
new/usr/src/cmd/lofiadm/main.c 1

**
 53990 Mon Sep 16 15:02:46 2013
new/usr/src/cmd/lofiadm/main.c
*** NO COMMENTS ***
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright 2012 Joyent, Inc. All rights reserved.
25 */

27 /*
28 * lofiadm - administer lofi(7d). Very simple, add and remove file<->device
29 * associations, and display status. All the ioctls are private between
30 * lofi and lofiadm, and so are very simple - device information is
31 * communicated via a minor number.
32 */

34 #include <sys/types.h>
35 #include <sys/param.h>
36 #include <sys/lofi.h>
37 #include <sys/stat.h>
38 #include <sys/sysmacros.h>
39 #include <netinet/in.h>
40 #include <stdio.h>
41 #include <fcntl.h>
42 #include <locale.h>
43 #include <string.h>
44 #include <strings.h>
45 #include <errno.h>
46 #include <stdlib.h>
47 #include <unistd.h>
48 #include <stropts.h>
49 #include <libdevinfo.h>
50 #include <libgen.h>
51 #include <ctype.h>
52 #include <dlfcn.h>
53 #include <limits.h>
54 #include <security/cryptoki.h>
55 #include <cryptoutil.h>
56 #include <sys/crypto/ioctl.h>
57 #include <sys/crypto/ioctladmin.h>
58 #include "utils.h"
59 #include <LzmaEnc.h>

61 /* Only need the IV len #defines out of these files, nothing else. */

new/usr/src/cmd/lofiadm/main.c 2

62 #include <aes/aes_impl.h>
63 #include <des/des_impl.h>
64 #include <blowfish/blowfish_impl.h>

66 static const char USAGE[] =
67 "Usage: %s [-r] -a file [device] "
67 "Usage: %s -a file [device] "
68 " [-c aes-128-cbc|aes-192-cbc|aes-256-cbc|des3-cbc|blowfish-cbc]"
69 " [-e] [-k keyfile] [-T [token]:[manuf]:[serial]:key]\n"
70 " %s -d file | device\n"
71 " %s -C [gzip|gzip-6|gzip-9|lzma] [-s segment_size] file\n"
72 " %s -U file\n"
73 " %s [file | device]\n";

75 typedef struct token_spec {
76 char *name;
77 char *mfr;
78 char *serno;
79 char *key;
80 } token_spec_t;

______unchanged_portion_omitted_

361 /*
362 * Add a device association. If devicename is NULL, let the driver
363 * pick a device.
364 */
365 static void
366 add_mapping(int lfd, const char *devicename, const char *filename,
367 mech_alias_t *cipher, const char *rkey, size_t rksz, boolean_t rdonly)
367 mech_alias_t *cipher, const char *rkey, size_t rksz)
368 {
369 struct lofi_ioctl li;

371 li.li_readonly = rdonly;

373 li.li_crypto_enabled = B_FALSE;
374 if (cipher != NULL) {
375 /* set up encryption for mapped file */
376 li.li_crypto_enabled = B_TRUE;
377 (void) strlcpy(li.li_cipher, cipher->name,
378 sizeof (li.li_cipher));
379 if (rksz > sizeof (li.li_key)) {
380 die(gettext("key too large"));
381 }
382 bcopy(rkey, li.li_key, rksz);
383 li.li_key_len = rksz << 3; /* convert to bits */

385 li.li_iv_type = cipher->iv_type;
386 li.li_iv_len = cipher->iv_len; /* 0 when no iv needed */
387 switch (cipher->iv_type) {
388 case IVM_ENC_BLKNO:
389 (void) strlcpy(li.li_iv_cipher, cipher->iv_name,
390 sizeof (li.li_iv_cipher));
391 break;
392 case IVM_NONE:
393 /* FALLTHROUGH */
394 default:
395 break;
396 }
397 }

399 if (devicename == NULL) {
400 int minor;

402 /* pick one via the driver */
403 minor = lofi_map_file(lfd, li, filename);

new/usr/src/cmd/lofiadm/main.c 3

404 /* if mapping succeeds, print the one picked */
405 (void) printf("/dev/%s/%d\n", LOFI_BLOCK_NAME, minor);
406 return;
407 }

409 /* use device we were given */
410 li.li_minor = name_to_minor(devicename);
411 if (li.li_minor == 0) {
412 die(gettext("malformed device name %s\n"), devicename);
413 }
414 (void) strlcpy(li.li_filename, filename, sizeof (li.li_filename));

416 /* if device is already in use li.li_minor won’t change */
417 if (ioctl(lfd, LOFI_MAP_FILE_MINOR, &li) == -1) {
418 if (errno == ENOTSUP)
419 warn(gettext("encrypting compressed files is "
420 "unsupported"));
421 die(gettext("could not map file %s to %s"), filename,
422 devicename);
423 }
424 wait_until_dev_complete(li.li_minor);
425 }

______unchanged_portion_omitted_

492 /*
493 * Print the list of all the mappings, including a header.
494 */
495 static void
496 print_mappings(int fd)
497 {
498 struct lofi_ioctl li;
499 int minor;
500 int maxminor;
501 char path[MAXPATHLEN];
502 char options[MAXPATHLEN] = { 0 };
500 char options[MAXPATHLEN];

504 li.li_minor = 0;
505 if (ioctl(fd, LOFI_GET_MAXMINOR, &li) == -1) {
506 die("ioctl");
507 }
508 maxminor = li.li_minor;

510 (void) printf(FORMAT, gettext("Block Device"), gettext("File"),
511 gettext("Options"));
512 for (minor = 1; minor <= maxminor; minor++) {
513 li.li_minor = minor;
514 if (ioctl(fd, LOFI_GET_FILENAME, &li) == -1) {
515 if (errno == ENXIO)
516 continue;
517 warn("ioctl");
518 break;
519 }
520 (void) snprintf(path, sizeof (path), "/dev/%s/%d",
521 LOFI_BLOCK_NAME, minor);

523 options[0] = ’\0’;

525 /*
526 * Encrypted lofi and compressed lofi are mutually exclusive.
527 */
528 if (li.li_crypto_enabled)
529 (void) snprintf(options, sizeof (options),
530 gettext("Encrypted"));
531 else if (li.li_algorithm[0] != ’\0’)
532 (void) snprintf(options, sizeof (options),

new/usr/src/cmd/lofiadm/main.c 4

533 gettext("Compressed(%s)"), li.li_algorithm);
534 if (li.li_readonly) {
535 if (strlen(options) != 0) {
536 (void) strlcat(options, ",", sizeof (options));
537 (void) strlcat(options, "Readonly",
538 sizeof (options));
539 } else {
540 (void) snprintf(options, sizeof (options),
541 gettext("Readonly"));
542 }
543 }
544 if (strlen(options) == 0)
529 else
545 (void) snprintf(options, sizeof (options), "-");

547 (void) printf(FORMAT, path, li.li_filename, options);
548 }
549 }

______unchanged_portion_omitted_

1790 int
1791 main(int argc, char *argv[])
1792 {
1793 int lfd;
1794 int c;
1795 const char *devicename = NULL;
1796 const char *filename = NULL;
1797 const char *algname = COMPRESS_ALGORITHM;
1798 int openflag;
1799 int minor;
1800 int compress_index;
1801 uint32_t segsize = SEGSIZE;
1802 static char *lofictl = "/dev/" LOFI_CTL_NAME;
1803 boolean_t force = B_FALSE;
1804 const char *pname;
1805 boolean_t errflag = B_FALSE;
1806 boolean_t addflag = B_FALSE;
1807 boolean_t rdflag = B_FALSE;
1808 boolean_t deleteflag = B_FALSE;
1809 boolean_t ephflag = B_FALSE;
1810 boolean_t compressflag = B_FALSE;
1811 boolean_t uncompressflag = B_FALSE;
1812 /* the next two work together for -c, -k, -T, -e options only */
1813 boolean_t need_crypto = B_FALSE; /* if any -c, -k, -T, -e */
1814 boolean_t cipher_only = B_TRUE; /* if -c only */
1815 const char *keyfile = NULL;
1816 mech_alias_t *cipher = NULL;
1817 token_spec_t *token = NULL;
1818 char *rkey = NULL;
1819 size_t rksz = 0;
1820 char realfilename[MAXPATHLEN];

1822 pname = getpname(argv[0]);

1824 (void) setlocale(LC_ALL, "");
1825 (void) textdomain(TEXT_DOMAIN);

1827 while ((c = getopt(argc, argv, "a:c:Cd:efk:o:rs:T:U")) != EOF) {
1811 while ((c = getopt(argc, argv, "a:c:Cd:efk:o:s:T:U")) != EOF) {
1828 switch (c) {
1829 case ’a’:
1830 addflag = B_TRUE;
1831 if ((filename = realpath(optarg, realfilename)) == NULL)
1832 die("%s", optarg);
1833 if (((argc - optind) > 0) && (*argv[optind] != ’-’)) {
1834 /* optional device */

new/usr/src/cmd/lofiadm/main.c 5

1835 devicename = argv[optind];
1836 optind++;
1837 }
1838 break;
1839 case ’C’:
1840 compressflag = B_TRUE;
1841 if (((argc - optind) > 1) && (*argv[optind] != ’-’)) {
1842 /* optional algorithm */
1843 algname = argv[optind];
1844 optind++;
1845 }
1846 check_algorithm_validity(algname, &compress_index);
1847 break;
1848 case ’c’:
1849 /* is the chosen cipher allowed? */
1850 if ((cipher = ciph2mech(optarg)) == NULL) {
1851 errflag = B_TRUE;
1852 warn(gettext("cipher %s not allowed\n"),
1853 optarg);
1854 }
1855 need_crypto = B_TRUE;
1856 /* cipher_only is already set */
1857 break;
1858 case ’d’:
1859 deleteflag = B_TRUE;
1860 minor = name_to_minor(optarg);
1861 if (minor != 0)
1862 devicename = optarg;
1863 else {
1864 if ((filename = realpath(optarg,
1865 realfilename)) == NULL)
1866 die("%s", optarg);
1867 }
1868 break;
1869 case ’e’:
1870 ephflag = B_TRUE;
1871 need_crypto = B_TRUE;
1872 cipher_only = B_FALSE; /* need to unset cipher_only */
1873 break;
1874 case ’f’:
1875 force = B_TRUE;
1876 break;
1877 case ’k’:
1878 keyfile = optarg;
1879 need_crypto = B_TRUE;
1880 cipher_only = B_FALSE; /* need to unset cipher_only */
1881 break;
1882 case ’r’:
1883 rdflag = B_TRUE;
1884 break;
1885 case ’s’:
1886 segsize = convert_to_num(optarg);
1887 if (segsize < DEV_BSIZE || !ISP2(segsize))
1888 die(gettext("segment size %s is invalid "
1889 "or not a multiple of minimum block "
1890 "size %ld\n"), optarg, DEV_BSIZE);
1891 break;
1892 case ’T’:
1893 if ((token = parsetoken(optarg)) == NULL) {
1894 errflag = B_TRUE;
1895 warn(
1896 gettext("invalid token key specifier %s\n"),
1897 optarg);
1898 }
1899 need_crypto = B_TRUE;
1900 cipher_only = B_FALSE; /* need to unset cipher_only */

new/usr/src/cmd/lofiadm/main.c 6

1901 break;
1902 case ’U’:
1903 uncompressflag = B_TRUE;
1904 break;
1905 case ’?’:
1906 default:
1907 errflag = B_TRUE;
1908 break;
1909 }
1910 }

1912 /* Check for mutually exclusive combinations of options */
1913 if (errflag ||
1914 (addflag && deleteflag) ||
1915 (rdflag && !addflag) ||
1916 (!addflag && need_crypto) ||
1917 ((compressflag || uncompressflag) && (addflag || deleteflag)))
1918 usage(pname);

1920 /* ephemeral key, and key from either file or token are incompatible */
1921 if (ephflag && (keyfile != NULL || token != NULL)) {
1922 die(gettext("ephemeral key cannot be used with keyfile"
1923 " or token key\n"));
1924 }

1926 /*
1927 * "-c" but no "-k", "-T", "-e", or "-T -k" means derive key from
1928 * command line passphrase
1929 */

1931 switch (argc - optind) {
1932 case 0: /* no more args */
1933 if (compressflag || uncompressflag) /* needs filename */
1934 usage(pname);
1935 break;
1936 case 1:
1937 if (addflag || deleteflag)
1938 usage(pname);
1939 /* one arg means compress/uncompress the file ... */
1940 if (compressflag || uncompressflag) {
1941 if ((filename = realpath(argv[optind],
1942 realfilename)) == NULL)
1943 die("%s", argv[optind]);
1944 /* ... or without options means print the association */
1945 } else {
1946 minor = name_to_minor(argv[optind]);
1947 if (minor != 0)
1948 devicename = argv[optind];
1949 else {
1950 if ((filename = realpath(argv[optind],
1951 realfilename)) == NULL)
1952 die("%s", argv[optind]);
1953 }
1954 }
1955 break;
1956 default:
1957 usage(pname);
1958 break;
1959 }

1961 if (addflag || compressflag || uncompressflag)
1962 check_file_validity(filename);

1964 if (filename && !valid_abspath(filename))
1965 exit(E_ERROR);

new/usr/src/cmd/lofiadm/main.c 7

1967 /*
1968 * Here, we know the arguments are correct, the filename is an
1969 * absolute path, it exists and is a regular file. We don’t yet
1970 * know that the device name is ok or not.
1971 */

1973 openflag = O_EXCL;
1974 if (addflag || deleteflag || compressflag || uncompressflag)
1975 openflag |= O_RDWR;
1976 else
1977 openflag |= O_RDONLY;
1978 lfd = open(lofictl, openflag);
1979 if (lfd == -1) {
1980 if ((errno == EPERM) || (errno == EACCES)) {
1981 die(gettext("you do not have permission to perform "
1982 "that operation.\n"));
1983 } else {
1984 die(gettext("open: %s"), lofictl);
1985 }
1986 /*NOTREACHED*/
1987 }

1989 /*
1990 * No passphrase is needed for ephemeral key, or when key is
1991 * in a file and not wrapped by another key from a token.
1992 * However, a passphrase is needed in these cases:
1993 * 1. cipher with no ephemeral key, key file, or token,
1994 * in which case the passphrase is used to build the key
1995 * 2. token with an optional cipher or optional key file,
1996 * in which case the passphrase unlocks the token
1997 * If only the cipher is specified, reconfirm the passphrase
1998 * to ensure the user hasn’t mis-entered it. Otherwise, the
1999 * token will enforce the token passphrase.
2000 */
2001 if (need_crypto) {
2002 CK_SESSION_HANDLE sess;

2004 /* pick a cipher if none specified */
2005 if (cipher == NULL)
2006 cipher = DEFAULT_CIPHER;

2008 if (!kernel_cipher_check(cipher))
2009 die(gettext(
2010 "use \"cryptoadm list -m\" to find available "
2011 "mechanisms\n"));

2013 init_crypto(token, cipher, &sess);

2015 if (cipher_only) {
2016 getkeyfromuser(cipher, &rkey, &rksz);
2017 } else if (token != NULL) {
2018 getkeyfromtoken(sess, token, keyfile, cipher,
2019 &rkey, &rksz);
2020 } else {
2021 /* this also handles ephemeral keys */
2022 getkeyfromfile(keyfile, cipher, &rkey, &rksz);
2023 }

2025 end_crypto(sess);
2026 }

2028 /*
2029 * Now to the real work.
2030 */
2031 if (addflag)
2032 add_mapping(lfd, devicename, filename, cipher, rkey, rksz,

new/usr/src/cmd/lofiadm/main.c 8

2033 rdflag);
2012 add_mapping(lfd, devicename, filename, cipher, rkey, rksz);
2034 else if (compressflag)
2035 lofi_compress(&lfd, filename, compress_index, segsize);
2036 else if (uncompressflag)
2037 lofi_uncompress(lfd, filename);
2038 else if (deleteflag)
2039 delete_mapping(lfd, devicename, filename, force);
2040 else if (filename || devicename)
2041 print_one_mapping(lfd, devicename, filename);
2042 else
2043 print_mappings(lfd);

2045 if (lfd != -1)
2046 (void) close(lfd);
2047 closelib();
2048 return (E_SUCCESS);
2049 }
______unchanged_portion_omitted_

new/usr/src/man/man1m/lofiadm.1m 1

**
 18081 Mon Sep 16 15:02:47 2013
new/usr/src/man/man1m/lofiadm.1m
*** NO COMMENTS ***
**

1 ’\" te
2 .\" Copyright (c) 2008, Sun Microsystems, Inc. All Rights Reserved
3 .\" The contents of this file are subject to the terms of the Common Development
4 .\" See the License for the specific language governing permissions and limitat
5 .\" the fields enclosed by brackets "[]" replaced with your own identifying info
6 .TH LOFIADM 1M "Aug 28, 2013"
6 .TH LOFIADM 1M "Aug 31, 2009"
7 .SH NAME
8 lofiadm \- administer files available as block devices through lofi
9 .SH SYNOPSIS

10 .LP
11 .nf
12 \fBlofiadm\fR [\fB-r\fR] \fB-a\fR \fIfile\fR [\fIdevice\fR]
12 \fB/usr/sbin/lofiadm\fR \fB-a\fR \fIfile\fR [\fIdevice\fR]
13 .fi

15 .LP
16 .nf
17 \fBlofiadm\fR [\fB-r\fR] \fB-c\fR \fIcrypto_algorithm\fR \fB-a\fR \fIfile\fR [\f
17 \fB/usr/sbin/lofiadm\fR \fB-c\fR \fIcrypto_algorithm\fR \fB-a\fR \fIfile\fR [\fI
18 .fi

20 .LP
21 .nf
22 \fBlofiadm\fR [\fB-r\fR] \fB-c\fR \fIcrypto_algorithm\fR \fB-k\fR \fIraw_key_fil
22 \fB/usr/sbin/lofiadm\fR \fB-c\fR \fIcrypto_algorithm\fR \fB-k\fR \fIraw_key_file
23 .fi

25 .LP
26 .nf
27 \fBlofiadm\fR [\fB-r\fR] \fB-c\fR \fIcrypto_algorithm\fR \fB-T\fR \fItoken_key\f
27 \fB/usr/sbin/lofiadm\fR \fB-c\fR \fIcrypto_algorithm\fR \fB-T\fR \fItoken_key\fR
28 .fi

30 .LP
31 .nf
32 \fBlofiadm\fR [\fB-r\fR] \fB-c\fR \fIcrypto_algorithm\fR \fB-T\fR \fItoken_key\f
32 \fB/usr/sbin/lofiadm\fR \fB-c\fR \fIcrypto_algorithm\fR \fB-T\fR \fItoken_key\fR
33 \fB-k\fR \fIwrapped_key_file\fR \fB-a\fR \fIfile\fR [\fIdevice\fR]
34 .fi

36 .LP
37 .nf
38 \fBlofiadm\fR [\fB-r\fR] \fB-c\fR \fIcrypto_algorithm\fR \fB-e\fR \fB-a\fR \fIfi
38 \fB/usr/sbin/lofiadm\fR \fB-c\fR \fIcrypto_algorithm\fR \fB-e\fR \fB-a\fR \fIfil
39 .fi

41 .LP
42 .nf
43 \fBlofiadm\fR \fB-C\fR \fIalgorithm\fR [\fB-s\fR \fIsegment_size\fR] \fIfile\fR
43 \fB/usr/sbin/lofiadm\fR \fB-C\fR \fIalgorithm\fR [\fB-s\fR \fIsegment_size\fR] \
44 .fi

46 .LP
47 .nf
48 \fBlofiadm\fR \fB-d\fR \fIfile\fR | \fIdevice\fR
48 \fB/usr/sbin/lofiadm\fR \fB-d\fR \fIfile\fR | \fIdevice\fR
49 .fi

51 .LP
52 .nf

new/usr/src/man/man1m/lofiadm.1m 2

53 \fBlofiadm\fR \fB-U\fR \fIfile\fR
53 \fB/usr/sbin/lofiadm\fR \fB-U\fR \fIfile\fR
54 .fi

56 .LP
57 .nf
58 \fBlofiadm\fR [\fIfile\fR | \fIdevice\fR]
58 \fB/usr/sbin/lofiadm\fR [\fIfile\fR | \fIdevice\fR]
59 .fi

61 .SH DESCRIPTION
62 .sp
63 .LP
64 \fBlofiadm\fR administers \fBlofi\fR, the loopback file driver. \fBlofi\fR
65 allows a file to be associated with a block device. That file can then be
66 accessed through the block device. This is useful when the file contains an
67 image of some filesystem (such as a floppy or \fBCD-ROM\fR image), because the
68 block device can then be used with the normal system utilities for mounting,
69 checking or repairing filesystems. See \fBfsck\fR(1M) and \fBmount\fR(1M).
70 .sp
71 .LP
72 Use \fBlofiadm\fR to add a file as a loopback device, remove such an
73 association, or print information about the current associations.
74 .sp
75 .LP
76 Encryption and compression options are mutually exclusive on the command line.
77 Further, an encrypted file cannot be compressed later, nor can a compressed
78 file be encrypted later.
79 .sp
80 .LP
81 The \fBlofi\fR driver is not available and will not work inside a zone.
82 .SH OPTIONS
83 .sp
84 .LP
85 The following options are supported:
86 .sp
87 .ne 2
88 .na
89 \fB\fB-a\fR \fIfile\fR [\fIdevice\fR]\fR
90 .ad
91 .sp .6
92 .RS 4n
93 Add \fIfile\fR as a block device.
94 .sp
95 If \fIdevice\fR is not specified, an available device is picked.
96 .sp
97 If \fIdevice\fR is specified, \fBlofiadm\fR attempts to assign it to
98 \fIfile\fR. \fIdevice\fR must be available or \fBlofiadm\fR will fail. The
99 ability to specify a device is provided for use in scripts that wish to
100 reestablish a particular set of associations.
101 .RE

103 .sp
104 .ne 2
105 .na
106 \fB\fB-C\fR {\fIgzip\fR | \fIgzip-N\fR | \fIlzma\fR}\fR
107 .ad
108 .sp .6
109 .RS 4n
110 Compress the file with the specified compression algorithm.
111 .sp
112 The \fBgzip\fR compression algorithm uses the same compression as the
113 open-source \fBgzip\fR command. You can specify the \fBgzip\fR level by using
114 the value \fBgzip-\fR\fIN\fR where \fIN\fR is 6 (fast) or 9 (best compression
115 ratio). Currently, \fBgzip\fR, without a number, is equivalent to \fBgzip-6\fR
116 (which is also the default for the \fBgzip\fR command).

new/usr/src/man/man1m/lofiadm.1m 3

117 .sp
118 \fIlzma\fR stands for the LZMA (Lempel-Ziv-Markov) compression algorithm.
119 .sp
120 Note that you cannot write to a compressed file, nor can you mount a compressed
121 file read/write.
122 .RE

124 .sp
125 .ne 2
126 .na
127 \fB\fB-d\fR \fIfile\fR | \fIdevice\fR\fR
128 .ad
129 .sp .6
130 .RS 4n
131 Remove an association by \fIfile\fR or \fIdevice\fR name, if the associated
132 block device is not busy, and deallocates the block device.
133 .RE

135 .sp
136 .ne 2
137 .na
138 \fB\fB-r\fR
139 .ad
140 .sp .6
141 .RS 4n
142 If the \fB-r\fR option is specified before the \fB-a\fR option, the
143 \fIdevice\fR will be opened read-only.
144 .RE

146 .sp
147 .ne 2
148 .na
149 \fB\fB-s\fR \fIsegment_size\fR\fR
150 .ad
151 .sp .6
152 .RS 4n
153 The segment size to use to divide the file being compressed. \fIsegment_size\fR
154 can be an integer multiple of 512.
155 .RE

157 .sp
158 .ne 2
159 .na
160 \fB\fB-U\fR \fIfile\fR\fR
161 .ad
162 .sp .6
163 .RS 4n
164 Uncompress a compressed file.
165 .RE

167 .sp
168 .LP
169 The following options are used when the file is encrypted:
170 .sp
171 .ne 2
172 .na
173 \fB\fB-c\fR \fIcrypto_algorithm\fR\fR
174 .ad
175 .sp .6
176 .RS 4n
177 Select the encryption algorithm. The algorithm must be specified when
178 encryption is enabled because the algorithm is not stored in the disk image.
179 .sp
180 If none of \fB-e\fR, \fB-k\fR, or \fB-T\fR is specified, \fBlofiadm\fR prompts
181 for a passphrase, with a minimum length of eight characters, to be entered .
182 The passphrase is used to derive a symmetric encryption key using PKCS#5 PBKD2.

new/usr/src/man/man1m/lofiadm.1m 4

183 .RE

185 .sp
186 .ne 2
187 .na
188 \fB\fB-k\fR \fIraw_key_file\fR | \fIwrapped_key_file\fR\fR
189 .ad
190 .sp .6
191 .RS 4n
192 Path to raw or wrapped symmetric encryption key. If a PKCS#11 object is also
193 given with the \fB-T\fR option, then the key is wrapped by that object. If
194 \fB-T\fR is not specified, the key is used raw.
195 .RE

197 .sp
198 .ne 2
199 .na
200 \fB\fB-T\fR \fItoken_key\fR\fR
201 .ad
202 .sp .6
203 .RS 4n
204 The key in a PKCS#11 token to use for the encryption or for unwrapping the key
205 file.
206 .sp
207 If \fB-k\fR is also specified, \fB-T\fR identifies the unwrapping key, which
208 must be an RSA private key.
209 .RE

211 .sp
212 .ne 2
213 .na
214 \fB\fB-e\fR\fR
215 .ad
216 .sp .6
217 .RS 4n
218 Generate an ephemeral symmetric encryption key.
219 .RE

221 .SH OPERANDS
222 .sp
223 .LP
224 The following operands are supported:
225 .sp
226 .ne 2
227 .na
228 \fB\fIcrypto_algorithm\fR\fR
229 .ad
230 .sp .6
231 .RS 4n
232 One of: \fBaes-128-cbc\fR, \fBaes-192-cbc\fR, \fBaes-256-cbc\fR,
233 \fBdes3-cbc\fR, \fBblowfish-cbc\fR.
234 .RE

236 .sp
237 .ne 2
238 .na
239 \fB\fIdevice\fR\fR
240 .ad
241 .sp .6
242 .RS 4n
243 Display the file name associated with the block device \fIdevice\fR.
244 .sp
245 Without arguments, print a list of the current associations. Filenames must be
246 valid absolute pathnames.
247 .sp
248 When a file is added, it is opened for reading or writing by root. Any

new/usr/src/man/man1m/lofiadm.1m 5

249 restrictions apply (such as restricted root access over \fBNFS\fR). The file is
250 held open until the association is removed. It is not actually accessed until
251 the block device is used, so it will never be written to if the block device is
252 only opened read-only.
253 .RE

255 .sp
256 .ne 2
257 .na
258 \fB\fIfile\fR\fR
259 .ad
260 .sp .6
261 .RS 4n
262 Display the block device associated with \fIfile\fR.
263 .RE

265 .sp
266 .ne 2
267 .na
268 \fB\fIraw_key_file\fR\fR
269 .ad
270 .sp .6
271 .RS 4n
272 Path to a file of the appropriate length, in bits, to use as a raw symmetric
273 encryption key.
274 .RE

276 .sp
277 .ne 2
278 .na
279 \fB\fItoken_key\fR\fR
280 .ad
281 .sp .6
282 .RS 4n
283 PKCS#11 token object in the format:
284 .sp
285 .in +2
286 .nf
287 \fItoken_name\fR:\fImanufacturer_id\fR:\fIserial_number\fR:\fIkey_label\fR
288 .fi
289 .in -2
290 .sp

292 All but the key label are optional and can be empty. For example, to specify a
293 token object with only its key label \fBMylofiKey\fR, use:
294 .sp
295 .in +2
296 .nf
297 -T :::MylofiKey
298 .fi
299 .in -2
300 .sp

302 .RE

304 .sp
305 .ne 2
306 .na
307 \fB\fIwrapped_key_file\fR\fR
308 .ad
309 .sp .6
310 .RS 4n
311 Path to file containing a symmetric encryption key wrapped by the RSA private
312 key specified by \fB-T\fR.
313 .RE

new/usr/src/man/man1m/lofiadm.1m 6

315 .SH EXAMPLES
316 .LP
317 \fBExample 1 \fRMounting an Existing CD-ROM Image
318 .sp
319 .LP
320 You should ensure that Solaris understands the image before creating the
321 \fBCD\fR. \fBlofi\fR allows you to mount the image and see if it works.

323 .sp
324 .LP
325 This example mounts an existing \fBCD-ROM\fR image (\fBsparc.iso\fR), of the
326 \fBRed Hat 6.0 CD\fR which was downloaded from the Internet. It was created
327 with the \fBmkisofs\fR utility from the Internet.

329 .sp
330 .LP
331 Use \fBlofiadm\fR to attach a block device to it:

333 .sp
334 .in +2
335 .nf
336 # \fBlofiadm -a /home/mike_s/RH6.0/sparc.iso\fR
337 /dev/lofi/1
338 .fi
339 .in -2
340 .sp

342 .sp
343 .LP
344 \fBlofiadm\fR picks the device and prints the device name to the standard
345 output. You can run \fBlofiadm\fR again by issuing the following command:

347 .sp
348 .in +2
349 .nf
350 # \fBlofiadm\fR
351 Block Device File Options
352 /dev/lofi/1 /home/mike_s/RH6.0/sparc.iso -
353 .fi
354 .in -2
355 .sp

357 .sp
358 .LP
359 Or, you can give it one name and ask for the other, by issuing the following
360 command:

362 .sp
363 .in +2
364 .nf
365 # \fBlofiadm /dev/lofi/1\fR
366 /home/mike_s/RH6.0/sparc.iso
367 .fi
368 .in -2
369 .sp

371 .sp
372 .LP
373 Use the \fBmount\fR command to mount the image:

375 .sp
376 .in +2
377 .nf
378 # \fBmount -F hsfs -o ro /dev/lofi/1 /mnt\fR
379 .fi
380 .in -2

new/usr/src/man/man1m/lofiadm.1m 7

381 .sp

383 .sp
384 .LP
385 Check to ensure that Solaris understands the image:

387 .sp
388 .in +2
389 .nf
390 # \fBdf -k /mnt\fR
391 Filesystem kbytes used avail capacity Mounted on
392 /dev/lofi/1 512418 512418 0 100% /mnt
393 # \fBls /mnt\fR
394 \&./ RedHat/ doc/ ls-lR rr_moved/
395 \&../ TRANS.TBL dosutils/ ls-lR.gz sbin@
396 \&.buildlog bin@ etc@ misc/ tmp/
397 COPYING boot/ images/ mnt/ usr@
398 README boot.cat* kernels/ modules/
399 RPM-PGP-KEY dev@ lib@ proc/
400 .fi
401 .in -2
402 .sp

404 .sp
405 .LP
406 Solaris can mount the CD-ROM image, and understand the filenames. The image was
407 created properly, and you can now create the \fBCD-ROM\fR with confidence.

409 .sp
410 .LP
411 As a final step, unmount and detach the images:

413 .sp
414 .in +2
415 .nf
416 # \fBumount /mnt\fR
417 # \fBlofiadm -d /dev/lofi/1\fR
418 # \fBlofiadm\fR
419 Block Device File Options
420 .fi
421 .in -2
422 .sp

424 .LP
425 \fBExample 2 \fRMounting a Floppy Image
426 .sp
427 .LP
428 This is similar to the first example.

430 .sp
431 .LP
432 Using \fBlofi\fR to help you mount files that contain floppy images is helpful
433 if a floppy disk contains a file that you need, but the machine which you are
434 on does not have a floppy drive. It is also helpful if you do not want to take
435 the time to use the \fBdd\fR command to copy the image to a floppy.

437 .sp
438 .LP
439 This is an example of getting to \fBMDB\fR floppy for Solaris on an x86
440 platform:

442 .sp
443 .in +2
444 .nf
445 # \fBlofiadm -a /export/s28/MDB_s28x_wos/latest/boot.3\fR
446 /dev/lofi/1

new/usr/src/man/man1m/lofiadm.1m 8

447 # \fBmount -F pcfs /dev/lofi/1 /mnt\fR
448 # \fBls /mnt\fR
449 \&./ COMMENT.BAT* RC.D/ SOLARIS.MAP*
450 \&../ IDENT* REPLACE.BAT* X/
451 APPEND.BAT* MAKEDIR.BAT* SOLARIS/
452 # \fBumount /mnt\fR
453 # \fBlofiadm -d /export/s28/MDB_s28x_wos/latest/boot.3\fR
454 .fi
455 .in -2
456 .sp

458 .LP
459 \fBExample 3 \fRMaking a \fBUFS\fR Filesystem on a File
460 .sp
461 .LP
462 Making a \fBUFS\fR filesystem on a file can be useful, particularly if a test
463 suite requires a scratch filesystem. It can be painful (or annoying) to have to
464 repartition a disk just for the test suite, but you do not have to. You can
465 \fBnewfs\fR a file with \fBlofi\fR

467 .sp
468 .LP
469 Create the file:

471 .sp
472 .in +2
473 .nf
474 # \fBmkfile 35m /export/home/test\fR
475 .fi
476 .in -2
477 .sp

479 .sp
480 .LP
481 Attach it to a block device. You also get the character device that \fBnewfs\fR
482 requires, so \fBnewfs\fR that:

484 .sp
485 .in +2
486 .nf
487 # \fBlofiadm -a /export/home/test\fR
488 /dev/lofi/1
489 # \fBnewfs /dev/rlofi/1\fR
490 newfs: construct a new file system /dev/rlofi/1: (y/n)? \fBy\fR
491 /dev/rlofi/1: 71638 sectors in 119 cylinders of 1 tracks, 602 sectors
492 35.0MB in 8 cyl groups (16 c/g, 4.70MB/g, 2240 i/g)
493 super-block backups (for fsck -F ufs -o b=#) at:
494 32, 9664, 19296, 28928, 38560, 48192, 57824, 67456,
495 .fi
496 .in -2
497 .sp

499 .sp
500 .LP
501 Note that \fBufs\fR might not be able to use the entire file. Mount and use the
502 filesystem:

504 .sp
505 .in +2
506 .nf
507 # \fBmount /dev/lofi/1 /mnt\fR
508 # \fBdf -k /mnt\fR
509 Filesystem kbytes used avail capacity Mounted on
510 /dev/lofi/1 33455 9 30101 1% /mnt
511 # \fBls /mnt\fR
512 \&./ ../ lost+found/

new/usr/src/man/man1m/lofiadm.1m 9

513 # \fBumount /mnt\fR
514 # \fBlofiadm -d /dev/lofi/1\fR
515 .fi
516 .in -2
517 .sp

519 .LP
520 \fBExample 4 \fRCreating a PC (FAT) File System on a Unix File
521 .sp
522 .LP
523 The following series of commands creates a \fBFAT\fR file system on a Unix
524 file. The file is associated with a block device created by \fBlofiadm\fR.

526 .sp
527 .in +2
528 .nf
529 # \fBmkfile 10M /export/test/testfs\fR
530 # \fBlofiadm -a /export/test testfs\fR
531 /dev/lofi/1
532 \fBNote use of\fR rlofi\fB, not\fR lofi\fB, in following command.\fR
533 # \fBmkfs -F pcfs -o nofdisk,size=20480 /dev/rlofi/1\fR
534 \fBConstruct a new FAT file system on /dev/rlofi/1: (y/n)?\fR y
535 # \fBmount -F pcfs /dev/lofi/1 /mnt\fR
536 # \fBcd /mnt\fR
537 # \fBdf -k .\fR
538 Filesystem kbytes used avail capacity Mounted on
539 /dev/lofi/1 10142 0 10142 0% /mnt
540 .fi
541 .in -2
542 .sp

544 .LP
545 \fBExample 5 \fRCompressing an Existing CD-ROM Image
546 .sp
547 .LP
548 The following example illustrates compressing an existing CD-ROM image
549 (\fBsolaris.iso\fR), verifying that the image is compressed, and then
550 uncompressing it.

552 .sp
553 .in +2
554 .nf
555 # \fBlofiadm -C gzip /export/home/solaris.iso\fR
556 .fi
557 .in -2
558 .sp

560 .sp
561 .LP
562 Use \fBlofiadm\fR to attach a block device to it:

564 .sp
565 .in +2
566 .nf
567 # \fBlofiadm -a /export/home/solaris.iso\fR
568 /dev/lofi/1
569 .fi
570 .in -2
571 .sp

573 .sp
574 .LP
575 Check if the mapped image is compressed:

577 .sp
578 .in +2

new/usr/src/man/man1m/lofiadm.1m 10

579 .nf
580 # \fBlofiadm\fR
581 Block Device File Options
582 /dev/lofi/1 /export/home/solaris.iso Compressed(gzip)
583 /dev/lofi/2 /export/home/regular.iso -
584 .fi
585 .in -2
586 .sp

588 .sp
589 .LP
590 Unmap the compressed image and uncompress it:

592 .sp
593 .in +2
594 .nf
595 # \fBlofiadm -d /dev/lofi/1\fR
596 # \fBlofiadm -U /export/home/solaris.iso\fR
597 .fi
598 .in -2
599 .sp

601 .LP
602 \fBExample 6 \fRCreating an Encrypted UFS File System on a File
603 .sp
604 .LP
605 This example is similar to the example of making a UFS filesystem on a file,
606 above.

608 .sp
609 .LP
610 Create the file:

612 .sp
613 .in +2
614 .nf
615 # \fBmkfile 35m /export/home/test\fR
616 .fi
617 .in -2
618 .sp

620 .sp
621 .LP
622 Attach the file to a block device and specify that the file image is encrypted.
623 As a result of this command, you obtain the character device, which is
624 subsequently used by \fBnewfs\fR:

626 .sp
627 .in +2
628 .nf
629 # \fBlofiadm -c aes-256-cbc -a /export/home/secrets\fR
630 Enter passphrase: \fBMy-M0th3r;l0v3s_m3+4lw4ys!\fR (\fBnot echoed\fR)
631 Re-enter passphrase: \fBMy-M0th3r;l0v3s_m3+4lw4ys!\fR (\fBnot echoed\fR)
632 /dev/lofi/1

634 # \fBnewfs /dev/rlofi/1\fR
635 newfs: construct a new file system /dev/rlofi/1: (y/n)? \fBy\fR
636 /dev/rlofi/1: 71638 sectors in 119 cylinders of 1 tracks, 602 sectors
637 35.0MB in 8 cyl groups (16 c/g, 4.70MB/g, 2240 i/g)
638 super-block backups (for fsck -F ufs -o b=#) at:
639 32, 9664, 19296, 28928, 38560, 48192, 57824, 67456,
640 .fi
641 .in -2
642 .sp

644 .sp

new/usr/src/man/man1m/lofiadm.1m 11

645 .LP
646 The mapped file system shows that encryption is enabled:

648 .sp
649 .in +2
650 .nf
651 # \fBlofiadm\fR
652 Block Device File Options
653 /dev/lofi/1 /export/home/secrets Encrypted
654 .fi
655 .in -2
656 .sp

658 .sp
659 .LP
660 Mount and use the filesystem:

662 .sp
663 .in +2
664 .nf
665 # \fBmount /dev/lofi/1 /mnt\fR
666 # \fBcp moms_secret_*_recipe /mnt\fR
667 # \fBls /mnt\fR
668 \&./ moms_secret_cookie_recipe moms_secret_soup_recipe
669 \&../ moms_secret_fudge_recipe moms_secret_stuffing_recipe
670 lost+found/ moms_secret_meatloaf_recipe moms_secret_waffle_recipe
671 # \fBumount /mnt\fR
672 # \fBlofiadm -d /dev/lofi/1\fR
673 .fi
674 .in -2
675 .sp

677 .sp
678 .LP
679 Subsequent attempts to map the filesystem with the wrong key or the wrong
680 encryption algorithm will fail:

682 .sp
683 .in +2
684 .nf
685 # \fBlofiadm -c blowfish-cbc -a /export/home/secrets\fR
686 Enter passphrase: \fBmommy\fR (\fInot echoed\fR)
687 Re-enter passphrase: \fBmommy\fR (\fInot echoed\fR)
688 lofiadm: could not map file /root/lofi: Invalid argument
689 # \fBlofiadm\fR
690 Block Device File Options
691 #
692 .fi
693 .in -2
694 .sp

696 .sp
697 .LP
698 Attempts to map the filesystem without encryption will succeed, however
699 attempts to mount and use the filesystem will fail:

701 .sp
702 .in +2
703 .nf
704 # \fBlofiadm -a /export/home/secrets\fR
705 /dev/lofi/1
706 # \fBlofiadm\fR
707 Block Device File Options
708 /dev/lofi/1 /export/home/secrets -
709 # \fBmount /dev/lofi/1 /mnt\fR
710 mount: /dev/lofi/1 is not this fstype

new/usr/src/man/man1m/lofiadm.1m 12

711 #
712 .fi
713 .in -2
714 .sp

716 .SH ENVIRONMENT VARIABLES
717 .sp
718 .LP
719 See \fBenviron\fR(5) for descriptions of the following environment variables
720 that affect the execution of \fBlofiadm\fR: \fBLC_CTYPE\fR, \fBLC_MESSAGES\fR
721 and \fBNLSPATH\fR.
722 .SH EXIT STATUS
723 .sp
724 .LP
725 The following exit values are returned:
726 .sp
727 .ne 2
728 .na
729 \fB\fB0\fR\fR
730 .ad
731 .sp .6
732 .RS 4n
733 Successful completion.
734 .RE

736 .sp
737 .ne 2
738 .na
739 \fB\fB>0\fR\fR
740 .ad
741 .sp .6
742 .RS 4n
743 An error occurred.
744 .RE

746 .SH SEE ALSO
747 .sp
748 .LP
749 \fBfsck\fR(1M), \fBmount\fR(1M), \fBmount_ufs\fR(1M), \fBnewfs\fR(1M),
750 \fBattributes\fR(5), \fBlofi\fR(7D), \fBlofs\fR(7FS)
751 .SH NOTES
752 .sp
753 .LP
754 Just as you would not directly access a disk device that has mounted file
755 systems, you should not access a file associated with a block device except
756 through the \fBlofi\fR file driver. It might also be appropriate to ensure that
757 the file has appropriate permissions to prevent such access.
758 .sp
759 .LP
760 The abilities of \fBlofiadm\fR, and who can use them, are controlled by the
761 permissions of \fB/dev/lofictl\fR. Read-access allows query operations, such as
762 listing all the associations. Write-access is required to do any state-changing
763 operations, like adding an association. As shipped, \fB/dev/lofictl\fR is owned
764 by \fBroot\fR, in group \fBsys\fR, and mode \fB0644\fR, so all users can do
765 query operations but only root can change anything. The administrator can give
766 users write-access, allowing them to add or delete associations, but that is
767 very likely a security hole and should probably only be given to a trusted
768 group.
769 .sp
770 .LP
771 When mounting a filesystem image, take care to use appropriate mount options.
772 In particular, the \fBnosuid\fR mount option might be appropriate for \fBUFS\fR
773 images whose origin is unknown. Also, some options might not be useful or
774 appropriate, like \fBlogging\fR or \fBforcedirectio\fR for \fBUFS\fR. For
775 compatibility purposes, a raw device is also exported along with the block
776 device. For example, \fBnewfs\fR(1M) requires one.

new/usr/src/man/man1m/lofiadm.1m 13

777 .sp
778 .LP
779 The output of \fBlofiadm\fR (without arguments) might change in future
780 releases.

new/usr/src/uts/common/io/lofi.c 1

**
 74575 Mon Sep 16 15:02:48 2013
new/usr/src/uts/common/io/lofi.c
*** NO COMMENTS ***
**
______unchanged_portion_omitted_

441 /*ARGSUSED*/
442 static int
443 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp)
444 {
445 minor_t minor;
446 struct lofi_state *lsp;

448 /*
449 * lofiadm -a /dev/lofi/1 gets us here.
450 */
451 if (mutex_owner(&lofi_lock) == curthread)
452 return (EINVAL);

454 mutex_enter(&lofi_lock);

456 minor = getminor(*devp);

458 /* master control device */
459 if (minor == 0) {
460 mutex_exit(&lofi_lock);
461 return (0);
462 }

464 /* otherwise, the mapping should already exist */
465 lsp = ddi_get_soft_state(lofi_statep, minor);
466 if (lsp == NULL) {
467 mutex_exit(&lofi_lock);
468 return (EINVAL);
469 }

471 if (lsp->ls_vp == NULL) {
472 mutex_exit(&lofi_lock);
473 return (ENXIO);
474 }

476 if (mark_opened(lsp, otyp) == -1) {
477 mutex_exit(&lofi_lock);
478 return (EINVAL);
479 }

481 if (lsp->ls_readonly && (flag & FWRITE)) {
482 mutex_exit(&lofi_lock);
483 return (EROFS);
484 }

486 mutex_exit(&lofi_lock);
487 return (0);
488 }

______unchanged_portion_omitted_

1623 /*
1624 * Find the lofi state for the given filename. We compare by vnode to
1625 * allow the global zone visibility into NGZ lofi nodes.
1626 */
1627 static int
1628 file_to_lofi_nocheck(char *filename, boolean_t readonly,
1629 struct lofi_state **lspp)
1623 file_to_lofi_nocheck(char *filename, struct lofi_state **lspp)
1630 {

new/usr/src/uts/common/io/lofi.c 2

1631 struct lofi_state *lsp;
1632 vnode_t *vp = NULL;
1633 int err = 0;
1634 int rdfiles = 0;

1636 ASSERT(MUTEX_HELD(&lofi_lock));

1638 if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW,
1639 NULLVPP, &vp)) != 0)
1640 goto out;

1642 if (vp->v_type == VREG) {
1643 vnode_t *realvp;
1644 if (VOP_REALVP(vp, &realvp, NULL) == 0) {
1645 VN_HOLD(realvp);
1646 VN_RELE(vp);
1647 vp = realvp;
1648 }
1649 }

1651 for (lsp = list_head(&lofi_list); lsp != NULL;
1652 lsp = list_next(&lofi_list, lsp)) {
1653 if (lsp->ls_vp == vp) {
1654 if (lspp != NULL)
1655 *lspp = lsp;
1656 if (lsp->ls_readonly) {
1657 rdfiles++;
1658 /* Skip if ’-r’ is specified */
1659 if (readonly)
1660 continue;
1661 }
1662 goto out;
1663 }
1664 }

1666 err = ENOENT;

1668 /*
1669 * If a filename is given as an argument for lofi_unmap, we shouldn’t
1670 * allow unmap if there are multiple read-only lofi devices associated
1671 * with this file.
1672 */
1673 if (lspp != NULL) {
1674 if (rdfiles == 1)
1675 err = 0;
1676 else if (rdfiles > 1)
1677 err = EBUSY;
1678 }

1680 out:
1681 if (vp != NULL)
1682 VN_RELE(vp);
1683 return (err);
1684 }

1686 /*
1687 * Find the minor for the given filename, checking the zone can access
1688 * it.
1689 */
1690 static int
1691 file_to_lofi(char *filename, boolean_t readonly, struct lofi_state **lspp)
1666 file_to_lofi(char *filename, struct lofi_state **lspp)
1692 {
1693 int err = 0;

1695 ASSERT(MUTEX_HELD(&lofi_lock));

new/usr/src/uts/common/io/lofi.c 3

1697 if ((err = file_to_lofi_nocheck(filename, readonly, lspp)) != 0)
1672 if ((err = file_to_lofi_nocheck(filename, lspp)) != 0)
1698 return (err);

1700 if ((err = lofi_access(*lspp)) != 0)
1701 return (err);

1703 return (0);
1704 }
______unchanged_portion_omitted_

2118 /*
2119 * map a file to a minor number. Return the minor number.
2120 */
2121 static int
2122 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor,
2123 int *rvalp, struct cred *credp, int ioctl_flag)
2124 {
2125 minor_t minor = (minor_t)-1;
2126 struct lofi_state *lsp = NULL;
2127 struct lofi_ioctl *klip;
2128 int error;
2129 struct vnode *vp = NULL;
2130 vattr_t vattr;
2131 int flag;
2132 dev_t newdev;
2133 char namebuf[50];

2135 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2136 if (error != 0)
2137 return (error);

2139 mutex_enter(&lofi_lock);

2141 mutex_enter(&curproc->p_lock);
2142 if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) {
2143 mutex_exit(&curproc->p_lock);
2144 mutex_exit(&lofi_lock);
2145 free_lofi_ioctl(klip);
2146 return (error);
2147 }
2148 mutex_exit(&curproc->p_lock);

2150 if (file_to_lofi_nocheck(klip->li_filename, klip->li_readonly,
2151 NULL) == 0) {
2125 if (file_to_lofi_nocheck(klip->li_filename, NULL) == 0) {
2152 error = EBUSY;
2153 goto err;
2154 }

2156 if (pickminor) {
2157 minor = (minor_t)id_allocff_nosleep(lofi_minor_id);
2158 if (minor == (minor_t)-1) {
2159 error = EAGAIN;
2160 goto err;
2161 }
2162 } else {
2163 if (ddi_get_soft_state(lofi_statep, klip->li_minor) != NULL) {
2164 error = EEXIST;
2165 goto err;
2166 }

2168 minor = (minor_t)
2169 id_alloc_specific_nosleep(lofi_minor_id, klip->li_minor);
2170 ASSERT(minor != (minor_t)-1);

new/usr/src/uts/common/io/lofi.c 4

2171 }

2173 flag = FREAD | FWRITE | FOFFMAX | FEXCL;
2174 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0);
2175 if (error) {
2176 /* try read-only */
2177 flag &= ~FWRITE;
2178 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0,
2179 &vp, 0, 0);
2180 if (error)
2181 goto err;
2182 }

2184 if (!V_ISLOFIABLE(vp->v_type)) {
2185 error = EINVAL;
2186 goto err;
2187 }

2189 vattr.va_mask = AT_SIZE;
2190 error = VOP_GETATTR(vp, &vattr, 0, credp, NULL);
2191 if (error)
2192 goto err;

2194 /* the file needs to be a multiple of the block size */
2195 if ((vattr.va_size % DEV_BSIZE) != 0) {
2196 error = EINVAL;
2197 goto err;
2198 }

2200 /* lsp alloc+init */

2202 error = ddi_soft_state_zalloc(lofi_statep, minor);
2203 if (error == DDI_FAILURE) {
2204 error = ENOMEM;
2205 goto err;
2206 }

2208 lsp = ddi_get_soft_state(lofi_statep, minor);
2209 list_insert_tail(&lofi_list, lsp);

2211 newdev = makedevice(getmajor(dev), minor);
2212 lsp->ls_dev = newdev;
2213 zone_init_ref(&lsp->ls_zone);
2214 zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI);
2215 lsp->ls_uncomp_seg_sz = 0;
2216 lsp->ls_comp_algorithm[0] = ’\0’;
2217 lsp->ls_crypto_offset = 0;

2219 cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL);
2220 mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL);
2221 mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL);
2222 mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL);
2223 mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL);

2225 (void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d",
2226 LOFI_DRIVER_NAME, minor);
2227 lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads,
2228 minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0);

2230 list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache),
2231 offsetof(struct lofi_comp_cache, lc_list));

2233 /*
2234 * save open mode so file can be closed properly and vnode counts
2235 * updated correctly.
2236 */

new/usr/src/uts/common/io/lofi.c 5

2237 lsp->ls_openflag = flag;

2239 lsp->ls_vp = vp;
2240 lsp->ls_stacked_vp = vp;
2241 /*
2242 * Try to handle stacked lofs vnodes.
2243 */
2244 if (vp->v_type == VREG) {
2245 vnode_t *realvp;

2247 if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2248 /*
2249 * We need to use the realvp for uniqueness
2250 * checking, but keep the stacked vp for
2251 * LOFI_GET_FILENAME display.
2252 */
2253 VN_HOLD(realvp);
2254 lsp->ls_vp = realvp;
2255 }
2256 }

2258 lsp->ls_vp_size = vattr.va_size;
2259 lsp->ls_vp_comp_size = lsp->ls_vp_size;

2261 lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, minor,
2262 NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid());

2264 if (lsp->ls_kstat == NULL) {
2265 error = ENOMEM;
2266 goto err;
2267 }

2269 lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock;
2270 kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID);

2272 lsp->ls_readonly = klip->li_readonly;

2274 if ((error = lofi_init_crypto(lsp, klip)) != 0)
2275 goto err;

2277 if ((error = lofi_init_compress(lsp)) != 0)
2278 goto err;

2280 fake_disk_geometry(lsp);

2282 /* create minor nodes */

2284 (void) snprintf(namebuf, sizeof (namebuf), "%d", minor);
2285 error = ddi_create_minor_node(lofi_dip, namebuf, S_IFBLK, minor,
2286 DDI_PSEUDO, NULL);
2287 if (error != DDI_SUCCESS) {
2288 error = ENXIO;
2289 goto err;
2290 }

2292 (void) snprintf(namebuf, sizeof (namebuf), "%d,raw", minor);
2293 error = ddi_create_minor_node(lofi_dip, namebuf, S_IFCHR, minor,
2294 DDI_PSEUDO, NULL);
2295 if (error != DDI_SUCCESS) {
2296 /* remove block node */
2297 (void) snprintf(namebuf, sizeof (namebuf), "%d", minor);
2298 ddi_remove_minor_node(lofi_dip, namebuf);
2299 error = ENXIO;
2300 goto err;
2301 }

new/usr/src/uts/common/io/lofi.c 6

2303 /* create DDI properties */

2305 if ((ddi_prop_update_int64(newdev, lofi_dip, SIZE_PROP_NAME,
2306 lsp->ls_vp_size - lsp->ls_crypto_offset)) != DDI_PROP_SUCCESS) {
2307 error = EINVAL;
2308 goto nodeerr;
2309 }

2311 if ((ddi_prop_update_int64(newdev, lofi_dip, NBLOCKS_PROP_NAME,
2312 (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE))
2313 != DDI_PROP_SUCCESS) {
2314 error = EINVAL;
2315 goto nodeerr;
2316 }

2318 if (ddi_prop_update_string(newdev, lofi_dip, ZONE_PROP_NAME,
2319 (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) {
2320 error = EINVAL;
2321 goto nodeerr;
2322 }

2324 kstat_install(lsp->ls_kstat);

2326 mutex_exit(&lofi_lock);

2328 if (rvalp)
2329 *rvalp = (int)minor;
2330 klip->li_minor = minor;
2331 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2332 free_lofi_ioctl(klip);
2333 return (0);

2335 nodeerr:
2336 lofi_free_dev(newdev);
2337 err:
2338 if (lsp != NULL) {
2339 lofi_destroy(lsp, credp);
2340 } else {
2341 if (vp != NULL) {
2342 (void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL);
2343 VN_RELE(vp);
2344 }

2346 if (minor != (minor_t)-1)
2347 id_free(lofi_minor_id, minor);

2349 rctl_decr_lofi(curproc->p_zone, 1);
2350 }

2352 mutex_exit(&lofi_lock);
2353 free_lofi_ioctl(klip);
2354 return (error);
2355 }

2357 /*
2358 * unmap a file.
2359 */
2360 static int
2361 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename,
2362 struct cred *credp, int ioctl_flag)
2363 {
2364 struct lofi_state *lsp;
2365 struct lofi_ioctl *klip;
2366 int err;

2368 err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);

new/usr/src/uts/common/io/lofi.c 7

2369 if (err != 0)
2370 return (err);

2372 mutex_enter(&lofi_lock);
2373 if (byfilename) {
2374 if ((err = file_to_lofi(klip->li_filename, klip->li_readonly,
2375 &lsp)) != 0) {
2346 if ((err = file_to_lofi(klip->li_filename, &lsp)) != 0) {
2376 mutex_exit(&lofi_lock);
2377 return (err);
2378 }
2379 } else if (klip->li_minor == 0) {
2380 mutex_exit(&lofi_lock);
2381 free_lofi_ioctl(klip);
2382 return (ENXIO);
2383 } else {
2384 lsp = ddi_get_soft_state(lofi_statep, klip->li_minor);
2385 }

2387 if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) {
2388 mutex_exit(&lofi_lock);
2389 free_lofi_ioctl(klip);
2390 return (ENXIO);
2391 }

2393 klip->li_minor = getminor(lsp->ls_dev);

2395 /*
2396 * If it’s still held open, we’ll do one of three things:
2397 *
2398 * If no flag is set, just return EBUSY.
2399 *
2400 * If the ’cleanup’ flag is set, unmap and remove the device when
2401 * the last user finishes.
2402 *
2403 * If the ’force’ flag is set, then we forcibly close the underlying
2404 * file. Subsequent operations will fail, and the DKIOCSTATE ioctl
2405 * will return DKIO_DEV_GONE. When the device is last closed, the
2406 * device will be cleaned up appropriately.
2407 *
2408 * This is complicated by the fact that we may have outstanding
2409 * dispatched I/Os. Rather than having a single mutex to serialize all
2410 * I/O, we keep a count of the number of outstanding I/O requests
2411 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os
2412 * should be dispatched (ls_vp_closereq).
2413 *
2414 * We set the flag, wait for the number of outstanding I/Os to reach 0,
2415 * and then close the underlying vnode.
2416 */
2417 if (is_opened(lsp)) {
2418 if (klip->li_force) {
2419 mutex_enter(&lsp->ls_vp_lock);
2420 lsp->ls_vp_closereq = B_TRUE;
2421 /* wake up any threads waiting on dkiocstate */
2422 cv_broadcast(&lsp->ls_vp_cv);
2423 while (lsp->ls_vp_iocount > 0)
2424 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
2425 mutex_exit(&lsp->ls_vp_lock);

2427 goto out;
2428 } else if (klip->li_cleanup) {
2429 lsp->ls_cleanup = 1;
2430 mutex_exit(&lofi_lock);
2431 free_lofi_ioctl(klip);
2432 return (0);
2433 }

new/usr/src/uts/common/io/lofi.c 8

2435 mutex_exit(&lofi_lock);
2436 free_lofi_ioctl(klip);
2437 return (EBUSY);
2438 }

2440 out:
2441 lofi_free_dev(lsp->ls_dev);
2442 lofi_destroy(lsp, credp);

2444 mutex_exit(&lofi_lock);
2445 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2446 free_lofi_ioctl(klip);
2447 return (0);
2448 }

2450 /*
2451 * get the filename given the minor number, or the minor number given
2452 * the name.
2453 */
2454 /*ARGSUSED*/
2455 static int
2456 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which,
2457 struct cred *credp, int ioctl_flag)
2458 {
2459 struct lofi_ioctl *klip;
2460 struct lofi_state *lsp;
2461 int error;

2463 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2464 if (error != 0)
2465 return (error);

2467 switch (which) {
2468 case LOFI_GET_FILENAME:
2469 if (klip->li_minor == 0) {
2470 free_lofi_ioctl(klip);
2471 return (EINVAL);
2472 }

2474 mutex_enter(&lofi_lock);
2475 lsp = ddi_get_soft_state(lofi_statep, klip->li_minor);
2476 if (lsp == NULL || lofi_access(lsp) != 0) {
2477 mutex_exit(&lofi_lock);
2478 free_lofi_ioctl(klip);
2479 return (ENXIO);
2480 }

2482 /*
2483 * This may fail if, for example, we’re trying to look
2484 * up a zoned NFS path from the global zone.
2485 */
2486 if (vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename,
2487 sizeof (klip->li_filename), CRED()) != 0) {
2488 (void) strlcpy(klip->li_filename, "?",
2489 sizeof (klip->li_filename));
2490 }

2492 klip->li_readonly = lsp->ls_readonly;

2494 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
2495 sizeof (klip->li_algorithm));
2496 klip->li_crypto_enabled = lsp->ls_crypto_enabled;
2497 mutex_exit(&lofi_lock);
2498 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2499 free_lofi_ioctl(klip);

new/usr/src/uts/common/io/lofi.c 9

2500 return (error);
2501 case LOFI_GET_MINOR:
2502 mutex_enter(&lofi_lock);
2503 error = file_to_lofi(klip->li_filename,
2504 klip->li_readonly, &lsp);
2472 error = file_to_lofi(klip->li_filename, &lsp);
2505 if (error == 0)
2506 klip->li_minor = getminor(lsp->ls_dev);
2507 mutex_exit(&lofi_lock);

2509 if (error == 0)
2510 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);

2512 free_lofi_ioctl(klip);
2513 return (error);
2514 case LOFI_CHECK_COMPRESSED:
2515 mutex_enter(&lofi_lock);
2516 error = file_to_lofi(klip->li_filename,
2517 klip->li_readonly, &lsp);
2484 error = file_to_lofi(klip->li_filename, &lsp);
2518 if (error != 0) {
2519 mutex_exit(&lofi_lock);
2520 free_lofi_ioctl(klip);
2521 return (error);
2522 }

2524 klip->li_minor = getminor(lsp->ls_dev);
2525 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
2526 sizeof (klip->li_algorithm));

2528 mutex_exit(&lofi_lock);
2529 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2530 free_lofi_ioctl(klip);
2531 return (error);
2532 default:
2533 free_lofi_ioctl(klip);
2534 return (EINVAL);
2535 }
2536 }
______unchanged_portion_omitted_

new/usr/src/uts/common/sys/lofi.h 1

**
 9322 Mon Sep 16 15:02:50 2013
new/usr/src/uts/common/sys/lofi.h
*** NO COMMENTS ***
**
______unchanged_portion_omitted_

127 struct lofi_ioctl {
128 uint32_t li_minor;
129 boolean_t li_force;
130 boolean_t li_cleanup;
131 boolean_t li_readonly;
132 char li_filename[MAXPATHLEN];

134 /* the following fields are required for compression support */
135 char li_algorithm[MAXALGLEN];

137 /* the following fields are required for encryption support */
138 boolean_t li_crypto_enabled;
139 crypto_mech_name_t li_cipher; /* for data */
140 uint32_t li_key_len; /* for data */
141 char li_key[56]; /* for data: max 448-bit Blowfish key */
142 crypto_mech_name_t li_iv_cipher; /* for iv derivation */
143 uint32_t li_iv_len; /* for iv derivation */
144 iv_method_t li_iv_type; /* for iv derivation */
145 };

______unchanged_portion_omitted_

214 struct lofi_state {
215 vnode_t *ls_vp; /* open real vnode */
216 vnode_t *ls_stacked_vp; /* open vnode */
217 kmutex_t ls_vp_lock; /* protects ls_vp */
218 kcondvar_t ls_vp_cv; /* signal changes to ls_vp */
219 uint32_t ls_vp_iocount; /* # pending I/O requests */
220 boolean_t ls_vp_closereq; /* force close requested */
221 u_offset_t ls_vp_size;
222 uint32_t ls_blk_open;
223 uint32_t ls_chr_open;
224 uint32_t ls_lyr_open_count;
225 int ls_openflag;
226 boolean_t ls_cleanup; /* cleanup on close */
227 boolean_t ls_readonly;
228 taskq_t *ls_taskq;
229 kstat_t *ls_kstat;
230 kmutex_t ls_kstat_lock;
231 struct dk_geom ls_dkg;
232 struct vtoc ls_vtoc;
233 struct dk_cinfo ls_ci;
234 zone_ref_t ls_zone;
235 list_node_t ls_list; /* all lofis */
236 dev_t ls_dev; /* this node’s dev_t */

238 /* the following fields are required for compression support */
239 int ls_comp_algorithm_index; /* idx into compress_table */
240 char ls_comp_algorithm[MAXALGLEN];
241 uint32_t ls_uncomp_seg_sz; /* sz of uncompressed segment */
242 uint32_t ls_comp_index_sz; /* number of index entries */
243 uint32_t ls_comp_seg_shift; /* exponent for byte shift */
244 uint32_t ls_uncomp_last_seg_sz; /* sz of last uncomp segment */
245 uint64_t ls_comp_offbase; /* offset of actual compressed data */
246 uint64_t *ls_comp_seg_index; /* array of index entries */
247 caddr_t ls_comp_index_data; /* index pages loaded from file */
248 uint32_t ls_comp_index_data_sz;
249 u_offset_t ls_vp_comp_size; /* actual compressed file size */

251 /* pre-allocated list of buffers for compressed segment data */

new/usr/src/uts/common/sys/lofi.h 2

252 kmutex_t ls_comp_bufs_lock;
253 struct compbuf *ls_comp_bufs;

255 /* lock and anchor for compressed segment caching */
256 kmutex_t ls_comp_cache_lock; /* protects ls_comp_cache */
257 list_t ls_comp_cache; /* cached decompressed segs */
258 uint32_t ls_comp_cache_count;

260 /* the following fields are required for encryption support */
261 boolean_t ls_crypto_enabled;
262 u_offset_t ls_crypto_offset; /* crypto meta size */
263 struct crypto_meta ls_crypto;
264 crypto_mechanism_t ls_mech; /* for data encr/decr */
265 crypto_key_t ls_key; /* for data encr/decr */
266 crypto_mechanism_t ls_iv_mech; /* for iv derivation */
267 size_t ls_iv_len; /* for iv derivation */
268 iv_method_t ls_iv_type; /* for iv derivation */
269 kmutex_t ls_crypto_lock;
270 crypto_ctx_template_t ls_ctx_tmpl;

272 };
______unchanged_portion_omitted_

