new usr/src/cnd/ | of i adm mai n. c

R R R R

53990 Mon Sep 16 15:02:46 2013
new usr/src/cnd/ | of i adm mai n. c
%* NO COMMVENTS *

R R R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
*
*/
*

Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
23 * Use is subject to license terns.
24 * Copyright 2012 Joyent, Inc. Al rights reserved.

*/

25

27 | *

28 * lofiadm- administer lofi(7d). Very sinple, add and renove fil e<->device
29 * associations, and display status. All the ioctls are private between

30 * |lofi and lofiadm and so are very sinple - device information is

31 * communicated via a mnor nunber.

32 */

34 #include <sys/types. h>

35 #incl ude <sys/param h>

36 #include <sys/lofi.h>

37 #include <sys/stat.h>

38 #include <sys/sysnmacros. h>

39 #include <netinet/in.h>

40 #incl ude <stdio. h>

41 #include <fcntl. h>

42 #include <l ocal e. h>

43 #include <string. h>

44 #include <strings.h>

45 #incl ude <errno. h>

46 #include <stdlib.h>

47 #include <unistd. h>

48 #include <stropts. h>

49 #incl ude <l i bdevi nfo. h>

50 #include <libgen.h>

51 #include <ctype. h>

52 #include <dl fcn. h>

53 #include <limts.h>

54 #include <security/cryptoki.h>
55 #include <cryptoutil.h>

56 #include <sys/crypto/ioctl.h>
57 #include <sys/crypto/ioctladm n. h>
58 #include "utils.h"

59 #include <LznmaEnc. h>

61 /* Only need the 1V | en #defines out of these files, nothing else. */

new usr/src/cnd/ | of i adm mai n. c

62 #include <aes/aes_inpl. h>
63 #i ncl ude <des/des”inpl .
64 #incl ude <bl owfi sh/ bl owf i sh i npl .

66 static const char USAGE[] =
67 "Usage: % [-r] -a file [device]

67 "Usage: % -a file [device]

68 " [-c aes-128-chc| aes-192- chc| aes- 256- cbc| des3- cbhc| bl owfi sh-cbc] "
69 " [-e] [k keyflle] [- T[token] [manuf]:[serial]:key]\n"

70 " ile | device\n"

71 0/@ -C [92| p| 9zi p-6| gzi p-9| 1 zma] [-s segnent_size] file\n"
72 " % -Uflle\n‘

73 " % [file | device]\n";

75 typedef struct token_spec {

76 char *nane;

77 char *nfr;

78 char *serno;

79 char *key;

80 } token_spec_t;
__unchanged_ portl on_omtted_

361 /*

362 * Add a device association. |If devicename is NULL, let the driver
363 * pick a device.

364 */

365 static void

366 add_mappi ng(int |fd, const char *devicenane, const char *filenane,

367 nech_alias_t *mpher const char *rkey, size_t rksz, boolean_t rdonly)
367 mech_al i as_t *cipher, const char *rkey, size_t rksz)

368 {

369 struct lofi_ioctl Ii;

371 li.li_readonly = rdonly;

373 li.li_crypto_enabl ed = B_FALSE;

374 if (cipher I'= NULL) {

375 /* set up encryption for mapped file */

376 li.li_crypto_enabled = B_TRUE;

377 (v0| d) stricpy(li.li_cipher, cipher->nane,

378 sizeof (li.li_cipher));

379 if (rksz > sizeof (li.li_key)) {

380 die(gettext("key too large"));

381 }

382 bcopy(rkey, li.li_key, rksz);

383 li.li_key_len = rksz << 3; /* convert to bits */
385 li.li_iv_type = cipher->iv_type;

386 li.li_iv_len = cipher->iv_Ten; /* 0 when no iv needed */
387 switch (cipher->iv_type) {

388 case | VM_ENC_BLKNO

389 (void) stricpy(li. i v_cipher, cipher->iv_nane,
390 sizeof (li.li_]i |v “ci pher));

391 br eak;

392 case | VM _NONE:

393 /* FALLTHROUGH */

394 defaul t:

395 br eak;

396 }

397 }

399 if (devicename == NULL) {

400 int mi nor;

402 /* pick one via the driver */

403 minor = lofi_map_file(lfd, Ii, filenane);

new usr/src/cnd/ | of i adm main. c 3 new usr/src/cnd/ | of i adm main. c 4
404 /* if mapping succeeds, print the one picked */ 533 gettext(Conpressed(%)"), li.li_algorithm;
405 (void) printf("/dev/ %/ %\ n", LOFI_BLOCK NAME, m nor); 534 if (li.li_readonly)

406 return; 535 if (strl en(optl ons) !'=0) {
407 } 536 (void) strlcat(options, ",", sizeof (options));
537 (void) strlcat(options, "Readonly",
409 /* use device we were given */ 538 si zeof (options));
410 li.li_mnor = name_to_mi nor(devi cenane); 539 } else {
411 if (Ii.li_minor ==) 1 540 (void) snprintf(options, sizeof (options),
412 die(gettext("mal formed device name %\n"), devicenane); 541 gettext ("Readonly"));
413 } 542 }
414 (void) strlcpy(li.li_filename, filenane, sizeof (li.li_filename)); 543
544 if (strlen(options) == 0)
416 /* if device is already in use li.li_mnor won't change */ 529 el se
417 if (ioctl(1fd, LOFI_MAP_FILE_MNOR &i) == -1) { 545 (void) snprintf(options, sizeof (options), "-");
418 if (errno == ENOTSUP)
419 \Aarn(gett ext ("encrypting conpressed files is " 547 (void) printf(FORMAT, path, li.li_filenane, options);
420 "unsupported")); 548 }
421 die(gettext("could not map file % to %"), filenane, 549 }
422 devi cenane) ; __unchanged_portion_onitted_
423 }
424 wai t_until_dev_conplete(li.li_mnor); 1790 int
425 } 1791 main(int argc, char *argv[])
__unchanged_portion_onitted_ 1792 {

1793 int 1fd;
492 [* 1794 int c;
493 * Print the list of all the mappings, including a header. 1795 const char *devi cename = NULL;
494 =/ 1796 const char *filename = NULL;
495 static void 1797 const char *al gnane = COVPRESS_ALGORI THM
496 print_mappi ngs(int fd) 1798 int openf | ag;
497 { 1799 int m nor ;
498 struct lofi_ioctl Ii; 1800 int conpr ess_i ndex;
499 int m nor; 1801 uint32_t segsize = SEGSI ZE;
500 int maxm nor ; 1802 static char *lofictl = "/ dev/ " LOFI _CTL_NAME;
501 char pat h[MAXPATHLEN ; 1803 bool ean_t force = B_FALS
502 char options[MAXPATHLEN] = { 0 }; 1804 const char *pnane;
500 char opt i ons[MAXPATHLEN] ; 1805 bool ean_t errflag = B_FALSE;

1806 bool ean_t addflag = B_FALSE;
504 li.li_mnor = 0; 1807 bool ean_t rdflag = B _FALSE;
505 if (ioctl(fd, LOFI_GET_MAXM NOR, &li) == -1) { 1808 bool ean_t del etefl ag = B_FALSE;
506 die("ioctl"); 1809 bool ean_t ephflag = B_ FALSE
507 } 1810 bool ean_t conpressflag = B_FALSE;
508 maxmnor = |i.li_mnor; 1811 bool ean_t unconpressflag = B_FALSE;

1812 /* the next two work together for -c, -k, -T, -e options only */
510 (void) printf(FORMAT, gettext("Block Device"), gettext("File"), 1813 bool ean_t need_crypto = B_FALSE; /* if any -c, -k, -T, -e */
511 gettext("Opt ions")); 1814 bool ean_t ci pher _onl y = B_TRUE; /* if -c only */
512 for (mnor = 1; minor <= maxmnor; mnor++) { 1815 const char *keyfile = NULL
513 li.li_mnor = mnor; 1816 mech_al ias_t *cipher = NULL;
514 if (ioctl(fd, LOFI _GEI’_FI LENAMVE, &li) == -1) { 1817 token_spec_t *token = NULL;
515 if (errno == ENXI O 1818 char *rkey = NULL;
516 conti nue; 1819 size_t rksz = 0;
517 warn("ioctl"); 1820 char real fil ename[MAXPATHLEN] ;
518 break;
519 } 1822 pnanme = get pnanme(argv[0]);
520 (void) snprintf(path, sizeof (path), "/dev/%/ %",
521 LOFI _BLOCK_NAME, minor); 1824 (void) setlocal e(LC_ALL, "");

1825 (voi d) textdomai n(TEXT_DOVAIN);
523 options[0] = '\0";

1827 ((c = getopt(argc, argv, "a:c:Cd:efk:o:rs:T:U")) != EOF) {
525 /* 1811 while ((c = getopt(argc, argv, "a:c:Cd:efk:o:s:T:U")) != EOF) {
526 * Encrypted |ofi and conpressed |ofi are mutually exclusive. 1828 switch (c) {
527 */ 1829 case 'a’:
528 if (li.li_crypto_enabl ed) 1830 addfl ag = B_TRUE;
529 (void) snpri ntf(optl ons, sizeof (options), 1831 if ((fil enar're = real path(optarg, realfilenane)) == NULL)
530 gettext ("Encrypted")); 1832 die("%", optarg);
531 else if (li.li_algorithn{0] !'="\0") 1833 if (((argc - optlnd) >O) && (*argv[optind] !'="-")) {
532 (void) snprintf(options, sizeof (options), 1834 /* optional device */

new usr/src/cnd/ | of i adm mai n. c

1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900

case

case ’

case

case ’

case

case ’

case ’

case ’

case

devi cenane = argv[optind];
opti nd++;

br eak;

"C

g

T

conpressflag = B_TRUE;

if (((argc - optind) > 1) && (*argv[optind] !="-")) {
/* optional algorithm?*/
al gname = argv[optind];
opti nd++;

check_al gorithmvalidity(al gnane, &conpress_index);
br eak;

/* is the chosen cipher allowed? */
if ((cipher = C|ph2nech(optarg)) == NULL) {
errflag =
Warn(gettext(CI pher % not allowed\n"),
optarg);

}

need_crypto = B_TRUE;

/* cipher_only is already set */
br eak;

del eteflag = B_TRUE;
m nor = name_to_mi nor(optarg);
if (mnor !=0)

devi cenane = optarag;

el se {
if ((filename = real path(optarg,
real fil enama)) == NULL)
die("%", optarg);
br eak;
ephflag = B_TRUE;
need_crypto = B_TRUE;
cipher_only = B FALSE, /* need to unset cipher_only */
break;

force = B_TRUE;
br eak;

keyfi le = optarg;
need_crypto = B_TRUE;
cipher_only = B FALSE; /* need to unset cipher_only */

break;

rdflag = B TRUE
br eak;

segsi ze = convert_to_nun(optarg);
if (segsize < DEV_BSIZE || !ISP2(segsize))
di e(gettext(segment size % is invalid "
"or not a nultiple of mnimmblock "
"size %d\n"), optarg, DEV_BSIZE);
br eak;

if ((token = parsetoken(optarg)) == NULL) {
errflag = B_TRUE;
war n(

gettext("invalid token key specifier %\n"),

optarg);

B_TRUE,

need_crypto |
B FALSE; /* need to unset cipher_only */

ci pher _only

new usr/src/cnd/ | of i adm mai n. c

1901
1902
1903
1904
1905
1906
1907
1908
1909
1910

1912
1913
1914
1915
1916
1917
1918

1920
1921
1922
1923
1924

1926
1927
1928
1929

1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959

1961
1962

1964
1965

br eak;

case 'U:

unconpressflag = B_TRUE;
br eak;

case ' ?':
defaul t:

}

errflag = B_TRUE;
br eak;

/* Check for mutual ly exclusive conbinations of options */

if (errflag ||

(addfl ag && del eteflag) ||

(rdflag &&

laddfl ag) ||

(!addfl ag && need_crypto)

((conpressf

[
lag || unconpressflag) && (addflag || deleteflag)))

usage(pnane) ;

/* epheneral key, and key fromeither file or token are inconpatible */

if (ephflag &&
di e(get

(keyfile = NULL || token != NULL))
text ("epheneral key cannot be used with keyfile"

" or token key\n"));

}

/*
* "-c" but no

v-k", "-T", "-e", or "-T -k" neans derive key from

* command |ine passphrase
*/

switch (argc -

optind) {

case 0: /* no nore args */

if (compressflag || unconpressflag)

br eak;
case 1:

/* needs filename */
usage(pnane) ;

if (addflag || deleteflag)

/* one

usage(pnane) ;
arg means conpress/unconpress the file ... */

if (conpressfl ag | unconpr essfl ag)
if

/* ..
} else

}
br eak;
defaul t:

{
((filename = real path(argv[optl nd],
realfllenams)) == NULL)
die("%", argv[optind]);
or wi thout opti ons means print the association */
{
m nor = name_to_m nor(argv[optind]);
if (mnor !'=0)
devi cenane = argv[optind];
el se {
if ((filename = real path(argv[optl nd],
real fil ename)) == NUL
die("%", argv[optl nd]);

usage(pnane) ;

br eak;

}

if (addflag ||
check_f

conpressflag || unconpressflag)
ile_validity(filename);

if (filename && !valid_abspath(fil enane))

exit(E_

ERROR) ;

new usr/src/cnd/ | of i adm mai n. c

1967
1968
1969
1970
1971

1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987

1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002

2004
2005
2006

2008
2009
2010
2011

2013

2015
2016
2017
2018
2019
2020
2021
2022
2023

2025
2026

2028
2029
2030
2031
2032

/
Here, we know the arguments are correct, the filenane is an
absolute path, it exists and is a regular file. W don't yet
know that the device name is ok or not.

/

R

openflag = O EXCL

if (addflag T| del eteflag || conpressflag || unconpressflag)
openflag | = O RDWR;

el se
openflag | = O RDO\LY;

Ifd = open(lof|ct| openf | ag)

if (Ifd == -1)
if ((errno == EPERM || (errno == EACCES)) {

di e(gettext("you do not have permssion to perform"

"that operation.\n"));
} else {
di e(gettext("open: %"), lofictl);

}
I * NOTREACHED* /

-

* ok ok ok % ok ok k% o *

No passphrase is needed for epheneral key, or when key is
inafile and not wapped by another key from a token.
However, a passphrase is needed in these cases:
1. cipher wth no epheneral key, key file, or token,

in which case the passphrase is used to build the key
2. token with an optional cipher or optional key file,

in which case the passphrase unl ocks the token
If only the cipher is specified, reconfirmthe passphrase
to ensure the user hasn’t mis-entered it. Qherw se, the
token will enforce the token passphrase.

if (need_crypto) {
CK_SESSI ON_HANDLE sess

/* pick a cipher if none specified */
if (cipher == NULL)
ci pher = DEFAULT_CI PHER

if (!kernel _ci pher_check(cipher))
di e(gettext(
"use \"cryptoadmlist -m" to find available "
"mechani sms\n"));

init_crypto(token, cipher, &sess);

if (cipher_only) {
get keyfronuser (ci pher, &rkey, &rksz);
} else if (token !'= NULL)
get keyfront oken(sess, token, keyfile, cipher,
& key, &rksz);
} else {
/* this al so handl es epheneral keys */
getkeyfronfil e(keyfile, cipher, & key, &rksz);
}

end_crypto(sess);
}
/*
* Now to the real work.

/
if (addflag)
add_mappi ng(l fd, devicenane, filenane, cipher, rkey, rksz,

new usr/src/cnd/ | of i adm mai n. c

2033
2012
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043

2045
2046
2047
2048
2049 }

else if

rdfl ag);
add_mappi ng(1 fd, devicenane, filenane, cipher, rkey, rksz);
(conpressflag)
| ofi _conpress(& fd, filename, conpress_index, segsize);

el se if (unconpressflag)

I ofi _unconpress(lfd, filenane);
else if (deletefl ag)

del et e_mappi ng(l fd, devicenane, filename, force);
else if (filename || devicenane)

print_one_mappi ng(l fd, devicenane, filenane);
el se

print _mappi ngs(lfd);
if (Ifd !=-1)

(void) close(lfd);
closelib();

return (E_SUCCESS);

__unchanged_portion_onitted_

new usr/src/ man/ manlni | of i adm 1m 1

R R R R

18081 Mon Sep 16 15:02:47 2013
new usr/src/ man/ manint | of i adm 1m
*** NO COMMENTS ***
LEEE R R R EE SRR EEEEEEEEEEE R EREEEEEEEEEEEEEEEEEEREEEEEEEEEESEE]
1'\" te
2 .\" Copyright (c) 2008, Sun M crosystens, Inc. All Rights Reserved
3 .\" The contents of this file are subject to the terms of the Conmon Devel opnent
4 .\" See the License for the specific |anguage governing permissions and |imtat
5 .\" the fields enclosed by brackets "[]" replaced with your own identifying info
6 . TH LOFI ADM 1M "Aug 28, 2013"
6 . TH LOFI ADM 1M " Aug 31, 2009"
7 . SH NAME
8 lofiadm\- administer files avail able as bl ock devices through |ofi
9 . SH SYNOPSI S

10 . LP

11 . nf

12 \fBIofladeR[\fB—r\f] \fB-a\fR \fIfile\fR [\fldevice\fR]

12 \fB/usr/sbin/lofiadmMfR \fB-a\fR \flfile\fR [\fldevice\fR]

13 . fi

15 . LP

16 . nf

17 \fBlo ofiadmM fR [\fB-r\fR] \fB-c\fR \flcrypto_algorithmfR \f B-a\fR\fIfiIe\fR[\f
17 \fB/ usr/sbin/lofiadmMfR\fB-c\fR \flcrypto_algorithmfR\fB-a\fR\fIfile\fR [\fl
18 . fi

20 .LP

21 .nf

22 \fBIofiadmfR[\fB—r\fR] \fB-c\fR \flcrypto_algorithmfR\fB-k\fR \flraw key_fil
22 \fB/usr/sbin/lofiadMfR\fB-c\fR \flcrypto_algorithmfR\fB-k\fR \flraw key_file
23 .fi

25 . LP

26 .nf

27 \fBlo ofiadmM fR [\fB-r\fRl \fB-c\fR \flcrypto_algorithmfR\fB-T\fR \fltoken_key\f
27 \fBlusr/sbin/lofiadmMfR\fB-c\fR \flcrypto_algorithmfR\fB-T\fR \fltoken_key\fR
28 . fi

30 .LP

31 .nf

32 \fBlofiadmMfR [\fB-r\fR] \fB-c\fR \flcrypto_algorithmfR\fB-T\fR \fltoken_key\f
32 \fB/usr/sbin/lofiadmMfR\fB-c\fR \flc rypto_algorithmfR\fB T\fR \fltoken_key\fR
33 \fB-k\fR \flw apped_key_file\fR\fB-a\fR\flfile\fR [\fldevice\fR]

34 . fi

36 .LP

37

38 \fB ofiadmM fR [\fB-r\fR] \fB-c\fR \flcrypto_algorithmfR\fB-e\fR\fB-a\fR\fIfi
38 \fB/usr/sbin/lofiadmMfR\fB-c\fR \flcrypto_algorithmfR\fB-e\fR\fB-a\fR\flIfil
39 .fi

41 . LP

42 . nf

43 \fBlofiadm fR \fB- QfR \flalgorithmfR [\fB-s\fR \flsegnmen t_S|ze\fR] \fIfilel\fR
43 \fB/usr/sbin/lofiadMfR\fB-QfR \flalgorithmMfR [\fB-s\fR \flsegnent_size\fR \
44 . fi

46 .LP

47

nf
Bl ofiadmM fR\fB-d\fR \

48 \f fifile\fR| \fldevice\fR

48 \fB/usr/sbin/lofiadMdfR\fB-d\fR\fIfile\fR | \fldevice\fR
49 . fi

51 .LP

52 .nf

new usr/src/ man/ manlni | of i adm 1m

53 \fBlofiadmMfR\fB-UWfR \flfile\fR

53 \fB/usr/sbin/lofiadMfR\fB-WfR \flfile\fR
54 .fi

56 .LP

57 .nf

58 \fBI ofiadmMfR [\fl f e\le \fldevice\fR]
58 \fB/usr/sbin/lofiadMfR [\fIfile\fR | \fldevice\fR]
59 .fi

61 . SH DESCRI PTI ON

62 .sp

63

.LP
64 \fBlofiadmfR adm nisters \fBlofi\fR, the | oopback file driver. \fBlofi\fR
65 allows a file to be associated with a block device. That file can then be
66 accessed through the block device. This is useful when the file contains an
67 image of sone filesystem (such as a floppy or \fBCD-ROMfR inmage), because the
68 bl ock device can then be used with the nornal systemutilities for nmounting,
69 checking or repairing filesystens. See \fBfsck\fR(1M and \fBnmount\fR(1M.
70 .sp
71 . LP
72 Use \fBlofiadmMfR to add a file as a | oopback device, renove such an
73 association, or print information about the current associations.
74 .sp
75 . LP
76 Encryption and conpression options are nutually exclusive on the command |ine.
77 Further, an encrypted file cannot be conpressed | ater, nor can a conpressed
78 file be encrypted later.

81 The \fBlofi\fR driver is not available and will not work inside a zone.
82 . SH OPTIONS

85 The foll owing options are supported:

87 .ne 2

88 .na

89 \fB\fB-a\fR\fIfilelfR [\fldevice\fRI\fR
90 . ad

91 .sp .6

92 . RS 4n

93 Add \flfile\fR as a bl ock device.

.sp
95 If \fldevice\fRis not specified, an avail able device is picked.

.sp
97 If \fldevice\fRis specified, \fBlofiadmMfR attenpts to assign it to
98 \fIfile\fR \fldevice\fR nust be available or \fBlofiadMfR w Il fail. The
99 ability to specify a device is provided for use in scripts that wish to
100 reestablish a particular set of associations.

. RE

103 .sp
104 .ne 2

.na
106 \fB\fB-Q\fR {\flgzip\fR | \flgzip-MfR | \fllzma\fR}\fR
.ad

108 .sp .6
109 . RS 4n
110 Conpress the file with the specified conpression algorithm

.sp
112 The \fBgzi p\fR conpression al gorithmuses the sane conpression as the

113 open-source \fBgzip\fR command. You can specify the \fBgzip\fR | evel by using
114 the value \fBgzip-\fRfINNfR where \fINNfRis 6 (fast) or 9 (best conpression
115 ratio). Currently, \fBgzip\fR, w thout a nunber, is equivalent to \fBgzip-6\fR
116 (which is also the default for the \fBgzip\fR command).

new usr/src/ man/ manlni | of i adm 1m

117
118
119
120
121
122

124
125
126
127
128
129
130
131
132
133

135
136
137
138
139
140
141
142
143
144

146
147
148
149
150
151
152
153
154

.sp
\fllzma\fR stands for the LZMA (Lenpel - Zi v- Markov) conpression al gorithm

.sp

Note that you cannot wite to a conpressed file, nor can you nount a conpressed
file read/wite.

. RE

.sp
.ne 2

. na
\fB\fB-d\fR\fIfile\fR| \fldevice\fRfR

.ad

.sp .6

.RS 4n

Renove an association by \flIfile\fR or \fldevice\fR nane, if the associated
bl ock device is not busy, and deall ocates the bl ock device.

. RE

.sp
.ne 2

.na
\fB\fB-r\fR

.ad

.Sp .6

.RS 4n

If the \fB-r\fR option is specified before the \fB-a\fR option, the
\fldevice\fR will be opened read-only.

. RE

.sp
.ne 2

.na
\fB\fB-s\fR \flsegnent_size\fRfR
. ad

.sp .6

. RS 4n

The segnent size to use to divide the file being conpressed. \flsegnent_size\fR
can be an integer nmultiple of 512.

155 . RE

157
158
159
160
161
162
163
164
165

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

.sp
.ne 2

. ha
\fB\fB-UWfR \fIfile\fRfR
.ad

.sp .6

. RS 4n

Unconpress a conpressed file.
.RE

.sp

.LP
The followi ng options are used when the file is encrypted:

.sp
.ne 2

.nha
\fB\fB-c\fR \flcrypto_algorithmfRfR

.ad

.sp .6

. RS 4n

Sel ect the encryption algorithm The al gorithm nmust be specified when
encryption is enabl ed because the algorithmis not stored in the disk inmage.

.sp
If none of \fB-e\fR, \fB-k\fR, or \fB-T\fR is specified, \fBlofiadmMfR pronpts
for a passphrase, with a mninmmlength of eight characters, to be entered .

The passphrase is used to derive a symmetric encryption key using PKCS#5 PBKD2.

new usr/src/ man/ manlni | of i adm 1m

183

185
186
187
188
189
190
191
192
193
194
195

197
198
199
200
201
202
203
204
205
206
207
208
209

211
212
213
214

215 .

216
217
218

. RE

.sp
.ne 2

.na
\fB\fB-k\fR \flraw key_file\fR | \flwapped_key file\fRfR

.ad

.Sp .6

.RS 4n

Path to raw or wapped symretric encryption key. If a PKCS#11 object is also
given with the \fB-T\fR option, then the key is wapped by that object. If
\fB-T\fR is not specified, the key is used raw

.RE

.sp
.ne 2

.na
\fB\fB-T\fR \fltoken_key\fRfR

.ad

.Sp .6

.RS 4n

The key in a PKCS#11 token to use for the encryption or for unw apping the key
file.

.sp

If \fB-k\fR is also specified, \fB-T\fR identifies the unw appi ng key, which
nust be an RSA private key.

. RE

.sp
.ne 2

.nha
\fB\fB-e\fRfR
ad

.sp .6

. RS 4n
Cenerate an epheneral symmetric encryption key.

219 . RE

221 .
222 .

223
224
225
226
227
228
229
230
231
232
233

The fol | owi ng operands are supported:

.sp
.ne 2

.na
\fB\flcrypto_al gorithmfR R
.ad

.sp .6

. RS 4n

One of: \fBaes-128-chc\fR \fBaes-192-cbc\fR \fBaes-256-chc\fR
\f Bdes3-cbc\fR, \fBbl owfish-cbc\fR

234 . RE

236
237
238
239
240
241
242
243
244
245
246
247
248

.sp
.ne 2

.nha
\fB\fldevice\fRfR

.ad

.sp .6

. RS 4n

Display the file nanme associated with the block device \fldevice\fR

.sp
W thout argunents, print a |list of the current associations. Filenanmes nust be
valid absol ute pathnanes.

.sp
When a file is added, it is opened for reading or witing by root. Any

new usr/src/ man/ manlni | of i adm 1m

249
250
251
252
253

255
256
257
258
259
260
261
262
263

265
266

267 .

268
269
270
271
272
273
274

276
277

278 .

279
280
281
282
283
284
285
286
287
288
289
290

292
293

294 .
295 i
296 .

297

298 .
299 .
300 .

302 .

304
305
306
307
308
309
310
311
312
313

restrictions apply (such as restricted root access over \fBNFS\fR). The file is
hel d open until the association is renoved. It is not actually accessed until
the bl ock device is used, be witten to if the block device is
only opened read-only.

.RE

so it will never

.Sp
.ne 2

.na
\fB\fIfile\fRfR

.ad

.sp .6

.RS 4n

Di splay the bl ock device associated with \flifile\fR
.RE

.sp
.ne 2

na
\fB\flraw key_file\fRfR
.ad

.sp .6

. RS 4n

Path to a file of the appropriate |ength,
encryption key.

. RE

in bits, to use as a raw symetric

.sp
.ne 2

na
\fB\fltoken_key\fRfR
.ad

.Sp .6

.RS 4n

PKCS#11 t oken obj ect
.sp

Lin +2

. nf

\fltoken_nane\fR \flmanufacturer_id\fR \flserial _nunmber\fR \flkey_| abel\fR
i

.in -2

.sp

Al'l but the key | abel are optional and can be enpty. For exanple, to specify a
token object with only its key |abel \fBWlofiKey\fR, use:

in the format:

.sp
.ne 2

.na
\fB\flwapped_key_file\fRfR
.ad

.sp .6

. RS 4n

Path to file containing a symretric encryption key w apped by the RSA private
key specified by \fB-T\fR

. RE

5

new usr/src/ man/ manlni | of i adm 1m

315
316
317
318
319
320
321

323
324
325
326
327

329
330
331

333
334
335
336
337

338 .

339
340

342
343
344
345

347
348
349
350
351
352
353
354
355

357
358
359
360

362
363
364
365
366
367
368
369

371
372
373

375
376
377
378
379
380

. SH EXAMPLES

.LP

\fBExanpl e 1 \fRWbunting an Existing CD-ROM | nage

.sp

.LP

You shoul d ensure that Solaris understands the i mage before creating the
\fBCD\fR \fBlofi\fR allows you to mount the image and see if it works.

.sp
.LP

Thi s exanpl e nounts an existing \fBCD-ROMfR image (\fBsparc.iso\fR), of the
\fBRed Hat 6.0 CD\fR which was downl oaded fromthe Internet. It was created
with the \fBnkisofs\fR utility fromthe Internet.

.sp
.LP
Use \fBlofiadmMfR to attach a block device to it:

.sp
Lin 42

. nf

\fBlofiadm -a /home/ m ke_s/ RH6. 0/ sparc.iso\fR
/dev/lofi/l

fi

.in -2

.sp

.sp

.LP
\fBlofiadm fR pi cks the device and prints the device name to the standard
output. You can run \fBlofiadm fR again by issuing the follow ng command:

.sp
Lin +2

. nf

\fBlofiadm fR
Bl ock Device
/dev/lofil/ll

Cfi

.in -2

.sp

File Opti ons
/ home/ m ke_s/ RH6. 0/ sparc.iso -

.sp
.LP

O, you can give it one nane and ask for the other,
conmand:

by issuing the foll ow ng

.sp
Lin +2

. nf

\fBlofiadm/dev/lofi/1\fR
/ hone/ m ke_s/ RH6. 0/ sparc. i so
i

.in -2
.sp

.sp
.LP

Use the \fBmount\fR command to nount the inmage:

.sp
.in +2

. nf

\fBnount -F hsfs -o ro /dev/lofi/1 /mt\fR
Cfi

.in -2

new usr/src/ man/ manlni | of i adm 1m

381

383
384
385

387 .
388 .i

389
390
391
392
393
394
395
396
397
398
399

400 .
401 .
402 .

404
405
406
407

409

.sp

.sp
.LP
Check to ensure that Solaris understands the inmage:

kbyt es used avail capacity Munted on
512418 512418 0 100% / mt

& RedHat / doc/

& ./ TRANS. TBL dosutils/
& bi n@ etc@
boot / i mges/ mt /
boot . cat * ker nel s/ nodul es/
dev@ lib@ proc/

Is-1R rr_noved/
Is-1R gz shin@

m sc/ t np/
usr@

.sp

Solaris can mount the CD-ROM i mage, and understand the filenames. The image was
created properly, and you can now create the \fBCD-ROMfR wi th confi dence.

.sp

410 . LP

411

413 .
414 i

415
416
417
418
419
420

421 .
422 .

424
425
426
427
428

430
431
432
433
434
435

437
438
439
440

442
443
444
445
446

As a final step, unnobunt and detach the images:

Bunmount /mt\f
Bl of i adm -d /dev/lof|/l\fR
Bl of i adm f R

k Devi ce File Opti ons

.LP

\ f BExanpl e 2 \fRWbunting a Fl oppy | mage
.sp

.LP

This is simlar to the first exanple.

.sp
.LP

Using \fBlofi\fR to help you mount files that contain floppy inmages is hel pful
if a floppy disk contains a file that you need, but the machine which you are
on does not have a floppy drive. It is also helpful if you do not want to take
the tine to use the \fBdd\fR conmand to copy the inage to a fl oppy.

.sp
.LP

This is an exanple of getting to \fBVDB\fR floppy for Solaris on an x86
pl atform

.sp
Lin +2

. nf
\fBlofiadm -a /export/s28/ MDB_s28x_wos/| at est/boot.3\fR
/dev/lofi/ll

new usr/src/ man/ manlni | of i adm 1m

447
448
449
450
451
452
453

454 .
455 .
456 .

458
459
460
461
462
463
464
465

467
468
469

471
472
473
474

\fBnmount -F pcfs /dev/lofi/1 /mt\fR
\fBls /mt\fR
\& / COMMENT. BAT* RC. D/ SOLARI S. MAP*
\& ./ | DENT* REPLACE. BAT* X/
APPEND. BAT* MAKEDI R BAT* SOLARI S/
\fBunount /mt\fR
\fBl ofi adm -d /export/s28/ MDB_s28x_wos/ | at est/boot. 3\ fR
fi
in-2
sp

. LP

\fBExanpl e 3 \fRvaking a \fBUFS\fR Fi |l esystemon a File

.sp

.LP

Making a \fBUFS\fR filesystemon a file can be useful, particularly if a test
suite requires a scratch filesystem It can be painful (or annoying) to have to
repartition a disk just for the test suite, but you do not have to. You can
\fBnewfs\fR a file with \fBlofi\fR

.sp
.LP
Create the file:

.sp
Lin +2

. nf
\fBnkfile 35m/export/hone/test\fR

475 . fi

476
477

479

.in -2
.sp

.sp

480 . LP

481
482

484
485
486
487
488
489
490
491
492
493
494

Attach it to a block device. You also get the character device that \fBnewfs\fR
requires, so \fBnewfs\fR that:

.sp
Lin 42

. nf
\fBlofiadm -a /export/hone/test\fR
/dev/lofill
\fBnewfs /dev/rlofi/1\fR
newfs: construct a new file system/dev/rlofi/1l: (y/n)? \fBy\fR
/dev/rlofill: 71638 sectors in 119 cylinders of 1 tracks, 602 sectors
35.0MB in 8 cyl groups (16 c/g, 4.70MB/ g, 2240 i/Q)
super - bl ock backups (for fsck -F ufs -o b=#) at:
32, 9664, 19296, 28928, 38560, 48192, 57824, 67456,

495 . fi

496
497

499
500
501
502

504
505
506
507
508
509
510
511
512

.in -2
.sp

.sp

Note that \fBufs\fR might not be able to use the entire file.
filesystem

Mount and use the

.sp
.in +2
. nf
\fBnount /dev/lofi/1 /mt\fR
\fBdf -k /mt\fR
il esystem
dev/lofi/1l
\fBls /mt\fR
] i

kbyt es used
33455 9

avail capacity Munted on

#
#
F
/ 30101 1% / mt
#
\&

| ost +f ound/

new usr/src/ man/ manlni | of i adm 1m

513
514
515
516
517

519
520
521
522
523
524

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542

544
545
546
547
548
549
550

552
553

\fBunount /mt\fR

\fBlofiadm-d /dev/lofi/1\fR
fi

.in -2

.sp

.LP
\f BExanple 4 \fRCreating a PC (FAT) File Systemon a Unix File

.sp
.LP

The following series of commands creates a \fBFAT\fR file systemon a Unix
file. The file is associated with a block device created by \fBlofiadmfR

.sp
.in +2

\ankfiIe 10M /export/test/testfs\fR

\fBlofiadm -a /export/test testfs\f

ev/lofi/l

BNote use of \fR rlofi\fB, not\fRIofi\fB, in

\fBnkfs -F pcfs -o nofdisk, si ze=20480 /dev/r
lo

#

#

/

\ ng command. \fR
#

\fBConstruct a new FAT file systemon /dev/r
#

#

#

F

/

foll o
| ofi/ \f

fi/l: (y/In)2A\fRy
fBmount -F pcfs /dev/lofi/1 /mt\fR

fBcd /mt\fR

fBdf -k .\fR

esystem kbyt es used avail capacity Munted on

\
\
\
|
ev/lofi/l 10142 0 10142 0% / mt
i
in-2

p

. LP
\ f BExanpl e 5 \f RConpressing an Existing CD- ROM | mage
.sp

LP
The fol | ow ng exanple illustrates conpressing an existing CD-ROMinmage
(\fBsolaris.iso\fR), verifying that the inmage is conpressed, and then
unconpressing it.

.sp
Lin 42

554 . nf

555

556 .

557
558

560
561
562

564 .

565
566
567
568

\fBlofiadm -C gzip /export/home/solaris.iso\fR
fi

.in -2

.sp

- Sp
LP
Use \fBlofiadmfR to attach a bl ock device to it:

Lin 42

. nf

\fBl ofi adm -a /export/hone/sol aris.iso\fR
/dev/lofi/ll

569 .fi

570
571

573
574
575

577
578

.in -2
.sp

.sp
LP

Check if the mapped i mage i s conpressed:

.sp
.in +2

new usr/src/ man/ manlni | of i adm 1m

579
580
581
582
583

. nf

\fBlofiadmM fR
Bl ock Device File Opti ons
/dev/lofill / export/hone/solaris.iso Conpr essed(gzi p)
/dev/lofil2 / export/hone/regul ar.iso -

584 .fi

585
586

588
589
590

592
593

.in -2
.sp

.sp
.LP

Unmap the conpressed i nage and unconpress it:

.sp
.in +2

594 . nf

595
596
597

598 .

599

601
602
603
604
605
606

608
609
610

612
613
614
615

\fBlofiadm-d /dev/lofi/1\fR

\fBl ofiadm -U /export/home/solaris.iso\fR
i

in-2

.sp

.LP

\f BExanple 6 \fRCreating an Encrypted UFS File Systemon a File

.sp

.LP

This exanple is simlar to the exanple of making a UFS filesystemon a file,
above.

.sp
.LP
Create the file:

.sp
Lin 42

. nf
\fBrkfile 35m/export/hone/test\fR

616 . fi

617
618

620
621
622

in -2
.sp

.sp
LP
Attach the file to a bl ock device and specify that the file inage is encrypted.

623 As a result of this command, you obtain the character device, which is

624 subsequently used by \fBnewf s\ fR

626 .sp

627 .in +2

628 . nf

629 # \fBlofiadm-c aes-256-cbc -a /export/honme/secrets\fR

630 Enter passphrase: \fBM/-Mth3r;|0v3s_nB+4l wdys!\fR (\fBnot echoed\fR)
631 Re-enter passphrase: \fBM- I\/DthSr | Ov3s_nB+4] wdys! \ fR (\fBnot echoed\fR)
632 /dev/lofill

634 # \fBnewfs /dev/rlofi/1\fR

635
636
637
638
639
640
641
642

644

newfs: construct a new file system/dev/rlofi/1l: (y/n)? \fBy\fR

/dev/rlofill: 71638 sectors in 119 cylinders of 1 tracks, 602 sectors
35.0MB in 8 cyl groups (16 c/g, 4.70MB/ g, 2240 i/Q)

super - bl ock backups (for fsck -F ufs -o b=#) at:

32, 9664, 19296, 28928, 38560, 48192, 57824, 67456,

i

.in -2

.sp

.sp

10

new usr/src/ man/ manlni | of i adm 1m

645 . LP
646 The mapped file system shows that encryption is enabl ed:

648 .sp

649 .in +2

650 . nf

651 # \fBlofiadmMfR

652 Bl ock Device File Opti ons
653 /dev/lofi/l / export/hone/ secrets Encrypt ed
654 . fi

655 .in -2

656 . sp

658 .sp
659 . LP
660 Mount and use the filesystem

662 .sp
663 .in +2
664 . nf
665
666

Bnount /dev/lofi/1 /mt\fR

#
667 #

\

\

lo

f

fBcp nons_secret_*_recipe /mt\fR

fBls /mt\fR

/ nons_secr et _cooki e_r eci pe nons_secr et _soup_reci pe
nons_secr et _fudge_r eci pe nons_secret_stuffing_reci pe

st +f ound/ mons_secret _neat | oaf _reci pe noms_secret_waffle_reci pe

fBunmount /mt\fR

fBlofiadm-d /dev/lofi/1\fR

668
669
670
671
672
673 . fi
674 .i
675 .s

677 .sp

678 . LP

679 Subsequent attenpts to map the filesystemwith the wong key or the w ong
680 encryption algorithmwll fail:

11

682 .sp

683 .in +2

684 . nf

685 # \fBlofiadm-c bl owfish-cbc -a /export/hone/secrets\fR

686 Enter passphrase: \fBmomy\fR (\fInot echoed\fR)
687 Re-enter passphrase: \fBnomy\fR (\flnot echoed\fR)

688 | ofiadm could not map file /root/lofi:
689 # \fBlofiadm fR

690 Bl ock Device File

691 #

692 . fi

693 .in -2

694 .sp

Invalid argunent

Opti ons

696 .sp

697 .LP

698 Attenpts to nmap the filesystemwi thout encryption will succeed, however
699 attenpts to nount and use the filesystemw Il fail:

701 .sp
702 .in +2

703 . nf

704 # \fBlofiadm -a /export/hone/ secrets\fR
705 /dev/lofi/l

706 # \fBlofiadm fR

707 Bl ock Device File

708 /dev/lofi/1l / export/ hone/ secrets
709 # \fBrmount /dev/lofi/1 /mt\fR

710 mount: /dev/lofi/l is not this fstype

Opti ons

new usr/src/ man/ manlni | of i adm 1m

711 #
712 . fi
713 .in -2
714 .sp

716 . SH ENVI RONMENT VARI ABLES

717 .sp

718 . LP

719 See \fBenvi ron\fR(5) for descriptions of the follow ng environnment variabl es

720 that affect the execution of \fBlofiadmMfR \fBLC CTYPE\fR, \fBLC _MESSAGES\fR

721 and \fBNLSPATH f R

722 .SH EXIT STATUS

723 .sp

724 . LP

725 The follow ng exit values are returned:
726 .sp

727 .ne 2

728 .na

729 \fB\fBO\fR fR

730 . ad

731 .sp .6

732 .RS 4n

733 Successf ul conpl etion.
734 . RE

736 .sp

737 .ne 2

738 .na

739 \fB\fB>0\fR fR
740 . ad

741 .sp .6

742 . RS 4n

743 An error occurred.
744 . RE

746 . SH SEE ALSO

747 .sp

748 . LP

749 \fBf sck\f R(1M, \fBnount\fR(1M, \fBnount_ufs\fR(1M, \fBnewfs\fR(1M,

750 \fBattributes\fR(5), \fBlofi\fR(7D), \fBlofs\fR(7FS)

751 . SH NOTES

752 .sp

753 . LP

754 Just as you would not directly access a disk device that has nounted file
755 systems, you should not access a file associated with a bl ock device except

12

756 through the \fBlofi\fRfile driver. It might also be appropriate to ensure that

757 the file has appropriate pernmissions to prevent such access.

758 .sp

759 . LP

760 The abilities of \fBlofiadmfR and who can use them are controlled by the

761 permissions of \fB/dev/lofictlI\fR Read-access allows query operations, such as
762 listing all the associations. Wite-access is required to do any state-changing
763 operations, |ike adding an association. As shipped, \fB/dev/lofictlI\fR is owned

764 by \fBroot\fR, in group \fBsys\fR and node \fB0644\fR, so all users can do

765 query operations but only root can change anything. The adm nistrator can give

766 users wite-access, allowing themto add or del ete associations, but that is
767 very likely a security hole and shoul d probably only be given to a trusted
768 group.

769 .sp

770 . LP

771 When mounting a filesysteminage, take care to use appropriate nount options.

772 In particular, the \fBnosuid\fR nount option mght be appropriate for \fBUFS\fR

773 images whose origin is unknown. Also, some options mght not be useful or
774 appropriate, like \fBlogging\fR or \fBforcedirectio\fR for \fBUFS\fR For
775 conpatibility purposes, a raw device is also exported along with the bl ock
776 device. For exanple, \fBnewfs\fR(1M requires one.

new usr/src/ man/ manlni | of i adm 1m

777 .sp

778 . LP

779 The output of \fBlofiadmfR (w thout arguments) mght change in future
780 rel eases.

13

new usr/src/uts/comon/iollofi.c

R R R R

74575 Mon Sep 16 15:02:48 2013
new usr/src/uts/comon/io/lofi.c
%* NO COMMVENTS *

R R R R R

__unchanged_portion_onitted_

441 | * ARGSUSED* /
442 static int
443 | of i _open(dev_t *devp, int flag,

int otyp, struct

cred *credp)

444 {

445 m nor_t minor;

446 struct lofi_state *Isp;

448 /*

449 * |ofiadm-a /dev/lofi/1l gets us here.
450 *

451 if (mutex_owner (& ofi_lock) == curthread)
452 return (EINVAL);

454 mut ex_ent er (& ofi _I ock);

456 m nor = getm nor(*devp);

458 /* master control device */

459 if (mnor == 0)

460 mut ex_exi t (& ofi _| ock);

461 return (0);

462 }

464 /* otherw se, the mapping should al ready exist */
465 I sp = ddi _get_soft_state(l ofi_statep, mnor);
466 if (I'sp == NULL)

467 mut ex_exi t (& ofi _| ock);

468 return (EINVAL);

469 1

471 if (Isp->ls_vp == NULL)

472 mut ex_exi t (& ofi _| ock);

473 return (ENXIO;

474 }

476 if (mark_opened(lsp, otyp) == -1) {

477 mut ex_exi t (& of i _| ock);

478 return (EINVAL);

479 }

481 if (Isp->ls_readonly && (flag & FWRITE)) {
482 mut ex_exi t (& ofi _Il ock);

483 return (ERCFS);

484 }

486 mut ex_exi t (& ofi _Il ock);

487 return (0);

488 }

__unchanged_portion_onitted_

1623 /*

1624 * Find the lofi state for the given filenane. W conpare by vnode to

1625 * allow the global zone visibility into NG | ofi

1626 */
1627 static int

1628 file_to_lofi_nocheck(char *filename, boolean_t

1629 struct |ofi_state **| spp

1623 file_to_l ofi _nocheck(char *filenanme, struct I|ofi

1630 {

nodes.

readonly,

_state **|spp)

new usr/src/uts/comon/iollofi.c

1631 struct lofi_state *Isp;
1632 vnode_t *vp = NULL;
1633 int err = 0;

1634 int rdfiles = 0;

1636 ASSERT(MUTEX_HELD(& of i _I ock));

1638 if ((err = lookupnane(filename, U O SYSSPACE, FOLLOW

1639 NULLVPP, &vp)) != 0)
1640 goto out;

1642 if (vp->v_type == VREG {

1643 vnode_t *real vp;

1644 if (VOP_REALVP(vp, &realvp, NULL) == 0) {
1645 VN_HOLD(r eal vp);

1646 VN_RELE(vp)

1647 vp = real vp;

1648 }

1649 1

t_head(& ofi _list);

1651 for (|
| next(&lofl Tist, Isp

1652 _
1653 p->ls_vp == vp) {

1654 i f (Ispp b= NULL)

1655 *lspp = | sp
1656 if (Isp->ls readonl y) {
1657 rdf il es++;

n —~n

1658 /* Skip if '-ris speci fied */

1659 if (readonly)
1660 conti nue
1661 }

1662 goto out;

1663 }

1664 }

1666 err = ENCENT;
1668 /*

1669 * |If a filenane is given as an argunent for |ofi_unmap, we shouldn’t

1670 * allow unmap if there are multiple read-only |ofi
1671 *with this file.

1672 */

1673 if (Ispp !'= NULL)

1674 if (rdflles == 1)

1675 = 0;

1676 else if (rdflles>1)

1677 err = EBUSY;

1678 }

1680 out:

1681 if (vp !'= NULL)
1682 VN_RELE(vp);
1683 return (err);

1684 }

1686 /*

1687 * Find the mnor for the given filenane, checking the zone
1688 * it.

1689 */

1690 static int

1691 file_to_l ofi (char *fil ename, boolean_t readonly, struct I|ofi
1666 file_to_lofi(char *filename, struct lofi_state **I spp)

1692 {
1693 int err = 0;
1695 ASSERT(MUTEX_HELD(& of i _| ock));

devi ces associ at ed

can access

_state **|spp)

new usr/src/uts/comon/iollofi.c

1697 if ((err =file_to_lofi_nocheck(filenane, readonly, Ispp)) != 0)
1672 if ((err = file_to_lofi_nocheck(filename, Ispp)) = 0)
1698 return (err);
1700 if ((err = 1lofi_access(*lIspp)) != 0)
1701 return (err);
1703 return (0);
1704 }
__unchanged_portion_onitted_
2118 /*
2119 * map a file to a minor nunber. Return the mnor nunber.
2120 */
2121 static int
2122 lofi_map_file(dev_t dev, struct | ofl _ioctl *ulip, int pickmnor,
2123 int *rvalp, struct cred *credp, int ioctl_flag)
2124 {
2125 mnor_t mnor = (mnor_t)-1;
2126 struct lofi_state *|lsp = NULL;
2127 struct lofi_ioctl *klip;
2128 int error;
2129 struct vnode *vp = NULL;
2130 vattr_t vattr;
2131 int flag;
2132 dev_t newdev;
2133 char nanebuf [50] ;
2135 error = copy_in_lofi_ioctl(ulip, &lip, ioctl_flag);
2136 if (error 1=0)
2137 return (error);
2139 mut ex_ent er (& of i _Il ock);
2141 mut ex_ent er (&cur proc->p_l ock) ;
2142 if ((error = rctl_incr_Tofi (curproc curproc->p_zone, 1)) !=0) {
2143 mut ex_exi t. (&curpr oc->p_l ock);
2144 mut ex_exi t (& of 1 _| ock);
2145 free_lofi_ioctl(klip);
2146 return (error);
2147
2148 mut ex_exi t (&cur proc->p_| ock) ;
2150 if (file_to_lofi_nocheck(klip->li_filenane, klip->li_readonly,
2151 NULL) == 0)
2125 if (file_to_lofi_nocheck(klip->li_filenane, NULL) == 0) {
2152 error = EBUSY;
2153 goto err;
2154 }
2156 if (pickm nor)
2157 m no (mnor _t)id_allocff_nosleep(lofi_minor_id);
2158 if (m nor == (mnor_t)-1) {
2159 error = EAGAIN,
2160 goto err;
2161
2162 } else {
2163 if (ddi_get_soft_state(lofi_statep, klip->li_mnor) !'= NULL) {
2164 error = EEXI ST;
2165 goto err;
2166 }
2168 mnor = (mnor_t)
2169 id aI I oc_specific_nosleep(lofi_mnor_id, klip->li_mnor);
2170 ASSERT(minor !'= (minor_t)-1);

new usr/src/uts/comon/iol/lofi.c

2171 }

2173 flag = FREAD | FWRITE | FOFFMAX | FEXCL

2174 error = vn_open(klip->li_filenane, U O SYSSPACE, flag, 0, &p, O,
2175 if (error)

2176 /* try read-only */

2177 flag & ~FWRI TE;

2178 error = vn_open(klip->li_filename, U O SYSSPACE, flag, O,
2179 &vp, O, ;

2180 if (error)

2181 goto err;

2182 }

2184 if (!V_ISLOFI ABLE(vp->v_type)) {

2185 error = EINVAL,

2186 goto err;

2187 }

2189 vattr.va_mask = AT_SI ZE;

2190 error = VOP_CETATTR(vp, &vattr, 0, credp, NULL);

2191 if (error)

2192 goto err;

2194 /* the file needs to be a multiple of the block size */

2195 if ((vattr.va_size % DEV_BSIZE) != 0) {

2196 error = EI NVAL;

2197 goto err;

2198

2200 /* Isp alloc+init */

2202 error = ddi _soft_state_zalloc(lofi_statep, mnor);

2203 if (error == DDI _FAILURE) {

2204 error = ENOVEM

2205 goto err;

2206 1

2208 | sp = ddi _get_soft_state(lofi_statep, minor);

2209 list_insert_tail (& ofi_list, Isp);

2211 newdev = nmakedevi ce(getmajor(dev), mnor);

2212 | sp->l s_dev = newdev;

2213 zone_init_ref (& sp->ls_zone);

2214 zone_hol d_ref (cur zone, &J sp->l s_zone, ZONE_REF_LOFI);

2215 | sp->I's_unconp_seg_sz = 0;

2216 | sp->ls_conp_algorithn{0] = "'\0";

2217 I sp->ls_crypto_offset = O;

2219 cv_init(& sp->I's_vp_cv, NULL, CV_DRIVER NULL)

2220 mut ex_i ni t (& sp->l s_conp_cache_| ock, NULL, MJUTEX DRI VER, NULL);
2221 mut ex_i ni t (& sp->ls_conp_bufs_lock, NULL, MJTEX DRI VER, NULL);
2222 mut ex_i ni t (& sp->I s_kstat | ock, NULL, MJUTEX DRI VER, NULL);

2223 mut ex_i ni t (& sp->l s_vp_l ock, NULL MJTEX DRI VER, NULL);

2225 (void) snprintf(nanmebuf, sizeof (namebuf), "%_taskq_ %",

2226 LOFI _DRI VER_NAME, mi nor);

2227 I sp->ls_taskq = taskq create_proc(nanebuf, |ofi_taskq_nthreads,
2228 m ncl syspri, 1, lofi_taskg_maxalloc, curzone->zone_zsched, 0);
2230 list_create(& sp->ls_conp_cache, sizeof (struct |ofi_conp_cache),
2231 of fsetof (struct lofi_conp_cache, Ic_list));

2233 /*

2234 * save open node so file can be closed properly and vnode counts
2235 * updated correctly.

2236 */

0);

new usr/src/uts/comon/io/lofi.c 5 new usr/src/uts/comon/io/lofi.c
2237 | sp->l s_openflag = flag; 2303 /* create DDl properties */
2239 I sp->ls_vp = vp; 2305 if ((ddi _prop_update_int64(newdev, |ofi_dip, SIZE_PROP_NAME,
2240 | sp->l s_stacked_vp = vp; 2306 I'sp->l's_vp_size - Isp->'s_crypto_offset)) != DDl _PROP_SUCCESS) {
2241 /* 2307 error = EINVAL;
2242 * Try to handl e stacked | ofs vnodes. 2308 got o nodeerr;
2243 */ 2309 }
2244 if (vp->v_type == VREG {
2245 vnode_t *real vp; 2311 if ((ddi_prop_update_int64(newdev, |ofi_dip, NBLOCKS_PROP_NAME,
2312 (I'sp->ls_vp_size - |sp->ls_crypto_offset) / DEV_BSIZE))
2247 if (VOP_REALVP(vp, &realvp, NULL) == 0) { 2313 I'= DDl _PROP_SUCCESS) {
2248 | * 2314 error = EINVAL;
2249 * W& need to use the realvp for uniqueness 2315 got o nodeerr;
2250 * checking, but keep the stacked vp for 2316 }
2251 * LOFI _GET_FI LENAME di spl ay.
2252 */ 2318 if (ddi _prop_update_string(newdev, |ofi_dip, ZONE_PROP_NAME,
2253 VN_HOLD(r eal vp); 2319 (char *)curproc->p_zone->zone_nane) != DDl _PROP_SUCCESS) {
2254 I sp->ls_vp = real vp; 2320 error = EINVAL;
2255 } 2321 got o nodeerr;
2256 } 2322 }
2258 | sp->ls_vp_size = vattr.va_size; 2324 kstat_install (I sp->ls_kstat);
2259 I sp->l s_vp_conp_si ze = | sp->ls_vp_size;
2326 mut ex_exi t (& ofi _I ock);
2261 I sp->ls_kstat = kstat_create_zone(LOFI _DRI VER_NAME, mi nor,
2262 NULL, "disk", KSTAT_TYPE_ IO, 1, 0, getzoneid()); 2328 if (rvalp)
2329 *rvalp = (i n)ninor'
2264 if (Isp->Is_kstat == NULL) { 2330 kl'ip->li_mnor = mno
2265 error = ENOVEM 2331 (voi d) copy_out_l f|_| oct| (klip, ulip, ioctl_flag);
2266 goto err; 2332 free_lofi_ioctl(klip);
2267 } 2333 return (0);
2269 | sp->l s_kstat->ks_l ock = & sp->l s_kstat_| ock; 2335 nodeerr:
2270 kstat _zone_add(| sp->ls_kstat, G.OBAL_ZONEID); 2336 I ofi _free_dev(newdev);
2337 err:
2272 I sp->ls_readonly = klip->li_readonly; 2338 if (I'sp != NULL) {
2339 | ofi _destroy(lsp, credp);
2274 if ((error = lofi_init_crypto(lsp, klip)) !'=0) 2340 } else {
2275 goto err; 2341 if (vp !'= NULL) {
2342 (void) VOP_CLCSE(vp, flag, 1, 0, credp, NULL);
2277 if ((error = lofi_init_conpress(lsp)) !=0) 2343 VN_RELE(vp);
2278 goto err; 2344 }
2280 fake_di sk_geonetry(lsp); 2346 if (mnor !'=(mnor_t)-1)
2347 id_free(lofi_mnor_id, mnor);
2282 /* create minor nodes */
2349 rctl _decr_l ofi (curproc->p_zone, 1);
2284 (voi d) snprl ntf(nanebuf, sizeof (namebuf), "9%d", ninor); 2350 }
2285 error = ddi _create_m nor_node(lofi_di p, nanmebuf, S |IFBLK, minor,
2286 DDl _PSEUDO, NULL); 2352 mut ex_exi t (& ofi _| ock);
2287 if (error !'= DDl SUCCESS) { 2353 free_lofi_ioctl(klip);
2288 error = ENXI O 2354 return (error);
2289 goto err; 2355 }
2290 }
2357 [*
2292 (voi d) snprl ntf (nanebuf, sizeof (nanmebuf), "%, raw', ninor); 2358 * unmap a file.
2293 error = ddi _create_m nor_node(lofi _di p, nanmebuf, S |IFCHR, mi nor, 2359 */
2294 DDl _PSEUDO, NULL); 2360 static int
2295 if (error !'= DD SUCCESS) { 2361 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilenane,
2296 /* renove bl ock node */ 2362 struct cred *credp, int ioctl_flag)
2297 (void) snprintf(nanmebuf, sizeof (nanebuf), "% ", mnor); 2363 {
2298 ddi _renove_mi nor _node(l of i _di p, nanebuf); 2364 struct lofi_state *Ilsp;
2299 error = ENXIQ 2365 struct lofi_ioctl *klip;
2300 goto err; 2366 int err;
2301 1
2368 err = copy_in_lofi_ioctl(ulip, &lip, ioctl_flag);

new usr/src/uts/comon/iollofi.c

2369 if (err 1= 0)

2370 return (err);

2372 nmut ex_ent er (& ofi _I| ock);

2373 if (byfil enane) {

2374 if ((err =file_to_lofi(klip->li_filenane, klip->li_readonly,
2375 & 'sp)) '=0) {

2346 if ((err = file_to_lofi (kI|p >li_filenane, & sp)) !=0) {
2376 nut ex_exit (& o ock) ;

2377 return (err);

2378 }

2379 } else if (klip- >I|_mn0r ==

2380 mut ex_exit (& ofi ck)

2381 free_Tofi _ioctl(k

2382 return (ENXIO);

2383 } else {

2384 | sp = ddi _get_soft_state(lofi_statep, klip->li_mnor);
2385

2387 if (I'sp == NULL || Isp->Is_vp == NULL || lofi_access(lsp) !=0) {
2388 mut ex_exi t (& ofi _| ock);

2389 free_lofi_ioctl(klip);

2390 return (ENXIO);

2391 }

2393 kl'i p->li _m nor = getm nor(lsp->ls_dev);

2395 /*

2396 * |f it's still held open, we’ll do one of three things:

2397 *

2398 * If no flag is set, just return EBUSY.

2399 *

2400 * |f the "cleanup’ flag is set, unmap and renpve the device when
2401 * the last user finishes.

2402 *

2403 * If the "force’ flag is set, then we forcibly close the underlying
2404 * file. Subsequent operations will fail, and the DKI OCSTATE i octl
2405 * will return DKIO DEV_GONE. Wien the device is last closed, the
2406 * device will be cleaned up appropriately.

2407 *

2408 * This is conplicated by the fact that we may have outstanding
2409 * dispatched I1/Cs. Rather than having a single nmutex to serialize all
2410 * 1/0, we keep a count of the number of outstanding I/O requests
2411 * (I's_vp_iocount), as well as a flag to indicate that no new I/ Gs
2412 * shoul d be dispatched (Is_vp_closereq).

2413 *

2414 * W set the flag, wait for the number of outstanding I/Gs to reach O,
2415 * and then close the underlying vnode.

2416 */

2417 if (is_opened(lsp)) {

2418 if (klip->li_force)

2419 mut ex_enter (& sp->l s_vp_l ock);

2420 I sp->l's_vp_cl osereq = B_TRUE;

2421 /* wake up any threads waiting on dkiocstate */
2422 cv_broadcast (& sp->ls_vp_cv);

2423 while (Isp->Is_vp_iocount > 0)

2424 cv_wait (& sp->ls_vp_cv, & sp->Is_vp_lock);
2425 mut ex_exi t (& sp->l s_vp_| ock);

2427 goto out;

2428 } else if (klip->li_cleanup) {

2429 I sp->ls_cleanup = 1;

2430 nut ex_exi t (& ofi _| ock);

2431 free_lofi_ioctl(klip);

2432 return (0);

2433 }

new usr/src/uts/comon/iollofi.c

2435 mut ex_exi t (& ofi _| ock);
2436 free Tofi_ioctl(klip);
2437 return (EBUSY);

2438 }

2440 out:

2441 lofi _free_dev(lsp->Is_dev);
2442 | ofi _destroy(lsp, credp);

2444 mut ex_exi t (& of i _I ock);

2445 (void) copy_out _Tofi ioctl(klip, ulip, ioctl_flag);
2446 free_|lofi _ioctl(klip);

2447 return (0);

2448 }

2450 /*

2451 * get the filenane given the mnor nunber, or the mnor nunber given

2452 * the nane.

2453 */

2454 | * ARGSUSED* /

2455 static int

2456 | ofi _get _info(dev_t dev, struct | of octl *ulip, int which,
_f

i
| ag)

2457 struct cred *credp, int ioctl

2458 {

2459 struct lofi_ioctl *klip;

2460 struct lofi_state *Isp;

2461 int error;

2463 error = copy_in_lofi_ioctl(ulip, &lip, ioctl_flag);

2464 if (error 1=0)

2465 return (error);

2467 switch (which) {

2468 case LOFI _GET_FI LENAME:

2469 if (klip->li_mnor == 0) {

2470 free_lofi_ioctl(klip);

2471 return (ETNVAL);

2472 }

2474 nmut ex_ent er (& ofi_lock);

2475 | sp = ddi _get_soft_state(lofi_statep, klip->li_
2476 if (Isp == NULL || lofi_access(lsp) !=0) {

2477 rrut ex_exit (&J ofi _l ock);

2478 free_lofi tl(klip);

2479 return(ENX O),

2480 }

2482 /*

2483 * This may fail if, for exanple, we're trying to | ook
2484 * up a zoned NFS path from the gl obal zone.
2485 */

2486 if (vnodetopath(NULL, |sp->Is_stacked_vp, klip->li_
2487 si zeof (klip->li_filenane), CRED()) != 0) {
2488 (void) strlcpy(klip->li_filenanme, "?",
2489 si zeof (klip->li_filenane));

2490 }

2492 kl'ip->li_readonly = |sp->ls_readonly;

2494 (void) strlcpy(klip->li_algorithm |sp->ls_conp_algorithm
2495 si zeof (klip->li algorithnj);

2496 kl'ip->li_crypto_enabled = | sp->ls_crypto_enabl ed;
2497 mut ex eX| t (& of T _l ock);

2498 error = copy_out Iofi_i octl (klip, ulip, ioctl_
2499 free_lofi_ioctl (klip);

new usr/src/uts/comon/iollofi.c

2500 return (error);

2501 case LOFI _CGET_M NOR

2502 mut ex_enter (& ofi _| ock);

2503 error —flletolofl(kllp >l i _fil enane,

2504 klip->li_readonly, & sp);

2472 error = file_to_lofi(klip- S _filenane, & sp);
2505 if (error == 0)

2506 kl'i p->li _mi nor = getm nor(lsp->ls_dev);
2507 mut ex_exi t (& ofi _| ock);

2509 if (error == 0)

2510 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2512 free_lofi_ioctl(klip);

2513 return (error);

2514 case LOFlI _CHECK_COMPRESSED:

2515 mut ex_enter (& ofi _| ock);

2516 error = file_to_lofi(klip->Ii_filenane,

2517 klip->li_readonly, & sp);

2484 error = file_to_lofi(kli p>|| _filenane, & sp);
2518 if (error 1= 0)

2519 mutex_exit(& ofi_lo ck)

2520 free_Tofi_ioctl(kli

2521 return (error);

2522 }

2524 klip->li_mnor = getm nor(lsp->ls_dev);

2525 (void) stricpy(klip->li_algorithm |sp->ls_conp_algorithm
2526 si zeof (klip->li_algorithm);

2528 mut ex_exi t (& ofi _| ock);

2529 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2530 free_lofi_itoctl(klip);

2531 return (error);

2532 defaul t:

2533 free_lofi_ioctl(klip);

2534 return (EINVAL);

2535

2536 }

__unchanged_portion_onitted_

new usr/src/uts/common/sys/lofi.h 1

R R R R

9322 Mon Sep 16 15:02:50 2013
new usr/src/uts/comon/sys/lofi.h
% NO COMVENTS *

R R R R R

__unchanged_portion_onitted_

127 struct
128
129
130
131
132

134
135

137
138
139
140
141
142
143
144
145 };

lofi_ioctl {

ui nt32_t I'i _m nor

bool ean_t I'i _force;

bool ean_t I'i _cl eanup;
bool ean_t I'i _readonly;
char i _filename[MAXPATHLEN ;

/* the following fields are required for conpression support */
char I'i _al gorithn MAXALGLEN ;

/* the following fields are required for encryption support */

bool ean_t I'i _crypto_enabl ed;

crypto_ mech_nane_t I'i_cipher; /* for data */

ui nt32_t i _key_len; /* for data */

char I'i _key[56]; /* for data: max 448-bit Bl owfish key */
crypto_nech_nane_t 11 _iv_cipher; /* for iv derivation */

ui nt 32_t li_iv_len; /* for iv derivation */

i v_met hod_t li_iv_type; /* for iv derivation */

__unchanged_portion_onitted_

214 struct
215

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

238
239
240
241
242
243
244
245
246
247
248
249

251

lofi_state {

vnode_t *|'s ; /* open real vnode */

vnode_t *|l's st acked_vp; /* open vnode */

kmut ex_t I's_vp_l ock; /* protects Is_vp */

kcondvar _t I's_vp_cv; /* signal changes to |Is_vp */

ui nt32_t I's_vp_iocount; /* # pending I/O requests */

bool ean_t I s_vp_closereq; /* force close requested */

u_of fset_t | s_vp_size;

ui nt32_t | s_bl k_open;

ui nt32_t | s_chr_open;

ui nt 32_t I s_lyr _open_count;

int | s_openfl ag;

bool ean_t I s_cl eanup; /* cleanup on close */

bool ean_t | s_readonl y;

taskq_t *| s_taskaq;

kstat _t *|s_kstat;

kmut ex_t I s_kstat Iock

struct dk_geom |s_dkg;

struct vtoc I's_vtoc;

struct dk_cinfo Is_ci;

zone_ref _t I's_. zone

list_node_t Is_list; /* all lofis */

dev_t | s_dev; /* this node’'s dev_t */

/* the following fields are required for conpression support */

int |'s_conmp_al gorithm.index; /* idx into conpress_table */
char | s_conp_al gorit hnf MAXALGLEN]

ui nt 32_t I s_unconp_seg_sz; /* sz of unconpressed segnent */

ui nt 32_t I s_conmp_i ndex_sz; /* nunber of index entries */

ui nt 32_t | s_comp_seg_shift; /* exponent for byte shift */

ui nt 32"t | s_unconp_| ast _seg_sz; /* sz of last unconp segnent */
ui nt 64_t | s_comp_offbase; /* offset of actual conpressed data */
ui nt 64_t *|s_conp_seg_index; /* array of index entries */

caddr _t I s_conp_i ndex_data; /* index pages |loaded fromfile */
ui nt32_t | s_conp_i ndex_dat a_sz;

u_of fset _t I s_vp_conp_size; /* actual conpressed file size */

/* pre-allocated list of buffers for conpressed segnent data */

new usr/src/uts/comon/sys/|ofi.

252
253

255
256
257
258

260
261
262
263
264
265
266
267
268
269
270

272 };
__unchanged_portion_omtted_

kmut ex_t I
struct conpbuf

h

conp bufs Iock;

_conp_b

/* lock and anchor for conpressed segnent caching */

kmut ex_t | s_conmp_cache_| ock; /* protects |s_conp_cache */
list_t | s_conp_cache; /* cached deconpressed segs */
ui nt 32_t I's_

conp_cache_count;

/* the following fields are required for encryption support */

bool ean_t

u_of fset _t

struct crypto_neta
crypt o_nmechani smt
crypto_key_t

crypt o_nechani sm t
size_t

i v_met hod_t

kmut ex_t

crypto_ctx_tenplate_t

| s_crypto_enabl ed;
I's_crypto_offset;

I's crypto

I's_mech; /* for
| s_key; /* for
I's_iv_mech; /* for
Is_iv_len; /* for
I's_iv_type; /* for
| s_crypt o_l ock
I's_ctx_tnpl;

/* crypto neta size */

data encr/decr */
data encr/decr */
iv derivation */
iv derivation */
iv derivation */

