geometry and
1685  * partition information. It uses that information to determine the parameters
1686  * to pass to mkfs. Geometry is pretty much irrelevant these days, but we
1687  * have to support it.
1688  */
1689 static void
1690 fake_disk_geometry(struct lofi_state *lsp)
1691 {
1692         u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset;
1693 
1694         /* dk_geom - see dkio(7I) */
1695         /*
1696          * dkg_ncyl _could_ be set to one here (one big cylinder with gobs
1697          * of sectors), but that breaks programs like fdisk which want to
1698          * partition a disk by cylinder. With one cylinder, you can't create
1699          * an fdisk partition and put pcfs on it for testing (hard to pick
1700          * a number between one and one).
1701          *
1702          * The cheezy floppy test is an attempt to not have too few cylinders
1703          * for a small file, or so many on a big file that you waste space
1704          * for backup superblocks or cylinder group structures.
1705          */
1706         if (dsize < (2 * 1024 * 1024)) /* floppy? */
1707                 lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024);
1708         else
1709                 lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024);
1710         /* in case file file is < 100k */
1711         if (lsp->ls_dkg.dkg_ncyl == 0)
1712                 lsp->ls_dkg.dkg_ncyl = 1;
1713         lsp->ls_dkg.dkg_acyl = 0;
1714         lsp->ls_dkg.dkg_bcyl = 0;
1715         lsp->ls_dkg.dkg_nhead = 1;
1716         lsp->ls_dkg.dkg_obs1 = 0;
1717         lsp->ls_dkg.dkg_intrlv = 0;
1718         lsp->ls_dkg.dkg_obs2 = 0;
1719         lsp->ls_dkg.dkg_obs3 = 0;
1720         lsp->ls_dkg.dkg_apc = 0;
1721         lsp->ls_dkg.dkg_rpm = 7200;
1722         lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl + lsp->ls_dkg.dkg_acyl;
1723         lsp->ls_dkg.dkg_nsect = dsize / (DEV_BSIZE * lsp->ls_dkg.dkg_ncyl);
1724         lsp->ls_dkg.dkg_write_reinstruct = 0;
1725         lsp->ls_dkg.dkg_read_reinstruct = 0;
1726 
1727         /* vtoc - see dkio(7I) */
1728         bzero(&lsp->ls_vtoc, sizeof (struct vtoc));
1729         lsp->ls_vtoc.v_sanity = VTOC_SANE;
1730         lsp->ls_vtoc.v_version = V_VERSION;
1731         (void) strncpy(lsp->ls_vtoc.v_volume, LOFI_DRIVER_NAME,
1732             sizeof (lsp->ls_vtoc.v_volume));
1733         lsp->ls_vtoc.v_sectorsz = DEV_BSIZE;
1734         lsp->ls_vtoc.v_nparts = 1;
1735         lsp->ls_vtoc.v_part[0].p_tag = V_UNASSIGNED;
1736 
1737         /*
1738          * A compressed file is read-only, other files can
1739          * be read-write
1740          */
1741         if (lsp->ls_uncomp_seg_sz > 0) {
1742                 lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT | V_RONLY;
1743         } else {
1744                 lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT;
1745         }
1746         lsp->ls_vtoc.v_part[0].p_start = (daddr_t)0;
1747         /*
1748          * The partition size cannot just be the number of sectors, because
1749          * that might not end on a cylinder boundary. And if that's the case,
1750          * newfs/mkfs will print a scary warning. So just figure the size
1751          * based on the number of cylinders and sectors/cylinder.
1752          */
1753         lsp->ls_vtoc.v_part[0].p_size = lsp->ls_dkg.dkg_pcyl *
1754             lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead;
1755 
1756         /* dk_cinfo - see dkio(7I) */
1757         bzero(&lsp->ls_ci, sizeof (struct dk_cinfo));
1758         (void) strcpy(lsp->ls_ci.dki_cname, LOFI_DRIVER_NAME);
1759         lsp->ls_ci.dki_ctype = DKC_MD;
1760         lsp->ls_ci.dki_flags = 0;
1761         lsp->ls_ci.dki_cnum = 0;
1762         lsp->ls_ci.dki_addr = 0;
1763         lsp->ls_ci.dki_space = 0;
1764         lsp->ls_ci.dki_prio = 0;
1765         lsp->ls_ci.dki_vec = 0;
1766         (void) strcpy(lsp->ls_ci.dki_dname, LOFI_DRIVER_NAME);
1767         lsp->ls_ci.dki_unit = 0;
1768         lsp->ls_ci.dki_slave = 0;
1769         lsp->ls_ci.dki_partition = 0;
1770         /*
1771          * newfs uses this to set maxcontig. Must not be < 16, or it
1772          * will be 0 when newfs multiplies it by DEV_BSIZE and divides
1773          * it by the block size. Then tunefs doesn't work because
1774          * maxcontig is 0.
1775          */
1776         lsp->ls_ci.dki_maxtransfer = 16;
1777 }
1778 
1779 /*
1780  * map in a compressed file
1781  *
1782  * Read in the header and the index that follows.
1783  *
1784  * The header is as follows -
1785  *
1786  * Signature (name of the compression algorithm)
1787  * Compression segment size (a multiple of 512)
1788  * Number of index entries
1789  * Size of the last block
1790  * The array containing the index entries
1791  *
1792  * The header information is always stored in
1793  * network byte order on disk.
1794  */
1795 static int
1796 lofi_map_compressed_file(struct lofi_state *lsp, char *buf)
1797 {
1798         uint32_t index_sz, header_len, i;
1799         ssize_t resid;
1800         enum uio_rw rw;
1801         char *tbuf = buf;
1802         int error;
1803 
1804         /* The signature has already been read */
1805         tbuf += sizeof (lsp->ls_comp_algorithm);
1806         bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz));
1807         lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz);
1808 
1809         /*
1810          * The compressed segment size must be a power of 2
1811          */
1812         if (lsp->ls_uncomp_seg_sz < DEV_BSIZE ||
1813             !ISP2(lsp->ls_uncomp_seg_sz))
1814                 return (EINVAL);
1815 
1816         for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++)
1817                 ;
1818 
1819         lsp->ls_comp_seg_shift = i;
1820 
1821         tbuf += sizeof (lsp->ls_uncomp_seg_sz);
1822         bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz));
1823         lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz);
1824 
1825         tbuf += sizeof (lsp->ls_comp_index_sz);
1826         bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz),
1827             sizeof (lsp->ls_uncomp_last_seg_sz));
1828         lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz);
1829 
1830         /*
1831          * Compute the total size of the uncompressed data
1832          * for use in fake_disk_geometry and other calculations.
1833          * Disk geometry has to be faked with respect to the
1834          * actual uncompressed data size rather than the
1835          * compressed file size.
1836          */
1837         lsp->ls_vp_size =
1838             (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz
1839             + lsp->ls_uncomp_last_seg_sz;
1840 
1841         /*
1842          * Index size is rounded up to DEV_BSIZE for ease
1843          * of segmapping
1844          */
1845         index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz;
1846         header_len = sizeof (lsp->ls_comp_algorithm) +
1847             sizeof (lsp->ls_uncomp_seg_sz) +
1848             sizeof (lsp->ls_comp_index_sz) +
1849             sizeof (lsp->ls_uncomp_last_seg_sz);
1850         lsp->ls_comp_offbase = header_len + index_sz;
1851 
1852         index_sz += header_len;
1853         index_sz = roundup(index_sz, DEV_BSIZE);
1854 
1855         lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP);
1856         lsp->ls_comp_index_data_sz = index_sz;
1857 
1858         /*
1859          * Read in the index -- this has a side-effect
1860          * of reading in the header as well
1861          */
1862         rw = UIO_READ;
1863         error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz,
1864             0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
1865 
1866         if (error != 0)
1867                 return (error);
1868 
1869         /* Skip the header, this is where the index really begins */
1870         lsp->ls_comp_seg_index =
1871             /*LINTED*/
1872             (uint64_t *)(lsp->ls_comp_index_data + header_len);
1873 
1874         /*
1875          * Now recompute offsets in the index to account for
1876          * the header length
1877          */
1878         for (i = 0; i < lsp->ls_comp_index_sz; i++) {
1879                 lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase +
1880                     BE_64(lsp->ls_comp_seg_index[i]);
1881         }
1882 
1883         return (error);
1884 }
1885 
1886 static int
1887 lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip)
1888 {
1889         struct crypto_meta chead;
1890         char buf[DEV_BSIZE];
1891         ssize_t resid;
1892         char *marker;
1893         int error;
1894         int ret;
1895         int i;
1896 
1897         if (!klip->li_crypto_enabled)
1898                 return (0);
1899 
1900         /*
1901          * All current algorithms have a max of 448 bits.
1902          */
1903         if (klip->li_iv_len > CRYPTO_BITS2BYTES(512))
1904                 return (EINVAL);
1905 
1906         if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key))
1907                 return (EINVAL);
1908 
1909         lsp->ls_crypto_enabled = klip->li_crypto_enabled;
1910 
1911         mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL);
1912 
1913         lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher);
1914         if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) {
1915                 cmn_err(CE_WARN, "invalid cipher %s requested for %s",
1916                     klip->li_cipher, klip->li_filename);
1917                 return (EINVAL);
1918         }
1919 
1920         /* this is just initialization here */
1921         lsp->ls_mech.cm_param = NULL;
1922         lsp->ls_mech.cm_param_len = 0;
1923 
1924         lsp->ls_iv_type = klip->li_iv_type;
1925         lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher);
1926         if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) {
1927                 cmn_err(CE_WARN, "invalid iv cipher %s requested"
1928                     " for %s", klip->li_iv_cipher, klip->li_filename);
1929                 return (EINVAL);
1930         }
1931 
1932         /* iv mech must itself take a null iv */
1933         lsp->ls_iv_mech.cm_param = NULL;
1934         lsp->ls_iv_mech.cm_param_len = 0;
1935         lsp->ls_iv_len = klip->li_iv_len;
1936 
1937         /*
1938          * Create ctx using li_cipher & the raw li_key after checking
1939          * that it isn't a weak key.
1940          */
1941         lsp->ls_key.ck_format = CRYPTO_KEY_RAW;
1942         lsp->ls_key.ck_length = klip->li_key_len;
1943         lsp->ls_key.ck_data = kmem_alloc(
1944             CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP);
1945         bcopy(klip->li_key, lsp->ls_key.ck_data,
1946             CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
1947 
1948         ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key);
1949         if (ret != CRYPTO_SUCCESS) {
1950                 cmn_err(CE_WARN, "weak key check failed for cipher "
1951                     "%s on file %s (0x%x)", klip->li_cipher,
1952                     klip->li_filename, ret);
1953                 return (EINVAL);
1954         }
1955 
1956         error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE,
1957             CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
1958         if (error != 0)
1959                 return (error);
1960 
1961         /*
1962          * This is the case where the header in the lofi image is already
1963          * initialized to indicate it is encrypted.
1964          */
1965         if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) {
1966                 /*
1967                  * The encryption header information is laid out this way:
1968                  *      6 bytes:        hex "CFLOFI"
1969                  *      2 bytes:        version = 0 ... for now
1970                  *      96 bytes:       reserved1 (not implemented yet)
1971                  *      4 bytes:        data_sector = 2 ... for now
1972                  *      more...         not implemented yet
1973                  */
1974 
1975                 marker = buf;
1976 
1977                 /* copy the magic */
1978                 bcopy(marker, lsp->ls_crypto.magic,
1979                     sizeof (lsp->ls_crypto.magic));
1980                 marker += sizeof (lsp->ls_crypto.magic);
1981 
1982                 /* read the encryption version number */
1983                 bcopy(marker, &(lsp->ls_crypto.version),
1984                     sizeof (lsp->ls_crypto.version));
1985                 lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version);
1986                 marker += sizeof (lsp->ls_crypto.version);
1987 
1988                 /* read a chunk of reserved data */
1989                 bcopy(marker, lsp->ls_crypto.reserved1,
1990                     sizeof (lsp->ls_crypto.reserved1));
1991                 marker += sizeof (lsp->ls_crypto.reserved1);
1992 
1993                 /* read block number where encrypted data begins */
1994                 bcopy(marker, &(lsp->ls_crypto.data_sector),
1995                     sizeof (lsp->ls_crypto.data_sector));
1996                 lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector);
1997                 marker += sizeof (lsp->ls_crypto.data_sector);
1998 
1999                 /* and ignore the rest until it is implemented */
2000 
2001                 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2002                 return (0);
2003         }
2004 
2005         /*
2006          * We've requested encryption, but no magic was found, so it must be
2007          * a new image.
2008          */
2009 
2010         for (i = 0; i < sizeof (struct crypto_meta); i++) {
2011                 if (buf[i] != '\0')
2012                         return (EINVAL);
2013         }
2014 
2015         marker = buf;
2016         bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic));
2017         marker += sizeof (lofi_crypto_magic);
2018         chead.version = htons(LOFI_CRYPTO_VERSION);
2019         bcopy(&(chead.version), marker, sizeof (chead.version));
2020         marker += sizeof (chead.version);
2021         marker += sizeof (chead.reserved1);
2022         chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR);
2023         bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector));
2024 
2025         /* write the header */
2026         error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE,
2027             CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2028         if (error != 0)
2029                 return (error);
2030 
2031         /* fix things up so it looks like we read this info */
2032         bcopy(lofi_crypto_magic, lsp->ls_crypto.magic,
2033             sizeof (lofi_crypto_magic));
2034         lsp->ls_crypto.version = LOFI_CRYPTO_VERSION;
2035         lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR;
2036         lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2037         return (0);
2038 }
2039 
2040 /*
2041  * Check to see if the passed in signature is a valid one.  If it is
2042  * valid, return the index into lofi_compress_table.
2043  *
2044  * Return -1 if it is invalid
2045  */
2046 static int
2047 lofi_compress_select(const char *signature)
2048 {
2049         int i;
2050 
2051         for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) {
2052                 if (strcmp(lofi_compress_table[i].l_name, signature) == 0)
2053                         return (i);
2054         }
2055 
2056         return (-1);
2057 }
2058 
2059 static int
2060 lofi_init_compress(struct lofi_state *lsp)
2061 {
2062         char buf[DEV_BSIZE];
2063         int compress_index;
2064         ssize_t resid;
2065         int error;
2066 
2067         error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE,
2068             0, RLIM64_INFINITY, kcred, &resid);
2069 
2070         if (error != 0)
2071                 return (error);
2072 
2073         if ((compress_index = lofi_compress_select(buf)) == -1)
2074                 return (0);
2075 
2076         /* compression and encryption are mutually exclusive */
2077         if (lsp->ls_crypto_enabled)
2078                 return (ENOTSUP);
2079 
2080         /* initialize compression info for compressed lofi */
2081         lsp->ls_comp_algorithm_index = compress_index;
2082         (void) strlcpy(lsp->ls_comp_algorithm,
2083             lofi_compress_table[compress_index].l_name,
2084             sizeof (lsp->ls_comp_algorithm));
2085 
2086         /* Finally setup per-thread pre-allocated buffers */
2087         lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads *
2088             sizeof (struct compbuf), KM_SLEEP);
2089 
2090         return (lofi_map_compressed_file(lsp, buf));
2091 }
2092 
2093 /*
2094  * map a file to a minor number. Return the minor number.
2095  */
2096 static int
2097 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor,
2098     int *rvalp, struct cred *credp, int ioctl_flag)
2099 {
2100         minor_t minor = (minor_t)-1;
2101         struct lofi_state *lsp = NULL;
2102         struct lofi_ioctl *klip;
2103         int     error;
2104         struct vnode *vp = NULL;
2105         vattr_t vattr;
2106         int     flag;
2107         dev_t   newdev;
2108         char    namebuf[50];
2109 
2110         error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2111         if (error != 0)
2112                 return (error);
2113 
2114         mutex_enter(&lofi_lock);
2115 
2116         mutex_enter(&curproc->p_lock);
2117         if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) {
2118                 mutex_exit(&curproc->p_lock);
2119                 mutex_exit(&lofi_lock);
2120                 free_lofi_ioctl(klip);
2121                 return (error);
2122         }
2123         mutex_exit(&curproc->p_lock);
2124 
2125         if (file_to_lofi_nocheck(klip->li_filename, NULL) == 0) {
2126                 error = EBUSY;
2127                 goto err;
2128         }
2129 
2130         if (pickminor) {
2131                 minor = (minor_t)id_allocff_nosleep(lofi_minor_id);
2132                 if (minor == (minor_t)-1) {
2133                         error = EAGAIN;
2134                         goto err;
2135                 }
2136         } else {
2137                 if (ddi_get_soft_state(lofi_statep, klip->li_minor) != NULL) {
2138                         error = EEXIST;
2139                         goto err;
2140                 }
2141 
2142                 minor = (minor_t)
2143                     id_alloc_specific_nosleep(lofi_minor_id, klip->li_minor);
2144                 ASSERT(minor != (minor_t)-1);
2145         }
2146 
2147         flag = FREAD | FWRITE | FOFFMAX | FEXCL;
2148         error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0);
2149         if (error) {
2150                 /* try read-only */
2151                 flag &= ~FWRITE;
2152                 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0,
2153                     &vp, 0, 0);
2154                 if (error)
2155                         goto err;
2156         }
2157 
2158         if (!V_ISLOFIABLE(vp->v_type)) {
2159                 error = EINVAL;
2160                 goto err;
2161         }
2162 
2163         vattr.va_mask = AT_SIZE;
2164         error = VOP_GETATTR(vp, &vattr, 0, credp, NULL);
2165         if (error)
2166                 goto err;
2167 
2168         /* the file needs to be a multiple of the block size */
2169         if ((vattr.va_size % DEV_BSIZE) != 0) {
2170                 error = EINVAL;
2171                 goto err;
2172         }
2173 
2174         /* lsp alloc+init */
2175 
2176         error = ddi_soft_state_zalloc(lofi_statep, minor);
2177         if (error == DDI_FAILURE) {
2178                 error = ENOMEM;
2179                 goto err;
2180         }
2181 
2182         lsp = ddi_get_soft_state(lofi_statep, minor);
2183         list_insert_tail(&lofi_list, lsp);
2184 
2185         newdev = makedevice(getmajor(dev), minor);
2186         lsp->ls_dev = newdev;
2187         zone_init_ref(&lsp->ls_zone);
2188         zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI);
2189         lsp->ls_uncomp_seg_sz = 0;
2190         lsp->ls_comp_algorithm[0] = '\0';
2191         lsp->ls_crypto_offset = 0;
2192 
2193         cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL);
2194         mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL);
2195         mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL);
2196         mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL);
2197         mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL);
2198 
2199         (void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d",
2200             LOFI_DRIVER_NAME, minor);
2201         lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads,
2202             minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0);
2203 
2204         list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache),
2205             offsetof(struct lofi_comp_cache, lc_list));
2206 
2207         /*
2208          * save open mode so file can be closed properly and vnode counts
2209          * updated correctly.
2210          */
2211         lsp->ls_openflag = flag;
2212 
2213         lsp->ls_vp = vp;
2214         lsp->ls_stacked_vp = vp;
2215         /*
2216          * Try to handle stacked lofs vnodes.
2217          */
2218         if (vp->v_type == VREG) {
2219                 vnode_t *realvp;
2220 
2221                 if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2222                         /*
2223                          * We need to use the realvp for uniqueness
2224                          * checking, but keep the stacked vp for
2225                          * LOFI_GET_FILENAME display.
2226                          */
2227                         VN_HOLD(realvp);
2228                         lsp->ls_vp = realvp;
2229                 }
2230         }
2231 
2232         lsp->ls_vp_size = vattr.va_size;
2233         lsp->ls_vp_comp_size = lsp->ls_vp_size;
2234 
2235         lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, minor,
2236             NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid());
2237 
2238         if (lsp->ls_kstat == NULL) {
2239                 error = ENOMEM;
2240                 goto err;
2241         }
2242 
2243         lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock;
2244         kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID);
2245 
2246         if ((error = lofi_init_crypto(lsp, klip)) != 0)
2247                 goto err;
2248 
2249         if ((error = lofi_init_compress(lsp)) != 0)
2250                 goto err;
2251 
2252         fake_disk_geometry(lsp);
2253 
2254         /* create minor nodes */
2255 
2256         (void) snprintf(namebuf, sizeof (namebuf), "%d", minor);
2257         error = ddi_create_minor_node(lofi_dip, namebuf, S_IFBLK, minor,
2258             DDI_PSEUDO, NULL);
2259         if (error != DDI_SUCCESS) {
2260                 error = ENXIO;
2261                 goto err;
2262         }
2263 
2264         (void) snprintf(namebuf, sizeof (namebuf), "%d,raw", minor);
2265         error = ddi_create_minor_node(lofi_dip, namebuf, S_IFCHR, minor,
2266             DDI_PSEUDO, NULL);
2267         if (error != DDI_SUCCESS) {
2268                 /* remove block node */
2269                 (void) snprintf(namebuf, sizeof (namebuf), "%d", minor);
2270                 ddi_remove_minor_node(lofi_dip, namebuf);
2271                 error = ENXIO;
2272                 goto err;
2273         }
2274 
2275         /* create DDI properties */
2276 
2277         if ((ddi_prop_update_int64(newdev, lofi_dip, SIZE_PROP_NAME,
2278             lsp->ls_vp_size - lsp->ls_crypto_offset)) != DDI_PROP_SUCCESS) {
2279                 error = EINVAL;
2280                 goto nodeerr;
2281         }
2282 
2283         if ((ddi_prop_update_int64(newdev, lofi_dip, NBLOCKS_PROP_NAME,
2284             (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE))
2285             != DDI_PROP_SUCCESS) {
2286                 error = EINVAL;
2287                 goto nodeerr;
2288         }
2289 
2290         if (ddi_prop_update_string(newdev, lofi_dip, ZONE_PROP_NAME,
2291             (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) {
2292                 error = EINVAL;
2293                 goto nodeerr;
2294         }
2295 
2296         kstat_install(lsp->ls_kstat);
2297 
2298         mutex_exit(&lofi_lock);
2299 
2300         if (rvalp)
2301                 *rvalp = (int)minor;
2302         klip->li_minor = minor;
2303         (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2304         free_lofi_ioctl(klip);
2305         return (0);
2306 
2307 nodeerr:
2308         lofi_free_dev(newdev);
2309 err:
2310         if (lsp != NULL) {
2311                 lofi_destroy(lsp, credp);
2312         } else {
2313                 if (vp != NULL) {
2314                         (void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL);
2315                         VN_RELE(vp);
2316                 }
2317 
2318                 if (minor != (minor_t)-1)
2319                         id_free(lofi_minor_id, minor);
2320 
2321                 rctl_decr_lofi(curproc->p_zone, 1);
2322         }
2323 
2324         mutex_exit(&lofi_lock);
2325         free_lofi_ioctl(klip);
2326         return (error);
2327 }
2328 
2329 /*
2330  * unmap a file.
2331  */
2332 static int
2333 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename,
2334     struct cred *credp, int ioctl_flag)
2335 {
2336         struct lofi_state *lsp;
2337         struct lofi_ioctl *klip;
2338         int err;
2339 
2340         err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2341         if (err != 0)
2342                 return (err);
2343 
2344         mutex_enter(&lofi_lock);
2345         if (byfilename) {
2346                 if ((err = file_to_lofi(klip->li_filename, &lsp)) != 0) {
2347                         mutex_exit(&lofi_lock);
2348                         return (err);
2349                 }
2350         } else if (klip->li_minor == 0) {
2351                 mutex_exit(&lofi_lock);
2352                 free_lofi_ioctl(klip);
2353                 return (ENXIO);
2354         } else {
2355                 lsp = ddi_get_soft_state(lofi_statep, klip->li_minor);
2356         }
2357 
2358         if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) {
2359                 mutex_exit(&lofi_lock);
2360                 free_lofi_ioctl(klip);
2361                 return (ENXIO);
2362         }
2363 
2364         klip->li_minor = getminor(lsp->ls_dev);
2365 
2366         /*
2367          * If it's still held open, we'll do one of three things:
2368          *
2369          * If no flag is set, just return EBUSY.
2370          *
2371          * If the 'cleanup' flag is set, unmap and remove the device when
2372          * the last user finishes.
2373          *
2374          * If the 'force' flag is set, then we forcibly close the underlying
2375          * file.  Subsequent operations will fail, and the DKIOCSTATE ioctl
2376          * will return DKIO_DEV_GONE.  When the device is last closed, the
2377          * device will be cleaned up appropriately.
2378          *
2379          * This is complicated by the fact that we may have outstanding
2380          * dispatched I/Os.  Rather than having a single mutex to serialize all
2381          * I/O, we keep a count of the number of outstanding I/O requests
2382          * (ls_vp_iocount), as well as a flag to indicate that no new I/Os
2383          * should be dispatched (ls_vp_closereq).
2384          *
2385          * We set the flag, wait for the number of outstanding I/Os to reach 0,
2386          * and then close the underlying vnode.
2387          */
2388         if (is_opened(lsp)) {
2389                 if (klip->li_force) {
2390                         mutex_enter(&lsp->ls_vp_lock);
2391                         lsp->ls_vp_closereq = B_TRUE;
2392                         /* wake up any threads waiting on dkiocstate */
2393                         cv_broadcast(&lsp->ls_vp_cv);
2394                         while (lsp->ls_vp_iocount > 0)
2395                                 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
2396                         mutex_exit(&lsp->ls_vp_lock);
2397 
2398                         goto out;
2399                 } else if (klip->li_cleanup) {
2400                         lsp->ls_cleanup = 1;
2401                         mutex_exit(&lofi_lock);
2402                         free_lofi_ioctl(klip);
2403                         return (0);
2404                 }
2405 
2406                 mutex_exit(&lofi_lock);
2407                 free_lofi_ioctl(klip);
2408                 return (EBUSY);
2409         }
2410 
2411 out:
2412         lofi_free_dev(lsp->ls_dev);
2413         lofi_destroy(lsp, credp);
2414 
2415         mutex_exit(&lofi_lock);
2416         (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2417         free_lofi_ioctl(klip);
2418         return (0);
2419 }
2420 
2421 /*
2422  * get the filename given the minor number, or the minor number given
2423  * the name.
2424  */
2425 /*ARGSUSED*/
2426 static int
2427 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which,
2428     struct cred *credp, int ioctl_flag)
2429 {
2430         struct lofi_ioctl *klip;
2431         struct lofi_state *lsp;
2432         int     error;
2433 
2434         error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2435         if (error != 0)
2436                 return (error);
2437 
2438         switch (which) {
2439         case LOFI_GET_FILENAME:
2440                 if (klip->li_minor == 0) {
2441                         free_lofi_ioctl(klip);
2442                         return (EINVAL);
2443                 }
2444 
2445                 mutex_enter(&lofi_lock);
2446                 lsp = ddi_get_soft_state(lofi_statep, klip->li_minor);
2447                 if (lsp == NULL || lofi_access(lsp) != 0) {
2448                         mutex_exit(&lofi_lock);
2449                         free_lofi_ioctl(klip);
2450                         return (ENXIO);
2451                 }
2452 
2453                 /*
2454                  * This may fail if, for example, we're trying to look
2455                  * up a zoned NFS path from the global zone.
2456                  */
2457                 if (vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename,
2458                     sizeof (klip->li_filename), CRED()) != 0) {
2459                         (void) strlcpy(klip->li_filename, "?",
2460                             sizeof (klip->li_filename));
2461                 }
2462 
2463                 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
2464                     sizeof (klip->li_algorithm));
2465                 klip->li_crypto_enabled = lsp->ls_crypto_enabled;
2466                 mutex_exit(&lofi_lock);
2467                 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2468                 free_lofi_ioctl(klip);
2469                 return (error);
2470         case LOFI_GET_MINOR:
2471                 mutex_enter(&lofi_lock);
2472                 error = file_to_lofi(klip->li_filename, &lsp);
2473                 if (error == 0)
2474                         klip->li_minor = getminor(lsp->ls_dev);
2475                 mutex_exit(&lofi_lock);
2476 
2477                 if (error == 0)
2478                         error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2479 
2480                 free_lofi_ioctl(klip);
2481                 return (error);
2482         case LOFI_CHECK_COMPRESSED:
2483                 mutex_enter(&lofi_lock);
2484                 error = file_to_lofi(klip->li_filename, &lsp);
2485                 if (error != 0) {
2486                         mutex_exit(&lofi_lock);
2487                         free_lofi_ioctl(klip);
2488                         return (error);
2489                 }
2490 
2491                 klip->li_minor = getminor(lsp->ls_dev);
2492                 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
2493                     sizeof (klip->li_algorithm));
2494 
2495                 mutex_exit(&lofi_lock);
2496                 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2497                 free_lofi_ioctl(klip);
2498                 return (error);
2499         default:
2500                 free_lofi_ioctl(klip);
2501                 return (EINVAL);
2502         }
2503 }
2504 
2505 static int
2506 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
2507     int *rvalp)
2508 {
2509         int     error;
2510         enum dkio_state dkstate;
2511         struct lofi_state *lsp;
2512         minor_t minor;
2513 
2514         minor = getminor(dev);
2515         /* lofi ioctls only apply to the master device */
2516         if (minor == 0) {
2517                 struct lofi_ioctl *lip = (struct lofi_ioctl *)arg;
2518 
2519                 /*
2520                  * the query command only need read-access - i.e., normal
2521                  * users are allowed to do those on the ctl device as
2522                  * long as they can open it read-only.
2523                  */
2524                 switch (cmd) {
2525                 case LOFI_MAP_FILE:
2526                         if ((flag & FWRITE) == 0)
2527                                 return (EPERM);
2528                         return (lofi_map_file(dev, lip, 1, rvalp, credp, flag));
2529                 case LOFI_MAP_FILE_MINOR:
2530                         if ((flag & FWRITE) == 0)
2531                                 return (EPERM);
2532                         return (lofi_map_file(dev, lip, 0, rvalp, credp, flag));
2533                 case LOFI_UNMAP_FILE:
2534                         if ((flag & FWRITE) == 0)
2535                                 return (EPERM);
2536                         return (lofi_unmap_file(lip, 1, credp, flag));
2537                 case LOFI_UNMAP_FILE_MINOR:
2538                         if ((flag & FWRITE) == 0)
2539                                 return (EPERM);
2540                         return (lofi_unmap_file(lip, 0, credp, flag));
2541                 case LOFI_GET_FILENAME:
2542                         return (lofi_get_info(dev, lip, LOFI_GET_FILENAME,
2543                             credp, flag));
2544                 case LOFI_GET_MINOR:
2545                         return (lofi_get_info(dev, lip, LOFI_GET_MINOR,
2546                             credp, flag));
2547 
2548                 /*
2549                  * This API made limited sense when this value was fixed
2550                  * at LOFI_MAX_FILES.  However, its use to iterate
2551                  * across all possible devices in lofiadm means we don't
2552                  * want to return L_MAXMIN32, but the highest
2553                  * *allocated* minor.
2554                  */
2555                 case LOFI_GET_MAXMINOR:
2556                         minor = 0;
2557 
2558                         mutex_enter(&lofi_lock);
2559 
2560                         for (lsp = list_head(&lofi_list); lsp != NULL;
2561                             lsp = list_next(&lofi_list, lsp)) {
2562                                 if (lofi_access(lsp) != 0)
2563                                         continue;
2564 
2565                                 if (getminor(lsp->ls_dev) > minor)
2566                                         minor = getminor(lsp->ls_dev);
2567                         }
2568 
2569                         mutex_exit(&lofi_lock);
2570 
2571                         error = ddi_copyout(&minor, &lip->li_minor,
2572                             sizeof (minor), flag);
2573                         if (error)
2574                                 return (EFAULT);
2575                         return (0);
2576 
2577                 case LOFI_CHECK_COMPRESSED:
2578                         return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED,
2579                             credp, flag));
2580                 default:
2581                         return (EINVAL);
2582                 }
2583         }
2584 
2585         mutex_enter(&lofi_lock);
2586         lsp = ddi_get_soft_state(lofi_statep, minor);
2587         if (lsp == NULL || lsp->ls_vp_closereq) {
2588                 mutex_exit(&lofi_lock);
2589                 return (ENXIO);
2590         }
2591         mutex_exit(&lofi_lock);
2592 
2593         /*
2594          * We explicitly allow DKIOCSTATE, but all other ioctls should fail with
2595          * EIO as if the device was no longer present.
2596          */
2597         if (lsp->ls_vp == NULL && cmd != DKIOCSTATE)
2598                 return (EIO);
2599 
2600         /* these are for faking out utilities like newfs */
2601         switch (cmd) {
2602         case DKIOCGVTOC:
2603                 switch (ddi_model_convert_from(flag & FMODELS)) {
2604                 case DDI_MODEL_ILP32: {
2605                         struct vtoc32 vtoc32;
2606 
2607                         vtoctovtoc32(lsp->ls_vtoc, vtoc32);
2608                         if (ddi_copyout(&vtoc32, (void *)arg,
2609                             sizeof (struct vtoc32), flag))
2610                                 return (EFAULT);
2611                         break;
2612                         }
2613 
2614                 case DDI_MODEL_NONE:
2615                         if (ddi_copyout(&lsp->ls_vtoc, (void *)arg,
2616                             sizeof (struct vtoc), flag))
2617                                 return (EFAULT);
2618                         break;
2619                 }
2620                 return (0);
2621         case DKIOCINFO:
2622                 error = ddi_copyout(&lsp->ls_ci, (void *)arg,
2623                     sizeof (struct dk_cinfo), flag);
2624                 if (error)
2625                         return (EFAULT);
2626                 return (0);
2627         case DKIOCG_VIRTGEOM:
2628         case DKIOCG_PHYGEOM:
2629         case DKIOCGGEOM:
2630                 error = ddi_copyout(&lsp->ls_dkg, (void *)arg,
2631                     sizeof (struct dk_geom), flag);
2632                 if (error)
2633                         return (EFAULT);
2634                 return (0);
2635         case DKIOCSTATE:
2636                 /*
2637                  * Normally, lofi devices are always in the INSERTED state.  If
2638                  * a device is forcefully unmapped, then the device transitions
2639                  * to the DKIO_DEV_GONE state.
2640                  */
2641                 if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate),
2642                     flag) != 0)
2643                         return (EFAULT);
2644 
2645                 mutex_enter(&lsp->ls_vp_lock);
2646                 lsp->ls_vp_iocount++;
2647                 while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) ||
2648                     (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) &&
2649                     !lsp->ls_vp_closereq) {
2650                         /*
2651                          * By virtue of having the device open, we know that
2652                          * 'lsp' will remain valid when we return.
2653                          */
2654                         if (!cv_wait_sig(&lsp->ls_vp_cv,
2655                             &lsp->ls_vp_lock)) {
2656                                 lsp->ls_vp_iocount--;
2657                                 cv_broadcast(&lsp->ls_vp_cv);
2658                                 mutex_exit(&lsp->ls_vp_lock);
2659                                 return (EINTR);
2660                         }
2661                 }
2662 
2663                 dkstate = (!lsp->ls_vp_closereq && lsp->ls_vp != NULL ?
2664                     DKIO_INSERTED : DKIO_DEV_GONE);
2665                 lsp->ls_vp_iocount--;
2666                 cv_broadcast(&lsp->ls_vp_cv);
2667                 mutex_exit(&lsp->ls_vp_lock);
2668 
2669                 if (ddi_copyout(&dkstate, (void *)arg,
2670                     sizeof (dkstate), flag) != 0)
2671                         return (EFAULT);
2672                 return (0);
2673         default:
2674                 return (ENOTTY);
2675         }
2676 }
2677 
2678 static struct cb_ops lofi_cb_ops = {
2679         lofi_open,              /* open */
2680         lofi_close,             /* close */
2681         lofi_strategy,          /* strategy */
2682         nodev,                  /* print */
2683         nodev,                  /* dump */
2684         lofi_read,              /* read */
2685         lofi_write,             /* write */
2686         lofi_ioctl,             /* ioctl */
2687         nodev,                  /* devmap */
2688         nodev,                  /* mmap */
2689         nodev,                  /* segmap */
2690         nochpoll,               /* poll */
2691         ddi_prop_op,            /* prop_op */
2692         0,                      /* streamtab  */
2693         D_64BIT | D_NEW | D_MP, /* Driver compatibility flag */
2694         CB_REV,
2695         lofi_aread,
2696         lofi_awrite
2697 };
2698 
2699 static struct dev_ops lofi_ops = {
2700         DEVO_REV,               /* devo_rev, */
2701         0,                      /* refcnt  */
2702         lofi_info,              /* info */
2703         nulldev,                /* identify */
2704         nulldev,                /* probe */
2705         lofi_attach,            /* attach */
2706         lofi_detach,            /* detach */
2707         nodev,                  /* reset */
2708         &lofi_cb_ops,               /* driver operations */
2709         NULL,                   /* no bus operations */
2710         NULL,                   /* power */
2711         ddi_quiesce_not_needed, /* quiesce */
2712 };
2713 
2714 static struct modldrv modldrv = {
2715         &mod_driverops,
2716         "loopback file driver",
2717         &lofi_ops,
2718 };
2719 
2720 static struct modlinkage modlinkage = {
2721         MODREV_1,
2722         &modldrv,
2723         NULL
2724 };
2725 
2726 int
2727 _init(void)
2728 {
2729         int error;
2730 
2731         list_create(&lofi_list, sizeof (struct lofi_state),
2732             offsetof(struct lofi_state, ls_list));
2733 
2734         error = ddi_soft_state_init(&lofi_statep,
2735             sizeof (struct lofi_state), 0);
2736         if (error)
2737                 return (error);
2738 
2739         mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL);
2740 
2741         error = mod_install(&modlinkage);
2742         if (error) {
2743                 mutex_destroy(&lofi_lock);
2744                 ddi_soft_state_fini(&lofi_statep);
2745                 list_destroy(&lofi_list);
2746         }
2747 
2748         return (error);
2749 }
2750 
2751 int
2752 _fini(void)
2753 {
2754         int     error;
2755 
2756         mutex_enter(&lofi_lock);
2757 
2758         if (!list_is_empty(&lofi_list)) {
2759                 mutex_exit(&lofi_lock);
2760                 return (EBUSY);
2761         }
2762 
2763         mutex_exit(&lofi_lock);
2764 
2765         error = mod_remove(&modlinkage);
2766         if (error)
2767                 return (error);
2768 
2769         mutex_destroy(&lofi_lock);
2770         ddi_soft_state_fini(&lofi_statep);
2771         list_destroy(&lofi_list);
2772 
2773         return (error);
2774 }
2775 
2776 int
2777 _info(struct modinfo *modinfop)
2778 {
2779         return (mod_info(&modlinkage, modinfop));
2780 }