new usr/src/uts/comon/i o/ usb/ hed/ xhci / xhci . ¢

R R R R

75990 Mon Jul

9 10: 24: 41 2018

new usr/src/uts/comon/i o/ usb/ hed/ xhci / xhci . ¢

Add xhci

_qui esce to support fast reboot.

R R R R R

1

[y
QOONOUTAWN

/*

E I I

* ok

B A T T I

This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terns of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunos.org/license/ CDDL.

Copyright (c) 2017, Joyent, Inc.

Copyright (c) 2018, Western Digital Corporation.

Ext ensi bl e Host Controller Interface (xHCI) USB Driver

The xhci driver is an HCl driver for USB that bridges the gap between client
device drivers and inplenments the actual way that we talk to devices. The
xhci specification provides access to USB 3. x capabl e devices, as well as all
prior generations. Like other host controllers, it both provides the way to
talk to devices and also is treated |like a hub (often called the root hub).

This driver is part of the USBA (USB Architecture). It inplenments the HCDI

(host controller device interface) end of USBA. These entry points are used
by the USBA on behalf of client device drivers to access their devices. The
driver also provides notifications to deal with hot plug events, which are
quite common in USB.

To properly understand the xhci driver and the design of the USBA HCDI
interfaces it inplements, it helps to have a bit of background into how USB
devi ces are structured and understand how they work at a high-1evel.

USB devices, like PCl devices, are broken down into different classes of
device. For exanple, with USB you have hubs, human-input devices (keyboards,
mce, etc.), mass storage, etc. Every device also has a vendor and device |D.
Many client drivers bind to an entire class of device, for exanple, the hubd
driver (to hubs) or scsa2usb (USB storage). However, there are other drivers
that bind to explicit |IDs such as usbsprl (specific USB to Serial devices).

USB SPEEDS AND VERSI ONS

USB devices are often referred to in two different ways. One way they're
described is with the USB version that they conformto. In the wild, you're
nost likely going to see USB 1.1, 2.0, 2.1, and 3.0. However, you may al so
see devices referred to as "full-", "low’, "high-', and 'super-’ speed
devi ces.

The latter description describes the maxi mumtheoretical speed of a given

devi ce. For exanple, a super-speed device theoretically caps out around 5
Ghit/s, whereas a | ow speed device caps out at 1.5 Mit/s.
In general, each speed usually corresponds to a specific USB protocol

generation.
" hi gh- speed’

For exanple, all USB 3.0 devices are super-speed devices. Al
devices are USB 2.x devices. Full-speed devices are special in

new usr/src/uts/comon/i o/ usb/ hcd/ xhci / xhci . ¢ 2
62 * that they can either be USB 1.x or USB 2.x devices. Low speed devices are
63 * only a USB 1.x thing, they did not junp the fire line to USB 2. x.
64 *
65 * USB 3.0 devices and ports generally have the wiring for both USB 2.0 and USB
66 * 3.0. Wen a USB 3.x device is plugged into a USB 2.0 port or hub, then it
67 * will report its version as USB 2.1, to indicate that i1t is actually a USB 3.x
68 * device.
69 *
70 * USB ENDPOI NTS
71 *
72 * A given USB device is made up of endpoints. A request, or transfer, is nade
73 * to a specific USB endpoint. These endpoints can provide different services
74 * and have different expectations around the size of the data that’ll be used
75 * in a given request and the periodicity of requests. Endpoints thenselves are
76 * either used to make one-shot requests, for exanple, making requests to a mass
77 * storage device for a given sector, or for nmaking periodic requests where you
78 * end up polling on the endpoint, for exanple, polling on a USB keyboard for
79 * keystrokes.
80 *
81 * Each endpoint encodes two different pieces of information: a direction and a
82 * type. There are two different directions: IN and OUT. These refer to the
83 * general direction that data noves relative to the operating system For
84 * exanple, an IN transfer transfers data in to the operating system fromthe
85 * device. An OQUT transfer transfers data fromthe operating system out to the
86 * device.
87 *
88 * There are four different kinds of endpoints:
89 *
90 * BULK These transfers are large transfers of data to or from
91 ~* a device. The nost conmon use for bulk transfers is for
92 * mass storage devices. Though they are often al so used by
93 * net wor k devi ces and nore. Bul k endpoints do not have an
94 = explicit time conponent to them They are always used
95 * for one-shot transfers.
96 *
97 * CONTROL These transfers are used to mani pul ate devi ces
98 * t hensel ves and are used for USB protocol |evel
99 = operations (whether device-specific, class-specific, or
100 * generic across all of USB). Unlike other transfers,
101 * control transfers are always bi-directional and use
102 * different kinds of transfers.
103 *
104 * | NTERRUPT Interrupt transfers are used for small transfers that
105 * happen i1 nfrequently, but need reasonable |atency. A good
106 * exanpl e of interrupt transfers is to receive input from
107 * a USB keyboard. Interrupt-IN transfers are generally
108 * pol l ed. Meaning that a client (device driver) opens up
109 * an interrupt-IN pipe to poll on it, and receives
110 * peri odi c updates whenever there is infornmation
111 * avai l abl e. However, Interrupt transfers can be used
112 = as one-shot transfers both going IN and OUT.
113 *
114 ~* | SOCHRONOUS These transfers are things that happen once per
115 * time-interval at a very regular rate. A good exanple of
116 * these transfers are for audio and video. A device may
117 * describe an interval as 10ns at which point it will read
118 * or wite the next batch of data every 10ns and transform
119 * it for the user. There are no one-shot |sochronous-IN
120 * transfers. There are one-shot |sochronous-QUT transfers,
121 * but these are used by device drivers to always provide
122 * the systemwi th sufficient data.
123 *
124 * To find out information about the endpoints, USB devices have a series of
125 * descriptors that cover different aspects of the device. For exanple, there
126 * are endpoint descriptors which cover the properties of endpoints such as the
127 * maxi mum packet size or polling interval.

new usr/src/uts/comon/i o/ usb/ hed/ xhci / xhci . ¢ 3

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

B I T T S

Descriptors exist at all levels of USB. For exanple, there are general
descriptors for every device. The USB device descriptor is described in
usb_dev_descr(9S). Host controllers will |ook at these descriptors to ensure
that they programthe device correctly; however, they are nore often used by
client device drivers. There are al so descriptors that exist at a class
level. For exanple, the hub class has a class-specific descriptor which
describes properties of the hub. That information is requested for and used
by the hub driver.

Al of the different descriptors are gathered by the systemand placed into a
tree which USBA sonetines calls the 'Configuration Cloud’ . dient device
drivers gain access to this cloud and then use themto open endpoints, which
are called pipes in USBA (and sone revisions of the USB specification).

Each pipe gives access to a specific endpoint on the device which can be used
to performtransfers of a specific type and direction. For exanple, a nass
storage device often has three different endpoints, the default control

endpoi nt (whi ch every device has), a Bul k-1N endpoint, and a Bul k- QUT
endpoi nt. The device driver ends up with three open pipes. One to the default
control endpoint to configure the device, and then the other two are used to

performl|/QO

These routines translate nore or less directly into calls to a host
controller driver. A request to open a pipe takes an endpoi nt descriptor that
describes the properties of the pipe, and the host controller driver (this
driver) goes through and does any work necessary to allow the client device
driver to access it. Once the pipe is open, it either nakes one-shot
transfers specific to the transfer type or it starts performng a periodic
pol I of an endpoint.

Al of these different actions translate into requests to the host
controller. The host controller driver itself is in charge of naking sure
that all of the required resources for polling are allocated with a request
and then proceed to give the driver’s periodic callbacks.

HUBS AND HOST CONTROLLERS
even if the device is itself a

the root-hub. The root-hub is
is integrated into the host

Every device is always plugged into a hub,
hub. This continues until we reach what we call
special in that it is not an actual USB hub, but
controller and is manipulated in its own way. For exanple, the host
controller is used to turn on and off a given port’s power. This may happen
over any interface, though the nbost commopn way is through PCl.

In addition to the normal character device that exists for a host controller
driver, as part of attaching, the host controller binds to an instance of the
hubd driver. Wiile the root-hub is a bit of a fiction, everyone nodels the
root-hub as the same as any other hub that’s plugged in. The hub kernel

nodul e doesn’t know that the hub isn't a physical device that’'s been plugged
in. The host controller driver simulates that view by taking hub requests
that are nade and translating theminto corresponding requests that are
understood by the host controller, for exanple, reading and witing to a
menory mapped register.

The hub driver polls for changes in device state using an Interrupt-IN
request, which is the sane as is done for the root-hub. This allows the host
control i er driver to not have to know about the i npl ement ati on of device hot
plug, nmerely react to requests froma hub, the sane as if it were an external
devi ce. When the hub driver detects a change, it will go through the
correspondi ng state machine and attach or detach the correspondi ng client
device driver, depending if the device was inserted or renopved.

We detect the changes for the Interrupt-IN primarily based on the port state
change events that are delivered to the event ring. Wenever any event is
fired, we use this to update the hub driver about _all_ ports with

new usr/src/uts/comon/i o/ usb/ hcd/ xhci / xhci . ¢ 4
194 * outstanding events. This nore closely matches how a hub is supposed to behave
195 * and leaves things less likely for the hub driver to end up without clearing a
196 * flag on a port.

197 *
198 * PACKET S| ZES AND BURSTI NG
199 *

200 * A given USB endpoint has an explicit packet size and a nunmber of packets that
201 * can be sent per time interval. These concepts are abstracted away from client
202 * device drives usually, though they sonetines informthe upper bounds of what
203 * a device can perform
204 *

205 * The host controller uses this information to transformarbitrary transfer
206 * requests into USB protocol packets. One of the nice things about the host
207 * controllers is that they abstract away all of the signaling and semantics of
208 * the actual USB protocols, allowing for life to be slightly easier in the
209 * operating system
210 *

211 * That said, if the host controller is not progranmed correctly, these can end
212 * up causing transaction errors and other problenms in response to the data that
213 * the host controller is trying to send or receive.

214 *

215 * oo
216 * Organization
217 * --eee---- -

218 *

219 * The driver is made up of the following files. Many of these have their own
220 * theory statenents to describe what they do. Here, we touch on each of the
221 * purpose of each of these files.

222 *

223 * xhci _comuand. c: This file contains the logic to issue commands to the
224 * controller as well as the actual functions that the
225 * other parts of the driver use to cause those commands.
226 *

227 * xhci_context.c This file manages various data structures used by the
228 * controller to manage the controller’s and device's
229 * context data structures. See nore in the xHCl Overview
230 * and Ceneral Design for nore information.

231 *

232 * xhci _dma. c: Thi s manages the allocation of DVA nmenory and DVA
233 * attributes for controller, whether nenory is for a
234 * transfer or sonething else. This file also deals with
235 * all the logic of getting data in and out of DMA buffers.
236 *

237 * xhci_endpoint.c: This nmanages all of the |ogic of handling endpoints or
238 * pipes. It deals with endpoint configuration, 1/0
239 * schedul ing, timeouts, and call backs to USBA.

240 *

241 * xhci_event.c Thi s manages cal | backs fromthe hardware to the driver.
242 * This covers command conpl etion notifications and I/ 0O
243 * notifications.

244 *

245 * xhci _hub. c: Thi s nmanages the virtual root-hub. It basically
246 * inpl ements and translates all of the USB | evel requests
247 * into xhci specific inplements. It also contains the
248 * functions to register this hub with USBA
249 *

250 * xhci_intr.c Thi s manages the underlying interrupt allocation,

251 * interrupt noderation, and interrupt routines.

252 *

253 * xhci_quirks.c: This manages information about buggy hardware that’s
254 * been coll ected and experienced primarily from ot her
255 * systens.

256 *

257 * xhci_ring.c: Thi s manages the abstraction of a ring in xhci, which is
258 * the primary of communication between the driver and the
259 * har dware, whether for the controller or a device.

new usr/src/uts/comon/i o/ usb/ hed/ xhci / xhci . ¢ 5

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

B I T T T T I T T T A T S

xhci _usba. c: This inplenents all of the HCDI functions required by
USBA. This is the main entry point that drivers and the
kernel frameworks will reach to start any operation.
Many functions here will end up in the command and

endpoi nt code.

xhci . c: This provides the nmain kernel DD interfaces and
perforns device initialization.

xhci . h: This is the primary header file which defines
il lumos-specific data structures and constants to manage
the system

xhcireg. h: This header file defines all of the register offsets,

masks, and related macros. It also contains all of the
constants that are used in various structures as defined
by the specification, such as command of fsets, etc.
xhci _ioctl. h: This contains a few private ioctls that are used by a
private debuggi ng conmand. These are private.
cmd/ xhcei / xhei _portsec: This is a private utility that can be useful for
debuggi ng xhci state. It is the only consuner of
xhci _ioctl.h and the private ioctls.

The design and structure of this driver follows fromthe way that the xHC
specification tells us that we have to work with hardware. First we'll give a
rough summary of how that works, though the xHCI 1.1 specification should be
referenced when goi ng through this.

There are three primary parts of the hardware -- registers, contexts, and
rings. The registers are nenory napped registers that cone in four sets,
though all are found within the first BAR These are used to program and
control the hardware and aspects of the devices. Beyond nore traditional
devi ce programming there are two prinary sets of registers that are
important:

o Port Status and Control
o Doorbel |

Regi sters (XHCl _PORTSC)
Array (XHCl _DOORBELL)

The port status and control registers are used to get and nmanipul ate the
status of a given device. For exanple, turning on and off the power to it.
The Doorbell Array is used to kick off 1/0O operations and start the
processing of an I/O ring.

The contexts are data structures that represent various pieces of information
in the controller. These contexts are generally filled out by the driver and
then acknow edged and consunmed by the hardware. There are controller-wde
contexts (nostly managed in xhci_context.c) that are used to point to the
contexts that exist for each device in the system The primary context is
call ed the Device Context Base Address Array (DCBAA).

Each device in the systemis allocated a "slot’, which is used to index into
the DCBAA. Slots are assigned based on issuing conmands to the controller.
There are a fixed nunber of slots that determ ne the maxi num nunber of

devi ces that can end up being supported in the system Note this includes all
the devices plugged into the USB device tree, not just devices plugged into
ports on the chassis.

For each devi ce,
t he devi ce.

there is a context structure that describes properties of
For exanple, what speed is the device, is it a hub, etc. The

new usr/src/uts/comon/i o/ usb/ hcd/ xhci / xhci . ¢ 6
326 * context has slots for the device and for each endpoint on the device. As
327 * endpoints are enabled, their context information which describes things |ike
328 * the maxi mum packet size, is filled in and enabl ed. The mappi ng between these
329 * contexts look |ike:

330 *

331 *

332 * DCBAA

333 * EEE R + Devi ce Cont ext

334 * | Slot O |---------m-mmmmon- Shocoiooa o +

335 * R + | Slot Context |

336 * | | B + Fommmmeeaa +

337 * e I + | Endpoint 0 |------ > I/ORing |

338 * | Slot n |--> NULL | | Context (Bi) | Fomea i +

339 * R + Ho- - + R +

340 * | Endpoint 1 |

341 * | Context (Qut)]|

342 * Femememaaeaas

343 * | Endpoint 1 |

344 * | Context (In) |

345 * Fememeeeeaaa +

346 * | |

347 * e +

348 * | Endpoint 15 |

349 * | Context (In) |

350 * R +

351 *

352 * These contexts are always owned by the controller, though we can read them
353 * after various operations conplete. Conmands that toggle device state use a
354 * specific input context, which is a variant of the device context. The only
355 * difference is that it has an input context structure ahead of it to say which
356 * sections of the device context should be eval uated.

357 *

358 * Each active endpoint points us to an I/Oring, which leads us to the third
359 * mmin data structure that's used by the device: rings. Rings are made up of
360 * transfer request blocks (TRBs), which are joined together to forma given
361 * transfer description (TD) which represents a single |I/0O request.

362 *

363 * These rings are used to issue I/Oto individual endpoints, to issue commands
364 * to the controller, and to receive notification of changes and conpl eti ons.
365 * Issued commands go on the special ring called the command ring while the
366 * change and conpletion notifications go on the event ring. Mre details are
367 * available in xhci_ring.c. Each of these structures is represented by an
368 * xhci_ring_t.

369 *

370 * Each ring can be nade up of one or nore disjoint regions of DMA; however, we
371 * only use a single one. This also inpacts sone additional registers and

372 * structures that exist. The event ring has an indirection table called the
373 * Event Ring Segnent Table (ERST). Each entry in the table (a segnent)

374 * describes a chunk of the event ring.

375 *

376 * One other thing worth calling out is the scratchpad. The scratchpad is a way
377 * for the controller to be given arbitrary nenory by the OS that it can use.
378 * There are two parts to the scratchpad. The first part is an array whose
379 * entries contain pointers to the actual addresses for the pages. The second
380 * part that we allocate are the actual pages thensel ves.

381 *

382 * oo

383 * Endpoint State and Managenent

K R e

385 *

386 * Endpoi nt managenent is one of the key parts to the xhci driver as every
387 * endpoint is a pipe that a device driver uses, so they are our prinmary

388 * currency. Endpoints are enabled and di sabl ed when the client device drivers
389 * open and close a pipe. Wien an endpoint is enabled, we have to fill in an
390 * endpoint’s context structure with information about the endpoint. These
391 * basically tell the controller inportant properties which it uses to ensure

new usr/src/uts/comon/i o/ usb/ hed/ xhci / xhci . ¢ 7

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

B I T T T T I T T T A T S

that there is adequate bandwi dth for the device.

Each endpoint has its own ring as described in the previous section. W place
TRBs (transfer request blocks) onto a given ring to request |/O be perforned.
Responses are placed on the event ring, in other words, the rings associated
with an endpoint are purely for producing I/Q

Endpoi nts have a defined state machine as described in xHCl 1.1 / 4.8.3.
These states generally correspond with the state of the endpoint to process
1/0 and handl e timeouts. The driver basically follows a simlar state machine
as described there. There are sone devi ations. For exanple, what they
describe as 'running’ we break into both the Idle and Running states bel ow
We al so have a notion of tinmed out and qui escing. The follow ng inmage

summari zes the states and transitions:

Fa + o +
| Idle |--------- R e > Running |<-+
LR + . 1/0 queued on A4-----------
n ring and tinmeout |
| schedul ed. ||]
| [
- LS - + | |
No 1/Cs remain]
Ho- - - - Lol I+ I
| Ti meout |
| fires for |
| 1/0 |
v \Y
B . + Foemeeaa +
| Timed Qut | | Halted|
o + P
| |
| [e + |
+——>| Qui esci ng |< —————————— +
No TRBs | TRBs
remain | Renai n
S T Sy oo - L S +

Normal Iy, a given endpoint will oscillate between having TRBs schedul ed and

not. Every time a new I/Ois added to the endpoint, we'll ring the doorbell,

maki ng sure that we're processing the ring, presumng that the endpoint isn’t
in one of the error states.

To detect device hangs, we have an active tineout(9F) per active endpoint
that ticks at a one second rate while we still have TRBs outstanding on an
endpoi nt. Once all outstanding TRBs have been processed, the tinmeout wll
stop itself and there will be no active checking until the endpoint has I1/0O
schedul ed on it again.

There are two prinmary ways that things can go wong on the endpoint. W can
either have a tinmeout or an event that transitions the endpoint to the Halted
state. In the halted state, we need to issue explicit conmands to reset the
endpoi nt before renoving the 1/0

The way we handl e both a tinmeout and a halted condition is simlar, but the
way they are triggered is different. Wien we detect a halted condition, we
don’t immediately clean it up, and wait for the client device driver (or USBA
on its behalf) to issue a pipe reset. Wien we detect a tinmeout, we

imedi ately take action (assuming no other action is ongoing).

I'n both cases, we quiesce the device, which takes care of dealing with taking
the endpoint fromwhatever state it may be in and taking the appropriate
actions based on the state nmachine in xHCl 1.1/ 4.8.3. The end of quiescing
| eaves the device stopped, which allows us to update the ring’ s pointer and

new usr/src/uts/comon/i o/ usb/ hed/ xhci / xhci . ¢

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

® Ok ok ok E SRk O Sk Ok R b Sk OF 3R ok Sk b SR oF Sk F S 3k O F O R b Sk OF 3k b Sk ok SR F SR F b 3k O F O 3k b 3k Ok R ok Sk ok R Sk b % Ok ok ok % ok 3k

renove any TRBs that are causing probl ens.

As part of all this,

we ensure that we can only be quiescing the device from

a given path at a time. Any requests to schedule 1/Oduring this tine wll

general ly fail.

The follow ng i mage describes the state machine for the tineout logic. It

ties into the inage above.

[— +
| Disabled | ----- M
B TRBs schedul ed
A and no active
| timer.
|
|
¥ S — K e e e mmmm
| 1 sec tinmer
| fires and
| no TRBs or
| endpoi nt shut down
A
|
|
o K e e e e e mm-
No nore
1/Cs

As we described above,
timeout (9F) will be active.
current, active I/O until
reaches zero.
ring, and then clean things up.

It’s worth calling out periodic endpoints explicitly,

when there are active TRBs and |/ Gs,
Each second, we decrenent a counter on the
either a new I/ O takes the head,
If the counter reaches zero,

1 sec tiner
fires and
anot her
-+--+ quiesce, in
| a bad state,
n or decrenent
| 1/0 timeout

|

|
tinmer counter |
reaches zero |
|
|

Qui esce ri
and fail

restart
timer as
nore |/ Cs
a 1 second

or the counter

then we go through, quiesce the

as they operate

somewhat differently. Periodic endpoints are limted to Interrupt-IN and

I sochronous-1N. The USBA often uses the termpolling for these.
because the client only needs to nake a single APl call;
either an error occurs or polling is

receive multiple call backs until
requested to be term nated.

Wien we have one of these periodic requests,

1/0 requests, as well as,
requests to cover the periodic needs,
when replying to a request,
However, when we have a periodic request,
handl e before giving them data.

However,
the franework expects us to submt data.
themuntil

Most of the polling setup |ogic happens in xhci
The consunption and duplication is handled in

xhci _hcdi _periodic_init().
xhci _endpoint. c.

That's

however, they'll

we end up always reschedul i ng
having a specific nunber of pre-existing I1/0

in case of latency spikes.
we use the request handl e that we were given.
we're required to duplicate the

Nor mal |y,

the duplication is a bit tricky. For everything that was duplicated,
Because of that we, don’t duplicate
they are needed. This mininmizes the likelihood that we have

out standi ng requests to deal with when we encounter a fatal

polling failure.

usbha.c in

new usr/src/uts/comon/i o/ usb/ hed/ xhci / xhci . ¢ 9

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

B A I T i T T I 2 2R R S

The following inages relate the core data structures. The primary structure
in the systemis the xhci_t. This is the per-controller data structure that
exi sts for each instance of the driver. Fromthere, each device in the system
is represented by an xhci _device_t and each endpoint is represented by an
xhci _endpoint _t. For each client that opens a given endpoint, there is an

xhci _pipe_t. For each I/Orelated ring, there is an xhci_ring_t in the
system
o e e e e e o - +
Per-Controller |
Structure |
xhei _t |
|
uint _t ---+--> Capability regs offset
ui nt _t ---+--> Operational regs offset
ui nt _t ---+--> Runtinme regs offset
ui nt _t ---+--> Doorbell regs offset

xhci _state_flags_t
xhci _quirks_t
xhci _capability_t

---+--> Device state flags
---+--> Device quirk flags
---+--> Controller capability structure

xhci _dcbaa_t e e e e e e ieoeao- +
xhci _scrat chpad_t B e + |

xhci _command_ing_t ---+4------ + v

xhci _event _ring_t Seee -+ | o e e e eeieoooo +
xhci _usba_t St | Devi ce Cont ext

>

>

-> USB Virtual Hub Descriptor
> Interrupt polling client

usb_ss_hub_descr _t -
usba_pi pe_handl e_data_t *

|
|
| | |
R e TR + |||] | Base Address |
|| | | Array Structure |
11 | | xhci _dcbaa_t |
MR EEEEE R EEEEE R]) |
o + | | DCBAA KVA <-+-- uint64_t * |
e + | DMA Buffer <-+-- xhci_dma_buffer_t |
\Y | L R +
L e + B e +
| Event Ring | |
| Managenent | |
| xhci_event _ring_t | Y
| | Event Ring R +
xhci_event_segnment_t * --	-> Segnment VA	Scratchpad (Extra
xhci _dma_buffer_t --	-> Segnent DVA Buf.	Controller Menory)
xhci_ring_t RN	xhci _scratchpad_t	
R e + Scratchpad		
Base Array KVA <-+- uinté4_t *		
Foem e +	Array DVA Buf. <-+- xhci _dma_buffer_t	
v	Scratchpad DVA <-+- xhci_dma_buffer_t *	
e T T +	Buffer per page +--------------oo---- +	
Conmand Ri ng		
xhci _conmmand_ring_t	e +	
xhci_ring_t --+-> Command Ring --->----------- +		
list_t --+-> Command Li st v		
timeout_id_t --+-> Tinmeout State e +		
xhci _command_ring_state_t +-> State Flags	1/0 Ring	
B R EE T TP +	xhci_ring_t	
Ring DMA Buf. <-+-- xhci_dma_buffer_t		
R ng Length <-+-- uint_t		
Ring Entry KVA <-+-- xhei _trb_t *		
L T + Ring Head <-+-- uint_t		
+--->	USBA State	Ring Tail <-+-- uint_t
xhci _usba_t	Ring Cycle <-+-- uint _t	
	L +	
usba_hcdi _ops_t * -+-> USBA Ops Vector		
usb_dev_dscr_t -+-> USB Virtual		
+
| !

N
Devi ce Descri ptor |
|
|

new usr/src/uts/comon/i o/ usb/ hcd/ xhci / xhci . ¢ 10
590 * | usb_intr_req_t -+-> Interrupt polling request

591 * | uint32_t --+-> Interrupt polling device mask

592 * | list_t --+-> Pipe List (Active Users)

593 * | list_t B LT T +

594 * R L T T + |

595 * |

596 * %

597 * e e memeeeeeeeeieseaeieaeeaaas + L T . +

598 * USB Devi ce | === >| USB Device |-->
599 * xhci _device_t | | xhci _device_t |

600 * | ot +

601 * usb_port _t --+-> USB Port plugged into

602 * uint8_t --+-> Sl ot Nunber

603 * bool ean_t --+-> Address Assigned

604 * usba_device_t * --+-> USBA Device State

605 * xhci _dma_buffer_t --+-> I nput Context DMA Buffer

606 * xhci _i nput _context _t * --+-> | nput Context KVA

607 * xhci _sl ot _contex_t * --+-> I nput Slot Context KVA

608 * xhci _endpoi nt _context _t *[] --+-> Input Endpoint Context KVA

609 * xhci _dma_buffer_t --+-> Qut put Context DMA Buffer

610 * xhci _sl ot _context _t * --+-> Qutput Slot Context KVA

611 * xhci _endpoi nt _context _t *[] --+-> Qutput Endpoi nt Context KVA

612 * xhci _endpoint _t *[] --+-> Endpoint Tracking ---+

613 * Fom T + |

614 * |

615 * \

616 * e + oo +

617 * Endpoi nt Data R >| Endpoi nt Data |-->.
618 * xhci _endpoi nt _t | | xhci _endpoint _t |

619 * | LR +

620 * i nt --+-> Endpoi nt Nunber

621 * int --+-> Endpoi nt Type

622 * xhci _endpoi nt _state_t --+-> Endpoint State

623 * timeout _id_t --+-> Endpoi nt Tinmeout State

624 * usba_pi pe_handl e_data_t * --+-> USBA Cient Handle

625 * xhci _ring_t --+-> Endpoint I/ORNg -------- Secia-- +
626 * list_t --+-> Transfer List -------- +

627 * R e e + |

628 * v

629 * R LT + L L TR +
630 * Transfer Structure [>| Transfer Structure |-> ...
631 * xhci _transfer_t | | xhci_transfer_t |
632 * | B R LT TP +
633 * xhci _dma_buffer_t --+->1/0O DVA Buffer

634 * uint _t --+-> Nunber of TRBs

635 * uint _t --+-> Short transfer data

636 * uint _t --+-> Ti meout seconds renaining

637 * usb_cr_t --+-> USB Transfer return val ue

638 * bool ean_t --+-> Data direction

639 * xhci _trb_t * --+-> Host-order transfer requests for 1/0O
640 * usb_i soc_pkt _descr_t * -+-> |Isochronous only response data

641 * usb_opaque_t --+-> USBA Request Handl e

642 * B L LT +

643 *

644 * o----o-------

645 * Lock Ordering

646 * -------------

647 *

648 * There are three different tiers of locks that exist in the driver. First,
649 * there is a lock for each controller: xhci_t*xhci_lock. This protects all the
650 * data for that instance of the controller. If there are multiple instances of
651 * the xHCI controller in the system each one is independent and protected
652 * separately. The two do not share any data.

653 *

654 * Fromthere, there are two other, specific locks in the system

655 *

new usr/src/uts/comon/i o/ usb/ hcd/ xhci / xhci . ¢ 11 new usr/src/uts/comon/i o/ usb/ hcd/ xhci / xhci . ¢ 12
656 * o xhci _command_ r| ng_t* xcr_l ock 722 * ordered based on the rules for the PCl supplenent to | EEE 1275. So regs[1]
657 * o xhci _device_t* xd_i mx 723 * will always be the first BAR
658 * 724 */
659 * There is only one xcr_|lock per controller, like the xhci_lock. It protects 725 #define XHCI _REG NUMBER 1
660 * the state of the command ring. However, there is on xd_i mtx per device.
661 * Recall that each device is scoped to a given controller. This protects the 727 |*
662 * input slot context for a given device. 728 * This task queue exists as a global taskq that is used for resetting the
663 * 729 * device in the face of FMor runtinme errors. Each instance of the device
664 * There are a few inportant rules to keep in mind here that are true 730 * (xhci_t) happens to have a single taskq_di spatch_ent already allocated so we
665 * universally throughout the driver: 731 * know that we should al ways be able to dispatch such an event.
666 * 732 */
667 * Al ways grab the xhci _t*xhci_| ock, before grabbing any of the other I|ocks. 733 static taskqg_t *xhci_taskq;
668 * 2) A given xhci_device_t‘xd_intx, nust be taken before grabbing the
669 * xhci _command_ri ng_t “xcr_T ock. 735 | *
670 * 3) A given thread can only hold one of the given xhci_device_t*xd_intx |ocks 736 * Gdobal soft state for per-instance data. Note that we nust use the soft state
671 * at a given time. In other words, we should never be manipul ating the input 737 * routines and cannot use the ddi _set_driver_private() routines. The USB
672 * context of two different devices at once. 738 * framework presunes that it can use the dip’s private data.
673 * 4) It is safe to hold the xhci_device_t*xd_intx while tearing down the 739 */
674 * endpoint tiner. Conversely, the endpoint specific |logic should never enter 740 void *xhci _soft_state;
675 * this |ock.
676 * 742 | *
677 * ceeccciieaaiiiaaa 743 * This is the tinme in us that we wait after a controller resets before we
678 * Relationship to EHC 744 * consider reading any register. There are sone controllers that want at |east
679 * oo 745 * 1 ns, therefore we default to 10 ns.
680 * 746 */
681 * On sonme Intel chipsets, a given physical port on the systemmay be routed to 747 cl ock_t xhci _reset_del ay = 10000;
682 * one of the EHCI or xHCl controllers. This association can be dynanically
683 * changed by witing to platformspecific registers as handled by the quirk 749 void
684 * logic in xhci_quirk.c. 750 xhci _error(xhci _t *xhcip, const char *fnt, ...)
685 * 751 {
686 * As these ports nay support USB 3.x speeds, we always route all such ports to 752 va_list ap;
687 * the xHCI controller, when supported. In addition, to mnimze disruptions
688 * from devices being enunerated and attached to the EHCI driver and then 754 va_start(ap, fnt
689 * disappearing, we generally attenpt to |load the xHCI controller before the 755 if (xhcip = NULL && xhci p->xhci _dip !'= NULL) {
690 * EHCI controller. This logic is not done in the driver; however, it is done in 756 vdev_err (xhci p->xhci _dip, CE_WARN, fnt, ap);
691 * other parts of the kernel like in uts/comon/io/consconfig_dacf.c in the 757 } else {
692 * function consconfig_|load_drivres(). 758 vemrm_err (CE_WARN, fnt, ap);
693 * 759 }
694 * ----------- 760 va_end(ap);
695 * Future Work 761 }
696 * ----------- __unchanged_portion_onitted_
697 *
698 * The primary future work in this driver spans two different, but related 1011 int
699 * areas. The first area is around controller resets and how they tie into FM 1012 xhci _check_regs_acc(xhci _t *xhcip)
700 * Presently, we do not have a good way to handl e controllers com ng and going 1013 {
701 * in the broader USB stack or properly reconfigure the device after a reset. 1014 ddi _fmerror_t de;
702 * Secondly, we don’t handle the suspend and resunme of devices and drivers.
703 * 1016 I*

1017 * Treat cases where we can’t check as fine so we can treat the code
705 #include <sys/param h> 1016 * Treat the case where we can’t check as fine so we can treat the code
706 #include <sys/nodctl.h> 1018 * nmore sinply.
707 #include <sys/conf.h> 1019 */
708 #include <sys/devops. h> 1020 if (quiesce_active || ! DDl _FM ACC ERR CAP(xhci p->xhci _fm caps))
709 #include <sys/ddi.h> 1019 f (!'DDI_FM_ACC _ERR _CAP(xhci p->xhci _f m caps))
710 #include <sys/sunddi.h> 1021 return (DDl _FM OK);
711 #include <sys/cm_err. h>
712 #include <sys/ddi fm h> 1023 ddi _fm acc_err_get (xhci p- >xhci _regs_handl e, &dJe, DDl _FME VERSI ON);
713 #include <sys/pci.h> 1024 ddi _fm acc_err_cl ear (xhci p- >xhci _regs_handl e, DDl _FME_VERSI ON);
714 #include <sys/cl ass. h> 1025 return (de.fme_status);
715 #incl ude <sys/policy.h> 1026 }

__unchanged_portion_onitted_

717 #include <sys/usb/ hcd/ xhci/xhci . h>
718 #include <sys/usb/ hcd/ xhci/xhci _ioctl.h> 1975 /* QUIESCE(9E) to support fast reboot */

1976 int
720 | * 1977 xhci _qui esce(dev_info_t *dip)
721 * W want to use the first BARto access its registers. The regs[] array is 1978 {

new usr/src/uts/comon/i o/ usb/ hcd/ xhci / xhci . ¢ 13 new usr/ src/uts/comon/i o/ usb/ hcd/ xhci / xhci . ¢ 14
1979 xhci _t *xhci p; 2045 cv_i ni t (&hci p->xhci _statecv, NULL, CV_DRIVER, NULL);
2046 xhci p->xhci _seq | = XHCl _ATTACH_SYNCH,
1981 xhci p = ddi _get_soft_state(xhci_soft_state, ddi_get_instance(dip));
2048 if (xhci_port_count(xhcip) == B_FALSE)
1983 return (xhci_controller_stop(xhcip) == 0 && 2049 goto err;
1984 xhci _control | er _reset (xhcip) == 0 ? DDl _SUCCESS : DDl _FAI LURE);
1985 } 2051 if (xhci_controller_takeover(xhcip) == B_FALSE)
2052 goto err;
1987 static int
1988 xhci_attach(dev_info_t *dip, ddi_attach_cnd_t cnd) 2054 I*
1989 { 2055 * W don't enable interrupts until after we take over the controller
1990 int ret, inst, route; 2056 * fromthe BIOS. W' ve observed cases where this can cause spurious
1991 xhci _t *xhci p; 2057 * interrupts.
2058 */
1993 if (cmd ! = DDI_ATTACH) 2059 if (xhci_ddi_intr_enabl e(xhcip) == B_FALSE)
1994 return (DDl _FAI LURE); 2060 goto err;
2061 xhci p- >xhci _seq | = XHCI _ATTACH_| NTR_ENABLE;
1996 inst = ddi _get_instance(dip);
1997 if (ddi_soft_state_zalloc(xhci_soft_state, inst) != 0) 2063 if ((ret = xhci_controller_stop(xhcip)) != 0)
1998 return (DDl _FAI LURE); 2064 xhci _error(xhcip, "failed to stop controller: %",
1999 xhci p = ddi _get_soft_state(xhci _soft_state, ddi_get_instance(dip)); 2065 ret == EIO ? "encountered FMregister error" :
2000 xhci p->xhci _di p = dip; 2066 "timed out while waiting for controller");
2067 goto err;
2002 xhci p- >xhci _regs_capoff = PCl _El NVAL32; 2068 }
2003 xhci p- >xhci _regs_operof f = PCl _El NVAL32;
2004 xhci p- >xhci _regs_runof f = PCl _EI NVAL32; 2070 if ((ret = xhci_controller_reset(xhcip)) !'=0) {
2005 xhci p- >xhci _regs_doorof f = PCl _ElI NVAL32; 2071 xhci _error(xhcip, "failed to reset controller: %",
2072 ret == EIO ? "encountered FMregister error"
2007 xhci _fm.init(xhcip); 2073 "tinmed out while waiting for controller");
2008 xhci p- >xhci _seq | = XHCI _ATTACH_FM 2074 goto err;
2075 }
2010 if (pci_config_setup(xhcip->xhci_dip, &xhcip->xhci_cfg_handle) !=
2011 DDl _SUCCESS) { 2077 if ((ret = xhci_controller_configure(xhcip)) !'=0) {
2012 goto err; 2078 xhci _error(xhcip, "failed to configure controller: %", ret);
2013 } 2079 goto err;
2014 xhci p- >xhci _seq | = XHC _ATTACH PCI_CONFI G, 2080 }
2015 xhci p- >xhci _vendor _i d = pci_confi g_get 16(xhci p- >xhci _cf g_handl e,
2016 PCI _CONF_VENI D) ; 2082 /*
2017 xhci p->xhci _device_id = pci_config_get 16(xhci p- >xhci _cf g_handl e, 2083 * Sone systens support having ports routed to both an ehci and xhci
2018 PCl _CONF_DEVI D) ; 2084 * controller. If we support it and the user hasn’t requested otherw se
2085 * via a driver.conf tuning, we reroute it now.
2020 if (xhci_regs_map(xhcip) == B_FALSE) { 2086 */
2021 goto err; 2087 route = ddi _prop_get_int (DDl _DEV_T_ANY, xhci p->xhci _dip,
2022 1 2088 DDI _PROP_DONTPASS, "xhci-reroute”, XHCI PROP_REROUTE DEFAULT);
2089 if (route !'= XHC _PROP_REROUTE DI SABLE &&
2024 xhci p- >xhci _seq | = XHClI _ATTACH_REGS_MAP; 2090 (xhci p->xhci _quirks & XHCl _QUI RK_| NTC_EHCI))
2091 (void) xhci_reroute_intel (xhcip);
2026 if (xhci_regs_init(xhcip) == B_FALSE)
2027 goto err; 2093 if ((ret = xhci_controller_start(xhcip)) !=0) {
2094 xhci _I og(xhcip, "failed to reset controller: %",
2029 if (xhci_read_parans(xhcip) == B_FALSE) 2095 ret == EIO ? "encountered FMregister error”
2030 goto err; 2096 "timed out while waiting for controller");
2097 goto err;
2032 if (xhci_identify(xhcip) == B_FALSE) 2098 }
2033 goto err; 2099 xhci p- >xhci _seq | = XHCl _ATTACH_STARTED;
2035 if (xhci_alloc_intrs(xhcip) == B_FALSE) 2101 /*
2036 goto err; 2102 * Finally, register ourselves with the USB framework itself.
2037 xhci p->xhci _seq | = XHCI _ATTACH_| NTR_ALLCC; 2103 */
2104 if ((ret = xhci_hcd_init(xhcip)) !'=0) {
2039 if (xhci_add_intr_handl er(xhcip) == B_FALSE) 2105 xhci _error(xhcip, "failed to register hcd with usha");
2040 goto err; 2106 goto err;
2041 xhci p- >xhci _seq | = XHCI _ATTACH_| NTR_ADD; 2107 }
2108 xhci p->xhci _seq | = XHCl _ATTACH_USBA;
2043 mut ex_i ni t (&hci p->xhci _| ock, NULL, MJTEX_DRI VER,
2044 (void *)(uintptr_t)xhcip->xhci_intr_pri); 2110 if ((ret = xhci_root_hub_init(xhcip)) !'=0) {

new usr/src/uts/comon/i o/ usb/ hed/ xhci / xhci . ¢

2111
2112
2113
2114

2116

2118
2119
2120
2121

xhci _error (xhcip,
goto err;

“failed to load the root hub driver");

}
xhci p- >xhci _seq | = XHC _ATTACH_ROOT_HUB;

return (DDl _SUCCESS);

err:

(voi d) xhci _cl eanup(xhci p);

return (DDl _FAI LURE);
}

__unchanged_portion_onitted_

2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2186
2200

static struct dev_ops xhci_dev_ops
DEVO_REV,

0

xhci _getinfo,

nul | dev,

nul | dev,

xhci _attach,

xhci _det ach,

nodev,

&hci _cb_ops,

&usba_hubdi _busops,
usba_hubdi _r oot _hub_power,
xhci _qui esce

ddi _qui esce_not _supported

I

__unchanged_portion_omtted_

— e e —

T

devo_rev */
devo_refcnt */
devo_getinfo */
devo_identify */
devo_probe */
devo_attach */
devo_detach */
devo_reset */
devo_cb_ops */
devo_bus_ops */
devo_power */
devo_qui esce */
devo_qui esce */

15

