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**********************************************************
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new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c
Add xhci_quiesce to support fast reboot.
**********************************************************

1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.

10  */

12 /*
13  * Copyright (c) 2017, Joyent, Inc.
14  * Copyright (c) 2018, Western Digital Corporation.
15  */

17 /*
18  * Extensible Host Controller Interface (xHCI) USB Driver
19  *
20  * The xhci driver is an HCI driver for USB that bridges the gap between client
21  * device drivers and implements the actual way that we talk to devices. The
22  * xhci specification provides access to USB 3.x capable devices, as well as all
23  * prior generations. Like other host controllers, it both provides the way to
24  * talk to devices and also is treated like a hub (often called the root hub).
25  *
26  * This driver is part of the USBA (USB Architecture). It implements the HCDI
27  * (host controller device interface) end of USBA. These entry points are used
28  * by the USBA on behalf of client device drivers to access their devices. The
29  * driver also provides notifications to deal with hot plug events, which are
30  * quite common in USB.
31  *
32  * ----------------
33  * USB Introduction
34  * ----------------
35  *
36  * To properly understand the xhci driver and the design of the USBA HCDI
37  * interfaces it implements, it helps to have a bit of background into how USB
38  * devices are structured and understand how they work at a high-level.
39  *
40  * USB devices, like PCI devices, are broken down into different classes of
41  * device. For example, with USB you have hubs, human-input devices (keyboards,
42  * mice, etc.), mass storage, etc. Every device also has a vendor and device ID.
43  * Many client drivers bind to an entire class of device, for example, the hubd
44  * driver (to hubs) or scsa2usb (USB storage). However, there are other drivers
45  * that bind to explicit IDs such as usbsprl (specific USB to Serial devices).
46  *
47  * USB SPEEDS AND VERSIONS
48  *
49  * USB devices are often referred to in two different ways. One way they’re
50  * described is with the USB version that they conform to. In the wild, you’re
51  * most likely going to see USB 1.1, 2.0, 2.1, and 3.0. However, you may also
52  * see devices referred to as ’full-’, ’low-’, ’high-’, and ’super-’ speed
53  * devices.
54  *
55  * The latter description describes the maximum theoretical speed of a given
56  * device. For example, a super-speed device theoretically caps out around 5
57  * Gbit/s, whereas a low-speed device caps out at 1.5 Mbit/s.
58  *
59  * In general, each speed usually corresponds to a specific USB protocol
60  * generation. For example, all USB 3.0 devices are super-speed devices. All
61  * ’high-speed’ devices are USB 2.x devices. Full-speed devices are special in
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62  * that they can either be USB 1.x or USB 2.x devices. Low-speed devices are
63  * only a USB 1.x thing, they did not jump the fire line to USB 2.x.
64  *
65  * USB 3.0 devices and ports generally have the wiring for both USB 2.0 and USB
66  * 3.0. When a USB 3.x device is plugged into a USB 2.0 port or hub, then it
67  * will report its version as USB 2.1, to indicate that it is actually a USB 3.x
68  * device.
69  *
70  * USB ENDPOINTS
71  *
72  * A given USB device is made up of endpoints. A request, or transfer, is made
73  * to a specific USB endpoint. These endpoints can provide different services
74  * and have different expectations around the size of the data that’ll be used
75  * in a given request and the periodicity of requests. Endpoints themselves are
76  * either used to make one-shot requests, for example, making requests to a mass
77  * storage device for a given sector, or for making periodic requests where you
78  * end up polling on the endpoint, for example, polling on a USB keyboard for
79  * keystrokes.
80  *
81  * Each endpoint encodes two different pieces of information: a direction and a
82  * type. There are two different directions: IN and OUT. These refer to the
83  * general direction that data moves relative to the operating system. For
84  * example, an IN transfer transfers data in to the operating system, from the
85  * device. An OUT transfer transfers data from the operating system, out to the
86  * device.
87  *
88  * There are four different kinds of endpoints:
89  *
90  * BULK These transfers are large transfers of data to or from
91  * a device. The most common use for bulk transfers is for
92  * mass storage devices. Though they are often also used by
93  * network devices and more. Bulk endpoints do not have an
94  * explicit time component to them. They are always used
95  * for one-shot transfers.
96  *
97  * CONTROL These transfers are used to manipulate devices
98  * themselves and are used for USB protocol level
99  * operations (whether device-specific, class-specific, or
100  * generic across all of USB). Unlike other transfers,
101  * control transfers are always bi-directional and use
102  * different kinds of transfers.
103  *
104  * INTERRUPT Interrupt transfers are used for small transfers that
105  * happen infrequently, but need reasonable latency. A good
106  * example of interrupt transfers is to receive input from
107  * a USB keyboard. Interrupt-IN transfers are generally
108  * polled. Meaning that a client (device driver) opens up
109  * an interrupt-IN pipe to poll on it, and receives
110  * periodic updates whenever there is information
111  * available. However, Interrupt transfers can be used
112  * as one-shot transfers both going IN and OUT.
113  *
114  * ISOCHRONOUS These transfers are things that happen once per
115  * time-interval at a very regular rate. A good example of
116  * these transfers are for audio and video. A device may
117  * describe an interval as 10ms at which point it will read
118  * or write the next batch of data every 10ms and transform
119  * it for the user. There are no one-shot Isochronous-IN
120  * transfers. There are one-shot Isochronous-OUT transfers,
121  * but these are used by device drivers to always provide
122  * the system with sufficient data.
123  *
124  * To find out information about the endpoints, USB devices have a series of
125  * descriptors that cover different aspects of the device. For example, there
126  * are endpoint descriptors which cover the properties of endpoints such as the
127  * maximum packet size or polling interval.
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128  *
129  * Descriptors exist at all levels of USB. For example, there are general
130  * descriptors for every device. The USB device descriptor is described in
131  * usb_dev_descr(9S). Host controllers will look at these descriptors to ensure
132  * that they program the device correctly; however, they are more often used by
133  * client device drivers. There are also descriptors that exist at a class
134  * level. For example, the hub class has a class-specific descriptor which
135  * describes properties of the hub. That information is requested for and used
136  * by the hub driver.
137  *
138  * All of the different descriptors are gathered by the system and placed into a
139  * tree which USBA sometimes calls the ’Configuration Cloud’. Client device
140  * drivers gain access to this cloud and then use them to open endpoints, which
141  * are called pipes in USBA (and some revisions of the USB specification).
142  *
143  * Each pipe gives access to a specific endpoint on the device which can be used
144  * to perform transfers of a specific type and direction. For example, a mass
145  * storage device often has three different endpoints, the default control
146  * endpoint (which every device has), a Bulk-IN endpoint, and a Bulk-OUT
147  * endpoint. The device driver ends up with three open pipes. One to the default
148  * control endpoint to configure the device, and then the other two are used to
149  * perform I/O.
150  *
151  * These routines translate more or less directly into calls to a host
152  * controller driver. A request to open a pipe takes an endpoint descriptor that
153  * describes the properties of the pipe, and the host controller driver (this
154  * driver) goes through and does any work necessary to allow the client device
155  * driver to access it. Once the pipe is open, it either makes one-shot
156  * transfers specific to the transfer type or it starts performing a periodic
157  * poll of an endpoint.
158  *
159  * All of these different actions translate into requests to the host
160  * controller. The host controller driver itself is in charge of making sure
161  * that all of the required resources for polling are allocated with a request
162  * and then proceed to give the driver’s periodic callbacks.
163  *
164  * HUBS AND HOST CONTROLLERS
165  *
166  * Every device is always plugged into a hub, even if the device is itself a
167  * hub. This continues until we reach what we call the root-hub. The root-hub is
168  * special in that it is not an actual USB hub, but is integrated into the host
169  * controller and is manipulated in its own way. For example, the host
170  * controller is used to turn on and off a given port’s power. This may happen
171  * over any interface, though the most common way is through PCI.
172  *
173  * In addition to the normal character device that exists for a host controller
174  * driver, as part of attaching, the host controller binds to an instance of the
175  * hubd driver. While the root-hub is a bit of a fiction, everyone models the
176  * root-hub as the same as any other hub that’s plugged in. The hub kernel
177  * module doesn’t know that the hub isn’t a physical device that’s been plugged
178  * in. The host controller driver simulates that view by taking hub requests
179  * that are made and translating them into corresponding requests that are
180  * understood by the host controller, for example, reading and writing to a
181  * memory mapped register.
182  *
183  * The hub driver polls for changes in device state using an Interrupt-IN
184  * request, which is the same as is done for the root-hub. This allows the host
185  * controller driver to not have to know about the implementation of device hot
186  * plug, merely react to requests from a hub, the same as if it were an external
187  * device. When the hub driver detects a change, it will go through the
188  * corresponding state machine and attach or detach the corresponding client
189  * device driver, depending if the device was inserted or removed.
190  *
191  * We detect the changes for the Interrupt-IN primarily based on the port state
192  * change events that are delivered to the event ring. Whenever any event is
193  * fired, we use this to update the hub driver about _all_ ports with
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194  * outstanding events. This more closely matches how a hub is supposed to behave
195  * and leaves things less likely for the hub driver to end up without clearing a
196  * flag on a port.
197  *
198  * PACKET SIZES AND BURSTING
199  *
200  * A given USB endpoint has an explicit packet size and a number of packets that
201  * can be sent per time interval. These concepts are abstracted away from client
202  * device drives usually, though they sometimes inform the upper bounds of what
203  * a device can perform.
204  *
205  * The host controller uses this information to transform arbitrary transfer
206  * requests into USB protocol packets. One of the nice things about the host
207  * controllers is that they abstract away all of the signaling and semantics of
208  * the actual USB protocols, allowing for life to be slightly easier in the
209  * operating system.
210  *
211  * That said, if the host controller is not programmed correctly, these can end
212  * up causing transaction errors and other problems in response to the data that
213  * the host controller is trying to send or receive.
214  *
215  * ------------
216  * Organization
217  * ------------
218  *
219  * The driver is made up of the following files. Many of these have their own
220  * theory statements to describe what they do. Here, we touch on each of the
221  * purpose of each of these files.
222  *
223  * xhci_command.c: This file contains the logic to issue commands to the
224  * controller as well as the actual functions that the
225  * other parts of the driver use to cause those commands.
226  *
227  * xhci_context.c: This file manages various data structures used by the
228  * controller to manage the controller’s and device’s
229  * context data structures. See more in the xHCI Overview
230  * and General Design for more information.
231  *
232  * xhci_dma.c: This manages the allocation of DMA memory and DMA
233  * attributes for controller, whether memory is for a
234  * transfer or something else. This file also deals with
235  * all the logic of getting data in and out of DMA buffers.
236  *
237  * xhci_endpoint.c: This manages all of the logic of handling endpoints or
238  * pipes. It deals with endpoint configuration, I/O
239  * scheduling, timeouts, and callbacks to USBA.
240  *
241  * xhci_event.c: This manages callbacks from the hardware to the driver.
242  * This covers command completion notifications and I/O
243  * notifications.
244  *
245  * xhci_hub.c: This manages the virtual root-hub. It basically
246  * implements and translates all of the USB level requests
247  * into xhci specific implements. It also contains the
248  * functions to register this hub with USBA.
249  *
250  * xhci_intr.c: This manages the underlying interrupt allocation,
251  * interrupt moderation, and interrupt routines.
252  *
253  * xhci_quirks.c: This manages information about buggy hardware that’s
254  * been collected and experienced primarily from other
255  * systems.
256  *
257  * xhci_ring.c: This manages the abstraction of a ring in xhci, which is
258  * the primary of communication between the driver and the
259  * hardware, whether for the controller or a device.
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260  *
261  * xhci_usba.c: This implements all of the HCDI functions required by
262  * USBA. This is the main entry point that drivers and the
263  * kernel frameworks will reach to start any operation.
264  * Many functions here will end up in the command and
265  * endpoint code.
266  *
267  * xhci.c: This provides the main kernel DDI interfaces and
268  * performs device initialization.
269  *
270  * xhci.h: This is the primary header file which defines
271  * illumos-specific data structures and constants to manage
272  * the system.
273  *
274  * xhcireg.h: This header file defines all of the register offsets,
275  * masks, and related macros. It also contains all of the
276  * constants that are used in various structures as defined
277  * by the specification, such as command offsets, etc.
278  *
279  * xhci_ioctl.h: This contains a few private ioctls that are used by a
280  * private debugging command. These are private.
281  *
282  * cmd/xhci/xhci_portsc: This is a private utility that can be useful for
283  * debugging xhci state. It is the only consumer of
284  * xhci_ioctl.h and the private ioctls.
285  *
286  * ----------------------------------
287  * xHCI Overview and Structure Layout
288  * ----------------------------------
289  *
290  * The design and structure of this driver follows from the way that the xHCI
291  * specification tells us that we have to work with hardware. First we’ll give a
292  * rough summary of how that works, though the xHCI 1.1 specification should be
293  * referenced when going through this.
294  *
295  * There are three primary parts of the hardware -- registers, contexts, and
296  * rings. The registers are memory mapped registers that come in four sets,
297  * though all are found within the first BAR. These are used to program and
298  * control the hardware and aspects of the devices. Beyond more traditional
299  * device programming there are two primary sets of registers that are
300  * important:
301  *
302  *   o Port Status and Control Registers (XHCI_PORTSC)
303  *   o Doorbell Array (XHCI_DOORBELL)
304  *
305  * The port status and control registers are used to get and manipulate the
306  * status of a given device. For example, turning on and off the power to it.
307  * The Doorbell Array is used to kick off I/O operations and start the
308  * processing of an I/O ring.
309  *
310  * The contexts are data structures that represent various pieces of information
311  * in the controller. These contexts are generally filled out by the driver and
312  * then acknowledged and consumed by the hardware. There are controller-wide
313  * contexts (mostly managed in xhci_context.c) that are used to point to the
314  * contexts that exist for each device in the system. The primary context is
315  * called the Device Context Base Address Array (DCBAA).
316  *
317  * Each device in the system is allocated a ’slot’, which is used to index into
318  * the DCBAA. Slots are assigned based on issuing commands to the controller.
319  * There are a fixed number of slots that determine the maximum number of
320  * devices that can end up being supported in the system. Note this includes all
321  * the devices plugged into the USB device tree, not just devices plugged into
322  * ports on the chassis.
323  *
324  * For each device, there is a context structure that describes properties of
325  * the device. For example, what speed is the device, is it a hub, etc. The

new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 6

326  * context has slots for the device and for each endpoint on the device. As
327  * endpoints are enabled, their context information which describes things like
328  * the maximum packet size, is filled in and enabled. The mapping between these
329  * contexts look like:
330  *
331  *
332  * DCBAA
333  *    +--------+     Device Context
334  *    | Slot 0 |------------------>+--------------+
335  *    +--------+    | Slot Context |
336  *    |  ...   |    +--------------+   +----------+
337  *    +--------+   +------+    |  Endpoint 0  |------>| I/O Ring |
338  *    | Slot n |-->| NULL |    | Context (Bi) |   +----------+
339  *    +--------+   +------+    +--------------+
340  *    |  Endpoint 1  |
341  *    | Context (Out)|
342  *    +--------------+
343  *    |  Endpoint 1  |
344  *    | Context (In) |
345  *    +--------------+
346  *    |   ...   |
347  *    +--------------+
348  *    | Endpoint 15  |
349  *    | Context (In) |
350  *    +--------------+
351  *
352  * These contexts are always owned by the controller, though we can read them
353  * after various operations complete. Commands that toggle device state use a
354  * specific input context, which is a variant of the device context. The only
355  * difference is that it has an input context structure ahead of it to say which
356  * sections of the device context should be evaluated.
357  *
358  * Each active endpoint points us to an I/O ring, which leads us to the third
359  * main data structure that’s used by the device: rings. Rings are made up of
360  * transfer request blocks (TRBs), which are joined together to form a given
361  * transfer description (TD) which represents a single I/O request.
362  *
363  * These rings are used to issue I/O to individual endpoints, to issue commands
364  * to the controller, and to receive notification of changes and completions.
365  * Issued commands go on the special ring called the command ring while the
366  * change and completion notifications go on the event ring.  More details are
367  * available in xhci_ring.c. Each of these structures is represented by an
368  * xhci_ring_t.
369  *
370  * Each ring can be made up of one or more disjoint regions of DMA; however, we
371  * only use a single one. This also impacts some additional registers and
372  * structures that exist. The event ring has an indirection table called the
373  * Event Ring Segment Table (ERST). Each entry in the table (a segment)
374  * describes a chunk of the event ring.
375  *
376  * One other thing worth calling out is the scratchpad. The scratchpad is a way
377  * for the controller to be given arbitrary memory by the OS that it can use.
378  * There are two parts to the scratchpad. The first part is an array whose
379  * entries contain pointers to the actual addresses for the pages. The second
380  * part that we allocate are the actual pages themselves.
381  *
382  * -----------------------------
383  * Endpoint State and Management
384  * -----------------------------
385  *
386  * Endpoint management is one of the key parts to the xhci driver as every
387  * endpoint is a pipe that a device driver uses, so they are our primary
388  * currency. Endpoints are enabled and disabled when the client device drivers
389  * open and close a pipe. When an endpoint is enabled, we have to fill in an
390  * endpoint’s context structure with information about the endpoint. These
391  * basically tell the controller important properties which it uses to ensure
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392  * that there is adequate bandwidth for the device.
393  *
394  * Each endpoint has its own ring as described in the previous section. We place
395  * TRBs (transfer request blocks) onto a given ring to request I/O be performed.
396  * Responses are placed on the event ring, in other words, the rings associated
397  * with an endpoint are purely for producing I/O.
398  *
399  * Endpoints have a defined state machine as described in xHCI 1.1 / 4.8.3.
400  * These states generally correspond with the state of the endpoint to process
401  * I/O and handle timeouts. The driver basically follows a similar state machine
402  * as described there. There are some deviations. For example, what they
403  * describe as ’running’ we break into both the Idle and Running states below.
404  * We also have a notion of timed out and quiescing. The following image
405  * summarizes the states and transitions:
406  *
407  *     +------+        +-----------+
408  *     | Idle |---------*--------------------->|  Running  |<-+
409  *     +------+ . I/O queued on        +-----------+  |
410  *   ^   ring and timeout   |  | |     |
411  *   |   scheduled.   |  | |     |
412  *   |   |  | |     |
413  *   +-----*---------------------------------+  | |     |
414  *   | . No I/Os remain      | |     |
415  *   |      | |     |
416  *   |    +------*------------------+ |     |
417  *   |    |   . Timeout |     |
418  *   |    |     fires for |     |
419  *   |    |     I/O |     |
420  *   |    v v     |
421  *   |      +-----------+   +--------+  |
422  *   |      | Timed Out |   | Halted |  |
423  *   |      +-----------+   +--------+  |
424  *   | |     |       |
425  *   | |   +-----------+     |       |
426  *   | +-->| Quiescing |<----------+       |
427  *   |     +-----------+       |
428  *   |   No TRBs.  |   . TRBs      |
429  *   |   remain .  |   . Remain    |
430  *   +----------*----<------+-------->-------*-----------+
431  *
432  * Normally, a given endpoint will oscillate between having TRBs scheduled and
433  * not. Every time a new I/O is added to the endpoint, we’ll ring the doorbell,
434  * making sure that we’re processing the ring, presuming that the endpoint isn’t
435  * in one of the error states.
436  *
437  * To detect device hangs, we have an active timeout(9F) per active endpoint
438  * that ticks at a one second rate while we still have TRBs outstanding on an
439  * endpoint. Once all outstanding TRBs have been processed, the timeout will
440  * stop itself and there will be no active checking until the endpoint has I/O
441  * scheduled on it again.
442  *
443  * There are two primary ways that things can go wrong on the endpoint. We can
444  * either have a timeout or an event that transitions the endpoint to the Halted
445  * state. In the halted state, we need to issue explicit commands to reset the
446  * endpoint before removing the I/O.
447  *
448  * The way we handle both a timeout and a halted condition is similar, but the
449  * way they are triggered is different. When we detect a halted condition, we
450  * don’t immediately clean it up, and wait for the client device driver (or USBA
451  * on its behalf) to issue a pipe reset. When we detect a timeout, we
452  * immediately take action (assuming no other action is ongoing).
453  *
454  * In both cases, we quiesce the device, which takes care of dealing with taking
455  * the endpoint from whatever state it may be in and taking the appropriate
456  * actions based on the state machine in xHCI 1.1 / 4.8.3. The end of quiescing
457  * leaves the device stopped, which allows us to update the ring’s pointer and
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458  * remove any TRBs that are causing problems.
459  *
460  * As part of all this, we ensure that we can only be quiescing the device from
461  * a given path at a time. Any requests to schedule I/O during this time will
462  * generally fail.
463  *
464  * The following image describes the state machine for the timeout logic. It
465  * ties into the image above.
466  *
467  *    +----------+    +---------+
468  *    | Disabled |-----*--------------------->| Enabled |<--+
469  *    +----------+     . TRBs scheduled    +---------+  *. 1 sec timer
470  *        ^       and no active      | |  |  |  fires and
471  *        |       timer.      | |  |  |  another
472  *        |      | |  +--+--+  quiesce, in
473  *        |      | |     |     a bad state,
474  *        +------*------------------------------+ |     ^     or decrement
475  *        |      . 1 sec timer |     |     I/O timeout
476  *        | fires and |     |
477  *        | no TRBs or |     +--------------+
478  *        | endpoint shutdown |      |
479  *        | *. . timer counter   |
480  *        ^ |    reaches zero    |
481  *        | v      |
482  *        | +--------------+      |
483  *        +-------------*---------------<--| Quiesce ring |->---*-------+
484  *      . No more | and fail I/O |     . restart
485  *        I/Os +--------------+       timer as
486  *        more I/Os
487  *
488  * As we described above, when there are active TRBs and I/Os, a 1 second
489  * timeout(9F) will be active. Each second, we decrement a counter on the
490  * current, active I/O until either a new I/O takes the head, or the counter
491  * reaches zero. If the counter reaches zero, then we go through, quiesce the
492  * ring, and then clean things up.
493  *
494  * ------------------
495  * Periodic Endpoints
496  * ------------------
497  *
498  * It’s worth calling out periodic endpoints explicitly, as they operate
499  * somewhat differently. Periodic endpoints are limited to Interrupt-IN and
500  * Isochronous-IN. The USBA often uses the term polling for these. That’s
501  * because the client only needs to make a single API call; however, they’ll
502  * receive multiple callbacks until either an error occurs or polling is
503  * requested to be terminated.
504  *
505  * When we have one of these periodic requests, we end up always rescheduling
506  * I/O requests, as well as, having a specific number of pre-existing I/O
507  * requests to cover the periodic needs, in case of latency spikes. Normally,
508  * when replying to a request, we use the request handle that we were given.
509  * However, when we have a periodic request, we’re required to duplicate the
510  * handle before giving them data.
511  *
512  * However, the duplication is a bit tricky. For everything that was duplicated,
513  * the framework expects us to submit data. Because of that we, don’t duplicate
514  * them until they are needed. This minimizes the likelihood that we have
515  * outstanding requests to deal with when we encounter a fatal polling failure.
516  *
517  * Most of the polling setup logic happens in xhci_usba.c in
518  * xhci_hcdi_periodic_init(). The consumption and duplication is handled in
519  * xhci_endpoint.c.
520  *
521  * ----------------
522  * Structure Layout
523  * ----------------
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524  *
525  * The following images relate the core data structures. The primary structure
526  * in the system is the xhci_t. This is the per-controller data structure that
527  * exists for each instance of the driver. From there, each device in the system
528  * is represented by an xhci_device_t and each endpoint is represented by an
529  * xhci_endpoint_t. For each client that opens a given endpoint, there is an
530  * xhci_pipe_t. For each I/O related ring, there is an xhci_ring_t in the
531  * system.
532  *
533  *     +------------------------+
534  *     | Per-Controller |
535  *     | Structure |
536  *     | xhci_t |
537  *     | |
538  *     | uint_t      ---+--> Capability regs offset
539  *     | uint_t      ---+--> Operational regs offset
540  *     | uint_t      ---+--> Runtime regs offset
541  *     | uint_t      ---+--> Doorbell regs offset
542  *     | xhci_state_flags_t  ---+--> Device state flags
543  *     | xhci_quirks_t      ---+--> Device quirk flags
544  *     | xhci_capability_t   ---+--> Controller capability structure
545  *     | xhci_dcbaa_t      ---+----------------------------------+
546  *     | xhci_scratchpad_t   ---+---------+    |
547  *     | xhci_command_ing_t  ---+------+  |    v
548  *     | xhci_event_ring_t   ---+----+ |  |  +---------------------+
549  *     | xhci_usba_t      ---+--+ | |  |  | Device Context      |
550  *     +------------------------+  | | |  |  | Base Address        |
551  *    | | |  |  | Array Structure     |
552  *    | | |  |  | xhci_dcbaa_t        |
553  * +-------------------------------+ | |  |  |        |
554  * | +-------------------------------+ |  |  DCBAA KVA <-+--     uint64_t * |
555  * | |   +----------------------------+  | DMA Buffer <-+-- xhci_dma_buffer_t |
556  * | |   v   |  +---------------------+
557  * | | +--------------------------+   +-----------------------+
558  * | | | Event Ring   |   |
559  * | | | Management   |   |
560  * | | | xhci_event_ring_t   |   v
561  * | | |   |   Event Ring +----------------------+
562  * | | | xhci_event_segment_t * --|-> Segment VA |   Scratchpad (Extra  |
563  * | | | xhci_dma_buffer_t --|-> Segment DMA Buf. |   Controller Memory) |
564  * | | | xhci_ring_t --|--+ |    xhci_scratchpad_t |
565  * | | +--------------------------+  |     Scratchpad |        |
566  * | |      | Base Array KVA <-+-     uint64_t * |
567  * | +------------+      | Array DMA Buf. <-+-   xhci_dma_buffer_t |
568  * |   v      | Scratchpad DMA <-+- xhci_dma_buffer_t * |
569  * |   +---------------------------+ | Buffer per page +----------------------+
570  * |   | Command Ring    | |
571  * |   | xhci_command_ring_t    | +------------------------------+
572  * |   |    |     |
573  * |   | xhci_ring_t  --+-> Command Ring --->------------+
574  * |   | list_t  --+-> Command List     v
575  * |   | timeout_id_t  --+-> Timeout State  +---------------------+
576  * |   | xhci_command_ring_state_t +-> State Flags  | I/O Ring        |
577  * |   +---------------------------+  | xhci_ring_t        |
578  * |  |        |
579  * |  Ring DMA Buf. <-+-- xhci_dma_buffer_t |
580  * |    Ring Length <-+-- uint_t |
581  * | Ring Entry KVA <-+--   xhci_trb_t * |
582  * | +---------------------------+      Ring Head <-+-- uint_t |
583  * +--->| USBA State     |      Ring Tail <-+-- uint_t |
584  * | xhci_usba_t     |     Ring Cycle <-+-- uint_t |
585  * |     |  +---------------------+
586  * | usba_hcdi_ops_t *    -+-> USBA Ops Vector       ^
587  * | usb_dev_dscr_t    -+-> USB Virtual Device Descriptor       |
588  * | usb_ss_hub_descr_t    -+-> USB Virtual Hub Descriptor       |
589  * | usba_pipe_handle_data_t * +-> Interrupt polling client       |
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590  * | usb_intr_req_t    -+-> Interrupt polling request       |
591  * | uint32_t   --+-> Interrupt polling device mask       |
592  * | list_t   --+-> Pipe List (Active Users)       |
593  * | list_t   --+-------------------+       |
594  * +---------------------------+ |       ^
595  * |       |
596  * v       |
597  *     +-------------------------------+      +---------------+       |
598  *     | USB Device        |------------>| USB Device    |--> ... |
599  *     | xhci_device_t        |      | xhci_device_t |       |
600  *     |        |      +---------------+       |
601  *     | usb_port_t      --+-> USB Port plugged into       |
602  *     | uint8_t      --+-> Slot Number       |
603  *     | boolean_t      --+-> Address Assigned       |
604  *     | usba_device_t *      --+-> USBA Device State       |
605  *     | xhci_dma_buffer_t      --+-> Input Context DMA Buffer       |
606  *     | xhci_input_context_t *      --+-> Input Context KVA       |
607  *     | xhci_slot_contex_t *      --+-> Input Slot Context KVA       |
608  *     | xhci_endpoint_context_t *[] --+-> Input Endpoint Context KVA       |
609  *     | xhci_dma_buffer_t      --+-> Output Context DMA Buffer       |
610  *     | xhci_slot_context_t *      --+-> Output Slot Context KVA       ^
611  *     | xhci_endpoint_context_t *[] --+-> Output Endpoint Context KVA       |
612  *     | xhci_endpoint_t *[]      --+-> Endpoint Tracking ---+       |
613  *     +-------------------------------+ |       |
614  * |       |
615  * v       |
616  *     +------------------------------+    +-----------------+       |
617  *     | Endpoint Data       |----------->| Endpoint Data   |--> ... |
618  *     | xhci_endpoint_t       |    | xhci_endpoint_t |       |
619  *     |       |    +-----------------+       |
620  *     | int     --+-> Endpoint Number       |
621  *     | int     --+-> Endpoint Type       |
622  *     | xhci_endpoint_state_t     --+-> Endpoint State       |
623  *     | timeout_id_t     --+-> Endpoint Timeout State       |
624  *     | usba_pipe_handle_data_t *  --+-> USBA Client Handle       |
625  *     | xhci_ring_t     --+-> Endpoint I/O Ring  -------->--------+
626  *     | list_t     --+-> Transfer List --------+
627  *     +------------------------------+ |
628  * v
629  *     +-------------------------+     +--------------------+
630  *     | Transfer Structure  |----------------->| Transfer Structure |-> ...
631  *     | xhci_transfer_t  |     | xhci_transfer_t  |
632  *     |  |     +--------------------+
633  *     | xhci_dma_buffer_t     --+-> I/O DMA Buffer
634  *     | uint_t        --+-> Number of TRBs
635  *     | uint_t        --+-> Short transfer data
636  *     | uint_t        --+-> Timeout seconds remaining
637  *     | usb_cr_t        --+-> USB Transfer return value
638  *     | boolean_t        --+-> Data direction
639  *     | xhci_trb_t *        --+-> Host-order transfer requests for I/O
640  *     | usb_isoc_pkt_descr_t * -+-> Isochronous only response data
641  *     | usb_opaque_t        --+-> USBA Request Handle
642  *     +-------------------------+
643  *
644  * -------------
645  * Lock Ordering
646  * -------------
647  *
648  * There are three different tiers of locks that exist in the driver. First,
649  * there is a lock for each controller: xhci_t‘xhci_lock. This protects all the
650  * data for that instance of the controller. If there are multiple instances of
651  * the xHCI controller in the system, each one is independent and protected
652  * separately. The two do not share any data.
653  *
654  * From there, there are two other, specific locks in the system:
655  *
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656  *   o xhci_command_ring_t‘xcr_lock
657  *   o xhci_device_t‘xd_imtx
658  *
659  * There is only one xcr_lock per controller, like the xhci_lock. It protects
660  * the state of the command ring. However, there is on xd_imtx per device.
661  * Recall that each device is scoped to a given controller. This protects the
662  * input slot context for a given device.
663  *
664  * There are a few important rules to keep in mind here that are true
665  * universally throughout the driver:
666  *
667  * 1) Always grab the xhci_t‘xhci_lock, before grabbing any of the other locks.
668  * 2) A given xhci_device_t‘xd_imtx, must be taken before grabbing the
669  *    xhci_command_ring_t‘xcr_lock.
670  * 3) A given thread can only hold one of the given xhci_device_t‘xd_imtx locks
671  *    at a given time. In other words, we should never be manipulating the input
672  *    context of two different devices at once.
673  * 4) It is safe to hold the xhci_device_t‘xd_imtx while tearing down the
674  *    endpoint timer. Conversely, the endpoint specific logic should never enter
675  *    this lock.
676  *
677  * --------------------
678  * Relationship to EHCI
679  * --------------------
680  *
681  * On some Intel chipsets, a given physical port on the system may be routed to
682  * one of the EHCI or xHCI controllers. This association can be dynamically
683  * changed by writing to platform specific registers as handled by the quirk
684  * logic in xhci_quirk.c.
685  *
686  * As these ports may support USB 3.x speeds, we always route all such ports to
687  * the xHCI controller, when supported. In addition, to minimize disruptions
688  * from devices being enumerated and attached to the EHCI driver and then
689  * disappearing, we generally attempt to load the xHCI controller before the
690  * EHCI controller. This logic is not done in the driver; however, it is done in
691  * other parts of the kernel like in uts/common/io/consconfig_dacf.c in the
692  * function consconfig_load_drivres().
693  *
694  * -----------
695  * Future Work
696  * -----------
697  *
698  * The primary future work in this driver spans two different, but related
699  * areas. The first area is around controller resets and how they tie into FM.
700  * Presently, we do not have a good way to handle controllers coming and going
701  * in the broader USB stack or properly reconfigure the device after a reset.
702  * Secondly, we don’t handle the suspend and resume of devices and drivers.
703  */

705 #include <sys/param.h>
706 #include <sys/modctl.h>
707 #include <sys/conf.h>
708 #include <sys/devops.h>
709 #include <sys/ddi.h>
710 #include <sys/sunddi.h>
711 #include <sys/cmn_err.h>
712 #include <sys/ddifm.h>
713 #include <sys/pci.h>
714 #include <sys/class.h>
715 #include <sys/policy.h>

717 #include <sys/usb/hcd/xhci/xhci.h>
718 #include <sys/usb/hcd/xhci/xhci_ioctl.h>

720 /*
721  * We want to use the first BAR to access its registers. The regs[] array is
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722  * ordered based on the rules for the PCI supplement to IEEE 1275. So regs[1]
723  * will always be the first BAR.
724  */
725 #define XHCI_REG_NUMBER 1

727 /*
728  * This task queue exists as a global taskq that is used for resetting the
729  * device in the face of FM or runtime errors. Each instance of the device
730  * (xhci_t) happens to have a single taskq_dispatch_ent already allocated so we
731  * know that we should always be able to dispatch such an event.
732  */
733 static taskq_t *xhci_taskq;

735 /*
736  * Global soft state for per-instance data. Note that we must use the soft state
737  * routines and cannot use the ddi_set_driver_private() routines. The USB
738  * framework presumes that it can use the dip’s private data.
739  */
740 void *xhci_soft_state;

742 /*
743  * This is the time in us that we wait after a controller resets before we
744  * consider reading any register. There are some controllers that want at least
745  * 1 ms, therefore we default to 10 ms.
746  */
747 clock_t xhci_reset_delay = 10000;

749 void
750 xhci_error(xhci_t *xhcip, const char *fmt, ...)
751 {
752 va_list ap;

754 va_start(ap, fmt);
755 if (xhcip != NULL && xhcip->xhci_dip != NULL) {
756 vdev_err(xhcip->xhci_dip, CE_WARN, fmt, ap);
757 } else {
758 vcmn_err(CE_WARN, fmt, ap);
759 }
760 va_end(ap);
761 }

______unchanged_portion_omitted_

1011 int
1012 xhci_check_regs_acc(xhci_t *xhcip)
1013 {
1014 ddi_fm_error_t de;

1016 /*
1017  * Treat cases where we can’t check as fine so we can treat the code
1016  * Treat the case where we can’t check as fine so we can treat the code
1018  * more simply.
1019  */
1020 if (quiesce_active || !DDI_FM_ACC_ERR_CAP(xhcip->xhci_fm_caps))
1019 if (!DDI_FM_ACC_ERR_CAP(xhcip->xhci_fm_caps))
1021 return (DDI_FM_OK);

1023 ddi_fm_acc_err_get(xhcip->xhci_regs_handle, &de, DDI_FME_VERSION);
1024 ddi_fm_acc_err_clear(xhcip->xhci_regs_handle, DDI_FME_VERSION);
1025 return (de.fme_status);
1026 }
______unchanged_portion_omitted_

1975 /* QUIESCE(9E) to support fast reboot */
1976 int
1977 xhci_quiesce(dev_info_t *dip)
1978 {
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1979 xhci_t *xhcip;

1981 xhcip = ddi_get_soft_state(xhci_soft_state, ddi_get_instance(dip));

1983 return (xhci_controller_stop(xhcip) == 0 &&
1984     xhci_controller_reset(xhcip) == 0 ? DDI_SUCCESS : DDI_FAILURE);
1985 }

1987 static int
1988 xhci_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1989 {
1990 int ret, inst, route;
1991 xhci_t *xhcip;

1993 if (cmd != DDI_ATTACH)
1994 return (DDI_FAILURE);

1996 inst = ddi_get_instance(dip);
1997 if (ddi_soft_state_zalloc(xhci_soft_state, inst) != 0)
1998 return (DDI_FAILURE);
1999 xhcip = ddi_get_soft_state(xhci_soft_state, ddi_get_instance(dip));
2000 xhcip->xhci_dip = dip;

2002 xhcip->xhci_regs_capoff = PCI_EINVAL32;
2003 xhcip->xhci_regs_operoff = PCI_EINVAL32;
2004 xhcip->xhci_regs_runoff = PCI_EINVAL32;
2005 xhcip->xhci_regs_dooroff = PCI_EINVAL32;

2007 xhci_fm_init(xhcip);
2008 xhcip->xhci_seq |= XHCI_ATTACH_FM;

2010 if (pci_config_setup(xhcip->xhci_dip, &xhcip->xhci_cfg_handle) !=
2011     DDI_SUCCESS) {
2012 goto err;
2013 }
2014 xhcip->xhci_seq |= XHCI_ATTACH_PCI_CONFIG;
2015 xhcip->xhci_vendor_id = pci_config_get16(xhcip->xhci_cfg_handle,
2016     PCI_CONF_VENID);
2017 xhcip->xhci_device_id = pci_config_get16(xhcip->xhci_cfg_handle,
2018     PCI_CONF_DEVID);

2020 if (xhci_regs_map(xhcip) == B_FALSE) {
2021 goto err;
2022 }

2024 xhcip->xhci_seq |= XHCI_ATTACH_REGS_MAP;

2026 if (xhci_regs_init(xhcip) == B_FALSE)
2027 goto err;

2029 if (xhci_read_params(xhcip) == B_FALSE)
2030 goto err;

2032 if (xhci_identify(xhcip) == B_FALSE)
2033 goto err;

2035 if (xhci_alloc_intrs(xhcip) == B_FALSE)
2036 goto err;
2037 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ALLOC;

2039 if (xhci_add_intr_handler(xhcip) == B_FALSE)
2040 goto err;
2041 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ADD;

2043 mutex_init(&xhcip->xhci_lock, NULL, MUTEX_DRIVER,
2044     (void *)(uintptr_t)xhcip->xhci_intr_pri);
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2045 cv_init(&xhcip->xhci_statecv, NULL, CV_DRIVER, NULL);
2046 xhcip->xhci_seq |= XHCI_ATTACH_SYNCH;

2048 if (xhci_port_count(xhcip) == B_FALSE)
2049 goto err;

2051 if (xhci_controller_takeover(xhcip) == B_FALSE)
2052 goto err;

2054 /*
2055  * We don’t enable interrupts until after we take over the controller
2056  * from the BIOS. We’ve observed cases where this can cause spurious
2057  * interrupts.
2058  */
2059 if (xhci_ddi_intr_enable(xhcip) == B_FALSE)
2060 goto err;
2061 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ENABLE;

2063 if ((ret = xhci_controller_stop(xhcip)) != 0) {
2064 xhci_error(xhcip, "failed to stop controller: %s",
2065     ret == EIO ? "encountered FM register error" :
2066     "timed out while waiting for controller");
2067 goto err;
2068 }

2070 if ((ret = xhci_controller_reset(xhcip)) != 0) {
2071 xhci_error(xhcip, "failed to reset controller: %s",
2072     ret == EIO ? "encountered FM register error" :
2073     "timed out while waiting for controller");
2074 goto err;
2075 }

2077 if ((ret = xhci_controller_configure(xhcip)) != 0) {
2078 xhci_error(xhcip, "failed to configure controller: %d", ret);
2079 goto err;
2080 }

2082 /*
2083  * Some systems support having ports routed to both an ehci and xhci
2084  * controller. If we support it and the user hasn’t requested otherwise
2085  * via a driver.conf tuning, we reroute it now.
2086  */
2087 route = ddi_prop_get_int(DDI_DEV_T_ANY, xhcip->xhci_dip,
2088     DDI_PROP_DONTPASS, "xhci-reroute", XHCI_PROP_REROUTE_DEFAULT);
2089 if (route != XHCI_PROP_REROUTE_DISABLE &&
2090     (xhcip->xhci_quirks & XHCI_QUIRK_INTC_EHCI))
2091 (void) xhci_reroute_intel(xhcip);

2093 if ((ret = xhci_controller_start(xhcip)) != 0) {
2094 xhci_log(xhcip, "failed to reset controller: %s",
2095     ret == EIO ? "encountered FM register error" :
2096     "timed out while waiting for controller");
2097 goto err;
2098 }
2099 xhcip->xhci_seq |= XHCI_ATTACH_STARTED;

2101 /*
2102  * Finally, register ourselves with the USB framework itself.
2103  */
2104 if ((ret = xhci_hcd_init(xhcip)) != 0) {
2105 xhci_error(xhcip, "failed to register hcd with usba");
2106 goto err;
2107 }
2108 xhcip->xhci_seq |= XHCI_ATTACH_USBA;

2110 if ((ret = xhci_root_hub_init(xhcip)) != 0) {
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2111 xhci_error(xhcip, "failed to load the root hub driver");
2112 goto err;
2113 }
2114 xhcip->xhci_seq |= XHCI_ATTACH_ROOT_HUB;

2116 return (DDI_SUCCESS);

2118 err:
2119 (void) xhci_cleanup(xhcip);
2120 return (DDI_FAILURE);
2121 }
______unchanged_portion_omitted_

2187 static struct dev_ops xhci_dev_ops = {
2188 DEVO_REV, /* devo_rev */
2189 0, /* devo_refcnt */
2190 xhci_getinfo, /* devo_getinfo */
2191 nulldev, /* devo_identify */
2192 nulldev, /* devo_probe */
2193 xhci_attach, /* devo_attach */
2194 xhci_detach, /* devo_detach */
2195 nodev, /* devo_reset */
2196 &xhci_cb_ops, /* devo_cb_ops */
2197 &usba_hubdi_busops, /* devo_bus_ops */
2198 usba_hubdi_root_hub_power, /* devo_power */
2199 xhci_quiesce /* devo_quiesce */
2186 ddi_quiesce_not_supported /* devo_quiesce */
2200 };
______unchanged_portion_omitted_


