
new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 1

**
 75990 Mon Jul 9 10:24:41 2018
new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c
Add xhci_quiesce to support fast reboot.
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright (c) 2017, Joyent, Inc.
14 * Copyright (c) 2018, Western Digital Corporation.
15 */

17 /*
18 * Extensible Host Controller Interface (xHCI) USB Driver
19 *
20 * The xhci driver is an HCI driver for USB that bridges the gap between client
21 * device drivers and implements the actual way that we talk to devices. The
22 * xhci specification provides access to USB 3.x capable devices, as well as all
23 * prior generations. Like other host controllers, it both provides the way to
24 * talk to devices and also is treated like a hub (often called the root hub).
25 *
26 * This driver is part of the USBA (USB Architecture). It implements the HCDI
27 * (host controller device interface) end of USBA. These entry points are used
28 * by the USBA on behalf of client device drivers to access their devices. The
29 * driver also provides notifications to deal with hot plug events, which are
30 * quite common in USB.
31 *
32 * ----------------
33 * USB Introduction
34 * ----------------
35 *
36 * To properly understand the xhci driver and the design of the USBA HCDI
37 * interfaces it implements, it helps to have a bit of background into how USB
38 * devices are structured and understand how they work at a high-level.
39 *
40 * USB devices, like PCI devices, are broken down into different classes of
41 * device. For example, with USB you have hubs, human-input devices (keyboards,
42 * mice, etc.), mass storage, etc. Every device also has a vendor and device ID.
43 * Many client drivers bind to an entire class of device, for example, the hubd
44 * driver (to hubs) or scsa2usb (USB storage). However, there are other drivers
45 * that bind to explicit IDs such as usbsprl (specific USB to Serial devices).
46 *
47 * USB SPEEDS AND VERSIONS
48 *
49 * USB devices are often referred to in two different ways. One way they’re
50 * described is with the USB version that they conform to. In the wild, you’re
51 * most likely going to see USB 1.1, 2.0, 2.1, and 3.0. However, you may also
52 * see devices referred to as ’full-’, ’low-’, ’high-’, and ’super-’ speed
53 * devices.
54 *
55 * The latter description describes the maximum theoretical speed of a given
56 * device. For example, a super-speed device theoretically caps out around 5
57 * Gbit/s, whereas a low-speed device caps out at 1.5 Mbit/s.
58 *
59 * In general, each speed usually corresponds to a specific USB protocol
60 * generation. For example, all USB 3.0 devices are super-speed devices. All
61 * ’high-speed’ devices are USB 2.x devices. Full-speed devices are special in

new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 2

62 * that they can either be USB 1.x or USB 2.x devices. Low-speed devices are
63 * only a USB 1.x thing, they did not jump the fire line to USB 2.x.
64 *
65 * USB 3.0 devices and ports generally have the wiring for both USB 2.0 and USB
66 * 3.0. When a USB 3.x device is plugged into a USB 2.0 port or hub, then it
67 * will report its version as USB 2.1, to indicate that it is actually a USB 3.x
68 * device.
69 *
70 * USB ENDPOINTS
71 *
72 * A given USB device is made up of endpoints. A request, or transfer, is made
73 * to a specific USB endpoint. These endpoints can provide different services
74 * and have different expectations around the size of the data that’ll be used
75 * in a given request and the periodicity of requests. Endpoints themselves are
76 * either used to make one-shot requests, for example, making requests to a mass
77 * storage device for a given sector, or for making periodic requests where you
78 * end up polling on the endpoint, for example, polling on a USB keyboard for
79 * keystrokes.
80 *
81 * Each endpoint encodes two different pieces of information: a direction and a
82 * type. There are two different directions: IN and OUT. These refer to the
83 * general direction that data moves relative to the operating system. For
84 * example, an IN transfer transfers data in to the operating system, from the
85 * device. An OUT transfer transfers data from the operating system, out to the
86 * device.
87 *
88 * There are four different kinds of endpoints:
89 *
90 * BULK These transfers are large transfers of data to or from
91 * a device. The most common use for bulk transfers is for
92 * mass storage devices. Though they are often also used by
93 * network devices and more. Bulk endpoints do not have an
94 * explicit time component to them. They are always used
95 * for one-shot transfers.
96 *
97 * CONTROL These transfers are used to manipulate devices
98 * themselves and are used for USB protocol level
99 * operations (whether device-specific, class-specific, or
100 * generic across all of USB). Unlike other transfers,
101 * control transfers are always bi-directional and use
102 * different kinds of transfers.
103 *
104 * INTERRUPT Interrupt transfers are used for small transfers that
105 * happen infrequently, but need reasonable latency. A good
106 * example of interrupt transfers is to receive input from
107 * a USB keyboard. Interrupt-IN transfers are generally
108 * polled. Meaning that a client (device driver) opens up
109 * an interrupt-IN pipe to poll on it, and receives
110 * periodic updates whenever there is information
111 * available. However, Interrupt transfers can be used
112 * as one-shot transfers both going IN and OUT.
113 *
114 * ISOCHRONOUS These transfers are things that happen once per
115 * time-interval at a very regular rate. A good example of
116 * these transfers are for audio and video. A device may
117 * describe an interval as 10ms at which point it will read
118 * or write the next batch of data every 10ms and transform
119 * it for the user. There are no one-shot Isochronous-IN
120 * transfers. There are one-shot Isochronous-OUT transfers,
121 * but these are used by device drivers to always provide
122 * the system with sufficient data.
123 *
124 * To find out information about the endpoints, USB devices have a series of
125 * descriptors that cover different aspects of the device. For example, there
126 * are endpoint descriptors which cover the properties of endpoints such as the
127 * maximum packet size or polling interval.

new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 3

128 *
129 * Descriptors exist at all levels of USB. For example, there are general
130 * descriptors for every device. The USB device descriptor is described in
131 * usb_dev_descr(9S). Host controllers will look at these descriptors to ensure
132 * that they program the device correctly; however, they are more often used by
133 * client device drivers. There are also descriptors that exist at a class
134 * level. For example, the hub class has a class-specific descriptor which
135 * describes properties of the hub. That information is requested for and used
136 * by the hub driver.
137 *
138 * All of the different descriptors are gathered by the system and placed into a
139 * tree which USBA sometimes calls the ’Configuration Cloud’. Client device
140 * drivers gain access to this cloud and then use them to open endpoints, which
141 * are called pipes in USBA (and some revisions of the USB specification).
142 *
143 * Each pipe gives access to a specific endpoint on the device which can be used
144 * to perform transfers of a specific type and direction. For example, a mass
145 * storage device often has three different endpoints, the default control
146 * endpoint (which every device has), a Bulk-IN endpoint, and a Bulk-OUT
147 * endpoint. The device driver ends up with three open pipes. One to the default
148 * control endpoint to configure the device, and then the other two are used to
149 * perform I/O.
150 *
151 * These routines translate more or less directly into calls to a host
152 * controller driver. A request to open a pipe takes an endpoint descriptor that
153 * describes the properties of the pipe, and the host controller driver (this
154 * driver) goes through and does any work necessary to allow the client device
155 * driver to access it. Once the pipe is open, it either makes one-shot
156 * transfers specific to the transfer type or it starts performing a periodic
157 * poll of an endpoint.
158 *
159 * All of these different actions translate into requests to the host
160 * controller. The host controller driver itself is in charge of making sure
161 * that all of the required resources for polling are allocated with a request
162 * and then proceed to give the driver’s periodic callbacks.
163 *
164 * HUBS AND HOST CONTROLLERS
165 *
166 * Every device is always plugged into a hub, even if the device is itself a
167 * hub. This continues until we reach what we call the root-hub. The root-hub is
168 * special in that it is not an actual USB hub, but is integrated into the host
169 * controller and is manipulated in its own way. For example, the host
170 * controller is used to turn on and off a given port’s power. This may happen
171 * over any interface, though the most common way is through PCI.
172 *
173 * In addition to the normal character device that exists for a host controller
174 * driver, as part of attaching, the host controller binds to an instance of the
175 * hubd driver. While the root-hub is a bit of a fiction, everyone models the
176 * root-hub as the same as any other hub that’s plugged in. The hub kernel
177 * module doesn’t know that the hub isn’t a physical device that’s been plugged
178 * in. The host controller driver simulates that view by taking hub requests
179 * that are made and translating them into corresponding requests that are
180 * understood by the host controller, for example, reading and writing to a
181 * memory mapped register.
182 *
183 * The hub driver polls for changes in device state using an Interrupt-IN
184 * request, which is the same as is done for the root-hub. This allows the host
185 * controller driver to not have to know about the implementation of device hot
186 * plug, merely react to requests from a hub, the same as if it were an external
187 * device. When the hub driver detects a change, it will go through the
188 * corresponding state machine and attach or detach the corresponding client
189 * device driver, depending if the device was inserted or removed.
190 *
191 * We detect the changes for the Interrupt-IN primarily based on the port state
192 * change events that are delivered to the event ring. Whenever any event is
193 * fired, we use this to update the hub driver about _all_ ports with

new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 4

194 * outstanding events. This more closely matches how a hub is supposed to behave
195 * and leaves things less likely for the hub driver to end up without clearing a
196 * flag on a port.
197 *
198 * PACKET SIZES AND BURSTING
199 *
200 * A given USB endpoint has an explicit packet size and a number of packets that
201 * can be sent per time interval. These concepts are abstracted away from client
202 * device drives usually, though they sometimes inform the upper bounds of what
203 * a device can perform.
204 *
205 * The host controller uses this information to transform arbitrary transfer
206 * requests into USB protocol packets. One of the nice things about the host
207 * controllers is that they abstract away all of the signaling and semantics of
208 * the actual USB protocols, allowing for life to be slightly easier in the
209 * operating system.
210 *
211 * That said, if the host controller is not programmed correctly, these can end
212 * up causing transaction errors and other problems in response to the data that
213 * the host controller is trying to send or receive.
214 *
215 * ------------
216 * Organization
217 * ------------
218 *
219 * The driver is made up of the following files. Many of these have their own
220 * theory statements to describe what they do. Here, we touch on each of the
221 * purpose of each of these files.
222 *
223 * xhci_command.c: This file contains the logic to issue commands to the
224 * controller as well as the actual functions that the
225 * other parts of the driver use to cause those commands.
226 *
227 * xhci_context.c: This file manages various data structures used by the
228 * controller to manage the controller’s and device’s
229 * context data structures. See more in the xHCI Overview
230 * and General Design for more information.
231 *
232 * xhci_dma.c: This manages the allocation of DMA memory and DMA
233 * attributes for controller, whether memory is for a
234 * transfer or something else. This file also deals with
235 * all the logic of getting data in and out of DMA buffers.
236 *
237 * xhci_endpoint.c: This manages all of the logic of handling endpoints or
238 * pipes. It deals with endpoint configuration, I/O
239 * scheduling, timeouts, and callbacks to USBA.
240 *
241 * xhci_event.c: This manages callbacks from the hardware to the driver.
242 * This covers command completion notifications and I/O
243 * notifications.
244 *
245 * xhci_hub.c: This manages the virtual root-hub. It basically
246 * implements and translates all of the USB level requests
247 * into xhci specific implements. It also contains the
248 * functions to register this hub with USBA.
249 *
250 * xhci_intr.c: This manages the underlying interrupt allocation,
251 * interrupt moderation, and interrupt routines.
252 *
253 * xhci_quirks.c: This manages information about buggy hardware that’s
254 * been collected and experienced primarily from other
255 * systems.
256 *
257 * xhci_ring.c: This manages the abstraction of a ring in xhci, which is
258 * the primary of communication between the driver and the
259 * hardware, whether for the controller or a device.

new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 5

260 *
261 * xhci_usba.c: This implements all of the HCDI functions required by
262 * USBA. This is the main entry point that drivers and the
263 * kernel frameworks will reach to start any operation.
264 * Many functions here will end up in the command and
265 * endpoint code.
266 *
267 * xhci.c: This provides the main kernel DDI interfaces and
268 * performs device initialization.
269 *
270 * xhci.h: This is the primary header file which defines
271 * illumos-specific data structures and constants to manage
272 * the system.
273 *
274 * xhcireg.h: This header file defines all of the register offsets,
275 * masks, and related macros. It also contains all of the
276 * constants that are used in various structures as defined
277 * by the specification, such as command offsets, etc.
278 *
279 * xhci_ioctl.h: This contains a few private ioctls that are used by a
280 * private debugging command. These are private.
281 *
282 * cmd/xhci/xhci_portsc: This is a private utility that can be useful for
283 * debugging xhci state. It is the only consumer of
284 * xhci_ioctl.h and the private ioctls.
285 *
286 * ----------------------------------
287 * xHCI Overview and Structure Layout
288 * ----------------------------------
289 *
290 * The design and structure of this driver follows from the way that the xHCI
291 * specification tells us that we have to work with hardware. First we’ll give a
292 * rough summary of how that works, though the xHCI 1.1 specification should be
293 * referenced when going through this.
294 *
295 * There are three primary parts of the hardware -- registers, contexts, and
296 * rings. The registers are memory mapped registers that come in four sets,
297 * though all are found within the first BAR. These are used to program and
298 * control the hardware and aspects of the devices. Beyond more traditional
299 * device programming there are two primary sets of registers that are
300 * important:
301 *
302 * o Port Status and Control Registers (XHCI_PORTSC)
303 * o Doorbell Array (XHCI_DOORBELL)
304 *
305 * The port status and control registers are used to get and manipulate the
306 * status of a given device. For example, turning on and off the power to it.
307 * The Doorbell Array is used to kick off I/O operations and start the
308 * processing of an I/O ring.
309 *
310 * The contexts are data structures that represent various pieces of information
311 * in the controller. These contexts are generally filled out by the driver and
312 * then acknowledged and consumed by the hardware. There are controller-wide
313 * contexts (mostly managed in xhci_context.c) that are used to point to the
314 * contexts that exist for each device in the system. The primary context is
315 * called the Device Context Base Address Array (DCBAA).
316 *
317 * Each device in the system is allocated a ’slot’, which is used to index into
318 * the DCBAA. Slots are assigned based on issuing commands to the controller.
319 * There are a fixed number of slots that determine the maximum number of
320 * devices that can end up being supported in the system. Note this includes all
321 * the devices plugged into the USB device tree, not just devices plugged into
322 * ports on the chassis.
323 *
324 * For each device, there is a context structure that describes properties of
325 * the device. For example, what speed is the device, is it a hub, etc. The

new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 6

326 * context has slots for the device and for each endpoint on the device. As
327 * endpoints are enabled, their context information which describes things like
328 * the maximum packet size, is filled in and enabled. The mapping between these
329 * contexts look like:
330 *
331 *
332 * DCBAA
333 * +--------+ Device Context
334 * | Slot 0 |------------------>+--------------+
335 * +--------+ | Slot Context |
336 * | ... | +--------------+ +----------+
337 * +--------+ +------+ | Endpoint 0 |------>| I/O Ring |
338 * | Slot n |-->| NULL | | Context (Bi) | +----------+
339 * +--------+ +------+ +--------------+
340 * | Endpoint 1 |
341 * | Context (Out)|
342 * +--------------+
343 * | Endpoint 1 |
344 * | Context (In) |
345 * +--------------+
346 * | ... |
347 * +--------------+
348 * | Endpoint 15 |
349 * | Context (In) |
350 * +--------------+
351 *
352 * These contexts are always owned by the controller, though we can read them
353 * after various operations complete. Commands that toggle device state use a
354 * specific input context, which is a variant of the device context. The only
355 * difference is that it has an input context structure ahead of it to say which
356 * sections of the device context should be evaluated.
357 *
358 * Each active endpoint points us to an I/O ring, which leads us to the third
359 * main data structure that’s used by the device: rings. Rings are made up of
360 * transfer request blocks (TRBs), which are joined together to form a given
361 * transfer description (TD) which represents a single I/O request.
362 *
363 * These rings are used to issue I/O to individual endpoints, to issue commands
364 * to the controller, and to receive notification of changes and completions.
365 * Issued commands go on the special ring called the command ring while the
366 * change and completion notifications go on the event ring. More details are
367 * available in xhci_ring.c. Each of these structures is represented by an
368 * xhci_ring_t.
369 *
370 * Each ring can be made up of one or more disjoint regions of DMA; however, we
371 * only use a single one. This also impacts some additional registers and
372 * structures that exist. The event ring has an indirection table called the
373 * Event Ring Segment Table (ERST). Each entry in the table (a segment)
374 * describes a chunk of the event ring.
375 *
376 * One other thing worth calling out is the scratchpad. The scratchpad is a way
377 * for the controller to be given arbitrary memory by the OS that it can use.
378 * There are two parts to the scratchpad. The first part is an array whose
379 * entries contain pointers to the actual addresses for the pages. The second
380 * part that we allocate are the actual pages themselves.
381 *
382 * -----------------------------
383 * Endpoint State and Management
384 * -----------------------------
385 *
386 * Endpoint management is one of the key parts to the xhci driver as every
387 * endpoint is a pipe that a device driver uses, so they are our primary
388 * currency. Endpoints are enabled and disabled when the client device drivers
389 * open and close a pipe. When an endpoint is enabled, we have to fill in an
390 * endpoint’s context structure with information about the endpoint. These
391 * basically tell the controller important properties which it uses to ensure

new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 7

392 * that there is adequate bandwidth for the device.
393 *
394 * Each endpoint has its own ring as described in the previous section. We place
395 * TRBs (transfer request blocks) onto a given ring to request I/O be performed.
396 * Responses are placed on the event ring, in other words, the rings associated
397 * with an endpoint are purely for producing I/O.
398 *
399 * Endpoints have a defined state machine as described in xHCI 1.1 / 4.8.3.
400 * These states generally correspond with the state of the endpoint to process
401 * I/O and handle timeouts. The driver basically follows a similar state machine
402 * as described there. There are some deviations. For example, what they
403 * describe as ’running’ we break into both the Idle and Running states below.
404 * We also have a notion of timed out and quiescing. The following image
405 * summarizes the states and transitions:
406 *
407 * +------+ +-----------+
408 * | Idle |---------*--------------------->| Running |<-+
409 * +------+ . I/O queued on +-----------+ |
410 * ^ ring and timeout | | | |
411 * | scheduled. | | | |
412 * | | | | |
413 * +-----*---------------------------------+ | | |
414 * | . No I/Os remain | | |
415 * | | | |
416 * | +------*------------------+ | |
417 * | | . Timeout | |
418 * | | fires for | |
419 * | | I/O | |
420 * | v v |
421 * | +-----------+ +--------+ |
422 * | | Timed Out | | Halted | |
423 * | +-----------+ +--------+ |
424 * | | | |
425 * | | +-----------+ | |
426 * | +-->| Quiescing |<----------+ |
427 * | +-----------+ |
428 * | No TRBs. | . TRBs |
429 * | remain . | . Remain |
430 * +----------*----<------+-------->-------*-----------+
431 *
432 * Normally, a given endpoint will oscillate between having TRBs scheduled and
433 * not. Every time a new I/O is added to the endpoint, we’ll ring the doorbell,
434 * making sure that we’re processing the ring, presuming that the endpoint isn’t
435 * in one of the error states.
436 *
437 * To detect device hangs, we have an active timeout(9F) per active endpoint
438 * that ticks at a one second rate while we still have TRBs outstanding on an
439 * endpoint. Once all outstanding TRBs have been processed, the timeout will
440 * stop itself and there will be no active checking until the endpoint has I/O
441 * scheduled on it again.
442 *
443 * There are two primary ways that things can go wrong on the endpoint. We can
444 * either have a timeout or an event that transitions the endpoint to the Halted
445 * state. In the halted state, we need to issue explicit commands to reset the
446 * endpoint before removing the I/O.
447 *
448 * The way we handle both a timeout and a halted condition is similar, but the
449 * way they are triggered is different. When we detect a halted condition, we
450 * don’t immediately clean it up, and wait for the client device driver (or USBA
451 * on its behalf) to issue a pipe reset. When we detect a timeout, we
452 * immediately take action (assuming no other action is ongoing).
453 *
454 * In both cases, we quiesce the device, which takes care of dealing with taking
455 * the endpoint from whatever state it may be in and taking the appropriate
456 * actions based on the state machine in xHCI 1.1 / 4.8.3. The end of quiescing
457 * leaves the device stopped, which allows us to update the ring’s pointer and

new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 8

458 * remove any TRBs that are causing problems.
459 *
460 * As part of all this, we ensure that we can only be quiescing the device from
461 * a given path at a time. Any requests to schedule I/O during this time will
462 * generally fail.
463 *
464 * The following image describes the state machine for the timeout logic. It
465 * ties into the image above.
466 *
467 * +----------+ +---------+
468 * | Disabled |-----*--------------------->| Enabled |<--+
469 * +----------+ . TRBs scheduled +---------+ *. 1 sec timer
470 * ^ and no active | | | | fires and
471 * | timer. | | | | another
472 * | | | +--+--+ quiesce, in
473 * | | | | a bad state,
474 * +------*------------------------------+ | ^ or decrement
475 * | . 1 sec timer | | I/O timeout
476 * | fires and | |
477 * | no TRBs or | +--------------+
478 * | endpoint shutdown | |
479 * | *. . timer counter |
480 * ^ | reaches zero |
481 * | v |
482 * | +--------------+ |
483 * +-------------*---------------<--| Quiesce ring |->---*-------+
484 * . No more | and fail I/O | . restart
485 * I/Os +--------------+ timer as
486 * more I/Os
487 *
488 * As we described above, when there are active TRBs and I/Os, a 1 second
489 * timeout(9F) will be active. Each second, we decrement a counter on the
490 * current, active I/O until either a new I/O takes the head, or the counter
491 * reaches zero. If the counter reaches zero, then we go through, quiesce the
492 * ring, and then clean things up.
493 *
494 * ------------------
495 * Periodic Endpoints
496 * ------------------
497 *
498 * It’s worth calling out periodic endpoints explicitly, as they operate
499 * somewhat differently. Periodic endpoints are limited to Interrupt-IN and
500 * Isochronous-IN. The USBA often uses the term polling for these. That’s
501 * because the client only needs to make a single API call; however, they’ll
502 * receive multiple callbacks until either an error occurs or polling is
503 * requested to be terminated.
504 *
505 * When we have one of these periodic requests, we end up always rescheduling
506 * I/O requests, as well as, having a specific number of pre-existing I/O
507 * requests to cover the periodic needs, in case of latency spikes. Normally,
508 * when replying to a request, we use the request handle that we were given.
509 * However, when we have a periodic request, we’re required to duplicate the
510 * handle before giving them data.
511 *
512 * However, the duplication is a bit tricky. For everything that was duplicated,
513 * the framework expects us to submit data. Because of that we, don’t duplicate
514 * them until they are needed. This minimizes the likelihood that we have
515 * outstanding requests to deal with when we encounter a fatal polling failure.
516 *
517 * Most of the polling setup logic happens in xhci_usba.c in
518 * xhci_hcdi_periodic_init(). The consumption and duplication is handled in
519 * xhci_endpoint.c.
520 *
521 * ----------------
522 * Structure Layout
523 * ----------------

new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 9

524 *
525 * The following images relate the core data structures. The primary structure
526 * in the system is the xhci_t. This is the per-controller data structure that
527 * exists for each instance of the driver. From there, each device in the system
528 * is represented by an xhci_device_t and each endpoint is represented by an
529 * xhci_endpoint_t. For each client that opens a given endpoint, there is an
530 * xhci_pipe_t. For each I/O related ring, there is an xhci_ring_t in the
531 * system.
532 *
533 * +------------------------+
534 * | Per-Controller |
535 * | Structure |
536 * | xhci_t |
537 * | |
538 * | uint_t ---+--> Capability regs offset
539 * | uint_t ---+--> Operational regs offset
540 * | uint_t ---+--> Runtime regs offset
541 * | uint_t ---+--> Doorbell regs offset
542 * | xhci_state_flags_t ---+--> Device state flags
543 * | xhci_quirks_t ---+--> Device quirk flags
544 * | xhci_capability_t ---+--> Controller capability structure
545 * | xhci_dcbaa_t ---+----------------------------------+
546 * | xhci_scratchpad_t ---+---------+ |
547 * | xhci_command_ing_t ---+------+ | v
548 * | xhci_event_ring_t ---+----+ | | +---------------------+
549 * | xhci_usba_t ---+--+ | | | | Device Context |
550 * +------------------------+ | | | | | Base Address |
551 * | | | | | Array Structure |
552 * | | | | | xhci_dcbaa_t |
553 * +-------------------------------+ | | | | |
554 * | +-------------------------------+ | | DCBAA KVA <-+-- uint64_t * |
555 * | | +----------------------------+ | DMA Buffer <-+-- xhci_dma_buffer_t |
556 * | | v | +---------------------+
557 * | | +--------------------------+ +-----------------------+
558 * | | | Event Ring | |
559 * | | | Management | |
560 * | | | xhci_event_ring_t | v
561 * | | | | Event Ring +----------------------+
562 * | | | xhci_event_segment_t * --|-> Segment VA | Scratchpad (Extra |
563 * | | | xhci_dma_buffer_t --|-> Segment DMA Buf. | Controller Memory) |
564 * | | | xhci_ring_t --|--+ | xhci_scratchpad_t |
565 * | | +--------------------------+ | Scratchpad | |
566 * | | | Base Array KVA <-+- uint64_t * |
567 * | +------------+ | Array DMA Buf. <-+- xhci_dma_buffer_t |
568 * | v | Scratchpad DMA <-+- xhci_dma_buffer_t * |
569 * | +---------------------------+ | Buffer per page +----------------------+
570 * | | Command Ring | |
571 * | | xhci_command_ring_t | +------------------------------+
572 * | | | |
573 * | | xhci_ring_t --+-> Command Ring --->------------+
574 * | | list_t --+-> Command List v
575 * | | timeout_id_t --+-> Timeout State +---------------------+
576 * | | xhci_command_ring_state_t +-> State Flags | I/O Ring |
577 * | +---------------------------+ | xhci_ring_t |
578 * | | |
579 * | Ring DMA Buf. <-+-- xhci_dma_buffer_t |
580 * | Ring Length <-+-- uint_t |
581 * | Ring Entry KVA <-+-- xhci_trb_t * |
582 * | +---------------------------+ Ring Head <-+-- uint_t |
583 * +--->| USBA State | Ring Tail <-+-- uint_t |
584 * | xhci_usba_t | Ring Cycle <-+-- uint_t |
585 * | | +---------------------+
586 * | usba_hcdi_ops_t * -+-> USBA Ops Vector ^
587 * | usb_dev_dscr_t -+-> USB Virtual Device Descriptor |
588 * | usb_ss_hub_descr_t -+-> USB Virtual Hub Descriptor |
589 * | usba_pipe_handle_data_t * +-> Interrupt polling client |

new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 10

590 * | usb_intr_req_t -+-> Interrupt polling request |
591 * | uint32_t --+-> Interrupt polling device mask |
592 * | list_t --+-> Pipe List (Active Users) |
593 * | list_t --+-------------------+ |
594 * +---------------------------+ | ^
595 * | |
596 * v |
597 * +-------------------------------+ +---------------+ |
598 * | USB Device |------------>| USB Device |--> ... |
599 * | xhci_device_t | | xhci_device_t | |
600 * | | +---------------+ |
601 * | usb_port_t --+-> USB Port plugged into |
602 * | uint8_t --+-> Slot Number |
603 * | boolean_t --+-> Address Assigned |
604 * | usba_device_t * --+-> USBA Device State |
605 * | xhci_dma_buffer_t --+-> Input Context DMA Buffer |
606 * | xhci_input_context_t * --+-> Input Context KVA |
607 * | xhci_slot_contex_t * --+-> Input Slot Context KVA |
608 * | xhci_endpoint_context_t *[] --+-> Input Endpoint Context KVA |
609 * | xhci_dma_buffer_t --+-> Output Context DMA Buffer |
610 * | xhci_slot_context_t * --+-> Output Slot Context KVA ^
611 * | xhci_endpoint_context_t *[] --+-> Output Endpoint Context KVA |
612 * | xhci_endpoint_t *[] --+-> Endpoint Tracking ---+ |
613 * +-------------------------------+ | |
614 * | |
615 * v |
616 * +------------------------------+ +-----------------+ |
617 * | Endpoint Data |----------->| Endpoint Data |--> ... |
618 * | xhci_endpoint_t | | xhci_endpoint_t | |
619 * | | +-----------------+ |
620 * | int --+-> Endpoint Number |
621 * | int --+-> Endpoint Type |
622 * | xhci_endpoint_state_t --+-> Endpoint State |
623 * | timeout_id_t --+-> Endpoint Timeout State |
624 * | usba_pipe_handle_data_t * --+-> USBA Client Handle |
625 * | xhci_ring_t --+-> Endpoint I/O Ring -------->--------+
626 * | list_t --+-> Transfer List --------+
627 * +------------------------------+ |
628 * v
629 * +-------------------------+ +--------------------+
630 * | Transfer Structure |----------------->| Transfer Structure |-> ...
631 * | xhci_transfer_t | | xhci_transfer_t |
632 * | | +--------------------+
633 * | xhci_dma_buffer_t --+-> I/O DMA Buffer
634 * | uint_t --+-> Number of TRBs
635 * | uint_t --+-> Short transfer data
636 * | uint_t --+-> Timeout seconds remaining
637 * | usb_cr_t --+-> USB Transfer return value
638 * | boolean_t --+-> Data direction
639 * | xhci_trb_t * --+-> Host-order transfer requests for I/O
640 * | usb_isoc_pkt_descr_t * -+-> Isochronous only response data
641 * | usb_opaque_t --+-> USBA Request Handle
642 * +-------------------------+
643 *
644 * -------------
645 * Lock Ordering
646 * -------------
647 *
648 * There are three different tiers of locks that exist in the driver. First,
649 * there is a lock for each controller: xhci_t‘xhci_lock. This protects all the
650 * data for that instance of the controller. If there are multiple instances of
651 * the xHCI controller in the system, each one is independent and protected
652 * separately. The two do not share any data.
653 *
654 * From there, there are two other, specific locks in the system:
655 *

new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 11

656 * o xhci_command_ring_t‘xcr_lock
657 * o xhci_device_t‘xd_imtx
658 *
659 * There is only one xcr_lock per controller, like the xhci_lock. It protects
660 * the state of the command ring. However, there is on xd_imtx per device.
661 * Recall that each device is scoped to a given controller. This protects the
662 * input slot context for a given device.
663 *
664 * There are a few important rules to keep in mind here that are true
665 * universally throughout the driver:
666 *
667 * 1) Always grab the xhci_t‘xhci_lock, before grabbing any of the other locks.
668 * 2) A given xhci_device_t‘xd_imtx, must be taken before grabbing the
669 * xhci_command_ring_t‘xcr_lock.
670 * 3) A given thread can only hold one of the given xhci_device_t‘xd_imtx locks
671 * at a given time. In other words, we should never be manipulating the input
672 * context of two different devices at once.
673 * 4) It is safe to hold the xhci_device_t‘xd_imtx while tearing down the
674 * endpoint timer. Conversely, the endpoint specific logic should never enter
675 * this lock.
676 *
677 * --------------------
678 * Relationship to EHCI
679 * --------------------
680 *
681 * On some Intel chipsets, a given physical port on the system may be routed to
682 * one of the EHCI or xHCI controllers. This association can be dynamically
683 * changed by writing to platform specific registers as handled by the quirk
684 * logic in xhci_quirk.c.
685 *
686 * As these ports may support USB 3.x speeds, we always route all such ports to
687 * the xHCI controller, when supported. In addition, to minimize disruptions
688 * from devices being enumerated and attached to the EHCI driver and then
689 * disappearing, we generally attempt to load the xHCI controller before the
690 * EHCI controller. This logic is not done in the driver; however, it is done in
691 * other parts of the kernel like in uts/common/io/consconfig_dacf.c in the
692 * function consconfig_load_drivres().
693 *
694 * -----------
695 * Future Work
696 * -----------
697 *
698 * The primary future work in this driver spans two different, but related
699 * areas. The first area is around controller resets and how they tie into FM.
700 * Presently, we do not have a good way to handle controllers coming and going
701 * in the broader USB stack or properly reconfigure the device after a reset.
702 * Secondly, we don’t handle the suspend and resume of devices and drivers.
703 */

705 #include <sys/param.h>
706 #include <sys/modctl.h>
707 #include <sys/conf.h>
708 #include <sys/devops.h>
709 #include <sys/ddi.h>
710 #include <sys/sunddi.h>
711 #include <sys/cmn_err.h>
712 #include <sys/ddifm.h>
713 #include <sys/pci.h>
714 #include <sys/class.h>
715 #include <sys/policy.h>

717 #include <sys/usb/hcd/xhci/xhci.h>
718 #include <sys/usb/hcd/xhci/xhci_ioctl.h>

720 /*
721 * We want to use the first BAR to access its registers. The regs[] array is

new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 12

722 * ordered based on the rules for the PCI supplement to IEEE 1275. So regs[1]
723 * will always be the first BAR.
724 */
725 #define XHCI_REG_NUMBER 1

727 /*
728 * This task queue exists as a global taskq that is used for resetting the
729 * device in the face of FM or runtime errors. Each instance of the device
730 * (xhci_t) happens to have a single taskq_dispatch_ent already allocated so we
731 * know that we should always be able to dispatch such an event.
732 */
733 static taskq_t *xhci_taskq;

735 /*
736 * Global soft state for per-instance data. Note that we must use the soft state
737 * routines and cannot use the ddi_set_driver_private() routines. The USB
738 * framework presumes that it can use the dip’s private data.
739 */
740 void *xhci_soft_state;

742 /*
743 * This is the time in us that we wait after a controller resets before we
744 * consider reading any register. There are some controllers that want at least
745 * 1 ms, therefore we default to 10 ms.
746 */
747 clock_t xhci_reset_delay = 10000;

749 void
750 xhci_error(xhci_t *xhcip, const char *fmt, ...)
751 {
752 va_list ap;

754 va_start(ap, fmt);
755 if (xhcip != NULL && xhcip->xhci_dip != NULL) {
756 vdev_err(xhcip->xhci_dip, CE_WARN, fmt, ap);
757 } else {
758 vcmn_err(CE_WARN, fmt, ap);
759 }
760 va_end(ap);
761 }

______unchanged_portion_omitted_

1011 int
1012 xhci_check_regs_acc(xhci_t *xhcip)
1013 {
1014 ddi_fm_error_t de;

1016 /*
1017 * Treat cases where we can’t check as fine so we can treat the code
1016 * Treat the case where we can’t check as fine so we can treat the code
1018 * more simply.
1019 */
1020 if (quiesce_active || !DDI_FM_ACC_ERR_CAP(xhcip->xhci_fm_caps))
1019 if (!DDI_FM_ACC_ERR_CAP(xhcip->xhci_fm_caps))
1021 return (DDI_FM_OK);

1023 ddi_fm_acc_err_get(xhcip->xhci_regs_handle, &de, DDI_FME_VERSION);
1024 ddi_fm_acc_err_clear(xhcip->xhci_regs_handle, DDI_FME_VERSION);
1025 return (de.fme_status);
1026 }
______unchanged_portion_omitted_

1975 /* QUIESCE(9E) to support fast reboot */
1976 int
1977 xhci_quiesce(dev_info_t *dip)
1978 {

new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 13

1979 xhci_t *xhcip;

1981 xhcip = ddi_get_soft_state(xhci_soft_state, ddi_get_instance(dip));

1983 return (xhci_controller_stop(xhcip) == 0 &&
1984 xhci_controller_reset(xhcip) == 0 ? DDI_SUCCESS : DDI_FAILURE);
1985 }

1987 static int
1988 xhci_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1989 {
1990 int ret, inst, route;
1991 xhci_t *xhcip;

1993 if (cmd != DDI_ATTACH)
1994 return (DDI_FAILURE);

1996 inst = ddi_get_instance(dip);
1997 if (ddi_soft_state_zalloc(xhci_soft_state, inst) != 0)
1998 return (DDI_FAILURE);
1999 xhcip = ddi_get_soft_state(xhci_soft_state, ddi_get_instance(dip));
2000 xhcip->xhci_dip = dip;

2002 xhcip->xhci_regs_capoff = PCI_EINVAL32;
2003 xhcip->xhci_regs_operoff = PCI_EINVAL32;
2004 xhcip->xhci_regs_runoff = PCI_EINVAL32;
2005 xhcip->xhci_regs_dooroff = PCI_EINVAL32;

2007 xhci_fm_init(xhcip);
2008 xhcip->xhci_seq |= XHCI_ATTACH_FM;

2010 if (pci_config_setup(xhcip->xhci_dip, &xhcip->xhci_cfg_handle) !=
2011 DDI_SUCCESS) {
2012 goto err;
2013 }
2014 xhcip->xhci_seq |= XHCI_ATTACH_PCI_CONFIG;
2015 xhcip->xhci_vendor_id = pci_config_get16(xhcip->xhci_cfg_handle,
2016 PCI_CONF_VENID);
2017 xhcip->xhci_device_id = pci_config_get16(xhcip->xhci_cfg_handle,
2018 PCI_CONF_DEVID);

2020 if (xhci_regs_map(xhcip) == B_FALSE) {
2021 goto err;
2022 }

2024 xhcip->xhci_seq |= XHCI_ATTACH_REGS_MAP;

2026 if (xhci_regs_init(xhcip) == B_FALSE)
2027 goto err;

2029 if (xhci_read_params(xhcip) == B_FALSE)
2030 goto err;

2032 if (xhci_identify(xhcip) == B_FALSE)
2033 goto err;

2035 if (xhci_alloc_intrs(xhcip) == B_FALSE)
2036 goto err;
2037 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ALLOC;

2039 if (xhci_add_intr_handler(xhcip) == B_FALSE)
2040 goto err;
2041 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ADD;

2043 mutex_init(&xhcip->xhci_lock, NULL, MUTEX_DRIVER,
2044 (void *)(uintptr_t)xhcip->xhci_intr_pri);

new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 14

2045 cv_init(&xhcip->xhci_statecv, NULL, CV_DRIVER, NULL);
2046 xhcip->xhci_seq |= XHCI_ATTACH_SYNCH;

2048 if (xhci_port_count(xhcip) == B_FALSE)
2049 goto err;

2051 if (xhci_controller_takeover(xhcip) == B_FALSE)
2052 goto err;

2054 /*
2055 * We don’t enable interrupts until after we take over the controller
2056 * from the BIOS. We’ve observed cases where this can cause spurious
2057 * interrupts.
2058 */
2059 if (xhci_ddi_intr_enable(xhcip) == B_FALSE)
2060 goto err;
2061 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ENABLE;

2063 if ((ret = xhci_controller_stop(xhcip)) != 0) {
2064 xhci_error(xhcip, "failed to stop controller: %s",
2065 ret == EIO ? "encountered FM register error" :
2066 "timed out while waiting for controller");
2067 goto err;
2068 }

2070 if ((ret = xhci_controller_reset(xhcip)) != 0) {
2071 xhci_error(xhcip, "failed to reset controller: %s",
2072 ret == EIO ? "encountered FM register error" :
2073 "timed out while waiting for controller");
2074 goto err;
2075 }

2077 if ((ret = xhci_controller_configure(xhcip)) != 0) {
2078 xhci_error(xhcip, "failed to configure controller: %d", ret);
2079 goto err;
2080 }

2082 /*
2083 * Some systems support having ports routed to both an ehci and xhci
2084 * controller. If we support it and the user hasn’t requested otherwise
2085 * via a driver.conf tuning, we reroute it now.
2086 */
2087 route = ddi_prop_get_int(DDI_DEV_T_ANY, xhcip->xhci_dip,
2088 DDI_PROP_DONTPASS, "xhci-reroute", XHCI_PROP_REROUTE_DEFAULT);
2089 if (route != XHCI_PROP_REROUTE_DISABLE &&
2090 (xhcip->xhci_quirks & XHCI_QUIRK_INTC_EHCI))
2091 (void) xhci_reroute_intel(xhcip);

2093 if ((ret = xhci_controller_start(xhcip)) != 0) {
2094 xhci_log(xhcip, "failed to reset controller: %s",
2095 ret == EIO ? "encountered FM register error" :
2096 "timed out while waiting for controller");
2097 goto err;
2098 }
2099 xhcip->xhci_seq |= XHCI_ATTACH_STARTED;

2101 /*
2102 * Finally, register ourselves with the USB framework itself.
2103 */
2104 if ((ret = xhci_hcd_init(xhcip)) != 0) {
2105 xhci_error(xhcip, "failed to register hcd with usba");
2106 goto err;
2107 }
2108 xhcip->xhci_seq |= XHCI_ATTACH_USBA;

2110 if ((ret = xhci_root_hub_init(xhcip)) != 0) {

new/usr/src/uts/common/io/usb/hcd/xhci/xhci.c 15

2111 xhci_error(xhcip, "failed to load the root hub driver");
2112 goto err;
2113 }
2114 xhcip->xhci_seq |= XHCI_ATTACH_ROOT_HUB;

2116 return (DDI_SUCCESS);

2118 err:
2119 (void) xhci_cleanup(xhcip);
2120 return (DDI_FAILURE);
2121 }
______unchanged_portion_omitted_

2187 static struct dev_ops xhci_dev_ops = {
2188 DEVO_REV, /* devo_rev */
2189 0, /* devo_refcnt */
2190 xhci_getinfo, /* devo_getinfo */
2191 nulldev, /* devo_identify */
2192 nulldev, /* devo_probe */
2193 xhci_attach, /* devo_attach */
2194 xhci_detach, /* devo_detach */
2195 nodev, /* devo_reset */
2196 &xhci_cb_ops, /* devo_cb_ops */
2197 &usba_hubdi_busops, /* devo_bus_ops */
2198 usba_hubdi_root_hub_power, /* devo_power */
2199 xhci_quiesce /* devo_quiesce */
2186 ddi_quiesce_not_supported /* devo_quiesce */
2200 };
______unchanged_portion_omitted_

